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ABSTRACT

A Study of the Microstructure of PVF2/PMMA Blends
by Small Angle Neutron and X-ray Scattering

(February 1988)

William S. Herman
B.S., City College of New York

M.S., University of Massachusetts
Ph.D., University of Massachusetts

Directed by: Professor Richard S. Stein

Small angle x-ray and neutron scattering studies were performed on

blends of PVF2 with PMMA. A comparison of the scattered intensities indicates

that the electron density profile is different from the neutron scattering

length density profile. This system, therefore, cannot be modelled assuming

only two phases.

The SANS and SAXS invariants were used to calculate transition zone

thicknesses for two other models. The first model assumes a linear transition

zone between the crystalline PVF2 phase and the mixed amorphous phase. The

other model consists of three phases: a crystalline PVF2 phase, an amorphous

PVF2 phase containing branched material and cilia, and a mixed amorphous

phase. It has been determined that an interphase exists at the crystal-

amorphous phase boundary and it is at least 25A in thickness (interlamellar

distance = 200 A). The interphase thickness assuming a linear transition zone

is ~50A, while for the three-phase system is about ~25A.

The method of using two invariants to determine phase sizes and especial-

ly transition zone thicknesses is superior to measuring transition zone thick-

nesses from deviations from Porod's law.
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Chapter 1

INTRODUCTION

The commercial blending of polymers is well over 30 years old. The basic

motivation to study blends is to understand why polymers mix and what effect

mixing has on the two polymers in the mixed state. This fundamental under-

standing would meet the commercial motive as well, which is to obtain the best

performance such as high modulus, easier processability or better impact

properties for the dominant component in the blend at the lowest possible cost.

Several general reviews and references regarding the properties of polymeric

alloys can be found in the literature [1-5].

Blends of two miscible polymers usually give intermediate properties

between those of the components. Amorphous miscible polymers compose the

bulk of the most widely used commercial blends, such as atactic polystyrene

(aPS) with po!y(phenylene oxide) (PPO) [6-7] or polyvinyl chloride), PVC,

with butadiene-acrylonitrile copolymers [8-9]. Crystalline, liquid crystalline

and amorphous polymers as well can be mixed to form immiscible blends,

which constitute essentially composite materials such as toughened epoxies.

Many polymer pairs rely on specific interactions between the chain

substituents, a negative enthalpic contribution to the free energy of mixing,

to be compatible. The entropic contribution is negligible, though negative,

due to the polymer's long chain nature. However, at elevated temperatures,

the enthalpic contribution to mixing becomes positive, causing these mixtures

to phase separate [10-14]. Similar to this liquid-liquid transition, a liquid-solid

transition, crystallization, can occur which also leads to segregation into two

or more phases. It is also important to understand the role of processing

parameters such as temperature, annealing time, orientation, etc. on the final
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morphology in order to control these and therefore the blend's final proper-

ties. This thesis is concerned with the final morphology of blends in which

one component crystallizes. To this end small angle scattering techniques are

used to study the microstructure of an amorphous polymer which resides

between the crystalline lamellae of its blend counterpart.

When one polymer crystallizes from a homogeneously mixed amorphous

state the noncrystallizable component is not included in the crystal. Instead, it

is rejected to form a pure phase of its own or a blend with the crystallizable

polymer in regions where this remains in an amorphous state, such as

between the lamellae [15-18]. A subject of considerable scientific interest for

these blends is to define which are the factors that influence the rejection

phenomenon and why and how much does each factor contribute. It is well

established that parameters such as temperature, molecular weight, miscibility,

and relative glass transition temperature of the two polymers will affect the

final structure of the blend. However, a quantitative understanding of the

mechanisms involved is still lacking.

Flexible polymers in a quiescent state tend to crystallize from the melt

forming sphemlites. These macrostructures are spherical during the inter-

mediate stages of growth and assume a polyhedral shape in the late stages of

crystallization as a consequence of impingement. Spherulites are composed of

crystalline lamellae extending radially from the center such that the polymer

chain direction is predominantly perpendicular to the radius. When a non-

crystallizable component is added, it is selectively rejected upon crystallization

of the system to one of three regions: the interspherulitic region, the interfi-

brillar region or the interlamellar region. Low molecular weight components

and other additives that are able to diffuse faster than the crystal growth front

advances will segregate into the interspherulitic region [19-20]. Any polymer
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chain of lower diffusing ability relative to crystal formation will be included

inside the spherulite, either between the lamellae or between the fibrils.

Fibrils, in spherulites, are composed of bundles or stacks of lamellae (since

lamellae are almost always much wider than they are thick) separated by the

rejected material. The interfibrillar region is intermediate in size between the

other two regions. It has been found that amorphous polymers that have no

specific interactions with and have roughly the same glass transition tem-

perature, Tg, as the crystallizing component, such as atactic polystyrene

(aPS)/isotactic polystyrene (iPS) blends, reside in the interfibrillar region

[21-23]. Finally, amorphous polymers that have strongly favorable inter-

actions with and a considerably higher T
g

than the crystallizing polymer are

contained between the crystalline lamellae [24-27]; the interlamellar region

represents the smallest rejection zone of the three.

Naturally occurring spherulites were studied as early as the late 1800's in

certain silicates [28]. And as early as 1929 Bernauer proposed that impurities

play an important role in the formation and coarseness of spherulites [29]. In

his experiments he studied the effect of adding impurities to several organic

compounds inducing spherulite formation when in their pure state they did

not.

Keith and Padden in 1963 developed a phenomenological theory to

describe impurity rejection in crystallizing polymer systems [30], In their

approach, impurities are defined as any substance which crystallizes con-

siderably slower than the most readily crystallizable chains, such as small

molecule additives, noncrystallizable polymers or homopolymer fractions of

lower stereoregularity or molecular weight (there is a lower probability of

a shorter molecule having the correct conformation to add to the crystal

surface). The theory attempts to predict an average size for the crystalline
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fibrils both for homopolymers and for blends in which one component

crystallizes.

The theory assumes that crystallization of a sphemlite proceeds linearly

with time, and that the growth front can be considered planar on a small scale.

As the growth front advances, crystallizing chains are extracted out of the

melt in front of the crystal, causing the relative concentration of the non-

crystallizing entities to increase in that region. After crystallizing for a

transitory period a steady state is reached. The concentration profile of

impurity ahead of the growth front is described by:

C (x) = Cq exp (-x/5) + Coo

where Cq and C«> represent the excess concentrations of the impurity at the

growth face and its concentration at an infinite distance from the growth

face, respectively. C«, and Cq have no physical significance in themselves

since this is a phenomenological theory. The thickness of the impurity layer

is the decay constant, defined as S = D/G, where D is the diffusion constant of

the impurity away from the growth front and G is the growth rate. A constant

growth rate implies that the rejected polymer cannot diffuse radially faster

than the crystal front advances. When steady state conditions are reached,

the concentration of the impurity remains constant during the isothermal

crystallization of a given system. A more complete background on this subject

is given by Chalmers [31] or Delves [32] who describe a similar development

referring to small molecule systems.

The exponential concentration profile of impurities at the growth front

implies that the relative fraction of crystallizable material increases rapidly

with distance from the crystal. Perturbations on the crystal surface profile

due to fluctuations in the local growth rate will create projections into a melt

richer in crystallizable material. Therefore, these projections will continue to
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grow giving rise to a fibrous morphology within the spherulites. Impurities

rejected during the process of fibril formation will diffuse laterally accumu-

lating in the adjacent regions. This increase in impurity concentration

inhibits any perturbation in these zones from developing into a stable fibril.

The limiting distance between independently growing fluctuations is of the

order of 5. Therefore, the fibrillar size in crystallizing systems containing

any impurities is 5 = D/G and it can be calculated if the values of D and G for the

system being studied are known.

Optical microscopy studies performed by Keith and Padden [33-36]

showed their theory to be qualitatively correct. They examined several poly-

mer blends varying the molecular weight of the impurity and crystallization

temperature and showed a definite trend was present relating spherulite

coarseness and 5.

