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ABSTRACT

Interfacial Tension Theory for Low
Molecular Weight and Polymer Systems

February 1980

Claudia 1. Poser, B.S., Clemson University

M.S., Ph.D., University of Massachusetts

Directed by: Professor Isaac C. Sanchez

This dissertation reports on the development of an interfacial

tension theory applicable to low molecular weight fluids and polymer

systems. The theoretical treatment includes a rederivation of the

free energy minim izat i on forma 1 ism for inhomogeneous systems in the

gradient approximat ion . The gradient approach is then combined

with a slightly modified version of the lattice fluid model. The

resulting theory describes liquid-vapor and liquid- liquid interfaces

of pure and mixed nonpolar and slightly polar systems away from the

critical region. The interfacial equations are amenable to numerical

evaluation, and the theoretical predictions were tested against

experiment for the cases of pure components and binary mixtures.

For one-component liquid-vapor interfaces, a single parame ter , <

,

which can be related to the range of the attractive part of the

intermolecular interaction potential, arises. If the interaction

is assumed to be purely dispersive, predicted tension values fall

below experimental ones by about 10-15%. A single constant value of

ic, determined from a fit of experimental data, reduces this error to

about 5% for low molecular weight nonpolar and slightly polar liquids.
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The temperature interval over which the theory applies is wide and

useful, ranging from the triple point to T/T
c

= .7. (T is the

critical temperature.) For polymers, the error is reduced to 10%

when a slightly different, but also constant, value of k is applied.

The theory is somewhat less accurate for polymer melts because it

overestimates the surface entropy. The molecular weight dependence

of the interfacial tension is correctly predicted for the n-alkanes,

and is closely related to the dependence of liquid density on molecu-

lar we ight

.

For binary mixtures, the theory contains an additional parameter

corresponding to the intermolecular interactions between unlike

molecules. This parameter can either be evaluated from the lattice

fluid combining rules (using fitted mixing parameters) or it can be

approximated from the pure component interfacial parameters by the

geometric mean assumption. The latter procedure gives good results

for liquid-vapor interfaces in miscible mixtures, but appears to break

down for liquid-liquid interfaces. For nonpolar liquid mixtures, the

theory can predict the composition dependence of the liquid-vapor

interfacial tension to within 5%. Positive deviations from ideal

tension behavior as well as strong preferential adsorption at the

interface are correctly predicted. The theory suggests that these

phenomena arise from size differences, equation of state behavior,

and deviations from ideal mixing rules.

For liquid-liquid systems, interfacial tension calculations

depend sensitively on the phase diagram predicted by the lattice fluid

V l L



theory . The phase d lag rams in t urn depend on the mixing pa rame te rs

.

For po lyme r-po lymer sys terns , presently ava ilable data is inadequate

to accurate ly e va lua te th ese mix ing parameters. The or et ical predic-

tions for polymer-polymer interfaces thus remain qualitative at

this t ime

.

v i i i
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CHAPTER 1

INTRODUCTION

The theoretical description of interfaces between fluid phases

has a long and active history dating back to the differing approaches

1 2
formulated by Gibbs and van der Waals. Gibbs treated the fluid

interface as a discontinuity, constructing a hypothetical dividing

surface with which he associated a superficial Helmholtz free energy

.

Van der Waals based his derivation on the concept that the interface

arises from and can be described by the principle of free energy

minimization. In addition, he introduced the idea that the free

energy in the inhomogeneous region may be expre ssed as a function of

the 1 oca 1 dens i ty and its spatial derivatives. A 1 though van der Waa 1

s

1

interfacial theory was forgotten until a similar derivation for

3
binary systems by Cahn and Hilliard in 1958, his "free energy" approach

contained the seeds of the modern gradient theory of inhomogeneous

sys terns

.

Cahn and Hilliard used a concentration gradient formulation in

conjunction with the regular solution model to derive expressions

for the interfacial tensions and concentration profiles of low molecu-

4 5
lar weight binary mixtures. Subsequently, Widom ' reformulated the

theory for a fluid in the neighborhood of its critical point where

the gradient approximation was thought to be exclusively applicable.

McCoy and Davis** have recently shown that the gradient theory is

fairly accurate even for sharp interfaces, although Abraham^ demonstra-

ted that results for a liquid-vapor interface of a Lennard-Jone s fluid

1



are erroneous at the triple point.

In the rigorous form of the free energy theory, which was

developed by Yang, Fleming, and Gibbs,
8

the gradient expansion is

applied to the total Helmholtz free energy density. This theory leads

to intractable integral equations for the density distributions.

Bongiorno, Scriven, and Davis
9

derived their interfacial theory by

applying the gradient expansion to the potential energy density only.

The resulting tractable expressions for the tensions and profiles

require the use of an unspecified equation of state. These authors

have obtained reasonable results for simple fluids by combining their

gradient theory with the van der Waals' equation of state.
10

For

polyatomic low molecular weight fluids the semi-empirical Peng-

Robinson equation has been used successful ly

.

1

1

'
12

All of the more

rigorous molecular theories require the two-body distribution functions

in the interface, which has eluded evaluation even for argon.
13

Thus,

the gradient approximation combined with a mean field equation of

state holds the most promise for predicting interfacial properties

of complex molecules such as polymers.

Systems containing polymers have historically been treated

separately from low molecular weight liquids. This separation may

be traced back to early observations of the break-down of ideal

mixing equations when applied to polymer solutions, which led to the

recognition of the influence of macromolecular size and flexibility.

The Flory-Huggins theory provided a successful explanation of unique

polymer solution behavior primarily by evaluating the con figurat iona

1

14entropy of mixtures. These historical developments may serve to



3

explain why most of the previous work on polymer interfaces concen-

trates on binary systems and on the entropic effects of an interface

on polymer conformation. The focus on polymer-polymer interfaces has

been further motivated by the fact that phase separation and immisci-

bility are the rule rather than the exception for polymer pairs

which is again due to the comparatively small entropy of mixing.

For the reasons cited above, descriptions of the surface tension

for pure polymers have remained at the semi-empirical stage.
15

The

most sophisticated of these approaches was developed by Patterson

16,17
and coworkers. In this treatment an empirical correlation serves

to connect the surface tension to the equation of state parameters of

,
18Pngogme's corresponding states theory. Errors in predicted values

for this and other methods (based on solubility parameters and the

parachor me t hod ) are in the range of 15% for nonpolar and si ight ly

polar polymer melts

.

The effort applied to the description of binary systems containing

po lyme rs has be en more extensive. A brief review is given below.

More de tailed discussions of theoretical predictions will be pre-

sented in the main body of this dissertation where applicable. Exist-

ing theories generally fall into two categories: those dealing

with the 1 i quid-vapor interface of polymer solutions, and those

dealing with the liquid-liquid interfaces between the two phases of

a de mixed po lyme r solution or pol yme r-po lymer system. The fo rme r

category consists essentially of Prigogine and Marechal's monolayer

19 20
theory, its modifications by Gaines, and the multilayer formula-



21 22tions by Roe and Helfand. The original version of the monolayer

theory is based on the athermal Flory-Huggins solution theory. The

system consists of bulk liquid and one lattice layer of a different

composition. The polymer molecules in this monolayer are restricted

to conformations lying parallel to the surface. Gaines modified this

treatment by introducing energetic interactions into the bulk phase,

while still assuming the surface layer to behave athermal ly . The

interaction parameter is then used as a fitting parameter which

leads to good agreement for the concentration dependence of surface

2 0 23 2tension for a variety of polymer sol ut ions. 1 9 The use of the

monolayer together with the requirement of conformations parallel to

the surface remains conceptually unsatisfying, however.

The lattice theories proposed independently by Helfand and Roe,

seek to remove these restrictions. The number of lattice layers whose

composition differs from the bulk is not specified. Both of these

theories use a random heat of mixing and concentrate on formulating

the system's entropy. The interfacial profile is obtained by

minimization of the resulting free energy . The resuits of the two

authors differ due to different assumpt ions used in the entropy formu-

lation. The expressions obtained by Helfand are very difficult to

25
so lve nume rically, and have not been compa red to expe rimen tal data

.

Roe 1 s results are somewhat simpler to solve . Predictions of the

interfacial tension's concentration dependence for polymer solutions

are similar to those obta ined by Gaine s , a 1 though di f ferent va lues of

21
the f i 1 1 ing parame te r x are requ i red . Roe also found tha t the con-

centra tions obtained for the top-mos t (surface) layer were almost
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identical to those calculated in the monolayer approach, and that the

succeeding layers had very little effect on the tension.

The first theory which was proposed for polymer-containing liquid-

liquid interfaces is due to Vrij,
26

who combined the gradient approxi-

mation with a solution model due to Debye
27

to describe two-phase

polymer solutions near a critical solution temperature. The model

was tested for a demixed solution of two different polymers in a

common solvent. Although Vrij made some drastic assumptions (the

polymers were assumed to have identical segment sizes and radii of

gyration), the predicted dependence of the interfacial tension on

concentration agreed qualitatively with experimental results.

28Recently, Vrij has published a revised theory for demixed systems

consisting of a single solvent and polymer. Debye's solution

model was replaced by the Flory-Huggins entropy of mixing with two

different expressions for the energy of mixing, the regular solution

form and an empirical relation due to Koningsveld.
29

Due to the

details of the model, solutions for the interfacial profile exist

only within about 1% of the critical temperature.

Nose, in an extension of Vrij's approach applicable to polymer

solutions and polymer-polymer systems, has added an elastic free

energy term to the Flory-Huggins free energy of mixing in order to

account for distortions of the polymer segment distributions at an

interface. One of the interesting predictions of this theory is a

first order transition from a diffuse to a sharp interface near the

critical temperature, . Nose claims that this prediction is borne



out by the change in the dependence of the interfacial tension on

T
c
-T which he has observed experimentally. Numerical predictions of

the tension have the right order of magnitude and qualitative behavior

near a critical solution temperature.

Several theories have been derived for polymer-polymer systems

away from the critical temperature. The first two of these are

extensions of the multilayer lattice models of Helfand
32

and Roe.
33

As in the polymer solution versions of these theories, the calcula-

tions consist of deriving an expression for the entropy in the

interface which cor responds to the minimum free energy . Re suits of

the two theories again differ due to different assumptions used in

the entropy formulation . Predictions of these theories remain

primarily qualitative, since several parameters arise whose values

cannot be unambiguously established.

A numer ica 1 ly more successful theory , though somewhat less r i gor-

34
ous , was proposed by Helfand and Sapse. The explicit consideration

of the concentrations in each lattice layer is here abandoned. The

interface is considered as an area in which interdiffusion of s egmen ts

take s place, so that the probability of finding a segment in the

interface may be described by a modi fied diffusion equation . The

segments are assumed to be in an average molecular environment (mean

field) and to follow Gaussian random walk statist ics. The calculated

values of the tension seem to agree very we 11 with exper imenta 1 data

at 140 C , but th is agre emen t must be considered somewha t fortuitous,

since the tempe ra t ure dependence cannot be predicted. All quant i t ies

in the final expression for the tension which would be expected to
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contribute to the variation with temperature are evaluated from

experimental data, and are considered to be constant.

The most recent treatment to appear on polymer-polymer interfaces

again relies on a combination of the gradient approximation and the

3 5Flory-Huggins theory. The concentration expansion, however, is here

applied to the total free energy of mixing. As a result, the theory

contains a number of undefined parameters. In order to obtain

numerical results, the interfacial tension must be fitted at one

temperature. In that case, the surface entropy (the temperature

derivative of the tension) can be predicted as a function of another

pa rame ter

.

From this brief review of the literature, some general features

emerge. Small molecules are treated separately from mac romo lecu 1 es

,

and, in general, polymer solutions are treated separately from polymer-

polymer mixtures. In addition, many of the theories dealing with

polymers are either empirical (as in the case of pure polymers),

restricted to a special region of the phase diagram (polymer solutions

near a critical solution temperature), or difficult to connect to real

systems (lattice theories of Helfand and Roe). The basic motivations

leading to the work presented in this dissertation follow directly

from these observations. A unified theory applicable to the range

of molecular weights is clearly desirable. In addition, the theory

should be able to describe pure substances, homogeneous mixtures, and

phase -separated mixtures within the same framework . Furthermore , the

pa rame ter s requ i re d should be unambiguous ly definable. In order to

derive practical benefits from such a consistent approach, calculations
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necessary to evaluate the predictions should be straightforward.

In view of such considerations, the approach which appeared most

likely to be rewarding was to construct a theory combining the elements

of the gradient approximation with the lattice fluid " (LF) model.

The lattice fluid theory fulfills the present criteria for a molecular

model, since it is able to describe the thermodynamic properties of

both low and high molecular weight fluids semi-quant itat ive ly . More-

over, generalization to systems of more than one component is straight-

forward. The gradient approximation was selected on the basis of the

promising results which have been obtained through its use as dis-

cussed above

.

The work presented here is organized into seven chapters and a

numerical appendix. In Chapter II a different and more direct

derivation of the gradient theory is presented. The treatment is

confined to a planar interface and results are given for an n-component

sys tern . The f ina 1 equations are identical to those obta ine d by

9 3
Bong iorno et al . , and reduce to those of Cahn and Hi 1 1 iard for a

special case. Chapter III contains a discussion of the LF theory with

spec ia 1 emphas is on some modifications made in adap t ing this forma lism

to the description of interfaces. These modifi cat ions consist of

inc 1 ud ing long-range inte rmo lecula r inte rac t ions instead of exc lus ive ly

nearest neighbor interactions. This change does not alter the homo-

geneous form of the LF theory due to its mean field nature. In addi-

tion, the combining ru les emp loyed in the extension to mixtures differ

from those originally proposed.

Since the description of an interface between two phases requires



the knowledge of the equilibrium properties of those phases, Chapter

IV will describe how the phase behavior of the different types of

systems was analyzed. Chapters V and VI pertain to one and two

component systems, respectively. Each of these chapters is divided

into two sections. In the first section the general interfacial

tension theory is specialized to the case under consideration. The

second section presents numerical results and discusses them in the

light of experimental results, empirical correlations, and predictions

from other theoretical work. A summary which includes some suggestions

for future work is contained in Chapter VII. The Numerical Appendix

is intended to serve as an outline of techniques applied to the calcu-

lation of equilibrium phases, interfacial tensions, and profiles.

Copies of specific programs are not included, since they tend to be

of limited use. Most of the methods are well established in the field

of numerical analysis. The Appendix will thus be useful as a guide

to those techniques which were successful, especially when alternate

approaches can be used.
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CHAPTER II

GRADIENT THEORY OF INHOMOGENEOUS SYSTEMS

Recent statistical mechanical theories of interfaces are based

on two different approaches: the momentum balance formalism which

requires mechanical equilibrium across the interface, and the free

energy approach based on the principle of free energy minimization.

Both of these approaches can be used at various levels of approxima-

tion. In order to justify the particular free energy formalism

chosen for this work, a review of the basic statistical mechanical

formulat ions fol lows

.

The momentum balance approach was developed by Kirkwood and Buff
40

using the mechanical definition of the interfacial tension, Y , as the

excess stress transmitted across a strip of unit width normal to the

interface. For a planar interface, the result of this theory is

+00

XX z z

(II. 1)

2 2
+ « ( s -s ) du.

z t ft 2 x LI 1 Jiff ZX 1] II. V J
a // p

2

J (R,R+s)d sdx

x is the direction normal to the interface, and P and P are
XX zz

components of the pressure tensor. In order to satisfy the require-

ments of hydrostatic equilibrium, P must be constant and P and
XX yy

P
zz

must be eo
.
ual and functions of x. du.^/ds represents the force

acting between particles of type i and j,
J

is the doublet

density distribution function, and R and R' are position vectors.
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The following definitions also apply:

t
=

; s =
1*1 # (II. 2)

s
z

and s^ are the z and x components of s. The density profiles are

determined by the Yvon-Born-Green set of integro-dif f erentia 1 equations.

Since

p 2

iJ(
?'?+! ) =P

1

i

(?)p
1

j
( R + s >g

i
.(R,R+s) (II. 3)

where and p^ represent the singlet density distribution

functions , evaluation of the interfac ia 1 tensi on re qui res the inhomo-

geneous pair distribution function g . . , which is generally unknown.

In the original paper, the planar liquid-vapor interface was approxi-

mated by a step-function with the vapor density set equal to zero.

The pair distribution function was equated to that of a homogeneous

1 i quid

.

41
One of the less drastic forms of approximation recently proposed

involves the applicat ion of the gradient expansion to the singlet

densities and the pair distribution func t i on . The effect of the

gradient expansion is to change the equation for the density profile

from an integral to a differential form. The local inhomogeneous

pair distribut ion is then es t imat ed by the homogeneous pair distribu-

tion at a mean density (me an field approximation). With these

assumpt ions, tractable equations can be obtained. However , numerical

re suits still re quire the homogeneous pair distribut ion func t i on and

the pair potential which are not avai lable for most 1 i quids

.

The free ene rgy approach , as men t i oned previously, is based on
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minimizing the Helmholtz free energy density of the inhomogeneous

sy s tern . The exact mo del used determines whether the dens ity pro files

are given by Integra L or differential equa t ions . The exac t f ormula-

Q

tion recently given by Yang, Fleming and Gibbs requires the direct

homogeneous cor re lat ion func t i on and le ads to i nt rac tabl e Integra 1

express! on s for the profile. Si nee the modern gradient the ory grew

2
out of the original formula tion by van der Waals an examina t ion of

his assumptions is conceptually useful.

The planar interface under consideration in van der Waals' theory

is that of a pure liquid in equilibrium with its vapor. The two

homogeneous phases thus differ only in their densities. Van der Waals

postulated that the density in the interfacial region changes contin-

uously in the direction perpendicular to the interface, and that the

density profile adopted by the system is that which minimizes the total

free energy. Further, the energy at a given point in the inhomogeneous

region not only depends on the density at that point, but is influenced

by the densities at all points lying within the range of the inter-

molecular forces. This is the concept which leads to the expression

of the free energy in the inhomogeneous region as the sum of the local

free energy and terms consisting of density gradients scaled by inter-

molecular force contributions. An additional approximation invoked in

the theory is that the entropy in the inhomogeneous region is a func-

tion of the local density only. This approximation appears to be quite

successful for small molecules,
6

and has been retained in recent

treatments of such systems.
3 '

9 ' 1
Basically, the van der Waal's
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theory introduced the free energy approach to fluid interfaces and

simultaneously proposed the gradient approximation as a means for

including the nonlocal contributions to the free energy density in

the presence of a density variation. This approach, in combination

with the van der Waals fluid model, resulted in a solvable differen-

tial equation whose predictions are qualitatively correct.

The free energy approach has since been reformulated in the ab-

sence of the gradient approximation
6 ' 10

allowing this approximation's

domain of validity to be examined for several molecular models. For

the van der Waals fluid, the tensions predicted by the integral and

gradient versions of the theory agreed within 10% over the entire

liquid-vapor coexistence range,
9

while the disagreement appears to

be slightly larger at low temperatures for the Modified Van der Waals

and the Approximate Density Functional models.
6

The mathematical

simplicity gained through the application of the gradient approxima-

tion is cons iderable

.

As pointed out previously, a particular model for the Helmholtz

free energy density is required in order to use the free energy formal-

ism. Since the goal of the present theory is to predict interfacial

properties of complex polyatomic fluids, a rigorous molecular theory

is precluded by the current state of knowledge of liquid structure.

The model selected is a mean field description based on a compressible

lattice which will be discussed in detail in the next chapter. A

general derivation of the interfacial tension theory in the mean field

approximation, which forms the basis of the work presented in this

the sis, is given below.
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In the free energy approach, one may define the interfacial

tens ion, y > of a planar interface by

Y = <A-A
e
)/S

Q
(ii. 4)

where is the surface area, A is the inhomogeneous system's Helmholtz

free energy, and A^ is the Helmholtz free energy of a hypothetical

homogeneous system of the same dens i t y and compos it ion • In order to

2evaluate A, we adopt the assumption first made by van der Waals that

the e nt ropy of the inhomogeneous sy s tern depends only on the loc a 1

3 9 12
dens i ty . Although this as sump t ion is standard for small molecules, '

'

its validity is expected to be limit ed for polyme rs , and its effect

will be examined in a later section.

