
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Doctoral Dissertations 1896 - February 2014

1-1-1977

Bounded coating flows of viscous and viscoelastic
fluids.
Jehuda, Greener
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Doctoral Dissertations 1896 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Greener, Jehuda,, "Bounded coating flows of viscous and viscoelastic fluids." (1977). Doctoral Dissertations 1896 - February 2014. 630.
https://scholarworks.umass.edu/dissertations_1/630

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_1/630?utm_source=scholarworks.umass.edu%2Fdissertations_1%2F630&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


UMMoj/Mmntnb 1

3120bbOQ710Tbfl4



BOUNDED COATING FLOWS OF VISCOUS
AND VISCOELASTIC FLUIDS

A Dissertation Presented
>

By

JEHUDA GREENER

Submitted to the Graduate School of the

University of Massachusetts in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 19,77

Polymer Science and Engineering



Jehuda Greener 1977

All Rights Reserved



BOUNDED COATING FLOWS OF VISCOUS
AND VISCOELASTIC FLUIDS

A Dissertation Presented

By

JEHUDA GREENER

Approved as to style and content by

Stanley Middleman
Chairperson of Committee

RoTJert L. Laurence, Member

Roger S. Porter, Member

r 'A 0
7

/

;

t .t

I
A

Lawrence W. McKenna, Member

w!j. MacKnight, Department Head

Polymer Science and Engineering

• • •

in



ACKNOWLEDGEMENTS

I am indebted to Professor Stanley Middleman for his guidance, patience

and encouragement throughout this research. I have benefited immensely

from his vast knowledge and experience both personally and professionally.

I wish to thank Professor Robert L. Laurence for his numerous

suggestions and for stimulating discussions on the subject of stability.

Thanks also go to Professor Roger S. Porter and Dr. Lawrence L.

McKenna for valuable comments and suggestions.

The construction of the many experimental systems used in this

study was done with the help of the Chemical Engineering and Mechanical

Engineering machine shops. My thanks to Dick, Don and Joe, and to

Professor Costa and his staff for their technical support and advice.

I wish to thank Skip Rochefort and Maggie Fariss for their help in

carrying out some of the tedious experiments.

My friends Mike, Matt, Glen, John and Eric deserve my warmest

thanks for four years of pleasant and beneficial association.

This study was made possible through a financial support given to me

by the Department of Polymer Science and Engineering at the University

of Massachusetts, and through a grant from the Eastman-Kodak Company.

This contribution is gratefully acknowledged.

Finally, I would like to thank Ms. Paula LaPierre for a superb

typing job.

iv



ABSTRACT

Bounded Coating Flows of Viscous
and Viscoelastic Fluids

February 1978

Jehuda Greener
B.S.(Ch.E.) Technion, Haifa (Isreal)

M.S., University of Massachusetts
Ph. D.

, University of Massachusetts

Directed by: Professor Stanley Middleman

A theoretical and experimental study of bounded coating flows is

presented. These flows are characterized by lubrication-like kinematics

and by high capillary numbers in the vicinity of free surfaces and are

encountered in numerous coating applications.

Two systems were studied in detail: blade coating and roll coating.

These systems were represented by simple but realistic prototypes: the

rigid planar blade coater, the sheet-and-roll system and the system of

half-immersed counter rotating rollers. Hydrodynamic models have been

developed for each system, utilizing the lubrication approximation and with

a special consideration given to the effect of fluid rheology; Lubrication

analyses were carried out for several non-Newtonian constitutive models

(the power-law fluid, the second-order fluid and the Criminale-Ericksen-

Filbey (CEF) equation) yielding useful performance relations for the systems



under consideration. These relations gave predictions mainly for the

coating thickness and the hydrodynamic loading. In addition to the kinematic

lubrication approximation, the analytical work required a number of approx-

imations, dynamic constitutive and geometric which were explicitly stated

and rationalized. Some calculations (for the CEF model) were carried out

through a regular perturbation scheme.

Experiments were conducted with a simulated rigid planar blade coater

in which the coating thickness was measured for several fluids both New-

tonian and viscoelastic and the effect of the inclination of the blade relative

to the web was studied. The Newtonian data were generally in agreement

with the lubrication solution. Also, the viscoelastic fluids were found to

produce higher coating thickness than the Newtonian fluids consistent with

the approximate analytical model.

The system of half-immersed counter rotating rollers was used for

an experimental study of roll coating. In this experiment coating thickness

data were gathered for Theologically different fluids. Data for Newtonian

fluids, both in gravity-free and gravity-controlled regimes, were found in

satisfactory agreement with the lubrication solution. Similar runs with

viscoelastic fluids were inconclusive because of the onset of the "ribbing

instability" under relatively low speed conditions.

An attempt to elucidate the dynamics in roll coating was made

through a study of the submerged roll system which was shown to be

vi



hydrodynamically similar to the sheet-and-roll system. An experimental

study of the system was conducted in which pressure distributions were

measured in the converging-diverging flow space for a Newtonian and a

viscoelastic fluid. The Newtonian data were in agreement with a finite

element solution of the problem. The results for the viscoelastic fluid,

while qualitatively in conformity with the approximate theory, could not be

critically evaluated because of the lack of an exact solution to the related

problem.

The important question of stability in coating flows was considered

through a study of the ribbing phenomenon. The related literature was

surveyed and the few existing studies concerning this phenomenon were

critically assessed. Some data for Newtonian and viscoelastic fluids have

been reported. These data show clear phenomenological as well as

quantitative differences between the Newtonian and the viscoelastic instabil-

ities. A simple physical stability theory that is capable of explaining some

of the observed differences has been presented.
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CHAPTER I

INTRODUCTION

In the past, coating system design and optimization of process variables

have been an art which advanced mainly through trial-and-error. With the

advent of sophisticated process control equipment, the increase in production

volume and the growing demand for low-tolerance high precision products,

the need for more fundamental understanding of the dynamics of coating

operations has emerged. Up-to-date process control equipment permits

reliable monitoring and efficient control of many process variables and the

only relevant question to be asked is: Which variables should be controlled

and how?

An increase in total throughput and a decrease in processing cost while

maintaining the product properties within specified tolerances is the classical

goal of optimal production. This goal can normally be approached in many

ways. The coating of a fluid onto a web can also be achieved through

several alternative processes. But aside from the selection of a proper

coating system for a specific application, a decision has to be made as to

what operating conditions (e. g. ,
system geometry, web speed, imposed

pressure etc. ) are to be used for obtaining a uniform coating at a specified

thickness and at a desired throughput. The trial and error approach



becomes increasingly inefficient and the various questions facing the designer

and the operator can be answered more readily (and less expensively) through

a better understanding of the dynamics of the particular coating system.

"Coating is a process whereby a liquid is applied continuously
to a moving sheet in order to produce a uniform application of
the fluid onto and/or within the sheet. " (Middleman 1977)

The flows encountered in coating processes are called coating flows.

Despite the obvious technological impact of such hydrodynamic systems, the

related literature is relatively scant and it addresses itself primarily to the

technological aspects of coating operations. Publications by Park (1969),

Briston (1974), Booth (1968) and Lin (1974) are a characteristic sample of the

technical literature in this area. In these publications the treatment is

mainly descriptive-qualitative and it is oriented toward specific applications

of the systems considered.

Only few attempts at hydrodynamic modeling of coating flows have been

made. Ruschak (1974) and Ruschak and Scriven (1977) present analytical solu-

tions to several free surface problems encountered in coating operations. The

classical problem of withdrawal coating has been studied intensively in the last

two decades (Cf: Middleman 1977) and is still subject to theoretical and experi-

mental investigations. Some analyses of coating systems in which free surface

effects are secondary have been carried out by Greener and Middleman (1974,

1975) and Middleman (1977). The present work is an extension of the latter

publications.



This study addresses itself to modeling and experimental investigation

of several bounded coating flow systems. By way of definition, these flows

are hydrodynamically similar to lubrication flows and their performance is

not controlled by surface tension effects. (More definite features are

specified in Chapter II.
) Also, inasmuch as many coating materials are

polymeric by nature, a special consideration is given to the effect of fluid

rheology.

Rheologists have developed a host of molecular and continuum theories

to explain the behavior of macromolecular fluids under well defined flow

conditions. These theories proved generally successful for so-called vis-

cometric flows. Such flows, however, are rarely encountered in practice

and many technologically important systems are kinematically complex and

cannot be dealt with by conventional rheological approaches. Most, if not

all, polymer processing flow systems, such as those found in extrusion,

injection molding, fiber spinning and various coating processes are non-

viscometric. The complexity of such flows is twofold:

a. The rate-of-deformation tensor is often spatially inhomogeneous

and it contains mixed components of shear and elongation.

b. The strain (stretch) histories are not constant, i.e., these flows

involve non-steady deformations in the Lagrangian sense.

Some current hypotheses suggest that flows containing mixed kinematic

components may be fundamentally different from simple shpar flows under



conditions of high deformation rates (Hinch 1974, Tanner 1976); This

difference is proposed to arise from the highly orienting effect of the finite

elongational components on the configuration of macromolecules in such

flows. These flow, termed "strong flows", are gaining much attention

both on the molecular and phenomenological levels.

Bounded coating flows, being kinematically nearly viscometric, are

suitable for a study of first-order deviations from viscometric flow behavior.

It is argued in Chapter II, however, that despite their nearly viscometric

character, these flows may be much different dynamically from viscometric

flows.

Aside from the fundamental aspects involved in the study of bounded

coating flows, these flows are of considerable technological importance.

This study attempts to establish some useful operation-performance relations

for two important coating systems: blade coating and roll coating. The

specific and immediate goals of this study are:

a. To develop simple hydrodynamic models for the systems under

consideration with an emphasis on the effect of fluid viscoelasticity.

b. To test experimentally the analytical models for (Theologically)

different fluids.

c. To pursue an experimental investigation of the "ribbing instability"

observed in roll coating operations, and to modify existing stability criteria

for non-Newtonian fluids.



The systems considered in this study are simplified versions of the

usually more complex industrial devices. It is hoped, however, that this

work will provide a theoretical and empirical basis for further refinements

and modifications.

The dissertation is composed of three main units. Chapters I - IV

are the introductory chapters, in which the subject is introduced, the

modeling strategy presented and several topics of rather general nature are

discussed. Chapters V - VIII, the core chapters, give an account of the

original contributions of this study. Finally, in Chapter IX, a summary

of this work, together with suggestions for future, research, are presented.

In Chapter II, a rather general discussion of some hydrodynamic and

rheological aspects of bounded coating flows is given. This discussion

illustrates the formidable task involved in undertaking an explicit viscoe-

lastic analysis for the flows under consideration. A brief state-of-the-art

survey of viscoelastic lubrication flows is presented in Chapter III. This

chapter discusses some rational approaches used to tackle viscoelastic

flow problems encountered in lubrication-type systems. In Chapter IV, the

mathematical model used throughout this study is presented and the various

dynamic, kinematic and constitutive approximations are stated and discussed.

From Chapter V and on attention is centered on specific coating

problems. Chapter V deals with blade coating. The problem is introduced,

stated and analyzed for several constitutive models and a simple experiment
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designed to test the various model results is reported. Some comments

on the dynamic boundary conditions in blade coating conclude this chapter.

Chapter VI is concerned with the roll coating problem. Two model

systems are considered explicitly: the sheet-and-roll system and the

system of half-immersed counter-rotating rollers. Analyses for these

systems are followed by a section which details the experimental work with

the system of half-immersed counter-rotating rollers. Finally, a brief

account of the reverse-roll coating problem i« given. Chapter VII is a

direct extension of Chapter VI. Here, the dynamics in the bounded regime

in roll coating are studied through an investigation of the submerged roll

system. Hydrodynamic analyses of this system are presented and an

experimental study of the system is reported.

The "ribbing phenomenon", the most common hydrodynamic instability

in coating operations, is considered in Chapter VIII. The related literature

is surveyed and additional data for Newtonian and viscoelastic fluids are

presented followed by a simplified stability analysis.

A concise summary of the analytical and experimental results of this

work is given in Chapter IX together with some thoughts on potential future

research directly extended from this dissertation.
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CHAPTER II

BOUNDED COATING FLOWS:
HYDRODYNAMIC AND RHEOLOGICAL CONSIDERATIONS

II. 1 Characteristic Features

Coating flows can be crudely classified as flows encountered in

industrial coating operations where a coating fluid is deposited, in some

way, onto a moving web. Such a practical definition, however, lacks in

providing insight as to the hydrodynamic-physical nature of the flows. It

is thus fruitful to examine this class of flows in a more rigorous manner

and establish a more meaningful framework for discussion.

Coating flows have several characteristic features which are found in

many industrial coating processes. These features can serve as a basis

for defining these flows and distinguishing them from other hydrodynamic

systems.

a. Lubrication flows - geometric and kinematic similarities. Many

coating systems can be looked upon as "lubrication systems". That is to

say that coating flows are, in effect, two dimensional flows with dominant

shear components and with small but non-vanishing extension components.

This statement does not apply universally to all coating processes and

there are some coating systems which do not fall in the category of "lub-

rication flows" (e.g., blade-coaters with a large angle). The notion of
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lubrication character, however, is in most cases conceptually useful and

practically applicable. A more detailed discussion of hydrodynamic lubri-

cation and its relation to coating flows is given in Chapter III. it is

implicit from the above that fluid particles in coating flow systems are

experiencing rapidly changing deformations in time. These transient kine-

matics are manifested by finite Lagrangian acclerations (finite extensional

components in the rate-of-deformation tensor) and are of considerable

importance when dealing with viscoelastic fluids.

b. Non-Newtonian fluids. Unlike lubrication systems in which fluids

are mostly Newtonian in character, many fluids employed in industrial

coating processes are polymeric by nature and thus Theologically non-

Newtonian. Such fluids can be either purely viscous or viscoelastic; for

neither case does the classical lubrication theory hold.

From a standpoint of the "Simple Fluid Theory" (Noll 1958) viscoe-

lastic fluids are isotropic fluids with (fading but) relatively strong "memory",

i. e.
,

past deformations and the transient nature of these deformations con-

tribute to the present state of the stress field. For such complex defor-

mation histories as encountered in coating flows it is required, in principle,

to employ a superior constitutive model that is capable of predicting the

response of the fluid. It is, however, well known that the better the

predictive capabilities of a constitutive model the less its algebraic tracta-

bility. Consequently, as will be seen later, one has to resort to



approximations and compromises. Undoubtedly, the introduction of

non-Newtonian constitutive models adds to the complexity of the general flow

equations, and thereby makes the analysis excessively difficult in some

cases.

c. Free Surfaces. Such hydrodynamic boundaries are found in most,

if not all, coating processes. Free surfaces are mathematically difficult

to handle since their position is a-priori unknown and because of the need

to introduce Cauchy-type boundary conditions to the system equations. The

existence of free surfaces requires the consideration of surface tension

forces and the assessment of their relative importance along the free

boundaries. Furthermore, hydrodynamic instabilities which are common

in many processes are usually manifested by the shape of the free surfaces

and are strongly dependent on the free surface dynamics. This phenomenon

is of paramount importance in certain coating operations and it is consider-

ed in Chapter VIII.

In some cases, such as withdrawal coating (or dip coating), free

surface effects completely dominate the dynamics of the system (Middleman

1977). Indeed, a theoretical investigation of free surface flows encountered

in coating operations had been carried out by Ruschak (1974) (see also

Ruschak and Scriven 1977). In many cases, however, free surfaces play

a minor role and have little effect on the performance of the system.
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Coating flows in which the free surface dynamics are relatively

unimportant, so long as the flow is stable, will be referred to as bounded

coating flows as opposed to free coating flows. It is also stipulated, by

way of definition, that bounded coating flows are kinematically equivalent

to lubrication flows in clear distinction from free coating flows which can-

not be regarded as lubrication flows in the classical sense. For the

bounded coating flow systems that are considered in this study (blade and

roll coaters) the surface tension is introduced into the analysis (at best)

through a dynamic boundary condition for the pressure and it is found to

have, generally, a marginal effect on the performance of the system.

Some aspects of the kinematics of bounded coating flows are consid-

ered in the next section where discussion is confined to the bounded flow

regimes. This is followed by a general discussion of the dynamics pre-

sented in Section 3. Finally, in Section 4, Deborah-number effects in

bounded coating flows are briefly assessed.

II. 2 Kinematics

A qualitative examination of the kinematic character of bounded

coating flows is presented. The kinematics of flow provide, in general, a

very valueable insight as to the kind of deformations experienced by the

fluid in a particular system. It serves as a basis for selecting an appro-

priate constitutive model that will be the best compromise between realism

and simplicity in describing the response of the fluid. The objective of



this section is to develop some kinematic formalism and basic analytic

tools for a more rigorous examination of coating flows.

Coating flows can be viewed as steady two-dimensional (planar) flows

with dominant shear components. The most general possible two-dimension

al velocity field for an incompressible fluid is given by (Marrucci and

Astarita 1967)

u 1
= €xl +^lX2

u2 = i „X1 - € x22A " * (II-l)

u3 = 0

Where IS v if
2

and 6 are some kinematic parameters and u
1
are the

velocity vector components in x* (a cartesian frame).

Lubrication flows (and therefore bounded coating flows) can be regard-

ed as a special subclass of the general flows defined by Eq. (II-l). Such

flows are subject to the following additional restriction

^> i 2
<K

1 (H-2)

(This condition is not homogeneously valid!) It is, nevertheless, illuminat-

ing to proceed on with the general planar flow equations and later discuss

some special cases on their merits.

It was shown by Marrucci and Astarita (1967) that by a proper trans-

formation any flow field of the form given in Eq. (II-l) can be reduced to:

ul' - /^x2 '

u2' =yi
2
x 1 ' (H-3)
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where

x1 = x1 cos <* - x2 sinoc

2' 1 9x = x 1 sin o<. + cos ex.

x3 ' = x3

(H-4)

and,

V" = (Tfi + tT2 )

*
(n-5)

2

The transformation in Eq. (II-4) is in effect a rotation by an angle &t about

the x3 axis.

The field in the rotated system (u*') is a combination of pure shear

flow (PSF) and simple shear flow (SSF). These two cases are obtained

under two extreme conditions; when y3 2
= 0 (or <£ = ~jf2

= °) ^e ^ow is

SSF and for Ji^ = ft 2 (°r 1 = ^2 = °) tne PSF limit is approached (in

the x i? frame).

In general, Eq. (II-3) represents a spectrum of flow situations that

range from SSF to PSF depending on the relative magnitude of fi 1 and /3 2

It is implicit from the condition given in Eq. (II-2) that bounded coating

flows will lie close to the SSF limit in this spectrum. One can actually
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argue that these flows are perturbations about the SSF case withi/if, and
•

^
2/^i as some perturbation parameters. The kinematic parameters if lt

"*> and € will not be, in general, spatially uniform (Crowley et al. 1976)

and thus the restriction given in Eq. (II-2) will not be uniformly valid,

After the general planer flow field has been defined in the original

frame (xl
) and the rotated frame (x4 ') attention can be focused on some

relevant kinematic tensors.

It is useful to restrict the following discussion to the original coordi-

nate system (x*) for which the kinematic parameters are more readily

interpretable. For the velocity field given in Eq. (II- 1) the rate-of-

deformation tensor, can be easily obtained:

A = Vu + V\

Ilk ^1+^2 0

-^1+^2 -2<5 0

V 0 0 0

(ii-6)

and the vorticity tensor, ,
is given by:

LO = (V\x - ?u)

0 1

1 (n-7)

\ 0 0 <
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It is apparent from Eq. (II-6) that whenever the condition in Eq. (II-2) is

imposed one faces a simple shear flow in effect. Such an argument is

indeed valid when dealing with purely viscous fluids for which the deforma-

tion fields are solely represented by A.

For viscoelastic fluids the strain tensors are more appropriate

measures of the deformation field since they represent in some way the

strain history in the field.

The motion of a particle in the general planar flow field (Eq. (II- 1))

can be obtained by solving the following simultaneous equations:

3*1
_ _u i

(H-8)

a s

with xi=J? l @s=0

x1 is the position of the particle at the instant of observation, t,
1 is the

coordinate that gives the position of the particle at some past time, t + s,

where s is the "backward running elapsed time". As is stated by the

* to "

initial condition in Eq. (II-8) the coordinates x1 and J 1 will coincide at the

instant of observation (s = 0). Solution of Eq. (II-8) yields:

1 - £L Sx2m
(II-9)

il Sx l + (C
2

m m

Jf!= (C + ^S) xl + ^Sx

S2 = ii Sx i c . _± S)X .

-J TO

X3

where,

m
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C = cosh (ms)

S - sinh (ms)

In the limit k, ^ 2
— 0 Eq. (II-9) reduces to the proper SSF form,

while for Tfb ^ 2
—* o the motion approaches the planar elongation limit

(Stevenson et al. 1975).

For the motion expressed by Eq. (II-9) the Cauchy-Green tensor will

take the form:

ski 3t±- JUL

(C + -i S) 2 + ( Si

(C + -i- S) ^Ls
y m ' m

S) (C+ is) lism m

+(C—Is) £? sm m

!c,2(-^S)'+(C--£-S)m m

0 \

0

(n-io)

o 0

(For the system considered the metric tensor g^i is a unit tensor I. ) Here
A/

too, when the proper limits are set C reduces to its well known forms for

SSF and for planar elongation (Middleman 1968).

In Eq. (11-10) C is the Cauchy-Green tensor (or the strain history)

for the most general planar flow field.

The Finger strain tensor for this flow can be similarly obtained.

(C-% = g
kl 5>x SxJ
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/ (c-

- (C-

- (C +

S) Z + (•

*1i
m m
•

S) •Sm m

±_ S)m m

S) 2 -(C-JLS) ^2 sm m 0

-(C +-J5-S) ^ x1
m m

(^-S) 2
+ (C +-^-S)2 0

0
1

/

(N)
A

Another useful kinematic tensors are the Rivlin-Ericksen tenso

where,

rs

(N)

A
s=0•S>sN

For the flow considered here

A

(ii-ii)

(i)

A

and

(2)

A = 2

1 2 k 2 + tT x -ir 2

\

* i 2
2

srfi - i 2 >

2^ 2
+ + ^i

2

00

The kinematic tensors derived above provide a basis for further

dynamic considerations.

