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ABSTRACT

THERMODYNAMICS OF SUPERCRITICAL GAS-POLYMER MIXTURES

February, 1988

Eric J. Beckman, B.S., Massachusetts Institute of Technology

Ph.D., University of Massachusetts

Directed by: Professor R.S. Porter

Supercritical fluids (SCF's) are commonly applied as extractants by the food

and pharmaceutical industries due to their unique combination of properties.

Whereas a large body of information concerning small molecule/SCF mixtures

is available in the literature, studies of either the solubiHty of polymers in SCF's

or models with which to predict the phase behavior of such systems, are few. In

this work, predictions of the phase behavior of the poly(methyl methacrylate)-

CO2 and polystyrene-C02 systems are made using a generalized mean field

lattice gas (MFLG) model and compared to experimental solubilities measured

using a flow-through extraction unit. Because the necessary binary parameters

are found via fitting of the model to published sorption data, calculations of

dilute solution behavior are purely predictive. These predictions display the

proper dependence of solubility on pressure and temperature, but underestimate

the solubility, probably due to lack of segment density fluctuation terms in the

MFLG model. Not surprisingly, CO2 is a better solvent for PMMA than for PS.

Attempts to dissolve Bisphenol A polycarbonate in supercritical CO2 were

thwarted by the rapid solvent-induced crystallization (SINC) of the polymer.

The extent and rate of crystallization are comparable to those observed in the

SINC of polycarbonate by acetone. The behavior of the melting temperature

implies that the Tg of the mixture passes through a minimum versus pressure,

consistent with trends in other gas-polymer mixtures.

V



In addition, the MFLG model, in conjunction with postulated vitrification

criteria, is used to predict the pressure-dependence of the Tg of a polymer-

gas mixture. Three thermodynamic criteria are evaluated; iso-free volume, iso-

entropy, and iso-viscosity, the latter represented by the quantity TS, as per the

Adam-Gibbs derivation. Because the necessary model parameters were deter-

mined via fitting to phase behavior data, the subsequent Tg calculations involve

no adjustable parameters. The constant-TS condition consistently produces the

best prediction of the pressure and composition dependencies of the Tg. Pre-

dictions of the Tg of the PS-CO2 and PMMA-CO2 systems versus pressure are

in excellent agreement with published results.
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CHAPTER 1

Introduction

1.1 Supercritical Gases: Novel Process Fluids for Polymers

Supercritical gases have been used extensively by the food and pharma-

ceutical industries [Paulaitis, et al, 1983; Randall, 1982] in extractions of high

boiling or temperature sensitive compounds due to the interesting properites

which gases display above the critical point, such as:

1. Supercritical fluids have Hquid-hke densities which can be adjusted over a

significant range by changing the pressure. Thus the solvent power of a par-

ticular fluid can be varied without changing the composition of the fluid.

Varying the solvent power of the gas will vary its selectivity towards a par-

ticular solute; consequently supercritical gases have been used to efficiently

separate constituents of interest from mixtures, such as in the case of coffee

decafFeination [Jasovsky and Gottesman, 1981].

2. Supercritical fluids have gas-Hke diffusivities and therefore contribute to

high mass transfer rates [Schneider, 1983; King, et al, 1983].

3. The critical temperatures and pressures of many of the gases commonly

used in supercritical processes are low, less than lOOC and 100 atm. (see

table 1.1).

1
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The use of supercritical fluids in polymer processing has been "rediscovered"

in the past five years. Since the 1940's, the high pressure polyethylene process

has been operated at temperatures and pressures far above the critical point of

ethylene. Not surprisingly, a great deal of phase behavior data has been gathered

on this system [Ehrlich, 1965; Swelheim, et a/., 1965; de Loos, et al. 1983, 1984;

Kleintjens, 1979; Luft and Lindner, 1976; Raetzsch, et ai, 1980; Spahl and Luft,

1981]. By contrast, many foamed polymer processes are conducted at pressures

and temperatures above the critical point of the foaming gas, yet little or no

information exists as to the phase behavior of such systems or the effect which

the gas has on the glass transition of the polymer [Griskey, 1976; Bonner, 1977].

Phase behavior data on systems other than those involving polyethylene

are few, yet interest in such systems has grown significantly over the past five

years. Recent applications include fractionation [Krukonis, et al, 1987], com-

bined polymerization and fractionation [Kumar, et a/., 1986], and the use of

supercritical gases to transport temperature sensitive additives into a polymer

[Sand, 1986]. To support such advances, there is a continuing need for phase

behavior data, which at present is scarce, on supercritical gas-polymer systems.

1.2 Thermodynamic Modelling of Supercritical Gas-Polymer Systems

Just as there is a lack of phase separation behavior data for polymer-

supercritical gas systems, so too the number of thermodynamic models which

have been shown to be suitable for describing such systems are also few [McHugh

and Krukonis, 1986]. Modelling strategies commonly used for describing the sol-

ubility of low molecular weight solids in supercritical gases are inappropriate for

use with polymers for several reasons:



3

1. In describing the solubility of non-polymeric solids in supercritical gases, it

is usually assumed that the amount of gas sorbed by the solid is negligible,

thus the chemical potential of the "soHd" phase is calculated using the

saturated vapor pressure and the Poynting correction [Paulaitis, et al, 1983,

McHugh and Krukonis, 1986]. This approximation is very poor for gas-

polymer systems [Lundberg, et al, 1969; Liau and McHugh, 1986]; in fact,

often the reverse, that little or no polymer dissolves in the gas, is a more

accurate assumption [Bowman, 1976].

2. The chemical potential of the gas is usually calculated via one of the cubic

equations of state, such as Peng-Robinson, commonly used by chemical

engineers [Kurnik, et al, 1981]. Due to a lack of higher order reciprocal

volume terms, such equations are inappropriate for use with high density

liquids such as polymers. Thus, even without the restriction in item 1 above,

there are still problems with using the low molecular weight soHd modelHng

strategy.

Unfortunately, many of the thermodynamic models which have been success-

fully appHed to polymer solutions, such as that by Flory and Huggins, will not

accurately describe the behavior of supercritical systems due to lack of an ex-

plicit volume dependence of the free energy. As has been observed by Walsh

and Dee [1987], and others, it is the volume, or equation of state, dependence

that plays the major role in determining the phase diagram of polymer-gas mix-

tures at high pressure. Newer models, such as Flory's equation of state, while

including a "free volume" dependence, are cell models, and as such, will not

accurately describe the high compressibility of gases in the supercritical state

[Liu and Prausnitz, 1980]. There is therefore a need to develop a model which

will properly describe the thermodynamic behavior of both gases and polymers

and mixtures thereof.
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The glass transition of polymer-gas systems has received even less attention

than has the phase behavior. One reason for this is that it is extremely difficult

to measure the Tg of a gas-polymer mixture under pressure. Thus, use of models

which require one or more adjustable parameters (and thus fitting to significant

amounts of data) to calculate the Tg of a mixture would therefore be less than

adequate for such systems. Likewise, because the Tg of such mixtures is affected

by both gas concentration and pressure, a suitable model must also contain the

proper pressure dependence. Knowledge of the course of the Tg-P curve of a

polymer-gas mixture is important because the mass transfer rate of dilute sys-

tems and the potential processibility of concentrated mixtures are both related

to the state of the polymer, glassy or rubbery, at the process temperature and

pressure.

1.3 Scope of this Work

The goals of this research are the following:

1. Add to the fundamental data base of polymer solubility in supercritical

gases.

2. Demonstrate the ability to reliably predict the phase behavior of supercrit-

ical gas-polymer mixtures.

3. For the first time, predict the glass transition temperature of a gas-polymer

mixture at high pressure.

Three polymer-gas systems have been examined; polystyrene-C025 poly(methyl

methacrylate)-C02, and polycarbonate-C02. Polystyrene was chosen because

some solubility data is available in the literature to use as a guide. Poly(methyl

methacrylate) and polycarbonate were chosen to attempt to take advantage
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of chemical similarities between CO2 and solute to maximize solubility. Ini-

tial results on the polycarbonate-COs system showed that the gas had induced

crystallization in the polymer rather than dissolve it. Further investigation on
this system was therefore directed towards this crystallization process. Carbon

dioxide was chosen as the solvent because it is non-toxic, non-flammable, and

has a readily accessible critical region.

ure
Literally hundreds of thermodynamic models are described in the literat

of the past 15 years alone. Because of their past successes in the modelling

of polymer solution data, the emphasis here has been directed towards lattice

models. The effect of changes in volume on the phase diagram is represented by

changes in the number of vacancies, or holes, which, along with the molecules,

are postulated to occupy the lattice sites. After an extensive computer modeUing

comparison, the Mean Field Lattice Gas model of Kleintjens and Koningsveld

[Kleintjens, 1979] was chosen to model the systems of interest. ModelHng was

directed towards the PS-CO2 and the PMMA-CO2 mixtures, as well as the

PS-SO2 system, for which some literature data exists.

In Chapter 2 the performance of various lattice models is compared using

the description of the pVT behavior of the constituents of interest, i.e., super-

critical gases and polymers, as a benchmark. In Chapter 3 an attempt is made

to redefine two of the heretofore empirical parameters in the MFLG model in

terms of fundamental constants. Chapter 4 contains the modelling of the sorp-

tion of supercritical CO2 by PMMA and PS and subsequent predictions of the

solubility of these polymers in the gas versus data. Chapters 5 and 6 contain the

procedure developed for predicting the Tg of polymer-supercritical gas mixtures.
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Table 1.1

Critical Constants of Some Common Gases
[Randall, 1982; Smith and Van Ness, 1975]

Critical

Temperature (C)

Carbon Dioxide 31.1

Ammonia 132.5

Methane -82.6

Ethane 32.3

Propane 96.7

Butane 152.1

Ethylene 9.3

Nitrogen -147.0

Nitrous Oxide 36.5

Sulfur Dioxide 157.7

Sulfur Hexafluoride 45.5

Trifluoromethane 25.6

1,1 Difluoroethane 113.5

Argon -122.4

Xenon 16.6

Critical Critical

Pressure (atm.) Volume (cc/mole)

72.8 94.0

111.3 72.5

45.4 99.0

48,2 148.0

41.9 203.0

37.5 255.0

49.7 129.0

33.5 89.5

71.5 97.4

77.8 122.0

37.1

47.7

46.9

48.1 74.9

57.6 118.0



CHAPTER 2

Modelling Pure Component Data I: A Comparison of
Lattice Equations of State

Literally hundreds of equations of state have been developed over the past

15 years [Reid, 1983]. Whereas many of these equations have been shown to

effectively describe low molecular weight liquid-Hquid and Hquid-gas phase sep-

aration behavior, a large portion of these models fail when a polymer is one of

the constituents of the mixture due to lack of an explicit molecular weight de-

pendence and increasing error as density increases. By contrast, lattice models,

many of which were designed for the description of polymer solution behavior,

can be successfully extended for use with gases and low molecular weight liquids.

Thus this work concentrates on the evaluation of lattice models for the descrip-

tion of polymer and gas pVT behavior and the phase separation of mixtures

thereof.

In Sections 2.1 and 2.2, a number of commonly used lattice equations of

state are compared. In Section 2.3 the performance of five of these models

is evaluated via fitting to pVT data of CO2
,
SO2

,
CF3H , and polystyrene

(PS). Section 2.4 contains a discussion of comparisons of the MFLG model with

equations of state commonly used by chemical engineers. Section 2.5 concludes

with a summary of the results presented in Chapter 2.

7
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2.1 Mean Field Lattice Models Which Include the Effect of Segmental Surface

Areas

The Flory-Huggins expression is, without a doubt, the most commonly used
model for the description of the phase separation behavior of polymer solutions.

Such a model cannot, however, be apphed to polymer-gas mixtures without

significant modification [Liau and McHugh, 1985; Maloney and Prausnitz, 1976].

The Flory-Huggins model contains no means by which to account for the effect

of changes in volume (and consequently changes in pressure) on the free energy.

The volume change on mixing, AF^ is assumed to be zero in the Flory-Huggins

model which results in the situation that the Gibbs and Helmholtz free energies

are equivalent. This approximation is adequate for the description of UCST-
type phase separation behavior at low pressures, but, because LCST-type phase

separation is a strong function of AF^ [Patterson, 1968], the Flory-Huggins

model will not predict an LCST without empirical modification of the interaction

parameter. In addition, contrary to experiment [Zeman, et al, 1972; Zeman

and Patterson, 1972], pressure plays no role in the determination of the phase

diagram in the Flory-Huggins model. Finally, the Flory-Huggins interaction

parameter is almost always found to vary with concentration, further Hmiting

the predictive power of the model.

The effect of changes in volume and, consequently, pressure on the free

energy can be modelled using one of two general strategies; that of the cell

approach [Prigogine, 1957; Flory, et al, 1964], and that of the lattice gas formu-

lation. Whereas both methods have been shown to produce good descriptions of

the effect of pressure on the phase diagrams of polymer mixtures the lattice gas

method has been shown to provide a better representation of both pure compo-

nent pVT data [McMaster, 1973; Nies, et a/., 1983], and the sorption of gases by
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polymers [Liu and Prausnitz, 1980], in the vicinity of the solvent critical point.

As will be seen in Chapter 4, accurate descriptions of gas sorption by polymers
in this regime will be required to insure good predictions of polymer solubiHty

in supercritical gases at high pressures. Therefore, this work will concentrate

on the use of a lattice gas model to predict the phase behavior of polymer-gas

mixtures.

The lattice gas approach, which has been in use since the 1920's [Schottky,

1929], is one in which vacant sites, or holes, are introduced into the lattice. Thus
a pure component is assumed to be a pseudo-binary mixture, and changes in

volume with pressure or temperature are modelled by changes in the concentra-

tion of the holes in the system. In the first approximation, the distribution of

holes on the lattice is assumed to be random.

The other major drawback to the Flory-Huggins model mentioned above,

that of the apparent concentration dependence of the interaction parameter, can

be at least partially explained via the introduction of the concept of segmental

contact surface areas during the formulation of the internal energy of mixing

of holes and segments [Staverman, 1937]. Segments and holes are permitted

distinct coordination numbers, zu, which are assumed to be proportional to

their respective surface areas. Therefore, the total number of nearest neighbor

contacts of a segment or hole, 2Pii + Pij, is proportional to the contact surface

area, o",-:

2Pii + Pio = TiimiZu = nimikai (2-1)

2Poo + Poi = riozoo = nokao (2 - 2)

where the n,- and rrii are the number of moles and number of lattice sites per

molecule, respectively, of the segments and holes (holes are assumed to occupy
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1 site each). The proportionality constant, k, is set to one in the first approxi-

mation and thus the ratio of the coordination numbers equals the surface area

ratio. This approach is siniilar in concept to that used to construct decorated

lattice models [Mermin, 1971; Fisher, 1968]. The lattice here has become an
abstraction rather than a rigid construction with a mean coordination number,
z, which varies with hole concentration:

-- E Pjj _
^ ~

Y^nirrii
~ " Ti*/*!) = -7i(/>i) (2-3)

where 71 = l _ zmIzqq = \ - aiju^ and is the volume fraction of the

segments. The change in the internal energy upon mixing holes and segments,

At/, is assumed to be equal to the change in the number of the various contact

pairs on mixing, multiplied by their respective interaction energies:

AC/ = AP„u;„ + APiotuio + APoiiuoi + APoqiuoo (2 - 4)

which reduces to:

AC/ = APnu;„ (2-5)

if it is assumed that contact with a hole involves zero interaction energy. The

number of the (1 - 1) contacts is calculated using Regular Solution Theory (i.e.,

a mean field approach) and surface fractions, instead of volume fractions,

or:

no<Jo

no<To + n\7n\(r\

N<i><^o ( ^o</>i(l - 71)

1 - 7i<?^i

(2-6)
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where is the total number of lattice sites. Combimng equations (2-5) and
(2-6):

where:

- - - (^)
Note that the effective interaction parameter, {AU/cf>o^,N^RT), is dependent

upon concentration without the use of purely empirical parameters (Note: in the

original derivation of the Mean Field Lattice Gas model by Kleintjens [1979],

the interaction parameter gn is defined as {-wn<Ti/2R). This combines the

factor (1 - 7) from equation (2-7) with gn yet does not affect the essential

structure of the model.). If the change in the entropy on mixing holes and

segments is assumed to follow the simple Flory-Huggins-Staverman expression,

the Helmholtz free energy of mixing, AA, becomes:

Equation (2-8) is essentially the free energy expression derived by Kanig [1963]

and will henceforth be referred to as the Kanig model.

During modelling of various gas-gas, gas-liquid, and polymer-liquid systems,

Kleintjens and Koningsveld [Kleintjens, 1979; Kleintjens and Koningsveld, 1980;

1982] found that addition of two empirical parameters, ai and giQ, to equation

(2-8) greatly improved the model description of the pVT behavior of gases and

low molecular weight liquids. The free energy expression of this Mean Field

Lattice Gas (MFLG) model is as follows:
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AA 0j

V V (l-7i<?^i) J J

The need for these empiricd parameters was initially assumed to be due to

deviations from the simple entropy of mixing expression used in the construction

of the model. Possible molecular significance of a, and g,o will be discussed in

later sections. Clearly, the Kanig model is a specific case {a,, g,, = 0) of the

MFLG model.

The equation of state (EoS) is derived from the free energy (equation (2-9))

in the usual way, as shown below.

dA\ _ 1 (dAA\
dv)^~vX~e^), (2-10)

therefore:

= In 00 + (^1 1RT mi

+ 4,1 (a, + (g"+g"/J)(l-7')
2

(2-11)

where Q = 1 - 7i<?i>i. As mentioned above, the Kanig EoS is derived from equa-

tion (2-11) by setting and aj to zero. In addition, the EoS of Panayioutou

and Vera [1982b] is also a specific case of equation (2-11), that where alone

vanishes. Whereas in the MFLG model 71 is considered to be an adjustable

parameter, Panayioutou calculated 71 using Bondi's [1968] group contribution

values.
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Although the equation of state is sufficient to define the pVT behavior of
high polymers, additional constraints, such as equations defining vapor-Hquid
equilibrium (VLE) and the gas-liquid critical point, are required to completely
describe the behavior of gases and low molecular weight liquids. Vapor-Hquid
equilibrium is defined by equating the chemical potential of the segments and
the holes (the latter is the same as equating the pressure) in the saturated Hquid
and vapor phases:

„v _ L fdAA\
^'-\-d^)^ ; ^ = 0'1 (2-12)

Following the analysis of Kleintjens [1979], the critical condition for the MFLG
model is expressed via equations (2-13) and (2-14):

The complete set of equations resulting from combinations of equations (2-9)

and (2-12) - (2-14) can be found in [Kleintjens, 1979].

In both the MFLG and the Panayioutou-Vera models the volume per lattice

site, vq, is fixed for all substances. Frenkel [1946] has asserted that Vq for lattice

models should approximate the size of small atoms and, as such. He between

10 and 25 cc/mole. Panayioutou and Vera [1982b] used a value of 9.75, found

by optimizing the fit of the equation of state to polystyrene pVT data; for

the MFLG -^o is presumed to be a scaling parameter and is initially set to

25 cc/mole for all substances. The effect of the value of vq on the quality of

the model description will be examined in Section 2.3. Unlike the MFLG and

0
TV (2 - 13)
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Panayioutou-Vera n^odels, Kanig assumed that the volume per lattice site of
the holes is fixed whereas that of the segments is temperature dependent, due
to vibrations and rotations of the segments. This approach is similar to the
cell-hole models of Arai and Saito [1972] and Simha and coworkers [Simha and
Somcynsky. 1969; Nanda, et a/., 1966]. Despite the postulation of a cell-hole

model, Kanig does not specify what the temperature dependence of the segment
volume should be and therefore was held constant for the Kanig model during
subsequent computer modelling. The effect of a temperature dependent (and
consequently 7,) on the performance of the lattice gas model will be examined
in Chapter 5.