The Keith and Padden theory has also been used in PVF2/PMMA [30]

blends to explain the presence of the amorphous component between the

lamellae. The inherently low diffusion coefficient of the PMMA [37-40] is

reduced further by its favorable interactions with PVF2 [38]; PVF2 has a

relatively fast growth rate [39-41]. Both of these factors combined lead to a

small value of 5. Blends of PVF2 with PMMA have been studied extensively by

several techniques. Paul et al. [42-45] blended several oxygen containing

polymers with PVF2 to determine what polymers will have the most favorable

interactions with the fluorines in PVF2. They concluded that polymers

containing carbonyl groups are highly miscible with PVF2. Similar results

were found from infrared spectroscopy of PVF2/PMMA blends [46-47] from

shifts in the carbonyl absorption peaks. This blend exhibits a cloud point at

330°C [45,48], well above the ceiling temperature for PMMA. Also, negative
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interaction parameters [49] from SAXS [50] and SANS [51] in the melt state

along with melting point depression data [52-53] confirm that this is one of

the most miscible blends studied to date.

Early thermal and dielectric studies have shown that for low concen-

trations of PVF2 (below 40 volume %) in PMMA, the blend shows little or no

crystallinity by the presence of only a single T
g

. Above 40 volume percent,

PVF2 will crystallize from the melt. This is evidenced by the presence of the

relaxation for PVF2 at 100°C. Two other relaxations are also observed: one at

60-80°C corresponding to the T
g

of the mixed PMMA/PVF2 phase and a relaxa-

tion at -40°C [54-59] (dynamic mechanical thermal analysis done in this work,

Figure 1) which is the T
g

or amorphous PVF2 . A model of phase separation in

the melt followed by crystallization was proposed to explain these results. The

conclusions of the scattering data and the thermal data are in opposition to

each other.

Hahn, Wendorff and Yoon [60-61] have recently proposed a model to take

Into account both sets of results. They reject a two-phase model which was

consistent with Morra's results because there is no amorphous PVF2 phase.

They also reject a transition zone between the crystalline and mixed amor-

phous phase because the relaxation peak for the amorphous PVF2 did not shift

or broaden. They concluded that the transition zone must be of constant

density and composed of pure PVF2 . Its placement between the two phases was

chosen since head-to-head, tail-to-tail and branched PVF2 units would be

rejected from the crystal to its surface forming this extra phase. This would

then form a dense phase which would resist mixing with the PMMA.

The presence of a transition zone in crystalline polymers has been

predicted by Flory, Yoon and Dill [62-64] using a lattice model. The problem

they addressed was one of calculating the number of chain units necessary for
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a chain leaving a crystal surrounded by other chains all parallel to each other

to become random in direction. From their calculations for polyethylene a

transition zone must exist which is about 10-12A wide. This had already been

shown by Vonk [65] experimentally.

This investigation examines the microstructure of PVF2 when blended

with PMMA focusing mainly on the presence and size of the transition zone

between the crystalline and amorphous phase. This analysis will be per-

formed using SAXS and SANS since the combination of the two techniques

gives far more information than either one of the techniques alone. The

scattered intensities are used to calculate parameters for several lamellar

models.
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Chapter 2

THEORY

2.1 Three-dimensional Systems

The purpose of this chapter is to give a basic background in scattering

theory for the relationships used in this thesis. The literature contains many

excellent reviews on its fundamentals and applications pertaining to polymers

[66-71]. The basic relationship between real space and reciprocal (Fourier)

space is represented in the equation:

where K f

is a constant, r is the vector between two points in real space, y(r) is

the three-dimensional correlation function averaged over all points r apart,

q is the momentum transfer vector for which Iql = 47tAsin 20g/2 and I(q) is

the intensity in reciprocal space at the point q from the origin. For isotropic

systems integration over 9 and 0 gives:

By Fourier inversion y(r) can De expressed as the transform of I(q) as:

The three-dimensional correlation function is defined by Debye et al. [72-73]

as being zero as r goes to infinity and one when r = 0. The correlation func-

tion is related to the probability of a rod of length r having both ends in the

(1)

(2)

(3)
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same phase either in the same particle or in two different particles, and can be

calculated by:

<il(r
,

)Ti(r
, + r)>

7(r ) - (4}
<T1 (r

I

)Ti(r')>
(4)

where TJ (r
f

) is the difference between the scattering density at r* from the

average of the system. The brackets < > refer to the average over all r's. For

light the scattering density depends on the refractive index, for x-rays T|

denotes the electron density, and for neutrons T| is the ratio of the sum of the

scattering lengths of one monomer divided by its respective volume. This is

represented as:

TWs = P
i

e
-P

e
<
5a >

^iSANS
= Ui/Vi) "

(3/v) (5b)

where p e
,

aj and \\ are the electron density, the sum of the neutron scattering

lengths and the monomer volume of phase i and p
e and a/v are the average

values of the electron density and the scattering density.

Often, the correlation of a particle with itself is important. A self-

correlation can be described as the probability of both ends of a rod existing

in the same phase, but not the same particle. The correlation function at r is

given by the common volume of the two particles averaged over 0 and 0 [69].

Mathematically, the two particles are placed on two sets of coordinates a dis-

tance r apart. One set of axes is allowed to vary for all x, y and z. For instance,

the correlation function for a sphere is [74]:

y(r)= !_I r + J_ r 3 (6)

4 16
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and for a rectangular parallelepipcdon in which r < a, r < b and r < c [69] it is:

Y(r) = 1 -r
ab + ac + be

2V
+ r

2(a + b + c)

3tcV 4tcV
(7)

At larger r's the limits of the integrals become difficult to handle, but simple

computer programs can be used to generate these functions (Appendix A). If

higher order terms are neglected in equations 6 and 7 the slope of y(r) at the

origin is equal to a quarter of the surface to volume ratio;

Y(r) = 1
- _Sr_

4V
(8)

which is Porod's original derivation for a particle of any shape [75] in real

space. So for any two-phase structure in which only density fluctuations are

being considered Porod's law states that the correlation function must decrease

linearly with r.

For objects that have simple shapes such as cubes, spheres or cylinders

the dimensions are readily calculable from a correlation function. However,

for more complex particles, the isotropic orientation of the particles in space

removes details from Y(r).

An average size or correlation length can still be calculated by:

l c
= 2

f
y(r)dr

Jo
(9)

The same information can also be obtained directly from the scattering

curve avoiding the calculation of y(r) altogether. The Fourier transform of

equation 8 at the limit of infinite q gives Porod's law [76]:

10



q
4 VV^

(10)

for which Ap 2 is the square of the electron density, for x-ray scattering, be-

tween the two phases. The slope of a plot of I(q)q2 vs. q" 2 will be proportional

to the surface to volume ratio. If the scattered intensities are not in absolute

units, then:

I(q) =
4 I V

(11)

where

Kq)q
2
dq (12)

and 0i is the volume fraction of phase 1. For more random structures an

average size or "reduced inhomogeneity length" [77] is given by:

40
1
(1-0

1 )

l c
= (13)

(S/V)

This reduced inhomogeneity length can be related to the average size of each

of the phases by:

l c l c

For a dilute system of particles, the small angle region also contains much in-

formation. Gunier's law states that for such a system the scattered intensities

are given by:

11



I(q) = exp (-R2
q
2
/3 )

(15)

for the condition of q Rg « 1 where R
g is the radius of gyration of one particle.

Porod's law and Gunier's law can be used to obtain a size of the structures

present in a three-dimensional isotropic system.

2.2 Lamellar Systems

For lamellar morphologies in crystalline polymers the scattering contrast

varies predominantly along the normal to the lamellae. On a microstructural

scale this can be treated as a one-dimensional system, while on a macrostruc-

tural scale the lamellae are randomly oriented in space making the system

isotropic. Therefore, lamellae can be modelled as a series of randomly oriented

one-dimensional systems for which the intensity is given by:

where i(q) is the intensity from one stack of lamellae and 7(x) is the one-

dimensional correlation function (as opposed to the three-dimensional

correlation function). Again i(q) is the Fourier transform of y(x) so that:

The intensity, i(q), is from a single stack of lamellae, but in an isotropic system

this intensity is spread out on the surface of a sphere of radius q in reciprocal

space. Therefore, as q increases the surface of the sphere grows with q
2 so

that the measured intensity, I(q), is:

(16)

TtVll
2

(17)
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Kq)a
i(q)

47tq
2

(18)

giving:

(19)

The correlation function is calculated from the auto-correlation or the

auto-convolution [if T](x) is chosen to be an even function] of the electron

density profile as:

Tl(x) is usually chosen as a series of square pulses which can include a transi-

tion zone and distributions of crystalline and amorphous sizes. These are then

fit to the experimental functions, but little extra information is gained. Again,

the scattering curve contains far more information about the system.