EE. 3 Dynamics

Now that some kinematic concepts have been put forth one can proceed

in examining the dynamics in the general planar flow field, making use of
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some crude constitutive models that are capable of predicting, at least

qualitatively, the effect of the kinematic parameters on the stress field.

For viscoelastic fluids, the a-priori low l6vels of the extensional

components (
S /^ « 1) in bounded coating flows may be irrelevant as to

whether the flow can be approximated as SSF or not. Some viscoelastic

constitutive models may weigh the extensional components much beyond

their kinematic levels, as will be seen subsequently.

It is convenient to employ two simple rate models; the corotational

Maxwell (CRM) and the codeformational Maxwell (CDM) equations*

Both models can be represented by the following rate expression:

V + tR(r) = A (n-i2)

tR is a characteristic relaxation time, "% is a viscosity parameter (or the

zero-shear-rate viscosity), 17 is the dynamic stress tensor and (*) is some

operator that represents a convected time derivative that translates and

deforms with a fluid particle.

For the CRM model,

^ - f*V rmi -
<n" 13)

This is the corotational (or Jaumann) derivative. For the CDM model,

DTii ^ <=>ui _ 5>uj (n-14)

< ru> = St -
r «¥lT" rik ^k

Eq. (11-14) defines the contravariant codeformational (or Oldroyd) derivative

D is the Stokes derivative.

Dt
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In SSF, the CRM model is known to predict shear thinning viscosity

with unrealistically low power-law exponent (-1) while the CDM model gives

a constant viscosity in shear. The normal-stress coefficients *V and
12 - 23

depend too strongly on shear rate in the case of the CRM model while they

are constant in shear for the CDM model. In SEF the CRM model predicts

constant elongational viscosity while the CDM model predicts a singularity

in the elongational viscosity function, at £ = l/2tR . The above is indicative

of the limitations of these models, yet their qualitative nature is of some value

in assessing the response of a viscoelastic fluid in complex flow fields.

For the planar flow field discussed in the previous section the following

stress components are obtained for each of the models considered above.

CRM CDM

r r = Znr?o * -7 £ fa-iw £ (jfc *S]s

It is noted that the CDM model predicts singularity in stress at € = l/2tR

and/or l5 1^2 + ^.
2 = l/4t^2 . Mathematically, the stresses will "blow up"

at the singular points regardless of the relative magnitude of the kinematic

parameters. In practice, the stresses may increase considerably under the

given singular conditions and this will ultimately depend on the elasticity
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of the fluid (through t^) and on the absolute levels of the kinematic

parameters.

In a recently proposed scheme for classification of flow fields,

Tanner and Huilgol (1975) and Tanner (1976) devise some rather arbitrary

but nevertheless useful criteria for distinguishing between so-called "strong

flows" and "weak flows". Using Tanner's physical approach, linear dumb-

bells embedded in a viscoelastic medium will extend "indefinitely" under

"strong flow" conditions whereas in "weak flows" this will not happen.

"Strong flows" are, in effect, flows with dominant extensional components.

Tanner was able to show that for "strong flows",

det cC > 0 (H-15)

and,

21 - 3 tr££2 + detoC < 0

16 4 - (11-16)

where

a> xJ

<Tji is the Kroenecker delta.

For the general planar flow field,

X =

.

*1

- k- l/2tR

0

0

0

-1/21.

\
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and consequently the criteria for "strong flow" are:

k
2

+ ^1^2 > X/4tR
2

(11-18)

and

(11-19)

or,

4 > 4tR
2 ^2 + 4tR2 > l (11-20)

As seen, the conditions for "strong flow" are compatible with the singularity

conditions for the CDM model. This result is not surprising, inasmuch as

the linear dumbbell considered by Tanner is, in fact, the molecular equiva-

lent of the CDM model (Bird et al. 1977b). Tanner's conditions and the

CDM singularity criteria define a range of kinematic behavior for which the

general planar flow field will have dominant extensional components.

Can bounded coating flows be classified as "weak" or "strong" flows?

Using Tanner's criterion (Eq. (11-20)), it is not impossible that bounded

coating flows become "strong" even though "o^, T^/ ~S\ « 1- For very

high deformation rates and high elasticity such flows can be within the

"strong flow" regime. These flows, however, will be mostly "weak" since

the absolute levels of € and "f are usually low as is implicit from the

lubrication-like geometry.

Finally, it is instructive to examine the response of a viscoelastic

fluid in the planar flow field using a more realistic constitutive equation.

The Criminale-Ericksen-Fibley (CEF) equation, considered below, is
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discussed in detail in IV. 2. This equation has been recommended for use

in the case of nearly viscometric and nearly steady flows. (Pipkin and

Tanner 1972, Bird 1976). It is, nevertheless, useful to employ the CEF

model for evaluating the effect of the various non-viscometric terms in the

rate-of-deformation tensor on the dynamics.

The CEF equation (in a codeformational form) reads

F = V & + (^12+^23) A -| Pl2 A
(H21)

^, the Rivlin-Ericksen tensors, were evaluated in the previous section for

the general planar flow field.
, ^ and ^ are the three viscometric

functions. The various stress components for the planar flow field, as

given by the CEF equation, are found to be:

"C"l2 = ^(^i+'^-'^u^ fl ' Tf2 > (
n-22

)

^"ll
~ *22 = 44^+ ( Tf^

2 - TJ
2

2
)

(11-23)

and

T 22 " Z~33 = "2 ^7 + ^12 <
2 ^ 2

+ "*1*2 + V>
+ ^23

[4€ 2 + (Tf1+ iT
2 )

2
]

(H-24)

Now, if one imposes the kinematic condition for bounded coating flows,

Eq. (II-2), square and cross terms of ^ and 7f
2

can be neglected and it

follows that:

•c = nfH + orif, - 3>a e if , (n-2s>
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and

T 22 "^3 =
23

+ ^12 ^1*2 + 2 ^23 ^1^2 " 2n
] € (11-27)

The dashed-underlined terms represent, loosely, the first-order effect of

the non-viscometric kinematic parameters on the dynamics in the system.

A definitive assessment of Eqs. (11-25) to (11-27) is not possible

since, as was stated previously, the kinematics in planar flows are,

generally, spatially inhomogeneous. That is, the relative magnitude of

the various kinematic parameters is varying throughout the flow domain.

This point can be illustrated by a qualitative examination of the sheet-and-

roll system which is fully analyzed and discussed in VI. 2. In this system,

the bounding surfaces are moving in the same direction and at the same

lateral speeds. The resulting velocity field in the fluid film has an axis

of symmetry along which the velocity gradient vanishes identically. Thus,

along this axis tTj_, a 0 ^ut £1/0 and hence the condition given in

Eq„ (II-2) is indeed not homogeneously valid.

The transient nature of the flow field (in the Lagrangian frame) has

not been considered as yet. This aspect of the kinematics is exceedingly

important when dealing with viscoelastic fluids and it is briefly discussed

in the following section,,
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II. 4 Transient (Relaxation) Effects - Deborah Number Considerations

Bounded coating flows and lubrication flows are flows with changing

stretch histories (Huilgol 1975), i.e., when viewed from a frame attached

to a fluid particle, the deformation field is rapidly changing in time.

Provided the fluid is viscoelastic, the abruptly deformed particle may not

be 'fast' enough to respond 'in phase' to the imposed strains which may,

in turn, considerably affect the overall dynamics of the system.

In order to assess the effect of the transient kinematics on the

response of the system it is necessary to consider the Deborah number

(Nrje)- There is some controversy as to the exact mathematical definition

of the Deborah number (Reiner 1964, Metzner et al. 1966, Marrucci and

Astarita 1967, Huilgol 1975, Tanner 1976). Its physical meaning, however,

is well accepted; it is the ratio of the fluid relaxation time to the duration

time of an imposed deformation. For very abrupt deformations (high N£)e )

a viscoelastic fluid will respond in a nearly elastic manner while for long-

lasting steady deformations (low Nrje) the response will be more viscous-

like.

In typical bounded coating flow systems the duration of an imposed

deformation is 0(L/U) where U is a characteristic speed and L is a

characteristic length. Thus, a characteristic Deborah number is given by

NDe = 0(tRI)
(H-28)
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For sufficiently high speeds N can attain high levels thus making the
J—/tJ

problem essentially a "Deborah number problem" rather than a "Weissen-

berg number problem", i.e., the transient dynamics may practically over-

shadow the steady-state dynamics.

Many viscoelastic constitutive models predict substantial overshoots in

stress in response to fast step-up deformations (e. g. ,
Bogue, Meissner,

Carreau, Spriggs and others) which was verified experimentally as well

(Leppard and Christiansen 1975). Hence, viscoelastic fluids when subject

to such deformations as found in coating flows may produce, at the time

of duration of the imposed strains, stresses which are much higher than

the expected steady-state stresses.

In order to account for such effects it is necessary, in principle, to

modify the planar flow equations (see n. 2) by making the kinematic con-

stants functions of space. In the Lagrangian sense these constants will

rather be functions of time(s) and a solution of Eq. (II-8) will yield a

motion that is different from the one given in Eq. (II-9). This motion

should then be introduced into one of the constitutive models that are

instrumental in predicting transient viscoelastic response. The imprac-

ticallity of such an approach is obvious.

A more rational approach would be to consider a simple simulated

strain history, following a single particle trajectory, that qualitatively re-

presents the actual history in a lubrication-type system. This history cai

then be used for calculating the transient stresses in the system by
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employing an appropriate integral constitutive model, and see how they differ

from the steady-state stresses. Such qualitative analysis is yet to be under-

taken.
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CHAPTER HI

VISCOELASTIC LUBRICATION FLOWS

III. 1 Hydrodynamic Lubrication - Brief Introduction

The classical theory of hydrodynamic lubrication is almost a century

old. In 1886, Osborne Rpynolds (Cameron 1966) published the first rigorous

treatise of flow behavior in lubrication systems. In his work, Reynolds

introduced a number of simplifying assumptions into the more general

Navier-Stokes equations and transformed these relatively complex equations

into a single partial differential equation. The simplifying assumptions that

were introduced by Reynolds proved valid in most lubrication flow systems

and consequently were given the collective title "the lubrication approxima-

tion".

The lubrication approximation can be posed in the following way

(Pearson 1967):

Consider the system shown in Figure III-l. A viscous fluid is contain-

ed between two aribtrarily shaped boundaries

x2 = BWx 1
, x

3 ,t)

and (a1" 1)

x2 = B 2 (
x 1

,
x 3

,t)

The functions B l
and B2

are smooth and well-behaved. The boundaries are

separated by a thin fluid film of thickness h(xl ,x 3 ,t) (=B
1
(x

1
, x

3
,
t)-B

2
(x

1
,x

3
,
t))



Figure III- 1. A characteristic lubrication geometry.
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and are moving at lateral speeds of U x and U
2

. For such a system the

lubrication assumptions will be:

a. The fluid is Newtonian and incompressible.

b. The flow is laminar, isothermal and steady (in the Eulerian

sense) with negligible body forces.

c. The characteristic length of the system (L) is much larger than

any value of the function h. If one chooses some characteristic thickness,

Hq say, then L/Hq » 1. This geometric statement leads to the physical

assertion that velocity gradients across the film thickness are much larger

than gradients along the primary flow direction, or

Sty <u>
,

<U) « J.M <
II!- 2 >

Also, the variation of the hydrostatic pressure will be only in the primary

flow direction. This approximation is sometimes referred to as the "thin

film approximation". The mathematical foundation of this approximation is

presented in detail by Langlois (1964).

d. The curvature of the boundaries is negligible everywhere, i.e.,

o>h ,
2h « i

5x3

This implies that the surface velocities are nearly unidirectional and the

boundaries are almost parallel.

Of the assumptions just outlined the last two are the most character-

istic of the lubrication approximation and are widely extended to flows which
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are not always identified as lubrication flows per-se .

The lubrication approximation is a very useful tool for solving the

equations of motion in flow systems with geometric and kinematic features

usually found in lubrication systems.

In many real systems, however, the lubrication approximation is

partially invalid and consequently one has to relax some of the lubrication

assumptions. A case in point is the extension of lubrication theory to

non-Newtonian fluids. In the late 1950's macromolecular additives to

lubricating oils were first introduced with the purpose of improving the

thermal properties of the lubricants by increasing their Viscosity Index

(i.e. reducing the dependence of viscosity on temperature) (Hutton 1973).

This novel use of macromolecular solutions as lubricants required a re-

vision of the theory of lubrication to account for the non-Newtonian

rheological behavior of the fluids.

A complete solution of the viscoelastic lubrication problem, it was

shown in Chapter II, is a formidable task. The lubrication approximation

being essentially a kinematic statement may be irrelevant and misleading

for viscoelastic fluids under high deformation rates. Hence, it is necessary

to establish some reasonable constitutive approximation, in addition to the

kinematic lubrication approximation, to make the problem mathematically

tractable. Two leading approaches for dealing with viscoelastic lubrication

flows have been advanced in the last decade; one is based on physical
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considerations and the other on dimensional arguments. These approaches

are briefly outlined in the next two sections and the subject is summarized

in Section 4.

in. 2 Extensional Primary Field (EPF) Approximations

Most lubrication flows have kinematic extensional components which

arise from finite variation of the velocity in the primary flow direction.

These components are usually orders-of-magnitude smaller than the kine-

matic shear components (which is in accordance with the "thin film approx-

imation" as stated above). The rate of deformation tensor for such flows

will then take the form:

A
/ [ 0 ] A 12 0

10] 0

\ o 0
[ o

]

(III-3)

where the bracketted extensional terms are assumed to be negligible in

comparison to the dominant shear components.

The role and importance of the extensional components, small as they

are, needed a fundamental reexamination in view of some experimental

evidence which pointed to the existence of very high normal stresses in

elongational flows even under conditions of moderate extension rates

(Metzner 1971). It is useful to consider this phenomenon in terms of the

"Trouton ratio T! which is defined as the ratio of the elongational viscosity

to the shear viscositv,



N = lei. = (rn-r22>/g (in-4)

This ratio is equal to 3. 0 for Newtonian fluids but, as is discussed in

detail by Metzner, there is ample evidence to indicate that this ratio can

attain high values, of the order of 103 , for finite values of extension rates

( €. > l/2tR ). Moreover, there are some constitutive models which support

this observation as well (e.g., Bogue, WJFLMB, Lodge's rubber-like fluid

and others (Pearson 1975)). This phenomenon, however, is not free from

controversy and there are some experimental data and some constitutive

models which do not exhibit such high stresses in elongational flows

(Pearson 1975). It is the inherent difficulty in measuring the elongational

viscosity of liquids which prevents current resolution of this matter.

If indeed a dramatic increase in the elongational viscosity is anticipat-

ed then the following approximation can be considered (for two-dimensional

flows with moderate-to-high elongation rates)

/

77

[ o ]
0

[0] 7~22 0

\ 0 0 r

(III-5)
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Here, the shear components of the stress tensor are neglected and the

dynamics of the flows are dominated by the normal stresses.

The ideas presented above were put forth by Metzner (1971, 1968) who

termed the proposed approximations as "extensional primary field" (EPF)

approximations. These approximations merely state that the relevant
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rheological property for this class of flows is the elongational viscosity

and that the purely viscous characteristics of the fluid are irrelevant for

elongation rates that exceed ^ = l/2tR „

III. 3 Tanner's Approach - The Purely Viscous Approximation

An approach fundamentally different from the EPF approximations was

proposed by Tanner (1960, 1962, 1968, Williams and Tanner 1970). His

arguments are based on a straightforward order-of-magnitude analysis of

the momentum equations for viscoelastic lubrication flows.

In the absence of inertia and body forces, the equations of motion in

two dimensions and in cartesian coordinates reduce to,

PZl2 3P (in-6)

S> xL

9X 1

^'£"22
.

5

^ p (III-7)

Using the lubrication approximation, Eq. (III-7) can be further simplified to

(III- 8)——2 u
-D xL

where T22 = P - 22

and Eq. (III-6) is rearranged to

&{TU - ^22 ) + gSl2 - ^ T22 <
ni" 9 )

9x1 3x2 5> x l

By defining the following dimensionless variables



33

Eq. (III-9) can be rewritten as

9 (1;n -^22)
+ JL 3£u . -RIm. (in-io)

The central argument in Tanner's approach is based on the assertion that

the viscous term in Eq. (Ill- 10) is much larger than the elastic term in

"true" lubrication systems (i.e., in systems where L/H 0 » 1).

The ratio of the two terms on the l.h.s. of Eq. (in-10) can be

written as

H
Q

9(TU - T22)/9J
v

h
0

;

SR
]

(in-ii)

In real systems, SR (the "recoverable shear") is not usually larger than

10 (Middleman 1977) and the above ratio is indeed sufficiently large to

justify the elimination of the elastic term from Eq. (Ill- 10). So,

3^12 _ ^ T 22 (IH-12)

^x2

and since dT^f-dy^- is much smaller than 2P/ 3x l
, in accordance with

the lubrication approximation, one can write

3Zr12 = dP (HI- 13)

S> x2 dx 1

Eq. (Ill- 13) states, in effect, that one needs to know only /yj (if), the shear

viscosity function, for even a viscoelastic fluid, in order to solve the equa-

tions of motion in lubrication systems. Tanner's approach can be challeng-

ed by arguing that SR can attain high levels, comparable to L/Hq under

conditions of high deformation rates. However, this approach seems
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realistic, as a first approximation, within a wide range of deformation

rates and it cannot be easily dismissed.

III. 4 Summary

Tanner's and Metzner's approaches seem contradictory at first although

both present valid supporting arguments. (If one accepts Metzner's notion of

normal stress "blow-up" under conditions of finite deformation rates). It

would be natural to reconcile this apparent contradiction by limiting each

approach to a certain range of deformation-rates. This idea can be pre-

sented schematically as follows:

deformation rates appropriate approximation to use

low ("weak flows") Tanner's purely viscous approxima-
tion (V) needed)

moderate a realistic constitutive model needed

high ("strong flows") Metzner's EPF approximation

( i )
needed)

Limits to the proposed deformation-rate ranges cannot be set a-priori

and an extensive experimental program is needed in order to establish the

range of applicability of any of the proposed approximations. It would be

reasonable to assume that industrial coating processes operate at moderate

-

to-high deformation rates although operation at low deformation rates cannot

be automatically excluded (since it much depends on the fluid through tjj).

Interestingly, the phenomenon of stress "blow up" in elongation flows can

be put to direct test by examining experimentally the applicability of the
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"extensional primary field" approach. If such approach is found to be

realistic then the phenomenon of stress "blow-up" seems acceptable and

vice versa.

It was noted in Chapter II that bounded coating flows and thus lubri-

cation flows can be "strong", in Tanner's sense, under conditions of

extreme shear. It is not yet clear, however, whether "flow strength"

necessarily implies that the dynamics in the system are going to be

drastically affected as is suggested by Metzner. This question is of funda-

»

mental importance and it addresses itself to the constitutive nature of vis-

coelastic fluids.

Little has been said in the literature on the role of relaxation

(transient) effects in viscoelastic lubrication flows. This is surprising in

view of the arguments presented in Section II. 4. Only recently, it was

suggested that transient effects may play a decisive role in lubrication

flows (Harnoy 1976). These effects were introduced into the lubrication

problem via a modified second-order model that allegedly "enables a

separate parametric description of the stress relaxation process". This

approach seems arbitrary and may not give a realistic representation of

the actual dynamics. Consequently, further consideration of transient

effects in lubrication flows is in order.

The few existing experimental studies on non-Newtonian lubrication

flows show that polymeric lubricants are more effective than the equivalent
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Newtonian lubricants (with viscosity equal to the zero-shear-rate viscosity

of the non-Newtonian lubricants) (Cf: Walters 1973, Reiner et al. 1969).

That is, the "load carrying capacity" in journal bearings with viscoelastic

lubricants was shown to increase and the friction coefficient to decrease

due to viscoelasticity. This observation is not compatible with Tanner's

approach which predicts a decrease both in "load carrying capacity' 1 and in

friction coefficient due to the shear thinning character of the fluids. These

experiments, however, are not sufficient and not satisfactory in the sense

that they were performed in actual bearings where secondary effects such

as non-isothermal conditions and the presence of cavitation could be easily

overlooked (Tanner 1965). The question of the role of hydrodynamic elas-

ticity in lubrication-type systems remains unresolved, and indeed may be

resolved more readily through careful observation than intuition.
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CHAPTER IV

MODELING PHILOSOPHY

IV. 1 The Dynamic Equation

The complete set of momentum equations subject to the lubrication

approximation reduces to a single equation, Eq. (III-9), which is rewritten

here in the form
^ ^

Z&ksl e>r«y = _£T^ (lv.i)

c? x z>y p x

where x (previously x 1
) is the primary flow direction, y(x2 ) is the shear-

ing direction anri z(x3 ) is the neutral axis,

One now faces the dilemma of what approach should be adopted in

order to further simplify the dynamic equation and make it algebraically

more tractable.. Specifically, which term on the 1. h. s. of Eq. (IV-1), the

elastic (I) or the viscous (II), should be retained for later calculations.

Two possible approximations have been cited and discussed in the

preceding chapter, each relevant under a certain range of deformation

rates. Tanner's purely viscous approximation was shown to be valid for

relatively low deformation rates (weak flows) whereas the extensional

primary field approximations due to Metzner are possibly useful at high

deformation rates (strong flows). Even though no convincing experimental

evidence is available at the present time to support either approach, the
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purely viscous approximation seems to this author more appealing for

several reasons:

1. This approximation is certainly valid for weak lubrication flows

and it may well be valid for strong flows if the phenomenon of stress

"blow-up" is not manifested.

