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ABSTRACT

SYNTHESIS AND ADSORPTION OF FUNCTIONALIZED POLYSTYRENES

SEPTEMBER 1992

DHAMODHARAN R. IYENGAR, B.Sc, A. M. JAIN COLLEGE, MADRAS

UNIVERSITY

M.Sc, INDIAN INSTITUTE OF TECHNOLOGY, MADRAS

M.Tech., INDIAN INSTITUTE OF TECHNOLOGY, NEW DELHI

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Thomas J. McCarthy

The effect of specifically interacting functional groups (sticky foot) located at the

chain ends of polystyrene on the adsorption rate, adsorbance, graft density and surface

excess are discussed from cyclohexane, a theta solvent and toluene, a good solvent, the

substrate under investigation being glass. Polystyrenes with hydroxyl and carboxylic acid

end-groups (PS-OH, PS-COOH, HO-PS-OH and HOOC-PS-COOH) in narrow molecular

weight distribution are synthesized by anionic polymerization of styrene followed by

suitable termination reactions. Thin layer chromatography (TLC) is developed as an

analytical technique to predict trends in the adsorption of the polymers in a range of

solvents. In particular the information about the location of the end-group and therefore

different chain architectures at the interface are inferred from this simple technique.

Adsorption isotherms are obtained for each of the functionalized polymers of four

different molecular weights, the selection of which was based on the TLC results. Kinetics

of adsorption and the adsorbance data are determined by liquid scintillation counting of

tritium labelled polymers. Graft density and surface excess data are calculated from the

adsorbance data and other known parameters.

It is shown, from these data, that polystyrenes with a carboxylic acid end-group

form weakly stretched brushes at the glass-cyclohexane interface and mushrooms at the

vi



glass-toluene interface a result consistent with the higher osmotic repulsions towards

packing in good solvents. Polystyrenes with functional groups at both the chain ends are

hypothesized to form a range of structures from those dominated by taUs at higher

concentrations to those dominated by loops (in a good solvent) and trains (in a theta

solvent
) at lower solution concentrations. At higher molecular weights it is shown that

functionalized polystyrenes behave as though they are not functionalized a result consistent

with the TLC predictions. Hydroxyl end-group is shown to be an ineffective sticky foot

from its adsorbance vis-a-vis polystyrene.

The segment density distribution away from a polished silicon surface for a

carboxylic acid end-functionalized polystyrene adsorbed from cyclohexane is determined

by neutron reflection technique. The dry film thicknesses of polymer modified glass

surfaces are determined by x-ray photoelectron spectroscopy. It is shown firom the water

contact angle data that a highly hrdrophilic surface of glass is converted to a compledy

hydrophobic surface by the adsorption of the functionalized polystyrenes.

In summary it is mentioned that carboxylic acid and hydroxyl end-functionalized

polystyrenes weakly perturb the system, polystyrene and a high energy surface. A range

of polymer configurations from that dominated by tails to loops to trains is obtained, the

dynamics of which is shown to be dependent on factors such as end-group concentration,

location of the end-group, solvent nature, molecular weight and the enthalpies of the

functional group-surface and surface-segment interaction energies. No particular theory

convers such a dynamic range except the Scheutjens-Fleer theory. Their prediction of

segment density distribution away from the surface is closer to what is observed by neutron

reflection experiments in a moderately good solvent.
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CHAPTER 1

INTRODUCTION

1.1 Significance of Polymer Adsorption

Adsorption of polymers at interfaces is pivotal to a range of technologies including

lubrication,^ colloid stabilization,^ corrosion inhibition,^ and adhesion."^ Areas of critical

technological importance impacted by polymer adsorption are summarized in Table 1.

Adsorption of an isolated macromolecule to an "attractive" wall has been the subject of

numerous theoretical investigations since IQAS.^'"^ A large amount of experimental work

on the adsorption of homopolymers and copolymers to particulate (porous and non-porous)

and "flat" substrates has been performed as well. Theoretical and experimental work on

polymer adsorption is reviewed extensively in many articlesJ"^^ Presently there is

abundant interest (theoretical and experimental) in the adsorption of functionalized

homopolymers and block copolymers to surfaces in contact with the polymer solution.

This is largely due to the development of new experimental techniques such as the surface

force balance,^^'^^ evanescent wave-induced fluorescence,^^'^^ in situ ATR IR

measurements,^^'^^ second harmonic generation neutron reflection,^'*'^^ dynamic

scanning angle reflectometry,^^ evanescent wave ellipsometry,^^'^^ in situ ellipsometry,^^

NMR spin-spin relaxation time measurements,^^'^^ in situ ATR UV measurements,^^

surface plasmon oscillations,-^^'-^ high resolution ion scattering,^^ thin layer

chromatography-^^'-^^, streaming potential measurements^^ and neutron scattering.^^ These

techniques enable a better understanding of the structure of adsorbed polymers, in terms of

the forces involved in bringing two adsorbed layers together, the segment density

distribution away from the surface, the hydrodynamic thickness, the root-mean-square

thickness, the adsorption enthalpy, the bound fraction and the kinetics of adsorption in

short time scales and aid in the critical evaluation of the large number of theoretical
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Table 1.1 Area's of Practical

Adhesive films

Paints and Coatings

Sealing

Lamination

Reinforcement

Corrosion inhibition

Polymer protected and modified

electrodes

Particle separation by flotation

Marine fouling by polysaccharide /

protein adsorption

Enhanced packing of magnetic

recording materials

Detergent action

Immune reactions

Textile finishing

Rheology of polymer-stabilized

systems

Cell adhesion and growth

Solid lubricants

t Involving Polymer Adsorption

Protective and dispersive colloids

Flocculation

Drag reduction

Chromatography

Solid propellants

Adsorbents as crystallization inhibitors

Wetting of fibres by prepreg in

composites and reinforcement

Soil structure and dewatering of clay

Blood/endothelial interactions and bio-

compatibility of artificial implants.

Groundwater treatment to remove sub-

microscopic particles.

Precipitation

Genetic reproduction

Stabilization of drugs

Row of water through soil containing

adsorbed humic acids

Tertiary oil recovery

Note: The above collection was obtained from several review articles on polymer

adsorption quoted in the text and the information learned from recent American Chemical

Society meetings.
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predictions pubUshed by many research groups whose anention is currenUy focused on this

problem.'*
^"^"^

Polymer adsorption literature from the 50's and 60's suggests that flexible

polymers of very high molecular weight adsorb to surfaces in a loop-train-tail fashion as

shown in figure 1.1. The conformation of the chain at the interface is determined by that

arrangement which minimizes the free energy of the chain as a unit, under the given solvent

condition. Some parameters are considered to represent the adsorbed chain as shown in

figure 1.2. Flexible and semi flexible homopolymers are now widely accepted to adsorb to

a surface with their segments being present in trains, loops, and tails. In this case each and

every segment is a potential adsorbate and the structure of the polymer at the surface is

governed by such factors as the energy of interaction of the segment(s) with the surface,

the interaction energy of the solvent molecules with the surface (the energy in kT units

required to replace a solvent molecule on the surface by a polymer segment was first

defined by Silberberg as Xg), the polymer segment - solvent interaction energy (often

described by the Flory interaction parameter %), polymer molecular weight, and the

concentration of the polymer in solution. All the existing theories recognize the importance

of the above parameters and predict that large loops and tails contribute to greater

adsorbance.

With the recognition of the ability of end-grafted polymers to stabilize colloidal

dispersions, the polymer adsorption community has focussed its attention, in the last ten

years, on the structure of polymer chains grafted by one end to a surface. The inherent

temptation to idealize end-functionalized polymers as being attached to a surface just by one

end with the rest of the segments extending away into the bulk solution bore the scaling

analysis of end-functionalized polymers advanced by Alexander and de Gennes.^^'^^ The

main results of their arguments are that the extension of a polymer chain grafted by one end

to a surface and its free energy should scale as its molecular weight, de Gennes suggested

in his paper that this could be verified easily by adsorbing an A-B type block copolymer
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Jenkel and Rumbach's hypothesis

Figure 1.1 Train - Loop - Tail Configurations in an Adsorbed Layer of

Homopolymer
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^* 0(z)

SF stands for sticky foot,

z stands for "z" direction.

F(z) is segment density distribution,

Parameter Symbol

Adsorbance Aorr

Thickness or th

extension

Root mean ^rms

square thickness

Bound fraction p

Segment density <D(z)

distribution

Method of determination

Liquid scintillation counting or Ellipsometry

Force vs. distance of separation measurements

Israelachvili apparatus

Ellipsometry or Neutron reflection.

Infrared spectroscopy.

Neutron reflection.

Figure 1.2 Parameters Characteristic of the Configurations in an Adsorbed
Layer



where one block will have a strong enthalpic interaction with the surface. This prediction

has been verified by Taunton, et al.,57 for the adsorption of zwitterion end-functionahzed

polystyrene to mica surface in toluene, by Parsonage, et al.,58 for poly(styrene-b-2-

vinylpyridine) adsorption to niica in toluene and Hair, et al.,^^ f^j. poly(styrene-b-ethylene

oxide) adsorption to mica in toluene using the force balance apparatus. However an

adsorbed layer is hardly characterized fully by its extension in solution. There are other

parameters of a grafted chain such as the segment density distribution away from the

surface, end segment distribution in the adsorbed layer and the root mean square thickness

of the layer as shown in figure 1.2. de Gennes's results are also applicable to those

polymers that are adsorbed irreversibly by their end group (say the end groups in the case

of diblock copolymers) alone. A more universal theory involving the prediction of the

structure of adsorbed layers of end-functionalized (grafted) polymers is the self consistent -

mean field approach advanced by Scheutjens and Reer.^^ They arrange the polymer

segments in a hypothetical lattice above the surface in question. No assumptions about the

structure or tiie distribution of the segments in tiie adsorbed layer is made. Their theory is

widely accepted for tiie case of the adsorption of homopolymers (particularly from from

poor solvents) as their prediction of adsorbance (T; mass/area), the bound fraction (p; the

number of segments in contact with the surface per chain/ the total number of segments per

chain), the fractional surface coverage (0), and the root mean square thickness (t^nis) ^S^^^

well with experimental results. Their prediction about the parabolic density profile of

segments away from the interface in the case of end-functionalized polymers was observed

recently in neutron reflection experiments.^^' However scaling arguments are simple to

understand and do not involve the rigorous mathematical formalism of SCF and other

theories, and their predictions are easy to verify. A detailed treatment of each of the

theories is given in the following sections.

Another area of polymer adsorption in which theoretical analysis and experimental

work are being published intensely is in block copolymers. The scaling analysis of
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Marques and Joanny"*-^ and the SCF analysis of Scheutjens and neer62 are again the two

contending theories. Experimental work in this area is in progress, in many research

groups around the world, to verify their predictions. In the next few years this area of

research looks extremely promising.

1.2 Characteristics of Homopolymer Adsorption

Polymers in general and proteins in particular adsorb from solution onto a variety of

substrates. In general a polymer adsorbs spontaneously to a surface if the loss of

configurational entropy upon adsorption is surpassed by the gain in enthalpy owing to

multiple points of segmental attachments at the surface, i.e the free energy change

accompanying adsorption should be negative. A critical energy of interaction is recognized

below which adsorption does not take place. The adsorption process is slow compared to a

low molecular weight analog, say the repeat unit. This is attributed to the lower diffusion

coefficient, the conformational changes of segments taking place in the adsorbed layer and

the displacement of molecules of low molecular weight, which are adsorbed first, by

molecules of higher molecular weight (polydispersity effect). The adsorption isotherms

have a high-affmity character, i.e. the adsorbed amount increases steeply at very low

increasing solution concentrations and reaches a plateau value at detectable concentrations.

Adsorbance increases with molecular weight and decreasing solvent quality. The effect of

temperature is small or significant on the adsorbance depending on how far it is from the

theta condition, but affects the hydrodynamic thickness significandy. It is generally

impossible to desorb polymers by dilution but they can be displaced by other polymers

(higher segment - surface interaction enthalpy), by the same polymer of higher molecular

weight (due to the gain of translational entropy for the same enthalpy of interaction) or by

low molecular weight displacers (which interact with the surface with a higher enthalpy of

interaction than the segments of the polymer). Cooperativity of attachment during
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adsorption and the low probability of simultaneous desorption of all the segments once

adsorbed, are also recognized.

The adsorption of polymers is considerably different from the adsorption of small

molecules. The entropy loss per molecule on adsorption is greater than that of small

molecules (this difference is due to the large number of configurations that a macromolecule

can assume in solution as well as at an interface). Therefore a minimum or a critical

enthalpic gain per segment is necessary to offshoot the entropic loss per segment in the

transition from a free coil to a bound or adsorbed coil. This critical enthalpic gain was

introduced by Silberberg in 1968 and it is referred to by the symbol
Xsc- In general the

adsorption enthalpies involved (x^) are greater than the critical adsorption enthalpy (few

tenths of a kT) and therefore polymers adsorb to many surfaces. The adsorption enthalpy

parameter Xg is defined as the net enthalpy change in units of kT, of an exchange process,

in which a segment on the surface having 1/2 (z - z') contacts with solvent molecules (z is

the lattice coordination number and z' is the number of contacts that a segment has with the

surface) and 1/2 (z - z') contacts with other segments, is exchanged with a solvent molecule

in the solution having 1/2 z contacts with other solvent molecules and 1/2 z with segments.

This definition enables segment - surface interaction to be defmed independent of segment -

solvent interaction, for which x is a measure.^ % is the Flory - Huggins polymer segment -

solvent interaction parameter and it is a measure of the quality of the solvent, x is defined

as the net enthalpy change in units of kT, per solvent molecule, per z solvent - segment

contacts, where z is the coordination number of the lattice in which the polymer segments

(1) and solvent molecules (2) are arranged [xkT = z (AH22 - 0.5 AHj^ - 0.5 AH22 )]•

The maximum amount of polymer adsorbed (adsorbance) is of the order of a few

mg / m^, and is equivalent to 1 to 10 monolayers depending on the solution conditions.

However the adsorption isotherms do not reveal the multilayer pattern observed in the case

of many small molecules. This led Jenkel and Rumbach to hypothesize that tiie segments

in the adsorbed layer were present in three distinct sequences as in figure 1.1.^^ These are
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sequences of segments in contact with the surface called trains, stretches of segments in the

solution whose ends are at the surface, called loops and sequences of segments of which

one end is bound to the surface, called tails. Modem theories on the structure of adsorbed

polymers are based on this hypothesis. There is experimental evidence based on the

measurement of root-mean-square extension (t^^) and the forces involved while bringing

two surfaces containing adsorbed polymer layers together, at distances of the order of few

radius of gyrations (Rg), which point to this end. The composition of trains, loops and

tails in an adsorbed layer has been recognized to be affected by the solvent strength (x),

adsorption enthalpy per segment (x^), bulk polymer concentration (often represented by (})

the volume fraction), and the molecular weight of the polymer.

The adsorbed layer is characterized by the the following parameters: adsorbance, T,

the mass adsorbed per unit area, the total surface coverage, 9, defined as the ratio of the

number of segments in the adsorbed layer divided by the number of segments if the surface

were to be a monolayer of trains, the direct surface coverage, e^, defined as the number of

segments of the adsorbed layer in trains divided by the number of segments if the surface

were to be a monolayer of trains, the bound fraction, p, defined as the fraction of segments

in the adsorbed layer that are in direct contact with the surface (by definition p = Sj / 6 ),

the root-mean-square extension, t^.^^, defined as an average thickness perpendicular to the

surface from the contributions of trains, loops and tails in the adsorbed layer in the

presence of the solvent and the segment density distribution, (})(z), away from the surface

where the surface is defined as z = 0. Experimentally F, p, tj^^, and <{)(z) can be

determined and have been measured for a number of homopolymers. This enables critical

comparison with theoretical predictions to be made as a better understanding of the

structure of polymers in adsorbed layers is so crucial towards its application in several

areas of vital technology.

The adsorption of homopolymers to surfaces has been treated theoretically by a

number of researchers.^'^^ A large volume of this work concerns the adsorption of
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isolated macromolecules at interfaces and therefore their results are not amenable to

experimental studies. The methods of Hoeve, Silberberg, Roe, Scheutjens and Fleer (SF),

and de Gennes treat the adsorption of polymers from solution to surface under conditions

in which a typical laboratory experiment would be conducted (the systems are comprised of

a large number of macromolecules which interact with the surface, the solvent and among

themselves) and as such their results can be verified. Among the above five theoretical

approaches four of them are based on lattice models of the type used by Rory - Huggins to

describe a polymer solution and the fifth by de Gennes uses scaling arguments (again uses

Flory's arguments to describe the chemical potential of a polymer coil in a good solvent as

a balance between swelling forces which expand the coil and elastic forces which contract

the coil with two additional terms for confinement and adsorption energy ).

The theories of Hoeve and Silberberg start from the statistics of an isolated

macromolecule. The partition function for the system consisting of many adsorbed

molecules, free molecules and solvent molecules is evaluated using the Rory - Huggins %

parameter for segment - solvent interaction and Silberbergs adsorption enthalpy parameter

(for segment - surface interaction). End-effects (tails) are neglected. The properties of

the adsorbed macromolecules are evaluated from the partition function assuming an

exponential (Hoeve) and step-function (Silberberg) segment density distribution profile.

While the assumptions of the segment density distribution survived the experimental results

of the 80's, the neglect of the role of tails in determining the properties of the adsorbed

layer did not and therefore their theories are not widely accepted. However their efforts

and the efforts of earlier researchers provided crucial insights, mathematical techniques and

the recognition of an adsorption enthalpy parameter. The results of Silberberg and Hoeve

are valid for systems which can be chemically designed to adsorb without tails. The Roe

and SF theories do not assume any particular model for the state of the adsorbed chain and

evaluate the properties of the adsorbed chains in an arbitrary concentration gradient near the

surface. Roe neglects the role of tails and therefore his theory is not applicable to systems
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where tail effects are important (which is the case for homopolymer adsorption). Among

the mean-field theories, the one that makes no assumption about the structure of the

adsorbed layer (and therefore takes into account the role of tails) and predicts in detail the

structure of the adsorbed layer (size distribution of trains, loops, and tails; the fraction of

segments in trains, loops and tails) is the one by Scheutjens and Fleer. This theory is

accepted widely by a number of research groups and is relevant to the results of this

dissertation and therefore it is discussed in detail below. The scaUng argument of de

Gennes is also presented as it's predictions of some properties of homopolymers and

grafted polymer brushes (where the grafting moieties are in a non-selective solvent) from

good solvent conditions under which the coils overlap in the adsorbed layer have been

verified. In addition this theory is mathematically simple, elegant and presents a physical

picture, as well as predicts properties that can be measured experimentally.

1.3 Modern Theories of Homopolymer Adsorption

1.3.1 Scheutjens and Fleer theory (SF Theory)

Scheutjens and Fleer present a general theory of polymer adsorption using a quasi-

crystalline lattice model.^^ They determine the partition function for a mixture of polymer

chains and solvent molecules near an interface in an arbitrary but preassigned concentration

gradient by adopting the Bragg-WilUiams approximation (the mean-field approximation) of

random mixing within each layer parallel to the surface. The interaction between segments

and solvent molecules is taken in to account by use of the Flory-Huggins parameter x, and

that between segments and the interface is described in terms of the differential adsorption

enthalpy parameter x^.

A typical SF lattice is shown in the next page.
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2 - M

The lattice is divided into M layers parallel to the surface, each containing L identical sites.

The layers are numbered i = 1, 2, ....M, where i = 1 is the layer adjoining the surface and

layer M is situated in the bulk solution. Each lattice site is occupied either by a polymer

segment or a solvent molecule. The volumes of a segment and a solvent molecule are

assumed to be the same. The degree of polymerization, r, is taken to be the number of

segments per chain. If n^ and n^^ are the number of segments and solvent molecules in

layer i, it follows immediately that, n^ + n^^ = L and m + n^ = ML, where

T)P = Z n-P andm = L nj. The volume fraction <^-^ for segments and (t)^^
for solvent

molecules in layer i are given by = n^ / L and <^-^ = n^O / L. The set of all volume

fractions is indicated by {(}),) where i = 1 to M. The coordination number of the lattice is z

and therefore a lattice site has z neighbors, a fraction Xq of which are in the same layer and

a fraction in each of the adjacent layers (for a hexagonal lattice Xq = 0.5 and X^ = 0.5).

The ratio between the partition function for the polymer - solvent mixture in the

adsorbed state and the reference state is given by the standard statistical mechanical

expression given in equation 1.

Q = (Q / n+ )
exp(-AU/kT) (1)
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where Q is the number of ways of arranging the polymer and the solvent near the surface in

accordance with the assigned concentration gradient, Q+ is the number of possible

arrangements of n chains overm lattice sites in pure disoriented (amorphous) polymer, and

AU is the energy difference between the mixture and the reference state. Flory 95 has

derived an expression for Q+. For n^ segmental contacts with the surface and segment

- solvent contacts, AU = -n^xkT + ni2%kT/z where the first term is from Silberberg92 and

the second from Flory - Huggms polymer solution theory 95 Scheutjens and Fleer simpUfy

n 12 to be zn% for a homogeneous system of n^ solvent molecules and a segmental volume

fraction 0 (note that this is true only in dilute solution and it is an implicit assumption that is

not mentioned). On applying tiie mean-field approximation of random mixing in each

layer, each solvent molecule in layer i has zXq<^- contacts with segments in layer i, zX^<^^^^

in layer i+l, and zk^(^-^^ in layer i-1. Therefore they replace the average volume fraction

by a weighted average «^^> which leads to the expression for the energy change on

adsorption as shown below (note: lattice tiieorists often mix the usage of energy and

enthalpy though enthalpy is what they mean and define)

AU = -njXkT + xkT I n^^ «{).> (2)

Scheutjens and Fleer evaluate Q. by taking into account all possible conformations

as follows. An adsorbed chain can be placed in a lattice in many different conformations

where the term conformation implies tiie location of its segments in the lattice sites. Thus a

chain in a particular conformation n^ is represented by equation 3

(l,i) (2,j) (3,k) (r-1,1) (r,m) (3)

where the first segment is in layer i, the second in layer j (j = i or ill), etc. Many different

conformations such as n^ are possible. The segments in turn can be placed in any of the L

lattice sites in a given layer i. The number of arrangements in a specified conformation c is

given by the expression Lz'""^co^ (co^ = ^q'^ Xj'"'^'^ where x is the number of segments

within one layer and r-l-x is the number of segments perpendicular to that layer). Thus SF

theory arrives at the number of ways in which chains of conformation n^, n^, n^, ...chains
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(Ln^ = n) and solvent molecules can be arranged in the lattice and the expression is

given in equation 4.

a = (zA^rir-^) n (LIAn^O)!) n ((cojn/n <) (4)

By differentiating the ratio of the partition functions (Q) with respect to the number of

chains in each conformation, an expression is obtained that gives the number of chains in

each confoimation in equilibrium. Thus for a chain of conformation n, mentioned in

equation 3, the number of chains in the adsorbed layer in equilibrium with the bulk solution

is given by equation 5.

n, = L CO,m n (p/* (5)

where r* = r- ^ is the number of segments of conformation c in layer i and p^ is the free

segment probability given by equation 6.

Pi = exp{2x(<({)i> - (}))} exp{(x3 + %) 5ij} (6)

pj stands for the probability of a free segment (unattached) being in a site in layer i over a

site in bulk solution.

Scheutjens and Fleer proceed to calculate the concentration profile [^y] sls follows.

The volume fraction of segments in layer i is given by
(t)j
= L (|)-(s) where (l)j(s) = ((t)/rpj)

p(i,s) p(i,r-s+l). p(i,s) is the probability that a chain of s segments ends in layer i. If the

end segment of an smer is in i the penultimate segment, s-1 can only be in layer i or i±l.

Proceeding by similar arguments they arrive at a recurrent relationship for p(i,s) given in

equation 7.

p(i,s) = Pj [^ip(i-l,s-l) + ?^oP(i'S-l) + >.iP(i+l,s-l)] (7)

The above equation can be expressed in a matrix format introduced by DiMarzio and

Rubin.^^ Numerical calculations were performed using a computer. Computations for

chains containing up to 5000 segments were performed. The total surface coverage (6j),

direct surface coverage 0, the bound fraction p (9 / F) and the root-mean-square thickness
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were computed as well and given as a function of the bulk solution volume fraction ([),

and the chain length r for two x values.

The best aspects of this theory are; i) the recognition and prediction of the role of

tails in the structure of the adsorbed layer, ii) the prediction of a segment density profile

away from the surface which will decay rapidly close to the surface and slowly at distances

far away (30 to 40 lattice layers away) from the surface (again due to tails extending far

away from the surface into the bulk solution; see figure 1.3), iii) that the root-mean-square

thickness of the adsorbed layer will vary as the square root of the chain length (and hence

the molecular weight at x = 0.5 and 0), iv) the determination of the average train, loop, and

tail lengths and v) the train, loop and tail size distributions from the concentration of all the

conformations contributing to the equilibrium set {n^}, which in turn is determined from

the M values of pj (for example see figure 1.4). An example from SF prediction on the

characteristics of pure polystyrene (number average molecular weight - 100000, Xc =1 and

<j) = 1) adsorbed to silica is given below,

fraction of Number of average Number of % of total

segments in segments in length of chain length

trains 0.05 50 3.5 -14 5

loops 0.3 300 21 -15 30

tails 0.65 650 344 -2 65

15



Lmgmol IrainsO, loops (0,or (oils(^0

Figure 1.3 Examples of Size Distributions of Trains, Loops, and Tails

from Scheutjens and Fleer Theory for r = 1000,
(t)
= 0.001, % = 0-5, Xs = 1-

Left: Fractions of Tails, Trains, and Loops of Given Length.

Right: Fraction of Segments in Tails, Trains, and Loops of Given Length.

The Average Train, Loop, and Tail Sizes are Indicated by the Arrows. The

Dashed Curve Gives the Loop Size Distribution According to Hoeve. The

Figure and Captions are Directly From Reference 9.
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Figure 1.4 The Overall Concentration Profile
(t);

and that due to Non-

Adsorbed Chains near an Adsorbing Surface. The Sum of Area's A

and B Equals 0. The Profiles are from Reference 9 obtained by the SF

Calculations for r = 1000, (}) = 0.001, % = 0.5, Xs = 1' ^0 =
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Scheutjens and Fleer have also predicted similar characteristics for polymers

adsorbed from dilute solution as a function of the molecular weight, the bulk volume

fraction and the interaction parameters. Most of these predictions cannot be verified by the

technology available in 1992. However the 0.5 power dependence of the root-mean-square

thickness on the molecular weight of the polymer and the dynamics of the structure of the

adsorbed layer (trains to tails and loops to tails) as a function of temperature confirmed SF

predictions that tails cannot be ignored.^^' ^'^ The segment density distribution away from

the surface determined in adsorbed homopolymer layers by neutron scattering'^^ and spin -

spin relaxation time measurements^^" confirm the trends predicted by this theory

qualitatively and semi-quantitatively (minor shape differences between theory and

experiments) i.e. close to the surface the segment density was found to decay exponentially

(roughly) with increasing distance from the surface, but at larger distances the decay was

found to be much slower. This was explained as due to the fact that a considerable fraction

of the adsorbed segments were present in the form of long dangling tails. The other

theories neglect the effect of tails.

The SF theory has minor discrepancies. The excluded volume effect is not treated

explicitly and is accounted for by the use of Bragg - Williams approximation, which is a

pair-wise potential between nearest neighbors and does not take into account next neighbor

interactions. As a result its predictions fall apart for polymer coils adsorbed from a good

solvent when they just start to overlap (2D semi-dilute solution). The entire range of

polymer, solvent and surface interactions are dealt with using two enthalpy parameters

while solvent orientation at the surface and around the segments and the resultant entropy

effects are ignored. One among the other criticisms is that SF theory does not predict

correctly the forces involved in bringing together two mica surfaces containing an adsorbed

homopolymer in a good solvent at full coverage (F(D) vs D profiles).^^^'^^ An alternate

explanation of the F(D) vs D profiles using the scaling laws of end-grafted polymers,

which fits the experimental data, assumes that the homopolymer is grafted to the surface by
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a thin layer comprising of trains and loops (explicitly acknowledges the importance of

tails). The very nature of the assumption indicates that it is a special case but the results

suggest that a universal theory of polymer adsorption should be able to predict these special

cases as well.

1.3.2 Scaling Theory of Homopolymer Adsorption

The scaling theory of polymer adsorption from good solvents was proposed by de

Gennes.^^ The reasoning behind his argument is that the mean-field approach of Rory is

not adequate to describe polymer solutions in a good solvent, in the semi-dilute regime and

as the segments in the adsorbed layer are likely to be in the semi-dilute region, the theory

based on Flory's argument (SF) is not likely to predict the properties of the adsorbed layer.

The mean-field argument in a good solvent neglects certain correlations between adjacent

segments as well as with distant segments (self-avoidancy of segments is not effectively

accounted) and assumes a self-consistent potential which is uniform in space. Such a

potential cannot account for the swelHng of the chains in good solvents and this led de

Gennes to propose a scaling argument, which assumes that a self- similarity exists in semi-

dilute solutions of polymers, i.e the solution can be adequately described by a network with

an average mesh size ^ (correlation length). A chain is viewed as a succession of blobs of

size ^ (see figure 1.5). Inside a blob the segments do not interact with segments of other

chains and therefore correlations of the excluded volume type are applicable. Each blob

consists of gj monomers and this leads to N / g^ blobs per chain of length N. Inside each

blob ^ = a (gjj)^"^ holds good. Including correlations (excluded volume effects) de Gennes

derives an expression for ^ ((})) ~ a and osmotic pressure n ~ ^^-^^ (mean-field

predicts a (j)^-^ dependence) where a is the monomer size and (j) is volume fraction. The

predictions of de Gennes have been verified by a number of experimentalists (Noda, et al.,

verified osmotic pressure dependence on concentration as 2.25 power^^).
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(c)

Figure 1.5 (a) An Adsorbed Polymer Layer Represented as a "Self-Similar

Grid". At any Distance, z, from the Wall, the Local Mesh Size is Equal to

z. (b) A Polymer Solution (Volume Fraction, (\)) Idealized as a "Grid" with

the Same Mesh Size, ^(({)). (c) a Qualitative Aspect of the Diffuse Layer

Adsorbed from a Good Solvent and the Concentration Profile Directly from

de Gennes.
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de Gennes's assumption about the self-similarity of the adsorbed layers allows its

description in terms of the scaling laws of semi-dilute polymer solutions ((]))
~ a (^-^"^;

~ (j)"^^'*; and overlapping coils).

The other assumptions applied are i) the chain length is long (N > 1000 -10000), ii)

adsorption is weak resulting in layer thicknesses of the order of hundreds to thousands of

angstroms, iii) solvent is athermal i.e. x = 0, iv) polymer concentrations in the first and

subsequent layers scale the same way.

An adsorbed layer is represented by a self- similar grid structure shown in figure

1.5a. At any distance, z, from the wall, the local mesh size is equal to z. This leads to an

expression for the adsorbed layer profile (segment density distribution) as in equation 1.

<l)(z) = z/^ (1)

Substituting the appropriate scaling law for ^ we find,

<l)(z) = (a/z)4/3 (2)

The segment density distribution is expected to decrease slowly with z as, z^^^. de Gennes

also recognizes that the self-similar structure is not valid at z < a and at z > a N^/^ (the

Flory radius). Therefore the segments in the adsorbed layer are predicted to be in three

regions of space perpendicular to the surface, called proximal, central and distal as shown

in figure 1.5c. de Gennes has predicted that the hydrodynamic thickness of the adsorbed

layer based on the above picture should scale as N^/^ and the ellipsometric thickness ( [^{z)

z.dz) on integrating from 0 to z leads to ~ N'^''^) should scale as N^^^. Experiments

performed by Takahashi, et al.,^^^ confirm the prediction about the scaling of the thickness

obtained by ellipsometry while there is no consensus on the molecular weight dependence

of the hydrodynamic thickness. The data of Takahashi, et al.,^^^ obtained from the

adsorption of poly(ethylene oxide) support de Gennes prediction while that of Cosgrove, et

al.,^^^ on the same system results in a different power law (N^-^). That (|)(z) follows a

power law in z with an exponent close to de Gennes has been shown by neutron scattering
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experiments of Auvray, et al.,l 10 and in the absence of criticism from the proponents of the

SF theory it can be taken as a sign of its validity.

Scaling theories are appUcable to weakly overlapping chains of long lengths (large

molecular weights) in good solvents (x = 0) where mean-field theories cannot and do not

deal with some types of segment - segment correlations. It provides information about the

global properties of the adsorbed layer and by its inherent simplicity of approach neglects

the local properties (complete description of the structure of the adsorbed layer in terms of

the contributions from trains, loops and tails). In its present form scaling theory is not

capable of dealing with polydispersity effect, mixtures of different polymers, copolymers

and polyelectrolytes and the versatility of SF theory in dealing with this aspects cannot be

ignored.

1.4. Modern Theories of End-Grafted Polymer Adsorption

The theoretical description of polymers, one end of which is grafted to a surface,

has been described by many workers. The first reported work is that of HesseUnkl^l who

gave an analytical form for the segment density distribution without taking into account the

segment - solvent or segment - surface interactions. Lai introduced the Monte Carlo (MC)

approach for studying the conformations of macromolecules at interfaces and subsequently

reported on the configurational states of a terminally anchored chain under good and bad

solvent conditions. 11^' The results of the MC simulations were that, in a good solvent

the molecule exists in an extended state. There was a strong tendency for the formation of

a long train in the initial part of the molecule and a high proportion of the un-adsorbed

segments existed in the tail. Formation of loops is less favoured and few configurations

contained more than two loops. The long tail protrudes into the solution phase. The bad

solvent destroys the tendency for the formation of the initial train and most of the time the

molecule assumes train - loop conformation with a small or no tail. They explained their

result taking into consideration all the relevant factors, as follows: "In good solvents
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segment - segment repulsions produce an extended rigid state in the chain. Such a state

would induce cooperative effect among the segments leading to the formation of a train

adjacent to the anchor. This effect can also produce a long array of un-adsorbed segments

foUowing the termination of the train. Long trains and tails are therefore the manifestation

of cooperativity
.
Lack of loops in the configuration can be ascribed to the large energy

requu-ed for bending the molecule. High probabiUty states of the adsorbate molecule in the

presence of the bad solvent would be those in which there are large numbers of segment -

segment and segment - surface contacts. The molecule prefers to exist in the coiled state

with a large number of segments attached to the surface. The presence of more loops in the

configurations is an inevitable consequence of the coiled state of the molecule. In a bad

solvent the molecules are coiled and large loops are formed". Clark and Lai have also

reported on the configurational states of terminally attached chains, determined by the

Monte Carlo approach, in good solvents for finite surface coverages. ^^"^ The case of

terminally adsorbed isolated chains has also been considered by Cosgrove (Monte Carlo

approach) and Croxton (self-avoiding hard-sphere model not constrained by a lattice).^

In reality, the density of macromolecules at an interface, attached by an end, is high

and therefore approaches involving interaction among chains emerged. Among those the

theories of Dolan and Edwards^ ^ and de Gennes consider the case in which Xs
= 0

and that of Levine, et al.,^^^ considers many different values of x^.

A scaling description of the adsorption of macromolecules with a polar terminus

was first presented by Alexander.^^ The lattice theory of Scheutjens and Fleer was

extended by Cosgrove, et al.,^^^ to describe the configurations of terminally attached

chains at a solid-solution interface. Hirz working under the direction of Tirrell has also

extended SF theory to terminally attached chains. She attempts to fit the force vs distance

universal curve observed in experiments conducted in their laboratory, with a concentration

dependent x parameter. Theories of grafted polymer brushes have also been described

by Milner, et al.,^^^'^^ (provides an analytical solution to the self-consistent mean field
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equations of the Edward's type in the limit of strong stretching, high molecular weight and

weak excluded volume interactions), Cosgrove (Monte Carlo),l27 Muthukumar and Hol28

(numerical solutions to the self-consistent mean field equations of Edward's type; effective

interactions are described by the excluded-volume parameter, space is discretized into grids

and a van der Waals type interaction with the surface is considered for non adsorbing

surfaces and good solvent conditions), Whitmore and Noolandil29 (mean-field self-

consistent theory of Edward's type), Murat and Grestl^O (molecular dynamics) and

Chakrabarti and Torall3l (Monte Carlo simulation study of a system of a large number of

polymer chains end-grafted to a surface for several values of surface coverage and chain

length).

Presently the mean field theories of Scheutjen and Fleer and the scaling arguments

of de Gennes (explicit treatment of excluded volume interactions) are widely discussed in

comparing experimental results and therefore a detailed account of those theories are

presented below. It is also stressed that the research results described in this thesis concem

the effect of end groups at the chain end(s) of polystyrene on adsorption and therefore a

theory which describes explicitly the role of tails is more relevant for comparison.

1.4.1 Mean-Field Theory of Scheutjens and Fleer Type

Cosgrove, et al.,^20 Hirz^^l ^^^^ modified the Scheutjens and Fleer theory of

homopolymer adsorption which in turn is an extension of Flory - Huggins theory (for a

inhomogeneous solution; SF theory is described in detail in the section 1.3.1 of this

chapter.) They constrained the first segment to layer 1, which in turn leads to the

modification of the end segment probability. This modification enables the calculation of

tiie segment density distribution away from the surface (also described as volume fraction

profile), root-mean-square thickness, average length of trains, loops and tails and train,

loop, and tail size distribution functions. Briefly, for < Xsc ^' segment density

distribution is predicted to show a depletion layer between 0 and 2 lattice layers, followed

24



by a maximum close to the surface (within 10 lattice layers) and gradual decrease to the

bulk value, while for > say 0.6, a monotonically decreasing profile was predicted.

In a good solvent the volume fraction of segments in tails was shown to go through a

maximum as a function of increasing distance from the surface, the maximum being greater

the smaUer the surface - segment interaction (lower X3 value). The volume fraction of

loops in a good solvent dropped exponentially as a function of distance from the surface

foUowing the same trend with decreasing surface - segment interaction. Some of the

results from Cosgrove, et al., are presented in figures 1 .6 and 1 .7.

The above theory does not treat excluded volume interactions completely and

therefore like any other mean-field theory is limited to systems involving low and extremely

high coverages in a good solvent. However its predictions of a parabolic segment density

distribution of segments for < Xsc monotonic decrease for Xs > Xsc and the scaling

of the brush height with molecular weight and surface coverage have been experimentally

confumed to be true for some specific cases. ^^7 ^^^^ mean-field theories predict a

parabolic segment-density distribution profile, particularly for strongly stretched chains in a

good solvent, but do not give a detailed picture of the structure of the adsorbed layer in

terms of train, tail and loop size and distribution.

1.4.2 Scaling Theories

An excellent physical picture of end-functionahzed polymers is given by de Gennes

(while the SF theory reduces this problem to that of a homopolymer in a lattice with one

end being bound to the surface). Again de Gennes concerns himself with grafted chains of

large lengths in a good solvent (% = 0). It is also assumed that the segments do not adsorb

to the surface (Xs = 0 in lattice theory notation and 5 < kT in scaling notation) as this

considerably simplifies the scaling arguments to follow. Alexander has earUer presented a

complicated set of scaling laws for the adsorption of a macromolecule with a polar head
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Figure 1.6 (top) Volume Fraction as a Function of Layer Number i for a

Constant Value of 9 (1.02). The MC Calculations (--) are for a Cubic

Lattice, Xq = 2/3, while the SF Calculations are for a Cubic (--) and

Hexagonal Lattice (...), Xq = 1/2. Data are Shown for r = 50, Xs = 0, and

X = 0.4. (bottom) Analogous Data for = 0.6. Data, Directly From

Reference 120.
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Figure 1.7 (top) Volume Fraction of Loops and Tails as a Function of

Layer Number i for Two Different Values of in a Good Solvent Obtained

Using SF Theory, Xs = 0 (--) and Xs = 1 X = 0; r = 50; 0 =1; Xq= 1/2.

(bottom) Volume Fraction
(t);

as a Function of Layer Number i. Xs = ^ and

X = 1. Grafted amount 0 =10; r = 250. Data, Directly From Reference

120.
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group, the complication being the result of considering a finite surface - segment interaction

energy, 6 - kT.55 Therefore the scaling arguments presented by de Gennes alone is

considered.56 in passing, an interesting feature of Alexander's treatment that a first-order

transition from a high grafting density (extended layer, chains confined in a cylindrical

geometry
)
to a low grafting density (two dimensional regime) in the presence of uniform

surface - segment attraction at equilibrium is noted (conjecture).

For the purposes of this thesis two special cases concerning grafted chains plus

good solvent are presented. A chain grafted to a surface ft-om a good solvent is recognized

to exist in two distinct states, "mushrooms" and "brushes". At low graft densities, o

(fraction of surface sites grafted), the chains are assumed to occupy the surface as separate

coils of half spheres, of dimension Rp (Rory radius = a N^/^). The chains in this state of

grafting are referred to as "mushrooms". The chain could also exist in a "brush" state at

high grafting density. The chains in the two grafting states are shown in figure 1.8.

In the "mushroom" state the coils do not overlap and therefore (a/a^) (Rp)^ < l,

where a is the monomer size (alternatively the mesh size). This inequality leads to a

condition under which the chains do not overlap, i.e. a < N^^/^. The average concentration

(segment density distribution) profile ())(z) for a random distribution of grafting sites as a

function of z (z is the normal distance away from the surface, which is defined as z = 0) for

a < z < Rp is derived by scaling arguments. At z = Rp, de Gennes argues that the

concentration is equal to the concentration inside a single coil {N/ (Rp)^} times the fraction

of the surface area occupied by coils {(a / a^) (Rp)^). Therefore,

(l)(z = Rp) = N a a / Rp = G N^/^ (1)

At z = a, it follows that (j)(z = a) = a (definition), de Gennes assumes that in the region

between z = a and z = Rp a power law should hold true, i.e (j)(z) = o (z/a)"™. Applying the

boundary condition (equation 1) one obtains m = 2/3. The resulting profile is shown in

figure 1.9. This profile has not been verified by experiments and it is a difficult
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Figure 1.8 (top) Low Density of Grafted Polymers Referred to as

"Mushrooms" and (bottom) High Density of Grafted Polymers Referred to

as "Brushes". Directly from Reference 56.
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Figure 1.9 (top) Average Concentration Profile for Polymers Grafted as

"Mushrooms" and (bottom) for Polymers Grafted as "Brushes". Directly

from Reference 56.
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prediction to verify, as the techniques available today are not sensitive to low grafting

densities.

The "brush" state is obtained when the distance between grafting sites (D) is less

than the radius of the coil is solution (D < Rp or a > N-6/5). in terms of grafting density a

this distance is defined by the relationship, a = (a / D)2 The brush is assumed to build up

a region of uniform concentration, ({), and the mesh size in the brush is assumed to be equal

to D. The grafted chain is then divided into blobs of size D (note: D =
^((j))), each of them

containing g^ monomers. At small scales of the order r < D the correlations are dominated

by excluded-volume effects and therefore a(g^)3/5 = D. At D « Rp, g^« N and therefore

the blobs act as hard spheres and fill space densely. Thus, the polymer concentration in

this region follows, <\>(z=D) 1 2? ^ D^. Substituting the scaling behavior of D and g^, <s?

(z = D) = a2/3 and using the arguments and boundary conditions mentioned in the previous

paragraph one can obtain for the the region between z = a to D, <s^{z) = a(z/a)2/3. The

thickness of the adsorbed layer (L) can be calculated from the scaling relationship between

the volume of a chain and (|)(z = D)/a^, as follows: (t)(z=D)/a3 = N/(LD2) = Naa/L and since

(})(z=D) = a2/3, L - Naal/3 (^iso L « Na^/^ D-2/3). This is the central result of the scaling

argument and many experimentalists claimed to have verified it.^"^"^^ (However Klein has

pointed out that the end-group surface interaction is constant and D cannot be assumed to

be high and constant, in an experiment. He assumes that the above interaction energy is

equal to the overall excess repulsive energy per chain. This leads to the number of blobs

per chain to be a constant and leads to D= N^/^ and therefore L = N^/^ which fits his

experimental data well). However the flat concentration profile (see figure 1.9b) predicted

for D < z < L has been found to be incorrect and instead a parabolic concentration profile

has been observed by neutron scattering"^^ and neutron reflection experiments^' de

Gennes has extended the above scaling argument for brushes in between two plates and has

predicted the forces that would be involved in bringing two such plates. The experiments
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of Taunton, et al.,57 p.^^j^ ^^132 ^ave shown that his predictions are true at veiy

shon distances of separation ( F(r) = r"^-^^).

The scaling arguments are simple (mathematicaUy) and provide a good physical

picture. They predict global propenies and are limited to the case where the chains start to

overlap in a good solvent. It can be seen from the above two paragraphs that the argument

treats mushrooms and brushes but does not treat the overlap regime expUcitly. In this

region a scaling of properties between the mushroom and brush has to be assumed by the

reader. An adsorbed layer has other finer configurational features like trains, tails, and

loops which in turn have some average lengths and distribution. The occurrence of tails is

important for many practical appHcations.^^^-^S Colloidal systems are stabihzed or

destabilized by polymeric addidves. The adsorbed amount as well as the way the segments

are distributed in the vicinity of a surface are important in its stability. High molecular

weight flocculants rapidly remove the last submicroscopic particles in one of the last stages

of water treatment. In that case uncovered particles are caught by tails and loops extending

from covered ones, so that polymer bridges are formed. Particle separation by flotation

involves the same mechanism. Steric stabilization plays an important role in paint industry

and food technology. ^^^-^^ An intricate picture of the stabilized or destabilized colloid in

terms of its structure is not discussed by the scaling argument and it is not capable of doing

that either.

A self consistent mean-field argument of the SF type which will effectively take into

account excluded volume effect in good solvents and retain the finer details of SF theory

will be the best one that theorists can contribute towards a better understanding of the

structure of polymers attached to a surface by one functional group or by several functional

groups and this is something to look forward with interest in future.
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1.5 Research Objective

The Alexander and de Gennes theory predicts the properties of end-grafted polymer

structures such as mushrooms and brushes and recognize the imponance of grafted layer

structure on its properties (globally). The theories of Scheutjens and Reer predict the

properties of end-grafted polymers and recognize that the structure of the adsorbed layer in

terms of the size of trains, loops and tails and their distribution is crucial in determining its

uses, say the stabilization of colloidal dispersions or packing of magnetic particles in

information storage systems. Scheutjens and Fleer stress that long tails dangUng into the

bulk solution, in particular, determine the stability of dispersions and the hydrodynamic

properties of grafted polymer layers. A consequence of the acceptance of the above

argument means that the presence of weakly adsorbing groups at chain ends (and other

selected locations on the backbone) should result in greatly reduced tail lengths, less

adsorbed amount and therefore vastly different adsorbed layer properties. Therefore it

should be possible to control the amount of polymer adsorbed and hence its architecture at a

given interface by suitable organic modification of its backbone structure. This in tum will

determine the properties of the adsorbed layer. Our research group is interested in studying

the effect of location and density of functional groups (sticky feet or groups which interact

exothermically with a surface) in a polymer backbone on the structure and properties of

adsorbed polymer layers. A cartoon of our research group objective is shown in figure

1.10. Ideally we prefer conditions under which the segments from the backbone will not

adsorb (x^ = 0) so that polymer structures can be tailored at an interface just by the specific

interactions of appropriately located functional groups. Based on the known abiUty of

polymers to form trains, loops and tails (for > 0) and other grafted structures such as

mushrooms and brushes we would also like to manipulate the structure of the adsorbed

layer by the incorporation of functional groups at suitable locations, characterize and study

its properties as well.
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No
Adsorption

Figure 1.10 Pictorial Representation of Adsorption of Polymers to a

Surface from a Solution which the Un-Functionalized Polymer will not

Adsorb from (SF = Sticky Foot).

34



The objective of the research described in this thesis is a part of figure 1 . 10. We
synthesize polystyrenes of nairow molecular weight distribution with a hydroxyl or

carboxyUc acid sticky foot at one chain end (PS-OH, PS-COOH) and both the chain ends

(HO-PS-OH and HOOC-PS-COOH) by anionic polymerization. The presence of weakly

adsorbing groups such as -OH and -COOH should in all probability result in adsorbed

layers whose structure is devoid of tails. The absence of tails in the adsorbed layer

structure should be more pronounced for polymers with functional groups at botii the chain

ends. This in turn should result in the adsorbed amounts being lower than that of un-

functionalized polystyrene. Towards the above objective, the amount of polymer adsorbed

(T |ig/ sq. cm) to glass surface, as a function of time (kinetics), concentration, molecular

weight, solvent conditions, nature and location of sticky foot were evaluated. The segment

density distribution away fi-om the interface and tiie distribution of the un-functionalized

ends (free end) of the polystyrenes with a carboxylic acid sticky-end, grafted to polished

silicon wafer, was determined by neutron reflection experiments in collaborative work

performed with Professor Stein's research group and other researchers at tiie National

Institute of Standards and Technology. These experiments were performed in order to

verify the earlier theoretical predictions for grafted polymers.

1.6 Organization of the Thesis

Briefly, there are five chapters. The second chapter describes the anionic synthesis

of polystyrenes witii one sticky end and two sticky ends. It describes the successful

synthetic methods and the various unsuccessful attempts in brief. The third chapter is

about the tiiin layer chromatographic (TLC) characterization of the functionalized

polystyrenes in various solvent conditions and the prediction of trends in adsorption by

TLC. The fourth chapter discusses the kinetics of adsorption to glass determined by liquid

scintillation counting (LSC). The adsorption isotherms, adsorbed amount, and graft

density obtained firom the LSC data as a function of molecular weight, solvent strength.
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location and type of sticky end are discussed as well. The fifth chapter is about the

characterization of the dry adsorbed layer by x-ray photoelectron spec^oscopy (XPS) and

water contact angle analysis. It also discusses the segment density distribution away from

the surface, for some specific cases, determined by neutron reflection experiments and

compares the results with different theoretical predictions.
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CHAPTER 2

SYNTHESIS OF END-FUNCTIONALIZED POLYSTYRENES BY ANIONIC

POLYMERIZATION

2.1 Introduction

Anionic polymerization involves an anion as the initiating and propagating species.

Zeigler was the first to report that the polymerization of dienes to gums and resins could be

initiated by organomelallics such as alkyUithiums, involving the alkyUithium as the

initiating species, a process which was believed to be initiated only by alkali metal ions

such as lithium or sodium before 1920 by an unknown mechanism.1'2 zeigler and his co-

workers also suggested that such a polymerization could take place without a termination

reaction, a phenomenon which was later labeUed as the living nature of the anionic

polymerization.3-5 Zeigler's dreams were not realized because of the termination of

polymerizations by trace impurities present in the system, a fact which was recognized by

Szwarc and demonstrated apUy by the polymerization of vinyl monomers initiated by

sodium naphthalide.6''7 Szwarc also demonstrated that the polymer chain ends maintain

their reactivity over a long period of time by preparing 1) longer chains of the same

polymer by the addition of the same monomer, 2) longer chains of a different polymer by

the addition of a different monomer (block copolymer) and 3) by terminating the reactive

chain ends with electrophiles. Szwarc coined the term "living polymerization" for

polymerization reactions which retain the nucleophilic character of their chain end

throughout the polymerization and after (in the absence of electrophilic impurities). A

general description of an ideal living anionic polymerization reaction, assumed by Szwarc,

is described in the next page.
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rc^ + M ^ mc^

KTMC^ +n(M) I(MViM-C^

rC^ is the initiator, M is the monomer, is the rate constant for initiation and
kp is the rate constant for propagation

The degree of polymerization (DP) for a reaction as described above for the condition that

kj > kp is given by the ratio of the molar concentrations of the monomer and the initiator as

[M]/[I]. At the end of the propagation reaction, ideally, an anion is assumed to retain its

reactivity (entirely) and during the initiation and propagation reaction it is further assumed

to be involved only in nucleophilic addition reactions that lead to chain propagation.

Szwarc's first report about the narrow molecular weight distributions of polymers and

the absence of side reactions in polymerizations initiated by sodium naphthalide has been

questioned by a number of authors of whom Wenger's reports are noteworthy. 8- ^ 2 The

use of sodium naphthalide is also restricted to polar solvents such as tetrahydrofuran in

which many vinyl polymers are insoluble and the polydispersity of the samples obtained is

usually greater than 1.20. Presently alkyllithium initiators are used widely because of their

solubility, the solubility of many vinyl polymers in hydrocarbon solvents, their stability,

the polymer microstructural control that they allow if used with the appropriate amine and

the narrow polydispersities that are obtained (less than 1.10).^^

The objective of the research work presented in this chapter was to synthesize

polystyrenes with carboxylic acid and hydroxyl end groups at one chain end (PS-COOH

and PS-OH) and both the chain ends (HCKXT-PS-COOH and HO-PS-OH) in narrow

molecular weight distribution (less than 1.10) towards their use in subsequent adsorption

studies.

