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ABSTRACT

TOWARDS AN UNDERSTANDING OF THE EFFECTS OF BUBBLE

NUCLEATION, GROWTH AND RUPTURE ON DEVOLATILIZATION

MAY, 1989

JOHN ROBERT BRIC, B.S.Ch.E., UNIVERSITY OF MASSACHUSETTS

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor Robert L. Laurence

A theoretical investigation into the effects of bubble nucleation, growth and rupture

on foam-enhanced devolatilization (DV) has been conducted. A methodology is proposed

for constructing models of foam-enhanced DV, the first to allow incorporation of realistic

descriptions of bubble birth, growth and death into models of the process. This

methodology uses a population balance to track the evolution of the foam, described as a

distribution over bubble sizes. A mass balance, coupled to the population balance, predicts

the devolatilization rate.

Using this methodology, models of the single screw devolatilizer and the rolling

drum devolatilizer were constructed which include conceptually realistic descriptions of

bubble nucleation, growth and rupture. These models include two empirical parameters

which quantify the rate of nucleation. The models correlate available data on the

performance of these devolatilizers well. Also, they offer significant improvements over

Latinen's (1962) model, which is the model most commonly used in single screw

devolatilizer design.

Approximate models were derived from the single screw and rolling drum

devolatilizer models. These are significantly less complex than the complete models and

the computation time required for their numerical solution is reduced by more than two

vi



orders of magnitude. Simplifications introduced into the empirical model of bubble

nucleation allow the derivation of explicit, analytical model solutions, valuable for use in

devolatilizer design.

Descriptors of the bubble distribution were introduced which characterize the nature

of the foam. These are integral averages over the bubble distribution and are usually more

practical for characterizing the foam phase than the distribution itself. Descriptors

calculated using the rolling drum model reveal the predicted foam volume fractions and

bubble radii to be unrealistically large. An empirical model of bubble rupture by film

draining was added to this model to reduce these values. Although this decreased the

average bubble age to unrealistically small values, the foam volume fraction and bubble

radii were reduced to reasonable values.
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CHAPTER I

INTRODUCTION

Devolatilization (DV) is the name applied in polymer production to the process of

separation of volatile, low molecular weight materials from nonvolatile, high molecular

weight polymers. Devolatilization is analogous to the more familiar process of flashing,

common to the chemical process industry. In both processes, a volatile material is

separated from a less volatile host by reducing the pressure over the solution, preferentially

evaporating the more volatile species. However, a distinction is made between the two

processes because the physical properties of long chain molecules are sufficiently different

from those of small molecules to require highly specialized equipment for devolatilization.

Devolatilization processes are commonly applied in polymer production for many

reasons. Toxic, low molecular weight residuals are devolatilized from polymers for

consumer safety. An example is residual styrene in polystyrene produced for food

packaging. Polystyrene must be devolatilized to reduce its concentration of styrene

monomer from per cent levels to concentrations on the order of parts per million to meet

federal safety regulations. DV is commonly used in condensation polymerization processes

also. The condensation polymerization reaction is driven to form higher molecular weight

polymer by concurrently removing the volatile condensate by devolatilization. Other

reasons for devolatilizing polymer solutions are to improve the performance or increase the

consumer appeal of polymer products by devolatilizing solvents that are detrimental to these

properties. As well, devolatilization is commonly used to recover expensive monomers

and solvents to reduce materials costs.

The high viscosity of polymer solutions prevents them from being separated with

standard flash equipment. Specialized equipment, called devolatilizers, are required to

pump the solutions, usually by dragging or pushing, while simultaneously devolatilizing
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the solvent. A desirable design feature of devolatilizers is surface renewal. Surface

renewal is the process by which fluid at the solution/vapor interface is replaced with fluid

from the interior of the liquid. This increases the concentration of solvent near the surface,

thereby increasing the solvent mass flux. Rapid surface renewal is useful in DV to increase

the rate of mass transfer, which usually limits the DV efficiency. These limitations arise

from the small diffusivities of solvents in polymers, usually between 10-7 to lO'lO cm^/s.

The devolatilizers appUed most commonly in industrial DV operations are the single

and twin screw devolatilizers, ihtfalling strand devolatilizer and the wipedfilm evaporator.

The single and twin screw devolatilizers are standard screw extruders which are modified

to operate with the screw channel in the DV section partially occupied by vapor. This

vapor space is evacuated through a vacuum port on the extruder barrel. The falling strand

devolatilizer consists of a strand die through which the polymer solution is pumped into an

evacuated chamber where DV occurs. The wiped film evaporator is a blade and drum

assembly through which the solution is dragged by scraping the polymer between the blade

and drum wall forming thin films for DV.

The cost of a DV process can be a significant fraction of the total polymer production

cost. According to estimates in 1979, DV costs ranged from $.15 to $6.30 per Kg of

polymer produced (Devolatilization of Plastics, 1980). Capital costs of DV, such as costs

for devolatilizers and vacuum equipment, are considerable. Also, the operating costs of

DV can be significant, as the power consumption of extruders and vacuum equipment is

substantial. Cost efficient design of devolatilizers can provide large economic returns. To

develop cost efficient designs of devolatilizers, models are beneficial.

The earliest models constructed for devolatilizers often underestimate their efficiency

(i.e. the time rate of change of the solvent concentration) by more than an order of

magnitude. This has been generally attributed to neglect offoaming. Foaming contributes

additional interfacial area for mass transfer and can significantly increase the DV efficiency.
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The earliest models of DV include descriptions of mass transfer by diffusion through the

liquid/vapor free surface only.

Foaming has been observed to occur in devolatilizers operating under vacuum. The

reduced pressure in the devolatilizer supersaturates the solvent and bubbles containing

solvent vapor are formed initiating foaming. Solvent diffuses into these bubbles causing

them to grow to larger sizes. These bubbles rupture at the liquid/vapor interface and

transfer the solvent contained in the bubbles to the vapor phase. The many bubbles which

comprise the foam increase the surface area through which solvent can diffuse. This

increases the mass transfer rate. The rate of mass transfer by foaming is usually many

times greater than that by interfacial diffusion. Exclusion of foaming in models of DV has

precluded them from providing an adequate a priori prediction of the performance of

devolatilizers when foaming occurs.

Recognizing the limitations of these early models of DV, subsequent investigators

developed models which include contributions to mass transfer by foaming. However,

these models incorporate descriptions of the foaming process which differ conceptually

with practical observations. This prevents these models from adequately predicting the

performance of devolatihzers.

Models of DV developed to date are inadequate in that they function only in a

correlative capacity. They contain empirical parameters that can only be determined from

direct experimental measurements on the devolatilizer. These are cosdy and time-

consuming. It would be advantageous to construct rigorous models of DV from first

principles which would provide an a priori prediction of the performance of devolatihzers,

obviating the need for experiment and empiricism.

The ultimate goal of this research program is it to develop models of foam-enhanced

DV capable of predicting the performance of devolatilizers from first principles. As a

preliminary step towards this goal, this thesis work has as its objective the development of

a better understanding of foam-enhanced devolatilization. Specifically, we aim to better
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understand how bubble birth, growth and death affect the nature of the foaming process

and the devolatilizer's performance. A second objective is to apply this better

understanding of foam-enhanced DV towards the rational construction of models of

common industrial devolatilizers.

1.1 Modelling of Foam-Enhanced Devolatilization

The significant complexity of the foaming process makes modelling of foam-

enhanced DV a difficult task. The difficulty of constructing and solving a physically

realistic model of foam-enhanced devolatilization becomes clear upon examining the large

amounts of physical information it must include in a tractable form. To provide some

perspective on the task of modelling DV, this information, its availability and its

implementation into a tractable model will be addressed in this section.

The objective of any model of foam-enhanced DV is to predict the concentration of

solvent in the solution leaving the devolatilizer. To do this, we must estimate the total mass

transfer rate of solvent into the foam phase. This is given by the sum of the mass transfer

rates to individual bubbles. Since the mass transfer rate to a bubble is a function of its

radius, information on the number and sizes of bubbles in the devolatilizer is required to

model foam-enhanced DV. The number and sizes of bubbles is governed by the complex

interactions among the bubble birth, growth and death processes. Assuming the number

and sizes of bubbles can be adequately represented by a distribution over bubble sizes, if

the rates of bubble birth, growth and death are known, in theory, the bubble distribution

can be solved for using standard population balance techniques.

Bubble birth in devolatilizers has been proposed to occur by nucleation according to

the postulates of classical nucleation theory, both homogeneously and heterogeneously.

Another proposed birth mechanism is pinch-off of bubbles from gas pockets trapped in the

small crevices of container walls and entrained particles. Entrainment of bubbles at the

dynamic liquid- solid-vapor contact line of moving surfaces has also been proposed as a
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mechanism for birth. Unfortunately, there have been no conclusive studies revealing the

mechanism of bubble birth or its frequency during devolatihzation.

Bubble growth is probably the best understood of all the physical processes that

comprise foaming during DV. Yet nearly all models of bubble growth have been for a

single bubble growing in an infinite fluid, either stagnant or undergoing a time-independent

flow. The flows which bubbles experience in typical devolatilizers are time-dependent

rendering existing models inapplicable. A complication not included in most models of

bubble growth is the presence of neighboring bubbles. As well, the large viscous and

elastic stresses which can occur in flowing polymer solutions could considerably

complicate the bubble growth rate description and must be considered in any bubble growth

model. We are not aware of any models of bubble growth that include all these physical

phenomena, a prerequisite if the model is to describe with rigor the growth rate of bubbles

during DV.

Bubble death in devolatilizers can occur by rupture of bubbles at the vapor/liquid free

surface. This has been observed to occur by two distinct mechanisms: film draining and

mechanical shearing. Bubble rupture by film draining occurs when the thin liquid film

surrounding surface bubbles drains into the surrounding liquid. Rupture occurs when this

film thins enough so that London-van der Waal's forces become significant and drive

instabilities in the film thickness, causing rupture. Bubble death by mechanical rupture can

occur at the dynamic liquid-solid-gas contact line associated with a moving solid boundary.

Shearing of the bubbles at the contact line causes their rupture. Nearly all studies available

in the literature on bubble rupture have addressed rupture by the film draining mechanism,

for which the bubbles are driven to the surface of low molecular weight, quiescent liquids

by buoyancy forces. However, in DV, the liquid is a viscous polymer solution and

bubbles are expected to be driven to the surface by convection rather than by buoyancy.

The applicability of existing studies of bubble rupture to bubble mpture occurring during

DV is unclear.
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Bubble birth and death can also occur by bubble coalescence and breakage. Bubble

coalescence has been observed to occur during DV, but its frequency has never been

measured. The frequency of bubble breakage during DV has never been investigated and

its frequency is unknown. Theories of bubble coalescence and breakage are not developed

well enough yet to accurately predict their frequencies in the complex flows of most

devolatilizers. Also, it should be noted that, if adequate theories of coalescence and

breakage were available, their inclusion into models ofDV would significantly increase the

complexity of the model. It would introduce expressions into the model equations which

include integral convolutions over the bubble size distribution. This is because coalescence

can occur between bubbles of all sizes and breakage can form bubbles smaller than the

original but of varying sizes.

Implicit in this discussion so far is the assumption that the bubbles are spherical. Yet,

bubbles have been observed to deform from their spherical shape in the flow fields of

devolatilizers. This could significantly increase the mass transfer rate to bubbles by

increasing the surface area of the bubble and its mass transfer coefficient. If the bubble's

deformation were to be included into models of DV, a measure of the deformation, such as

the bubble's extension ratio, would be required, in addition to the effective bubble radius

(i.e. the radius of the bubble relaxed to its undeformed, spherical state), to uniquely specify

the mass transfer rate to a bubble. A multivariate distribution would be necessary to

describe the bubble phase. This would increase the dimension of the solution vector,

considerably complicating the problem description and its solution.

Bubble deformation has been investigated both theoretically and experimentally,

mostiy for time-independent flows. These studies may not be directiy applicable to the

time-dependent flows experienced by bubbles in typical devolatilizers. Also, we are not

aware of any studies on the mass transfer rates to bubbles undergoing deformation. Only

when bubble deformation and mass transfer to deforming bubbles in devolatilizers are



7

better understood will it be clear what their contributions to the devolatiUzer's performance

are and how these processes should be included into models of foam-enhanced DV.

Since the physical processes that comprise bubble birth, growth and death and their

interactions are not well understood, it is clear that much of the information required in a

complete model of DV is not yet available. Without this information it is unlikely that a

tractable model of DV could soon be developed that would incorporate accurate

descriptions of all aspects of the DV process. Without further fundamental investigations

of these processes, attempts at rigorous modelling of foam-enhanced DV will not be very

fruitful.

Advances in modelling of DV need not await these investigations, however.

Although rigorously accurate descriptions of bubble birth, growth and death during DV are

not yet available, models of DV that include approximate descripdons of these processes

may be constructed and would be very valuable. If these approximate descriptions are at

least conceptually realistic, unlike descriptions incorporated into preceding models, they

could reveal valuable insights into this poorly understood operation. For instance, an

approximate model of DV might reveal qualitatively the effects of varying physical

properties or process variables on the devolatiUzer's performance. This would make these

models valuable in guiding rational devolatilizer experimentation and design. As well,

since errors of approximately 15% in the predicted size of a devolatilizer are often tolerable,

approximate models might be sufficiently accurate to be used for sizing devolatilizers a

priori, without the need for cosdy and time-consuming experiments.

1.2 Scope of Work

We will investigate the effects of bubble birth, growth and death on foaming and

mass transfer during DV. To do this, we will construct models of common industrial

devolatilizers that include approximate descriptions of the bubble birth, growth and death

rates which, unlike those incorporated into existing models of DV, are conceptually
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realistic. A methodology for modelHng DV will be formulated to guide the construction of

these models. Model predictions of the nature of the foaming process and its effect on the

DV rate will be investigated to provide insights into foam-enhanced DV.

The abilities of these models to describe the performance of industrial devolatilizers

will also be investigated. These models will be used to analyze available devolatilizer

performance data so that the model's correlative abilities can be evaluated. Also, the

model's ability to describe the state of the foam phase will be evaluated by comparing the

model's predictions of the state of the foam with experimental observations made by

previous investigators. Comparison of the performance of our models with those of

existing models will also be made to determine the advantages and improvements in our

models.

This dissertation includes firstly, in Chapter 2, a compilation of published

experimental studies of devolatilization for which the devolatilizer's performance was

measured or its operation observed. A detailed review of existing models of

devolatilization is also presented. The inadequacies of these models are revealed and the

need for a new methodology for constructing models of DV which can incorporate realistic

descriptions of bubble birth, growth and death is discussed.

In Chapter 3, a methodology for constructing models of DV is presented which can

incorporate realistic descriptions of bubble birth, growth and death. This methodology is

based on population balance techniques. Reasons why this methodology is more

appropriate for modelling foam-enhanced devolatilization than the methods chosen by

preceding investigators are presented.

In Chapter 4, the methodology proposed in Chapter 3 is used to construct a model

of a single screw devolatilizer. This model is evaluated through its ability to correlate

experimental measurements of DV rates in a single screw devolatilizer taken by Coughlin

and Canevari (1969). This model is compared with Latinen's (1962) model, which is the
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model most commonly used for sizing single screw devolatilizers, to identify the

advantages and improvements in our model.

In Chapter 5, a model of a rolling drum devolatilizer is constructed, also according

to the methodology proposed in Chapter 3. This apparatus was designed by Biesenberger

and Lee (1986) to simulate the operation of the single screw devolatilizer. The model is

evaluated by correlating rolling drum devolatilizer performance data measured by

Biesenberger and Lee (1986). Comparisons with Latinen's (1962) model, modified to

apply to the rolling drum devolatilizer, are also made.

In Chapter 6, approximate models of the single screw and rolling drum devolatilizer

models are developed which are much less complex than the complete model and which

require significantly reduced computation times for their numerical solution. Additional

simplifications are introduced into the empirical birth rate expression of these approximate

models which allow the derivation of explicit, analytical expressions describing the

devolatilizer's performance. These solutions are valuable as design equations for the single

screw and rolling drum devolatilizers.

Descriptors of the bubble distribution, which are useful in characterizing the state of

the foam, are introduced in Chapter 7. To provide insight into the effects of the rates of

bubble birth, growth and death on the state of the foam phase, a general model of DV is

constructed. Using insight derived from this general model, a model of DV which

incorporates bubble rupture by the mechanism of film draining is constructed with the

objective of predicting more realistic foaming behavior.



CHAPTER II

BACKGROUND

In this chapter, a compilation of prior experimental studies of DV will be presented.

Also, a review of important models of DV developed to date will be given and the

inadequacies of these models will be discussed.

2.1 A Compilation of Experimental Studies of DV

Most experimental studies of devolatilization have been conducted on the single

screw, twin screw or falling strand devolatilizers. In nearly all experiments, measurements

were made under vacuum and only measurements of the concentration of solvent at the inlet

and oudet of the equipment were taken.

For the single screw devolatilizer, Latinen (1962) was the first to publish DV

performance measurements. He measured the DV rates of styrene from polystyrene.

Measurements of the single screw devolatilizer's performance were also made for xylene

and methanol in polypropylene by Coughlin and Canevari (1969) and for styrene in

polystyrene by Biesenberger and Kessidis (1982). The performance of the single screw

devolatilizer for the devolatilization of styrene from polystyrene during depolymerization

was measured by Blanks, Meyer and Grulke (1981). Kearney and Hold (1985) measured

the devolatilization performance of a novel rotating drum devolatilizer, similar to a single

screw devolatilizer with three screw flights. The DV rates of hexane/heptane solutions

from polyethylene and polyethylene/polyethyl methacrylate copolymer were measured.

Biesenberger and Lee (1985, 1986 and 1987) investigated the performance of the

rolling drum devolatilizer, which is a batch device that they designed to simulate the

operation of a single screw devolatilizer. They measured the concentrations of methyl

chloride and a series of Freons® in polydimethylsiloxane as a function of time. Since time

in the rolling drum devolatilizer is analogous to distance in the single screw extruder, these
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measurements correspond to the concentrations that would be measured as a function of

distance through a single screw devolatilizer.

Most experiments on the performance of multi-screw devolatilizers were conducted

for intermeshing, corotating screws. In the twin screw devolatilizer, Todd (1974)

measured the devolatihzation rates of thiophene, toluene and ethylbenzene from styrene and

of cyclohexane from polyethylene. Gras and Eise (1975) measured the performance of a

four screw devolatihzer with one and two vacuum stages. The materials devolatihzed were

not revealed. Collins, Denson and Astarita (1985) measured the DV rates of

Freon®/polybutene mixtures in a twin screw devolatilizer. Measurements were made at

atmospheric pressure by passing nitrogen over the solution to suppress foaming.

Han and Han (1985) made visual observations of the foaming behavior occurring

during devolatilization in a model single screw devolatilizer and in a model counter-rotating

and co-rotating twin screw devolatilizer. Nichols and Lubiejewski (1985) measured the

performance of a twin screw devolatilizer for the devolatilization of cyclohexane/benzene

mixtures from styrene-butadiene copolymers. Secor (1986) measured the performance of a

twin screw devolatilizer operating at atmospheric pressure (i.e. without foaming) by

passing dry air over the solution. The devolatilization rates of Freon-113® from

polybutene were measured. Mack (1986) compared the performance of single and twin

screw devolatilizers for the devolatilization of ethylene from polyethylene. The

devolatilization rates of octene/n-hexane mixtures from polyethylene and carbon

tetrachloride from a chloroprene rubber slurry were measured by Sakai and Hashimoto

(1986) in a twin screw devolatilizer. Meder (1987) measured the devolatilization rates of

water in polymethyl methacrylate in the twin screw devolatilizer. Shah, Wang, Schott and

Grossman (1987) measured the DV performance for a tetra-methylene sulfone/polyamide

solution in a twin screw devolatilizer operating as a finishing reactor.

In the falling strand devolatilizer, Newman and Simon (1980) measured the

devolatilization rates of styrene/polystyrene solutions. Albalak, Tadmor and Talmon
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(1987) made observations of the foaming behavior occurring during falling strand

devolatilization of styrene from polystyrene. They investigated the foam structure of

strands by freeze fracturing them and observing their cross sections using a scanning

electron microscope.

Experimental studies ofDV in other equipment include measurements of the DV rates

of vinyl chloride from polyvinyl chloride in a batch slurry devolatilizer by Chan, Patel,

Gupta, Worman and Grandin (1982). Mehta, Valsamis and Tadmor (1984) made DV rate

measurements of styrene/polystyrene solutions in a novel rotating disk processor.

2.2 A Review of Existing Models of Devolatilization

A brief review will be presented of important DV models developed to date. Models

which neglect foaming will be discussed first. For the single screw devolatilizer, these

include models by Latinen (1962), Coughlin and Canevari (1969), Roberts (1970), and

Biesenberger (1980). For the twin screw devolatilizer, models by Todd (1974), Collins,

Denson and Astarita (1983 and 1985) and Secor (1986) will be discussed.

The few published models of DV that include foaming will also be discussed. The

first was developed by Newman and Simon (1980) for the falling strand devolatilizer. A

model of foam-enhanced DV in a twin screw devolatilizer was developed by Yoo and Han

(1984). Powell and Denson (1983) and Chella and Lindt (1986) have developed models of

foam-enhanced DV in batch devolatilizers.

2.2.1 Models Neglecting Foaming

Latinen's (1962) model of the single screw devolatilizer is the first successful model

to be published for this equipment. It consists of a mass balance on the solvent applied

over a differential cross sectional element of the screw channel. Included in the model are

contributions to the loss of solvent by diffusion through the surface of the bulk film,

comprised of solution contained in the screw channel, and by diffusion from the surface of
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the barrel film, comprised of solution that adheres to the barrel wall after being dragged

through the narrow clearance between the screw flight and the barrel wall. Latinen

described the mass transfer using penetration theory. Penetration theory treats the film as

being infinitely deep, simplifying the model's solution. This is usually an acceptable

assumption for polymer/solvent solutions, considering the very small diffusivities of

solvents in polymers. In his description of the interfacial mass transfer, Latinen also

included surface renewal induced by the cross channel circulatory flow. The axial flow of

fluid through the channel was described by a standard convective-diffusion expression

which incorporates both the plug-like and axial dispersive characters of the flow. The mass

balance, expressed as a second order, ordinary differential equation, was solved

analytically to give an expression for the solvent concentration as a function of distance

through the devolatiUzer.

Coughlin and Canevari (1969) also developed a model for the single screw

devolatilizer. Their's is a simplification of Latinen's model. They constructed a similar

mass balance, although they neglected axial dispersion and surface renewal. They

modelled mass transfer from the bulk film as diffusion from a slab of finite thickness, yet

they neglected mass transfer from the barrel film. Roberts (1970) developed a model of a

single screw devolatilizer similar to Latinen's. The major difference between the two is that

Roberts assumed axial dispersion to occur solely by leakage over the screw flights, for

which he was able to derive an approximate, explicit expression.

Biesenberger (1980) developed general models of staged and continuous DV

processes. A staged model consists of a plug flow section connected to a well mixed

section, each of which can transfer volatiles by diffusion through the interface of the fluid

contained in the section. Each stage could contain either a feed forward or feed back loop

to simulate axial dispersion. A devolatilizer could be simulated by connecting a number of

stages in series. To illustrate the concept of a continuous devolatilizer, Biesenberger

developed a model for a single screw devolatilizer which is similar to the model developed
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by Roberts. However, Biesenberger includes a more general description of the

contribution to axial dispersion by gap leakage.

For the twin screw devolatiUzer, Todd (1974) developed a correlative model based on

Latinen's approach for modeUing the single screw devolatilizer. Two empirical parameters

were included in the model, the effective diffusivity, quantifying the DV efficiency, and the

Peclet number, quantifying the extent of axial dispersion. Collins, Denson and Astarita

(1983) constructed an empirical model of the twin screw devolatilizer based on the length

of a transfer unit concept borrowed from theories for stripping and extraction. Collins,

Denson and Astarita (1985) refined their first model to include a description of the solvent

mass transfer derived from first principles. Their theory closely parallels that of Latinen

(1962) for the single screw devolatilizer. Secor (1985) also developed a model of the twin

screw devolatilizer. Secor treated the DV in the twin screw devolatilizer as a staged

process. He defined one stage as occurring from the time a fluid element enters screw A

from adjacent screw B to the time later when it returns to screw B. He incorporated

penetration theory to describe the mass transfer, although surface renewal was neglected.

From a mass balance, Secor solved for the concentration change over each stage. After

each stage he assumed that the transfer of the solution between flights induced sufficient

mixing to homogenize the solvent.

2.2.2 Models Including Foaming

Newman and Simon (1980) developed a model for the falling strand devolatilizer

which is the earliest published model of DV to include foaming. Newman et al. assumed

that the devolatilizer is fed a melt stream that is swollen with vapor bubbles from the

previous processing step. Additional bubbles were not allowed to enter the solution

beyond the entrance of the devolatilizer. The number of bubbles was estimated empirically

by choosing values which best fit available experimental data on the devolatilizer's

performance. The bubbles were modelled as growing in a stagnant, Newtonian fluid of
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infinite extent so that the effects of bubble-bubble interactions and flow induced convection

on the bubble growth could be neglected. Henry's law was chosen to relate the bubble

pressure to the solvent concentration in the liquid at the bubble interface. The bubble's

radius was calculated versus time by numerically integrating the coupled species balance

(specifying the solvent flux to the bubble) and momentum balance (specifying the bubble

growth rate). From a mass balance over all bubbles, the average solvent concentration in

the continuous phase was calculated as a function of time. All bubbles were assumed to

rupture simultaneously at some later time causing DV to cease. The time to rupture was

determined empirically as that value for which the predicted value of the outlet

concentration agreed with the experimental value.