The quantity to be evaluated for an inhomogeneous sy s tern is

then the potential energy , E. In the mean field approxima t ion , the

potential energy per unit volume, V, at position R for an n-component

system can be written

n n

E(R)/V = h 2 2e. .(R) (II. 5)

i J

where e is the interaction energy of components i and j and is

given by:

e.j(R) = p.(R) /p .(R + s)g.
j

(s)u.
j

(s)ds . (II. 6)

p.(R) and Pj(R+s) are the number densities of components i and j at

positions R and R+s , respectively, s e |s| is the intermolecul ar

distance, e .(s) the pair distribution function, and u..(s) is

the intermolecular interaction potential. We may further ignore
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short-range> correlations in the mean ield approximation, such that

s < o
1 J

s > o . .

1 J

(II. 7)

where a Is the parameter which characterizes the hard core portion

of the pair potential u... In addition, u.. is assumed to be spheri-

cally symmetric; i.e. a function of s and not s.

in the gradient approximation, Pj <R + .) is expanded in a Taylor's

series around s = 0:

p (r+ s) = p.(R) + (VPj'b)^ * JT ^Pj'f^O + (II- 8)

t0 account for the effect on the potential energy of the concentration

and density gradients present in an inho.ogeneous system Since all

of the above derivatives are evaluated at s=0, they are functions of

the x, y, and z components of R only. Substitution of eq. II.8 into

eq. II. 6 and subsequent integration yields:

. = -p.(R)p.(R) Ko
j

* P ,,<*>/ { (Vp
j

-s)^(V Pj -s)
2
+ ...}u

lj
(s)ds

(II. 9)

with

K
U = _4ii / a u (s)ds •

n x J

(11.10)

o . .

lj

Since u is spherically symmet
i j

ric, it is an even function of s

s , and s , so
y 2

pr opert ies

:

i n „ it u has the following
that the integral in eq. II.* ^ s
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b
= 0 if b is odd

/(Vp -s) u..(s)ds | (11.11)
J 1J U 0 if b is even

If the expansion is truncated after the third term, the b = 2 term is

the only one remaining. The integral in eq . II. 9 can be further

reduced

:

/ ^(Vp
j

-s)
2
u

i
.(s)ds = ~y2 P

j

K 2 ^ (11.12)

where

CO

K
2

j = " T ' S u
i-

(s)ds
' (11.13)

This simplification is again based on the spherical symmetry of u_

which implies

/s ^u . . ( s )ds = Is ^u . . ( s ) ds = /s ^u . . ( s )ds .
= 4"~ /s u. . (s)ds.

x lj x y ij y z lj z 3 lj

(11.14)

The components of the integrand in eq. 11.12 may be grouped as

.2 ,2 „2
3 P . 0 3 P . 9 3 P . o

h \m—\ s
x

2
+ —j s

2
+ —1 s

z

2
>u (s)ds

x
ds

y
ds

2
3 s 3 s 3 s

x y z

2 2 2
3 P . 3 P . 3 P .

/// { J— s s + \
— s s + \

— s s } u. .(s)ds ds dsJJ
3s 3s x y 3s 3s x z 3s 3s y z ij x y zxy xz yz

(11.15)

The first integral reduces to the right-hand side of eq. 11.12

through the use of eq. 11.14, while the second integral, whose terms
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are of the form

2
3 P-

f iJ— J s 1 s u..(s)ds ds + similar terms, (11.16)
3S as x y li y x

x y

goes to zero due to the considerations set forth in eq- 11*11.

Eq. II. 9 thus becomes

£. . = -p.(R)p.(R)K
ij

- p.(R)V p.<^ • (11.17)
ij

H
i ~ K

j ~ o
K
i *. j 2

Substitution of eq . IT. 17 into II. 5 yields the following result for

the Helmholtz free energy dens ity

a(R) = -k I Z {p.(R)p.(R)tc^ -p
i
(R)v

2

p k^} -

T
| ( Pl ,p2 ,

...p
n

)

(11.18)

where T is the temperature and S the entropy. Defining the local

He 1 mho It z free ene rgy dens ity as

a (R) = Z Z p.(K)p.(R)K
ij

- T §( p. , p« , . . ..p.) , (11.19)
o , , i k. 1 — o viz n

i J

we may also wr i t e

a(R) = a (R) - \ I Z p.(R)v
2
p. k}

J
. (11.20)

i j

1 - J
2

The total Helmholtz free energy, A, of the system is given by

A = ///v
a(R)d R

3
R . (11.21)

For a system with a planar interface of cross-sectional area S
q

and

vo 1 ume LS ( L + <»)

o
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L/2
A = S

q / a(x)dx (11.22)
— J_i/

z

where x is the direction perpendicular to the interface. Substitution

of eq. 11.20 into 11.22 yields

A = s
o >

{a
0
(x)^ 1 2p

i
(x) —

r

1
<o

J} dx (11.23)
-L/2 i j dx

*

Integration of the second term in the integrand by parts, using the

boundary condition that dp./dx -> 0 as x-> + co leads to

L/2

/

L/2
,

j

i ;
d P • dp.

A = / {ajx) + ^ Z £ k ^ -r-i
} dx .° J to 0 dx dx

(11.24)

The interfacial tension, as defined by eq. II. 4, is then given by

ii
dp

i
dp

i

Y = / Ua + \ z i <2
J ^ dx (11.25)

-oo i ]

where

Aa = a
Q
(x) - A

e
/V e a

Q
(x) -a

g
. (11.26)

The limits of integration have been extended to infinity since both

Aa and the x-der i vat i ve s on the number densities go to 0 as L-k*> . As

mentioned previously, A
g

represents the Helmholtz free energy of a

hypothetical system containing the same number densities of the

components, but lacking an interface. The quantity may be expressed

in terms of the equilibrium chemical potentials \i ^ and the external
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pressure P :

e

A = Z N. p
G

- P V
e .11 e

i

a = Z p . (x)m . - P
e . i i e

i

(11.27)

Aa thus represents the excess Helmholtz free energy density of a

fluid at the local composition P^P^i P
n

in the absence of den-

sity gradients, and the double sum in eq . 11.25 represents, to the

lowest order, the additional free energy density, contribution due

to the presence of such gradients.

In order to obtain the equilibrium interfaciai tension, eq . 11.25

must be minimized which results in n coupled differential equations:

3Aa ii 2 , 2

J— - * <
2

J d p /dx - 0 . (11.28)
* j

This set of equations forms the conditions subject to which the inte-

gral in eq . 11.25 must be evaluated. Multiplying the differential

equations by dp /dx and summing over species i gives an expression

which upon integration results in

Aa = \ I Z <^
J (dP./dx)(dp./dx) . (11.29)

. . 2 l j
i J

The equilibrium tension can thus be written as

CD GO

y -Z Z f (dp./dxHdp ./dx)dx = 2 / Aa dx . (11.30)

^ j —CD ^ —00

9
Tli is equation was first der ived by Bongiorno , Sc riven, and Davis



for a more general theory of interfaces by a different procedure. In

their theory the pair distribution function e..(s) is not assumed to

be given by eq. 11.7, but rather is approximated by the homogeneous

pair distribution function evaluated at a mean density. This has

the effect of allowing short-range correlations to be taken into

account in evaluating the local energy terms in the interfacial

region. However, the effect of short-range correlations on the local

entropy is not considered.

The theoretical development given above is quite general, and

the results can be used with any mean field theory of fluids. We will

now proceed to demonstrate the correspondence of the present theory

to the well-known Cahn-Hi 1 1 ia rd theory for the special case of a single

component liquid-vapor interface. The original Cahn-Hilliard theory

was derived for a two-component system of constant density con ta ini ng

3
a liquid-liquid interface. As a result the inhomogeneity could be

expressed in terms of a single variable, the concentration of one

of the component s . App lying the Cahn-Hi 1 Hard derivation to a pure

component in the presence of a density gradient is straightforward

.

The initial a s sump t ion of the CH forma lism is that the Helmholtz

free energy density may be written in terms of an expans ion in density

and its derivatives:

2 2 2
a(p,7p,V p, ...) = a

Q
(p) + KjV P + tc

2
^ Vp ^ + *"' (11.31)

with

k . = 3a/3V
2
p| ; K

2
=^3

2
a/(3|Vp| )

2
|

(11.32)
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where a
Q
(p) *- s again the free energy density of a uniform fluid of

density p, and the subscripts o in eq - 11.32 indicate that the deriva

2
tives are to be evaluated in the limit of Vp and v p going to

zero. If the density variation is sufficiently slow, so that the

expansion may be truncated after the 2nd order terms, the resulting

expression for the total Helmholtz free energy of the system is

A =/ {a (p) + k '(Vp)
2

} dV (11.33)

V
°

where

k
1 = -die- /dp + k

2
. (11.34)

Using these relations and the definition of the interfacial tension

given in eq. 11.4 the result for a planar interface is

Y = /{Aa + K '(dp/dx)
2

} dx (11.35)
—oo

where Aa has the same meaning as in the present theory. For a

s ingle component , eq. 11.25 reduces to

2

Y = I {Aa + k K
2
"(dp/dx) } dx (11.36)

where
oo

k<
2
" = -

I / s
4
u(s)ds . (11.37)

0 .

J.

The value of k ' in the Cahn-Hi 1 1 iard formulation is obtained by

carrying out an expansion of the potential energy for a lattice

model. The expression obtained for k 1 is identical to that of

42
given above

.
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In concl uding this section on the gradient theory of interfaces,

a qualitative discussion of the thermodynamic significance of the

re suits is in order. The f o 1 low ing rema rks will be con fined to a

one-component system for purposes of simplicity. We will further

drop the subscripts on the factor multiplying the gradient term so

that eq. 11.36 becomes

2
v = / {Aa + ^(dp/dx) } dx (11.38)

subject to

,2

1M _
d_g

= Q _ (11.39)
3 ? dx

2

Recalling the definition of Aa given in eqs . 11.26 and 11.27, we

obta in

Ma- = JL {a - pu
e

+ P } = M < P ) -u
G

(11.40)
3p 3p o e

where u(p) is the local chemical potential and is a function of the

density. The relationship which must be satisfied in order to minimize

the interfacial tens ion is therefore

dx

In a liquid-vapor system, the requirement of a continuous density

profile implies that the density must pass from the liquid density

to the vapor density via the the rmodynam ical ly unstable densities

between the two. One thus makes the tacit assumption in the gradient

theory, that the expressions obtained for the equilibrium chemical
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potentials may be extended into the unstable region. Fig. 1 illustrates

the behavior of u(p) through the interfacial region. Since u(p)

is a thermodynamical ly unstable quantity over the greater portion

of the interface, a constant chemical potential can only be maintained

throughout the system through the influence of the density curvature

term. If one examines the alternate form of the minimization condition

Aa -
fcK

(|ft
) = 0 (11.42)

the relationship between the density profile and the energy require-

ments of the system becomes even more apparent. Fig. 2 shows the

qualitative behavior of a and Aa in the inhomogeneous system*

The excess free energy arising from the t he rmodynam ica 1 ly unfavorable

densities through which the system passes, can be thought of as a

driving force leading to the mechanical response of a dens ity gradient

.

The magnitude of k is crucial in determining the nature of the

density profile. If k were equal to zero, the only possible dens it y

profile would be a step-function, si nee Aa must equal zero also

in such a case. Further, as the value of k increases, the density

profile re quired to satisfy eq. 11.41 or II. 42 becomes less steep •

A satisfying feature of the theory is that it predicts the proper

behavior for the dens ity profile and interfacial tension as the

temperature increases. As the critical point is approached the free

energy curve illustrated in Fig. 2. a. changes its shape. The two

minima move closer together and the maximum flattens out, until at

the critical point only a single shallow minimum exists. As a result
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P lp)

P
6

me ta stab le un stable met as table

Figure 1. Dependence of the local chemical potential,M(p)» on

density through the interface. p^ and p are the

liquid and gas densities, respectively , an§ y e is

the equilibrium chemical potential.
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Figure 2. Behavior of the local Helmholtz

free energy density , a^, and the

excess Helmholtz free energy

density, Aa , through the interface.

The broken line represents the free

energy dens ity of the hypothetical
homogeneous reference system.
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of this behavior, the magnitude ot Aa decreases, and the area under

the curve in Fig. 2.b also gets smaller. As a result, the density

gradient required to satisfy eq . 11.42 decreases, and the density

profile broadens. Simul taneous 1 y, the interfacial tens ion which is

proportional to the weighted area under the Aa curve, decreases.

This proportionality can be clearly seen when eq. 11.42 is used to

effect a chang e of variables in eq. 11.38 via

dx = /k / 2 a s dp (11.43)

to yield

P
£ y

Y = 2 / AicAa dp . (11.44)

P
8

k , which is a measure of the strength and range of the intermolecular

interactions, is thus crucial in determining the magnitude of the

interfacial tens ion as we 11 as the nature of the density profile.

In summary , the free energy approach in the mean fie Id gradient

approximation has been chosen for the present theory of interfaces,

because a more rigorous approach would require pair distribution

functions which would preclude application to polyatomic fluids. In

addition, the gradient approximation has been shown to be quite accurate

over the entire coexistence range. The present derivation is direct,

and the resulting e qua t ions can be used in con j unct ion with any mean

field molecular model. Furthermore, the qualitative predictions of

the theory are in accord with fluid behavior, and the equations will

be seen to be amenab le to nume rical solution.



CHAPTER 111

LATTICE FLUID THEORY

In the previous chapter, a general theory of inter fa ces was

developed which requires the use of a molecular equation of state for

quant itat ive p red ic t ions . S ince the goa 1 of this the sis is to develop

a unified model applicable to the range of molecular weights, the

selected fluid model must provide a tractable and accurate description

36 39
of such systems. The lattice fluid model provides such a des-

cription. A brief review of the one-component mode 1 will be followed

by a more de tailed discussion of the two-component form. Use of the

theory to calculate phase equilibria will be discussed in the subsequent

chap ter .

13
The LF model is similar to the Flory-Huggins theory, except

that instead of assuming a filled lattice, vacant lattice sites are

included. This has the important effect of rendering the lattice

compressible. Thus one can describe the thermodynamic properties of

pure components. In addition, the LF theory can predict density-

related features of binary phase diagrams which cannot be described by

a model based on a fully occupied lattice. In the pure fluid case,

N r-mers occupy the lattice (each mer occupying one site), and there

are N vacant sites. The con f igura t iona 1 partition function is
o

evaluated by assuming random mixing of r-mers and vacant sites.

The reduced chemical potential, v , of a pure component is given

u e n/(Nre*) = -P +Pv -t- T[(v-lHn(l-p) + - p] ( 1 1 1 . 1

)

28
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to within an additive constant. ^ , P , v , and p a re the reduced

temperature, pressure, volume and density defined as

T = T/T* T* e e*/k (III. 2)

p = p/p* P* e e*/v* (III. 3)

v e 1/p e V/v* V* = N(rv*) e N(M/p*). (III. 4)

e* is the total interaction energy per mer , v* is the close-packed

mer volume (or hard core volume of the mer), V* is the close-packed

volume of the N r-mers, and M is the molecular weight. T, P, and V

are the temperature, pressure and volume, respectively.

In the original derivation of the model fluid's potential energy,

only nearest neighbor interactions were taken into account. This

approach is acceptable for the pure LF since the mean field potential

energy will always be of a van der Waals form if the attractive part

of the pair potential is sufficiently short range. Bulk thermodynamic

properties are therefore not sensitive to the specific form of the pair

potential. Interfacial properties, on the other hand, are very sensi-

tive to the range of intermolecular forces, as evidenced by the impor-

tance of the k's in the gradient theory. In order to be consistent,

long range interactions must therefore be included in the bulk theory.

Since one of the stipulations of the LF model is that only one

mer can occupy a given lattice site at a time, we shall assume a

Sutherland type pair potential (hard core plus attractive tail):

oo s/a < 1

u(s) -
(III. 5)

e (o/s) s/o > 1

o
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where s is the separation between mers, o the d i stance as soc ia ted

1 /3with the repuls ive core volume (which is identified as o = v* ),

and is the depth of the potential energy minimum. Note that this

interacti on potential acts between mers, not molecules. The charac-

teristic LF interaction energy is then given by

Tie /m-3 . (III. 6)

This definition is different from the original one, and is the only

modi f icat ion which arises from the use of eq. III. 5. In practice, c*

i s de t e rmine d f rom a fit of expe r imen tal data, as discuss ed be low

,

so that changing the form of the intermolecular interaction has no

effect on the homogeneous LF

.

The chemical potential (III.l) is at a minimum at equilibrium and

satisfies the following equation of state

p
2

+ P + T[£n(l-p) + (1 - !>£ ] = 0 . (III. 7)

The equation of state defines the value of P (or two p's in the two-

phase region) which minimizes the free energy at a given T and P.

From eqs. III. 2-4, one obtains that three parameters, either e*, v* s

and r or T* , P*, and p*, suffice to characterize a fluid. For low

molecular weight liquids, these parameters can be obtained by perform-

ing a non-linear least squares fit of the equation of state to saturated

3 6
vapor pressure data, which are readily available in the literature.

39
Alternate methods have also been discussed. For a polymer liquid,

r * °° and the equation of state reduces to a corresponding states

equation which can be fitted to experimental liquid density data to
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determine the parameters.
38

A partial List of low molecular weight

liquid and polymer liquid parameters is given in Table 1 and 2, res-

pectively. Also included in Tables 1 and 2 is a parameter, Y*i

which is defined as e*/v*?
/3

. y* will later be used to reduce the

interfacial tension.

A discussion of the physical significance of the molecular

parameters has been given,
39

and will be briefly summarized here.

The parameter p* may be identified as the close-packed density of the

fluid state. This is a disordered, not a crystalline state, so that

p* should be lower than the crystalline density of the compound. In

keeping with this view, the values of p* obtained for low molecular

weight liquids are generally about 10% smaller than their known

crystal densities. Eq. III. 4 thus leads to the identification of rv*

as the close-packed molecular volume of the disordered fluid.

The product re* which represents the total molecular interaction

energy has been examined as a function of chain-length for the n-alkanes

from C to C
4

and found to increase systematically. One may identify

re* as the energy required to convert one mole of fluid in the close-

packed state (5=1) to a vapor of negligible density (p=0) . This

identification leads to a simple interpretation of the ratio **/**,

defined as the characteristic pressure P*. Since the cohesive energy

density, CED, may be defined as

CED = AE /V = r,*/rv* = P* (III,8)
vap

where AE is the energy of vaporization, P* provides a measure

vap

of the strength of the fluid's intermolecul ar interactions.
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Table 1

LATTICE FLUID PARAMETERS FUR LOW MOLECULAR WEIGHT LIQUIDS

T* p* v* p* r

me thane

e thane

propane

n-but ane

1 sobutane

n-pentane

isopentane

neopentane

n-hexane

2 ,2 dimethyl butane

2,3 dimethyl butane

eye lohexane

n-hep t ane

n-oc tane

n-nonane

n-decane

n-undecane

n-dodecane

n-tr idecane

n-tetradecane

n-hexadecane

n-heptadecane

K

224

815

371

403

398

441

424

415

476

455

463

497

487

502

517

530

542

552

560

570

578

596

mN/m
2

m
2
/molxlO kg/m^xlO

248

327

313

322

288

310

308

266

298

275

289

383

309

308

307

304

303

301

299

296

284

287

7.52

8.00

9.84

10.40

11.49

11 .82

11.45

12.97

13.28

13.77

13.31

10.79

13.09

13.55

14.00

14.47

14.89

15.28

15.58

15.99

16.93

17.26

0.50

0.64

0.69

0.736

0.72

0.755

0.765

0.744

0.775

0.773

0.781

0.902

0.80

0.815

0.828

0.837

0.846

0.854

0.858

0.864

0.840

0.88

4.26

5.87

6.50

7.59

7.03

8.09

8.24

7.47

8.37

8.10

8.29

8.65

9.57

10.34

11.06

11.75

12.40

13.06

13.79

14.36

15.92

15.83

mN/m

57.6

77.7

79.6

83.4

77.0

83.7

82.3

74.0

83.7

78.0

81.2

100

86.3

87.0

87.6

87.9

88.2

88.4

88.4

88.4

86.4

87.9
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benzene 523 444 9.80 0.994 8.02 112

chlorobenzene 585 43 7 11 .14 1 .206 8.38 116

bromobenzene 608 454 11.13 1.616 8.73 120

toluene 543 402 11.22 0.996 8.50 107

m-xy l ene 560 385 12.11 0.952 9.21 105

o-xylene 571 394 12.03 0.965 9.14 107

p-xylene 561 381 12.24 0.949 9.14 104

tetralin 621 315 16.37 0.935 9.03 98.3

carbon tetrachloride 53 5 813 11 .69 1 .788 7.36 102

chloroform 512 456 9.33 1.688 7.58 113

methylene chloride 487 559 7.23 1.538 7.64 128

diethyl ether 431 363 9.88 0.870 8.62 92.3

aniline 614 629 8.11 1.115 10.30 150
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In the generalization of a pure component model to a multicom-

ponent one, "combining rules" must be invoked to describe the inter-

molecular interaction between unlike moLecules. In a binary mixture,

a relationship must be found for the hard core parameter (cr^) and the

parameter proportional to the depth of the potential well (e*
2
). In

the original LF mixture theory, the following combining rule for a n

was used

a\
2

- (o^ + o
3

22
)/2 (IH.9)

which results in simple additivity of molecular volumes at T=0.