2.2 Comparison of MFLG and Rigid Lattice Models

As shown in Section 2.1, both the Kanig and Panayioutou-Vera equations of

state are specific cases of the MFLG EoS. In this section, structural comparisons

will be made between rigid lattice models and the MFLG. The term "rigid

lattice" refers to those models which do not include the effect of segmental

surface areas on the free energy and as such are constructed using a lattice with

universal coordination number z. The internal energy of the system is assumed

to be proportional to the number of non-bonded contacts per chain molecule,

qz, and the "contact fraction", Bi, of segment-segment contacts:

~^— t'lfii = ^— [-, Un (2-15)

where;

qz = {z- 2)mi + 2

and en is the segment-segment interaction parameter. Note the similarity be-

tween equations (2-15) and (2-5)-(2-6). A partition function is constructed using
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the energetic term from equation (2-15) and either the Guggenheim-Huggins-
M.ller [Guggenheim, 1952] or the Staverman [1950] approximation for the com-
bmatorial term (use of either combinatorial expression leads to the same result
in the equation of state [Sayegh and Vera, 1980]). Using the standard procedure,
the sum over all states is approximated by the ma^mum term of the series, which
is found by differentiation with respect to the number of holes. The resulting
free energy expression can be shown to resemble that of the MFLG model with
the quantity fQ'lnC?' in the place oi M.a,, where:

The equation of state is derived in the usual way:

P =
dlnZ

dV~l (2 - 17)

where Z is the maximum term of the partition function. The resulting equation

of state for the rigid lattice model is therefore:

where:

p = p _ 2vop

zen

T 2RT
f =

T* zen

The reduced volume is defined such that it equals the reciprocal of the segment

fraction, l/<f)i. The first term on the right-hand-side of equation (2-18) there-

fore equals -In^o- Algebraic rearrangement of the second term, followed by

expansion of the logarithm as a series, leads to:
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(2 - 19)

The term 0^, which is defined as:

02 =
qn, +noJ ~ 20)

can easily be transformed to:

Thus the rigid lattice equation of state has the same general form as that for

the MFLG model, yet displays two significant differences. The quantities which

mirror the effect of the MFLG adjustable parameters and a, are functions of

z and mi in the rigid lattice formulation:

= ?
^
i - —

J
(2 _ 22)

1 / 1 Y 401
Oirigid = -

I 1
*

z \ mi J 3z^ \ mi

2^1
2 / 1 \ 4

(2 - 23)

z^ \ mi

Given a lattice coordination number of approximately 10, the values of a^igid

and 7rtgid for polymers in the rigid lattice will tend universally towards .1 and
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.2, respectively, and both parameters wiU approach zero for smajl molecules.
As will be shown in a later section, the rigid lattice description as represented
by equations (2-22) and (2-23) is too restrictive to aJlow for a good fit to both
polymer and gaseous pVT data. This conclusion is also supported by the results

of Costas, e( al, [1981], who did not introduce the concept of surfaces, but found
it necessary to treat the quantity |(1 - J^) as a material parameter to obtain
a good description of pVT data. The rigid lattice model has been appHed with

510 = 0, as by Gibbs and DiMarzio [19581, and Okada and Nose [1981], or with

g,o non-zero, as by Panayioutou and Vera [1982], Kumar, et al, [1987], or Kilian

[1974]. The origin of equation (2-23) lends support to the hypothesis that the

MFLG parameter ai arises due to deviations from the Flory-Huggins entropy

of mixing expression.

Interestingly, if in the case of the MFLG {a, ^ 0, 7^ -> 0, 0), or

in the case of the rigid model {z ^ 00), the equation of state is transformed

to the lattice gas EoS by Trappeniers and coworkers [Trappeniers, et al, 1970;

Schouten, et al, 1974]. Furthermore, if the volume per lattice site, v,, is des-

ignated a material parameter rather than a universal constant, the Trappeniers

EoS is then transformed to the Sanchez-Lacombe equation of state [Sanchez

and Lacombe, 1976; 1977]. While the transformation requirement z = 00

seems to make little intuitive sense, in the case of the MFLG the constraint

(a -> 0, ^rio -> 0, 7i -> 0) simply means that the surface areas of the holes and

segments are equal, and as such cancel in expressions for the entropy or internal

energy of mixing.

Table 2.1 summarizes the relationship of the various models mentioned in

Sections 2.1 and 2.2 to the MFLG equation of state. In the next sections, the

performance of several of these models will be compared to that of the MFLG

in the description of the pVT behavior of polystyrene and of three gases which
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will later be considered as supercritical solvents; carbon dioxide (CO2), sulfur

dioxide (SO2), and fluoroform (CF3H).
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Table 2.1

Comparison of MFLG and other
Lattice Equations of State

Models

Panayioutou

& Vera (1982a)t

Gibbs &c

DiMarziot

Okada &:

Noset

Kilian

Sanchez

Trappeniers

MFLG

Panayioutou

& Vera (1982b)

Kanig

RiQid Lattice Models

""0 7i

Fixed

Fixed

Fixed

Fixed

Floating

Fixed

Non-zero

Non- zero

Non-zero

0

0

0

"1

Non-

Non-

zero

zero

Non-zero

0

0

0

Non-Riaid Lattice Models

Fixed Non-zero Non-zero

Fixed

Fixed

Non-zero

Non-zero

9io

Non-zero

0

0

Non-zero

0

0

Non-zero

Non-zero

0

7i and ai are tied to the number of segments per molecule and the lattice
coordination number by equations (1-21) and (1-22).

7i is derived from Bondi's group contribution values.
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2.3 Modelling Results for Pure Components

In this section computer modeUing is used to evaluate several of the models
listed in Table 2.1. Throughout this section the term MFLG model will refer to
the case where a„ g,,, and 71 are non-zero adjustable parameters; Vera model
assumes a, = 0, with and 71 non-zero material constants; and the Kamg
model uses a non-zero 71 and assumes a, = 0 and = 0. In each of these

models, .0 is set to 25 cc/mole and fixed. As can be seen, each of these three

models is of the non.rig^d variety. The rigid models are to be represented by
the Kilian {a, = 0 and 71=0) and the Sanchez equations (7^ = 0, g,o = 0,

ai = 0, and Vo is an adjustable parameter). Because the three gases are small

molecules, presumably with 1 segment per molecule, the rigid values for 7, and

ai as represented by equations (2-22) and (2-23) should approach zero for these

substances. Therefore the Kilian model is representative of the general class

of rigid lattice models for the three gases. The Sanchez model is included to

examine the effect of a floating vo on the quahty of the model description of

pVT behavior.

2.3.1 The Parameter Estimation Program (PEP)

Determination of the adjustable parameters for the various lattice models,

as well as solution of the coupled equations needed to calculate VLE or critical

behavior was carried out using the Parameter Estimation Program (PEP), de-

veloped at Dutch State Mines (DSM) Research (Geleen, Netherlands), and the

University of Massachusetts Engineering Computer Center's DEC VAX cluster.

The PEP finds the values of the parameters, A^, which are solutions to the

minimization problem [Hillegers, 1986]:
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Minimize;

n

E(a..-x°fn-^(x,-x°) (2_24)

subject to the constrainti

/i(a;i,Afc) = 0 (2-25)

where the are the calculated data points, the are the true values, and

is the error variance matrix. The constraints, /,-, are the appropriate equations

(equation of state, VLE, critical point expressions) in the implicit form, as shown

in equation (2-25). All variables are therefore assumed to have been measured

with some error. The errors, or tolerances, which comprise n, are assumed to

be random in nature and are set using suggested values from the Hterature. The

errors can be assigned either absolute or relative (%) values. The best values

for the parameters, therefore, are those which fit the surface represented by the

constraints (equation 2-25) to the data x? such that the sum of the squares of

the distance between x?'s and their projections onto the surface is minimal. The

distances, x.- - x?, are weighted by the corresponding tolerances. The problem

is solved iteratively for the Ajt using a Gauss-Newton type of algorithm.

During the fitting of the models to the pVT data on the three gases, the

tolerances were assigned the following values: temperatures, .25K absolute; den-

sities and pressures, .5% relative. An exception is the critical point, where the

temperature tolerance is lowered to .IK. In the fitting of the models to the

polystyrene data, the temperature tolerances remain as above, the pressures

were fixed, and the density tolerance lowered to .1% .
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Because the PEP treats both parameters and data in fundamentally the
same way (parameters are simply data with infinite tolerance), the PEP can
be used to solve simultaneous equations (ie systems of n equations with n un-

knowns) quite easily. In this case the parameters and the independent variable

are fixed. The tolerances for the dependent variable (or variables) are then set to

infinity and the system iterated until all equations are solved [i.e. convergence).

In this way the solution to a system of equations can be solved quickly for a hst

of the independent variable.

2.3.2 Fitting Results for CO2, SO2, CF3H, and PS

2.3.2.1 CO2

The models were fit to VLE [Perry and Chilton, 1973] and supercritical

pVT data [Michels and Michels, 1936; Michels, et al, 1936]. Average errors for

the five models are shown in Table 2.2 and the quality of the various model

descriptions is displayed graphically in Figures 2.1 - 2.4. The parameter values

for the models are provided in Table 2.3.

The usefulness of the segmental surface area concept is made readily ap-

parent by comparing the results for the Vera model with those for the Kilian

model. A non-zero 71 provides a significantly better "concentration" (here this

translates to density dependence of pressure) dependence of the effective inter-

action parameter, as evidenced by the superiority of the Vera model description

of the supercritical isotherms (Figures 2.3 and 2.4). Interestingly, the floating

•uo employed by the Sanchez model partially compensates for the lack of a sur-

face dependence in the free energy (compare Sanchez to Kanig to Vera models).

However, the optimum value of vq for the Sanchez model is unrealistically small
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(smaller than a hydrogen atom) which leads to the odd conclusion that CO2, in

the context of the Sanchez model, comprises nearly 8 segments (Table 2.3).

The mean field concept, which is the basis for the construction of the lattice

models under consideration, is, of course, only an approximation. Non-mean

field behavior, which is certainly present to some degree in all substances, can

take three forms. One is the presence of specific interactions, such as hydrogen

bonding, which can probably be discounted in the case of the three gases under

study here. Second, segment density fluctuations due to the connectivity of the

segments in chain molecules will aff^ect the shape of the VLE curve. Since this

non-mean field contribution vanishes when the number of segments drops to

unity, this eff'ect can also be discounted in discussions of the behavior of the

three gases. Finally, there are those segment density fluctuations which occur

near the critical point. These, of course, cannot be ignored in discussions of the

quality of the description of a lattice model since the critical point determines

two of the five constraining equations for the system. From the results for CO2,

it appears that the g^o parameter, and to a lesser degree aj, compensate for

the lack of an explicit dependence of the critical conditions on segment density

fluctuations in the lattice model (compare the critical point error of MFLG to

Vera to Kanig model in Table 2.2).

In addition to a role in the compensation for the fluctuations near the crit-

ical point, the ai parameter also appears to play a role in fine tuning the ^0

dependence of the model at high densities (compare critical and saturated Hq-

uid densities of Vera and MFLG models). This is consistent with the hypothesis

that ai arises due to deviations from the Flory-Huggins entropy of mixing ex-

pression, and as such contains a ^0 dependence as shown by equation (2-23).

This hypothesis will be explored in greater detail in Chapter 3.
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With the exception of the Sanchez model, the value of was fixed at 25

cc/mole during the fitting of the lattice equations of state. In order to evaluate

the importance of the vdue of vo to the quality of the models' descriptions vo

was varied between 10 and 30 (the prescribed hmits by Frenkel) and the total

error (x^) noted. The value of vo displayed a minimal effect on the accuracy of

the MFLG model with an increasing dependence as the number of parameters
was lowered from five (MFLG) to three (Kanig, Kilian).

In terms of overall accuracy, the MFLG and Vera models are clearly supe-

rior in their descriptions of the pVT data of CO2. The inclusion of a non-zero

a, parameter by the MFLG model, though displaying Uttle effect on the su-

percritical pVT data, provides some improvement over the Vera model in the

description of the VLE and critical point data.



Table 2.2

Average Errors in Fitting Lattice Equations of State

to pVT Data on CO2

VLE Data

del Number of Temp. Vapor Vapor Liquid

of Points (K) Pressure-% Density-% Density-%

MFLG 15 .6 1.2 .5 2.3

Vera 15 .9 1.5 1.7 3.6

Kanig 15 12.5 8.2 14.2 17.9

Kilian 15 2.5 7.0 4.6 9.5

Sanchez 15 1.2 5.4 4.5 2.7

Critical Point Equation of State

Model Temp. Press. Dens. Number of Press. Temp. Dens.

(K) % % Points % (K) %

MFLG 1.7 .1 7.7 66 1.0 - 4.9

Vera 2.4 .6 13.6 66 .9 - 4.2

Kanig 12.3 1.3 23.7 66 3.4 - 10.7

Kilian 11.1 27.1 3.1 66 4.0 - 13.6

Sanchez 6.7 15.3 12.1 66 2.6 - 9.2



Table 2.3

Lattice Model Parameters for CO2 Determined by

Parameter Estimation Program (PEP)

Model m.1 Oil 9io 11

MFLG 25.0 1.31 .91499 -1.1446 519.82 -1.2010

Vera 25.0 1.28 0 -1.1160 725.30 -.67302

Kanig 25.0 1.48 0 0 393.35 -.49967

Kilian 25.0 1.70 0 -1.3241 909.97 0

Sanchez 3.7081 7.62 0 0 288.4 0
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0 0 . 8

Density
(g/cc)

Figure 2.1

VLE data for CO2 (•) and lattice model calculations; MFLG (— ), Vera ( ),

Kanig (—
-), Kilian (• • •), and Sanchez (- - -). A's are calculated critical points.
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Figure 2.2

CO2 vapor pressure as a function of temperature and lattice model calculations;

symbols same as in Figure 2.1.
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Figure 2.3

CO2 compressibility (Z = PV/RT) versus pressure at T = 323i^ and lattice

model calculations; symbols same as in Figure 2.1.
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Figure 2.4

CO2 compressibility (Z = PV/RT) versus pressure at T = 372/^: and lattice

model calculations; symbols same as in Figure 2.1.
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2.3.2.2 S02 and CF3H

The models were fit to Hterature VLE and pVT data for SO2 [Perry and
Chilton, 1973; Kang, et ai, 1961] and CF3H [Perry and Chilton, 1973; Hon
and Martin, 1959]. Results are shown in Tables 2.4 and 2.5 and Figures 2.5 -

2.8 for SO2, and Tables 2.6 - 2.7 and Figures 2.9 - 2.12 for CF3H. The trends

for these two gases are essentially the same as reported for CO2. They can be

summarized as follows:

1. The surface contribution (non-zero 71) is needed to obtain the proper de-

pendence of pressure on density (compare Kihan and Vera model results).

2. The non-zero g^o helps to compensate for the lack of an exphcit reference to

density fluctuations near the critical point (compare Kanig and Vera critical

point results).

3. The non-zero aj parameter also contributes to increased accuracy near the

critical point and also helps to fine tune the dependence of the equation of

state on (^0 at high densities.

The MFLG, Vera, and Kanig equations of state are examples of non-rigid lat-

tice models whereas the Kilian and Sanchez are of the rigid variety, albeit with

effectively infinite values of the lattice coordination number. However, because

the compounds here are gases which comprise approximately 1 segment each on

the lattice, the rigid values of 71 and aj, as represented by equations (2-23) and

(2-24), approach zero even for rigid lattice models with less-than-infinite coor-

dination numbers. Thus the behavior of the entire class of rigid lattice models

can be represented by the performance of the Kilian model for the three gases

under consideration. As can be seen by the modelling results, the rigid lattice

models produce an inferior description of the pVT behavior of low molecular

weight gases.



Table 2.4

Average Errors in Fitting Lattice Equations of State

to pVT Data on SO2

VLE Data

Model Number of Temp. Vapor Vapor Liquid

of Points (K) Pressure-% Density-% D ensity-%

MFLG 19 2.4 1.7 2.1 2.4

Vera 19 1.9 .7 2.6 4.9

Kanig 19 21.7 12.4 22.1 46.8

Killan 19 1.5 4.6 3.7 10.7

Sanchez 19 1.0 3.6 2.6 3.2

Critical Point Equation of State

Model Temp. Press. Dens. Number of Press. Temp. Dens.

(K) % % Points % (K) %

MFLG .9 .4 9.4 32 .7 3.4

Vera 2.2 1.8 14.8 32 .7 3.3

Kanig 28.5 7.8 35.1 32 1.4 10.8

Kilian 12.4 29.8 .3 32 2.8 13.2

Sanchez 7.9 16.2 12.9 32 1.7 8.9



Table 2.5

Lattice Model Parameters for SO2 Determined by

Parameter Estimation Program (PEP)

Model Vq mi

MFLG 25.0 1.57

Vera 25.0 1.55

Kanig 25.0 2.54

Kilian 25.0 2.03

Sanchez 4.0538 8.66

911

80814 -1.1162 695.77

0 -1.1480 968.10

0 0 604.83

0 -1.4446 1281.5

0 0 393.56

71

-1.2619

-.71102

-.006158

0

0



34

Density
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Figure 2.5

SO2 VLE data (•) and lattice model calculations; MFLG (— ), Vera ( ),Kanig (.-.-), Kilian (••-)) ^^d Sanchez (- - A's are calculated critical points.'
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Figure 2.6

SO2 vapor pressure as a function of temperature and lattice model calculations;

symbols same as in Figure 2.5.
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Figure 2.7

SO2 compressibility (Z = PV/RT) versus temperature at P
lattice model calculations; symbols same as in Figure 2.5,

101.3 bar and
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Figure 2.8

SO2 compressibility (Z = PV/RT) versus temperature at P = 304.0 bar and
lattice model calculations; symbols same as in Figure 2.6.



Table 2.6

Average Errors in Fitting Lattice Equations of Stat,

to pVT Data on CF3H

VLE Data

Model Number of Temp. Vapor Vapor Liquid

of Points (K) Pressure-% Density-% Density-

%

MFLG 15 2.7 1.8 3.1 2.9

Vera 15 2.5 1.4 3.8 5.1

Kanig 15 24.7 9.6 19.6 13.5

Kilian 15 2.4 5.2 5.4 11.4

oancnez 15 1.3 4.5 4.3 2.7

Critical Point Equation of State

Model Temp. Press. Dens. Number of Press. Temp. Dens.

(K) % % Points % (K) %

MFLG 2.3 .7 13.9 78 2.8 .9

Vera 4.3 3.5 18.0 78 2.5 1.0

Kanig 20.9 22.8 12.2 78 6.9 2.8

Kilian 13.3 32.6 1.6 78 6.5 2.1

Sanchez 10.8 22.4 11.0 78 4.6 1.5



Table 2.7

Lattice Model Parameters for CF3H Determined by

Parameter Estimation Program (PEP)

Model vo

MFLG 25.0 1.69

Vera 25.0 1.65

Kanig 25.0 2.12

Kilian 25.0 2.19

Sanchez 4.8114 8.02

^11 7i

76250

0

0

0

0

98262 438.71 -1.2983

98651 609.01 -.75940

0 401.99 -.16847

0

0

1.1825 808.36

0 283.68
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Figure 2.9

CF3H VLB data (•) and lattice model calculations; MFLG (— ), Vera (
)

Kanig (--), Kilian (•••), and Sanchez ( ). A's are calculated critical points
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Figure 2.10

CF3H vapor pressure as a function of temperature and lattice model calculations;

symbols same as in Figure 2.9.
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Figure 2.11

CF3H compressibility {Z — PV/RT) versus pressure at = ,5597 g/cc and
lattice model calculations; symbols same as in Figure 2.9.
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CF3H compressibility [Z = PV/RT) versus pressure at p
lattice model calculations; symbols same as in Figure 2.9.

7892 g/cc and
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2.3.2.3 Polystyrene (PS)

Unlike the three gases, polystyrene pVT behavior is governed by only one
constraining equation, the equation of state. Thus there are five adjustable
parameters (in the case of the MFLG model) yet only one equation for use in
the fitting. In an attempt to avoid correlation between the parameters. pVT data
for polystyrene at five molecular weights; 2300, 3650, 20400, 90700, and 125000
were evaluated [Ueberreiter and Laupenmuhlen, 1953; Oels, 1977; Quach anJ
S.mha, 1971; ZoIIer, et ai, 1976]. The use of five constraining equations allowed
the fitting of the MFLG to the PS data without restrictions being placed on any
of the parameters. Although there was a high degree of correlation between
and au the system converged without the necessity of fixing one of these two
parameters.

Results for the PS fitting are shown in Tables 2.8 - 2.9 and in Figures 2.13
- 2.17.

In the previous two sections, the hypothesis was advanced that the g^o

parameter partially accounts for the density fluctuations near the critical point.

If this is its sole function, then g^o should have Httle effect on the quality of

the description of the polystyrene pVT data. As can be seen by comparing the

Vera and Kanig results, this is not entirely true. Whereas the effect of a non-

zero is less significant than that of a non-zero (compare Vera and MFLG
results), it is not neghgible. Thus the need for the parameter arises both

due to non-mean field corrections and to other effects. A clue as to the nature

of these "other effects" can be found by examining the heat capacity, AC„,

which is derived from the second temperature derivative of the free energy. For

the MFLG model, AC„ is identically zero, clearly an unsatisfactory result. If,

instead of deriving AC„ from the free energy, AC„ is assumed to vary with
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temperature li.eady, the free energy should therefore vary with temperature asm equation (2-26):

N^BT ^1 + + CaT + QlnT (2 _ 26)

Thus if the interaction energy is assumed to be an interaction free energy
then ,,0, as well as other parameters, are natural consequences [Koningsveld'
1968; Sm:rnova and Victorov, 1987; Kehiaian, et al, 1981]. Because the heat
capacity results from the vibrations and rotations of the segments, it is also
possible that one of the cell-hole models, which model the effect of segmental
vibrations via a cell which changes size with temperature, could accurately model
the temperature dependence of the free energy without expanding the interaction
function as in equation (2-26). The addition of a "cell" contribution to the
MFLG model will be investigated in Chapter 5.

As in the cases of the three gases, a non-zero a, helps to fine tune the

density-pressure relationship at high densities. Again, the floating ^0 in the

Sanchez model accurately mimics the effect of a non-zero 7^, yet for polystyrene

also produces a reasonable optimized value for vo. However, if it became nec-

essary to model a mixture of polystyrene and, eg., one of the gases from the

previous two sections, a mixing rule for the quite disparate pure component vo's

would have to be devised.