Powell and Denson (1983) developed a model of batch DV (foaming of a quiescent

solution) that is conceptually similar to the model by Newman and Simon. Powell et al.

assumed that a set of bubbles are bom simultaneously at the start of devolatilization and that

no bubbles enter the solution at later times. No means were given for estimating the

number of bubbles in the solution. For the purposes of model demonstration, the number

of bubbles was chosen arbitrarily. To include interactions with neighboring bubbles, the

bubble growth was modelled using a cell model. A cell model confines each bubble to a

spherical cell of fluid and diffusion across the outer boundary of the cell is forbidden. The

cell was assumed to contain a Newtonian fluid and Henry's Law was applied to couple the

species and momentum balances which were solved numerically. A mass balance over all

bubbles was constructed giving the average solvent concentration as a function of time. No

model of bubble rupture was proposed.

Yoo and Han (1984) modelled foam-enhanced DV in a twin screw devolatilizer.

They considered a devolatilizer with five DV sections. Bubbles were assumed to be bom

at, and only at, the entrance of each DV section. How they chose values for the number of

bubbles was not clearly stated. The bubbles were assumed to travel in plug flow through

the devolatilizer. Models were constructed for growth of bubbles in a Newtonian fluid, in
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a linear viscoelastic fluid and in a three-conslant Oldroyd fluid. Interactions among

neighboring bubbles were neglected and the model was simpUfled to the growth of a set of

isolated bubbles. The coupled momentum and mass balances were solved numericaUy. A

mass balance over all bubbles gave the average solvent concentration as a function of time.

All bubbles were assumed to rupture only upon exiting each DV section.

Chella and Lindt (1986) constructed a model of a batch devolatilizer which is very

similar to the model by Powell and Denson. They assumed that a set of bubbles are bom at

the start of DV and that no bubbles enter the solution at later times. The number of bubbles

was estimated from experimental data by first determining the change in the solution

volume at the start of DV attributed to instantaneous bubble birth. From the bubble radius

at birth, estimated to be that value which balances the opposing forces of surface tension

and solvent vapor pressure, the number of bubbles was calculated from a volume balance

on the solution. The bubble growth was described using a cell model. The major

distinction between it and the cell model used by Powell and Denson is that Chella et al.

include a heat balance in addition to the mass and momentum balances. This is to track the

reduction in temperature due to the latent heat of vaporization of the solvent. Also, the

Flory-Huggins thermodynamic model was used in place of Henry's Law. These

modifications were necessary to apply the model to systems with moderately high solvent

concentrations (less than 60% by mass). The average solvent concentration was calculated

versus time from a mass balance over all bubbles. No description of bubble rupture was

included in the model.

2.3 Inadequacies of Existing Models

Existing models of foam-enhanced DV cannot provide an adequate description of the

performance of devolatilizers. This is because unrealistic descriptions of foaming were

incorporated into these models. Previous investigators treated bubble birth as occurring

only at the entrance of the devolatilizer (or at startup for batch devolatilizers). Foaming was
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were
assumed to cease abruptly, usually at the exit of the equipment, where all bubbles

assumed to rupture. These assumptions constrain all bubbles at the same position through

the equipment (or at the same time for a batch process) to be of identical size and age.

Actually, observations of foaming occurring during DV reveal it to be quite different

from that proposed to occur by earlier investigators. Bubbles in devolatilizers have been

observed to be bom and rupture continuously from the entrance of the devolatilizer to the

exit. The assumptions that birth occurs only at the entrance of the devolatilizer (i.e. at the

start of DV) and that rupture occurs only at the exit of the devolatilizer (i.e. at the

completion of DV) are clearly unrealistic. As well, a distribution of bubble sizes is

observable at any position in the equipment which is a direct result of the continuous birth,

growth and death of bubbles. The constraint that the bubbles be identical in size and age is

artificial.

The significant conceptual differences between existing models of DV and the actual

DV process indicate that the methodologies used by preceding investigators in constructing

their models is inappropriate. A new methodology is needed that can incorporate realistic

descriptions of bubble birth, growth and death into models of DV.



CHAPTER III

A METHODOLOGY FOR MODELLING FOAM-ENHANCED DV

A methodology based on population balances has been developed which can

incorporate conceptually realistic descriptions of foaming occurring during DV into models

of the process. Recognizing first that a distribution of bubble sizes occurs in devolatilizers

and assuming that a bubble's radius is the only internal variable necessary for specifying

the mass transfer rate to any bubble, the bubble phase will be described by a distribution

over bubble radii. These bubbles will be treated as being spherical. If bubble deformation

is significant, a second internal variable necessary for specifying the mass transfer rate to a

bubble, perhaps the bubble extension ratio, could be added.

A balance on the rate of mass transfer between the continuous phase and the bubble

phase is proposed to give the time rate of change of the average solvent concentration (i.e.

the DV rate) in the continuous phase. Since the DV rate depends on the distribution of

bubble sizes, a population balance on the distribution is proposed to track the distribution

over time. This population balance will include expressions for the rates of bubble birth,

growth and death. The coupled mass and population balances, expressed as differential

equations, can be simultaneously integrated to solve for the bubble distribution and solvent

concentration as functions of time (if it is a batch process) or position (if it is a continuous

process).

Population balance techniques have been common in the fields of biology and

ecology for more than 50 years. It has been only over the past 25 years that they have

become a common tool of the chemical engineer. Hulburt and Katz (1964) were the first to

introduce to the chemical engineer the formal methodology for constructing population

balances for chemical systems. Population balances have since been applied extensively in

many areas of chemical process modelling. A small selection of investigators who have
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applied this methodology to chemical systems includes Bayens and Laurence (1967) and

Randolph and Larson (1971) who constructed population balances to predict the evolution

of distributions of liquid and solid particles undergoing growth, coalescence and breakage.

In the area of polymer reactor design, population balances are fundamental to the modelUng

of the reaction kinetics of polymers distributed over varying molecular weights (Tirrell,

Galvan and Laurence
; 1987). Pasiuk-Bronikowska and Rudzinski (1980 and 1981) have

constructed successful population balance models of gas desorption from gas/liquid

solutions occurring by bubbling of gases evolved during chemical reaction. From the

physical similarities evident between gas desorption and DV, the success of Pasiuk-

Bronikowska et al.'s model indicates that population balances might also be successful in

modelling DV. However, population balances have not yet been applied to the modelling

of foam-enhanced DV.

To demonstrate the proposed methodology, we will use it to construct models of

devolatilizers. It is preferable, for preliminary modelling studies, that devolatilizers be

chosen for which bubble coalescence and breakage have a minimal effect on the DV

performance, since coalescence and breakage can significantly complicate the model's

formulation and solution. Bubbles in the falling strand devolatilizer were shown by

Alabak, Tadmor and Talmon (1987) to undergo frequent coalescence. This is

understandable considering the high volume fractions of foam present in falling strand

devolatilizers (according to Newman and Simon (1980), foam volume fractions occurring

in the falling strand devolatilization of styrene from polystyrene can be as high as 0.67).

Coalescence in the batch flash devolatilizer is expected to occur even more frequently than

in the falling strand devolatilizer because larger volume fractions of foam are expected. A

larger foam content is expected because the surface area to volume ratio is much smaller in

the batch flash devolatilizer which reduces the probability of bubble rupture at surfaces.

Single and twin screw devolatilizers are expected to exhibit smaller volume fractions

of foam than both the batch flash and falling strand devolatilizers because surface renewal
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in the screw devolatilizers will increase the bubble rupture rate (i.e. by transporting bubbles

to the surface). Evidence of this is given in photographs of foaming occurring in the

rolling drum devolatilizer constructed by Biesenberger and Lee (1986) to mimic the

operation of a single screw devolatilizer. Significant increases in the solution volume

during foaming (i.e volume increases greater than about 10%) are not observable from the

photographs. Similarly small foam fractions are expected in single and twin screw

devolatilizers and these are preferred to batch and falling strand devolatilizers as candidates

for preliminary modelling studies.

Experimental data on the performance of the single screw and rolling drum

devolatilizers are available in the literature which are documented well enough for use in

model evaluation. Acceptable data was not found for the twin screw devolatilizer. Models

for the single screw and rolling drum devolatilizers will be constructed according to the

proposed methodology.



CHAPTER IV

MODEL OF A SINGLE SCREW DEVOLATILIZER

4.1 Geometry and Operation

The single screw devolatilizer is similar to a standard single screw extruder, however,

a vacuum port is added to the barrel wall of the DV section through which devolatilized

solvent is removed. A common method of operation is starved feed mode, where the feed

is metered to the devolatilizer at a flow rate smaller than the flow rate that the extruder

would produce if operated with an unrestricted input. Since the mass flow rate into the

extruder must be balanced by the flow rate through the extruder, it must operate at reduced

capacity, or, partially filled. An alternative to starving the feed to the devolatilizer is to

deepen a section of the screw channel (i.e. the DV section), so that the flow rate into the

DV section will be insufficient to fill the channel.

A schematic of a cross section of a single screw devolatiUzer taken perpendicular to

the axis of the screw is shown in Figure 4.1. The screw rotates to convey the fluid through

the devolatilizer and fluid is dragged against the screw flight by the barrel wall. This fluid

is termed the bulk film. Fluid from the bulk film passes through the small clearance

between the screw flight and the barrel wall and is laid down as a thin film on the barrel

termed the barrelfilm.

A schematic of the channel cross section, taken perpendicular to the down channel

direction (i.e. perpendicular to the screw helix) and in the idealized, unwrapped

configuration, is shown in Figure 4.2. This simplifies the system's geometry by removing

the small curvature in the bulk film. Although the screw is the rotating component, the

problem conceptualization will be clarified by considering the barrel to rotate with the screw

fixed. The barrel moves over the channel, as would be perceived by an observer rotating

with the screw. The moving barrel induces a free surface cavity flow that circulates the
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Figure 4.1 Schematic of the cross section of a single screw devolatilizer.

Figure 4.2 Schematic of the idealized, unwrapped cross section of a single

screw devolatilizer.
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fluid in the cross section of the bulk film. The helical geometry of the screw channel will

be approximated by a straight rectangular channel as shown in Figure 4.3. This rectangular

conformation can be viewed as being the result of unwinding the helical channel. In this

idealized, unwound configuration, the rotating barrel is perceived as a flat plate dragging

diagonally across the top of the channel with a velocity V^. The moving barrel's down-

channel velocity component, [v^lz, drags the fluid through the screw channel.

Solvent is removed from the bulk and barrel films by diffusion into the vapor phase

and by diffusion into bubbles. These bubbles are born, grow, are convected to the

melt/vapor interface where they rupture, releasing the solvent into the vapor space.

4.2 Bubble Radius and Age Distributions

Since bubbles are born, grow, and die continuously throughout the length of the

devolatilizer, a distribution of bubble sizes results. The bubble phase will be described

naturally as a distribution, g(R), over the bubble radius, R, where g(R)dVdR is the number

of bubbles in volume dV between radii R and R + dR. An implicit assumption is that the

bubbles are spherical. In a stagnant fluid, the bubbles will maintain a spherical shape due

to the stabilizing forces of surface tension. However, in a flow field, the hydrodynamic

stresses in the fluid can change the bubble shape to ellipsoidal, S-shaped or even needle-

like.

For bubbles in a steady shear flow at low bubble Reynolds number (in the single

screw devolatilizer at typical operating conditions, the Reynolds number was estimated to

be less than 0.01), the bubble deformation is governed by two dimensionless quantities,

the viscosity ratio of the fluids, X, and the capillary number, Ca, defined as

A — — —

Hb and |iF are the viscosities of the bubble vapor and surrounding fluid, G is the shear rate

in the fluid far from the bubble and a is the surface tension. For gas/polymer systems,
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Figure 4.3 Schematic of the unwound single screw devolatilizer channel.



25

X«l and the deformation is governed solely by Ca. If Ca« 1, bubble deformation is

negligible. If Ca > 0(1), bubble deformation is significant (Rallison, 1984). For polymer

solutions in single screw devolatiUzers, Ca can be of order 1 and greater at typical operating

conditions. So bubble deformation could occur. Indeed, bubble deformation was

observed by Biesenberger and Lee (1986) in their visualization studies of free surface

cavity flows which are similar to the flows occurring in the single screw devolatilizer. At

present, there are no means for quantifying the extent of elongation of bubbles in the

complex, nonhomogeneous flows occurring in the single screw devolatilizer. For this

preliminary model, bubble deformation will be neglected and all bubbles will be assumed to

be spherical.

In addition to the bubble's radius, a second variable of interest is the bubble's age, x.

X is defined as the time a bubble has spent in the solution measured from the time of birth.

Birth is any process by which bubbles enter the solution. The age of a bubble can be

related to its radius by the bubble growth rate, dR/dx. Integration of the bubble growth rate

over the bubble's age gives a one-to-one mapping between radius and age. We will define

the bubble age distribution, f(x), such that f(x)dVdx is the number of bubbles in volume dV

between ages x and x + dx. If the bubble's growth rate history is specified, either the

radius distribution or the age distribution is sufficient to characterize the bubble phase.

A prerequisite that there exist a one-to-one mapping between the bubble's age and

radius is that all bubbles be bom with the same radius. However, new bubbles can be bom

by coalescence and breakage which results in differing bubble sizes at birth. If coalescence

and breakage occur, the bubble age and radius are no longer related by a one-to-one

mapping. That is, two bubbles of equal age could have different radii. One obvious

instance is when, at some time t, one bubble is bom by coalescence with a nonzero radius

and another is bom by nucleation at a zero radius. At time t, both bubbles would be the

same age (x = 0), but they would be different sizes. If coalescence and breakage occurs, a
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bivariate distribution over both bubble age and radius would be required to describe the

bubble phase uniquely.

Studies of the frequency of coalescence of bubbles in single screw devolatilizers are

not available in the literature. However, Alabak, Tadmor and Talmon (1987) have studied

coalescence in falling strand devolatUizers. They characterized the structure of the foamed

strands by freezing them in situ, fracturing them and examining the bubble morphology

using scanning electron microscopy. Alabak et al. observed that small bubbles on the order

of 10 to 15 |j.m in diameter surround larger bubbles on the order of 100 |im in diameter.

Blisters were also noticed on the surface of the macrobubbles which Alabak et al. postulate

are the remnants of microbubbles that have coalesced with the larger macrobubbles. This

study indicates that the surfaces of the macrobubbles may act as sites for microbubble birth.

It is proposed that these microbubbles grow until the films separating the bubbles break and

coalescence occurs.

The coalescence behavior of bubbles in single screw devolatilizers is probably quite

different from that observed in falling strand devolatilizers. Bubbles in single screw

devolatilizers move in free surface cavity flows which exhibit shear and extensional

character. This could affect the formation of the small satellite bubbles at the surface of

macrobubbles as well as their coalescence. Also, the volume fraction of bubbles in single

screw devolatilizers is much smaller than the volume fractions in strand devolatilizers. We

believe this is due to the free surface cavity flow in screw devolatilizers which increases the

bubble rupture rate. The frequency of coalescence will probably be reduced for these

smaller volume fractions. Biesenberger and Lee (1986) observed bubble coalescence

during visualization experiments of DV from free surface cavity flows. However, the

frequency of coalescence wasn't measured and its effect on DV performance is not known.

As inclusion in the model would introduce significant complexities, coalescence will be

neglected in this preliminary study.
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Bubble breakage can occur when the flow strength, or similarly, the capillary

number, is increased to a critical level beyond which the restoring force of interfacial

tension is insufficient to balance the deforming forces of the flow. For bubbles deforming

in a steady shear flow, Hinch and Acrivos (1980) predict that for Ca greater than (Ca)critical

= 0.054 ?i-2/3, breakage occurs. This expression is not strictly applicable to flow in single

screw extruders, as these flows are nonhomogeneous and exhibit extensional as well as

shear character. However, it is suitable as a rough indicator of the likelihood of bubble

breakage if the characteristic shear rate of the devolatiUzer is used in the expression for Ca.

The characteristic shear rate is defined as the ratio of the barrel velocity to the channel

depth. Ca was estimated for 1 mm-sized styrene bubbles in polystyrene over the range of

characteristic shear rates encountered in typical single screw devolatilizers. In all cases,

(Ca)criiical was greater than Ca. Since the diameters of most bubbles in the single screw

devolatilizer are expected to be less than 1 mm, bubble breakage is not expected and will be

neglected in this study.

4.3 Mass Balance

To develop a tractable model of devolatilization, it is necessary to introduce some

simplifying assumptions. The bulk film will be assumed to travel in plug flow with the

volumetric flow rate, V. The validity of the plug flow assumption may be determined from

residence time distribution (RTD) studies on single screw extruders. RTD's quantify the

extent of axial dispersion in extruders. Experimental measurements of the RTD of the flow

in a single screw extruder were made by Bigg and Middleman (1974) and Wolf and White

(1976). They determined that 60-70% of the fluid travels in plug flow and exits the

extruder at 75% of the mean residence time. 80% of the material elutes by the mean

residence time. For preliminary models, the plug flow assumption is a reasonable first

approximation.
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The circulatory flow in the bulk film will be assumed to provide sufficient mixing so

that the concentration of solvent and the bubble distribution does not vary with position in

the cross section. The concentration and the bubble distribution therefore vary only in the

down channel direction, z. The bubble age distribution, f, is only a function of z and is

redefined such that f(x,z)dTdz is the number of bubbles between ages x to x +dx and

between axial positions z to z + dz.

Using these simplifying assumptions, a mass balance on the solvent may be written

about a differential volume element dz, shown in Figure 4.4. As the solution traverses the

element dz, the average solvent concentration in the continuous phase is reduced by

diffusion of the solvent from the continuous phase to the bubble phase and to the vapor

space. A mass balance on the solvent equates the rate of solvent removal from the

continuous phase to the rate of solvent uptake by the bubble phase and by the vapor space.

This mass balance may be expressed as

Bubble Growth Bubble Birth

J
AC -2 sine [-^J AC

, ,

Bulk Film Barrel Film

Diffusion Diffusion

where C is the average concentration of solvent in the continuous phase. The terms on the

right hand side quantify the rates of solvent loss by bubble growth, bubble birth, bulk film

diffusion and barrel film diffusion. These are discussed next.

4.3.1 Mass Transfer to Bubbles

In the Bubble Growth term, pg is the density of the solvent vapor in the bubble. The

mass transfer rate to a single bubble of age x (given by the time derivative of the total



Figure 4,4 Schematic of the unwound single screw devolatilizer channel
showing the differential volume element over which the mass balance is made.
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bubble mass), or similarly, radius R(t), is multiplied by the number of bubbles of radius R

(i.e. f) and integrated over all bubble ages to account for the contribution to DV of bubbles

of all ages. Note that the bubble radius distribution could have been used in place of the

age distribution. However, the age distribution was chosen for convenience because the

bubble growth rate is most naturally expressed in terms of the bubble's age rather than its

radius.

Bubble birth must be accounted for in the mass balance, since upon birth solvent is

transferred from the continuous phase to the bubble nuclei. B is the rate of birth, defined

as the number of bubbles bom per distance per time. All bubbles are assumed to be bom at

a radius Rq. Studies by CD. Han (1987) on the birth of bubbles in polymer/solvent

solutions indicate that values for Rq in polymer solutions are on the order of 0.1 microns.

Since most bubbles grow to hundreds of times Rq, the magnitude of the bubble birth term

is negligible compared to that of the bubble growth term. The bubble birth term will be

neglected in further analysis.

4.3.2 Mass Transfer by Interfacial Diffusion

4.3.2.1 Models of Latinen. The Bulk Film Diffusion term was derived from

the model by Latinen (1962). Latinen modelled mass transfer from the surface of the bulk

film using penetration theory combined with a surface renewal description for the flow

field. Penetration theory treats the diffusion as occurring in an infinite medium. The small

penetration depth of the diffusion field as compared with the film thickness, a result of the

low diffusivity of polymer/solvent systems, validates the infinite film assumption. Surface

renewal is the process by which material elements travel in the flow field to the interface,

where the element's solvent concentration is reduced by diffusion into the vapor phase.

The fluid elements are circulated back into the bulk of the fluid where they are refreshed by

absorbing more solvent and this cycle is repeated.
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Latinen assumed that fluid elements enter the interface along the root of the screw (see

Figure 4.2) with a concentration, C, the average concentration in the cross section. The

surface concentration was assumed to drop instantaneously to that in equilibrium with the

vapor phase, Cg. The fluid elements were assumed to travel with a constant velocity Vb

along the surface. Latinen assumed Vb to be equal to the component of the barrel wall

velocity normal to the interface, V^sinG,. In our analysis, Vb was taken to be

(2/7i)VwSine, the value predicted by Moffatt (1964) to be the velocity of a free surface

perpendicular to the moving wall of an infinitely deep cavity. As the material elements

move along the surface, the concentration of solvent is reduced by diffusion of solvent into

the vapor phase. After travelling a distance Hb, the fluid elements reach the moving barrel

surface and are reintroduced into the interior of the bulk fikn. Integration of the local mass

flux, described using penetration theory, over the interface gives the total mass tranfer rate

used in deriving the Bulk Film Diffusion term.

The Barrel Film Diffusion term was also derived from the model developed by

Latinen (1962). Fluid travels through the gap between the screw flight and the barrel wall

and is laid down as a thin film on the barrel (see Figure 4.2). Latinen assumed the

concentration of solvent in the fluid exiting the gap to be equal to the average concentration

of the bulk film, C, and the surface concentration was assumed to drop instantaneously to

that in equilibrium with the vapor phase, Ce. As the fluid travels in a rigid body motion

with the velocity of the barrel, V^, the concentration is reduced by diffusion into the vapor

phase. After travelling a distance Lf, the fluid reaches the convergence point of the bulk

and barrel film and is reintroduced into the interior of the bulk film. The term sin(9),

where 0 is the screw heUx angle, is included in the expression due to the requirement that

the components of the barrel velocity and barrel film length perpendicular to the interface be

used in the derivation. The expression for the barrel film diffusion term was derived by

integrating the local mass flux, described using penetration theory, over the interface.
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4.3.2.2 Contribution of Surface Stretching to Interfacial Diffusion.

Latinen modelled the kinematics of the flow of fluid at the surface of the bulk fihn as a rigid

body motion with a constant velocity. By analogy with Moffat's (1964) analysis of free

surface cavity flows of Newtonian fluids in infinitely deep channels, the fluid at the free

surface of the single screw devolatiUzer is expected to accelerate from a zero velocity at the

surface of the screw to a maximum value at the moving wall. The fluid elements at the

surface will stretch as they translate and Latinen's assumption of a constant velocity, rigid

body flow is unrealistic.

Canedo (1985) investigated free surface flows of Newtonian fluids in driven cavities

of finite depth. He estimated the kinematics of the flow from numerical simulations

assuming a flat liquid/vapor interface. Canedo's prediction of the interfacial kinematics for

deep channels (i.e. channels with large aspect ratios, single screw extruder channels are

deep) agrees closely with the prediction by Moffat over most of the interface. However,

near the moving wall, the solutions diverge. Moffat's solution exhibits a discontinuity at

the wall where the tangential velocity drops to zero. For Canedo's solution, the tangential

velocity approaches zero continuously.

Canedo (1985) also modelled the mass transfer from the free surface of a solution

undergoing devolatilization in the driven cavity. Like Latinen (1962), he used penetration

theory to model the mass flux assuming the fluid elements move in a rigid body motion

along the surface. However, rather than assuming that these rigid fluid elements move

with a constant velocity, Canedo allowed the surface elements to accelerate with velocities

estimated from his simulations. Comparison of mass transfer rates of carbon dioxide in

glycerol diffusing through the free surface of a driven cavity flow predicted by his model

with experimental measurements taken by Canedo (1985) reveal that his model

underestimates the mass transfer rates by an order of magnitude. A likely explanation for

this discrepancy is that Canedo neglects surface stretching which enhances mass transfer.
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To estimate the contribution of surface stretching to mass transfer from free surface

cavity flows, we have modelled the mass transfer from the surface assuming the fluid

elements moving along the surface undergo a simple one dimensional elongational flow

with a constant stretch rate, dVy/dy = (2/7t)Vw/Hb. This results in the linear velocity profile

Vy = (2/7t)Vw(y/Hb). For infinitely deep cavities with flat interfaces, Moffat's (1964)

analytical expression for the velocity of the surface can be satisfactorily approximated by

this linear velocity profile. Although single screw extruder channels are not infinitely deep,

Canedo's simulation for deep channels agrees closely with the solution of Moffat over

approximately 90% of the surface. We expect that the presumed linear velocity profile

should give better than an order of magnitude estimate of the contribution of stretching to

the mass transfer rate in the single screw devolatiUzer.

Following the methodology of Latinen, the mass flux from the surface of the fluid

was estimated as a function of distance along the surface. However, the mass transfer rate

was not estimated assuming the free surface moves in a rigid body motion, but rather the

surface elements were assumed to stretch at a constant rate. This local mass flux was

integrated over the length of the free surface to give the mass transfer rate in the cross

section. The resulting expression is identical to the expression derived by Latinen to within

a factor of 2/71^/2, This agreement is remarkable considering Latinen neglects surface

stretching in his derivation.

This fortuitous agreement can be explained as being the result of a cancellation of two

errors which are introduced by Latinen's assumption of a constant surface velocity: (1) the

siuface residence time of a fluid element is underestimated resulting in a higher average

interfacial concentration gradient of solvent; this overestimates the mass transfer rate and

(2) stretching is neglected which underesdmates the mass transfer rate. So Latinen's model

should give an adequate estimate of the interfacial mass transfer rate despite its unrealistic

description of the kinematics of the fluid surface.
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4.3,3 Bubble Growth Rate

Inspection of the mass balance reveals that, for it to be solved, the bubble radius, R,

must be specified as a function of its age, x. Or, equivalently, the growth rate of the

bubbles must be specified. Unfortunately, there are no explicit expressions describing the

growth rate of bubbles translating in a free surface cavity flow. Since an explicit

expression for the growth rate is desired in this preliminary model, approximations must be

made.