The- second relationship was

e* = I 2*
1
+
2
C -^17 + * 2

2e
22

(III
.
10)

where C is an adjustable parameter. This set of combining rules,

unfortunately, fails to provide a sufficiently accurate description

of thermodynamic mixture properties. Since, ultimately, the LF model

will be extended to inhomogeneous systems, a more quantitative theory

for bulk systems is crucial. Two sets of alternate combining rules

were cons idered

-

The first set of combining rules
39

retains the stipulation of

simple additivity of close-packed volumes which may also be expressed

as

v* = r^^* + r
2
N
2
v
2
* = (r|N

1
+ r$N

2
>v* (III. 11)

i i o

The superscript ' refers to the value in the mixture (note that
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r. ^ r 1 in general). We also retain the requirement that the

total number of pair interactions in the close-packed mixture equals

the sum of the pair interactions of the components in their close-

packed states. As a consequence

:

r N + r
2
N
2

= rj^ + r'N
2

= rN (III, 13)

where

r e x
1
r. + x

2
r
2

= XjTj + x
2
r 2

(III. 14)

x = N
x
/N = l-x

2
(III. 15)

N e $ + N
2

.
(111.16)

37
Both of these rules were imposed in the original LF model of mixtures.

In addition, we specify that the characteristic pressures be pairwise

additive in the close-packed mixture:

P* = (fr'P* + <>£P* - AP* (III. 17)

AP = P* + P* - 2P*
2

(III. 18)

q = r|N
1
/rN = (III. 19)

As a result of this requirement, the mer-mer interaction energies,

e* , are no longer pair-wise additive as they were in the original

paper. e* is now expressed as

e* = p*v* = (1F
1
* +<t>2 P 2

* -*i*2
AP 'V)(

*l
V
l*

+V2* } (III. 20)

. . r lNl /rN = l-*
2

-
<I"-«>
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If the reduced tempera tu re , pressure and dens i ty are def ined analo-

gously to those of the pure case, substituting the mixture definitions

for P", e * > V 'S and V*, the conf igurational Gibbs free energy is

G = G/rNe* - -P + Pv + T[( 1-p) fcn( 1-p) +p/r &n p] +

(III. 22)

The chemical potential for component 1 can be obtained by direct

analogy to the derivation used with the old combining rules and is

~ 2
U 1=kT[itn 4>{ + (l-r^rp*' + r^ ] +

(III. 23)

r^kT {-5/T
1

+ P
1
v/T

1
+ v[(l-p) Jln(l-P) + p/r^ Jtnp]}

with . „ ,

.

X
x

e (AP*v
1
*)/kT . (111.24)

AP* thus represents the adjustable parameter for this version of

the mixture theory. We will thus subsequently refer to this set of

combining rules as the AP* combining rules.

The second set of combining rules is more general and will be

discussed in detail, since it was selected for use in the interfacial

theory. We first make the assumption that

r . r . (III. 25)
r

i
" 1

so that the number of sites occupied by a molecule in the pure and



38

mixed states is the same. In effect, this removes the assumption of

simple volume additivity in the close-packed state. e* can now be

obtained without recourse to further assumptions from the properties

3 9
of the model. The energy per unit volume of the n-component LF

is written

n n

E/V = h 2 E p.p. /u..(s)g (s) ds . (III. 26)

i j

1 J U

g.j(s) will be defined as eq. (II. 7), and ^(s) is analagous to the

one-component interaction potential. Using the following definition:

p = r.N./V = p -± (III. 27)
1 11 v*

results in

E = -*Hpt* (III. 28)

with

c* = — Z Z $ *.e*. a
3

. . (III. 29)
v* . . l J lj J-J

J- J

v», the average close-packed volume of a mer in the mixture, is not

explicitly defined. Making the additional assumption

v* = ! S * o
3

. ,
(111.30)

completes the description of the mixture; however, e*^ and o

_

remain undefined. We shall cast them in the form of the Lorentz-

Berthelot rules, modified by adjustable parameters:
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and

°ij
= A(

°ii
+

°jj )/2
' (111.32)

When A is set equal to one, simple close-packed volume additivity

is recovered and the definition of e* for the binary system can be

shown to be equivalent to eq . (III. 20).

It is useful to define

6 = A - 1 , (III. 33)

since the close-packed volume of a binary mixture may then be written

v* = *
1
v
1
* + 4>

2
v
2
* - +

1 *2
6 (vi*

+ v2** (III. 34)

3where the identification v.* = & has been made. The parameter 6

has the physical significance of measuring the deviation of close-

packed mixing from the ideal value

< 0 v*< v* ,ideal

0 v* = v*
deal (IH.35)

> 0 V*> V*
ideal

where

V
Ideal = *lV + V2

*
' (111.36)

The use of the general combining rules allows a more elegant derivation

of the chemical potential for the multicomponent LF.

The total number of mers in an n-component mixture is given by

n

rN = 2 r.N. (III. 37)
l
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The Gibbs free energy per mer of such a system can be divided into

a combinatorial, g , and a noncombinator ia 1 , gnc ,
part:

G/rN = g c
+ gnc

3«

where
n

e = kT E d> ./r Jin
6 c 11

l

g = -pe
°nc

The following definitions apply

e r.N./rN
i i i

n

1/r = 2 <t>
/r .,ii

i

1 j

The equation of state of the mixture is obtained from

(111-38)

(III. 39)

* + Pvv* + kTv[(l-p) m (1-p) + p/r An p] -
(III- 40)

(III. 41)

(III. 42)

n n q .

. (III. 43)
v* = S Z 4>

i
*jO

i j
I j

3
/v* .

(III. 44)

T^>
—2£ )

9v
T,P,*

3V
T,P,<D

and has the form

p2 + p + x[,n(l-p) * (1-
J>? ] = 0 .

(Ill .46)

This equation is formally identical to that obtained for the pure

component; the difference lies in the definitions of r, v*
,
and c*
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which for the mixture are given by eqs. III. 42-44.

The chemical potential of component i in the system is defined as

N 1 indicates that all except N. are held constant. Use of eq .

III. 38 leads to

N.

M
i

= r
i
[g +

v: If }
3 « (in. 48)

i i N

'

If we consider g at constant T and P to be a function of the n + 1

variables ^ , ... <J>^ , and p , we can write

dg =
? !f-> _

dn * If) ^ . (in.49)

At equilibrium the 9g/ap term is equal to the equation of state

(c.f. III. 45), and therefore goes to zero.

We can thus write:

it \

n m x

3
*i

9N/ M1
" 2 H .

}

, . iN > (III. 50)

and since

1
> =< (III. 51)9N.

l N

'

.*./N. I4j

we obtain

M
x

= r
i

{ 8 +
H. }

,
. " 2 * |f-> J • (111.52)
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If we now separate g into e and eb c bnc

r ^nc -,U. = kT[i„ ^ + (l- r /r) ] + r [ + _E£) _ s
1 aHl

J 00)

J <t>' ,p

(III. 53)

Before substituting in eq. III. 40, we note that e*,!/r, v* are

homogeneous functions of
#j

of order zero, one, and two, respectively

Therefore we can use the general property of a function f(x ,x x )
1 2 ' n

of order a that

n

X
j dx/ ,

= af( Xl ,x
2
,... x

n ) (III. 54)
J J x

to obtain

n 3g
nc

2
*J H~ ) . = 2Pvv* + kT ^ p/r . (III. 55)

1 J <J> » p

Substituting III. 40 and 111.55 into III. 52 results in

M. = kT[ £n ^ + (l-r./r)] + r.{ -p[ e* + •!§*) ] +

*i *>

P " [f^ >
,-
V" J + kT^ (1 "P> ^ <^P) - p/r, *n p ] (in. 56)

For the special case of a binary mixture, we can show that

* 3e* \ * 2
E

'
+
H< * E

ll " X
12*2 (III. 57)

1
2
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and

3v* 2

i7"> -
v " = V + <V + v

2
* >6 *2 (III. 58)

1
*2

where

X
12

= (P^P,,*) 2
v

t
*(— ) [a * b 6 + c t

Z
] (III. 59)

a = (t/v)"2 * (v/t)'
2 - (v* +v~'

2
)c (III. 60)

b
12 ={<|>

1
(2 +v*

1
)(t'

2
-c) -*

2

2
(e-T~^)} (v'

2
+v~*) (III. 61)

C
12

=
^2 (t + v (III. 62)

TEG
ll

/e
22 ; vsv^/v^ . (III. 63)

The chemical potential may then also be written:

= kT{ an 4»
x

+ (l-r
1
/r

2 ) <t>

2
+ r

%
x 12 * 2

2
} (III. 64)

with

X
12

= PX x2^
kT + ^ *v~*^ +

P
1
V

-1

T
l

(III. 65)

l/(t>
2

2

{
-p/T

1
+ ?

1
v/T

1
+ v[(l-p) jrn(l-p) + p/r an p]}

Exchanging subscripts in eqs . Ill . 59-111 .65 will result in the

chemical potential of component 2. Although eq . III. 64 looks like the

Flory-Huggins chemical potential, there are some crucial differences.

First, X^
2

i Xg- • In addition, X-
2

is not only explicitly tempera-

ture and pressure dep end en t , but is also a function of compos i t ion

.
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unie

Further differences lie in the LF theory's ability to describe vol

changes on mixing, as well as lower critical solution temperatures

which are common features of polymer containing systems. These improve

ments are solely due to the compressible nature of the model.



CHAPTER IV

PHASE EQUILIBRIA

Before the LF theory can be applied to the interface between two

phases in equilibrium, the equilibrium properties of the two phases

must be calculated. For one-component systems, this problem reduces

to calculating the equilibrium vapor pressure and densities of the

two phases at a given temperature- For binary mixtures, the situation

becomes much more complicated. First the mixing parameter(s) need to

be evaluated. Then the phase diagram must be determined. For homo-

geneous liquid mixtures, one requires the vapor pressure and the con-

centrations of the liquid and vapor phases at a given temperature.

In a liquid-liquid system, the pressure can be equated to the external

pressure, so that, at a fixed temperature, the concentrations of the

two liquid phases must be calculated.

The equilibrium vapor pressure, P , for a pure fluid at a given

temperature can be evaluated from the condition:

m[T, P
e
.P

4
(T,P

e
)] = p[T,P

e , P
g
(T,P

e
)] (IV. 1)

This equation can be solved in one of several ways. The method

emp loyed in this thesis has been described e 1 sewhere in detail. '

Basically, the sp inoda 1 densities can be evaluated at a given t empera-

ture trom

k {- ^(1- 7> + 1
.

' [ fd- T>- 1 1

2
- ~ ) • (IV. 2)

Substitution of the two reduced sp inoda 1 densities into the equation

of slate yields two corresponding values of the reduced pressure which

45
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serve as upper and lower bounds on the solution of eq. IV. 1. This

method allows one to obtain ,p and P^ efficiently. For polymer

liquids, the vapor density and pressure are too small to be numerically

accessible, so that both can be set equal to zero.

The first step in describing binary mixtures is to select a set

of combining rules and determine the applicable mixture parameter ( s )

.

As mentioned previously, two forms of the binary mixture theory were

investigated. When using the AP* combining rules, only one adjustable

parameter must be determined, while use of the general combining rules

requires two. Determination of the parameters can be accomplished in

several ways, and the methods used were selected based on the type

of literature data most readily available. For low molecular weight

miscible mixtures, excess functions, particularly heats and volumes of

mixing have been reported for a range of liquids. Furthermore,

obtaining AP* or alternately 6 and c, from heat and volume of

mixing data turns out to be a fairly simple numerical procedure.

The heat of mixing, AH^, of a binary system for the AP*

combining rules is given by:

AH
m
/rN = v* {-pP* + + <t>

2

' P 2* 5 2 }+ P M ' (IV. 3)

We shall assume that P^ 0, so that the last term in eq. IV. 3 may be

neglected. In that case, the unknown quantities in this equation

are p and P, since the Pj' s can be calculated from the equation of

state using the pure component parameters of j. Given an experimental

value of AH , eq. IV. 3 can be rearranged so as to calculate pP*v .
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The equation of state, at zero pressure, can then be rewritten as

p* = c{1—p[-c
f* <!? + 1 ~7> ]) (iv.4)

where

c = jjp*

which can be solved by simp le iteration to yield P*. AP* is then

obtained from e q . 111.17. The values of the temperature and composi-

tions used in this calculation must, of course, correspond to those

at which AH
m

was measured. The concentrations are normally given

in the literature in terms of mole fractions, x., and are related to

V by

m. /p .*
l l

1
r / + (IV. 5)
2 m

. /p * 7

J J j

x.M.

l
? x.M.
J J J

where the m.'s are the mass fractions.

The general combining rules result in two mixing parameters 6

and
^ ,

thus their use requires two experimental quantities. The

heat of mixing for this case is given by:

AH /rN = -pe* -kJ^P.e* + d, p E * . p AYm u + ^
2
P
2 22

+ 1

rN (IV. 7)

and the volume of mixing, AV , equals



48

AV
m
/rN = v*v - * 1

v
1
*vr . (IV . 8 )

If we again assume that P=* 0, the unknowns in these equations occur

in the following combinations: p e * and v*v (recall that p - 1/v).

The mer fractions, a., are here related to the x. by
J- 1

J

r . x

.

*i = * (IV. 9)
£ r .x .

The term v*v can be directly calculated from eq. (IV. 8). The result

can be used in the following rearranged version of eq . (IV. 7):

v "v [^P^fj + <t> 2 P 2
£ 22

"
7r5 ^ (IV. 10)

whe re

c
q
~ =e*v* . (IV. 11)

The equation of state at P = 0 can be written

p
2

+ kT p(v*v)/e
o
* [an(l-p) + (1- -)p ] = 0 (IV. 12)

and solved for p . The values of p, E *, and v*v then allow deter-

mination of E * and v* for the mixture, from which 6 and £ may be

obtained using eq . III. 22 and III. 23 with the combining rules.

The values of AP*> 6 » and 5 obtained in practice are not unique,

but depend to some extent on the temperature and composition. Fig. 3

illustrates the compositional dependence of the parameters for the
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system benzene-toluene at 25°C. Not surprisingly, the best overall

fit between theoretical and experimental excess functions was obtained
with mixing parameters calculated at the composition at which the

excess functions- extrema occurred. In order to standardize the

determination of the mixing parameters, we chose to calculate them
at .5 (in mole fraction), since this composition is usually close to

where extrema arise for the relatively nonpolar low molecular weight

liquids under consideration. The temperature dependence of the mixing

parameters is more difficult to evaluate, since excess functions are

usually measured at only one temperature. For the benzene-to luene

system, measurements have been carried out over a 20° interval.
44

The values of the parameters determined at three different temperatures

are shown in Fig. 4. The variation for this system in this temperature

range is not severe compared to the compositional variation.

Tables 3 and 4 contain compilations of AP*'s and 6 and 6 para-

meters calculated for a variety of mixtures. In order to evaluate

the relative performance of the two sets of combining rules, the

parameters obtained at x = .5 were used to calculate the excess func-

tions over the composition range and compared to the experimental

curves. These comparisons were made for heat and volume of mixing

curves, as well as for the free energy of mixing. The free energy of

mixing can be obtained from:

AG
m
/rN = AH

m
/rN - T AS^rN . (IV.13)

For the AP* combining rules:
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Figure 3. Composition dependence of the

mixing parameters. The parameters

shown were calculated for benzene-

toluene mixtures at 20°C. Benzene

i s component 1

.
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Figure 4. Temperature dependence of the mixing parameters. The
pa rame ters shown were calculated for benzene-toluene
mixtures at mole fracti ons of .5 .
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Table 3

MIXING PARAMETERS FOR THE AP* COMBINING RULES

AP* data from

MN/m2 reference

n-hexane/2,2 dimethy lbutane 0.4 45

n-hexane /benzene 28.9 45

n-hexane/CCl l\ .3 47

n-heptane/toluene 17.9 48

n-heptane/CCl^ 11.2 47

n-heptane/benzene 31 .9 43

benzene/toluene 11.8 44
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Table 4

MIXING PARAMETERS FOR THE GENERAL COM RI NIT Mr* Pin ire

6 data from
reference

n-hexane/2,2 dimethy lbutane -0006 1 nnni 45 , 49

n-hexane/cyc lohexane - .0041 99 1 1 50 , 51

benzene /n-pentane .0103 .977(1 / QHO

benzene /n-hexane -.0027 .9688 /.£, CO40 , Di.

benzene /eye lohexane .0004 . 96 1 "5 ^ 'X c. 1J J ) j1

benzene /n-heptane -.0018 .9632

benzene /n-octane -.0048 /i A CO

benzene /n-de cane -.0066 . 9 S79 HO , JZ

benzene /n-dodecane - .0070 9S? t 40 , JZ

benzene /n-tetradecane -.0073 . 9469 HO , J £_

benzene /n-hexadecane -.0086 HO , jZ

benzene /toluene -.0057 • 7 \J J J HH

benzene /o-xy lene .0014 .9861 S4

benzene /m-xy lene .0016 .9864 54

benzene /p-xy lene .0007 .9888 S4

benzene/ chloro-benzene .0016 .9969

benzene /bromo—benzene .0025 .9944 55, 56

to luene /n-pentane .0136 .9862 48

to 1 uene / n-hexane .0086 .9770 48

toluene/cyc lohexane .0025 .9709 53, 57

to 1 uene /n-oc tane .0022 .9783 48
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6
data fmm

toluene/o-xylene
-9972

reference

54

toluene/m-xylene
. ooo^

. 9976 54

toluene/p-xylene
o

. 9985 54

toluene/chlorobenzene
1 .0038 55, 56

toluene/bromobenzene
.0O1 4 1 .0036 55, 56

chlorobenzene/n-heptane
.000? .981 7 58

CC1
. /n-hexane

. 001 n
. 9887 47

CCl^/n-heptane
. 000Q

. 98 75 47

CC 1 / n-oc t ane
.001 ?

. 9861 59, 60
CC 1 / to luene

-.001

1

.998 1 44

CC1^/o-xy lene
.001 (S 1 Anno

1 .U003 61

CCl^/m-xylene
.002 ?