This chapter outlines all the attempts that were made to synthesize end functionalized

polystyrenes. It also describes what in the author's opinion is the best method to

synthesize functionalized polystyrenes anionically without resorting to high vacuum
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techniques.13-15 Every other system would demand some modifications of the procedures

reported here and this is left to the discretion of the synthetic chemist in question. The

work reported in this chapter and aU the synthetic procedures followed in the thesis work

are from "synthesis alone" lab-notebooks labelled as NB #n (n = 1 to 4), "synthesis of

protected initiators and polymers from protected initiators" and "synthesis and

polymerization of radioactive styrene" lab-notebooks. The organization of the rest of the

chapter is as follows: section 2.2 is about materials and 2.3 about the methods. This is

followed by the results and discussion section 2.4 and a summary of the chapter in 2.5.

2.2 Materials

The following chemicals were used after appropriate purification procedure as

discussed in the methods section: styrene, perdeuteriostyrene, phenylacetylene, benzene,

toluene, tetrahydrofuran (THF), pyridine, tetramethylethylenediamine (TMEDA),

hexamethylenediamine, naphthalene, succinic anhydride (SA), carbonyldiimidazole (CDI),

terephthaloyl chloride (TPC) (all purchased from Aldrich), pentane, hexane, cyclohexane,

chloroform, methylene chloride, carbon tetrachloride, dioxane (all purchased from Fisher),

ethylene oxide (Kodak). The following chemicals were used as received: benzophenone,

4-biphenylmethanol, sodium, lithium, Lindlar's catalyst, thionyl chloride, calcium hydride,

pentane, ketene dimer, tetraethylene glycol dimethylether, l,l,l-trimethoxy-4-bromobutane

(all from Aldrich), ethyl acetate, diethyl ether, methanol, isopropanol, hydrochloric acid,

sodium chloride, magnesium sulfate, ammonium chloride (all from Fisher).

Dibutylmagnesium was purchased from Alfa.

jec-butyllithium, r^rr-butyllithium and /i-butyllithium (Aldrich) were used as received.

They were periodically titrated using known amounts of 4-biphenyhTiethanol in THF to

determine their concentration. l,3-Bis(l-phenylethenyl) benzene and Acetaldehyde 6-

lithiohexyl ethyl acetal were donated, respectively, by Dr. Tung of Dow Chemical

Company and Ms. Pyati of the Chemistry Department at the University of Massachusetts.
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Pure hydrogen, nitrogen, and argon (> 99.99%) and bone dry CO2 (99.98% pure)

supplied by Matheson were used as received. Tritiated water (100 mCi/g specific activity)

was purchased from New England Nuclear.

2.3. Methods

2.3.1 Choice of Reactors for Polymerization Reactions

Several types of reaction vessel were used in the syntheses depending on the type of the

terminating step and subsequent work up procedure. These are shown in figures 2.1 and

2.2 and are labelled from Rl to R8. For the preparation of un-functionahzed polystyrene

(PS-H) reactor 1 (R 1 ) was used as it is the most convenient one. This reactor is suitable

for polystyrene syntheses in benzene and cyclohexane. However in THF, the minute

rubber particles from the liner (used to obtain a tight seal from the atmosphere) react with

polystyrllithium rapidly and terminate a fraction of the growing chains (mbber Uner is often

pierced during the inu-oduction of syringe needles and cannulas) . The problems

encountered with Rl are eliminated on using R2. R2 is suitable for most of the anionic

syntheses except those reactions that are to be carried out for more than two hours. After

two hours of reaction Ume the rubber "O" ring used in the reactor gets swollen by solvent

(particularly with THF) and this allows the diffusion of reactive molecules from the

ambient into the reactor. In addition THF extracts reactive small molecular weight additives

from the components of the "O" ring (moreover the mangled "O" ring can not be used again

on drying, as it loses shape). If the polymerization or modification time is less than 2 h,

this would be the reactor of my choice as it is easy to assemble.
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R4

diameter of R5 and R6 = 2 inches

diameter of R3 = 1 inch

Figure 2.1 Type of Reactors Used in the Polymerization Reactions
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R8

Figure 2.2 Reactor Suggested for Future Polymerization Reactions
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R3 has a very narrow opening and it is relatively easy to seal this nairow opening with

a teflon stopcock and thus minimize leaks. SmaU quantities of polymer were prepared

using this reactor. In principle this design does not have any drawback. It was not used

to make more than two polymers, primarily because the diameter of the reactor was too

narrow for efficient stirring even with small quantities of solution and in addition teflon

coated magnetic stir bar was sealed in. At that time we had difficulty using teflon stir bars

in tetrahydrofuran (THF) as the polystyrUithium reacted with them killing a small fraction

of the propagating chain ends. This troublesome reaction was not observed in benzene or

cyclohexane as confirmed by the limits of detection of our GPC. However in view of the

observed problem in THF, the use of R3 was abandoned. R4 was the type of reactor that

was being used successfuUy for preparing poly(styrene-b-propylene sulfide) in the group.

A few reactions were performed in it. Though it worked better, a modified version of R3

was used to perform most of the syntheses reported as it did not involve the use of grease

(common belief in anionic polymerization hterature is that grease is harmful to the

synthesis). This is shown as R5. In my opinion this design is the best one if one is to

avoid the complexity of high vacuum synthetic techniques. R5 worked best with aH the

solvents tried and could be used anywhere from -78 °C to 70 °C. However if the syntheses

involve an additional step Uke freeze drying, R6 would be the reactor of choice. This has

an additional greased ground glass stopcock, which can be used to expose the reactor to

vacuum directly after freezing, avoiding an intermediate step involving the exposure of the

neck of R5 to ambient. Polymerizations involving cyclohexane were not performed in this

reactor as grease is soluble in cyclohexane vapors and is believed to terminate chains

prematurely during the propagation step resulting in broad molecular weight distribution.

R7 is a modification of R4 with a male/female (24/40) ground glass connections

swapped. This enables the application of grease on the outer part of the ground glass joint

providing minimum exposure to grease. R7 is most ideal for polymerizations in THF as

large quantities of solvent can be used and excellent stirring can be maintained throughout
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the reaction. R8 is a modification of R5 with a high vacuum teflon stop cock replacing the

regular teflon stop cock that seals by cold flow. Based on the experience of this author the

use of R8 is suggested, with appropriate user discretion. This is the kind of reactor used

currently by most of the members of our research group involved in anionic polymerization

of styrene and related monomers.

2.3.2 Purification of Solvents^ ^"^^

2.3.2.1 Pre "Roderick Quirk's Paper"

Benzene (400 ml) was dried over sodium (250 mg) overnight. Ten to twelve mg of

benzophenone dissolved in 2 ml of benzene containing 3 to 4 drops of tetraglyme

(tetraethylene glycol dimethylether) was added the next morning. Tetraglyme facihtates the

breakdown of Na pieces. The benzophenone solution on contact with the benzene turns it

light blue and within an hour it turns purple due to the formation of sodium benzophenone

dianion. At this point the benzene was set to reflux for 2h after which it was collected in a

nitrogen-purged storage flask (b. p. - 80 °C, latm. synthesis alone NB#1, pi) and was

stored under a positive pressure of nitrogen. Much discussion has revolved around the use

of sodium benzophenone for drying benzene and other solvents used in the anionic

polymerization. From my experience it has been a problem only when the benzophenone is

used in excess (more than lg/800 ml) or when the benzene (in general the solvent) is

distilled from a solvent still more than a month old. To make sure that the benzene distilled

is good for polymerization two simple experiments were performed. Thm layer

chromatography (TLC) on siUca gel was carried out using benzene as the eluent. This

detects benzophenone concentrations as low as Ijig per 100 ^il of solvent. Gas

chromatography was used to detect much smaller quantities of benzophenone. The

following GC conditions were used; Analabs Superpak II column of dimensions 15 feet x

1/8 inch on a Hewlett Packard 5790A gas chromatograph equipped with an FID detector.
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oven temp = 105 °C, heating rate = 28 °C/min, injection temp = 255 'c, detector temp =

300 °C, Analabs 10 ft x 1/8 in. 15% AN 600 column. Benzophenone can be detected 6.4

minutes after injection (see synthesis alone NB # 2, p78). This enables the detection of

benzophenone in concentrations three to four orders of magnitude lower than the TLC
technique. The benzene whose purity is verified by the above two techniques is good

enough for making polymers up to a molecular weight of lOOK with a polydispersity <

1 .07. Some of the end functional polymers made in this research were prepared in benzene

distilled as in above.

Cyclohexane was distilled from CaH2 and was stored in storage flasks under a positive

pressure of N2. Tetrahydrofuran was distilled from sodium benzophenone dianion and

used directly in polymerization reactions. Dibutylmagnesium (1 ml, 1 mmole) in heptane

was added to the THF (50 ml), before cooUng it to -78 °C and before the addition of the

monomer. This takes care of traces of impurity (the reaction of polystyrlUthium with

styrene is several orders of magnitude faster than the reaction of dibutylmagnesium with

styrene and/or polystyrllithium as is evident from the data on "synthesis alone" lab-

notebook #3, pl6. This saves a lot of time otherwise consumed during the second stage

involved in the purification of THF).

2.3.2.2 Post "Roderick Quirk's Paper"

After Quirk's paper appeared in the 1989 January issue of Macromoiecules,^^ claiming

100% carboxylic acid end-termination from the reaction of carbon dioxide with a known

molar concentration of polystyrllithium, polymerization and end-functionaUzation reactions

were performed in solvents purified by even more rigorous conditions. This meant one

more purification stage for all the reagents involved. Benzene (100 ml) distilled from

sodium benzophenone dianion was stirred for an hour over a small amount of n-

butyllithium (1 ml of 2.5 M solution in hexane) and a drop of styrene. The orange solution

was distilled using a trap-to-trap distillation set up as shown in figure 2.3 and a known
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to vacuum pump

solvent to be distilled

trap

Figure 2.3 A Trap-to-Trap Distillation Setup
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volume (50 to 60 ml) was used immediately for polymerization. Benzene, trap-to-trap

distilled from dibutylmagnesium in heptane, was also used for some polymerization

reactions though the former procedure was used for almost all the reactions carried out after

Jan 89.

Cyclohexane was distilled from CaH2 and was stored in storage flasks under a positive

pressure of N2. Just before polymerization it was stirred over /i-butyllithium (a drop of

styrene was added to serve as an indicator) and was trap-to-trap distilled for immediate use.

Tetrahydrofuran was distilled from sodium benzophenone anion by a procedure similar to

the one used with benzene and was stored in storage flasks over a positive pressure of

nitrogen. Just before the polymerization (or the end-termination reaction or any other

reaction in this solvent) it was trap-to-trap distilled from a weakly greenish mixture of THF

(75 to 80 ml) and four to five drops of 2.5 M n-butyllithium.

2.3.3 Purification of Other Chemicalsi^'^^

Sodium metal was cut into small pieces under mineral oil and was rinsed several times

with pentane under nitrogen before use. Lithium wire in mineral oil was scraped with a

knife under mineral oil to obtain a shiny surface. It was washed several times with

pentane, thrice with benzene and twice with THF under argon and was weighed before

use. Carbon tetrachloride, chloroform and methylene chloride were distilled from

phosphorus pentoxide under nitrogen and were stored under a positive pressure of nitrogen

in the dark. Hexane was distilled from calcium hydride. Phenylacetylene stirred overnight

with calcium hydride was distilled under vacuum (at 20 mm Hg, b. p. = 52 °C) and was

stored at -20 °C under positive nitrogen pressure. Naphthalene was recrystallized from

methanol and was purified further by sublimation before use. Methanol, isopropanol and

water used in the termination of the living polystyryl anion were used after extensive

degassing (isopropanol seems to work the best as the dimer peak observed in the GPC

chromatogram of polystyrenes is not observed in most of its usage).
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2.3.4 Purification of the Monomer

Styrene (unlabeUed. perdeuterio, and P-tritiated) is the only monomer that was used in

the research work. It was stirred over calcium hydride for 24 h. distiUed under vacuum

(25-27 mm of Hg, b. p. = 52-54°C; synthesis alone NB#1, p2)) and was stored under a

positive pressure of nitrogen at -20 °C. Just before polymerization an excess amount of

styrene was stirred over dibutylmagnesium until it turned dark yellow and was trap-to-trap

distilled. It was introduced to a graduated centrifuge tube, previously evacuated and

purged of atmospheric contaminants, using a steel cannula under nitrogen and a known

amount (1 to 3 ml) was used immediately.

2.3.5 Purification of the Additives* "^'^^

Succinic anhydride (SA) was recrystallized from chloroform first and then from

benzene. The crystals were washed with ether and were dried under vacuum (synthesis

alone NB#1 p44, p46 and p67). Its purity was checked by proton NMR in CDCI3 before

use (one and only peak at 8= 3.0 ppm). Carbonyldumidazole (GDI) as supplied was

stored in a nitrogen fiUed glove-box. Required amounts were taken out in a nitrogen-filled

Schlenk tube and were dissolved in minimum amount of benzene or THF (depending on

the solvent in which the end capping reaction was to be performed). The solution was

cooled to 10 °C ( in benzene) and to 0 °C (in THF). The crystals thus formed were retained

by transferring the mother liquor (using a cannula). This procedure was repeated thrice and

the crystals obtained were dissolved in required amounts of freshly distilled benzene or

THF as the case may be and were used in the end capping reactions. Terephthaloyl

chloride (TPC) was recrystallized from dry hexane. All transfers, dissolutions, filtrations,

and recrystallizations were performed in nitrogen atmosphere.

Tetramethylethylenediamine (TMEDA) was stirred over calcium hydride for 24 hr, and

was distilled under vacuum (25 mm of Hg, b.p - 45 °C). It was stored under a positive

pressure of nitrogen at -20 °C. Just before its addition to living polystyrllithium it was
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stirred over n-butyllithium (for 5 ml of TMEDA, 0.5 ml of 2.5 M n-butylUthium was used)

and was trap-to-trap distilled. Ethylene oxide (EO) was stiired over calcium hydride at the

melting temperature of ice for 2 h, distilled under nitrogen and was stored under a positive

pressure of nitrogen at -20 °C. It was stirred over dibutylmagnesium for 0.5 h to 1 h at 0

°C and was trap-to-trap distiUed just before its use in end termination reactions. Pyridine

was distilled from calcium hydride.

2.3.6 Preparation of Naphthalide Initiator Solutions

Di-functional initiators of Szwarc's type such as sodium naphthalide and lithium

naphthalide were prepared in the same general fashion as reported by Cheng.^^a Kanga.'^^'

and Nakahama 2« independenUy. The preparation of a lithium naphthalide solution is

discussed below (a typical preparation is discussed in synthesis alone lab-notebook #4 , p

72-76). Lithium metal along with the mineral oU was weighed in a round bottomed flask

(0.2845 g). The mineral oil was repeatedly extracted in hexane in an argon atmosphere

(weight after oil extraction = 0.2436 g). The surface of the Uthium thus obtained was black

and therefore it was scraped in an argon fiUed glove bag till a metaUic lustre was visible

throughout the surf'ace of the sample (weight of lithium after scrapping = 0.2133 g or

0.0307 gramatoms). The lithium metal was inu-oduced to reactor R7 with a small amount

of benzene to protect its surface while transferring. 3.737 g (0.0292 moles; 5% less than

lithium as suggested by Nakahama, et al.) of naphthalene was weighed into a round-

bottomed flask. R7 and the round-bottomed flask were purged with argon overnight. In

the morning the lithium metal was washed twice with freshly distilled THF (25 ml each)

and was submerged in 60 ml of freshly distilled THF. The naphthalene crystals were

dissolved in 40 ml of freshly distilled THF and the solution was introduced to the lithium

metal in THF. The mixture turned light green on contact and dark green a few hours after.

It was allowed to stir overnight and was filtered through a glass frit (lO^i) into an argon-

purged graduated cylinder (Schlenk type), and was stored at -20 °C. The preparations with
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a 5% excess of naphthalene as suggested by Cheng (and Kanga), was performed as weU

and this lead to the same result in terms of polymer molecular weight and distribution as

that obtained by Nakahama, et al.'s method ( see lab-notebook #4, p 58-69).

2.3.7 Synthesis of Tritium-Labelled Styrene

Tritiated styrene was prepared by the hydrogenation of phenylacetylene labelled

previously with tritium (in an acid-base exchange reaction using /i-butyllithium) using

Lindlar's catalyst. The procedure followed was the same as the one previously used in this

laboratory except that an additional component (carboxyUc acid-terminated polystyrene)

was added to the mixture to be reduced. This component inhibits the subsequent reduction

of styrene to ethylbenzene by competing with styrene for surface sites. To a nitrogen-

purged reactor, R5, was added 34 ml of n-butyUithium in hexane (1.6 M solution; 0.054

moles). It was cooled to -12 to -15 °C using an ammonium chloride/ice bath following

which six ml of phenylacetylene (0.054 moles) was added over a period of thirty minutes

in drops. The white precipitate formed was allowed to warm to room temperature

overnight as it was being stirred in hexane. One ml of tritiated water (100 mCi specific

activity; 0.055 moles) diluted to 5 ml using benzene was added gradually to the white

slurry at -80 °C, the next morning. After the addition the mixture was trap-to-trap distilled

and 41.0 ml of the mixture was recovered as a clear solution (the other 4 ml lost is probably

hexane as it is the most volatile component in the mixture; synthesis of radioactive styrene

and polystyrene lab-notebook #1, p 33). It was divided into three portions each of which

was added to a nitrogen-purged mixture of Lindlar catalyst (0.0812 g), carboxylic acid-

terminated polystyrene (0.38 g obtained from Szwarc's reaction, M^, = 20000) and 0.9 g of

calcium hydride. Benzene (35 ml) was added to the above mixture and the hydrogenation

was performed with pure hydrogen at 15 psig for 10 min following which the reaction

mixture was stirred for 3.5 h and a gas chromatographic analysis was performed to

calculate the yield of styrene (synthesis of radioactive styrene and polystyrene lab-notebook
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#1, p 38-39). This condition usuaUy leads to > 99.98% yield of styrene. If the yield wei

less than 99.98%, a smaU amount of hydrogen was allowed into the reactor followed by

stirring for 15 min. As soon as a yield of 99.98% was obtained from the GC analysis of

an aliquot the contents of the reaction were purged with nitrogen and were trap-to-trap

distilled after extensive freeze-thaw degassing cycles. Unless otherwise stated all

radioisotope labelled reactions were preceded by mock reactions using nonradioactive

components under exact experimental conditions used for the radioisotope containing

mixture.

2.3.8 Synthetic Technique*^' 21-23, 58

All syntheses were performed under nitrogen or argon atmosphere after appropriate

precautions to remove (or at least minimize) air, water and other reactive gases in air. Two

approaches were followed for the removal of air and other reactive molecules. In the initial

stages of this work the reactive gases were purged out by inserting a source from which a

high flow of nitrogen is maintained and allowing the contents of the pressurized reactor to

flow through a mineral oil filled bubbler. Typical purging times range from 1 h to 6 h

depending on the volume of the reactor. In the latter stages of this work the air and reactive

contents of the atmosphere present in the reactor taken from an oven (at 200 °C), and

assembled hot, were pumped out using a vacuum pump till a pressure of 50 mTorr was

achieved. The reactor was then filled back with pure (99.999%) and dry nitrogen and the

contents were pumped out again but this time the reactor was heated uniformly using a heat

gun. The whole procedure of evacuating the reactor and filling it back with nitrogen was

carried out several times. All transfers were carried out using steel cannula (20 - 22 gauge)

under nitrogen. Graduated Schlenk type cylinders were used for transferring known

volumes of solvent while graduated centrifuge tubes were used for transferring known

volumes of the monomer and the initiator (as purchased and after dilution with

cyclohexane). The reaction flasks, graduated cylinders and centrifuge tubes used were

57



purged of the reactive contents of atmosphere by repeated evacuation and back-fiUing with

nitrogen or argon as the case may be.

2.3.9 Synthesis of Polystyrllithium Using sec-butyllithium as tlie Initiator

Styrene was anionically polymerized to the desired molecular weights in benzene at

room temp, in cyclohexane at room temperature and in THF at -78 °C, using sec-

butyllithium as the initiator and the appropriate amount of styrene. Most of the

polymerizations were carried out in benzene in a dry nitrogen atmosphere. A typical

reaction was conducted as follows: a hot beverage bottle straight from the oven (200 °C)

was taken along with a teflon coated magnetic stirrer in it. Its mouth was sealed using a

rubber liner (it was pierced several times before sealing to get rid of any fme particles that

may fall into the reaction vessel) and a soda cap with two holes using a soda bottle sealer.

It was purged with dry nitrogen for approximately 2 to 2.5 h. Dry benzene (50 to 60 ml)

was introduced using a steel cannula. The desired amount of ^ec-butyUithium of known

concentration was introduced in to the bottle from a graduated centrifuge tube under

nitrogen. The appropriate amount of styrene monomer ( for the desired number average

molecular weight) was introduced via cannula under nitrogen. The reaction was allowed to

proceed under uniform stirring for 1.5 to 2h based on the molecular weight desired. At the

end of the desired time a small fraction of the living polystyrllithium solution was

terminated using degassed isopropanol. The polymer was isolated by precipitating the

reaction mixture in an excess of methanol. The precipitate was filtered, redissolved in

tetrahydrofuran and reprecipitated using an excess of methanol. It was filtered again and

was dried and stored under vacuum. The major fraction of polystyrllithium was used for

end-termination reactions.
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2.3.9.1 Reaction of Polystyrllithium with Succinic Anhydride

Polystyrllithiums of desired chain length were synthesized in reactor Rl under nitrogen

atmosphere, by reacting appropriate amounts of ..c-butyllithium with styrene monomer in

-50ml of benzene as discussed in section 2.3.9. The reaction was aUowed to proceed for

90 minutes at the end of which 90% (v/v) of the red-orange anion was introduced to a

stoichiometric excess of succinic anhydride in =50ml of benzene (degassed by several

freeze-pump-thaw cycles) in a sealed glass botde under nitrogen atmosphere using a

cannula. Upon transfer the red-orange color disappears instantaneously. After 30 minutes

a 5% (v/v) solution of HCl in methanol was introduced, the volume of which was varied

depending on the chain length of the product expected (synthesis alone NB#1 p 45-72).

The rest of the polystyrl anion was killed using degassed methanol and polystyrene was

precipitated using excess methanol. For DP < 15 both polystyrene and end-capped

polystyrene thus prepared were first subjected to benzene/water extract. The benzene layer

thus separated was dried over magnesium sulfate. It was distilled under vacuum to isolate

the polymer which was subsequently dissolved in methylene chloride. This solution was

extracted again with water and the methylene chloride layer was subjected to the same

procedure as in above for the benzene layer. In the case of chains with DP > 15 the

polymer precipitates out upon adding an excess of acidic methanol. This was filtered

through a Buchner funnel, was repeatedly washed with methanol and dried under vacuum.

A typical end-capped oligomer (DP=4) looks like motor oH. This shall be called crude

product as it may still contain non-acidic chains of comparable length.

2.3.9.1.1 Separation of the Pure Acid

A weighed quantity of the end capped oligomer (DP = 4) was introduced to a 5%

aqueous solution of NaHC03. ^^^^ ^^"^^ oligomer which remained undissolved

was extracted into ether. The ether layer was repeatedly extracted with water to free it from

any base. It was dried over anhydrous MgS04 and was distilled to dryness. The product
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thus obtained was dried under vacuum at room temperature. This was called the non-acid

part. The aqueous layer was acidified with HCl to a pH of 2. It was extracted into ether

and was repeatedly washed with water to remove the hydrochloric acid. The ether solution

was subjected to the same procedure as in for the non-acid part, to obtain a product which

was called the acid part. The separations were performed for the oligomer of DP=4,

extensive characterization of which will be reported. Oligomer of DP= 9 was partly soluble

in aqueous bicarbonate solution, and above this chain length onwards polymeric behavior

takes over and water insoluble products were obtained.

2.3.9.1.2 Derivative Preparation

A weighed quantity (460 mg) of the oligomer of DP=4 was dissolved in 30 ml of

methylene chloride. Thionyl chloride (5 ml) was added and the mixture was refluxed

overnight at 20 °C under niu-ogen. The mixture was evaporated to dryness and an JR

spectrum of the product was taken. Carbon teu-achloride (30 ml) was added to this product

mixture followed by the addition of 2 ml of pyridine. Hexamethylenediamine (0.03 g) in

20 ml of water was added subsequently and the mixture was stirred for 24 hr at room

temperature. At the end of this time the aqueous layer was discarded and the organic layer

was evaporated to dryness. A resinous mass was obtained a portion of which was soluble

in toluene. The toluene insoluble portion had a fibrous texture and was insoluble in most

of the conventional organic solvents.

2.3.9.2 Reactions of Polystyrllithium with Carbonyldiimidazole and
Terephthaloyl Chloride

Polystyrllithium of required degree of polymerization was prepared by reacting

appropriate amounts of 5fc-butylhthium and styrene. In benzene, the polymerizations were

carried out at room temperature for 75 min and in THF at -78 °C for 15 min. At the end of

polymerization the living polystyrlUthium was introduced to a well stirred dilute solution of
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the end-capping agent usually present in a large stoichiometric excess. After the transfer,

the reaction mixture was stirred for an hour at the end of which 10-15 ml of acidic methanol

(3-5 ml
1
NHCland 10-12 ml of methanol) was syringed in and the acid hydrolysis was

allowed to proceed for a few hours. This was followed by filtration to remove any

insolubles. In the case of the CDI end capping reaction, filtration was followed by the

precipitation of the polymer, using excess methanol. The filtered polymer was washed

repeatedly with water and methanol and dried by evacuation. With the TPC end capping

reacUon, the filtration was followed by distillation of the solvent. The polymer recovered

was dissolved in toluene and a bicarbonate extract was performed to remove any

terephthalic acid impurity. This was followed by few aqueous HCl extractions and

subsequent acidification of the organic layer by acidic methanol and precipitation of the

polymer using excess methanol.

2.3.9.3 Reaction of Polystyrllithium with Carbon Dioxide

2.3.9.3.1 Roderick Quirk's Reaction^^' 24

Polystyrilithium of required degree of Polymerization (DP) was prepared by reacting

appropriate amounts of 5fc-butyllithium with a 10% v/v solution of styrene in dry benzene

in a moisture-free reaction fiask under nitrogen atmosphere for 75 minutes. At the end of

this time dry TMEDA (10 equivalents based on jec-butyllithium) was inti-oduced to the

reaction flask. The red/orange/yellow polystyriUthium changes to a cranberry red color

after tiie addition. A small portion of this polystyrilithium was killed using degassed

isopropanol and the rest of the contents of the reaction was subsequenUy frozen using

liquid niti-ogen. A trap-to-trap distillation apparatus was attached to the reaction fiask and

benzene was sublimed into a liquid nitrogen filled ti-ap at a pressure of = 50 to 70 mTorr

over a period of 12 h. The reaction flask was further pumped for an additional 12 hr to

ensure that ti-aces of benzene were removed. After this procedure the reaction flask was
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flUed back with nitrogen and the trap-to-trap setup was removed. Carbon dioxide was let

in at 1 atm pressure till the red color of polystyrUithium turned colorless. The colorless

sample was left in a blanket of carbon dioxide for 12 h after which it was stirred with 50 to

100 ml of acidic THF (10 ml 1 N HCl and 90 ml THF) for 12 hr. After hydrolysis the

end-capped polymer was precipitated using a large excess of methanol. The polymer was

filtered at the pump and was dried in a vacuum oven. It was characterized by GPC, TLC,

IR (for DP < 20) and acid-base titration against an alcoholic solution of KOH of known

strength (KOH standardized by titration against a standard solution of benzoic acid in

methanol). Most carbonations were performed according to Quirk's procedure (addition of

TMEDA to polystyrlhthium in benzene followed by freeze-drying and carbonylation).

Some reactions were performed in cyclohexane as per Quirk's procedure and worked as

effectively as in benzene.

An important procedural change that was very different from Quirk's reaction was the

way hydrolysis were carried out. It was discovered that hydrolysis by acidic methanol was

incomplete (NB#2 p 15-16) in contrary to Quirk's observation. It was also observed that

hydrolysis by acidic THF (HCl, 1 N/THF; 1:10, v/v) was complete after 12hr. The GPC

eluent used was toluene up to sample RPQ RnlO (and refractive index detector). It was

changed to THF after RPQ RnlO (after 7/10/88) to permit the analysis of other polymer

samples. Therefore all samples starting with RPQ Rnl to 23 were rerun in THF using a

UV detector (see synthesis alone NB#2 p 69 -151 and NB#3 p 1-1 1 for the chromatograras

and molecular weights reported in this dissertation).

2.3.9.3.2 Present Suggestion for Simple Carbonylation Reactions

Some carbonylation reactions were performed by transferring a fine jet of

polystyrllithium to a reaction flask (Rl) purged continuously with carbon dioxide at high

pressure as shown in figure 2.4.
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bone dry
carbon dioxide

nitrogen —>

(in)

>- nitrogen + carbon dioxide

(out)

red-orange polystyrllithium PS-COOLi

Reaction of a large excess of carbon dioxide with fine droplets

of polystyrllithium

Figure 2.4 A Simple Carbonylation Procedure

63



Here, a typical reaction which is a very quick way of synthesizing carboxylic acid-

terminated polystyrene quantitatively (synthesis alone NB#3 p 55-57), is described. A dry

pressure botUe (Rl) with a gasket (this should be pierced several times outside before using

it as a sealant so that rubber particles do not fall into the reactor during the course of adding

and removing substances; these particles can terminate growing chains) was sealed using a

rubber liner and a double-holed crown cap. The glass-metal joint was wrapped around

with tenon tape, as extra security against leaks. After purging the reactor with nitrogen, a

regular anionic polymerization was performed. Following the polymerization the Uving

anion was cannulated slowly into another pressure bottle (in a fine jet) through which a

constant flux of CO2 was maintained. This was followed by hydrolysis and workup as

described in the previous sections.

2.3.9.4 Reaction of Polystyrllithium with Ethylene Oxide^^

Polystyrllithiums of required DP was prepared by reacting appropriate amounts of ^^c-

butyllithium and styrene in benzene for 75 minutes. After the polymerization, dry ethylene

oxide was introduced into the reaction flask using a steel cannula from a reservoir at 0 °C

till the color of the solution changed from red to colorless. The solutions were stirred

further in a blanket of ethylene oxide for 12 h and subsequently hydrolyzed using acidic

THF (10 ml of 1 N HCl and 90 ml THF) for 12 hr. The polymers were precipitated using

a large excess of methanol, were filtered at the pump and dried in a vacuum oven. They

were characterized by GPC, TLC and IR (for DP < 20).

2.3.9.5 Synthesis of Acetoacetyl-Terminated Polystyrenes^^

Ig of PS-OH (Mj^ = 2000) synthesized as above was taken in a jacketed schlenk tube

with 50 mg of sodium acetate. It was purged with nitrogen for 1 h and then 25ml of THF

from a continuously distilling still was introduced. Ketene dimer (0.5 ml) was introduced
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by cannula and the mixture was stirred in an oil bath at 55 °C for 24 hr. The color of the

reaction mixture was yellow at the beginning of the reaction and was red at the end of 24 h.

The polymer was precipitated using a large excess of methanol, was filtered at the pump,

dried under vacuum and was characterized by GPC, IR , and TLC for acetoacetyl end-

group.

2.3.10 Synthesis of Di-Functionally-Terminated Polystyrenes

2.3.10.1 Using Sodium Naphthalide as the Initiator27-29

The polymerizations were conducted in reactors R5 or R7. Typically 1-5 ml of freshly

prepared sodium naphthaUde (0.004 to 0.005 M) in THF prepared according to references

11, 30 and 31 was added to 60 to 70 ml of freshly distilled THF (trap-to-trap distiUed from

5ec-butyllithium just before use) in R5. For reactions initiated or propagated at low

temperatures, the temperature of the "spinach green" mixture at room temperature was

reduced to -78 °C using a mixture of ethyl acetate and hquid nitrogen upon which the color

of the mixture turns brown and a slurry is formed. The desired amount of styrene (0.0087

to 0.0435 moles) distilled from dibutylmagnesium, just before use, was transferred to the

initiator solution. The usual procedure followed for adding styrene was to introduce the

entire amount in a single transfer. However for room temperature initiation reactions and

propagation reactions it was added in drops with the contents of the reactor being stirred

uniformly. After 30 min at -78 °C and 15 min at room temperature, a small amount of the

contents of the reactions were killed using degassed methanol. The polystyrenes formed

were characterized by gel permeation chromatography. The major portion of the reaction

contents were reacted with carbon dioxide without stirring. Subsequently they were

hydrolyzed using a mixture of HCl/ THF and some of the carboxylic acid-terminated

polystyrenes were analyzed by GPC as well.

65



2.3.10.2 Using Organolithiums Containing a Protected Functional Group

Two organolithium initiators containing protected functional groups were used: a

protected carboxylic acid group namely l,l,l-uimethoxy-4-lithiobutane prepared from

I,l,l-trimethoxy-4-bromobutane and a protected hydroxyl group namely acetaldehyde 6-

lithiohexyl ethyl acetal prepared from 6-iodo-l-hexanol. The synthesis and recrystallization

of the former is discussed. The latter was donated by Meera Pyati. l,l,l-trimethoxy-4-

bromobutane (1 ml, - 4.41 moles) was introduced to a nitrogen-purged reactor (R5). 15

ml of dry heptane was introduced using a cannula under nitrogen. The temperature of the

solution was reduced in increments of 5 °C to observe the solubility changes in heptane.

l.l,l-Uimethoxy-4-bromobutane forms a precipitate at -85 °C which refuses to dissolve on

diluting it two-fold. At -70 °C it forms a cloudy solution suggesting that it is still insoluble

in heptane. However at -50 °C it dissolves completely to form a transparent solution. To

this solution 4 ml of rm-butyllithium (6.84 miUimoles, 1.71 M) in 10 ml of heptane was

added in increments of 1ml per every 15 min using a cannula. 2 min after the addition of

/^r/-butyllithium a white precipitate was formed at the surface of the solution which spread

to the bulk with time. After completing the addition of rerr-butyllithium, the mixture was

left to stir overnight at -50 °C. The next day the supematent solution was removed using a

cannula and 25 ml of dry heptane was inu-oduced. The solution was allowed to warm to 0

°C and the supematent was removed again. This procedure was repeated thrice after which

10 ml of dry heptane was introduced and the mixture was cooled to -50 °C and the

supematent at this temperature was discarded as well. The lithium salt was recrystallized

using 30 ml of benzene at 0 °C (as it crystallizes out from a benzene solution at 0 °C). The

salt was dried under nitrogen, freeze-dried from benzene and was stored in a dry box

(synthesis of protected initiators NB#1 p 1-5). A typical polymerization was conducted by

the transfer of the appropriate amount of the initiator (weighed in a glove box and

appropriate amount of dry benzene was added in a Schlenk tube) in the case of 1,1,1

-

trimethoxy-4-lithiobutane or by transferring a solution of acetaldehyde 6-lithio-hexyl ethyl
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acetal in benzene (2 ml, 0.07 M) to 50 ml of benzene in reactor R5. One to two ml of dry

styrene was added and the polymerizations were run for 90 to 120 min after which a small

portion of the solution was killed using degassed isopropanol. The polymer was

precipitated using excess methanol, was filtered, dried and characterized by GPC. The

major portion was killed using carbon dioxide (ethylene oxide for the polymerization

conducted using acetaldehyde 6-Uthio-hexyl ethyl acetal) without stirring the solution. It

was hydrolyzed using a HCimiF mixture, precipitated using excess methanol, filtered,

dried and characterized by GPC as well.

2.3.10.3 Using Tung's Initiator

Tung's initiator was prepared by the reaction of 0.2 g (0.00071 moles) of 1,3-

bis(phenylethenyl)benzene (FEB) with two equivalents of ^ec-butyllithium (0.001418

moles) in benzene as weU as cyclohexane. The exact strength of 5^c-butyllithium was

determined by titration against 4-biphenylmethanol just before the preparation. A typical

reaction was performed as follows: to 50 ml of dry benzene in a nitrogen-purged pressure

bottle was added 0.1 ml of isopropanol (0.00134 moles) and 3 ml of c-butyllithium

(0.001404 moles). After 10 min, 1 ml of ^ec-butyllithium was added to ensure dryness

and a 25 ml benzene solution of FEB (0.2 g or 0.00071 moles) was added. Two min after

the addition, the color of the solution turned yellow and within 5 min the entire solution

turned deep yellow and eventually grape red in color. An ahquot of the solution was killed

using methanol and a gas chromatographic (GC) analysis was performed. The GC was

performed under the following conditions: Supelco SFB-1 fused silica capillary column of

length 15 m and ID = 0.53 mm on a Hewlett Packard 5790A gas chromatograph equipped

with an FID detector, injection temperature = 200 °C; Tl = 75 °C; tl = 0.5 min; rate = 10

°C /min; T2 = 250 °C; t2 = 0 min; and detection temperature = 200 °C. Under these

conditions cyclohexane, benzene, methanol, isopropanol, FEB and the adducts elute at

1.32, 1.76, 1.21, 1.48, 15.52, 17.09, 18.39 min respectively. 5fc-butyllithium addition

67



was continued in small increments after the addition of 1.8 equivalents and the reaction was

followed by GC. The reaction was taken to be complete with the disappearance of PEB

and the mono-adduct peaks at 15.52 and 17.09 min. respectively. At this point 2 ml of

styrene was added to the solution (0.0174 moles) and the color of the solution turned

cranberry red. The polymerization was aUowed to proceed overnight in benzene and a

small portion was killed using methanol the next morning. The polymer was precipitated

using excess methanol, filtered, dried and was analyzed by GPC. The rest of the cranberry

red polystyrllithium solution was divided into two portions, a portion of which was treated

with bone dry carbon dioxide and the other was treated with ethylene oxide. The end-

functionalized polymer samples thus prepared were hydrolyzed using a mixture of

HCITTHF, precipitated using excess methanol, dried and were analyzed by GPC and TLC.

The initiator preparation, characterization and polymerization in cyclohexane were

conducted in an analogous fashion as in benzene (synthesis alone NB#4 p 3-23).

2.3.10.4 Using Lithium Naphthalide as the Initiator

The polymerizadons were conducted in reactors R5 or R7. 50 ml of dry benzene was

added to the reactor (after evacuation and argon purge). 1 to 10 ml of the initiator solution

was added to the benzene depending on the molecular weight desired. The benzene

solution turned chocolate brown on contact with the dark green initiator solution. 2 to 5 ml

of styrene was then added while vigorously stirring the initiator-solvent mixture. The

solution turned rust red to orange (depending on the concentration of initiator used) on

contact with styrene. After 90 min to 2h, a portion of the solution was killed by

transferring it to degassed isopropanol. The major portion of the living polystyrllithium

was divided into two portions. One portion was treated with ethylene oxide while the other

portion was treated with bone-dry carbon dioxide gas without stirring the contents. The

lithium salts thus obtained were hydrolyzed using a HCl/THF (1/10) mixture to obtain the

dihydroxyl (HO-PS-OH) and dicarboxylic acid-terminated polystyrenes (HOCXT-PS-

68



COOH). The polystyrenes thus obtained were characterized by GPC and TLC (synthesis

alone NB#4 p 24-78).

''''
^s^''^^ir£r&r'^^,^zsr.£:"-~

The di-funcUonaUy-terminated polystyrenes prepared according to the procedure

discussed in section 2.3. 10.4 invariably exhibited a tail in their GPC chromatogram

suggesting the presence of a low molecular weight species in addition to the desired high

molecular weight species. The concentration of the low molecular weight species ranged

from 10 to 15% of the high molecular weight species. Therefore the high molecular weight

species was isolated from the mixUire by fractional precipitation. A typical fractional

precipitation was performed as follows. 50 ml of a 5 mg/ml solution of the polymer to be

separated in toluene (in THF 10 mg/ml) was tiu-ated with methanol till turbidity is

maintained by the solution. A 5 % excess of methanol was added to ensure complete

separation and the turbid solution was centrifuged for 5 min. The supematent was

removed with a pastuer pipette and the fractional precipitation was continued. All the

fractions were characterized by GPC and TLC. The precipitate obtained in the first step

was most often the desired molecular weight species and was obtained in == 50% yield.

2.3.12 Characterization Techniques

Molecular weights (number average - and weight average - M^) and poly

dispersity index (PDI) were determined using gel permeation chromatography (GPC)

technique. Commercial narrow molecular weight standards were used earlier to caUbrate

the instiiiment A dilute solution of the oUgomer/polymer (1 mg/ml) prepared in toluene /

methylene chloride / THF was injected through a series of Polymer Laboratories PL gel

columns (mean pore diameter 10^. 10^ 10^ A respectively), through which a constant flow

of tiie eluent (toluene / methylene chloride / THF, 1ml / min) was maintained using a Rainin
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Rabbit diaphragm pump. The eluted sample was detected by a differential refractometer

(Knauer 98) or a UV detector (IBM). GPC data accumulation and analysis were performed

initially by using Interactive Microware GPC software, an Apple He computer while

Polymer Laboratories software and an IBM PC/AT were used at later dates. A previously

determined calibration curve for polystyrene commercial standards was used to obtain the

molecular weights. Infrared spectra were obtained using an IBM 38 FOR by casting the

oligomer/polymer onto a NaCl window from a dilute solution in toluene. Thin layer

chromatograms for individual samples were obtained using thin layers of sihca (Kodak) on

polyester support and alumina on glass support (Baker). Thin layer chromatography of a

series of a particular end-functionalized polymers were performed using siUca gel thin

layers (250 [im thick, 60-A pore diameter) supported on 20 X 20 cm glass (Aldrich) and

preparative alumina thin layers (250 ^im thick) supported on 20 X 20 cm glass (Analtech,

Inc.). and ^^C NMR spectra of the oligomers were obtained using Varian XL200 and

300 spectrometers, respectively. Gas chromatography (GC) was performed using a

Hewlett-Packard 5790A gas chromatograph equipped with an FID detector using Analabs

10 ft X 1/8 in. 15% AN 600 column, 15 ft. x 1/8 in. Superpak II column and Supelco's

SPB-1 fused silica capillary column of length 15 m and ID = 0.53 mm.

The number of carboxyUc acid end-groups and therefore the number averaged

molecular weight was also calculated by titrating a weighed amount of the oligomer /

polymer in 25 ml of toluene against 0.01 M KOH in methanol, using phenophthalein as

indicator. The KOH used was standardized by titrating against a known quantity of benzoic

acid in methanol using the same indicator.
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2.4. Results and Discussion

Anionic polymerization of styrene enables the synthesis of polystyrenes of desired

molecular weight and narrow molecular weight distribution. 13 The anionic polymerization

of vinyl monomers such as styrene, butadiene and isoprene initiated by alkyUithiums and

alkali metal naphthalides involves a rapid initiation step compared to the propagation. This

in theory should give a polymer of narrow molecular weight distribution, as it involves

simultaneous growth of chains. in the absence of chain termination, a chain of desired

molecular weight can be obtained by using the desired concentration of the monomer for a

given concentration of the initiator. Further the Uving anionic ends can be suitably

terminated using an electrophile to quantitative yields as weU.35 An anionic polymerization

of styrene initiated by ^ec-butyUithium in benzene is described in figure 2.5. For the

polymerization to proceed ideaUy as desired, large number of conditions have to be met.

These are stressed in the order of decreasing importance. 1) the reactivity of the initiating

anion towards the monomer should be greater than that of the propagating anion, i.e kj >

kp; 2) Monomer and solvent chemical structure should be so selected such that during the

desired time period of polymerization, no other side reaction will take place. For example,

proton abstraction by the initiator results in lesser number of moles of the initiator and

therefore a number average molecular weight higher than theoretical; proton abstraction by

the propagating anion would result in a broader molecular weight distribution (MWD)

depending on the rate of that reaction; Halogen-cation exchange or any other chemical

reaction can convert the living initiator or propagating species to something less reactive or

dead;33'34 3) Monomer and solvent should be free of impurities. The preceding statement

does not define tolerance. Concentration of impurities should be reduced to an order (or

two) of magnitude lower than the initiator concentration. The higher the molecular weight

that one wishes to prepare, the more careful one should be about purifying the monomer,

solvent and other additives as a small amount of initiator is involved; 4) An inert gas

environment should be maintained till the end of the polymerization, as the anion
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(initiating/propagating) is capable of reacting with air or moisture or other gases present

depending on its reactivity; 5) Reaction flask, syringes, cannula and transfer vessels (like

centrifuge tube, Schlenk type graduated cylinder, etc.,) must be perfectly dry and free of

impurities.

The first two of the conditions were met by the appropriate choice of initiator {sec-

butyllithium). monomer (styrene), solvent (benzene and cyclohexane at room temperature

and THF at -78 °C) and carefully selected polymerization conditions.^^. 33-35
^^^^

the condiUons were met by adherence to stringent purification steps. The GPC results of

polystyrenes prepared by terminating (killing) Uving polystyrUithium prepared according to

the conditions stated above are shown in Table 2.1.

Table 2.1 GPC Characteristics of Polystyrenes (PS-H)

Sample code MWD Lab. Note-Book reference

PS-H #1 in CH 1500 1.06 synthesis alone NB #3 p 19

PS-H enroute PSEOO 2000 1.06 synthesis alone NB #2 p 32

PS-H #1 in CH 2821 1.05 synthesis alone NB #3 p 20

PS-H enroute PSOH2 4300 1.05 synthesis alone NB #3 p 32

PS-H syn with DBuMg 6500 1.05 synthesis alone NB #3 pl6

PS-H enroute PSEOl 9000 1.05 synthesis alone NB #1 p 32

PS-H enroute RPQ Rn 4 10000 1.04 synthesis alone NB #2 p 53

PS-H enroute RPQ Rn 5 12000 1.04 synthesis alone NB #1 p 11

PS-H enroute PSC00HPB2 17500 1.05 synthesis alone NB #3 p 87

PS-H enroute PS0H3 20000 1.04 synthesis alone NB #3 p 36

Continued, next page
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Table 2.1 Continued

MWD Lab. Note-Book reference

PS-H enroute RPQ Rn 21 30000 1.04 synthesis alone NB #2 p 142

PS-H enroute PSCOOHPB4 50000 1.04 synthesis alone NB #3 p 93

PS-H enroute PSOH6 58000 1.03 synthesis alone NB #3 p 68

PS-H enroute PSCOOH4 60000 1.04 synthesis alone NB #3 p 96

PS-H enroute PSE05 70500 1.05 synthesis alone NB #2 p 32

PS-H enroute RPQ Rn 22 100000 1.03 synthesis alone NB #2 p 151

PS-H 02/27/89 280000 1.07 synthesis alone NB #3 p 75

PS-H enroute RPQ Rn 17 300000 1.05 synthesis alone NB #2 n n?

PS-H enroute PSOH7 320000 1.03 synthesis alone NB #3 p 71

PS-H enroute PSC00H8 (0 600000 1.10 synthesis alone NB #3 p 101

PS-H enroute PSCOOH7 (f) 825000 1.10 synthesis alone NB #3 p 99

Note: Some polystyrenes of molecular weight greater than 100,000 and narrow molecular

weight distribution (< 1.10) were purchased from Polysciences, Inc. The molecular

weight of the purchased samples are 150K, 200K, 250K, 290K, 400K, 450K, 600K,

860K, 980K, 1860K, 3000K, 7000K, lOOOOK, 15000K and 20000K. Samples marked

(f) were fractionally separated.

74



2.4.1 Synthesis of Carboxylic Acid-Terminated Polystyrenes (PS-COOH)

As the first step towards the objective, the synthesis of a mono carboxylic acid-

terminated polystyrene was undertaken. Several researchers have reported the synthesis of

polystyrenes terminated by a carboxylic acid-end group.38-40 y^^^^ ^^^^^ syntheses

involve the reaction of polystyrl anion with gaseous or solid carbon dioxide a reaction

involving a liquid-gas interface. These reactions generaUy result in the formation of a

significant amount of a ketone and a tertiary-alcohol.^^ Based on the simpHcity of addition

reactions that take place within a liquid phase and the desire to get pure carboxylic acid-

terminated polymer (this would make the interpretation of adsorption results easier) the

reactions of the carboxylic acid precursor molecules succinic anhydride (SA),

carbonyldiimidazole (CDI) and terephthaloyl chloride (TPC) with polystyrllithium were

studied as alternate routes for the synthesis of carboxylic acid-terminated polystyrene. It

was hoped that polystyrl anion would react with succinic anhydride to form the y-keto acid

in 100% yield as reported earlier.^' The reactions with carbonyldiimidazole and

terephthaloyl chloride"** were also expected to give pure carboxylic acid-terminated

polymers as one might expect from conventional organic chemistry. The reactions and the

expected products are described in figure 2.6. Long chain molecules with carboxylic acid

end groups can be synthesized in principle by this method. The reactions of

polystyrllithium with carboxylic acid precursor molecules are discussed in the next few

sub-sections.
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Figure 2.6 Reactions of Polystyrllithium with Carboxylic Acid Precursor

Molecules and Expected Products
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2.4.1.1 Reactions of Polystyrllithium with Succinic Anhydride

The reactions of polystyrllithium with succinic anhydride were carried out according to

the procedure in section 2.3.9.1. The GPC results of the syntheses are summarized in

Table 2.2. An increase in molecular weight of 100 is expected upon the reaction of

polystyrUithium of any given degree of polymerization (DP) with succinic anhydride.

However the increase in the number average molecular weights of the carboxylic acid end-

terminated polystyrenes are much greater than 100. This is possible if polystyrene and

carboxylic acid end-terminated polystyrene coUs exhibit different radii of gyration in

toluene. If that is the case, the use of a calibration curve based on polystyrene coil

dimensions in toluene is unlikely to give the correct molecular weight increase on reaction

with succinic anhydride.

Some of the carboxylic acid end-terminated polystyrenes (ohgomers) were

characterized for their number average molecular weight by volumetric titration of their acid

end-group with alcohohc KOH in addition to GPC. The results are summarized in Table

2.3. The data point to the presence of a considerable amount of non-titi-atable (non-acidic)

component(s) in the end-capped product. In the case of the oUgomer of DP=4, the

increased molecular weight obtained by the titi-ation of the crude product points to the

presence of 52% non-acidic component(s) in any given weight of the crude product.

Separation of the crude product into acidic and non-acidic component(s) by base extraction,

followed by weighing also yielded 52% (w/w) of the non-acidic component(s). The end

group titi-ation of the pure acid component(s) obtained from the crude product (see section

2.3.9.1.) leads to a number averaged molecular weight greater tiian the one obtained from

the crude product. This result suggests that the non-acid component(s) might be formed

from the acid itself by an isomerization as shown on page 80.
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Table 2.3 Acid-Base Titration Results of Polystyrllithiums End-terminated
with Succinic anhydride

Sample DP Expected M„ from acid-base of acid component
GPC M„ of PS-H+100 titration after separation

PSSA03 4 581 1104 1581

PSSAOl 5 646 665®

PSSA02 9 1059 825 2959

PSSA04 20 2200 14598

PSSA05 66 6754 69000

Note: DP stands for degree of polymerization, PS-H for polystyrene and for the

number average molecular weight. ® indicates that the particular sample was titrated

immediately after synthesis and purification steps. It is also to be noted that beyond a DP

of 9 it was not possible to extract the acid component into the base.
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Similar results were obtained for the oligomer of DP=9. Such an isomerization has been

reported in the literature for small molecular weight y-keto acids as weU ^2 The volumetric

titration of the non-acidic component(s) isolated from base extraction of the oligomer of

DP=4 enabled us to calculate an equilibrium constant value of 9.79. The acid-base titration

of tiie oligomer of DP = 5 immediately after the synthesis resulted in nearly 100% yield of

the end-group while a slow increase in molecular weight was observed witii time. This

suggests tiiat tiie equilibrium conversion to the lactone is slow.

The infrared spectrum of the crude oligomer of DP=4 displays tiie foUowing prominent

carbonyl stretches at 1713, 1740 and 1774 cm'^, coiresponding to carboxylic acid dimer,

ketone and lactone carbonyl carbons. The IR spectra of the acidic and non-acidic

components separated by base extraction display tiie same peaks in the carbonyl region as

well. However the relative intensities of the different carbonyl stretches were different; tiie

1774 cm-1 peak (lactone carbonyl stretch) had a higher relative intensity for the non-acidic

components while the 1713 cm'^ peak (carbonyl stretch in a carboxylic acid dimer) had a

higher relative intensity for tiie acidic components (as well as for the crude oligomer).

The results of tiie thin layer chromatographic (TLC) characterization are summarized in

Tables 2.4 and 2.5. These results indicate tiiat tiie crude product is made up of 3

components; a high R^- component and two low components, too close to be separated

using silica gel or alumina. An attempt was made to separate tiie high fraction by

column chromatography using silica gel as the adsorbent and ethyl acetate as tiie eluent.

The IR spectrum of this fraction exhibits a predominant lactone carbonyl stretch. This

imptied that a major component of tiie high fraction was the lactone. A quantitative
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separation using a thin layer of sUica gel and ethyl acetate as the mobile phase showed that

the high R, fraction constituted 92% of the crude product, suggesting that silica gel could

be assisting the transformation of the y-keto acid to the lactone.