To derive a tractable, closed form growth rate expression, the following simplifying

approximations will be made:

(i) the bubbles remain spherical.

(ii) the bubbles grow in a quiescent fluid.

(iii) the bubbles do not interact with neighboring bubbles.

(iv) the growth is diffusion-controlled.

(v) the fluid is an isothermal, binary solution

The bubbles may deform from their spherical geometry in the shear and elongational

flows of the bulk film. However, as a first approximation, a spherical shape will be

assumed. Although an applied flow could enhance the mass transfer to bubbles, and hence

the growth rate, bubbles will be assumed to grow in a stagnant fluid. An analysis by

Acrivos (1971) of the related problem of mass transfer to rigid spheres in simple shear

flows indicates that a boundary layer may form around the bubble which will approach a

limiting thickness with increasing shear rate. This would limit the influence of the flow

field on the bubble growth rate. The effect of flow on the bubble growth rate is discussed

further in Appendix B.

The presence of neighboring bubbles could reduce the growth rate if the bubbles are

close enough so that the diffusion fields overiap. We can not say a priori whether this will

occur, as it depends on the number of bubbles per volume and on the width of the diffusion

boundary layers. The effect of bubble interaction on the bubble growth will be neglected.
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The diffusion-controlled growth assumption is argued in Appendix B to be reasonable for

bubble growth in a stagnant polymer/solvent solution. Whether it is appUcable to bubbles

translating in a free surface cavity flow is not clear. The temperature of the fluid, which

can decrease doe to the latent heat of vaporization of the solvent, is assumed to remain

constant. For the devolatilization of low solvent concentration solutions, which is the

focus of this study (the polymer/solvent solutions in all experiments studied contained less

than 1% by mass of solvent), this is a good assumption.

In his classic paper on phase growth, Scriven (1959) derived an implicit growth rate

expression for diffusion-controlled growth of a single bubble in an infinite, quiescent fluid.

From Scriven's expression, Szekely and Martin (1971) developed the following simplified,

explicit approximation, valid for high supersaturations (i.e. 10 < AC/pg < 1000; in the

experiments of Coughlin and Canevari (1969), AC/pg = 300)

' V 7t IPgj 4 2

where AC is the supersaturation, C - Ce, and Ce is the concentration of solvent in the liquid

at the bubble surface in equilibrium with the bubble vapor, Rq is the bubble radius at birth

and D is the polymer/solvent diffusivity. This expression will be used to describe the

bubble growth rate.

4.4 Population Balance

To solve the mass balance, the bubble age distribution must be known as a function

of distance through the devolatilizer, z. A population balance on the bubble distribution is

proposed to track the distribution through the devolatilizer. Following Hulburt and Katz'

(1964) formulation, the general balance equation on a bivariate distribution f(x,z) is

= B-E
dt dl dz 4.3
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where, Bdxdz is the rate of biith of bubbles between ages x to x + dx and between positions

z to z + dz and Edxdz is the rate of extinction, or death, of bubbles between ages x and x +

dx and between positions z to z + dz. The convection terms are simply

where Vz is the average velocity of the solution in the down channel direction. Introducing

the expressions for the convection terms into the population balance yields

where steady state conditions have been introduced removing the time derivative off. It

remains to derive expressions for the bubble birth and death rates.

4.4.1 Bubble Birth Rate

The mechanism of bubble birth in single screw devolatilizers is not known. Bubble

birth may occur by homogeneous or heterogeneous nucleation according to the postulates

of classical nucleation theory. Biesenberger and Lee (1986) have proposed that birth may

occur by growth and pinch-off of bubbles from stable gas pockets adhering to the surfaces

of equipment walls or to the surfaces of entrained particles. Entrainment of bubbles at the

dynamic liquid-gas-soHd contact line due to agitation from the rotating screw has also been

suggested as a possible birth mechanism (Canedo, 1985). Finally, bubble coalescence and

breakup can result in the birth of new bubbles. A brief discussion of past investigations

into bubble birth in polymer solutions by these mechanisms follows and the likelihood of

bubble birth by these mechanisms during DV is discussed.

The homogeneous nucleation rate in styrene/polystyrene solutions was estimated by

Lee and Biesenberger (1987) using an expression derived by Blander and Katz (1975)

from classical nucleation theory. The homogeneous nucleation rate is neghgible for solvent

mass fractions less than 0.5% and at temperatures less than 325 °C. As a result, bubble
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birth in devolatilizers by homogeneous nucleation is not expected to contribute significantiy

to the total bubble birth rate. Biesenberger and Lee also estimated the frequency of classical

heterogeneous nucleation for the same solution and conditions in conical cavities. This was

also negligible and heterogeneous nucleation is not likely to occur in these cavities. Hoque

(1986) used classical nucleation theory to correlate the onset of nucleation measured

experimentally in pentane/polyisobutylene solutions flowing between two, partially-

submerged rotating rollers. The surface tension was used to correlate the nucleation onset

data. The value estimated for the surface tension was more than an order of magnitude

smaller than the measured value given by Gaines (1972). This indicates that the bubble

birth was more rapid than would be predicted by homogeneous nucleation theory and may

have occurred either heterogeneously or by some other mechanism. Prud'homme,

Gregory, and Andres (1985) measured the temperature of onset of homogeneous

nucleation in benzene/polystyrene solutions at polymer concentrations between 0 and 60%.

Nucleation was observed to occur at or near the nucleation onset temperature predicted by

the theory of classical homogeneous nucleation.

The mechanism of bubble birth from stable gas pockets was proposed by Lee and

Biesenberger (1987) to explain the strong dependence of the birth rate on the shear rate.

This is discussed further in Appendix C. This birth mechanism has been observed to occur

by Darby (1964) and is feasible. Entrainment of bubbles at the dynamic contact line was

not observed at reduced pressure by Biesenberger and Lee (1986) in their apparatus

designed to simulate single screw extruder operation and its occurrence is unlikely. For the

same reasons discussed earlier, coalescence and breakage will also be neglected as

mechanisms of bubble birth.

The experiments of Biesenberger and Lee (1986) and Hoque (1986) on the onset of

bubble birth in devolatilizers reveal that a finite superpressure must be exceeded before

rapid birth occurs. Since this behavior is predicted by classical nucleation theory, the
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expression of bubble birth to be incorporated in our model will be based on classical

nucleation theory.

Blander and Katz (1975) derived the following expression for the classical nucleation

rate, J, in pure fluids.

J =
# of bubbles bom

time volume
= N

-,1/2
2ct

11^ i
^'^P

-16 7ta^ S

3 k T (P^-Pi)'
4.5

where N is the number density of molecules, a is the surface tension, m is the mass of a

solvent molecule, Q is approximately equal to (1-1/3(1-Pi/Pv)), S is the fractional reduction

in the free energy required to form a nucleus due to the presence of a heterogeneous

surface, k is Boltzmann's constant, T is temperature in Kelvin, Py is the vapor pressure of

the solution and Pi is the local fluid pressure. Py - Pi is the thermodynamic driving force

for nucleation and is termed the superpressure.

An empirical expression analogous to equation 4.5 will be adopted for the bubble

nucleation rate which retains the same functional dependence of the nucleation rate on

temperature and superpressure.

J = F exp
-E,

T (P,-P.)
4.6

Two empirical model parameters, F and Eg, have been introduced which describe the

nucleation rate. If the analogy with classical nucleation theory is valid, F is a measure of

the number of nucleation sites in the fluid and Ea is a measure of the free energy barrier to

nucleation (although it does not have units of energy!). F is expected to increase with

increasing concentration of heterogeneous impurities in the system which can act as

nucleation sites. F might also increase with increasing shear rate, as indicated by the

studies of Biesenberger and Lee (1986) and Hoque (1986). This is discussed further in

Appendix C. Eg is a thermodynamic parameter and is expected to depend on the

temperature, pressiu-e and composition of the solvent/polymer solution. However, it is not
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B = AcJ5(x) = AcFexp

expected to vary with the operating variables, unless these affect the energetics of the

formation of bubble nuclei.

The effect of Ea on the dimensionless nucleation rate, J/F, calculated from equation

4.6, is shown in Figure 4.5. J/F is plotted versus superpressure for values of Ea between

103 and 106 psi2 K and for T = 220 ^C. As observed experimentally, all curves show a

critical superpressure that must be exceeded before appreciable nucleation occurs. As Ea

increases, the critical superpressure requked for nucleation increases and the nucleation

onset is less abrupt.

The birth rate, B, is derived from J by

T Ad )

where Ac is the cross sectional area of the continuous phase, or equivalently, the cross

sectional area before foaming. Assuming Henry's law applies, the superpressure has been

replaced by the product of the supersaturation and the Henry's Law constant, Kc. 5(x) is

the Dirac-Delta function and requires that all bubbles be bom at age x = 0.

4.4.2 Bubble Death Rate

Bubble death can occur by rupture at the surface of the bulk film. In their

experiments on the rolling drum devolatilizer, Biesenberger and Lee (1986) observed

surface rupture by two distinct mechanisms: film draining and mechanical shearing.

Rupture by film draining occurs when the fluid film surrounding surface bubbles drains

into the bulk of the fluid due to capillary forces. A critical film thickness is reached on the

order of 500 angstroms when London-van der Waal forces amplify surface perturbations

causing the film to rupture. Rupture by film draining is discussed in more detail in

Appendix B. Rupture by mechanical shearing occurs at the convergence point of the bulk

and barrel films (see Figure 4.2). Bubbles are driven to the convergence point by the

moving fluid surface. The shearing of the bubble by the converging films causes their
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Figure 4.5 Plots of reduced nucleation rate versus supeipressure calculated
from the empirical nucleation rate expression for T = 220 ^C.
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rupture. Since the rolling drum devolatilizer simulates the operation of a single screw

devolatilizer, bubble rupture by both mechanisms is expected to occur in the single screw

devolatilizer. Bubble death might also occur by coalescence and breakage. However, as

discussed previously, coalescence and breakage will be neglected in the bubble death

model.

There have been many studies of the film draining rupture of bubbles driven to the

surface of a Newtonian fluid by buoyancy. A few of these are discussed in Appendix B.

These are not directly applicable to DV, however, as the buoyancy forces a bubble

experiences in a Howing, viscous polymer solutions are negligible compared to the viscous

and elastic forces which arise. From the studies by Moffat (1964) and Canedo (1985) on

the kinematics of free surface cavity flows, bubbles at the surface of the bulk film in the

single screw extruder are expected to undergo mostly extensional flow. There have been

no studies on the rate of bubble rupture by fikn draining at the surface of a polymer/solvent

solution undergoing extensional flow. However, in a related problem, Hoffman (1985)

modelled the protrusion of a rigid sphere through the surface of a fluid undergoing

extensional flow. His analysis predicts that the sphere reaches an equilibrium height when

the drag forces on the bubble, which drive the sphere towards the interface, are just

balanced by the repelling surface tension forces. For this preliminary model, only rupture

by mechanical shearing will be included. We will neglect rupture by the poorly understood

mechanism of film draining. However, an empirical film draining rupture model is

developed in Appendix B and will be included in a later model in Chapter 7.

The death rate expression for bubble rupture by mechanical shearing is derived in

Appendix B. In this derivation, the surface bubbles are assumed to translate along the free

surface of the bulk film with a constant interfacial velocity, Vb- The value of V5 was taken

to be (2/7i)Vw, the surface velocity predicted by Moffat (1964) to occur in infinitely deep

channels as discussed in section 4.3. All bubbles occupying the surface of the bulk film

were assumed to rupture upon reaching the convergence point of the bulk film and barrel
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film (see Figure 4.2). Rupture of bubbles in the barrel film was not accounted for as

Biesenberger and Lee (1986) observed that no bubbles were present in the barrel film of

their rolling drum devolatilizer. The surface density of bubbles was calculated assuming

the bubbles are distributed homogeneously in the cross section. The death rate expression

derived in Appendix B using these assumptions is

E =
2Vb r

Ac
R0

4.8

The death rate of bubbles is predicted to increase with the velocity of the bulk film

surface, Vb (which is proportional to the screw rotation rate), since more bubbles will enter

the convergence point per time. Older (or, equivalently, larger) bubbles are predicted to

rupture more frequently than smaller bubbles as larger bubbles are more likely to occupy

the surface simply because they occupy more space. Also, an increase in the number

density of bubbles, f, which is a measure of the number of bubbles in the cross section, is

predicted to increase the rupture rate.

4.5 Model Equations

Introducing the expressions for the bubble birth, growth and death rates into the mass

balance and population balance gives the model equations

dAC
dz

= -48
3/2 A

AC' ^1/2

1/2 A

[(VbHb)^^+sin0 (VfLf)^^^] AC
(4.9 a)

AcP
AC x"^ f

g ^ (4.9 b)
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B.C.'s

at z = 0;

AC = C,-Ce

.f(x, 0) = 0

at 1 = 0; f (0, z) = F A, exp
-E.

where |in, the n'th moment of the bubble age distribution, is defined as

}In= f x"fdx
Jo

The supersaturation of the solution fed to the devolatilizer (i.e. at z = 0) is Cq - Ce, where

Co is the concentration of solvent in the feed. We have assumed that the feed does not

contain bubbles (i.e. f = 0 at z = 0).

To nondimensionalize the equations, the dimensionless variables

Y =
AC

AC*
z=4

are introduced where the reference scales are defined as

AC = C - C = C

f = Aj, F exp
r -E,

2 ^2TK^c;ax J

*

X =
V ^max J

z = V,x

D

The dimensionless model equations are

dY r

dZ Ml/2 Y-

-(^) [a5 + a6(l-a7(l + 32^aia4 M
1/2-

3/2
4.10a
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3^ dW

1+3
T^^^ Y ^

a4 M3/2

4.10b

B.C.'s

at Z = 0; -

Y = l

IW, 0) = 0

at T = 0; ^^(0, Z) = exp a
1 A

where the dimensionless n'th moment
, Mn, is defined as

Jo

1

These equations will be termed the Complete Model.

The independent dimensionless model parameters are defined as

1/3

tti = c 1 I '^max

V Vb Pg J
D^^ F expC-tts)

a3 =

a. =

^5

"6

1

^ '-max /

C ^

^ Ac J

g

x2/3

max /

D 1/6 A

1 A v2/3
^ Ac Vb V

(sine Vf w)
1/2 g

2/3

V '-max /

aj =
Ac

^Hb w;

During foaming, the volume of the bulk fihn increases due to the addition of bubbles.

Inspection of Figure 4.2 shows that this will increase the depth of the buUc film, d, and
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and accounts for this effect. Vc and Vt are the volumes of the bulk film before and during

foaming, respectively ("c" and "t" are mnemonics for "continuous phase volume" and "total

volume"). VtA^c is equivalent to At/Ac, where Ac and At are the cross sectional area of the

bulk film before and during foaming. As the volume expansion ratio VtA^c increases, the

surface area to volume ratio of the film decreases. This decreases the fraction of bubbles

that can be located at the surface and, hence, the rupture rate.

Foam expansion introduces significant nonlinearities into the equations which can

complicate the models behavior and its solution. However, as discussed in Chapter III,

significant volume expansion due to foaming is not observed in typical single screw

devolatilizers. As an approximation, the volume expansion will be neglected in the model

equations. This is a valuable approximation as it significamly reduces the complexity of the

model. It will allow further approximadons to be made so that simplified models may be

constructed. These simplified models will be shown in Chapter 6 to be valuable for use in

devolatilizer design and for providing insight in the DV process which can be obscured by

the complexity of the Complete Model.

Setting Vi/Vc = 1, the model equations reduce to

4.11a

4.11b
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B.C.'s

at Z = 0;

Y = l

[^(T, 0) = 0

at T = 0; 4^(0, Z) = exp ^3

where a new parameter a2 is is introduced in which are lumped the variables in the

parameters 04 to a-j.

2/3

0.2 = ( ^ ^

1/3

r \
[ (VbHb)"% sin(e) (VfLf)^'l

1/2 1/2-

The negligible volume expansion assumption removes the nonlinearities in the population

balance and reduces the number of model parameters to three. These equations will be

referred to as the Full Model. In this chapter, the Full Model, rather than the Complete

Model, will be used to simulate the performance of the single screw devolatilizer.

It will be useful in later chapters to use the population balance expressed as an infinite

set of ODE'S in terms of the moments of the distribution. These are derived by multiplying

the population balance by T" and integrating over T from 0 to 00. The resulting moment

equations and initial conditions are

dM,

"dZ

dM
1/2

dZ

dM,

dZ

dZ

= exp ^3

-{\)m.-1/2

Mo

•

•

•

nMn_ 1

s/f

VI) V

1/2

YM

M3/2

YMn+1/2
4.12



I.C.'s at Z = 0; Mj = 0 , ( j = -1/2, 0, 1/2, ...
, n+1/2)

47

Note that the moment equations are not closed. To solve for the

information on the -1/2 and n+1/2 moments is required.

moments between 0 and n,

4.6 Model Solution

The model equations consist of the mass balance, an ordinary differential equatic

coupled to the population balance, a first order partial differential equation. The populati

balance was simplified to the ordinary differential equation

where the derivative is taken in the direction along the characteristics of the PDE. The

characteristics, shown in Figure 4.6, are defined by Z = T + c, where c is an arbitrary

Equations 4.1 la and 4.13 were solved numerically by the method of lines using the

DGEAR IMSL integration algorithm (Gear, 1971). The solution procedure was to

integrate Y along Z and 4^ along the characteristics. At each step in the integration, the 1/2

moment of the distribution was determined by numerical integration of the the discrete

values of ^ which have been estimated along the characteristics. Characteristics were

added at intervals along Z, AZ. The value of 4^ for each newly added characteristic (i.e. at

T = 0) is specified by the boundary condition for ^ at T = 0. The solution accuracy

increases as more characteristics are added, or equivalently, as AZ is decreased. AZ was

chosen by reducing it to a value at which an acceptable limiting solution was approached.

4.7 Model Behavior

The model's behavior is governed by the three dimensionless parameters ai, a2 and

a3. ai is a measure of the rate of mass transfer by foaming, a2 is a measure of the rate of

4.13

constant.



Figure 4.6 Plot of the characteristics of the population balance equation.
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ence

on

mass transfer by interfacial diffusion, and a, is a measure of the concentration depend

of the nucleation rate. The effect of ai, or equivalently, F, as is proportional to F.

the DV performance is shown in Figure 4.7a. For a value of a2 = 0.0013 (calculated by

choosing values for the variables in the expression for as that are typical of industrial

processes) and as = 0.1, the dimensionless concentration, Y, is plotted versus the

dimensionless distance, Z, for values of ai equal to 0.01, 0.1 and 0.5. As ai increases,

the total mass transfer rate to bubbles increases proportionally and the DV performance

improves. The effect of varying is shown in Figure 4.7b for values of ai = 0.1 and as

= 0.0013. As as is increased from 0.01 to 0.1 to 0.5, the initial DV rates remain

unchanged. However, at greater distances through the equipment, the DV performance

deteriorates with increasing as. The effect of increasing as is not shown, but its effect is

to increase the slope of the Y versus Z plot for Z» 1.

Two regimes of DV are evident in these plots. Over short distances, both foaming

and interfacial diffusion contribute to the DV performance. Although for these values of

the model parameters, mass transfer by foaming dominates mass transfer by interfacial

diffusion. At large Z, however, DV becomes controlled solely by interfacial diffusion.

This transition occurs when the supersaturation (i.e. Y) is decreased below the critical value

necessary to sustain nucleation. As as, or equivalently, Ea, increases, this critical value of

the supersaturation increases and the transition occurs at larger values of Y.

In Figure 4.8, a surface plot of a typical bubble age distribution is presented revealing

how it evolves through the devolatilizer. This sample distribution was calculated from the

Complete Model of the rolling drum devolatilizer (to be presented in the next chapter) for

values of ai = 0.02, as = 0.00136, as = 0.4 and a4 = 336. The effects of all aspects of

the bubble nucleation, growth and rupture processes on the bubble age distribution are

evident in this plot. At the entrance to the devolatilizer (Z = 0), only bubbles of age T = 0

exist. Travelling through the devolatilizer (increasing Z), the bubbles grow to larger ages



Figure 4.7 Plots showing the dependence of the DV rate predicted by the Full

Model of the single screw devolatilizer on (a) ai and (b) a3.
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Figure 4.8 Surface plot of the bubble age distribution given by the Complete

Model of the rolling drum devolatilizer. ai = 0.02, a2 = 0.00136, as = 0.4 and

a4 = 336.
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which is reflected by an increase in the width of the bubble age distribution. The

discontinuous drop in the distribution along the line T = Z is due to the plug flow

assumption. Bubbles in any fluid element can not be older than the residence time of that

fluid element which moves in plug flow through the devolatiHzer. The effects of nucleation

and rupture on the distribution can be seen more clearly in the different perspective of the

same distribution given in Figure 4.9. Rupture reduces the number of bubbles, as is

exhibited by the drop in ^ with mcreasing Z. The decrease in the nucleation rate due to the

reduction in the supersaturation is also evident, as ^(T = 0), which is proportional to the

nucleation rate, decreases with increasing Z.

4.8 Model Evaluation

The most effective means of evaluating the model would be to compare the model's

prediction of a single screw devolatilizer's performance with that measured experimentally.

However, our model has two empirical parameters, F and Ea, which characterize the rate of

nucleation. Since values of F and Eg can't be determined from first principles, our model is

not a predictive model. However, if F and Ea could be determined from independent

measurements of the nucleation rate, the model could function in a predictive capacity.

Indeed, in Appendix C, a method is presented for estimating Ea from nucleation onset data.

Since F and Eg were not measured experimentally, the model was evaluated by

correlating existing experimental data. Values of F and Ea were estimated to be those

values for which the model gives the best correlation of experimental devolatilizer

performance data. The utility of the model was evaluated from its ability to correlate data

taken over varying operating conditions.

4.8.1 Experimental Data

The experimental data used in the model evaluation were taken from the literature.

For the single screw devolatilizer, only the experiments by CoughUn and Canevari (1969)
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Figure 4 9 Surface plot of the bubble age distribution given by the CompleteModel of the rolling drum devolatilizer. a, = 0.02, = 0.00136, aj = 0.4 and
0C4 = 336,
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were documented well enough to be used for model evaluation. Coughlin et al. measured

the concentration of xylene in polypropylene (PP) exiting from a commercial-sized, single

screw devolatilizer. This data was used for model evaluation. Coughlin et al. also

measured the DV rates of methanol in polypropylene. This data was not used, however,

since greater than 99.7% of the solvent was removed in each run. At these low solvent

concentrations, the DV rate is dominated by interfacial diffusion and the contribution to

mass transfer by foaming can not be unambiguously extracted from this data. Reliable

estimation of values of F and Ea would be impossible.

A summary of the physical property data, extruder dimensions and operating

conditions for each run by Coughlin et al. are presented in Table 4.1. Data on the

diffusivity and solubility of xylene in PP could not be found in the literature. However,

diffusivity and solubility data for xylene in polyethylene (PE) was available and was used

as an estimate. PE is chemically similar to PP and should have similar values for the

diffusivity and solubility of xylene. The diffusivity of xylene in PP at 260 oc was

estimated to be 4.8x10-5 cm^/s. This value was determined by extrapolating the diffusivity

measured by Duda and Vrentas (1982) for xylene in PE at 175 ^C and 0.05 weight fraction

of solvent to 260 -C using the measured activation energy of 5.1 Kcal/mole. For the same

system and conditions, Duda et al. measured a value of the Flory-Huggins interaction

parameter, equal to 0.2. From this value of x, a Henry's Law constant of 45.3 atm

cm3/g was estimated for xylene in PP using Flory-Huggins theory. The solution density

was calculated to be 0.72 g/cm3 by dividing the mass flow rate by the volumetric flow rate.

The extruder dimensions were varied among runs. Two different barrels were used

with diameters, Db, of 8.9 cm and 1 1.4 cm. The axial lengths over the DV section. Lb, for

these barrels are approximately 44.5 and 57.2 cm. These values for Lb were not given by

Coughlin et al. Rather, we estimated them from values given for the volume and cross

sectional area of the bulk film. The screw in the smaller barrel had a channel height, Hb, of

1.11 cm, a channel width, w, of 7.59 cm and a channel length, Lq, (measured helically
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Table 4.1 Summary of the conditions of Coughlin and Canevari's nOM^expenments on the single screw devolatiUzer.
'-anevan s (1969)

PHYSICAL PROPERTY DATA

Polymer Solvent D Mol. Wt. Solution Density
(cm2/s) (atm cm^/g) (g/mole)

polyproDvlene xylene 4.76x10-5 45 3 106.17 0.717

EXTRUDER DIMENSIONS

Run Db Hb w e Lb Lc
(cm) (cm) (cm) (radians) (cm) (cm)

1 8.89 1.11 7.59 0.3084 44.5 146.6
2 8.89 1.11 7.59 tt

44.4 146.3
3 8.89 1.11 7.59 »

44.5 146.6
4 11.43 1.27 9.70 It

57.3 188.9
5 11.43 1.27 9.70 II

57.2 188.6
6 11.43 1.90 9.70 »

57.3 188.8
7 11.43 1.90 9.70 II

57.2 188.4
8 11.43 1.90 9.70 n

57.1 188.3

OPERATING CONDITIONS

Run N T P Fraction Mass Flow Vol. Flow Residence
Full Rate Rate Time

(»C) (atm) Obs/hr) (cm^/s) (s)

1 0.67 260 0.01 0.41 150 26.2 19.3
2 1.33 260 0.40 290 50.8 9.7
3 2.00 260 0.39 405 70.7 6.8
4 2.00 260 0.20 425 74.8 6.2
5 1.25 260 0.27 345 60.6 10.4
6 0.67 260 0.27 198 34.1 27.6
7 1.00 260 ft

0.24 330 57.9 14.4
8 1.50 260 n

0.21 458 79.8 9.2

FILM DIMENSIONS, FILM VELOCITIES and SHEAR RATC

Run d Ac Lf Vext Vz Vf Vb G
(cm) (cm^) (cm) (cmh (cm/s) (cm/s) (cm/s) (s-1)

1 3.11 3.45 14.75 506.4 7.58 18.6 3.6 16.7
2 3.04 3.37 15.00 493.3 15.07 37.2 7.1 33.5
3 2.96 3.29 15.25 481.8 21.52 55.8 10.7 50.3
4 1.94 2.46 25.57 465.4 30.36 71.8 13.8 56.5
5 2.62 3.33 23.33 627.6 18.22 44.8 8.6 35.3

6 2.62 4.99 23.33 942.3 6.83 23.9 4.6 12.5

7 2.33 4.43 24.29 835.7 13.06 35.9 6.9 18.8

8 2.04 3.88 25.25 730.9 20.56 53.8 10.4 28.2
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along the channel) of approximately 146.6 cm. This value was also calculated from given

values of the bulk film volume and cross sectional area. For the larger barrel, two screws

were used with identical channel widths and lengths over the DV section equal to 9.7 cm
and 188.5 cm, respectively. However, one screw channel was deepened from 1.27 cm to

1.9 cm. All screws had a screw helix angle, 6, of 0.3084 rad (17.67 o).