As mentioned in Section 2.2, Panayioutou used Bondi's group contribution

increments to calculate the value of 71 during modelHng of the pVT behavior

of high MW polystyrene [Panayioutou and Vera, 1982b]. Table 2.10 shows a

comparison of surface area ratios calculated using MFLG-fitted values of 71

and mi against those found using Bondi's [1968] values. Ratios are presented

because the surfaces are themselves used by the model as ratios and because use
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of ratios precludes the need to detern^.e a value for (which, like should be
a s,n,ple scaling paran^eter). As can be seen, MFLG-calculated ratios involving
PS, CO2, and SO2 are within 10% of the Bondi ratios. The disagreement in
the CF3H -based ratios may be due to the chemicaJly asynnnetric nature of this
molecule. It may be necessary to introduce the concept of group contributions
and specific interactions [Smirnovaand Victorov, 1987; Kehiaian, et al, 1978) to
produce a for CF3H which better agrees with Bondi's estimate. In general,
it appears that ratios of Bondi's values n^^rl ;r.

•uuimi s values, used in conjunction with a previously
calculated 71, such as that for COo, will Droducp a ar.r.A . • • .Z, win proauce a good hrst approximation for
the 71 of a system where only a Hmited amount of data are available.
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Table 2.8

Average Error in Fitting Lattice Equations of State

to Polystyrene pVT Data

Model Number of Press. Temp. D
Points (%)

ens,

(%)

MFLG

Vera

Kanig

Kilian

Sanchez

117

117

117

117

117

.1

.1

.15

.15

.12

.12

.20

.32

.34

.26



Table 2.9

Lattice Model Paraxneters for Polystyrene Deterxnined

by Parameter Estimation Program (PEP)

Model vq nil
9io gi 7i

MFLG 25.0 3.70 -6.8354 4.8622 1110.0 -1.0889

Vera 25.0 3.79 0 -.60738 876.09 -433.32

Kanig 25.0 3.81 0 0 707.91 -.85766

Kilian 25.0 3.83 0 -.16630 857.09 0

Sanchez 16.798 5.60 0 0 734.44 0

segments per monomer unit
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Figure 2.13

Polystyrene = 2300) density versus temperature at P = 1 bar and
tice model calculations; MFLG (— ), Vera (

), Kanig (.-), Kilian (• • •)

Sanchez ( ).
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Figure 2.14

Polystyrene (M„ = 20400) density versus temperature at P = 100 bar and
lattice model calculations; symbols same as in Figure 2.13.
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Figure 2.15

Polystyrene (M„ = 20400) density versus temperature at P = 1500 bar and
lattice model calculations; symbols same as in Figure 2.13.
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Figure 2.16

Polystyrene (M„ = 90700) density versus temperature at P = 800 bar and
lattice model calculations; symbols same as in Figure 2.13.
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Figure 2.17

Polystyrene [Mn = 90700) density versus temperature at P
lattice model calculations; symbols same as in Figure 2.13.
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Table 2.10

Comparison of Molecular Surface Area Ratios Derived

from MFLG Fitted Parameters and Using Bondi's

Group Contribution Method

COo SO CF3H PS

- .81/.84 .74/.64 .37/.36

SO2 1.23/1.19 - .91/.77 .46/.43

CF3H 1.35/1.56 1.09/1.31 - .50/.56

PS 2.68/2.81 2.17/2.35 1.99/1.80

Entries in Table 2.10 are derived by dividing the molecular surface area

of the row component by that in the column. Values are presented in

the format (MFLG value/Bondi value) for comparison. MFLG values are

calculated via the relation ((1 - 7i)mi/(l - ^^)m2). The Bondi values are

calculated using the group contribution increments from reference [Bondi,

1968]; CO2 - 2.58, SO2 - 3.08, CF3H - 4.02, and PS - 7.25.
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m
ion

2.4 Comparison of the MFLG and other Classes of Equation of State

In this section the MFLG equation of state wiU be compared to several
non-lattice models. Nies and coworlcers [1983], compared the performance of
the MFLG model to that of the Simha-Somcycnsky (SS) cell-hole construction.
Whereas a structural comparison of the two equations of state (such as that
Section 2.2) revealsfew similarities, a comparison of the quality of the descripti

of the pVT data of ethylene showed similar overall accuracy for the two models.
The SS model produced a more accurate fit of the saturated liquid densities yet
the MFLG model provided a better accounting of the data in the near-critical

regime.

A general comparison of the MFLG EoS and those equations of state com-
monly encountered in chemical engineering practice can be made via a simple

transformation of the MFLG EoS. If the term ln0o from equation (2-11) is ex-

panded as a series, followed by the substitution cj)^ = m,vo/V, the MFLG EoS
becomes:

RT K,{T) K, IC^

V - 2K2V + Kl'^ V^^ V^^V^^
where:

iCi =i2m2t;o(l -7i)2(^ioT + ^ii)

(2 - 27)

K2 = Timit^o

1

K3 = miVo{- -ai)

K, =

RT

RT

(mivo)

{mivo)'
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demonstrating that the MFLG EoS can be represented as a modified viriaj
equafon. Comparison with the Peng-Robinson (PR) [Peng and Robinson, 1976]
or Soave [Soave, 1972] modifications of the Redlich-Kwong equation of state
reveal some interesting similarities yet significant differences.-

Peng-Robinson:

RT a{T)

V-h V^ + 2hV~h^ (2 - 28)

Soave:

RT _ a{T)

V -h ^hV (2 - 29)

Because neither the PR or Soave equations include terms higher in order

than l/V\ it would be expected that the MFLG model would describe the

high density liquid region (and therefore polymer behavior) better than these

two equations. Nitsche, et al, [1983; 1984] and Kilpatrick [1986] found this to

be the case in a comparison of the performance of the MFLG model and the

PR equation in the description of the VLE data of water, CO2, ammonia, and

methanol. As F 00 all three equations reduce to the ideal gas relation.

2.5 Summary of Chapter 2

In this Chapter, it has been shown that many lattice models fall into one

of two broad categories, depending on whether or not the effect of segmental

contact surface areas has been included. Further, it has been shown that those

which do not employ the contact surface concept, the rigid lattice models, are

specific cases of those which do, the non-rigid models. In computer modeUing
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studies of the pVT behavior of CO^, SOj, CF3H, and polystyrene, the non-rigid
forn> of the lattice „.odel has been den^onstrated to be superior, based on the
quality of the description.

In the case of the non-rigid class of lattice models, it has been shown that
several equations of state are specific cases of the Mean Field Lattice Gas n^odel
of Kleintjens and Koningsveld. Setting the parameter a, to zero yields the
equation of state by Panayioutou and Vera; this requirement plus the constraint
that g,, vanishes leads to Kanig's model. Retaining both parameters produces
a superior description of the phase behavior of both the gases and polystyrene.
It appears that the parameter partially accounts for the lack of model terms
which describe non-mean field density fluctuations near the critical point (in the
case of the gases), and possibly makes up for neglect of a cell-like vibrational

contribution to the EoS (for polystyrene). The a, parameter helps to fine-tune

the dependence of the EoS on at high densities, and as such, is possibly

required due to deviations from the simple Flory-Huggins entropy of mixing

expression used to construct the MFLG model.



CHAPTER 3

^
MPT ^^^"S Expression of thMFLG Model: The First Order MFLG Model

Comparison of the performance of the various lattice models in Chapter 2
showed that the empirical a, parameter helps improve the 0o dependence of the
equation of state at high densities. Inspection of the derivation of the generalized
rigid lattice model revealed that a non-zero a, may originate in deviations from
the Flory-Huggins entropy of mixing expression due to the introduction of a
molecular surface dependence to the free energy. Indeed, the MFLG free energy
expression (equation 2-9) is inconsistent because it combines entropy of mixing
terms based on identical coordination numbers (and therefore surface areas)

with a relation for the internal energy of mixing (equation 2-7) arising from a

contact-statistical treatment. In this Chapter, the question of whether it is this

inconsistency that prompts the need for empirical corrections such as a,. As in

Chapter 2, computer modelling of the pVT behavior of CO2, SO2, CF3H, and

polystyrene will be used to evaluate the performance of the new derivation.

The derivation of the modified MFLG model is presented in Section 3.1.

Computer modelling results are given in Section 3.2 and Section 3.3 concludes

with a summary of this Chapter.

3.1 Derivation of the First Order MFLG Model

It is assumed that because the segments and holes are permitted distinct

contact surface areas, the Flory-Huggins expression for calculating the number

of ways of arranging the molecules and holes on the lattice, ^o, must be adjusted

58
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to account for the nu„.ber of unlike contact pairs, P,, as calculated using contact
stat.st.cs as in Section 2.1 [Stave^an, 1937]. Tl>e Flory-Huggins derivation of
Ho IS of the general form [Flory, 1953]:

V no!ra,! J\V J (3-1)

where V is a parametric volume which compensates for limitations in segment
placement on the lattice after the first segment has been affixed. It is assumed
that th.s parameter is independent of concentration and as such vanishes during
the calculation of the entropy of mixing from equation (3-1).

The compostion-dependent correction to equation (3.1) is assumed to take
the form (z.,/.-), where is the number of unUke contacts per segment and ,
is the average coordination number of the system at a given concentration as

defined by equation (2-2). The number of arrangements of molecules and holes
on the lattice, Oj, is therefore:

"-""(f) ^"-"om" (3-2)

where the number of unlike contact pairs, P,o, is calculated as per equation

(2-6). As before, the ratio of the surface areas is assumed to be equal to the

ratio of the like-pair coordination numbers (zn/zoo). The entropy of mixing,

derived from equation (3-2) in the usual way (5 = -iZlnfii), when added to

the internal energy of mixing expression derived for the MFLG model (equation

(2-7)), results in the following free energy equation:

AA
iW =<Po^ncpo + ~ in CP, + ^^-^ (2zoo In Q)

(3-3)
(po4>i{l - 71

)

Q
(-2ooln2 + ^)
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where:

^00

A companson of equation (3-3) with (2-9) shows that not only but also
have been redefined in this First Order MFLG model:

^ 22oo(l - 7i)lnQ

Q (3-4)

^10 = —zoo Inz
(3-5)

The equation of state, critical point, and VLB equations for the First Order
MFLG model are provided in Appendix A.

Comparison of the free energy expressions of the First Order MFLG and the
rigid lattice model (see Chapter 2) shows that while both contain a contribution

to the entropy of mixing (given below as a) due to the number of contacts per

segment, both the form and limiting values of a differ substantially:

Rigid Model:

a ~ g* In Q*; where Q*=zl_(?(i_J_
\z \ mi

a —> 0 as mi 1

First Order MFLG:

InQ
a ~ where Q = 1 - 71^1

a —
> 0 as 0-1 —> ctq (71 —> 0)

0

(3-6)

(3-7)
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Thus the excess entropy contribution due to contact statistics to the First Order
MFLG n^odel is non-vanishing even for s„.ajl „.olecnles, a significant difference
from the rigid lattice models.

In the next section, the PEP is used to evaluate the perforn^ance of the
First Order MFLG n.odel via nrodelling of the pVT behavior of CO^, SO^
CF3H, and polystyrene, as in Chapter 2. The First Order MFLG description
.s compared to that of the Zero Order MFLG, as well as that of the Kanig and
Kilian. The Kanig n^odel is included in the comparison because it contains no
«l or contribution and thus serves as a type of "control". As was shown
in Chapter 2, in the case of the gases, the KiUan model is representative of
the general class of rigid lattice models. Comparing the Kihan and First Order
descriptions will therefore present a means by which to compare the "rigid" and
non-rigid derivations of .

3.2 Results for CO2, SO2, CF3H, and Polystyrene

Average errors between calculated and actual pVT data for ail four com-

pounds under consideration are shown in Tables 3.1a, 3.1b, and 3.2. Parameter

values are provided in Table 3.3. In addition, a graphical comparison of the

First and Zero Order Models is given for the CO2 description in Figures 3.1 -

3.4. The data used in the modelling are the same as was used in Chapter 2.

The quantity 2:00, the hole like-pair coordination number, should be a simple

scaling quantity like the lattice site volume vq . To test this assumption, the value

of Zoo was varied between the natural limits 6 and 12 and the total error (x^)

for the CO2 system compared. As suspected, the value of zqo has Httle effect
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on the ove^all accuracy of the description. witHn the prescribed hn^ts, and was
therefore set to 10.0.

As can be seen by the results in Tables 3 1 - ? 9 ^ •xauies 6.1 6.2, the derivation of aj and
..0 .n the First Order n^odel is clearl, superior to the case where both param-
eters are .ero (Kanig, and to the rigid .odel description of their contribution
(K.ha„). However, the First Order „>odeI cannot, except in a few instances,
equal the description of the Zero Order model. The performance of the First
Order model is particulariy poor near the critical point (see aiso Figures 3 1
and 3.2). Apparently the First Order model derivation of and does not
compensate for the fluctuations near as weU as the two-empirical-parameter
approach of the Zero Order model. This conclusion is supported by the results
for polystyrene; in a situation where the critical point is absent, the First Order
model produces a description of pVT behavior equal to that of the Zero Order
MFLG and while using one fewer adjustable parameter.

In addition to a reasonable description of pVT behavior, the First Order
model results in values of the surface area ratio which are in surprisingly good
agreement with Bondi's values (see Table 3.4). The exceptions are those entries

which involve SO2; if the model-calculated value of the molecular surface area

was approximately 15% lower these values too would agree with Bondi's ratios.

Following testing of the First Order MFLG model, an attempt was made
to further modify the free energy expression to correct another possible incon-

sistency. Heretofor the like-pair coordination numbers, zu, have been assumed

to be constants, proportional' to the surface areas. However, it is clear that

these coordination numbers should vary with concentration in a real random

packing of segments. Therefore these coordination were assumed to vary lin-

eariy with volume fraction (such that at the limits 4,1 = 0,1 the description is
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exact) and the resulting nxodel evaluated [Beclcn^an, al, 1987). The descrip-
tion of this Second Order n^odel proved to be n.uch poorer than that of the
First Order .ode, and therefore this approach was abandoned. It appears that
urther .mprove.ents should concentrate on the concentration and temperature
dependence of the segnient density fluctuations near the critical point since the
greatest error in the First Order model is in the critical region



TableSJa

f"'vT n "o^^"^"^
^^'"''^ °f State

to pVT Data on CO2, SO2, CF3H, and Polystyrene

VLEData
Model Number of Temp. Vapor Vapor LiquidofPomts (K) Pressure-% Density-% Density-%

CO2 - Zero 15 1 0
.5 2.3

- First 15 1 0
3.5 7.4

- Kanig 15 12.5 8.2 14.2 17.9
- Kilian 15 2.5 7.0 4.6 9.5

SO2 - Zero 19 2.4 1.7 2.1 2.4
- First 19 .8 2.9 2.4 4.5
- Kanig 19 21.7 12.4 22.1 46.8
- Kilian 19 1.5 4.6 3.7 10.7

CF3H - Zero 15 2.7 1.8 3.1 2.9
- First 15 1.0 3.6 3.6 6.2
- Kanig 15 24.7 9.6 19.6 13.5
- Kilian 15 2.4 5.2 5.4 11.4



TableSJb

Average Errors in Fitting Lattice Equations of State topVT Data on CO2, SO2, CF3H, and Polystyrene

Critical Poinf.
Equation of State

Model Temp.

(K)

" •L i. Coo •

%
Dens.

%
Number of Press.

Points %
Temp.

(K)

Dens

%

CO2 - Zero 1.7 .1 7.7 66 1.0 A n
- First 4.0 5.0 19.3 66 1.1 9 ft

iU. i

1 RX 0 .0

- Kanig 12.3 1.3 23.7 66 3.4
- Kilian 11.1 27.1 3.1 66 4.0

SO2 - Zero .9 .4 9.4 32 .7 3.4
- First 2.9 8.8 17.1 32 .5 4.3
- Kanig 28.5 7.8 35.1 32 1.4 10.8
- Kilian 12.4 29.8 .3 32 2.8 13.2

CF3H - Zero 2.3 .7 13.9 78 2.8 .9

- First 2.6 11.1 18.3 78 3.3 .5

- Kanig 20.9 22.8 12.2 78 6.9 2.8
- Kilian 13.3 32.6 1.6 78 6.5 2.1
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Table 3.2

Average Error in Fitting Lattice Equations of State
to Polystyrene pVT Data

Model Number of Press. Temp. Dens
Pomts (%) (K) (%)

Zero 117
.1 .12

First 117
.1 .12

Kanig 117
.15 .32

Killan 117
.15 .34

Table 3.3

First Order MFLG Model Parameters for COj, SO,, CF,Hand Polystyrene Determined by Parameter Estimattn Pr;gram (PEP)

Model mi

C02 1.20 1.4813 1830.6 .1031

S02 1.65 1.2860 1824.5 .051184

CHF3 1.715 1.2236 1223.6 .04328

PS 3.67 .7974 1297.1 .21954
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2 0 0

0 0 . 4 0 . 8 1 . 2

Density
(g/cc)

Figure 3.1

VLE data for CO2 (•) and lattice model calculations; Zero Order MFLG (
)

First Order MFLG (•— ). A's are calculated critical points.
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6 0--

P
(bar)
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Figure 3.2

CO2 vapor pressure as a function of temperature and lattice model calculations;
symbols same as in Figure 3.1.
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0

Figure 3.3

CO2 compressibility {Z = PV/RT) versus pressure at T = 222K and lattice
model calculations; symbols same as in Figure 3.1.



0 . 4

0 2 0 0 4 0 0

Pressure
(bar)

6 0 0 8 0 0

Figure 3.4

CO2 compressibility (Z = PV/RT) versus pressure at T = 372/C and lattice
model calculations; symbols same as in Figure 3.1.
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Table 3.4

Comparison of Molecular Surface Area Ratios Derivedfrom F:rst Order MFLG Fitted Parameters arxd Using
Bondi s Group Contribution Method

CO2 SO2 CF3H PS

CO2 - .69/.84 .66/.64 .38/.36

.55/.43
SO2 1.45/1.19 - .95/77
CF3H 1.52/1.56 1.05/1.31 -

.57/.56
PS 2.66/2.81 1.83/2.35 1.75/1.80 -

Not^ Entr.esm Table 3.4 are derived by dividing the moleeular surfaee area of theow component by that ,n the eolumn. Values are presented in the format(F rst Order MFLG value/Bondi value) for comparison. First Order MFLG
va ues are calculated via the relation ((1 - ^,)m,/(l ^3)^,). The Bondiva ues [Bond, 968] are calculated using group contribution increments and
are; CO2 - 2.58, SO2 - 3.08, CF3H - 4.02, and PS - 7.25.
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3.3 Summary of Chapter 3

In this Chapter, the fundamentaj nature of the heretotor MFLG empirical
parameters a, and was investigated via modifications to the MFLG entropy
of m.x.ng expression and subsequent computer modelling. The Flory-Huggins
entropy of mixing relation was modified to attempt to account for the depen-
dence of the total number of configurations on the distinct surface areas of the
segments and holes. The resulting free energy expression, designated the First
Order model, provided apparently molecular definitions for both a, and g,, and
required one fewer adjustable parameter than the Zero Order model. Computer
modelling of the pVT behavior of CO2, SO2, CF3H, and polystyrene showed
that whereas the First Order model produces a significantly better description
than the case where (a,

, a„=0) or that of the general rigid lattice model, it falls

short of equaUing the performance of the parent model. Lacking the empirical

S,« parameter to compensate for the segment density fluctuations in the region

near T„ the First Order model displays large errors in this regime. Consequently,

in situations where critical conditions are not relevant, such as modeUing of the

pVT behavior of polystyrene, the First Order model performs as well as the Zero

Order MFLG, despite one fewer adjustable constant.

In the next Chapter, the performance of the Zero and First Order models

will be compared in the modelling of the phase separation behavior of polymer-

liquid and polymer-gas mixtures.



CHAPTER 4

Phase Separation Behavior of Binary Mixtures

The results in this section are divided into two areas; those from modelling
of polymer-liquid mixtures and those from polymer-gas mixtures.

In Section 4.2.1, modelling results on the systems PS-cyclohexane and PS-
SO2 are presented. The purpose for this work is twofold; both to compare the
performance of the Zero Order and First Order MFLG models in describing

phase behavior and to evaluate two types of modelling strategies. The first

strategy involves finding the values of the necessary binary parameters via fitting

of the appropriate model equations against dilute solution data (PS-cyclohexane)

while the second uses mixture data on concentrated solutions (PS-SO2). The
choice of strategy is important because the mean field approximation breaks

down in the case of very dilute polymer solutions, due to the large fluctuations

in segment density owing to the isolated nature of individual polymer coils.

Thus it would be expected that binary interaction parameters found via fitting

against concentrated solution data would be more useful in subsequent model

predictions than those determined using dilute solution results.

In Section 4.2.2, binary parameters found by fitting the appropriate model

equations against sorption data (polymer weight fractions of .75 and above) from

the systems PS-CO2 and poly(methyl methacrylate)-C02 are used to predict

the solubility of the two polymers in supercritical CO2 versus pressure. These

predictions are then compared to data measured using a flow-through supercrit-

ical extraction unit.