A major part of this thesis is based on the analysis of the SAXS and

SANS invariants. The invariant is the square of the average deviation of the

electron density or neutron scattering cross-section. The invariant can be

understood in two ways. First, if we define the Fourier transform of T|(x) as

A(q), then:

(20)

i (q) = A (q) A*(q) = y(x) cos qx dx (21)

o

A(q)A*(q) = I (q) q
2

(22)
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Parseval's theorem states that no energy should be lost between the point that

the radiation leaves the object to when it arrives at the detector. In mathemat-

ical terms, this is shown as:

1 f°° f°°

2^ J_
1A (q)|2 exP (iclx) dcl = C

J
TlOOTKx-x*)dx' (23)

and when x = 0 then:

1 r°° f°°— IA (q)l
2
dq = C Iti (x*)l

2
dx' (24)

2n J^o

or:

hL 1 (q) q2 dq = CL ln (x
'

)|2 dx ' (25)

Physically, at x = 0, this is the point at which all objects are perfectly

correlated with themselves (no negative contributions) so that equations 24

and 25 are now:

<ri
2 >= K I (q)q

2
dq (26)

Jo

A comparison of several electron density profiles along with the square

of the electron density deviation is shown in Figure 2. The invariant, < T] 2 >, is

the average of the square deviation over one repeat period and for an ideal

two-phase system:

<T|
2 >= Hi 01 + Tl2 02 (27 )

Ik



or:

<ti
2 >= (p! -pi )

2 0 x02 (28)

If there are three phases of constant electron density, then:

<n
2 >= Til 0i + *l2 02 + Tl? 03 (29)

<T\
2
> = ( Pi " P2 )

2
0102 + ( Pi " P3 )

2
0103 + ( P2 " P3 )

2
0203 (30 >

If we introduce a linear transition zone between the two phases of constant

composition, then:

For a lamellar model the predominant contribution to the surface is normal

to the lamellae; there are two interfaces per repeat period so that S/2V = 1/L

giving:

where 0e is the volume fraction of transition zone in the material. As can be

seen, the introduction of any type of transition zone will decrease the invari-

ant when the contrast between the two phases does not change.

Using conventional x-ray generators, x-rays are usually collimated with

a slit instead of a pinhole as is the case in these experiments. The intensities

obtained are defined as smeared intensities as opposed to desmeared intensities

(31)

<tl
2 >= (p?-pl )

2
0j02-^ (32)
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for pinhole colimation. This line of intensity is perpendicular to the detector

as shown in Figure 3, where the y direction is the main beam direction and q is

the detector position. The scattering measured for an isotropic system corre-

sponds to I(^y2 + q
2

) but is measured at q on the detector. Likewise, all the y

values will contribute to the measured intensity at q. This line of intensity can

be treated as a series of pinhole scatterers. Mathematically, this is described

by:

I(q) = J_j(Vq
2
+ y

2 )w(y)dy
(33)

for:

f

(34)Jw (y) =

For nonisotropic scatterers this equation needs to be modified by the introduc

tion of an angular dependence of the desmeared intensity. In this situation,

the experiment should be performed on a rotating anode generator using

pinhole colimation because the equations are too cumbersome.

A simplification can be made in equation 33 by allowing W(y) to be a

constant. Along with this, the beam must be long enough in the y direction

so that the contribution at even the widest ^q2 + y
2

's are recorded at small q's.

Mathematically, the length of the beam at the detector position must be

greater than (qm ax - Sdd)/2. Usually this condition is not as rigorous since

scattering at large q's is negligible with respect to the scattered intensities at

small q's. This is called the infinite height assumption and yields:

I(q) =
f
l(Vq 2

+ y
2 )dy (35)
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As an example, Porod's law for desmeared intensities relates I(q) to q"4
, but for

smeared intensities this becomes:

(q) =
J i

—

n dy = —7 (36 >~ (q +y 2
)

2
2q

3

and the invariant can be calculated from:

<T
i

2 >= —
Jo

1 (q)qdq
(37)

The calculation of the desmeared intensities from the smeared is

performed by:

Kq) = z^j
o
l(Vq 2

+ a
2 )da (38)

This equation can also be used to obtain a correlation function for smeared

data in which the infinite height assumption applies. Equation 19 relates the

desmeared intensity to the correlation function. Combining equations 19 and

38 and integrating by parts gives:

Y(x) = ^- jj I (Vq
2
+ a

2
)cos qx dq da -

J" Jj
I (Vq

2
+ a2 ) qx sin qx dq da

(39)

and for q = zcosG and z = zsinG

y(x) = 7 f zI(z)[J0 (zx)-qxJ 1
(zx)]dz (40)

4 Jo
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(As much as possible it is always favorable to calculate parameters from the

intensities directly from the detector.)

From equation 23 the Fourier transform of a convolution of two functions

is their product in reciprocal space. Deviations from Porod's law can be ac-

counted for by the inclusion of a transition zone between the two phases.

These deviations in the scattering curve cause the intensity in the large q

region to decrease proportionately to q
n where n usually varies from -5 to

-6 instead of -4. Mathematically the electron density profile including a

transition zone for a one-dimensional lamellar stack can be expressed as:

P
6
00 =

f Pfdeal OO h (X - X') dx' (41)

where p
e
ideal(x ) represents a series of square pulses and h(x) is a smoothing

function dependent on the type of transition zone.

The Fourier transform of the auto-correlation of p
e (x) is the product of

the above functions in reciprocal space:

HQ) = Iideal(q)H
2
(q) (42)

where H(q) is the Fourier transform of h(x). For ideal two-phase systems with

sharp boundaries, Iideal(q) can be replaced by Porod's law at larger angles

giving:

KPH
2
(q)

I (q) = -i-r^ <43 >

q

So at wide angles a simple expression can be used to describe the existance of a

transition layer.
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The Fourier series is a simple method of expressing any periodic function

as a series of sinusoidal terms of various wavelengths. Originally developed to

solve diffusion equations Fourier theory can also be applied to light waves, and

their interaction with matter. Fourier transforms result from allowing the

periodicity of a given function to approach infinity. A periodic function can

be represented by a series of spikes in Fourier space. As the repeat period is

allowed to increase, the distance between spikes in Fourier space grows closer

together but the envelope of the tips of the spikes remains constant, and, in

the limiting case, becomes a continuous function.

Therefore, there is no limit as to what the smoothing function can be.

The two most common smoothing functions describe a linear transition zone

and a sigmoidal transition zone between the two phases. A linear transition

zone of thickness E can be represented by:

which is just a square pulse with an area of unity. The Fourier transform of a

single square pulse is:

h (x) = 1/E from -E/2 <x <E/2
(44a)

and

h (x) = 0 elsewhere (44b)

H(q) = sin(qE/2)

(qE/2)

(45)

A Taylor series expansion neglecting higher terms gives:

H(q) = 1
- (46)

24
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and:

2t-2

(47)

for small values of qE (e.g. up to qE = 2 there is only a 6% error)

KP KPE
Z

Kq) = —
q
4

12q
2

(48)

and for smeared intensities:

Kq) =
Kpn

6qJ
(49)

The transition zone thickness can be obtained from a plot of I(q)q2 vs. q" 2 for

pinhole (desmeared) collimated systems and from I(q)q vs. q"2 for smeared

intensities. Absolute intensities are not required for transition zone

thicknesses but are for Porod constants.

When the interface is assumed to be sigmoidal in shape:

H(q) = exp

f „ 2 2 >
-q q

2

(50)

such that:

KP 2 2
I(q) = — exp (-a

2
q
2
)

q
(51)

The exponent can either be expanded for small q or a plot of ln(I(q)q4 ) vs. q
2

will give a. The smeared intensity takes an intractable form except for the

limit of small q giving:
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Kq) = — ( 1 - 2a 2
q
2

) (52)

2q
3

Other profiles can be derived and will be discussed later.