The screw rotation rate, N, was also varied among runs. Measurements were made

over N varying between 30 and 120 rpm (.67 to 2 s-l) at a temperature of 260 ^C. The

pressure was not given and we assumed it to be constant at 0.01 atm (7.6 torr), which is

representative of operating pressures in industrial single screw devolatilizers. The fraction

of the channel volume filled, the mass flow rate, the volumetric flow rate and the mean

residence time in the DV section were also given by Coughlin et al. and are presented in

Table 4.1.

The dimensions of the bulk and barrel films varied from run to run due to variations

in the channel width, channel height and fraction of channel fill. For the bulk film, the

depth, d, cross sectional area, Ac, and total volume of the film in the DV section (extraction

section), Vext, are given in Table 4.1 along with the length of the barrel film, Lf. The

velocities of the films are also presented. The average velocity of the bulk film in the down

channel direction, V^, was calculated as the ratio of the volumetric flow rate to the cross

sectional area, Ac. The velocity of the barrel film, Vf, was set equal to the velocity of the

barrel. The velocity of the bulk film surface was taken to be 21k times that of the

component of the barrel velocity normal to the bulk film surface, sinG Vf. The

characteristic shear rate in the bulk film, defined as the velocity of the barrel, Vf, divided by

the height of the bulk film, Hb, is also given in Table 4.1.

In Table 4.2, the inlet and outlet concentrations are presented for each run. The mass

fraction of solvent at the start of DV, X^o. was given by Coughlin et al. as ranging from

0.003 to 0.01. Co and Cmax (where Cmax = Co - Ce), were estimated assuming the initial

solvent mass fraction, X^, was 0.01. The equilibrium concentration of solvent, Ce, was
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Table 4 2 Inlet and outlet conditions of Coughlin and CanevariV n Q^Q^ «the smgle screw devolatilizer and the single screw deTolatiWm.!^! ^ expenments on
correlate this data.

aevoiatilizer model parameters that best

INLET AND OUTLET CONDITIONS

0.68 0.00320 0.00229
0.47 0.00530 0.00380
0.49 0.00510 0.00366
0.42 0.00580 0.00416
0.61 0.00390 0.00280
0.87 0.00130 0.00093
0.76 0.00244 0.00175
0.59 0.00410 0.00294

CORRELATION RESULTS

Run 7 ^exD Ea F ^pred

(atm2 K) (cm"^ s'^)

1 31.2 0.320 2.64 0.84 0.19
2 25.3 0.530 fi

1.23 0.35
3 23.7 0.510 It

2.97 0.52
4 31.0 0.580 II

3.58 0.60
5 30.8 0.390 If

2.59 0.37
6 41.3 0.130 II

4.63 0.15
7 30.6 0.244 fl

3.26 0.25
8 27.8 0.410 It

2.71 0.40

REFERENCE SCALES AND MODEL PARAMETERS

Run z* AC* CX2 as
(cm"^ s"^) (s) (cm) (K/cni3)

1 10.36 0.62 4.69 0.00695 0.02424 0.00868 0.050
2 10.11 0.38 5.78

It

0.00733 0.00784
ti

3 9.86 0.29 6.18
It

0.00357 0.00744 tt

4 7.39 0.20 6.09
II

0.00145 0.00967
u

5 9.98 0.34 6.11
II

0.00525 0.00914
It

6 14.97 0.67 4.56
•1

0.02943 0.00937
tt

7 13.30 0.47 6.15
It

0.01231 0.00924
It

8 11.64 0.33 6.77
II

0.00501 0.00915
tt
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calculated from Henry's Law and the gas density in the bubble was calculated from the

ideal gas law. Coughlin et al. measured the fraction of solvent removed, (Co-C)/Co, in

each run. From this, the solvent concentration, C, and mass fraction, X^, at the outlet of

the devolatilizer were estimated.

4.8.2 Correlation of Experimental Data

The procedure used in correlating Coughlin and Canevari's (1969) data was to

choose a single value of F and a single value of Ea which gave the best agreement between

the outlet concentrations predicted by the model and those measured experimentally. The

fitting procedure was to choose an arbitrary value of Ea and determine the values of F, for

each run, that gave predictions of the outlet concentrations equivalent to those measured

experimentally. The goodness of the correlation was determined from the degree of scatter

in the values of F. This procedure was repeated over a range of values of Ea. That value

of Ea that minimized the scatter in F was chosen as the best estimate for Ea. The best

estimate of F was then chosen as the average value about which the scatter was minimized.

The data was fit in terms of the dimensionless concentration, Y, rather than C,

because the uncertainties in the estimates of C are greater than those of Y. To calculate

values of Y, where Y= [C-Ce]/[Co-Ce], at the extruder outlet, the value of C and Cq is

required. However, values of C were not given by Coughlin et al. and only bounds on the

initial concentration, Cq, were given. Y could be approximated by assuming a value of Co

within the given range and solving for C from given values of the fraction of solvent

removed, (Cq-CVCq. However, the uncertainty in Cq alone could be as high as 300%. A

more precise estimate is to approximate Y by [1 - (Co-C)/Co], by setting Ce equal to zero.

This is a good approximation to Y when Ce « C. Y was approximated using this

expression. The maximum uncertainty in Y was estimated to be ± 0.03. These values of

Y, designated Ygxp, and the corresponding dimensionless length of the DV section, Zexp,

are presented in Table 4.2.
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The value of Ea which gives the least scatter in the fitted values of F is Ea = 2.64 atm2

K. The values of F which fit the data for this value of Ea are presented in Table 4.2. F
varies five fold from 0.84 to 4.6 cm-3 s-l. These values of F are plotted versus run number

in Figure 4. 10a. Most of the values of F are located near F = 3 cm-3 s-i, ^^^^^^.^^

of the first two values which are significantly lower. In Figure 4.10b, F is plotted versus

the characteristic shear rate, as studies by Biesenberger and Lee (1987) indicate that the

nucleation rate, F, may increase with increasing shear rate. However, this trend is not

evident in CoughUn et al.'s data.

To evaluate the model's ability to correlate the DV performance over varying

operating conditions, a single value of F was chosen to correlate the data. A value of F = 3

cm-3 s-l was chosen to be the best estimate of F, as the scatter in F about this value is

minimized. The dimensionless concentration predicted for each run, Ypred, for F = 3 cm-3

s-l and Ea = 2.64 atm2 K are presented in Table 4.2. The reference scales, f*, x*, z*, and

AC*, and the model parameters, ai, ai, and as used in calculating Ypred are also

presented. The reference scales and model parameters were calculated from their

definitions in section 4.5.

In Figure 4.11a, Ypred is plotted versus the experimental value, Yexp. If the

correlation were exact, all the points would lie along the solid line Ypred = Ygxp. The

correlation is excellent for most of the data with data points for runs 1 and 2 exhibiting the

greatest deviation.

4.8.3 Comparison With Latinen's Model

Our model gives a good correlation of the Coughlin and Canevari data. It would be

of interest to compare our model's correlative ability with that of Latinen's (1962) model,

since Latinen's model is the model most commonly used for sizing single screw

devolatilizers. We used Latinen's model to correlate Coughlin and Canevari's data. To

simplify the comparison, we neglected the contribution of axial dispersion to the DV



10 1

3 4 5 6

Run Number

8

Characteristic Shear Rate (s-l)

Figure 4.10 Plots of the nucleation rate parameter, F, estimated from the data of

Coughlin and Canevari (1969) versus (a) run number and (b) characteristic shear

rate for Ea = 2.64 atm^ K.
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Yexp

Figure 4.11 Plots of the dimensionless outlet concentration of xylene in

polypropylene from a single screw devolatilizer measured by Coughlin and
Canevari (1969) versus (a) the outlet concentration predicted by our model and
(b) the outlet concentration predicted by Latinen's (1962) model.
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performance. The importance of the axial dispersion is quantified by the reciprocal of the

Peclet number. Latinen (1962) measured a Peclet number in the single screw devolatilizer

of order 5. For this value of the Peclet number, axial dispersion has a small effect on the

DV rate and can be neglected.

To correlate the data using Latinen's model, a value of the effective diffusivity was

chosen which best correlates the outlet concentrations predicted by Latinen's model to the

experimental measurements. A value of D = 5x10-4 cm2/s was found to give the best

correlation. In Figure 4.11b, the dimensionless concentration predicted by Latinen's

model, Yprcd, for D = 5x10-4 cm2/s is plotted versus Ygxp. Comparison of Figures 4.11a

and 4. lib reveals more scatter is present in Latinen's correlation.

This comparison indicates that our model is superior to Latinen's model in its ability

to correlate experimental data. However, one might argue that this should be expected, as

our model has two adjustable parameters and Latinen's model has only one. Yet, the two

empirical parameters of our model, F and Ea, are both physically meaningful. They

describe the nucleation rate of bubbles in polymer solutions and both should be essential in

any model of foam enhanced DV. In contrast, the physical interpretation of Latinen's

fitting parameter, the effective diffusivity, is lost when foaming is significant, as Latinen

does not include foaming in his model. In this case, it can only be interpreted as a measure

of the overall DV efficiency. Evidence of this loss of physical meaning is the fact that the

value of the effective diffusivity required to fit the data is an order of magnitude larger than

the measured value.

Despite the better correlative abilities of our model, the design engineer might not be

persuaded to use our model in favor of Latinen's model for devolatilizer design. This is

because Latinen's model has an analytical solution and can frequently give an adequate

correlation of the devolatilizer's performance. Our model is significantly more complex

and requires a numerical solution procedure.
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In the next chapter, reasons for using our model of the single screw devolatilizer in

favor of Latinen's model will become clear. A model constructed for the rolling drum
devolatilizer, designed to simulate the operation of the single screw devolatilizer, is

presented next. Significant improvements in the correlative abilities of our model over

Latinen's model wiU become evident upon comparison of these models using data available

on the performance of the rolling drum devolatilizer



CHAPTER V

MODEL OF A ROLLING DRUM DEVOLATILIZER

5.1 Geometry and Operation

The rolling drum devolatilizer was designed by Biesenberger and Lee (1985) to

simulate the operation of a single screw devolatilizer. It consists of a blade housed within a

rotating drum, as shown in Figure 5.1a. Polymer solution is poured between the blade and

drum and the drum is set in motion inducing a free surface flow in the fluid, similar to that

occurring in the single screw devolatiUzer. DV is initiated by reducing the pressure in the

vapor space.

5.2 Model Equations

We have developed a model of the rolling drum devolatilizer. Although there are

significant differences between the rolling drum and single screw devolatilizers, from a

modelling standpoint, they are very similar in nature as both induce free surface flows in

the polymer solution. The model of the rolling drum devolatilizer was constructed using

assumptions and approximations similar to those used in the single screw devolatilizer

model. These include:

(1) The bubble phase is described by a distribution over bubble ages.

(2) The solvent concentration and bubble age distribution is homogeneous in
the cross section and through the length of the devolatilizer.

(3) Bubble deformation, breakage and coalescence are neglected.

(4) Models for the bubble birth, growth and death rates are identical to those
incorporated into the single screw devolatihzer model.

(5) The description of the rate of mass transfer through the interface of the
bulk film is derived from the model of Latinen (1962).

(6) Mass transfer from the barrel film is negligible as the barrel film

thickness was made very small by Biesenberger et al. by using
Teflon-tipped blades.
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Figure 5.1 Schematic of the cross section of a rolling drum devolatilizer
showing (a) the actual geometry and (b) the idealized geometry used in our model.
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The two most obvious differences between the single screw and rolling drum
devolatilizers is the differences in the geometries of the cross sections of the bulk films and

the differences in the modes of operation. Biesenberger et al. observed that the shape of

the bulk film cross section in the rolling drum devolatilizer was similar to the shape of an

arc of a circle. This differs from the rectangular shape of the bulk fUm cross section in the

single screw devolatilizer. However, due to the assumption of good cross sectional

mixing, the differing shape of the cross section will not affect the form of the resulting

model equations. Only the cross sectional area, Ac, is required in the equations. The

variables characterizing the shape of the cross section are lumped into this variable and

these will affect only the value of Ac.

The operation of the single screw devolatilizer is continuous with inflow and outflow,

whereas the rolling drum devolatilizer is operated in batch mode. In the rolling drum

devolatilizer, the solvent concentration varies with time and the model is property posed in

terms of time rather than distance. However, the models of the two devolatilizers are

closely related. The plug flow assumption in the single screw model allows that the

distance z that a fluid element has travelled at a velocity Vz can be related to its time of travel

t by t = zA^z. Following a translating cross sectional fluid element over distance in the

single screw devolatilizer is equivalent to following a stationary cross sectional fluid

element as a function of time in the rolling drum devolatilizer. The equations of the single

screw devolatilizer model expressed in terms of the residence time of a fluid element (rather

than distance travelled) reduce identically to the equations of the rolling drum model.

To derive the equations for the rolling drum model, we note that equations 4.9a and b

for the single screw extruder model are identical with the rolling drum model equations

when z is replaced by Vzt. Replacing z with Vzt in these equations yields the mass balance,

population balance and boundary conditions for the rolling drum model
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dAC
dt

= -48
AC

Pg ^
AC x^'^ f

B.C.'s

at t = 0;

AC = C,-Ce

.f(T. 0) = 0

5.1a

5.1b

at x = 0; f (0, t) = FAexp
-E

T AC^

Note that the barrel film diffusion term in the mass balance is not included, as the barrel

film is negligibly thick.

Introducing the dimensionless variables

Y =
AC

AC^
^ = ^- T = -l-

f X

T =4
X

where the characteristic reference scales are defined as

AC* = Co-Ce = C,max

f = A^, F exp

2/3
1/3

D

the dimensionless model equations become
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dY

dT

r

48 Ml/2

7C
1/4

^2a, 1 +3
1/4

4 Y'^ M
3/2

5.2a

ax
+

9T
(l + 3271 a, a4 Y'm

3/2

5.2b

B.C.'s

at T = 0; ^

Y = l

^'(T, 0) = 0

at T = 0; ^(0, Z) = exp as
(-7)]

where the dimensionless model parameters are defined as

1/3

'"IvJ I—

J

a2 = ^ D ,1/6^ p
^2/3

1/2

g

as =
f 1

max

. ^nax y

a^ = max

I P

These equations will be refeired to as the Complete Model of the rolling drum devolatilizer.

The numerical prefactor of the bulk film diffusion term in the dimensionless mass

balance differs slightly from that of the single screw model by a factor of tc^/^. This results

during transformation to the dimensionless equations, where Hb, the length of the bulk fikn

surface, was expressed in terms of At, the cross sectional area of the film, using the

relation Hb = (tc At)^/^, 7his expression was derived assuming that the cross section of the

bulk film was in the shape of a quarter circle with radius Rt, as shown in Figure 5.1b.
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Biesenberger et al. observed that .his is an adequate approximation to the actual shape of

the film. In fact, they modelled the flow of fluid in the cross section assuming that the

cross section was in the shape of a quarter circle

An additional factor is also evident in the bulk fihn diffusion term of the mass balance

which is not present in the corresponding temi in the single screw model, (i.e. the as term

in equation 4. 10a). This term in the rolUng drum model contains At/Ac, defined as

5.3

which is the fractional increase in the cross sectional area of the bulk fihn and is identical to

that derived for tiie single screw model. This factor accounts for the increase in the length

of the free surface of the bulk film, Hb, due to volume expansion during foaming. In the

single screw model, the length of the free surface of the bulk film does not change during

foaming (see Figure 4.2) and this factor is absent.

As discussed in Chapter 3, the volume expansion due to foaming in the rolling drum

devolatilizer experiments was smaU. The value of will be approximated as unity and

the model equations simplify to

dY

dT
5.4a

5.4b

These equations will be referred to as the Full Model of tiie rolling drum devolatilizer. Due

to its reduced complexity, the Full Model will be used in this chapter to correlate

experimental data.

The population balance of the Full Model, equation 5.4b, may be expressed as an

infinite set of ODE's in the moments of the distribution. Since the resulting moment

equations are identical to equations 4.12 with Z replaced by T, they need not be presented

here.
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in

5.3 Model Evaluation

As for the single screw devolatiHzer model, the utUity of the rolling drum devolatihzer

model was evaluated from its ability to correlate experimental data. Data measured by

Biesenberger and Lee (1987) on the performance of the rolling drum devolatilizer

analyzed. This data consists of the rates of devolatihzation of methyl chloride (MeCl) and

series of Freons® (Freon® is a registered trademark of the DuPont Company)

polydimethylsiloxane (PDMS) at room temperature. Measurements were made over

varying drum rotation rates, initial solvent concentrations and pressures.

5.3.1 Experimental Data

Biesenberger and Lee (1987) measured the fraction of solvent removed from the

rolling drum devolatilizer, (Cq - C)/Co. versus time. We converted these variables into Y,

X - Xe and Pyap - P, where Y is the dimensionless concentration, X is the mass fraction of

solvent, Xe is the mass fraction of solvent in equilibrium with the applied pressure, P, and

Pvap is the vapor pressure of the solution. X - Xe is the supersaturation and Pyap - P is the

superpressure. Both are important, as they are measures of two distinct driving forces.

The supersaturation drives diffusion and the superpressure drives nucleation.

Plots of Y, X - Xe and Pvap - P are presented in Figures 5.2 to 5.5 for four different

data sets measured by Biesenberger and Lee (1987). Within a data set, the pressure,

rotation rate, initial supersaturation or initial superpressure were varied to determine its

effect on the DV performance. At each experimental condition, two experiments were

usually run to test the reproducibility of the measurements. The initial conditions of each

data set are listed in Table 5.L
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l.A

l.B

l.C

2.A
2.B
2.C

lTrl-^'\ ^f^^}^''""
Biesenberger and Lee's (1986) experiments onthe roUing drum devolatilizer. Devolatilization ofPDMS at 20 oQ

Mea

8000
8100
8000

9000
3800
9100

8
ti

200

4
75
120

75

7860
7960
7860

8776
3576
9100

280.7

284.3

280.7

313.5
127.7

125.0

3.A Mea 7900 8 75 7676 274.2

4.A

4.B

4.C

Freon-114®

Freon-22®

Freon-13®

4300

4260

4200

75 3532

4024

4134

32.2

119.2

439.9

In data set 1, the rotation rate, N, was varied from 4 to 120 rpm. In data set 2, from

a base case of P = 8 torr and Xq = 9000 ppm, the pressure was increased to 200 torr in one

experiment and the initial concentration was reduced to 3800 ppm in the other. In data set

3, no variations in operating conditions were made, as it consists of only one experiment.

Rather, measurements were started after 5 seconds, as compared with 30 seconds for the

other data sets. For data set 4, the superpressure was varied by using a series of Freons®

with differing solubilities as the solvent

Data set 1 is presented in Figure 5.2 where Y, X - Xe and Pyap - P of MeCl in PDMS

are plotted versus time. All plots are for initial mass fractions between 80-8100 ppm and a

pressure of 5 torr. The drum rotation rates vary, however, from 4 to 75 to 120 rpm. From

Figure 5.2, it is evident that the DV rate increases with increasing rotation rate.

Data set 2 is presented in Figure 5.3. Plots of Y, X - Xg and Pyap - P versus time for

MeCl in PDMS are given for a rotation rate of 75 rpm. Data was measured for a base case

of Xq = 9000 ppm and P = 8 torr (data 2.A). For comparison with the base case, data was
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Figure 5.2 Plots of data set 1 of Biesenberger and Lee's (1986) rolling drum
devolatilizer performance experiments showing the effect of varying rotation speed

on the DV performance of MeCl in PDMS for Xq = 8000 ppm and P = 5 torr.

(a) dimensionless concentration, (b) supersaturation and (c) superpressure.
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Figure 5.3 Plots of data set 2 of Biesenberger and Lee's (1986) rolling drum
devolatilizer performance experiments showing the effect of varying solvent

concentration and pressure on the DV performance of MeCl in PDMS for N = 75
rpm. (a) dimensionless concentration, (b) supersaturation and (c) superpressure.
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also measured for the concentration reduced to 3800 ppm (data 2.B) and for the pressure

increased to 200 torr (data 2.C). Data 2.C exhibits enough scatter to remove any

confidence in the precision of the data fitting. It will not be used in the model evaluation

and is presented in Figure 5.3a only. For data 2.B, the supersaturation curves are

consistently lower than those of the base case. This is expected since the initial

supersaturation is also lower. However, the dimensionless concentration plots are very

similar.

Data set 3, which includes measurements taken at short time, is presented in Figure

5.4. Only a single plot, Y of MeCl in PDMS versus t, is necessary, as the conditions of

this experiment (Wq = 7900 ppm. at P = 8 torr and = 75 rpm) are similar to the

conditions of data l.B. Two regimes of DV can be clearly distinguished in this plot: fast

DV at short times, where 60% of the solvent is removed within five seconds, followed by

considerably slower DV at longer times.

In Figure 5.5, the results of data set 4 are presented. Y, X - Xg and Pyap - P of a

series of Freons® in PDMS are plotted versus time for Wq = 42-4300 ppm, P = 7 torr and

Nr =75 rpm. The trade names of these Freons® are Freon-114®, Freon-22® and

Freon-13®. The solubilities of Freon-114®, Freon-22® and Freon-13® are quantified by

their Henry's Law constants, Kw (on a mass fraction basis), which are 11.7, 39, and 140

atms respectively. Their differing solubilities cause the initial superpressures to vary from

32.2 torr, for the most soluble Freon® (Freon-1 14®) in data 4.A, to 439.9 torr for the least

soluble Freon® (Freon-13®) in data 4.C. Inspection of the supersaturation plots show that

the least soluble Freon® (i.e. with the largest superpressure) is devolatilized most rapidly

and the most soluble Freon® (i.e. with the smallest superpressure) is devolatilized least

rapidly. As the diffusion driving forces (i.e. the supersaturations ) are equivalent, this

behavior is probably related to differences in the nucleation driving forces (i.e. the

superpressures). This indicates that increasing the superpressure can increase the DV rate,

probably by increasing the nucleation rate of bubbles.
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Figure 5.4 Plot of dimensionless concentration from data 3 of Biesenberger and
Lee's (1986) rolling drum devolatilizer performance experiments taken on MeCl in

PDMS and containing short time data. Xq = 7900 ppm, N = 75 rpm, P = 8 torr.
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Figure 5.5 Plots of data set 4 of Biesenberger and Lee's (1986) rolling drum
devolatilizer performance experiments taken on a series of Freons® in PDMS with

varying solubilities: (a) dimensionless concentration, (b) supersaturation and

(c) superpressure. Xq = 4250 ppm, N = 75 rpm, P = 7 torr.
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5.3.2 Correlation of Experimental Data

Physical property data for MeCl, Freon-114®, Freon-22® and Freon-13® given by

Biesenberger and Lee (1987) are presented in Table 5.2. Included in this table are the

chemical formulae, the Henry's law constants in PDMS, Kw, the normal boiling points,

Tb, the molecular weights, M^, and the pure component densities. The value of the

diffusivity of MeCl in PDMS was not available in the literature. It was estimated to be

4.7x10-6 cm2/s by extrapolating values of the diffusivities of a series of n-alkanes for n > 5

measured by Millen and Hawkes (1977) to a value for ethane (n = 2). Ethane is similar in

size to MeCl and should have a diffusivity of the same order of magnitude. Values for the

diffusivities of the Freons® were also not available. These diffusivities were estimated to

be those values which best correlate the DV model to the long time Y vs t data measured by

Biesenberger and Lee (1987). At long times, foaming does not occur and the DV

performance can be adequately described by the interfacial diffusion model.

Table 5.2 Physical property data for solvents used in Biesenberger and
Lee's (1986) experiments on the rolling drum devolatilizer.

SOLVENT FORMULA Tb Mw Density

(atm) (OF) (g/mole) (g/cc)

MeCl CH3CI 47 -11.2 50.5 0.915 @ -11.6 op.

Freon-114® C2CI2F4 11.7 -137 170.9 1.46 @ 86 op

Freon-22® CHCIF2 39 -256 86.5 1.17 @ 86 op

Freon-13® CCIF3 140 -294 104.5 1.32 (5) 30 op

Physical property data for PDMS given by Lee (1987) are presented in Table 5.3.