2. The current understanding of strong flows is poor, primarily due

to practical limitations in rheological characterization of viscoelastic fluids

under high deformation rates and especially under high elongation rates.

3. The simulated coating flows that have been tested experimentally

in this study were all weak flows.

These points provide a valid rationale for employing the purely

viscous approximation in the current study. When this approximation is

applied, Eq. (IV- 1) assumes the following form

dx dy
1

l
{ *}

dy J

P, the hydrostatic pressure, and u, the x-component of the velocity vector,

are the unknown hydrodynamic functions to be determined through a solution

of Eq. (IV-2) subject to an appropriate set of boundary conditions. In

accordance with the "thin film approximation", P is strictly a function of

x whereas u is explicitly a function of y.

The only viscometric function needed for solving Eq. (IV-2) is'y(IIa),

the shear viscosity function, which depends, in general, on the second

invariant of the rate-of-deformation tensor. Even though the elastic
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characteristics of the fluid are not needed in the dynamic analysis (i.e.

solution of Eq. IV-2), they may be used for estimating the normal tract-

tions applied by the fluid on the solid boundaries of the system. One is

particularly interested in the total stress acting normally in the y direction.

Such a stress is given by

- T
77

= P - Z
1y (IV-3)

P is evaluated from Eq. (IV-2) whereas Tyy, the dynamic normal stress,

can be obtained from a second viscometric function, ¥l2(R&) ~ tne first

normal stress coefficient. The viscometric functions and ^2 can be

evaluated once an "appropriate" viscoelastic constitutive model has been

selected. Spveral such models are presented in the following section and

their limitations and merits are discussed in detail.

A regular perturbation scheme that is used in this study for solving

the dynamic equation is briefly outlined in Section 3. The boundary con-

ditions to be applied with Eq. (IV-2) are generally straightforward. The

only problem arises in the formulation of the dynamic boundary conditions

at the downstream end of the system where flow separation is taking place.

This question is briefly addressed in Section 4.

IV. 2 Constitutive Models

IV. 2.2 General . The task of selecting a "reasonable" constitutive

model for use in the dynamic analysis is complicated by virtue of the great

abundance of such models in the literature (see for example Bird 1976).
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The goal of the selection process is to make the best compromise between

algebraic tractability and physical realism, as it is usually the case that

realistic models are mathematically difficult to apply in actual problems.

It is, thus, useful to restrict our attention to the particular class of flows

that is pertinent in the present study.

It has been stated in the previous section that the purely viscous

approximation is reasonable for weak lubrication flows of viscoelastic fluids.

This approximation can be restated in the following way. For low-to-

moderate deformation rates, the flow in a lubrication-type system is nearly

viscometric and nearly steady (in the Lagrangian sense). This is the

kinematic counterpart of the purely viscous dynamic approximation and it

permits a further restriction on the constitutive model to be selected.

For nearly steady shear flows one can apply constitutive models which

are deriveable from the retarded-motion expansion (Bird et ah 1977a).

Two such models, the second-order fluid model and the Criminale-Ericksen-

Filbey (CEF) model, are considered subsequently. (The Newtonian fluid

and the generalized Newtonian fluid are treated as special cases of these

models.

)

IV. 2.2 The second-order fluid model. Modern polymer fluid rheology

has been patterned, quite successfully, around the "simple fluid" concept.

The simple fluid theory (Noll 1958, Coleman and Noll 1961) holds that the

present state of the stress in any element of the fluid is a functional of
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the rate-of-s train history of the element. If this functional is "sufficiently

well-behaved" it can be expanded in Frechet series (the equivalent of

Taylor series for functionals) and depending on how slow and how slowly

varying is the flow, the series can be truncated at a suitable term. The

expansion of the rate-of-strain history about the present state, for flows

in which the velocity gradient is slowly changing in time, is called the

retarded-motion expansion (Bird et al. 1977a).

When only first- and second-order terms are retained, this expansion,

in terms of the stress tensor, reduces to (Bird et al. 1977a)

0^2 and<^
11 are constant material parameters and ^gj^ is the corotation-

al derivative defined in Eq. (11-13). A fluid obeying Eq a (IV-4), which is

written in a corotational formalism, is called a second-order fluid. Simple

examination of the viscometric properties of the second-order fluid shows

that it has a constant viscosity and constant normal-stress coefficients

(jKo = 2.°t and = o<C -ofJ). Such behavior is clearly unrealistic
1« 2 2o 11 2

and there is little evidence that fluids obeying the "second-order" equation

exist at all. This model is, nevertheless, popular among fluid dynamicists

for solving difficult viscoelastic flow problems. Its relative simplicity and

its qualitative features which allow a "first-order" estimate of the effect of

elasticity, are the main reasons for using the second-order fluid model.
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The application of the second-order fluid model is especially simple

for flows which are creeping and planar (such as the flows considered in

this study) due to the Giesekus-Tanner theorem (Tanner 1966, Bird et al.

1977a). This theorem states that a second-order fluid and a corresponding

Newtonian fluid (a fluid with a viscosity equals to o^) have the same

velocity fields in a given system provided that the flow is creeping and

planar and the velocity boundary conditions are identical in both cases.

A direct consequence of the Giesekus-Tanner theorem is the so-called

Giesekus-Tanner-Pipkin equation (Bird et al. 1977a) which reads

p=po.^£E0. Ki _^ 2)i2 (IV.5)

o D
where P is the pressure for a corresponding Newtonian fluid, "jjf" is

the Stokes derivative and *$ = ^ 2 • Thus, the pressure and the velocity

fields for a second-order fluid in a creeping planar flow system can be

readily established once the Newtonian solution for the same boundary-

value problem is known. The Giesekus-Tanner theorem is used throughout

this study for evaluating the relevant hydrodynamic functions for a second-

order fluid in several coating systems.

The normal stress, Z7yy, for a second-order fluid in a (nearly) simple

shear flow is given by

5y-<"ii-V*
2 ,IV- 0)

and, using Eq. (IV-5), the total stress, -Tyy, is
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u 2
(IV-7)

<*1 dx

This equation is used throughout for calculating the total normal traction

exerted by a second-order fluid on the solid boundaries of the systems

which are considered in this study.

To sum up, the second-order fluid model is useful for qualitative

evaluation of first-order effects of hydrodynamic elasticity and it is readily

applied in a dynamic analysis of creeping planar flows with the aid of the

Giesekus-Tanner theorem. The obvious limitations of this model, however,

should be recognized when judging its performance in quantitative terms.

A more elaborate and more realistic constitutive model is considered

subsequently.

IV. 2. 3. The Criminale-Ericksen-Filbey (CEF) equation. A major

limitation of the second-order fluid model is its inability to yield viscomet-

ric properties which are shear rate dependent. It turns out that this

handicap can be corrected by a simple modification of the second-order

equation. Replacing the constant coefficients in Eq. (IV-4) with scalar

functions of IIA (the second invariant of the rate-of-deformation tensor)

gives

(IV-8)

where the three viscometric functions, are defined as



44

T
r 12 = ^ 2 " (IV- 10)

7 =
(iv-9)

^23 =
(iv- id

This equation (IV-8) was derived by Criminale et al. (1958) from more

fundamental considerations and it was found especially useful for flows which

are nearly viscometric and nearly steady (Pipkin and Tanner 1972, Bird

1976). Eq. (IV-8) is known as the Criminale-Ericksen-Filbey (CEF) equation

and it has been used previously, in Chapter II, in the examination of planar

flows. It can be easily verified that, in the limit of steady simple shear

flow, the functions
, Xj^ an<^ -^£3 nave ^e meanmSs ascribed to them in

Eqs. (IV-9) to (IV-11).

The viscometric functions are not specified by the CEF model. Rather,

one is free to select these functions to fit any viscometric data. In the

present study, two empirical expressions for and ^2^^ nave been

chosen, (the third function is assumed vanishingly small). The selected

viscosity function has the form

nn = (iv- 12)

f i+dtRTfl) 1 " 11

^0
is the zero-shear-rate viscosity, tR is some characteristic time constant

and n is a characteristic power-law exponent. The viscosity model, thus,

contains three parameters which can be adjusted to fit reasonably well any
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shear viscosity data. Eq. (IV-12) is similar to the Carreau viscosity

equation (Bird et al. 1974) which reads

"7 = 2* (iv-13)

This form is also a useful empiricism but it is somewhat less convenient

to manipulate in a perturbation analysis that will be used throughout this

study (see next section).

Several researchers (Graessley and Segal 1969, Abdel-Khalik et al.

1974) have argued that the time constant appearing in Eqs. (IV- 12) and (IV-

13) is related in some way to the viscoelastic nature of the fluid or, rather

to its relaxation time. So, while viscoelasticity is not involved explicitly

in the dynamic analysis (Eq. IV-2), it is, nonetheless, associated with the

problem through the viscosity model.

A useful empiricism for the first normal-stress coefficient is

V - 1 tR r^n u 2 (IV- 14)r i2 "
-

2 ~*j~
0

[y ll* )]

This empirical expression will be used throughout this study for evaluating

the normal stresses generated by a CEF fluid.

The dynamic analysis with the second-order fluid was shown to be

greatly simplified through the use of the Giesekus-Tanner theorem. Such

simplification is not possible with the CEF equation. Substitution of the

empirical viscosity model into Eq. (IV-2) yields a non-linear ordinary

differential equation which cannot be solved by exact analytical methods.
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Hence, one has to resort to some approximate techniques for solving Eq.

(IV-2). One such technique is briefly outlined in the following section.

IV. 3 Solution of the Non-Linear Dynamic Equation:
A Perturbation Approach

The use of the empirical viscosity model, Eq. (IV- 12), in the dynamic

analysis introduces severe non-linearities into the dynamic equation. Such

non-linearities can be handled quite effectively by standard (regular) per-

turbation methods.

For later arguments, it is convenient to make the problem dimension-

less in the following way:

U J L / H

and = H 1

U is some characteristic velocity and L and H are characteristic dimensions

of the system. In terms of these dimensionless variables, the equation of

motion combined with the empirical viscosity model assumes the following

form:

_d9f

^ _ d . d_3 i

72 d^ L

l+Ne
(/d_^/)l-n J

(IV-15)

where Ne = (tR ^)
1_n

= ^Wg) 1 " 11
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and Ws is the Weissenberg number. Also,

Eq. (IV-15) is a non-linear ordinary differential equation that contains a

single dynamic parameter, Ne. Ne is a viscoelastic characteristic of the

system and it would seem natural to use it as a perturbation parameter

in this problem.

Eq. (IV-15) can be integrated once with respect to to give

(fc-ri + C) [l + Ne (|—|)
1 -n]= —

'
eM dV ;

d^J (IV-16)

C = C( J) is a constant of integration. The perturbation analysis proceeds

in the following manner. All the dependent variables in Eq. (IV-16) (^?,

V and C) are expanded in power series of Ne, in the usual perturbation

fashion (Van Dyke 1964),

f(Ne ;
x

if
n) = 2] fj(Xi ,

n) Ng
J (IV-17)

With the assumption that Ne « 1, the functions can be linearized as

f(Ne ;
xb n) = fO(x

t ,
tt)+N€f

1(xi, n) + 0(Ne
2

)
(IV-18)

f° , the zeroth-order function is the Newtonian solution and f ,
the first-

order function, is to be determined in the context of the perturbation

analysis. The standard procedure is to introduce the linearized expansions

back into Eq. (IV-16) and to compare terms of like orders in Ne. In
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principle, one can proceed and extend this analysis to higher order terms in the

expansions. However, the algebraic complexity involved makes it impractical.

It is important to note that the range of validity of the perturbation

solution is quite limited, as in order for Ne to be much smaller than unity

the deformation rates should be very small, of the order of 1 sec* 1 say,

for conventional viscoelastic fluids . Such deformation rates are much too

low for common coating operations, or even for the simulated coating flows

that have been studied experimentally in the present work. The value of

this approximate solution lies in its ability to point to the direction of the

effect of viscoelasticity, and specifically the effect of shear thinning , on

the performance of the system relative to a Newtonian system. Thus, this

solution is, in a sense, complementary to the analysis with a second-order

fluid in which first-order effects of fluid elasticity are examined.

It is interesting to note that the power-law (Ostwald-de Waele) model

is a special case of the empirical viscosity equation. The power-law model

is written as

m'(l II a)

(n ' 1)/2
(IV- 19)

where m'and n are constant parameters. For Ne » 1, the empirical vis-

cosity equation reduces to the power-law equation with m'= j__n •
Thus

;

' R'

if a solution for a power-law fluid is available, it can be matched with the

perturbation solution (for which Ne « 1) provided that the functions consid-

ered are well-behaved.
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In order for Eq. (IV- 16) to be mathematically well posed it is

necessary to consider an appropriate set of boundary conditions. Most of

these conditions are standard and well accepted. The question of the

boundary conditions at the separation region, however, is more involved

and, hence, it is given a special consideration in the next section.

IV. 4 The Separation Boundary Conditions

The boundary conditions imposed on the pressure field at the upstream

end of a lubrication converging-diverging system are not of great concern

since they are, usually, not associated with free surfaces (in the case of a

flooded inlet). The pressure is taken to be zero (ambient) at a distance

far upstream from the nip (position of minimum separation), or it can

assume some arbitrary value if a finite pressure is imposed on the system

at the inlet zone.

A more difficult problem is the question of the boundary conditions at

the downstream end, i.e., at the point where the liquid film separates or

cavitates and it gives way to a flow system bounded by free surfaces, The

complexity of this problem stems from the fact that the location and shape

of the free meniscus at separation are a-priori unknown and, hence, the

role of surface-tension forces in the dynamics of the separation region is

difficult to assess. The exact form of the boundary conditions is expected

to have a strong effect on the dynamics in the bounded flow regime and it

will, certainly, have an appreciable effect on the thickness of the fluid film
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deposited on the moving surface(s) (Taylor 1974 a,b). Consequently, this

problem has been the subject of numerous analyses and investigations and

it dates back to Reynolds' classical treatise on the journal-bearing problem

(Cameron 1966).

It has been noted, by Taylor (1963) (see also Birkhoff 1964), that

free boundaries in partial lubrication can arise from two physically different

causes. In converging-diverging flow systems, where sub-ambient pressures

can be generated in the diverging section, it is possible that a gas which is

»

dissolved in the fluid will be emitted from solution as the pressure falls to

the saturation pressure of the gas in the liquid. The cavitation formed in

this way has been refereed to by Taylor as internal cavitation. This kind

of cavitation was found to develop in heavily loaded systems (high dynamic

pressures) (Banks and Mill 1954). In lightly loaded systems, the cavitation

is formed through physical splitting or separation of the liquid film, caused

by external forces. This type of cavitation is, thus, termed separation

cavitation. As will be shown, each of these mechanisms is associated with

a certain set of boundary conditions. (Floberg (1965) has argued that both

types of cavitation are essentially a single physical phenomenon that is man-

ifested differently under different loads.)

Reynolds, in his journal-bearing analysis, has proposed the following

boundary conditions (Cameron 1966):

dP
dx

= 0 ,

xi

- Pcavity (IV-20)
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where x
l

is the position of film separation. The cavity pressure (Pcavity)

is usually taken to be ambient and surface-tension forces are neglected.

(Note that since the position of film separation, xh is not known, two

separate boundary conditions are associated with the separation region.

)

The above conditions have been applied successfully in a variety of lubrica-

tion systems and are most common today in hydrodynamic lubrication

analyses (Pinkus and Sternlicht 1961, Cameron 1966). Reynolds introduced

these conditions without a firm physical basis. The Reynolds' conditions

were given a physical justification by Swift (1932) and separately by Stieber

(Cf: Taylor 1963, Birkhoff 1964). Swift derived this condition as a stability

condition for a bearing free to seek a position of stable equilibrium (and

not as a condition for flow through a space of fixed dimensions). Stieber,

on the other hand, derived it as a condition for flow continuity. Even

though the arguments presented by Swift and Stieber are both dubious

(Taylor 1974a, Savage 1977a), these conditions are known today as the

Swift-Stieber (SS) conditions. Taylor (1963) first noted that the SS conditions

are applicable to systems which are heavily loaded, i.e., when the cavitation

is formed via an internal cavitation mechanism.

It was observed that, when the system is lightly loaded, sub-ambient

pressures develop in the diverging section of the system (Floberg 1965, 1968;

Cf: Taylor 1974 a, b). Such negative pressures cannot be accommodated by

the SS conditions. This failure of the SS conditions have motivated a search
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for a new set of boundary conditions for lightly loaded systems (i.e., for

separation cavitation).

Hopkins (1957) seems to be the first to use separation conditions in a

lubrication-type system. His conditions, applied to a sheet-and-roll system

with both surfaces in motion, are kinematic in nature and are based on the

intuitive notion that separation will occur at the first stagnation point down-

stream from the nip. That is,

= 0 (IV-21)

Similar conditions have been mentioned previously by Prandtl (Cf: Birkhoff

and Hays 1963). Thus, these conditions are called the Prandtl-Hopkins (PH)

separation conditions. Birkhoff and Hays (1963) have noted that the PH

conditions correspond to the position of "incipient counterflow", i.e.,

separation occurs at a point where there is reverse flow in the divergent

space if the system is fully immersed. The PH conditions can clearly

account for subambient pressures in the divergent section of the system

and they were found in reasonable agreement with observation (see VI. 5).

For coating systems, where the dynamic loads are somewhat lower than in

typical lubrication systems and the solid boundaries are usually rigid, the

PH conditions seem adequate and convenient for practical application. If

the systems are heavily loaded, then the SS conditions would be more

appropriate.
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A major drawback of the PH conditions is their inability to accommodate

backflow or circulation patterns in the flow system just upstream from the

separation meniscus. Such flow patterns were observed by several inves-

tigators for lightly loaded systems (Myers et al. 1959, Pitts and Greiller

1961, Cf: Savage 1977a). Also a numerical calculation of the flow field in

the separation zone, by Williamson (1972), clearly demonstrates the

(possible) existence of eddies behind the meniscus.

A condition for separation has been formulated by Floberg (1965, 1968,

Taylor 1974b) and it was found in good agreement with experimental data.

This condition, however, was derived for lubrication systems in which

striations (or streamers) are prevalent at separation and it is mathematically

cumbersome to apply in practical situations.

A more rigorous approach to this complex problem has been pursued

by Coyne and Elrod (1969, 1970). They solved the complete free surface

problem of the rupture of a lubricating film due to sliding of a flat rigid

surface parallel to a stationary one (see Figure IV-1). Their solution

gives the shape of the free surface at the separation region as a function of

three dimensionless numbers representing surface tension, gravity and

inertia forces acting on the fluid in the separation region. The shape of

the free surface can be expressed in terms of two independent functions

(IV-22)

and
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Figure IV-1. Coyne and ElrocTs separation geometry.
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Or = -E-* H
t

<
IV"23

)

where H is the thickness of the film deposited on the moving surface

(far downstream from the point of separation), Hi is the height of the

film at separation and r is the radius of curvature of the meniscus at

separation. p> and ^ are, independently, functions of all the dimensionless

parameters involved in this calculation. Coyne and Elrod proposed to use

these functions in the formulation of general boundary conditions for Rey-

nolds' equation. These conditions take the form:

P xi = - + A P

(IV-24)

dP
dx

is the surface tension and AP is a correction to the pressure associated

with the transition region (and it is usually negligible). The first condition

is a simple force balance whereas the second condition is based on the

assumption that the pressure gradient at separation should match identically

the gradient calculated for the bounded regime using Reynolds' equation.

The CE conditions are not completely satisfactory inasmuch as they

are based on some assumptions that were not given sufficient justification.

One such assumption regards the velocity distribution perpendicular to the

free surface to have a quadratic form. Also, in their analysis, Coyne and

Elrod do not discuss the dynamics near the contact-line (liquid-air-solid

contact). Rather, they fix the contact angle (the tangent to the curvature
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of the free surface near the solid boundary) at some value and regard it

as an independent parameter of the system (this point is discussed in more

detail in V.5). Finally, they argue that their conditions are applicable to

the case when both surfaces are in motion even though this is not obvious

from their analysis. Despite these drawbacks, the CE conditions are re-

garded superior to the other separation conditions that are currently avail-

albe (Taylor 1974a, Savage 1977a) and they provide a firm basis for most

of the observed phenomena in the neighborhood of the separation region

(Namely, sub-ambient pressures and backflow patterns). The CE conditions

are also well reproduced experimentally.

In practice, it is usually more convenient to employ the PH conditions

especially when the fluids concerned are non-Newtonian (such as in the

current study). It will be shown, in VI. 3, that the PH conditions are, in

fact, indistinguishable from the more rigorous CE conditions except at very

low capillary numbers (Nca = /*U/-f). At tnis range of capillary numbers

the CE conditions themselves are not adequate (Savage 1977a). This, to-

gether with some experimental data (VI. 5) will confirm the claim that the

PH conditions represent reasonably well the physical situation at the separa-

tion region.
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CHAPTER V

BLADE COATING

V. 1 Introduction

Blade coaters are common means for applying a thin coating layer in

a controlled manner onto a moving web. Such coaters are used in a variety

of configurations for coating high viscosity materials and are found primar-

ily in the paper and textile industries (Booth 1968). Figure V-l shows a

schematic diagram of a blade coating system. The blade is a solid surface

oriented at some angle relative to the moving web. The coating material

is 'dragged' by the web through the system and it emerges at the blade tip

in the form of a uniform coating layer.

It is immediately apparent that two geometrical factors are of utmost

importance in the design of a blade coater. The first is the blade angle,

i. e. , the angle which the stationary blade forms with the moving web. This

geometrical factor is bound to have a strong effect on the flow field in the

converging space under the blade and hence it is likely to have some in-

fluence on the resulting coating thickness. Blade angles can vary from zero

("slot coaters") to ninety degrees ("knife coaters") depending upon the

specific application of the coater. The second design consideration is the

rigidity of the blade. Under high hydrodynamic loading the blade can bend
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and deform thereby altering considerably the thickness of the ensuing

coating (Middleman 1977). The degree to which this happens depends on

the elasticity of the blade and the rheological properties of the coating

fluid.