• 99o j 61

CCl^/p-xylene
.001 6 1 • UU0

J

44

CHC 1 / n-hexane
. -J (J Q£01

• yoo l 47

CHCl^/n-heptane - .003 7 Q/L z: 1
• 9001 47

CHC 1 /n-hexane
z - *01 w\

• 9J4o 47

CHC1 / n-heptane
Z r — • U 1 0 1 .9304 47

o-xy lene /m-xy lene -.0001 .9996 62

o-xy lene/p-xy lene -.0001 .9998 62

m-xy 1 e n e /
p-xy lene -.0003 .9997 62

eye lohexane/n-dode cane 0 .9765 45, 63
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AS/rN = -k{ ;- Jinct)
1

' + an <t) 0 +
r
1

y
l r 1 Y 2

v[(l-p) an (1-p) + £ an p,]}+

(IV. 14)

^ +v*
2

'

^'^[(l-^) an (l-p
x

) + - £n ^]

- r
p
2

V *2' V
2 L( 1-P 2 > * n (1-P2 ) + — ^ P

2
]>

where v = v^fv^* and k is the Boltzmann constant. For the general

comb ining ru le s

:

<t>l $2
AS/rN = k{ in A - — an d> n +

r
l

1 r
2

2

v[(l-p) in (1-5) + £ an p] + 4>

1
v

1
[(l-p

1
) an (1-p ) (IV. 15)

Pi P
2

+ — an p
x
] + <|»

2
v
2
[(l-p

2
) an (l-p

2
) + — an p

2
]} .

When the calculated mixing functions are compared to the experimental

ones for a number of mixtures, the agreement for the free energy and

enthalpy functions is approximately the same for both sets of combining

ru le s . However , the genera 1 comb ining ru les y ie Id be t ter vo lume of

mixing curves, as one might expect. Fig. 5 and 6 illustrate the

types of results obtained.

Since the general comb ining rules offer the advantage of improving

the fit to the vol ume of mixing curve , they we re exclusively adopted



57

Figure 5. Experimental and calculated mixing functions

for the system benzene-n-hep tane at 25°C

.

Data are represented by filled circles and

we re taken from cor re 1 a t ions given in

reference 58. Broken lines were calculated
2

with AP" = .0076 MN/m , and solid lines

represent results for 6 = -.0018 and

C = .9632. The heat of mixing curves are

coincident for the two sets of combining
rules.
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Figure 6. Experimental and calculated mixing functions
for the system n-hexane-2 , 2-dimethy 1 butane
at 25°C. Data are represented by filled
circles and were taken from references 45
and 49 • Broken lines were calculated with
AP* = .0001 MN/m 2

, and solid lines are
results for 6- .0006 and c= 1.000.
The heat of mixing curves are coincident
for the two sets of combining rules

.
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for subsequent work. Additional benefits are gained through the use

of these rules, A one-parameter mixture theory can easily be recovered

by setting 6 equal to the arithmetic mean value (0) or to the ap-

propriate geometric mean value. Thus the same equations may be applied

in the event that only one piece of mixing data is available. In

addition, the algebraic manipulation of the theoretical equations

is simpler when using these combining rules. Finally, the two mixing

parameters allow more flexibility in fitting liquid-liquid phase dia-

grams which will become important for partially miscible mixtures.

The most prevalent type of data for phase-separated binary

liquids consists of critical temperatures and critical compositions.

A totally different method for determining the mixing parameters, 6

and c , is therefore necessary. The critical conditions for phase

separation can be written:

—
^2 = 0 (IV. 16)

d^

—
*3 - 0 (IV. 17)

d4»
1

where g = G/rN. Eq. IV. 16 is commonly called the spinodal condition.

If dg/d^j is treated as a function of two independent variables $

and v while the temperature and pressure are held constant, we obtain:

d2 (g/ kT > . 3

2
(g /kT)

+
3
2
(g/kT) dv * . ,q\

d*, 3*/ ~
3V V d

*i
1 1 V

In addition, we can show:
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dv -2

d*! T P 8 Lil^ J (IV. 19)

so that

-1^12 „ _i!(|ZlcI) _ ^ ri!^!)/
d*

Z
3<t»

2 1
L H 3v J

* (IV. 20)
1 1 v

3 is the isothermal compressibility, and

TP* 6 = v[l/(v-l) + i - 2/vfJ . (IV<21)

Furthermore

,

2 9 i O P n 1

Mfi/kT),
o

d d T ^d 2
7 ! i

2 )
- ~P —2~ + v 2 +ln p * + + ~

1-1 V 2

and

2 1 P 1
•~ (g/kT) -2dT df ~ d r"

(IV. 22)

S^v '

=
' d

*t

+ ^ 5 P *" (IV ' 23 >

The derivatives in eqs. IV. 22 and 23 are defined by:

1

d r 1_ j__
d*

1
" r r (IV. 24)

9 i
d r

2 " 0
(IV. 25)

dtp.

dP/f Pv 1

d<>
=

kT~ 5 v
*

= VV * (*
2"*1 ) Av (IV. 26)
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d
2
P/T 2P

1

d f 1 de* 1 , 2 2
~ kT chjT^ = (e

ll"
e
22 " X 12*2 + X

21*l >
(1V ' 28)

d
2
f 2

dX
12 2

dX
21~2 =

2*12*2 + 2*21*1 "*2 dfT +
*1 dT" (IV ' 29)

where Av = 6(v
1
* + v

2
*) and x

l2
and X.^ are defined by eqs. 111.59-63

dX
12 9v , V v

i*-
v 2* + -2"»1> AV

,

d*1

=
12

I \ ^ " ^
1 a

12
+b

12
6+ C

12
6

(IV. 30)

with

D
12

= [(I+v^Mt^-c) -*
2
(t^-c)]/(1+v) + (c

12 /* 1
)fi . (IV. 31)

dx
21—— can be obtained by exchanging subscripts in eqs. III. 59-63

and IV. 30. D^^ is not given by exchanging subscripts in eq. IV. 31

but by

D
21

=
['t'

1
(^-C)-(l+v"

1

(t>

2
)(T"^-C)]/(l +v~

1
)-(c

21
/ 1

t
l2 )6 . (IV. 32)

The final result for the spinodal condition may then be written:

1

+ ^_ _ [
2PAvv

+ Hx + ?p^2 }] = Q (IV.33)
Vl *2

r
2 Tv*

The sp inoda 1 condition represents the limit of stability for a homogene

ous system. Si nee this equation, though comp licated in appearance » is
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straightforward to solve, it is a useful tool in the analysis of

liquid-liquid phase behav ior

.

To derive the form of eq. IV. 17, we proceed analagously. Taking

the derivative with respect to $ of eq. IV. 18 and using results

obtained in the derivation of the spinodal equation leads us to write

3
d (g/kT) 1 1 dx *. 3 dv

d
\ *t 1 *2 r

2

Kl 3<t> 3 v

.
3 dv n ,

The fo 1 lowing derivatives comp le te the eva 1 ua t ion

34i ~ 2AvvP
3?

x

= PX --kf" (IV ' 35)

m 2
df_

+ m (IV.36)

3v d$ 3v 3v

3 dv & ( IV .38)

3^P*B
3v

pTP*B{l + TP*B[(v-l)
2
- 2v

2
T
-1

]} (IV. 39)

3TP*B

3<t>-

p(tp*3)
2

[±- - X, - 2?

l

d f
d<t>

(IV. 40)
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12
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1
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(IV - 41)

1
dX

12

12 = 2^ d^ (IV^ 2)

dYn D io 6 2 2
LI _ 12 v' 2iv ,v\

1 a
12

+b
12 6 + c

12
6

where
,

D
12

= -t) + (x~"2-c)]/(l + v) + (t*-c)6 . (IV. 44)

dY
21

Y
21

an(^
d<j>

Can a 8ain DG obtained by exchanging subscripts.

The mixture parameters for a binary system can now be evaluated

from eqs. IV. 33 and 34 by inserting the experimental value for the

critical temperature and composition, and solving for 6 and C

Some care must be taken in this procedure, since both upper and lower

critical solution temperatures (UCST's and LCST's) may appear in

the theoretical phase diagram. Therefore it is possible that the

calculated values of the mixing parameters could represent those

needed to produce an LCST at the specified temperature and concentra-

tion rather than the UCST which is experimentally observed. The

spinodal equation can be used to advantage here. As mentioned before,

the spinodal (i.e. the locus of points for which eq. IV. 33 equals
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zero as a function of $ and T at constant P) represents the limit

2 2
of stability. If d g/di^ > 0, the binary mixture is stable or

metastable as a single phase, while a single phase is unstable for

2 2
d g/d<t>

^
< 0. One can therefore determine the nature of the phase

diagram at constant pressure by calculating d g/d^^ . The most

efficient way to examine the phase diagram in this manner is to "map"

2 2
the function d g/d<j>^ . An example of such a map is shown in Fig. 7.

2 2
The digit "1" is printed whenever d g/d^ > 0, while "2" cor-

responds to negative values. This kind of map is useful whenever a

general view of the theoretical phase behavior is desired. The locus

2 2
of equilibrium points (the binodal) always lies in the d g/dt^ > 0

region outside the spinodal, except at the critical temperature where

the binodal and spinodal coincide.

Once the mix ing parameters , 6 and c > have been calculated , the

properties of the equilibrium phases need to be evaluated. For

both 1 i quid-vapor and liquid-liquid equi 1 ibria , the gove rn ing

equat ions are

^(T,?,^ 1
) = n

1

I1
(T,P,*

1

11
) (IV. 45)

u
2

I
(T,P,$

1

I
) = m

2

II
(T ) P,4»

1

11
) (IV. 46)

a long with the equation of state. The superscripts* and * * re f er

to the two phases. There are four independent variables in the

a- ~ I II
system, T, P, $ , and

<t> , , andonly two equations, so that two

variables must be fixed. For the case of 1 iqu id-vapor equilibrium
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Figure 7. Map of the spinodal equation for the
system eye lohexane-ani 1 ine . A value of
2 was printed when the spinoda 1 equat ion
evaluated at the appropriate temperature,
T, and mer fraction , $> , was negative.
A single phase is therefore unstable
in this region . Calculations were
carried out using the f ol lowing va lues
of the mixing parameters: 6 = -.0505
and c, = .9592.



68

3101111U 11 11 11111111 11 llH U 1 UHU 1U Ull 11 11111 11
1 11111 11 Hill 1111111111 11111111111111111111111111
liiiiiiiiiiiiiiiiiiiiiiiiiiiuiiiiiiiiiiinunn
111111111111111111111111 ££££ lllllllllllllllllllli
111111111111111111111 1 1££££££1 1 111111111111111111
lllllllllllllllllllli 1222222222 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l l

l

lllllllllllllllllllli ££££££££££ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1111111111111111111 1££2222£2222211 111111111111111
11111111111111111111 ££££££££££22£ 1111111111111111
11111111111111111 1 1 £2222222222222 11 1 1 1 1 1 1 1 1 1 1 1 1 l

l

1111111111111111111 c£££££££££c£i:££ 111111111111111
111111111111111111 £££££££££££££££££ 11111111111111
11111111111111111 1£££2222£££££££2221 1 111111111111
111111111111111 1 1£££££££££££££££££££1 1 1 1 1 1 1 1 1 1 1 1

1

1111111111111111 1£££££££££££££££££££1 1 11111111111
11111111111111 1 l££££££££££££££££££££l 1 11111111111
11111111111111 1 1£££££££££££££££££££££1 1 1 1 1 1 1 1 1 1 1

1

11111111111111 1 1 £££££££££££££££££££££ 1 1 1 1 1 1 1 1 1 1 1 1

11111111111111 1 £££££££££££££££££££££££ l 1111111111
1111111111111 1 1£££££££££££££££££££££££1 1 1 1 1 1 1 1 1 1

1

111111111111111 £££££££££££££££££££££££ 1 1 1 1 1 1 1 1 1 1 1

1111111111111 122222222222222222222222221 1 1 1 1 1 1 1 1

1

111111111111 1 1£££££££££££££££££££££££££1 1 1 1 1 1 1 1 1

1

111111111111 1 1£££££££££££££22£££££££££££1 1 1111111
11111111111111 ££££££££££££££££££££££££££1 1 1 1 1 1 1 1

1

11111111111 1 1£££££££££££££££££££££££££££1 1 1 1 1 1 1 1

1

11111111111 1 1££££££££££££££££££££££££££££1 1 1 1 1 1 1

1

111111111111 1£££££££££22222££££££££££££££1 1111111
11111111111 1£££££££££££££££££££££££££££££1 1 1 1 1 1 1

1

11111111111 1£££££££££££££££££££££££££££££1 1 1 1 1 1 1

1

1111111111 1 1££££££££££££££££££££££££££££££1 1 1 1 1 1

1

11111111111 1££££££££££££££££££££££££££££££1 1 1 1 1 1

1

1111111111 1 1 ££££££££££££££££££££££££££££££ 1 1 1 1 1 1

1

1 1 1 1 1 1 1 1 1 1 1 c! c' ii.' c c' Li c! cl c' c' cl c' c lcc'c c £ c c c d. c c c cl c c c 1 1 1 1 1 1

iHiiiiu ivazazazzattttttazazzzzazzzzzzttzzii 1 1 1

1

liiiiiiii i laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1 i 1

1

iHiiiiu i laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1 1 1

1

iiiiiiii

l

laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1 1

1

liiiiiii i laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaan 1 1

1

iiiiiiii

i

laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1 1

1

iiiiiiii i l aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa it 1 1

1

iiiiiiii i laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1

1

iiiiiiii laaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaai 1 1

1

limn i i aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1 1 1

1

2 2 0 1 U111H i aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 1 1 1

1

.1 .fl

eye lohexane



69

the temperature and liquid composition were set and the equations

were solved for the vapor pressure and composition. Numerically,

this was accomplished using a Simplex algorithm, discussed briefly

in the appendix on numerical methods. Fig. 8 shows an example of a

liquid-vapor equilibrium calculation for n-hexane and benzene.

Although the n-hexane enrichment of the vapor phase is somewhat over-

estimated at low liquid phase concentrations, the theory satisfactorily

predicts the shape of the curve as well as the existence of an azeo-

trope at high concentrations of n-hexane.

The analysis for liquid-liquid equilibria was carried out in

one of two ways. In the first case, one sets the temperature and

pressure and calculates the phase compositions. When this method is

employed with the Simplex algorithm, one finds that the compositions

converge to the same value, i.e. the trivial result of a single phase

obtains. There are two ways to deal with this problem: one is to

substitute a Newton-Raphson algorithm, and the other is to instead

fix the pressure and composition difference between phases. Both

methods have proved equally useful. Some complications which arise

when one component is only marginally represented in one of the

phases are also discussed in the numerical appendix. Fig. 9 shows

the calculated binodal for eye lohexane-ani 1 ine ( 6 = -.0152; C= .9598)

compared to experimental data. This figure illustrates a general

feature of the LF model; the predicted region of immiscib i 1 i t y in a

phase diagram is generally narrower than is experimentally observed.



liquid

Figure 8. Liquid-vapor equilibria for the n-hexane-benzene system
at 25 C. Liquid and vapor compos it ion is plotted in
terms of the mole fraction of n-hexane . Data (filled
circles) were taken from reference 64, and the theoreti-
cal line was calculated with 6 = -.0027 and 5= .9688.



Figure 9. Temperature-composition phase diagram for the cycl
hexane-ani 1 ine system. Data points were taken
from reference 65 and the theoretical binodal
line was calculated with 6= -.0152 and t = ,9598.
<t> is the mer fraction.
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One would thus expect to underestimate the interfacial tensions,

since the concentration difference between the theoretical phases is

less than the exper imental di f f ere nee

.

Once the equilibrium properties of a liquid system have been

analyzed, calculations of the surface properties can be carried out.

Results obtained for pure systems will be discussed in the next

chapter, while binary systems will be the subject of Chapter VI.



chapter v

one -component systems

A. Theory

In Chapter II, the general gradient theory of interfaces was
developed. Now we shall combine this formation with the lattice
"uid theory for the case of a pure component liquid-vapor interface
The governing equation is

subject to

2
Y * '{Aa + k< &}) } dx j .

dx (V.l)

Aa = (^)
2

dx (V,2)

where the subscripts on k have been dropped. Recall that

2tt
" 4K = ~ — / s u (s) ds

(V.3)

As mentioned previouslv pn v 9 m , uP lousiy, eq. V.2 may be rearranged to allow a change
of variables

dx = / k / 2 Aa dp

(V.4)

which leads to the more convenient expression

Y = 2 / / |ic Aa dp (v>5)
P
8

where
p§ and are the equilibrium gas and liquid densities. This

equation is preferable since the domain of integration is now bounded.

73



74

Eq. V.4 can also be formally integrated to

X~X
o = / */2Aa d P

• (V.6)

from which form the interfacial profile may be calculated. The

values of Xq and % may be arbitrarily set anywhere in the interface

From these equations, it is apparent that the following quantities

are required for a numerical evaluation of the interfacial properties

k
,
or equivalently the int ermolecu la r interaction potential, Aa

and the equilibrium gas and liquid densities. These quantities will

be obtained from the LF model.

To evaluate k , we identify o =v*
1/3

as before and us

III. 5 for u(s). Eq. V.3 then becomes

e eq

(V. 7a)
K = f* / S

4-"1

E vW 3
ds .

Upon integration, assuming m > 5:

K =
~T~ m^5

V v* (V.7b)

1 * „*5/3 m-3
J m-5

where the definition of e* given in eq. III. 6 has been used. The

value of k is thus set for a given value of m, which measures the

range of the attractive part of the potential.

In order to determine the form of Aa , we recall the definition

Aa E 3
o " a

e
= a

o
"ppG + P

e '
(V * 8)
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which we can rewrite as

Aa =pm(p , p ) - p _ PM
e

+ pe e e

[p(M,P
e ) -M

G
] .

(V.9)

The number density of mers in the LF is

1
P = Tr =

V rNv* # (V,10)

Substituting eq. V.10 and III.l into V.9 yields

Aa =
Js P { -P + V + T[(v-1) * n (1-p) + i An p] - J

e
} (v.ll)

The equilibrium vapor pressure, P
£

, an d the equilibrium densities

P
g

and p
£

are obtained from phase equilibria as described in the

previous chapter.

Due to the form of eq. V.ll, the interfacial problem can be

expressed entirely in reduced form as

Y = 2 / / icAa dp (V.12)
P
8

using the following definitions:

Y =y/y* ; y* = e*/v*
2 ' 3

(V.13)

- i>*/v* (V.14)

AS = A*v*/e*.
(v.15)

Eq. V.6 becomes in reduced fo rm
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with °

x = x/v*
1/3

.
, ,(V.17)

Once the phase equilibrium has been calculated at a given temperature,

the interfacial tension and profile can be obtained by straightforward

numerical integration of eqs . V.12 and V.16 or alternately eqs. V.5

and V.6.

B. Results

The first requirement placed on any theory is that the predicted

trends as a function of the input variables should be in agreement

with experimental observation. In order to evaluate the qualitative

predictions, the potential exponent m will be set equal to 6, the

traditional value associated with pure dispersion forces. « is thus

equal to |. There are two variables in which we are primarily

interested: the temperature and the molecular weight. A plot of the

reduced interfacial tension vs. the reduced temperature at various

values of the LF parameter r (r is roughly proportional to molecular

weight) is given in Fig. 10. In the LF model, the reduced critical

temperature, f
^ , is given by

f
c

= 1x1(1 * /F)
2

(V.18)

i.e. it is a function of r. As can be seen in Fig. 10, at a given

value of r, the reduced interfacial tension decreases and goes to

zero at a reduced temperature which is equal to ? . The figure also



Figure 10. Reduced interfacial tension, y , versus reduced
temperature, T, at several values of the molecular
size parame te r , r

.
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demonstrates that for a homologous series of liquids, the tension

increases as a function of molecular weight at a given temperature.

The surface entropy (-dr/dT) can be seen to decrease with increasing

molecular weight.

Fig. 10 provides in addit ion a check on the accuracy of the

numerical integration procedure. In the limit of T going to zero,

eq. V.12 reduces to

iim y = '
/ * P-P dp

SUo ^2 o
T+° (V.19)

= —L * .5554 .

4/2

Note that the calculated curves in Fig. 10 converge to this value as T

goes to zero.