Values for the dimensions of the rotating drum and bulk film are presented in Table 5.4.

Biesenberger and Lee (1986) did not give the depth of the solution in the devolatilizer,

which is equivalent to Rt for a quarter circular film. We assumed it to be 1.9 cm, which is
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75% of the height of the wiping blade (1 inch). In Table 5.5, the initial solvent

concentrations, bubble vapor density, solvent vapor pressure and the velocities of the drum

wall and of the surface of the bulk film are presented for each run.

^^^^^^ Physical property data on polydimethylsiloxane (PDMS)

devolatihz^?^
^""^ ^^^^^^ experiments on the rolling drum

Product Name:

Viscosity:

Mw:

Density:

Surface Tension

Dow Corning 200 Fluid®

1,000 poise

75,000 g/mole

0.97 g/cc

20.9 dyne/cm

Table 5.4 Dimensions of the rolling drum devolatilizer and of the bulk
film of Biesenberger and Lee's (1986) experiments used in our model
correlations.

Barrel Diameter, D5: 1 1 .42 cm
Film Depth, Rt: 1.9 cm
Area of Cross-Section, Ac: 2.84 cm^

Length of Free Surface, Hbo: 2.98 cm

Table 5.5 Conditions of Biesenberger and Lee's (1986) experiments on
the rolling drum devolatilizer.

RUN Xo Xe Co Ce Pvap Vw Vb
(ppm) (ppm) (r/cc) (R/cc) (g/cc X 10-^) (torr) (cm/.s) (cm/s)

l.A 8(X)0 140 .00776 .000136 1.38 285.7 2.39 1.52

LB 8100 140 .00785 .000136 1.38 289.3 44.8 28.5
LC 8000 140 .00776 .000136 1.38 285.7 71.7 45.7

2.A 9000 224 .00873 .000217 2.21 321.4 44.8 28.5
2.B 3800 224 .00369 .000217 2.21 135.7

If

2.C 9100 5599 .00882 .005428 55.2 325.1
II

3.A 7900 224 .00766 .000217 2.21 282.2 44.84 28.55

4.A 4300 767 .004180 .000746 6.54 39.2 44.8 28.55

4.B 4260 236 .004136 .000229 3.31 126.2
II M

4,C 4200 65 .004080 .000063 4.01 446.8
II II
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The data were correlated by choosing values of F and Ea which give the best

agreement of the dimensionless concentrations predicted by the Full Model to those values

measured experimentally. In Figures 5.6 to 5.11, the results of the coirelations are

presented as plots of the dimensionless concentration versus time measured in seconds

along with the experimental data from each data set. Unfortunately, unique values of F and

Ea which best correlate the data could not be chosen for each run, since a range of values

can give equally satisfactory correlations. This is evident in Figure 5.8b showing the

correlation of data 2.B. Values of F=l 14 cm-3 s'l, Ea = .83 atm2 K and F = 43500 cm-3

s-1, Ea = 15.2 both give an adequate correlation of the data, which were taken at long times

only. Yet the short time solutions for the two correlations are very different. This makes

clear the necessity of short time data for discriminating between values for the model

parameters.

Although it is not clear what values to choose for F and Ea when short time data is

absent, lower bounds on F and Ea can be determined. This is also evident in Figure 5.8b.

The values of F=114 cm-3 s-l and Eg = .83 atm2 K are the smallest values of F and Ea

which can give an acceptable fit of the data. A smaller value of F will reduce the short time

DV rate (i.e. the slope of Y vs t at t = 0) and overshoot the first two data points regardless

of the value chosen for Eg. A smaller value of Ea will decrease the supersaturation at which

nucleation ceases. If Eg were decreased, the fu-st two data points in Figure 5.8b could be

correlated but the curve would underestimate the long time data.

To minimize the uncertainty in the lower bound estimates of F and Ea for the MeCl

experiments, we will take advantage of the expectation that the values of Ea should be

equivalent for experiments run at equivalent temperature, pressure and composition. This

is expected since, by analogy with classical nucleation theory. Eg is a thermodynamic

parameter and should depend only on the composition, temperature and pressure of the

polymer/solvent system. If so, we may estimate E^^ for all experiments at the same

temperature, composition and pressure using a value determined from only one experiment.
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Data 1A-C, 2A and B and 3 for MeCl in PDMS were aU taken at similar temperatures

and pressures and a single lower bound value of Ea will be assumed to apply for these data

sets. This value will be taken to be the lower bound value of Ea which fits data 3, as data 3

contains data taken at the shortest time and should be the least conservative of the lower

bound estimates for Ea of all the data sets.

The value of Ea fit to data 3 will be used in fitting data sets l.A-C and 2.A and B.

However, different values of F will be chosen to fit each run, as these may depend on the

rotation rate or on the heterogeneous impurities concentration (i.e. concentration of

nucleation sites) which may vary among runs. For data set 4, which contains the DV data

for a series of Freons®, Ea is expected to vary among runs as the composition of the

polymer solutions varies. Lower bound values of F and Ea wiU be determined individually

for each experiment in data set 4.

In Figure 5.6, the correlation of data 3, the data set which includes the short time

measurements, using the Full Model is presented as a plot of dimensionless concentration

versus time. The lower bound values of F and Ea which best fit the data are F = 798 cm-3

s-^ and Ea = 15.2 atm^ K. The goodness of this correlation was estimated visually as were

the correlations of all the data sets. Considering the appreciable scatter, the fit of the data is

excellent. The precision of this estimate is better than 20% as changes of 20% in both F

and Ea caused a noticeable deterioration in the goodness of the fit.

In Figure 5.7, the correlation results are presented for data set 1, within which the

drum rotation rates were varied. In Figure 5.7a, data taken at the lowest rotation rate, 4

rpm, are correlated. For Ea= 15.2 atm2 K, the least conservative lower bound on Ea, a

value of F = 1 cm-3 g-l ^2ls determined to give the best correlation. The model

overestimates the short time DV rate and underestimates the long time DV rate. This is a

result of the sigmoidal shape of the data which the model can not reproduce even

qualitatively. A second set of values of Ea = 0.8 atm^ K and F = .7 cm-3 s-1 was chosen to

give a better correlation of the long time data, at the expense, however, of a poorer
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Figure 5.6 Plot of the rolling drum devolatilizer model's correlation of
Biesenberger and Lee's (1986) data 3 for MeCl in PDMS. Xq = 7900 ppm,
N = 75 rpm, P = 8 torr.
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Figure 5.7 Plots of the rolling drum devolatilizer model's correlation of

Biesenberger and Lee's (1986) data set 1 for MeCl in PDMS for Xq = 8000 ppm

and P = 5 torr: (a) data l.A, N = 4 rpm, (b) data LB with data 3 for comparison,

N = 75 rpm and (c) data LC, N = 120 rpm.
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correlation of the short time data. The origin of the sigmoidal shape of the data is unclear

and cannot be reproduced using our model.

In Figures 5.7b and 5.7c. data sets l.B and l.C are plotted along with the model

correlations. Data 3 is also plotted in Figure 5.7b for comparison with data l.B, since the

experimental conditions of both data sets are similar. The least conservative lower-bound

value of Ea = 15.2 atm2 K was also used to correlate data sets l.B and l.C. An excellent

correlation is given for F equal 163 cm-3 s-l for data set l.B and F equal 727 cm-3 s-l for

data set l.C.

From the summary of the correlation results given in Table 5.6, it is clear that the

model predicts an increase in the nucleation rate, F, with increasing drum rotation rate, or,

equivalently, shear rate. The models prediction of increasing nucleation rates with

increasing shear rates is consistent with Biesenberger and Lee's (1986) observation of

more vigorous foaming at higher rotation rates, which they proposed was due to increases

in the nucleation rate.

Comparison of data 3, which includes measurements at short times, with data l.B in

Figure 5.7b shows that the data sets agree to within the scatter of the data. However, the

correlation of data l.B gives a poor correlation for data 3. The values of F fit to the

individual data sets differ by a factor of five. This further emphasizes the sensitivity of the

correlation to the presence of data at short time.
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Table 5.6 Model parameters that best correlate the rolline drum
fnH°T n performance data measured by BiesenbergSand Ue (1968) on the roUing drum devolatHizer.

cbcnoerger

RUN D X* f AC* ai a2 "3 Ea F

(cm^/s) (s) (s/cc) (atm^ K) (cm-^ s-^)

LA
It

LB
LC

4x10-6
ti

ti

II

1.41

tf

.199

.147

1.947

320.7

1410

.00762
It

.00772

.00762

.004

.005

.01

.00160
It

.000976

.000908

.38

.02

.37

.38

15.2

0.80

15.2
II

1.0

0.70

163.8

727.8

2.A

2.B
If

4x10-6
II
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In Figure 5.8, the correlation results are presented for data 2.A and 2.B for which the

initial concentration was varied. In Figure 5.8a, data 2.A for Xq = 9000 ppm is plotted

along with the model correlation. For Eg = 15.2 atm^ K (the value expected to be a least

conservative lower bound), a value of F = 347 cm-3 s'^ gives an excellent fit of the data. In

Figure 5.8b, data 2.B, for which Xq was reduced to 3800 ppm, is plotted along with our

model correlations. For Ea = 15 atm^ K, a value of F = 43540 cm-3 s-^ gives the best

correlation. The correlation is good, considering that the data exhibits a minimum which is

physically unrealistic. However, the value of F equal to 43500 cm-3 s'^ required to fit this

data is unrealistically high. This value results in a 60% reduction in the solvent content

over microseconds. Lower bound values for F = 1 14 cm'^ s'^ and Ea = .83 atm^ K give

an adequate correlation and a more realistic DV rate. This value of Ea is 20 times smaller

than the least conservative lower bound value. Since without short time data we cannot
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Figure 5.8 Plots of the rolling drum devolatilizer model's correlation of
Biesenberger and Lee's (1986) data 2.A and 2.B for MeCl in PDMS at N = 75 rpm
and P = 8 torr: (a) data 2.A, Xq = 9000 ppm and (b) data 2.B, Xq = 3800 ppm.
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we cannot

were

unambiguously estimate the actual value for Ea, but only some lower bound,

confidently conclude that the value of Ea varies with the concentration of solvent.

The results of the correlation of data set 4, for which a series of Freons®

devolatilized from PDMS, are presented in Figures 5.9 to 5.11. Values of the diffusivities

of these Freons® in PDMS were not available in the literature. They were estimated by

choosing values of D which could give an acceptable correlation of the data in the interfacial

diffusion-controlled regime, approached at long times after foaming ceases. In Figure 5.9,

results of the correlation of data 4.A for the most soluble Freon®, Freon-1 14®, are plotted.

Due to the appreciable scatter in the data, a range of values of D between 4 x 10-8 to 4 x

10-7 cm2/s was found to give an acceptable correlation for the long time data. Values ofD
larger than 4x10-7 cm2/s overestimated the long time DV rate and values ofD smaUer than

4x10-8 cm2/s underestimated the long time DV rate. A value of Ea = .53 atm2 K gives a

good correlation of the data for both values of D. However, the values of F which best

correlate the data depend on the value chosen for the diffusivity. For D = 4 x 10-8 cm2/s, F

= 21800 cm-3 s-1 gave an acceptable correlation of the data. For D = 4 x 10-7 cm2/s, F =

1250 cm-3 s-l also gave an acceptable correlation.

In Figure 5.10, data 4.B for Freon-22® is correlated. Values of D between 4 x 10-7

and 4 X 10-6 cm2/s give a good correlation of the long time data. Comparison with the

diffusivities which best correlate the Freon- 114® data indicates that Freon-22® should have

a larger diffusivity. This is reasonable, as Freon-1 14® is a larger molecule. A value of Ea

= 3.6 atm2 K gave a good correlation of the data over the range of D. However, the values

of F which could correlate the data over the range of acceptable diffusivities varied between

470 to 14500 cm-3 s'K

In Figure 5.1 1, data 4.C for the least soluble Freon®, Freon- 13®, is correlated. A

large range of values of D between 10-^ to 10-8 cm2/s could give an acceptable fit of this

data. This is due to the insensitivity in the slope of Y versus t plots at long times to

changes in D when Y is small (Y < .1). Since it is not clear what are acceptable values of
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D, a value of D = 4 x 10-6 cm^/s was chosen. This value was chosen because the

diffusivity of Freon-13® is expected to be of order of the diffusivity of Freon-22®, since

the sizes and atomic constituents of the two molecules are similar. For D = 4 x 10-6 cm2/s,

values of F = 4215 cm-3 s'l and Ea = 4.9 atm2 K gave a good correlation of the data. The

small overprediction of the data at long times is tolerable as the long time data is expected to

be slightly greater than that shown in Figure 5.11. Errors introduced while extracting data

from graphs published by Biesenberger and Lee (1986) resulted in negative values of Y at

120 and 150 s (set to a value of zero in Figure 5.11). Since negative values of Y are

impossible, the data probably err systematically low.

The model's predictions of the effects of decreasing solubility of the solvent on the

DV performance are qualitatively consistent with the effects evident in data set 4. The

model predicts that the effect of decreasing the solubility (i.e. increasing which

decreases a^) is to decrease the supersaturation at which nucleation ceases. This behavior

was demonstrated previously in Figure 4.7b and is consistent with trends observed in the

DV performance data shown in Figure 5.5 for data set 4. So the model predicts, at least

qualitatively, how changes in the solubility of the solvent will affect the DV performance.

This indicates that the observed improvements in the DV performance accompanying

decreases in the solvent's solubility are likely due to an increase in the time over which

bubble nucleation can be sustained, rather than due to an increase in the rate of mass

transfer to bubbles. Decreasing the solubility allows that rapid DV by foaming can

continue down to smaller supersaturations, extending the time over which foam-enhanced

DV occurs and delaying the onset of mass transfer control by the the much slower

mechanism of interfacial diffusion.

The values of F and Ea estimated by correlating Biesenberger and Lee's data contain

large uncertainties for several reasons. The data exhibit significant scatter within runs and a

lack of reproducibility among experiments at identical conditions. As well, counter-

intuitive behavior is displayed, such as a sigmoidal shape in the Y vs t plot for Data l.A.
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Also, physically unrealistic minima were observed in some of these plots. The lack of

short time data precludes unique estimates for F and Ea. In addition, accurate values of the

diffusivity were not available, which introduces great uncertainty into the estimates of F.

In spite of the significant uncertainties in the data and in the parameter estimates,

valuable insights may be gained from these experiments. The observed increases in the DV
performance with increasing shear rate are real, as the differences between the data

measured at varying rotation rates are greater than the scatter in the data. Our model

indicates that this is caused by an increase in the nucleation rate with increasing shear rate.

As well, improvements in the DV performance with decreasing solubility of the solvent are

clearly real and could not be attributed to experimental uncertainty. Our model indicates

that these improvements accompanying decreases in the solvent solubility result from a

lowering of the critical supersaturation required to sustain nucleation.

5.3.3 Comparison With Latinen's Model

As was done for the single screw devolatilizer model, the correlative abilities of the

rolling drum devolatilizer model were compared with those of Latinen's (1962) model.

Although Latinen did not develop a model for the rolling drum devolatilizer, his model for

the single screw devolatilizer was modified to describe the rolling drum devolatilizer in the

same manner that our single screw devolatilizer model was modified. Since there is no

axial flow in the rolling drum devolatilizer, axial dispersion was neglected in Latinen's

model.

Data 3 of Biesenberger and Lee's experiments was chosen as the best data to be used

for comparison, as it contains data taken at the shortest times and should give the most

reliable comparison. Data 3 is plotted in Figure 5.12 along with the predictions of

Latinen's model for effective diffusivities ranging between 4 x 10-^ to 4 x 10"3 cm2/s. The

prediction of Latinen's model using the predicted diffusivity for MeCl in PDMS, 4 x lO^^



91

1.00

0.75-

0.50-

0.25

0.00

1 N

A Data 3

D = 4x10-6 (cm2/s)

D = 4x10-5

D = 4x10-4

D = 4x10-3

0

"T-

50 100 150

t (s)
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by Latinen's (1962) model for varying values of the effective diffusivity.
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cm2/s, grossly underestimates the DV rate. To fit the short time data, Latinen's model
requires an effective diffusivity three orders of magnitude larger than the actual value.

Although the short time data is adequately fit for D = 4 x 10-3 cm2/s, ,ong time data is

grossly underestimated.

This comparison reveals firstly that our model is superior to Latinen's model, since it

can correlate both the short and long time DV regimes well, while using the actual value of

the diffusivity. Secondly, it reveals that any realistic model of foam-enhanced DV must

account for the Avo time scales ofDV associated with the distinct processes of foaming and

interfacial diffusion. Latinen's model includes only one time scale, that for interfacial

diffusion, and cannot correlate both regimes of DV.

The experiments of Biesenberger and Lee (1988) show that DV can occur very

rapidly over short times during which foaming dominates the DV rate. At later times when

the supersaturation has been reduced below the critical level required to sustain nucleation,

foaming ceases and DV occurs by the much slower mechanism of interfacial diffusion.

This suggest that the performance of a devolatilizer may be limited by the critical

superpressure required to sustain nucleation. Attempts at optimizing the DV performance

might be best directed at reducing the critical superpressure of the solution, or,

equivalentiy, Ea. This might be done by adding nucleating agents, perhaps heterogeneous

particles or surfactants (i.e. which lower the surface tension), to reduce the energetics of

nucleation.

A common industrial practice for improving the performance of a devolatilizer is the

addition of a stripping agent, usually a volatile, low molecular weight liquid (water is the

most commonly used stripping agent). The beneficial effect of a stripping agent on the DV

performance has been attributed to the fact that it adds free volume to the solution and

enhances DV by increasing the diffusivity (Vrentas, Duda and Ling; 1985) and, hence, the

mass transfer rate to bubbles. However, these performance improvements are more likely

caused by an increase in the solution vapor pressure attending the addition of the volatile
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stripping agent. According to our model, this would sustain nucleation and foaming for

longer times, down to lower concentrations of the solvent. Although both effects would

enhance the DV performance, the extension of the foaming regime to smaller

supersaturations has the potential for making the greater contribution.

The existence of a critical supersaturation required to sustain foaming has important

implications in the design of DV equipment. In a typical devolatilizer, rapid foam enhanced

DV might occur only over a fraction of the length of the equipment, during which the

superpressure exceeds the critical value. After this section, foaming would cease and DV
would occur by the much slower mechanism of interfacial diffusion. For the single screw

devolatilizer, it may be most economical to design the length of the DV section to be only as

long as the length over which foaming occurs. Since extruders are expensive, the cost of

the section of the devolatilizer over which the inefficient interfacial diffusion regime would

occur may not be worth the return from the attendant small increase in the devolatilizer's

performance. IfDV beyond the foaming regime is required, a cheaper altemative to a long,

single screw devolatilizer may be a staged process consisting of a shorter single screw

devolatilizer operating in the foam-controlled regime only, followed by a less expensive

devolatilizer, perhaps a wiped film evaporator, designed to operate efficiently and cheaply

in the diffusion-controlled regime.



CHAPTER VI

APPROXIMATE MODELS AND A DESIGN MODEL OF DV

6.1 Approximate Models of DV

The models we have developed of foam-enhanced DV are complicated. As weU, they

must be solved by numerical methods using a computer which can be costly and time

consuming. It would useful to reduce the complexity of the models and the computation

time required for their solution. Simplified models would be valuable to engineers for use

in devolatilizer design.

6.1.1 The Quasi-Steady State Model

Our models of DV may be simplified if the bubble age distribution approaches a

quasi-steady state (QSS). A quasi-steady state distribution is one that changes slowly

relative to the characteristic time scale of the process. If a quasi-steady state is approached,

we may simplify the rolUng drum model equations by approximating the time derivative of

the moments of the distribution to be zero

dM„

6.1

This is the quasi-steady state assumption. For the single screw devolatilizer model, the

spatial derivative of the moments are set equal to zero.

Applying tiie quasi-steady state assumption to the rolling drum model, the left hand

side of the moment expressions, equations 4.12 with Z replaced by T, are replaced by

zeros. Solving explicitly for the 1/2 moment gives

(Mi/2)qss = Ivf exp 0.3

^ L V I yj -
6.2

Y
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Substituting this expression into the mass balance for M1/2 gives a single ODE describing

the rolhng drum devolatilizer's performance.

—j =-12aiexp -^3 f 1 ^
v2 2Y - tto Y

1/4
^

^ 6.3
QSS

This will be called the Quasi-Steady State Model.

The expression for the QSS 1/2 moment for the single screw devolanlizer model is

identical to that of the rolling drum model with T replaced by Z. The QSS DV rate

expression for the single screw devolanlizer is identical to that for the rolling drum

devolatilizer, equation 6.3, with the exception that the term is smaller by a factor of

l/7cl/^. In addition to the approximate QSS Model, other approximate models will be

developed in the following sections for the single screw and rolling drum devolatilizers.

Since for all these approximate models, the single screw and rolling drum devolatilizer

models will differ by only a factor of l/7cl/4 in the a2 term, only the approximate models of

the rolling drum devolatilizer will be presented.

To determine if the bubble age distribution indeed approaches a quasi-steady state, we

may inspect the distribution predicted by the Full Model of the rolling drum devolatilizer.

In Figure 6.1, a surface plot of the dimensionless bubble age distribution predicted by this

model is presented. This is the distribution predicted for the model parameters that best

correlated data 3 of Biesenberger and Lee: ai = 0.02, a2 = 0.00136 and as = 0.4. From

this surface plot it is evident that, after a short induction time of about one dimensionless

time unit, the bubble age distribution changes slowly relative to the characteristic time scale.

Additional evidence that a quasi-steady state distribution exists is presented in Figure 6.2,

which plots both the dimensionless moments of this distribution and the dimensionless

concentration versus dimensionless time. After the short induction time, the moments level

off as the distribution approaches a quasi-steady state. This indicates that, for these values

of the model parameters, the QSS model is valid at long times but is invalid at short times.

It is therefore desirable to construct a short time solution.



Figure 6.1 Surface plot of the dimensionless bubble age distribution predicted

by the Full Model of the rolling drum devolatilizer. ai = 0.02, a2 = 0.00136 and

as = 0.4.



Figure 6.2 Plots of the DV performance and the dimensionless moments of the

bubble age distribution predicted by the Full Model of the rolling drum

devolatilizer. ai = 0.02, a2 = 0.00136 and as = 0.4.
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6.1.2 The Inner Model

Aiken and Lapidus (1974) gave a clear discussion of the equivalence between the

QSS representation of a set of ODE's (i.e. the mass balance and population balance

expressed in terms of the moments) and the zero'th order approximation to the singularly

perturbed representation of these same equations. This equivalence indicates that our

model equations may exhibit behavior similar to that occuring for singular perturbation type

problems. There could be two time scales for the solution vector (i.e. composed of Y and

the moments) and the solution could exhibit a boundary layer. Indeed, a boundary layer is

predicted by the model at short times, as is evident in Figure 6.2. The QSS model will be

vaUd at long times, beyond the boundary layer, after which a quasi-steady state distribution

is reached. The region beyond the boundary layer is commonly referted to as the outer

region and the boundary layer region is referred to as the inner region. The solution which

is valid over the boundary layer is termed the inner solution.

If the dimensionless concentration changes negligibly over the boundary layer, we

may decouple the population balance from the mass balance by approximating the

dimensionless concentration to be constant and equal to 1. Setting Y equal to 1, an expHcit

expression for the bubble age distribution is derived by integrating the population balance

analytically along the characteristics. This gives

/2 T<T

4* =* inner

0 T>T
6.4

Integrating this expression gives an expression for the 1/2 moment of the distribution

1/2'' inner
_ 1 fjt

~4V 3
1 - exp

8 3/2

6.5

which when substituted into the mass balance gives the Inner Model.
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= -12 a
1

inner
It

6.6

Inspection of Figure 6.2 shows that over the boundary layer between T greater than

zero and less than about one, the dimensionless concentration changes by approximately

10%. Comparison of the solution of the Inner Model with that of the Full Model would be

necessary to determine the acceptability of the Inner Model's approximation that Y is nearly

constant and equal to 1 over the boundary layer.

6.1.3 The Patched Model

A more accurate approximation to the Full Model solution over both the boundary

layer and the outer region can be derived by patching the Inner Model together with the

QSS Model. This model is called the Patched Model. The Patched Model consists of the

Inner Model, equation 6.6, applied over the boundary layer and the QSS Model, equation

6.3, applied over the outer region. The boundary layer is defined to be between 0 < T <

Tpatch and the outer region is defined to be between Tpatch < T, where Tpatch is the edge of

the boundary layer. The Patched Model is expected to be more accurate than the Inner and

QSS Models if the concentration changes negligibly over the boundary layer, since the

approximations of the Patched Model will be valid over the entire time domain rather than

over just the boundary layer or the outer region.

6.1.4 The Instantaneous Quasi-Steady State Model

An alternate approach to developing an approximate solution to the Full Model

equations can be applied if the dimensionless concentration, Y, changes negligibly over the

lifetime of the bubbles. If so, when solving for the population balance, we may

approximate Y is being constant, although not necessarily equal to 1 as for the Inner

Model. Treating Y as a constant, the population balance is solved independendy of the

mass balance by integrating along the characteristics.
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(^)lQSS =

exp

0

T<T

T>T
6.7

This simple expression approximates the distribution over all time, provided the

concentration changes slowly over the lifetimes of most of the bubbles. This distribution

will be called the instantaneous quasi-steady state (IQSS) distribution. It is analogous to

the instantaneous QSS distribution of polymer chain lengths that can occur in a batch free

radical polymerization reactor. Consider a well mixed polymer batch reactor for which the

average Ufetime of a growing free radical chain is on the order of 1 second (a value typical

of industrial reactors). The distribution of polymer chain lengths that are formed over this

period depends on the monomer concentration. If the monomer concentration changes

negligibly over 1 second, as is commonly the case in industrial batch free radical

polymerization operations, the majority of the free radical chains formed at any instant will

have grown in an environment of constant monomer concentration. Under these

circumstances, the analysis of the polymer reaction kinetics can be well approximated

assuming the monomer concentration to be constant over the lifetime of the growing chains

(Tirrell, Galvin and Laurence; 1986). This is the quasi-steady state assumption in polymer

reaction kinetics. The result is a quasi-steady state distribution of free radical chain lengths

which changes slowly with time due to the slowly decreasing monomer concentration.