73
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4.1 Free Energy and Related Thern^odynanHc Quantities for the Zero and First
Order MFLG Models

Just as the MFLG represents a pure substance as a quasi-binary (holes and
segments), a mixture of two constituents is modelled as a quasi-ternary The
mternai energy is derived using the same general procedure as outHned in Section

2.1, .e., the number of (1 - 1), (2 - 2), and (1 - 2) contacts are calculated using
surface fractions and Regular Solution Theory T^,^ fr^« • <•& ^luu iiieory. i he tree energy expression for
binary mixtures for the Zero Order MFLG model is therefore:

= 00 In 00 + — In 01 -t- ^ln0;^"^ii-t mi rn2

(4-1)

+ fa„ + griii-l-^-Kl-Tl)^

\ (1 -701 - 7202) /

where

7i = 1 - o-,7o"o

and where the other symbols have been defined previously. The two terms

0(0.) are required because AA refers to the difference in free energy between a

mixture of type 1 segments, type 2 segments, and holes, and the initial states

type 1 segments plus holes and type 2 segments plus holes. However, since these

terms vanish during the derivations of the binary equation of state, binodal,

spinodal, and criticjJ point, they need not be discussed further.
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The entropy of mixing correction, which is the basis for the First OrderMPLG model, is derived in a fashion analogous to that of the pure component
case. The total number of arrangements of segments and holes on the lattice,
i^i, is assumed to be:

'

n, = nonn(f)
Pii

1=0 j=o (4-2)

where:

no:ni!n2
1=1

As before, z is the average coordination number of the system at a given con-

centration:

'2 3
^

z =

\

(4-3)

The number of like and unlike-contact pairs, P,, and P^,-, are calculated as for

the Zero Order MFLG model:

njrrijZjj

J2o nivniZii
(4-4)

It

1 {riimiZiif
2^2 (4-5)

The entropy of mixing calculated from equation (4-2) is added to the Zero

Order internal energy of mixing, yielding the First Order MFLG binary free

energy expression:
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AA A ,

2

, 0O<?^l(l - 71)~ g ^^"^00 ^^Q- ^00 In + ) _ o(<^i

)

^M2(^~J2)_
, ^ (4-6)

g i^^oolng-2ooln22+/32)-0((/.2)

g (2200 In g - zoo In 2^ +

where:

m

g = 1 - 7101 - 72</)2

7i = 1 - zi./zoo i = l,2

2» = -^oiZio/^oo i = 1,2

2m = Zi2Z2llz 0̂0

The binary equation of state, binodal, spinodal, and critical conditions are de-

rived from the free energy expressions (equations (4-1) and (4-6)) in the usual

way [Gibbs, 1874; Modell and Reid, 1974], as shown in Table 4.1. The complete

set of equations for the Zero Order MFLG model, as defined by the relations in

Table 4.1, are provided in reference [Kleintjens, 1979]. The corresponding equa-

tions for the First Order model are shown in Appendix B. The volume fractions

[h's) can be related to quantities commonly measured during analysis of phase

separation behavior, such as weight fraction [wi) and solution density (p,,,), by

equations (4-7)-(4-9):

(pi = ^
(4 _ 7)
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^2 = (l::_^o)c2W2

ciwi + C2W2 (4 - 8)

(4-9)

where the a = mi/Mi

Not all multi-phase situations can be described by the equations in Table
4.1. The determination of the binary parameters for the SO^-polystyrene system
(see Section 4.2). for example, was accomplished by fitting the model to vapor
pressure suppression measurements of a constant composition solution (versus

the pure solvent) at six temperatures. The appropriate model equations for this

example are those which govern the "sweUing binodal"
, or:

/^o - /^o (4 _ 10)

(4-11)

where the /z° and /x?"' are the chemical potentials of the holes and solvent seg-

ments in the pure gas and solution states, respectively. Equations (4-10) and

(4-11), in conjunction with the binary EoS, are used to model not only the SO2-

PS system, but also the sorption of CO2 by poly(methyl methacrylate) [PMMA]

and polystyrene at high pressures (see Section 4.3). In the latter two cases, it

is assumed that the dilute phase is essentially pure solvent (CO2), thus permit-

ting use of equations (4-10) and (4-11). The MFLG equations governing such

"swelHng binodal" situations, as defined by equations (4-10) and (4-11), are:
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and:

(4-12)

— In - = A|0o(l/m, - 1) + 02^, ^ (v^o/Q^)A(l -
71)}

+ 02(l/mi - l/ma) + </.2(0o + 02)am

+ ^0^2 (a. + ^ili^^Kl^
j

(4 - 13)

,

<^2/^m(l-7l)(l-72)(0O+02(l-72))

0^

where:

(?' = 1 - 71 (/>[

and A{x} refers to the difference in the value of x of the heavy and light ph

or a; - x'. The corresponding equations for the First Order MFLG model

presented in Appendix B.

ases,

are



Table_4J,

Thermodynamic Relationships for Mixtures for

Mean Field Lattice Gas (MFLG) Models

Binary Equation of .S fal^.-

Binodal:

S pinodal:

Vq \ dno J

fJ'i = n'i z = 0,1,2

V dui J

An

A21 A22

~ AuA22 - A12A21 = 0

where:

CriticalCondition

Ai, =
d^AA

d<t>2

A21 A22



80

.2 Polymer-Liquid Mixtures

4.2.1 Polystyrene-Cyclohexane

Pure component parameters for cyclohexane were found by fitting the model
unary equations to literature data [Kerns, et ai, 1974; Washburn, 1928; Young
1910; T:mmermans, 1965; Hales and Townsend, 1972]. The fitting results for the
two models are shown in Figure 4.1 and in Tables 4.2 and 4.3. Binary parameters
for the PS-cyclohexane system were found by fitting the Zero and First Order
MFLG spinodal equations to data by Derham and coworkers [1974] While
solution densities are not reported by Derham, et a/., they can be calculated
from the results of Scholte [1970], who made density measurements in the same
temperature and concentration range as Derham's data. Some additional fitting

was carried out using cloud point data by Saeki, et al. [1973].

The fit of the Zero Order MFLG model to the UCST-region data is very

good, but deceiving (see Figure 4.2); subsequent prediction of the LCST-region
spinodal for a 97200 MW polystyrene displays the proper shape but is located

approximately lOOiiT too low in temperature (see Figure 4.3). A second set of

binary parameters was found using 10 cloud points (modelled as spinodal points)

from both the UCST and LOST regimes. Whereas the predicted 97200 MW
LCST-region spinodal is more accurate in temperature than the first attempt

(Figure 4.3), the predicted shape of the curve is much poorer.

These results demonstrate the problems which are encountered when fitting

mean field models to dilute polymer solution data. Such data reflect the con-

tributions of segment-density fluctuations due both to the presence of a critical
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point and to the isolated nature of polymer coils in H'l ,

the MPT r ^ , J
'°'"*'™- Although

the MFLG model does not contain an explicit dependence of the free energy
on these segment density fluctuations, the results in Figure 4.2 show that thebmary parameters and can adequately compensate for this deficiency
over small ranges in temperature. This compensation, however, comes at the
expense of a reduced useful temperature range of the model, as seen in Figure
4 3. Non-mean field corrections to the MFLG model could come in the form
of an expanded temperature dependence of the interaction parameter [Nies et
ai, 1985], a function which bridges the dilute and concentrated contact stalis-
t.cs [Koningsveld, et 1974; Irvine and Gordon, 1980), or a contribution to
the free energy which directly addresses the effect of the fluctuations [Edwards,
1966; Muthukumar, 1986].

The First Order n.odel, which uses two binary paraxneters (.^,,^0 to
three for the Zero Order MFLG (a.,,^o,..0, P-duces a poor description of
the UCST-region spinodal data (see Figure 4.4). The two-parameter descrip-
tion apparently cannot effectively compensate for the lack of non-mean field

contributions to the free energy in the dilute regime. Despite the less accurate
predicted temperature dependence of the First Order model as compared to the

Zero Order MFLG, it might be expected that the <^o dependence of the First

Order model would be better than that of the parent model. Thus predictions

ofAVm, the volume change on mixing, defined as:

AVm = V - xiVi - X2V2 (4 _

were compared. Results (Figure 4.5) show that whereas the First Order model

predicts the correct sign (negative), the dependence on weight fraction is grossly

overestimated.



Table4^

Average Errors in Fitting MFLG Models to pVT Dat
on Cyclohexane

VLEData
Model N ber of Te.p. Vapor Vapor LiquidofPomts (K) Pressure-% Density-% Density-%

MFLG -Zero 19 1.2 1.0 12 2 5
19 1.2 3.1 1.8

^^i^i^^^^^ Eauation^fState

Model Temp. Press. Dens. Number of Press. Temp. DensW yo % Points % (K) %

MFLG -Zero .9 8.2 5.6 56 .3,3
- First 1.8 10.5 15.6 56 I.4 _ 1.1

Table 4.3

Zero and First Order MFLG Parameters for Cyclohexane
as Determined by the PEP

^1 «i ^1 910 gn 71

MFLG - Zero 3.56 .91134 - -.53522 369.02 -1.4931

- First 4.03 - 1.0645 - 967.5 .010157
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T
(K)

0.3 0.4 0.5 0.6

DENSITY (g/cc)

0.8

P
(bar)

600

TEMPERATURE (K)

Figure 4.1

Cyclohexane pVT data (.) versus MFLG models' descriptions, (top graph) VLB
data and description by Zero Order MFLG (— ) and First Order MFLG (- - -)

models. A's are calculated critical points, (bottom graph) Vapor pressure versus
temperature data and models' descriptions; symbols same as in top graph.
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W 2

Figure 4.2

Polystyrene-Cyclohexane spinodal data (points) compared to Zero Order MFLG
model description (curves) at three molecular weights (AI^'s): 527 000 (

)

(); 111,000 (-),(•); (51,000) (•••), (A).
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Figure 4.3

Predictions of the spinodal curve of a 97,200 MW polystyrene in cyclohexane
using the Zero Order model, parameter set 1 (see text) [— ]; and parameter set
2 [• • •]; compared to cloud point data (•).
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Figure 4.4

Fit of the First Order MFLG model (curves) to spinodal data (points) for
polystyrene-cyclohexane system; symbols same as for Figure 4.2.



87

Vm
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- 1

- 2--

- 3--

0.00 0.04 0.08

Wp
(Weight Fraction Polymer)

Figure 4.5

Prediction of the volume change on mixing of the polystyrene- cyclohexane sys-
tem versus concentration by the Zero Order (— ) and First Order (- - -) MFLG
models compared to data derived from density measurements by Scholte [1970]
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4.2.2 Polystyrene-S02

Pure component parameters used for SO2 and PS were those determined
m Section 2.2. Binary parameters were determined by fitting the "swelHng
bmodal" equations for the two models (see Section 4.1) to the vapor pressure
suppression results of Albihn and coworkers [1979; 1981]. Albihn measured the
difference in vapor pressure between a 64.8% solution of 2330 MW polystyrene
and pure SO2 at six temperatures between 240-300ii:. The fitting results are
excellent for both models (Figure 4.6).

Albihn also measured the phase behavior of three higher molecular weight
polystyrenes in SO2 at 293i^. These experiments consisted of immersion of an
amount of polystyrene in SO2 (1:5 by weight), prolonged shaking, and analysis

of the composition of the two phases. Using the binary parameters found above,

binodals and spinodals for the three cases were calculated. The binodal calcula-

tions assume the equihbrium of an essentially pure vapor phase with two Hquid

phases. Thus the situation can be described by the following equations:

Mo^ = t^Q^ = f^o' (2 independent equations)

=^ t^i^ = f^i^ (2 independent equations)

^ = '
(4 - 15)

Therefore, given the temperature, there are six independent equations for the

six unknowns: density of each phase (3), weight fraction polymer in each liquid

phase (2), and the equihbrium pressure (1). The spinodal is represented by

the appropriate equation from Table 4.1 and an equihbrium between holes and

solvent segments in the vapor and metastable liquid phases.
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Because Albihn used polystyrenes with broad n^olecular weight distribu-
fens, not surprisingly, phase separation in SO^ segregated the polystyrene by
molecular weight between the two phases. However, because initial n^olecular
weight distribution curves were not iiv»;i.l,l. tuwere not available, the multi-component approach
[Koningsveld and Staverman, 1967; Sole, 1970] to modelling phase separation
behavior could not be used. Therefore the initial molecular weight averages were
used to calculate the phase boundaries for the concentrated side of the diagram
whereas the dilute solution molecular weight averages, as measured by Albihn
were used to predict the dilute phase boundaries. Results are shown in Figures
4.7 and 4.8.

The agreement between experiment and prediction is quite good, especially

considering how few data were used in the fitting of the binary parameters.

That the absolute value of the predicted spinodal composition at 293K is more
accurate for the concentrated side of the diagram is not suprising; the dilute so-

lution effect mentioned in Section 4.2.1 for the polystyrene- cyclohexane system

holds true here as well. This effect can also be seen by examining the effective

molecular weight cutoff (the point at which the polymer concentration drops

below .0001%) in the dilute phase. The model predicts a cutoff at approxi-

mately 12,000 whereas the data show a cutoff nearer 50,000. However, because

the model was fitted to concentrated regime data, where the mean field approx-

imation is expected to be vahd, the predicted temperature dependence of the

phase diagram is better than that for polystyrene-cyclohexane. This accuracy

is confirmed by Albihn, who noted that the two phases do not merge as the

temperature is raised to the critical point and beyond. In addition, the pre-

dicted phase diagrams also confirm the observation that the composition of the

dilute phase above the critical temperature drops below .1% even for oligomeric

polystyrene (see Figure 4.8). Interestingly, the Flory-Huggins model, as applied
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by Albihn to the vapor pressure suppression data, would predict an ovate-shaped
phase diagram, contrary to the experimental observati-ions

Again, the First Order model produces a much poorer prediction of the
phase behavior than the Zero Order MFLG (see Figure 4.9). The temperature
dependence of the spinodals is opposite to that of both the Zero Order model
and experimental observations.



91

Del P
(bar)

0 .
5--

0 .
4--

0 .
3-

0 .
2--

0 .
1--

0 . 0

-0.1
240 250 260 270 280 290

Temperature
( K )

3 0 0

Figure 4.6

Vapor pressure suppression of a solution of 2330 MW polystyrene in liquid SO2
(as compared to pure solvent) versus temperature. The fit of the Zero (— ) and
First Order (- - -) MFLG models is compared to data (•). [Albihn and Kubat,
1981] ^ ^
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Figure 4.7

Predicted spinodals (• • •) and binodals (— )
by Zero Order MFLG model and

phase separation results by Albihn and Kubat [1981]; initial concentration [I];

light [L] and heavy [H] phase concentrations after equilibration at 293. 2ii:. Top
graph; M„ = 15,600, = 35,400. Bottom graph; Mn = 66,700, =
196,500.
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(Weight Fraction Polymer)

Figure 4.8

Predicted spinodals (•••) and binodals (— )
by Zero Order MFLG model and

phase separation results by Albihn and Kubat [1981]; symbols same as in Figure
4.7. Top graph; M„ - 136,000, = 402,000. Bottom graph; Af„ = 2330,

= 3650 (projected phase diagram of material used during fitting, x's are

temperature-composition locations of points used).
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Figure 4.9

Predicted spinodals for Zero (• • •) and First Order ( ) MFLG models and
phase separation results by Albihn and Kubat [1981]; symbols same as in Figure
4.7. Molecular weights are same as for top panel of Figure 4.7.
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4.2.3 Summary of Section 4.2

The breakdown of the mean field approximation in the very dilute region
causes significant problems if binary parameters for the MFLG models are found
v.a use of data from this region. The use of the three binary parameters in the
Zero Order model partially compensates for the dilute solution problem over
smaJl temperature ranges, but phase behavior predictions at temperatures out-
side the fitting range cannot be made with confidence. The MFLG models
perform much better using parameters found with concentrated solution data.
While subsequent predictions of dilute phase behavior will still generally un-
derestimate the equilibrium concentration (by overestimating the number of
polymer-solvent contacts), the predicted temperature dependence and shape of

the phase diagrams will be more accurate.

The prediction of phase separation behavior by the Zero Order MFLG is

significantly more accurate than that of the First Order model. The two-binary-

parameler description of the First Order model does not produce the proper

temperature dependence of the phase diagrams, although the volume change on

mixing prediction is somewhat improved. Apparently, though the First Order

model properly describes the <!,„ dependence of the empirical parameters ai

and 5i„, more work needs to be done on the temperature dependence of these

parameters. Therefore, the prediction of the phase behavior of polymer-gas

mixtures will be handled using the Zero Order model alone.
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4.3 Phase Behavior of Polymer-Gas Mixtures

4.3.1 Experiment al

Solubility of PMMA and PS in supercritical CO2 was measured using a
Fluitron Supercritical Extraction Unit (Fluitron, Inc., Ivyland, PA), a flow di-

agram of which is shown in Figure 4.10. Approximately 2-3 grams of polymer
is suspended in the flow-through column in a porous, cellulose Soxhlet extrac-

tion thimble. Gas is charged to the column to the required pressure after which
the system is allowed to equiHbrate for approximately three hours. During this

time the pressure and temperature can be maintained to within ± 50 psi and ±
.5K, respectively. The extraction unit is rated for use at pressures up to 30,000

psi and temperatures to 150C. Following equihbration, the compressor is reac-

tivated followed by the opening of the heated metering valve. The higher the

run pressure, the higher the metering valve must be heated to insure freedom

from Joule-Thompson icing and therefore a smooth and steady gas flow to the

collection vessel. As the gas expands through the metering valve, the polymer

drops out of solution and is recovered in the collection vessel, which contains

an organic solvent which is known to readily dissolve the polymer under study

(Toluene was used in both cases). Use of the organic solvent facilHtates removal

of the solute from the collection vessel. A run is continued until approximately

the equivalent of approximately 300 cc (3 times the column volume) has been

extracted. The metering valve is then closed and the column maintained at

the run pressure while the toluene solution is removed from the collection ves-

sel. Following this transfer, the toluene is removed by evaporation and vacuum

treatment and the amount of solute is measured gravimetrically. Blank runs

involving only the toluene were made in order that impurities in the solvent
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not be mistaken for dissolved polymer. The volume of the gas expended during
the run is recorded by the totalizer, and is converted to a weight basis using
the hterature value for the density (The totaHzer has been calibrated against
the flow meter and flow sensor such that 1 count equals 50cc of CO2 at room
temperature and pressure). Two runs are made consecutively and the solubility
IS taken to be the total amount of solute extracted over the 2 runs divided by
the total amount of gas expended during those runs.

Narrow molecular weight polystyrene and poly(methyl methacrylate) stan-
dards were obtained from Pressure Chemical Co., Pittsburgh PA. Nominal
molecular weights are 2000 for the polystyrene (M./M. < 1.O6) and 7000 and
24300 for the PMMA's (M./M. . 1.15,1.10, respectively). Linde Bone Dry
CO2

,
obtained from Merriam-Graves Corp., West Springfield, MA, and Fisher

Scientific Spectro-Grade Toluene (T-330), were used as received. Although the

polymers used have narrow molecular weight distributions, extracted polymer
was continually re-combined with material left in the column after a pair of runs

to avoid molecular weight stripping and consequently biased results.

Errors in the solubility come mainly from two sources, both random in na-

ture. Errors in weighing will be approximately ±4%. Temperature fluctuations

in the room will lead to errors in the density assumed for CO2 in the collection

vessel. These errors will also be approximately 4% or less. Thus the solubil-

ity measurements should be assumed to be ±8 - 9%. Indeed, measurements

of the solubility of the 2000 MW PS in CO2 at 40C are 5-10% lower than the

measurements of Bowman [1976].
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4.3.2 Poly(Methyl Methacrylate)-C02

Pure component MFLG parameters for CO2 were determined in Section

2.3. Pure component parameters for poly(methyl methacrylate) [PMMA] were
determined by fitting the MFLG equation of state to pVT data by Olabisi and
Simha [1975]. Because data on only one molecular weight species is available in

the literature, only one constraining equation (see Section 2.3.1) could be used

to fix the parameters, resulting in a high degree of correlation between the a,,

910, and 71 parameters. Consequently the value of 7^ for PMMA was linked to

the number of segments per monomer, m, and the corresponding polystyrene

values via the following:

("^ - 'yPMMA)mpMMA _
(1 _ jps)mps

^ Bondi monomer surface ratio (4 - 16)

The values of the parameters for PMMA are shown in Table 4.3. Average error

in calculated density for the 40 data points is .03%.

The sorption behavior of CO2 by atactic PMMA has been reported by Liau

and McHugh [1985]. Liau measured the volume change of the polymer upon

swelling by the gas, as well as the equilibrium weight fraction CO2 absorbed,

at three temperatures over an extensive range in pressure. The volume change

on mixing can be calculated from the combination of the swelling and sorption

results using:

(s__f i-wA

AF„ = '-2^
(4 - 17)

(tz^\ L
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where S is the fractional increase in volume upon swelling, the p. and are the
densUies and n^olecular weights of the gas and poIy„,er. and is the weight
fracfon poly„,er. The derivation of equation (4-17) is shown in Appendix C.

The sorption data were fitted to the "swelling binodal" equations (equations
(4-12) and (4-13)) to determine the binary parameters, which are shown in Table
(4-3). The literature and calculated isotherms are compared in Figures 4.11 -

4.13. Significantly, the model correctly predicts that the isotherms will intersect,
a phenomenon observed in many gas-polymer mixtures (Lundberg, et ai, 1969-
Maloney and Prausnit., 1976]. The average error in the predicted weight fraction

over all three isotherms is 1.6%.

The AKn's derived from Liau's measurements using equation (4-17) and
those predicted by the MFLG model are compared in Figure 4.14. Although
the form of the model description is correct, the absolute values of the predicted

AVm's are too low, particularly at higher pressures. This is a result of both an

overestimation of the pure CO2 density Figure 4.15 and an overestimation of

the change in volume change upon swelHng of the PMMA.