Figure 11 illustrates the behavior of the reduced density profiles

for three values or r at three reduced temperatures. As expected , the

profiles for a given r flatten as the temperature increases, becoming

straight lines at T
c

(not shown). In addition, steeper profiles

are obtained at a given t as a function of increasing r. The density

profiles for r = 5 and r = 10 appear to exhibit an approximate common

point of intersection at a density corresponding to the reduced critical

density. Bongiorno and Davis ° and other workers
66 ' 67 have observed

the occurrence of such intersections for their theories, but they

located the x-origins of their density profiles so as to correspond

to the Gibbs dividing surface. The x-origin in Fig. 11 is arbitrarily

located at a density of (p„+p )/2. The observation of an approximate
fi, g



79

m
4J

c 0)—

1

*H
OjO 4-1

•H
<U

u o c
3 QJ
4-1 (A X3
03 4-J

1-1 •H t/5

0) 03

i/) 00
e OJ

0) X)
i-l C

to

XJ f X
CD X)
<J •* H

<u 3
X) o a*
0) c •H
l~i 03 1—

1

4-1

CD in X)
x: a>

u X) o
3

XJ X)
o o> <u

o M
(/) 3
0> X)
3 QJ

.—

i

U u
03

> Q) U-J

O

03 <u

U 00
<D 03

> U h

(/) >
U

4J 0)

n3 4J

0)

(/) E 4J

<U 03
i—

i

M 4J

•H <TJ 03

U-l a,
O X3
l-l <D O
Qu M
—

i

03

>> (0 U
U o
•-* u .—

1

(A 03

c r-i ?N
0) 3 i

—

i

X) U —i

<D u
X) rH 03

d) O M
o e 4J

p —

1

XI x> x>
<D C M
PS oj



80

common point of intersection must thus be considered coincidental;

it may arise from the fact that the density, P(p
o

> p >p ) where
g

nge

8

M crosses u
G

(see Fig. 1) shifts only very slightly over the ra

of temperature.

The present theory thus predicts the qualitative relationship

between y , T, and r satisfactorily. The decrease in tension and

concomitant flattening of the density profile as the temperature

rises are, of course, due to the increasing similarity of the phases

as the critical point is approached. The relationship between y and

the distance from the critical temperature, T -T , is often expressed

as

where p is a critical exponent. A plot of Hn v vs. £n (T -T)
c

is shown in Fig. 12. The slope of this line yields p = 1.5, which is

identical to the value predicted by the van der Waals model. The

experimental value of p is approximately 1.2.
8

The fact that the

present theory does not yield the correct result for a critical

exponent is not surprising. Although the gradient approximation should

be best near the critical point, this is precisely the region in

which a mean field theory like the LF theory should fail. In the mean

field, molecular correlations are neglected, and such correlations

become very important in critical phenomena. As a result the LF

model generally overestimates the critical temperature. Other evidence

of the unsatisfactory nature of the model in the critical region has



In?

In(f
c -f )

ure 12. Dependence of the reduced interracial tension,on reduced temperature, T, near the critical
temperature, T The slope of this line is 1.5
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been discussed elsewhere.
36

For this reason, we shall concentrate

on the region away from the critical point, where the LF model gives

good predictions for fluid behavior.

If one uses the a priori value of J = .5, the calculation of

the tension and profile contains no adjustable parameters. The pure

component LF parameters are determined solely by bulk properties.

The result of such a calculation for hexane is shown in Fig. 13.

Although the tension vs. temperature curve is qualitatively correct,

the value of the tension is underestimated by about 10% across the

temperature range. The same type of result is obtained for other

(nonpolar or slightly polar) low molecular weight liquids. The ability

of the present theory to predict tensions of polyatomic fluids within

10% of the experimental values without the use of adjustable parameters

is satisfying. As mentioned previously, more rigorous theories are

limited in their description to simpler fluids.

Since a 10% error was obtained with remarkable consistency for

a number of low molecular weight liquids, the possibility of reducing

the error by using a < obtained from a fit of the data was investi-

gated. Such pure component k * s would form a superior basis for the

subsequent mixture calculations. In Fig. 14, the £ required to

exactly reproduce the experimental tension at a given temperature is

plotted vs. the temperature reduced by the experimental critical

temperature for n-alkanes ranging from n-pentane to n-heptadecane

.

The data used in these calculations were taken from a compilation by

69
Timmermans. The values of k fall into a narrow range over a wide
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Figure 14. Values of k required to
fit the experimental tension
for n-alkanes versus tempera-
ture reduced by the experimental
critical temperature. Data
points are from reference 69,
and the line represents the
average value of ic.
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range of temperature (.4 < T/T. < .7). Obviously, the points do

not appear to lie about a horizontal line but rather about a line with

a slight positive slope. The average value of k is 0.61 ± .03,

indicated by the line in Fig. 14. This constant average value, rather

than the temperature dependent k obtained from a least-squares

fit was selected for use, for two reasons. First, the T/T. dependence

of
< can be seen to be quite small, so that introducing this depen-

dence into the theory would increase the complexity without yielding

important benefits. Second, while the average value of .61 for k was

also obtained using other sets of data,
70

and was furthermore relatively

insensitive to the number of data points used, the least-squares

parameters varied widely. (The slope of the line varied from .01
—8

to 2 x 10 .) The use of an average value for k thus seemed

indicated. Between T/T
c

of 0.7 and 1.0, the fitted values of ic begin

to deviate more and more from this average value, which is due to

the unsatisfactory nature of the LF near the critical point. Within

the wide and useful temperature range of .4< T/T < .7, tensions

for the n-alkanes can be fitted with an error of about 37. using k = .61

(T/T
c

= .4 is near the freezing point for most alkanes).

Fig. 15 illustrates the excellent agreement between calculated and

experimental tensions for n-hexane and n-decane obtained with ic = .61.

For n-hexane, T/T
c

= .7 occurs at approximately 90°C. Note that the

agreement does not drastically break down at this temperature, but

the calculated curve gradually loses accuracy above this temperature.

The tensions obtained with the fitted value of S represent a marked
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improvement over those resulting with the ab initio value of k= .5.

Recall that the value of .5 corresponds to m = 6 for the exponent

of the attractive part of the interaction potential. If * = .61,

m = 5 ' 75
*

(cf
"

e " S -
V - 7 and V ' 14 )- The value of m = 6 implies that

the interaction is purely due to dispersive forces. Reducing the

value of m below 6 extends the tail of the potential (i.e. the range

of the forces is larger than that of purely dispersive forces). The

fact that a value of m = 5.75 gives a satisfactory fit to the tension

data appears to suggest that the interaction between these nonpolar

molecules is longer-range than would be expected for pure dispersion.

When branched alkanes and other nonpolar and slightly polar

molecules are included in the calculation of an average fitted value

of k
,

the result i: is Jf = .62 + .05. In other words, the tension

of nonpolar and slightly polar molecules can be described by the

present theory to within about 5% using a single value of k .

Since k scales both the surface tension and the surface entropy,

this result lends further support to the basic validity of the gradient

free energy approach. Fig. 16 shows two examples of the results

obtained for nonhydrocarbon liquids with < = .62. Table 5 contains

a compilation of the maximum and average errors in the range of

.4 < T/T
c
< .7 for all low molecular liquids included in the deter-

mination of k= .62. The values of the reduction parameter for the

tension are also included. Errors were calculated using data from

reference 70; the values given in parentheses were obtained from

69
a 1 ternace sets of da ta .
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Table 5

ERRORS BETWEEN CALCULATED AND EXPERIMENTAL TENSIONS
WEIGHT LIQUIDS

me thane

ethane

propane

n-butane

n-pent ane

n-hexane

n-heptane

n-oc tane

n-nonane

n-decane

n-undecane

n-dodecane

n-tr idecane

n-tetradecane

n-heptadecane

cyclohexane

isobutane

isopentane

benzene

to luene

o-xy lene

p-xy lene

m-xy lene

C 1-benzene

CGI,
4

diethyl ether

maximum
% erro r

-2,9

4.7

3.8

3.9

-2.5 (-2.4)

.7 (1.3)

-2.2 (1.3)

3.4 (3.8)

1.7 (2.2)

1.9 (2.2)

2.0 (2.4)

2.1 (2.6)

1.7 (2.2)

1.3 (1.7)

.5 (-1.0)

-6.4

1.2

-5.6

-4.0

3.3

3.9

4.5

4.1

-3.0

-4.6

-1.9

FOR LOW MOLECULAR

average

% error

-2.1

4.4

3.0

2.4

-1.4 (-1.8)

.1 (.2)

-1.4 (.1)

1.1 (1.1)

.5 (1.1)

.9 (1.3)

.9 (1.6)

1.1 (1.8)

.7 (1.4)

.6 (1.2)

.2 (-.8)

-4.9

.1

-3.9

-2.2

.05

2.7

3.5

3.2

-.4

-3.5

-.6

calculated values using £ 62
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The quality of the theoretical predictions for polar molecules

(such as alcohols) was also examined. For a not-too-polar molecule

(aniline), the maximum error in the selected temperature range was

around 10% with k = .62. However, the calculated surface entropy

and thus the slope of the tension curve was seriously in error (by

about 33%) . For alcohols , acids, and water the errors become even

more serious. In order to fit the data for such compounds a temperature

dependent expression for ic would need to be used; such an expression

would be unique to a particular liquid. This result is not surprising,

since polar liquids are characterized by strong molecular correlations.

A mean fie Id theory is thus by de f ini t ion outside the rang e of its

validity when applied to such sy stems

.

Since the theory gives good results for tensions of nonpolar

and slightly polar systems , an examina t i on of the p red ic t ions for such

molecules related to the interfacial th ickness is instructive. Various

operational definitions of the interfacial thickness, t, can be made.

For the present case of low molecular weight liquids, we have used

the de finit ion that the thickness is the distance between the two

points at which the fluid density value reaches 99% of the density of

one of the equilibrium phases. The reducing pa rameter for the t h ickness

1/3
is , of course , v* . Fig . 17 shows the re lat ionship between the

reduced tens ion and thi ckness as we 11 as the effect of a change in k

for n-hep tane . The t emperature range correspond ing to the range of y

for this figure is .54 < T/T <.95. The change observed upon increasing

the value of ic is as expected—an interface of the same thickness will
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Figure 17. Reduced tension, y, versus reduced
interfacial thickness , t , for
n-hep tane at two values of k . The
broken line represents the curve
calculated with k= .5, while the
solid line corresponds to k = .62

.

The reduced tempera ture range for
wh ich the curves are shown i

s

.5 < T/f < .95. T is the
c c

reduced theoretical critical
temperature

.
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result in a higher tension if k is larger. The actual thicknesses

predicted for n-heptane are reasonable (at 20°C , t is 1.46 nm at k=.5

and 1.63 nm at k = .62). The change in s lope of the c urves in

Fig. 17 also illustrates that as the thickness gets larger, the

accompanying decrease in the surface te ns ion ge ts sma 1 ler . This

point is shown more clearly in Fig. 18, where y and t have been

plotted vs. TVT*
c

is the reduced theoretical critical temperature) .

Clearly, y mus t go to zero while t become s infinite at the critical

temperature . The exac t dependence of t on ^V^
c

i- s a function of

the size pa rame ter r, just as is the case for the reduced te ns ion

.

In Fig. 19, the reduced thickness has been plotted vs. r for a

number of molecules at the same va lue of T/T = .72. The thickness
c

can be seen to dec re a se with incre as ing r . An ana lagous plot fo r y

would show an increase with r as mentioned earlier.

The molecular weight dependence of the interfacial tensions of

n-alkanes has considerable prac t ica 1 s i gni f ic ance , and has received

, , , * 15,16,71,72 bI .

,a good deal of attention. Since exper lmenta 1 measurement

s

of polymer tensions are difficult, extrapolation of n-alkane data

was hoped to provide a check on val ues fo r 1 inear po lye thy lene . Two

alternate empirical equat ions have been proposed to describe the

mo lecular weight -ten si on re lat ionship of homologous series and , as an

extens ion , of po lyme rs • Wu " propos ed the us e of

Y = v -— (V.20)
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Figure 18. Reduced interracial tension, y , and
thickness, t, as a function of T/T for
n-heptane with <= .62. T is the°
theoretical reduced critical temperature
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where is the interfacial tension at infinite molecular weight,

M
n

is the number average molecular weight and K is a positive
s

constant. LeGrand and Gaines have used
71

Y ~ Y
co ~ 2/3 (V.21)

M
n

where is an empirical constant.

Equations V.20 and V.21 were fitted by linear regression to the

theoretical tension values of the n-alkanes from pentane to heptadecane

obtained from the present theory. At 20°C the standard deviation

between eq. V.20 and our calculated tensions is .12 mN/m, while the

fit of eq. V.21 to the calculated tensions yields a deviation of

.11 mN/m. Similar deviations are obtained at 120°C. Thus, the two

equations are indistinguishable in describing the molecular weight

dependence of the interfacial tension values obtained from the present

theory. Fig. 20 compares the experimental data for n-alkanes to

eq. V.21, where
Yoo and K

g
have been obtained from the fit of this

equation to our calculated values. The agreement is good at both

20 and 120°C

The inherent molecular weight dependence of the interfacial

tension, evident in Fig. 10, is directly related to the density. As

r increases the liquid density increases, *P
0
/*r)~ >0, and the gas

it T

density decreases, 3p
g
/8r)^ < 0. An increase in the bulk density

difference results in an increase in Aa which leads to a steeper

density gradient. Thus the interfacial tension increases and the

thickness decreases. The experimentally observed molecular weight
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Figure 20. Molecular weight dependence of the
interfacial tension for n-a lkanes .

Experimental points for n-pentane-
n-eicosane were taken from references
70 and 72. The lines were obta ined
by performing a least-squares fit of
Eq. V.21 to the theoretical tension
va 1 ue s for n-pent ane-n-hep tadec ane •
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dependence is further cotnp licated by the fact that for a homologous

series such as the n-alkanes, e* and v* also increase with r. At

constant temperature, T, the value of T thus decreases, as does the

value of y " • A plot of y vs. r at constant T would therefore only

qualitatively reflect the molecular weight dependence of a series

such as the n-alkanes. Fig. 21 shows the effect of the increasing

value of Y'c for the n-alkane series from pentane to tetradecane.

The values of y and y have been normalized to the n-octane values,

and were calculated at a constant value of T = .58. Fig. 22 compares

the values of y (again normalized by the n-octane values) at constant

T = .58 to those obtained at T = 20°C. For n-octane, 20°C corresponds

to T = .58. Clearly, the increase in Y* and tne decrease in T

both work to increase the experimentally observed molecular weight

dependence, with the increase in e* contributing the larger portion

of this effect. This observation again emphasizes the importance of

intermolecular interactions to interfacial phenomena.

As Fig. 10 illustrates, the present theory predicts that as r

increases, y rapidly approaches a limiting value, y^ , which implies

a corresponding states principle for polymer melts. In Fig. 23,

v is plotted as a function of T and compared with experimental data

for six polymers. A value of K = .55 yields a good fit to the data.

72 73
All of the data were taken between 413 K and 453 K; ' absolute

values of y range from a high of 32.1 mN/m for polystyrene to a low

of 12.1 mN/m for poly (dimethyl siloxane). Interfacial tension
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Figure 22. Effect of e* on the calculated tension
for n-alkanes. The calculated reduced
tensions of n-alkanes from n-pentane
to n-tetradecane (normalized by the
n-octane value) at T = .58 are given by
the solid line. The points represent
reduced tensions, also normalized, at a
constant temperature T = 20°C.
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Igure 23. Reduced inter facial tension versus
reduced temperature for polymers. The
theoretical line was calculated using
r = oo and tc = .55 and experimental values
were taken from references 73 and 74.
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measurements of polymer melts are difficult, due to the high viscosi-

ties of polymers and their tendency to degrade at elevated temperatures.

Experimental uncertainties lie in the range of 2-5%. The maximum

error between experiment and theory in Fig. 23 (using If = .55) j. s

about 10%.

Figs. 24 and 25 compare the calculated tension vs. temperature

curves to the experimental data for branched polyethylene, polyvinyl

acetate), polystyrene, and linear polyethylene. For polymers, the

data is usually given in the literature in the form of the linear

equation obtained from a least squares fit. Points in Figs. 24 and

25 were calculated from such equations, and thus do not necessarily

represent the exact measured value.

As was the case for low molecular weight systems, the polar

polymers which were examined (poly(methyl methacrylate), poly(n-butyl

methacrylate)
, poly (ethylene oxide)) did not correlate well with the

theory. Poly(vinyl acetate), which is included in Figs. 24 and 25,

forms an exception to this observation. This polymer also exhibits

rheological properties which are more like those of a nonpolar than

74
polar polymer, although the origin of this anomaly is not understood.

Experimentally, the surface entropy, -dy/dT, of a polymer melt

is smaller than for a similar low molecular weight liquid. This

effect is qualitatively apparent in Fig. 10. The reason behind this

phenomenon can again be understood in terms of density. A polymeric

liquid has a smaller thermal expansion coefficient, a , than a

similar low molecular weight liquid; that is, 3a/3r)-<0. Thus the
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Figure 24. Interfacial tension versus temperature for branched
polyethylene and poly(vinyl acetate). Theoret ical

lines were calculated us ing k= .55 and the

expe r imen ta 1 values were taken f rom correlations
given in reference 74.
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Figure 25. Interracial tension versus temperature for poly-

styrene and linear polyethylene. Theoretical lines

were calculated with < = .55 and experimental

values were taken from correlations given in

reference 74

.
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interfacial density gradient and tension change more slowly with

temperature for a polymer liquid. There is another reason why the

surface entropy should be smaller for a polymer liquid than for a

low molecular weight liquid. The presence of an interface restricts

the number of conformations available to a polymer molecule which

should lower the surface entropy.
75

Since we have explicitly assumed

the entropy in the inhomogeneous region to be independent of the

density gradient, we have neglected this effect. As a result, the

theory should overestimate -d Y /dT for polymers. Tables 6 and 7

show the experimental and calculated values of -d Y /dT for n-alkanes

and polymers, respectively. Notice the greater error for polymers

which points to the significance of the conformational entropy effect.

Since k scales both the tension and the surface entropy as pointed

out previously, the lower value of ic required to fit the polymer

data in the experimentally accessible range might be explained as

arising from the neglect of the conformational entropy. Use of

k = .62 to calculate polymer surface entropies results in an increase

in the % difference between the calculated and experimental values

of about 10%.

In order to evaluate the usefulness of the present theory for

polymers further, comparison with previous methods of tension-tempera-

ture predictions is useful. Three methods, all more or less empirical,

have been widely used. The oldest of these methods is based on the

parachor concept first proposed for small molecules by Sugden.
7 ^ The

parachor concept arose from the fact that the exponent, p, in McLeod's^
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Table 6

SURFACE ENTROPY OF n-ALKANES

no. of C

5

6

7

8

9

10

11

12

13

14

17

calc. s. entropy

mN/m-K

.1140

.1084

.1070

.1045

.1020

.0997

.0978

.0962

.0947

.0930

.0886

exp . s . entropy

mN/m-K

.110

.103

.104

.096

.094

.0919

.0894

.0878

.0878

.0863

.0838

% difference

3.6

5.2

2.9

8.9

8.5

8.5

9.4

9.6

8.7

7.8

5.7

using < = .61



112

Table 7

SURFACE ENTROPY OF POLYMERS

compound

-PE

b-PE

PIB

PS

PVA

PMMA

PnBMA

PEO

PDMS

ca lc . s . entropy

mN/m-K

0.0820

0.0729

0.0725

0.0722

0.0920

0.0914

0.0826

0.0975

0.0609

exp . s . entropy

mN/m-K

0.057

0.067

0.066

0.072

0.066

0.076

0.059

0.076

0.048

% difference

44%

9%

9%

0%

39%

20%

40%

28%

27%

k = .55
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equation

Y = Y
o
(p .-p

g

)P
(V.21)

is found to be close to 4 for many unassociated low molecular weight
,. 77,78

qU
Y o

iS a c°nstant for a given liquid. Sugden used

this equation to obtain

P = * -
P, "P

g
CV.22)

where M is the molecular weight, and P is a constant for the liquid

which Sugden called the parachor. When this equation is applied to

polymers, P and M refer to the repeat unit. An extensive tabulation

of atomic parachors has been compiled by Quayle
79

and can be used

to calculate P. The accuracy of this method is limited by the fact

that the McLeod's exponent for polymers often differs significantly

from 4. In this connection, Wu
8° has suggested that smaller values

of p reflect the conformational restrictions on the polymer imposed

by the interface. Table 8 compares the % error in the surface entropy

predicted by the present theory to the McLeod's exponents for some

polymers. The correlation between the two quantities is striking,

although the result for polystyrene is puzzling.