To conclude this sub-section, the above results indicate that polystyrllithium reacts with

succinic anhydride to form the y-keto acid which subsequendy isomerizes to the lactone

slowly. The isolation of the non-acidic component and the presence of a smaU amount of

acid (10%) as evidenced by acid-base titration conducted a few days after the synthesis

indicates that the lactone is in equiUbrium with a smaU amount of the acid. This result

disproves the earlier claims by Rempp, et al. that carboxylic acid-terminated

polystyrenes could be synthesized in good yield by reacting polystyrlUthium with succinic

anhydride. The conversion of the y-keto acid to a mixture predominant in the lactone (with

Ume or in contact with siUca gel) and the observation that these lactones exhibit a high

value suggested that the lactones may not adsorb well in the subsequent adsorption

experiments to be performed. Therefore alternate routes were explored for the synthesis of

carboxylic acid-terminated polystyrenes as discussed in the sub-sections following this

one.
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^^^^\^^t H^!!!"
Chromatographic Characterization of SuccinicAnhydride-Terminated Polystyrllithium on Silica, DP = 4

Eluent

#1
Rf values

HI PS-H of = 50(

benzene 0 00® W.OJ 0.82

benzene/chloroform, 50/50 (v/v) 0 00® A or\
0.89

chloroform 0 00® 0 80V/ . ov A O O0.88

tetrahydrofuran 0 00 0 82(^V/ > O^ vii' 0 07u. w /
A OCU.55

ethyl acetate 0 00 0 86® A A 1

benzene/ethyl acetate, 1/1 (v/v) 0 0® 0 86 A A'^0.93

chloroform/methanol, 9/1 (v/v) 0 00® 0 88v/.OO A OA

chloroform/mpthannl '^/l (\r/\i\ n AA0.00 0.89® 0.89

chloroform/methanol, 6/4 (v/v) 0.95 0.92® 0.92

chloroform/methanol, 1/1 (v/v) 0.89 0.88® 0.90

Methanol 0.86® 0.90

Note: The above data was recorded for the end-capped polymer PSSA03 spotted on a

silica gel thin layer from a dilute solution in toluene (3 mg/ml) (see synthesis alone NB#1

p 77-83). An Rf value of zero was recorded in pentane, pentane/methylene chloride (4/5

and 3/7 volume/volume) mixtures, cyclohexane and CCI4 on silica gel and alumina thin

layers. Polystyrene standard of M^, = 500 and PDI=1.10 had an value of 0.98 in

cyclohexane and 0 in CCI4. PSSA03 samples did not elute on alumina (Rf value of 0.00)

from cyclohexane, THF, pentane, pentane/methylene chloride mixtures and methylene

chloride.
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^^^''^^h JS^^^^r
Chromatographic Characterization of SuccinicAnhydride-Terminated Polystyrllithium (DP = 5) on silica

Eluent

#1 #2
Rf values

#3 PS-H of M„ = 500

chloroform 0.00® 0.92 0 88

chloroform/methanol, 90/10 (v/v) 0.00® 0.93 0,89

chloroform/methanol, 80/20 (v/v) 0.00® 0.95 0.88

chloroform/methanol, 75/25 (v/v) 0.00 0.91®

chloroform/methanol, 72.7/27.3 (v/v) 0.92® 0.89

chloroform/methanol, 70/30 (v/v) 0.92® 0.89

chloroform/methanol, 50/50 (v/v) 0.893 0.90

ethyl acetate 0.00 0.86® 0.08 0.88

tetrahydrofuran 0.00 0.88® 0.77

Methanol 0.86® 0.90

Note: The above data was recorded for the end-capped polymer PSSAOl spotted on a

sUica gel thin layer from a dilute solution in toluene (3 mg/ml) (see synthesis alone NB#1 p

7 1-74). An Rf value of zero was recorded in pentane, pentane/methylene chloride(4/5 and

3/7 ) mixtures, cyclohexane and CCI4 on silica gel and alumina thin layers. Polystyrene

standard of M^^ = 500 and PDI=1.10 had an value of 0.98 in cyclohexane and 0 in CCI4.

PSSAOl samples did not elute on alumina (R^ value of 0.00) from pentane, cyclohexane,

pentane/methylene chloride mixtures, methylene chloride, chloroform, THF, and methanol.

The end-capped polymer of DP = 66 and polystyrene of DP « 66 have an R^ value of zero

in cyclohexane and an R^ value between 0.84 and 0.86 in ethyl acetate and THF (synthesis

alone NB#1, p 89).
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rir:^^^^^^^^^^^ Carbonyldii^ldazce and

The reactions of polystyrUithium with carbonyldiimidazole^^. 45
terephthaloyl

chloride were earned out for preparing a predominantly or fully monocarboxylic acid-

temiinated polystyrene. The reacuon conditions and the characterization of the products by

GPC and acid-base titration are summarized in Tables 2.6 and 2.7. The synthetic

procedures are described in section 2.3.9.2. Though the chemistry involved was

interesting the discussions shall be biased towards the goal. The reaction of

polystyrUithium with GDI and TPC did not work out as shown in equations 2 and 3 of

figure 2.6. From the results in Tables 2.6 and 2.7 it appears that polystyrUithium in

benzene in the absence of any coordinating lewis base reacts to form the ketone with GDI

and the diketone with TPG. In the presence of a smaU amount of coordinating lewis base

such as TMEDA (10 Umes stoichiomeuic excess) in benzene, polystyrUithium stiU forms

the simple ketone and an addition product across the G=N bond in GDI.^' 46 However if

the end-capping reaction or the polymerization and the end-capping reaction were

performed in a basic solvent such as THF, 30-70% of acid-terminated polystyrene was

obtained as the yield (determined by the acid-base titration) along with side products such

as tiie ketone (and the addition product across the G=N bond in the case of addition to

GDI). The reactions with terephUialoyl chloride in THF were not reproducible as shown in

Table 2.7. AU tiie adsorption experiments require pure monocarboxyUc acid-terminated

polystyrene of narrow molecular weight distiibution so that the physical effects of

adsorption could be attributed as only due to the effect of the end-group and not to other

extraneous factors. Therefore no further end-termination reactions were performed with

GDI and TPG.

The characterization of a single end group in a long chain polymer is difficult if not

impossible by any conventional technique and so the results pertain to the characterization
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of end groups in the oligomeric cases alone. It . assumed that the end-termination reaction
of polystyrl anion proceeds independent of it's chain length.

Subsequently, the reaction of freeze dried mixture of polystyrlHthium and a ten molar
excess of TMEDA. with carbon dioxide was carried out as reported by Quirk, et al.

2.4.1.3 Reactions of Polystyrllithiums with Carbon Dioxide

2.4.1.3.1 Symhesis^^^^^^^^^ Acid.tern,inated Polystyrenes; Rod

TTie gas phase reaction of CO^ with freeze-dried polystyrlUthium was reported by Quirk

and Yin at the American Chemical Society meeting held at New Orleans in the FaU of

1987.24 They claimed in that report that they obtained 100% acid end-group yield. The

results of carbonylation reactions performed according to the procedures in the preprint

were discussed subsequenUy in detail as well.25 j^, reactions reported in this sub-section

were performed according to the later version of Quirk, et al and their details are presented

in section 2.3.9.3. The molecular weight characteristics of the reactions performed

according to Quirk are summarized in Table 2.8. A detailed account of these reactions are

described in "synthesis alone NB#2 p 13-151 and NB#3 p 1-11. These reactions were

labelled RPQ Rn 1-23 after Roderick P. Quirk.

The IR spectrum of the sample obtained in reaction RPQ Rnl is shown in figure 2.7.

The carbonyl stretch at 1707 cm'^ indicates that it is probably from carboxylic acid groups

present as dimers. The GPC chromatograms indicated the formation of a small amount of

ketone (1-5%) in these reactions (synthesis alone NB#2 p 13-151). The number average

molecular weights obtained by acid-base titration (for molecular weights less than 15000)

also indicated that at least 5 to 10% of the end-capped product was not an acid. Subsequent

TLC experiments (see Table 2.8 for TLC results using benzene as the eluent) confirmed the
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Table 2.8 GPC Characteristics of Carboxylic Acid End-TerminatedPolystyrenes (PS-COOH)
terminated

Sample code reactor Mn MWD TLC
GPC/titration r^'s

Lab. Note-Book reference

RPQ Rn 1 R3 2000/2879

RPQ Rn 2 @ R3 3 1 00/6098

RPQ Rn 3 R5 3000/3200

RPQ Rn4 R5 9700/10400

RPQRnS R5 12300/13000

RPQRn 10 R5 33600

RPQ Rn 13 R5 12000

RPQRn 14 R5 19100/20400

RPQRn 15 R5 78000

RPQRn 17 R5 326000

RPQRn 18 R5 93000

RPQRn 19 R5 133000

RPO Rn 20 R'S 9 a /inn

RPQRn 21 R5 37000

RPQRn 22 R5 99000

RPQRn 23 R5 7100

PSCOOHPBl Rl 2500/2700

PSCOOH PB2 Rl 16800

PSCOOH PB3 Rl 47000

1.09 0.0, 0.82 synthesis alone NB #2 p 13-17

and p 41-42

1.09 0.0,0.80 synthesis alone NB #2 p 18-21

1 .08 0.0, 0.80 synthesis alone NB #2 p 48-53

1.04 .04,0.85 synthesis alone NB #2 p 48-53

1.03 .04,0.92 synthesis alone NB #2 p 55-57

1.19 .17,0.93 synthesis alone NB #2 p 64-69

1.07 .04,0.92 synthesis alone NB #2 p 96-148

1 .06 .05, 0.92 synthesis alone NB #2 p 147

1 .04 .58, 0.92 synthesis alone NB #3 p 6

1 .04 .58, 0.70 synthesis alone NB #3 p 2

1 -03 - synthesis alone NB #2 p 138

1 .05 .74, 0.90 synthesis alone NB #3 p 4

1 .04 .12, 0.94 synthesis alone NB #2 p 149

1.05 .17, 0.94 synthesis alone NB #2 p 150

1.03 0.85 synthesis alone NB #2 p 151

1.07 .04, 0.89 synthesis alone NB #2 p 146

1.10 0.0, 0.79 synthesis alone NB #3 p 85-90

1 .05 .05, 0.93 synthesis alone NB #3 p 87

1 .03 .20, 0.92 synthesis alone NB #3 p 88

Continued, next page
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Table 2.8 Continued

Sample code reactor M„ MWD TLCR^'s Lab. Note-Book reference
GPC/titration silica/benzene

PSC00HPB4 Rl 51400 1.05 mm synthesis alone NB #3 p 93

PSCOOH2 R4 4100/4300 1.05 0.0, 0.84 synthesis alone NB #3 p 76-84

PSCOOH4 R6 60000 1.04 .32, 0.92 synthesis alone NB #3 p 94-96

PSCOOH5 R6 100000 1.03 0.85 synthesis alone NB #3 p 94-97

PSCOOH6 R6 120000 1.04 0.78 synthesis alone NB #3 p 98

PSCOOH7 (0 R4 825000 1.04 0.10 synthesis alone NB #3 p 100

PSCOOH8 (0 R4 640000 1.07 0.36 synthesis alone NB #3 p 101

PSCOOHl(d8) R7 6000 1.04 synthesis alone NB #3 p 103-08

PSCOOH2(d8) R7 12528 1.06 synthesis alone NB #3 p 103-08

PSCOOH ® R5 5000 1.04 syn. rad. mon. polym. #1 p 45

PSCOOH ® R5 10000 1.03 II

PSCOOH ® R5 30000 1.04 If

PSCOOH ® R5 140000 1.06 II

Note: RPQ Rn stands for reactions performed according to Quirk, et al. The rest were

performed according to the procedure developed in this thesis. @ implies carbonylation

was performed without using TMEDA upon which 15 to 20% yield of ketone was detected

by GPC. Since all the carboxylic acid-terminated polystyrenes exhibited a low molecular

weight tail, the tail region was not included in the molecular weight distribution

calculations. Inclusion of the tail increases the MWD; it was still < 1.10. ® stands for cold

polystyrenes prepared in parallel while synthesizing Tritium-Labelled polymers.
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Figure 2.7 IR Spectrum Carboxylic Acid-Terminated Polystyrene Prepared
in Reaction RPQ Rnl
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formation of polystyrene even under the most rigorous conditions tried. The formation of

the ketone and polystyrene are best explained by the mechanism of the carbonylation

reaction as outlined in figure 2.8.16. 38 j^-^^ ^..^anism foUows from the fact that a smaU

amount of ketone and polystyrene are almost always formed in carbonylation reactions as

evidenced by thin layer chromatography. At room temperature at which the carbonylation

reactions were conducted, the end groups have sufficient mobihty so that an um-eacted

polystyrilithium can abstract a proton a to a carbonylated chain-end. Further if the chain-

ends were assumed to be close to each other (they are in hydrocarbon solvents in the

absence ofTMEDA) the reaction of a polystyrihthium with the carbonyl group of the

functionalized polystyrene will result in the formation of the ketone. From the mechanism

it is evident that, if the carbonylaUon reaction were to be conducted at temperatures at which

nitrogen is a liquid (-196 °C), the temperature at which end-group segmental motion in

polystyrene is frozen, 100% carbonylation is likely to result. An unpublished

communication attributed to Fetters indeed claims such a result.'^^ ^pj^g ^^^^^

attempts it was not practically possible to do carbonylation reactions at liquid nitrogen

temperature conditions. At these temperatures the reaction was so slow (carbon dioxide is

a solid and reaction is driven by the sublimation of carbon dioxide from the soUd to vapor

in order to replenish what will be consumed by the polystyrilithium) that the Uving anion

had to be kept at very low temperatures for several days (7 days) at the end of which the

polystyrilithium maintained its color indicating incomplete reaction. We do point out here

that the possibility of this reaction going to 100% is hard to achieve practically. In order to

minimize the time and energy consumed in Quirk's reaction a modified version was

followed which resulted in quantitative yields of carboxylic acid-terminated polystyrenes.

The results of this method are discussed in the next paragraph. Another method to get

PSCOOH quantitatively is to let CO2 into un-stirred PS-Li+. This has been reported in

Quirk's paper. But this method gives >5% ketone and at least 10% PS-H.
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freeze drying

polystyrene a-proton abstraction

Polystyrllithium possess translational, rotational and segmental motion in solution
and mostly rotational and segmental motion in the solid state at room temperature,
kj and k^^ (in solution) depend on the mobility of polystyrllithium while k^ depends
on the diffusion of carbon dioxide in to the solid (or the solution).

Figure 2.8 The Mechanism of the Reaction of Polystyrllithium and Carbon
Dioxide
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t%TDi::i7:''''' ^^^^^^^ «^ PCystynnthiun, with

A simpler carbonylation procedure leading to the production of "quantitative" yields of
carboxylic acid-terminated polystyrenes was discovered in the process of understanding

Quirk's reaction. The details of the procedure are discussed in section 2.3.9.1 and the^

samples obtained by this procedure are labelled as PSCOOHPB or PSCOOH. In brief, this

process involves the slow transfer of polystyrllithium to a large excess of carbon dioxide.

The word "quantitatively" is defined in detail below. Tl.e observations while performing

the carbonylation reactions by Quirk's procedure (using even more rigorous drying

procedure's like trap-to-trap distilling benzene from n-buLi, styrene from

dibutylmagnesium, TMEDA from .-buLi) was that a small amount of ketone «5%, by

GPC) and polystyrene «10%. by TLC) was always formed. A whole range of reactors

(to enhance the surface area of the freeze dried polystyrllithium), freeze-drying

temperatures from liquid nitrogen to melting ice, carbonylation temperatures from room-

temperature to diy ice conditions and different amounts ofTOEDA (from twice the initiator

concentration to ten times) lead to similar results. Since a smaU amount of ketone was

almost always formed independent of the synthesis or the workup condition, the definition

of "quantitative" will be any synthetic product which on analysis shows the formation of

greater than 90% PS-COOH. For example, the number average molecular weight of the

sample PSCOOHPB 1 obtained by chromatography is 2500 while that obtained by acid-

base titi-ation is 2700 following the present carbonylation procedure indicating quantitative

conversion. Such a sample is sufficient for adsorption experiments as will be shown in tiie

subsequent chapters.

Tritium-labelled polystyrene, hydroxyl and carboxyUc acid-terminated polystyrene were

prepared by Quirk's reaction. The synthesis of tritium-labeUed styrene and polystyrenes

are shown in figure 2.9. In the presence of polystyrene the reduction of phenylacetylene

can be stopped at the styrene stage as polystyrene competes with styrene for catalytic sites.
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The GPC characteristics of non-radioactive polymers prepared in paraUel, under identical

experimental conditions, were assumed to represent the radioactive polymers.

To summarize this section, the reaction of freeze dried polystyriUthium in the presence

ofTMEDA with carbon dioxide at room temperature almost always yields >90% acid-

terminated polystyrene but never 100% as claimed earlier. 16 The earlier workers do not

menUon any details about their freeze-drying conditions and carbonylation procedure. It is

also possible that more rigorous conditions such as high vacuum and break-seal techniques

as used by them could minimize the yield of the side products and since we were using

Schlenk tubes and inert gas technique we refrain to compare their results with ours. It is

assumed that polystyrene samples containing >90% carboxylic acid-end groups are

sufficient at low molecular weights {<\0^) for adsorption studies. The thin layer

chromatographic characterization of PS-COOH samples indicates that they adsorb in

preference to un-functionalized polystyrene justifying the assumption at least at this stage.

2.4.2 Synthesis of Hydroxyl-Terminated Polystyrenes

Hydroxyl terminated polystyrenes were synthesized according to the procedures

reported by Schulz and Milkovich.25 The hydrolysis step was modified as reported in

section 2.3.9.4 to ensure complete hydrolysis. The results of the syntheses are

summarized in Table 2.9. Tritium-labelled polymers were prepared by the same procedure

and non-radioactive polymers prepared in parallel under exact conditions were characterized

to obtain tiie number average molecular weight and polydispersity index. The TLC results

in particular indicate that hydroxyl-terminated polystyrenes could be syntiiesized in

quantitative yields.
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Table 2.9 GPC Characteristics of Hydroxyl End-Terminated Polystyrenes

Sample code reactor Mn MWD TLC
GPC/titration R^'s

Lab. Note-Book reference

PSOHl Rl 1500 1.07 0.05 synthesis alone NB #3 p 19

PSE04 Rl 1900 1.05 0.07 synthesis alone NB #2 p 29-39

PSEOO Rl 2000 1.06 0.08 synthesis alone NB #2 p 29-39

PSOH2 Rl 4400 1.05 0.09 synthesis alone NB #3 p 37

PSEOl Rl 8200 1.05 0.19 synthesis alone NB #2 p 29-39

PSOH4 Rl 12300 1.04 0.30 synthesis alone NB #2 p 45

PS0H3 Rl 20200 1.04 0.47 synthesis alone NB #2 p 36

PSE02 Rl 24200 1.10 synthesis alone NB #2 p 29-39

PSE03 Rl 36300 1.05 0.81 synthesis alone NB #2 p 29-39

PSOH6 R5 58000 1.03 0.86 synthesis alone NB #2 p 68

PSE05 Rl 70500 1.05 0.86 synthesis alone NB #2 p 29-39

PS0H5 R4 100000 1.03 0.86 synthesis alone NB #2 p 64

PS0H7 (0 R6 200000 1.06 synthesis alone NB #2 p 69-71

PSOH7 (0 R6 320000 1.05 0.56 synthesis alone NB #2 p 69-71

PS-OH ® R5 5000 1.04 syn. rad. mon. polym. #1 p 45

PS-OH ® R5 10000 1.03 tt

PS-OH ® R5 30000 1.04 tt

PS-OH ® R5 140000 1.06 tt

Note: Samples marked (0 were fractionally separated for TLC purposes. ® stands for

cold polystyrenes prepared in parallel while synthesizing Tritium-Labelled hydroxyl-

terminated polystyrenes.
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2.4.3 Synthesis of Acetoacetyl-Terminated Polystyrene

The synthesis of acetoacetyl-terminated polystyrene was performed by the reaction of

hydroxyl-terminated polystyrene with ketene dimer using a reaction analogous to that

reported for r.r.-butanol and ketene dimer 26 T^^e detaUs of the reaction procedures are

discussed in section 2.3.9.5. One and only reaction involving PS-OH of number average
molecular weight 2000 was perfoimed. The starting material, PS-OH, elutes with an of

0.08 on silica and 0.10 on alumina, benzene being the eluent. The product after the

reaction exhibits an of 0.48 on silica and 0.0 on alumina, under identical conditions.

From the thin layer chromatographic evidence it was concluded that this reaction goes to

completion under the prescribed experimental conditions.

2.4.4 Other Interesting Observations Concerned With PolvstvrenesTerminated With a Single End-Group
foiystyrenes

1) Polymerizations can be performed in THF, disUlled once from sodium

benzophenone anion, in the presence of dibutylmagnesium. No additional purification of

the solvent is necessary (for the reaction conditions and the GPC chromatogram of a

polymer prepared this way see synthesis alone NB#3 p 16-17). 2) Polystyrenes of

narrow molecular weight distribuUon can be prepared in presence of Dow Coming high

vacuum grease (0.5g of grease was applied to the teflon magnetic stir bar before

polymerizaUon; for the chromatogram of a polymer synthesized this way see synthesis

alone NB#3 p 89. The degree of polymerization expected from the ratio of monomer to

initiator concentrations was 30 while the number obtained from GPC was 27).

3) Carboxylic acid-terminated polystyrene degrades upon storage under ambient

atmosphere and light (The GPC of one such polymer. RPQ Rn 3. 6 months after storage is

shown in synthesis alone NB#3 p 2-3. PS-H of similar molecular weight does not degrade

this badly, but nevertheless reacts with oxygen as evidenced by the atomic composition

obtained by x-ray photoelectron spectroscopy).
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To summarize section 2.4.1 to 2.4.3, carboxylic acid-terminated polystyrenes in greater

than 90% yield can be prepared by Quirk's reaction or solution carbonylation of polystyrl

lithium, i.e by aUowing small drops of hving polystyrllithium to flow into a large su-eam of

CO2. The procedure reported by Quirk, et al., does not result in 100% acid end-group

yield as claimed by the authors, unless their freeze-drying and carbonylation (at what

temperature and how long it was done) procedures are drasticaUy different than aU the

permutations that we have tried. However for adsorption experiments >90% carboxylic

acid-terminated polystyrenes are sufficient as carboxylic acid-terminated polymers adsorb

preferentially over un-functionalized polystyrenes as shown by the TLC results. Contrary

to popular myth grease does not hamper anionic polymerization, particularly when one is

trying to make a low molecular weight sample. Carboxylic acid-terminated

polystyrene and polystyrene degrade upon storage under ambient light and

atmosphere. Samples were (and should be) stored in a vacuum oven in the absence of

light or in a nitrogen filled glove box, with aluminum foil wrapped around it. Hydroxyl-

terminated polystyrenes were prepared by the solution reacuon of polystyrUithium with

ethylene oxide. Reaction of the hydrolyzed product with diketene in THF leads to the

acetoacetyl terminated polystyrene. Synthesis of perdeuterated and Uitiated polystyrenes

and functionalized polystyrenes are also reported. For more details one is referred to

Damo's "synthesis alone" notebooks #1 to #3, adsorption and phase separation in TLC

notebook #1 and synthesis and characterization of Uitium-labelled styrene and polystyrenes

NB#1.

2.4.5 Synthesis of Di-Functionally-Terminated Polystyrenes-' i'^^'^'*'^'^

This section summarizes all the reactions that were performed in order to prepare

di-functionally-terminated polystyrenes of narrow molecular weight disuibution (MWD <

1.10). In general three preparative schemes as shown in figure 2.10 are discussed in the

literature.
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Method 1

HOOC-PS-COOH

Figure 2.10 Reported Methods for the Preparation of Di-Functionally-

Terminated Polymers
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me first method involves the reaction of sodium/lithium naphthaUde in THF (-78 to 25
C) with styrene in THF (-78 to 25 T) or in benzene at room temperature,'. ». .9, 20, 27,

30,31 The second method involves the use of a organolithium initiator containing the

desired functional group in the protected fonn 48. 49
^^^^^^ ^^^^^^^^^

by Tung and involves the reaction of a hydrocarbon soluble organolithium di-initiator with
styrene in a hydrocarbon solvent at room temperature.32 The di-initiator in turn is prepared

by the reacUon of two molar equivalents of ..c-butyllithium with a mole of 1,3-

bis(phenylethenyl)benzene in a hydrocarbon solvent. Each one of the routes were tried and

the results of the reactions are discussed in the foUowing sections. It is to be noted here

that the reacUons were not performed in the same order as they are discussed.

2.4.5.1 Synthesis of Di-Functionally-Terminated Polystyrenes IkinoNaphthalide Anion as the Initiator
''O'ystyrenes Using

The first reaction performed along this Hne was the classical one reported by Szwarc.27

It involves the reaction of sodium naphthalide and styrene in tetrahydrofuran at -80 °C. The

reacUon is shown in the next page. The reagents involved were prepared and purified as

reported earlier.30. 50 ^^^^^^^^^ ^^^^ performed according to Szwarc's procedure.

These resulted in polystyrenes of polydispersity greater than 2.0. The results were not

surprising as sodium naphthalide was observed to form a brown slurry on cooling

(insoluble in THF at -80 °C) even at very low concentrations (2.5 x lO'^ to 10-^ moles / 50

ml) suggesting that the initiation might be heterogeneous. Several authors H. 51, 52

have criticized Szwarc's results and suggest the use of dioxane as the solvent slow

down propagation compared to initiation) or sodium biphenyl as the initiator 52 xhf

and various other alternatives such as performing the initiation at room temperature and

propagation at -80 °C.^^'
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The best reported work, in our opinion that takes into account the viewpoints of different

groups is that of McCormick, et al., working for Dow chemical companyJ' The reason

for conducting the propagation reaction at low temperatures can be best understood from

the following experiment. Upon adding freshly prepared sodium naphthalide solution (5ml

of 0.25 M) to dry benzene (50 ml) the green color of the initiator turns flesh red color and

stays that way for 15 min and then turns colorless indicating that sodium naphthalide reacts

with benzene. This implies that sodium naphthalide will react with polystyrene as well.

This has literature precedence as well.^^* A summary of the reactions performed using

sodium naphthalide as the initiator and their results are given in Table 2.10 This method

did not result in samples with narrow molecular weight distribution under the conditions

reported earlier. The polydispersity for most of the low molecular weight samples (Mn <

80000) synthesized were greater than 1.5. Initiation at room temperature using freshly

prepared sodium naphthalide and propagation by slow addition of monomer at room
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temperature however resulted in a polymer of desired molecular weight and marginally

satisfactory molecular weight distribution of 1.21.

The draw backs of this reaction is the insolubility of sodium naphthalide at low

temperatures in THF and the potential reaction of the propagating anion with the backbone

at room temperature if allowed to proceed for a long time. For a detailed account of this

reaction the reader is referred to experts.^" Two reactions were performed using lithium

naphthalide prepared in benzene as the initiator for the polymerizations in benzene. Both

the reactions resulted in 70% of a polymer of number average molecular weight (Mn) twice

that of the other 30% of the polymer. The best aspect of this reaction was that it did result

in narrow molecular weight distribution (PDI < 1.10) for both the polymers from a given

reaction. However in view of the high yield of the side product the method was

abandoned.
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Table 2.10 Reactions of Naphthalide Anion With Styrene

rinitiatorl

moles/1

r^tvrpnpl

moles/1

c TM
°c

T

GPC
PDI reference

0.00025 0.04002 T -78 -78 71043 2.07 synthesis alone NB#3 p 1 12

0.00005 0.0261 B 25 25 185908 1.54 synthesis alone NB#3 p 115

0.00005 0.0174 T 25 25 71139 1.21 synthesis alone NB#3 p 116

0.0005 0.0174 T 25 25 4193 1.57 synthesis alone NB#3 p 121

0.00034 0.0174 T 25 25 7097 1.58 synthesis alone NB#3 p 125

0.00015 0.02175 T 25 25 20027 1.61 synthesis alone NB#3 p 127

0.00025 0.0174 T -78 -78 58000 1.74 synthesis alone NB#3 p 128

0.00391 0.0174 T 25 -78 19927 5.09 synthesis alone NB#3 p 130

0.00234 0.0261 T 25 -78 43230 3.80 synthesis alone NB#3 p 121

0.00391 0.0174 T 25 -78 12240 5.59 synthesis alone NB#3 n 1 33

0.000061 0.0261 B 25 25 51K-76% 1.04 synthesis alone NB#3 p 141

22K-24% 1.08

0.000096 0.0348 B 25 25 87K-77% 1.04 synthesis alone NB#3 p 145

36K-23% 1.09

Note: Reactions 1-10 were performed using sodium naphthalide as the initiator while 11

and 12 (f) were performed with lithium naphthalide. S stands for solvent, B for benzene,

T for THF, Tj and Tp for temperatures of initiation and propagation, M^j for number

average molecular weight and PDI for the polydispersity index, k implies that a drop of

styrene was added first to initiate polymerization followed by the addition of the rest of the

styrene.
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r^is section discusses tite result of the next set of reactions tried, i.e those based on
organohthium initiators containing a protected funcUonal group. l.U-trimethoxy-4-
bromobumne (contains a protected -COOH group), and the 6-iodohexy,-n-propy. acetal of
acetaldehyde (contains a protected -OH group) were converted to the corresponding hthiun,
salts by Llhium-halogen exchange reaction as discussed in section 2.3.10.2. TT,e

reco,stallized form of the former and the latter as synthesized by Pyati were used in

benzene. Upon initialing the polymerization of 0.0435 moles of styrene with 0.0294

miUimoles of the fu-st initiator (50 ml benzene) i, was observed that the solution turned

yellow 6 min after the addiUon of styrene and turned red 18 min after. Typical time for

compleUon of polymerization for Uie molecular weight which we attempted to prepare is

30-35 min if Uie iniUator were «c-butylliU,ium. The number average molecular weight

obtained from the above reaction was 1 10436 and the polydispersity index was 1.36. The
result combined with the observation suggests that the iniUaUon rate is smaller than the

propagaUon rate. In the case of a polymerization reacUon initiated by the second initiator it

was not until 30 min after which the orange color of the polystyrUithium anion appeared in

benzene. This also suggests that the initiaUon rate is smaller than the propagation rate. THe

details of polymerizaUon reacUons are presented in section 2.3.10.2. As these initiators did

not result in polymers of narrow molecular weight distribuUon (PDI= 1.2-1.5) their

utilization was abandoned.

2.4.5.3 Synthesis of Di-Functionally-Terminated Polystyrenes Usinglung s Initiator *

The synthesis of dihydroxyl and dicarboxylic acid-terminated polystyrenes were

performed with Tung's initiator as shown in figure 2. 10 and the details are discussed in

section 2.3.10.3. The number average molecular weight expected from the ratio of the

monomer to initiator concentration for the reaction discussed in section 2.3.10.3 was 5000.
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However the number average .Cecular weigh, oh,au,ed was 10549 (in benzene) and
13018 (in cyclohexane). -n,e polydispersity indices were 1.38 and 1.35 respectively
suggesUng that the initiation rate is smaller than the propagation rate under the conditions in
whtch Tung, initiator was used. Since the polydispersity of the samples synthesized were
too h,gh to be used in an adsorption experiment this method was abandoned.

2-4.5.4 Synthesis of Di.Functionally.Terminati.H P„i„c,

The synthesis of di-functionally-terminated polystyrenes of narrow molecular weight

distribution was reported by Cheng, Kanga, and Nakahama, recently.l^a, I9b, 20
cheng's

method (Kanga's as well) involves the preparation of lithium naphthalide in THF using a

small excess of naphthalene while Nakahama's method under the same condition uses a

small excess of lithium. Lithium naphthaUdes were prepared by both the methods. A
typical polymerization reaction is shown in figure 2.1 1. TT,e gel pemieation chromatogram

of polystyrenes prepared by both the methods are shown in figure 2. 12. From these

results and the earlier results with lithium naphthalide prepared in benzene it was concluded

that a small amount of low molecular weight polymer (10-15%) was a consequence of the

reaction mechanism (unknown) and no attempts were made to improve it. Several di-

funcUonally-terminated polystyrenes were synthesized and the low molecular weight

polymer from the mixture was separated by fractional precipitation as discussed in section

2.3. 11
.

The gel permeation chromatogram of polystyrenes as synthesized and after

fractional precipitation are shown in figures 2.12 to 2.15. Although the yield of the desired

polymer after fractional precipitation was < 50% the chromatograms show that its

polydispersity is low enough to be used in adsorption experiments (PDI < 1.10). The

polymers prepared and their GPC characteristics are shown in Table 2.1 1.
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Li + Argon, RT, 12h a5

CO RT, 90min

ii) HCl/THF

HOO

i) C02/without stirring

ii) HCl/THF/12h

Figure 2.11 Synthesis of Functionalized Polystyrenes Initiated by Lithium

Naphthalide
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Tritium-Labelled polymers were prepared and fracUonally purified by simUar

procedures. Non-radioacUve polymers were prepared in paraUel under idenUcal

experimental condidons and their characterization is assumed to reHect the properties of the

radioactive polymers. Unless otherwise stated all polymers were purified by fracUonal

precipitation.

Table 2 11 GPC Characteristics of Di-Functionally-Terminated
Polystyrenes (HOOC-PS-COOH and HO-PS-OH)

Sample code Mn MWD Lab. Note-Book reference

reaction #1 fraction 1 10000 1.09 synthesis alone NB #4 p 30-55

reaction #4 fraction 1 30000 1.06 synthesis alone NB #4 p 30-55

reaction #3 fraction 1 50000 1.05 synthesis alone NB #4 p 30-55

reaction #6 fraction 1 60000 1.05 synthesis alone NB #4 p 30-55

reaction #5 fraction 3 200000 1.04 synthesis alone NB #4 p 30-55

reaction #5 fraction 1 450000 1.04 synthesis alone NB #4 p 30-55

reaction #7 fraction 3 150000 1.05 synthesis alone NB #4 p 30-55

reaction #7 fraction 1 300000 1.04 synthesis alone NB #4 p 30-55

Note: Both HOOC-PS-COOH and HO-PS-OH samples were prepared in the same reaction

in which styrene was polymerized in benzene using lithium naphthalide in THF as the

initiator. This reaction invariably leads to the formation of a low molecular weight

compound which appears as a tail in the GPC (see chapter 2). Therefore all samples were

purified by fractional precipitation. The gel permeation chromatograms are stapled to

synthesis alone note-book #4. The number average molecular weight of polystyrenes

rounded to the nearest thousand alone are presented.
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Number average molecular weight . 50430 (Cheng) and 66400 (Nakaham.^Poly dispersuy index . 1.20 (Cheng and NakahaT^^^

in
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—r- —r-

c6

Elution volume (ml)

Figure 2.12 GPC Chromatograms of Polystyrene Using Lithium
Naphthalide Prepared According to Cheng (right) and Nakahama (left)
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Number average molecular weight - 26300, PDI - 1.15 (PSH4)
Number average molecular weight - 44500, PDI - 1.18 (PSH3)
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Figure 2.13 GPC Chromatograms of Polystyrene Prepared Using Lithium

Naphthalide Prepared According to Nakahama, PSH4 (top) and

PSH3 (bottom)
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Figure 2.14 GPC Chromatograms of Polystyrene Prepared Using Lithium

Naphthalide Prepared According to Nakahama after Fractional

Precipitation, PSH4 (top) and PSH3 (bottom)
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Number average molecular weight - 50000, PDI - 1.05 (PSH3)
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Figure 2.15 GPC Chromatograms of Hydroxy! and Carboxylic Acid-
Terminated Polystyrenes after Fractional Precipitation, HO-PS-OH3 (top)
and HOOC-PS-COOH3 (bottom)
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2.5 Summary

The anionic synthesis of polystyrenes of narrow molecular weight distribution

functionalized at one and both the chain ends, are reported. Polystyrene with a hydroxyl

end-group (PS-OH) was synthesized according to Schulz and Milkovich and that with a

carboxylic acid-end group (PS-COOH) was synthesized according to Quirk. A modified

carbonylation procedure which essentiaUy leads to the same result as that from Quirk's is

reported. Di-functionally terminated polystyrenes of narrow molecular weight distribution

were prepared by the anionic polymerization of styrene in benzene initiated by lithium

naphthalide in THF. Polystyrenes terminated with hydroxyl groups at both the ends (HO-

PS-OH) were prepared by the reaction of ethylene oxide with polystyridilithium in the

above reaction while that terminated with carboxylic acid-end groups (HOOC-PS-COOH)

was prepared by the reaction of carbon dioxide in the absence of stirring. All the polymers

prepared this way were fractionally precipitated by titrating a dilute solution in THF/toluene

with methanol. The quantitative yield of the end-groups were confirmed by thin layer

chromatography experiments. Perdeuterio polystyrenes and carboxylic acid-terminated

polystyrenes were prepared from perdeuterio styrene by simUar procedures. Tritiated

polystyrenes and functionalized polystyrenes were prepared by the same procedure as weU.

The tritiated styrene necessary for the polymerization was prepared by the selective

hydrogenation of phenylacetylene labelled at the P position by acid-base exchange reaction.

It was reduced to styrene exclusively using an excess of carboxyUc acid-terminated

polystyrene, which competes with styrene formed in the reaction for catalytic sites

eliminating its subsequent reduction to ethylbenzene. Radioactive polymers were

synthesized using the trifium-labeUed styrene, diluted 6-fold with cold styrene.
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CHAPTERS

TRENDS IN ADSORPTION OF END-FUNCTIONALIZED POLYSTYRENES BY
THIN LAYER CHROMATOGRAPHY

3.1 Introduction

Chromatography involves the transport of a mobile phase (eluent) along a stationaiy

phase (adsorbent or substrate) in which the substance (adsorbate) of interest is exchanged

between the two phases, both process taking place simultaneously and continuously. ^ The

driving force for the transport of the eluent is the pressure differential occuring along the

chromatographic bed (capillary forces) whUe that for the adsorbate is the difference in its

activity in the mobile and stationary phase. At the leading edge of the the adsorbate band,

the activity in the mobUe phase exceeds that in the stationary phase while at the traiUng edge

the activity in the stationary phase is greater. The equUibrium of partition is not reached

except at the center of the band. Adsorbates move rapidly if they prefer to stay in the

mobile phase. The relative rate of migration of adsorbates is determined only by the time

they spend in the stationary phase and not by their speed in the mobile phase. Different

adsorbates spend different amounts of time in the stationary phase while the mobile phase

is flowing past. This defines the retention time or retention value. Thin Layer

Chromatography (TLC) involves a thin layer of a stationary phase in which Uie substance

of interest is displaced by the eluent as it moves along the thin layer.

Chromatographic characterization of polymers on thin layers of adsorbents (usually

porous), were carried out in the late 60's by Inagaki et al 2 at Kyoto University. Japan, and

by Belenkii and Gankina ^ at St. Petersburg (formerly Leningrad., U.S.S.R)

independenUy and simultaneously. Since tiiat time, TLC has been used, to fractionate

homopolymers according to their molecular weight, to determine molecular weight (number

average molecular weight - Mn) and molecular weight distiibution (MWD) of

homopolymers. in the identification and separation of stereo-regular homopolymers, in the
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separation of random copolymers according to their composition, in the identification of

linear polymers with specific endgroups, etc. Most of the work done in this field up to

1976 is summarized in the review articles of Inagaki \ and Belenkii and Gankina.5 A
typical thin layer chromatographic experiment consists of a thin layer of adsorbent or

restrainer supported or coated on a rigid glass plate or polyester film, on which the polymer

of interest is deposited from solution, approximately an inch from the bottom of the fihn.

A carrier solvent (also called eluent or developer) ascends the film by capUlary action in a

closed chamber and displaces the polymer to different degrees as shown in figure 3.1.1

(when compared to solvent flow). The degree of displacement is dictated by the net free

energy change involved in the process and this includes the energy of interaction of the

polymer segments with the surface in solution, and that of solvent molecules with the

surface in solution. The differential restraining action exhibited by the thin layer of

adsorbent has also been attributed to a combination of precipitation (phase separation) due

to solvent depletion in the advancing front in addition to the adsorption-desorption

mechanism at the restrainer-carrier interface.'^ The differential restraining action is

characterized by the Rf value, defined as the ratio between the rate of migration of the

sample divided by the rate of migration of the carrier (eluent).

Rf = migration rate of the sample / migration rate of the carrier

= distance travelled by the sample / distance travelled by the carrier.

Thin-layer Chromatography is a unique technique to characterize polymer adsorption as

it is simple and highly sensitive to structural changes in the polymer backbone. It was

illustrated earlier
^'"^

that polymers with a single end group and isotopic mixtures can be

detected and therefore separated in a TLC experiment. In addition this technique is

inexpensive, rapid and polymers can be easily detected (as low as a ^ig). If the polymer

contains a specific functionality (a group which interacts more strongly with the surface

than the segments in a typical polymer chain - also referred to as sticky foot) at one end of a

polymer chain, the rate of migration of that chain is reduced significantly when compared
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with that of the un-functionalized chain. This retardation is due to specific chemical
interaction with the surface in quesUon. T.is elegantly demonstrates the fact that the
funcuonal group in question is at the interface (particularly when the Rf changes from unity

to zero on incorporating a cham end funcuonality) and the polymer chain is likely to be
attached to the surface in a brush type configuration. An extension of this argument will be
that if the migraUon rate of a particular polymer is retarded by the incorporation of a specific

functionality at a particular locaUon of the chain then it is most likely that the polymer is

adsorbed to the surface with that part of the chain in contact with the surface. This implies

that a range of polymer thin film architecture at interfaces can be synthesized using specific

funcuonality in the polymer in well defined locations by performing thin layer

chromatographic experiments (adsorption) from good solvents (x^ < x,, and x - 0).

This investigation was undertaken for two purposes: 1) to observe the trends in

adsorpfion of end funcUonalized polystyrenes in different solvents and from the trends be

able to rapidly select a solvent for adsorption studies and 2) to examine if it would be

possible to synthesize different polymer architectures at interfaces, by the specific

interaction between surface sites and organic functional groups such as hydroxyl (-0H) and

carboxylic acid (-COOH) placed at the chain ends, by suitable organic synthesis. An

attempt wUl also be made, to demonstrate, that trends in the adsorption energetics of end

functionalized polystyrenes to different surfaces, from good solvent conditions can be

understood qualitatively using thin layer chromatography.

It was reported earlier^ that Rf values for polystyrene on silica and alumina from good

solvent conditions are 1 and are independent of molecular weight up to 1.8 xlo6. MobUity

of polymers of molecular weights higher than this has not been reported from good solvent

conditions (for that matter any solvent conditions), on any surface. It is possible that the

earlier workers did not observe a molecular weight dependence of Rf, from good solvent

conditions because the critical energy needed for adsorption ^'^^ ^^s probably not reached

during the time scale of TLC measurements. One cannot wait for equilibrium adsorption to
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and

take place under condiUons as it might take a plate of infinitely long length

cumbersome experimental conditions. One way to accompUsh this objective is to increase
the number of segments on the polymer chain, i.e., to increase the molecular weight of the

polymer so that the critical energy needed for adsorption could be reached during the time
scale of TLC measurements (greater the number of segments per chain, greater is the

probability of surface-segment contacts).

Towards the objectives, the molecular weight dependence of Rf from good solvents

such as benzene are reported for polystyrene [PS-H], hydroxyl end-terminated

polystyrenes [PS-OH and HO-PS-OH], and carboxyUc acid end-terminated polystyrenes

[PS-COOH and HOOC-PS-COOH], on silica and alumina thin layers. An attempt is made
to explain qualitatively the molecular weight dependence of Rf for the end functionalized as

well as the un-functionalized polymers, from the themiodynamics of polymer solutions and

polymer adsorption theories. It is also proposed that TLC could be used to understand

polymer architectures at interfaces from a plot of Rf vs Molecular weight for different

degrees of funcUonalization in the molecular weight range < 1 xlO^.

3.2 Experimental

3.2.1 Materials

Polystyrenes of number average molecular weight (Mn) less than 100.000 and

hydroxyl and carboxylic acid end - functionalized polystyrenes were synthesized by anioni,

polymerization of styrene. The synthetic procedures and the results of GPC

characterization are discussed in detail in chapter 2. Anionic polymerization techniques

enable the preparation of polymers of very high molecular weight and narrow molecular

weight distribution, with or without specific end groups.^^' Polystyrenes of Mn greater

than 100.000 and molecular weight distribution (MWD) less than 1.10 were purchased

from Polysciences. inc.. and were used as received.

119



Several eluents, namely benzene (Aldrich sure seal grade), THF (Aldrich sure seal

grade), chloroform, methylene chloride, pentane, ethyl acetate and toluene (Fisher

spectroscopic grade) were used of which benzene, toluene, THF and chloroform were

purified before use. Benzene and toluene were distilled from calcium hydride, chloroform

from phosphorus pentoxide and THF from sodium benzophenone dianion. The rest of the

solvents were used as received. The solvent strength values of these eluents are given

Table 3.2.1

3.2.2 Thin Layer Chromatography (TLC)

Silica gel thin layers (8 cm x 2 cm cut from Eastman Kodak Chromatogram sheet

13181) and aluminum oxide (IB-F thin layers. 8 cm x 2 cm purchased from J.TBaker

Chemical Co.) thin layers used for the characterization of individual polymers were

conditioned in an oven between 150-200 °C for at least 7 days. Silica gel thin layers (250

^im thick, 60 A mean pore diameter purchased from Aldrich) and preparative alumina thin

layers (250 [im thick purchase from Analtech, Inc.) supported on 20 X 20 cm glass were

used in the simultaneous characterization of polymer samples of different molecular weight,

containing a particular functionahty. say PS-OH. Both plate types were conditioned at

150-200 °C for at least 1 h prior to use. TLC was carried out by applying 5-10 ^ig of

polymer as a circular spot of diameter 2 to 3 mm (10 ^iL GC syringe was used) 4 cm from

the bottom of the plate. Elution (the solvent front was aUowed to proceed 6 - 9 cm) was

carried out in a filter-paper-lined TLC tank (Aldrich) filled to 3 cm depth with eluent. After

elution the TLC plates were dried in an oven at 150-200 °C for 15 min and the samples

were viewed as dark spots in a fluorescent background under a UV (>, = 254 nm) lamp. Re-

values are reported in the standard fashion ( Rj- = elution distance of sample / elution

distance of eluent). Rf values obtained on different TLC plates of the same adsorbent

material were normalized to the R^ values of low molecular weight PS-H (freshly

synthesized) run on the same plate. Two low molecular weight standards (benzophenone
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and 2.6-di-....-butyl-4-methylphenol) were run on each plate to ensure that the activity of
different plates was the same. R, values are reproducible within 5% for TLC plates from a
given source. The absolute R, values obtained for a given polymer on a given adsorbem

are dependent on the source of the TLC plate. Similar trends were seen on aU plates

regardless of the source. The eluents used and their properties are reported in Table
3.1.11.15

Table 3.1 Solvent Strength Values

Solvent (silica gel) Eq (alumina)

pentane 0.0 0.0

benzene 0.25 0.32

chloroform 0.26 0.40

methylene chloride 0.32 0.42

ethyl acetate 0.38 0.58

tetrahydrofuran 0.35 0.45

toluene 0.22 0.29

3.3 Results and Discussion

Polystyrene (PS-H), hydroxyl-terminated polystyrene (PS-OH) and carboxylic acid-

terminated polystyrene (PS-COOH) were prepared by anionic polymerization of styrene in

benzene using c-butyllithium as the initiator and reaction of the resulting polystyrllithium

with methanol (for PS-H), ethylene oxide followed by HCl / THF (for PS-OH) or CO2 (in

the presence of TMEDA) followed by HCl / THF (for PS-COOH). Polystyrenes with

hydroxyl and carboxylic acid functionahty at both the chain ends were prepared by the

121



anionic polymerization of styrene in benzene using Uthium naphthalide in THF as the

initiator and the reaction of the resulting polystyrlUthium dianion with ethylene oxide

followed by HCl / THF (for HO-PS-OH) or CO^ (in the absence of stirring) foUowed by

HQ / THF (for HOOC-PS-COOH). Samples of the di-functionally terminated polymers of

narrow molecular weight distribution were obtained by fractional precipitation. The

synthetic and purification procedures are discussed in detail in Chapter 2.

Thin-layer chromatography was carried out by using commercial silica and alumina

chromatogram plates. Figure 3.1 shows plots of Rf vs molecular weight for PS-H (o),

PS-OH (). and PS-COOH(a) eluted with benzene on silica and alumina thin layers,

respectively. The data are shown in Table 3.2. The shapes of eluted samples of PS-H

with number average molecular weight less than ~ 100,000 was close to the shape of the

initial spot. PS-H with M„ between 100,000 and 600,000 exhibited a thin line (3-6 mm in

length) with convex outer boundaries. PS-H with M„ greater than 600,000 exhibited an

inverted co-shape with polymer concenti-ated along the convex lines. AU functionaUzed

polymers that eluted had a convex lens type line shape. Because of this "spreading", all Rf

values were computed from averages of the maximum and minimum elution distance. This

difference ranged from 4 to 10 mm.

Benzene is a good solvent for PS-H, and high Rf values (o) are observed for samples

with molecular weights less than ~ 10^ on both alumina and silica. Samples with M^,

values higher than these adsorb to the aluminum oxide or silica surface and exhibit lower

Rf values. These samples are of the critical molecular weight (have the critical energy)

necessary for adsorption on the "TLC time scale". Samples with greater than

2,000,000 have Rf values equal to 0, and tiius do not desorb from eitiier silica or alumina

into benzene. It should be recognized that adsorption/desorption kinetics play a critical role

in TLC (Rf) measurements and that these conditions do not reproduce static adsorption

experimental conditions but merely reflect relative propensity for adsorption and
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Figure 3.1 (a) Plots of Rf vs molecular weight for PS-H (o), PS-OH (•),

and PS-COOH (a) eluted with benzene on silica, (b) Analogous data on
alumina
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3.2 Rf versus log (molecular weight) data

substrate - sHica gel and alumina; eluent - benzene

(GPC)
log(M„) Rf on silica Rf on alumina

PS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

1 *;nn J. 176 0.00 0.05 0.71 0.0 0.07 0.81

2000 A AU.U 0.07 0.81 0.0 0.10

2800 % AAl
0.81

0.83

^000 ^ Ann A AAu.oo 0.05

0.86 0.83

4400 J.OHJ A f\r\
0.09 0.15

'2 C 1 Q
0.89 0.84

7100 A (\AU.U4 0.06

8200 0.19 0.36

9000 A (\A
0.06 0.82

12000 4 070 U.3U 0.92 0.06 0.49

16800 4.ZZD A AC
0.06

20000 4.301 0.47 0.94 0.61 0.77

23000 4.362 0.12 0.10

36300 4.560 0.81 0.64

37000 4.568 0,12 0.10

47000 4.672 0.20 0.12

58000 4.763 0.86 0.92 0.69 0.76

60000 4.778 0.32 0.12

70500 4.848 0.86 0.71

Continued, next page
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Table 3.2 Continued

/oUUU y4 O
4.892 0.58

5.0 0.85

1 AAA
5.124 0.74

zuuuuu 5.301

5.447

9onnnn D.4o2

C CAC
0.58

doooon D,oU2

fioooonyjyjyjyjxjyj / /o

624000 A A
0.0

825000 J.^ 1 o r\ AU.O

980000

1860000 6.270

7000000 6.845

15000000 7.176

172 (SI) 0.34

220 (S2) 0.72

Note: SI is benzophenone and S2

0.76

0.00

0.12

0.86 0.90 0.14 0.54

0.65

0-56 0.16 0.36

0.65

0.36

0.76

0.14

0-16 0.48 0.75

0.74

0.62

0.38

0.00

0.00

0.10 0.19

0.08

0.00 0.00

0.00 0.00

0.29 0.33 0.54 0.48 0.45

0.66 0.69 0.78 0.72 0.84

from p 60 - 70 of TLC - polymer adsorption and phase separation note book #1
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desorpUon. Under static adsorption conditions with greater contact time, samples wuh
lower molecular weights than one would naively predict from these plots may adsorb from
polymer solution and IDcew.se higher molecular weight samples may desorb into solvent.

The low molecular weight samples of PS-OH and PS-COOH exhibit elution behavior

markedly different from PS-H samples of the same molecular weight. PS-COOH samples
with M„ less than 37,000 show Rf values less than 0.1 on silica (Figure 3.1a). The

carboxylic acid group is an effective sticky foot in this molecular weight regime under these

condiUons. As the molecular weight is increased, adsorption becomes less favorable, and
at M„ = 99,000, the observed Rf is essentiaUy the same as a PS-H sample of similar

molecular weight. At this molecular weight, the sticky foot/surface enthalpic interaction is

not sufficient to overcome the combination of entropy loss of the large chain, the loss of

polymer/solvent interactions, and the loss of solvent/surface interactions incurred on

adsorption. This effect was observed for thiol-terminated polystyrenes (PS-SH) adsorbed

to gold from THF solution.22 Increasing the molecular weight further causes the Rf to

decrease as the critical molecular weight for adsorption of un-functionalized PS-H is

reached. The carboxylic acid is a strong sticky foot for alumina support (figure 3.1b), and

only small differences in elution behavior are observed as the molecular weight is varied.

The hydroxyl group is a relatively (to -COOH) weak sticky foot, and Rf value changes for

PS-OH are observed at lower molecular weights than are observed for PS-COOH on both

silica and alumina. All PS-OH samples elute to some extent under these eluent conditions.