To test the useful temperature range of the model, predictions of sorption

of CO2 by PMMA using the binary parameters found above were made at T =

461.53iC and T = 298.2iir and compared to measurements by Durrill and Griskey

[1966], and Berens [1987].

The experimental data at 461.53ii: are in the form of a Henry's Law con-

stant, which is the slope of the sorption-pressure curve at low pressures, and is

given in units of {cc{STP)/g PMMA). Therefore, to compare the model pre-

diction with the experimental result, equations (4-12) and (4-13) and the model

parameters from Table 4.2 were used to calculate sorption versus pressure (up
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to 20 bar) at T = 461.53if. The results were converted to a cc{STP) versus

J PMMA basis ar^d then linearized using a standard regression procedure to
find the slope. The calculated result, .326, is greater than the experimentaJ
value of .260, but the agreement is reasonable considering the high temperature
at which the prediction was made.

Berens measured the sorption by PMMA of hquid CO2 at its vapor pressure

at 298K. Prediction of sorption under these conditions requires the solution of

equations for three phase equilibrium (Hquid-Hquid-vapor), or:

V L P
Mo = H = Mo (2 independent equations) (4 - 18)

V L P
Ml = Ml = Ml (2 independent equations) (4 _ 19)

RT RT (4 - 20)

where the /z^ are the chemical potentials of the holes and CO2 segments in

the vapor, liquid, and swollen polymer phases. Thus there are five independent

equations for the five unknowns; pressure, CO2 Hquid and vapor densities, weight

fraction CO2 absorbed by the polymer, and the density of the swollen polymer

phase. The calculated result, 25.6 [g C02lg PMMA), is within experimental

error of the measured value, 27.0±2.0(^ ^702/^ PMMA).

The binodal and spinodal equations, in conjunction with the equation of

state, were used to predict the phase behavior of dilute solutions of PMMA in

CO2
,
given the binary parameters found above. Results are shown in Figures

4.16 - 4.19 (The binodal at M = 24,300, T = 2U.2K is predicted to lie at

concentrations less than l.E-08 and therefore does not appear in the figures).

Because the binodal is often associated with the cloud point curve, and be-

cause the spinodal is a meta-stable condition, it is expected that the solubility

would fall between the two yet generally follow the course of the binodal. As-

suming this, though the dependence of the solubility on pressure, temperature
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e

and :nolecular weight are all described correctly, the model underpredicts the
solubility in each case.

The underprediction of the binodals is due to severaj factors. First, in th.
determination of the adjustable parameters using Liau's sorption data, it was
assumed that the light phase during equilibrium swelling of the 33,200 MW
PMMA was essentially pure CO,

. Based on the experimental solubiHty results
using the 24,300 MW PMMA, this may not be so. Second, as mentioned previ-
ously, mean field models do not account for the large fluctuations in monomer
segment density in dilute polymer solutions (due to the isolated nature of the
individual polymer coils) and consequently do not usually predict dilute polymer
solution data accurately. Finally, that the binodal curve is too "sharp" at high
pressure is partially due to errors in the prediction of the volume of mixing at

higher pressure.



Table44

MFLG Paran^eters for Poly(„.ethyl methacrylate) andCarbon Dioxide and for the PMMA-CO2 Mixture

Parameter CO
Zero_OrderModel

PMMA PMMA-CO2

771 1.31 3.13*

a .91498 -9.0493

9io -1.1445 6.1068

9n 519.82 1361.0

7 -1.2010 -1.286

Om
4.2339

9mO -1.7716

9ml 87.572

segments per monomer unit
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(Weight Fraction Polymer)

Figure 4.11

Fit of the Zero Order MFLG model "swelling binodal" equations (— ) to PMMA-
CO2 sorption data (•) at 315K by Liau and McHugh [1985].
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(Weight Fraction Polymer)

Figure 4.12

Fit of the Zero Order MFLG model "swelling binodal" equations to PMMA-
CO2 sorption data at 331.3K by Liau and McHugh [1985]; symbols same as in
Figure 4.11.
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Figure 4.13

Fit of the Zero Order MFLG model "swelling binodal" equations to PMMA-
CO2 sorption data at 341.2K by Liau and McHugh [1985]; symbols same as in
Figure 4.11.
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Pressure
(bar)

Figure 4.14

Prediction of the volume change on mixing of the PMMA-CO2 "lixturc versus
pressure by the Zero Order MFLG model (curves) compared to values calculated
from swelling data (points) by Liau and McHugh [l985j at three temperatures:
T = 315/C, (-), (•); T = 331.3/^, (- - -), (A); T = 341.2, (• • ), ()•
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(g/cc)
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0 . 6
-

0 . 4

0 .
2--

0 . 0

6 0 12 0 18 0 2 4 0 3 0 0

Pressure
(bar)

Figure 4.15

Prediction (curves) of the density of CO2 versus literature data [Reynolds, 1979]

(points) at two temperatures: T = 315K] (•), (— ); T = 341. 2/C; () ( ).
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(H
le-07 le^ le^ 1^:03 1^^ J^Jl 1^

Wp
(Weight Fraction Polymer)

Figure 4.16

Solubility measurements of 7000 MW PMMA in CO2 versus pressure at 213K
(•) compared to binodal (— ) and spinodal (- - -) predictions by the Zero Order
MFLG model.
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a
le-08 le-07 le-06 le-05 le-Oi le-03 le^ le-01

Wp
(Weight Fraction Polymer)

Figure 4.17

Solubility measurements of 7000 MW PMMA in CO2 at 3337C compared to Zero

Order MFLG model predictions; symbols same as in Figure 4.16.
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Figure 4.18

Solubility measurements of 24,300 MW PMMA in CO2 versus pressure at 313ii:

(•) compared to binodal (— ) and spinodal (
) predictions by Zero Order

MFLG model.
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2000-

1500-

-

(bar) 1000--

50O-

le^ le-07 le-06 le-05 1^
Wp

(Weight Fraction Polymer)

Figure 4.19

Solubility measurements of 24,300 MW PMxMA in CO2 versus pressure at 333/C
compared to Zero Order MFLG model predictions; symbols same as in Fieure
4.18.

^
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4.3.3 Polystyrene-C02

Pure component parameters for both constituents were determined in Sec-
tion 2.3. Unfortunately, sorption data on the PS-CO2 binary are relatively

scarce. The binary parameters for the model were determined by fitting the
sorption equations against Henry's Law region data at several temperatures
[Durrill and Griskey, 1966; Morel and Paul, 1982]. Due to the lack of volume of
mixing data (solution densities were set to the density of pure PS and assigned
a tolerance of 10% during fitting), could not be determined with any confi-

dence and was consequently set to zero. All of the material parameters for PS
and the PS-CO2 binary are shown in Table 4.5. The error between calculated

and actual Henry's Law constants is less than .1%.

The predicted sorption at T 298ir, 5.7 {g C02/g PS), is muchlower than

the measured value [Berens, 1987] of 13.5. The large error in this prediction,

compared to the corresponding calculation for PMMA-CO2, is due to both th

ambiguity in the binary parameters owing to the scarcity of sorption data and

to the distinct possibility that polystyrene, under these conditions, (CO2 vapor

at 298.2ii:) is in the glassy state. Because the MFLG model is predicated on an

equilibrium distribution of segments and holes, it is not rigorously applicable to

non-equilibrium materials such as polymer glasses. Sorption of gases by glasses

is better represented by a model of the dual-mode variety [Morel and Paul, 1982].

The predictions of the dilute solution behavior of PS-CO2 are shown in

Figures 4.20 and 4.21. The trends are similar to those found for PMMA-CO2

,
although, not surprisingly, it appears that CO2 is a much better solvent for

PMMA than for PS. Unlike the PMMA-CO2 system, the approximation made

during the determination of the binary parameters, that high molecular weight

as

e
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polymer does not dissolve in the gas over the pressure range of the sorption data,
holds quite well for the PS-COa binary (Bowman, 19761.
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Tabled

Material Parameters for Polystyrene and PS-CO2 Mixture
using MFLG Model

Parameter Polystyrene Polystyrene-CO2

Til 3.7^

a -6,8354 —

4.8622

911 1110.0

7 -1.0889

OLm 0

9mO -.17450

9ml 279.51

* segments per monomer unit
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2 0 0 0

15 0 0

(bar) 1 0 0 0--

5 0 0

0

•

le-06 le-05 le-04 le-03 le-02

W p

(Weight Fraction Polymer)

Figure 4.20

Solubility of 2000 MW polystyrene in CO2 at 3UK versus pressure (.) (and
smoothed data by Bowman [1976] (.)), compared to spinodal predictions (—

)

by Zero Order MFLG model.
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2 0 0 0
-

1 5 0 0--

(bar) 10 0 0

5 0 0--

le-06 le-05 le-04 le-03 le-02

W p

(Weight Fraction Polymer)

Figure 4.21

Solubility measurements of 2000 MW polystyrene in CO2 at 353K versus pres-

sure (•) compared to Zero Order MFLG model spinodal prediction (— ).
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4.3.4 Summary of Section 4.3

The MFLG model produces an accurate description of the sorption of su-
percritical C02 by atactic PMMA in the concentration region where the mean
field approximation is expected to be vaHd. Using the binary parameters found
by fitting the appropriate model equations to the Hterature sorption data at

temperatures between 315K and 341.2i^, accurate predictions of sorption have
been made at temperatures of 298.2ir and 461.53ir, thus demonstrating the
large useful temperature range of the model. Predictions of the volume change
on mixing, while displaying the proper trends versus temperature and pressure,

show deviations from the data at high pressure.

In general, though correctly describing the effects of temperature, pressure,

and molecular weight on dilute solution phase behavior, the model underpredicts

the solubiHty of PMMA in CO2. This is due both to the assumptions made
during the determination of the binary parameters (that no 33,200 MW PMMA
dissolves in CO2 up to pressures of 300 bar) and to the breakdown of the mean

field approximation in very dilute polymer solutions.

The predictions in the PS-CO2 system were made using a minimal amount

of data during the fitting procedure. Despite this, the model solubility predic-

tions qualitatively describe the dilute solution behavior, but as in the PMMA-
CO2 binary, underpredict the solubiHty. Not surprisingly, CO2 is a much better

solvent for PMMA than for PS.

Clearly, dilute polymer solutions present a problem for the model in its

present form. A number of authors have attempted to bridge the gap between

dilute and concentrated polymer solution thermodynamics [Koningsveld, et al,
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1974; Irvine and Gordon, 1980; Edwards, 1966; Muthukumar, 1986; Sanchez
and Lohse, 1981; de. Cloizeaux, 1975]. Of these, the bridging theories of Kon-
mgsveld, et al, and Irvine aad Gordon, the cell „>odel by Sanchez and Lohse,
or the field theoretical approach of Muthukumar seem to be the most readily
adaptable to a lattice model such as the MFLG since each of these builds ftom
an existing mean field approach.



CHAPTER 5

Predicting the Pressure Dependence of the Glass
Transition of Amorphous Polymers

As stated in Chapter 1, one of the goals of this research is to predict the
Tg of a gas-polymer mixture as a function of gas pressure. This means that the
model must be able to successfully predict:

1. The effect of hydrostatic pressure alone on the Tg of a pure polymer;

2. The effect of diluent concentration on the Tg of a mixture;

3. And the effect of pressure on the amount of gas a polymer will absorb.

In Chapter 4, it has been shown that the MFLG model will accurately predict

the sorption of a high pressure gas by a polymer. In this chapter, the effect of

hydrostatic pressure on the Tg of a pure polymer is examined.

The dependence of Tg on pressure is predicted by considering the glass

transition as a state of constant Cr, where Cr is a criterion calculated from

the thermodynamic properties of the material under study. Three criteria are

evaluated; the iso-free volume (FV), iso-entropy (S), and iso-viscosity or iso-

relaxation time. The latter is represented in the first approximation by the

quantity TS, as originally derived by Adam and Gibbs [1965]. Because the model

material constants are determined by fitting of the MFLG EoS to literature

pVT data, the calculation of dT^/dp is a prediction, requiring no additional

adjustable parameters. Predictions of dTg/dp for the amorphous polymers PS,

PMMA, poly(vinyl acetate) [PVAC] and Bisphenol A polycarbonate (PC) are

made using each of the criteria and compared with literature data.

120
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A. shown in Chapters 2 and 4, the Zero Order model has been shown to
prov.de good descriptions of the volumetric properties of substances, yet it con-
tains a fundamentaJ ilaw in that the change in heat capacity upon mixing holes
and segments, AC. is ,JeniicaUy .ero. Thus, the temperature dependence of
the Zero Order model free energy expression will be modified. The adjustment
.s necessary at this point because the heat capacity is an entropy derivative and
smce the entropy plays a large role in the Tg predictions, it is obviously impor-
tant to obtain as good a description of the entropy as possible. The modification
will be made in the form of a "softening" of the segments, or a cell-hole type of
model

5.1 Thermodynamic Criteria for the Glass Transition

The glass transition can be thought of as a freezing- in process [Lipatov,

1978] where one or more configurational properties, which depend upon tem-

perature and pressure in the melt, are constants for the glass. Oels and Rehage

[1977] has shown that as a first approximation, the glass transition-pressure Hne

for atactic polystyrene (and possibly other polymers) can be assumed to depend

on only one order parameter. Proposals for the identity of this order parameter

have centered on the free volume, entropy, and relaxation time.

Although free volume-based theories of the glass transition are the most

numerous of the three types mentioned above, predictions of dT^/dp using free

volume criteria are few. Sanditov and Bartenev [1975], using Eyring's hole model

for fluids and a constant hole volume criterion, showed dT^/dp to be a material

constant. While this is a reasonable first approximation, it is not rehable for most

polymers. Kanig [1963], from V-T curves of both Hquid and glassy polystyrene

of various chain lengths, concluded that the ratio of the "vibration" free volume
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(i.e., that portion of the free volume which does not freeze in at Tg) to the
total free volume is a material constant at Tg. While the use of Kanig's lattice

equation of state to define the free volume ratio made it possible, in principle,
to calculate dT^/dp, only the effect of diluents was modeled.

The most widely used of the entropy models is the Gibbs-DiMarzio (GD)
theory [Gibbs and DiMarzio, 1958; DiMarzio and Gibbs, 1958]. The Gibbs-
DiMarzio theory assumes that Tg is a second order transition, which, under
conditions of infinitely slow cooHng, occurs when the configurational entropy

drops to zero. While this theory can describe quaHtatively the effects of pressure

[DiMarzio, et ai, 1976] on the Tg, the calculated transition temperature, T2, is

usually 20 - 50K below the actual Tg. Practically speaking, modelHng the

pressure dependence of Tg using the GD theory would be similar to a specific

case of the freeze-in constant entropy condition, i.e., S = 0. The GD model will

be covered more thoroughly in a separate section to follow.

Although not strictly an entropy-based model, the theory of DiBenedetto

[1987] also assumes the glass transition to be a second order transition. Em-

ploying the idea of corresponding states, the DiBenedetto model assumes all

substances to have the same reduced glass transition temperature. Thus this

model is similar to that used here with the constant reduced Tg acting as the

vitrification criterion. However, because DiBenedetto avoids deriving the equa-

tion of state, the effect of pressure on the Tg cannot be calculated with this

theory.

Turnbull [1969], Miller [1968; 1978a,b], and also McKinney and Goldstein

[1974], have postulated that the glass transition is an iso-viscous, or iso- relax-

ation time state. Adam and Gibbs [1965] showed that as a first approximation.
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the relaxation time is a function of the quantity TS. where S is the configu-
rafonal entropy. (The configurational entropy is taken to mean the difference
between the total entropy and the ideal crystalline entropy.) In a„ experimental
study or. poly(vinyl chloride), Naoki and Owada [19841 found that use of the
constant TS condition was superior to both constant entropy alone and constant
free volume in the description of ar^/ap. Nose [19711, using a cell-hole model
for polymer liquids and glasses, also found the iso-TS criterion to be superior
to both the iso-entropy and iso-iiee volume models in describing dT^Jep for
polystyrene, poly(vinyl acetate), poly(methyl methacrylate), and other poly-
mers. MiUer [19681, however, found the Adam-Gibbs criterion to provide an
accurate description of the glass transition only if the conformational entropy
is substituted for the configurational entropy. Despite this, the configurational

entropy, as derived from the MFLG model, «nU be used to calculate the Adam-
Gibbs criterion.

5.1.1 Entropy: Comparison of MFLG and Gibbs-DiMarzio Model

The Gibbs-DiMarzio (GD) model [Gibbs and DiMarzio, 1958; DiMarzio

and Gibbs
, 1958] employs the general rigid lattice formulation, as described in

Chapter 2, with a zero g^^. Thus the GD equation of state is a specific case of the

MFLG EoS, and as has been shown in Section 2.3, is significantly less accurate

in its descriptions of the pVT beha^^o^ of both gases and polystyrene. However,

the unique feature of the model derives from the assumption that segments

can exist in a number of rotational states, each \\-ith its own particular energy.

An isobaric-isothermal partition function is constructed in which the sum over

states is replaced by a sura over the allowed values of both no, the number of

holes, and /,-, the fraction of molecules in rotational state i. Using the standard

procedure, the sum is replaced by its maximum term which is obtained by
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zero

er

d.fee„tiation with aspect to both and /, Equating the derivative, to .
yelds the equilibrium vaiues of n„ (the equation of state) and /, As a fu.th
=.n.^.ficatio„, the .otationa. ison.e. app„.in.ation is invoked, thus .educing the
nun.be. of allowable states to two. The fraction of segments in high ene.g, wells
IS found to be:

l + (2-2)exp(-Ae/A;T) - 1)

where Ae is the energy difference between the two states. Because the tern.s in
the GD free energy expression which are functions of /(A., T) are linear in
they vanish during the calculation of the chemical potential of either holes or
segments. Thus, while the equations of state of the two models are somewhat
similar, use of the multiple rotational state approximation by Gibbs-DiMarzio
adds temperature-dependent terms to the entropy not found in the analogous
expression for the MFLG. As in the case of the EoS, we can set the Gibbs-
DiMarzio expression for the entropy in terms of MFLG symbols:

where Q is defined as in equation (3-6). For a polymer, assuming that z ^ 10,

the first group of terms on the right-hand side of equation (5-2) will be negative

while the f-dependent group will be positive. The entropy will therefore vanish

at a temperature which depends on the values of 2, Ae, r, and ^n. By contrast,

the entropy expression for the MFLG model reads as follows:

A5
N.

<t>

= -R
(^00

In 00 + ^ In ./^i + <^o0i {a + _
3^
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For the poly:ners studied so far [polystyrene, poly(„.ethyl n^ethacrylate,
poly(vinyl acetate), and bisphenol A polycarbonate], the ter.s inside the curly
braces in equation (5-3) are always negative. Therefore the configurational en-
tropy, as defined by equation (5-3). will never be .ero for these polyn^ers, so long
as there are holes present, even if the Gibbs-DiMarzio terms which include the
effect of the two rotational states (i.e. the f-dependent ter„.s) are added in.

While the Gibbs-DiMar.io .ero entropy criterion cannot be used verbatin.
wth the MFLG model, the f-dependent terms could be included in the MFLG
entropy expression and the value of A. could be found by fitting against dT^/dp
data. This would presume the entropy to be the dominant force in determining
Tg, whereas one of the goals of this work is to try to objectively compare the
three criteria. A different approach to modifying the MFLG entropy expression
will therefore be used (see Section 5.1.3).

5.1.2 Free Volume: Comparison of the Kanig and MFLG Models

The approach of Kanig [1963] is, in many respects, the most closely related

to that of this work. Kanig constructed a lattice model in which, like the MFLG,
holes and segments are permitted different contact surface areas for the purposes

of calculating the free energy (see Chapter 2). The Kanig EoS is consequently

of the same form as that of the MFLG with the added constraints that a = 0

and sio = 0. The performance of the Kanig and MFLG equations of state has

been compared in Section 2.3.

The major difference between Kanig's model and the MFLG is that Kanig

assumed there to be two types of free volume, that due to holes and "vibration"

volume, or that due to vibrations of the segments about their lattice locations.
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Kanig did not attempt to define the Sn•T^.o+• » iP aenne the vibration" volume from fundamental prin-
ciples, but rather related it to experiment a 11 v ui

, , ,

xperimentally observable quantities by assuming
tnat the holes completely freeze in at T Tr • ry m at Pg. Kamg found, by observation of the
volumetric behavior of polystyrenes of mr^u i^ ystyrenes of molecular weights ranging from 200 to
90,000. that the value of the free volume faction due to the holes (and
consequently the free volume fraction due to vibration vo.un.es) at T, is
essentially constant. Taking the constant as the criterion for T„ KanigL
able to derive the Go.don-Taylo. (Gordon and Taylor, 1952) empirical equation
for the Tg of a copoly„.er fron. his n^odel, and to show good fits to polystyrene
Tg versus diluent concentration data.