Another method for predicting polymer interfacial tensions is

based on the empirical relation between tension and solubility

parameters, 6
g

, observed by Hildebrand and Scott
83

for low molecular

weight liquids. This relationship is



Table 8

COMPARISON OF SURFACE ENTROPY ERROR TO MacLEOD f S

EXPONENT

polymer

H-PE

PVA

PDMS

PIB

PS

% error in

surface entropy

44

39

27

9

0

MacLeod 1

s

exponent

3.2

3.4

3-6

4.1

4.5

reference

80

80

81

80

82
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0.039 6
2 - 30

v
1/3

, (V.23)

where V is the molar volume of the molecule which is by assumption

spherical. The difficulty in applying this relation to polymers

arises in the choice of unit to which V refers. One approach, sug-

gested by Siow and Patterson,
1

is to substitute RT*/P* for V,

where T* and P* are the temperature and pressure reduction parameters
P P

1

8

of Prigogine's corresponding states theory. This leads to

v = (0.095 P*
2/3

T*
1/3

)/V
2,1

,
(V.24)

P P

where V is the reduced volume.

Prigogine's corresponding states theory is also the basis of a

third predictive method, due to Patterson and Rastogi.
17

These

authors found the following empirical relation:

y . u
1 ' 3 P*

2/3
T*

1/3
5 (V-25)

' P P

where k is the Boltzmann constant. The calculation makes use of the

Flory equation of state
84

and the isobaric thermal expansion coefficient,

a , to calculate V:

aT = (l-V-
l/3

)(^ V-
1/3

-1) •
(V-26)

The reduced tension can then be obtained from

-1/3

YV
5/3

= 0.29 - (1-V-
1/3

)
t„ (V2^ > *

(V - 2?)

V 1 -1
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T* and P* result from
P P

T* = TV"
1

(1-V"
1/3

) (V.28)
P

p* = (a/3) TV
2 (V.29)

P

where B is the isothermal compressibility

.

Figs. 26-29 show a comparison of the results of eq. V.22, V.24,

and V.25 to the experimental data and the theoretical predictions of

the present theory for four different polymers. The LF-gradient

theory can be seen to be generally superior to all three of the

emp irical correlations.

In summary, we have found that the LF-gradient theory yields a

unified description of the interfacial tension of nonpolar and slightly

polar pure liquids of arbitrary molecular weight. Although the theory

is not applicable near the critical point, good results are obtained

outside this region. Without any adjustable paramet er s , ca 1 cu la ted

tensions are usually 10-15% lower than experimental ones. By setting k

equal to .62 for low molecular weight liquids and .55 for polymers,

much better agreement is obtained. In addition, the theory correctly

predicts the molecular weight dependence of the tension for n-alkanes.
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Figure 26. Comparison of the theory to empirical predictions
for poly(dimethyl siloxane). The solid line
represents the present theory with ic= .55, the
dotted line corresponds to the parachor, the
dashed line to the corresponding states theory,
and the dot -dash line to solubility parameter
predictions. Data for the empirical predictions
was taken from reference 16, and experimental
values are from reference 74.
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1 20 160 200

T,*C

Figure 27. Comparison of the theory to empirical predictions

for po lys tyrene . Line s and exper imen ta 1 po int s

have the same significance and were taken from

the same sources as for Fig- 26.
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28. Comparison of the theory to empirical predictions

for linear polyethylene. Lines and experimental

points have the same significance and were taken

from the same sources as for Fig. 26.
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CHAPTER VI

TWO-COMPONENT SYSTEMS

A- Theory

For a binary mixture, the governing equat ions for the interface

may be written:

2 2

Y = / {Aa + i2Kn pJ + K 12 P
1
P 2

+ ^ K
22 p 2 } dx (VI. 1)

— OD

subject to

(VI.2)

MfL n ii _ n—
^

- K 12Pl ~K
22 P

2

whe re the fo 1 lowing not at ion ha s been int roduc ed

k. . e 4 J (VI.3)

p! e dp./dx ; P V e d
2
p ./dx

2
. (VI. 4)

We have aga in used

u. ,<s>

s < 0

e
J
(o. ./s) s > 0; .

so that (from eq. 11.13):

. . = k - 8-i
-

ij 3 ij ijf e* o
5

. (m-3)/(m-5) . (VI. 6)
'
j 3 ij ij

122
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Note that k ^ and *22 are exact ly equal to the pure component <
1 s

of components one and two, respectively, and can thus be

expressed as

5/3 1

ku = 2 E*
1
v
1
*J/J K

t
5 k

1
= |(m-3)/(m-5) . (VI. 7)

The cross-term, K 12 > Can ^ e eva * ua tec* us ing the comb ining rules

k
12

= 2?(e*ie
*
2
)^ [%(v* + v*)(6+l)] < 12

(VI. 8)

where <
2

i s assumed to obey the geometric mean:

ku = (k
x
k
2
)^ • (VI. 9)

Al terna te ly , K \2 can ^e treate<^ as an adjus tab le pa rame ter . A

useful simplification in the Euler equations can be achieved when

k
^
2 is assumed to be given by

"12 ~ VK ir22= (K t1 K,J^ - (VI. 10)

Eq. VI. 2 then reduces to the algebraic form

4 P - <?i F = 0 (VI. 11)
22 11 9p

2

Both methods of evaluating <^ nave been employed, with special

emphas is on the latter , due to the cons iderable simplif icat ion

afforded by eq . VI. 11. For convenience in the discussion which fol-

lows , we define a parameter

c s k
12

/(k u <
22

)'5 (VI. 12)



124

which expresses the deviation of tc

2
from the geometric mean

approximation.

c _
i represents the upper limit of permissible values for

This can be seen by examining the form of eq. 11.29 for a binary

mixture

Aa = '

5 k 11
p-

2
+ K^p'p- + %k

22
p'

2
(VI. 13)

which leads to
CO

y = 2 / Aa dx . (VI. 14)

—CO

Clearly, if Y is to be positive, Aa must be positive, so that the

quadratic form on the right hand side of eq . VI. 12 must be positive

definite. Since the x-der ivat ive s of and P
2

can be either posi-

^,

tive or negative, < (<n K
2 2

)2
° r ec

l
uivalentl y c 1 1 is a

86

necessary condition if the quadratic is to be positive definite.

The numerical evaluation of the interfacial tension can be more

12

easily handled by transforming the equations from x-space to P-space.

Such a transformation changes the limits of the integral in eq. VI .

1

from infinite to finite. Eq. VI. 13 can be rewritten as

p.; = * [
*

2 f (VI - 15)

K
ll

+ 2 K
l2

dp
2
/dp

l
+

»

c
22

(dp
2
/dp

l
)

Using this result to effect a change of variables in eq. VI. 14 yields

II
p
l 2 * \

y = /2 I [< n + 2 K dp /dp +<
22

(dp
2
/d Pl ) ] Aa dPl

I (VI. 16)
p
l
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where 1 and 11 refer to the two equilibrium phases. Eq. VI. 15 can

also be formally integrated to yield the interfacial tension profile

p.(x)

2
k

\
K

1

1

+2k
i2

dp
2
/dp

1
+<

2 2
(dp

2
/dp

l
)

1
ia 2

dp
l

*

p.(x )K
1 o

(VI. 17)

When the geometric mean approximation is used for K j2' eci * VI«H

is the minimizat ion condi t ion for eq. VI. 16. If K 12 *~ s not e 9 ua ^

to the geometric mean, eq. VI. 2 must be used which reduces in p -space

to

2
< ^

2

dp
2 1

+ K 22^ dp 2^ dp l^ ]t 9Aa / 9 P2 ^ K
ll

+ K
i2

dp 2^ dp l^
"

|~ (kt
12

+ K
2 2

dp 2^ dp l^ ~ d2 p2^ dp
l

2

^ 2Aa ^ KH K 22~K 12^ 3
= 0

•

(VI. 18)

Although the equations lose their symmetry and look much more complicated

in p -space, a great deal of computationa 1 simplicity is gained from

this transformation

.

Another simplification which applies only in the case where k
^

i s assumed to fo 1 low the geome trie me an ha s been emp loy ed in some cases

.

If one defines a variable

$ = K*
1
P
1

+ <\ 2
P
2

(VI. 19)

the interfacial tension relationship may be written

all 1

Y = JT J Aa 2 d* (VI. 20)

i
1
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and solved subject to eq. VI . 1 1 . Care must be exercised in the use of

this transformation , s ince integrat ing over * from (i.e. 4>

I I v .11.,-evaluated at p^ and p ) to * implies the assumption that

$ <$ <$^*. While this is usually true for well behaved low molecular

we ight mixtures , there is no guarantee that a smooth pro file will

result when this as sump t ion is used . The pro f i le s must thus alway

s

be monitored simultaneously as a check on such a calculation. A

detailed discussion of the numerical techniques employed to solve the

interfacial problem for a binary mixture in the various approximations

will be found in the numerical appendix.

For the LF theory , the number density of mers, P
^

, was identified

as

p = (fr.p /v* . (VI, 21)

Using this definition along with

Aa = a - p,(x) p.
6

- P 0 (x)u_
G

- P (VI. 22)
o 1 1 11 e

we obtain for the general comb in ing rules

:

Aa = c*p/v*{-p + T[(v-1) fcn(l-p) + - P +

*21 ) c e— In <J>. + — Jin 4>,]> - P* 1 y 1
/v* - P<t>,,M~ /v*- P .

(VI. 23)

The M.
C

must be given in units of energy/mer. In addition, —

—

ii..:. and

, appear in the minimization conditions and must be evaluated
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In Chapter II, we pointed out:

3Aa e

3p.
= V p) "

»i
• (VI. 24)

u.fp) is the chemical potential per mer of a hypothetical homogene-

ous (equilibrium) fluid of the local density and concentration. The

symbol p is here used to signify p^ ^ ...
Pn . This quantity

can be evaluated in two ways. The chemical potential expression can

be derived directly from the local Helmholtz free energy density via

3a

)
_

=
^i (p) (VI. 25)

P
j

which is the n eva luated at the local mer densities. Mo re c onven ien 1 1

y

the pressure necessary to produce an equilibrium system of the local

mer densities can be evaluated from the equation of state, and then

substituted into the chemical potential obtained from the Gibbs free

energy. The expressions which result from the two procedures are,

of course, equivalent. ^j/p^ ^or a binary mixture can be written:

M^p) = kT [ ~- in $
x

+ (J- - ^-)<(.
2

+ (v-1) in(l-p) + j- m p]

(VI. 26)

+ ^ {-p- T[v in (1-p) + 1 - ±]> (v
x
* + ^

2
av) - p(e*

1
-*

2

2
X
12

).

o
M
2

can again be obtained by exchanging subscripts.

Eqs. VI. 1 and VI. 2 can thus be solved by several methods of

varying complexity. For liquid-vapor systems, results obtained
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with c = 1 were found to differ little from those calculated with

c < 1 ,
where c was evaluated using eq. VI. 8 for K. . For liquid-

liquid systems, on the other hand, the results are very sensitive to

the value of c.

B. Results for Liquid-Vapor Systems

As an initial assessment of the interfacial theory for binary

liquid-vapor interfaces, calculations were performed using the

geometric mean approximation for ic^ (c=l), and setting < for the

pure components equal to .62. The bulk mixing parameters were set

to the values given in Table 4. Figs. 30-33 compare the results of

such calculations to experimental data for the systems benzene-n-hexane

,

cyclohexane-n-hexane, benzene-cyc lohexane , and benzene-n-dodecane.

The maximum error in the predicted tension is about 5% for benzene-n-

hexane and benzene-cyc lohexane and is less for the other two systems.

A part of the error observed for these mixtures is due to the

errors in the interfacial tension predicted for the pure components

with k = .62. In order to separate out the error resulting from

the mixture theory, the calculations were repeated using pure component

k's ' which were fitted to the data. Fig. 34 illustrates the type of

agreement obtained for benzene-cyc lohexane under these conditions. The

values of k required were: ic. = .64 and k = .67.benzene cyclohexane

The maximum error is reduced to 2% for this system. The decrease in

the maximum error for benzene-n-hexane (ic = .64, < = .62)
benzene hexane

was from 5% to 4.2%, and for cyclohexane-n-hexane (k , = .67,
cyclohexane

K
n-hexane

= from 4% to 2%. For the benzene-n-dodecane system
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mN/ m

n -h exane

Figure 30. Interfacial tension versus mole fraction for benzene-
n-hexane at 2 5°C . Exper imenta 1 values were taken from

reference 87 . The theoretical line was calculated with

the following parameters: 6= -.0027, C= .9688,

11
- <

22
= .62, and c 1
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T

*c ycl ohexane

Figure 31. Interfacial tension versus mole fraction for cyclo-
hexane-n-hexane at 20°C. Experimental values were

taken from reference 88. The theoretical line was

calculated with the following parameters: 6 = -.0041,

e; = .9917, k. . - k
0
_ = .62, and c = 1.
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0 -S 1.0

* benzene

Figure 32. Interfacial tension versus mole fraction for benzene-
cyclohexane at 20°C. Experimental data were taken
from reference 87 . The theoretical 1 ine was calcu-
lated with the fol lowing pa ramet ers : 6 = - .0004

,

C = .9635, k = k . = .62, and c = 1.
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33. Interfacial tension versus mole fraction for benzene-

n-dodecane at 40°C . Experimental data were taken

from reference 88- The theoretical line was

calculated with the following parameters:

ft = -.0070, c = .9521, ic = <
9?

= .62, and c = 1.
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Figure 34. Interfacial tension versus mole fraction for benzene

cyclohexane at 20°C with fitted end-points.

Experimental data were taken from reference 87.

The theoretical line was calculated with the

following parameters: 6 = -.0004, t = .9635,

k = .64, k . . = .67 , and c = 1

benzene eye lohexane
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(ic, = -64, ic j j = -59) the error remained about 1.5%.benzene n-dodecane

Fitting the pure component k's introduces two adjustable parame te rs

into a calculation which is capable of yielding predicti ons wi thin 5%

without ad jus table parameters . If the theory we re to be used to

obtain a prediction of the interfacial tension's composition depen-

dence for a nonpolar mixture, setting the k's equal to .62 should be

adequate and simpler.

Un for tuna te ly , the four mixtures di scus sed are the only ones

for which both mixing data and reliable interfacial tension data

could be located. We therefore invest iga ted the effect of setting £

equal to its geometric mean value of 1 and 6 equal either to the

arithmetic mean value of 0 or the va lue appropriate to the geome trie

mean. (If v
12

= /v *v * , then 6 = [2(V^v^^-v *~v *]/( v^+v.*) .

)

The results of such calculations for benzene and cyclohexane are shown

in Tab le 9 . The same t rends are observed for the othe r three sys tems

.

For these nonpolar systems, the use of <$ = 0.0 and 5 = 1.0 results in

reasonable predicti ons, although somewhat less accurate than those

obtained with fitted values of 6 and £ .

Before extending the interfacial calculations to additional

systems and analyzing our results in more detail, the effect of c< 1

needs to be examined. Table 10 compares the values of ODtainec^

from eq. VI. 8 to the geometric mean values and also lists the c

parameters appropriate to each of the four systems we have discussed.

Calculations using c = .98 for benzene-n-hexane and c = .97 for
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Table 9

INTERFACIAL TENSION OF BENZENE-CYCLOHEXANE AT 20°C FOR DIFFERENT

VALUES OF THE MIXING PARAMETERS

benzene exp
mN/m
(ref . 87) 9635

0004

calc
mN / m

C = 1.0

6 = 0.0
c = 1.0
6 = -.0001

1282

2174

4874

6470

7814

9033

25.00

25.14

25.84

26.54

27.20

27.88

24.87

24.96

25.45

25.96

26.64

27.64

25.21

25.49

26.44

27 .08

27.70

28.33

25.22

25.50

26.46

27.11

27.72

28.34

benzene
64

eye lohexane
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Table 10

COMPARISON OF THE GEOMETRIC MEAN APPROXIMATION TO EQ. VI. 8.

For c< 1, k was evaluated using the mixing parameters from

Table 4. Pure component k's were fitted to the data-

T Kn K
22

benzene-n-hexane 25 .64 .62

benzene-eye lohexane 20 .64 .67

cyclohexane-n-hexane 20 .67 .62

benzene-n-dodecane 30 .64 .59

c = l

12

Kcal-cm"

mo 1
8/3

72.25

64.49

78.06

85.30

c < 1

"12

Kca

1

-cm

8/3
mo

70.60

62.30

77.59

83.61

.98

.97

.99

.98
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benzene-cyclohexane were performed for a few selected compositions.

These two mixtures were chosen because their c parameters showed

the larger deviations from the geometric mean value of 1. The smaller

values of c decreased the calculated interfaciai tension slightly.

At .5 mole fraction of benzene, the decrease for benzene-n-hexane

was .4%, while the tension for benzene-cyclohexane decreased by

about .6%. c=l thus appears to be a good approximation for the liquid-

vapor interfaces of the nonpolar mixtures under investigation. Since

the numerical solution of the interfaciai equations with c < 1

requires about twice the computational time of the solution with c = 1,

the latter was used for all further liquid-vapor calculations. As

we shall see later, the effect of c < 1 is much more pronounced for

liquid- liquid interfaces.

In the further examination of the present mixture theory's

predictions, the concept of an "ideal" interfaciai tension, y ,

is useful. This quantity is defined by

Y id
5 X

1
Y

1
+ X

2
Y 2 ' (VI. 27)

and represents the interfaciai tension exhibited by an ideal system.

Note that for the four systems discussed the tensions fall below y ,

id

(which can, of course, be represented as a straight line connecting

the pure component tensions in a plot of y vs. x^). Such negative

deviations are associated with the preferential adsorption of the

lower tension component at the interface. Fig. 35 shows the calculated

interfaciai profiles for benzene-n-hexane at 25°C. These profiles
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clearly demonstrate the ability of the present theory to predict

preferential adsorption phenomena

.

Some systems, such as n-hexane-n-dodecane , exhibit a slightly

89
positive deviation from Y^* Table 11 contains a comparison of

the experimental and calculated excess interfacial tensions (Y-Y id
)

for this mixture. The theory is seen to be in qualitative agreement

with experiment. Since the present theory appears capable of

predicting the deviations from ideal behavior, we may use it to examine

the effect of size and shape on the interfacial tension. To this end

we have calculated the tensions of n-hexane with three pentanes

(n-pentane, isopentane, and neopentane). The difference between

n-hexane and n-pentane is essentially one of size only, while

isopentane and neopentane additionally exhibit an increasing shape

difference from n-hexane. Although this series of mixtures appears

ideal for such an investigation, interpretation of the results is

not as straightforward as might be thought. The tensions of the pure

pentanes (calculated with k = .62) decrease from 15.72 mN/m for

n-pentane to 14.28 mN/m for isopentane, and to 11.57 mN/m for neopentane

at 20°C. The calculated tension at the same value of K and temperature

is 18.48 mN/m. In order to minimize the influence of tension differ-

ences we have plotted the percent deviation of the predicted values

from y for the three mixtures in Fig. 36. The n-hexane-n-pentane
id

mixture again deviates positively from Y id
- The results for n-hexane

with isopentane and neopentane do suggest that a greater shape
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Table 11

CALCULATED AND EXPERIMENTAL EXCESS INTERFACIAL TENSIONS FOR N-HEXANE-

N-DODECANE AT 30°C

X ( Y—Y ) (
Y —Y )n-dodecane id experimental id calculated

mN/m mN/m

(ref. 89)

2494 .45 .11

3859 .57 .16

6174 .43 .17

7297 .19 .15

k = .59 k , = .62 6= 0.0 c=1.0
n-dodecane n-nexane



x100

-2

-3

• n- pentane

O isopenfane

neopentane

O

1.0

*n-hcxane

Figure 36 Excess interfacial tension of n-hexane with three

pentanes. The theoretical points were calculated wi

the following parameters: 6= 0.0, C= 1*0,

N
ll " 22

set to 20°C

= .62, and c = 1. The temperature was
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dissimilarity results in a stronger negative deviation. This idea is

supported by calculations for toluene-chlorobenzene shown in Fig. 37.