In the limit of small blade angles and narrow flow spaces the blade

coater is essentially a slider bearing which is a fundamental configuration

in lubrication hydrodynamics. Detailed hydrodynamic analyses for the

slider bearing and for a host of variations thereof can be found in the

classical lubrication literature (e.g., Pinkus and Sternlicht 1961, Cameron

1966). Much less, in comparison, has been published on the hydrodynamics

of blade coaters. Most of the studies of the blade coating problem that

have been reported in the literature are concerned with situations encoun-

tered in specific processes. (Windle and Beazley 1967, 1968; Bliesner 1971;

Modrak 1973; Canard 1974). In these studies, the actual dynamics are com-

plicated by such effects as blade deflection, web deflection, fluid viscoelas-

ticity and solvent loss which are considered collectively. This approach is

practical but narrow in scope as it does not permit a definitive assessment

of each of these effects separately.

A theoretical study of the effect of viscoelasticity on the performance

of a blade coater was reported by Greener and Middleman (1974). In their

analysis, the blade was considered rigid and flat and the blade angle was

assumed sufficiently small that the lubrication approximation can be used.
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This analysis is laid out, in part, in the following section. The flexible

blade problem was analyzed by Middleman (1977) who discusses also some

aspects of the effect of viscoelasticity.

The problem of a rigid planar blade tilted at a small angle relative

to a flat web is analyzed in the following section. The analysis is carried

out for two viscoelastic constitutive models using the lubrication approxima-

tion. (The Newtonian lubrication solution is presented without derivation.

)

In Section 3, a simple experiment with a rigid small-angled blade is des-

cribed and the results are presented and discussed in Section 4. The role

of surface tension in the formulation of the dynamic boundary conditions at

the blade tip is considered briefly in Section 5.

V. 2 The Rigid Planar Blade Coater - Lubrication Analyses

V.2 0 1 General . The blade coater shown in Figure V-l is considered

hereafter with the additional stipulations that the system is infinitely wide

(no z dependence) and that the blade angle is 'small', or

Hi-H 0 H 0_i—JL « i and — « 1 (V-l)

The implication of this constraint is that the lubrication approximation is

applicable. The practical meaning of the term 'small' will be commented

on at a later stage.

The coating thickness, ,
is not, in general, equal to the tip

separation (H
Q

) but is rather a function of the dynamics in the converging



flow space. It is the goal of this analysis to relate geometric character-

istics of the system and some rheological properties of the fluid to the

thickness of the coating deposited on the web. An additional performance

variable that may be of interest is the total loading on the blade which

results from the dynamics of the flow field under the blade. This variable

is also evaluated in the analyses to follow.

The analysis is carried out for two constitutive models, the second-

order fluid model and the CEF model, with the intention of gaining some

insight as to the effect of certain viscoelastic parameters on the perform-

ance of the system.

It is convenient now to introduce the following dimensionless variables

and PHq

7' UL

where

for a Newtonian fluid

IJq,
= J o^, for a second-order fluid (V-2)

.
'JUfor a CEF fluid

And the boundary conditions for the system considered herein can be written

as
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<4> -
i "?= 0

(b) 0 "7 =

(c) 0 @ i- 0

(d) 0 @ t = 1

(V-3)

Eqs. (V-3a, b) are the no-slip conditions where (5"(^) represents the position

of the blade surface and it is given by

= K + (1-K)]b (V-4)

where

- Hi
K BW

Eqs. (V-3c,d) state that the hydrodynamie pressures at the leading edge

(jf= 1) and the trailing edge
(J?

= 0) of the blade are zero (or ambient).

This statement is not exactly correct as regards the blade tip, where finite

(negative) curvature of the fluid-air interface will introduce some contribution

of the surface tension to the dynamics of the separation region, In many

practical cases, however, this contribution is negligible and Eq. (V-3d) is

a valid approximation. The effect of surface tension is briefly addressed

in V.5.

The solution of the blade coating (or, equivalently, the slider bearing)

problem for a Newtonian fluid is available in texts on hydrodynamie lubrica-

tion (e. g. , Pinkus and Sternlicht 1961). Inasmuch as this solution is used

later in the analyses for the viscoelastic fluids, the important results for

the Newtonian case are presented below. A straightforward lubrication
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analysis of the planar rigid blade coating problem yields the following

Newtonian functions:

<j> _ . fcg2+ 2 A 1 2
<f - 1 2^-^ + 2^°? (

y-5 )

>Z> = 12
°- 5<g - j (V-6)

6(k-d frq-lh
(K+l)^2 (V_ 7)

and,

A = (V-8)
K+l

where jp _ d

and A
,

the dimensionless coating thickness (and the dimensionless flow

rate) is defined by

C-O

H o

Inspection of Eq. (V-7) reveals that the pressure function, ), has a

maximum within the interval [0, 1] and the position and magnitude of this

maximum are strictly dependent on the geometric parameter K. Likewise,

the dimensionless coating thickness, X , is solely a function of the geo-

metry (K) and it lies in the range 0.5 < ^ < 1.0. It is important to keep

in mind that these results are valid only for small blade angles in which

case the flow field is nearly unidirectional.

The Newtonian results are used subsequently in the analyses for a

second-order fluid and a CEF fluid.
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V
-
2

'
2 The second-order fluid. The second-order fluid model has

been discussed in detail in IV. 2. As has been noted, this model is

especially useful in examining first-order effects of viscoelasticity (and

specifically elasticity) that arise under conditions of low deformation rates.

This model is now applied in the analysis for a rigid planar blade coater.

Inasmuch as the flow field under the blade is creeping and planar,

one can make use of the Giesekus-Tanner theorem (see IV. 2) in the cal-

culation of the hydrodynamic functions for the second-order fluid. It can

be immediately stated that the coating thickness (or the flow-rate) for a

second-order fluid in a given blade coating system will be identical to that

for a corresponding Newtonian fluid since, as given by the Giesekus-Tanner

theorem, the velocity fields of both fluids are identical. Thus, the problem

essentially reduces to determining the pressure (or the total stress) distri-

bution under the blade. This task is also made simpler through the use of

the Giesekus-Tanner-Pipkin equation (see IV. 2). This equation, in a

dimensionless form, reads:

7"? = #° - SR (-—-) V >Z?° (V-9)

where S_ =

L

<=*2 U
R **l H 0

and /£° is the pressure function for a corresponding Newtonian fluid, The

total stress -T^ (=P - Tjy) can now be written in a dimensionless form

using Eq. (IV-7),
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Figure V-2. Total (normal) stress distributions for a second-order fluid in

a rigid planar blade coater (Eq/2L = 0.01). Solid curves:

= 0; Dashed curves: = 1.
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-e77 =
te
o. Sr ^.)Y^0+ | 8r(

H0
L 2 L d*) (V-10)

where _ Tyy Hp2

and it follows that

(V-ll)

In Eq. (V-ll) the total stress is evaluated at the blade surface. Total

stress distributions for several values of K are shown in Figure V-2. In

this figure stress distributions for a Newtonian fluid are compared to cor-

responding distributions for a second-order fluid with SR
= 1. ,

taking

Ho
= 0.01. As seen, the effect of viscoelasticity, as expressed by Sr,

2L

is to increase the total stress. This effect is likely to be small in true

lubrication systems where — « 1.

2L

A direct consequence of this result is that the blade loading (or the

load carrying capacity) generated by a second-order fluid will be higher than

the loading generated by a corresponding Newtonian fluid. The blade loading

can be calculated as follows:

§>. f'-drtL^J <v- 12 >

o

where H 0 2F
* - c*,uL2

and F is the actual loading per unit width.. Using Eq. (V-ll) one finds that

§* £°<K) + i SR (J£-)#1(K) <
v " 13 >



67

where (J°(K) = — o (In K - 2 $zL\
* (1-K)^ K+l

and

j3
1

(K) =
o [K3 - 2K2 + 2K - 1]* K

' K(K-1)(K+1)2
1

The variation of y) with K for several values of SR is shown in Figure V-3

H 0
(with = 0.01). As expected, the blade loading for a second-order

fluid is higher than the loading for a corresponding Newtonian fluid.

V.2.3 The CEF fluid. The CEF model is now applied in the analysis

for the rigid planar blade coater. This model has been presented and dis-

cussed in Chapter IV and it is used here as a means for examining first-

order effects of shear thinning. It was shown that the CEF model is

essentially represented by two empirical viscometric functions,
"J

(V) and

^io(Tf)' which are given in IV. 2. Only the viscosity function, in accordance

with the purely viscous approximation, is used explicitly in the dynamic

analysis. The first normal stress coefficient is used subsequently in the

evaluation of the total normal traction.

The analysis begins with Eq. (IV-16) which is rewritten here in the

form:

As stated in IV. 3 Eq. (V-14) is a non-linear ordinary differential equation

and it does not have a closed form solution. An approximate solution is

thus sought via a perturbation scheme. The viscoelastic parameter Ne is
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Figure V-3. Blade loading vs. K for a second-order fluid in a rigid planar

blade coater (H 0/2L = 0. 01).
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chosen as a perturbation parameter and the various hydrodynamic functions

are expanded in the form

^=^0 + Ne ^l + O(Ne
2
) (V. 15)

>2 = >C0 + Ne y£l + 0(Ne 2
} (v_ i6)

C - C° + Ne C 1 + 0(Ne2 ) (V-17)

and

A = A 0 + Ne A 1 + 0(NP
2

) (V-18)

The zeroth-order terms are the already known Newtonian functions whereas

the first-order functions are to be determined in the course of this analysis.

Higher order terms are assumed to be negligible for the limiting case

Ne « 1 considered herein. Thus, this analysis seeks to estimate "first-

order effects" of viscoelasticity (or rather, shear thinning) on the perform-

ance of the system. The expanded functions are introduced back into Eq.

(V-14) and the solution proceeds in the usual perturbation fashion (see IV. 3).

In the course of the algebraic manipulation one is faced with the necessity

to integrate functions that include an absolute-value operator; this difficulty

makes the derivation considerably lengthier. Such problem arises for

velocity fields that do not possess a plane of symmetry. To overcome this

difficulty one has to investigate the velocity field throughout the flow domain

and divide it (the domain) into zones according to the general shape of the

local velocity profile. The solution is carried out separately for each zone
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with the condition that the hydrodynamic functions are continuous across

the zone boundaries. In the present analysis, the following functions are

used for dividing the flow domain

v . 1x " 2" T (v' 19 >

Y = J^L + ^ (V-20)

and three zones are identified. Inasmuch as the analysis itself is quite

lengthy the important results are presented below without derivation and the

details are given in Appendix C. The final results are as follows. In

zone A (Y > 0, X < 0),

. 12
l(
-X)P+l - YP+1 ]

(V-21)

^3 7C°^p(p+l)

and

TA 2
1 C A 2 P7T°

'

+ 1 (Y - K%)P - -Sr (V-22)
pfcO / p^)U

In Zone B (X > 0, Y > 0),

^ 3 ^ 2p72^>
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For case Bl (d<f /d«y < 0),

^ i = *i _2l _ _3U rfci -±L + xP + yp
Bl B 2 <6

1 B 2
1

o
and for case B2 (d r /doj > 0),

T B2 % 2 <<r^B 2 p ^0 1

+ r^r(^VY)p - -^nr yP

In Zone C (X < 0, Y < 0),

For case CI (d V /d'y > 0)

v i - ^i J2JL JLrjr 1 -^- + (-x)p - (-y)PY C1
C
C 2 ^ 1 C 2

J

(V-25)

— [(-X)P+ 1 +
(
-Y)P+ l]

c£
3
7C
02

P<P+1)
(V-26)

+
Fk<*°r

Y)P
- psb (

' Y)P

(V-27)
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and for case C2 (d*? /d < 0),

C^l S%1 J31 . JL ry, 1 j£j + (-X)P - (-Y)P

(V-28)

where,

d
1

and p = 3-n

\
1

/\
y
the first-order coating thickness function is still unknown and thus none

of the functions given above can be evaluated explicitly at this stage. A can

be calculated by specifying

72° (i, A) + N^a, A) * 0
(V_29)

where

) *
I (1 - X 1^) (V-30)

and A is given by Eq. (V-18). It follows from Eq. (V-29) (by equating

first-order terms) that

k2 _i (V-31)

A 1 = — 71V)A 6 (1+K)

Since A' appears in all the expressions for ft?
1

,
this equation must be

solved simultaneously with the equation(s) for /2 . A solution for

A 1 = X 1
(K, n) worked out by successive approximations, is presented in
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Figure V-4. The fact that X 1
is a positive function implies that the

coating thickness will increase for a viscoelastic fluid (Ne > 0) relative to

a corresponding Newtonian fluid. This increase depends both on the -

geometry (K) and on the Theological characteristics of the fluid (Ne, n),

Once A 1
is known, total stress distributions can be evaluated using

Eqs. (V-21), (V-23) and (V-26). The total stress function evaluated at the

blade surface is given by

" 6UL *° + Ne^1
+ I Ne

1^" (JLfi. ,
(^2

-2)
2

II *
_2

e
L 4^2 (V-32)

where use has been made of Eqs. (IV-14) and (V-5) in deriving the dashed-

underlined normal stress term. This term is evidently negligible in com-

parison to the other terms in Eq. (V-32) since it is of order higher than

one in Ne (as n < 1) and, in addition, it contains the geometrical factor

JJo which is much smaller than unity in the context of a lubrication

analysis. It is, thus, justified to neglect this term in the calculation of

the total stress distribution which essentially reduces to the pressure dis-

tribution. Pressure distributions for several rheological parameters are

presented in Figure V-5 for the case K=5. These results show that a

viscoelastic fluid will produce pressures that are lower than those produced

by a corresponding Newtonian fluid (a Newtonian fluid with a viscosity equal

to the zero-shear-rate viscosity of the viscoelastic fluid). The effect of

the power-law index is contrary to the expected; the closer it is to one



Figure V-4 a X vs - K. Perturbation analysis result for a CEF fluid

a rigid planar blade coater.



Figure V-5. Pressure distributions for a CEF fluid in a rigid planar

blade coater.
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the more pronounced is the effect of viscoelasticity. This "paradox" is

apparently an artifact of the viscosity model as according to this model a

viscoelastic fluid with a high power-law index will depart from the Newton-

ian viscosity plateau at much lower shear rates than a fluid with a lower n.

Thus, at the lower range of shear rates, pertinent to this analysis, the

former fluid will be on the average less viscous.

From the given pressure distributions one can evaluate the blade load-

ing using Eq. (V-12). Since the contribution of the normal stress term to

the total normal traction was shown to be insignificant, it is expected that

the loading generated by a viscoelastic, shear thinning fluid will be less than

the loading for a corresponding Newtonian fluid. The fractional reduction

in blade loading as a function of K is shown in Figure V-6 for several

material parameters.
(<Jj° is the loading for a corresponding Newtonain

fluid.

)

V. 2. 4 Discussion, First-order effects of hydrodynamic elasticity and

shear thinning on the performance of a rigid planar blade coater have been

examined through the analyses with a second-order fluid model and a CEF

model. It was shown that the effect of elasticity as manifested by the per-

formance of a second-order fluid, is to increase the total normal traction

acting on the blade. This effect is likely to be small for 'true' lubrication

systems and it is bound to be suppressed by purely viscous effects in

accordance with Tanners' purely viscous approximation. The coating



Figure V-6. The fractional reduction in blade loading of a CEF fluid

(relative to a Newtonian fluid) in a rigid planar blade

coater.
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thickness, however, is unaffected by elasticity (to a first order).

The first-order effect of shear thinning, as given in the solution for

the CEF fluid, is to reduce the pressure distribution relative to a corres-

ponding Newtonian fluid. The opposing (positive) contribution of the normal

stresses was shown to be negligible in comparison to the shear thinning

effect, in 'true' lubrication systems. The coating thickness, however, was

shown to increase slightly with viscoelasticity.

V. 3 Experimental

V. 3. 1 Scope . A simple planar rigid blade coating system was con-

structed to simulate actual coating operations. The system was designed to

allow variation of the blade angle in the range 0°-5° and, equivalently, the

geometric parameter K could be adjusted at any value within the interval

[0, 6.3]. Spveral fluids, both Newtonian and viscoelastic, were tested.

The coating thickness, the only performance variable considered, was

measured by a direct contact technique and the results were related to the

geometry of the system (K) and to the viscous and rheological properties of

the fluids examined.

V. 3. 2 Experimental system. A scheme of the experimental set-up

along with a general view of the system are shown in Figure V-7. The

"blade" is a rigid piece of acrylic plastic (7. 8 cm long, 8. 1 cm wide) which

can be set at different angles and clearances with respect to the moving

web. It is attached to the main body of the system by a pair of screws
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Figure V-7. The experimental blade coating system, (a) General view
of the system.

, (b) A schematic of the experimental set-up

1. The blade (an acrylic wedge)
2. Take-up roll

3. Constant speed DC motor
4. Micrometer-driven needle

5. A travelling microscope
6. Rotating guides

7. Film (web) reservoir

8. Aluminum plate
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that permit changing continuously the angular position of the blade. A

smooth aluminum plate (26 cm long, 8. 1 cm wide), that serves as a rigid

planar lathe, is glued permanently to the main body underneath the blade.

The space between the blade and the plate was carefully adjusted to be

uniform in the neutral ( z) direction. An arbitrary, pre-calibrated scale

was used for determining the angular position of the blade and the pertinent

geometric parameters of the system. Table V-l lists the geometric para-

meters for the positions used throughout this experiment. In order to

reduce as much as possible various entry effects the blade was tapered (at

~ 45°) and smoothed at the entrace zone.

The web itself is a flexible clear plastic (I CI, Melinex 'O' flim,

7i0. 5 mils thick, 8 cm wide) and it passes through a series of rigid and

moving guides within and outside the system. The guides were constructed

to insure that the web would travel "flat" on the aluminum plate.

The web was driven through the system by a constant speed motor

(Inframo-Wayne Model RXR1-64). After passing through a pair of circular

guides the web was wound up onto a take-up roll (14.7 cm in diameter).

This roll was positioned in an acrylic box that served as a drainage for

the coating fluid after leaving the system.

The coating thickness was measured by a direct contact method using

a long micrometer-driven needle that was positioned above the aluminum

plate and in front of the blade tip. The contact of the needle with the

coated layer was observed through a travelling microscope.
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Table V-l

The Experimental Blade Coating System:
Geometric Parameters for Five Blade Positions

Position H
0
X[cm] H^cm] K Blade Angle

K-10 0. 165 0.210 1. 2910. 08 21'

K-13 0. 148 0.430 2. 92t0. 02 2°6'

K-15 0. 138 0.590 4. 27l0. 01 3°13'

K-16 0. 135 0.680 5.0210. 01 4°0'

K-18 0. 129 0. 810 6.2910.01 5°1'

1 10.003

2 +0.020
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V. 3. 3 Materials, Two viscous Newtonian fluids and three viscoelastic

fluids were tested in the present experiment. Some pertinent information

regarding these fluids is given in Table V-2.

The viscosities of the Newtonian fluids were measured with an

Epprecht-Rheomat 15 viscometer (a co-axial cylinder mode) at the average

room temperature at which the corresponding runs were conducted. The

viscometric properties of the viscoelastic fluids, being less temperature

sensitive, were measured at 25. 0°C using a Rheometrics Mechanical Spec-

trorneter (a cone and plate mode). The viscometric functions, ^(V) and

interest. The corresponding viscometric data are listed in Appendix B.

The viscoelastic fluids are aqueous solutions of polyacrylamide

(Polyhall) (H - X) and carboxymethylcellulose (CMC-X). The recoverable

shear, S given in Table V-2 is a viscoelastic parameter that represents

the ratio of the (elastic) normal stresses to the (viscous) shear stresses

at a given shear-rate. It is defined as

In Table V-2, SR is evaluated at if
- 50 sec"

1 which is an approximate

nominal shear rate for the experimental system studied. (It was nearly

constant for all the runs.)

( V), are shown in Figures V-8 and V-9 for the shear-rate range of

sR =
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Table V-2

The Blade Coating Experiment
List of Materials

Fluid Symbol

Glycerin i
(G)

Karo Syrup 1
(KS)

H-l
2

H-1.5
2

CMC-2.5 3

O
©
A
V

^C(or
"J

Q )

4
[poise

9. 3

38.2

320

820

47

SR50

0

0

3.2

3.6

0.6

For more information see Table VI-4.

2H-X = aqueous solution of polyhall 295 (Stein, Hall and Co. Inc), X%
by wt.

3CMC-X = aqueous solution of CMC7M (Hercules, Inc.), X% by wt.

^Viscosities measured at room temperature for the corresponding runs.



Figure V-8. The shear viscosity functions for the viscoelastic fluids used

in the blade coating experiment. (Key in Table V-2.

)
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Figure V-9. The first normal -stress coefficients for the viscoelastic fluids

used in the blade coating experiment (Key in Table V-2).



NX
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The Polyhall solutions were prepared by first preslurrying the polymer

in acetone
( 1:5 by wt. ) and then adding a specified amount of tap water

with a simultaneous vigorous mixing (using a zig-zag shaped impeller) for

several hours. The acetone was added to assist in the mixing stage by

preventing the formation of lumps. It was also found that the presence of

acetone repressed bacterial growth in the solution. The preparation of the

CMC solution was essentially similar except that acetone was not added.

Instead, the polymer powder was poured quickly into the vortex of a stirred

cool tap water and then it was mixed vigorously by a high speed zig-zag

shaped impeller for several hours.

V. 3. 4 Experimental procedure . The angular position of the blade was

adjusted using the calibrated position scale on the main body. The system

was loaded with the web film taking great care that it would stay tight and

flat on the aluminum plate during its motion through the system. To insure

a smooth motion of the web, the various guides were carefully alligned and

adjusted prior to the actual run. Then, the rear part of the system, just

behind the blade, was filled with the coating fluid and the web was set in

motion at a pre-calibrated speed.