The expression for the 1/2 moment of the IQSS distribution is derived by integrating

equation 6.7.

( M,„),Qss = exp -a
V

1 - exp .8 Y t3/2
V37t Y

6.8

In the limit as T approaches zero (i.e. at short times when Y equals 1), the second

exponential in equation 6.8 can be expressed as an infinite series in integer powers of T and

truncated to first order in T. (Mi/2)iqss then reduces identically to that for the Inner
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Model, equation 6.5. As well, at long times, the expression for QAmhQSS approaches

that of the QSS Model, equation 6.2.

Substituting this expression for (Mi/2)qss into the mass balance gives a single ODE
describing the performance of the devolatilizer.

dY^
= -12 exp

/IQSS

This will called the IQSS Model.

f 1 ^
l-exp(^YT3« - -2_a2Y

1/4
^

" 6.9

6.1.5 Comparison of the Approximate Models with the Full Model

The accuracy of the solutions to the approximate models was estimated by

comparison with the Full Model solution. Figures 6.3 to 6.5 present comparisons of the

solution for the Full Model with solutions for the approximate models. The values of the

dimensionless model parameters used in the simulations are ai = 0.02, a2 = 0.00182 and

as = 0.4. These values are similar to the values of the model parameters which gave a

good correlation of the DV performance data of Coughlin and Canevari (1969) and

Biesenberger and Lee (1986).

In Figure 6.3a and b, the dimensionless concentration and the dimensionless 1/2

moment are plotted for times less than T = 10 for the Full Model and for the approximate

models. In Figure 6.4, the same data is plotted as the fractional differences between the

Full model solution and the approximate model solution. The fluctuations shown at short

times in Figure 6.4b are contributed by numerical errors in the integration of M1/2.

Increasing the number of characteristics can remove these fluctuations. For T < 10, the

dimensionless concentrations predicted by the Inner, Patched (Tpatch was chosen to be 1.5,

approximately the width of the boundary layer) and IQSS Models agree to better than about

2% with the Full Model solution. The QSS solution agrees to better than about 8%.

Notice that, at T = 0, the QSS Model predicts a finite value for M1/2, whereas the initial
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Figure 6.3 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.02,

a2 = 0.00182 anda3 = 0.4.
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Figure 6.4 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.02,

a2 = 0.00182 and as = 0.4.



Figure 6.5 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.02,

a2 = 0.00182 and as = 0.4.
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not

condition is M1/2 = 0. This is consistent with the expectation that the QSS Model wUl

be valid over the boundary layer. Figure 6.5 presents comparisons of the Full Model and

the approximate models for 10 < T < 150. The QSS, Patched and IQSS Model solutions

all agree closely with the Full Model solution over this range. However, the inner model

solution diverges from the Full Model solution at long times as anticipated.

In Figures 6.6 to 6.9, plots of comparisons of the Full Model and the approximate

model solutions are presented for values of ai = 0.2, a2 = 0.00182 and as = 0.4. ai

was increased by an order of magnitude to investigate the effect of increasing the DV rate

on the accuracy of the approximate solutions. At short times, 0 < T < 2, the Inner and

Patched Models agree closely with the Full Model, whereas the IQSS and QSS Models

show a maximum error in Y of approximately 20 and 30% respectively. For T > 2, the

QSS and Patched Models solutions are similar and give a slightly better agreement with the

Full Model than does the IQSS Model. They exhibit a maximum relative error in Y less

than about 15%. At long times, the Inner Model diverges from the Full Model.

Comparison of Figures 6.3 to 6.5 with Figures 6.6 to 6.9 shows that increasing the

DV rate (i.e. increasing ai from 0.02 to 0.2) results in a loss of QSS behavior and in a

decrease in the accuracy of the approximate models. To explain the reason for this it will

be helpful if we first develop a physical understanding of the quasi-steady state

distribution. The quasi-steady state distribution is the distribution that would result if the

solvent concentration were held constant and the distribution were allowed to evolve to the

steady state corresponding to this concentration. This same distribution can be approached

if the concentration changes slowly relative to the time it takes to evolve to the steady state.

However, if the concentration changes significantly over the time it takes to reach a steady

state, the changing concentration changes the nature of the distribution faster than the quasi-

steady state can be achieved. So, the criterion that must be satisfied to reach a quasi-steady

state bubble distribution in a devolatilizer is that the characteristic time required to reach a

steady state distribution be small relative to the characteristic time for solvent removal.



106

0.0 "f
' 1 ' 1 ' 1 '

r

0 2 4 J 6 8 10

Figure 6.6 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.2,

a2 = 0.00182 and as =0.4.



Figure 6.7 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.2,

a2 = 0.00182 and as = 0.4.
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Figure 6.8 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.2,

a2 = 0.00182 and as =0.4.



Figure 6.9 Comparison of the solution of the Full Model of the rolling drum

devolatilizer with the solutions given by the approximate models, ai = 0.2,

a2 = 0.00182 and 03 = 0.4.
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It would be useful to express this criterion mathematically so that it could be used as

an indicator of the likelihood that a quasi-steady state bubble distribution will be reached.

A rough rule of thumb would be to assume that a quasi-steady state wUl be approached if

the concentration changes less than 10% over the boundary layer. Or, equivalently,

AY < 0.1, where AY is the absolute value of the change in the concentration over the

boundary layer. AY can be estimated from the mass balance if we approximate the time

derivative of Y to be constant over the boundary layer with some average value

avdT>

where (Mi/2)av is an average value of M1/2 over the boundary layer and (Y3)av is an

average value of Y^ over the boundary layer. The small contribution of interfacial diffusion

to the mass transfer rate has been neglected in the above expression.

We are interested in estimating an average value for M1/2 over the boundary layer.

Equation 6.5 indicates that M1/2 will be independent of values of the model parameters, as

long as a QSS distribution is approached. Inspection of Figure 6.3b, which exhibits QSS

behavior, reveals that a reasonable estimate for (Mi/2)av is 0.13. A reasonable average

value of Y is 0.95 if Y is not to change by more than 10% over the boundary layer.

Substituting these values into the above expression gives

= - 5.3 a,
.dT> av

The change in Y over the boundary layer, AY, is given by multiplying the absolute value of

(dY/dT)av by the width of the boundary layer. Estimating the width of the boundary layer

from Figure 6. 1 to be 1 dimensionless time unit, the resulting expression for AY is

AY = 5.3 ai. The condition that a quasi-steady state be reached, or, equivalendy that AY

be less than 0.1, is ai < 0.02.

Considering the approximations in the derivation of this expression, it can only be

considered an order of magnitude estimate. For values of ai considerably larger than
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0.02, this criterion predicts that a quasi-steady state will not occur. For values of ai

considerably smaller than 0.02, a quasi-steady state is predicted. This criterion is

consistent with the model's prediction of a QSS distribution at ai =0.02 and the

prediction of a deviation from QSS behavior at ai = 0.2.

The fact that the time to reach a quasi-steady state, that is, the width of the boundary

layer, is approximately 1 dimensionless time unit, is an important observation. This

reveals the physical interpretation of the characteristic time scale for the problem, x*. It

may be interpreted as being the time required to reach a quasi-steady state distribution.

In summary, the approximate models based on the quasi-steady state assumption are

much less complex than the Full Model. Also, the computation time required for their

solution is significantly reduced (by approximately two orders of magnitude) relative to the

time required to solve the Full Model. At experimental conditions typically encountered in

practice, the existence of a quasi-steady state is predicted and the agreement of the

approximate solutions with the Full Model solutions is excellent. At conditions for which

the DV rates are significantly greater and the QSS assumption becomes invalid, the

approximate solutions give a less accurate approximation. However, these solutions can

still be valuable as they retain the qualitative character of the exact solution and can give

better than an order of magnitude estimate of the DV rate.

These results indicate that the bubble distribution might reach a quasi-steady state in

industrial DV processes. This is a significant finding, as the nature of a foaming process

which exhibits QSS behavior is quite different than that of foaming processes depicted in

the models developed by all previous investigators. Prior investigators have assumed that

all bubbles are born at the entrance of the devolatilizer (or at startup for a batch

devolatilizer) and that they persist until they exit the equipment with the fluid. If a QSS

bubble distribution is approached, the bubbles are bom and persist for very short times

before they are removed from the system by rupture and this process repeats continuously.
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6.2 A Design Model for Foam-Enhanced DV

It is desirable to develop explicit, analytical solutions to our complete and

approximate DV models, as these would be beneficial for applications of the model to

devolatilizer design. However, the complexity of the equations of the complete models

prevented us from deriving analytical solutions. Likewise, the approximate models,

although less complex, could not be solved analytically.

It is possible, however, to choose different models of the bubble nucleation, growth

and rupture rates which simplify the model equations sufficiently so that analytical

expressions can be derived. In doing this, however, one should be careful to retain the

essential physics of the process in the simplified model.

A simplified model of the rolling drum devolatilizer has been constructed which

admits an analytical solution. This model consists of the Quasi-Steady State Model with a

simplified nucleation rate expression. The original nucleation expression includes the

empirical parameter Ea, which determines the critical supersaturation at which nucleation

ceases. The new nucleation model sets Ea to zero and the nucleation rate is assumed to be

constant and equal to F for values of the supersaturation greater than the critical value,

(AC)cr. At (AC)cr, the nucleation is assumed to cease and foaming stops. This nucleation

model may be expressed mathematically as

' F for AC > (AC)cr

J =

0 forAC<(AC)cr

Replacing the original nucleation model expression in the population balance with this

new expression, nondimensionalizing the model equations, and applying the QSS

assumption gives the Design Model
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dT JDesign

-12aiY2— 2 Y Y>Y

-4«2Y Y<Y„
7C

6.11

where Ycr is defined as (AC)cr/Cmax and ai and a2 retain their original definitions, with

the exception that Ea is set to zero.

Since the Design Model is based on the QSS Model, it is an outer model and is

strictly valid at long times only. However, as the QSS Model was shown to give

reasonable agreement with the complete model over short times, it wiU be assumed to apply

at short times (i.e. over the boundary layer) also. This approximation should be adequate

for design purposes. Note that the exponential term in the original QSS Model is not

present in the Design Model. This exponential term contributes significantly to the

nonlinearity in the QSS Model and its removal allows the derivation of an analytical

solution.

The question which must be answered is whether this simplification has seriously

compromised the correlative abilities of the model. What is required of a useful design

model is that it give a reasonable estimate of the two time scales of DV associated with

foaming and interfacial diffusion. The Design Model will give slightly different

performance predictions from the QSS Model. At equal values of the parameter F in both

models, these differences will grow with increases in the value of Ea, as the Design Model

for Y > Ycr is equivalent to the QSS Model in the limit as Ea approaches 0. Yet, the models

are similar and both exhibit two time scales for DV. The Design Model should be adequate

for correlating the DV performance data. As well, one should note that the the QSS Model

is not necessarily more correct that the Design Model, as the nucleation models

incorporated into both are empirical. We can not say as yet which is the more appropriate

description.
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Equation 6.11, for Y > Y^ is a Bernoulli type equation with constant coefficients

(Ince, 1956). The standard method of solution is to make the substitution U = lA^ which

reduces the equation to a first-order, linear differential equation in terms of U. Solving this

equation using an integrating factor gives an explicit expression for U, which upon

substitution for Y gives

Design

6.i/4|l^l]exp(-^a,T
"2

Y> Ycr

6.12a

Equation 6.1 1 for Y < Ycr can be solved by direct integration to give

2
^Design ~ ^cr ^'^P

L n
1/4

02 (T - Tcr) Y<Y
cr

6.12b

where Tcr is the dimensionless time at which Y = Ycr-

When mass transfer by foaming is so small that it can be neglected in comparison to

interfacial diffusion, as is usually the case when foaming occurs, equation 6.12a in the limit

as a2 approaches zero reduces to

(^Design)a2 ^ 0
-

1

1 + 12 tti T
Y> Y

cr

6.13

Over short times, 6. 12a can be further simplified in the limit as T approaches zero.

1

(YDesign)t 0 =

1 + 12 ai +— a2
n

Y> Yor

6.14

In Figure 6.10, Yoesign is plotted for values of tti = 0.02 and a2 0.00182. These

values are similar to the values of the model parameters of the single screw and rolling

drum devolatilizer models that gave a good correlation of the data of Coughlin and Canevari

(1969) and Biesenberger and Lee (1986). For purposes of model demonstration, the

critical time, Tcr, was chosen arbitrarily to be 4.0, which corresponds to a value of Ycr of

0.507. At Y = Ycr, the nucleation is presumed to cease after which the DV becomes



Figure 6.10 Plot of the DV performance predicted by the Design Model,

ai = 0.02, a2 = 0.00182 and Ycr = 0.507.
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controlled by interfacial diffusion only. Inspection of Figure 6.10 reveals that this model

clearly exhibits two distinct time scales for DV, as desired, and should have coirelative

abilities similar to those of the approximate models.

The Design Model of the rolling drum devolatilizer has two unknown, empirical

parameters, F and (AC)cr. If the Design Model is to be applied to devolatilizer design, it is

necessary that methods for estimating F and (AC)cr be available that do not require

measurements on the devolatilizer to be designed. As well, it would be advantageous if

these methods did not consume significant amounts of the polymer solution to be

devolatilized, as the solution may not be available in appreciable quantities before the

production process is started up. Bench scale experiments for measuring F and (AC)cr

would be very valuable.

As discussed in Appendix C, nucleation onset experiments would give a direct

measure of (AC)cr. An experiment would consist of measuring the supeipressure at which

nucleation onset occurs. It would be desirable to conduct these experiments on solutions

undergoing a simple shear flow, as the shear rate has been suggested by Biesenberger and

Lee (1986) to enhance nucleation rates. This could be done with a transparent cone-and-

plate device between which the polymer solution could be sheared with a homogeneous

shear rate. Exposure of the cone and plate to a reduced ambient pressure would induce

nucleation in the fluid which would be observable through the transparent plates.

Experimental methods for measuring F, the nucleation rate of bubbles, would be

much more complex. The nucleation rate could be measured directly by counting the

number of bubbles nucleated as a function of time. This measurement could also be

performed on the transparent cone-and-plate device discussed previously. High speed

photographic methods could be used to track the number of bubbles over time. An

alternative method for estimating F would be to use a bench scale devolatilizer, preferably

modelled after the simple rolling drum devolatilizer. Measurement of the concentration of

solvent versus time would allow F to be estimated from a correlation of the data given by
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the Design Model. Measurements could be made over varying drum rotation rates to

determine the dependence of F on the shear rate. This device would also be suitable for

estimating (AC)cr from nucleation onset experiments.

In summary, the Design Model, which is based on the QSS Model, should serve as a

valuable tool for the design engineer. It has an analytical solution which greatly simplifies

its application to devolatilizer design problems. As well, the model includes the two time

scales for devolatilization associated with foaming and interfacial diffusion. These two

time scales are required in any model of foam-enhanced DV if it is to provide a reasonable

correlation of devolatilizer performance data.



CHAPTER VII

DESCRIPTORS OF THE BUBBLE DISTRIBUTION

AND A MODEL OF DV WITH RUPTURE BY FILM DRAINING

In correlating the experimental DV data in Chapters 4 and 5, the volume expansion

due to foaming was assumed to be smaU and was neglected in the model evaluation. The

extent of volume expansion can be quantified by the fraction of volume occupied by the

bubbles or by the ratio of the volumes of the fluid film before and during foaming. These

quantities describe the character of the bubble phase and wiU be termed descriptors. Other

descriptors of the bubble phase which are of interest include the average bubble age, the

average bubble radius, the number of bubbles per volume, the surface area of bubbles per

volume, the surface area of bubbles per surface area of vapor/liquid interface, etc.

Descriptors are single-valued quantities and are often more practical for describing the

nature of the bubble phase than the bubble distribution itself. Indeed, experimental

measurement of the bubble distribution is usually quite difficult, whereas, measurement of

descriptors of the distribution can be much simpler.

7.1 Definition of Descriptors

Descriptors are averages over the distribution. A few of the more important

descriptors are defined below

7.1a

= yiY)x

7.1b



119

(])
=

fdx dz
1

R^ fdx dz + A^dz 1 +
Ac

4 3

1 +

•J
7c yiY? x*^^ f* M

3/2

Pb =
Jo

f dx dz

I (^j
71 R^^fdxdz + A^dz

4 3
jnyiY) ^3/2 + A,

Mo

R.

V

(^|7cR^)fdxdz + Acdz

n dz

1/2

,1/2

3
7(Y) H3/2 +—

16 y(Y)\*^^^ f* M3;2

1/2

7.1c

7. Id

7.1e

where Xav is the mean age of the bubbles, Rgv is the mean radius of the bubbles, (}) is the

volume fraction of bubbles, pb is the number of bubbles per volume and Rt/Rc is the ratio

of the radius of the bulk film in the rolling drum devolatilizer during foaming, Rt, to that

before foaming, Rc. In these descriptor equations, a general growth rate expression was

chosen to relate the bubble's radius to its age

R = y(Y) X
1/2

where y(Y) gives the dependence of the growth rate on the supersaturation. The integrals

over the distribution have been expressed in terms of the moments which have in turn been
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expressed in terms of the dimensionless moments and the characteristic reference

the model
scales of

Note that the descriptor expression for the average bubble age, equation 7.1a, reveals

some additional information on the physical meaning of the characteristic time, x*. When a

quasi-steady state distribution is approached, Mj/Mq approaches a nearly constant value of

order 1 (see Figure 6.2). From equation 7.1a, x* can be understood as being a measure of

the average residence time of bubbles in the fluid.

7.2 Descriptors of the Rolling Drum Model

We will investigate the nature of the foam phase predicted by our DV model to occur

in the rolling drum devolatilizer by calculating the descriptors of the bubble distribution.

Expressions for the descriptors in terms of the physical property and process variables and

the dimensionless moments of the distribution were derived by substituting the expressions

for 7(Y) and for the characteristic reference scales of the rolling drum model into the general

descriptor equations 7.1. The resulting expressions are

/ A, Pg f Ml

Mo

Rav V
max M

b J
Y 1/2

g Mo

7.2 a

7.2 b

<])
=

1 +

1
^max

4/3 ^1)2/3^5/3 F^

V Pg J v5/3
J

expL-ttj] M3/2

Pb =
Mo

max
^ ^DA^F^

Vb^ J

exphas] y'M3/2+
^ ^

^y2/3j^l/3

7.2 c

exp[-a3]

7.2 d
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1 4.

dY ^
dt

" -48^

b y
Pg ^

F exp(-a3) Y^ M3/2

1/2

7.2 e

Ml/2

7.2 f

where the DV rate, dY/dt, has been included. For purposes of clarity, this expression for

dY/dt excludes the interfacial diffusion term which will be negligible in comparison with

the bubble growth term when foaming occurs.

Descriptors were calculated for the experimental conditions of data 3 of Biesenberger

and Lee's (1986) rolling drum experiments using these expressions. The values of F and

Ea used in these calculations are the same values that were used in correlating data 3 in

Chapter V. Figures 7.1a and b plot these descriptors versus dimensionless time. The

model predicts a very large volume expansion upon foaming. The maximum volume

fraction of bubbles, ({), is about 0.94 which corresponds to a radial expansion ratio,

of about 4. The number density of bubbles, pb, shows an unexpected maximum at short

times. This can be explained by investigating the expression for pb. At short time, pb

grows proportionally with Mq, the total number of bubbles. However, the denominator of

the expression is the total volume of the solution which increases due to foaming and

reduces Pb.

The large foam expansion predicted by the Full Model to occur during operation of

the single screw devolatilizer is much larger than could be accommodated by the

equipment. As well, this large foam expansion is inconsistent with the assumption of

negligible foam expansion used in constructing the Full Model. The simulation was rerun

for identical values of the process variables and model parameters using the Complete

Model. The Complete Model includes the effect of reduction in the bubble rupture rate in

response to bulk film volume expansion due to foaming. For data 3 of Biesenberger and

Lee (1986),



122

Figure 7.1 Plots of the descriptors predicted by the Full Model of the rolling

drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee (1986).

F = 798 cm-3 s'^ Ea = 15.2 atm2 k, ai = 0.02, ai = 0.00136, as = 0.4.
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the model parameter 04, neglected in the Full Model, has a value of 336. The descriptors

of the distribution predicted by the Complete Model are presented in Figure 7.2. These

descriptors differ significantly with those predicted by the Full Model. The volume

expansion is much larger with a maximum radial expansion ratio of 8. A decrease in the

rupture rate has an autocatalytic effect on the volume expansion. Volume expansion

reduces the bubble rupture rate which fuels further expansion. The DV rate is much greater

for the Complete Model due to the greater number of bubbles contained within the larger

volume of foam. As a result, the DV rate of data 3 for the rolling drum devolatilizer is

overestimated for these values of the model parameters.

The differences between the Complete and Full Model's solutions are also evident in

the shapes of their bubble age distributions. The distribution predicted by the Full Model,

presented in Figure 6.1, exhibits typical QSS behavior, which requires that, at constant

time T, the bubble distribution decreases monotonically with increasing age T. The

distribution predicted by the Complete Model is presented in Figure 7.3. QSS behavior is

not observed. A ridge is present in the surface plot running along the characteristic T = T.

Nucleation ceases near T = 3 when die supersaturation has decreased below the critical

supersaturation necessary to sustain nucleation. Bubbles bom before this live for very long

times due to a significant reduction in the rupture rate caused by the large foam expansion.

For comparison, the simulation was rerun for values of the nucleation rate F,

proportional to ai, decreased by one and two orders of magnitude. The descriptors and

surface plot of the distribution for ai = 0.002 are presented in Figures 7.4 and 7.5 and for

ai = 0.0002 in Figures 7.6 and 7.7. For the nucleation rate decreased by one order of

magnitude, ai = 0.002, the maximum radial expansion ratio decreased slightly to about 7.5

and was reached at later times. A larger average bubble radius and smaller number density

of bubbles is predicted. From the surface plot in Figure 7.5 it is evident that a QSS

distribution is not predicted. The shape of the distribution is similar to that for ai = 0.02,
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Figure 7.2 Plots of the descriptors predicted by the Complete Model of the

rolling drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee

(1986). F = 798 cm-3 s'^ Ea = 15.2 atm2 K, ai = 0.02, a2 = 0.00136, as = 0.4

and a4 = 336.
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Figure 7.3 Surface plot of the bubble age distribution predicted by the Complete

Model of the rolling drum devolatilizer. ai = 0.02, a2 = 0.00136, as = 0.4 and

04 = 336.
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Figure 7.4 Plots of the descriptors predicted by the Complete Model of the

rolling drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee

(1986). F = 80 cm-3 s"!, Eg = 15.2 atm2 K, tti = 0.002, a2 = 0.00136,

as = 0.4 and 04 = 336.
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Figure 7.5 Surface plot of the bubble age distribution predicted by the Complete

Model of the rolling drum devolatilizer. ai = 0.002, 0.2 = 0.00136, as = 0.4 and

a4 = 336.



Figure 7.6 Plots of the descriptors predicted by the Complete Model of the

rolling drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee

(1986). F = 8 cm-3 s'K Ea = 15.2 atm2 K, ai = 0.0002, a2 = 0.00136, = 0.4

and a4 = 336.
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Figure 7.7 Surface plot of the bubble age distribution predicted by the Complete

Model of the rolling drum devolatilizer. ai = 0.0002, a2 = 0.00136, = 0.4 and

a4 = 336.
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however, the nucleation is sustained over longer times resulting in a broader ridge along

T = T. Reducing the nucleation rate another order of magnitude to ai = 0.0002, the radial

expansion ratio, shown in Figure 7.6, has been significantly reduced to a value less than

1.5. The distribution shown in Figure 7.7 approaches a QSS. This is expected, since in

the limit as R,/Rc approaches 1, the solution for the Complete Model should approach that

of the Full Model, which, for these values of the model parameters, approaches a quasi-

steady state.

For comparison with the Full Model, the Complete Model was also used to correlate

data 3 of Biesenberger and Lee. The same value of Eg = 15.2 atm2 K used in correlating

the Full Model gave an acceptable fit of the data. However, the value of F which best fit

the data was reduced from 798 cm-3 s-l for the Full Model to 20 cm-3 s"! for the Complete

Model. The goodness of the fit was indistinguishable from that given by the Full Model.

A smaller nucleation rate was required to compensate for the decreased rupture rates caused

by the volume expansion. The descriptors predicted by the Complete Model are plotted in

Figure 7.8. The maximum radial expansion ratio is predicted to be approximately 6,

corresponding to a volume fraction of about 0.97.

The large foam expansion predicted by the Complete Model is unrealistic. Also, the

maximum average bubble radius, predicted to be approximately 7 mm, is at least an order

of magnitude too large. So, although the model was able to give a good correlation of the

DV rate, its description of the bubble distribution is not realistic. Apparently, one or more

of the model assumptions are invalid. The descriptions of the bubble nucleation, growth

and rupture may be inaccurate, or, perhaps, bubble coalescence, breakage or deformation

may make a significant contribution to the DV rate and should have been included in the

model.