These molecules are of similar shape (and size) and behave nearly

ideally. The curve shown in this figure was obtained using fitted

mixture parameters (from Table 4) and k ^ ~ K 22 ~ »62 •

The system benzene-n-dodecane exhibits an extremely negative

89
deviation from y . ^ (Fig. 33). Schmidt and Clever attempted to

exp la in the unusua 1 shape of the expe rimenta 1 b enzene-n-dodecane

curve by postulating a layer of n-dodecane molecules oriented per-

pendicularly to the surface. They advanced a similar picture to

account for the posit ive deviat ion from y^ in n-dodecane-n-hexane

mixtures. The present theory correctly predicts both the shape of

the benzene-n-dodecane curve, and the positive deviation for n-dodecane-

n-hexane, without invoking or ientat iona 1 effects. Positive deviations

from y
•

j ar ^ particularly puzzling, since energetic arguments cannot

prov ide a basis for such re suits for nonpo lar mixtures . We found

,

however, that the observed positive deviations for the n-dodecane-

n-hexane mixture can be removed if the size difference between the

molecules is taken into account* Recalling the definition of the

mer fraction

<b. - r.N./rNT
l li

(VI. 28)

we define

*id ~
+

*2 Y 2
(VI. 29)

and plot the experimental and theoretical values of y vs. <^ • Fig. 38
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"toluene

Figure 37 Interfacial tension versus mole fraction for toluene-

chlorobenzene at 20°C. The theoretical line was

calculated with the following parameters:

C = 1.0038, < ni = <
22

=
- 62 >

and
11

1
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shows this plot. The broken line represents eq. VI. 29. Both the

data and the calculated line now exhibit a small negative deviation

from the ideal value. It thus appears that the positive deviation

observed when y is evaluated in the conventional way is due to
excess

the fact that the mole fraction underestimates the contribution of

the larger n-dodecane molecules. When the n-hexane-n-pentane mixture,

for which we calculated a positive excess tension previously, is

treated in terms of me r fractions a very small but negative excess

tension results ( Yexc
- -.001 at 4>

n_hexane
= - 5 >- lt is interesting

to note that eq. VI. 29 is similar to the result of the monolayer theory

for polymer solutions as originally formulated by Prigogine and

1

9

Ma^echal. These authors predicted

V = v lYl + v
2
y
2

(VI. 30)

where v is the volume fraction.

When the benzene-n-dodecane data are plotted in terms of mer

fractions, the negative deviations from ideal behavior are somewhat

less extreme, but still sizeable. Fig. 39 compares the data to the

values calculated with 6 = -.0070 and c = -9521 (solid line) and to

those calculated with 6= 0.0 and z, = 1.0 (broken line). Clearly,

the theory is only able to predict the data well using the fitted

mixture parameters. Thus, the present theory suggests that the

unusually large negative deviations in this system are related to the

relatively large deviation from ideal mixing behavior. Fig. 40

illustrates the calculated mer density profiles through the interface.

The solid lines were obtained with the fitted mixing parameters,

and the dotted lines with 6= 0.0 and 5=1.0 . When the fitted
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Figure 38. Interfacial tension versus mer fraction for

n-dodecane-n-hexane at 30°C. Experimental data were

taken from reference 89. The theoretical line was

calculated with the fo llowing^parameters : 6 = 0.0,

r - 1 O i< = -59, K , = -62,
C _ i.u, K

n-cjodecane n-hexane

and c = 1

•
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Figure 39. Interfacial tension versus mer fraction for benzene-

n-dodecane at 40°C. Experimental data were taken

from reference 88. The broken line was calculated

with 6= 0.0 and £ = 1.0. The solid line was

obtained from 6= -.0070 and c= -9521 • For both

calculations, ic « = .59, k = «64,
n-dodecane benzene

and c = 1

.



147

-OK

(0

(1) -C
C O -U

ni U 0
0 jO
o> X>
X) c 1-1

Q 0 0

|
(A

0)

I u •

1-1 T-t

O CM
O LO

N
c tn •

0) •

^ 11H
u II

O O
l-t

** O
a, 0

r-
0) X) O X)

0) O c
-

H

U • to

4-1 1

0 0
1-1 X) II

a
0) •

•—

1

«3 H O II

JJ

o
ctJ

•

•-

1

4-1

f= (0 O
H 1-1 i

a*
a a;

0 C X)
a) •-

H

(A M i—

l

U C O
<D 0) </)

4-J pO
0) a)

e y-t

0
J-l

al X)
a 0 c

•H a]

4-J

O O
>; »—

t

•-^ U->

B II

U
u»

E
U

0) c
U-l &
0 E-» 0
4J •

O 0
<u O
O ll

O
w <r

01

c

c
0)

43

II

c

a
0)

X)
o
x)

I

C

o

QJ

l-l

00
•H

O
E



148

mixing parameters are used, the interface broadens very si ightl

y

(this is not obvious in the figure) . In addition, an adsorption

peak appears in the n-d odecane profile. The equilibrium vapor

pressure of the mixture also changes, increasing from a value of .189

atm at <5 = 0.0 and r,= 1.0 to .218 atm for the fitted parameters

while the vapor composition is approximately constant at A. = .999.
benzene

The less favorable mixing parameter s may thus lead to a lower inter-

f ac ia 1 tension , because the adsorption of the n-dodecane in the inter-

facial layer (where the density is decreasing) minimizes unlike

contacts . At the same time , the increased vapor density reduces

the density differences between the two phases. The present theory

is thus able to predict the dependence of the interfacial tension-

composition behavior fairly accurately for low molecular weight binary

mixtures by accounting for size differences and the effect of

unfavorable unl ike c on t act s

.

The interest in the 1 iqu id-vapor interfacial tens ion of polymer

solutions derives from the experimental observation that a polymer

added to a solvent of higher tension behaves like a surfactant.

In other words, the polymer depresses the interfacial tension

drastically at very low polymer concentrations. Figs. 41 and 42

compare the experimental data to the theoretical predictions for two

systems of this type. 6 was set equal to 0.0 for these calculations.

The fit obtained for the to luene-poly ( d imethyl siloxane) system with

1.0 is excellent, whereas for the te tra 1 in-po ly( dime thy 1 siloxane)
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mN/m 23.

Figure 41

vol. fr. toluene

Interfacial tension versus volume fraction

toluene-poly ( dimethyl siloxane) at

data were taken from reference 20.

line was calculated with <5- 0-0,

24°C

toluene
62,

PDMS
.49, and

for
Experimental

The theoretical

C= 1.0,

c = 1.
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mN/m

vol. fr. tetralin

Figure 42. In t erfacial tension versus volume fraction for

tetralin-poly(dimethyl siloxane) at 30°C. Experimental

data were taken from reference 24. The theoretical

lines were calculated with 6 = 0.0, K
tetra ii n

= ,77,

PDMS
.49 , and c = 1 .
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system, c = -973 must be used in order to accurately represent the

data. Equally good fits have been obtained for the same sets of data

20
using the Gaines monolayer theory. The values used for the

monolayer theory's fitting parameter, x» were .106 for toluene-poly

20 24
(dimethyl siloxane), and .85 for tetralin-poly(dimethyl siloxane)

.

In both theories, the interaction parameter used is thus indicative

of a less favorable energetic interaction for the tetralin solution.

Fig. 43 shows the calculated interfacial profiles for tetralin-

poly(dimethyl siloxane) at .8 volume fraction of tetralin. For this

system, we again observed an increasing adsorption peak with decreasing

values of £ as in the benzene-n-dodecane case. In contrast to

n-dodecane, the poly (dimethyl siloxane) profile exhibited an adsorp-

tion peak even at £ = 1.0. We also observed that the maximum in the

polymer adsorption peak decreased only slightly as a function of

increasing tetralin volume fraction, which is consistent with the

almost flat tension curve.

Another polymer solution which we examined was polyisobutylene

in n-heptane. In this case, the polymer is the higher tension

component. Despite this fact, the theory predicts that the interface

for this system consists of a strongly polymer-enriched region near

the liquid side followed by a solvent-enriched layer which then

decreases toward the vapor density. Since the profile is not monotonic

in either component, we were unable to integrate the interfacial

tension equation for this system. Nevertheless, the prediction of a
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Figure 43. Interracial profiles for tetralin-poly(dimethyl
siloxane) at 30°C. The volume fraction of
tetralin was .8. Other parameters were:
6 = 0.0, c = -973, ic = .77,tetralin '

K
pDMS

=
*
49

'
and c = U
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polymer-rich layer in the interface along with the results discussed

above (i.e. that surface adsorption increases with decreasing c>

suggest that the interface is a favorable environment for the polymer.

Since the density is decreasing in the interface, polymer molecules

may exhibit such strong adsorption in order to minimize polymer-solvent

contacts

.

The predictions of the present theory for polymer solutions

are comparable in accuracy to the Gaines 1 monolayer approach. The

conceptually unsatisfying requirement of a single surface layer

containing polymers whose conformations are confined to this layer

is avoided. In addition, explicit predictions for the interfacial

structure can be made.

C. Results for Liquid-Liquid Systems

Binary liquid-liquid interfaces arise in three types of systems:

low molecular weight mixtures, polymer solutions, and polymer-polymer

systems. Since most phase-separated low molecular weight mixtures

contain highly polar components,
65

the work presented in this section

will focus on polymer-containing systems.

Although many polymer solution phase diagrams contain partially

miscible regions, the only experimental work available concentrates

31

on the interfacial behavior near a critical solution temperature.

As shown in Chapter V, the present theory becomes unsatisfactory near

a critical temperature, yielding a van der Waals' exponent of 1.5

for the dependence of the interfacial tension on ^-T. One quantity

of interest which can be examined is the structure of the interface
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in such a partially miscible system- Fig. 44 shows the interracial

profiles calculated for benzene-poly isobutylene 20° below the upper

critical solution temperature. 6 and £ were calculated from the

critical temperature and composition estimated from data available

90
in the Polymer Handbook . The results shown were obtained with the

geometric mean value of k-
2

- For the purpose of comparison, we also

calculated the interfacial profiles for eye lohexane-anil ine at 20°C

below the upper critical solution temperature (Fig. 45) using the

geometric mean Note that the eye lohexane-aniline interface

is much narrower (about 3 nm) than the benzene-poly isobutylene profile

(about 6 nm), since the concentration difference between the two

phases is less for the polymer-containing system. The effect of

using the non-geometric mean value of ic^ (as defined in eq. VI. 8)

is to broaden the profiles and simultaneously increase the interfacial

tension. The interface width increases to approximately 5 nm and

10 nm for the low molecular weight system (c = .95) and the polymer

solution (c - .95), respectively. The increase in the tension is from

0.19 mN/m to 0.33 mN/m for eye lohexane-ani line and from 0.008 mN/m

to 0.15 mN/m for benzene-po ly i sobuty lene . This increase in interfacia

tension on using c < 1 is the opposite of what was observed for

liquid-vapor systems, where the interfacial tension decreased

slightly. This fact can be understood by examining eq . VI. 12.

In a liquid-vapor system the overall signs of dpj/dx and dp
2
/dx are

the same except for local variations. The gradient cross-term in
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Figure 44. Interfacial profiles for benzene-polyisobutyle
at 3°C. Benzene is component 1. The profiles
were calculated with <S = -.0388, c. = .9765,

^benzene
=

*
64

' *PIB
=

*
33

'
and c = U
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Figure 45. Interfacial profiles for eye lohexane-ani line
at 9°C. Cyclohexane is component 1 . The
profiles were calculated with 6 = -,0152,

t = .9598, k = .66, ic ... = .68,
eye lohexane anil ine

and c - 1

.
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eq. VI. 12 is therefore generally positive. Thus decreasing ^
decreases Aa and lowers the tension. For a liquid-liquid system,

on the other hand, dp^dx and dp
2
/d,carry opposite signs and

the cross-term is negative. A decrease in ^ can then increase Aa

and the interfacial tension, provided that the density gradients do

not change drastically.

Unlike for phase-separated polymer solutions, a reasonable

amount of interfacial tension data is available for polymer-polymer

systems.
73 ' 74 However, a new difficulty arises in treating these

systems. The theoretical phase diagrams are extremely sensitive to

small changes in the values of the mixing parameters. Polymer-polymer

interaction parameters are, however, extremely difficult to measure

experimentally, and reliable data are scarce.
91

Due to the high

sensitivity of the phase behavior, 6 = 0.0 and 5 = 1-0 do not

represent a good approximation for these systems. At low pressures

(such as atmospheric pressure), 6 = 0.0 and C= 1-0 leads to the

prediction of complete miscibility for polyethylene with polystyrene

at high molecular weights. The predictions of the interfacial theory

can thus at present only be examined as a function of the parameters.

The results of the calculations for polymer interfaces will also

be seen to be very sensitive to the value of ^ For this reason,

6 was set to the appropriate geometric mean value. In that case,

c is equal to t , thus allowing a more straightforward comparison of

the effect of k as a function of S .
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Fig. 46 illustrates the molecular weight dependence of the tension

and interfacial thickness predicted by the theory. The curves were

calculated for polyethylene-polystyrene with C = -98, ^ = and

c = .98. The thickness was here defined as:

t , (dx/dpj < VI - 28 >

where p is the mer density of component one reduced by the equili-

brium value of p in the phase in which component one dominates.

As r decreases, mixing becomes more favorable until at some critical

value of r (in this case -100) the system becomes completely miscible.

Consequently, the thickness must go to infinity and the tension must

go to zero with decreasing r. The rapid change in both quantities

as r exceeds the critical value, followed by an asymptotic dependence

33

at large r is qualitatively in agreement with Roe 1 s lattice theory.

If the value of 5 is decreased, the critical r decreases, and the

asymptotic values of the thickness and tension decrease and increase,

respectively

.

For a more detailed evaluation of the theory, we calculated the

tensions for several systems at both c=l and c=t as a function of 5 .

Fitted values of the pure component k's were used. The r values were

obtained from the average molecular weights of experimental samples.

The choice of r is very important. The phase diagrams for these

polymer-polymer systems have an hour-glass shape, schematically shown

in Fig. 47. If we increase the r value of component one while holding



162

.6 I i 1
I 1

- -

nm .4 -

0 1 I
1 1 1

mN/m

Figure 46 Interracial tension and thickness as a function of

molecular weight for linear polyethylene-polystyrene at

140°C. The curves were calculated with 6 = -.0110,

= .52, ic = .57, and c = .98.
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that of the other component constant, the limits of miscibility move

to lower values of $ ^
. Such a change in the phase equilibrium

changes the calculated tens ion.

Figs. 48-51 show the dependence of y on z, at the two different

values of k ^ £°r four different systems. The difference between

geometric mean and non-geometric mean results is striking. The

inadequacy of the geometric mean results becomes obvious when we

examine the predicted interfacial thickness . As c decreases, the

interaction between the components becomes more unfavorable, and each

phase contains less of the minor component. This should lead to an

increase in tension and simultaneous decrease in thickness. In

Fig. 52 we have plotted the thickness as a function of £ for poly-

ethylene-polystyrene. The shape of the geometric mean curve seems

aphysical. The increase in thickness as C decreases may be a

response to the increasing severity of the geometric mean approximation.

The values of C required to fit the experimental tension using

c = t at 140°C, as well as the calculated thicknesses, are given for

three systems in Table 12. For comparison, we have also listed

34
thicknesses predicted by the theory of Helfand and Sapse. The present

theory predicts surprisingly sharp interfaces for the systems investi-

gated. Polye thylene-poly styrene is not included in Table 12 because

,

for the 6 and r values used in our calculation, no solution to

the interfacial equations exists below C = -98 for this system. At

this value of c, the predicted tension is well below the experimental

value of 5.9 mN/m.^
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mN/m

Figure 48, Dependence of the interfacial tension cm the mixing
g

parameter C for linear polyethylene-polystyrene

at 140°C. The curves were calculated with « = -.Oiiu,

= .52, = .57, r = 5845 ,

Jl-PE
and r

Jl-PE PS " "" * "«-PK PS

2331 . The solid line corresponds to e == 1, and the

broken line to c = C

•
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Fipure 52. Dependence of the interfacial thickness on the

mixing parameter C for linear polyethylene-

polystyrene at 140°C. The parameters are the

same ones listed for Fig. 48. The solid line

corresponds to c = 1 , and the broken 1 ine to c - 5
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Table 12

THICKNESS AND C FOR SOME POLYMER SYSTEMS. Values of C were chosen

to fit the experimental data at 140°C given in reference 74. Thick-

nesses predicted by Helfand and Sapse 3 * are included for comparison.

Y exp

mN/m

t( this

nm

PDMS/PS 6.1 .954 .38

PDMS/PIB 4.2 .968 .35

PDMS/PVAC 7.4 .974 .34

nm

1.1

.8
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When we calculated the interfacial tensions of the systems in

Table 12 at higher temperatures, we obtained the result that the

tension increases with increasing temperature. Experimentally, of

course, the tension is known to decrease. This result again serves

to emphasize the importance of properly predicting the phase diagram.

For the systems studied, 140°C lies in the upper portion of the phase

diagram illustrated in Fig. 47. As the temperature is increased,

the equilibrium phases again contain decreasing amounts of the minor

component. Thus the phases become more unlike which leads to the

prediction of increasing tensions with increasing temperatures.

A complete assessment of the theory for polymer-polymer systems

is not possible at this time, because of the lack of mixing data.

Endless variations can be produced in the phase diagrams, by adjusting

6, cand r. One interesting point raised by this theory is the

possibility of obtaining a positive dY /dT. Even if the phase diagram

dictated such a result, the conformational surface entropy, which we

have neglected, might outweigh the phase equilibrium considerations.



CHAPTER VII

SUMMARY

The objective of the work presented in this dissertation was the

development of a unified interfacial theory for arbitrary molecular

weight systems. This problem was approached by combining the lattice

fluid model with the gradient approximation to the free energy minimi-

zation for inhomogeneous systems. Due to the nature of the lattice

fluid model, the resulting interfacial theory is expected to be ap-

plicable to nonpolar and slightly polar molecules away from the

critical point. For such systems, good results can be obtained.

For single component liquid-vapor interfaces, only one new

parameter, k , arises in the interfacial theory. K results from

the gradient approximation, and scales the contribution of the density

gradient to the total free energy of the inhomogeneous system. The,

value of k depends solely on the choice of the intermolecu lar inter-

action potential, which implies that the depth and range of the ener-

getic interactions are crucial to interfacial phenomena. In a

liquid-vapor system, the density is assumed to change continuously

from the liquid density to the vapor density, passing through thermo-

dynamically unstable intermediate densities. The density gradient,

scaled by K , can be interpreted as a mechanical response needed

to maintain a constant chemical potential throughout the system.

The constant chemical potential requirement can be met by steeper

172
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density profiles as the value of K decreases. Molecules whose inter-

action energy is zero would exhibit a step-function density profile.

When we select the traditional power of 6 (corresponding to

purely dispersive forces) to express the range of the interaction

potential's attractive tail, we find that we consistently underestimate

the tensions of low molecular weight liquids by about 10%. For

polymers, the error in the range of 100-200°C is about 15%. Replacing

the a priori power of 6 by 5.76 (which increases the range of the

potential and simultaneously K ), reduces the error to 5% for low

molecular weight liquids over a wide range of temperature. The fact

that a constant value of this energetic parameter yields relatively

small errors for a range of nonpolar and slightly polar liquids

supports the basic validity of the gradient formalism. The error

for polymers can be reduced to about 10% by replacing 6 with 5.87.

The theory also correctly predicts the molecular weight dependence

of the interfacial tension for n-alkanes

.

For the formulation of the present theory, we have neglected to

account for the restrictions on polymer conformations which should

arise at an interface. This leads us to underestimate the surface

entropy for macromolecular systems. Nevertheless, our results for

polymer tensions as a function of temperature appear to be more ac-

curate than those obtained with various empirical correlations.

The ability of the theory to predict liquid-vapor interfacial

tensions is, on the whole, very good. Comparable results have been

obtained for low molecular weight liquids through a combination of the
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12

gradient approximation with the Peng-Robinson equation of state.