The Kanig criterion for Tg is approximately that of the constant FV used
herein. The difference lies in Kanig's use of the "vibration" volumes, such that
{d4>„/dT)^ ^ 0. In Section 5.1.3, the MFLG model will be modified in an at-

tempt to describe the temperature dependence of these vibration volumes and
thereby add a volume-dependent intramolecular contribution to the configura-

tional entropy.
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5.1.3 Modifying the Temperature Dependence of the MFLG Free Energy
Expression

The MFLG can successfully model the pVT behavior (volume derivatives
of the free energy) of liquids, gases, and polymers. However, quantities based
on the higher order temperature derivatives of the free energy are not as well
described by the model in its present form. For example, using equation (2-9)
or (5-3) we find:

V ) ^^^^
- \-3fr)

^^^^
= -^CvlT .0 (5-4)

which is clearly unsatisfactory where real fluids are concerned. An attempt
will therefore be made to improve the temperature dependence of the MFLG
model. The modified model will be compared to the original formulation in the

description of the pVT behavior of liquids as well as in the prediction of dTJdp
for the four polymers.

One solution to the problem with the MFLG temperature dependence, as

shown by the unrealistic constraint to AC,, is to "soften" the segments some-

what, by allowing the number of segments/molecule, and therefore the surface

area per segment, to vary with temperature. This is analogous to the cell-hole

approach to the lattice model which has been pursued in depth by Simha and

coworkers [Simha and Somcynsky, 1968] and follows the suggestion of Kanig.

As a first approximation we divide the monomer unit into a number of chemical

groups, G, and allow the radius of each group to vary linearly with temperature

due to anharmonic vibrations. Initially all groups in the monomer are considered

equivalent. If r is the radius of a group:
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r = A + BT

therefore:

3t;o ^ ^ (5 - 5)

and:

where K is a constant which allows for segment surface/volunae ratios other
than that of spheres (the holes, however, are assumed to be spheres). Thermo-
dynamic derivatives at constant temperature, such as the equation of state, are
not affected by these changes, while the entropy of mixing of holes and segments
becomes:

A5
N.

- RT(I>< ( (^o-'?^i+7i<?^^)(l-7i)/3

'

V (l-7i<^i)'

(5-7)

(1 - 7i<?^i)

where

^1
d<l)

dT
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The temperature dependence assumed for m, and is overly simplistic in
that the groups are allowed to change size independently, ..e., the vibrations
and rotations of one group do not affect its neighbors, and there is no upper
bound to the size of a segment. Since all groups are assumed to be chemically
equivalent, the values of A and B, found via fitting against pVT data, will repre-
sent smoothed net effects over the whole chain. Finally, no coupling is assumed
between the number of holes and the temperature dependence of ra, and -y

However, these changes to the model are meant only as a first approximation.

5.2 Comparison of the Predictions of dT^ISj, Produced by the Three Criteria:

Results for Amorphous Polymers

Because only the equation of state is available as a constraint for the fitting

of thermodynamic models to pVT data on polymers, comparative testing of the

Zero Order MFLG and modified MFLG model (Section 5.1.3) was performed

on literature data for cyclohexane [Kerns, et a/., 1974; Washburn, 1928; Young,

1910; Timmermans, 1965], toluene [Washburn, 1928; Young, 1910; Timmer-

mans, 1965; Hales and Townsend, 1972], and benzene [Kudchaker, et ai, 1968;

Vargaftik, 1975; Gehrig and Lentz, 1977]. Results are shown in Tables 5.1 and

5.2. The modified model, as expected, improves the fit over that of the Zero

Order MFLG to the saturated liquid densities. In other areas the average error

of the modified model is equal or less than that of the parent.

Fitting of the Zero Order MFLG model to PS and PMMA data has been

discussed previously (see Sections 2.3 and 4.3.2). Because literature pVT data

is available for only one molecular weight species of PVAc [McKinney and Gold-

stein, 1974] and PC [Zoller, 1982], the 71 parameter was Unked to the number

of segments per monomer unit, the corresponding values for PS, and the Bondi
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rat.o as in Section 4.3.2. Dete™„ation of the parameters for the four polyrr.ers
us.ng th. n^odified „.odel was handled in the sa„>e way. AU parameters were
allowed to float during the fitting of the PS data whereas the K parameters of
the other three polymers were set by the PS result and the Bondi ratios.

The results of the fitting for the four polymers are shown in Table 5.3 These

different.

Once the paraxneters for the four polyxners had been set using the pVT
data, the course of the Tg versus pressure curve was calculated using each of the
three criteria without further need of adjustable parameters. The procedure is

as follows: the value of the criterion of interest per segment, free volume (FV),
entropy (S), or TS, is calculated at Tg (p = 0) and then fixed. The pressure is

then raised and the values of the glass transition and density at Tg are found
via simultaneous solution of the EoS and the defining equation for the criterion

in question. Entropy (and consequently TS) is defined by equation (5-3) for the

MFLG and equation (5-6) for the modified version. Rather than simply using a

constant c}>, as the free volume constaint, this criterion was defined in terms of

the number of segment-hole contacts per segment, or:

Although for the MFLG, where 7 ^ /(r), this is equivalent to treating </.o at Tg

as a material constant (i.e., the Miller [1968] criterion), the case of the modified

model is more complex. Either case provides more flexibility than simply setting

4>Q at Tg to a universal value.
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F.gures 5.1 and 5.2 show the results of the versus pressure predictions
for the models for PS. In the case of the MFLG n^odel (Figure 5.1), because both
the entropy and free volun>e criteria depend in^pHcitly on temperature via the
temperature dependence of 0. in the EoS, these two give identical results. The
TS cntenon produces a more accurate prediction but one which remains linear
w.th pressure whereas the data show substantial curvature at higher pressures.
Usmg the modified version of the model (Figure 5.2), the TS criterion again
g.ves the most accurate prediction and improves upon the performance of the
MFLG model in both absolute error and in the predicted shape of the curve.

Figures 5.3 and 5.4 show the predicted density of PS at Tg versus pressure
using each of the three criteria. As in Figures 5.1 and 5.2, the constant TS cri-

terion produces the best prediction and the modified version of the model shows
improvement over the prediction of the MFLG. The prediction of a constant

density at Tg versus pressure made using the FV and S criteria and the MFLG
model can again be traced to the expHcit dependence of S and FV on alone.

Results for PMMA and PVAc are shown in Figures 5.5 - 5.8. The trends

are similar to those found for PS; namely that the constant TS prediction is the

most accurate and that use of the modified version of the MFLG model brings

improvement to the prediction.

Results for polycarbonate are given in Figures 5.9 and 5.10. Like the re-

sults for the other three polymers, the TS criterion provides the most accurate

predictions; unUke the previous results, the modified version of the MFLG does

not improve the prediction. This could be a result of the overly simplistic ap-

proximations which were made to derive the modified version of the model. In

addition, because the MFLG model treats polymers as completely flexible, it

may be necessary to add a flexibihty dependence [Huggins, 1970; Lacombe and
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Callahan, 1981) to the entropy of mixini of 1,^1 j^' °f '»°''=s and segments to adequately
model such polymers as polycarbonate.

Table 5.4 shows the calculated values of the three criteria for the four poly-
mers. The purpose for presenting this data is to show that as far as the MFLG
model is concerned, none of the criteria can be considered as universal values
Miller [1967,. 1968], however.has postulated that the quantity Z,P- should equal^
a universal constant (here Za is the number of segments in a cooperative unit
at Tg and P- is the criterion for the glass transition). Using values for Z, cal-
culated by Warfield and Hartmann [1982], there still appears to be no universal
value of any of the three criteria at T„.

Although the constant TS criterion provides good results, a model such as
the MFLG naturally cannot fully describe the vitrification process. Use of the
equilibrium MFLG model reveals nothing of the time dependence of the glass

transition process, thus the predictions made here must be considered pseudo-

equilibrium, or long time results. The equilibrium nature of the model also

prevents analysis of the pVT behavior of the glass itself. Despite these problems,

the one order parameter model using the MFLG theory and the constant TS
criterion gives a good first approximation for the pressure dependence of T .

6
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TableSJ,

Average Errors in Fitting MFLG Models to pVT Data
on Cyclohexane, Toluene, and Benzene

Model

Toluene - MFLG
- Mod. MFLG

Cyclohex. - MFLG
- Mod. MFLG

Benzene - MFLG
- Mod. MFLG

YLE_Data

Number of Temp. Vapor Vapor LiquidofPomts (K) Pressure-% De„sity-% Density-%

10 .8 2.5 3.7 4.3
10 .5 3.0 3.7 .7

19 1.2 1.0 1.2 2.5

19 .9 1.1 1.3 1.8

25 .9 1.0 1.2 3.2

25 .8 .9 1.2 2.7

Critical Point Equation of State

Model Temp.

(K)

Press.

%
Dens.

%
Number of

Points

Press.

%
Temp.

(K)

Dens

%

Toluene - MFLG .6 4.2 2.0 19 .2 3.0
- Mod. MFLG .2 .8 .7 19 .1 3.0

Cyclohex. - MFLG .9 8.2 5.6 56 .3 .3

- Mod. MFLG .4 3.9 4.7 56 .4 .3

Benzene - MFLG 6.9 10.6 13.9 48 5.4 7.2

- Mod. MFLG 7.0 10.0 15.0 48 5.3 6.6
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Tabled

MFLG and Modified MFLG Param^+^T-e f n ^

.r.ATi
parameters for Cyclohexane, Toluene,and Benzene as Determined by the PEP

Compound mi 0£i

Cyclohexane 3.56

Toluene 3.43

Benzene 3.36

MFLGmodel
^10 gn 71

.91134 -.53522 369.02 -I.4931

1.0020 -.31244 233.03 -2.7879

.25694 -.68961 802.46 -.31630

Compound
Modified MFLG

Cyclohexane 1.7823 -.70187e-03 .50246

Toluene 1.5162 -.20832e-03 .96348

Benzene 1.5039 -.25248e-04 -.39215

^10 £^11 71

-.25216 346.41 3.46

-.24820 214.47 5.24

-.24922 892.26 1.80
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Table 5.3

Fitting Results for Polystyrene, Poly(n.ethyl methacrylate),
Poly(vmyl acetate), and Bisphenol A Poly(carbonate)

using MFLG Equation of State

Polymer Number of Average Average
DataPomts Error-% Error- g/cc

PS 117t ± .12 ± .0012

PMMA 40 ± .03 ± .0004

PVAc 110 ± .015 ± .0002

PC 104 ± .14 ± .0016

*

f25'ooo"
'^'8'"= of 2300, 3650, 20000, 91000, and
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300-
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PRESSURE (BAR)

Figure 5.1

Predictions of Tg versus pressure by MFLG model using constant FV ( ), S

(••), and TS ( ) criteria against literature data for PS by Gee [1966] (•),
Oels [1977] (-), Zoller, et al. [1976] (), Quach and Simha [1971] (A), Ichihara',

et al [1971] (T), and Stevens, et al. [1986] (+ ).
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PRESSURE (BAR)

Figure 5.2

Predictions of Tg versus pressure by modified MFLG model using thermody-

namic criteria; symbols same as in Figure 5.1.
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(g/cc)
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1.03

1.014
0 400 800 1200 1600 ' 2000

PRESSURE (BAR)

Figure 5.3

Predictions of density at Tg versus pressure using constant FV (— ), S (. . and

TS ( ) criteria and MFLG model against literature data for PS by Oels [1977]
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1.09--
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1.014
0 400 800 1200 1600 2000

PRESSURE (BAR)

Figure 5.4

Predictions of density at Tg versus pressure using modified MFLG model and

thermodynamic criteria; symbols same as in Figure 5.3.
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Figure 5,5

Predictions of Tg versus pressure by MFLG model using constant FV ( ), S

(•••), and TS ( ) criteria against literature data of PMMA by Olabisi and
Simha [1975] (•).
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PRESSURE (BAR)
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Figure 5.6

Predictions of Tg versus pressure by modified MFLG model using thermody-

namic criteria; symbols same as in Figure 5.5.
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Figure 5.7

Predictions of Tg versus pressure by MFLG model using constant FV (— ), S

(• • •), and TS ( ) criteria against literature data for PVAc by McKinney and
Goldstein [1974] (•).
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PRESSURE (BAR)

Figure 5.8

Predictions of Tg versus pressure by modified MFLG model using thermody-

namic criteria; symbols same as in Figure 5.7.
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650-
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PRESSURE (BAR)

Figure 5.9

Predictions of Tg versus pressure by MFLG model using constant FV (— ), S

(• • •), and TS ( ) criteria against literature data for PC by Zoller [1982] (•).
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PRESSURE (BAR)

Figure 5,10

Predictions of Tg versus pressure by modified MFLG model using thermody-

namic criteria; symbols same as in Figure 5.9.
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Table 5.4

Values of FV, S and T,S fo. Polystyrene, Poly(„.etM .ethac.y.ate),
PoIy(vznyl acetate) and Bisphenol A Polycarbonate using

Modified MFLG Model

Polymer FV TgS (ZgxFV) (ZgxS) (ZgxTgS)

PS .0874 3.23 1182

PMMA .0831 4.34 1640

PVAc .0726 3.69 1123

PC .0738 2.52 1068

9.70 358 1.31x10^

5.54 289 1.09x10^

2.94 149 4.5x10^

N.A. N.A. N.A.

Note: Zg = iV x c, x where N is the number of monomer units involved in acooperative un.t at Tg (Warfield and Hartmann, 1982], M„ is the molecular
weight per monomer unit, and ci = mi/M.
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5.3 Summary of Chapter 5

The glass transition has been approximated as a freezing-in process in-
volvmg one order parameter. Three separate parameters have been considered-
free volume, entropy, and relaxation time, the latter represented by the quan-
tity TS as derived by Adam and Gibbs |1965|. Using the MFLG model, the
dT^ldp curve has been calculated for the four amorphous polymers polystyrene,
poly(methyl methacrylate), poly(vinyl acetate), and polycarbonate using each of
the criteria mentioned above. Because all of the necessary materiaJ constants are
found via fitting of pVT data against the MFLG equation of state, no adjustable

parameters are involved in the calculation of dT Idp.

Predictions of dT^/dp and dp,/dp employing the constant TS criterion are

significantly more accurate than either the iso-entropy or iso-free volume situa-

tions for all four polymers. A modification to the MFLG model, which allows

the number of segments per molecule, as well as the surface area per segment,

to vary with temperature, further increases the accuracy of the predictions for

three of the four polymers studied.



CHAPTER 6

Predicting the Composition Dependence of the
Glass Transition of Mixtures

Chapter 6 is broken into two main sections. In the first, the three thermo-
dynamic criteria used in Chapter 5 to predict the Tg of polymers versus pressure
are evaluated in calculations of the Tg of polymer-solvent mixtures as a function
of composition. The second section brings together the results from Chapters 4
and 5 and the first part of Chapter 6, i.e.,

1. Predictions of sorption of gases by polymers versus pressure.

2. Predictions of dT^/dp of pure polymers versus pressure.

3. Predictions of Tg of mixtures versus composition.

to predict the Tg of the PS-CO2 and PMMA-CO2 systems at pressures above

the critical point of the gas.

Although the modified version of the MFLG model showed promise in cal-

culations of the pressure effect on the Tg of amorphous polymers in Chapter 5, it

is not clear how mixing will affect the temperature dependence of the segments.

Therefore, the calculations of the effect of diluent concentration on the Tg of a

polymer will be performed using only the Zero Order MFLG model.

148
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6.1 Comparsion with other Models

A number of expressions, both empirical and based on fundamental princi-
ples, have been proposed to describe the behavior of T, versus diluent concen-
tration. Application of many of these models to the prediction of the Tg of a
gas-polymer mixture would be difficult, owing either to the necessity of deter-
nnmng one or more adjustable parameters [Fox, 1956; Wood, 1958; Gordon et
ai, 1977 Chow, 1980;], or to lack of an expHcit pressure dependence of the Tg
of the polymer itself

[
Kelley and Bueche, 1961; Couchman, 1979]. Two notable

exceptions are the Gibbs-Dimarzio (GD) model [Gibbs and DiMarzio, 1958] and
the lattice model of Kanig [1963]. An extensive comparison of the MFLG and
GD models has been made in Chapter 5. To summarize:

1. The GD equation of state (EoS) is of the same general form as that of the

MFLG, but since the GD model is based on use of a "rigid" lattice, both

a and 7 are tied to the lattice coordination number and to m (in addition,

^10=0). This form of the EoS has been shown to be less accurate than

the MFLG in describing both polymer and non-polymer pVT behavior. On
the other hand, the GD entropy expression contains an added temperature

dependence not found in the analogous MFLG expression, a result of the

inclusion of the postulated effect of barriers to segmental rotation by Gibbs

and DiMarzio.

2. Inclusion of the GD terms which account for the effect of barriers to rotation

m the MFLG entropy expression, along with stipulation of zero entropy at

Tg, is not a viable route to modelling Tg behavior in that, in many cases,

due to the values of the adjustable parameters (found by fitting the MFLG
EoS against pVT data, as before), the entropy can never be zero, so long

as there are holes present, despite the added temperature dependent terms.
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Use of the extra GD ter:ns with ™.ely . constant ent.opy, rather than a
-ro entropy, as the condition for is possible, but still unsatisfactory as it

would lead to additional adjustable para„.eters which could only be found
v.a fitting against Tg versus pressure (or diluent concentration) data. It is

desired at this time to avoid such a situation.

As shown in Chapter 5, the Kanig approach is closely related to that used
here,n, albeit with a less accurate model for describing pVT and phase separation
data. The difference between Kanig's criterion and the constant FV condition
used here lies in Kanig's use of the "vibration" volumes, such that {d^,/aT)^ ^
0. Using the constant vibration/hole volume ratio criterion, Kanig was able to

show good fits to the polystyrene Tg versus diluent concentration data of Jenkel
and Heusch (1953). However, while Kanig fit his equation for the Tg to the data,

the necessary binary interaction parameters of the MFLG model wiU be found
via fitting against phase separation data, thus rendering the modelling of Tg
versus diluent concentration a prediction rather than a fit.

6.2 Predicting the Glass Transition of Mixtures Using Thermodynamic Crite-

na

The thermodynamic criteria for Tg to be compared are those three exam-

ined in Chapter 5, the constant free volume (FV), constant entropy (S), and

the constant relaxation time, represented by a constant TS, as derived by Adam
and Gibbs [1965]. The entropy of a mixture is defined in the usual way:

^_ fdAA\ fdAA\
^-~[~dT^J^ ^~[~dl^ (6-1)

\ / V,ni \ / no,ni,r»a
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Therefore, substituting the MFLG „.odel expression for the free energy (equati
4-9) into equation (6-1):

\ ^1 m2 j

- R fa™ + - 72)

ion

(6-2)

Q

Equation (6-2) defines the constant S and constant TS criteria for the model.
The constant free volume criterion is defined as the number of hole- segment
contacts rather than simply by the hole fraction. For the binary case the FV is

therefore:

FV
^ foM^i(ij^7i) + <^2(l -72))

Following the determination of all of the necessary material parameters,

both pure component and binary (see Chapters 2 and 4), the segmental values

for each of the three Tg criteria (FV, S, TS) for each component were calculated

using Tg's from the Hterature and the defining equations for the criteria of pure

components (see Chapter 5). The Tg versus weight fraction diluent is then

calculated via the simultaneous solution of the binary EoS and:

N.
4>

<l>iCTl+<t>2Crl (6-4)

where the CrJ are the segmental values of the criterion of interest for the pure

components and Cr^o/ is the analogous value for the binary mixture as defined

by equations (6-2) and (6-3). In the case where the diluent is a gas, and the
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desired result is a prediction nf T ,

12) and (4- 13
, are used to calculate the .A x

, „ ^ ^ ,
' ^""^^ temperature and pressure

followed by the procedure outlined above.

6.2.1 Effect of the Molecular Weight on fh^ Pi rpeignt on the Glass Transition: Chain End;
as Diluent

The observed decrease of as the molecular weight of a polymer decreases
has, .„ the past, been attributed to the plastici.ing effect of the chain ends
Assurning that the chain ends of a polymer act as a diluent, the influence of
molecular weight on the T, can be n^odelled using the sin^plest form of binary
mixture

1. All binary parameters (a^, g^^, Qmi) are set to zero.

2. Pure component parameters are identical for diluent and polymer.

3. Diluent concentration, is 2/DP, where DP is the degree of polymeriza-

tion,

Modelling of Tg versus molecular weight as outlined above was tested

against literature data for polystyrene [Ueberreiter and Kanig, 1952; Cowie,

1975; Claudy, et al 1983]. Results are shown in Figure (6. 1). While the con-

stant TS condition produces the most accurate predictions, it should be noted

that the mixture of chain ends and "middles" is assumed to be ideal such that

the volume change on mixing and heat of mixing are assumed to be zero. The

effect of these excess functions on calculations of Tg as a function of diluent

concentration will be discussed in the next section.
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6.2.2 PoIy„.„-Li,uid Mixtures: Polystyrene-Toluene and Polystyrene- Cy.
clohexane

Pure component parameters for toluene and for cyclohexane were found
by fittmg the applicable unary MFLG expressions against literature data in
Chapters 4 and 5. Ideally, as demonstrated in Chapter 4, binary parameters for
the MFLG model should be determined by fitting of the appropriate equations to
concentrated solution data, because the mean field approximation is expected to
be vahd in this concentration regime. Unfortunately, only dilute solution phase
data was available for the PS-cyclohexane and PS-toluene systems.

Binary parameters for the PS-cyclohexane system were determined by fit-

ting the MFLG spinodal equation to data versus molecular weight measured by
Derham, et al. [1974] in Section 4.2.1. In the case of the PS-toluene binary, the
available data consist of cloud point curves (CPC's) of various molecular weight

PS's in the vicinity of the critical point [Saeki, et al. 1973]. While the CPC
is normally associated with the binodal, because the coexisting concentrations

were not determined, the MFLG binodal equations could not be used to find

the binary parameters. In addition, the critical points (LCST's) had not been

measured but had been estimated from the minima of the CPC's by Saeki,e< al.