The thickness of the coating layer deposited on the moving web was

measured in the following manner. The needle was carefully driven by the

micrometer toward the coated surface until a contact was observed (through

the travelling microscope) and the needle position was recorded. After the
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entire fluid volume was driven out through the system, the needle was

advanced further toward the bare aluminum plate until it touched the plate.

The thickness was then determined from the difference between the two

"contact" positions of the needle. To insure statistically meaningful read-

ings, each run was repeated about eight times when at each time the needle

was positioned at random at different spots above the coated area. All the

measurements were taken at points sufficiently removed from the blade tip

where the curvature of the fluid-air interface was apparently zero. Also,

in order to avoid significant pressures at the entrance zone (due to hydro-

static head) the readings were taken when the fluid head in the reservoir

was sufficiently low (2-3cm).

This procedure was not without pitfalls. Viscous drag (fluid slipping

under the web) and irregular motion of the web due to misallignment and

nonuniformity of the film (web) itself were the severest problems encountered

throughout this experiment. The thickness measuring technique, however,

proved simple, convenient and reliable to within *2 mils in coating thickness.

V. 4 Experimental Results and Discussion

A graphical representation of the final results is given in Figures V-10

and V-ll. The corresponding data are listed in Appendix A. The variation

of X, the dimensionless coating thickness, with the geometrical parameter

K. is shown in Figure V-10. It is seen that the data for the Newtonian

fluids (Glycerin and Karo Syrup) fall close to the Newtonian lubrication
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solution (within experimental error). The experimental points for H-l. 5,

the most elastic solution studied, do fall consistently above the Newtonian •

data in accordance with the predictions of the viscoelastic (CEF) analysis.

However, owing to the large experimental error (~7%) the observed dif-

ference is not statistically meaningful. This error originates from irregu-

larities in the motion of the web and some uncertainties in the measurement

of Hi, H
Q

and Ho*.

The effect of viscoelasticity is better demonstrated in Figure V-ll.

In this figure /\ is correlated with the recoverable shear (at K=6. 29). The

recoverable shear is evaluated at a nominal shear rate of 50 sec-1 . This

value represents shear rates at the neighboorhood of the blade tip, i.e.,

T&J U/H 0-

Although the experimental uncertainly does not permit any quantitative

conclusions as regards the effect of viscoelasticity (or Sb) on X , it is

apparent that viscoelasticity tends to increase (though mildly) the coating

thickness. Similar trend was predicted by the perturbation analysis for the

CEF fluid.

In order to assess the various experimental data and especially the

observed /\(K) for the Newtonian fluids, it is pertinent to address the

following question: "To what extent is the lubrication approximation valid

for the experimental system studied?" This question should be divided into

two: 1) Is the flow field in the experimental system planar and z -independ-

ent and 2) How good is the approximation of a unidirectional flow? It is
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expected that the velocity field be weakly z -dependent in the immediate

vicinity of the side walls where the no-slip condition is met. In general,

the effect of the side walls would be to retard the flow and to slightly re-

duce the flow rate in comparison to the z -independent case. However,

owing to the small fraction of the area of the side walls (~3%) it is

reasonable to assume that their overall effect on the flow field would be

marginal. In addition, since no side leakage is allowed in this system the

flow can be safely assumed planar.

The assessment of the effect of the y-component of the velocity on the

overall system dynamics is more difficult. Such assessment can be done

via a complete solution of the full planar flow case for the geometry of the

experimental system. A numerical solution for a slider-bearing with an

angle of 5°43' (and K=7. 0) has been carried out using a Finite Element

method. The solution scheme is presented in detail in Appendix D. The

numerically calculated pressure distribution for the (two-dimensional) slider

bearing problem is presented in Figure V-12 and compared to the Newtonian

lubrication solution. The difference between the "numerical" and the "an-

alytical" distributions for the geometry considered is apparently small and

one can conclude that the lubrication approximation is valid for blade angles

of 5°43' and less. Inasmuch as blade angles in this experimental study

were smaller than 5°43' (and K<7. 0), then the unidirectional flow approxi-

mation for this experiment is justified. The effect of the angle on the

applicability of the lubrication approximation is addressed by Pinkus and
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Figure V-12. The approximate pressure distribution (the solid curve),

calculated through the lubrication approximation, is

compared to the FEM calculations (A) for a blade

coating system with K = 7. 0 and a blade angle of 5°43\
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Sternlicht (1961) and by Middleman (1977) who conclude that the lubrication

approximation is "reasonable" for non-parallelism of up to 30°,

In this experimental study, inertial effects were apparently insignifi-

cant as the Reynolds number, NRe =~^- , did not exceed unity for all

the experimental runs. (On the effect of inertia in slider bearings, see

Pinkus and Sternlicht 1961).

Additional approximations that deserve a critical consideration are the

dynamic boundary conditions for the pressure function. It was stated, in

Section 2, that the pressure is zero (or ambient) at the leading and trailing

edges of the blade. At the entrance zone the flow is converging through a

wide-angled (~45°) contraction into the narrow flow space under the blade.

This may give rise to some finite pressures at
J:

= 0. A finite hydro-

static head at the fluid reservoir may also contribute to a finite pressure

at the entrance zone. It is expected, however, that these contributions be

small since the measurements throughout this experiment were taken when

the fluid head at the reservoir was low. It was noted previously that the

pressure boundary condition at the leading edge of the blade (fc= 1) may be,

somehow, influenced by the surface tension of the fluid due to the negative

curvature of the liquid-air interface in the vicinity of the blade tip. While,

in the experiments conducted the effect of surface tension is very likely

negligible (^jr > 1. 5), it is expected that under conditions of light dynamic

loading (lowyU) the surface tension will have a controlling effect on the

dynamics in the separation zone and hence on the thickness of the coating
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layer deposited on the moving web. This point is briefly addressed in the

following section.

V.5 Some Comments on the Effect of Surface Tension in Blade Coating

So far the role of surface tension was ignored in the formulation of

the dynamic boundary conditions at the blade tip (fc = l). This is justified

so long as the dimensionless group -j^r (the capillary number) is large,

i. e. , when the dynamics in the separation region are dominated by viscous

forces. When the blade is lightly loaded (the dynamic pressures generated

under the blade are small) it is necessary to consider surface tension

forces acting in the concave separation region and to have a closer look at

the mechanism of film separation.

A similar problem, the rupture of a lubricating film due to sliding of

a flat surface parallel to a stationary one, was considered by Coyne and

Elrod (1969, 1970). This work was discussed in some detail in IV. 4. One

important result of Coyne and Elrods' theory is the functional dependence of

the thickness (of the coating deposited on the moving slider) on the capillary

number. It can be argued that the problem of parallel surfaces is actually

indistinguishable from the rigid blade problem in the limit of light loading

(i. e. , when the dynamic pressure gradients in the bounded regime are very

small). Consequently, the results of Coyne and Elrod can be readily ex-

tended to the case of a lightly loaded blade. These results are replotted

in Figure V-13 and they show that coating thickness decreases as surface
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Figure V-13. Coating thickness vs. the capillary number for a slot

coater (K = 1.0). The solid curve is extracted from

Coyne and Elrod T s (1969, 1970) theory. The dashed

- line represents the asymptote for high capillary

numbers.
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tension increases
;
From considerations of conservation of mass such

reduction in coating thickness (or flow rate) must be a result of backflow

in the bounded regime. Thus, for the lightly loaded case, in the limit of

high surface tension, A is a function of the capillary number and perhaps

the gravity and Reynolds numbers as opposed to the heavily loaded case in

which /\ depends on K (i.e., blade geometry) alone.

More recently, Ruschak (1974) has given a lengthy account of the free

surface problem encountered in slot coating, which is similar to the prob-

lem considered by Coyne and Elrod. With the aid of regular and singular

perturbation techniques, Ruschak solved the complete set of momentum

equations combined with the usual kinematic and traction boundary conditions

on the free surface. The limiting cases considered by Ruschak are those

of low web speed and high surface tension (i.e., low capillary numbers).

An a-priori statement in his analysis is that Ho* (the coating thickness far

downstream from the exit point) is half the slot height or, equivalently,

that the velocity gradient far upstream in the bounded regime is linear, and

no backflow is allowed (even when surface tension goes to infinity!). An

important consequence of this statement is that the coating thickness is

always independent of the capillary number and the effect of surface tension

is strictly to alter the shape of the free surface in the neighborhood of the

separation region. For small web speeds (first-order about the stationary

case) in the limit of high surface tension, the surface curvature downstream

from the contact line (solid-liquid-air contact) is uniformly small and the
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flow is nearly rectilinear. At large distances from the slot the flow profile

transforms from parabolic to plug and the film height reduces asymptotic-

ally to half the slot height.

This result is seemingly in sharp contrast with Coyne and Elrods'

results which do not exclude backflow for high values of surface tension.

Their theory is backed by some experimental data (separation in lubrication

converging-diverging spaces and the motion of a bubble in a tube) but

it remains to be seen whether these data are pertinent to the slot coating

case. One flaw in Coyne and Elrods' development is that they avoid a

rigorous treatment of the contact line where the dynamics are not well

defined. They, rather, fix the contact angle (the tangent of the curvature

of the liquid-air interface near the solid surface) at some level thereby

making it an independent parameter of the system rather than a function of

the capillary number and the other dynamic parameters considered. Such

arbitrary constraint is not imposed by Ruschak who discusses, though

not conclusively, some aspects of the local behavior at the contact line.

A more complete solution of the difficult free surface problem in

blade coaters or slot coaters is yet to be devised, Such theoretical study

must be accompanied by a careful experimental investigation of the shape

of the free surface and the velocity field in the separation region,
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CHAPTER VI

ROLL COATING

VI. 1 Introduction

The application of rollers for the deposition of uniform liquid films

onto moving or stationary webs is a common industrial operation. It is

especially wide-spread in the photographic, printing and paper-pulp indus-

tries where coating-thickness specifications are often very strict. Schematic

diagrams of some typical roll coating processes are shown in Figure VI-1.

Such "rolling geometries" are commonplace in lubrication engineering and

the fundamental hydrodynamic analyses for these systems are available in

texts on hydrodynamic lubrication (e.g., Pinkus and Sternlicht 1961,

Cameron 1966).

Calendering is an important operation that resembles roll coating.

This operation differs from roll coating principally in the way by which the

fluid separates downstream from the nip (the position where the rigid sur-

faces are at closest approach). While in calendering the fluid "leaves off"

without wetting the rotating rollers, in roll coating the fluid splits and

adheres onto each of the moving surfaces. The nature of flow separation,

which must have a considerable effect on the dynamics in the bounded

regime, will ultimately depend upon the rheology and adhesion characteristics
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Figure VI-1. Schematic diagrams of typical roll-coating processes.

(After Middleman 1977): (a) Kiss coater, (b) reverse-

roll coater, (c) forward-roll coater, (d) extrusion

coater.
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of the fluid. High viscosity materials and softened plastics are likely to

be calendered, whereas low viscosity liquids will be more commonly roll-

coated (Middleman 1977). This distinction constitutes a loose, but practical

definition of roll coating. Even though calendering and roll coating have

equal footing in industry, calendering has received far greater attention in

the literature. (See for example, McKelvey 1962 and Middleman 1977.
)

This discriminatory approach stems, possibly, from the relative difficulty

in handling the separation boundary conditions in roll coating. Indeed, the

question of these boundary conditions has not yet been fully resolved (see

IV. 4), although some approximations have been proposed and applied with

relative success.

The lubrication problem of flow between counter-rotating rollers fully

immersed in a viscous fluid was first considered by Martin in 1916 (Cf:

Banks and Mill 1954) and later by Gatcombe (1945). The full film lubrica-

tion analysis was employed by Banks and Mill (1954) to study the problem

of cavitation in the diverging section of the two-roll system. Tanner (1960)

analyzed the full-film lubrication of rolling elements for a corotational

Maxwell fluid. His approximate solution predicts that a viscoelastic fluid

will generate lower pressures than a corresponding Newtonian fluid.

A first attempt to consider the problem of flow separation was made

by Hopkins (1957). He examined the case of a fluid film driven by a roller

and a flat sheet, splitting at some point downstream from the nip. As the
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position of film separation is a-priori unknown, Hopkins was compelled to

consider an additional boundary condition. He assumed that film separation

would take place at the first stagnation point from the nip. This simple

condition was discussed in IV. 4 and it is known as the Prandtl-Hopkins

separation condition. As will be seen later, this condition, despite its

simplicity, is useful and valid for systems where surface tension effects

are comparatively unimportant.

Several phenomenological studies of flow separation and cavitation in

a roll nip, using photographic techniques, were conducted by Myers and

coworkers (Miller and Myers 1958, Myers et al. 1959, Myers and Hoffman

1961, Hoffman and Myers 1962). Their observations indicate that backflow

patterns can be formed in the vicinity of the separation meniscus for

sufficiently low speeds (low capillary numbers). At high speeds bubbles

started to form in the low pressure region which is indicative of the onset

of internal cavitation (see IV. 4).

Pitts and Greiller (1961) examined, both theoretically and experimentally,

the flow induced by counter-rotating rollers partially immersed in a viscous

fluid. Their analysis involved an approximate solution of the biharmonic equa-

tion combined with the full traction boundary conditions on the free surface

at separation. The shape of the separation meniscus was assumed to be

parabolic. Pitts and Greiller's predictions for the position of the separation

point were in satisfactory agreement with their experimental data.
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Some observations on the splitting of a water film between rotating

rollers were reported by Hintermaier and White (1965). They measured

the heights of films issuing from the nip region and found them generally

proportional to the nip separation. In a more recent study, Williamson

(1972) analyzed the problem of the tearing of an adhesive layer between

flexible tapes passed between cylindrical guides. This problem is hydro-

dynamically similar to the problem considered by Pitts and Greiller as it

involves the splitting of a viscous fluid film between counter-rotating rollers.

Williamson solved numerically the biharmonic equation for the separation

region taking the shape of the separation interface to be expressible by a

sixth order polynomial. His calculations exhibit circulation patterns behind

the separation meniscus, which are similar to those observed by Pitts and

Greiller.

An analysis of the sheet-and-roll system was carried out by Greener

and Middleman (1974). They applied the Prandtl-Hopkins conditions combined

with a plausible approximation for the geometry of the interface at separation.

This simplification made it possible to consider, at least approximately,

non-Newtonian and surface tension effects. Inasmuch as this analysis is

presented (with some corrections) in Section 2, further comment is reserved

for later.

Lubrication analyses for the sheet-and-roll system, are developed in

detail in Section 2 with a concurrent discussion of the approximate separation
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model used. These analyses are carried out for three constitutive models;

the purely viscous power-law model, the second-order fluid model and the

CEF model. In Section 3, the power-law sheet-and-roll analysis is ex-

tended to the system of partially immersed counter-rotating rollers. Also

in this section^ the. effect of gravity is given some consideration and the

approximate separation model is critically assessed. Experiments designed

to test the theoretical models are described in Section 4 and the experiment-

al results are reported and discussed in Section 5. Finally, in Section 6,

some experimental observations on reverse roll coating are presented along

with a simplified theory. This chapter is strictly concerned with the

(hydrodynamically) stable roll coating problem. As flow instabilities are

known to impose severe restrictions on the application of roll coating

devices, this problem will be given a full consideration in Chapter VIII.

VI. 2. The Sheet-and-Roll System: Lubrication Analyses

VI. 2. 1 General . The essentials of a typical sheet-and-roll system

are given in Figure VI-2. As shown, the fluid is driven out of a large

reservoir behind the roll by the concerted motion of the web and the roll.

The fluid emerging from the front-end splits onto the moving surfaces such

that a uniform coating layer is formed on each surface. This model

specifies that both surfaces move at the same lateral speeds. This require

ment is arbitrary as it is not always encountered in practice. However,

for convenience, the additional factor of non-equal speeds is not considered
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and a brief comment to that effect is made in VI. 2.5.

The sheet-and-roll system, being a prototype of many industrial roll

coating devices is analyzed in full in this section. This analysis is in-

tended to provide some useful relations between the design and operation

parameters of the system and some performance variables such as the

coating thickness and the pressure distribution. The effect of the rheology

of the fluid is given a special consideration as three rheological models

are examined: the power-law fluid (of which the Newtonian fluid is consid-

ered a special case), the second-order fluid and the CEF fluid. The

corresponding constitutive equations were discussed in Chapter IV. As

before, the lubrication approximation is utilized and it leads to a consider-

able simplification of the equations of motion. In essence, the planar mixed

flow is replaced by a unidirectional shear flow. (The lubrication thin film

approximation is applicable so long as Hq/R k< 1 and end effects are

negligible.) Eq. (IV-2) is thus the starting point.

It is convenient, for later operations, to make the problem dimension-

less by defining

and
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where

' for second-order fluid

K%Q
) for the p.l. fluid

7*"

(VI-2)

(VI- 1)

. for CEF fluid

The boundary conditions for the sheet-and-roll system, in terms of these

dimensionless variables, are as follows

(a) <P= 1 @ srj= o

(b) ^ = l @ = ^(ji)

(b^or d^/d^j =0 § = 1/2

(c) </> - o @ <j = 1/2 <r
t

(d) ^ •= O @
J?

= _ ^
(e) 7? = Ns/(r/H0 ) @ J = }i

Eqs. (VI-2a, b) are the 'no-slip' conditions where ^(Jr) is a function repre-

senting the position of the roll surface. It is most commonly approximated

by

= 1 + 1/2 2
(VI-3)

This "parabolic" approximation is valid for Hq/R « 1. Eq. (VI-2b^) is a

statement of symmetry of the velocity profile about the midplane (^?= l/2<^)

and it is equivalent to Eq. (VI-2b). The Prandtl-Hopkins separation con-

dition is expressed by Eq. (IV-2c) and it will be used for determining the

yet unknown position of film separation
(

Je = j^)- Tnis condition deserves

a comment as to its applicability and relevance.
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In actual lubrication systems the relative position of the rolling

boundaries (H 0 ) is entirely controlled by the dynamics, i.e., the solid

boundaries are free to adjust their position in response to the pressures

developed in the system. In addition, the pressures generated are often

high to withstand the usually high loads in typical lubrication systems.

Under such conditions, the purely dynamic Swift-Stieber conditions are

applicable. (The question of the downstream-end boundary conditions in

rolling elements has been discussed at length in IV. 4; see also Swift 1932,

Birkhoff and Hays 1963, Taylor 1963 and Cameron 1966). In contrast, the

rolling boundaries in coating systems are usually rigid (fully or partially)

so that the coating thickness can be more effectively controlled. As a

consequence, it is expected that a separation cavitation (rather than internal

cavitation) mechanism will prevail in the separation region and a proper

separation condition is needed to reflect this. The Prandtl-Hopkins

separation condition used herein has not been borne out by a rigorous

theory or an empirical study. It, rather, constitutes a simple, reasonable

postulate. It is known today that this condition fails to represent the

separation region for systems in which surface tension is important (i.e.

,

where the capillary number is small). For such systems the actual

separation takes place further downstream from the first stagnation point

(Myers et al. 1959, Pitts and Greiller 1961, Williamson 1972, Savage 1977a).

It will be shown in Section 3 that this condition is, nonetheless, comparable
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to the more rigorous Coyne and Elrod conditions (Coyne and Elrod 1970) over

a wide range of capillary numbers. The rationale for using the Prandtl-

Hopkins condition in this analysis, aside from its simplicity, is that it can

be readily extended to non-Newtonian fluids unlike, say, the Coyne and

Elrod conditions.

Cases of heavy loading (high pressures) are not uncommon in roll

coating as it is known that the pressures generated in some systems can be

sufficiently high to bend the roll (the "roll bowing" effect) and to alter con-

siderably the nip geometry. For such heavily loaded systems it is more

appropriate to consider the Swift-Stieber conditions. The effect of the bound-

ary conditions on the performance of the system will be briefly addressed

in VI. 2. 5.

Eqs. (VI-2d, e) are the dynamic boundary conditions for the pressure

function. Eq. (VI-2d) states that the inlet is "flooded", i.e., the pressure

is ambient far upstream from the nip and Eq. (VI-2e) is a simple force

balance at the point where the film splits
( ^

=
_£i)-

T^le pressure at this

point is balanced by the surface tension force, which is finite and negative

since the curvature of the separation meniscus is negative. The parameter

Ng appearing in Eq. (VI-2e) is defined as

Ng = fdL (
jeo_

)

(i/2)
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Ng is a surface tension parameter and it can be looked at as a modified

(inverse) capillary number, r is the radius of curvature of the free sur-

face at
f=$v Since the geometry of the free surface is not known, some

approximate model for the film-splitting region is needed. Figure VI-3

depicts the approximate separation geometry considered herein; the free

surface at separation is assumed to be semicircular. This model is some-

what crude, but, as will be shown later, it does a fair job (together with the

Prandtl-Hopkins condition) as compared to more sophisticated models. The

inherent assumption involved in this approximation is that
L is sufficiently

small so that the rigid surfaces can be taken as being nearly parallel.

Consequently,

2r + 2H o* = H.

or

2
<ir)

+ -4-^ = ^i (vi-5)

where

A- 2 HoO
H
0

X is a dimensionless coating thickness, Eq, (VI-5) together with the

boundary conditions will be utilized in the analysis that follows 0



Figure VI-3. An approximate model for the film-splitting geometry in

the sheet-and-roll system.
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VI. 2.2 The power-law fluid. For a power-law fluid Eq. (IV-2)

becomes

O = - [f-^-l

11" 1

dx dy 'dy dy
(VI_6)

or, in dimensionless form,

o =-72+ JL
[
Llij

n~ l

JLSLid^ ' d^ ( d^ J

(VI-7)

where

As the pressure gradient is constant across the film (i.e. 7? ^ (07))

Eq. (VI-7) can be integrated twice with respect to o-j to give,

v--f
q" 1

iMq
-(T) qi + 1

where q = + 1.