Figures 3.2 to 3.5 show data analogous to that presented in Figure 3.1 for eluents

THF, chloroform, ethyl acetate, and toluene. The corresponding data are shown in Tables

3.3 to 3.7, Table 3.7 being an additional table for a pentane/methylene chloride (3/7, v/v)

mixture. All the eluents are good solvents for PS-H with the exception of pentane and

interact strongly with silica and alumina as shown in Table 3.1.
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Figure 3.2 (a) Plots of Rf vs molecular weight for PS-H (o), PS-OH ()
^JIJl^PS-COOH (A) eluted with THF on silica, (b) Analogous data on
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(GPC)

Table 3.3 Rf versus log (molecular weight) data

substrate - silica gel and alumina; eluent - tetrahydrofuran

^°^^"\c.^ ^f^"'^'" Rf on alumina
PS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

1500 3.176 0.83 0.80 0.82 0.0 0.88 0 on

2000 3.301 0.83 0.84 0.91

2800 3.447 0.88 0 Q4

3000 3.477 0.85 0.85 0.0

4300 3.633 0.91 0 94

4400 3.643 0.87 0.94

6500 3.813 0.91 0 94

7100 3.851 0.87 0.08

8200 3.914 0.87 0.94

9000 3.954 0.87 0.94

12000 4.079 0.87 0.86 0.91 0.94 0.94 0.94

16800 4.225 0.89 0.94

20000 4.301 0.86 0.88 0 94 0 04

23000 4.362 0.87 0.94

36300 4.560 0.86 0.92

37000 4.568 0.87 0.94

47000 4.672 0.89 0.94

58000 4.763 0.86 0.88 0.92 0.94

60000 4.778 0.85 0.94 0.92 0.94

70500 4.848 0.86 0.86 0,92

Continued, next page
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Table 3.3 Continued

Mn log(Mn) Rf on silica r nn i
•

(GPC) pc rnnu ic r^u t.o
^" aluminaPS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

78000 4.892 0.85

100000 5.0 0.85

133000 5.124 0.85

200000 0.83

320000 5.505 0.83

400000 5.602

600000 5.778

624000 5.795 0.83

825000 5.916 0.83

980000 5.991

2000000 6.301

3000000 6.477

7000000 6.845

10000000 7.000

20000000 7.301

172 (SI) 0.69

220 (S2) 0.74

0.94

0.86 0.94

0.82

0.78

0.70

0.57

0.38

0.18

0.00

0.00

0.91

0.90

0.92 0.92

0.94

0.94 0.88

0.86 0.84 0.92 0.82 0.89

0.84

0.78

0.73

0.68

0.41

0.00

0.00

0.71 0.70 0.81 0.82 0.81

0.75 0.76 0.83 0.84 0.83

from D 71
S2 is 2.6-di-tert-butyl-4-methylphenol. The data was takentrom p 7

1
- 79 of TLC - polymer adsorption and phase separation note book #1

.
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Figure 3.3 (a) Plots of Rf vs molecular weight for PS-H (o), PS-OH (•)

arumfna^^^"
"^'^^ chloroform on silica, (b) Analogous data on
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(GPC)

Table 3.4 Rf versus log (molecular weight) data

substrate - silica gel and alumina; eluent - chloroform

^''^^"^c.
Rf on silica

Rf on alumina
PS-COOHPS-OH PS-H PS-COOHPS-OH PS-H

1500 3.176 0.10 0.49 0.77 0.00 0.56

2000 3.301 0.52
0.58

2800 3.447 0.83

3000 3.477 0.14 0.00

4300 3.633 0.86

4400 3.643 0.68 0.82

6500 3.813 0.88

7100 3.851 0.30 0.00

8200 3.914 0.80 0.90

9000 3.954 0.36 0.94

12000 4.079 0.52 0.90 0.90 0.94 0.92

16800 4.225 0.69 0.94

20000 4.301 0.92 0.90 0.93

23000 4.362 0.82 0.93

36300 4.560 0.92 0.93

37000 4.568 0.95 0.94

47000 4.672 0.95 0.93

58000 4.763 0.90 0.93 0.93

60000 4.778 0.94 0.93

70500 4.848 0.88 0.92

0.94

0.96

0.96

0.96

0.96

0.96

0.95

Continued, next page
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Table 3.4 Continued

M
'°S(^1n) Rfonsmca

Rf on alumina(GPC) PS-COOHPS-OH PS-H PS-COOHPS-OH PS-H

78000 4.892 0.94
u.y 1

100000 5.0 0.94 0 84 n on U.91

133000 5.124 0.82 A OO

200000

280000

290000 5.462 0 76

320000 5.505 0.52 0 61 U.oO

400000 5.602
V/.UO

600000 5.778 0 60

624000 5.795 0 84

825000 5 916
0.67

980000 5.991 0.36

3000000 6.477 0.00

10000000 7.000 0.00

20000000 7.301

172 (SI) 0.56 0.54 0.54 0.76

220 (S2) 0.72 0.69 0.69 0.86

0.90 0.93

0.85

0.84 0.89

0.89

0.87

0.84

0.66

0.16

0.00

0.74 0.78

0.86 0.88

Note: SI is benzophenone and S2 is 2,6-cli-tert-butyl-4-methylphenol. The data was taken

from p 80 - 86 of TLC - polymer adsorption and phase separation note book #1.
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Figure 3.4 (a) Plots of vs molecular weight for PS-H (o), PS-OH ()

alumfifa^^^" ^'"^^"^ '^"'^ ^^^^^ ^""^^^^ Analogous data
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(GPC)

Table 3.5 Rf versus log (molecular weight) data

substrate - silica gel and alumina; eluem - ethyl acetate

log(Mn) Rf on silica r i
•

p<; rnnu Ac r^TT ^" aluminaPS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

1500 3.176 0.76 0.78 0.80 0 n U.64 0.91
2000 3.301 0.82 0 87

2800 3.447
0.84

yj.yj

3000 3.477 0.76
0.0

4300 3.633
0.89

0.94

4400 3.643 0.88
0.91

6500 3.813 0.90

7100 3.851 0.88
0.0

8200 3.914 0.93 0 92

9000 3.954 0.88 0.0 U.Vj

12000 4.079 0.88 0.93 0.90 0.06 0.94

16800 4.225 0.88
0.1

20000 4.301 0.90 0.91 0.95

23000 4.362 0.88 0.14

36300 4.560 0.90 0.92

37000 4.568 0.85 0.17

47000 4.672 0.85 0.2

58000 4.763 0.90 0.93 0.91 0.95

60000 4.778 0.85 0.27

70500 4.848 0.90 0.91

Continued, next page
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Table 3.5 Continued

(GPC)
log(M„) Rf on silica

Rf on alumina
PS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

78nnn
/ OUUU 4.692 0.85 0.32

1 00000 A O CU.83 0.89 0.93 0.35

1 '^'^000 ^ 1 0/1 0,83 0.43

200000
0.88

980000
0.93

290000 0.88

^^20000 A O 1

0.86 0.91 0.52

400000
0.88

600000 3. / /o 0.86

624000 S 79S U. / 0 0.51

i~\ ^\ ^ /-V /~\ y-v

825000 5.916 0.74 0.49

980000 5.991 0.70

3000000 6.477 0.58

10000000 7.000 0.44

172 (SI) 0.70 0.71 0.70 0.82

220 (S2) 0.73 0.74 0.72 0.84

0.91

0.90

0.90

0.82

0.84

0.94

0.92

0.88

0.87

0.86

0.79

0.65

0.54

0.82

0.84

Note: SI is benzophenone and S2 is 2,6-di-tert-butyl-4-methylphenol. The data was taken

from p 89 - 96 of TLC - polymer adsorption and phase separation note book #1.
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Figure 3.5 (a) Plots of vs molecular weight for PS-H (o), PS-OH ()

arumkia"^^^"
"^'^^ ^""'"^"^ ^''^ Analogous data on
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le 3.6 Rf versus log (molecular weight) data

substrate - silica gel and alumina; eluent - toluene

Mn
(GPC)

log (Mn) Rf on silica Rfon alumina
PS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

1500 3.176 0.02 0.08 0.76 0.0 0.05 0.90

2000 3.301 0.10 0.07

2800 3.447 0.80 0.93

3000 3.477 0.03 0.0

4300 3.633 0.84 0.95

4400 3.643 0.15 0.13

6500 3.813 0.88 0.96

7100 3.851 0.04 0.0

8200 3.914 0.24 0.26

9000 3.954 0.045 0.0 0.98

12000 4.079 0.06 0.36 0.92 0.0 0.42

16800 4.225 0.07 0.0

20000 4.301 0.57 0.90 0.58 0.98

23000 4.362 0.10 0.05

36300 4.560 0.86 0.77

37000 4.568 0.14 0.06

47000 4.672 0.23 0.07

58000 4.763 0.90 0.86 0.84 0.98

60000 4.778 0.53 0.12

70500 4.848 0.89 0.92

Continued, next page
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Table 3.6 Continued

(GPC)
log (Mn) on silica r oi

•

PS-COOH ^S-OH PS-H PS.J™ 'oH%S-H

78000 4.892 0.93
0.125

100000 5.0 0.90 0 88 0.13

133000 5.124 0.87
U. 14

200000

280000
0 83

290000 5.462 0.87

320000 5.505 0.81 0 86 0 81 U.lD

400000 5.602 0 80

600000 5.778 0.78

624000 5.795 0 76 All
0.11

825000 5.916 0.61 0.05

980000 5.991 0.53

3000000 6.477 0.19

10000000 7.000 0.00

172 (SI) 0.34 0.36 0.34 0.42

220 (S2) 0.72 0.72 0.71 0.82

0.88

0.87

0.86

0.44

0.84

0.97

0.96

0.95

0.94

0.93

0.83

0.69

0.28

0.45

0.84

Note: SI is benzophenone and S2 is 2,6-di-teit-butyl-4-methy]phenol. The data was taken

from p 99 - 1 04 of TLC - polymer adsorption and phase separation note book #1

.
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Table 3.7 R, versus log (molecular weight) data

substrate - sUica gel and alumina; eluent - pentane / CH2a2, 3/7 (v/v)

'°^*^"^c "f""''"^^ Rfon alumina(GPC) PS-COOHPS-OH PS-H PS-COOH PS-OH PS-H

1500 3.176 0.00
0.00

2000 3.301 0.58
0.43

3000 3.477 0.00 0.00

4300 3.633

4400 3.643
0.68

7100 3.851 0.21 0.00

8200 3.914 0.69 0.86

9000 3.954 0.65 0.00

12000 4.079 0.70 0.00 0.92

17500 4.243 0.92

24200 4.384 0.81

70500 4.848 0.84

100000 5.0 0.19

290000 5.462 0.84 0.73

400000 5.602 0.60

600000 5.778 0.16

825000 5.916

0.94

0.86

0.74

Continued, next page
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Table 3.7 Continued

(GPC)
log(Mn) Rf on silica r oi

•

DC r-r^r^r^ ir. ^ t<f ou aluinina
PS-COOH PS-OH PS-H PS-COOH PS-OH PS-H

1860000

3000000

7000000

10000000

15000000

6.477

7.000

7.301

0.12

0.10

0.00

0.00

0.40

0.10

0.00

0.00

0.00

Note: Each entry point in this table was obtained by using sihca gel supported on polyester

sheet purchased from Eastman Kodak (cut to ~ 6 cm X 2.5 cm) and alumina supported on

small glass plates 6 cm X 2.5 cm) purchased from Baker, Inc. SmaU molecular weight

standards were not run. Each data point is an average of 4 measurements two of which

where obtained from one sheet (plate). The data was taken from p 44 - 45, p 79 - 89, p

104, and p 1 15 - 133 of synthesis alone note book #2.
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In addition these eluents can also be regarded as neutral, acidic or basic and therefore

interact specificaUy with siUca (acidic) and alumina (amphoteric).23-27 On silica, one
termmal sticky foot has no apparent effect at any molecular weight with THF (b^ic) while
on alumina only veiy low molecular weight PS-COOH samples adsorb. Figure 3.3 shows
that chloroform (acidic) behaves as a displacer intennediate in strength between THF and

benzene (weakly basic).27 Although the solvem strength of ethyl acetate (basic) is greater

than that of THF, the elution of PS-COOH on alumina with ethyl acetate is molecular

weight dependent unlike with THF (figure 3.4b and 3.2b) . The analogous elution pattern

on silica is indistinguishable (figures 3.4a and 3.2a). This indicates that the namre of the

interaction between the carboxylic acid group from a given eluent to the adsorbent is

responsible for the observed behavior. Figure 3.5 shows that toluene behaves as an eluem

comparable to benzene.

TLC results of polystyrene and polystyrene terminated with hydroxyl and carboxyUc

acid groups at both the chain ends (HO-PS-OH and HOOC-PS-COOH) as a function of

molecular weight from benzene on silica thin layers are shown in figure 3.6a while

analogous results on alumina thin layers are shown in figure 3.6b as Rf vs log (molecular

weight) plots. The data are presented in Table 3.8. The effect of the second functional

group at the chain end is reduction in the Rf values (compare with figure 3.1). This

indicates that during the "TLC time scale" the end-groups spend more time at the interface

suggesting that in a static experiment the second end-group might bring the polymer to the

interface by a two fold increase in the surface-functional group interaction. The analogous

data obtained using THF as the eluent on siUca and alumina thin layers are shown in figures

3.7a and 3.7b and the data are presented in Table 3.9. The presence of two carboxylic acid

groups at the chain ends results in a molecular weight dependent elution pattern on the

alumina thin layer as opposed to the molecular weight independent elution observed with

one carboxylic acid end-group (compare with figure 3.2b). This clearly indicates that the

second carboxylic acid group is necessary to bind the polystyrene molecule to the interface,
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Figure 3.6 (a) Plots of Rf vs molecular weight for PS-H (o)

fi?"i'^'P"
^'^^""^ HOOC-PS-COOH (A) eluted with benzene on silica,

(b) Analogous data on alumina
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(GPC)

Table 3.8 Rf versus log (molecular weight) data

substrate - silica gel and aluimna; eluent - benzene

'"^^"L.^ Rf on silica
Rf on alumina

PS(COOH)2 PS(0H)2 PS-H PS(C00H)2 PS(OH)2 PS-H

10000 4.000 0.00 0.00 0.87 0.00 0.04 0.95

20000 4.301 0.94

30000 4.477 0.00 0.03 0.94 0.00 0.14 0.95

50000 4.699 0.00 0.10 0.95 0.00 0.16 0.95

60000 4.778 0.09 0.18 0.95 0.02 0.18 0.95

100000 5.0 0.90

150000 5.176 0.65 0.77 0.92 0.04 0.80 0.94

200000 5.301 0.85 0.88 0.92 0.04 0.88 0.94

300000 5.477 0.90 0.92 0.90 0.04 0.92 0.92

450000 5.653 0.84 0.86 0.87 0.06 0.86 0.89

600000 5.778
0.38

980000 5.991 0.10 0.19

172 (SI) 0.38 0.39 0.40 0.50 0.46 0.45

220 (S2) 0.75 0.74 0.77 0.86 0.84 0.84

Note: SI is benzophenone and S2 is 2,6-di-tert-butyl-4-methylphenol. The data was taken

from p 47 - 48 of synthesis alone note book #4. The data for polystyrenes of molecular

weight less than 10000 and greater than a miUion used in the figures are those obtained

from the experiments discussed earlier.

143



Si-THFISF

Rf

0.95

8

1 ' 1 1

0.70
0

0.45

o

o

•

0.20
o

-0.05

4 o o

o PS-H

HO-PS-OH

A HOOC-PS-COOH

3 4 5 6

log (molecular weight)

AI-THF2SF

Rf

0.95

0.70

0.45

0.20

0.05

I
I

I

?8|

o o

o PS-H

HO-PS-OH

A HOOC-PS-COOH

2 3 4 5 6

log (molecular weight)

Figure 3.7 (a) Plots of vs molecular weight for PS-H (o),
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(GPC)

Table 3.9 Rf versus log (molecular weight) data

substrate - silica gel and alumina; eluent - tetrahydrofuran

log(Mn) Rf on silica R.on .1 •

PS(COOH), ^.S(OH)3 PS-H PS^cJi^,f^^\ .^-U

10000 4.000 0.00 0.90 0.93 0.05 0.90 0.92

20000 4.301 0.94

30000 4.477 0.95 0.95 0.96 0.18 0.95 0.95

50000 4.699 0.95 0.95 0.96 0.30 0.94 0.95

60000 4.778 0.96 0.95 0.96 0.42 0.94 0.96

100000 5.0

150000 5.176 0.93 0.94 0.94 0.85 0.92 0.94

200000 5.301 0.92 0.92 0.94 0.89 0.92 0.94

300000 5.477 0.90 0.92 0.92 0.88 0.92 0.92

450000 5.653 0.86 0.88 0.89 0.86 0.88 0.89

600000 5.778
0.38

980000 5.991 0.10 0.19

172 (SI) 0.76 0.79 0.78 0.83 0.86 0.93

220 (S2) 0.81 0.81 0.81 0.86 0.90 0.96

Note: SI is benzophenone and S2 is 2,6-di-tert-butyI-4-methylphenol. The data was taken

from p 45 - 46 of synthesis alone note book #4. The data for polystyrenes of molecular

weight less than 10000 and greater than a miUion used in the figures are those obtained

from the experiments discussed earlier.
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too. On

pamcularly from a good disp.acer like THF which happens to be a good solvent
sUtca gel thin layers, the displacement effect ofTOF is more prominent except at low
molecular we.gh. at which po.nt the two carhoxylic acid groups enable the bir,ding of
polystyrene molecules to the interface (due to the higher concentration of the end-group)
resulting in zero values. -n,e incon,oration of two hydroxyl groups a. bod, the chal
ends seem to have no impact on the adsorption of polystyrenes to silica and alumina
nterfaces from a good displacer and solvent such as THF. Tlris result indicates that in a
staUc experiment one can expect similar results and that the hydroxyl group is not an
effective sticky foot when present in low concentrations (two per chain).

THe observed molecular weigh, dependence of Rf values in functionalized polymers as

a function of the nature and the degree of functionaHzation, d,e solvent natu,^ and the

nature of the substrate suggests that it is possible to design specr.c polymer architectures at

interfaces by understanding the specific roles of different enthalpic factors and this is

discussed in detail in Appendix A.

n.e observed elution pattern in solvents of different strength and displacing abiUty

(polarity) can be qualitadvely explained by the following model: A polymer molecule wUl

spontaneously adsorb from soluUon to a surface if the net ft^e energy of die adsotption

process is less than zero [eq. 1].

AG1+AG2 = AG = AH - TAS (1)

where, AGi is the decrease in free energy due to the formation of adsorbed (condensed)

polymer phase; AG2 is the increase in free energy accompanying the removal of polymer

from solution to form more dilute polymer solution; AG is the net free energy change and

AH and AS are the enthalpic and entropic changes accompanying adsorption. The

contribution of individual terms can be best understood, if adsoiption is thought of as an

equilibrium process as depicted in figure 3.8.
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Surface..Solvent + dilute polymer solution(3D Coil)

K f

Surface-Polymer condensed phase(2D Coil)

+ more dilute polymer solution.

Figure 3.8 Adsorption - Desorption Equilibrium

147



The net free energy change AG, is then given by the equation 2.

AG = [AH,2 + AHi4 + AH22 + AH13 + + AH23 + AH33]

- T[AS^^3 (polymer) + AS,,„f (polymer) + AS^,^^ (Solvent)] ....(2)

where
1 stands for a surface site, 2 for the segment on the polymer backbone, 3 for a

solvent molecule and 4 for an organic functional group on the polymer. AH^^ is the

surface-segment interacUon energy given by ei2* n , where n is the number of surface-

segment contacts (if p is the fraction of segments in contact with the surface and r the

degree of polymerization then n = pr) and en is the surface-segment interaction energy per

^^S"^^"^- For adsorption to occur -a finitP adsorption pn^Pnti^i i

is ihgrefore- always nf ^fi tivp . AH12 is exothermic and arises from the non-bonded

interaction of the segment with the surface through a combination of dispersive and van

der Walls type of interactions. It has been predicted that a certain critical energy of about

0.7 kT per segmental contact ^ with the surface, must be exceeded for adsorption to occur.

The point is that the contribution of AH12 to the free energy of adsorption is proportional to

tiie number of surface-segment contacts made, and therefore is a function of molecular

weight. AH14 is the surface-functional group interaction energy, and is always negative

(exothermic) as the functional group in question forms some kind of bond (equivalent to or

greater than hydrogen bonded interactions) with the surface. The magnitude of this energy

depends both on the functional group and the surface in question. This may involve tiie

formation of a chemical bond or a hydrogen bond. It's magnitude can vary from

5 k cal /mole to 100 k cal/mole (In cases where sti-ong chemical bonds are formed, we can

say that, it's only a matter of time before the functional group finds the appropriate surface-

sites and binds irreversibly to it).

AH22 is the entiialpic contiibution from tiie increased segment-segment contact in the

condensed phase. AH22 is an atti-active interaction at short distances of tiie order of few

bond lengths and repulsive at long ranges. It's conti-ibution to free energy of adsorption is

small as tiie short-range atti-active forces annul tiie long range repulsive forces between
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segments far apart in the adsorbed layer^, and is independent of molecular weight. AH,3 is

the enthalpic change, due to fewer segment-solvent contacts upon adsorption (Rory-
Huggins). AH34 is the enthalpic change due to a solvated functional group losing its

solvent sphere upon adsorption and its magnitude depends on the polarity of the solvent It

IS an endothenmc con^ibution to the net free energy change. AH,3 is the enthalpy change

due to the desorption of the solvent from the surface, which in turn is foUowed by

adsorption of a polymer segment for each solvent molecule desorbed. This is an

endothermic interaction and is equal in magnitude and opposite in sign to the enthalpy of

surface-solvent interaction. It is an indirect function of the molecular weight and this is

always positive (endothermic).

AH33 is the enthalpy change due to the formation of more solvent-solvent contacts

upon adsorption and is very small. AS^^^ (polymer) is the translational entropy lost when

a polymer with 3 dimensional mobility is bound to the surface through a functional group

or through a segment and the motions of the segments are Umited to two dimensions. This

is of the order of kT. The greater the number of segmental contacts, the greater is the loss

of two dimensional segmental translational entropy (even if the polymer molecule is bound

to a surface its segments can still translate about their mean center of gravity as aU the

segments are not bound). Tlie higher the molecular weight of the polymer, the greater is

the probability of contact and therefore this is a function of molecular weight. AS

(polymer) is the conformational entropy lost, when large # of conformational states per

chain are lost due to various degrees of attachment of the chain. This in turn is also a

function of molecular weight (kTprx,^). AStrans (solvent) is the translational entropy

gained by the solvent [~ - kTpr In (volume fraction of solvent in the adsorbed layer/volume

fraction of solvent in the bulk solution)] when it is displaced by polymer segments due to

specific and various degree of attachments to the surface and is a function of the fractional

number of segments attached and the molecular weight (through the degree of

polymerization, r).
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Tko net free energy change has many ten.s whose magnitude cam^ot be dete^ined
experimentaUy although several attempts have been made to calculate the algebraic sum of
AH22 + AH33 + AH23 (X parameter), using Flory-Huggins lattice theory of polymer

solutions. One such work estimates that under good solvent conditions the above sum, for

each surface-segment contact is of the order of 0.5 kT. 10 Some researchers have also

obtained the algebraic sum of AH,^ ^ AH,, (x,) by the displacement of adsorbed

polymers22. by microcalorimetry23 and by thin-layer chromatography24. ah,3 has been

calculated for several surface-solvent pairs and the values are listed in a reference. " AH^^

has also been measured experimentaUy for several funcUonal smaU molecules such as

CH3OH, CH3CN. CH3COOH. and CH3NH2 adsorbed to single crystal metal oxide

surfaces in the gas phase. 12 But the enthalpy of interaction in solution is not known.

Cohen Stuart, et al.,20 have given a simple expression for the net free energy change

using the same arguments as presented above and represented in equation 2 based on

Flory-Huggins theory of polymer solutions and Scheutjens and Reer theory of polymer

adsorption (Appendix A). From the efforts of Cohen Stuart, et al., it is clear that this is a

complex problem to be simplified by analytical expressions and therefore we neither make

any attempt to simpUfy equation 2 to an analytical equation (usuaUy this is the most

acceptable form of any physical picture) nor do we calculate adsorption energy parameters.

Our efforts are focussed on interpreting u-ends in adsorption that can be obtained fairly

quickly for a given set of solvents, while retaining the physical form as expressed in detail

in equation 2 and the information that TLC provides about the possible location of the

functionalized part of the chain (i.e chain architecture).

Let us consider some of the cases that are encountered in a real adsorption experiment.

The first simplification stage involves the surface-solvent interaction. Let us say that the

solvent-surface bond is not strong enough, i.e AHj3 = TASj^^^^ (solvent). For weakly

bound solvents both the enthalpic and entropic contribution from surface-solvent

interaction do not contribute to the free energy of adsorption (note that for AH,, < TAS^
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(solvent) the solvent will not bind to the surface, and a depletion layer is observed). For
strongly adsorbing solvents, the enthalpic term ovenides the entropic contribution; i.e

AHi3 » TAS^^, (solvent) and TAS^^^^ (solvent) term can be ignored. Therefore, the

net free energy of adsorption AG is given by,

AG = AH,2 + AH,, ^ AH,3 - AH,, - T [AS^^^MS,,^,]

after ignoring the small contributions from the other two enthalpic terms AH33 and AH34,

the entropic terms being exclusively from the polymer. AU the terms except AH,3 and

AH23 are negative. In the case of a neutral polymer and a neutral solvent the excess

enthalpy of mixing is usually zero (AH23 zero and mixing occurs because of the entropic

gain in going from an entangled solid to a solution) and therefore this term can be ignored.

CM£. (i) Let AH, 3 > AHj2 + AH,, - AH23

No adsorpUon would occur for the above condition for any molecular weight with and

without any kind of functional group as the rest of the terms (entropic) would only

increase the free energy, e.g. PS-H does not adsorb to alumina from ethyl acetate and

THF. No polymer adsorbs to iron surface from acetonitrile (CH3CN).

CM£. (ii) Let AH13 = ^^12 + AH14 - ^^23

No adsorption would take place in this case too, as the entropic terms again lead to an

increase in free energy.

Cfll£(iii) Let AHj3 < AH12 + AHj4 - AH23

In this case, adsorption is governed by polymer solution energetics and surface functional

group interaction energies. For this case one should observe a curve for the probability of

desorption (1-P, where P is the probability of adsorption) vs molecular weight as shown in

figure 3.9 (note that this curve is identical to vs molecular weight that one would obtain

from a TLC experiment since Rf is proportional to (1-P) and this is derived in the

appendix). The justification for the shape of the un-functionalized polymer is that at low

molecular weights the critical adsorption energy is not reached within the "TLC" time scale

and therefore the probability of adsorption remains at zero. As the molecular weight is

151



P=ProbabiIity of

Adsorption

(i-p)

Unfunctionalized Polymer

Functional Polymer

Silberberg Region

Log(molecular weight)

X AHsurface-functional group +AH solvation of the coil

m Parameter indicating the goodness of tlie solvent

Figure 3.9 Prediction of Adsorption Behavior From the Model Proposed
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~ *e CUca, aaso^uon energy . .eacHe. wia,. .e ^C .i™e sca,e" an, ,eprobability of desorption goes down as = expC-Np^,).

Sufe^ (a) Le, AH,, = 0. i.e m = 0. Then the frie energy of adsorn,in„«=iicigy 01 aasorption is governed
by. AG = AH,, . AH,3 . AH„ - AH,, - T (AS,a„, . ASeonf), where AH., = „ x e
and AH,, = n, x e,, ( n, = nun-ber of functional groups interacting with the surface- e "is
the enthalpy ofinteracUon of a functional group with the surface,. Except AH^.thil
of the terms depend on the number of surface-segment contacts made and are therefore
functions of molecular weigh. For smaU n's the loss of free energy due to enthalpic

mteractions of the segments with the surface cannot overtake the loss of entropy due to

adsorption. Therefore adsorption does no, occur and the probabUity of adsorption is not a
funcuon of molecular weigh, for these n's. However as n increases, at some n, the

cnthalptc interactions overtake the loss of entropy due to adsotption, and therefore

adson>tion occurs. Beyond this limit. adsorpUon must occur for any n and therefore in this

range the probability of adson,tion depends on molecular weight as discussed above. TT,is

behavior is shown as curve A in figure 3.9. From the equation for the free energy it is

clear that at what "n" the probabiUty of adsotption begins to depend on molecular weight
and therefore the shape of the curve depends on AH,, (however small it might be) and
AH,, (how good or bad a solvent is).

SuLmiS. (b): Let AH,4 * 0 and be significant.( < 0 or exothermic)

Then for small n's. ifAH„ and AH,, and AS terms a.^ insignificant compared to AH„
adsorption takes place. (If not, that condition is as good as Sub-case (a)). As n increases,

two possibilities arise.

1. AH,4 + AHi2-AH23 > TAS

2. AH14 + AH12-AH23 < TAS

The first possibility considers a strong surface-functional group bond (AH14) and the

second a relatively weak surface-functional group bond. If surface-functional group

interaction is strong enough to overtake the increasing loss of entropy that occurs when the
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cha.„ lengm is increased, adsorption wouid occur for any molecular weight T7„s
poss,b„ity is Shown as curve B in figure 3.9. However ifAH„ is relatively weaic there
Will be an "n" (moiecu.ar weigh.) a. which possibility 2 wou.d arise and at this n the
adsorption behavior would approach that of the un-functionaUzed polymer (i.e. end group
effects are negligible). TT,e probability of adsorpUon would follow that of the un-
functionali,^d polymer above this "n". Tl^is possibility is shown as curve C in figure 3 9

To summarize, the equation AH„ . AH„ = AH,, . AH,, . T lAS„3„,.Asl,
governs adsorption. The tenns on the left favour adsorpUon while those on the right

oppose it. In U,e case of neutral un-functionalized polymers in a neutral solvent, the

competition between the first term on the left hand side and the entropic term on the right

hand side decides adsorpUon (e.g. polystyrene in cyclohexane). In the case of a neutral

polymer with an end-funcUonal group in a neutral solvent the compeUtion between *e two
terms on the left hand side and the enu-opic term determines adsorpUon (e.g. PS-COOH in

cyclohexane). IntroducUon of a polar solvent (THF) or a polar polymer brings in the

addiUonal terms AH^j and AH,, and their absolute magnitude in comparison with AH„
decides adsorpUon and therefore the eluUon pattern on a thin-layer of adsorbent.

I^t us look at the results in the Ught of die model discussed above keeping in mind that

some of the solvents used in Ute experiments reported interact specifically wiUi die substrate

and to some extent with die polymer (as in the case of chloroform). Unlike a neutral

polymer and a neuu-al solvent the effects of the AH,, term cannot be ignored in such cases

and so is die die effect ofAH„ term. The carboxylic acid-end group interacts specifically

wiUi alumina (inleracUon energy is stronger Uian a hydrogen bond) while its interaction

wiUi silica is of die order of a hydrogen bond.

TLC results for polystyrene, hydroxyl end-capped polystyrene, and carboxylic acid

end-capped polystyrene of different molecular weights in different good solvents on

alumina thin layer are shown in figures 3. 1 b to 3.5b as Rf vs log (molecular weight) plots.

From the figures it is apparent that die Rf vs molecular weight curves for PS-H follows
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qualitatively the shape proposed in the model for the un f„nr,i„ ,• .
(iii)andAH n, i,

""f™«'0"'"'«:<I polystyrene (caseCO and AH„ = 0,. up to a ntolecular weight of 100,000 the Rf value for PS-H is 1 or

wetght up to a ntolecular weight of 106 heyond which it is tndependent of molecular
weight tn all the solvents tHed justifying dte pt^dicted and observed plateau region T.e

expected the curve begins to plateau at higher molecular weigh, in specifically interacting
solvents such as THF and ethyl acetate than in benzene or toluene.

Carboxylic acid and hydroxyl end-functional.zed polymer's TLC behavior follows
ca,se (iii), sub case (b) (possibility 1 for -COOH and 2 for -OH, of the proposed model
Carboxylic acid end-functi„nali.ed polymer of any molecular weight has a lower Rf value
lhan hydroxyl end-functionalized polymer of the same molecular weight because

''^"l4)coon > WH,4)o„, i.e the enUialpy of interaction of the -COOH group with

alumina is much greater lhan that of the enthalpy of interaction of the -OH group. ' > From
.he figures and the tables, the quality of eluents for adsoT,tion, during flow on alumina thin

layer decreases in the following order benzene = toluene > CH2Cl2/pentane (7/3) > CHCI3

> ethyl acetate > THF. If the eluents had functioned just as displacers then the order must
have followed the solvent strength parameter of Snyder ' 'as CH2Cl2/pen.ane (7/3) >
benzene = toluene > CHCI3 > THF > ethyl acetate. Further if the thermodynamic quality

of the solvent was the only criterion, then adsorption should be favoured in this order;

CH2Cl2/pentane (7/3) > eOtyl acetate > CHCI3 > THF > benzene > toluene.^' That the Rf

value does not foUow either of the trends in general suggests that for adsorption to take

place from good solvents one has to consider not only the thermodynamic quality of the

solvent but also the magnitude of the surface-solvent interaction energy and the polymer-

solvent interaction energy. The complete eluUon of all polymer samples in THF with the

excepUon of low molecular weight PS-COOH on alumina indicates that as a rule the

surt-ace-solvent term (AH,,) and probably the polymer-solvent term (AHj,) dominate and
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s

is a

prevent a.son,Uo„ except a. ,ow we,H. (where the concentrat.on of the en.

poorer solvent an. therefore coopera.ve effect of
, „ , .

.nolecu-ar weight dependent adsorption. Chlorofonn is an acidic so.vent which interacts
specifically with basic sites on alumina and with the po.ynter itself^^

^
very good solven. Therefore aU the enthalpic para.e.rs are i^portan. in this case and we
see an eiution pattern ir, between that of a poor dispiacer and a good disp.acer (solvent
quality being in between ethyl acetate and benzene).

THe shape of the eluted samples (circular at Rf = 0 and convex lens shape at Rf > O)
and the change in shape of the Rf vs log(molecular weight) cut^e from the un-

functionalized samples indicates that below a molecular weight of 105, adson^tion-

deson,tion is the mechanism, operating in die TLC of functional polymers. The increase of
Rf with molecular weight for functionalized polymers in solvents which interact strongly

with alumina such as THF and ethyl acetate." rules out phase separation due to depletion

of solvent in die advancing solvent front, thus confirming the above mechanism.

Figures 3.1a to 3.5a describe the H.C behavior of polystyrene, hydroxyl end-

funcUonalized polystyrene, and carboxylic acid end-functionaUzed polystyrene on silica gel

thin layer in different good solvents as a function of molecular weight. From Table 3. 1 the

solvent strengA of the different solvents used decreases in die following order: ethyl acetate

> CHC13 > benzene = toluene > CHzCl^pentane (7/3). TTie thermodynamic goodness of

the solvent decreases in the following order: benzene = toluene > THF > CHCI3 > ethyl

acetate > CH2Cl2/pentane (7/3). The experimental results suggest that adsorption

decreases in the following order: benzene = toluene > CH2Cl2/pemane (7/3) > CHCI3 >

ethyl acetate = THF. Tliese results in general suggest the compeUtive nature of adsorption.

All the solvents as weU as the -COOH end-group interact less strongly with siUca than

alumina.
'

In the absence of strong solvent-surface interactions, we observe a molecular
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we.gM-.epen.eM value in ^nzene an. .o.ene ..... surface-funcUonal ,.oup
inte^acuon. Since .e ca..o..Ue aci. i„ ^.^^^.^ ^^^^^

surface-soiven. in.racUons become i™por.n. n, .e absence of s.on, surface-funcUona,
group interaction and therefore functionalize. polymers elute with a molecular weight
mdependent Rf values up to the critical molecular weigh, -n,e elution behavior of
hydroxy, end-functionalized polymers foUows case (iii), sub-case b, condition 2 where Rf
values were predicted to be molecular weigh, dependent (region below the criUcal molecular
weight) being detem,ined by a critical balance between surface-solvent and surface-

functional group interaction.

To summari^e, for a given molecular weight. Rf values are considerably lower for

carboxyUc add e„d-functionali^ed polystyt^nes on alumina compared to silica gel thin layer

because of the alumina-COOH specific interaction. In the case of the hydroxyl end-

functionalized polystyrenes higher Rf values ai^ usually observed in alumina because the

solvent-surface interaction is greater. The Rf values of polystyrenes with two end-groups

is lower than those with one because both the chain ends adsorb in the case of the former.

n.e Rf values for the di-carboxylic acid-terminated polystyrenes are lower than those for

the di-hydroxyl-temiinaied polystyrenes because of the higher enthalpy of interaction of the

carboxylic acid group with silica and alumina.
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CHAPTER 4

ADSORFnON OF END-FUNCTIONALIZED POLYSTYRENES TO GLASS FROM 0
AND GOOD SOLVENT CONDITIONS MONITORED BY LIQUID SCINTILLATION

COUNTING

4.1 Introduction

This chapter deals with adsorption experiments performed with radioisotope-labeled

polystyrenes (functionalized and un-functionalized), the synthesis of which is discussed in

detail in Chapter 2. The substrate used was glass and the solvents were cyclohexane and

toluene. At 36.7 °C. cyclohexane is a theta solvent (slighUy better) for polystyrene; i.e the

polymer coil in solution is well described by random walk or gaussian statistics. Toluene

is a good solvent for polystyrene at 23 °C; i.e the polymer coil interacts favorably with the

solvent and exhibits dimensions higher than that in a poor solvent. Because of this

favorable polymer segment-toluene interaction the segments of a given coil and different

coils avoid each other as well (the so called excluded volume interaction).

The rates of adsorption and the adsorbance of several end-functionaHzed polystyrenes

of different molecular weights to clean glass surfaces from dilute solutions of different

concentrations were determined by liquid scintUlation counting. The graft densities (# of

polymer chains/unit area divided by the number of monomers that will occupy the same

area) were determined from the adsorbance data as well.

The radioactivity of tritium-labeled polymers, displaced from glass surfaces (to which

the polymer was adsorbed previously) using a suitable displacer mixture, was determined

by the fluorescence activity of a scintiUation cocktail. The scintiUation cocktaU, in a liquid

scintillation counting experiment, converts part of the radiation energy of the primary

particle emitted by the sample into light which in turn is converted to a charge pulse by a

phototube. This is amplified and counted by a scaling circuit. ^"^ The amount of radiation

energy converted to light depends on the molecules that make up the cocktail and is given
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by its efficiency. The efficiency of a cockuul in turn is determined by the charge pulse

counts/min obtained for radio-labeled samples of previously known activity

(disintegrations/minute). Tridum-labeUed polystyrene was used by several researchers in

Ihe past to study the adsorption of polystyrene.^"' Following reported procedut^s artd

precautions the adsorption of end-funclionahzed polystyt^nes to glass surfaces were

performed.^' ^

Briefly, the chapter is organized as foUows: following this section is the experimental

section which discusses the materials used and the methods. A large volume of data was

obtained in view of the number of variables used in the experiments. Most of the data on

the kinetics of adsorption did not reveal any new physical phenomena. Therefore a

summary of the results in the form of equUibrium adsorbances alone are presented in the

results section. After this section the results of the kinetics of adsorption for some specific

and novel cases, the adsorption isotherms, molecular weight effects, the graft density vs.

end-group concentration, and the surface excess for some samples are presented and

discussed in detail in the discussion section. The summary of the chapter is presented in

the foUowing section, followed by conclusions. The bulk of the raw data in the form of

counts per min/geometric area vs. time and the graft density data obtained from the

adsorbance values are presented in Appendix B.

4.2 Experimental

4.2.1 Materials and Methods

Tritiated water and toluene of specific activities 100 mCi/ml and 0.93 ^iCi/ml were

purchased from New England Nuclear. Tritiated styrene, polystyrene and end-

functionalized polystyrenes were synthesized according to the detailed procedure reported

in Chapter 2. Cold (non-radioacitve) samples were prepared in parallel under identical

experimental conditions and the characteristics of the cold sample are assumed to reflect
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those Of U,e hot samples. The po.y^er samples prepared and their GPC characteristics are
reported in Table 4.

1

Liquid ScintiUaUon Counting was perfomted using an LKB Wallac Rackbeta LS
Counter, Model 12.7-001 for samples containing a single sticky foot and a Beckmann LS
3801 for samples containing two sticky feet.

Liquid scintillation counting of eight different polymer samples (4 different molecular
weight with one and two funcUonal end-groups) of different masses, prepared from styrene

of the same specific activity, on an average, lead to the following general equation for the

counts obtained vs. mass of the polymer: cpm = 773.93 ± 50.55 x, where x is the mass of

the polymer in ^tg. The data for each of the samples are presented in Appendix B. Based

on the definition of 1 ^tCi being equal to 2.22 x 10^ dpm and the fact that 1 dpm is equal to

0.475 cpm (from the efficiency of the cocktail determinations discussed in Appendix B),

the average specific acUvity of the polymers synthesized was calculated to be 733.94 ±
47.94 nCi/g. This means that lowest adsorbance that can be detected above the

background with 95% confidence is 3 nanograms/cm^.

TypicaUy, a liter of cocktail was prepared by adding 657.5 ml of toluene, 200 ml of

benzene and 100 ml of tetrahydrofuran to 42.5 ml of "liquifluor" (a concentrated solution

of cocktail supplied by New England Nuclear) which on dilution contains 4 g of PPO

(poly(phenyloxazole)) and 50 mg of POPOP (l,4-bis-2-(5-phenyloxazolyl)benzene per

liter. This solution was immersed in a warm water bath for an hour following which it was

degassed with nitrogen for an hour. 10 ml of this cocktail gave a background count of 7 to

12.5 counts per minute (cpm) in plastic scintillation vials (nylon or polyethylene) and 12 to

19 cpm in glass scintillation vials. The efficiency of the cocktail, determined by the internal

standard method,^. »0 was 47.5 ± 1.5 % and was unaltered by the presence of small

amount of polystyrenes (up to several [ig).
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Table 4.1 Characteristics of Tritium-Labeled Polystyrenes

sample Rg (CH) Rg (Tol)
PDI

PS-COOH
22 5000 1.03

PS-OH
22 5000 1.03

PS-H onzu 22 5000 1.03

PS-COOH
33 10000 1.03

PS-OH oc <ZO.J 33 10000 1.03

PS-H ZO.D 33 10000 1.03

HOOC-PS-COOH Zo.J 33 10000 1.07

HO-PS-OH 00 cZO.J 33 10000 1.06

PS-COOH
62.9 30000 1.04

PS-OH
62.9 30000 1.04

PS-H
62.9 30000 1.04

62.9 30000 1.05

HO-PS-OH
62.9 30000 1.03

94.2 60000 1.04

HO-PS-OH
94.2 60000 1.04

PS-COOH ins 1lUO. 1 157 140000 1.06

PS-OH 1 AO 1

157 140000 1.06

PS-HTO XI 1 no 1lUo.l 157 140000 1.06

HOOC-PS-COOH 108.1 157 140000 1 OS

HOOC-PS-COOH 108.1 157 140000 1.05

Note: is the number average molecular weight rounded to the nearest thousand and
PDI is the poly dispersity index determined by gel permeation chromatography using cold
samples prepared m parallel under identical experimental conditions. R stands for the
radius of gyration in angstroms, CH for cyclohexane and Tol for toluene.
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Early experiments also indicated that benzene and tetrahydrofuran in the cocktail functioned
as displacers and completely desorbed polymers (known amoum) cast as thin fUms on
glass slides. This suggested that benzene and tetrahydrofuran in the cocktail wiU
completely desorb the adsorbed polymers (functionalized and un-funcUonalized polymers)

into the cocktail solution.

4.2.2 Substrate Preparation

Glass microscope slides (Fisher, ~ 6.0 cm x 1.5 cm) were cut to dimensions of

~ 1.5 cm X 1.5 cm using Dyna-cut abrasive cut off machine. About 5000 slides thus

prepared were washed thoroughly in tap water to remove fine glass particles. They were

oven dried (200 - 250 °C, 12 h). cooled and weighed. The weight of the glass slides

ranged from 0.4450 to 0.4650 g. They were separated in to five groups based on their

weight and these groups were 0.4450±0.0025 g. 0.450010.0025 g, 0.455010.0025 g,

0.460010.0025 g, and 0.465010.0025 g. The geometric area of a given glass slide was

calculated from its weight by the equaUon given below:

[weight (g) X 2 / {density of glass (2.434 g/cm^) x thickness (0.094 cm)}] + 0.5 cm^

The last term being a correction for the four sides that are not taken into account by the

formula given within the square brackets and this was determined using a vernier caliper.

Glass sUdes from a particular group, for adsorptions from a given polymer solution,

were immersed in an acid bath containing 50 g of nochromix powder (Aldrich) for every

liter of concentrated sulfuric acid (36 N). for at least 24 h. After this they were rinsed in

flowing distilled water for ~ 2 min. Subsequently the slides were heated to about 80 °C in

double-distilled water ( ~ 35 to 45 min for 150 ml of water at 4 to 5 °C/min heating rate)

and the hot water was discarded. The above step was repeated with a fresh aliquot of

double-distilled water (150 ml). This time the sUdes were sonicated after the appropriate

heating time for 10 to 15 min (as the water was cooling). After discarding the water,

sonication was performed in spectroscopic grade methanol (10 min, twice) and in
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cyclohexanc or toluene as the case may be ( 10 m.n, thrice). The clean slides were

equilibriated for 2 h at 36.7 ± 0.
1 T in cyclohexane before use while they were used

immediately in toluene.

The cleaning ability of the acid bath was periodically monitored as follows: A drop of

the acid soluuon at the end of a glass rod was allowed to touch a brown paper towel. If the

paper towel charred instanUy on contact, it was taken that the acid bath was active. A glass

slide immersed in such a solution for 30 sec, followed by distilled water wash and nitrogen

drying exhibited a water contact angle of 12° - 14° / 0° (6^/6^) while advancing and

receding the (water) drop.

4.2.3 Adsorption Experiments

The polymer solution of the highest concentration (1.0 mg/ml or 2.5 mg/ml) used for a

particular sample (molecular weight and sticky foot type) was prepared by weighing the

appropriate amount in a volumetric flask (25 ml), followed by the addition of the solvent

(spectroscopic grade). After 48 h. a 5 to 25 ^1 aliquot of the solution was withdrawn and

was counted in 10 ml of the cocktail for 10 min. The experiments were performed in

triplicate. The average cpm obtained was used in the appropriate equation for that sample

(shown in Table 4.3.9) to obtain the exact concentration of the solution. Solutions of

lower concentrations were prepared by serial dilution from the concentrated solutions. The

exact concentration of each of the solutions was obtained by coundng three aliquots of 25

^il each as described above.

A typical adsorption experiment conducted in cyclohexane is described below. About

12 to 15 ml of a particular polymer solution (say 1 mg/ml) was taken in a cylindrical glass

tube, sealed at one end. The open end was closed tightly with an aluminum foil and was

secured with a rubber band. This tube was then placed in a thermostated bath (water +

ethylene glycol) maintained at 36.7 ± 0.1 °C. for 12 to 14 h for temperature equilibriation.

Clean glass slides, after the 2 h temperature equilibriation. were placed in the polymer
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solution using tweezers
( ^ 5 sec transport through air). After the appropriate time the

shdes were withdrawn carefully (the polymer solution in contact with the glass sUde was
removed by bringing an edge of the glass shde against the waU of the tube as it was being
withdrawn) and were rinsed in pure solvent placed in three different glass tubes at 36.7 ±
0.1 °C. -The precision of this method was Checked by repeating the same experiment under
the same conditions on several occasions and by performing the experiment in an inert

atmosphere ( in Schlenk tubes under nitrogen, using steel camiulas to transport polymer

solution and pure solvent). The data thus acquired fell within 4% of each other, and

therefore the adsorptions were performed in glass tubes covered with aluminum foil.

After three rinses, the slides were placed in 10 ml of the cocktail in a 20 ml scintillation

vial (for 16 to 30 h to aUow complete desorption) and subsequenUy counted for 10 min.

4.2.4 Error Propagation^*

The following factors can contribute towards errors in the adsorption measurements: 1)

radioactive decay is a random process in time. Therefore the error that arises by counting a

sample at different points of time follows a Poisson distribution.^ Such an error is

calculated by the appropriate mathematical function by the computer interfaced to the

instrument and is printed along with the counts per minute. These numbers divided by the

geometric area were used in the adsorbance calculations. 2) Systematic error that arises

during the cpm vs mass ([ig) calibration of different samples (weighing error and volume

error associated with serial dilution of the appropriate amounts of each sample). For the

single sticky foot samples this was estimated to be 3.9% from the scatter in the data

obtained for the four different molecular weights (all of them were prepared from the same

stock of styrene) and for the double sticky feet samples it was estimated to be 5.7% from

similar calculations. 3) Procedural error arising from tiie techniques used to clean,

temperature equilibriate, perform adsorption experiments and rinse glass slides was

estimated to be ± 4% from the cpm/geometric area obtained from glass slide to glass slide
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under exact ex^H.en., conditions. In other words the precision of our technique is .
4%. 4, The geometric area of the giass sUdes obuUned fro. their mass and density with
the appropriate cor^ction for the area of the sides of the slide (0.5 cn,^, was used in a,,

calculations. TTte tr.e surface area of glass is defu,i.ely different fron, this number and
need not scale exacUy with the geon.euic area, front glass slide to glass sUde. This error is
the area nor.a.i^aUon etror and we do not include it in our calculaUons because surface
area determination by BET measurements can be applied only to smaU molecules
Individual polymer chains occupy larger dimensions and this increases with molecular
weight and the goodness of the solvent. Therefot. roughness scales less than the chain

dimension are in-elevan, and those greater than the chain dimensions are relevant.