Absolute units can either be calculated by measuring the main beam

intensity directly or by using a secondary standard. Most detectors cannot

withstand being exposed to the main beam directly, but a transluscent beam

stop with a known attenuation factor will give both a scattering curve and the

main beam intensity. This is the most accurate method since both are mea-

sured simultaneously. A secondary standard, even though less accurate due to

fluctuations in the main beam intensity and the intensity at the calibration

angle, is easier to use.

For SAXS, absolute smeared intensities are given by:

i (q) =
I

lIcj

aA c

CTDA
S

(53)

where:

I = counts/sec for the sample

Ic = counts/sec for the lupolene at d = 150A

a = sample to detector distance

A c = transmission coefficient of lupolene

A s
= transmission coefficient of sample

T = Thompson scattering factor (7.9 x 10"26 cm2 )

D = thickness of sample

C = Kratky ratio of Ic to Io

Then the invariant is given by:

1

°° ~~

<Ti
2 >= r-T" f

q^Odq
2KK3. Jo (54)
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and the Porod constant is:

S_
=
20

x
(l -0

X ) 3i

U(l/q 3
) J

(55)

For SANS, the intensities are usually obtained in Rayleigh ratios:

R(q) = ^4
I 0V

(56)

where V is the volume of the irradiated part of the sample. Rayleigh ratios are

most often used in neutron and light scattering, but can also be obtained for

SAXS taking into account that the scattering length of one electron is .28 x

lO" 1 ^ cm. The units of R(q) are cm" 1 yielding an invariant in units of cm"4 :

<T1
2 >= _L f R(q)q 2

dq
2n 2 Jo

(57)

and in the Porod region are.

V

( 9R(q)

3q"4
;

(58)

2tc(1 -0
1 )0 1

ti
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Chapter 3

EXPERIMENTAL

3.1 Materials

The PVF2 was provided by Polysciences Inc. (lot #4-0533) with a molecu-

lar weight of Mw = 140,000 and an Mn = 80,000. The perdeuterated poly(methyl

methacrylate), PMMA(d8), was purchased from Polymer Laboratories with an

M n = 57,000 and Mw/Mn = 1.08. This polymer had been synthesized using an

anionic catalyst giving a different tacticity than is found for radically

polymerized PMMA. The tacticity (the percentage of each triad) is 7% isotactic,

40% heterotactic and 53% syndiotactic. The hydrogenous polymer, PMMA(h8),

used for dynamic mechanical thermal analysis, DMTA was obtained from

Polysciences with Mw = 90,000 and Mn = 60,000.

3.2 Blend and Sample Preparation

PVF2 and PMMA(d8) were dissolved in dimethyl formamide (DMF) at room

temperature. The low molecular weight and low concentrations of PMMA both

favor dissolution which takes several hours. The DMF was then evaporated in

a casting dish for 3 days, yielding thin films of the blend. Excess solvent was

removed by placing the blends under vacuum for two additional days. The

blends that adhered to the casting dish were removed by adding methanol;

after 30 seconds they could be peeled off the glass surface.

The SANS samples were prepared by pressing the films into a sheet 100-

200 \i thick at 225° C. The sheets were then cut and stacked to fill a circular

mold in which they were pressed for short times at 225°C, and subsequently

quenched in ice water until all voids and residual solvent were removed.
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Three blends, 10, 20 and 30 weight % PMMA(d8), were remelted in the

same mold at 225°C for 10 minutes under vacuum and then quenched in ice

water. The mold was subsequently wrapped in aluminum foil and annealed in

an oil bath for 24 hours at 145°C. These samples are designated as "Q", for

quenched and annealed.

Three blends of similar composition were also wrapped in aluminum foil,

melted at 225°C in one oil bath for 10 minutes, and transferred to another bath

at 145°C for 24 hours. These isothermally crystallized blends are designated as

"M", for melt crystallized. The number that preceeds the letter designation is

the weight percent of PVF2 in the blend (e.g. the sample 90Q contains 90

weight % (86.7 vol. %) PVF2 and was quenched and annealed at 145°C).

The addition of PMMA to PVF2 favors the formation of the crystalline

form which tends to degrade at high temperatures. The dehydrohalogenation

of the chain substituents leads to conjugation along the chain and a brown

color in the samples. Thermal gravimetric analysis showed no weight loss

occurred at the temperature where isothermal crystallization was performed;

elemental analysis showed little or no loss of fluorine, and, therefore, little or

no structural change in these samples.

3.3 Methods of Analysis

The SANS intensities were obtained at the 30 meter neutron scattering

facilities (X = 4.75A) using the High Flux Isotope Reactor (HFIR) at Oak Ridge

National Laboratories in Oak Ridge, Tennessee. Three sample-to-detector

distances (18, 10 and 2 meters) were employed, the angular calibration being

calculated from these values. Absolute intensites were determined for the 18

and 10 meter data using an aluminum standard (Al-4) containing voids with

an Rg = 203 ± 3A and an intercept of R(q = 0) = 130 cm" 1
. The low incoherent
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scattering cross-section (aincoh < 0.01) makes this an ideal standard since no

background correction needs to be made. The 2 meter intensities were con-

verted into absolute units by scaling the incoherent scattering of PMMA(h8)

of the 2 meter data to that at 10 meters. The 2 meter data were divided by a

scale factor of 450 and then combined with the other data.

The SAXS intensities (k = 1.54A for Cu Ka radiation) were obtained at the

University of Massachusetts using a Kratky camera equipped with a Braun

one-dimensional position-sensitive detector and a Canberra Series 35 multi-

channel analyzer. Data were transferred to and analyzed on a Digital PDP

11/34 computer. The SAXS intensities were desmeared using FFSAXS3 [79]

provided by Dr. C. Vonk. Angular calibrations were determined using a uranyl

acetate stained duck tendon. The first six orders of Bragg reflections were used

with a base periodicity of 640A. Absolute intensity calibration was obtained

using a Lupolene standard (24/9) provided by Dr. O. Kratky.

Background subtraction is a critical part of data analysis. Background

levels in x-rays are due to thermal density fluctuations in the amorphous

phase, whether frozen in or randomly occurring in time and space, thermal

vibrations of the atoms, lattice defects in the crystal and impurities in the

system. Underestimation of the background level is indicated by the scattered

intensities not asymptotically approaching zero at large q's. An overestima-

tion, on the other hand, would not be detectable.

There are several ways to subtract a background from a scattering curve

for a two-phase system. These methods are divided into two categories; the

first is for scattering curves which extend to large l's such that the entire

Porod region is included (the intensity has reached a minimum and has begun

to increase); the second type is for those that do not. The choice of the method

is controlled by the angular limit of the detector for the sample analyzed.
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For the first case, the background intensity can be expressed as a power

series in q
2

. Two simplifications have been proposed: Ruland [80] compacts

the power series into an exponential function (a gaussian):

Ib(q) = ae*>q
2

and Vonk [65] discards all terms except for exponents of either 4 or 6.

Ib(q) = aq4 + aq6

These q-dependent backgrounds are subtracted from the scattering curves.

Two simpler methods can alternatively be used in which the background

is assumed to have no q dependence. Either the minimum intensity in the wide

angle region [65] or an extrapolation to q = 0 for a log I vs. q
2 plot [81-83] can

be chosen as the fluctuation scattering. These last two methods overestimate

the background scattering, which results in an error of the order of 10% in

calculating deviations from Porod's law (transition zone thicknesses) and

slightly diminishes the value obtained for the invariant. These errors,

though, are not of great significance making the simpler approach of

constant background scattering preferred in most cases.

The method for correcting scattering curves when the intensities at large

q's are not available is less accurate, because further assumptions concerning

the structure of the samples must be made. This involves the assumption that

the system is composed of two phases each with no internal structure such that

Porod's law (eq. 10) applies. For desmeared intensities the total scattering can

then be expressed as:

I(q) = K/q4 + Ib

where lb is the background scattering level, assumed to be constant. Intro-

ducing the effect of a transition zone yields:

I(q) = KH2
(q)/q

4 + Ib

26



It must, in this case, be assumed that H2
(q) goes to zero at large q's such that a

plot of I(Q)q4 versus q
4 has a slope equal to the background scattering and a

vanishing intercept. For some cases the intercept is not zero, which is due to

the fact that H2
(q) is not zero; Todo, Hashimoto and Kawai [84] however, have

shown that the resulting error in the background is within experimental

error. This is the method chosen to correct for background scattering for the

SAXS intensities in this study. Since the SAXS intensities are smeared, Porod's

law is now given by equation 36. Plots of I(q)q3 vs. q
3 are shown in Figures 4

and 5 and the slopes are listed in Table 1.