In deriving Eq. (VI-8) use has been made of conditions (VI-2a,b). Since

there are two unknowns in Eq. (VI-7) (^, 7? ), an additional equation is

needed. This additional equation is provided by the statement of conserva-

tion of mass,

A -ij>d* (VI" 9)

(Note that, aside from being a dimensionless coating thickness, A is also

a dimensionless flow-rate)

(VI-8)
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A is a hitherto unknown quantity but it will be treated hereafter as a

constant parameter. A combination of Eqs. (VI-8) and (VI-9) gives the

following expression for the pressure-gradient,

;(_'= 2(2q + 2)+ 2 ,n ^HC^V)
^ 1+2n

(VI- 10)

This expression can be introduced back into Eq. (VI-8). With the more

explicit expression for at hand, condition (VI-2c) is applied and it

follows that

<Z 1 + 2n \
1 — A (VI-U)

or, using Eq. (VI-5),

[2
«^n^-l>] 1/2 (VI-12)

t/Hq can now be evaluated by combining Eqs. (VI-5) and (VI- 11),

JL. = 1 + n \ (VI-13)
H 0 2n A

Substitution of Eq. (VI-13) into condition (VI-2e) yields

A(|f) )?!= - NS

or,

ft

A(^)/^f = -Ns
™

Eq. (VI- 14) is an integral equation for X with Ns as a parameter., This

equation was solved for Ns (N
g

= NS (A)) by specifying X (since it is

explicit in Ns ). The integration of 7? was performed numerically via the

trapezoidal rule. The solution is presented in Figure VI-4 in the form of
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A vs. N
g

curves for several values of n. The variation of A with n in

the limit of zero surface-tension (Ng — 0) is given in Figure VI-5. It is

apparent from Figures VI-4 and VI-5 that both surface tension (as expressed

by Ng) and non-Newtonian character (as expressed by 1-n), act to increase

(modestly) the coating thickness. In practice, the parameter N
g

will vary

in the range [0, 1] (since H 0/R « 1 and = 0(1) or less). Within

this range the dependence of or N
g is very weak, and it is practically

inobservable. In addition, in view of the approximations made concerning

the separation region, the theory should not be expected to hold for N > 1. 0,
s

where surface tension forces start to dominate.

Once the values of A have been determined it is a simple matter to

evaluate the pressure distributions; the appropriate values of J\(J\(n, Ng))

are introduced into Eq. (VI- 10) which is thpn integrated numerically. Pres-

sure distributions for several values of n, in the limit of vanishing surface

tension (Ng—^0), are plotted in Figure VI-6. The results indicate that the

non-Newtonian distributions are "sharper" in comparison to the corresponding-

Newtonian distribution (i.e., .£/ ). (A corresponding Newtonian

fluid is a fluid with a constant viscosity equal to the apparent viscosity of

the power-law fluid evaluated at a nominal shear-rate of U/H 0 ).

An important performance variable is the total force acting on the

roll. This force originates from the pressure field generated in the fluid,

and in some instances it can be sufficiently high to bend the roll and to
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Figure VI-5. Coating-thickness vs. the power-law index. Analytical

curve for a power-law fluid in the sheet-and-roll system

(NS— 0).
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Figure VI-6. Analytical pressure distributions for a power-law fluid in

the sheet-and-roll system (Ns-*-0).
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alter the nip geometry. The roll-separating foroe is calculated as follows-

Where
(g = FH02

-t "7<xU

and F is the actual roll-separating force per unit width. (The term roll-

separating force is equivalent to "load carrying-capacity" commonly used

in the lubrication literature.) - £^is the dimensionless form of the total

stress -Tyy(=p -"Zy
r). In the purely viscous case - 0^ = ^, and Eq 0 (VI-

15) can be evaluated for the power-law fluid, using Eq. (VI- 10). The

calculation of § = p (n) was carried out via a numerical double-integration

of j). The results are shown in Figure VT-7 for the limiting case,

Ns -*0. This figure shows that a non-Newtonian fluid will exert higher

force on the roll than a corresponding Newtonian fluid. It is important to

keep the basis of comparison in mind: the corresponding Newtonian fluid

"corresponds" in viscosity at the nominal shear rate U/Hq.

VI. 2. 3 The second-order fluid. The limitations and merits of the

second-order fluid model have been discussed in IV. 2. This model is now

applied in the analysis of the sheet-and-roll system with the aim of exam-

ining first-order effects of viscoelasticity on the performance of the system

It has been pointed out that the second-order fluid differs from a

corresponding Newtonian fluid only dynamically (provided that the flow is

creeping and planar). Since the velocity fields for both fluids are identical
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for the same boundary-value problem, it is to be expected that the coating

thickness, which is essentially a kinematic quantity, will be identical for

both fluids as well. Thus, the problem narrows down to determining the

pressure distribution for the second-order fluid in the system. Inasmuch

as the second-order fluid is a viscoelastic fluid it is appropriate to con-

sider the total stress distribution
(-Orf rather than the hydrodynamic

pressure distribution (fc). With the aid of the Giesekus-Tanner theorem

(see VI. 2) one can write,

1/2
0 , _ Hn 1/2 ^0 2

' K 2 R d'y (VI-16)

where 7C is the pressure function for a corresponding Newtonian fluid

(yk-= cx^) and"SR, the recoverable shear, is defined as

S - (
U

>

Qrjrj is defined by

Eq. (VI-16) is the dimensionless form of Eq. (IV-7). With expressions for

and *P taken from the preceding purely-viscous analysis (for the case

n = 1), Eq. (VI-16) takes the form

Ho 1/2 s^M ^° J1

R
'w L

8 "
iJ (VI-17)
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Figure VI-8. Total (normal) stress distributions for a second-order fluid

in the sheet-and-roll system (Hq/R = 0.01, Ng—**0).
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Q
in Eq. (VI-17) is evaluated at the roll surface

("J
=<£).

Inspection of Eq. (VI-17) reveals that the total stress distribution will

reduce identically to the Newtonian pressure distribution in the limit S -* 0R
and/or Hq/R * 0. This result is essentially in accordance with Tanner's

purely viscous approximation for viscoelastic lubrication flows. In order to

consider finite elastic effects it is necessary to assign a finite value to

H 0/R. Figure VI-8 shows stress distributions as given by Eq. (VI-17) for

several values of SR taking H 0/R = 0. 01. Apparently, the effect of vis-

coelasticity is to shift the stress function upward in the neighborhood of the

nip region. This "shift upward" will increase the total force exerted on

the roll. Indeed, as shown in Figure VI-9, the roll-separating force is a

linearly increasing function of fluid viscoelasticity (as expressed by SR ).

was evaluated using Eq. (VI-15).

VI. 2.4 The CEF fluid. The second-order fluid is limited in its

ability to predict the effect of viscoelasticity on the coating thickness or,

for that matter, on the kinematics of flow in the bounded regime. It is,

thus, useful to consider a slightly more elaborate and more realistic con-

stitutive model such as the CEF equation. This equation was discussed in

IV. 2, and it is essentially represented by two empirical viscometric

functions, -y(V) and Jf£2 < Y) (as given in Eqs. (IV- 12) and (IV-14)). Only

°]{H) is used explicitly in the analysis in compliance with the purely viscous

approximation; jf<, 2 ( ) enters the analysis in the evaluation of the total
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Figure VI-9. The roll-separating force vs. the recoverable shear for a

second-order fluid in the sheet-and-roll system (Hq/R = 0.01,

NS -*0).
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stress,
-"tyy.

Inasmuch as the empirical viscosity equation introduces

severe non-linearities into the equation of motion, an approximate analytical

solution, with the aid of regular perturbation techniques is worked out in

a manner as outlined in IV. 3.

The analysis begins with Eq. (IV- 15). This equation is integrated

once with respect tooo , to give

where use has been made of the symmetry of the velocity profile about the

mid-plane (Eq. VI-2b f

). (It is noted that the symmetry condition consid-

erably simplifies the present analysis, compared to the corresponding

blade coating analysis, as there is no need to account for the absolute-

value operator.) The functions appearing in Eq. (VI-18) are expanded in

the form,

C/? = cp° + Nef 1 + 0(Ne
2

)
(VI- 19)

7? = 7e° + IOC1 + 0(NP
2

)
(Vi-20)

and also

X * A 0 + Ne A
1 + 0(Ne

2
)

(VI-2D

The viscoelastic perturbation parameter, Ne (as defined in Eq. IV- 15) is

assumed to be sufficiently small that the expansions can be truncated be-

yond the first-order terms. Thus, this procedure seeks to estimate the

first-order effect of viscoelasticity, as expressed by Ne, in relation to the
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zeroth-order (Newtonian) case. After the truncated functions are introduced

into Eq. (VI- 18) and terms of order higher than 1 are eliminated, the

following equation is obtained,

SS. 7C° ("j- 4/2) + NeTC
1^- */2)

' (VI-22)

+ ng [ Jn»°( ?
- */2)

I j

1"*
frc'ty- &0]

Eq. (VI-22) is integrated once again with respect to*?, taking V = CP°= 1 Cq)

*77 =
, and it is found that

+
^0/^0/l-n (7-^/2)

3 -n
- (^/2) 3 -n

(3-n)

(VI-23)

The mass balance, as given by Eq. (VI-9), is applied by integrating Eq.

(VI-23), and after some rearrangements, the following expression for the

pressure-gradient is obtained:

0 l-n
7Z =7tO -12^-4--3Ne 7C

0
/7t

0
/

1 *n

^ 6 1 4-n' 4-n (VI-24)

It is expected that surface-tension will play a minor role in the actual

dynamics, as in the purely-viscous case. Thus, this analysis is strictly

concerned with the asymptotic case of vanishing surface-tension (N
g

= 0).

For that case,
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72 (}i) = o

(VI-26)

(VI-25)

This boundary condition, together with Eq. (VI-24) gives

* J'
\ = gLf.D - Ne f /~0] 1-m.l-n

rf
x

* A(|D 2 ^-n(4-n)A(^i) _V ^

where,

A <jl>
S

J "7* andB(Jl) = J

With little loss of generality is evaluated using Eq. (VI-12). Thus,

}l = V 6A - 2
'

Eq. (VI-26) was solved for .A via successive approximations that required

no more than three iterations. The variation of X with the Weissenberg

number (W
g

= UtR/H 0
), for several values of the power-law index, is

shown in Table VI- 1. This result indicates that the first-order effect of

viscoelasticity is to slightly increase the coating thickness relative to the

Newtonian case, with n rather than Wg dominating this trend.

Now that X ~ A (Wg, n) has been evaluated it is possible to calculate

the total stress distributions. The hydrodynamic pressure distribution is

obtained through integration of Fq. (VI-23) and the dynamic normal-

stress is evaluated using Eq. (IV- 14). It follows that

J
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Table VI-

1

Coating Thickness of a CEF Fluid in Roll Coating
Perturbation Analysis Results 1

WS (= UtR/H 0 )
TJ Ne (= Ws 1^) A

0. 005 0.4 0. 0416 1.30
ff 0.6 0. 120 1. 30
IT 0.8 0.346 1.31

0.010 0.4 0. 0631 1.30
If 0.6 0. 158 1.31
M

0. 8 0. 398 1.31
0. 015 0.4 0.0805 1.30

f f 0.6 0. 186 1.31
M

0. 8 0.432 1. 31

0. 020 0.4 0. 0956 1. 31
M 0.6 0.209 1.31
M

0. 8 0.457 1.31

iFor the case Nc -*0.
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Note that the normal-stress term in Eq. (VI-27) is of order higher than 1

in Ne as n is usually in the range [0, 1]. Also, this term contains the

factor (Hq/R) 1 /2 which is much smaller than unity for actual lubrication

systems. Therefore, it is expected that the contribution of the normal-

stress term to the total stress will be negligible. This assertion is

supported by the results presented in Figure VI- 10. This figure shows

stress distributions for several rheological parameters. It is evident that

the shear thinning (purely viscous) characteristics dominate for the range

of parameters considered, as no significant "shift upward" for the viscoe-

lastic stress distributions was obtained (quite unlike the results for the

second-order fluid model). Rather, the viscoelastic distributions "flatten"

Quite paradoxically, the closer the power-law index is to 1 the more pro-

nounced is the deviation from the Newtonian result. As in the correspond-

ing blade coating analysis, this result is an artifact of the viscosity model,

as this model holds that a fluid with a higher power-law index will depart

from the Newtonian "viscosity plateau" at much lower shear rates than a

corresponding fluid with a lower power-law index. In Figure VI- 11 the

roll- separating force is plotted against the Weissenberg number. Expectedly,

It should be reiterated that the results that have been presented for the

CEF model hold only within the scope of the perturbation solution. That is,

fluids that are shear-thinning.

is a decreasing function of Ws.
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Figure VI- 10. Total (normal) stress distributions for a CEF fluid in the

sheet-and-roll system (Hq/R = 0,01, N
g

-*0).



135



136

Figure VI-11. The roll-separating force vs. the Weissenberg number for

a CEF fluid in the sheet-and-roll system (Ng —*0).
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the various model results apply to systems in which Ne (or Wg ) is much

smaller than unity.

VI. 2. 5 Discussion. The sheet-and-roll model considered in this

section involves two major assertions that have not, as yet, been accounted

for. The first specifies that the speeds of the moving surfaces are equal

and the second regards the system to be lightly-loaded. As these state-

ments do not conform with reality in some instances, brief comments to

that effect are made below prior to assessing the various analytical results.

It is a simple matter to show that the pressure gradient and hence all

the dynamic variables will vary marginally and only by a numerical factor

in response to a change in the speed ratio. Taylor (1974a) carried out an

analysis for the equivalent lubrication problem of a cylinder-plane config-

uration using also the Prandtl-Hopkins conditions. He found that A will go

from 1. 30 to 1. 26 and the maximum dimensionless pressure will vary in

the range 1.92-2.05 by changing the speed ratio from 1 to 0 (oro«). (In

the case of non-equal speeds A denotes the dimensionless flow-rate rather

than the dimensionless coating thickness. ) The actual film thicknesses will

be proportional to the speeds of the corresponding surfaces. It is con-

ceivable that the speed ratio will have a similar effect in the case of a

non-Newtonian fluid.

The assumption of light-loading made in the analysis is usually

applicable especially when the system dimensions are fixed and the dynamic
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pressures are low. However, it is not uncommon to confront situations

where very high loads are generated. For such cases, the Prandtl-Hopkins

conditions should be replaced by the Swift-Stieber conditions (see IV. 4).

Application of the Swift-Stieber conditions in the sheet-and-roll case yields

/A= 1.226 and >?max = 2.15, as compared to A = 1.30 and ^?max = 1.92 in

the lightly-loaded case (for Ng— 0). Also, the pressure distribution in the

heavily-loaded case will not have a sub-ambient (negative) loop and con-

sequently the roll-separating force for this case will be considerably higher.

It is expected, however, that high dynamic pressures as found in heavily-

loaded systems will be accompanied by surface instabilities (see Chapter

VIII) and hence such limiting situations should be avoided if a smooth

coating is desired.

Three constitutive models have been considered in the foregoing

analyses, each providing some insight as to the importance and effect of

certain fluid parameters. The purely viscous power-law theory predicts

generally an increase in coating thickness for non-Newtonian fluids. An

increase in coating thickness, though considerably milder, is also a result

of the CEF analysis. From the nature of the perturbation solution, the

results for the CEF fluid are expected to be relevant only in a region where

the fluid slightly departs from Newtonian behavior (i. e. , under small de-

formation rates). It has been noted that the empirical viscosity equation

used in the CEF model will approach a power law equation in the limit
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Ne » 1. Thus, practically, two asymptotic limits of the empirical

viscosity equation have been considered, Ne » 1 and Ne « 1. In reality,

non-Newtonian systems will fall within these extremes and hence the per-

formance of such systems can be estimated from a qualitative matching of

the asymptotic results (provided that X(Ne) is a well-behaved function). As

both asymptotic solutions show a similar effect on A , it is expected that X

will fall somewhere between the power-law result and the CEF result. In

any case, X will always be higher than the Newtonian value. How far

removed X is from the Newtonian limit will ultimately depend upon the

magnitude of Ne. This effect on X , which is expected to be small, is

strictly a consequence of shear-thinning behavior. The second-order fluid,

being elastic and Newtonian in shear, will be indistinguishable from a

corresponding Newtonian fluid in terms of the coating thickness.

A similar matching of the pressure distributions for the CEF fluid

and the power-law fluid is not possible since the pressure functions in each
¥

case are made dimensionless in a different way, the power-law pressure is

reduced using a viscosity evaluated at a nominal shear rate of U/Hq. The

pressure function for the CEF fluid is made dimensionless using the zero-

shear-rate viscosity cy^). However, the general conclusions reached for

the coating thickness function apply here as well. It is implicit from the

purely viscous approximation that elastic (Weissenberg number) effects

should not count in systems with lubrication-type geometry. The theoretical
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results, which are based on the purely viscous approximation, seem to

comply with this assertion; it was shown that the total stress distribution

'

in the CEF case is dominated by shear-thinning effects, In the case of the

second-order fluid the only non-Newtonian contribution comes from the

elastic term. This contribution manifests itself by the "shifting upward" of

the stress distribution in the vicinity of the nip region which results in an

increase in the roll-separating force. This effect, again, will be small

in the limit of small H 0/R and it will be most likely dominated by purely

viscous effects.

VI. 3 Partially Immersed Counter-Rotating Rollers

VI. 3. 1 The system. A schematic diagram of the system of partially

immersed counter-rotating rollers along with a definition scheme for the

geometry of the nip region are given in Figure VI-12. As pictured, the

flow is induced by the rotation of the rollers; the fluid is driven out of the

bath through the narrow gap between the rollers up to a point where it

splits evenly into two films that travel around and return back to the bath.

Such a system, although not directly applicable as a coating device, simu-

lates hydrodynamically many actual coating operations. Its resemblance to

the system considered in Section 2 is self-evident. The primary motivation

for studying this system pertains to the fact that it can be conveniently

investigated experimentally as it allows a continuous coating operation which

requires relatively small amounts of fluid. Indeed, the system of



Figure VI- 12. A schematic diagram of the system of half-immersed

counter-rotating rollers (a) and a definition scheme for

the nip region (b).
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counter-rotating rollers has been the subject of several studies both

theoretical and experimental, and it was also selected for an experimental

study of roll coating in this work (see Sections 4 and 5).

A particularly thorough examination of this problem was made by

Pitts and Greiller (1961). They applied the lubrication approximation to

the bounded flow regime and made some assumptions concerning the separa-

tion region. Specifically, they approximated the shape of the separation

meniscus with a parabola which is characterized by a latus rectum of

unknown length. This length was determined by requiring that the lubrica-

tion solution will satisfy the traction boundary conditions on the free surface

near the axis of symmetry. They ended up with expressions that give the

position of the separation point as a function of the capillary number.

Experimental data that were reported by Pitts and Greiller seem to agree

with their theoretical predictions. Their attempt to measure the coating

thickness was less successful and not conclusive; they report values for A

in the range 1.26-1.38 (i.10%). Pitts and Greiller made also some obser-

vations on flow patterns in the domain between the rotating rollers and have

detected two areas of circulatory flow behind the meniscus which could not

be accounted for by their approximate theory. Williamson (1972) in a later

study of a related problem solved numerically the biharmonic equation

coupled with the traction boundary conditions along the free surface. He

expressed the position of the meniscus by a sixth order polynomial with
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unknown coefficients. Williamson's solution shows circular flow patterns

just upstream from the separation meniscus in conformity with Pitts and

Greiller's observations. As this analysis required the specification of the

flow-rate through the nip it could not be directly compared to Pitts and

Greiller's work where the flow-rate was part of the solution.

The system of counter-rotating rollers was used by several researchers

to study the problem of flow instability in roll coating. However, this sub-

ject will be discussed separately in Chapter VIII where the question of

stability is considered.

VI. 3.2 A lubrication analysis. Aside from small geometric differ-

ences, the system of counter-rotating rollers is essentially identical to the

sheet-and-roll system considered in the previous section. As the analysis

for this system follows closely the sheet-and-roll analysis it is not given

explicitly in this section. Rather, the important results are presented and

discussed. Only the purely viscous power-law model is considered here.

The analytical results for the second-order fluid and the CEF fluid, obtained

in the preceding section, are expected to apply qualitatively to the present

system by virtue of its hydrodynamic similarity to the sheet-and-roll system.

The dimensionless variables are defined as before (Note that Hq, in

this case, denotes half the nip separation!). Also, the boundary conditions

and the separation model are identical to those used in the sheet-and-roll

analysis (Eqs. VI-2, 3, 4) with the only exception that the axis of symmetry
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(or the mid-plane) is along ^= 0 (rather than ^ = 1/2,*). A rationale for

using the Prandtl-Hopkins condition is given at the end of this section.

The final results for the system of counter-rotating rollers are as

follows:

7Z= ,q+ l,n fl±*D ^if-M
<S (VI-28)

- i"f - ^ % + 1 (VI-29)

and the integral equation for \

1+n

is

where

(VI-30)

Ho

and
Jl 1

is evaluated as before (Eq. VI-12). A solution of Eq. (VI-30) for

two values of the power-law index is presented in Figure VI- 13 in the form

of A vs. Ng curves. A comparison of the above expressions to the cor-

responding expressions for the sheet-and-roll system reveals that the

hydrodynamic variables for both systems are functionally similar and they

differ only by a numerical constant (which depends upon n). Thus, virtually

all the conclusions made concerning the power-law results for the sheet-

and-roll system apply to the present system as well.
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VI. 3. 3 Gravity effects. The effect of gravity is usually marginal in

typical roll coating operations. Under certain operating conditions, though

uncommon, gravity forces may be comparable to the usually dominant

viscous forces and their effect on the performance of the system may be

considerable. Indeed, a regime where gravity effects start to dominate was

encountered in the course of the experimental work of the present study,

and thus this problem is briefly considered below.