Currently the exact mapping of a given glass surface has not been esmbUshed weU and
therefore we ignore the effect of surface roughness though we realize its importance. TT^e

counts per minute versus time obtained with different glass sUdes for the same adsorption

experiment at times between 6 and 48 h, de,«nding on the polymer sample, varies ± 10 to

15%, indicating that surface roughness effect is signiftcanL However this includes all the

above said errors and therefore its effect cannot be separated. Based on the contributions

of 1, 2 and 3. this is probably in the range 1 to 2%. 5) Instrumental eiror: Tlte countings

were performed using the "Rackbeta" counter for the samples with a single sticky foot and

the "Beckman" counter for the samples with two sticky feet. The background obtained

with the "Beckman" counter is 5 times that of flie "Rackbeta" counter. Based on Uie

average counts obtained with ten different samples of toluene (3h) standard we estimate

this error to be in the range 3 to 5%. 6) Different amounts of cocktail in the counting

mixture can bring in additional en-or. Since a 10 ml aliquot of the cocktail was pipetted out

each time and die typical variation in the counts for a volume change of± 0.5 ml is ± 2.0

(Rackbeta) to + 5.0 (Beckman), tiiis is negligible.
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4.3 Results

Tlie amount of polymer adsorbed .o glass versus time was foUowed for all the samples
tiU equtltbrium adsorbance was recorded. Equilibrium adsorbance means counts per
mtnute obtained from samples with time are within 3a of each other, where c is the random
error encountered due to the nature of the radioactive decay process. All the raw dam (LSC
notebooks #1 to #3) obtained after background subtraction were divided by the geometric

area of the respective glass slides to obtain per unit area numbers. All the polymer samples
were prepared from styrene of the same specific acdvity and therefore the cpm/geometric

area of different samples can be compared within experimental error.

nie variables involved in the experiments were: two types of solvents, two types of

sticky foot, two locations, un-functionalized conu-ol, five different molecular weights, at

least five different concenu-ations and ten different times. This resulted in a large volume of

data. Most of the data concerning the kineUcs of adsorption were not interesting as they did

not reveal any new physical phenomenon. The polymers with sticky feet adsorbed much

faster than those without, a well known result. Therefore most of the cpm/geometric area

vs. time data are presented in Appendix B. An example (M„ = 10 K and cone. = 1 mg/ml)

in cyclohexane and toluene is presented (Table 4.2 and 4.3) and discussed in tiie foUowing

section. However equiUbriura adsorbances for each of the samples at all the concentrations

and molecular weights are presented in Tables 4.4 (cyclohexane) and 4.5 (toluene) and

these were calculated from die cpm/geomeuic area numbers using the calibration curve for

each of the sample (see Appendix B. Tables B.4 to B.ll).
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substrate - glass; solvent - cyclohexane; temperature - 36.7± 0. 1°C; Mn = 10000

t(h) PS-COOH PS-OH PS-H t(h) PS(C00H)2 PS(OH>

concentration =

0.25

0.50
1.0

2.0

3.0

6.0

12.0

24.0

concenu-ation = 1.0 mg/ml

0.25

0.50

1.0

3.0

6.0

16.0

24.0

261.8

376.5

324.1

313.1

317.9

332.6

329.5

±5.3
±6.2
±5.8
±5.7
±5.8
±5.9
±5.9

41.5 ±2.5
49.0 ± 2.7

54.8 ± 2.8

69.3 ±3.1
79.1 ± 3.2

81.2 ±3.3
80.0 ± 3.2

concenu-ation = 0. 1 mg/ml

0.25

0.5

1.0

3.0

6.0

12.0

24.0

48.0

160.7

167.4

178.3

181.1

177.4

182.4

184.6

189.8

±4.4
±4.5
± 4.6

± 4.6

± 4.6

±4.7
±4.7
±4.7

22.0 ±2.1
28.8 ± 2.3

41.3 ±2.6
45.4 ± 2.7

43.8 ± 2.7

45.5 ± 2.8

46.0 ± 2.8

29.4 ± 2.3

36.1 ± 2.4

49.7 ± 2.7

64.1 ± 3.0

77.1 ± 3.2

74.9 ± 3.2

76.0 ± 3.2

30.9 ± 2.3

36.1 ±2.5
41.3 ±2.6
51.4 ±2.8
48.5 ± 2.6

51.8 ±2.8
50.9 ± 2.8

1-51 mg/ml

203.6 ± 5.3

212.7 ±5.5
228.8 ± 5.8

230.2 ± 5.8

231.5 ±5.8
234.5 ± 5.9

243 0 + 60^ '•V/ — U.v

242.2 ± 5.9

0.94 mg/ml

0.25 59.9 ± 3.2
0.50 72.8 ± 3.7
1.0 63.0 ± 3.2
2.0 71.0 ± 3.7
3.0 72.8 ± 3.7
6.0 73.2 ± 3.7
12.0 73.6 ± 3.7
24.0 72.0 ± 3.7

0.15 mg/ml

0.25 36.5 ± 3.0
0.50 34.5 ± 3.0
1.0 32.6 ± 2.9
3.0 35.7 ± 3.0
6.0 41.2 ± 3.1

12.0 34.1 ±3.0
24.0 35.4 ± 3.0

1.45 mg/ml

53.3 ± 3.3

50.1 ±3.3
44.2 ± 3.2

47.7 ± 3.2

50.3 ± 3.3

56.0 ± 3.4

50.7 ± 3.3

51.7 ±3.3

0.94 mg/ml

26.0 ± 2.8

31.1 ± 2.9

28.5 ± 2.8

27.9 ± 2.8

26.9 ± 2.8

25.2 ± 2.7

26.6 ± 2.8

27.3 ± 2.8

0.19 mg/ml

16.5 ± 2.5

19.4 ± 2.7

16.9 ±2.6
19.3 ± 2.6

17.9 ±2.6
15.9 ±2.5
14.1 ± 2.5

Continued, next page
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Table 4.2 Continued

substrate - glass; solvent - cyclohexane; temperature - 36.7± 0.1 °C; Mn = 10000

t(h) PS-COOH PS-OH PS-H

concentration = 0.01 mg/ml

U.J j4.o ± 2.8 31.5 ± 2.3
1 n
1 .u 44.o ± 2.6 32.8 ± 2.3
z.u ol.U ± 2.9 36.5 ± 2.4

64.0 ± 3.0 38.4 ± 2.5
O.U /CA O _L f\o0.3 ± 2.9 38.9 ± 2.5

O/.O ± 3.U 42.5 ± 2.5
24.0 61.1 ±2.9 39.3 ± 2.5
48.0 64.2 ± 3.0 39.8 ± 2.5

concentration = 0.001 mg/ml

0.25 30.0 ± 2.3 17.0 ± 1.8

0.5 33.2 ± 2.3 19.0 ± 1.9

1.0 35.8 ± 2.4 23.6 ± 2.1

2.0 38.7 ± 2.4 26.7 ± 2.2
3.0 39.5 ± 2.5 31.5 ± 2.2
4.0 49.9 ± 2.7 33.1 ± 2.3
8.0 41.2 ±2.5 34.3 ± 2.3
24.0 39.4 ± 2.4 33.0 ± 2.3

10.2 ± 1.7

13.1 ± 1.8

16.6 ± 1.9

19.6 ± 1.9

25.7 ± 2.2

29.3 ± 2.3

30.7 ± 2.3

30.5 ± 2.3

t (h) PS(COOH)2 PS(OH)2

0.015 mg/ml 0.019 mg/ml

28.1 ±2.2 0.25
29.3 ± 2.2 0.50
33.7 ±2.4 1.0

34.4 ± 2.4 3.0
35.1 ±2.4 6.0
2.6 ±2.3 12.0

31.8 ± 2.3 24.0
34.1 ± 2.4

26.5 ± 2.8

23.0 ± 2.8

20.1 ±2.7
20.9 ± 2.7

23.9 ± 2.8

22.9 ± 2.8

26.9 ± 2.8

11.2 ±2.5
14.6 ± 2.5

13.3 ±2.5
13.2 ±2.5
10.4 ± 2.4

13.4 ± 2.5

11.1 ±2.5
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Table 4.3 Counts Per Minute P^r <in.,or«

Adsorptlonls'rPuSn^^^^^^^^^^ ^^^'^^ ^^t-

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

t(h) PS-COOH PS-OH PS-H

concentration

0.083
0.25

0.50

1.0

2.0

3.0

6.0

12.0
94 0

concentration = 1

0.25 428.6 ± 6.6
0.50 189.8 ±4.6
1.0 180.4 ±4.5
3.0 203.6 ± 4.8
6.0 177.5 ± 4.5
12.0 159.1 ±4.3
12.0 175.6 ± 4.5
24.0 145.5 ±4.1
48.0 137.9 ±4.1
120.0 134.4 ± 4.0
360.0 138.7 ±4.1

concentration =

t (h) PS(COOH)2 PS(OH).

18.0 ±2.0
19.8 ±2.0
21.7 ± 2.1

22.1 ± 2.1

22.8 ± 2.1

25.1 ± 2.2

21.8±2.1
23.1 ±2.1
22.8 ± 2.1

21.5 ±2.1

4.4 ± 1.4

7.6 ± 1.6

8.8 ± 1.6

11.2± 1.7

11.6± 1.7

14.9 ± 1.9

12.1 ± 1.8

12.3 ± 1.8

12.9 ± 1.8

12.2 ± 1.8

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

1.5 mg/ml

161.8 ±4.8
169.2 ± 4.9

144.6 ± 4.6

196.3 ± 5.2

185.3 ±5.1
164.3 ± 4.8

168.1 ±4.9
198.9 ± 5.2

160.5 ± 4.8

1.05 mg/ml 1.06 mg/ml

163.3 ± 4.8 83.6 ±3.8
147.4 ±4.6 113.3 ±4.2
151.1 ±4.7 105.6 ±4.1
135.9 ±4.5 103.7 ±4 1

141.5 ±4.6 100.8 ±4 1

133.1 ±4.4 88.7 ±39
166.9 ± 4.9 89.1 ±39
157.6 ±4.8 101.4±4 1

162.3 ±4.8 99.2 ±40

0.56 mg/ml 0.5 mg/ml

0.083 172.5 ±4.9 61.6 ±3.5
0.25 160.4 ± 4.8 69.3 ± 3.6
0.50 137.1 ±4.6 64.4 ± 3.5
1.0 148.2 ± 4.7 72.8 ± 3.7
2.0 143.7 ± 4.6 70.4 ± 3.6
3.0 149.0 ± 4.7 65.8 ± 3.5
6.0 157.1 ±4.8 62.2 ± 3.5
12.0 140.2 ± 4.6 66.6 ± 3.5
24.0 153.6 ± 4.7 69.5 ± 3.6

Continued, next page
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Table 4.3 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

t (h) PS-COOH PS-OH PS-H

concentration = 0.1 mg/ml

0.083
0.25

0.5

1.0

2.0

3.0

4.0

15.0

24.0
48.0

336.0

95.7 ± 3.4

76.6 ± 3.2

72.9 ± 3.1

68.4 ± 3.0

75.1 ±3.1
72.5 ± 3.1

73.1 ±3.1
71.7 ±3.1
76.9 ± 3.2

80.5 ± 3.2

75.6 ±3.1

6.3 ± 1.5

8.0 ± 1.6

5.7 ± 1.5

5.1 ± 1.4

5.2 ± 1.4

7.8 ± 1.6

6.5 ± 1.5

7.2 ± 1.5

8.0 ± 1.6

7.0 ± 1.5

1.6± 1.3

2.0 ± 1.3

2.0 ± 1.3

4.8 ± 1.4

3.4 ± 1.4

3.7 ± 1.4

3.5 ± 1.4

4.7 ± 1.4

5.6 ± 1.5

5.5 ± 1.5

t (h) PS(COOH)2 PS(OH).

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

0.12 mg/ml 0.12 mg/ml

149.2

120.9

114.7

127.6

130.3

125.2

124.5

130.8

123.8

±4.7
±4.3
±4.3
±4.4
±4.5
±4.4
±4.4
±4.5
±4.4

46.5 ± 3.2

49.4 ± 3.4

53.6 ± 3.3

50.7 ± 3.3

50.2 ± 3.2

52.9 ± 3.3

49.8 ± 3.3

54.4 ± 3.4

47.9 ± 3.2

concentration =

0.25

0.5

1.0

2.0

4.0

15.0

24.0

48.0

96.0

120.0

concentration = 0.01 mg/ml

19.8 ± 2.0

18.6 ±2.0
16.8 ± 1.9

17.1 ± 1.9

15.2 ± 1.8

13.8 ± 1.8

13.0 ± 1.8

14.5 ± 1.8

12.9 ± 1.8

13.5 ± 1.8

Below
detection

limit

Below
detection

limit

0.083
0.25

0.50

1.0

2.0

3.0

6.0

14.0

24.0

0.083

0.25

0.50

1.0

2.0

3.0

6.0

14.0

24.0

48.0

96.0

120.0

0.067 mg/ml
151.5 ±4.6
142.6 ± 4.6

128.5 ± 4.4

116.5 ±4.2
120.3 ±4.3
110.5 ±4.1
103.9 ±4.1
113.0 ±4.2
108.6 ±4.1

0.056 mg/ml
30.7 ± 2.8

31.0 ± 2.8

34.7 ± 3.2

31.7 ± 2.9

29.0 ± 2.7

26.0 ± 2.7

33.4 ± 2.9

28.8 ± 2.7

31.1 ± 2.8

0.015 mg/ml 0.019 mg/ml

89.0 ± 3.8

63.7 ± 3.4

51.5 ±3.2
78.8 ± 3.7

59.7 ± 3.3

68.2 ± 3.5

74.6 ± 3.6

60.2 ± 3.4

47.6 ± 3.2

45.4 ± 3.2

50.2 ± 3.2

47.7 ± 3.2

19.7 ± 2.5

24.7 ± 2.7

19.8 ± 2.5

19.4 ±2.5
16.6 ± 2.4

14.1 ±2.3
16.5 ± 2.4

16.1 ±2.4
15.5 ± 2.4

14.4 ± 2.3

13.5 ±2.3
13.4 ± 2.3

Continued, next page
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Table 4.3 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

I \n) DC /^/^/^n
PS-OH

concentration = 0.001 mg/ml

0.25 7.3 ± 1.6 Below
0.5 7.0 ± 1.5 detection
1.0 6.4 ± 1.5 limit
2.0 6.2 ± 1.5

4.0 5.7 ± 1.5

8.0 4.1 ± 1.4

24.0 4.2 ± 1.4

48.0 3.4 ± 1.4

72.0 3.6 ± 1.4

PS-H t (h) PS(COOH)2 PS(OH).

Below
detection

limit
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cone PS-COOH
(mg/ml) (^ig/cm2)

PS-OH PS-H

Number average molecular weight - 5K

0.071 ± 0.013 0.036 ±0.007
0.1 14 ± 0.018 0.044 ± 0 008
0.259 ± 0.035 0.053 ± 0.009
0.320 ± 0.043 0.073 ±0 012
0.366 ± 0.048 0.081 ±0 013

0.001

0.013
0.115
0.530
1.05

0.031 ±0.007
0.036 ± 0.007
0.044 ± 0.008
0.060 ± 0.011
0.068 ±0.011

Number average molecular weight - lOK

0.001

0.012
0.015

0.019
0.106
0.150
0.190
0.520
0.937

1.12

1.51

0.057 ± 0.010 0.049 ± 0.008 0 046 + 0 008
0.092 ± 0.015 0.059 ± 0.009 0.050 ? 0.009

0.254 ± 0.035 0.066 ± 0.011 0.073 ± 0.012

0.393 ± 0.051 0.089 ± 0.015 0.081 ± 0.013

0.432 ± 0.057 0.110 ± 0.017 0.105 ±0.016

Number average molecular weight - 30K

0.001

0.012
0.016
0.027
0.110
0.150
0.203

0.530
1.06

2.43

2.71

0.108 ± 0.017 0.070 ± 0.012 0.072 ±0 012
0.156 ± 0.023 0.091 ± 0.015 0.092 ± o!oi5

0.372 ± 0.050 0.114 ± 0.017 0.103 ±0.016

0.491 ± 0.065 0.165 ± 0.026 0.153 ± 0 022
0.563 ± 0.073 0.182 ± 0.026 0.172 ±0.025

PS(C00H)2 PS(OH)2

0.031 ±0.009

0.046 ±0.011

0.015 ± 0.006

0.023 ± 0.008

0.095 ± 0.019 0.036 ± 0.009

0.317 ± 0.056 0.068 ± 0.015

0.035 ± 0.008

0.051 ±0.011

0.013 ± 0.004

0.021 ± 0.005
0.209 ± 0.036 0.050 ±0.011
0.278 ± 0.048 0.092 ± 0.018
0.610 ±0.106

0.265 ± 0.046

Continued, next page
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Table 4.4 Continued

cone PS-COOH
(mg/ml) (^ig/cm^)

PS-OH

(^ig/cm^)

PS-H

(^ig/cm2)

PS(C00H)2

(lig/cm^)

PS(0H)2

(|ig/cm2)

Number average molecular weight - 60K

0.013

0.017

0.101

0.120
0.567
0.711

1.050
1.922

2.234

0.11810.025

0.15010.031

0.366 ± 0.066

0.067 ± 0.016

0.096 ± 0.021

Number average molecular weight - 140K

0.247 ± 0 046
0.446 ± 0.079 0.302 ± 0.055

0.6401 0.110 0.380 10.066

0.001 0.158 1 0.023
0.014 0.193 1 0.027
0.118 0.257 1 0.035
0.530 0.379 1 0.049
0.570
0.620
1.150 0.434 1 0.057
1.294

2.410

2.553

0.1521 0.023

0.181 1 0.026 0.3001 0.053 0 148 + 0 028

0.i52 1 0.035
0:^8 i 0.036

0.485 1 0.087

0.277 1 0.037 0.6101 0.108

0.6001 0.106

0.21510.041

0.270 1 0.050

0.320 1 0.059

The adsorbances 'of polystyrenes wilhtetnl^rtTaTa cot S mX^an average of the counts obtained from two glass sUdes after 48 h and no kineticmeasuremenl. were performed. n,e error associated with the adsrban^Ts the summationof the random, systematic and other errors mentioned in secUon 4 2 4
''""""'«'°"
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cone PS-COOH

(mg/ml) (Mg/cm2)

PS-OH

(^ig/cm2)

PS-H PS(COOH)2

(^ig/cm^) (pg/cm2)

PS(()H)2

(^ig/cm^)

Number average molecular weight - 5K

0.002 0.006 ± 0.003
0.010 0.013 ± 0.004
0.053 0.079 ±0.013
0.103 0.132 ±0.019
0.150 0.139 ± 0.021
1.050 0.142 ±0.021

below
detection

limit

(b. d. 1. )

below
detection

limit

(b. d. 1.)

Number average molecular weight - lOK

0.001 0.010 ±0.004
0.012 0.023 ±0.006

(b. d. 1. ) (b. d. 1. )

0.015
^'-''^ ^'-'-''^

0.019

0.060 0.058 ± 0.010 0.006 ± 0.003 0.005 ± 0 003

0 497
0-^08 ±0.017 0.014 ± 0.004 0.012 ±o'o04

0.570 0.155 ± 0.022 0.029 ± 0.006 0.017 ± 0.005

J

- 150 0.185 ± 0.026 0.036 ± 0.009 0.022 ± 0.005

Number average molecular weight - 30K

0.001 0.006 ± 0.003 b. d. 1. b d 1

0.014 0.010 ± 0.004 0.010 ± 0.004 0.009 ± 0.004

0.050 0.023 ± 0.006 0.019 ± 0.005 0.017 ± 0 005
0.120 0.042 ±0.009
0-150 0.026 ± 0.006 0.022 ± 0.005
0.479
0.510 0.110 ±0.017
0.709

1.050 0.136 ± 0.020 0.043 ± 0.009 0.036 ± 0.008
2.210
2.600

0.065 ± 0.015

0.144 ±0.028
0.168 ±0.031

0.201 ± 0.037
0.210 ±0.039

0.215 ± 0.039

0.019 ±0.006
0.041 ±0.010
0.065 ± 0.015

0.091 ±0.019

0.130 ±0.026

0.087 ± 0.017

0.126 ±0.023

0.187 ± 0.033

0.268 ± 0.046

0.270 ± 0.047

0.011 ±0.004

0.019 ±0.005

0.030 ± 0.007

0.048 ± 0.010

0.048 ±0.010

Continued, next page
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Table 4.5 Continued

cone PS-COOH

(mg/ml) (^ig/cm^)

PS-OH

(fig/cm^)

PS-H

(|ig/cm2)

PS(C00H)2

(^ig/cm^)

Number average molecular weight - 60K

0.013
0.119
0.129
0.603
0.649
0.965

1.020

1.890

1.900

Number average molecular weight - 140K

PS(0H)2

(^ig/cm^)

0.066 ±0.015 0.013 ± 0 005
0.080 ± 0.018

0.106 ±0.023

0.132 ±0.026
0.143 ± 0.029

0.015 ± 0.007

0.066 ±0.016
0.116 ±0.023

0.118 ±0.024

0.001

0.012
0.015

0.021

0.056
0.125

0.164
0.600

1.200

1.269

1.294

2.342

2.553

0.007 ± 0.003
0.016 ±0.005

0.021 ± 0.005
0.032 ± 0.007

0.074 ± 0.012

0.090 ±0.014

0.006 ± 0.003
0.014 ± 0.005

0.019 ±0.005
0.030 ± 0.006

0.042 ± 0.012
0.010 ± 0.007

0.012 ±0.007
0.102 ± 0.022

0.065 ±0.011 0.137 ± 0.029 0.036 ±0.011
0.058 ± 0.010

0.222 ± 0.042

0.225 ± 0.043
0.072 ± 0.018

0.084 ± 0.020

Note: cone stands for concentration. Adsorbances along a particular row are from
solutions of different exact concentrations but the average concentration (deviation < ±10
%) IS given at the extreme left column in an effort to prepare a compact table The exact
concentration of the solutions were determined from the Uquid scintiUation cocktail of three
aliquots each of 25 [lI The adsorbances of polystyrenes with one end-group at
concentrauons of ~ 0.05, ~0. 15, and - 0.5 mg/ml is an average of the counts obtained from
tour glass slides after 360 h and no kinetic measurements were performed. The error
associated with the adsorbance is the summation of the random, systematic and other errors
mentioned in section 4.2.4.
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4.4 Discussion

The amount of end-functionalized polystyrenes (represented by the counts per minute
obtained after background subtraction divided by the geometric area) adsorbed to glass

from cyclohexane at 36.7±0.
1 for the 10 K sample at a solution concentration of ~ 1

mg/ml as a function of time are shown in figures 4.1a and 4.1b. The data is presented in

Table 4.2. It is evident from the figures that carboxylic acid end-functionalized samples

adsorb rapidly to glass and maximum adsorbance is reached within 0 to 15 min of contact.

Polystyrene with two hydroxyl end-groups adsorbs as rapidly as the carboxyUc acid end-

functionalized polystyrenes. The polymer with a hydroxyl end-group (PS-OH) and the un-

functionalized polymer (PS-H) adsorb at the same rate and reach equilibrium adsorbance

within 3 to 4 h. Their rate of adsorption is smaller when compared to the carboxylic acid

end-functionalized polystyrene and the difference is not that significant to warram a

discussion.

In general the rate of adsorption in cyclohexane foUows the following trend: HOOC-

PS-COOH ~ PS-COOH ~ HO-PS-OH > PS-OH > PS-H. The rate of adsorption also

decreases with concentration and increasing molecular weight The observed decrease in

the equilibriation time with decrease in concentration is well documented ^2 and is beUeved

to be the effect of the rearrangement of the segments at the surface so as to achieve a fiatter

conformation. SmaU molecular weight polymers adsorb rapidly compared to polymers of

large chain length because equilibriation is not only limited by material transport but also by

tiie large number of molecular rearrangements that are hypotiiesized to take place in order to

reach a state of minimum energy.
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solvent - cyclohexane; M„ = 10000; c = 1.0 mg/ml; T = 36.7 ± 0.1°C; a - ISF; b - 2SF
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ru. amount Of end-functionaHzed polystyrenes (represen.d by the counts per minute
Obtained after background subtraction divided by the geometric area) adsorbed to glass
from a solution of concentration - 1 mg/m, as a function of Unte for the ,0 K samples are
shown m figures 4.2a and 4.2b. The data are presented in Table 4.3.

Polystyrenes with carboxy.ic acid and hydroxyl funcUona. groups at both the chain
ends adsorb rapidly to glass and equilibrium adsorbances are recorded within a few hours

kinetics Of the adsorpUon ofPS-COOH sample exhibits an interesting feature; an initial

maxtmum ir, the amount adsorbed occurs 5 to 15 min into the experiment following which
i. declines to an equtlibrium value in about 24 - 48 h. This phenomenon is reproducible in

its trend as well as in the absolute cpm obtained within ± 10%. Earher this was reported

for the adson„ion of poly(styrene-b-ethylene oxide) from cyclopentane soluUon to glass by
Gast. 13 However theory predicts a rapid initial adsorption to a mushroom type

conformation (diffusion controUed) from which a denser coverage is obtained by the

penetration of the sticky block to the interface to form a more brushy conformaUon over

longer times (logarithmic change). Experimental results on the kinetics of the adsorption

of poly(styrene-b-eU,ylene oxide) block copolymer to silicon dioxide from toluene

monitored by eUipsometry seem to agree with the above prediction. However one camiot

escape noticing a statement made by the authors, that "Tlte maximum adsorbed amount at

long times decreases with increasing lengths of tiie nonadsorbing tail". This suggests that

for a given entiialpy of interaction witii the surface the amouM adsorbed would go through

a maximum as one goes through a conformational transition from strongly stretched

brushes through weakly stretched brushes to mushroom type structures.
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solvent - toluene; M„ = 10000; c = 1.0 mg/ml; T = 23.0 ± 1.0 °C; a - ISF; b - 2SF
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In our case the differential enthalpy of interaction of the -COOH group with the surface

is ~ 4 kT (it is 5 kT in cyclohexane^^ and since toluene interacts with the surface it is less)

and therefore this interaction energy is not capable of stretching the chains strongly.

Experimental fact is that these chains desorb to different extents, depending on contact time

and molecular weight, on contact with pure toluene after adsorption. Also, polystyrene

segments interact with silica with an interaction energy of the order 0.3 kT.l7 Combining

these factors we hypothesize that PS-COOH chains form weakly stretched brushes at low

time scales which eventually rearrange to an energeticaUy more stable mushroom type

structures on the surface at longer times. This is clearly counter-intuitive and contradicts

theoretical predictions. The justification for the hypothesis is as follows: The backbone

structure of the polystyrene is similar to the structure of toluene. Therefore it is reasonable

to assume that the enthalpy of interaction of the polystyrene segment with the surface is

approximately equal that of toluene. The polymer segments possess an additional

advantage in that once a molecule is bound by a few segments in a cooperative fashion its

probability of desorpUon is lower than that of an isolated toluene molecule. In aU

probability there is a stiff competition between the -COOH and the solvent molecules

during the initial stages of the adsorption (0 to 5 min) for the surface sites. This is

understandable from the fact that the concentration of the -COOH group at a solution

concentration of 1 mg/ml is 2 x 10"^ moles/Uter and its differential enthalpy of interaction

with the surface is ~ 4 kT while the concentration of the solvent molecules is ~ 9.4

moles/liter and its differential enthalpy of interaction is = 0.3 kT. In addition the number of

-COOH groups at the surface is also limited by the hydrodynamic size of the polystyrene

backbone to which it is attached, being less the larger the size of the molecule as a whole.

With time polystyrene segments (with similar enthalpy of interaction and solution

concentration of 9.6 x 10'^ moles/liter) bind "co-operatively" to the surface displacing

some solvent molecules and polystyrene molecules bound either with a terminal group or

with a terminal group and a few segments.
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The above hypothesis does result in fewer chains being attached with time. Solvent

bmding to the surface is supported by the fact that some of the bound polymer is desorbed

when brought in contact with fresh solvent for 15 min (three washes), but stiU leaves a

significant amount on the surface as analyzed by x-ray photoelectron spectroscopy (PS-

COOH, 5K, 1 mg/ml leaves about 5 A of polymer after three washes).

PS-OH and PS-H adsorb to glass at a smaller rate but reach equihbrium adsorbance

faster as Oie unusual kinetics observed with PS-COOH sample is not observed here. We
think that the hydroxyl group is not as effective a competitor for the surface sites as the

carboxylic acid group and therefore the initial orientation of the chains followed by the

subsequent "cooperative" binding of the segments to kick out loosely bound chains is not

observed.

The familiar adsorption maximum followed by the decline to a steady state value

observed for PS-COOH samples is not observed with HOOC-PS-COOH samples. It is

possible that this phenomenon takes place at time scales shorter than that tried (5 min). If

that is the case we do not know why it takes place that fast. In general we are unable to

account for this phenomenon in a discrete manner but beUeve that at this end group

concentration and the enthalpy change per chain (~ 8 kT) brought about by the carboxyUc

acid groups alone is sufficient for adsorption and probably the segments with an enthalpy

of interaction of a fraction of kT do not compete for the surface.

In general the rate at which equilibrium adsorbance is reached follows the following

trend: HOOC-PS-COOH ~ HO-PS-OH > PS-OH ~ PS-H > PS-COOH. This rate also

decreases with decreasing concentration and molecular weight for the same reasons as

explained earlier (see section 4.4.1).
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4.4.3 Adsorption Isotherms in Cyclohexane

The adsoiption isotherms for all the functionalized and un-functionalized polystyrenes

in the order of increasing molecular weight are shown in figures 4.3 to 4.7. The data is

presented in section 4.3. Tables 4.4 and 4.5. All the adsorbance data are presented in the

units of ng/cm2 The units used in most of the pubUcations in the adsorption literature is

mg/m2 the reason being the use of high surface area adsorbents. The multiplication of the

adsorbance data presented here by 10 converts it to the mg/m^ units.

An inspection of the isothenns reveals the following facts: 1) Adsorbance increases

with concenu-ation of the polymer in soluUon for the un-functionalized and functionalized

polystyrenes. All the samples exhibit high affinity isotherms, i.e at very low solution

concentrations adsorbance maximum is reached. 2) The derivative of the adsorbance with

respect to the concenti-aUon (dA/dC or die slope of A vs. C) as a function of concenti-ation

of the polymer in solution exhibits interesting features for PS-COOH, HOOC-PS-COOH,

and HO-PS-OH. 3) The adsorbance of polystyrene with a hydroxyl end-group (PS-OH) is

die same as that of un-functionalized polystyrene within experimental error and therefore a

hydroxyl end-group doesn't function as an effective sticky foot 4) The ratio of the

adsorbances of functionalized polystyrene to un-functionalized polystyrene is a function of

die concenti-ation of the polymer in solution, type of the functional end-group and its

location. Each of the observed facts is discussed in detail in the foUowing paragraphs.

The amount of polymer adsorbed increases with concenti-ation for all die polymers as

observed earlier. -j^is is because of the change in the conformation of the adsorbed chain

as a function of increasing solution concenti-ation. At low solution concenti-ation the

average conformation of the chains in die adsorbed state consists of a large number of

segments in ti-ains, some in small loops and tails. At very high solution concenti-ation (say

at the maximum adsorbance) the average conformation of the adsorbed chain consists
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solvent - cyclohexane; M„ - 30000; T - 36.7 ± 0.1 °C; top - ISF; bottom - 2SF
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solvent - cyclohexane; Mj^ - 60000; T - 36.7 ± 0.1 °C
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solvent - cyclohexane; M„ - 140000; T - 36.7 ± 0.1 »C; top - ISF; bottom - 2SF
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of a smaller number of segments in trains and larger number of segments in bigger loops

and longer tails. This explanation also foUows direcUy from the adsorbance data if one

calculates the effective surface area per chain as a function of concentration (assuming

uniform surface coverage). Tl.e amount of un-functionalized polystyrene adsorbed as a

funcUon of concentration and molecular weight is consistem in magnitudes and trends with

previously reported results of Stromberg 4. 12 Granick.18 and Takahashi 19
within

experimental error.

The slope of A vs. C for PS-COOH, HOOC-PS-COOH and HO-PS-OH follows that

of polystyrene at very low solution concentration and increases abruptly at some

intermediate concentration before levelUng off just as observed with polystyrene. The

slope changes are functions of molecular weight and therefore are functions of end-group

concentration.

The reason why hydroxyl end-group is not an effective sticky foot is probably due to

its weak enthalpic interaction with the surface even though its magnitude might be

marginally higher than the interaction energy of a polystyrene segment with the surface.

This in principle might bring one end of the chain to the surface but its interaction energy

may not pay for the stretching of the chains in order to accommodate more end-groups at

the surface. Therefore polystyrenes with one hydroxyl end-group adsorb in conformations

similar to that of polystyrene resulting in ahnost the same adsorbances at all the

concentrations and molecular weights. In addition it is possible that one end of the

hydroxyl end-functionalized polystyrene is at the surface.

The ratio of the adsorbances of functionalized polystyrene to un-functionalized

polystyrene is a function of the concentration of the polymer in solution, type of the

functional end-group and its location. Each of these cases are discussed for a particular

molecular weight (lOK) in the following paragraphs.

As the concentration of the polymer in solution is increased, the ratio of the

adsorbances of PS-COOH to PS-H increases rapidly as shown in the next page.
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segment concentration end-group cone. "^PS-COOH /

(moles/liter) (moles/liter) ratio

0 001 1 + 0 00'^
l.Oo X 10 1.1 X 10-"^

1.24

0 010 + 0 040 y.D X 10 1.0 X 10-6
1.84

0.095 ± 0.010 9.12 X 10-"^
9.5 X 10-6

3.47

0.480 ± 0.022 4.61 X 10"^ 4.80 X 10-5
4.85

1.150 ±0.040 1.10 X 10-2 1.15 X 10-4
4.11

PS-H

At the lowest concentration the ratio is 1.24. This suggests that the conformation of

adsorbed chains of PS-COOH and PS-H are similar. As the concentration of the polymer

in solution is increased, the adsorbance of PS-COOH sample increases much more rapidly

than that of the PS-H samples (Aj^.^qoh / ^ps-H ratio). For any given solution

concentrauon the concentration of the segments is the same for PS-COOH and PS-H whUe

the end-group concentration increases with increasing solution concentration. The increase

in the ratio is therefore due to the increase in the absolute concentration of the carboxylic

acid end-group and these groups compete with the segments of the backbone for the

surface sites. The result of this argument is that PS-COOH chains adsorb with much of

their backbone extended normal to the surface in order to accommodate more carboxylic

acid end-groups at the surface. The energy of extension of the backbone or stretching of

the chain is then paid for by the surface-carboxylic acid interaction enthalpy. The fact that a

similar phenomenon does not take place at lower polymer concentration is probably due to

the fact that the absolute concentration of the end-group is much smaller than that of the

segments, which must compete effectively for surface sites as evidenced by the adsorption

of the un-functionalized polystyrene.

The maximum amount adsorbed at this molecular weight (0.432 |ig/sq cm) is consistent

with that reported by Satija, et al.,^^ for the adsorption of PS-COOH of number average
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molecular weight 14K from deuteriocyclohexane to siUcon dioxide. They used neutron

reflection technique to determine the adsorbance and reported a value of 0.41 ng/sq cm at ~

21 °C and also found it to be independent of temperature up to 42 °C.

Comparing the variation of the chain architecture with that of un-functionalized

polystyrene (i.e. comparing the area occupied per chain from the adsorbance data) we can

conclude that the transformation of the chain confomiation from that dominated by trains to

those dominated by loops and tails takes place at a much lower solution concentration for

the PS-COOH sample.

The ratios of the adsorbances of polystyrene with two carboxylic acid end-groups to the

un-functionaUzed one as a function of concentration are given below. The adsorbances of

un-functionalized polymers at any given concentration were interpolated from the

adsorbance isotherm of the lOK sample.

concentraUon segment concentration end-group cone. A^QQ^^.p^
^.^qj^ / Ap^.j^

(mg/ml) (moles/Uter) (moles/Uter) ratio

0.015 1 0.002 1.44x 10-4 3.0 x lO'^ o.62

0.150 ± 0.005 1.44x 10-3 3.0x10-5 0.82

0.938 ±0.014 9.01x10-3 1.9 xlO-^ 0.95

1.510 ± 0.020 1.45 x 10-2 3.0 xlO-^ 3.00

The ratio increases with increasing solution concentration being lower than one at all

concentrations below ~ 1 mg/ml. This indicates that a significant number of HOOC-PS-

COOH chains might have adsorbed with both their ends at the interface, resulting in fewer

number of tails in the average structure of the adsorbed layer and therefore lower adsorbed

amount.

The ratios of the adsorbances of polystyrene with two hydroxyl end-groups and to the

un-functionalized one as a function of concentration are given below. The adsorbances of
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un-funcUo„aIized polymers at any given concentraUon were interpolated from the

adsorbance isotherm of the lOK sample.

concentration ^cgiiiciu tunceniraLion end-group cone. ^HO-PS-OH^
yin^ iiiij (moles/hter) (moles/liter)

ratio

0.019 ±0.002 1.82 X 10-"^
3.8 X 10-6

0.27

0.1901 0.006 1.82 X 10-3
3.8 X 10-5

0.32

0.935 ±0.012 8.98 X 10-3
1.9 X 10-"^

0.38

1.450 ±0.016 1.40 X 10-2
2.9 X 10-^

0.65

The ratio increases with increasing solution concentration being lower than one at aU the

concentrations. This indicates that most of the HO-PS-OH chains might have adsorbed

with both their ends at the interface, resulting in a fewer number of tails in the average

stincture of the adsorbed layer and therefore lower adsorbed amount. Hydroxyl end-

groups probably interact with the surface with an enthalpy of interaction marginaUy greater

than the polystyrene segments. This might result in chain sti^ctures devoid of tails. As

tails contiibute significantiy to the adsorbed amount this results in adsorbances lower than

those for un-functionalized polystyrene.

On comparing tiie adsorbance ratios of dicarboxylic acid and dihydroxyl terminated

polystyrenes at low concentrations we infer that the dicarboxylic acid adsorbs with longer

and a larger number of loops.

4.4.4 Adsorption Isotherms in Toluene

The adsorption isotherms for the functionalized and un-functionalized polystyrenes are

shown in figures 4.8 to 4.12 and are presented in the order of increasing molecular weight.

The data are listed in Table 4.5. Adsorbances are in the units of ng/cm^ which on

multiplication by 10 converts it in to units of mg/m^.
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solvent - toluene; M„ - 10000; T - 23.0 ± 1.0 ^C; top - ISF; bottom - 2SF
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solvent - toluene; M„ - 30000; T - 23,0+ 1.0 «C; top - ISF; bottom - 2SF
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solvent - toluene; - 60000; T - 23.0 ± 1.0 °C
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solvent - toluene; M„ - 140000; T - 23.0 ± 1.0 °C; top - ISF; bottom - 2SF
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An inspection of the isotherms reveal the same facts and trends as observed and

explained for in cyclohexane. However the absolute magnitude of the adsorbances remain

to be explained. The adsorbances of polystyrenes with a carboxylic acid end-group in

toluene is always lower than that in cyclohexane (samples with a hydroxyl end-group

function have the same adsorbance as polystyrene within experimental error). The radius

of gyration of a polystyrene coil in toluene is greater than its radius in cyclohexane as the

segments prefer toluene over other segments (often referred as the osmotic interaction of

the solvent). In addition the solvent swollen segments within a coU and among coils avoid

each other (self-avoidancy) and this repulsive interaction is referred to as excluded volume

interaction. Because of the above two factors individual chains occupy more surface area

and its difficult to compress them in the volume above the surface and hence lower

adsorbances.

Absorbances of polystyrenes with two end groups foUows the above pattern at high

molecular weights and solution concenti-ations. However at low concentrations peculiar

behavior is observed. This is explained in detail by comparing the adsorbances of lOK

samples in toluene.

Concentration ^PS-COOH ^ ^PS-H "^HOOC-PS-COOH ^ "^HOOC-PS-COOH

(mg/ml)
"^PS-H "^PS-COOH

1.00 8.41 9.55 1.14

0.50 9.12 11.82 1.30

0.10 9.00 14.0 1.56

0.06 11.6 28.8 2.48

0.02 2.83
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Concentration

(mg/ml)

1.00

0.50

0.10

0.06

PS-OH ' ^PS-H

1.64

1.71

1.17

1.20

HO-PS-OH I ^PS-H

5.91

5.35

5.42

8.20

HO-PS-OH ' ^PS-OH

3.61

3.14

4.64

6.83

The role of carboxylic acid end group in increasing the adsorbance is particularly

relevant if the increase in the ratio with decreasing solution concentration (within a column)

and by the presence of a second carboxyUc acid end group (among columns)is noticed. A

similar effect is seen for the HO-PS-OH. In cyclohexane the ratio of the adsorbances of di-

functionally-terminated polystyrenes to polystyrene was less than one at low concentrations

and surpassed one as the concenu-ation in solution was increased revealing interesting

conformation changes from that dominated by trains (at low concentrations) to that

dominated by loops and tails (at high concenu-ation). In toluene the segments do not

compete effectively for surface sites as their differential enthalpy of interaction with the

surface is marginal and are not relevant unless the number of segments per chain is large

(high molecular weights). Therefore polystyrenes with two functional end-groups must

adsorb wiUi an average conformation consisting mainly of loops. The size of tiie loop

probably depends on the enthalpy of interaction of tiie end-group with the surface (the

higher the enthalpy the larger the loops). Based on these arguments the size of tiie loops in

an adsorbed HO-PS-OH molecules is much smaller than Uiat of HOOC-PS-COOH.

Even tiiough hydroxyl end-group is not an effective sticky foot under most of tiie

solution conditions, it is clear tiiat it is if tiie concenti-ation of tiie hydroxyl end-group is

high enough as evident from tiie adsorbance of HO-PS-OH (1 mg/ml; lOK). Lower

molecular weights and higher solution concentrations result in higher end-group

concentration and these result in higher adsorbances (in the absence of significant
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competiUon from the segments of the backbone) and this is iUustrated by the A^^ooc ps
COOH /Aps.cooH raUos of lOK (and 30K sample as well). Similar arguments a^y to
samples of higher molecular weight as well.

It is interesting to note that a plot of the differenees in the adsotption of carboxyUc acid-

terminated polystyrene and un-funcUonalized polystyrene versus the end-group

concentraUon is a straight line independent of molecular weight, in a certain reghne of end-

group concentration. This is shown in figure 4.13.
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4.4.5 Molecular Weight Effects

The effect of chain length or molecular weight on the adsorbance at a solution

concentration of 1 mg/ml is shown in figures 4.14a (cyclohexane) and 4.14b (toluene).

Adsorbance increases with molecular weight as M« where a = 0.42 ± 0.02 in cyclohexane

and 0.33 ± 0.03 in toluene. Adsorbance is predicted to increase with molecular weight as

A = KM« by Koral where K is a constant.2l The reason behind the increasing adsorbance

is that many more segments are present in loops and tails for the same surface coverage as

the molecular weight increases. However adsorbance does reach a plateau at very high

molecular weights. This is because the dimension of the chain increases with molecular

weight and these chains in view of a smaU fraction of segments being required to overcome

the critical adsorption energy, adsorb undistorted from their conformation in solution and

therefore the surface area occupied per chain increases. At some high molecular weight the

increase in adsorbance owing to the presence of a larger number of segments in loops and

tails is compensated by the increasing surface area per molecule and adsorbance reaches a

plateau value.

The variation of the adsorbances of carboxyUc acid-terminated polystyrene as a function

of molecular weight at two different solution concentrations in cyclohexane and toluene are

shown in figures 4.15 and 4.16.

From the adsorption isotherms we recognize that the adsorbance is governed by two

contributions. The first and major contribution is from the concentration of the end-groups

which is inversely proportion to the molecular weight (in addition to the absolute

concentration in solution) and the second is from the concentration of the segments and the

number of segments per molecule or the molecular weight. Therefore adsorbance is given

by the empirical equation shown below.

A = KM« + J [end-group]P

where K and J are arbitrary constants, a is the power law index for polystyrene and the

value of P is not known (positive and greater than zero). The molar concentration of the
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concentration = 1 mg/ml; a) cyclohexane; b) toluene
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concentration = l mg/ml; a) cyclohexane; b) toluene
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concentration = 0.01 n,g/n,l; a) cyclohexane; b) toluene
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end-group is given by c/M where c is the concentraUon of the solution is mg/ml or g/1 and

M is the number average molecular weight. The first term is from the adsorption of

segments alone ( as in the case of un-functionalized polystyrenes or very dilute solutions of

PS-COOH when Ap^.^^Q^j^ = Ap^.j^). The second term is from the increasing adsorbance

that takes place above a certain threshold concentraUon of the carboxylic acid end-group,

independent of the molecular weight. However it applies only to a limited range of end-

group concentration (10^ moles/liter for carboxylic acid end-group). The significance of

this term is reduced at very low solution concentrations or higher molecular weights. There

is an additional term involving the probability of a functional end-group being present at the

periphery of the coil for attachment on contact with the surface (it can be shown to be

proportional to M"^ and its effect is particularly relevant at high molecular weights. The

importance of the term is recognized but it is ignored in the present discussions as most of

the samples studied were of low molecular weight. The following discussions are based

on the above equation.

The adsorbance of PS-COOH increases with molecular weight and after a certain

critical molecular weight decreases towards that of un-functionalized polystyrene. This

initial increase is due to the increase in the number of segments with molecular weight (note

that the concentration of the carboxylic acid end-group is still above the threshold and

therefore they compete for surface sites and pack effectively). Above the critical molecular

weight the concentration of carboxylic acid end-group is below the threshold value and

hence the contribution from the second term for the adsorbance is negligible. At high

enough molecular weights adsorbances are due to the term KM" alone and therefore PS-

COOH samples at this molecular weight behave as though they contain no end-group. This

argument is applicable at low end-group concentration as well and therefore at low solution

concentrations adsorbance should monotonically increase with molecular weight and reach

a plateau value at some high molecular weight just as in un-functionalized polystyrene and

that this is the case is shown in figure 4.16a. In toluene similar trends are observed for PS-
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COOH samples but the critical molecular weight above which adsorbance starts to decrease

is lower. Tliis is because of an additional osmotic repulsion term that minimizes the effect

of the end-group and is not discussed in detail.

The variation of the adsorbances of di-functionally-terminated polystyrenes as a

function of molecular weight at two different solution concentrations in cyclohexane and

toluene are shown in figures 4.17 and 4.18. In cyclohexane adsorbance increases with

molecular weight at low solution concentrations, an effect attributed to the increasing

number of segments in loops with the majority still being present in trains with both the

ends at the surface. At higher solution concentrations the end-group concentration is well

above the threshold and therefore adsorbance increases with molecular weight. A decrease

from the plateau value at these concentrations is expected at very high molecular weights

(much above 140 K). In toluene the trends are similar to that observed with polystyrenes

with a carboxylic acid end-group, within experimental error.

The amount of carboxylic acid-terminated polystyrene adsorbed from cyclohexane

increases with increasing molecular weight up to a molecular weight of 30000. The

amount adsorbed at 140K is lower than that of the 30K sample but is still higher than that

of the un-functionalized polystyrene of molecular weight 140K. This result indicates that at

this molecular weight the effect of end-group is small.
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concentration = 1 mg/ml; a) cyclohexane; b) toluene
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concentration = 0.01 mg/ml; a) cyclohexane; b) toluene
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4.4.6 Graft Density Calculations

The nonnaIi7,ed graft dcnsicy (c) as denned by de Gcnnes ^ was calculated .n an effort

to interpret chain stretching as a funcUon of end-group conccnlraUon uniformly. It is

defined as d,e ratio between the area occupied by a segment (usually U,e monomer or the

repeat unit that is considered to make up a segment) to that of an adsorbed chain and is

calculated as follows:

(A(^ig)x 10-6xN)/M„ =S (1)

where S is the surface density 22

1 /47cR2 =So ....(2)

and Sq is the number of coils per square centimeter of the surface if there were no

interaction with the surface and between the coils and they just pack the surface. r2 is the

radius of gyration squared.

is the number of coils per cm of the surface and therefore D the distance between

the grafting sites is the inverse of this quantity, o is the normalized gralUng density defined

as a2 / d2 where a is the monomer (styrene) segment length and was taken to be 5.7 A.23

All the above menUoned parameters for the adsorbed chains were calculated and the

numbers for the lOK sample in cyclohexane and toluene are shown in Table 4.6 and 4.7.

The plots of normalized graft density versus end-group concentration in moles/liter in

cyclohexane is shown in figure 4.19 and that in toluene in figure 4.20 for the lOK samples.

The plot shows three distinct regions; a) in the first region (at low concentration) the graft

density increase is very small with concentration, b) in the second region graft density

increases linearly with concentration and c) in the third region it is invariant to concentration

changes. The slope of the second region is a function of the molecular weight and

decreases with increasing molecular weight (not shown here). In addition to a high affinity

pattern the following trends are observed. 1) grafting density decreases with decreasing

end-group concentration and increasing goodness of the solvent (consistent with increasing

coil size and osmotic repulsions) for the single sticky foot samples. 2) In the case of the
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polymer with .wo .Ucky feet grafting density decrease with decreasing concentration in

cyclohexane is more than that in toluene. At low concentrations some unique solution

behavior in cyclohexane enables both the chain ends to bind resulUng in the graft density

being lower than that in toluene. TT^e parameters calculated for samples of other molecular

weight are shown in Appendix B.

212



Table 4.6 Surface Density, Distance between Cr^rt ^and Solution CharacteristkTin Cyclohexane
""""^"^

Number averaged Molecular weight - 10000

R
g

(A) (cm"2

PS-COOH

28.5 0.39

PS-OH

28.5 0.39

10-13 Cone

) (mg/ml)

0.0011

0.010

0.095

0.480
1.150

0.0014
0.013

0.105

0.550
1.085

S.C.xl06 E.G. xlO^Sx 10-13 d
(moles/1) (moles/1) (cm-2) (A)

10.6

96.0

912.1

4608.7

11041.8

13.4

124.8

1008.2

5280.8

10417.7

0.11

1.0

9.5

48.0

115.0

0.14

1.3

10.5

55.0

108.5

0.34

0.55

1.53

2.37

2.60

0.30

0.36

0.40

0.54

0.66

54.0

42.5

25.6

20.6

19.6

58.2

53.0

50.2

43.2

38.9

0.020

0.032

0.087

0.135

0.148

0.017

0.020

0.023

0.031

0.038

PS-H

28.5 0.39 0.0010

0.011

0.118

0.520

1.155

9.6

105.6

1133.0

4992.8

11089.8

0.28

0.30

0.44

0.49

0.63

60.1

57.6

47.7

45.3

39.8

0.016

0.017

0.025

0.028

0.036

HOOC-PS-COOH

28.5 0.39 0.015

0.150

0.938

1.510

144.0

1440.2

9006.2

14498.3

3.0 0.19 73.2
30.0 0.28 60.1
187.6 0.57 41.8
302.0 1.91 22.9

0.011

0.016

0.033

0.109

Continued, next page
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Table 4.6 Continued

Number averaged Molecular weight - 10000

Rg Sqx 10-13 Cone

(A) (cm-2) (mg/ml)

S.C.xl06 E.G. xlO^Sx 10-13 d
(moles/1) (moles/1) (cm-2) (A)

HO-PS-OH

28.5 0.39 0.019

0.190

0.935

1.450

182.4

1824.3

8977.4

13922.2

3.8 0.09
38.0 0.14
187.0 0.22
290.0 0.41

105.2

85.0

67.9

49.4

0.005

0.008

0.012
0.023

Note: R is the radius of gyration of the above polystyrenes at 34 s^r in . , u
reference 24. So . the number of coils per squ^e cen^™^^^^suSLTJno mteraction with the «>irfarp tu^ ^ ^ ,

J>unace it there were

per square cer,.Tmeter a ^^^^^^^^^ "l?
.^"rf?^, S is the number of coUs

S > So .hen the Polys.yrenetoniK;'~^T ' n "^^"^ ^
solution in ms/ml S C «and. L ,h„

concentration of the

moles/liter ^hi^E.C^st!^orleoZ'^^^^^ 5"'^^'^^^"^ ^^«">^"^ "
moles/liter. D is the distance n ^s^m taween »ld rhf^P
grafting density (unit less) as def.nld b^d^Sf " ' "
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Number averaged Molecular weight - 10000

R

(A)

g So X 10-13 Cone S.C. x 10^ E.G. x lo6 S x 10-13 d
(cm-

) (mg/ml) (moIes/1) (moles/1) (cm-2)

PS-COOH

(A)

33.0 0.29 0.0012

0.012

0.058
0.115

0.575
1.142

11.5 0.12 0.06
115.0 1.2 0.14
556.9 5.8 0.35
1104.2 11.5 0.65
5520.9 57.5 0.93
10965.0 114.2 1.11

128.9

85.0

53.5

39.2

32.7

30.0

0.003

0.008

0.020

0.037

0.053

0.064

PS-OH

33.0 0.29 0.0011 10.6 0.11
0.010 96.0 1.0
0.051 489.7 5.1
0.104 998.6 10.4
0.500 480.1 50.0
1.002 9620.7 100.2

PS-H

0.04 166.3 0.002
0.08 108.9 0.005
0.18 75.7 0.010
0.22 67.9 0.012

0.03 182.2 0.002
0.07 117.6 0.004
0.10 98.8 0.006
0.13 86.9 0.008

33.0 0.29 0.0014 13 4
0.017 163.2
0.058 556.9
0.118 1133.0
0.520 4992.8
1.155 11089.8

HOOC-PS-COOH

33.0 0.29 0.015 144.0 3.0 0.39 50 5 0 022
0.067 643.3 13.4 0.87 34.0 0.049
0.120 1152.2 24.0 1.01 31.4 0 058
0.560 5376.9 112.0 1.21 28.7 0 069
1.050 10081.6 210.0 1.26 28.1 0 072
1.500 14402.3 300.0 1.29 27.8 0.074

Continued, next page
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Table 4.7 Continued

Number averaged Molecular weight - 10000

Rg Sqx 10-13

(A) (cm-2)

HO-PS-OH

33.0 0.29

Cone

(mg/ml)

S.C.xl06 E.C.xlO^Sx 10-13 d
(moles/1) (moles/1) (cm-2) (A)

0.019 182.4
0.056 537.7
0.120 1152.2
0.497 4772.0
1.060 10177.6

3.8

11.2

24.0

99.4

212.0

0.11

0.25

0.39

0.55

0.78

93.5

63.6

50.5

42.7

35.7

0.007

0.014

0.022

0.031

0.045

Note: Rg is the radius of gyration of the above polystyrenes at 23 °C in toluene from
reference 24. Sq is the number of coils per square centimeter of the surface if there wereno interaction with the surface and the coils just pack the surface ^ th. n k T ,

per square centimeter after adsorption at equfbSnd is"c1^Ld tL Lrfae^ r61 'ifS > So then the polystyrene buoys will overlap. Cone stands for the concentra^^^^^
solution in mg/ml S.C. stands for the concentration of the polystyrene segments inmo es^iter while E.C. stands for the concentration of the end groupTcOOH ofoH inmo es/hter. D is the distance in angstrom between grafted chJns and s i^the normaVil^dgrafung density (unit less) as defined by de Gennef [22]

normahzed
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4.4.7 Surface Excess Calculations

The ratio of the number of polymer molecules present in an imaginaiy surface of unit

area immediately above the glass surface after adsorption to that present before adsorption

(t =0 min) in solution in the same area is defined as the surface excess. It was calculated

from the adsorbance (A ^ig/sq cm) and the solution concentration (c mg/ml) as foUows:

surface concentration of the polymer (molecules/sq cm) = A x lO'^ x N / M^,

solution concentration of the polymer (molecules/sq cm) = (c x lO'^ x N / M^)^'^

surface excess = surface concentration / solution concentration

This raUo gives a good idea about the compacmess of the adsorbed layer and the relative

viscosity of the polymer chains at the interface. This also enables us to know as to how

close the system is to c* (overlap concentration region) so that appropriate theories can be

applied to interpret the results in the future. The compactness of the adsorbed layer can be

best understood if the number of chains per unit area of the amorphous solid polymer is

calculated assuming a bulk density of 1 g/cm^ (reported values are between 1.04 and 1.07

for the amorphous polymer and around 1. 1 1 for the crystalline polymer)

As examples the calculated values for surface concentration, solution concenu-ation and

surface excess for functionaUzed polystyrenes of number average molecular weight 140K

are shown in Tables 4.8 (cyclohexane) and 4.9 (toluene). The number of molecules per

square centimeter of an imaginary surface in amorphous polystyrene of number average

molecular weight 140K turns out to be 2.65 x 10^^ -j^e surface concentration of

carboxylic acid-terminated polystyrene on glass increases with concentration of the polymer

in solution and reaches that of the amorphous polymer at very high concentration of the

end-group. This indicates that the viscosity of the polymer in the adsorbed layer must be

extremely high (particularly in a poor solvent) that any approach to true equilibrium from

the quasi steady state adsorbance would take a long time (as x = A exp(r|j/ri2)).
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Table 4.8 Surface Excess Results in Cyclohexane

solution concentration
(mg/ml) (molecules/sq. cm) PS-c6oH

surface concentration

PS-H
surface excess

PS-COOH PS-H

0.001 2.66 e+8 6.80 e+U 6.54 e+11 2560 2459
0.01 1.23 e+9 8.30 e+11 7.79 e+11 674 632
0.1 5.71 e+9 1.11 e+12 8.95 e+U 194 157
0.5 1.67 e+10 1.63 e+12 1.08 e+12 98 65
1.0 2.65 e+10 1.87 e+12 1.19 e+12 71 45

0.013 1.39 e+9 0.015 1.53 e+9 1.27 e+12 6.11 e+11 916 401

0.109 5.76 e+9 0.126 6.35 e+9 1.61 e+12 7.49 e+11 280 118

0.570 1.75 e+10 0.620 1.85 e+10 2.07 e+12 9.03 e+11 118 49

1.147 2.79 e+10 1.294 3.02 e+10 2.62 e+12 1.18 e+12 94 39

2.41 4.58 e+10 2.553 4.76 e+10 2.58 e+12 1.39 e+12 56 29

Note: mo]/cm2 stands for molecules/square centimeter on an imaginary plane above the

surface. In solution at t = 0 min it is the number of molecules per cubic centimeter to the

power two thirds. Surface concentration was obtained from the adsorbance.
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Table 4.9 Surface Excess Results in Toluene

PS-COOH fi nd PS-H; Number avcr^t^p mnlPcular wpig hf - i/in^

solution concentration
(mg/ml) (molecules/sq. cm) PS-COOH ' '"lf_^ PS-cSoh'Ts-H

0 nniyj.yjyj 1
O /TO ^ 1 oz.oy e+o 3.01 e+10 2.58 e+10 112 96

0.01 1.25 e+9 6.88 e+10 6.02 e+10 55 48

0.05 3.59 e+9 9.03 e+10 8.17 e+10 25 22

0.1 5.70 e+9 1.38 e+11 1.29 e+11 24 22

0.15 7.57 e+9 3.18 e+11 2.80 e+11 42 37

1.0 2.65 e+10 3.87 e+11 2.50 e+11 15 9

HOOC-F>S-COOH ;mr| Hf)-PS-OH: Nnml^r averape mnlprnlar ^

HO^ pfr? nH
soluaon concentrauon surface concentration surface excessHUUC-Fb-COOH HO-PS-OH acid alcohol acid alcohol

(mg/ml) (mol/cm^) (mg/ml) (mol/cm^) (mol/cm^) (mol/cm^)

0.021 1.91 e+9 0.017

0.164 7.57 e+9 0.136

0.586 1.78 e+10 0.551

1.269 2.98 e+10 1.195

2.342 4.50 e+10 2.254

1.66 e+9

6.68 e+9

1.71 e+10

2.87 e+10

4.38 e+10

6.02 e+11 6.11 e+11 1324 363

5.72 e+12 7.23 e+11 756 108

1.99 e+12 9.03 e+11 451 117

1.34 e+13 4.58 e+12 448 160

1.32 e+13 4.82 e+12 293 110

Note: mol/cm^ stands for molecules per square centimeter.
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so uuons on .o.n, .0™ a so.Uon„Uo„ or , ,
(.5 n,^™, or 7.47 x ,0" ^o.ec.e. . 2B. In e.CoHe.ane U is Cea. tHa. *e coi.ove.ap

,„ .ea« w.en a.so... .0™ a so.Uon . concen^aUon : ,
tCuene, PS-COOH an. PS-H coils c.ea.,y .0 no: overlap . .ea« .a.erwl

'

HOOC-PS-COOH and HO-PS-OH coils do under d,e sa^e so.u.ion conditions.