The most effective means of determining the validity of our model assumptions

would be to conduct experimental studies of the nature of foaming occurring during DV.
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Figure 7.8 Plots of the descriptors predicted by the Complete Model of the

rolling drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee

(1986). F = 20 cm-3 s'K Ea = 15.2 atm^ K, ai = 0.0005, a2 = 0.00136, as = 0.4

and a4 = 336.
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Unfortunately, the equipment and facilities necessary for these studies were not available.

Rather, the models were investigated to determine if changes in the magnitudes of the

nucleation, growth and rupture rates can provide more realistic descriptions of the state of

the foam.

To guide us in this task, a general model of DV will first be constructed which will

include our DV models as special cases. This general model will be analyzed to obtain

insight into the effects of bubble buth, growth and death on the nature of the foaming. It

will provide information valuable in determining how the rates of these processes should be

varied so that more realistic foaming is predicted while maintaining the DV rate which

correlates the DV performance data.

7.3 A General Model of DV

The general model of DV will include general descriptions of the bubble nucleation,

growth and rupture. Bubble coalescence, breakage and deformation will be neglected. By

analogy with classical nucleation theory, the nucleation rate will be assumed to depend on

the supersaturation according to the general expression.

B = b(AC)5(x) 7 3

where b(AC) is an arbitrary function of the supersaturation, AC, and quantifies the

frequency of nucleation. The Du-ac-Delta function, 6(x), forces all bubbles to be born at

age 1 = 0. We have assumed that other variables which might affect the nucleation rate,

such as temperature or surface tension, will not vary with time and therefore can be treated

as constants embedded in the expression for b(AC).

To derive a general expression for the bubble growth rate, we will assume that the

growth is diffusion-controlled and that the bubbles remain spherical. We will also assume

that the mass flux to the bubble can be described by the expression

Mass Flux = k(. AC 74
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where kc is the instantaneous mass transfer coefficient. A mass balance over the bubble

relates the bubble growth rate, dR/dt, to kc.

Integrating over the bubble's age x gives the bubble's radius as a function of its age

R = Ro+
I

k^— dx

7.6

where Rq is the radius of the bubble at birth (x = 0). kc remains within the integral, as it

can be a function of time, as will be shown below.

To gain insight into the time dependence of kc, we will examine the expression for kc

corresponding to the bubble growth rate expression developed by Szekely and Martin

(1971) for the diffusion-controlled growth of a gas bubble in a stagnant, binary fluid of

infinite extent. This expression was used in our DV models presented in Chapters 4 and 5

and is restated here

^ „ /ITd AC

Pg ^ 7.7

The bubble growth rate is determined by differentiating with respect to t

dR _ j_ /ITd r AC ^ -m

Comparison with equation 7.5 gives this expression for the mass transfer coefficient

7.9

The form of this expression indicates that a suitable, general, instantaneous mass

transfer coefficient might take the form of a power law in x

where q - 1 is an arbitrary power law exponent. A general expression for dR/dt results
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-T-=q7(AC) x'
.q-i

7.10

where y{AC) is a proportionality factor which quantifies the growth rate and is assumed

be an arbitrary function of the supersaturation, AC.

The general expression for the time dependence of the bubble radius is

where the radius at buth, Ro, was set equal to zero. This will be a valid approximation if

the bubble grows many times larger in radius than Rq, as is expected. If y (AC) changes

negligibly over the life time of the bubbles, y{AC) may be removed from within the integral

and the expression for R may be approximated as

The constraint that the concentration change slowly over the lifetime of the bubbles is met if

a quasi-steady state bubble distribution is approached.

This rigorous derivation of the time dependence of a bubble's radius reveals a subtle

assumption embedded in the derivation of the bubble growth rate expressions used in our

DV models. The growth rate expression used is that of Szekely et al., derived assuming

the concentration far from the bubble to be constant. However, in a devolatilizer, the

solvent concentration far from the bubble is the average solvent concentration. It will

decrease with time and this expression is not strictly valid. At any instant, equation 7.12

presumes that all bubbles have grown over their entire lifetimes with the instantaneous

value of the supersaturation. Actually, the average supersaturation over the bubbles

lifetime is greater than this instantaneous value and this expression underestimates the

radius of the bubbles. If a quasi-steady state is approached, then the concentration changes

negligibly over the bubbles lifetimes and the approximation is vaUd. Otherwise, the bubble

radius will be underestimated.

7.11

R = 7(AC) x'^ 7.12
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Bubble death will be assumed to occur by rupture of bubbles at the vapor-Hquid free

surface. Death by coalescence and breakage will not be included. Surface rupture can

occur by the mechanisms of mechanical shearing or fihn draining. The expression for the

bubble rupture rates by mechanical shearing presented in Chapters 4 and 5 and the

expression for rupture by film draining which wiU be presented later in this chapter are both

proportional to the surface density of bubbles. Since the surface density of homogeneously

distributed bubbles is proportional to the product of f (the age distribution) and R, by

analogy we will propose the foUowing general expression for the bubble rupture rate

E = ^f'^'
7.13

The arbitrary exponent on R, r, is included to make the expression more general, e is a

proportionality constant and is a measure of the frequency of rupture of surface bubbles.

Substituting these general expressions for the bubble birth, growth and death rates

into the mass balance and population balance expressions derived in Chapter 5 for the

rolling drum model gives equations for the general model

dAC , pR r 2 dR
dt Jn dt'0 7.14a

^ + ^ = -eRf
dt dx

R = f q 7(AC) t'^^ dt
Jn'0

AC = Co-Ce
at t = 0

if =0

at x = 0 f=b(AC)

Assuming the solvent concentration changes slowly over the lifetime of the bubbles

such that 7(AC) remains nearly constant, the model equations simpUfy to

dAC Pg ,^^,3
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df df

ar+a^ = -e7(Ac)V'^f

7.15b

at t = 0

at x = 0

AC = Co-C,

1 f = 0

f=b(AC)

Introducing the dimensionless variables, Y, ^, T and T defined in Chapter 5 with the

reference scales

AC = Co-Ce = Ce ^max

f = b(l)

* *
X = t

the dimensionless general model equations reduce to

dY
= -Ana

dT
^

' Pg V b(l) 7(Y)

L7(1)J
M3q-l

9^

at T = 0

7(Y)

L7(l)

Y= 1

^ = 0

at T = 0 =
b(Y)

b(l)

7.16a

7.16b

As was done for the single screw and rolling drum model, the population balance will

be expressed as an infinite set of ODE's in terms of the moments of the distribution
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dMp
^ b(Y)

dT ~
b(l)

dM]

"df
= Mo -

7(Y)

7(1)

y(Y)

7(1)
q+l

dM„

L 7(1) J
^'^^^

7.17

We will investigate the general model for the special case r = 1 and q = 1/2. These

are the values used in the models of the single screw and rolling drum devolatiUzers. For

these values of r and q, the general model equations reduce to

dY f p= -2n
dT

r
g

V ^max

b(l)7(l)
4/3 \

7(Y)

L7(1)J

^3

M 1/2

at T = 0

7(Y)

7(1) J

Y=l

14^ = 0

rpl/2 ^

at T = 0
b(Y)

b(l)

and the reference scales become

AC = Co - C„ = Cmax

f = b(l)

t* = [e7(l)]

*

X = t

-2/3

7.18a

7.18b

Expressions for the descriptors of the distribution predicted by the general model

were derived by substituting the above expressions for the characteristic reference scales

into the definitions of the descriptors, equations 7.1
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T =
^av

[eY(l)f^ Mo

7.19a

^av -
^ 7(Y) ^

<1)
=

1/3

1

M0

M 1/2

M0

7.19b

1 +
47ib(l)7(Y)^ M3/2

^

1 +
5/3

l7cb(l)7(l/^M3/2
J

7.19c

Mo Mo

4 yiYY

3 67(1)
M3/2 +

e^^T(l)^^A

b(l)

4 ^1"m
3/2

2/3 ,yix2/3 .

e yil) A,

b(T)
7.19d

1 + f
16 f b(l)

>i

^1/2

5/3
Y(Y)' M3;2 1+ii b(l)Y(l )

-5/3

4/3 \

M3/2

1/2

7.19e

dY

dt
= -2k

Pg Y b(l)7(l)
2 A

max y eA c y

Ml n = -In
^b(l)Y(l)'^

eA
M

1/2

c y 7.19f

The expressions in the limit as T approaches zero (i.e. Y = 1) are also presented.

This clarifies the dependence of the descriptors on the birth, growth and death rates by

removing the dependence on Y. The expression for the DV rate, dY/dt, is included in

equation 7.19. Given these expressions for the descriptors of the general model, we will

investigate whether changes in the magnitudes of the bubble birth, growth or death rates

(i.e. b, Y and e) can reduce the bubble volume fraction to acceptable values while

maintaining the DV rate, dY/dt, constant and equal to the experimentally measured DV rate.

Note that if a quasi-steady state bubble distribution occurs, the dimensionless

moments of the distribution will approach a nearly constant value after the short-lived

boundary layer is passed (see, for example, Figure 6.2). The dependence of the
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descriptors on the model variables can be quantified solely by the prefactors b(l), y{\), e,

Pg/Cmax 2Jid Aq multiplying the moments in the descriptor expressions.

Examining the dependence of the descriptor expressions on the birth, growth and

death rates reveals how the character of the bubble distribution is affected by changes in the

rates of these processes. The average age of the bubbles, Xav, is predicted to decrease with

increasing growth rate, 7(1), and rupture rate, e. The predicted decrease in the bubble age

with increasing growth rate can be explained by the fact that larger bubbles mpture more

frequently than smaller bubbles as they are more likely to be located at the vaporAiquid

interface. Increasing the growth rate causes the bubbles to reach larger radii earlier and,

therefore, rupture earlier.

The average radius of the bubbles, Rav, is predicted to increase with increasing

growth rate and decrease with increasing rupture rate, as anticipated. Note that the

nucleation rate, b, is predicted to have no effect on the average bubble age and radius.

Note also that the average radius of the bubbles does not increase linearly with the bubble

growth rate, y(1), as might be anticipated from inspection of the growth rate expression,

equation 7.10. This is because increases in the growth rate result in a decrease in the

average age of a bubble, as indicated by the expression for Xav So, although bubbles grow

faster with increasing growth rate, the time over which they grow is reduced.

The volume fraction of bubbles, (j), is predicted to increase with increasing birth and

growth rates but decrease with increasing rupture rate. The radial expansion ratio, Rt/Rc,

behaves exactly as the volume fraction, since it is also a measure of the volume of the

bubble phase. For the number of bubbles per volume, pb, at small volume fractions such

that the second term in the denominator dominates, the general model predicts that the

number density of bubbles increases with increasing birth rate and decreasing rupture and

growth rates.

The DV rate, dY/dt, is predicted to increase proportionally with the bubble nucleation

rate but vary inversely with the bubble rupture rate. This is physically reasonable.
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However, the DV rate is predicted to increase with the square of the bubble growth rate.

This is interesting, as one might anticipate that the DV rate would increase linearly with the

cube of the growth rate, since the rate of mass uptake to any bubble is predicted by the

growth model to increase proportionally with the cube of y(1) (see equation 7.15a).

Indeed, models of DV proposed by previous investigators, which include very naive

descriptions of bubble birth and death, would predict this behavior. It can be explained if

one investigates the effect on the bubble distribution of an increase in the bubble growth

rate. Increasing the bubble growth rate will decrease the total number of bubbles, as

shown by equation 7.19d. This will reduce the total rate of mass uptake by the foam

phase. So increases in the bubble growth rate could have an effect on the DV performance

diminished from that which might be expected intuitively.

The descriptor expressions derived from the general model of DV demonstrate the

complex effects that the bubble birth, growth and death can have on the DV performance

and on the nature of the resulting foam. This reveals the usefulness of conceptually

realistic DV models, even if approximate, in providing insight into the nature of the

foaming process that might not otherwise be correctly intuited.

7.4 Rolling Drum Devolatilizer Model with Rupture by Film Draining

Inspection of the descriptor expressions reveals that a means for reducing the volume

fraction of bubbles while maintaining a constant DV rate is to increase the birth and death

rates proportionally. A larger rupture rate can be justified if rupture by film draining makes

a significant contribution to the total rupture rate. Bubble rupture by film draining was not

included in the preliminary model and would provide a means for increasing the rupture

rate. As well, the nucleation expression used in our DV models is empirical and has no

constraints on its magnitude. It may be increased as necessary.

In Appendix B an expression for the rate of rupture of bubbles by film draining in a

single screw devolatilizer, Ep.D.. is derived in detail. An analogous derivation was used to
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determine the following expression for the bubble rupture rate by Him draining in the

rolling drum devolatilizer

2RHbfn V,

At H,

F.D.
=

0
Hb

Vb
7.20

can
where Xr is the time a bubble spends at the liquid/vapor interface before rupturing and

be a function of R. Adding to this expression the rupture rate by mechanical shearing,

Em.S.

2RVbf

7.21

'M.S.
At

gives an expression for the total rupture rate

r 2RHbf
At -Cr

E = \

2RVbf Hb

7.22

We are not aware of any studies of the rupture time, Tr, of a bubble driven to the

interface of a free surface cavity flow. Since an expression for xr is not available, for

preliminary studies we will assume it to be a constant for all bubbles. As well, we will

assume that xr < HbA^b, where HbA^b is the maximum time a fluid element can spend at

the surface before reaching the convergence point. This allows that bubbles can rupture by

film draining before the bubbles reach the convergence point of the bulk and barrel films.

Otherwise, if Xr > Vb/Hb, rupture will occur by mechanical shearing only.

Replacing this expression for the death rate with that in the population balance

equation of the mechanical shearing rolling drum devolatilizer model (which will be

referred to as the M.S. Model), equation 5.1b, gives a new expression for the population

balance which includes rupture by fihn draining
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AC z^''^ f

7.23

This new model will be termed the Film Draining Model (F.D. Model). Note that in

equation 7.23, the bubble radius has been expressed in terms of its age using the bubble

growth rate expression.

The model equations will be nondimensionalized by the same reference scales used

for nondimensionalizing the M.S. Model in Chapter 5, with the exception that the

characteristic time will be redefined as

X* =
D 1/3 max

The nondimensional equations of the F.D. model are

=-48^/- tti Min - -^a2
7C

1/4 Ac

1/4

a^ r-

ai At J

rj,l/2 Y VJ/

at T = 0

Y= 1

^ = 0

7.24a

7.24b

exp ^3atT = 0

where the definition of AJA^ is identical to that presented for the M.S. Model in Chapter 5.

M3/2

Only the expressions for ai and a2 have changed
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)

1/3

a, = A,^^^ if D^/^
V P

max
F exp(-a3)

g

2/3

Note that the mechanical shearing rupture rate decreases inversely with the extent of

foam expansion, A,/Ac (see equation 5.2b), whereas, the film draining rupture rate

decreases inversely with the square root of At/Ac (equation 7.24b). Volume expansion

mechanical shearing. This can be explained by the fact that the mechanical shearing occurs

at a point on the surface (i.e. at the convergence point of the bulk and barrel films) rather

than over the entire surface, as does rupture by film draining. Volume expansion increases

This moderates the reduction in the film draining rupture rate caused by volume expansion.

Since rupture by mechanical shearing occurs at a point on the surface, the increasing

surface area has no effect on its rate.

The reduced effect of foam expansion on the rate of bubble rupture by film draining

can be seen clearly in the surface plot of the bubble age distribution calculated from the

F.D. Model presented in Figure 7.9. The values of the model parameters input into the

F.D. Model to produce this distribution are the same parameters that were used to correlate

data 3 of Biesenberger and Lee (1986) using the M.S. Model: ai = 0.02, = 0.00136,

as = 0.4 and a4 = 336. Comparison with the distribution presented in Figure 7.3

calculated from the M.S. Model at identical values of the dimensionless model parameters

reveals that the ridge running along the characteristic T = T is absent and the model exhibits

near quasi-steady behavior. As was done for the M.S. Model, the F.D. Model was solved

for identical values of a2, as and but for ai reduced an order of magnitude to ai =

0.002. The bubble distribution predicted at these conditions is plotted in Figure 7.10. The

F.D. Model clearly predicts a quasi-steady state distribution which was not exhibited by the

reduces the rate of bubble rupture by film draining less than it does the rupture rate by

the surface area of the interface which allows more bubbles to rupture by film draining.



Figure 7.9 Surface plot of the bubble age distribution predicted by the F.D.

Complete Model of the rolling drum devolatilizer. ai = 0.02, a2 = 0.00136,

a3 = 0.4 and 04 = 336.
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Figure 7.10 Surface plot of the bubble age distribution predicted by the F.D.

Complete Model of the rolling drum devolatilizer. ai = 0.002, a2 = 0.00136,

as = 0.4 and 0C4 = 336.
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M.S. Model in Figure 7.5 at identical conditions. It is evident from these results that

volume expansion has less of an effect on the rupture rate in the F.D. Model than in the

M.S. Model.

The ability of the F.D. Model to predict a realistic foam phase and simultaneously fit

the measured DV rates will be investigated next. The F.D. Model was fit to Data 3 of

Biesenberger and Lee's rolling drum experiments for increasing values of the nucleation

and rupture rates. By choosing tr = 0.005 s, the rupmre rate was increased approximately

five times larger than the rupture rate specified by the Complete M.S. Model in correlating

data 3 of Biesenberger and Lee (1986). The descriptors of the bubble distribution predicted

by the F.D. Model for tr = 0.005 s are presented in Figure 7.11. The extent of volume

expansion decreased as anticipated to a maximum of Rj/Rc = 5 from Rt/R^ = 6 for the M.S.

Model (see Figure 7.8). Also, the average bubble radius decreased from a maximum of

Rav = 0.7 cm to Rav = 0.2 cm. The values of F and Eg that best correlate the data are

19500 cm-3 s-' and 15.2 atm2 K..

There is a simple physical explanation why increasing the nucleation and rupture rates

can reduce the volume fraction of foam, yet maintain the same DV rate. Increasing the

nucleation and rupture rates results in a greater number of smaller bubbles, as predicted by

the descriptor expressions. Since the DV rate is proportional to the total surface area of the

bubbles, to maintain equivalent DV rates, the number of smaller bubbles must be that

number which preserves roughly the total surface area of the bubbles. However, since the

surface-to-volume ratio is larger for smaller bubbles, the total volume of the smaller

bubbles must be smaller than that of the larger bubbles.

As the extent of volume expansion for this rupture rate is still unreaUstically large, the

rupture rate was increased an order of magnitude to xr = 0.0005 s. The descriptors

predicted by the F.D. Model are shown in Figure 7.12. The maximum radial expansion

ratio was reduced to approximately 1.5 which corresponds to a volume fraction of 0.6.

The average bubble radius was also reduced to approximately 0.07 cm. The nucleation rate
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Figure 7,11 Plots of the descriptors predicted by the F.D. Complete Model of the

rolling drum devolatilizer for conditions of experiment 3 of Biesenberger and Lee

(1986). F = 19500 cm-3 s'K = 15.2 atm^ K, Xr = 0.005 s, ai = 0.008,

a2 = 0.000263, as = 0.4 and = 336.
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Figure 7.12 Plots of the descriptors predicted by the F.D. Complete Model of the

rolling drum devolatilizer fit to data 3 Biesenberger and Lee (1986). F = 1.7 x 10''

cm-3 s-l, Ea = 15.2 atm2 K, tr = 0.0005 s, tti = 0.0015, ai = 5.67 x 10-5,

as = 0.4 and 04 = 336.



149

was increased an order of magnitude to F = 1.7 x 105 cm-3 s-1 to maintain the same DV
rate. The value of E, was not changed. Note that proportional increases in the nucleation

and ruptures rates maintained the DV rate at its previous value, as predicted by the

descriptor expressions.

Increasing the nucleation rate and the fihn draining rupture rate reduced the extent of

volume expansion and the average bubble radius to reasonable values. However, the

average bubble age is predicted to be approximately 0.004 s, which is unreaUstically small.

This could have been foreseen if the expression for Xav were inspected. Increasing the

death rate must decrease the bubble age. Although the F.D. Model can give a good

correlation of the DV rate, its description of the bubble age distribution is not wholly

realistic.

One explanation why the model predicts unrealistic foaming behavior may be that the

hydrodynamic pressure in the fluid could be raised above that of the ambient pressure due

to the applied flow. Evidence that pressure increases accompany increases in the screw

rotation rate was found by Biesenberger and Lee (1986) during their observation of

foaming in the rolling drum devolatilizer. They noted that increases in the barrel rotation

rate caused the foaming pool to shrink in volume. Biesenberger et al. attributed this to an

increase in the fluid pressure due to flow. This is plausible, however, a contributing factor

to the reduction in foam expansion could be the increase in the bubble rupture rate by

mechanical shearing, which is predicted by our model to accompany increases in the screw

rotation rate. Yet, additional evidence for an increase in pressure was given by

Biesenberger et al.. They observed bubbles to grow slower at higher drum rotation rates.

Also, at high rotation rates, bubbles were observed to be compressed out of existence.

The pressure increase expected to occur in a typical single screw devolatilizer can be

estimated using the analysis by Tadmor and Gogos (1979) of pressurization in the single

screw extruder. For styrene/polystyrene solutions at operating conditions typical of the

conditions studied by Coughlin and Canevari (1969), the cross channel pressure gradient,
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dP/dx. was estimated to be of order 10 psi/cm. This indicates that large pressure gradients

may indeed occur in the cross section of the bulk film.

If the fluid pressure increases significantly in excess of the applied pressure, a more

realistic bubble distribution is expected. The volume fraction of bubbles would be reduced

and their residence time in the fluid would be increased. This is evident from the descriptor

expressions for the rolling drum model, equations 7.2. Increasing the pressure would

increase the gas density in the bubbles, Pg/Cn.ax. and decrease the foam volume fraction, 0.

From equations 7.2a and e, it is evident that increasing pg will increase the average bubble

age, Xav, and decrease the film expansion ratio, R^^. Since the values of the applied

pressures used in the model simulations were very small (approximately 5 torr), small

absolute increases in the fluid pressure could result in a many fold increase in pg/C^ax and

would have a large effect on the state of the foam.

There could be many more reasons why our models give unrealistic descriptions of

foaming. The approximate descriptions of bubble nucleation, growth and rupture could

introduce significant inaccuracies. Also, bubble coalescence, breakage and deformation

could significantly affect the foaming behavior. Their exclusion from our models might

explain their unrealistic predictions. To identify any serious flaws in our models,

information on the nature of foam-enhanced DV is essential. Unfortunately, physical

information on foam-enhanced DV is scarce. Without additional information, hypotheses

as to the sources of our model's inadequacies would be high speculative.



CHAPTER VIII

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The major conclusions of this thesis are:

The methodology proposed for modelling foam-enhanced DV, which includes a
population balance to track the evolution of the foam phase (described as a
distribution over bubble sizes) coupled with a mass balance to track the reduction in

the solvent concentration, is novel to DV modelling and is the first to allow
incorporation of realistic descriptions of bubble birth, growth and death into models
of the process.

The single screw and rolling drum devolatilizer models constructed using this

methodology give a good correlation of devolatilizer perfomiance data.

The models constructed for the rolling drum and single screw devolatilizers offer

significant improvements over Latinen's (1962) model, which is the model most

commonly used for sizing single screw devolatilizers. These models correlate

available DV performance data better than Latinen's Model, while using the actual

value of the diffusivity. As well, they can correlate both the foaming and interfacial

diffusion-controlled regimes of DV, whereas Latinen's model cannot. This indicates

that any realistic model of foam-enhanced DV must include two time scales to

adequately fit the two regimes of DV.

The approximate models of DV that we have developed, which agree closely with the

complete model if the bubble distribution approaches a quasi-steady state, are simpler

than the complete model and require computation times for their numerical solution

that are two orders of magnitude smaller than those required to solve the complete

model. The model predicts that a QSS distribution can occur at operating conditions

typical of industrial operations.

A Design Model, derived from the approximate QSS Model, is suitable for

devolatilizer design as it has an explicit, analytical solution and includes two time

scales for DV.
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6) Descnptors of the bubble disdibu.ion have teen introduced and shown to be valuable
for describing the state of the foam. These measures of the foam's character are often
of greater practical value than the distribution itself, since they usually can be more
easily measured than the distribution. Descriptor expressions derived for the rolUng
drum model indicate how the process and physical property variables affect the state
of the foam and the DV performance. They reveal that the model contains physical
.naccuraoes, however, as it predicts unrealistically large foam volume fractions and
bubble radii.

7) A general model constructed for foam-enhanced DV is valuable for providing insight

into how the rates of bubble birth, growth and death affect the state of the foam phase
and the DV performance. This model reveals how the modelling methodology used
by preceding investigators can introduce significant errors into predictions of the DV
performance. As well, it indicates that inaccuracies in the rolling drum model might
be caused by an underestimation of the rates of nucleation and rupture of bubbles.

8) The F.D. rolling drum devolatilizer model, which includes an empirical description of

rupture by film draining as a means for increasing the bubble rupture rate, predicts

realistic values for the foam volume fraction and average bubble radius. However, it

does not give a wholly realistic description of the DV process, as it grossly

underestimates the average bubble age.

8.2 Recommendations for Future Work

The ultimate objective of future investigations on foam-enhanced DV would be to

construct models of DV which have predictive capabilities. We expect that the

methodology proposed in this study, which is based on population balances and allows the

incorporation of conceptually realistic descriptions of bubble birth, growth and death into

models of foam-enhanced DV, is the proper methodology to be used in the construction of

future models. The problems lie in the development of realistic descriptions of the rates of

bubble birth, growth and death occurring during foam-enhanced DV.
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Due to the paucity of experimental data on foam-enhanced DV and due to the complex

nature of and the intricate interactions among the bubble birth, growth and death processes,

it is unlikely that, at present, theoretical investigations into foam-enhanced DV could

provide sufficiently accurate models of the process. We believe it would be most

efficacious to undertake a fundamental experimental study of foam-enhanced

devolatilization first. This would provide a better physical understanding of foam-

enhanced DV, essential in guiding the rational construction of accurate models of the

process.