An alternative method for background correction, often used by Vonk for

polyethylene systems, is to measure the background from the melted crystal-

line sample [85-86]. This is the most accurate technique since the scattering

due to heterogeneities can be subtracted along with any residual main beam

scattering. This method can also be used with amorphous phase separated

polymers such as Kinning's styrene-butadiene block copolymers [87]; similar-

ly, low molecular weight analogs can also be used to determine the background

level. These methods are unsuitable for blends with mixed phases though,

since Wendorff [50] has shown that concentration fluctuations will contribute

significantly to the background scattering. This is the case for crystalline/

amorphous blends in which the amorphous polymer resides between the

lamellae.

Koberstein [88] has shown that for SANS the background level is domi-

nated by the incoherent scattering in most polymer systems. In PVF2/PMMA

blends, however, the background scattering is complicated by the presence
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of concentration fluctuations in the mixed amorphous phase (interlamellar

region). It was therefore chosen to assume a constant background, determined

by the same method as the SAXS data were corrected. For the SANS intensities

equation 62 applies since pinhole collimation was used. Plots of I(q)Q4 versus

q
4 are shown in Figures 6 to 8 and the background levels also listed in Table 2.
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Chapter 4

RESULTS AND DISCUSSION

4.1 Introduction

The basic goal of this thesis is to study the microstructure of PVT7/PMMA

blends by comparing the small angle neutron and X-ray scattering. The

underlying idea is that, if the scattering length density and the electron

density profiles of the system are the same, then the intensities from both

SANS and SAXS will be identical. The blend of PVF2 and PMMA provides a good

subject for this study. The PMMA resides between the PVF2 lamellae so that the

contrast for both SAXS and SANS is due to the lamellar structure; the high scat-

tering density phase is the crystalline PVF2 for SAXS and the homogeneously

mixed amorphous phase containing PMMA(d8) for SANS.

4.2 Models

Three models are used to describe the concentration of PMMA between

the lamellae and the size of the transition zone, where present. The two-phase

model consists of regions of constant composition and a sharp interface. For a

one-dimensional system the electron density profile of this model corresponds

to a series of square pulses. A good example is high density polyethylene

which has a relatively small crystalline-amorphous transition zone thickness

of <10A. Three-dimensional systems containing voids, though, are the best

representation of a two-phase system with a sharp interface. For the PVF2/

PMMA blend, the first phase is pure crystalline PVF2 and the other is com-

posed of amorphous PVF2 homogeneously mixed with PMMA. This system is

described by the SAXS and SANS invariant equations (see equations 59 and 60
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in section 4.4) with only one unknown (the degree of mixing in the mixed

phase).

Morra found that a two-phase model could be used to fit his invariants

for the PVF2/PMMA system [27]. In the present study, however, it has been

demonstrated that the same data could also fit a model which assumes that a

transition phase is present between the crystalline and the mixed amorphous

phases.

The introduction of a transition zone into the blend leads to an increase

in both SAXS and SANS invariants. A transition zone will create around the

crystals a region void of PMMA. This situation is schematically illustrated for a

two-phase model with a linear transition zone in Figure 9. This corresponds to

an increase in the concentration of PMMA in the mixed amorphous phase. The

invariant for a two-phase system with a linear transition zone (eq. 32) is the

product of two parts: a contrast term between the two phases, and a term de-

pendent on the volume fraction of the phases. The contrast term will increase

with increasing the transition zone thickness. For the blend of PVF2 and

PMMA, the large differences in the electron densities and scattering lengths

of the crystalline PVF2, amorphous PVF2 and PMMA (Table 2) will greatly

increase the contrast term for both SAXS and SANS as the PMMA is concen-

trated; the volume fraction term will decrease only slightly. The net effect is

a large increase in the invariant upon the introduction of a transition zone.

Moreover, the SANS invariant will increase more than the SAXS invariant will,

since the contrast between crystalline PVF2 and PMMA is greater for neutrons

than for x-rays.

The linear transition zone model has been applied to a variety of systems

(homopolymers [65], copolymers [89,90] and blends [22]) and the deviation

from Porod's law due to the interphase has been determined. Modelling this
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system using the SAXS and SANS invariants, the square of the deviation of the

electron density, T] 2 (x), through the transition zone is a parabola. On the other

hand, if a sigmoidal interphase is assumed, T) 2 (x) is a gaussian within this

phase. A transition zone with a sigmoidal profile will be slightly larger than

that for a linear interphase. The difference between the thicknesses of the

two zones, though is negligible within the experimental error. Therefore, in

this work the linear transition zone model was chosen.

The three-phase model for the PVF2/PMMA blend is represented by

a crystalline PVF2 phase, a homogeneously mixed amorphous phase and a

transition zone between the two of constant density amorphous PVF2. This

is the model preferred by Wendorff to explain the dielectric relaxation data

[60,61]. The model also corresponds to the minimum transition zone thickness

that can exist in a system when modelling SAXS invariants. Since the electron

density of amorphous PVF2 is roughly the average electron density of the

system, the transition zone will not contribute to the SAXS invariant. It will

contribute to the SANS invariant, though, since the scattering length density

of amorphous PVF2 is slightly less than crystalline PVF2. In fact, the neutron

scattering curve for pure PVF2, shown in Figure 10, shows a peak correspond-

ing to the lamellar spacing due to the density difference of crystalline and

amorphous PVF2. For semicrystalline polymers the coherent scattering is

usually much less than the incoherent level. The expected neutron scattering

due to crystalline-amorphous density differences calculated from SAXS for iPS

(which is comparable to that of most semicrystalline materials) is negligible

compared to the incoherent level of polystyrene (Figure 1 1).
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4.3 Scattering and Correlation Functions

A comparison of the scattered intensities divided by their respective

invariants is shown in Figures 12-17. There is a large discrepancy between

the SAXS and SANS data for all blend compositions and preparations. Further-

more, plots of I(q)q2 vs. q (Figures 18-23) yield two curves (for which the

integrated area is 2k 2
) enhance the difference between the SAXS and SANS

intensities. The scattering maximum occurs at the same angle for both SAXS

and SANS indicating an interlamellar placement for the PMMA, but the SAXS

intensities at small angles are found to be much higher than the SANS. The

large difference in the two intensity profiles can be attributed directly to the

scattering in the Porod region. This difference can be related to two features

in the microstructure. First, the two scattering profiles are not the same

indicating that the blend is not a two-phase structure. Secondly, the SANS

intensities are directly related to the concentration profile of PMMA(d8) in

the blend, leading us to conclude that the electron density profilie is related

to both the concentration of PMMA(d8) and the density changes occurring in

PVF2. This must result from regions of noncrystalline PVF2. These regions

could either be of constant scattering density as shown in the three-phase

model or of a varying scattering density as in the linear transition zone model.

The one-dimensional correlation functions determined from the SAXS and

SANS intensities are shown in Figures 24-29, respectively. While there is good

agreement between the two functions, there is little definition in either. The

only major difference is at small x's where there is a noticeable curvature in

the SAXS correlation functions, which can again be attributed to a transition

zone. Valuable information can be gained from the correlation functions as

has been shown by Strobl [91]; however, most of this information is obscured

when a high degree of disorder is present in the system, such as bent lamellae,
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corrugated surfaces and a large lamellar size distribution. For highly ordered

polymers such as polyethylene correlation function analysis is a useful

technique to determine microstructural details; however, for most other

polymers, and especially for blends, the parameters obtained from Strobl's

analysis are often imprecise and misleading. Based upon the comparison of

the SANS and SAXS scattering curves and correlation functions, a two-phase

model does not fit.

4.4 Invariants

A quantitative analysis of the microstructure can be obtained using the

invariants to calculate sizes and compositions of the phases.

4.4.1 Two-Phase Model

For the two-phase model, the only parameter for the invariant equations

is the degree of mixing, 0C , of the PVF2 with PMMA in the amorphous phase.