The CPC's are very flat near the critical point which could bring large error to

such an estimation. Therefore it was decided to find the binary parameters for

the PS-toluene system by fitting the MFLG spinodal to the CPC data. Some

results are shown in Figure 6.2.

The Tg of toluene was assumed to be 115K [16,17] and that of cyclohexane

was estimated to be approximately 80K based on the Tg's of various alkyl-

cyclohexane compounds [Carpenter, et al. 1967; Angell, et al. 1978]. Using these

values and the measured Tg of polystyrene, the three criteria were calculated
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for each co„.po„e„t. The T, versus diluent concentration was then deternuned
us.ng the previously outlined procedure and equation (6-2) or (6-3) as required.
Results are given in Figures 6.3 and 6.4.

From the results in Figures 6.3 and 6.4, it would appear that the FV condi-
t.on produces the best prediction for the PS-cyclohe.ane binary whereas the TS
cnterion provides the most accurate results in the case of PS-toluene. However
because dilute solution data were used to fit the binary parameters, these results
were examined more closely.

As shown in Chapter 4, the temperature dependence of the initial set of bi-

nary parameters for the PS-cyclohexane binary was poor. By fitting the model
to dilute solution data, the values of the parameters compensated for the lack of

a non-mean field dependence to the MFLG model at the expense of the useful

temperature range of the model. Therefore, a second set of binary parame-

ters was determined whose temperature dependence is better but which cannot

describe the shape of the phase diagram as well as parameter set #1. Binary

parameter set # 2 was also used to construct a Tg versus concentration diagram

for the polystyrene-cyclohexane mixture (see Figure 6.5).

As can be seen, the FV-based prediction is not as severely influenced by

the choice of parameter set as the curves based on either a constant S or TS.

Intuitively, it would be expected that the prediction of Tg made using the FV
criterion would be strongly influenced by AV^, the volume change on mixing.

Predictions of AV^ versus weight fraction using parameter sets 1 and 2 for the

PS-cyclohexane system are compared to values calculated from Scholte's [1970]

density measurements in Figure 6.6. The relative magnitude of the change in

the position of the constant FV curve on switching from parameter set 1 to 2
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appears to be related to the maenitudp r.f i, •
,ne magnitude of the change m the calculated A

changing parameter sets.

on

A. can be seen in Figure 6.6, the predicted sign of AV^ is wrong, ,et
the prediction of the T, using the FV criterion is still the n.ost accurate. To
mvestigate this observation, a third set of binary parameters was found in which
the fitting was heavily biased towards a very accurate prediction of AV^. This
was accomplished by assigning a tolerance to the solution densities an order of

magnitude lower than that for either the temperatures or the weight fractions

during the fitting. The resulting predictions of AV„ were naturally correct

in both sign and magnitude yet this third parameter set did not significantly

change the predicted Tg curve from that calculated using parameter set 1. It

would appear that only the magnitude of AV„ is important in the FV-based
prediction of Tg.

Toluene is a better solvent for polystyrene than is cyclohexane; consequently

the PS-toluene binary exhibits only LCST type phase separation. Therefore

the only available measure of the accuracy of the temperature dependence of

the binary parameters is the fit to the cloud points in Figure 6.2. Thus it

would appear that the if the binary parameters show the proper temperature

dependence, the TS criterion will produce an accurate prediction of the Tg.
O

Because solution densities were not available in the temperature range of

the cloud points used in the fitting of the PS-toluene system, the densities had to

be estimated. Naturally this brought large error to the prediction of the volume

change on mixing Figure 6.7. The large error in AVm translates to a large error

in the FV-based prediction of the Tg.
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It appears that if the temperature dependence of the binary parameters
.s accurate, then the constant TS condition will produce a good description of
the behavior of the T, of a polymer-diluent mixture. It also appears that if
the volume change on mixing is close to zero, then the FV criterion will also
produce an accurate prediction of the Tg. These conjectures will be explored
further in the next section on gas-polymer mixtures. In these systems the binary
parameters were found using concentrated solution data, thereby eliminating the
ambiguity present in the fitting of the PS-cyclohexane and PS-toluene systems.
In addition, the volume change on mixing for such systems is highly non-ideal,

which will provide a good test for both the MFLG model and the FV criterion.
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D P

Figure 6.1

Predictions of Tg versus molecular weight using MFLG model and constant FV

(— ), constant S (•••), and constant TS ( ) criteria compared with data by

Ueberreiter and Kanig [1952] (A), Cowie [1975] (), and Claudy, et al. [1983]

(•)•
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Figure 6.2

Calculated spinodals for polystyrene-toluene using Zero Order MFLG model
and cloud points by Saeki, et al. [1973] at three molecular weights: (—),(•),

Mw=:.37,000; (•••),(), Mw=97,000; (- - iMw=200,000.
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Figure 6.3

Predicted Tg of polystyrene-toluene mixture versus weight fraction polymer us-

ing MFLG model with constant FV (— ), constant S (• • •), and constant TS
(- - -) criteria and data by Masa, et al [1973] (A), and Adachi, et al. [1975] (.).



160

W p
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Figure 6.4

Predicted Tg of polystyrene-cyclohexane mixture versus weight fraction polymer

using MFLG model with parameter set 1 and constant FV (— ), constant S (• •

and constant TS ( ) criteria and data by Masa, et al [1973] (•).
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Figjure 6.5

Predicted Tg of polystyrene-cyclohexane mixture versus weight fraction polymer

using MFLG model with parameter set 2 and constant FV, constant S, and
constant TS criteria; symbols same as for Figure 6.4.
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Figure 6.6

Predictions of AVm of polystyrene-cyclohexane noixtures at T— 298iC by MFLG
model with parameter set 1 (— ) and parameter set 2 (•••) compared to data
derived from solution density measurements of Scholte [1970] (•).
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Figure 6.7

Predictions of AF^ of polystyrene-toluene mixtures at T=303K by MFLG
model (— )

and data derived from solution density measurements of Scholte
[1970] (.).
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6.3 Effect of Gas Pressure on the Glass Transition of Polymer

Knowledge of the behavior of OT^Ie, for a polynrer in a high pressure gas
envronment is important in that the extent of sorption of gases by polymers
More and Paul, 1982; Sefci., 1986], the solubility of polymers in supercritical
nuids Schroeder and Van Arnr1+ 107^1 j xiArndt, 1976], and the ability of polymers to undergo
solvent-induced crystallization [Chiou, .t a/., 1985a], all depend on the difference
between the ambient temperature and Tg. However, it is difficult to measure
the Tg of a polymer in a high pressure gas environment. A means by which to
predict the Tg of a polymer-gas mixture versus gas pressure without the need
for determining adjustable parameters would therefore be quite useful.

Gases, Hke low molecular weight Hquids, readily plasticize amorphous poly-
mers [Chiou, et al 1985b]. Since the amount of gas absorbed by a polymer
generally increases with increasing pressure, the magnitude of the Tg suppres-
sion will initially increase as gas pressure is raised. A point of diminishing returns

will eventually be reached, however, as increasing hydrostatic pressure by itself

raises Tg, acting against the plasticizing effect of the gas. The Tg of a poly-

mer in such an environment will consequently pass through a minimum versus

pressure [Wang, et al., 1982]. The chemical potential of a gas, and consequently

the amount absorbed by a particular polym.er, is a function of both temperature

and pressure. Since, as stated above, the Tg is a function of both pressure and

diluent concentration, the position of the Tg minimum in a gas-polymer mixture

is a function of both temperature and pressure.
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6.3.1 Examples from the Literature

Because it i. difficult to n.ea.u.e the glass transition of a po^r-gas nnx-
ture at h,gh pressure, the available Uterature "T," results on such systen^s are
usuaily indirect measure„.ents. For exan^ple, in the study by Wang [1981] on
the po.ystyrene-C02 syste:n, the data were calculated using the WLF equation
and shift factors found by superin^posing creep curves of PS exposed to high
pressure CO^. The data are therefore reasonable approxin^ations. In a study by
Scroeder and Van Arndt [1976] on the PVC-CO^ nuxture, it was observed that
the slope of each of the isobaric solubility-temperature curves display a discon-
tmurty. Extrapolation of these kinks back to zero pressure yields the T„ of the
pure PVC; thus the Tg of the mixture was estimated to be the kink point. Both
of these indirect observations indicate that the Tg of the polymer-gas mixtures
develops a minimum at some point as pressure is increased.

In addition to these two studies, experimental results on the polycarbonate-

C02 mixture also imply the existence of a Tg minimum. The original aim of this

work was to attempt to measure the solubihty of polycarbonate in supercritical

CO2
,
since, by inspection, CO2 should be a reasonably good solvent for this

polymer. The first several runs in the supercritical extraction unit showed Httle

or no solubility and either a significant embrittlement or a whitening of the

extracted films, or both. Subsequent DSC and WAXS measurements showed

the whitened material to be semi-crystalline whereas the films were initially

completely amorphous. This solvent-induced process was investigated further.
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6.3.2 Polycarbonate-Carbon Dioxide

Ch.ou and coworkers (Chiou, et al. 1985a,b] have shown that CO^ wiU plas-
t.ci.e and thereby induce crystalH.ation in po^ethylcne terephthalate) and in
poly(vinyUdene fluoride)/poIy(n.ethyI methacrylate) blends at temperatures be-
low their respective T^'s. Carbon dioxide was also shown to plasticine bisphenol

polycarbonate, but apparently not to the extent required to cause crystalli.a-
t.on. Chiou, et al., conducted experiments only up to a pressure of 35 atm yet
the degree of plasticization might be expected to increase markedly above the
cr,t.cal point of CO^ (304.2ir and 73.8 bar), as is the case in the PMMA-CO^
system. Theory also supports this hypothesis (Flory, 1970; Patterson, 1972] in
that C02 density increases rapidly above the critical point, thus decreasing the
free volume difference between the polymer and gas. The entropy of mixing
therefore becomes more positive, increasing the size of the homogeneous region
of the phase diagram.

As previously stated, in the course of experiments to determine the solu-

bility of bisphenol A polycarbonate in supercritical CO2
, the gas was observed

to induce significant crystallinity in the PC films. Because CO2 is both the

pressure-transmitting medium and a diluent whose properties vary significantly

with temperature and pressure, these two variables combine to aff-ect the crystal-

lization rate, degree of crystallinity, and the melting temperature of the crystals

so formed.
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6.3.2.1 Experimental

Lexan 0.003 in. polycarbonate ffln> fron. the General Electric Plastics Co
P.ttsfield, MA, was used as received. Differential Scanning Calorinretry (DScJ
showed the film to be amorphous with a T„ of 147C.

Polycarbonate strips, 1 X 15 cm, were clamped at each end to a stainless
steel frame. These sample assemblies were then inserted into the pressure cell

of the Fluitron supercritical extraction unit, and the cell flushed with CO2 .

The temperature was raised from the ambient, after which the cell was rapidly
pressurized using the two-stage diaphragm compressor. Samples were exposed
to CO2 for up to 12 hours. Following depressurization the samples were allowed
to degas at room temperature for 2 hours prior to thermal analysis. Both the

results of thermogravimetry, no weight loss below 300C, and the position of the

Tg's of the treated films, 145± 3C, indicate that CO2 was essentially absent

from the polycarbonate samples after the degassing.

Melting endotherms and Tg's were determined using a Perkin-Elmer DSC-4
with a TADS computer control and analysis system. Unless otherwise noted,

the scanning rate was lOC/min.. The percent crystallinity was calculated using

a value of 26.2 cal/g for the heat of fusion of bisphenol A polycarbonate [M

and Legras, 1970].

ercier

6.3.2.2 Results and Discussion

Films of polycarbonate were exposed to CO2 at pressures up to 600 atm.

and temperatures of 50.0, 62.5, 75.0, 87.5, and lOOC. At 50.0 and at 62.5C,

the films remain transparent but become brittle after 4 hours of CO2 exposure.
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DSC thern^ograms reveal no signs of crystal growth, although soxne display an
enthalpy relaxation at Tg, indicating annealing at sub-Tg conditions.

After CO2 exposure at 75.0C and 125 atn.., the polycarbonate filxn whitens
and deforn^s. Thermal analysis of the whitened san^ples shows two n^elting
peaks (see figure 6.8). The higher n^elting peak (I) occurs between 210 and
230C, whereas the lower (II) appears at 180-205C. Peak II represents small
crystallites formed due to the plasticizing effect of the CO^

, whereas peak I is

probably the result of simultaneous melting and recrystallization of portions of
peak II during the DSC scan. This contention is supported by the results of
a heating rate study. As the scan rate was increased from 2 to 80C/min., the

proportion of the total melting endotherm associated with peak I drops from
100% to less than 5%. This type of double melting peak has been observed
in the melting behavior of other thermoplastics as well [Sweet and Bell, 1972;

Lemstra, ei al 1972; Todoki and Kawaguchi, 1977; Lee and Porter, 1987].

As the CO2 pressure is increased, the volume fraction of CO2 absorbed

by the polycarbonate increases, lowering the Tg. As the Tg drops significantly

below the ambient temperature, the chains become mobile and, prompted by

the large undercooling, will crystallize. The low melting temperature of peak

II (see Figures 6.8 and 6.9) indicates that the crystallites formed due to the

CO2 exposure are small, a result consistent with the high nucleation density

found in solvent-induced crystallization of bisphenol A polycarbonate. Although

raising the pressure increases chain mobihty by increasing the CO2 sorption thus

lowering the Tg, a point of diminishing returns will eventually be reached, as

mentioned in Section 6.3.1. While the slope of the sorption-pressure curve will

begin to level out, the high pressure itself will work to raise Tg (by approximately

5C/100 atm. [Zoller, 1982]). The net result is that the Tg may pass through

a minimum as pressure is increased at constant ambient temperature. The
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data in figure 6.10 show a rapid increase in crystajlinity up to 350-400 atn.
following the trend of the CO2 density, but then flatten out, possibly due tJ
a Tg nnnimum, whereas the CO2 density continues to increase. The degree of
crystallinity attainable in bisphenol A polycarbonate, 20-25%, is sinnlar to that
ach.eved when acetone or methylene chloride is used as the plasticizer (Mercier,
et al. 1967; Kambour, et al. 1966].

As can be seen in Figure 6.8, the position of peak II initially moves upfield
as pressure is increased but then reverses direction above 400 atm.. Crystal-
lite size and perfection, and consequently melting temperature, are functions of
the nucleation density, chain mobility during crystaUization, and the degree of

undercooling. Kambour et al [1966], have suggested that chain mobihty plays
the dominant role in determining in acetone-induced crystalHzation of poly-

carbonate. If the Tg of the polycarbonate-C02 mixture were to experience a
minimum versus pressure, then chain mobihty would observe a maximum, com-
sistent with the behavior of peak II in Figure 6.8. In addition, this behavior

occurs in spite of the effect of pressure alone on the size of the crystalhtes,

which should raise the Tm-

Increasing the temperature at constant pressure will have two effects on

the crystalHzation of polycarbonate. First, depending on whether the mixture

exhibits upper critical or lower critical mixing behavior in that portion of the su-

percritical region under consideration, the solubiHty of the CO2 in the polymer

will either increase or decrease. Thus the Tg of the polycarbonate-C02 mixture

could either increase or decrease owing to an increase in temperature. Second,

a temperature increase will by itself promote chain mobihty. The two effects

could cancel or add together. A comparison of the DSC results for polycarbon-

ate film exposed to CO2 at 75 and 87.5C shows that the percent crystalHnity

has increased, which impHes additivity of the two effects and therefore UCST
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behavior, or do:„i„a„ee of the effect of temperature over the effect of changes in
diluent concentration.

Crystallisation of hisphenol A polycarbonate induced by supercritical CO^
proceeds at a rate sin^lar to that of acetone- or .ethylene chloride-induced
crystalhzation [Mercier, et at. 1967] (see Figure 6.11).
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6.4 Predicting the Tg of Polyn^er-Gas Mixtures as a Function of An^bient
Temperature and Pressure

6.4.1 Poly(Methyl Methacrylate)-C02

The determination of the binary parameters for the PMMA-CO2 system
has been described previously in Chapter 4.

The predictions of Tg as a function of CO2 pressure using each of the
three criteria are compared with data by Chiou, et al [1985b], in figure (6.12).

Because the Tg of CO2 has not been reported, criteria for CO2 (FV, S, TS) were
set to zero, a reasonable approximation after noting the corresponding values

for cyclohexane, which has a Tg of approx. 80K. CO2 would be expected to

have a lower Tg, if any, than cyclohexane. Again, the constant TS condition

displays the most accurate prediction but that shown by the FV criterion is not

far off at low pressure. As can be seen from Figure 4.14, the AV^'s predicted

by the MFLG model are, in general, too positive. As in the case of the PS-

cyclohexane system, the binary parameters for PMMA-CO2 were refit using

a lower tolerance for the solution densities. The resulting set of parameters

yields a slightly worse description of the sorption behavior (Figure 6.13), better

predictions of AF^ (more negative) (Figure 6.14) yet a much poorer prediction

of Tg versus CO2 pressure using the constant FV criterion (Figure 6.15). This

supports the contention that the FV criterion produces accurate predictions of

Tg versus diluent concentration only in those systems with near-ideal AV^x- In

addition, the predictions of the two criteria (TS and FV) differ substantially in

the effect of hydrostatic pressure alone on the glass transition (see Chapter 5).

The overprediction of dT^/dp by the constant FV criterion causes the Tg versus
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pressure curve to level out and pass through a minin^un. before the constant TS-
based curve.

Because both a„.bient pressure and temperature deternune the degree of
sorption of CO^ b, PMMA (and of course, the effect of pressure alone on the
Tg of pure PMMA), both of these variables combine to affect the course of the
Tg-P curve. Predictions of Tg versus pressure at four ambient temperatures
usmg the constant TS condition are shown in Figure 6.16. That the curves
are predicted to cross reflects the fact that the sorption isotherms are predicted
to cross. A more meaningful representation of the predictions in Figure 6.17
is made by converting the data to (T„ - T,) versus pressure, where is the
ambient temperature. The quantity (T^ - T,) is a measure of how processable
the polymer-gas mixture would be at a given and pressure. As can be seen
in Figure 6.17, (T^ - T,) is expected to increase rapidly up to approx. 100 bar,

and at a slower rate thereafter. Values of (r, - T,) as high as 50K could be'

obtained at ambient temperatures as low as 315K, over 60 degrees below the Tg
of pure PMMA. In other words, a temperature of Tg-h 50 for pure PMMA is

approx 428K whereas 100 bar of CO2 pressure drops this point by over lOOK to
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4 0 0--

(bar)

Figure 6.12

Predictions of Tg versus pressure at 7^= 308K for the CO2 -PMMA mixture

using the MFLG model with the constant FV (— ), S (••), and TS (
)

conditions and data by Chiou, et al. [1985b] (•),
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(Weight Fraction Polymer)

Figure 6.13

Fit of the MFLG model swelling binodal equations to sorption data by Liau and
McHugh [1985] ) at 315K (top graph) and 341. 2ii: (bottom graph) using
parameter set 1 (— ) and parameter set 2 ( ).
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Figure 6.14

Predictions of volume change on mixing for PMMA-CO2 mixture at 315K (top
graph) and 341.2K (bottom graph) using Zero Order model and parameter set

1 [—
]
and parameter set 2 [

]
and data derived from sweUing measurements

of Liau and McHugh [1985] [•], [r
"



4 0 0

Pressure
(bar)

Figure 6.15

Predictions of Tg versus pressure at Ta=308K for the PMMA-CO2 mixture

using the Zero Order model and the three criteria. Symbols the same as in
figure (6.12). Arrows show curve shifts when binary parameters are changed
from set 1 to set 2.



181

0 0-

2 0 0

0 6 0 1 2 0 1 8 0 2 4 0 3 0 0

Pressure
(bar)

Figure 6.16

Predictions of Tg versus pressure for the CO2 -PMMA mixture using the MFLG
model and constant TS criterion at Ta^ 308K (— ), 315K (• • •) Ta= 331 3K
(- - and Ta^ 341.2K ( ).
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Pressure
(bar)

Figure 6.17

Predictions of [Ta - Tg) versus pressure for the CO2 -PMMA mixture

MFLG model and constant TS criterion at Ta= 308K ( ), Ta— 315K
331.3K (---), and r,.. 341.2K ( ).
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6.4.2 Polystyrene-C02

Although not i„.n.ediatel, obvious, there are so.e fundan^enta. differencesm the behavior of T, versus pressure in the PMMA-CO3 and PS-CO^ syst,
Exa„.„ation of the structures of the PMMA repeat unit and CO^ would lead
to believe that CO^ would be a relatively good solvent for PMMA. Likewise CO^
would be predicted to be a poorer solvent for polystyrene, which is indeed the
case, as shown in Section 4.3.3. In addition, the measured value of ST^/Sp (p=o)
for PS is three times higher than that for PMMA (Olabisi and Simha, 1975- Oels
1977). These two characteristics should lead to a much faster development of a
nnmmum in the Tg versus pressure curve for PS.CO2 than for PMMA.CO2.

The fitting of the binary parameters to the small amount of available binary
data was covered in Section 4.3.3.