In the system of counter-rotating rollers the gravity field acts in the

-x direction. Hence, the equation of motion takes the form

(VI-31)

where

Ng = ? gH °
2

- J&£.
"|*U NFr

Ng, the gravity number, reflects the ratio of gravity forces to viscous

forces and it is sometimes taken as the ratio of the Reynolds number (NRe )

to the Froude number (Np r )
(Bird et al. 1960). Since Ng is a constant

parameter it is possible to replace by 7£ = 7£+ Ng in Eq. (VI-31) and

the lubrication analysis essentially follows the gravity-less analysis.

Finally, the following integral equation for X is obtained,

(q+1)„ j V«-flrfr* -j - -8-
"jo

^
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or, _ NS

Ti -io •

(VI- 33)

where J 0
is a position far upstream that corresponds to zero gravity (it is

the actual -oo) and ^ is the pressure at ^ =
J? t

as calculated via Eq.

(VI-28). A is now dependent upon tvvo dynamic parameters, Ns and Ng;

both parameters will have to be considered in the limit of small viscous

forces. A solution of Eq. (VI-33) is presented in Figures VI-14 and VI-15

in the form of A vs. Ng curves with Ng as a parameter.
J: Q

was set

arbitrarily at ^= -5. Figures VI-14 and VI-15 clearly show that the

effect of gravity is to reduce the coating thickness as opposed to surface

tension. Both effects will be important and competetive in the limit of

small viscous forces.

VI. 3.4 A critical assessment of the Prandtl-Hopkins (PH) separation

conditions. The question of the separation boundary conditions for con-

verging-diverging lubrication systems has been discussed at length in

Chapter IV. It was noted there that the PH conditions are not completely

satisfactory as they cannot account for circulation patterns just upstream

from the separation meniscus that were observed in some cases (Pitts and

Greiller 1961, Myers et al. 1959, Savage 1977a). This condition was,

nevertheless, employed in the foregoing roll coating analyses on the basis

of the assertion that it is a valid approximation of the actual situation in

the separation region. It now remains to be determined under what conditions
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Figure VI- 14. Coating thickness vs. the gravity number for a Newtonian

fluid in a system of half-immersed counter-rotating rollers.
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Figure VI-15. Coating thickness vs. the gravity number for a power-law (n=0. 4)

fluid in a system of half-immersed counter-rotating rollers.

(Jo = -5).
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(if any) this approximation is indeed valid. The range of validity of the

PH conditions is determined via a comparison of these conditions to the

more rigorous Coyne and Elrod (CE) conditions (Coyne and Elrod 1969,

1970) which were discussed in Chapter IV. The CE conditions were de-

rived from a solution of the complete Navier-Stokes equations combined

with the full traction boundary conditions on the separation meniscus.

Despite some minor flaws, these conditions are the best available to date

as they conform well with experimental observations, especially for mod-

erate-to-high capillary numbers (Nca =f
L^H). The CE conditions can be

easily applied to the system of counter-rotating rollers to yield a A vs. Ng

curve. A detailed derivation of the relationship A = A (Ng) for the CE case

is given in Appendix E. The result is shown in Figure VI-16 along with

the theoretical curve for the approximate separation model (i. e. , the PH

condition with a semicircular separation geometry) that was used in the

roll coating analyses. The agreement is remarkably good in the range

Ng = 0-1.0 as was anticipated. The two curves start to diverge at Ng = 1. 0

where the CE model predicts more moderate increase in coating thickness.

(The scatter in the CE model results is due to the approximate nature of

the solution technique used.) Whether the CE model itself is applicable

for low capillary numbers (i.e., high values of Ng) is not yet clear.

Savage (1977a) points out that the CE conditions fail in the limit of small

capillary numbers and it remains to be seen how real systems behave in
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this limit, where reliable experimental data are not easily accessible.

Since the parameter N
g

does not exceed unity in typical roll coating

operations then, in a practical sense, the approximate separation model that

was employed throughout is representative of the actual separation dynamics.

VI. 4 Experimental

VI. 4. 1 Scope. An experimental study of roll coating was carried out

and it is detailed in this section. This study was designed specifically to

test the effect of fluid rheology and system geometry on the coating thickness

observed under stable coating operation.

The system of partially immersed counter-rotating rollers was selected

for this investigation as it simulates hydrodynamically many typical roll

coating systems and it allows a continuous and steady coating operation

requiring relatively small amounts of fluid. Both Newtonian and viscoelastic

fluids were tested over a wide range of rheological behavior.

The coating experiments were severly hindered by the onset of surface

irregularities and air-entrainment phenomena at high speeds. At low speeds,

the dynamics were practically governed by gravity forces thereby limiting

the effective range of experimental testing. This part of the experimental

program is exclusively concerned with stable (uniform) coating, both in the

gravity-free and the gravity-controlled regimes. An extension of this study

to the unstable flow regime is made in Chapter VIII.
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VI-4.2 Experimental system. A general view of the experimental

system is shown in Figure VI-17. A schematic diagram of the system is

depicted in Figure VI-18 and its various dimensions are listed in Table VI-2.

The system consists of a square acrylic box and a pair of steel rollers.

The box serves as a container for the test fluid and a holding frame for the

rollers. Each roller, together with a 3/8 in. dia. steel shaft and a pair

of tight-fitted sealed ball-bearings, is a removeable and exchangeable unit.

A pair of round slots on two opposite walls of the box were designed to

house the bearings and to keep the roller axes at a fixed distance apart

The rollers are mounted by carefully fitting the bearings into the corres-

ponding slots in the box and tightening them by standard set screws.

Two pairs of rollers were machined at two different diameters and

they were turned around centers to an accuracy of 1.0. 0005 in. for con-

centricity. All four rollers were paired into three different sets: two sets

of roller-pairs at equal diameters each and a third set of two rollers at

two different diameters. Since the distance between the roller axes was

fixed (at 2.000 in.), each set corresponds to a different nip separation

(2H 0 ). The relevant geometric parameters for these alternative combina-

tions are listed in Table VI-3. As seen, this simple arrangement made it

possible to vary the parameter H
Q
/R nearly threefold. The system was

checked for parallelism which was found to be ±0. 0015 in. for all the roller

sets.
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Figure VI- 17. A general view of the experimental roll coating system.
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Figure VI- 18. A diagram of the experimental system of half-immersed

counter-rotating rollers.



Table VI-2

Physical Dimensions of the Experimental

Roll Coating System

[cm]

a 5. 08

b 15.3

c 10.2

d 15.2

e 5. 1

f 6.5

lSee Figure VI- 18



Table VI-3

The Experimental Roll Coating System:

Geometric Parameters for Alternative Combinations

Set # 2H 0
1
[cm] H 0/R

1 0.152 0. 0306

2 0.065 0.0129

3 0.114 0.0228

1 +0.005
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re
In order to coordinate the motion of the roller-pairs the shafts we

coupled by a pair of equal size spur gears (P.U.C. cat. no. G79-48; P. D.

2.000 in., O.D. 2.083 in.). These gears, guaranteed equal rotational

speeds for both rollers. The peripheral speeds for sets 1 and 2. were

equal as well since the diameters of the rollers for each pair were identical.

For set 3 the peripheral speeds differed by 1-2% due to the small variance

in the roller diameters. This small difference, however, was ignored and

the speed ratio for set 3, as for sets 1 and 2, was taken to be equal to

unity. The system was driven by a constant speed DC motor that was

connected to a Cole-Parmer speed and torque control unit. The actual

speed scale in the unit was checked and recalibrated.

As in the blade coating experiment, coating thickness was measured

by a physical contact technique. A detailed account of this technique, is

given in V. 3.

VI. 4. 3 Materials. A series of Newtonian and viscoelastic fluids with

widely varying physical and rheological properties were tested in this ex-

periment. Table VI-4 lists all the fluids examined, their physical properties,

their sources and their codes. The rheological properties of the fluids are

given separately; inasmuch as the Newtonian viscosity is a strong function of

temperature this property was measured individually for each run at or

about the corresponding (room) temperature and it is reported in Appendix

A together with the coating data. Generally, the Newtonian viscosities in



Table VI-4

The Roll Coating Experiment:
List of Materials

Fluid
J

Symbols 9
y [g/cc] ^[dynes/cm]10

Glycerin^)1 ® AAA 1. 26 63

Karo Syrup3 (KB) ® \[7 V 1. 38

GW-0.954 ® CD 1.25

GW-0.904 ® 0 # O 1. 24

GW-0.75 4 ® <D # O
Motor-Oil5 (MO) © <t> ^ O 0,88 35

GWS-0^(J ,J © # O 1.24 28

1.00 76

1.00 76

75

64

65

1.20 67

H-0. 157 © V V
H-0. 257 © (D • O
H-0.35 7 © [DDD LOO

H-0.57 © AAA
HS-0.75? © <!><>
HS-0.35 8 ® -QJ- JJ- -Q- 1. 00

Hs-0.58 © A A: A

75

1.00 75

1. 00 74

27

1. 00 27

1® = Newtonian, © = Viscoelastic

2 Source: Fisher Scientific Co,

3 Commercial brand. Source: CPC Corp.
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Table VI-4 Con't

* GW-X = Glycerin-water solution, 100X% Glycerin by volume.

5 A mix of commerical brands "Golden Shell" and "Shell 100-X
multigrade".

6 GWS-X = Glycerin-water solution, 100X% Glycerin by volume + 0.4%
by wt. of sodium oleate (a surfactant)

7 H-X = Aqueous solution of Polyhall 295 (Stein, Hall and Co, ,
Inc.),

X% by wt.

8 HS-X = Aqueous solution of Polyhall 295, X% by wt. + 0.4% by wt.

of sodium oleate (a surfactant).

9 Left column of symbols is for H 0/R = 0.0306
J

right column -

H
0
/R 0.0129 and central column - Hq/R = 0.0228.

+2 dymes/cm
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this experiment varied from 0.5 to 30. poise. The viscometric functions,

"J
(it) and ^(^h for the viscoelastic fluids are shown in Figures VI-19

and VI-20 and the corresponding viscometric data are listed in Appendix B.

(The addition of a surfactant, in the cases specified in Table VI-4, was

found to have negligible effect on the rheological behavior of the correspond-

ing fluids.

)

The densities of all the fluids were measured by a standard piezo-

meter at room temperature. Two techniques were employed for measuring

the surface tension: the drop-weight method and the pendant-drop method.

These and other methods are discussed extensively in two excellent review

articles by Padday (1969) and Gaines (1972). Both methods are based on

the properties of an equilibrium drop.

The drop-weight method is based on the relation between the surface

tension and the weight of an equilibrium drop. The surface tension was

measured by weighing a specified number of drops issuing from a known

capillary. The flow rate was maintained small (so that true equilibrium

conditions are met) and constant by means of a syringe pump (Harvard

Scientific Co. , Series 900). The surface tension was then calculated from

available tabulated correlations (Padday 1969). For viscoelastic fluids the

pendant-drop method was found better suited. This method is based on a

relation between the surface tension and the shape of an equilibrium drop.

The shape of an equilibrium bubble attached to the tip of a capillary was
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Figure VI-19. The shear viscosity functions for the viscoelastic fluids

used in the roll coating experiment (Key in Table VI-4),
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Figure VI-20. The first normal-stress coefficients for the viscoelastic

fluids used in the roll coating experiment (Key in Table

VI-4).
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determined photographically. (SLR 35 mm. Nikon F2 Photomic camera,

Mikro Nikkor - P Auto 1:3.5 lens and red filter. Film: Kodak Tri-X

400 ASA). The appropriate shape factors were extracted from the photo-

graphs and used for calculating the surface tension through a given

correlation (see Pearson 1975, Roe et al. 1967). In both cases the results

were found reproducible within 2 dynes/cm.

The Newtonian viscosities were measured by an Epprecht (R-15)

rheometer which is essentially a coaxial cylinder viscometer, and the

viscometric functions of the viscoelastic fluids were nleasured by a Rheo-

metrics Mechanical Spectrometer using a cone-and-plate mode. The first

normal stress coefficients were corrected for errors originating from finite

inertial effects. This correction is discussed in Appendix B.

The aqueous polyacrylamide solutions were prepared in the following

manner. A 0. 025% by wt. of sodium azide was dissolved in cool tap water

(10°-15°c). The water was then poured into a beaker containing a specified

amount of the polymer with a simultaneous stirring using a magnetic stirrer,

After ~15 minutes the magnetic stirrer was replaced by a high speed

zig-zag shaped impeller and the solution was mixed thoroughly for about two

hours. After the solution became clear and no lumps were visible it was

stored for at least two days prior to being used. The addition of sodium

azide was found effective in preventing bacterial growth and a resulting

degradation of the polymer.
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VI. 4. 4 Procedure. The acrylic box was filled with the test fluid up

to the level of the axes of the roller pair. The rollers were then set in

motion at a specified rotational speed and the coating thickness (on one

roller) was measured using the physical contact method following a proced-

ure outlined in V. 3. The measurement was taken at the center of the rolle

to avoid errors due to end effects. (Apparent end effects were visible only

within a narrow margin off the roller ends. ) The testing speed was in-

creased gradually, in small intervals, from zero up to a point where sur-

face instabilities or air entrainment effects were first seen. All the runs

were carried out at room temperature (24l3°c).

The data corresponding to the gravity-dominated regime were singled

out by an apparent dependence of the coating thickness on the rotational

speed. In the gravity-free regime the coating thickness was insensitive to

the rotational speed in accordance with the prediction of the lubrication

analysis.

VI. 5 Experimental Results and Discussion

The experimental results are presented graphically in Figures VI-21

to VI-25; the corresponding data are listed in Appendix A. Figure VI-21

shows the observed variation of the coating thickness with the parameter

Ns for Newtonian systems in the gravity-free regime. This result is com

pared to the theoretical prediction (Figure VI-13, n=1.0) represented by

the solid line. The weak theoretical dependence of A on Ns could not be
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ascertained by this experiment because of the experimental error

(£Amax = 0.08) which exceeds the expected variation. Otherwise, the

agreement is satisfactory; the experimental results confirm that the coating

thickness is practically independent of the parameter Ns (for 0, 05<Ng<0. 5)

and that A averages around the asymptotic theoretical value of 1.30. The

limits on Ns were imposed by the onset of hydrodynamic instabilities (for

Ng<0. 05) and by gravity effects (for Ns>0.5).

Figure VI-22 shows some data in the transition region from gravity-

dominated to gravity-free coating. This "transition" was found to take

place at Ng = 0. 1. For Ng lower than this "critical" value the coating

thickness was nearly independent of Ng. At higher Ng's the coating

thickness was a strong function of Ng, which is expected for systems that

are gravity-controlled. Coating thickness data for gravity-dominated New-

tonian systems are shown in Figure VI-23. The experimental data follow

a trend that is in accordance with the theoretical results (the solid lines).

Inasmuch as the experimental values of Ns are in the range [0, 4], the

experimental results fall consistently between the theoretical curves for

Ng = 0. 0 and N
g

= 4. 0. The theoretical curves in Figure VI-23 were

calculated taking 0
= - 5.0 (see Eq. VI-33).

The viscoelastic data were somewhat limited in comparison to the

Newtonian data. It was found that the viscoelastic systems were consider-

ably less stable than the Newtonian systems under comparable conditions.
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Figure VI-22. Coating thickness vs. the gravity number. Experimental

data for Newtonian fluids in the transition from gravity-

free to gravity-controlled regime. (Key in Table VI-4.

)
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This was manifested by the appearance of surface irregularities at such low

speeds where gravity effects were still overriding. Thus, it was not

possible to obtain stable gravity-free coating with the viscoelastic fluids.

Figure VI-24 shows the variation of A with ns ; the experimental values

are compared to the purely viscous power-law theory for n - 0.4. (All the

viscoelastic solutions are essentially power-law fluids, within the shear-rate

range of interest, with n = 0. 34-0. 41. ) A substantial discrepancy between

theory and experiment is evident. Further, the coating thickness does not

seem to correlate with the parameter Ng. A far better correlation is

presented in Figure VI-25. Here, )\ is plotted against Ng and a clear

trend emerges consistent (qualitatively) with the gravity-controlled theory

for a power-law fluid. The experimental error, in this case, is quite

large (up to 15% in coating thickness) and thus a good quantitative fit between

these data and the theory is not expected. In addition, as in the Npwtonian

case, the theoretical curves in Figure VI-25 were calculated taking
J^q

= -5.

As was pointed out in VI. 3. 4 this choice of j£q is arbitrary and it could

account for the small difference between the theoretical results and the data.

Despite this, it is reasonable to state that gravity effects are possibly the

major cause for the low level of coating thickness observed.

Only few experimental studies have been reported in which coating

thickness was measured in a roll coating operation. Pitts and Greiller (1961)

report on coating thickness measurements conducted in a system of
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Figure VI-25* Coating thickness vs. the gravity number. Experimental

data for viscoelastic fluids are compared to the lubrication

solution for a power-law fluid (n = 0 o 4) in the gravity-

controlled regime. (Key in Table VI-4.)
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counter-rotating rollers, similar to the one considered in this study. Their

observed A's are in the range 1.26-1.38, which is consistent with the data

of the present work. However, a critical assessment of Pitts and Greiller's

work cannot be made inasmuch as the corresponding values of Ng and N$

were not given. Hintermaier and White (1965) have also conducted coating

thickness measurements (of water films) on counter-rotating rollers. Their

values seem quite sparse -and they fall in the range 1.34-1.68. Here,

as in Pitts and Greiller's work, no account was made of gravity and sur-

face tension effects. However, a sample calculation using their data shows

that Ng was smaller than 0. 1 but Ns was as high as 0. 8 in some cases.

In both studies the fluids investigated were Newtonian and the film thickness

was measured by the fairly unreliable technique of collecting and weighing

the total' throughputs.

VI. 6 Reverse-Roll Coating

VI. 6.1 General . One of the principal limitations of a forward

(regular) roll coating device is its susceptibility to flow instabilities, Such

instabilities are manifested by the appearance of coating surface irregulari-

ties at moderate-to-high speeds. In Chapter VIII it is shown and argued that

this undesireable phenomenon cannot be easily eliminated unless the speed is

reduced to uneconomical^ low levels. One way that was found effective in

assuring a smooth coating was to reverse the direction of rotation of the

roll relative to the web. Such operation is called reverse-roll coating.
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Owing to its ability to yield smooth and well controlled coatings at high

throughputs, the reverse-roll coater is one of the most versatile and com-

mon coaters in use (Booth 1968).

A scheme of a reverse-roll coating system is depicted in Figure VI-26.

It is noted that the reverse roll is precoated prior to entering the metering

(or application) zone. This feature is bound to have some effect on the

final web coating and, indeed, the question of the relation between the thickness

of the precoated layer to the thickness of the final web coating is central in

the design and operation of reverse-roll coaters. This question is addressed

below through a simple lubrication analysis of a reverse-roll coating system.

VI. 6.2 Newtonian lubrication analysis . Attention is focused on the

system of co-rotating rollers which is shown in Figure VI-26. It is antici-

pated that the two-dimensional character of the flow becomes strong far from

the nip, near the liquid-air meniscus. At this range the lubrication approx-

imation is probably not valid. However, in the neighborhood of the nip the

lubrication character of the flow is expected to be preserved. In the follow-

ing analysis, the lubrication approximation is used for characterizing the

flow in the nip region. This is supplemented by a simple mass balance that

provides qualitative but useful performance relations for the system.

Clearly, the present analysis differs from the analysis given in VI. 3. 3

(for the system of counter-rotating rollers) only in the form of the kinematic

boundary conditions. These conditions for the present system are:



Figure VI-26. A definition scheme for a reverse-roll coating system
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<
a

> <4> = l @ m = _^

(VI-34)
and

(b) V = -/< @

where ^.
ur

Uf

and f/i _ u

Uf

The equation of motion, combined with the above conditions, gives

2
' 2

.
^ 2 (VI.35)

and a reduced flow-rate through the nip can be calculated as

3 ^ ^ 1

2 (VI-36)

(Note that -4 , in this case, is a dimensionless flow-rate through the nip

and not a dimensionless coating thickness). It follows that

m 3 (1-/Q <^-2A
2 <£

3 (VI-37)

Eqs. (VI-35) and (VI-37) can be used for evaluating the position of the first

stagnation point (denoted by a subscript s) along the symmetry plane 0)

Introducing Eq. (VI-37) into Eq. (VI-35) and taking V5 = 0 and fy

J=
0,

one finds

<<1-*) = 6 X (
VI- 38 )

This equation specifies the position of the first stagnation point along the

symmetry axis downstream from the nip.
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In addition, a total mass balance for the system can be written in

the form

Uf H
f
= U r H r + 2 A H 0 Uf1 r r U 1

(VI-39)

This can be reduced to

j) = k + 2aA
H r (VI-40)

where -J - L
H r

Even though the problem has not been completely solved at this stage, and

A still remains unknown, some speculations can be made concerning the

dependence of Hf on Uf, and Hr ,
using Eqs. (VI-38) and (VI-40). It is

useful to examine three general cases:

i. When k = 1 X is zero (according to Eq. VI-38) and consequently,

= 1.0 for all —2. (VI-41)
Hr

ii. When H < 1, A is positive and

HO

H r (VI-42)

Thus liml) = U (<1.0)

and for H 0/H r > 0, ^ > k

iii. When /< > I, A is negative and,

H 0 <
VI" 43

)

H
i> = k - 2 /a)

Thus lim "9 = J<(>1.0)

and for Ho/H r > 0, V < K



Figure VI-27. A qualitative stream-line pattern for the system of

co-rotating rollers.
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These are the general relationships between ^(or H
f
) and k . For a

quantitative evaluation of H
f

it is necessary to determine A which is the

only unspecified quantity in Eq. (VI-40). From Eq. (VI-38) it is expected

that X is solely a function of L< . The functional dependence of X on K

can be determined through observation using Eqs. (VI-38) or (VI-40).