The SAXS and SANS invariants are described by:

<T1 >SAXS = [(pl c -pM) -

(pl a
-
PM)0c ] 1 - 0M 0M

1-0JU-0J

(59)

and

<T1 >SANS =
f ai c aM 's

^ v lc M J

a la aM N

V
0,

M J

' 0M )fj_ 0M ^

l-0c> 1 -0c J

(60)
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where the subscripts 1c, la and M refer to the PVF2 crystalline phase, the PVF2

amorphous phase, and the pure PMMA, respectively. 0C is the volume fraction

of PVF2 in the PMMA mixed phase (e.g. 0C = 0.5 when there are equal amounts

of PVF2 and PMMA in the mixed phase). From these two equations 0C can be

calculated for both SANS and SAXS as listed in Table 3. These two values should

be the same if a two-phase model does fit the invariants. However, the degree

of mixing determined from SAXS is on average 60% higher than 0C determined

from SANS. If a SAXS invariant is back calculated from the SANS degree of

mixing, then this invariant is 75% greater than the one experimentally deter-

mined. A transition zone in this type of system (large differences in electron

and scattering length densities so that the dominant term is the contrast be-

tween the two phases) will give larger than expected invariants; it will also

give a larger invariant for SANS than for SAXS, when compared using the 0C

values.

4.4.2 Linear Transition Model

The second model assumes a linear transition zone. For this system there

are two unknowns: the electron density of the PMMA phase and the size of the

transition zone. The assumptions used in constructing the model are that

there are two phases of constant electron and scattering length density. The

electron density profile has a linear gradient between these two phases and

the interphase has a thickness E and a total volume fraction of 0e (0e = 2E/L,

where L is the sum of the crystalline, amorphous and transition zone thick-

nesses). The transition zone is broken up into two parts. The first fraction

corresponds to the decrease in the electron density from that of crystalline to

amorphous PVF2. This section contains no PMMA or no PMMA can penetrate

any region of PVF2 which has a density greater than that of amorphous PVF2.
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In the second part of the transition zone the electron density decreases from

that of amorphous PVF2 to the density of the mixed amorphous phase. This

region contains PMMA and will contribute to the SANS scattering curve and

invariant. The first part of the transition zone, on the other hand, will have

little effect on the SANS scattered intensities and a small but not negligible

effect on the SANS invariant. The equation for the SANS invariant will

include contributions from two transition zones and is given by:

< T]2 > = Tl2lcN 0! + Tl22N 02 + < Tl2Em > 0E1 + < > 0E2 (61

)

while for SAXS the transition zone is smooth:

< T|2 > = n2lcx 0! + n22x 02 + < n2Ex > 0E (62)

These equations are solved by iterating over values for 0C and e and the results

are listed in Table 4. Using these data, the volume fraction of crystalline, 0\ t

and homogeneously mixed amorphous phase, 02, are determined from:

0! = 1 - 0e = 02 02 =A - & (63)

and are listed in Table 4. Figures 30-35 show plots of I(q)q vs. q
-2 from which

transition zone thicknesses were measured using equation 49 (Table 5). The

Porod constants can be calculated from the slope of this plot and from them the

surface-to-volume ratios, S/V, can be determined (Table 5). The surface-to-

volume ratio for a one-dimensional system should be equal to twice the inverse

of the long spacing, 2/L. The parameter of SL/2V is listed for the different

samples in Table 5, and it is found to be greater than one for all the blends.
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The disagreement could be due to error in the Porod constant, a small crystal-

line lamellar width so that correlations parallel to the lamellae cannot be ne-

glected, or a rough crystallite surface which would increase the total surface

area in the structure. The latter is more likely since defects in the chain

would be rejected to the crystal face creating pockets of noncrystalline

material along the surface. Transition zone thicknesses from SANS intensities

were not determined due to lack of resolution and large fluctuations in the

scattered intensities at large q's.

The agreement between the transition zone thicknesses calculated from

the Porod region and from modelling is poor, but still within error limits. The

error in determining the thickness from the Porod region is large and subject

to errors in background subtraction and fluctuations at large q. Values for 0\

have also been determined from DSC and are listed in Table 4 along with those

from the model. There are several problems in measuring the percent crystal-

Unities of PVF2 and its blends. The most serious comes from the existence of

several crystalline forms, because the enthalpy of fusion is known only for

the most common form, the a phase [tgtg] [92]. Crystallizing in the presence

of any material that PVF2 has favorable interactions with enhances the

formation of the P phase [tt] [61]. Since the PMMA is highly miscible with

PVF2, the blend will contain both a and P crystalline phases. It is assumed

that the enthalpy of fusion of the P phase is the same as that of the a phase.

However, it is more likely that the P phase, which is more dense, has a larger

enthalpy of fusion so that the values from DSC would be overestimated. The

agreement between the model and the percent crystallinities from DSC is fair.

The homogeneously mixed amorphous phase is predominantly PMMA.

Table 6 lists values for the volume fraction of PMMA in this phase with respect

to the volume of the amorphous phase (1 - 0C ) and with respect to the total
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PMMA in the blend (0q), and also the fraction of PMMA in the transition zone

relative to the total blend volume (0m t). The similarity in the first two values

is coincidental, but their variation as the blend composition is changed shows

that the amorphous phase becomes more and more concentrated in PMMA on

addition of PMMA to the system. Furthermore, from the values for 0m t, for all

blend compositions a constant amount of PMMA is present in the transition

zone: when more PMMA is added it will be rejected to the amorphous phase.

4.4.3 Three-Phase Model

The third model is composed of three phases: crystalline PVF2, a homo-

geneously mixed PVF2-PMMA phase, and a transition zone of amorphous PVF2.

All the PMMA is contained in the mixed amorphous phase. Wendorff favors

this model to describe the microstructure of PVF2/PMMA blends, mainly due to

the presence of a P relaxation peak in the dielectric curves. He concludes that

there must be an amorphous PVF2 component. He then uses SAXS to fit the

invariants either to a two- or three-phase model. Wendorff concludes that

"there is local phase separation due to the presence of this amorphous

interface which expels the PMMA despite its favorable interaction with PVF2".

Recently, an upper critical solution temperature, UCST, has been proposed [48]

to exist in PVF2-PMMA blends at 130°C. This finding should have no effect on

Wendorffs and this work, since crystallization was carried out at a higher

temperature. The results of Wendorffs SAXS analysis will be reviewed later.

Even though the three-phase transition zone must have different properties

than those of bulk amorphous PVF2, for convenience we will use the electron

and scattering length densities of amorphous PVF2 (the density of this phase

will be addressed later).
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The SAXS and SANS invariants for the three-phase model are:

<71
2
SAXS> = <Tl

2
lcx >0 l +<Tl

2
2x > 0c + <Tl2ex > 0c (64)

and:

<T1
2
SANS> = <Tl

2
lcN > 01 + <Tl

2
2N > 02 + <n2

cN > 0c (65)

Again these were solved by iterating through values of 0C and 0e .

The values for 0e are listed in Table 7. They correspond to the minimum

transition zone thickness that must exist in this system. The volume fractions

of the interphase in the system range from 20% to 25%, and such values are

more amenable to physical intuition than those calculated from the linear

transition zone model. By neutron scattering the three-phase system appears

as a quasi-two phase system, accounting for the large SANS invariant and the

high concentration of PMMA in the amorphous phase.

The percent crystallinity of the PVF2 calculated with respect to its volume

fraction in the blend remains constant (45%) over the composition range of

0-30 wt.% PMMA. This agrees very well with data obtained from DSC measure-

ments. The volume fraction of PVF2 in the mixed amorphous phase with

respect to the total blend volume is also found to be constant (18%), and the

volume fraction of transition zone is constant (20%) as well.

The transition zone thicknesses can be calculated from the Porod region.