This equation is an empirical modification of the van der Waals'

equation. The lattice fluid equation of state describes the PVT

behavior of low molecular weight liquids as accurately as the Peng-

Robinson equation. The fact that both equations lead to good tension

predictions suggests that PVT properties are very important in inter-

facial phenomena. In other words, a molecular model which hopes to

describe inhomogeneous systems must be able to predict bulk densities

well. This idea is further supported by the experimental observation

that the tension for a given system decreases as the density difference

between the phases decreases.

For binary systems, the equilibrium phases differ in both density

and concentration. Since bulk properties are again expected to be

important, we have examined the combining rules applied to the lattice

fluid model in some detail. The set which was selected for use with

the interfacial theory is quite general, and gives good results for

binary miscible systems. Two mixing parameters are required for best

results, but for nonpolar mixtures reasonable results can be obtained

without fitted parameters.

The interfacial theory for binary mixtures contains three gradient

scaling parameters: <n , <%r
and * 2r <n and <n

correspond to the pure component scaling parameters, and are thus

known from the pure component theory. The cross-term, < l2>
is

determined by the intermodular interaction potential of the unlike

molecules. We have treated in two ways. For liquid-vapor
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systems we found that good predictions of the interfacial tension as

a function of composition were obtained with <
12

set equal to the

geometric mean of <n and k^. Alternately, and more consistently,

we can evaluate k 12
using the lattice fluid combining rules. The

geometric mean was found to be the maximum permissible value of ic^.

For liquid-liquid interfaces, the geometric mean approximation for

K
2
appears to be inadequate. Since the occurence of phase-separation

unequivocally indicates that mixing is unfavorable, one would expect

the unlike interaction potential to be weaker than the geometric mean

of the like potentials.

The following form of the interfacial tension equation

y = /

00

[K
11

(dp
1
/dx)

2
+ 2K

12
(dPl

/dx)(dp
2
/dx) + K

22
(dp

2
/dx) ]dx (VII. 1)

—QO

illustrates further the effect of the unlike interaction potential

on y . Decreasing <n from its geometric mean value should decrease

the tension if dp^dx and d^/dx are of the same sign, and increase

Y if they are of opposite signs, unless ; the change in Kn causes

a considerable simultaneous change in the profiles. In liquid-vapor

systems, the components' density gradients are basically of the same

sign except for local variations due to preferential adsorption.

Weaker unlike interactions should thus lead to a decrease in the tension.

In liquid-liquid interfaces, the density gradients are of opposite

signs, so that a smaller <u may lead to a higher tension.

The present theory is able to describe the liquid-vapor inter-
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facial t en si on' s composition dependence of nonpolar miscible mixtures

to with in 5% for the syst ems ex am i ned • Preferential adsorption

of the lower tension component, which minimizes the total interfacial

tension, is predicted. By properly accounting for size differences

and unfavorable unlike contacts, the theory is able to reproduce

be ha v i or wh ich has previous ly been at tr ibut ed to ordered surface layers .

Re suits obta ined for po lyme r solutions are compa rable to those obtained

20with the Gaines monolayer theory . The present theory has the advan-

tage of providing add it iona 1 ins ight into the interfacial region.

Profiles obtained for polymer solutions and low molecular weight

mixtures show that preferential adsorp t ion inc reases as mix ing

becomes more unfavorab le . Since the tension dif fere nee between the

two components is not affected by the mixing behavior, the tendency

toward surface adsorption cannot solely dep end on th is di f f e renee

.

Si nee the inter facial region is a region of decreasing density, the

enhancement of the preferential adsorption may arise in order to

minimize unlike interactions.

The predictions of the theory for liquid-liquid interfaces

depend sensitively on the phase diagram. While this is not surprising,

it represents a drawback for polymer-polymer calculations. For such

systems, the data necessary for determining the mixing parameters are

unavailable. Results are thus confined to a qualitative exam inat ion

of the theory. One general result of both the theory and experiment

is that polymer-polymer interfacial tensions are quite small compared

to pure component values. This is true despite the pronounced immis-
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clbility of most polymer pairs. The reason small values of the

tension result can be understood by again examining eq
.
VII. 1. As

mentioned previously, for liquid-liquid interfaces dp^dx and dp
2
/dx

are of opposite signs. The gradient cross-term is thus negative.

If all three k's were equal, and the profiles were symmetric, the

terms in the integrand would cancel. The interfacial tension between

similar molecules will thus be relatively small, and will increase

with increasing difference in the k's and in the chemical potentials

which determine the profiles. Polymer pairs, because of their small

mixing entropy, exhibit almost complete immiscibi 1 i ty even at slightly

unfavorable interspecies interaction energies. The contribution of

the gradient cross-term thus remains quite large leading to small

interfacial tension values.

Several areas for future research suggest themselves as exten-

sions of this work. The present theory's limitations lie in two

primary areas: the restrictions to nonpolar and slightly polar systems,

and the neglect of surface entropy terms arising from the effect of

an interface on macromolecular conformations. The first of these

limitations is a result of the bulk fluid model. We chose the lattice

fluid model, because more rigorous approaches to polyatomic fluids

are precluded by the lack of Information on pair distribution func-

tions. For polar molecules, the same problem is further compounded

by the difficulty of constructing even approximate models. Progress
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in this area is thus 1 ike 1 y to be s 1 ow

.

Work on inc luding the conf o rma t iona 1 restrictions at an inter-

face should be fairly straightforward, once an expression for the

segment density in the bulk lattice model has been derived. This

kind of derivation is difficult, but preliminary results for a single

i 92
chain in a vacuum are encouraging.

Another obvious extension of the theory is to carry out the gener-

alization to ternary mixtures. While such an extension would involve

no new theoretical concepts, the numerical problems in calculating

phase equilibria are formidable. The primary gain expected from

the application of the theory to ternary mixtures is ins ight into

the interfacial structure. In addition, one could use both the binary

and ternary forms of the theory to examine approximately the effect

of polydispersity on po lyme r tens ions

.
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NUMERICAL TECHNIQUES

A. Binary Phase Equilibria

The equations which govern any two-component two-phase equili-

brium can be written:

^(T.P,^ 1
) - ^"(T.P,/ 1

) = 0 (A.l)

^(T.P,^ 1
) - n/V.P,*!

11
) = 0 •

(A. 2)

For the case of liquid-vapor equilibrium these equations have been

solved for the equilibrium vapor pressure and the vapor composition at

a fixed liquid composition and temperature. Note that in this calcu-

lation the reducing parameters in the vapor phase are functions of

the composition, as is p via the equation of state. p is also a

function of the pressure in both phases. The numerical method

employed was a simplex function minimization method first described

by Nelder and Mead.
93

A good initial guess for the simplex iteration

is to set the vapor composition equal to the liquid composition and

the vapor pressure to the average of the two pure component vapor

pressures. The convergence criteria were selected such that the sum

of the residuals of eqs. A.l and 2 did not exceed .5 x lCf kcal/mole

The number of iterations required to produce convergence was about 120

The iterative procedure was carried out on the natural logarithms of

the variables to prevent the occurence of negative values.

For the case of liquid-vapor equilibria in polymer solutions,

185
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the vapor concentration of polymer is negligible and was set equal

to zero. Eq. A.l was then solved for the vapor pressure. The pres-

sure is bounded by 0 and the critical pressure of the mixture

evaluated from

P
q

= (2r £n(l + 1//?) + fe-r)/(l + /r")
2

. (A. 3)

The se bounds were further refined us ing a bi sect ing search r out ine to

find two values of the pressure be tween which eq . A.l changes s ign . A

94function-solving routine due to R. Brent was then applied to find

the vapor pressure.

For the case of liquid-liquid equilibria, the simp lex a Igor it hm

mentioned above can also be applied if the variables are prope rly

chosen . When we fix the pressure and temperature and try to so lve

for the composi t ions in the two phases, this a lgori thm returns the

trivial result of equal compositions. The problem can, however, be

posed in dif f eren t terms . We can specify the pressure and the

composition difference between the phases and solve for the temperature

and the composition in one phase. For the initial guess, any tempera-

ture below the critical temperature will serve. For the phase I

composition, one half minus half of the specified difference was

found to be effective. While this method is successful for determining

the binodal curve, one obviously cannot use it easily to determine

the compositions at a desired temperature

.

For this reason, we alternately solved eqs. A.l and A. 2 for

liquid-liquid systems by using a Newton-Raphson iteration on the two*
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composition variables at a fixed temperature and pressure. This

algorithm was found to be very efficient, however, a problem arises

for liquid-liquid systems whose phases contain only a very small

amount of one of the components. The chemical potentials contain

an c{>j terms. When $ is a number close to 0, the Newton-Rap hson

routine often produces negative values of $ . in the course of

iteration. For two components, this problem can be dealt with by

introducing four addit iona 1 variables

Yl = Jin 4>1 (A. 4)

Y2 = in 4^ (A. 5)

Y3 = in (l-^ 1
) (A. 6)

Y4 = m (l-^ 11
) (A. 7)

along with four equations

Yl I
e - $

1
= 0 (A. 8)

Y2 II
e - $

A1
= 0 (A. 9)

Y3 I
e - 1 + $ = 0 (A. 10)

Y4 II
e - 1 + <|> = 0 . (A. 11)

Us ing th i s six var iab le Newton-Rap hson algorithm, we can calculate

-22
me r f rac t i ons as low as 10 without difficulty. The Newton-Raphson

method uses the partial derivatives of the e qua tions with respect to

each variable in the it era t ion . For this particular application,

numerical evaluation of these derivatives via the definition

|E = (F(x + fcAx) - F(x-i,Ax)}/Ax (A. 12)
ox



188

with Ax = xxlO"
6

gave adequate results

B . Interfacial Tensions

The interfacial equations to be evaluated for pure components are

2 /f tM dp < A - 13)

p
and g

x-x = /T / d P

p
o

p 1//7T H n . (A. 14)

The integrations were performed using the Gauss-Legendre formula.

Since this formula assumes an interval of integration from 0 to 1

,

the above integrals were normalized to this interval. The number of

points, N, used in the integration varied from 100 to 198. Increasing

N beyond 100 increases the value of the integral only very slightly

in the sixth significant figure. For the integration of eq. A. 14,

2 and p
q
were arbitrarily set equal to zero and J >

respectively. Note that we cannot calculate the value of x when
~
P is

equal to p
g

or £
fc

, since those values of p result in Aa = 0.

Several different types of calculations were used to evaluate

tensions and profiles for binary mixtures. When the geometric mean

approximation for K)% Is applied, the governing equation can be

written in terms of a variable,* ,
defined by

* =
'^U. p

l
+/7

22
p
2

'

The interfacial equations are then given by

II

v = /T / /Aa d*

I
*

(A. 15)

(A. 16)
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and

x-x = / /2A a d*. (A. 17)

o

These equations are subject to the equilibrium condition

8Aa , 3Aa

•SI -^ JT
2

= 0
•

(A ' 18)

The in teg rat ions are here again carried out using the Gauss-Legend re

formulas. At each point in the numerical integration, Aa must,

of course , be evalua ted . This is accomp 1 i shed by rewr it ing in

eq. A. 18 as

P
2

= U-/ic^ Pj)//^" (A. 19)

3 Aa
and subsequently solving eq . A. 18 for p

1
• Since Aa and -

—

j

are more conveniently written in terms of 4^ and p, the following

transformations are useful:

p l

v
l (pj + p 2

)

p = P<V-* + ?2 V 2* + AvPiP2^ p
i

+ p 2^ '
(A. 21)

p , by definition, must lie between 0 and 1. Eq. A. 19 can be substi-

tuted into eq. A. 21, which results in a quadratic in p
1

. Lower and

upper bounds on p
1

at a given $ are obtained by requiring the

quadratic to be equal to one. The condition Pl > 0 serves as a

lower bound if the quadratic condition yields a negative lower bound.
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Once the bounds have been located, a bisecting search routine is used

to refine them further by locating two values of between which

eq. A.19 changes sign. This step is necessary because eq. A.19

contains l»(l-5> terms, and thus cannot be evaluated at the bounds

obtained analytically. Finally, the function-solving routine mentioned

earlier
94

locates the value of 9, which satisfies eq. A.19 for the

desired value of $

Alternately, the geometric mean problem can be treated using the

form
-J--J-

P
l

Y = /T / [ku 2K
12

dP
2
/dPl + <

22
(dP

2
/dP

1
)

2]WdP
1

(A.22)

and

x-x =7

X

l*M + 2K
12

dp
2
/dp

l
+ < 22

( dp
2
/dp

l

)2^ A'""V
P
l
(X

o
}

(A.23)

subject to eq. A.19. If the density profile of component one is

m0notonic, we can write m simultaneous equations for A.19:

m
m

a Aa i i, ,

9Aa ,
i U _ y F _ q (A. 24)

fpT^l -2> +/^i^ (p
l '^^ i'i

i = l 1

where

p
1

= Pl

L_l
+ W"-pi

i i-1 , II.. I
)/m .

(A. 25)

The equations defined by eq. A.24 can then be solved for the by

using the m-dimensional form of the Newton-Raphson algorithm. The

initial guess for the *
'*

was defined analagously to eq. A. 25.
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In this case, the partial derivative required for the iterative

procedure was evaluated analytically. Using eq. VI. 23, we can write

3F
i

3M
1 i i

3 'W
2 i

3^1
= ^ TT

2
(p

i
> Q

2 >
+ W

2

(p
i

,p
2 > • < A - 26 >

If we treat ^ as a function of <|> ,

3Uj auj
3 ^

3u
x 3^

3^
= iT }

iF
2

+ JT
2

(A ' 27)

1 p

and

3P
2

3u
3
~ 3m 3*j

^7 = ir> Sp
+ hT^ apT • (a .28)

^12 1 P 2

Now

,

3p 2^ = v
2
* + *

1
Av (A. 29)

and

-v*4> v . (A. 30)
3P

2

The other derivatives are given by:

9M

=-6*j + X
12

<t,

2

2
" ^kT^ ^d-p) + p

2
+ r- ] +

r

l 1

{-e* + vkT[v &n(l-5) + T"^ ]} (— « ;

(A. 31)
1 — p v rt
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aUK 1 I • 1 " .
dX

12 2

*1 ~
r
i^i

r
2

r
l

d
*i

P

2

{-p^ * kT<^ - -i)} (-1 ^ ) +
d
*l

r
l

r
2

e {p + T [v £n(l-p)+ 1 - ±]} (- f ^ + —V~ ).
r ^2 d<(»

1
v*

(A. 32)

3^2 a ^
2

) and —— ) can be obtained from eqs. A. 31 and A. 32 by

*1 1 P H * H * dX
,9u 1 • , _. . . de* dv* 12exchanging subscripts. The quantities — ,

-— , , and
d(P

1
d(J)^

dx
21

are defined as in Chapter IV.
d<t>

t

The convergence criterion applied to the Newton-Raphson algorithm

was
01

2 16
2 F < 10 . (A. 33)

i=l

Once the m values of satisfying eq. A. 24 had been found, eqs.

A . 22 and A . 23 were evalua ted us ing the trapezoida 1 integration

formula . The value of dp£ /dp
^ at a given point was set equa 1 to

its finite difference value

dp
2 , i + 1 i-lv /0 ,11 Ivi

= t.p
2

- p
2

;/^Ap
1

; Apj = kq
1

- pj r(ta.

(A. 34)

For m = 150 this routine gave results which differed from the Gaussian

integration re suits in the fifth s ign if i cant f igur e . One would
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expect. this technique to require a larger number of points to

achieve the same level of accuracy, since the trapezoidal integration

formula is less accurate than the Gaussian one.

The numerical procedure applied to eqs . A. 22 and A. 23 for the

case < ^ K
\ \

K 22^
* f ol lows the same pr inc iple discussed above .

In this case the equilibrium condition may be written:

[
K

u + 2 K

i2
d P

2
/dp

l
+ K

22
(dp

2
/dp

l
) ][ 3Aa / 3 P

2
( K

ll
+K

12
dp

2
/dp

i
)
"

2 2 23Aa/8p
1
(K

12
+ic

22
dp

2
/dp

1
)]-d P

2
/ d P

1
[ 2 Aa( <^ 1 <22~

K22 ^ ] = 0 •

(A. 35)

If we again assume that component one exhibits a mo no tonic density

pro f i le , we can so lve

m
Z F. = 0 (A. 36)

i=l
1

where F^ refers to the lef t-hand side of eq. A. 35 evaluated at p^
1

, p,>

1

and the p^
1

are defined as previously. The derivatives dp
2

1
/dp^

2 i 2
and d p

2
/dp^ are written in the finite difference approximation.

Eq. A. 34 defines dp^/dp^ and

,2 i , , 2 , i +l„ i i-1 v * 2
d p

2
/dp = (p

2 -2p 2
+p

2
)/Ap

1

(A. 37)

Due to the forms of eqs. A. 34 and A. 37, F^ depends not only on P
2

1

»

but is also a function of p
2

^ +
* ana" p

2

* ^he Jacobian matrix

which must be set up for the Newton-Raphson iteration is thus
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tridiagonal; each row contains 3F /3p
2

» BF^/ap^ > and dF.^/dp^*^

These derivatives are

3F.

r_
x

= -[(K
l2

+K
22

dp
2
/dp

1
)/Ap

1
][3Aa/3p

2
(K u +K

12
dp

2
/dp

1
)

-

3p

2
3Aa/3 Pl (K

i2+
K
22

dp
2
/dPl )] + [K

11
+2ic

12
dp

2
dp

2
/dp

1
+K

22
(dp

2
/dp

1
) ]x

[-3Aa/3p
1
(K

l2
/2Ap

1
) + 3Aa/3p

1
(K

22
/2Ap

1
>] -

[2Aa(K n K
22

-K
12

)

2
]/A Pl

2
,

(A. 38)

3F.

j—[ = [(<
12

+<
22

dp
2
/dp

1
)/Ap

1
][3Aa/3p

2
(K

11
-Hc

12
dp

2
/dp

1
)

2
3Aa/3p

1
(K

l2+
K
22

dp
2
/dp

1
)] + ['<

11
+2K

12
dp

2
/dp

1
+ <

22
(dp

2
/dPl ) ] x

[3Aa/3p
x
(k

12
/2Ap

t
)-3Aa/3p

t
(K

22
/2Ap

t
)]

2 2
[2Aa(K <

22
-<

12 >
]/Ap

x
,

2i '- 2 (A. 39)

and

3F
' = [<

tl
+2<

2
dp

2
/dp 1+K 22

(dp
2
/dPl )

2

][ (3Aa/3p
2
)(< 11+< 12

dp
2
/dPl )

3P
2

" L " 11 12
K 2' K

l 22

3P
2

2 2

(3Aa/3p
1
)(K

l2
+K

22
dp

2
/dp

1
)] +2[2Aa(K u K

22
-<

12 )
]/A Pl -

2. "2 ro „. . , ^ _^ (A. 40)
d p

2
/dp

1
[23Aa/3p

2
(K u K

22
-K

l2
) ].

S ince
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3P
2

2 3p
2

3 ^2 (A. 41)

and

a
^1 (A. 42)

3P
2

1 3p
2

both of which we have already evaluated, no further quantities are

needed. Once the p/ have heen ohtained, the lntegrals are evaluated

ln the same way as tor the geometric .an case. The Initial guesses

rhp o
1 which formed the solution in the geometric

vergence were the P
2

WIUU1

mean approximation.

S, «„ t io„.d »
"Uld

»1, be obt.i-d when the P»»" ° f "
„,„«.,1«. F« «» - - *•

>XhlbUS

p«£.teMlal .u r£.ce ,d S or p t ien, i.e. .——<* I-'"-

0M „, „ define
—"~ " "

A.« in the ,.«— «« « »«>""' *« • P '"°dal

pte„ieU5ly . The « varies « and - the c.n^r U.e

alp „8 which e,. A-iS ch.n 8.s si 8n t. * P«„ -hich «

tfce U^-UI— I£ VaUe
"
f

i c r\f n d is the adsorbing

p corresponds to two different values of

r Fia 53 is a schematic diagram of such a solution path

component. rig* ^ lb

This kind of diagram is also useful for

for a liquid-vapor system. This kind

• c «- c *r all. For certain values ot

determining whether a solution exists at



the mixing parameters of polymer-polymer systems, there

which connects the equilibrium phase compositions.
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surface adsorption.
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