4.4.8 Summary of the Results

IncorporaUon of a carboxyUc acid group a. one end of the polysty.ne chain increases
the number of polymer chains adsorbed to glass surface. T^e effect is more pronounced at
end-group concentrations between . O'^ to ,

0-4 molesfliter. TT,e adsorbance increases with
molecular weight up to 30K. The adsorbance of PS-COOH of number average molecular
wetght 140K suggests .ha. .he effec. of carboxyUc acid end-group a. .his molecular weigh,
.s d.minished and *a. in all probability chains of higher molecular weigh, conmining a -

COOH end-group will behave as d.ough they do not have an end group. Tlte kinetics of

adson,tion Of PS-COOH in toluene shows an inidal maximum in *e amoun. adsorbed

followed by a decline .0 an equiUbrium value. The repor. of FGein. e. al.;5 „,e„Uons to
PS-COOH did no. adsorb .0 mica from .oluene as moni.ored by fot^e - distance studies. It

is possible that they tried their expettnent at low concentrations and their technique may no.

be sensitive enough to detect weakly s.retched brushes. Tltey also mention that PS-H did

not adsorb to mica from toluene while we observe Uta. i. does .0 glass above a molecular

weigh, of lOK (a. 1 mg/ml; for *e sj^cific acivi.y of our polymers we detect adsotption

from lOK). At low molecular weighte it is possible that polystyrene is adsorbed in a flat

confonnation (displaceable by solven. molecules) in toluene and Ute Uieir technique is no.

sensi.ive enough to detect .ha.. We have also detected adsorbed PS-COOH on glass slides

by XPS (5K; 1 mg/ral; 24 h; diree washes wi.h pure solvent and dried under vacuum) and

contact angle analysis. Tliis leaves us with no doubt about our resul. and leads us to
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IS not

behave that the information provided by Kiein, et a,., whose ntethodoiogy is limited

effective sticky foot for aU the molecular weights and concentraUons studied.

Incorporation of a carboxylic acid group at both the ends of the polystyrene chain
mcreases the number of polymer chains adsorbed relative to the single sUcky foot analog a,

h.gh concentrations in cyclohexane. However the amount adsorbed is lower than that of
the single sticky foot analog at lower concentrations. Tlte adsorbance of HOOC-PS-
COOH. lOK increa^s gradually with concentration up to 0.8 - 1 mg/ml beyond which it

increases steeply. TT,is effect is less pronounced as the molecular weight increases. TT^e

adsorbance increases with molecular weight. HO-PS-OH of number average molecular

weight lOK and at a solution concentration range of 0.5 to 1 mg/ml has higher adsorbance

values than PS-H. At all other molecular weights and concentrations the adsorbance of

HO-PS-OH is lower than or equal to that of PS-H. The amount of di-carboxylic acid-

teiminaled polystyrene increases with concentration and molecular weight for all the

polymers. THe amount of polymer adsorbed is greater than the single sticky foot analog at

all concenu-ations and this difference is particularly prominent at low concentrations.

Hydroxyl end-groups in toluene do not have a pronounced effect on the adsorbance.

4.4.9 Conclusions

To conclude, incorporating a -COOH group at the end of a polystyrene chain results in

the foimation of weakly stretched bnishes. In cyclohexane the segments of the polystyrene

chains interact with an enthalpy of interaction of 1.9 kT " with the surface and are present

in large concentrations. Therefore they compete with the end-group and so some trains and

loops are formed as weU. In toluene the segment-surface interaction is much smaller than

in cyclohexane Therefore in the absence of a carboxyUc acid end-group polystyrene

does not adsorb to glass at low molecular weights. At high molecular weight the

cumulative effect of many weak segmental interactions results in adsorption. A single
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carboxylic acid end-group enables the adsorpUon of ,ow „,o,ecu.ar weight polystyrenes
TT^e surface concentraUon of PS-COOH adsorbed to glass from toluene is below the

overlap concentration suggesting the formation of mushrooms. The presence of a hydroxyl
end-group does no, seem to have any significant effect on the amount adsorbed or on the

rate of adsorption.

A polymer with two end groups adsorbed to a substrate from a solution probably

consists of two types of primary chain architecture, namely those held by one end group

and those held by both (this is an ideal picture and the segments definitely adsorb

compeUUvely to the surface, the competition being dependent on such factors as the solvent

quality and nature, the number of segments per chain and their concentration. With chains

containing larger number of segments, cooperativity associated with their low probability

of desorption and therefore the area that they wiU occupy on the surface can not be

ignored). The number of chains present in each of these fomi is a function of the solution

concentration of the end groups, the concentration of the segments, the number of

segments per chain, the enthalpy of interaction of the end group with the surface and the

solvent nature and quality.

Chains with two sticky feet at the ends adsorb in a flatter conformation compared to

those with one sticky foot at an end from cyclohexane solutions of low concentrations.

The di-hydroxyl-terminated polymer is adsorbed in a flatter conformation than the di-

carboxylic acid-terminated polymer. This suggests that the contribution of the un-

functionalized-end present as a long tail in single sticky foot polymers is absent in the di-

functionalized polymers and both the ends are probably present at the ends of loops or in

combination with the near end segments form long trains. The increasing adsorbance with

concentration is probably due to the formation of mixed monolayer structures consisting of

chains bound by both the ends to the surface and chains bound just by one end. At very

low solution concentrations (up to 0.05 mg/ml) adsorbances lower than that of

polystyrenes are encountered. At low concentrations both the chains ends are bound to the
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surface, effec. ve,y ..ucin, .Us whose co„u.«„„ , ,,„,,^. ^^^^^^^^^
functionalize. polymer. ,„..sU„, co„fo™aUo„. .a„.Uo„s invCvin, ,a.ge .ails a. high
concentrations, increasing ,oop si. with increasing molecular weight and large trains at
low concentrations are hypothesized.

me incorporation of two -COOH groups at both the chain ends enhances the

adsorption of polystyrene molecules to glass from toluene. Tl,is is probably due to the

increased chain end concentration and therefore greater enthalpy of interaction per chain
-me adsorbance increases with molecular weight at aU the concentrations. enthalpy of
interaction of polystyrene segments with glass in cyclohexane is 1 .9 kT whUe that in

coluene is a fraction of a kT. Since the segments do no. interact strongly with the surface

loop fomation is favored at low molecular weights. At higher molecular weights

conthbution of unbound segments in loops and tails (as in un-functionalized polystyrene)

become important and adsorbance increases with molecular weight.

TTie incotporaUon of two -OH groups at both the chain ends of the lOK sample results

in the chains being weakly oriented at high concentrations (0.5 to I mg/ml) and are

adsorbed in a natter conformation at lower concentraUons. TTie amount adsorbed decreases

with increasing molecular weight as the hydroxyl group is a weak sticky foot and therefore

if both the hydroxyl groups were involved in adsorption it is easier to bring Uie whole chain

to the inteiface. At high molecular weights the samples behave as though they do not have

the sticky feet.

The graft density data indicates that carboxylic acid-terminated polystyrenes (PS-COOH

and HOOC-PS-COOH) form weakly stretched brushes when adsorbed from a theta or a

good solvent. The extent of stretching is governed primarily by the concentration of the

end group(s), solvent nature and size of the polymer (molecular weight), being higher at

higher concentrations of the end-group(s), and lower in a better solvent and with increasing

molecular weight. The di-hydroxyl-terminated polystyrene forms a weakly stretched brush

at higher concentrations and lower molecular weights with the stretching being lower than
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c...,Hc ac. ana.o, T.e „a..e of a.on,«o„ .co«e; i.e. *e se.^en.
the backbone compete wi.b :be end group for surface si.s tbe competition being .ore
prominent in cyclohexane.

TT>e increasing graft density with concentraUon temp. .„ compare this wift the
mcreasing orientation of smali molecules (with a po.ar tenninus) observed in a Langmuir
Blodgett trough with increasing pressure. TTtough the orientations achieved in our
experiments are much less (weaicly stitched brush) we do achieve increasing orientaUon
w.th mcreasing concenu-alion. With polymer chains it would be difficult to achieve

complete orientation because, beyond the firs, layer i.e. a layer of the size of the polar end-
group and containing the end-group, the segments of each of the chain would be in a
random walk configuraUon. This random walk of segments takes place because there is no
effective dispersive force operaUng in atactic polystyrene to induce lateral orientaUon unlike

stearic acid which can ctystallize by such such lateral dispersive interacUon. Even with

weak dispersive interaction the viscosity of the molecules at the interface (as shown

surface excess calculations) which is 100 to 3000 fold that of the coiiesponding bulk

solution would prevent an effective orienUition in the time scale of several months. We
therefore believe that the carboxyUc acid group is a mild enthalpic perturbaUon to the

adson,tion process resulting in weakly stretched bnishes. It might be possible to increase

the OrientaUon by increasing Uie enthalpy of interaction of die end-group with Ute surface

(by selecting another end-group which would have an enUialpy of interaction wiU, the

surface of the order of 20 to 40 kT). but it would be beyond experiments to attain the type

of orientation idealized in scaling theories even with the enthalpy of interaction of die order

of a chemical bond for Uie reasons (osmotic forces that repel close packing and excluded

volume effects that eliminate certain confonnaUons) and experimental facts stated above.

Extension of polymer chains wiUi an end anchored to die surface is in all probability

entropy limited. As much as the chains would try to get one end to the surface, the number

of chain-ends grafted to Uie surface would be limited by die following factors: (1)

a

in
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Geometric constraint imposed by tl,e Hrst monomer (attached to the chain end, and
subsequent monomers (excluded volume effect). (2) Tendency of the segments to adsorb
to the surface panicuiariy in poor or theta solvents Ideal extensions are therefore achieved
with small molecules containing a polar terminus. If we are to look for conditions under
whtch segments will not adsorb and only end-te™ina,ed groups will adsorb, stUl there is

no doubt in my mind that a fuUy extended layer would not be possible because beyond d,e

length of the end group the segments of the chains can stiU do a random walk. So I think

that perfect orientation is possible if and only if structural design aUows lateral overlap of

segments (tacticity match) resulting in enthalpic gain significanUy greater than the enu-opy

loss accompanying orientation perpendicular to the surface. However the solubUity of a

such a polymer would be limited to very few solvents and solution conditions.
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CHAPTER 5

SEGMENT DENSITY DISTRIBUTION DETERMINATIONS BY NEUTRON
REFLECTION EXPERIMENTS AND CHARACTERIZATION OF DRY ADSORBED
FILMS BY X-RAY PHOTOELECmONS SPECTROSCOPY AND WATER CONTACT

ANGLE MEASUREMENTS

5.1 Introduction

The segment density distribution in the direction perpendicular to the surface was

determined by neutron reOection experiments. This work was performed in collaboration

with Professor Stein's research group at the University of Massachusetts and the neutron

reflection group at the National Institute for Standards and Technology (NIST), Maryland.^

The segment density distribution, i^(z), is one of the key theoretical predictions that

differentiates the two major theories discussed in Chapter 1. Earlier other research groups

outside the United States have used this technique to determine segment density distribution

in adsorbed polymer layers^' 3 and within the United States to study the volume fraction

profile near the surface of homo polymers, diblock polymer films (spin cast) and adsorbed

diblock polymer.'^^ A recent review summarizes most of the reported work on neutron

reflectivity.^

The thickness of dry polymer films on glass after adsorption was evaluated by angle

resolved x-ray photoelectron spectroscopy and the wetting behavior were assessed by

water contact angle analysis.

The chapter is organized as follows. A brief introduction to each of the techniques

mentioned in the above paragraphs is given in the following paragraphs. The experimental

section follows the introduction. The results from each of the techniques is presented and

discussed in the next section and the conclusions are presented in the final section.

Several techniques have emerged recently which enable the study of segment density

distribution of polymers at interfaces. They fall in to two broad categories, the ion beam
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techniques and the reflectivity techniques ^ The ion beam techniques involve the use of

ions and are destructive in nature as the ions interact with the polymer and degrade it.

Examples of ion beam techniques are Rutherford backscattering spectrometry, forward

recoil spectrometry and secondary ion mass spectrometry. The spatial resolution of these

techniques is MOO A. The reflectivity techniques that are currently used to study the

segment density distribution of polymers away from the surface are neutron and x-ray

reflectivities.8.
9 jhe spatial resolution of the two techniques is ~ 10 A and the penetration

depth is ~ 1000 A. Neutron reflectivity detects the variation in scattering length density as a

funcUon of depth while x-ray reflectivity detects the variation in electron density.

ReflecUvity techniques are non-destructive and samples can be studied in situ (in solution

while an adsorption is being performed and under atmospheric conditions).

Neutrons incident at an interface undergo reflection and refraction as the refractive

indices of the constituents of the interface are usually different. The refractive index of a

material (non-magnetic) for neutrons is given by,

n = 1 - [N^ (k^llTt) I. (p-b/Aj)]

where N^ is the Avagadro number, X is the wave length of the neutron, p. is the density,

bj is the neutron scattering length and Aj the atomic weight of component i. The extent to

which the neutrons are reflected depends on the differences in the momentum transfer on

either side of the interface (represented by the differences in the wave vector of the incident

and reflected neutrons). In vacuum the component of the wave vector normal to the surface

is given by,

k^, Q = 27C X sinG/X,

where 6 is the angle of incidence (usually measured as the angle from the plane of the

sample to the neutron beam unlike conventional definition) and X is the wavelength of the

neutrons (the geometry of the reflectivity measurements is maintained such that the angle of

incidence and the detection angle are equal and therefore components of the wave vector
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other than that no^al to the surface can be ignot^d). ,„ a medium i of density p, U,e wave
vector is given by,

l^z,i = [(kz,o)'-OCc.i)¥-'

where k,,
,

is the criUcal value of k,,
. below which total reflection occurs. For a given

scattering length density the condition of total reflection can be achieved by vaiying the

angle of incidence at a constant wave length.

In the case of an air-polymer interface the reflection coefficient r^^
^ is given by the

following equation:

^O.l = [(kz.o)-(kz,,)]/[(k,,o)-^(kz.l)]

The reflectivity R is the square of the reflection coefficient. For an interface with a

continuous variation in the scattering length density it is the usual practice to model it as a

multiple layer of discrete thicknesses so that a recursive relationship can be used to describe

the reflectivity. TTiis in turn simplifies the calculation of tiie theoretical reflectivity for tiiat

particular model (mauix solution).'^

In real neuti-on reflection experiments the reflectivity profile (the square of the reflection

amplitude) is measured and phase information is lost due to the nature of the

measurements. The loss of phase information imphes tiiat tiie direct calculation of the

scattering length density or the segment density distiibution is not possible. Therefore the

theoretical reflectivity profile for previously predicted segment density distiibution is

calculated and compared with tiie experimentally obtained profile. The tiieoretical model

tiiat describes tiie experimental result is taken to be tiie coirect one. It follows immediately

from such arguments tiiat tiiere might be otiier matiiematical descriptions of tiie segment

density distiibution which might lead to the same experimentally observed reflectivity

profile. This is one of tiie serious draw backs of tiie reflectivity measurements. In tiie

absence of any otiier sophisticated technology to measure tiie finer properties of adsorbed

polymers, the reflectivity measurements definitely enable a better understanding.
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The thicknesses of some dry polymer films were determmed by x-ray photoelectron

spectroscopy (XPS).lO. H XPS enables the direct and non-destructive evaluation of the

thickness using the angle resolved method (ARXPS). 12 xPS or electron spectroscopy for

chemical analysis (ESCA) is a weU established surface characterization technique. It

involves the bombardment of x-rays of characteristic energy on the specimen of interest

under ultra high vacuum (lO'^ to IQ-'O Tort) and the measurement of the number of ejected

electrons of a particular kinetic energy throughout the characteristic energy range. The

result is a spectrum indicating the number of electrons of particular kinetic energies versus

the kinetic energies of the electrons. Since electron of a particular kinetic energy have to

come from specific orbitals of the various elements of the periodic table and since they

possess discrete binding energies the spectrum also represents the number of atoms

responsible for a peak of a particular kinetic energy versus the binding energy of the

electron in that particular orbital. XPS is extremely sensitive to the chemical composition

of the top 0 - 1 00 A of a surface. This sensitivity is the result of the Umited distance that

the electrons ejected out of the atoms of the specimen being examined can travel within the

solid before suffering an inelastic collision and losing their characteristic energy and thus

their chemical identity. Most of the contribution (67%) to the intensity of the characteristic

energy peak (for any particular element) is from the atoms lying within a characteristic

distance from the surface called the mean free path (MFP). Several research groups have

worked on the determination of the MFP of the electrons from the different orbitals.
13-18 ^

survey indicated that the literature is plagued with inconsistencies and theoretically non-

acceptable values suggesting that this is a difficult problem. The thickness of thin polymer

films can be determined by ARXPS. This method relates the thickness to the relative

angular dependence of the signals from the overlayer to that from the subsu-ate. The

intensities of the characteristic ESCA signals emitted from the atoms beneath the overlayer

of a material are attenuated by the overlayer. By rotating the sample under investigation
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about an axis on surface the signals originating from U,e atoms beneath the surface can
be enhanced or attenuated relative to those coming from the atoms on or near the surface

n,e contact angle made by a water drop at the surface-air interface (say glass-air

interface) is vety sensitive to the physical and and chemical structure in the outer few
angstroms of the surface. Our technique involves the measurement of the dynamic contact

angle made by a water drop at the surface-air interface. Tlte contact angle made by a water

(6) drop under equUibrium conditions is governed by Young's equation. It involves the

balance of the forces at the point where the surface-water-air phases are in equilibrium.

Application of the triangle law of forces at this point leads to the following equation:

Tsa Ysw ~ Ywa ^^^^

where the subscripts s, a, w stand for surface, air and water and the ys are the respective

interfacial tensions. The immediate result that follows from this equation is that if the

surface in question is a hydrophUic substance such as glass, the surface modification of

glass to form a hydrophobic surface by the adsorption of functionalized polystyrenes

should result in large contact angle changes. This has been well exploited by several

research groups in the past to monitor surface modification and we follow the path of

others and take advantage of the surface sensitivity of water contact angle values. 19-21

5.2. Experimental

5.2.1 Materials

Perdeuterated polystyrene and carboxylic acid-terminated polystyrene of degree of

polymerization (DP) 121 and poly dispersity index 1.05 was prepared from perdeuterated

styrene (Aldrich) by methods discussed in detail in chapter 2. Protonated analogs of degree

of polymerization 134 and polydispersity index 1.05 were prepared in parallel. Fully

protonated, carboxyUc acid-terminated, and hydroxyl terminated polystyrenes of number

average molecular weight 5K, lOK, 30K, 60K, and 140K prepared and characterized as
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« in Chapter 2 were used in the thic^ess detenninattons hy XPS. Perdeuterated
cyCohexane and fuUy protonated cyclohexane (NIST) were used without funher
purification. PuUy protonated cyCohexane and toiuene (Pisher) dHed over calcium hyd.de
were disUHed and used in adsotpUon experiments in which thicicnesses were detennined hy
XPS. The sUicon single crystal and the quartz cell used in the reflectivity measurements
we. opticaUy polished to Xy20. They were immersed in sulfuric acid-potassium

perchlorate solution for 1 to 2 h to remove any surface impurity and were washed
thoroughly in disUlled water before adsorption. TT,e glass slides (2 cm x 1 cm) used in

XPS we. cleaned before adso^-tion using nochromix and sulfuric acid mixture as demiled
in Chapter 4.

5.2.2 Neutron Renectivity Measurements

The concentration of the functionalized polystyrenes used was 2 mg/ml. The

experiments were performed with the BT-7 reflectometer in the reactor hall at the National

Institute for Standards and Technology. Maryland. ITie experimental set up as designed by

NIST is shown in figure 5.1 22. 23 ^he incident monochromatic neutron beam (after

passing through a Be filter and a graphite monochromator) of wavelength 0.2367 nm (6X/X

= 0.01) incident on the silicon single crystal passes through it and is reflected from the

silicon-polymer solution interface on the other side of the crystal. The reflected beam

passes through the crystal and is detected by a ^He detector placed on a goniometer. The

silicon crystal is also mounted on a goniometer so that it can be placed at any angle of

incidence 0 with respect to incident beam. The detector located at 29 collects the specularly

reflected neutrons The polymer solution along with the silicon crystal is placed in a fused

quartz cell with two 0.5 mm thick windows for the incident and reflected beams as shown

in figure 5.1b. The thickness of the polymer solution is usually kept low to minimize

incoherent scattering (depth of the quartz cell 0.5 mm)^.
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Graphite
Monochfomatof

Cd Slitt

(0.2&4mm) (0.07&mm)

Specimen
(10cm Oiic) ^

Cd Stlt Detector
(1.06 mm) (3 He)

Reactor

b

Polymer Solution Fused Quartz Cell

Silicon Single Crystal

Figure 5.1 a) Diagram of the Fixed Wavelength Neutron Reflectometer at

the National Institute of Standards and Technology (from Anastasiadis, et

al) and b) the Reflection Geometry (from Composto, et al).
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After injecting the polymer solution into the ceU the system was allowed to equilibriate

for an hour before reflectivity measurements (this tm.e is sufficient for equilibriation as

evident from the results in Chapter 4). Typical data collection times were 12 h and the

experiments were performed by Todd Mansfield and Dr. Russel Composto working with
the NIST researchers. TTie neutron reflectivity as a function of Q = 2k = 4. (SinGA) were

evaluated for the pure solvents and after polymer adsoiption from the solvents. Deuterated

polymers were used with protonated solvents and vice versa as this combination provides

the best scattering length density contrast and results in the technique being more sensitive.

The experimental reflectivity data were fitted using two types of segment density

distribution profiles (other types were ignored as the pronounced minimum in the observed

reflectivity cannot be obtained from these models): paraboHc and a simple step-function

polymer film with a gaussian rounding at the polymer solution interface. The calculations

were performed using weU estabhshed methods.^^

5.2.3 X-ray Photoelectron Spectroscopy

XPS spectra of dry polymer fihns were obtained using a Perkin-Elmer-Physical

Electronics 5100 spectrometer using Mg K„ excitation (400 W. 15.0 kV). Survey spectra

(pass energy = 89.45 eV) and multiplex spectra (pass energy = 35.75 eV) of the individual

elemental regions constituting the sample (from the survey) were recorded at three takeoff

angles, 15°, 30° and 75° (measured between the plane of the glass surface and the vertical

line to the entrance lens of the detector optics). The integrated intensities of the Si2p, 812^,

(all from glass) and Cj^ (from the polystyrene on the glass) regions were measured.

The integrated intensities of the Si2p, 812^, Oj^ regions from a clean glass surface

(previously sputter cleaned using heUum ions in the XPS ultra high vacuum chamber; 25

mA emission current and 3 kV beam voltage) was measured as well. The integrated

intensities from different glass slides cleaned under identical sputtering conditions result in

integrated intensities were within ± 5% of each other.
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The thickness of the polymer overlayer (d) on a given glass sHde was determined from
the integrated intensities for the Si2p peak using the equation shown below.

d = - In (Si2p^
e f

/ Si2p^
e g) X X Sine

where the term within the bracket is the ratio of the integrated intensities of the Si^p peaks

from glass covered with a overlayer of thickness d at a takeoff angle of 9 and sputter

cleaned glass at the same takeoff angle. X is the mean free path of Si2p electrons through

glass and it is assumed that it is the same through the polystyrene overlayer (even though

the density of glass is 2.34 and that of polystyrene ~ 1) as this assumption considerably

simplifies the calculations. A mean free path value of 22.0 ± 1.0 A was used in the

thickness calculations as this value is in between the experimental value of 21 A reported by

Clark '6 and the theoretical prediction25 of 23 A, for Si2p electrons through an organic

material of density 1. The simplifications associated with the equation used in the thickness

calculation are, 1) uniformly thick overlayer and no patches, 2) the distribution of the

roughness associated with the glass surface used in adsorption and the one that was sputter

cleaned are the same.

5.2.4 Water Contact Angle Measurements

Dynamic advancing (6^) and receding (Q^) water contact angles were measured with a

Rame-Hart telescopic goniometer and a Giknont syringe with a flat tipped 24-gauge needle

as water was added (6^) or withdrawn (Sj^) from the drop. The water used was house

distilled water that was redistilled with a Gilmont still.
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5.3 Results and Discussion

Mla'S^L^lmf' "'•<'«'- Neutron Renec.ivi.y

nie renectivity profile as a function of neutron momentum transfer (or the angle of
mcidence; 0 to 2») for pure protonated cyclohexane is shown in figure 5.2 as a

log(renectivi,y) versus Q (nm"') plot. Total reflection is observed up to Q - 0.14 nm"'
beyond which reflectivity decreases monotonically suggesting the increasing transfer of
neuu-on momentum with increasing angle of incidence (the angle of incidence is defined as
the angle between the plane of the siUcon single crystal and the neutron beam) as more and
more scattering centers are involved. The observed reflectivity profile in the presence of

adsorbed perdeulerated polystyrene in the same solvent (not shown in the figure) is

diffen^nt only at higher angles of incidence (> 0.43») (suggesting that it might be adsorbed

with a diffuse layer structure). n,e profile for perdeuterated carboxylic acid-terminated

polystyrene from the same solvent is also shown in the same figure. It follows that of the

solvent up to an angle of incidence of 0. 1 8° above which die reflectivity starts to decrease

rapidly reaching a minimum at O.270. Above this angle reflectivity increases again up to an

angle of incidence of 0.36 (still less than that of pure solvent at this angle) and starts to

decrease above this angle. This pattern is characteristic of the presence of a thin polymer

film as observed first by Stamm.''

The theoreUcal reflectivity profiles were evaluated for the system Si/SiOj/cyclohexane

and Si/SiOj/deuteriopolystyrene with an acid end-group, using the weU known scattering

length densities of the different samples for a native oxide layer of 12 A thickness and 3.4

A roughness.26 These are shown as continuous lines along with the experimental data

points in figure 5.2. The segment density distribution assumed for the deuterio PS-COOH

away from the sUicon dioxide-cyclohexane interface is shown in the inset of figure 5.2.
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0 - cyclohexane . . d-PS-COOH in cyclohexane

Molecular weight ~ 14K; c - 2mg/ml; T ~ 21 °C

>
• I—

(

-1-3

a
S
«4-H

O

Q (nm-^)

Figure 5.2 Experimental and Calculated (•) Neutron Reflectivity versus
Neutron Momentum Transfer for Perdeuterated PS-COOH Adsorbed from
Fully Protonated Cyclohexane Solution. Inset: Theoretical Reflectivity

Profile Assumed in the Reflectivity Calculation
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I. can be «=cn cha. the thcoreUca, renecUvity Cau, fro. .he a.u.ed paraboUc .gment
density distribulion fm ihe expcrimcnlal data very well.

T.e research interest of this thes.s concents func.ionalized polystyrenes and as such U,e
results pertaining to PS-COOH alone are discussed. In the theoretical calculation of the

reflectivity profile only two segment density distribution profiles were considered as

exponential or power law types of profiles will not result in a minimum as observed in the
rcnectivtty results. TT,c parab<„ic and a step-function profile with a gaussian rounding

were considered as they were relevant to the experimental result. Tlte theoreUcal profile

that best fit. the experimental refiecttvity data for perdeuterio-carboxylic acid-terminated

polystyrene is shown below.

m = (l)(z = 0) (h2 - z2) / h2 for all z ^ h. where h = 155 A.

The fit to the data is better if a slight rounding (s = 3 A) in the vicinity of z=h is considered

and considerably better if a depletion layer of 12 A is considered. The step-function

distribuUon profile fails to describe the data well. Similar results for protonated PS-COOH
in perdeuterio cyclohexane and perdeuterio toluene were obtained. These refiecUvity

profiles (experimental and theoretical) are shown in figures 5.3 and 5.4.

The theoretical segment density distribuUon profiles that best fit the experimental data

are shown as insets in figure 5.3 and 5.4. A modified parabolic segment density

distribution profile fits the data well. We believe that the difference between the segment

density distribution profiles of deuterio PS-COOH in cyclohexane and PS-COOH in

deuterio cyclohexane is due to lower x, value in the case of the former.
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o - d-cyclohexane , . ps.coOH in d-cyclohexane

Molecular weight ~ 14K; c - 2mg/ml; T ~ 21 °C

Figure 5.3 Experimental and Calculated (-) Neutron Reflectivity versus

Neutron Momentum Transfer for Fully Protonated PS-COOH Adsorbed

from Perdeuterated Cyclohexane Solution. Inset: Theoretical Reflectivity

Profile Assumed in the Reflectivity Calculation
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k (A-l)

Figure 5.4 Experimental and Calculated (-) Neutron Reflectivity versus
Neutron Momentum Transfer for Fully Protonated PS-COOH (DP = 134)
Adsorbed from Perdeuterated Toluene Solution. Inset: Theoretical

Reflectivity Profile Assumed in the Reflectivity Calculation
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Earner the mean field theories of Scheutjens and Fleer have predicted 1) a

monotonically decreasing segment density distribution profile for polymer segment-surface
interaction parameter of 0.5 (x,) and a polymer-solvent interaction parameter of 0.5 (x) and

2) a segment density profile with a pronounced maximum at some distance away from the
surface for Xs = 0 and x = 0.5.27 a parabolic segment density distribution for polymer

segments anchored to the surface by one of their end-group has been predicted for an

isolated chain by Hesselink^^ and for strongly stretched chains by Milner29 as weU.

The scaling theory of de Gennes^O predicts a unifomi concentration profile up to a certain

distance from the surface for strongly stretched brushes and a power law decay for

mushrooms ((l)(z) ~ z^'h provided several assumptions are made (fiexible chains, large

molecular weight, segments do not adsorb by themselves, etc. See Chapter 1 for a critical

review of the different models).

Before comparing our results to the results of the theoretical models we have to ensure

that the assumptions made in deriving the models reflect our experimental conditions well

(even though some assumptions such as very high grafting density and strongly stretched

chains cannot be incorporated in an experiment before hand). The results from chapter 4

indicate that weakly stretched brushes had formed in cyclohexane (from the low graft

densities) while mushrooms are formed in toluene. This eliminates the comparison with

Miner and de Gennes predictions for highly grafted brushes. However the flexibility of the

mean field theories of Scheutjen and Fleer, and the fact that mushrooms are formed in

toluene (de Gennes assumptions hold good for adsorptions from toluene) enable some

comparisons to be made.

In cyclohexane the mean field theory of Scheutjens and Fleer predicts a monotonically

decreasing segment density profUe for (0=1) polymer segment-surface interaction

parameter of 0.5 (x^) and above and a polymer-solvent interaction parameter of 0.5 {%).

The TLC displacement experimental results of Cohen Stuart^ ^ indicates that the segment-

surface interaction parameter for the polystyrene-silica system is 1.5. The polystyrene
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segment -solvent interaction parameter is 0.5 as our experiments were perfon^ed just above
the theta condition. However the experimental segment density profile is vei^ different

from the monotonically decreasing profile predicted by the SF theory suggesting that it

does not describe our system accurately. The theory that best predicts the segment density

distribution profile of PS-COOH in cyclohexane is the one due to Hesselink for isolated

polymer chains grafted to a surface. Clearly we do not have isolated chains at the surface.

In toluene, a good solvent, the segment density distribution is completely different from

the scaling predictions of de Gemies which predicts a uniform concentration profile up to a

certain distance from the surface for strongly stretched brushes and a power law decay for

mushrooms ((^(z) ~ z2/3; Chapter 1). From our adsorbance data for PS-COOH in toluene

we infer that it is present in the form of mushrooms on the surface. The observed

reflectivity profile clearly indicates that the scaling theory does not describe the segment

density distribution of PS-COOH mushrooms in toluene while a paraboUc segment density

distribution with appropriate fitting parameter will fit the experimental data. The mean field

theory of Scheutjen and Fleer predict a maximum in the segment density distribution profile

under the conditions of our experiment and it is clear from figure 5.4 that it's prediction is

close to what we observe.

5.3.2 X-ray Photoelectron Spectroscopic and Water Contact Angle
Characterization of Adsorbed Polymer in the Form of Dried Films

The survey spectrum of a glass surface after chemical cleaning and drying, after argon

sputtering and after adsorption at a takeoff angle of 15° are shown in figure 5.5. The

chemical composition of glass is Si02 primarily with trace amounts of metal ions such as

sodium and potassium. The surface composition of chemically cleaned glass indicates that

in addition to Si, O, very small amount of sodium (a small peak is observed at ~ 1074 eV)

and carbon are present as well. Carbon is seen in the XPS spectrum of almost all high

energy solids and is due to the adsorption of small molecules such as carbon monoxide,
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carbon dioxide, methane and other hydrocarbons from the ambient atmosphere. These

contaminants known as adventitious carbon can be removed from the surface in the ulu-a

high vacuum chamber of the specu-ometer by argon ion sputtering as shown by the absence

of carbon peak in figure 5.5b. However they are always present on glass slides under

ambient conditions and are easily displaced by polymers.

The XPS spectrum of glass after the adsorption of PS-COOH (30 K, 1 mg/ml, T =

36.7 ± 0. 1 °C) is shown in figures 5.5c and 5.5d (c - cyclohexane and d - toluene). The

appearance of the carbon peak of high intensity and the attenuation of the intensities of the

Si peaks (2p and 2s) and the oxygen peak from the substrate suggests the formation of a

overlayer. The multiplex spectrum of the Cj^ peak is shown in figure 5.6. The appearance

of the K-n* shakeup peak confirms the presence of polystyrene.

X-ray photoelectron spectra of dry films were recorded at three takeoff angles of 15°,

30° and 75°. From the attenuation of the integrated intensity of the Si2p peak the

thicknesses of the films were calculated using the formula shown in the experimental

section. The mean free path of Sijp electrons was assumed to be 22.0 ± 1.0 A (see

experimental section). The results of the calculations are presented in Tables 5.1 and 5.2

(Adsorption experiments notebook #1, p 79 -103).

The thickness values were also determined from the corresponding adsorbances (from

the LSC data) assuming that the density of polystyrene in the adsorbed layer is 1 g/cm^).

On comparing the XPS and the LSC thickness it can be seen that the XPS thickness values

are smaller than that obtained by LSC. For example consider the case of the thickness

values for PS-COOH of number average molecular weight 140K from a cyclohexane

solution of concentration 1 mg/ml. The LSC thickness is 43.4 ± 5.7 A while that from

ARXPS is 31.4 ± 10.2 A. The surface excess calculations show that the number of chains

in the adsorbed layer per unit area (1.87 e+12) is less than that present in an amorphous

solid of polystyrene (2.65 e-J-12) of the same area. This indicates that the density of the

polymer in the adsorbed layer is less than that assumed and suggests that part of the
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Number average molecular weight - 30 K; c = 1 mg/ml; T = 36.7 ± 0. 1 °C
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Fimire 5 5 XPS Survey Spectra of Different Glass Surfaces.

a ^f'er^emi^ deaning; b) after sputter cleaning; after the adsorption of

PS-COOH from c) cyclohexane and d) toluene
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Number average molecular weight - 30 K; c = 1 mg/ml; T = 36.7 ± 0.

300.0 288.0 23S.0 234.0 292.0 230.0 288.0 28S.0 281.0 282 0 280
BINDING ENERGY, eV

Figure 5.6 XPS Multiplex Spectrum of the Cj^ Region. After the

Adsorption of PS-COOH from a) cyclohexane and b) toluene
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Table 5.1 Dry Film Thickness From XPS Data and Contact Angle Data

Samples adsorbed from cyclohexane at 36.7 ± 0. 1 °C

Sample e d(A) t(A) e^/OR

PS-COOH 5000 1.0

PS-COOH 10000 1.0

PS-COOH 30000 1.0

PS-COOH 140000 1.0

15

30
75

15

30
75

15

30
75

15

30
75

12.0

13.7

10.7

21.1

30.2

31.5

23.1

37.9

39.3

23.0

28.6

42.7

36.6 ± 4.8 90/70

43.2 ± 4.8 90/74

56.3 ± 7.3 89/76

43.3 ± 5.7 90/78

PS-COOH 5000 0.1 15

30
75

12.1

13.2

8.30

25.9 ± 3.5 85/68

PS-COOH 10000 0.1 15

30

75

14.2

15.7

12.3

25.4 ± 3.5 88/64

PS-COOH 30000 0.1 15

30
75

11.2

18.5

25.1

37.2 ± 5.0 89/70

PS-COOH 140000 0.1 15

30
75

7.90

9.30

8.00

25.7 ± 3.5 88/57

Continued, next page
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Table 5.1 Continued

Samples adsorbed from cyclohexane at 36.7 ± 0.1 °C

Sample c 6

PS-H 5000\j \j \j 1 0 1 cID 6.5
30 6.1
75 3.8

PS-H 10000 1 0 1 <ID 0.7
30 6.5
75 4.6

PS-H 30000 1 0 1 ^ID Q 1
0.1

30 9.1

75 6.7

PS-H 140000 1 0 1 7.9
30 7.0
75 4.5

PS-H 5000 0 1 ID J.

2

30 2.8
75 1.5

PS-H 10000 0 1 ID J.o
30 3.3

75 1.7

DC IJro-H 30000 0.1 15 3.8
30 3.2
75 1.8

PS-H 140000 0.1 15 3.4

30 3.1

75 1.4

t(A)

6.8 ±1.1 89/50

10.51 1.6 89/53

17.2 ± 2.5 89/56

27.7 ± 3.7 88/54

4.4 ± 0.8 87/48

7.3 ± 1.2 89/54

10.3 ± 1.6 87/47

20.8 ± 2.9 86/47

Note: stands for the number average molecular weight determined by Gel Permeation

Chromatography, c (mg/ml) for the concentration in mg/ml. 6 for the takeoff angle

(measured as the angle between the analyzer normal and the sample plane), d (A) for the

dry film thickness in angstroms from ARXPS, t (A) for the thickness from LSC data and

/ for the advancing and receding water contact angles (LSC NB#2 p 28 to 32).
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Table S.2 Dry Fi,™ ThicKness Fro. XPS Data and Co„U.c. Ang.e Dau.

Samples adsorbed from toluene at 23.0 ± 1.0 °C

Sample
Hi' e d(^) t(A) Ga/g

PS-COOH 5000 1 0 ID 5.0
30 5.9
75 5.9

PS-COOH 10000 1.0
1

A

30 8.3
mm mm

75 7.3

PS-COOH 30000 1.0 0.3
30 8.4
75 8.2

PS-COOH 140000 1.0 15

30 5.6
75 6.0

PS-OH 5000 1.0 15

30 4.8
75 4.7

PS-OH 10000 1 nl.U 15 3.4
30 4.3
75 3.9

PS-OH 30000 1.0 15 3.8
30 5.8
75 6.1

PS-OH 140000 1.0 15 2.9
30 3.7

75 3.9

14.2 ±2.1 76/24

18.5 ± 2.6 85/41

13.6 ± 2.0 86/50

9.0 ± 1.4 77/29

3.2 ± 0.8 74/33

3.6 ± 0.9 76/32

4.3 ± 0.9 77/30

62/16

Continued, next page
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Table 5.2 Continued

Samples adsorbed from toluene at 23.0 ± 1.0 °C

Sample

PS-H

PS-H

PS-H

PS-H

M
n

5000 1.0

10000 1.0

30000 1.0

140000 1.0

e d(A) t(A)

15 3 5

30 4 1

75 4.2

15 2 9

30 3 1 2 2 -1- 0 S

75 2 8

15 3.2

30 3.9 3.6 ± 0.8
75 3.7

15 3.1

30 4.0 5.8 ± 1.0

75 3.6

49/0

65/0

73/0

67/0

da'lL'arlfr'om LS°^^^
abbreviation as given in Table 5. 1. The contact angL
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discrepancy between the LSC and the XPS results may be from the higher densities (a flat

1 g/cm3 is used for all the samples) used in converting the LSC adsorbances to thickness

values (a smaller density in the LSC calculation would lead to smaller fihn thickness). At
lower molecular weights and very high solution concentrations the adsorbances of

PS-COOH correspond to almost the same number of molecules per unit area as in

amorphous polystyrene indicating that the role of surface roughness cannot be neglected

either. Our adsorbance values for polystyrenes and a protonated PS-COOH (~ 12 K) in

protonated cyclohexane agree well with those on opticaUy smooth surfaces reported by

Granick32 (f^r polystyrenes) and Composto23 (for PS-COOH of DP = 134 from

perdeuterated cyclohexane) and this consistency leads us to beUeve that the effect of surface

roughness is minimal.

The contact angle of a water drop on glass immediately after chemical cleaning ranges

from 12-1470° (6^/61^). The contact angle increases with storage time under ambient

conditions and typical values range from 19-2470°. The contact angle of glass on

adsorption increases due to the presence of a hydrophobic layer. The value of the

advancing angle ranges from 49 to 90° while that for the receding angle from 0 to 78°. The

reported contact angle of water on pure polystyrene film from the literature is 89 to 90°/77

to 78° (0^/ej^).2l The contact angle values obtained after the adsorptions from

cyclohexane suggests that we have modified a hydrophilic surface of very good water

wettabiUty to a hydrophobic and water repelling surface. Most of the contact angle data

after adsorption from toluene indicate that we have prepared surfaces with very little to

moderately high hydrophobicity. The water wettability after adsorption depends on the

functionallity on the polymer with very little wettability changes recorded for un-

functionalized and hydroxyl end-functionalized polystyrenes and significant changes for

polystyrenes with a carboxylic acid end-group. These changes can be best understood by

comparing the adsorbances and XPS thickness values of PS-H, PS-OH and PS-COOH.

PS-H and PS-OH adsorb with very few chains (just above the detection limit) and form
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very thin films (probably patchy too). Therefore they exhibit intermediate contact angles.

The receding contact angle value of 0° recorded for the polystyrenes adsorbed from toluene

and the positive adsorbance values confirms that patchy fihns are formed.

5.4 Conclusions

We conclude from the neutron reflection studies that the segment density distribution of

polystyrene with a carboxylic acid end-group is parabolic away from the glass-polymer

interface. The mean field theory of Scheutjens and Heer predicts a monotonically

decreasing profile in cyclohexane and a profile with a maximum close to the surface

(similar to a parabola) in toluene. Therefore the SF predictions are partly correct. The

scaling predictions of de Gennes is not valid for carboxylic acid end-terminated

polystyrenes grafted to silicon/glass as evident from the observed neutron reflectivity

profiles in toluene and mushrooms are formed at the interface (evident from the graft

density and surface excess data). Other theories such as the strong stretching theory of

Milner and that of Hesselink predict parabolic profiles. However the assumptions under

which the predictions were made are not appUcable under our experimental conditions and

therefore cannot be compared with the observed results.

The dry fihn thicknesses calculated from the ARXPS data are lower than that obtained

from adsorbance values. Therefore adsorbance values cannot be simply converted to

thickness values assuming the same density (1 g/cm) for all the adsorbed layers. In

addition it also points out that the roughness of the surface not taken into account in

adsorbance determination might explain the lower thicknesses observed by ARXPS

measurements.

The water contact angle values suggest that we have modified the surface of glass with

a high degree of water wettability to one with a very low degree of water wettability by the

adsorption of carboxylic acid-terminated polystyrenes.
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APPENDIX A
ADSORPTION OF END-FUNCTONALIZED POLYSTYRENES BY THIN LAYER

CHROMATOGRAPHY

A.l Rf as a Measure of the Probability of Adsorption

By definition the probability of adsorption "P" is given by,

P = e-AG/kT = eAS/k * e-AH/kT

= exp ( AS/k) * exp { -AP* r * (£23 + en - £12 -
£13 )

,

where AS is the total entropy change of the dUute polymer solution upon adsorption; AP is

the degree of polymerization; r is the fraction of segments adsorbed; £23 is the enthalpy of

each polymer segment-surface contact; £1 1 is the enthalpy of solvent-solvent contact; £12 is

the enthalpy associated with every segment-solvent contact; and £13 is the enthalpy

associated with every solvent-surface contact.

By definition Rf = Rate of polymer movement/rate of solvent movement (2)

Also. (1-P) = ni / (ni-i-n2)
(3^

where (1-P) is the probability of residency of the macromolecule in the mobile phase, ni is

the # of macromolecules in the mobile phase and n2 is the # of macromolecules in the

stationary phase.

From Snyder[ll], Rf = 1/ { 1 + (WA^q) * (n2/ni) } (4),

where W is the weight of the adsorbent and Vq is the pore volume accessible to the solvent.

WA^O is a constant for identical thin layers, and when it is equal to 1,

Rf = 1/ { 1 + (n2/ni) ) = ni /( ni + n2) (5)

Comparing (3) and (5) it can be seen that Rf is a measure of the probabUity of residency of

the macromolecule in the mobile phase.

This can be derived more rigorously, for small probabilities of adsorption.from the

Second law of Thermodynamics. From the Second law of Thermodynamics, the

distribution coefficient "K" is given by, K = (n2/ni) = exp(-AG/kT) (6)
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Substituting eq (6) in eq (5), and knowing that the right hand side of eq (6) is "P" (from eq

(1)), it follows that for small P's Rf = (1-P).

A.2 TLC in Understanding Thin Film Architecture

Upon end-functionalization of polystyrene its Rf value changes from 1 to 0 suggesting

that the end-group is at the interface. That thin film architecture can be understood based

on the changing Rf values is illustrated below. Consider the probabiUty of adsorption vs

log(mol. Wt)) curve shown in figure 3. 10 of Chapter 3. Let Pp be a macromolecule (with

a small but finite adsorption potential), where n is the degree of polymerization. Let Pn

have a Rf value of 1 in a given good solvent, on a given surface, up to a certain "n". This

"n" is represented as Point A in fig. 3.10. Upon suitable organic synthesis let Pn have a

end group X for all "n". Let Pn-X have a Rf = 0, up to a certain value of "n" say "m",

where m < n. This "m" is represented as Point "B" in fig. 3.10. An Rf = 0 up to "m"

implies that the X group is at the interface. This is iUustrated for -COOH end-group in

polystyrene, from different good solvents, on alumina and silica in this work.

For some n > m, say p let Rf > 0. Now let Pn have -X group at both the ends by

some suitable organic synthesis. If X-Pn-X has an Rf = 0, for n = p, it follows from the

above argument that both the "X" groups are at the interface and hence the desired thin film

architecture. Similarly let Rf > 0, for X-Pn-X for some n = q. If an additional "X" group

is designed on a suitable location along the backbone of "P" and if the Rf for such a design

is 0, it follows that the polymer is held to the surface by all the three "X" groups.

Extending such arguments one can prove that below the molecular weight regime where the

polymer spontaneously adsorbs sheerly by the number of contacts it can make with the

surface, TLC can be used to show whether a polymer is bound to the surface by a

functional group on its backbone, designed to do that job. The region between "A" and "B"

in figure 3.10 (Chapter 3) is therefore named as the "Polymer Architecture Region".
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A.3 Free Energy Change of a Single P„,y„,er Chain on Adsorption
Cohen Stuar, M. A.; Scheutjens, J. M. H. M.; Fleer, G. J. restrict their polymer

soluuon to a lattice consisting of polymer segments (p), and solvent molecules(o) (for

details see Chapter 1,. Their simplified expression of equation 2 is given as equation 3
AGpo / kT = in / (^., . p, ,„ ,(^,,0/(^^,0 „ ,p,,, . _ -^^^

AM^ /kT is the mixing energy per chain and (x,)Po is the adsorption energy from the

solvent and the rest of the symbols have the same meaning as defined in chapter 1 . TT,is

equation again, is complicated, and therefore they simplify it cleverly by involving a third

component which acts as a displacer (d) by specificaUy binding to the adsorbent and at

equilibrium or criUcal displacer concentration, polymer segments are displaced to Uie bulk.

i.e AGpo / kT = AGjo / kT = 0. Invoking a series of approximations such as i) the surface

excess is a monotonic function of the volume fracUon of the segments in the first layer

(one-layer approximaUon), ii) dilute polymer solution (simplified expressions for volume

fractions of displacer and solvent), ui) displacer molecules replace polymer segments as

weU as solvent molecules so that = l at critical conditions and iv) madtematical

simplifications to retain just the exponenUal terms, they atrive at an expression for the

adsorption energy as given in equation 4.

<Zs)P° = (Xs)"" + In
Oeri.) + Zsc fori,) (1- >•,) (XP" -

Z"") -(4)

where the x'> terms represent the interaction between component i and i, y is the critical

adsorpUon energy given by -In (1- X^) in lattice theories and X, is the fraction of sites in

layer i+1 to which a polymer segment in layer i is bound. Cohen Stuart, et al., arrive at

reasonably accurate values for the adsorption energy ((x^)PO) of a polystyrene segment

from cyclohexane and carbon tetrachloride using displacers such as benzene and toluene

from the solvent strength values that Snyder had derived for small molecular mixtures and

the x'j values available in literature for a given pair i-j.
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APPENDIX B

LIQUID SCINTILLATION COUNTING DATA

B.l Determination of the Efficiency of the Cocktail

Th. efficiency of the cocktail was determined by the internal standard method 9, 10

The background radioactivity [cpm(b)] was determined by counting 10 ml each of the

cocktail m 20 v.als for 10 minutes. 100 ,1 each of tritiated toluene supplied by New
England Nuclear (1 ^Ci/ml as on 01.02.90) was added to the scintillation vials after the

background counting. The counting of each of the vial was perfonned for 10 minutes

fcpm(s)]. The efficiency of the cocktail was determined using equation 1:

{cpm(s) - cpm(b)}/actual disintegrations per min of 100 ^il of the standard (1)

The efficiency of the cocktail was determined to be 47.5 ± 1 .5 %. The data obtained are

presented in Table B.l.

m a typical adsorbance determination a glass slide after adsorption is immersed in the

cocktail overnight to ensure complete desorption of the polymer. This can alter the

adsorbance calculated from the cpm vs. mass of polystyrene standard curves in two ways.