There are many fundamental research topics on the component processes of foaming

occurring during DV that should be explored. Some of these important areas of research

that could be addressed experimentally are discussed below.

Nucleation: The mechanism(s) of bubble nucleation occurring during foam-

enhanced DV, that is, the birth of bubbles from solution unaided by the presence of other

entrained bubbles (i.e. as distinct from birth by bubble coalescence and breakage), is

unknown. Experimental studies of nucleation are recommended to reveal this

mechanism(s), as the nucleation mechanism(s) must be known before descriptions of the

nucleation frequency required in models of DV can be developed. A primary objective of

this study should be to determine how fluid flow and the presence of nucleating agents (i.e.

such as surfactants and heterogeneous impurities) affect the frequency of bubble

nucleation.

Growth: The growth of bubbles in devolatilizers is a very complex process and is

not well understood. The first question that should be answered is whether the growth of

bubbles in devolatilizers is controlled by diffusion, by viscous forces, by elastic forces or

by a combination of the three. Experimental studies of the effect of imposed flow,

preferably both shearing and elongational, on the bubble growth rate are suggested. Also,

studies of the effects on the bubble growth rate of interactions with neighboring bubbles are

recommended.
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Rupture: Experiments should be conducted to measure the frequency of bubble

rupture in devolatilizers by the mechanisms of film draining and mechanical shearing.

Understanding the effects of elongational flows on the rupture rate is of particular interest

as bubbles at the free surface in screw devolatiUzers are subjected to elongational flow.

Breakage and Coalescence: The focus of preliminary experimental studies of

bubble coalescence and breakage in devolatilizers should be to measure the frequency of

bubble coalescence and breakage occurring during devolatilization. This will be useful in

determining if these processes are important and whether they should be included into

models of DV. If important, additional studies should be directed at determining the

dependence of the breakage and coalescence frequency on the bubble radius, volume

fraction of bubbles and flow strength and type.

Deformation: As for the studies suggested on bubble coalescence and breakage,

preliminary studies on bubble deformation during DV should be directed at measuring the

extent of deformation to determine if it need be included into models of DV. If important,

the dependence of the extent of bubble deformation on physical property and process

variables such as bubble radius, viscosity and flow strength and type should be

investigated.

Rolling Drum Devolatilizer Performance Studies: In addition to

experimental studies on the physical processes which comprise foaming, in situ

measurements of the DV rate and of the state of the foam phase occurring in industrial

devolatilizers would be very valuable in evaluating the accuracy and limitations of DV

models. Particularly, to elucidate the limitations in the screw devolatilizer models

constructed in this study (i.e. for the single screw and rolling drum devolatilizers), careful

measurements of the DV rates and the bubble radius and age distributions occurring in the

rolling drum devolatilizer are suggested. The rolling drum devolatilizer is probably the

most basic of all devolatilizers and is ideal for preliminary investigations. Photographic

methods could be used to measure the bubble distribution directly, or, it could be inferred
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from measurements of descriptors of the distribution, such as from measurement of the

mean bubble radius or foam volume fraction. As short time measurements were shown in

this study to be crucial to precise estimation of the empirical model parameters, techniques

must be developed to accurately measure the DV rate and the evolution of the state of the

foam at short times when foaming is rapid and DV rates are high.



APPENDIX A

BUBBLE GROWTH IN QUIESCENT POLYMER SOLUTIONS
AND THE EFFECT OF SHEAR ON THE BUBBLE GROWTH RATE

The growth rate of bubbles in polymer/solvent solutions can be controlled by a

number of physical processes; viscous forces, elastic forces, bubble-bubble interactions

and finite rates of solvent diffusion can all impede the growth. The low diffusivity of

solvents in polymer melts (usually from 10-7 to 10-10 cm2/sec) results in slow solvent

diffusion. It is likely that diffusion of solvent to the bubble is the rate limiting step in

bubble growth during DV. In this appendix, the assumption that bubble growth during

devolatilization is controlled by diffusion will be addressed for a bubble growing in a

quiescent polymer/solvent solution. Also, since bubbles in the single screw devolatilizer

are translating in a free surface cavity flow, they can experience shear and elongational

flows that will increase the mass transfer coefficient to the bubble. The effect of flow on

the bubble growth rate will be also addressed in this appendix.

A.l Bubble Growth in Quiescent Polymer Solutions

Barlow and Langlois (1962) developed a model of a bubble growing in a quiescent,

infinite, Newtonian fluid containing a dissolved gas. The time dependence of the bubble

radius was calculated numerically for a system with physical properties typical of

polymer/solvent solutions: |i = 10^ (dynes s/cm^), D = 10-9 (cm2/s) and o = 20

(dynes/cm). Hydrodynamics was shown to control the early period of growth. Diffusion-

controlled growth was predicted to follow. Using criteria presented by Barlow and

Langlois, the bubble diameter at which diffusion-controlled growth could be expected was

calculated. Our calculations indicate that the bubble growth is diffusion-controlled for

bubbles which grow beyond a radius of 7 microns. Since most bubbles are expected to
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grow from 100 to 1000 times this value, the diffusion controlled growth assumption

should apply.

Villamizar and Han (1978) measured the growth rate of bubbles growing in a

polystyrene melt containing carbon dioxide released by the chemical degradation of sodium

bicarbonate, a blowing agent. The observed time dependence of the bubbles are well fit by

the expression R = at". The values of the exponent n that best fit the data range from

0.33 to 0.47. For diffusion-controlled growth, a value of n = .5 is predicted. The data of

Villamizar and Han show a slightly weaker time dependence of the bubble radius than is

predicted for diffusion-controlled growth. This suggests the presence of some other

process affecting the growth, possibly an elastic or bubble interaction effect. Nevertheless,

the measured growth exponents are close enough to the diffusion controlled growth

exponent such that the diffusion controlled growth model would be an adequate

approximation for this system.

It should be noted that the devolatilization model is not limited to the case of

diffusion-controlled bubble growth, for which n = .5. If the proper power law exponent is

known, the devolatilization model can be easily altered to account for the new value of the

exponent. Thus, the square root of time dependence of the bubble growth rate is not a

model prerequisite. In addition, for bubble growth described by a mathematical expression

not of the power law form, the general modelling methodology is still applicable, although

the model's solution may be more difficult.

A.2 Effect of Shear on the Bubble Growth Rate

The bubble growth rate model included in the single screw and rolling drum

devolatilizer models assumes the bubbles to be growing in a quiescent fluid. Actually,

bubbles in the bulk film of the single screw devolatilizer are entrained in a free surface

cavity flow. The bubbles are exposed to mainly shear flow in the interior of the bulk film
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and to elongational flows near the surface (Canedo. 1985). Flow can enhance the mass

transfer of solvent to the bubbles and increase the bubble's growth rate.

Many investigators have analyzed the effect of an applied external flow field on the

mass transfer to bubbles. A few of the more notable investigations include Levich, 1962;

Acrivos and Taylor, 1962; Darby, 1964; Florschuetz, Henry and Khan, 1969 and

Ruckenstein and Davis, 1970. All of these investigators considered bubbles growing and

translating in a uniform flow field, such as for a bubble rising by buoyancy in a stagnant

fluid. However, documentation of studies on bubbles growing in a shear flow, to which

bubbles in the single screw devolatilizer are exposed most often, was not found in the

literature.

Acrivos (1971) has analyzed mass transfer to rigid spheres freely suspended in a

shear flow. Although the fluidity of the bubble and the growth induced radial convection

are not exhibited in the rigid sphere problem, the two problems are analogous. Qualitative

insight into the bubble growth problem can be gained and an estimate of the magnitude of

the mass transfer enhancement due to flow can be inferred from Acrivos' study. In

addition, Acrivos' study may yield a quantitative description of the mass transfer if the

bubble rotates as a rigid sphere and if the radial velocity induced by bubble growth is

negligible compared with the tangential velocity of the imposed flow.

Ruckenstein and Davis (1970) showed that growth induced radial convection can be

neglected when modelling the growth of a low solubility (slowly growing) gas bubble

rising in water. Due to the small diffusivities of solvents in polymers, it is possible that

bubbles grow slowly enough in the shear fields generated during single screw extrusion so

that they can be analyzed sufficiently accurately while neglecting the radial flow induced by

the bubble growth. Also, it is possible that the bubble will rotate as a rigid sphere due to

the immobilization of the interface caused by the surface active agents present as impurities

in most industrial polymer production operations (Chen, Hahn, and Slattery; 1984).

Further investigation would be required to determine if both of these conditions are met.
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So Acrivos' analysis is expected ,o provide, at least, a qualitative description of the mass
transfer enhancement, and possibly, a quantitative description.

Acrivos (1971) derived an asymptotic expression for the Sherwood number
describing the mass transfer to a rigid sphere immersed in a simple shear flow. For the
limiting case Re 0 and Pe^ <», Acrivos' result is Sh = 4.5 where

Sh =^
Re=°^

Pe =
-^'^

D

and kc is the liquid phase mass transfer coefficient, R is the bubble radius, G is the shear

rate far from the bubble. D is the diffusivity and v is the kinematic viscosity

Acrivos predicts that the mass transfer coefficient approaches an upper bound and is

independent of Pe, and hence, the strength of the flow, in the limit as Pe approaches

infinity. This is in contrast to the dependence of Sh on Pel/3 at the identical limit for mass

transfer to a sphere translating in a stagnant fluid. This counter intuitive result is explained

by the presence of closed streamlines encircling the bubble in the shear flow case. Only

open streamlines occur for a bubble translating in a uniform flow. These closed stream

lines form a constant width bounding layer, independent of flow strength, over which mass

is transferred by diffusion only.

For the experiments of Coughlin and Canevari (1969), representative values of the

Reynolds number for bubbles in the single screw channel are less than 10-2 and the Peclet

number is on the order of 10^1. The constraints from Acrivos' analysis are met in this

system and should be met for bubbles in any conventional single screw devolatilizer. From

the relation between the growth rate, dR/dt, and the mass transfer coefficient given in

equation 7.5, and estimating kc = 4.5 D/R, the time-dependence of the radius of a bubble
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with an immobilized interface and growing in a shear flow can be estimated by integrating

the bubble's growth rate over its age. The resulting expression is

R = 3.V Pg
A.l

where the bubble radius at birth, x = 0, was taken to be zero.

From Acrivos- expression for the mass transfer coefficient, we predict that the radius

of a bubble undergoing simple shear will scale with the bubble's age to the 1/2 power.

This value of the exponent was also predicted for the growth of bubbles in a quiescent

solution by Scriven's (1959) model, which is the basis for the bubble growth rate

expression used in our work. Acrivos' study indicates that the cell model used by previous

investigators to account for the interaction of the diffusion fields of neighboring bubbles

(Amon and Denson, 1984; Chella and Lindt, 1986) might not be necessary. If the average

distance between bubbles is much larger than the thickness of the diffusion boundary layer,

the diffusion fields will not interact and the bubbles may be treated as being whoUy isolated

from each other.

Comparison of the growth rate expressions derived with and without shear (c.f.

equations A.l and 4.2) reveals that the bubble growth rate without shear is predicted to be

(4AC/37tpg)l/2 times greater than the growth rate with shear. Since this factor is

significantly greater that one, the expression for the growth rate with shearing significantly

underestimates the growth rate. This is probably due to the neglect of radial flow in the

derivation of equation A.l. Radial flow stretches the fluid surrounding the bubble

increasing the radial concentration gradient which enhances mass transfer. This indicates

that radial flow can contribute significantly to the growth rates of bubbles in the shear fields

of the single screw devolatilizer and should be considered in any model of the process.



APPENDIX B

BUBBLE RUPTURE RATES BY FILM DRAINING AND
MECHANICAL SHEARING IN A SINGLE SCREW DEVOLATILIZER

Bubbles at the surface of the bulk film in the rolling drum devolatilizer have been

observed by Biesenberger and Lee (1986) to rupture by the mechanisms of mechanical

shearing and film draining. Descriptions of both processes will be presented in this

appendix and expressions will be derived for the rates of bubble rupture by both

mechanisms in the single screw devolatilizer.

B.l Rupture by Mechanical Shearing

Bubbles at the surface of the bulk film can rupture by mechanical shearing as they

travel through the convergence point of the bulk and barrel films (see Figure 4-2). In this

model we wiU assume that all bubbles that reach the convergence point rupture. To derive

the rate of death of bubbles of age x over a differential element dz, we only need to estimate

the surface density of bubbles, psurf, where (psurf dxdz) is defined as the number of

bubbles jutting through the surface between ages x ^ x + dx and between positions z z

+ dz per surface area of interface. The death rate by mechanical shearing, Em.s., is equal

to the product of the surface density of bubbles and the flux of the surface through the

convergence point, Vbdz.

Em.S. dx dz = (psurf dx dz) Vbdz

To derive an expression for Psurf, we will assume that the bubbles are homogeneously

distributed over the channel cross section. A bubble of radius R will occupy the surface if

its center is located a distance R or less above or below the surface. This is illustrated in

Figure B-L The fraction of bubbles in the cross section which breach the surface is simply

that fraction of bubbles located in this region, which for homogeneously distributed
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Figure B-1 Schematic of a cross sectional element of the single screw

devolatilizer.
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bubbles is 2m. The number of surface bubbles in ,he cross section per area, p,^.dz, is

then given by the product of the fraction of bubbles of radius R(x) at the surface and the

total number of bubbles in the element, which is fdxdz, divided by the surface area of the

element, U^dz.

~\fdxdz)
Psurf dXdz =

HkcIz

so that the surface density of bubbles is given by

_ 2Rf
dHndz

Substituting into the death rate expression for psurf gives

2VK^
R

where the bubble radius, shown in brackets, has been expressed in terms of the bubble's

age X using the bubble growth rate expression given in equation 4.2.

B.2 Rupture by Film Draining

As a bubble is driven towards the liquid/vapor interface, fluid between the bubble and

the interface is displaced. When the bubble breaches the surface, a thin fluid film remains

surrounding the bubble, since the fluid cannot drain fast enough to allow immediate

rupture. Draining of this film into the surrounding fluid is induced by pressure gradients

caused by the spatially varying curvature of the film surrounding the bubble. As the fluid

in the film drains, a critical film thickness (on the order of 500 angstroms) is reached where

London-van der Waal's forces lead to instability and rupture (Chen, Hahn and Slattery;

1984)

Surface-active agents, if present, will accumulate at the fluid-fluid interfaces and set

up interfacial surface tension gradients which will immobilize the gas-fluid interfaces

between the bubble and the fluid and between the fluid and the vapor space.
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Immobilization of these interfaces causes the fluid to drain from the interior of the film

only, ntis significantly decreases the draining rate. Very small concentrations of surface-

active agents are required for interface immobilization (Lin and Slattety; 1982) and it is

likely that industrially produced polymers contain sufficient concentrations to cause

immobilization.

Chen et. al. (1984) developed a model for the film draining and rupture of a bubble

driven to a fluid-fluid interphase by buoyancy. They derived an expression for the rupture

time which we reduced to the following form.

R^^^^ (ap g)3/5
= 1.06^1

B2/5 ^6/5

where B is the interaction potential per unit volume, which is a measure of the pressure

acting to attract two parallel fluid-fluid interfaces, Ap is the density difference between the

two phases, )i is the fluid viscosity, a is the surface tension and g is the gravitational

constant. This expression predicts that a bubble's rupture time is a function of the bubble

radius. This behavior has been observed by most investigators: Gillespie and Rideal

(1956), Charles and Mason (1960) and Woods and Buirill (1972, 1973).

Bubble rupture in single screw devolatilizers differs from that modelled by Chen et.

al.. In single screw devolatilizers bubbles are not driven to the surface by buoyancy

forces, since, for polymer melts, the high viscosity arrests the buoyancy induced bubble

motion. Rather, bubbles are driven to the surface by the elongational flow of the fluid at

the surface of the bulk film. There have been no investigations conducted on the rate of

bubble rupture by film draining at the surface of an elongating fluid. However, a related

problem of protrusion of rigid spheres through surfaces undergoing elongational flows

during mold filling has been analyzed by Hoffman (1985). Hoffman presents a simple

model revealing that, for a particle near a fluid surface undergoing an elongational flow,

unbalanced drag forces will act on on the particle and drive it towards the surface.
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Although Chen's analysis is not strictly applicable to the rupture of bubbles in the

single screw devolatilizer, we expect that the two rupture processes are similar, as film

draining and instability onset are common to both. We anticipate that, for bubbles in the

single screw devolatilizer, the rupture times will also be a function of the bubble's radius.

A general rupture time function, xr, will be introduced and defined as the time required by

a surface bubble with a radius R to rupture by fihn draining.

Given an expression for xr, we may develop a model for the film draining rupture

rates based on the following description of the rupture process. Surface bubbles are

assumed to translate to the convergence point of the bulk and barrel films at the velocity of

the fluid surface, Vfo. For reference, a schematic of the bulk film surface is shown in

Figure B-2. If the surface residence time of any of these bubbles is larger than the film

draining rupture time, xr, corresponding to its radius, it will rupture. If not, bubbles will

reach the convergence point and either rupture by mechanical shearing or pass back into the

interior of the bulk film. If both mechanical shearing and film draining occur, the total

death rate is simply obtained from the sum of the death rates by both mechanisms.

The model for bubble rupture by film draining is derived from this physical picuire as

follows. Bubbles are assumed to continuously breach the surface at random positions on

the film surface. The surface density of bubbles, psurf, is therefore homogeneous over the

surface and will be assumed to be identical to that derived earlier for rupture by mechanical

shearing. For illustrative purposes, we'll assume that all surface bubbles have breached the

surface simultaneously at time t = 0. This idealization will not affect the resulting rupture

rate expression. All bubbles of age x (or equivalentiy of radius R(x)) will be assumed to

have a corresponding rupture time, Xr, associated with it. Bubbles of radius R at the film

surface over a differential cross section, dZ, (see Figure B-2) will be assumed to rupture if

they reside on the surface for times greater that Xr. Focussing on a differential surface

element, dy, a distance q from the convergence point, surface bubbles at q will travel with a

velocity Vtj towards the convergence point. If the time spent in travelling fi-om q to the
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divolatilizen
^""^^""^^^"^ ^ ^'^^^ ^^^^^O"^' element of the single screw
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convergence point, q/W^, is greater than xr, the bubbles will rupture by film draining

before reaching the convergence point. Otherwise, bubbles will travel to the convergence

point and incur the consequences dictated by the rupture model for bubbles passing through

the convergence point.

Any bubble of age x a distance xrA^5 from the convergence point and beyond will

rupture by film draining over the time xr. From this relation, the fraction of surface

bubbles of age x that rupture can be determined and an expression for the bubble death rate

by film draining, Ep.D., can be derived from the following identities.

Ef.d. dc dz =

r# of surface bubbles'! ffraction of surface)

< of age x^x+dx \ I bubbles of age x \

\^
between z->z+dz

j
\^that rupture

j

[rupture time of bubbles of age x]

r# of surface bubbles'^

< of age x^x+dx >

\^
between z^z+dz

j
surf

dx dz
2R

H, dz =—- f dx dz
^ d

fraction of bubbles^

age X that rupture
j

# of surface bubbles of age x

in the region Xj^Vj^< x <

f total # of surface bubbles

\of age X in element
j

Psurf (Hb - XRVb)dz

Psurf Hb dz

Simplifying the above expression and forcing it to zero for bubbles with rupture times

greater than the surface residence time of a fluid element, HbA^b. gives

^^_Xr Vb^

V H b y

{fraction of bubbles of age x that rupture} =
'

0

Hb
Xr<v-

H,

Substituting the expressions for the bracketed terms into the expression for E gives the
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expression for the bubble rupture rate by film draining

2Rf n
Ep.D. =

R H

0

Hb

All that remains to apply the film draining death rate expression into a model of DV is to

express Tr and R as a function of bubble age, t.



APPENDIX C

ESTIMATION OF E^ FROM NUCLEATION ONSET STUDIES
AND THE SHEAR RATE DEPENDENCE OF THE BUBBLE BIRTH RATE

As discussed in Chapter 4, Ea determines the superpressure, or similarly, the

supersaturation, at which the onset of nucleation occurs. It could be determined from

experimental studies of the onset of nucleation. In this appendix, a method of estimating Ea

from nucleation onset studies will be presented and values of Ea will be estimated from

results of nucleation onset studies presented in the literature. Also, the shear rate

dependence of the nucleation rate and a mechanism of nucleation proposed by Biesenberger

and Lee (1986) to explain it will be discussed.

C.l Estimation of Eg from Nucleation Onset Studies

Inspection of Figure 4.5 shows that classical nucleation theory predicts that a critical

superpressure must be exceeded before significant nucleation can occur. This behavior

was observed experimentally by Villamizer and Han (1978), by Biesenberger and Lee

(1986) and by Hoque (1986). As is also evident in Figure 4.5, the value of Ea determines

the value of this critical superpressure. From measurements of the superpressure required

for the onset of nucleation, an estimate of Ea may be made. For example, if the

superpressure required for nucleation was measured to be 10 psi, from Figure 4.5 we

could estimate Ea to be between 2.5x10^ and 10^ psi2 K.

Villamizar and Han (1978) conducted experiments on the onset of nucleation in

polyethylene/carbon dioxide solutions during foam molding. The solution was forced

under pressure through a rectangular, transparent die and the position and pressure at

which nucleation was first observable was recorded. At 220 degrees centigrade and a 2%

concentration of Celogen (a blowing agent which produces carbon dioxide), the

superpressure at which nucleation was first observed by Villamizar et al. is calculated to be
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17.4 psi. From Figure 4.5, the activation energy at which nucleation just becomes
observable at AP=17.4 psi can be estimated to be within the range of 250,000 to 500,000

psi2 K. Over this range of Ea, J/F varies from 0.03 to 0.15.

We also estimated values of Ea from the experimental studies of nucleation onset by

Biesenberger and Lee (1986) and by Hoque (1986). Biesenberger et al. measured the

superpressure at which nucleation first became observable in a solution of

polydimethylsiloxane/methyl chloride undergoing a free surface cavity flow (chosen to

simulate the flow in the single screw extruder channel). A value of Ea for this system was

estimated to be 8xl03 (psi2 K). Hoque measured the system pressure at which nucleation

became observable in a solution of polybutene/n-pentane flowing in a two roller apparatus

(chosen to simulate flow in a twin screw extruder). We estimated the superpressure

required for the onset of nucleation to be the difference between the local fluid pressure

(estimated from lubrication theory) and the vapor pressure. A value of Ea for this system

was estimated to be 4x10^ (psi2 K). Values of Ea for these three different polymer/solvent

solutions range from 8xl03 to 5x10^ (psi^ K), suggesting that values of Eafor other

polymer/solvent solutions might be close to or within this range.

A value of Ea equal to 3,200 psi^K (i.e. 15 atm^ K) was found to give a good

correlation of the devolatilization data of Biesenberger and Lee (1986) using our

devolatilization model. We estimated Ea to be 8,000 psi^ K (37 atm^ K) for this polymer

solution from the nucleation onset studies of Biesenberger and Lee (1986). This indicates

that the procedure for estimating Ea from nucleation onset studies may be suitable for

providing an order of magnitude estimate of Eg.

C.2 The Shear Rate Dependence of the Bubble Birth Rate

From their observations of foaming occurring during DV, Biesenberger and Lee

(1986) proposed that the bubble birth rate increases with the applied shear rate.

Biesenberger et al. attribute this phenomenon to invisible pockets of gas which act as
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nucleation sites. These are metas.able a, res, bu, become unstable with increasing shear

rate, leading to bubble birth.

This indicates that the primary mechanism of bubble birth during devolatiUzation may
not occur by random molecular fluctuations leading to a stable bubble nucleus, as

postulated by classical nucleation theory. Rather, bubbles may originate from stable gas

pockets trapped in the crevices of heterogeneous impurities or container walls. Imposition

of a reduced pressure will cause these pockets of gas to grow. At some critical inflation,

the gas pockets may pinch off, sending a new bubble into solution. However, part of the

vapor could remain in the crevice and act as the nucleus for the growth and pinch-off of

another bubble. This mechanism would allow for the birth of a continuous stream of

bubbles from a single crevice. Indeed, this is the mechanism of birth of bubbles in a glass

of beer which the socially-disposed among us may be quite familiar. A continuous stream

of bubbles can be observed to issue from a single spot on the surface of the glass at which

is located a gas-filled crevice. However, this mechanism of bubble pinch-off is different

from that proposed in devolatilizers, as bubbles in devolatiUzers are thought to be torn from

the crevice by viscous rather than by buoyancy forces.

Bubble birth by this pinch-off mechanism was studied by Darby (1964) for vapor

bubbles of superheated Freon and water issuing from an isolated nucleation site (i.e. a

pocket of vapor occupying a crack) on a solid surface. We expect that, in the presence of a

shear field, this pinch-off rate will accelerate resulting in a higher pinch frequency. Higher

shear rates would result in more frequent pinching, and hence, higher birth rates as

proposed by Biesenberger et al.

The metastable bubble theory is speculative, however. Further study is necessary to

evaluate its validity. If growth and pinch-off of stable gas pockets is the predominant

nucleation mechanism during DV, nucleation models based on classical nucleation theory

would be rendered purely empirical. Attempts at inferring physical insight from these

models may be misguided. Until the bubble birth mechanism in devolatilizers is elucidated,
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modeUing the process using classical nucleation theory should be done with the reservation

that it may represent only empiricism.
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