We first choose two square pulses Pi(x) and P2M where pi has a width of C + E

and P2 has a width of C. The smoothing function, h(x), is for mis case a pair of

delta functions a distance E apart centered around the origin giving:

1 f E> 1 s
f E >

5 x + — + — 8 X
2 I 2 j 2 2 >

(66)
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The function p e (x)' represents the three-phase model with the exception that

the transition zone electron density is midway between those of the crystalline

and amorphous phases (Figure 36). The real electron density profile is given

by:

Pe(x) = pi(x) h(x) + Ap 2(x) (67)

where P2OO controls the height of the crystalline electron density weighted

by the constant A, [A = (pi c - Pla)/(Plc - P2)L Tne scattered intensity is given

by:

(68)

or:

(69)

I (q) =
J ^ J

p
e
(x) p

e
(x

J

+ x) dx cos qx dx

2

I (q) = FT [ pi(x) h (x) ] +

2

2A [ Pl(xThV) p2(x) ] + FT [ p 2(x) ] A
2

The Fourier transform of h(x) is cos(Eq/2), and that of the auto-correlations of

the square pulses [pi(x) and P2OO] is Porod's law at large q. The cross term

reduces to zero since one of the assumptions of Porod's law is that r is small; in

this case r < E giving:

K 2 Eq A2K
I (q) = — cos" ^ + ( 7°)

q
2 q

and for small qE then:

f

I (q) = 4
q
4

^

2_2

1 + -

39
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The parameter A must be calculated from the model (if it is not known, it can

be neglected for these blends since the electron density of the PVF2 amor-

phous phase is close to the average of the other two phases). The values for 0e

calculated from the Porod region are also listed in Table 7 for comparison with

those from the model. The interphase thicknesses determined from the model

and from the Porod region again do not agree. The agreement appears to be

better for this model than for the linear transition zone model, but the values

of the Porod region-to-model thickness ratios for both cases is about the same.

4.5 Comparison with Literature

This section will compare the invariants and long spacings obtained in

this work with those determined by Morra and Wendorff. Briefly, Morra's

invariants are slightly smaller than those measured in this work and

Wendorffs are slightly larger. The values for the long spacings found in this

study are in agreement with those found by Morra except for the spacing of

the 30 wt.% PMMA blend which is 15% smaller. Morra concluded that all of the

PMMA was rejected to the interlamellar region leading to an increase in the

long spacing with PMMA concentration (Wendorff found similar results). The

invariants and long spacings for this work and Morra's are listed in Table 8

for comparison.

The basic difference in the measured invariants occurs for the 20%

PMMA blend which, from this work, is 26% higher. Morra draws a curve

(Figure 37) through his invariants vs. composition assuming the 30 wt.%

PMMA blend invariant is overestimated since he used a two-phase model to fit

his data. However, if his data are analyzed considering the invariant of the 20

wt.% PMMA blend to be low, then the curve through his points will pass

through a maximum at 30 wt.% PMMA. In fact, using equation 65 for a three-
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phase model and assuming that the transition zone thickness is 20%, the ratio

of the percent crystallinity to the volume fraction of PVF2 in the blend is

constant (45%) and that 18% of the PVF2 is contained in the mixed amorphous

phase (all determined from these experiments) then by differentiation the

maximum in the invariant curve occurs at 37.7 vol.% or 30 wt.% PMMA(d8). A

maximum is expected due to the two competing contributions to the invariant.

As PMMA is added to the blend, the contrast term greatly increases with the

product of the volume fractions of each of the phases changing little. When

the PMMA content becomes high the product of the volume fractions will drop

sharply with PMMA concentration causing the invariant to decrease. A maxi-

mum will occur between these two extremes. A maximum would also be ex-

pected for the linear interface model, but there are not enough constant

parameters in the system to find its location. With respect to the argument

presented above, the findings of Morra agree well with the presence of a

transition zone, also determined by this work.

Wendorff has used Strobl's analysis of one-dimensional correlation

functions to obtain crystalline phase sizes and invariants. A brief outline of

Strobl's analysis will be given to understand Wendorffs work. Strobl's one-

dimensional correlation function (K(z)) is given by:

and is defined at K(0) = < T] 2 >. This is the normalized one-dimensional corre-

lation function described in equation 19 multiplied by the invariant for the

system being studied. The simplest one-dimensional model to describe lamellae

is an equally spaced series of identical square pulses as given in Figure 38a.

K(z) (72)
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The correlation function, shown in Figure 38b, is a series of

properties:

K(0) = 0102 (Pl
e
"P2e)

2

K(Z) = 0 Z = 0!02L

K(Z) = minimum Z = 0\L

The slope of the self correlation triangle (x < c) is:

dK (z) _ - ( Pi - pi f
dz L

All these relations hold for a two-phase model. With the introduction of a

distribution of crystallite sizes and long spacings along with a transition zone

the correlation function loses its definition as illustrated in Figure 38c. The

above relations still hold, but the distribution of long spacings and crystallite

sizes damps out structure at large z and adds curvature at all minima and

maxima except at small z's. The transition zone causes curvature in the

correlation function at z < E and can be shown that y\Q) = 0 for linear and

sigmoidal transition zones. In the region E < z < Cm in (where Cm in is the

minimum crystallite size) the one-dimensional correlation function is linear.

The slope of this line is given by equation 76 and its intersection with K(z) = 0

is given by equation 74. Extrapolation of the linear portion of the correlation

function to z = 0 gives the quantity Q, the ideal two-phase invariant. This

value, when a linear transition zone is present in the system, will differ from

K(0) by the factor:

Q-K(O) = (p*-plf^ (77)
o

triangles with the

(73)

(74)

(75)

(76)
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Q is the invariant for an ideal two-phase model with sharp boundaries, while

K(0) includes the effect of the transition zone. It is this Q that Wendorff

defines as his invariant.

Considering the one-dimensional correlation function for a three-phase

model, the electron density profile and its correlation function are

represented in Figure 39. The one-dimensional correlation function is

expressed as:

T(x) = *n a2(a - x) + 2Tib2(b - x) + ti c2(c - x) + 2Tl b(Tla + ti c)x

for 0 < x < b (78)

and:

7(x) = 7i a2(a - x) + T] c2(c - x) + 2Ti aTi c(x - b) + 2r| b(r|a + Ti c)b

for b < x < a (79)

Differentiating the correlation function with respect to x gives:

= "(Tla-Tlb)
2
- (^lb-Tic)

2
0 < X S b (80 )

and

= -(Tl a -Ti c )

2
for b<x<a (81)

dx

so that an extrapolation of the region b < x < a through the point y(b) to the

origin gives:

Q = Ti
2aa + ti

2
cc + 2r)bTi ab + 2r]bTicb - 2Ti aTi cb (82)

which is not equal to:

^2 = t, 2a + 2rib
2b + 7ic

2c (83)
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used by Wendorff. The difference between the two values is:

Q-T12 = 2llbb(Tla + 11c-Tlb)-2TlaTlcb

The first term is negligible since Tib and the term in the parentheses will be

close to zero giving:

Therefore, Wendorffs x-ray invariants from Strobl's analysis should not be

used to calculate phase sizes for the three-phase model. His invariants are the

same as Morra's and this work's within experimental error. So the micro-

structure does not need to be composed of three phases to fit these data.

4.6 Error Analysis

There are several sources of uncertainty in these experiments. The first

point of uncertainty is in the measurement of the invariants, mainly obtain-

ing absolute intensities and subtracting a background. Background subtrac-

tion was discussed earlier in the experimental section. The use of a secondary

standard, measuring I by an indirect means, leads to a 5-10% error. The values

listed in Tables 4 - 7 are for a 15% error in the invariants. This excess error

includes problems in knowing the crystalline phase density and the composi-

tion of the amorphous phase. All parameters for each model were calculated

using the average electron density for the a and p phases with respect to their

volume fractions (61). Since up to 50% of the crystals are in the all trans

configuration (P phase) the electron density of the crystalline phase is a pair

of 8 functions. But including this effect in the calculation leads to a difference

of less than 5% from using the average electron density.

Q-rfi = -2Tl aT| cb



The PMMA concentration in the amorphous phase varies due to distri-

butions in crystalline and amorphous phase size. If the concentration of the

PMMA between the lamellae is represented as a pair of delta functions, the

largest error that can be produced is 10% (for a PMMA content of 20% with

delta functions at 10% and 30%). For a gaussian distribution of PMMA concen-

tration obtained from Vonk's theoretical correlation function analysis the

error is less than 5%. The effect due to PMMA concentration variations and

crystalline density variations due to the presence of the (3 phase are present.

Therefore, a good estimate of the maximum possible error is 15%.