The first one is that different samples (PS-H. PS-OH. PS-COOH, HO-PS-OH, HOOC-
PS-COOH) may affect the efficiency of the cocktail by quenching it to different degrees.

-Die second one is concerned with the different degrees of desoiption of the samples into

the cocktail. A thorough investigation of both the problems were conducted. It was

concluded that small amounts (up to several ^ig's) of polystyrene or carboxylic acid-

terminated polystyrenes did not alter the efficiency of the cocktail and that the components

of the designed cocktail ensured complete desorption of all the polymers studied. The

results of such studies are presented in detail in the following sections.
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Table B.l Determination of the Efficiency of the Cocktail

V Standard dpmstandard Vc cpm + r.e cpm(s-b)ave + r.e +

lOOpil 20100015000 10 100689 ±196.7
s.e

lOOpil 201000 + 5000 10 1 01 nSI + 1 Q7 n

100^1 201000 ±5000 10 100211 ± 196.2
lOO^il 201000 ±5000 10 100226 ± 196.2 100417.1 ± 808.8

25^11 50250 ± 1250 10 24427.5 ± 96.9
25pLl 50250 ± 1250 10 24269.5 ± 96.6
25^11 50250 ± 1250 10 24404.0 ± 96.8
25^11 50250 ± 1250 10 24099.5 ± 96.2 24233.0 ± 136.4

lO^il 20 100 ±500 10 9444.3 ± 60.2
lO^il 20 100 ±500 10 9650.7 ± 60.9
lO^il 20 100 ±500 10 9616.6 ±60.8
lO^il 20100 ±500 10 9583.3 ± 60.7 9525.4 ± 181.4

48 ± 1.0

47.5 ± 2

Note: Vc stands for the volume of the cocktail, r.e for the random error and s.e for the

systematic error. The data is from LSC notebook #1, p 10 - 11.
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B.2 Efficiency of the Cocktail in the Presence of Polystyrene

The efficiency in the presence of a smaU amount of polystyrene in the cocktail was

calculated as follows: A solution of cold (non radioactive) polystyrene (Mn = 4300, 0.105

mg/ml) in toluene was prepared by dissolving 5.25 mg of polystyrene in 50 ml of toluene.

A small amount of polystyrene (5 to 200 ^il) from the solution was added to each of the

vials containing 20 ml of the cocktail and 100 ^il of tritiated toluene and they were counted

again for 10 min [cpm(sl)]. Each experiment was performed in dupUcate. The data are

shown in Table B.2. The efficiency of the cocktail in the presence of polystyrene was

calculated using equation 2:

{cpm(sl) - cpm(b)} / actual disintegrations per min of 100 ^il of the standard (2)

A plot of the values of the efficiency versus the amount of polystyrene is shown in

figure B. 1
.
From this figure it can be inferred that a small amount of polystyrene in the

cocktail, has little effect on its efficiency.

B.3 Efficiency of the Cocktail in the Presence of Carboxylic Acid-
Terminated Polystyrene

The above experiment was also performed with a radioactive polymer solution of a

carboxylic acid-terminated polystyrene (PS-COOH, Mn = 5000) as follows. A solution in

toluene was prepared by dissolving 7.7 mg of the polymer in 50 ml of toluene (0.154

mg/ml). This solution (solution 1) was diluted to 0.006 mg/ml by appropriate dilution

procedure (solution 2). After a 10 min count for background in 40 scintillation vials, 25 |il

of the tritiated toluene standard was added to each of the vials and a 10 min count was

performed. Then 5 to 100 fxl of solution 2 was added to the above vials. Each addition

was performed in quadruplicate. Four blank runs were performed with 10 ml of cocktail

and 25 )il of tritiated toluene standard. The efficiency of the cocktail in the presence of the

radioactive polymer was determined as in equation 2 and the results are shown in Table

B.3.
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Table B.2 EfHciency of the Cocktail in the Presence of Polystyrene

No PS-H ([Lg) cpm(s-b) + r.e

1 0.525 ± 0.026
2 0.525 ± 0.026
3 1.050 ±0.053
4 1.050 ±0.053
5 2.100 ±0.105
6 2.100 ± 0.105
7 4.200 ± 0.210
8 4.200 ± 0.210
9 6.300 ±0.315
10 6.300 ±0.315
11 8.400 ± 0.420
12 8.400 ± 0.420
13 12.60 ±0.630
14 12.60 ±0.630
15 21.0 ± 1.050
16 21.0 ± 1.050

98722.5 ±
103381.4 ±
101 130.4 ±
100857.9 ±
101306.4 ±
100708.9 ±
100529.9 ±
100255.4 ±
99441.9 ±
99860.4 ±
99412.9 ±
99323.4 ±
99257.4 ±
100517.9 ±
100025.9 ±
98291.9 ±

194.7

199.4

197.1

197.0

197.3

196.7

196.5

196.3

195.5

195.9

195.5

195.3

195.3

196.5

196.0

194.3

cpmavg + r.e + s.e. efficiency

101052.0 ± 6622.0

100994.2 ± 377.7

101007.7 ± 828.1

100392.7 ± 380.4

99651.2 ± 580.0

99368.2 ± 195.4

99887.7 ± 1747.0

99158.9 ± 2403.2

50.3 ± 4.7 %

50.3 ± 0.3 %

50.3 ± 1.7 %

49.9 ± 0.5 %

49.6 ± 0.5 %

49.4 ± 0.4 %

49.7 ± 2.2 %

49.3 ± 2.5%

Note: The data is from LSC notebook #1. p 12 - 13,
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efficiency

No PS-COOH, cpm(s-b) + r.e Col 3 + 10^1 std

^ 117.0 ±6.7 24183.1 ± 295.5 48.1 ±1.9%
1 0.077 ± 0.004 83.0 ± 15.5 24085 0 + 103 1

2 0.077 ± 0.004 83.0 ± 15.5 24209 5 + 03 4

4 om^ioZ t'.'^''-'
24T?6:hlo:2

4 0.077 ± 0.004 52.5 ± 14.8 24386.5 ± 103 7
avg+r.e + s.e 69.6 ±30.9 24199 4 + 265 5 48 0+ or

5 0.154 ± 0.007 133.5 ± 16.5 24293 5 ^ 103 5
^^-^^l'^^

6 0.154 ± 0.007 138.5 ± 16.6 24293 0 ? 03 5
7 0.154 ± 0.007 127.0± 16.4 241220? 032
8 0.154± 0.007 143.0± 16.7 241755 + 103 3

avg+ r.e + s.e 135.5 ± 16.6 24221 0 + 175 7 47 o -»- i or

9 0.308 ± 0.014 278.5 ± 19.0 24579 5 ? 04 1
^^•9±l-6%

10 0.308 ± 0.014 284.5 ± 19.1 24292 0 + 03 5

\l Vv^lV^ili 24482.5 ; 10 I
12 0.308 ± 0.014 287.5 ± 19.2 24550.0 ± 103 8

13 0.462 ±0.021 ^^i^l lZ]liV,^r9
4 0.462 ± 0.021 410.5 ± 20.9 24665 5 + 104 3
15 0.462 ± 0.021 422.5 ± 21.1 24661 5 ± 104 3
16 0.462 ± 0.021 401.0 ± 20.8 24744*5 ± 104 4

avg+r.e + s.e 408.4 ±20.8 24632.0 + 241 2 482+18^7.
17 0.770 ± 0.039 555.0 ±22.8 24656 0 ? 104 3
18 0.770 ± 0.039 582.0 ±23.1 24927 0 +104 8
19 0.770 ± 0.039 610.0 ±23.4 24912 0^104 8
20 0.770 ± 0.039 606.0 ± 23.4 24932 0 ± 104 8

o , V^TJ'^ ^88-3 ± 49.7 24856.8 ± 262.8 48 3 + 1 9 %
21 1.540 ± 0.070 1151.0 ±28.8 25414 0 ± 105 7

^^-^
"

22 1.540 ± 0.070 1176.0 ±29.0 25471 0 ±1058
23 1.540 ± 0.070 1105.0 ± 28.4 25446 5 ± 105 8
24 1.540 ± 0.070 1 163.5 ± 28.9 25475.0 ± 105 9

-y^ flfiV+ n I'/n iif - ^^-^ 25451.6 ± 105.8 48.4 ± 1.5%
25 3.080 ± 0.140 2574.5 ± 38.9 26735 5 ± 108 3
26 3.080 ± 0. 140 2567.0 ± 38.8 26853.0 ± 108 5
27 3.080 ± 0. 140 2555.0 ± 38.7 26724.0 ± 108 2
28 3.080 ± 0.140 2760.0 ± 39.9 26957.0 ± 108 7

avg+r.e + s.e 2614.1 ± 191.3 26817.4 ± 222.0 48.2±20%

Continued, next page
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Table B.3 Continued

No PS-COOH.^xg cpm(s-b) + r.e Col 3 + 10^1 std

29 4.620 ± 0.210
30 4.620 ± 0.210
31 4.620 ±0.210
32 4.620 ±0.210

avg+ r.e + s.e

33 6.160 ±0.280
34 6.160 ±0.280
35 6.160 ±0.280
36 6.160 ±0.280

avg+ r.e + s.e

3713.0 ±45.1
3726.0 ±45.1
3803.0 ± 45.5

3695.5 ± 45.0

3634.4 ± 93.0

5029.5 ±51.2
5088.5 ±51.4
5094.5 ±51.4
5097.0 ±51.5
5077.4 ± 69.7

27843.5 ± 110.3
28293.5 ± 111.2
27780.5 ± 110.2

27757.0 ± 110.2
27918.6 ±501.7

28997.0 ± 112.5

29418.5 ± 113.2
28989.5 ± 112.4

29308.0 ± 113.0
29178.3 ± 428.0

efficiency

48.1 ±2.5%

48.0 ± 2.2

Note: The data is from LSC notebook #1, p 14 - 26.
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Figure B.2 Efficiency of the Cocktail versus Amount of Tritium-Labeled
Carboxylic Acid-Terminated Polystyrene in Solution
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A plot of the values of the efficiency versus the amount of carboxyUc acid-terminated

polystyrene is shown in figure B.2. From this figure it can be inferred that a small amount
of carboxyUc acid-terminated polystyrene in the cocktail, has Utde effect on its efficiency.

B.4 Efficiency of the Cocktail in the Presence of a Thin Film ofCarboxyhc Acid-Terminated Polystyrene on a surface (AgO/Ag/glass)

The experiments were performed as follows: two to three drops of methylene chloride

was placed on silver/glass slides, (1.5 cm x 1.3 cm) lying on a relatively flat surface, using

a 2 ml Pasteur pipette. 5 to 25 ^il of a dilute polymer solution (0.1 and 0.01 mg/ml, 5K)

was spotted on to the glass slides carefully. The solvent was allowed to evaporate over a

period of 24 h after which the slides were immersed in 10 ml of the cocktail and were

counted after 24 h.

The samples were counted for ten minutes [cpm(s)]. The data are shown in Table B.4.

A plot of the efficiency versus the amount of radioactive polymer on a silver coated glass

slide is shown in figure B.3. From the data and the figure it can be inferred that neither a

small amount of polystyrene on a surface nor the physical presence of a glass slide affects

the efficiency of the cocktail.
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Table B.4 Efficiency of the Cocktail in fh^ d

r5-CUOH, |Llg

0 0 0
1
1 vj.w:5Uo X U.UU15
2 0 rnns -4- n nm c

3 D O'^ns? -1- n r\ni cu.ujUo X U.UUl J
4 0 O'^OS + 0 001 ^

a "T 1 .c + S.c

*^ 0 AAl A 4- n AAQ
0 OA 1 A 4- n nnoU.UOlO X U.UU3

7 U.UOlO X U.UU3
8 0 Ofilfi + 0 OO'^

avg + r.e + s.c

u.uyz4 X U.UU43
10 u,uyz4 X U.UU43
1

1

1 X 0 0Q94 4- n nn/i <u.uyz4 X u,uu4r)
12 0 0924 + 0 004S

JIVO 4- r p -J- c o

W. X Z X U.UUO
14 n 1 9'^9 + n (\(\^U. IZjZ X U.UUO

n 1 9^9 4- (\ f\f\^U. IZJZ X U.UUO
16 0 1 2^7 + 0 OOA

17 u. io4o X u.uuy
IRX o 0 1 SIAQ 4- f\ nnou. lo4o X U.UUV
IQX 7 0 1 SiAQ 4- f\ nnou. io4o X u.uuy
20 0 1848 + 0 OOQ

21

^^vo 4- r p 4- c p

U.Z.HUH- X U«U1Z
22 0 OdfxA 4-0 019Vy.Z-*+0*+ X U.UIZ
23 0 2464 + 0019
24 0 2464 + 0012

;iVJ> 4- r P 4- C P

25 0 ^080 + 0 ni ^U.JJWOU X U.Ul J
26 0 ^^080 + 0 ni ^V/.J>WoU X U.Ul J
27 0 '^080 + 0 ni ^U.jUOU X U.Ul J
28 0 3080 + 0 01 S

HV2 + r e + *ii p

29 0.4928 ± 0.024
30 0.4928 ± 0.024
31 0.4928 ± 0.024
32 0.4928 ± 0.024

avg + r.e + s.e

cpm(s-b) + r.e

[PS-COOH (ng)+10|il std]

efficiency

9566.1 ± 177.7

9406.9 ± 67.7

9325.3 ± 67.5

9593.9 ± 68.3
9722.2 ± 67.7

9512.1 ±352.1
9506.4 ± 66.7

9642.2 ± 67.3

9232.2 ± 66.5

9690.3 ± 67.2

9517.8 ±403.2
9254.7 ± 66.3

9709.7 ±68.1
9373.5 ± 67.0

9601.9 ±67.9
9485.0 ± 407.4
9306.8 ± 68.3

9539.4 ± 68.5

9364.2± 67.9

9731.8 ±69.1
9485.6 ± 375.7

9267.5 ± 69.0

9749.7 ± 69.0
9487.4 ± 69.2

9575.0 ± 70.0

9519.9 ±393.0
9467.2 ± 70.9

8807.6 ± 68.3

8929.3± 68.6

9154.8 ±69.8
9089.7 ±568.1
9314.2 ±71.5
9689.1 ±72.4
10005.2 ±73.4
9127.4 ±70.6
9534.0 ± 767.3

9388.4 ± 74.8

9600.2 ± 75.4

9514.0 ±74.7
971 1.8 ±75.7
9553.6 ± 267.9

47.6 ±2.1 %

47.3 ± 3.0 %

47.4 ± 3.2

47.2 ± 3.3

47.2 ±3.1

47.4 ± 3.2

45.2 ±4.1 %

47.4 ±5.2%

47.5 ± 2.6 %

Note: The data is from LSC notebook #1, p 27 - 28
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B.5 Calibration Curves (cpm vs amount of radiolabeled polymer)

The desorption of the adsorbed polystyrenes from the glass and silver coated glass

slides by the cocktail was evaluated as follows. A small amount of radioactive polymer

was added to ten ml of the cocktail in one experiment. A similar amount of radioactive

polymer was cast on glass/silver slides from a dilute solution in an another experiment.

The cpm obtained from the above two samples in the presence of 10 ml of cocktail, 24 h

after the addition of the cocktail were compared . The inherent assumption in this

evaluation is that polymers adsorb in a flat conformation when cast as a film from a dUute

solution and therefore if the cocktail was not effective in the complete desorption of the

adsorbed chains one would expect that to show up as a significant difference in the cpms

obtained. AH the experiments were performed in quadruplicate with radio-labeUed

polymers of different molecular weights.

The results are shown in Tables B.5 to B.12. The plots of cpm(s-b) vs the amount of

a polymer (different molecular weights) in solution as weU as on sUver/glass substrates are

shown in figures B.4 to B.l 1. A linear curve fit analysis was performed using cricket

graph software (Microsoft Corp.). The resulting equations obtained for the eight polymers

used, on glass (silver) surface are shown in Table B.13.

These data illustrate that more than 95% of the polymer, cast as a film, is extracted in to

the cocktail. The equations in Table B.5.9, were used in calculating the amount adsorbed,

from the cpm obtained from a given glass slide.
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No PS-COOH, cpm(s-b)Ago/Ag/G . r.e cpm(s-b)solution . r.e

1 0.0308 ±0.0015
2 0.0308 ± 0.0015
3 0.0308 ±0.0015
4 0.0308 ± 0.0015

cpmavg + r.e + s.e

5 0.0616 ±0.003
6 0.0616 ±0.003
7 0.0616 ±0.003
8 0.0616 ±0.003

cpmavg + r.e + s.e

9 0.0924 ± 0.0045
10 0.0924 ± 0.0045
11 0.0924 ± 0.0045
12 0.0924 ± 0.0045

cpmavg + r.e + s.e

13 0.1232 ± 0.0060
14 0.1232 ± 0.0060
15 0.1232 ± 0.0060
16 0.1232 ± 0.0060

cpmavg + r.e + s.e

17 0.1848 ± 0.0090
18 0.1848 ± 0.0090
19 0.1848 ± 0.0090
20 0.1848 ±0.0090

cpmavg + r.e + s.e

21 0.2464 ±0.0012
22 0.2464 ± 0.0012
23 0.2464 ± 0.0012
24 0.2464 ± 0.0012

cpmavg -t- r.e + s.e

25 0.3080 ±0.0150
26 0.3080 ±0.0150
27 0.3080 ±0.0150
28 0.3080 ± 0.0150

cpmavg + r.e + s.e

24.3 ± 9.3

23.0 ±9.3
23.6 ±9.3

24.0 ± 9.3

44.1 ±9.9
43.1 ±9.9
39.2 ± 9.8

42.0 ± 9.8

42.1 ±9.8
62.0 ± 10.5

66.2 ± 10.7

64.9 ± 10.6

54.9 ± 10.2

62.0 ± 10.5

99.1 ± 11.5

103.1 ± 11.6

97.1 ± 11.5

99.4 ± 11.5

99.7 ± 11.5

132.5 ± 12.4

133.6 ± 12.4

136.1 ± 12.4

130.3 ± 12.3

133.1 ± 12.4

183.8 ± 13.5

181.8 ± 13.5

198.9 ± 13.8

187.8 ± 13.6

187.8 ± 17.2

238.3 ± 14.3

233.2 ± 14.4

237.0 ± 14.4

242.7 ± 14.6

238.1 ± 14.6

23.0 ± 9.3

29.6 ± 9.9

28.0 ± 9.6

28.6 ± 9.6

27.3 ± 9.6

55.7 ± 10.3

55.2 ± 10.3

49.8 ± 10.1

50.2 ± 10.1

52.7 ± 10.2

62.0 ± 10.5

74.2 ± 10.9

68.9 ± 10.7

72.8 ± 10.8

69.5 ± 10.7

97.1 ± 11.5

99.4 ± 11.5

99.8 ± 11.5

103.0 ± 11.6

99.8 ± 11.5

152.6 ± 12.8

144.3 ± 12.6

135.1 ± 12.4

153.0 ± 12.8

146.3 ± 16.6

197.4 ± 13.8

201.6 ± 14.0

195.1 ± 13.8

194.9 ± 13.8

197.4 ± 13.8

255.6 ± 14.8

243.3 ± 14.6

242.2 ± 14.6

241.2 ± 14.6

245.6 ± 14.7

Note: r.e stands for random error in the counts and s.e is the systematic error encountered
while performing the experiments. The data is from LSC notebook #1, p 29 - 31.
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Figure B.4 cpm vs Amount of Carboxylic Acid-Terminated Polystyrene.

Number average molecular weight - 5000
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AgO/Ag/Glass; Mn = 10000
^'^^^

No PS-COOH, cpm(s-b)Ago/Ag/G + r.e
cpm(s-b)solution + r.e

1 0.0220 ± 0.0012
2 0.0220 ±0.0012
3 0.0220 ±0.0012
4 0.0220 ± 0.0012

cpmavg + r.e + s.e

5 0.0440 ± 0.0024
6 0.0440 ± 0.0024
7 0.0440 ± 0.0024
8 0.0440 ± 0.0024

cpmavg + r.e + s.e

9 0.0660 ± 0.0036
10 0.0660 ± 0.0036
1 1 0.0660 ± 0.0036
12 0.0660 ± 0.0036

cpmavg + r.e + s.e

13 0.0880 ± 0.0048
14 0.0880 ± 0.0048
15 0.0880 ± 0.0048
16 0.0880 ± 0.0048

cpmavg + r.e + s.e

17 0.1 100 ± 0.0060
18 0.1100 ± 0.0060
19 0.1100 ± 0.0060
20 0.1100 ± 0.0060

cpmavg + r.e + s.e

21 0.2200 ±0.0120
22 0.2200 ±0.0120
23 0.2200 ±0.0120
24 0.2200 ±0.0120

cpmavg + r.e + s.e

25 0.4400 ± 0.0240
26 0.4400 ± 0.0240

cpmavg + r.e + s.e

27 2.2000 ±0.1200
28 2.2000 ±0.1200

cpmavg + r.e + s.e

29 4.4000 ± 0.2400
30 4.4000 ± 0.2400

cpmavg + r.e + s.e

13.1 ±7.3
11.9±7.2
15.4 ±7.4
10.0 ±7.1
12.6 ±7.3
34.0 ± 8.2

29.1 ±8.1
27.5 ± 8.0

32.6 ±8.1
30.8 ±8.1
41.9 ±8.4
45.1 ±8.6
48.7 ± 8.7

43.5 ± 8.5

44.8 ±8.6
64.8 ± 9.2

58.1 ±9.1
66.4 ± 9.2

63.1 ±9.2
63.1 ±9.2
85.1 ±9.9
81.9 ±9.8
83.6 ±9.9
86.2 ± 9.9

84.2 ± 9.9

156.3 ± 11.8

159.8 ± 11.9

166.2 ± 12.0

167.7 ± 12.0

162.5 ± 11.9

338.5 ± 15.2

328.9 ± 15.0

333.7 ± 15.1

1684.9 ± 29.0

1670.5 ± 28.8

1677.7 ± 28.9

3341.2 ±39.3
3378.0 ± 39.5

3359.6 ± 39.4

12.8 ±7.3
13.9 ±7.3
14.6 ±7.4
15.1 ±7.4
14.1 ±7.3
29.7 ±8.1
30.8 ±8.1
36.3 ± 8.2

32.4 ±8.1
32.3 ±8.1
49.2 ± 8.8

43.1 ±8.5
46.8 ± 8.7

45.3 ± 8.6

46.1 ±8.6
56.0 ±9.1
59.2 ± 9.2

63.4 ± 9.3

65.4 ± 9.3

61.0 ±9.2
78.4 ± 9.7

83.5 ±9.9
84.1 ±9.9
85.2 ±9.9
82.8 ± 9.8

177.8 ± 12.3

171.4± 12.1

166.6 ± 12.0

170.2 ± 12.1

171.5 ±12.1

334.1 ± 15.1

317.7 ± 14.8

325.9 ± 15.0

1691.8 ±29.0
1695.0 ±29.0
1693.4 ±29.0
3329.8 ± 39.2

3368.4 ± 39.4

3349.1 ±39.3

Note: The data is from LSC notebook #1, p 32 - 33.
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Figure B.5 cpm vs Amount of Carboxylic Acid-Terminated Polystyrene.

Number average molecular weight - 10000
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CarbL^t ""^cia^T^^^^^ Amounts of

AgO/AgJci'ass; M„ = lom" ^""^

No PS-COOH, cpm(s-b)Ago/Ag/G

1 0.050 ± 0.004
2 0.050 ± 0.004
3 0.050 ± 0.004

cprnavg + r.e + s.e

4 0.100 ±0.008
5 0.100 ±0.008
6 0.100 ±0.008

cpmavg + r.e + s.e

7 0.150 + 0.012
8 0.150 ±0.012
9 0.150 ±0.012

cpmavg + r.e + s.e

10 0.200 ±0.016
11 0.200 ±0.016
12 0.200 ±0.016

cpmavg + r.e + s.e

13 0.250 + 0.020
14 0.250 ± 0.020
15 0.250 ± 0.020

cpmavg + r.e + s.e

16 0.300 ± 0.024
17 0.300 ± 0.024
18 0.300 ±0.024

cpmavg + r.e + s.e

19 0.400 + 0.032
20 0.400 ± 0.032
21 0.400 ±0.032

cpmavg + r.e + s.e

22 0.800 + 0.064
23 0.800 ± 0.064

cpmavg + r.e + s.e

24 1.200 + 0.096
25 1.200 ±0.096

cpmavg + r.e + s.e

+ r.e

34.6 ± 8.2

36.9.± 8.3

29.3 ±8.1
33.6 ±8.2
72.0 ± 9.5

73.4 ±9.5
70.1 ±9.5
71.8 ±9.5
101.6 ± 10.4

107.9 ± 10.5

120.2 ± 10.8

109.9 ± 18.5

149.1 ±11.6
147.7 ± 11.6

147.5 ± 11.6

148.1 ±11.6
178.1 ± 12.2

191.3 ± 12.5

189.2 ± 12.5

186.2 ± 13.9

221.8 ± 13.1

228.6 ± 13.2

222.8 ± 13.1

224.4 ± 13.2

294.9.± 14.5

309.1 ± 14.7

298.1 ± 14.5

300.7 ± 14.6

616.2 ± 19.0

595.4 ± 18.8

605.8 ± 28.8

899.3 ± 22.1

922.7 ± 22.4

91 1.0 ±32.4

cpm(s-b)solution + r.e

42.9 ± 8.5

41.4 ± 8.4

41.3 ±8.4
41.9 ±8.4
74.2 ± 9.5

79.6 ± 9.6

77.4 ± 9.6

77.1 ±9.6
110.1 ± 10.6

106.8 ± 10.5

108.6 ±10.5
108.5 ± 10.5

150.4 ± 11.6

163.0 ± 11.9

148.3 ± 11.6

153.9 ± 15.6

199.7 ± 12.6

191.3 ± 12.6

194.6 ± 12.6

195.2 ± 12.6

216.6 ± 13.0

210.8 ± 12.9

219.4 ± 13.1

215.6 ± 13.0

344.2 ± 15.3

332.9 ± 15.1

337.8 ± 15.2

338.3 ± 15.2

629.5 ± 19.1

602.9 ± 18.8

616.2 ±36.9
949.7 ± 22.7

919.5 ±22.4
934.6±41.9

Note: The data is from LSC notebook #1, p 37 - 38
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El on AgO/Ag/G

o in solution

PS-COOH, ^ig

y = - 4.50 + 762.92X R'^2 = 1.000 (1) on AgO/Ag/Glass

y = - 0.81 + 779Jlx R'^2 = 0.998 (2) in solution

Figure B.6 cpm vs Amount of Carboxylic Acid-Terminated Polystyrene.
Number average molecular weight - 30000
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C.r^ aL-^S^^^^^ Amounts of

AgO/Ag/Gla'ss? Mn = 1400^0"
'"^ ^"^^ ^""^

No PS-COOH.Hg
cpm(s-b)Ago/Ag/G.r.e

1 0.030 ±0.0015
2 0.030 ±0.0015
3 0.030 ±0.0015

cpmavg + r.e + s.e

4 0.060 i 0.003
5 0.060 ± 0.003
6 0.060 ± 0.003

cpmavg + r.e + s.e

7 0.090 i 0.0045
8 0.090 ± 0.0045
9 0.090 ± 0.0045

cpmavg + r.e + s.e

10 0.120± 0.0060
11 0.120 ±0.060
12 0.120 ± 0.0060

cpmavg + r.e + s.e

13 0.150 i 0.0075
14 0.150 ± 0.0075
15 0.150 ±0.0075

cpmavg + r.e + s.e

16 0.300 I 0.015
17 0.300 ±0.015
18 0.300 ±0.015

cpmavg + r.e + s.e

19 0.600 + 0.030
20 0.600 ± 0.030
21 0.600 ±0.030

cpmavg + r.e + s.e

18.7 ±7.5
21.2.± 7.7

21.3 ±7.7
20.4 ± 7.6

39.8 ± 8.5

47.1 ±8.7
46.6 ± 8.7

44.5 ± 8.6

66.1 ±9.2
58.7 ±9.1
55.8 ± 9.0

60.2 ±9.1
85.6 ± 10.0

92.3 ± 10.1

93.3 ± 10.1

90.4 ± 10.1

103.9 ± 10.4

108.2 ± 10.5

106.2 ± 10.5

106.1 ± 10.5

218.5 ± 13.0

227.1 ± 13.2

216.5 ± 13.0

220.7 ± 13.1

463.2.± 17.0

438.1 ± 16.6

445.7 ± 16.8

449.0 ± 25.2

cpm(s-b)solution + r.e

19.1 ±7.5
23.0 ± 7.7

16.7 ±7.5
19.6 ±7.6
45.6 ±8.6
43.1 ±8.5
43.0 ± 8.5

43.9 ± 8.6

72.0 ± 9.4

61.9 ±9.2
65.3 ± 9.3

66.4 ± 9.3

84.9 ± 10.0

91.6± 10.1

98.0 ±10.3
91.5±10.1

118.7 ±10.7
109.2 ± 10.5

108.4 ± 10.5

112.1 ± 10.6

241.4 ± 13.5

230.8 ±13.4
232.2 ± 13.4

234.8 ± 13.4

469.4 ± 17.1

473.1 ± 17.2

459.1 ±17.0
467.2 ±17.1

Note: The data is from LSC notebook #1, p 39 - 41
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on AgO/AgAj

o in solution

PS-COOH, ng

y = - 4i + 760.0x R"! = 1.000 (1) on AgO/Ag/Glass

y = - 2.1 + 774.93X R'^2 = 1.000 •••••(2) in solution

Figure B.7 cpm vs Amount of Carboxylic Acid-Terminated Polystyrene.
Number average molecular weight - 140000
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Glass; Mn = 10000 ''"^ ®"

No PS-COOH, cpm(s-b)G + r.e
cpm(s-b)solution + r.e

1 0.050 ± 0.005
2 0.050 ± 0.005
3 0.050 ± 0.005

cpmavg + r.e + s.e

4 0.100 + 0.010
5 0.100 ±0.010
6 0.10010.010

cpmavg + r.e + s.e

7 0.150 + 0.015

8 0.150 ±0.015
9 0.150 ±0.015

cpmavg + r.e + s.e

10 0.200 + 0.020
1 1 0.200 ± 0.020
12 0.200 ±0.020

cpmavg + r.e + s.e

13 0.250 + 0.025
14 0.250 ± 0.025
15 0.250 ±0.025

cpmavg + r.e + s.e

16 0.400 + 0.040
17 0.400 ± 0.040

cpmavg + r.e + s.e

18 4.000 + 0.400
19 4.000 ± 0.400
20 4.000 ± 0.400

cpmavg + r.e + s.e

30.6 ±7.0
47.0 ± 7.7

38.8 ± 22.7

72.7 ± 8.6

75.1 ±8.7

73.9 ±8.6
112.1 ±9.8
113.3 ±9.8

151.5 ± 10.8

158.2 ± 10.9

154.9 ± 10.8

201.5 ± 11.9

181.4± 11.5

191.5 ±27.9
291.8 ± 13.6

318.0 ± 14.1

304.9 ± 36.3

37.3 ±7.3
40.1 ±7.4
33.1 ±7.2
36.8 ±7.3
79.7 ± 8.8

75.9 ±8.7
69.3 ± 8.5

75.0 ± 10.3

111.5±9.8
118.1 ±9.9
104.5 ±9.6
111.4± 13.3

151.3 ± 10.8

157.8 ± 10.9

149.9 ± 10.8

153.0 ± 10.8

205.2 ± 12.0

185.4 ± 11.6

188.1 ± 11.6

192.9 ±21.0
311.1 ± 14.0

304.5 ± 13.8

307.8 ± 13.9

3002.7 ± 36.8

3046.8 ± 37.0

3082.4 ± 37.2

3044.0 ± 78.3

Note: The data is from synthesis alone notebook #4, p 1 10 - 1 1

1
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400

HOOC-PS-COOH, \ig

y = - 030 + 764.6X R"! = 1.000 (1) on glass

y = 0.41 + 760.98X R'^Zn 1.000 (2) in solution

Figure B.8 cpm vs Amount of Di-Carboxylic Acid-Terminated Polystyrene.

Number average molecular weight • 10000

282



Glass; Mn = 30000

No PS-COOH, ^ig cpm(s-b)G + r.e
cpm(s-b)solution + r.e

1 0 021 + 0 002 1 S 1 4- A /Iio.l Z 0.4
2 0 021 + 0 002 10.3 H 0.3
3 0 021 + 0 002

comavo + r e 4- 9 p 17 + ^ 11 / .J X O.J
4 0 04 1 + 0 004 1 -4- T 0dLA X /.Z
5 0 04 1 + 0 004 '^'^ 7 4-70
6 0 04 1 + 0 004

CDm^ivo + r e + ^ p '^9 0 4-7 9«L / .Z

7 0 062 + 0 006 4fi 4 4- 7 A*40.^- X /.O
8 0 062 + 0 006 48 8 4- 7 7

9 0.062 ± 0.006

cpniavp + r.e + s e

10 0 082 + 0 008 ^4 Q 4- 8 n

11 0 082 + 0 008vy •w VJ *>* \) ,\J\J Kj OO. / X O.J
12 0.082 ± 0.008

cpmavg + r.e + s.e 61.8 ± 19.1

13 0.103 + 0.012 74.3 ± 8.6
14 0.103 ± 0.012 80.9 ± 8.9
15 0.103 ± 0.012

cpmavg + r.e + s.e 77.6 ± 8.8

16 0.164 + 0.016 132.6 ± 10.3
17 0.164 ±0.016 119.2± 10.0

cpmavg + r.e + s.e 125.9 ± 18.6

18 1.640 + 0.160
19 1.640 ±0.160
20 1.640 ±0.160

cpmavg + r.e + s.e

19.9 ±6.5
15.4 ±6.3
17.8 ±6.4
17.7 ±6.4
32.3 ±7.2
33.8 ±7.2
33.7 ±7.2
33.3 ±7.2
54.7 ± 8.0

46.5 ± 7.6

44.4 ±7.6
48.5 ± 10.7

66.2 ± 8.4

60.6 ± 8.3

61.8 ±8.3
62.9 ±8.3
73.3 ± 8.6

84.5 ± 9.0

78.8 ±8.8
78.9 ± 11.0

128.1 ± 10.2

124.3 ± 10.1

126.2 ± 10.2

1226.0 ±24.6
1248.3 ±24.8
1284.2 ±25.1
1252.8 ±57.6

Note: The data is from sythesis alon notebook #4, p 1 12 - 1 13,
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Figure B.9 cpm vs Amount of Di-Carboxylic Acid-Terminated Polystyrene.

Number average molecular weight - 30000
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Glass; Mn = 60000

No PS-COOH, [Lg

1

2

3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0.053 ±
0.053 ±
0.053 ±
cpmavg
0.106 ±
0.106 ±
0.106 ±
cpmavg
0.158 +
0.158 ±
0.158 ±
cpmavg
0.212 ±
0.212 ±
0.212 ±
cpmavg
0.263 I
0.263 ±
0.263 ±
cpmavg
0.422 I
0.422 ±
cpmavg
4.220 ±
4.220 ±
4.220 ±
cpmavg

0.005

0.005

0.005

+ r.e + s.e

0.010

0.010

0.010

+ r.e + s.e

0.015

0.015

0.015

+ r.e + s.e

0.020

0.020

0.020

+ r.e + s.e

0.025

0.025

0.025

+ r.e + s.e

0.040

0.040

+ r.e + s.e

0.400

0.400

0.400

+ r.e + s.e

cpm(s-b)G + r.e

39.1 ±7.4
37.5 ±7.4

38.3 ±7.4
81.2 ±8.9
78.5 ± 8.8

79.9 ± 8.8

111.5±9.8
121.5 ± 10.0

116.5 ±9.9

158.9 ± 11.0

171.7 ± 11.3

165.3 ± 17.7

201.3 ± 11.9

208.1 ± 12.0

204.7 ± 11.9

329.8 ± 14.3

318.4 ± 14.1

324.1 ± 14.2

cpm(s-b)solution + r.

38.5 ±7.4
41.7 ±7.4
33.0 ±7.2
37.7 ± 8.6

86.4 ± 9.0

77.9 ±8.8
78.2 ±8.8
80.2 ± 8.9

124.0 ± 10.1

110.9± 9.8

118.5 ± 10.0

1 17.8 ± 12.9

173.7 ± 11.3

165.9 ±11.2
162.8 ± 11.1

167.5 ± 11.2

196.4 ± 11.8

216.1 ± 12.2

207.7 ± 12.0

206.7 ± 19.4

314.1 ± 14.0

339.7 ± 14.4

326.9 ± 35.5

3274.9 ± 38.3

3222.5 ± 38.0

3319.7 ±25.1
3272.4 ± 95.4

Note: The data is from synthesis alone notebook #4, p 1 14 - 1 16,
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HOOC-PS-COOH, ng

y = - 1.50 + 774.10X R'^l = 0.999 (1) on glass

y = - 034 + 774.85X R'^l = 1.000 (2) in solution

Figure B.IO cpm vs Amount of Di-Carboxylic Acid-Terminated
Polystyrene. Number Average molecular weight - 60000
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Glass; Mn = 140000 ®"

No PS-COOH. ^ig

1 0.0465 ± 0.0045
2 0.0465 ± 0.0045
3 0.0465 ± 0.0045

cpmavp + r.e + s.e

4 0.093 I 0.009
5 0.093 ± 0.009
6 0.093 ± 0.009

cpmavg + r.e + s.e

7 0.1395 ±0.0135
8 0.1395 10.0135
9 0.1395 10.0135

cpmavg + r.e + s.e

10 0.18601 0.0180
11 0.186010.0180
12 0.186010.0180

cpmavg + r.e + s.e

13 0.2325 1 0.0225
14 0.2325 1 0.0225
15 0.2325 1 0.0225

cpmavg + r.e + s.e

16 0.37201 0.0360
17 0.372010.0360

cpmavg + r.e + s.e

18 3.730 1 0.360
19 3.730 1 0.360
20 3.730 1 0.360

cpmavg + r.e + s.e

cpm(s-b)G + r.e

33.417.2
33.317.2

33.417.2
79.7 1 8.8

59.9 1 8.2

69.8 1 27.4

102.21 19.8

102.41 19.8

102.31 19.8

139.71 10.5

124.71 10.1

132.2122.5

167.41 11.1

167.61 11.1

167.51 11.1

274.61 13.3

285.81 13.5

280.21 13.4

cpm(s-b)soiution + r.e

36.017.3
32.3 1 7.2

30.917.1
33.1 17.2
68.6 1 8.5

71.318.6
69.0 1 8.5

69.6 1 8.5

98.5 1 9.4

92.7 1 9.2

100.919.5
97.4 1 9.4

139.61 10.5

144.21 10.6

134.61 10.4

139.51 10.5

177.61 11.4

173.1111.3
175.41 11.3

175.41 11.3

281.31 13.4

263.51 13.1

272.4 1 24.7

2666.4 1 34.8

2780.1 135.5
2721.4135.1
2722.61 111.4

Note: The data is from synthesis alone notebook #4, p 1 17 - 1 18,
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HOOC-PS-COOH, \ug

y = - 1.83 + 74635X = 0.999 (1) on glass

y = 0.98 + 729.72X R'^2 = 1.000 (2) in solution

Figure B.ll cpm vs Amount of Di-Carboxylic Acid-Terminated
Polystyrene. Number average molecular weight - 140000
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Table B.13 Equations Representing^ the CPM versus the Amount „r

sample M suDstrate/solution
equation

PS-COOH Agu/Ag/giass cpm = -3.79 + 777.63X

solution cpm = 1.46 + 791. lOx

PS-COOH 10000 Agu/Ag/giass cpm = -4.20 + 764.50X

solution cpm = -1.30 + 768.60X

PS-COOH '^0000 Agu/Ag/giass cpm = -4.50 + 762.92X

solution cpm = -0.81 +779.31X

PS-COOH 1 40000 Agu/Ag/giass cpm = -4.50 + 760.00X

solution cpm = 1.46 + 791. lOx

HOOC-PS-COOH 10000l\J\J\J\J glass cpm = -0.30 + 764.60X

solution cpm = 0.41 + 760.98X

HOOC-PS-COOH '^0000 glass cpm = 0.78 + 758.50X

solution cpm = 1.06 + 763.26X

HOOC-PS-COOH 60000 glass cpm = •1.50 + 774.1 Ox

solution cpm = •0.34 + 774.85X

HOOC-PS-COOH 140000 glass cpm = - 1.83 + 746.35X

solution cpm = 0.98 + 729.72X

where x is the amount of polymer in ^ig, cast as a film on the surface / added direcUy to the

cocktail from a dilute solution using a finnpipette.
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Table B.14 Counts Per Minute Per Square Centimeter Obtained aflAdsorption with Time

substrate - glass; solvent - cyclohexane; temperature - 36.7± 0.1 °C; Mn = 5000

time (h) PS-COOH PS-OH PS-H

concentration = 1.0 mg/ml

0.25 240. 1 ± 5.

1

0.5 241.5 ±5.1
1.0 242.2 ±5.1
2.0 246.7 ±5.1
3.0 274.1 ±5.4
6.0 268.9 ±5.3

16.0 293.6 ±5.5
24.0 281.8 ±5.4

concentration = 0

0.25 177.8 ±4.5
0.5 184.2 ±4.6
1.0 186.2 ±4.6
3.0 190.2 ±4.6
6.0 195.4 ±4.7
12.0 197.3 ±4.7
24.0 199.6 ±4.7

41.3 ±2.4
43.2 ± 2.5

45.6 ± 2.5

48.9 ± 2.6

52.4 ± 2.7

56.8 ±2.8
61.5 ±2.8
60.4 ± 2.8

20.6 ± 2.0

21.6±2.1
25.1 ±2.1
25.9 ± 2.2

34.8 ± 2.4

37.7 ± 2.5

36.6 ± 2.4

concentration = 0.01 mg/ml

0.25 83.6 ±3.3 28.3 ±2.2
0.5 81.1 ±3.3 30.2 ± 2.3
1.0 84.6 ± 3.3 30.8 ± 2.3
2.0 85.8 ±3.3 29.5 ± 2.3
3.0 83.7 ± 3.3 31.5 ±2.3
4.0 87.9 ±3.4 31.0 ±2.3
8.0 84.8 ± 3.3 33.4 ±2.4
24.0 84.7 ± 3.3 30.9 ± 2.3

33.4 ±2.3
34.1 ±2.3
35.3 ± 2.3

39.4 ± 2.4

49.8 ± 2.6

52.4 ± 2.7

44.7 ± 2.6

50.4 ± 2.6

24.7 ±2.1
23.0 ±2.1
24.2 ± 2.1

26.5 ± 2.2

28.2 ±2.2
30.9 ±2.3
30.6 ± 2.3

19.3 ±2.0
21.1 ±2.0
24.5 ±2.1
25.5 ± 2.2

27.1 ±2.2
23.8 ±2.1
23.6 ±2.1
24.6 ±2.1

concentration = 0.001 mg/ml

0.25 44.1 ±2.6 14.1 ± 1.8 13.3 ± 1.8
0.5 46.7 ± 2.7 15.6 ± 1.9 14.0 ± 1.8
1.0 49.2 ± 2.7 17.7 ± 1.9 15.3 ± 1.8

2.0 52.4 ± 2.8 19.4 ±2.0 16.8 ± 1.9

3.0 51.9 ±2.8 22.9 ±2.1 18.5 ±2.0
4.0 49.9 ± 2.7 24.2 ±2.1 19.1 ±2.0
8.0 51.4 ±2.7 24.7 ±2.1 19.8 ±2.0
24.0 51.2 ±2.7 24.1 ±2.1 20.1 ±2.0

Note : The data is from LSC notebook #1, p 1 16 - 121 and LSC notebook #2, p 35 -
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Table B.15 Counts Per Minute Per Sn..ar^

substrate
- glass; solvent - cyclohexane; temperature - 36.7± O.IOC; Mn = 10000

t(h) PS-COOH PS-OH PS-H

concentration =

0.25

0.50
1.0

2.0

3.0

6.0

12.0

24.0

concentration = 1.0 mg/ml

0.25

0.50
1.0

3.0

6.0

16.0

24.0

261.8

376.5

324.1

313.1

317.9

332.6

329.5

±5.3
±6.2
± 5.8

±5.7
±5.8
±5.9
±5.9

41.5 ±2.5
49.0 ± 2.7

54.8 ± 2.8

69.3 ± 3.1

79.1 ± 3.2

81.2 ±3.3
80.0 ± 3.2

concentration = 0.1 mg/ml

0.25

0.5

1.0

3.0

6.0

12.0

24.0

48.0

160.7 ± 4.4

167.4 ±4.5
178.3 ±4.6
181.1 ±4.6
177.4 ±4.6
182.4 ±4.7
184.6 ±4.7
189.8 ±4.7

22.0 ±2.1
28.8 ± 2.3

41.3 ±2.6
45.4 ± 2.7

43.8 ± 2.7

45.5 ± 2.8

46.0 ± 2.8

29.4 ± 2.3

36.1 ± 2.4

49.7 ± 2.7

64.1 ± 3.0

77.1 ± 3.2

74.9 ± 3.2

76.0 ± 3.2

30.9 ± 2.3

36.1 ± 2.5

41.3 ±2.6
51.4 ±2.8
48.5 ± 2.6

51.8 ± 2.8

50.9 ± 2.8

t(h) PS(C00H)2 PS(0H)2

1.45 mg/ml

53.3 ± 3.3

50.1 ±3.3
44.2 ± 3.2

47.7 ± 3.2

50.3 ± 3.3

56.0 ± 3.4

50.7 ± 3.3

51.7 ±3.3

0.94 mg/ml

26.0 ± 2.8

31.1 ± 2.9

28.5 ± 2.8

27.9 ± 2.8

26.9 ± 2.8

25.2 ± 2.7

26.6 ± 2.8

27.3 ± 2.8

0.19 mg/ml

16.5 ± 2.5

19.4 ± 2.7

16.9 ± 2.6

19.3 ± 2.6

17.9 ±2.6
15.9 ±2.5
14.1 ± 2.5

i.M mg/ml

^U3.o ± 5.3
^il. 1 ± 5.5
998 -1- c o^^o.o Z J.

5

9^0 9 + ^ ©

^Ji.J Z J.