Predictions of Tg versus pressure using each of the three criteria are shown
in Figure 6.18. As expected, the constant TS criterion provides the most ac-

curate prediction. The FV based curve suffers from the predicted large and
negative A^n of the mixture, and to the over-prediction of dT^/dp for the pure

polystyrene (see Chapter 5). The ambiguity in the determination of the binary

parameters, resulting from the paucity of data, is also reflected by the results in

Figure 6.19. The isotherms at 307K and 318K are predicted to cross, not an un-

likely result, but at apparently too low a pressure, which leads to the crossing of

the predicted Tg versus pressure curves whereas the data show no intersection.

Despite these problems, the results for PS-CO2 demonstrate that the constant

TS criterion used with the MFLG model can provide a good first approximation

of Tg versus pressure for a gas-polymer system even if very little binary data is

available.
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As mentioned above the T r,f dc r^r^"ove, tne ig of the PS-CO2 pair should exhibit some sig-
mficant differencesW that of the PMMA-CO^ mixture as pressure increases.
These differences are illustrated by predictions of (T. - T,) for PS-CO^ at 318K
and PMMA-CO2 at 315K in Figure 6.20. The combined effects of low sorption
and high OT^/a, bring (T. - T,) barely above zero (and afterwards declining)
whereas that for PMMA-COo readily reachp.4-^n aZ icaauy reaches +50 and contmues to cHmb slowly
with increasing pressure.
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2 6 04
10 0 2 0 0 3 0 0 4 0 0 5 0 0

Pressure
(Bar)

Figure 6.18

Prediction of Tg versus pressure of CO2 -PS system using MFLG model and
constant FV (-), S (• • •), and TS (- - -) criteria and data by Wang [1981] (.).
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0 10 0 2 0 0 3 0 0 4 0 0 5 0 0

Pressure
(Bar)

Figure 6.19

Prediction of Tg versus pressure for CO2 -PS mixture using MFLG model and
constant TS condition at Ta= 318K (-) and 307K (• •

•) and data by Wane
[1981] at 318K () and 307K (A).

J' s
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Figure 6.20

Prediction of {Ta - Tg) for CO2 -PS at Ta= 318K (— ) and CO2 -PMMA at

315K (• • •) using MFLG model and constant TS condition.
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6.5 Summary of Chapter 6

Supercritical CO2 readily induces crystalHzation in polycarbonate to an ex-

tent comparable to that achieved using acetone or other organic liquids. Carbon
dioxide density, absolute pressure, and ambient temerature each influence the to-

tal crystallinity. Since the polymer degasses quickly and quantitatively at room
temperature and pressure, the high Tg of the polycarbonate can be regained in

the crystaUized material without having to resort to vacuum treatment.

Since crystallization begins at temperatures and pressures as low as 75C

and 125 atm., any attempt to extract polycarbonate with supercritical CO2 will

have to be made at temperatures between 31 and 75C, or alternatively high

enough to melt any crystallites formed owing to CO2 exposure. The latter tem-

perature region is likely to be more promising since the lower temperature region

is probably below the Tg of the polycarbonate-C02 mixture. Supercritical ex-

traction of a polymer below its Tg will Hmit the amount of material which can

be dissolved within a reasonable time [Schroeder and Van Arndt, 1976].

Use of the constant relaxation time criterion, here represented by the ther-

modynamic quantity TS, allows the prediction of Tg versus diluent concentration

in the PS-toluene and PS-cyclohexane mixtures, and versus the combination of

temperature and pressure (which determine diluent concentration) in the two

gas-polymer mixtures without the need for adjustable parameters. In mixtures

with near-ideal volume change on mixing, it seems Hkely that the TS and FV

criteria would produce similar predictions of the dependence of Tg on diluent

concentration. However, the eff"ect of hydrostatic pressure alone on the Tg is
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greatly overestimated by the FV criteria, which, coupled with the highly non-
ideal AV^ of polymer-gas mixtures, disquahfy the FV criterion from use in
predicting the Tg of such mixtures.

The combination of the constant TS criterion and the MFLG model pro-
vide an effective means by which to predict the the processability of polymers
under gas pressure. A combination of a good solvent and low dT^/dp for the
pure polymer can result in a high (T„ - T,) at temperatures far below the Tg
of the pure polymer. Thermdly unstable polymers could readily benefit from
such gas plasticization during processing. Another interesting possible applica-

tion concerns the reverse of the procedure described in this Chapter. Because
the predicted Tg versus composition curve using the TS criteria is relatively

sensitive to the values of the binary parameters, it is conceivable that Tg ver-

sus composition data, along with density versus composition, could be used to

predict phase separation behavior.



CHAPTER 7

Conclusions and Proposals for Future Work

7.1 Conclusions

It has been shown that many lattice models fall into one of two broad cat-

egories, depending on whether or not the effect of segmental contact surface

areas has been included. Further, those which do not employ the contact sur-

face concept, the rigid lattice models, are specific cases of those which do, the

non-rigid models. In computer modelHng studies of the pVT behavior of CO2,

SO2, CF3H, and polystyrene, the non-rigid form of the lattice model has been

demonstrated to be superior, based on the quality of the description of Hterature

pVT data.

In the case of the non-rigid class of lattice models, it has been shown that

several equations of state are specific cases of the Mean Field Lattice Gas model

of Kleintjens and Koningsveld. Setting the parameter to zero yields the

equation of state by Panayioutou and Vera; this requirement plus the constraint

that 5^10 vanishes leads to Kanig's model. Retaining both parameters produces

a superior description of the phase behavior of both the gases and polystyrene.

It appears that the ^10 parameter partially accounts for the lack of model terms

which describe non-mean field density fluctuations near the critical point (in the

case of the gases), and possibly makes up for neglect of a cell-Hke vibrational

contribution to the EoS (for polystyrene). The parameter helps to fine-tune

the dependence of the EoS on 0o at high densities, and as such, is possibly

190
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required due to deviations from the simnlp Fl. tt •

"'""P^^ Flory-Huggins entropy of mixing
expression used to construct the MFLG model.

The fundamental nature of the heretofor MFLG empirical parameters
and was investigated via modifications to the MFLG entropy of mixing
expression and subsequent computer modelling. The Flory-Huggins entropy of
nnxang relation was modified to attempt to account for the dependence of the
total number of configurations on the distinct surface areas of the segments and
holes. The resulting free energy expression, designated the First Order model,
provided apparently molecular definitions for both a, and and required one
fewer adjustable parameter than the Zero Order model. Computer modelling of
the pVT behavior of CO2, SO2, CF3H, and polystyrene showed that whereas
the First Order model produces a significantly better description than the case

where (a„ ^,o=0) or that of the general rigid lattice model, it falls short of

equalling the performance of the parent model. Lacking the empirical ^,0

parameter to compensate for the segment density fluctuations in the region near

r„ the First Order model displays large errors in this regime. Consequently,

in situations where critical conditions are not relevant, such as modelling of the

pVT behavior of polystyrene, the First Order model performs as well as the Zero

Order MFLG, despite one fewer adjustable constant.

The breakdown of the mean field approximation in the very dilute region

causes significant problems if binary parameters for the MFLG models are found

via use of data from this region. The use of the three binary parameters in the

Zero Order model partially compensates for the dilute solution problem over

small temperature ranges, but phase behavior predictions at temperatures out-

side the fitting range cannot be made with confidence. The MFLG models

perform much better using parameters found with concentrated solution data.
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Wh.le subsequent predictions of dilute ph.se behavior will still generally un-
deresti„.ate the equilibriunr concentration (by overestimating the number of
polymer-solvent contacts), the predicted temperature dependence and shape of
the phase diagrams wiU be more accurate.

The prediction of phase separation behavior by the Zero Order MFLG is

significantly more accurate than that of the First Order model. The two-binary-
parameter description of the First Order model does not produce the proper
temperature dependence of the phase diagrams, although the volume change on
mixing prediction is somewhat improved. Apparently, though the First Order
model properly describes the 0, dependence of the empirical parameters a,

and s,„, more work needs to be done on the temperature dependence of these

parameters.

The MFLG model produces an accurate description of the sorption of su-

percritical CO2 by atactic PMMA in the concentration region where the mean
field approximation is expected to be valid. Using the binary parameters found

by fitting the appropriate model equations to the literature sorption data at

temperatures between 315ii: and 341.2ir, accurate predictions of sorption have

been made at temperatures of 298.2ii: and 461.53ii:, thus demonstrating the

large useful temperature range of the model. Predictions of the volume change

on mixing, while displaying the proper trends versus temperature and pressure,

show deviations from the data at high pressure.

In general, though correctly describing the effects of temperature, pressure,

and molecular weight on dilute solution phase behavior, the model underpredicts

the solubility of PMMA in CO2. This is due both to the assumptions made

during the determination of the binary parameters (that no 33,200 MW PMMA
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dissolves in COj up to pressures of 300 bar! and to tl, i j
'^l ''"d '° breakdown of the mean

held approximation in very dilute polymer solutions.

The predictions in the PST-CO^ system were made using a minimal amount
of data during the fitting procedure. Despite this, the model solubility predic-
t.ons qualitatively describe the dilute solution behavior, but as in the PMMA-
CO2 bmary, underpredict the solubility. Not surprisingly. CO2 is a much better
solvent for PMMA than for PS.

The glass transition has been approximated as a freezing-in process in-
volving one order parameter. Three separate parameters have been considered;
free volume, entropy, and relaxation time, the latter represented by the quan-
tity TS, as derived by Adam and Gibbs [1965]. Using the MFLG model, the
dT^/dp curve has been calculated for the four amorphous polymers polystyrene,

poly(methyl methacrylate), poly(vinyl acetate), and polycarbonate using each
of the criteria mentioned above. Predictions of dT^/dp and dp, /dp employing

the constant TS criterion are significantly more accurate than either the iso-

entropy or iso-free volume situations for all four polymers. A modification to

the MFLG model, which allows the number of segments per molecule, as well

as the surface area per segment, to vary with temperature, further increases the

accuracy of the predictions for three of the four polymers studied.

Supercritical CO2 readily induces crystallization in polycarbonate to an

extent comparable to that achieved using acetone or other organic liquids. Car-

bon dioxide density, absolute pressure, and ambient temerature each influence

the total crystallinity. Since the polymer degasses quickly and quantitatively

at room temperature and pressure, the high Tg of the polycarbonate can be

regained in the crystallized material without having to resort to vacuum treat-

ment. Since crystallization begins at temperatures and pressures as low as 75C
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and 125 atm., any attempt to extract polycarbonate with supercritical CO2 will
have to be made at temperatures high enough to melt any crystallites formed
owing to CO2 exposure.

Use of the constant TS criterion, aUows the prediction of Tg versus diluent
concentration in the PST-toluene and PST-cyclohexane mixtures, and versus
the combination of temperature and pressure (which determine diluent concen-
tration) in the two gas-polymer mixtures without the need for adjustable param-
eters. In mixtures with near-ideal volume change on mixing, it seems Ukely that
the TS and FV criteria would produce similar predictions of the dependence of

Tg on diluent concentration. However, the effect of hydrostatic pressure alone

on the Tg is greatly overestimated by the FV criteria, which, coupled with the

highly non-ideal AF^ of polymer-gas mixtures, disquahfy the FV criterion from
use in predicting the Tg of such mixtures.

Thus, the combination of the constant TS criterion and the MFLG model

provide an effective means by which to predict the the processability of polymers

under gas pressure. A combination of a good solvent and low dT^/dp for the

pure polymer can result in a high (T^ - Tg) at temperatures far below the

Tg of the pure polymer. Thermally unstable polymers could readily benefit

from such gas plasticization during processing. Another interesting possible

application concerns the reverse of this procedure. Because the predicted Tg

versus composition curve using the TS criteria is sensitive to the values of the

binary parameters, it is conceivable that Tg versus composition data, along with

density versus composition, could be used to predict phase separation behavior.
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7.2 Proposals for Future Work

7.2.1 Modelling

Whereas the MFLG model has been shown to provide a useful description
of polymer-supercritical gas phase separation, as well as Tg behavior, there re-
mams ample room for improvement. Improvements could come in three forms;
addition of a dependence on segment-density fluctuations to the free energy
transformation of the model to a group-contribution format, and finally, inclu-

sion of the concept of specific interactions. As discussed in Chapter 4, there
are several possible strategies for incorporating the effect of the segment den-
sity fluctuations into the free energy. Empirical expansion of the interaction

parameter [Nies, 1983], and theoretical bridging functions [Koningsveld, et a/.,

1974; Irvine and Gordon, 1980] have proven useful in the past, yet it is the ap-

proach of Muthukumar [1986] which may hold the most promise. Muthukumar
derived a temperature-dependent contribution of the eff^ect of fluctuations on

the free energy, using a field-theoretical approach, which produces extra terms

which involve two new parameters. Significantly, it has been shown that the

two empirical parameter (^,0, «») approach of the MFLG model can compen-

sate for the lack of fluctuation-dependent terms over small temperature ranges.

Muthukumar's approach, which allows use of any mean field model as a starting

point, could help to explain the fundamental significance of the MFLG empirical

parameters and greatly extend the useful concentration range of the model.

A group contribution model, which assigns charateristic parameter values

to individual chemical groups, would help to free the model from the dependence

on availabiHty of pure component data to determine material parameters. At the
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same t^e, this t.ansformatioa would eH^ninate one of the unrealistic attributes
of the .odel, that a molecule such as st.rene, for example, should be comprised
of segments with identical shapes and si.es. Work towards this goal is proceeding
at DSM in Geleen, Netheriands. If a group contribution model were to be used
.t only natural that the concept of specific interactions be introduced, since
segments of one type will be attracted to segments of the same type rather than
those of a different type.

7.2.2 Applications

Given the phase separation and Tg behavior of polynier-supercritical gas

mixtures, several possible appHcations come to mind. Because the solvent can be

removed very quickly, via a flash in the pressure, it is possible that supercritical

gases could be used as an alternative to freeze-drying as a technique for preparing

polymer blends. Besides being a fast process, the pressure flash includes a

dramatic temperature quench. Thus the favorable kinetics of the process could

be used to overcome thermodynamic roadblocks.

An old maxim in thermodynamics is that "Hke dissolves like". While overly

simplistic, this simple assumption has been shown to be the case in the PMMA-
CO2 system, as well as for polyethylene, where analogies to the polymer repeat

unit, such as ethane and propane, are better solvents for the polymer than

the monomer, ethylene. Logically, it would seem that a good solvent for an

intractable polymer such as polyacetylene would also be an analogy to the repeat

unit, such as ethylene or butadiene. Such solvents could be used to plasticize

the polymer or be used in an attempt to homogeneously polymerize acetylene.
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As shown in Chapte. 6, absorption of a supercritical gas by a poly.er will

ubstanfal^y .oadened by usin, a ,as as a plasticine. Pollowing p.oeessin,
the sas couM be easily _.e. by a pressure drop. To investigate this possible
apphcafon, attempts were n.ade to extrude n^.tures of a gas and a poly.er
at temperatures below +}ip T +1,

S P^^^ P^Wr. In each case, (PVC-COo
PVC-CP3H, PET-CO,) powdered poly.er was placed in an exee. ofli«
gas and allowed to absorb for several hours. The tube containing the swoUen
polyn^er was then placed in liquid nitrogen in order to freeze the nnxture during
transfer to the extruder. The ^o.en nuxture was placed in the barrel of the
Instron rheon^eter and pressure applied. Unfortunately, a good seal could not
be n>aintained around the plunger and the gas would escape very ,uickly after
the experiment was started. Modification of the Instron barrel assembly wiU be
necessary to property evaluate the use of supercritical gases as plastici.ers.

Recently it has been shown that very large single crystals of quartz can be
grown from a supercritical water solution. It might be possible to accompUsh the
sa^e result for polyethylene or poly(vinyUdene fluoride) using the appropriate
gas [Masse, 1987). In addition, a supercritical gas could be used as a readily

removable continuous phase in an emulsion polymerizarion. Finally, even the

observation that generally only oligomers will dissolve in a supercritical gas may
have some value. If functional oligomers were to be crossHnked while in solution

with a gas, the resulting phase separation could create a foam with interesting

properties.
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APPENDIX A

Thermodynamic Relations for Pure Components Derivedfrom the First Order MFLG Free Energy Exp:ression

Chemical PotentiaLand^aua^^

where:

Spinodal

TTli

+ <^§<^i(r'A + rA')

r- (i-7i)

Q

^, _ (l-7i)Q'

A = Zoo In

^' = 2.00
(I

Q = (l-7i'?5'i)

Q' ^l\<t>i for //o;= -7100 for /zi

+ <^o^^i(r"^ + 2r'>i' + rA")

[A -2)

[A-Z)
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wh«e the« „e the sa.e as fo. e,ua«o. (A-1) and (A.2) but .HH
V = —71 and:

r"^ 2(i-^,)(g')2

= —2200

Critical Point.

(I)

0=i- 1

+ Mii^'''^ + 3T"A' + sr'A" + TA'")

where the symbols are the same as for the spinodal and, in addition:

l\3
p», _ 6(l-7,)(g^

A"'=4z,00
Q
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APPENDIX B

Equations Derived from First Order MFLG ModelFree Energy Expression and Defining Relations from
Table 4.1

ChemicalPotenti al:

rriiRT rm

k=l,2,m

where:

i = 0,1,2

mo = 1

Other terms in equation (B-1) are defined in Table B.l

Equation of State:

Swelling Binodal
:

(from equation B-1) = ln(/)o + 0i ^1
- —

(from equation B-1) — -^In^i + 0o (— 1RT

{B-1)

~ BT ^ equation B-1) _ 2)

{B-3)

(B-4)
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where:

Spinodal :

and:

where:

therefore:

Ai = ZoolnQ^/zi + /3j

= (f>o(f>i{l - 7i)/(5

po ^ (1 -ji)(f>l _ (/^o0i(l - 7i)Q5

Q Q2

pi ^ (1 -7i)</'o _ 0o<^i(l - 7i)Q]

Q Q-'

Q = 1 - 71^1

Qi = ii(l>i

A = 2zooq;/q

A\ =22coQl/Q

(f>i rniVopgaJMi

<f>o = 1 - ^1

AA-,- =
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A^2i = AA

AA22 = ~i-
^

(B-8)

1=1, 2,

m

where:

p ^ <?^o</>i(l - 71)

\ Q g2

^\ Q Q2 + 5^

p _ <i>0<^>2{l - 72)

r].(i-72)(-i-1 M2Q'
Q

pi2 ^ _ ^ 02Q;; _ (<?^o-0i)Q' ^ 2cf>oM'Q"

r^-(i-72)(
Q Q'

i2 -(1-72)1-^ +
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Q

rL = n _m

m

12
m

m

rL2 ^ n _m

(1-71)

(1-71)

(1-71)

rL = n -(1-71)

(1-71)

1 -

1 -

1 -

1 -

72 (5- Q-

(M"
\ Q

and:

Ai = zoo In QV^i + /?i = 2^00—

Q

— 2^00 5!1 ,22 fQ"

Q = i- 7i<^i - 72<;^2 Q' = -71 Q" = 72

Critical Point:

J1AA22 - J2AA21 = 0 {B-9)

and

Ji = A>lniA^22 + A^nAA22i - (AAizAyijii + AA21AA121)

= AAniAA22 + AAnAA22i - 2AA12AA12]
{B - 10)
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= AA121AA22 + AA„ AA222 - 2AA,,AA...
~

where:

d^AA
AAijk = —- -

d<f>id(f>,d(f>.

therefore:

AAni = ~+ ^

<t>l rni(f)\

1=1, 2,

m

A>l222 = 1

1"00 ' T^l<fi

1=1, 2,

m

(5 - 13)

»=l,2,m

(5 - 14)

t=l,2,m

i=l,2,m

5^;
{t\a]' + v.ad

1=1, 2,

m

(5-15)



205

p222
^ 2 = 6(1 - 72)1 5: ,

iJ>0-^2){Q")[ M2{Q"f \

= (1 _ ^,)/ ?5: _ ,
2(<^o - .^2)(Q')'

1

-(l-72){

pill
^ 2 <.-ri{^(,*M:)|

r^^^ = (i-7i)(i-72){

i221

m (1 - 7i)(l - 72){ + [-^ - 1

j Q ))
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spinodal.

Second order derivatives are defined in the previous section concerning the
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APPENDIX C

Derivation of the Volume Change on Mixing
from the Degree of Swelling

Definition of Terms:

Vi — initial volume, cc

Vf ^ final volume, cc Vf^ = final volume, cc/mole

gp = mass of polymer

9C02 ~ mass of CO2 absorbed

Mi = molecular weights

pi = densities

Wp = weight fraction polymer

S = fractional volume change

Derivation of Vf^

Vf = Vi{i + S) (C-1)

= 9p/pp (C - 2)

combine (C-1) and (C-2) Vf = ^
j 9p [C -

3)

1 — Wp
9C02 = 9p

[ ]
(C - 5)

P

Combine C-3, C-4, and C-5;
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Vfm =
Pp

/

(C-6)
MC02

C02M
flco2

^co2

/

+

PC02

C02

Pco2

1 — W]
10 1,

MCO

\

2/

(C-7)

Volume Change on Mixing

C02
Pp

Pp

/

\
+ (

^-^p \ 1_

(C-8)

= V>^ -XiVi -X2V2

(C-9)

which is the same as equation (4-15).
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