Another source of uncertainty in these experiments is the value of the

amorphous phase density for the three-phase model. This phase was assumed

to have the density of amorphous PVF2. However, the PVF2 phase could have a

density between that of the crystalline phase and the amorphous phase. The

density of the amorphous PVF2 phase was allowed to vary in order to estimate

the effect on the transition zone thickness. As might be expected, changing

the electron density of this phase only affects the contrast terms (since the

major change occurs in the average electron density) so that the transition

zone thickness remains constant. The parameter that varies is the composition

of the homogeneously mixed amorphous phase. Therefore, since the param-

eter of interest is the phase size of the transition zone, this effect can be

neglected even though it is important since it would be valuable to determine

the exact electron density profile of the transition zone.



The final point of controversy in all PVF2 studies, and especially for its

compatible blends is the degradation of PVF2 at elevated temperatures (93).

PVF2, in the a form, will not degrade, but when the (5 and y phases are present

the main chain dehydrohalogenates, leading to conjugation along the chain

and crosslinking between chains (93). The samples used in this work contain

P phase crystals and show a yellow-brown color indicating conjugation.

Elemental analysis on the blends studied, listed in Table 8, shows no fluorine

loss during crystallization. Therefore, the electron density of the crystalline

phase did not need to be modified.
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Chapter 5

CONCLUSIONS

In summary, the SAXS and SANS intensities have been compared and

their invariants used to calculate parameters describing the microstructure

of PVF2/PMMA blends for three models.

The two-phase model, used by Morra, has been found to be inadequate by

comparison of the scattered intensities. A difference greater than 60% was

found between the concentration of PMMA in the mixed amorphous phase

resulting from the SAXS and SANS invariants, respectively.

The linear transition zone and three-phase models each have two param-

eters which characterize the system. These parameters have been calculated

for each model and found to agree with percent crystallinities from DSC within

experimental error.

It has been determined that there must be a transition zone of at least 20A

between the crystalline and amorphous phases. The three-phase model has a

transition zone thickness of 20-25A and is composed of pure PVF2. The inter-

phase in the linear transition zone model is approximately 50A thick and a

fraction of it (~ 20-25A) is composed of pure PVF2 of gradually decreasing

density. This fraction contains cilia and loose folds which can also explain the

presence of a PVF2 relaxation in the dielectric relaxation spectrum. Both of

these models can explain the scattering and the thermal analysis data.

This method of invariant analysis is far more accurate for determining

transition zone thicknesses than measuring deviations from Porod's law. The

errors in the invariants are smaller than the errors due to background
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subtraction and statistical fluctuations in the tail portion of the scattering

curve used for the Porod analysis.
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Chapter 6

SUGGESTIONS FOR FURTHERWORK

The combination of SAXS and SANS has been proven by this study to

provide an excellent method for studying the morphology and transition zones

of crystalline-amorphous polymer blends.

A similar investigation could be applied to a variety of systems in which

rejection of the less readily crystallizable species occurs during

crystallization. By varying the miscibility of the two polymers from a highly

miscible to a semicompatible state a variety of morphologies can be obtained.

This chapter outlines possible future studies on several crystalline-amorphous

polymer pairs.

Future studies in this field should first focus on similar polymer-polymer

blends such as PEO with PMMA or iPS with PPO. These blends also reject the

noncrystallizable polymer to the interlamellar regions. Scattering studies of

these two blends would yield different information. Since PEO is synthesized

by an anionic process it should have no branches and therefore a small

transition zone. Preliminary experiments by T. Russell have shown this to be

true. On the other hand, iPS is known to have branches and would therefore

have a large transition zone. These results are intuitive but should be

confirmed.

Similar to these is the blend of iPS and aPS. Wai has shown from x-rays

that the aPS is rejected to the interfibrillar region, and preliminary SANS by

this worker has confirmed this result. The scattering patterns can be divided

into two regions, the Guinier region where the log I decreases with q
2 and the

Porod region where the log I decreases linearly with the log q"4
. Phase sizes

and surface to volume ratios can be measured from these. A more interesting
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part is using iPS and epimerized iPS blended with fully deuterated aPS.

Epimerized iPS is chemically modified iPS in which the isotacticity is lowered.

This would then provide the opportunity to study secondary crystallization by

SALS and to observe the microstructure by SANS.

The most interesting type of blend to study is a crystalline-amorphous

semicompatible polymer blend such as iPS-PVME or aPS-iPVME. The idea is

that by varying the thermal treatment of the blend and thereby the relative

rates of phase separation and crystallization a variety of morphologies and

properties can be developed from one polymer pair.

The first step is to choose the molecular weights of both polymers such

that the LCST of the mixture lies near the Tm of the crystallizable component.

An LCST well below the Tm will make the system unmanageable to study, and an

LCST well above the Tm would remove the possibility of studying both

phenomena simultaneously.

The next phase of this study is to examine the rates of phase separation

and crystallization by SALS and optical microscopy. Rates of phase separation

should be measured at temperatures Tm and at high concentrations of the

crystallizable polymer.

The final stage is to generate a series of morphologies by choosing

temperatures at which the growth rates differ. The properties of this blend

should then be correlated to the morphology.

At the present time, scattering studies on these types of blends is limited

by the accuracy of the apparatus. Improving the accuracy of SANS and SAXS

measurements which are tied to an absolute calibration standard is by far the

most important contribution that could be made.
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Appendix

TABLES
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Table 1

The background intensities determined from

Iq3 vs. q3 (SAXS) or Iq4 vs. q
4 (SANS) plots.

lb SAXS lb SANS

90Q 1.02 x 1025 .42

80Q 1.07 x 1025 .43

70Q 1.07 x 1025 .39

90M 1.05 x 1025 .42

80M 1.17 x 1025 .42

70M 1.18 x 1025 .39
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Table 2

Electron densities and scattering lengths

for PMMA and PVF2.

pe x 1023 a/V
(e/cm3 ) (cm -2

)

PMMA 3.90 7.12

Amorphous PVF2 5.06 2.68

Crystalline PVF2 (a) 5.78 3.08

Crystalline PVF2 (P) 5.92 3.16
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Table 3

Calculated volume fraction of PMMA rich phase

from the SANS and SAXS invariants.

0c SANS 0c SAXS

90Q .48 .71

80Q .34 .55

70Q .29 .45

90M .52 .72

80M .35 .55

70M .29 .46
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Table 5

Transition zone thicknesses and surface to volume ratios

obtained from the Porod region compared with

the transition zone thicknesses from the two invariants.

0e (MODEL) 0 e (Porod) S/V

CT

2V

90Q .54 .19 .0199 1.74

80Q .53 .23 .0117 1.08

70Q .46 .27 .0186 1.72

90M .47 .21 .0211 1.85

80M .52 .24 .0132 1.23

70M .41 .24 .0164 1.56
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Table 6

The volume fraction of the PVF2 rich phase,

the volume fraction of PMMA in the PMMA rich phase

and the fraction of PMMA contained in the transition zone

for the linear transition zone model.

(l-0c) 0q 0MT

90Q .59 .49 .07

80Q .70 .63 .10

70Q .73 .77 .09

90M .51 .58 .06

80M .69 .64 .09

70M .72 .79 .08
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Table 8

Comparison of d-spacings and invariants

from this work with Morra's work.

d spacings invariants

A (l2/cm 6)

fit from

Morra data this work Morra this work

90 166A 175A 2.35 2.83

80 194A 190A 2.85 3.87

70 229A 190A 4.17 4.19
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Table 9

Results from elemental analysis

on the PVF2/PMMA blends.

% Fluorine

measured ideal

90 .525 .535

80 .476 .475

70 .417 .416

Standard* .422 .426

*PVF2/PMMA (h8) blend
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FIGURES
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Figure 2. Electron density profiles and the square of the devia-

tion of the electron density from the average electron

density for three model systems.
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Figure 3. Relation between smeared and desmeared scattering

angles.
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Figure 9. Electron density profile and concentration profile for

PVF2/PMMA blend.
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Figure 10. I vs. q SANS for pure PVF2.
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Figure 11. Calculated SANS intensities for pure iPS from SAXS
results.
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Figure 36. Development of the equations and structure of the
three-phase tiered model in real space.
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Figure 37. Comparison of experimental and two calculated values

for mean square electron density fluctuation (Morra's

Analysis).
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Figure 38. Electron density and correlation function representa-
tion for the ideal two-phase model compared with a real
correlation function.
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Figure 39. Electron density profile and one-dimensional correla-
tion function for the three-phase model.
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