5

234.5 ± 5.9

243.0 ± 6.0

242.2 ± 5.9

0 Q4 mo/ml

0.25

0 50 79 8 + Q 7

1 0

2 0 71 0 + 7

3.0 72 8 + 7

6.0 I'h.l ± 3.7
12.0 73.6 ± 3.7
24.0 72.0 ± 3.7

0.15 mg/ml

0.25 36.5 ± 3.0
0.50 34.5 ± 3.0
1.0 32.6 ± 2.9
3.0 35.7 ± 3.0
6.0 41.2 ±3.1
12.0 34.1 ± 3.0
24.0 35.4 ± 3.0

Continued, next page
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Table B.15 Continued

substrate
- glass; solvent - cyclohexane; temperature - 36.7± O.^C; Mn = 10000

t(h) PS-COOH PS-OH PS-H

0.5

1.0

2.0

4.0

6.0

15.0

24.0
48.0

0.25

0.5

1.0

2.0

3.0

4.0

8.0

24.0

concentration = 0.01 mg/ml

54.6 ± 2.8

44.6 ± 2.6

61.0 ± 2.9

64.0 ± 3.0

60.3 ± 2.9

67.6 ± 3.0
61.1 ± 2.9

64.2 ± 3.0

31.5 ±2.3
32.8 ± 2.3

36.5 ± 2.4

38.4 ±2.5
38.9 ±2.5
42.5 ± 2.5

39.3 ± 2.5

39.8 ± 2.5

concentration = 0.001 mg/ml

30.0 ± 2.3

33.2 ± 2.3

35.8 ± 2.4

38.7 ± 2.4

39.5 ± 2.5

49.9 ± 2.7

41.2 ± 2.5

39.4 ± 2.4

17.0 ± 1.8

19.0 ± 1.9

23.6 ± 2.1

26.7 ± 2.2

31.5 ±2.2
33.1 ± 2.3

34.3 ± 2.3

33.0 ± 2.3

28.1 ± 2.2

29.3 ± 2.2

33.7 ± 2.4

34.4 ± 2.4

35.1 ±2.4
2.6 ± 2.3

31.8 ± 2.3

34.1 ± 2.4

10.2 ± 1.7

13.1 ± 1.8

16.6 ± 1.9

19.6 ± 1.9

25.7 ± 2.2

29.3 ± 2.3

30.7 ± 2.3

30.5 ± 2.3

t(h) PS(C00H)2 PS(OH)2

0.25

0.50

1.0

3.0

6.0

12.0

24.0

0.015 mg/ml 0.019 mg/ml

26.5 ± 2.8

23.0 ± 2.8

20.1 ±2.7
20.9 ±27
23.9 ± 2.8

22.9 ± 2.8

26.9 ± 2.8

11.2 ±2.5
14.6 ± 2.5

13.3 ±2.5
13.2 ±2.5
10.4 ± 2.4

13.4 ±2.5
11.1 ±2.5

Note: The data is from LSC notebook #1, p 145 - 147- LSC notehnnir no r.'x i.
synthesis alone notebook #4, p 121 - 135;'rnd LSC noteboo^^^^^^^
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Table B.16 Counts Per Minute Per Snn»r.
Adsorption w/j^T^Jfe ""'^

-J!!!!!!:!!!!^^ m„ = 30000

t (h) PS-COOH PS-OH PS H tPS-H t(h) PS(C00H)2 PS(0H)2

concentration =

0.50

1.0

3.0

6.0

12.0

24.0

concentration = 1.0 mg/ml

99.6 ± 3.6

109.3 ±3.7
122.9 ± 3.9

129.3 ±4.0
134.1 ±4.0
124.6 ±3.9
122.6 ±3.9
134.1 ±4.0

concentration =

0.25 396.9 ± 6.5
0.5 430.1 ±6.7
1.0 429.5 ± 6.7
2.0 444.0 ± 6.8
3.0 439.2 ± 6.8
7.0 428.6 ± 6.7
15.0 420.7 ± 6.6
24.0 426.7 ± 6.7

86.8 ± 3.4

113.2 ± 3.8

118.3 ±3.8
130.3 ±4.0
128.3 ±4.0
126.4 ± 3.9

126.8 ±3.9
120.7 ± 3.9

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

1.0

2.0

3.0

4.0

5.0

24.0

concentration = 0. 1 mg/ml

0.083
0.25

0.5

1.0

2.0

3.0

6.0

12.0

24.0

132.3

232.6

272.1

308.9

285.1

280.8

271.3

277.4

281.9

±4.1
± 5.2

±5.5
±5.9
±5.7
±5.6
±5.5
±5.6
±5.6

38.7 ± 2.6

71.4 ±3.2
85.7 ± 3.7

78.7 ± 3.3

81.8 ±3.4
83.9 ± 3.4

77.4 ± 3.3

82.3 ± 3.4

81.9 ±3.4

29.4 ± 2.3

66.3 ±3.1
79.4 ± 3.3

71.7 ±3.2
76.9 ± 3.3

76.8 ± 3.3

77.3 ± 3.3

74.1 ±3.3
73.8 ± 3.2

2.43 mg/ml 2.71 mg/ml

406.7 ± 9.4

353.4 ± 8.3

447.7 ± 10.0
513.5 ± 11.5
443.8 ± 10.1

497.4 ± 11 1

235.3 ± 5.7

197.4 ± 5.2

208.1 ±5.4
198.2 ±5.2
199.2 ± 5.2

203.2 ± 5.3

1.1 mg/ml 1.12 mg/ml

217.2 ±5.5
201.6 ±5.3
208.2 ± 5.4
21 1.5 ±5.5
194.0 ±5.3
206.9 ± 5.4

223.0 ± 5.7

212.5 ±5.5

83.9 ± 3.9

65.3 ± 3.6

63.0 ± 3.2

70.4 ± 3.7

79.7 ± 3.8

68.1 ±3.6
72.0 ± 3.7

70.6 ± 3.7

0.54 mg/ml 0.56 mg/ml

158.9 ±4.8
154.9 ±4.8
158.3 ±4.8
150.3 ± 4.7

158.4 ±4.8
159.5 ± 4.9

37.4 ± 3.0

40.0 ±3.1
41.9 ± 3.1

39.2 ±3.1
39.4 ±3.1
38.9 ±3.1

0.15 mg/ml 0.20 mg/ml

0.25 41.8 ± 3.1 18.7 ±2.6
0.50 39.0 ± 3.1 18.3 ± 2.6
1.0 41.9 ± 3.1 16.7 ± 2.6
2.0 44.3 ± 3.2 17.4 ±2.6
3.0 38.6 ±3.1 16.6 ±2.6
6.0 37.6 ±3.1 18.0 ±2.6
12.0 40.3 ±3.1 16.3 ± 2.5
24.0 39.8 ± 3.1 16.5 ±2.5

Continued, next page
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Table B.16 Continued

substrate - glass; solvent - cyclohexane; temperature
36.7±0.1°C;Mn = 30000

t (h) PS-COOH PS-OH

concentration = 0.01 mg/ml

0.25

0.5

1.0

2.0

3.0

4.0

6.0

8.0

12.0

24.0

95.4 ± 3.5

100.2 ±3.6
105.8 ± 3.6

107.9 ± 3.7

114.1 ± 3.8

115.8 13.8

112.3 13.7
114.3 13.8

60.9 1 2.9

64.6 1 3.0

63.21 3.0

67.513.1
65.7 1 3.0

70.01 3.1

64.8 1 3.0

66.2 1 3.0

64.2 1 3.0

concentration = 0.001 mg/ml

0.25

0.5

1.0

2.0

3.0

4.0

6.0

8.0

12.0

24.0

68.5 1 3.0

71.013.1
72.913.1

74.01 3.1

76.5 1 3.2

81.913.3
76.8 1 3.2

35.0 1 2.4

39.0 1 2.5

41.91 2.5

43.8 1 2.6

49.2 1 2.7

49.4 1 2.7

52.9 1 2.8

PS-H

54.4 1 2.8

57.8 1 2.9

59.5 1 2.9

60.4 1 2.9

59.1 12.9
59.6 1 2.9

65.5 1 3.0

62.3 1 3.0

60.1 1 2.9

64.9 1 3.0

28.2 1 2.2

34.1 1 2.4

39.6 1 2.5

43.2 1 2.6

47.3 1 2.6

50.6 1 2.7

54.5 1 2.8

49.1 1 2.7 50.21 2.7

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

t(h) PS(C00H)2 PS(OH>

0.016 mg/ml 0.013 mg/ml

28.4 12 9
25.7 1 2.8

22.7 1 2.7

24.3 1 2.8

21.8 1 2.7

11.5 12.4
8.4 1 2.3

8.3 1 2.3

8.0 1 2.3

8.7 1 2.3

28.2 1 2.9 9.8 1 2.4

25.5 1 2.8 10.6 1 2 4
27.5 1 2.8 10.7 1 2.4

n'SiSoIk'#3'p ^
"^^^^^^^ P LSC notebook #2. p 23 -30; and LSC
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substrate - glass; solvent - cyclohexane; temperature - 36.7± 0.1°C; Mn = 60000

time (h) PS(C00H)2 PS(0H)2

concentration = 1.92 and 2.23 mg/ml

1.0

2.0

3.0

6.0

12.0

24.0

48.0

48.0

532.9 ± 10.7

464.8 ±9.3
471.2 ±9.4
486.2 ± 9.7

505.4 ± 10.1

572.1 ± 11.4

470.1 ±9.4
343.8 ± 8.1

329.2 ± 6.6

291.4 ±5.8
320.2 ± 6.4

269.6 ± 5.4

294.3 ± 5.9

308.5 ± 6.2

268.4 ± 5.4

232.3 ± 5.9

concentration = 1.00 and 1.1 1 mg/ml

231.4 ±5.8
222.2 ± 5.7

235.9 ± 5.9

247.3 ± 6.2

267.8 ± 6.6

227.5 ± 5.8

235.5 ± 5.9

232.3 ± 5.9

concentration = 0.57 and 0.71 mg/ml

0.5 336.2 ± 8.0
1.0 354.7 ± 8.2
2.0 343.0 ± 8.0
3.0 333.0 ±7.8
6.0 325.8 ± 7.8

12.0 346.4 ± 8.2
24.0 346.7 ± 8.2
48.0 343.8 ±8.1

0.5 278.8 ± 6.8 174.3 ±5.1
1.0 265.3 ± 5.6 196.3 ± 5.3
2.0 295.5 ±7.1 192.8 ±5.3
3.0 286.5 ± 7.0 192.7 ± 5.2
6.0 304.1 ±7.3 183.9 ±5.1

12.0 286.0 ±7.0 179.1 ±5.1
24.0 281.0 ±6.9 191.4 ±5.2
48.0 281.6 ±6.9 189.8 ±5.2

Continued, next page
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Table B.17 Continued

substrate - glass; solvent - cyclohexane; temperature - 36.7± 0. 1 °C; Mn = 60000

time (h) PS(C00H)2 PS(0H)2

concentration = 0.10 and 0.12 mg/ml

0.5 107.814.2 74 5 ±3 7
1.0 110.3 ±4.3 78.4 ±3:8
2.0 120.2 ±4.4 72.0 ±3.7
3.0 117.7 ±4.3 75 4±3 8
6.0 115.2 ±4.3 72.8 ±3^7

12.0 116.7 ±4.3 77.0 ±3.8
24.0 114.1 ±4.3 72 5 ±3 7
48.0 114.8 ±4.3 73.0 ±3.7

concentration = 0.013 and 0.017 mg/ml

52.0 ± 3.4

57.6 ±3.5
47.9 ± 3.3

55.7 ± 3.4

55.2 ±3.4
45.8 ± 3.2

49.3 ± 3.3

50.6 ± 3.3

0.5 80.9 ±3.8
1.0 89.6 ±3.9
2.0 99.6 ±4.1
3.0 89.9 ± 3.9
6.0 88.0 ±3.9

12.0 98.0 ±4.1
24.0 85.4 ± 3.9
48.0 90.2 ± 3.9

296



Table B.18 Counts Per Minute Per Square Centimeter
Adsorption with Time

Obtained after

substrate - glass; solvent - cyclohexane; temperature - 36.7± 0.1°C;Mn = 140000

t (h) PS-COOH PS-OH PS-H t(h) PS(COOH)2 PS(0H)2

concentration =
2.41 mg/ml 2.55 mg/ml

concentration = 1mg/ml

0.25 313.9 1 5.8
0.5 322.2 ± 5.9
1.0 333.3 ±5.9
2.0 326.7 ± 5.7
3.0 322.9 ± 5.8
4.0 315.9 ±5.6
12.0 325.9 ±5.9
15.0 325.1 ±5.9
24.0 325.6 ± 5.9

concentration =

163.6 ± 4.4

191.1 ±4.7
206.9 ± 4.8

205.5 ± 4.7

187.7 ±4.6
204.3 ± 4.6

201.4 ±4.8
205.2 ± 4.8

205.7 ± 4.8

0.50

1.0

2.0

3.0

6.0

12.0

24.0

410.9 ±9.2
498.9 ± 11.2
451.9 ± 10.2
444.5 ± 10.1

395.6 ± 9.1

446.3 ± 10.1

474.4 ± 10.7

201.3 ±5.3
268.4 ± 6.5
259.2 ± 6.5

265.5 ± 6.5

229.9 ± 6.0

244.6 ±6.1
243.6 ±6.1

1.15 mg/ml 1.29 mg/ml

0.50 425.4 ± 9.7
1.0 476.8 ± 10.7
2.0 432.5 ± 9.8
3.0 481.4 ± 10.8
5.0 482.8 ± 10.8
12.0 462.7 ± 10.8

24.0 477.0 ± 10.7

0.57 mg/ml

0.50 372.4 ± 8.7
1.0 339.5 ± 7.9
2.0 362.1 ± 8.5
3.0 368.8 ± 8.6
5.0 360.2 ± 8.4
12.0 344.8 ± 8.0
24.0 375.5 ± 8.8

157.9 ± 4.9

157.1 ±4.9
158.9 ±4.9
163.0 ±5.0
158.3 ± 4.9

160.1 ±4.9
165.0 ± 5.0

Continued, next page
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Table B.18 Continued

substrate - glass; solvent - cyclohexane; temperature - 36.7± 0. 1°C; Mn = 140000

t (h) PS-COOH PS-OH PS-H t (h) PS(C00H)2 PS(0H)2

concentration = 0. 1 mg/ml

0.25 174.4 ±4.5
0.5 175.9 14.5
1.0 227.2 15.0
2.0 194.0 14.7
4.0 190.7 14.7
6.0 192.3 14.7
15.0 188.0 14.7
24.0 190.7 1 4.7

0.11 mg/ml 0.13 mg/ml

108.7 1 3.7

118.313.8 0.50
120.613.8 1.0

131.314.0 2.0
146.2 1 4.2 3.0
153.1 1 4.3 5.0
177.814.6 12.0

151.5 14.3 24.0

262.0

283.7

280.7

307.4

273.5

281.3

273.0

16.1
1 6.9

1 6.8

17.3
16.5
16.8
16.5

134.3

129.6

125.6

136.0

127.3

136.4

131.1

14.5
14.5
14.5
1 4.6

14.5
14.6
14.5

concentration = 0.01 mg/ml 0.013 mg/ml 0.015 mg/ml

?^AVA 124.8 1 3.9 0.25 230.8 1 5.8 98.2 1 3.9

90 WaIVa^c^
126.1 1 3.9 0.50 231.3 1 5.8 111.5 1 4.2

?n \li:nVA 127.5 1 3.9 1.0 217.5 1 5.5 115.1 1 4.2

11 IaiIVaI 1??-^±3.9 2.0 241.4 16.0 113.5 14.2

^90 ^??lln 133.1 1 4.0 3.0 237.41 5.9 117.41 4.3

\aI 134.1 14.0 5.0 242.91 6.0 108.014.1

It a ^nllln 133.3 1 4.0 12.0 229.5 1 5.8 109.8 1 4.1
48.0 140.5 14.0 133.414.0 24.0 227.1 1 5.7 112.7 14.2

concentration = 0.001 mg/ml

0.50 93.9 1 3.5 63.0 1 3.0
1.0 101.613.6 67.8 1 3.0
2.0 106.9 1 3.6 76.5 1 3.2
3.0 111.6 1 3.7 85.1 1 3.3
6.0 113.1 1 3.7 93.8 1 3.5
12.0 115.7 1 3.8 106.6 1 3.6
24.0 115.1 1 3.8 110.91 3.7
48.0 115.4 13.8 110.7 13.7

Note: The data is from LSC notebook #1, p 126 - 130; LSC notebook #2, p 19, 20, 45
50; and LSC notebook #3, p 79 -89.
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Table B.19 Counts Per Minute Per SauarP r.n*- . ^
Adsorption wSh Time ^"^^

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 5000

time (h) PS-COOH PS-OH PS-H

concentration = 1.0 mg/ml

0.083

0.167

0.5

1.0

2.0

4.0

12.0

24.0
72.0

120.0

360.0

0.25

0.5

1.0

2.0

3.0

5.0

6.0

12.0

15.0

24.0

48.0

96.0

124.0

168.0

360.0

206.1

168.2

131.0

116.3

124.9

127.5

120.0

114.6

111.8

116.1

116.4

±4.9
±4.5
±4.0
±3.9
± 4.0

± 4.0

±3.9
± 3.8

± 3.8

±3.8
±3.9

concentration = 0. 1 mg/ml

170.4 ±4.1
159.2 ±4.0
128.1 ± 3.6

147.1 ± 3.8

146.6 ± 4.1

116.8 ±3.8
133.0 ±4.0
118.5 ±3.8

105.4 ± 3.6

100.9 ±3.6
98.5 ±3.5

14.2 ± 1.9

17.7 ±2.0
15.9 ± 1.9

15.8 ± 1.9

17.5 ±2.0
21.5 ±2.1
19.7 ±2.1
27.5 ± 2.3

25.0 ± 2.2

22.8 ±2.1
22.9 ±2.1

1.8 ± 1.1

1.3 ± 1.1

1.5 ± 1.1

2.4 ± 1.2

2.7 ± 1.3

4.5 ± 1.4

3.1 ± 1.4

4.1 ± 1.4

3.1 ± 1.4

3.4 ± 1.4

Below
detection

limit

Below
detection

limit

Continued, next page
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Table B.19 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1 0°C; Mn = 5000

time (h) PS-COOH PS-OH PS-H

0.25

0.5

1.0

2.0

4.0

8.0

24.0

48.0
72.0
360.0

concentration = 0.01 mg/ml

18.3 ± 1.5

16.2 ± 1.5

10.9 ± 1.3

11.6± 1.3

6.3 ± 1.2

6.4 ±1.2
6.2 ± 1.1

6.4 ± 1.2

5.9 ± 1.1

6.1 ± 1.1

Below
detection

limit

Below
detection

limit

0.25

0.50

1.0

2.0

4.0

8.0

24.0

48.0
72.0

concenu-ation = 0.001 mg/ml

4.0± 1.1

3.4 ± 1.0

2.4 ± 1.0

1.6 ±0.9
2.9 ± 1.0

1.4 ±0.9
1.4 ±0.9
0.7 ± 0.9

1.1 ±0.9

Below
detection

limit

Below
detection

limit

Note: The data is from LSC notebook #1. p 45 - 54. p 70 - 109 and LSC notebook #2, p
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Ta.e B.0 Cou„. -^M^ - S,„a.e CenH.e.. OMa.ea art.

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

t(h) PS-COOH

0.083
0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

concentration = 1

0.25 428.6 ± 6.6
0.50 189.8 ±4.6
1.0 1 OA A A c

180.4 ± 4.5
3.0 203.6 ± 4.8

6.0 177.5 ± 4.5
12.0 159.1 ±4.3
12.0 175.6 ± 4.5

24.0 145.5 ±4.1
48.0 137.9 ±4.1
120.0 134.4 ± 4.0
360.0 138.7 ±4.1

concentration =

PS-OH PS-H

18.0 ± 2.0

19.8 ±2.0
21.7 ±2.1
22.1 ±2.1
22.8 ± 2.1

25.1 ±2.2
21.8 ± 2.1

23.1 ± 2.1

22.8 ± 2.1

21.5 ±2.1

4.4 ± 1.4

7.6 ± 1.6

8.8 ± 1.6

11.2± 1.7

11.6 ± 1.7

14.9 ± 1.9

12.1 ± 1.8

12.3 ± 1.8

12.9 ± 1.8

12.2 ± 1.8

t (h) PS(COOH)2 PS(0H)2

1.5 mg/ml

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

161.8

169.2

144.6

196.3

185.3

164.3

168.1

198.9

160.5

±4.8
± 4.9

±4.6
±5.2
±5.1
±4.8
±4.9
±5.2
± 4.8

1.05 mg/ml 1.06 mg/ml

163.3 ± 4.8 83.6 ±3 8
147.4 ±4.6 113.3 ±4.2
151.1 ±4.7 105.6 ±4.1
135.9 ±4.5 103.7 ±4.1
141.5 ±4.6 100.8 ±4.1
133.1 ± 4.4 88.7 ±39
166.9 ±4.9 89.1 ±3.9
157.6 ±4.8 101.4 ±4.1
162.3 ± 4.8 99.2 ± 4.0

0.56 mg/ml 0.5 mg/ml

0.083 172.5 ± 4.9 61.6 ±3.5
0.25 160.4 ± 4.8 69.3 ± 3.6
0.50 137.1 ±4.6 64.4 ± 3.5
1.0 148.2 ± 4.7 72.8 ± 3.7

2.0 143.7 ± 4.6 70.4 ± 3.6
3.0 149.0 ± 4.7 65.8 ± 3.5
6.0 157.1 ±4.8 62.2 ± 3.5
12.0 140.2 ± 4.6 66.6 ± 3.5
24.0 153.6 ±4.7 69.5 ± 3.6

Continued, next page
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Table B.20 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

t(h) PS-COOH PS-OH PS-H t(h) PS(C00H)2 PS(0H)2

concentradon = 0.1 mg/ml

0.083
0.25

0.5

1.0

2.0

3.0

4.0

15.0

24.0

48.0

336.0

95.7 ± 3.4

76.6 ± 3.2

72.9 ±3.1
68.4 ± 3.0

75.1 ±3.1
72.5 ±3.1
73.1 ±3.1
71.7±3.1
76.9 ± 3.2

80.5 ± 3.2

75.6 ±3.1

0.12 mg/ml 0.12 mg/ml

6.3 ± 1.5

8.0 ± 1.6

5.7 ± 1.5

5.1 ± 1.4

5.2 ± 1.4

7.8 ± 1.6

6.5 ± 1.5

7.2 ± 1.5

8.0 ± 1.6

7.0 ± 1.5

1.6 ± 1.3

2.0 ± 1.3

2.0 ± 1.3

4.8 ± 1.4

3.4 ± 1.4

3.7 ± 1.4

3.5 ± 1.4

4.7 ± 1.4

5.6 ± 1.5

5.5 ± 1.5

0.083
0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

149.2

120.9

114.7

127.6

130.3

125.2

124.5

130.8

123.8

±4.7
±4.3
±4.3
± 4.4

±4.5
±4.4
±4.4
±4.5
±4.4

46.5 ± 3.2

49.4 ±34
53.6 ±3.3
50.7 ± 3.3

50.2 ± 3.2

52.9 ± 3.3

49.8 ± 3.3

54.4 ± 3.4

47.9 ± 3.2

concentration =
0.067 mg/ml 0.056 mg/ml

0.25

0.5

1.0

2.0

4.0

15.0

24.0
48.0

96.0
120.0

concentration = 0.01 mg/ml

19.8 ± 2.0

18.6 ±2.0
16.8 ± 1.9

17.1 ± 1.9

15.2 ± 1.8

13.8 ± 1.8

13.0 ± 1.8

14.5 ± 1.8

12.9 ± 1.8

13.5 ± 1.8

Below
detection

limit

Below
detection

limit

0.083

0.25

0.50

1.0

2.0

3.0

6.0

14.0

24.0

0.083

0.25

0.50

1.0

2.0

3.0

6.0

14.0

24.0

48.0

96.0

120.0

151.5

142.6

128.5

116.5

120.3

110.5

103.9

113.0

108.6

±4.6
±4.6
±4.4
±4.2
±4.3
±4.1
±4.1
±4.2
±4.1

30.7 ± 2.8

31.0 ±2.8
34.7 ± 3.2

31.7 ±2.9
29.0 ± 2.7

26.0 ± 2.7

33.4 ± 2.9

28.8 ± 2.7

31.1 ±2.8

0.015 mg/ml 0.019 mg/ml

89.0 ± 3.8

63.7 ± 3.4

51.5 ±3.2
78.8 ± 3.7

59.7 ± 3.3

68.2 ± 3.5

74.6 ± 3.6

60.2 ± 3.4

47.6 ± 3.2

45.4 ± 3.2

50.2 ± 3.2

47.7 ± 3.2

19.7 ± 2.5

24.7 ± 2.7

19.8 ± 2.5

19.4 ± 2.5

16.6 ± 2.4

14.1 ±2.3
16.5 ± 2.4

16.1 ±2.4
15.5 ± 2.4

14.4 ± 2.3

13.5 ± 2.3

13.4 ± 2.3

Continued, next page
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Table B.20 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 10000

t (h) PS-COOH PS-OH

concentration = 0.001 mg/ml

Below
detection

limit

0.25 7.3 ± 1.6

0.5 7.0 ± 1.5

1.0 6.4 ± 1.5

2.0 6.2 ± 1.5

4.0 5.7 ± 1.5

8.0 4.1 ± 1.4

24.0 4.2 ± 1.4

48.0 3.4 ± 1.4

72.0 3.6 ± 1.4

PS-H t(h) PS(C00H)2 PS(0H)2

Below
detection

limit
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Table B.21 Counts Per Minute Per Square Centimeter Obtained afterAdsorption with Time

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 30000

t(h) PS-COOH PS-OH PS-H t (h) PS(C00H)2 PS(0H)2

concentration =
2.6mg/ml 2.21 mg/ml

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

48.0

201.8

181.3

201.1

207.8

204.0

208.7

211.8

206.4

205.0

205.4

±5.2
±5.1
±5.2
±5.4
±5.3
±5.4
±5.4
±5.3
±5.3
±5.3

50.3 ± 3.3

40.2 ±3.1
40.3 ± 3.1

38.6 ± 3.0

39.6 ± 3.1

41.0 ± 3.1

40.1 ± 3.1

39.9 ± 3.1

37.5 ± 3.0

37.4 ± 3.0

concentration = 1 .0 mg/ml

0.083 243.4 ± 5.1 14.9 ± 1.8
0.25 200.6 ± 4.7 16.5 ± 1.9
0.50 188.1 ± 4.6 19.1 ±2.0
1.0 203.6 ± 4.8 20.6 ± 2.0
2.0 170.2 ±4.4 22.6 ±2.1
3.0 176.1 ±4.4 22.8 ± 2.1
6.0 164.0 ± 4.3 23.5 ±2.1
12.0 143.9 ±4.1 25.0 ±2.1
24.0 136.4 ± 4.0 27.7 ± 2.2
48.0 147.3 ±4.1 29.4 ± 2.2
72.0 138.7 ±4.1 28.5 ± 2.2

concentration =

7.6 ± 1.6

10.1 ± 1.7

15.0 ± 1.8

16.6 ± 1.9

18.3 ± 1.9

21.9 ± 2.0

25.3 ± 2.1

23.7 ± 2.1

25.1 ±2.1
21.8 ±2.0

0.7 1 mg/ml 1.03 mg/ml

0.083 208.3 ± 5.4 38.4 ± 3.0
0.25 212.9 ± 5.4 39.0 ± 3.1
0.50 203.7 ± 5.3 38.0 ± 3.0
1.0 201.2 ±5.2 42.7 ± 3.2
2.0 180.9 ± 5.0 39.2 ± 3.1
3.0 183.8 ±5.1 46.3 ± 3.2
6.0 201.9 ±5.2 45.3 ±3.1
12.0 200.6 ± 5.2 39.1 ± 3.1
24.0 198.5 ± 5.2 38.4 ± 3.0
48.0 204.1 ±5.3 37.0 ± 3.0

0.48 mg/ml 0.52 mg/ml

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

48.0

145.5

146.1

130.9

151.8

131.0

133.7

146.2

144.1

142.9

142.2

±4.6
±4.6
± 4.4

±4.7
±4.4
±4.4
±4.6
±4.6
±4.5
±4.5

37.5 ± 3.0

30.8 ± 2.8

23.0 ± 2.6

22.4 ± 2.6

26.9 ± 2.7

24.4 ± 2.6

24.4 ± 2.6

22.6 ± 2.6

22.4 ± 2.6

23.4 ± 2.6

Continued, next page
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Table B.21 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 30000

t(h) PS-COOH PS-OH PS-H t (h) PS(COOH)2 PS(OH)2

concentration = 0. 1 mg/ml

0.083

0.25

0.5

1.0

2.0

3.0

6.0

12.0

24.0
48.0
96.0

120.0

70.7 ± 3.1

49.4 ± 2.7

47.6 ± 2.7

31.4 ± 2.3

34.2 ± 2.4

27.6 ± 2.2

25.1 ± 2.1

29.0 ± 2.2

27.1 ± 2.2

28.1 ± 2.2

6.3 ± 1.5

8.0 ± 1.6

5.7 ± 1.5

5.1 ± 1.4

5.2 ± 1.4

7.8 ± 1.6

6.5 ± 1.5

7.2 ± 1.5

15.1 ± 1.8

16.3 ± 1.9

14.9 ± 1.8

15.2 ± 1.8

concentration = 0.01 mg/ml

0.5

1.0

2.0

4.0

6.0

12.0

24.0

48.0

120.0

336.0

360.0
120.0

19.8 ± 2.0

18.6 ± 2.0

16.8 ± 1.9

17.1 ± 1.9

15.2 ± 1.8

13.8 ± 1.8

13.0 ± 1.8

14.5 ± 1.8

12.9 ± 1.8

13.5 ± 1.8

Below
detection

0.6 ± 0.9

0.8 ± 0.9

1.7 ± 0.9

3.0 ± 1.0

3.6 ± 1.0

3.3 ± 1.0

3.0 ± 1.0

5.9 ± 1.5

7.2 ± 1.5

6.8 ± 1.5

8.1 ± 1.6

8.9 ± 1.6

9.4 ± 1.6

11.7 ± 1.7

12.4 ± 1.7

18.2 ± 1.9

12.3 ± 1.7

Below
detection

0.3 ± 0.8

1.410.9
0.9 ± 0.9

1.5 ±0.9
3.2 ± 1.0

2.5 ± 1.0

2.1 ± 1.0

0.12 mg/ml 0.15 mg/ml

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

48.0

3.111.0 2.411.0

0.083

0.25

0.50

1.0

2.0

3.0

6.0

14.0

24.0

48.0

82.61 3.8

86.7 1 3.8

90.1 1 3.9

97.5 1 4.0

99.0 1 4.0

84.1 13.8
91.61 3.9

95.3 1 4.0

94.0 1 3.9

96.6 1 4.0

18.1 12.5
17.112.5
16.4 1 2.4

17.712.5
16.2 1 2.4

15.61 2.4

16.8 12.5
15.3 12.4
15.1 1 2.4

15.1 12.4

0.021 mg/ml 0.014 mg/ml

35.91 3.0

40.4 1 3.0

50.1 1 3.2

57.21 3.3

68.9 1 3.5

71.01 3.6

61.3 1 3.4

71.2 13.6
69.3 1 3.5

67.1 1 3.5

6.5 1 2.2

7.6 1 2.2

7.8 1 2.2

8.3 1 2.2

8.4 1 2.2

8.7 1 2.2

9.1 1 2.2

9.3 1 2.2

9.6 1 2.2

9.4 1 2.2

Continued, next page
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Table B.21 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 30000

t(h) PS-COOH PS-OH PS-H t (h) PS(C00H)2 PS(0H)2

concentration = 0.001 1 mg/ml

0.5 7.3 ± 1.6 0.4 ± 0.9
1.0 7.0 ± 1.5 0.3 ± 0.8
2.0 6.4 ± 1.5 0.2 ± 0.8
4.0 6.2 ± 1.5 0.2 ± 0.8
6.0 5.7 ± 1.5 0.2 ± 0.8
12.0 4.1 ± 1.4 0.2 ± 0.8
24.0 4.2 ± 1.4 0.2 ± 0.8
48.0 3.4 ± 1.4 0.2 ± 0.8
120.0 3.6 ± 1.4 0.2 ± 0.8
360.0 0.2 ± 0.8

Below
detection

limit
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Table B.22 Counts Per Minute Per Square Centimeter
Adsorption with Time

Obtained after

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0' 'C; Mn = 60000

time (h) PS(C00H)2

concentration = 1.9 mg/ml

PS(0H)2

U.UoJ 104.4 ± 4.1

108.4 ± 4.2
yJ,D\j 107.2 ± 4.2
1 n1 .u 1 f\C\ /" i A

109.6 ± 4.2
9 0 107.5 ± 4.2

107.8 ± 4.2
o.w 107.5 ± 4.2
ioniz.u 1 10.0 ± 4.2
24.0 114.4 ± 4.2
48.0 109.4 ± 4.2

concentration

98.2 ± 3.5

1UJ.4 ± 3.0
0 so lUz.4 ± 3.0
1 0 1 (\(\ O 4- 1 C

2 0 ^o.O X 3.

J

3 0 Oft n -1- 0 c

101.2 ± 3,5
19 0 1U2.7 ± 3.6
24 0 1 AA O J- O c

48.0 100.4 ± 3.5

concentration

0.083 87.0 ± 3.8
0.25 87.6 ± 3.8

0.50 79.5 ± 3.7
1.0 85.1 ± 3.8

2.0 84.2 ± 3.8

3.0 81.2 ±3.7
6.0 80.5 ± 3.7
12.0 78.1 ±3.7
24.0 80.3 ± 3.7
48.0 76.7 ± 3.6

91.8 ±3.4
101.1 ±3.6
93.1 ±3.4
97.6 ± 3.5

95.8 ± 3.4

90.9 ± 3.4

89.7 ± 3.4

89.2 ± 3.4

88.8 ±3.3
89.6 ± 3.4

= 1.0 mg/ml

70.9 ± 3.1

83.4 ±3.3
84.9 ± 3.3

85.9 ± 3.3

88.7 ± 3.4

89.2 ± 3.4

89.6 ± 3.4

88.9 ± 3.4

88.6 ± 3.4

88.2 ± 3.3

= 0.6 and 0.65 mg/ml

46.7 ±3.1
49.6 ± 3.2

47.6 ±3.1
51.7 ±3.2
47.5 ±3.1
51.9 ±3.2
50.0 ± 3.2

49.2 ± 3.2

45.9 ± 3.1

46.3 ±3.1

Continued, next page
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Table B.22 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 60000

time (h) PS(C00H)2 PS(0H)2

concentration = 0.12 and 0.13 mg/ml

0.083

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

48.0

58.6 ±3.3
59.8 ± 3.3

65.4 ± 3.5

61.9 ± 3.4

60.2 ± 3.3

65.1 ±3.5
61.9 ± 3.4

61.7 ±3.4
60.7 ± 3.3

60.0 ± 3.3

10.2 ± 2.3

9.2 ± 2.3

11.4 ±2.3
11.4 ± 2.3

11.5 ±2.3
8.6 ± 2.2

10.3 ± 2.3

10.2 ± 2.3

10.2 ± 2.3

10.1 ± 2.2

Note: The data is from LSC notebook #3, p 65 - 97
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Table B.23 Counts Per Minute Per Square Centimeter Obtained afterAdsorption with Time

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 140000

t(h) PS-COOH PS-OH PS-H

concentration =

concentration = 1.2 mg/ml

t (h) PS(C00H)2 PS(0H)2

0.25

0.50

1.0

2.0

3.0

6.0

12.0

24.0

0.167 69.5 ± 3.0 29.2 ± 2.2 0.25
0.25 59.2 ± 2.9 17.2 ± 1.9 0.50
0.50 50.2 ± 2.7 16.4 ± 1.9 1.0
1.0 56.2 ± 2.8 25.0 ± 2.1 2.0
4.0 45.7 ± 2.6 30.1 ± 2.3 3.0
12.0 64.5 ±3.1 35.8 ± 2.5 6.0
24.0 54.7 ± 2.8 39.0 ± 2.5 12.0
72.0 62.2 ± 3.0 39.4 ± 2.6 24.0
96.0 66.6 ±3.1 41.3 ± 2.6
336.0 58.3 ± 2.9 40.1 ± 2.6
360.0 64.4 ±3.1 39.6 ± 2.6

2.34 mg/ml 2.55 mg/ml

161.0 ± 4.8

167.8 ± 4.9

167.1 ± 4.9

170.7 ± 4.9

165.1 ± 4.8

164.4 ± 4.8

165.9 ± 4.8

166.4 ± 4.9

51.1 ± 3.2

56.2 ± 3.4

59.4 ± 3.4

58.3 ± 3.4

61.7 ± 3.4

61.1 ± 3.4

60.3 ± 3.4

60.5 ± 3.4

1.27 mg/ml 1.29 mg/ml

157.8

162.4

164.2

157.7

163.8

165.8

163.5

163.7

± 4.8

±4.8
± 4.9

± 4.8

±4.9
±4.9
±4.9
±4.9

42.1 ± 3.1

53.3 ± 3.3

56.6 ± 3.4

52.9 ± 3.3

53.7 ±3.3
52.1 ± 3.3

50.7 ± 3.3

52.0 ± 3.3

concentration = 0.586mg/ml 0.62 mg/ml

0.25 93.9 ± 3.9 20.4 ± 2.5

0.50 96.5 ± 3.9 22.2 ± 2.6

1.0 98.0 ± 3.9 22.3 ± 2.6

2.0 9.7 ± 4.0 22.5 ± 2.6

3.0 99.8 ± 4.0 23.0 ± 2.5

6.0 98.5 ± 3.9 23.5 ± 2.6

12.0 100.3 ± 4.0 24.4 ± 2.6

24.0 100.5 ± 4.0 25.0 ± 2.7

Continued, next page
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Table B.23 Continued

substrate - glass; solvent - toluene; temperature - 23.0 ± 1.0°C; Mn = 140000

t(h) PS-COOH PS-OH PS-H (h) PS(C00H)2 PS(0H)2

concentration = 0.12 mg/ml 0.164 mg/ml 0.126 mg/ml

0 s 119+17 1 1 /I 4- 1 T
1 1.4 ±1.7 0.25

1.0 13.9 ± 1.8 12.7 ± 1.8 0.50
2.0 47.6 ± 2.7 13.8 ± 1.8 1.0
4.0 15.4 ± 1.9 15.8 ± 1.9 2.0
12.0 18.4 ± 2.0 3.0
24.0 19.5 ± 2.0 17.4 ± 2.0 6.0
48.0 18.0 ±2.0 17.9 ±2.0 12.0
72.0 20.1 ± 2.0 24.0
96.0 20.6 ±2.1 19.0 ± 2.0
336.0 20.8 ± 2.1

360 0 20 5 + 9 0 15. J X Z.U

concentration := 0 012 mp/ml

0.5 6.1 ± 1.5 5.7 ± 1.5 0.25
1.0 6.8 ± 1.5 6.0 ± 1.5 0.50
2.0 6.3 ± 1.5 6.2 ± 1.5 1.0
4.0 6.7 ± 1.5 6.1 ± 1.5 2.0
12.0 7.2 ± 1.5 6.3 ± 1.5 3.0
24.0 9.0 ± 1.6 7.0 ± 1.5 6.0
48.0 7.4 ± 1.6 6.3 ± 1.5 14.0
96.0 8.4 ± 1.6 6.2 ± 1.5 24.0
360.0 7.5 ± 1.6 6.2 ± 1.5

concentration = 0.0014 mg/ml

24.0 0.9 ± 1.2 0.5 ± 1.2

48.0 1.1 ± 1.2 0.6 ± 1.2

96.0 1.0 ± 1.2 0.4 ± 1.2

360.0 1.2 ± 1.2 0.4 ± 1.2

59.4 ± 3.4

68.5 ±3.5
78.1 ± 3.7

54.9 ± 3.3

60.1 ± 3.4

75.0 ± 3.6

71.4 ± 3.6

77.0 ± 3.7

6.6 ±2.1
7.1 ±2.1
7.3 ± 2.2

5.9 ±2.1
7.0 ± 2.1

6.8 ± 2.1

7.2 ± 2.1

7.1 ±2.1

0.021 mg/ml 0.015 mg/ml

16.3 ± 2.4

23.5 ± 2.6

26.0 ± 2.6

27.5 ± 2.6

28.4 ± 2.7

29.6 ± 2.8

28.6 ± 2.7

29.2 ± 2.8

1.9 ± 2.0

2.3 ± 2.0

3.7 ± 2.0

5.3 ±2.1
4.8 ± 2.0

4.9 ± 2.0

5.2 ±2.1
5.3 ±2.1

Note: The data is from LSC notebook #1, p 127 - 139; LSC notebook #2, p 1 1 - 18; and

LSC notebook #3, p 79 - 100.
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Table B.24 Surface density, Distance between Graft Sites Graf. n.n.i,and Solution Characteristics in Cyc^ohexane
'"'^

Number averaged Molecular weight - 5000

(A)

So X 10-13 Cone S.C. x 10^ E.G. x 10^ S x lO'^^ d
(cm-2) (mg/ml) (moles/1) (moles/1) (cm-2) (A)

PS-COOH

20.0 0.80 0.0015

0.0120
0.1100
0.5600
1.0300

14.4

115.0

1060.0

5380.0
9900.0

0.3

2.4

22.0

112.0

206.0

0.86

1.37

3.12

3.85

4.41

34.2

27.0

17.9

16.1

15.1

0.049

0.080

0.180

0.220

0.250

PS-OH

20.0 0.80 0.0011

0.0110

0.1100
0.5300
1.0500

10.6

105.6

1056.2

5088.8

10081.6

0.22 0.43 48.0 0.025
2.2 0.53 43.4 0.030

22.0 0.64 39.6 0.036
106.0 0.88 33.7 0.050
210.0 0.98 32.0 0.054

PS-H

20.0 0.80 0.0012
0.0160

0.1200

0.5100

1.0800

11.5 0.37 51.8 0.021
153.6 0.43 48.0 0.025

1152.2 0.53 43.4 0.030
4896.8 0.72 37.2 0.041

10369.7 0.82 34.9 0.047

Note: Rg is the radius of gyration of the above polystyrenes at 34.5 °C in cyclohexane
from reference 24 (Chapter 4). Sq is the number of coils per square centimeter of the

surface if there were no interaction with the surface and the coils just pack the surface. S is

the number of coils per square centimeter after adsorption at equilibrium and is called the

surface density [6, Chapter 4]. If S > Sq then the polystyrene buoys will overlap. Cone
stands for the concentration of the solution in mg/ml. S.C. stands for the concentration of
the polystyrene segments in moles/liter while E.C. stands for the concentration of the end
group (-COOH or -OH) in moles/liter. D is the distance in angstrom between grafted

chains and a is the normalized grafting density (unit less) as defined by de Gennes [22,

Chapter 4].
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Table B.25 Surface Density Distance between Graft Sites, Graft Densityand Solution Characteristics in Cyclohexane
^

(A)

Number averaged Molecular weight - 10000

Sq X 10-13 Cone S.C. x 10^ E.G. x 10^ S x lO'^^

(cm-2) (mg/ml) (moles/1) (moles/1) (cm'^) (A)

D

PS-COOH

28.5 0.39 0.0011

0.010

0.095

0.480

1.150

10.6

96.0

912.1

4608.7
11041.8

0.11

1.0

9.5

48.0

115.0

0.34

0.55

1.53

2.37

2.60

54.0

42.5

25.6

20.6

19.6

0.020

0.032

0.087

0.135

0.148

PS-OH

28.5 0.39

PS-H

28.5 0.39

HOOC-PS-COOH

28.5 0.39

HO-PS-OH

28.5 0.39

0.0014
0.013

0.105
0.550

1.085

0.0010
0.011

0.118

0.520

1.155

0.015

0.150

0.938

1.510

0.019

0.190

0.935

1.450

1 ^ A13.4 0.14 0.30 58.2 0.017
124.0 1.3 0.36 53.0 0.020
iUUo.Z 10.5 0.40 50.2 0.023
5280.8 ^ C A

55.0 0.54 43.2 0.031
10417.7 108.5 0.66 38.9 0.038

9.6 0.28 60.1 0.016
105.6 0.30 57.6 0.017
1133.0 0.44 47.7 0.025
4992.8 0.49 45.3 0.028
11089.8 0.63 39.8 0.036

144.0 3.0 0.19 73.2 0.011
1440.2 30.0 0.28 60.1 0.016
9006.2 187.6 0.57 41.8 0.033
14498.3 302.0 1.91 22.9 0.109

182.4 3.8 0.09 105.2 0.005

1824.3 38.0 0.14 85.0 0.008

8977.4 187.0 0.22 67.9 0.012

13922.2 290.0 0.41 49.4 0.023

Note: The terminology is the same as in Table B.24.
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Number averaged Molecular weight - 30000

So X 10-13 Cone S.C. x 10^ E.G. x 10^ S x 10-13 d
(A)

PS-COOH

49.3

(cm"^)

0.13

PS-OH

49.3 0.13

PS-H

49.3 0.13

HOOC-PS-COOH

49.3 0.13

0.0011

0.012

0.112

0.505

1.018

0.0012

0.011

0.108

0.535
1.094

0.0010
0.011

0.112
0.540
1.060

0.016

0.150

0.540

1.100

2.430

(moles/1) (moles/1) (cm"

10.6 0.037 0.22
115.2 0.4 0.32
1075.4 3.73 0.75
4848.8 16.8 0.99
9774.4 33.9 1.13

11.5

105.6

1037.0

5136.8

10504.1

9.6

105.6

1075.4

5184.8
10177.6

153.6

1440.2

5184.8

10561.7

23331.7

0.04

0.37

3.6

17.8

36.5

1.07

10.0

36.0

73.3

162.0

0.14

0.18

0.23

0.33

0.37

0.07

0.10

0.42

0.56

1.22

67.9

56.5

36.6

31.9

29.7

84.4

74.0

66.1

54.9

52.3

119.3

98.8

48.8

42.3

28.6

0.012

0.018

0.043

0.056

0.064

0.008

0.011

0.012

0.018

0.020

0.14 83.2 0.008
0.18 73.6 0.011
0.21 69.5 0.012
0.31 57.1 0.018
0.35 53.8 0.020

0.004

0.006

0.024

0.032

0.070

HO-PS-OH

49.3 0.13 0.027 259.2 1.80 0.026 195.7 0.0015
0.203 1949.1 13.53 0.04 154.0 0.002
0.560 5376.9 37.33 0.10 99.8 0.006
1.120 10753.7 74.67 0.18 73.6 0.011
2.710 26020.2 180.67 0.53 43.4 0.030

Note: The terminology is the same as in Table B.24.
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Number average molecular weight - 60000

(A)

So X 10-13 Cone S.C. X 10^ E.G. x 10^ S x 10-13

(cm-2) (mg/ml) (moles/1) (moles/1) (cm-2)

HOOC-PS-COOH

D

(A)

69.8 0.065 0.013

0.101

0.567

1.004

1.922

124.8

969.8

5444.1

9639.9

18454.2

0.43

3.37

18.9

33.5

64.1

0.12 91.9 0.007
0.15 81.5 0.009
0.37 52.2 0.021
0.45 47.3 0.026
0.64 39.5 0.037

HO-PS-OH

69.8 0.065 0.017

0.120

0.711

1.110

2.234

163.2

1152.2

6826.7

10657.7

21449.8

0.57

4.0

23.7

37.0

74.5

0.07

0.10

0.25

0.30

0.38

121.9

101.9

63.5

57.4

51.2

0.004

0.006

0.014

0.017

0.022

Note: Rg is the radius of gyration of the above polystyrenes at 34.5 °C in cyclohexane
from reference 24 (Chapter 4). Sq is the number of coils per square centimeter of the
surface if there were no interaction with the surface and the coils just pack the surface S is
the number of coils per square centimeter after adsorpUon at equilibrium and is called the
surface density [6, Chapter 4]. If S > So then the polystyrene buoys will overlap. Cone
stands for the concentration of the solution in mg/ml. S.C. stands for the concentration of
the polystyrene segments in moles/liter while E.C. stands for the concentration of the end
group (-COOH or -OH) in moles/liter. D is the distance in angstrom between grafted

chains and a is the normalized grafting density (unit less) as defined by de Gennes [22
Chapter 4].
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Table B.28 Surface Density, Distance between Graft Site. rrar. r. •

and Solution Characteristics rCyclcLxane
^'""'^

Number average molecular weight - 140000

Rj, % X 10 '^ Cone S.C. X 10^ E.C. x 10^ S x lO''^ d
(A) (cm-2) (mg/ml) (moM) (moles/I) (cm'^) (A)

PS-COOH

lOS.l

PS-OH

108.1

0.027 0.0012
0.01

1

0.108

0.535

1.094

1 1.5

105.6

1037.0

5136.8

10504.1

0.009

0.079

0.77

3.82

7.81

0.07 121.3 0.004
0.08 109.7 0.005
0.11 95.1 0.006
0.16 78.3 0.009
0.19 73.2 0.011

0.027

PS-H

108.1 0.027

HOOC-PS-COOH

108.1 0.027

HO-PS-OH

108.1 0.027

0.0014

0.016

0. 1 1

5

0.517

1.045

0.013
0. 1 09
0.570
1.147

2.410

0.015

0.126

0.620

1.294

2.553

13.4

153.6

1 104.2

4964.0

10033.6

124.8

1046.6

5472.9

11013.0

23139.7

144.0

1209.8

5953.0

12424.4

24512.7

0.07 123.7 0.004
0.08 113.3 0.004
0.09 105.7 0.005
0.11 96.0 0.006
0.12 91.6 0.007

0.19 0.07 121.3 0.004
1.56 0.08 109.7 0.005
8.14 0.11 95.1 0.006
16.39 0.16 78.3 0.009
34.43 0.19 73.2 0.011

0.21 0.064 125.3 0.0036
1.80 0.077 114.3 0.0044
8.86 0.093 104.0 0.0053
18.49 0.12 92.8 0.0066
36.47 0.14 85.2 0.0079

Note: The terminology is the same as in Table B.24.
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Table B.29 Surface density, Distance between rr»f. e-. ,
and Solution Character^ i„'^^:Lnf

^' ""'"'''^

Number average molecular weight - 5000

R

(A)
g

Sq X 10-13 Cone S.C. X 10^ E.G. x 10^ S x 10-13 d
(cm-

) (mg/ml) (moles/1) (moles/1) (cm'^)

PS-COOH

22.0 0.66 0.0015
0.010
0.054

0.102

0.150
1.100

14.4

96.0

518.5

979.4

1440.2

10561.7

(A)

0.3 0.07 117.6
2.0 0.16 79.9
10.8 0.95 32.4
20.4 1.59 25.1
30.0 1.67 24.4
220.0 1.71 24.2

0.004

0.009

0.054
0.091

0.095

0.098

PS-OH

22.0 0.66 0.0011 10.6 0.22
0.010 96.0 2.0
0.052 499.3 10.4
0.105 1008.2 21.0
0.153 1469.0 30.6
1.030 9889.6 206.0

0.05 144.1 0.003
0.11 96.0 0.006
0.16 79.9 0.009
0.39 50.9 0.022

PS-H

22.0 0.66 0.0018

0.015

0.055

0.112
0.540

1.120

17.3

144.0

528.1

1075.4

5184.8

10753.7

Note: Rg is the radius of gyration of the above polystyrenes at 23.0 °C in toluene from
reference 24 [Chapter 4]. Sq is the number of coils per square centimeter of the surface if

there were no interaction with the surface and the coils just pack the surface. S is the
number of coils per square centimeter after adsorption at equilibrium and is called the
surface density [6, Chapter 4]. If S > Sq then the polystyrene buoys wiU overlap. Cone
stands for the concentration of the solution in mg/ml. S.C. stands for the concentration of
the polystyrene segments in moles/liter whUe E.G. stands for the concentration of the end
group (-COOH or -OH) in moles/liter. D is the distance in angstrom between grafted

chains and a is the normalized grafting density (unit less) as defined by de Gennes [24
Chapter 4].
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Table B.30 Surface Density, Distance between Graft Sites, Graft Densityand Solution Characteristics in Toluene
^^ensity

Number average molecular weight - 10000

(A)

So X 10-13 Cone S.C. X 10^ E.G. x 10^ S x 10-13 d
(cm-2) (mg/ml) (moles/1) (moles/1) (cm'^) (A)

PS-COOH

33.0 0.29

PS-OH
33.0 0.29

PS-H
33.0 0.29

HOOC-PS-COOH

33.0 0.29

HO-PS-OH

33.0 0.29

0.0012
0.012

0.058
0.115

0.575
1.142

11.5

115.0

556.9
1104.2

5520.9
10965.0

0.12

I. 2

5.8

II.5

57.5

114.2

0.06

0.14

0.35

0.65

0.93

1.11

128.9

85.0

53.5

39.2

32.7

30.0

0.003

0.008

0.020
0.037

0.053

0.064

0.0011 10.6 0.11
U.U 1 u 1 A

1.0

0.051 489.7 5.1 0.04 166.3 0.002
0.104 998.6 10.4 0.08 108 9 0 005
0.500 480.1 50.0 0.18 75.7 0 010
1.002 9620.7 100.2 0.22 67.9 0 012

0.0014 13.4

0.017 163.2

0.058 556.9 0.03 182.2 0.002
0.118 1133.0 0.07 117.6 0.004
0.520 4992.8 0.10 98.8 0.006
1.155 11089.8 0.13 86.9 0.008

0.015 144.0 3.0 0.39 50.5 0.022
0.067 643.3 13.4 0.87 34.0 0.049
0.120 1152.2 24.0 1.01 31.4 0.058
0.560 5376.9 112.0 1.21 28.7 0.069
1.050 10081.6 210.0 1.26 28.1 0.072
1.500 14402.3 300.0 1.29 27.8 0.074

0.019 182.4 3.8 0.11 93.5 0.007

0.056 537.7 11.2 0.25 63.6 0.014

0.120 1152.2 24.0 0.39 50.5 0.022

0.497 4772.0 99.4 0.55 42.7 0.031

1.060 10177.6 212.0 0.78 35.7 0.045

Note: The terminology is the same as in Table B.29.
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Table B.31 Surface Density, Distance between Graft SitP. cr* r. .

and Solution Characteristics in Toluene '
' '^'"'"'^

Number average molecular weight - 30000

(A)

So X 10-13 Cone S.C. X 10^ E.G. x 10^ S x lO'l^ d
(cm-2) (mg/ml) (moles/1) (molesyl) (cm-2) (A)

PS-COOH

62.9 0.08 0.0011

0.012

0.051

0.112

0.505

1.018

10.6

115.0

489.7

1075.4

4848.8
9774.4

0.037

0.4

1.7

3.73

16.8

33.9

0.01

0.02

0.05

0.08

0.22

0.27

288.1

223.2

147.2

108.9

67.3

60.5

0.001

0.001

0.003

0.005

0.013

0.016

PS-OH

62.9 0.08

PS-H

62.9 0.08

HOOC-PS-COOH

62.9 0.08

HO-PS-OH

62.9 0.08

1 A A14.4 0.05
v.VJ 1 J \ A A r\144.0 0.5 0.02 223.2
\J,\jD\j A fin f\

1.67 0.04 161.9
i4oy.u C 1

5.

1

0.05 138.4
1 14S Jo.

2

0.09 107.6

0.0015 14.4

0.014 134.4 0.02 235.3
0.067 643.3 0.04 171.2
0.136 1305.8 0.05 150.5
1.261 12107.5 0.09 117.6

0.021 201.6 1.40 0.17 75.7
0.119 1142.6 7.93 0.25 62.9
0.479 4599.1 31.93 0.38 51.6
0.709 6807.5 47.27 0.54 43.1
2.600 24964.0 173.33 0.54 43.0

0.014 134.4 0.93 0.002 212.8
0.150 1440.2 10.0 0.004 161.9
0.520 4992.8 34.67 0.006 128.9
1.030 9889.6 68.67 0.010 101.9
2.210 21219.4 147.33 0.010 101.9

0.001

0.002

0.003

0.005

0.001

0.002

0.003

0.004

0.010

0.014

0.021

0.031

0.031

0.0013

0.0022

0.0034

0.0055

0.0055

Note: The terminology is the same as in Table B.29
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Table B.32 Surface Density, Distance between Graft Site. Cr.u nand Solution Characteristics in Toluene ' '
^'"'^^^

Number average molecular weight - 60000

(A)

So X 10-13 Cone S.C. x 10^ E.G. x 10^ S x lO'l^ d
(cm-2) (mg/ml) (moles/1) (moles/1) (cm-2) (A)

HOOC-PS-COOH

HO-PS-OH

94.2 0.036 0.014 134.4
0.129 1238.6
0.649 6231.4
0.965 9265.5
1.900 18242.9

0.47 0.013
4.30 0.015
21.63 0.066
32.17 0.116
63.33 0.118

276.8 0.0007
257.7 0.0009
122.9 0.0038
92.7 0.0066
91.9 0.0068

Note: Rg is the radius of gyration of the above polystyrenes at 23 °C in toluene from
reference 24 [Chapter 4]. Sq is the number of coils per square centimeter of the surface if

there were no interaction with the surface and the coils just pack the surface. S is the
number of coils per square centimeter after adsorption at equilibrium and is called the
surface density [6, Chapter 4]. If S > Sp then the polystyrene buoys will overlap. Cone
stands for the concentration of the solution in mg/ml. S.C. stands for the concentration of
the polystyrene segments in moles/liter while E.C. stands for the concentration of the end
group (-COOH or -OH) in moles/Uter. D is the distance in angstrom between grafted

chains and a is the normalized grafting density (unit less) as defined by de Gennes [24
Chapter 4].
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Ta.e B.33

-'-Xt:^!,:;^-'l^-:^s, C.n Oen.,

Number average molecular weight - 140000

(A)

So X 10-13 Cone S.C. x 10^ E.G. x 10^ S x 10-13 d
(cm-2) (mg/ml) (moles/1) (molesyl) (cm-2) (A)

PS-COOH

157.0 0.013 0.0014
0.012
0.054

0.120

0.582
1.204

13.4

115.2

518.5

1152.2

5588.1

11560.2

0.010

0.086
0.386

0.857

4.157

8.6

0.003

0.007

0.009

0.014

0.030

0.039

576.2
381.2

332.7

269.5

177.2

160.7

0.0002
0.0004

0.0005

0.0008

0.0020

0.0022

PS-OH

157.0 0.013

PS-H

157.0 0.013 0.0014 13 4
0.013 124.8

0.057 547.3
0.118 1133.0
0.590 5664.9
1.171 11243.4

HOOC-PS-COOH

157.0 0.013 0.021 201.6 0.30 0.018 235.3

0.0003 622.4 0.0002
0.001 407.5 0.0003
0.008 349.8 0.0005
0.013 278.4 0.0007
0.028 189.1 0.0016
0.030 200.2 0.0014

0.164 1574.7 2.34 0.044 151.0 0.0025
0.586 5626.5 8.37 0.059 130.3 0.0034
1.269 12184.3 18.13 0.096 102.3 0 0054
2.342 22486.8 33.46 0.097 101.6 0.0055

HO-PS-OH

157.0 0.013 0.015 144.0 0.21 0.004 482.1 0.0002
0.126 1209.8 1.8 0.005 440.1 0.0003
0.620 5953.0 8.86 0.016 254.1 0.0009
1.294 12424.4 18.49 0.031 179.7 0.0018
2.553 24512.7 36.47 0.036 166.3 0.0021

Note: The terminology is the same as in Table B.29.
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