Before passing on to an experimental examination of the various model

results it is useful to present a qualitative stream-line pattern for the

system at hand. This pattern, shown in Figure VI-27, is directly deducible

from the foregoing analysis.

VI. 6.3 Experimental observations . An experimental investigation of

reverse-roll coating aimed at studying the general relationships between

K and Ho/H r was carried out and it is reported below.

The experimental system described in VI. 4. 2 was employed in this

study and it required only a slight modification; the driving mechanism (a

pair of coupled gears) was replaced by a set of geared pulleys and a

positive drive belt so that the roller pair could co-rotate (rather than

counter-rotate) and thereby simulate a reverse-roll coating operation. Two

sets of pulleys were used; a pair of identical pulleys which guaranteed

equal speeds for both rollers (X = 1.0) and a pair of non-equal pulleys

which gave K values of 0.57 and 1.75 (no slip geared pulleys, PJ-I.C. cat.

nos. FEI-32 and FEI-56; positive drive belt, P. I. C. cat. no. FA- 128).
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The experimental procedure is similar to the procedure outlined in

VI. 4. 4 with the exception that the coating thickness was measured on both

the forward and the reverse rolls so that "i> could be determined. Two

Newtonian fluids were examined: Glycerin and GW-0. 90 (see Table VI-4).

Each was tested at three speed ratios
(
K = 0. 57, 1. 00, 1. 75) with the nip

separation (2H 0 ) set at 0. 065 cm. (set 2 in Table VI-3). In addition,

Glycerin was tested at three different nip separations (sets 1, 2 and 3)

with K = 1. 00. The precoated film on the reverse roll was formed by free

withdrawal of fluid from the bath.

The final experimental results are listed in Appendix A. These data

are reduced to l) vs. H
0
/Hr plots presented in Figures VI-28 and VI-29.

Figure VI-28 shows data for both fluids at constant geometry (2Hq = 0.065

cm) and three speed ratios. The general trends that are displayed by the

data are in accord with Eqs. (VI-41) through (VI-43): l) decreases with

H 0/H r for AT > 1, "^increases for /< < 1. , and "a? is indepedent of Ho/H r

for K = 1.0. Data for Glycerin at K = 1 for three different nip separations

are given in Figure VI-29. This figure clearly slows that ")) is independent

of the nip geometry and that H
f

is equal to Hr for the case K = 1.

A values were extracted from the data for both fluids for the cases

l< =0.57 and K= 1.75. These values were evaluated using Eq. (VI-40)

and were found nearly constant (with respect to changes in speed) for each

K . The average values of A are plotted in Figure VI-30 against^.



Figure VI-28. Coating thickness ratio vs 9 Ho/Hr. Experimental data for

Newtonian fluids in a system of half-immersed co-rotating

rollers. (Glycerin: A - k = 1.0, A - k = 1.75,

A - i<* = 0.57; GW-0.90: O - k= 1.0, © - * 1.75,

CD - lC = 0.57). The solid line is a theoretical result

for k = 1-0.
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Figure VI-30. "Nip flow-rate" vs. the speed ratio. Experimental data for

Newtonian fluids in a system of half-immersed co-rotating

rollers.
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A (1) = 0 is a theoretical result that has been confirmed experimentally.
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CHAPTER VII

ROLL COATING DYNAMICS:
THE SUBMERGED-ROLL SYSTEM

VII. 1 Introduction

An attempt to elucidate the dynamic behavior of fluids in roll coating,

through a study of a model system, is reported in this chapter.

An experimental study of the dynamics in roll coating is hampered by

the inherent difficulty in measuring pressures in narrow flow spaces. Such

experimental undertaking can be made somewhat easier by replacing an

actual roll coating system with a dynamic prototype, the submerged-roll

system.

A schematic of the submerged-roll system is presented in Figure

VII- 1. This system consists of an infinitely long roll and a stationary,

infinitely wide, wall that is situated parallel to the roll axis at a relatively

short distance, Ho(«R), from the roll surface. The system is fully im-

mersed in a "sea" of fluid and a motion in the fluid is induced by the

rotation of the roll. Both the wall and the roll are rigid and their relative

position is unaffected by the flow field. Attention is focused on the con-

verging-diverging flow space in the vicinity of the nip. Clearly, this

system does not fall in the general category of coating flows according to

the definition given in Chapter II. The submerged-roll system is,
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however, dynamically similar to a (forward) roll coating system and it is

thus used here to simulate the dynamic response in roll coating.

It will be seen that the Newtonian pressure distribution for the sub-

merged-roll system is an odd function of the x coordinate, i.e., the

load-carrying capacity for the system is identically zero. This dynamic

property makes this system unattractive in the lubrication sense. For

sufficiently high pressures, however, a cavitation is likely to develop at

the negative pressure zone (Banks and Mill 1954, Taylor 1963), thus

altering radically the dynamics of the system. To avoid the additional

complexity involved in the presence of cavitation, this study is exclusively

concerned with the non-cavitating case which is prevalent under conditions

of light loading (low deformation rates).

As this study is essentially an extension of the roll coating chapter

(VI) some of the early reports concerning the submerged-roll problem have

been cited in VI. 1. Few studies on the system of a lubricated cylinder

lightly loaded against a stationary plane have been reported. Floberg

(1964, 1965, 1968), in an attempt to elucidate the origin of striations (or

streamers) arising in a variety of lubricating rolling elements, conducted a

series of experiments in which pressure distributions were measured. In

the system considered by Floberg, the downstream end was not flooded.

Rather, a separation cavitation, accompanied by striations, was taking place

in the lubricating film. Floberg's observations, nevertheless, lend
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themselves to the various analytical pressure distributions presented in

Chapter VI; the general features of the observed pressure function are in

agreement with the theoretical results of Chapter VI. In a later publication,

Taylor (1974b) discusses Floberg's work by comparing the experimental

pressure distributions to those predicted by the Coyne and Elrod theory

(see IV. 4). The agreement was found satisfactory even though the Coyne

and Elrod theory was derived for a striation-free case. Is this agreement

accidental, or is it that the presence of striations has little effect on the

boundary conditions? As pointed out by Taylor, this question is yet to be

answered. In any case, Coyne and Elrods' theory has proved useful and

practically valid. It is pertinent to note that the Coyne and Elrod condition

was found generally compatible with the separation model used in Chapter

VI (see VI. 3.4). Thus, Floberg's observations indirectly validate the

theoretical pressure distributions presented in Chapter VI for the Newtonian

case. One still lacks, however, sufficient information regarding the response

of viscoelastic fluids in the system.

An experimental study of the submerged-roll system was undertaken

with an attempt to investigate the behavior of both Newtonian and viscoelastic

fluids in the converging-diverging flow space. Lubrication analyses for the

submerged-roll system are presented in Section 2. These analyses are

carried out for two constitutive models: The second-order fluid model and

the CEF model. (Results for the Newtonian case are given without
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derivation.
)

In Section 3, an experimental study of the system is reported

and the experimental results are presented and discussed in Section 4.

VII. 2 The Submerged-Roll System: Lubrication Analyses

VII. 2. 1 General. The geometric resemblance of the submerged-roll

system to the sheet-and-roll system discussed in VI. 2, permits dimension-

less variables for this system to be defined in a similar way,

and _ PHo
urT72

(RHo)
1"6

' H0 '

1 U

3/2

where <vj* has been defined in Eq. (VI- 1). For the non-cavitating case one

can write the following boundary conditions,

(a) <P = 1 @ >sy = <p

(b) - 0 @ ^ = o (vil-l)

(c), (d) ?2 = . 0 @
J?

= ±

where c£, the position of the roll surface, is given by Eq. (VI-3). Eqs a

(Vll-la, b) are the T no-slip f conditions and Eqs. (VII-lc, d) state that the

pressure vanishes at points far upstream and far downstream from the nip 8

Note that in the absence of flow separation the number of boundary conditions

is reduced by one. Since no actual coating is taking place in this system,

the only performance variable that is considered in the analyses to follow

is the pressure (or the total stress in the case of a viscoelastic fluid).
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The Newtonian lubrication analysis for this system is straightforward

and hence the important results are presented below without derivation.

Two integrations of Eq„ (IV-2) and application of the boundary conditions,

Eq. (VII-1), together with a mass balance, yield the following results:

- 8 j.
{Z+j > (VII-2)

C£? = 3<^-4 2 _ 2(<g-2) (VII-3)

and,

\ = 8 = 2 (VII-4)
x UH 0 3

where Q is the volumetric flow-rate per unit width. As was noted previous-

ly, the pressure function is indeed antisymmetric with respect to the origin

(Jr= 0). This situation will prevail only in the absence of cavitation. Also,

from inspection of the velocity profile, <f , it is apparent that it does not

possess an axis of symmetry as in the sheet-and-roll case. It will be

seen that this fact will introduce some difficulties in the perturbation solu-

tion for the CEF model. The results for the Newtonian case are subsequent-

ly used in the analyses for the second-order fluid and the CEF fluid.

VII. 2. 2 The second-order fluid. The Newtonian results presented

above are now modified to account for first order effects of viscoelasticity

using the second-order fluid model. As before, the Giesekus-Tanner-

Pipkin equation is used and it is rewritten here in a dimensionless form
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as an expression for the total stress

6^- >e - sR (f^v^ i SR (
a,vs

(
^l)2 m

where S
°<2 U

R H 0

This expression, evaluated at the plane wall (^ =
0), reads

77 P
2 R 1F« (VII-6)

Stress distributions as given by Eq. (VII-6) are presented in Figure VII-2

for several values of the parameter Sr, taking ~ = 0. 01. The familiarR •

"shift upward" of the distribution in the neighborhood of the nip is dis-

played by the results. This shift is expected to give rise to a finite force

on the wall (or the roll). Integration of Eq. (VII-6) with respect to J
gives

(£) pw = 2.22 (-^)1/2 S
R

(VII-7)

where (£) has been defined in Eq. (VI- 15). Thus, ,
the total separating

force acting on the wall, is finite and linear in Sr for a viscoelastic

second-order fluid. The magnitude of this force, however, will be small

compared to unity in the limit _££o « 1 that is pertinent to this analysis.

R
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Figure VII-2. Total (normal) stress distributions for a second-order fluid

in a submerged-roll system (Hq/R = 0.01).
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VII. 2. 3 The CEF fluid. The CEF model is now applied in the

analysis for the submerged-roll system. This analysis is, in a way, com-

plimentary to the preceding analysis as it regards, in addition to elastic

effects, first-order effects of shear-thinning. As has been noted in IV. 2

the CEF model is essentially represented by two empirical viscometric

functions,^ (V) and 1̂2 (^). Both functions are given in IV. 2. While T7(V

)

is used directly in the dynamic analysis,
l̂2 ('i) is considered only in the

calculation of the total stress distribution.

In a familiar fashion by now, the dynamic equation is solved using a

regular perturbation method, as it cannot be subject to an exact analytical

solution. The analysis begins with the equation

<*Vc)ii + «.
«ff(

>*i - ±* <vn- 8)

where Ne, the viscoelastic parameter (see IV. 2) is selected as a perturba-

tion parameter, as before, all the unknown functions are expanded in the

form

<f = <^0 + Ne cfl + 0(Ne
2

)
(VII-9)

it = ^° + NgTcL1 + 0(Ne
2

)
(VH-10)

and

C = C° + NeC
1 + 0(Ne2

)
(VII-11)

The expanded functions are introduced back into Eq. (VII-8) and the solution

proceeds in the usual perturbation scheme (see IV. 3). This problem is
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somewhat hampered by the fact that the Newtonian velocity profile does not

possess an axis of symmetry. In the course of solution one is faced with

gradient function, and analytical integrations cannot be performed unless

the velocity function is investigated throughout the entire flow domain.

Similar difficulties were faced in the CEF analysis for the blade coating

system. To overcome this problem one needs to divide the flow domain

into zones which are defined by the general shape of the velocity profile.

All the unknown functions are derived for each zone separately with the

condition that they are continuous across the zone boundaries.

The resulting derivation is quite lengthy and it is presented in detail

in Appendix C. The final results are given below.

For Zone A (<*<2) where y~ is always positive,

integrands that contain an absolute-value operator applied to the velocity-

A A 2
+ (

-YP

<Zi&V 2

(VII-12)

and

6/(-X)P + YP)

<r
2rtp p

124-X^P+1 - YP+ 1
)

p(p+% 3 r^2

(VII- 13)
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For Zone B (d>2) wherp f* i«.
)
w^re ^ is either positive or negative

TV
1 = - \1 ±1 6 [(+X)P + vPi

+ 12 t(+x)P + mP+i
p (p+ i) <s

3 re02 (vn-14)

< 0 (case B1 )>

B1 B 2
1

7£0P ^ — ]^

+ IzjgjjZi x^p - Meg
V^P

and for > 0 (case B2),

(VH-15)

B2 L
B 2

r
(+X)P - yP

+ 1
'

1
£—

where

(^S- X)P - /+xiP

7t°P

p - 3-n

(VII- 16)

and

X -

3
+

2

y = - + ->eV

c
4.

in Zone A

[

E
+

r ^ d ^ in z °ne b
J

0
Bl / Jrtj^ B2 /
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E is the position of the extrenum of the velocity profile at J .

is determined by specifying 7^(0) = 0 (as one would expect the

pressure function to remain antisymmetric with respect to the origin for

fluids that are shear-thinning).

With A1
(n) on hand, it is possible to calculate the total stress dis-

tributions for the system using Eqs. (VII- 13) and (VII- 14). The total stress

function evaluated at the plane surface is

* —
11

-o° J R ^ 2 (VII-17)

where the normal stress,
, has been evaluated using Eqs. (IV-14) and

(VII-3). Evidently, the dashed-underlined normal stress term in Eq. (VII-17)

is much smaller than the other terms (see Eq. (VI-27) for similar consid-

erations). Thus, this term is neglected in the calculation of the total stress

distributions. These distributions are presented in Figure VII-3 for several

values of the parameter Ws (=Ne^/^~
nV Since the resulting distributions are

odd functions of i- only the positive branch is shown.

The results obtained are consistent with the results for the corres-

ponding sheet-and-roll analysis (VI. 2. 4). That is, the non-Newtonian distri-

butions are "flatter" in comparison to the corresponding Newtonian distribution

Also, the effect is more pronounced for fluids with a higher power-law index.

This "paradox" has been rationalized both in V. 2. 3 and in VI. 2. 4 and it

was shown to be an artifact of the viscosity model. The general result of

this calculation, namely / TCue \
< iKl >

is nothing but surPrisin&' as one
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Figure VII-3. Total (normal) stress distributions for a CEF fluid in a

submerged-roll system.
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would expect a purely viscous shear-thinning fluid to generate, on the

average, lower pressures than a Newtonian fluid with a viscosity equal to

the zero-shear-rate viscosity of the viscoelastic fluid. Also, as expected,

the contribution of the normal-stress term to the total-stress distribution

was found insignificant (see VI. 2. 4-5). This term, however, will be the

only one to contribute to a finite, though small, roll separating force. By

inspection, the total force acting on the plane wall is given by Eq. (VII-7)

with W
g

replacing SR .

VII. 2.4 Discussion. All the theoretical results presented in this

section give some credence to the claim that the submerged-roll system is

dynamically similar to the roll coating system; similar trends were found

for the second-order fluid model and for the CEF model in both systems.

These trends have been discussed in VI. 2.5.

The equivalent problem of a full-film, non-cavitating journal-bearing

was analyzed by Davies and Walters (1973) using an Oldroyd-type constitu-

tive model. (This model is not particularly realistic but its qualitative

features are quite satisfactory:
)

They present total-stress distributions that

agree qualitatively with the results of the present work. Specifically, they

found that: 1) The Newtonian distribution is an odd function of the primary

flow coordinate, 2) Shear-thinning effects tend to "flatten" the distri-

bution, and 3) elastic effects tend to "shift" the distribution "upward" in

the vicinity of the nip. It now remains to be seen how well these results

are reproduced in practice.
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VII. 3 Experimental

VII. 3. 1 Scope. An experimental study was undertaken aimed at

testing the various theoretical results for the submerged-roll system. In

this study, pressure distributions were measured in the vicinity of the nip

using a U-tube manometer. The runs were conducted at room temperature

and measurements were taken for several rotational speeds of the roll.

Two fluids were tested: a viscous Newtonian fluid and a highly viscoelastic

fluid. The error involved in the use of a manometer for measuring pres-

sures generated by a viscoelastic fluid, the "hole-pressure error", was

approximately corrected via a given correlation.

VII. 3. 2 Experimental system. The experimental submerged-roll

system was designed so as to enable a study of the dynamics under cavita-

tion-free conditions. The dimensions of the system were thus dictated by

the anticipated low level of the pressures and by the size and sensitivity of

the pressure sensing device to be used in this experiment. The essentials

of the experimental system are given in Figure VII-4. The system consists

of a smoothed steel roll (38.2 cm. long, 21.40 cm. in diameter) that is

positioned vertically in a large acrylic tank (41.1 x 41.9 x 49.3 cm.). The

roll is firmly attached to a rigid holding frame and its rotation is accom-

modated by two ball bearings; a regular sealed bearing on top and a

sealed thrust bearing at the bottom. The thrust bearing is attached per-

manently to the bottom part of the frame whereas the upper bearing is
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Figure VII-4. A scheme of the experimental submerged-roll system,

1. DC constant-speed motor. 2, An acrylic container,

3. U-tube manometer. 4. An acrylic plate (side view),

5. Steel roll.
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tight-fitted on the roll shaft. The roll was turned around centers to an

accuracy of +0. 001 in. for concentricity.

A flat acrylic board (3/8 in. thick, 44.3 cm. long and 30.1 cm. wide)

is positioned vertically in the tank, parallel to the roll axis. This board

serves as a pressure-sensitive rigid wall and it is attached to the frame

through a pair of aluminum channels (one at the bottom and one on top).

The horizontal position of the board can be adjusted by sliding it along the

channels, and its distance from the roll surface can be set by moving the

channels; both channels are attached to the frame in a way that permits

changing their distance from the roll.

A U-tube manometer was used for measuring pressures. The mano-

meter is attached to the board at the center and by sliding the board along

the channels pressure readings could be taken at different horizontal

positions on the mid-plane (away from the roll edges).

The roll was driven by a 3HP DC motor through a vertical face

mounted speed reducer (Boston Gear; 18300-B Baldor 3HP DC face mounted

motor; F-231 SPV Boston vertical face mounted optimount speed reducer).

The driving system was positioned on a firm stand above the submerged-

roll system and a standard coupling was used for connecting the roll shaft

to the driving shaft. The speed of the motor was controlled by an elec-

tronic speed control unit (Boston Gear, VE-300 Boston 3HP Ratiotral motor

control).. The arbitrary speed scale on the unit was calibrated before each

run.
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Vn. 3. 3 Materials and Experimental Procedure . Experiments were

conducted with two fluids; Karo Syrup (KS), a Newtonian fluid, and an

aqueous solution of polyacrylamide (Polyhall), 1% by wt. nominal (H-l) which

is a viscoelastic fluid. Some physical properties of these materials I
and other pertinent information are given in Table V[-4. The viscosity of

the Karo Syrup, being strongly temperature dependent, was measured at the

temperature recorded for the corresponding experiment, using an Epprecht

Rheomat 15. This temperature was noted to be constant within the time

span of the experiment. The viscometric properties of the viscoelastic

solution (H-l) were measured using a rheometrics mechanical spectrometer

and they are given in Figure VII-5. The corresponding data are presented

in a tabular form in Appendix B. Some degradation of the polymeric species

was detected at an early stage of the "viscoelastic" run and it was mani-

fested by a reduction in both the shear viscosity and the first normal-stress

coefficient. These properties stabilized after the initial stage and they re-

mained nearly constant throughout most of the run. The data in Figure

VII-5 represent the sample after the initial degradation.

The experimental procedure was as follows. The system was care-

fully assembled with special attention given to the distance and allignment

of the acrylic board relative to the roll. With the aid of thin spacers, a

uniform gap between the roll and the board was set and it was then

measured by a proper set of feeler gauges. The board was also carefully

alligned at a plane tangential to the roll surface to insure uniformity of the
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converging-diverging space. After the system was assembled it was filled

with the test fluid such that the entire cylinder-plane system be fully

immersed. In the "viscoelastic" run the solution was prepared directly in

the acrylic tank. The total capacity of the system was nearly fifteen

gallons. Pressure readings were taken at several positions of the pressure

tap relative to the nip. By sliding the acrylic board along the channels,

the pressure tap could be stationed at any position within an interval of 5

cms. on both sides of the nip. The measurements were repeated for

several rotational speeds which were maintained sufficiently low to avoid

the onset of cavitation. As the viscosities of the test fluids were relatively

high, the response of the manometer to a step change in pressure was

fairly slow: few minutes for the Karo Syrup and up to an hour (!) for the

viscoelastic solution.

VII. 4 Experimental Results and Discussion

The experimental pressure distributions are presented graphically in

Figures VII-6 through VTI-8. The relevant data and the pertinent informa-

tion are given in Appendix A. The pressures observed in the "Newtonian"

run are presented in Figure VII-6 in a properly reduced form where they

are compared to the Newtonian lubrication solution (the solid line) and to

a numerical solution of the full planar flow problem (the dashed line). Each

data point in this figure represents an average of four pressure readings

taken at four rotational speeds (24.4, 45.4, 67.4, 87.6 rpm). All four
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readings gave consistently nearly the same values for the reduced pressure

(within the experimental uncertainty) at all seven positions where readings

were taken.

It is safe to assume that for a roll with length-to-diameter ratio of

~ 1. 8 as in the present system the two-dimensional character of the flow

is preserved and the contribution of end effects to the measured pressures

is marginal (see Pinkus and Sternlicht 1961). However, the relatively large

Ho/R in this run (Ho = 0.64 cm., R = 10.70 cm.) raised some doubts

about the validity of the lubrication solution for this particular geometry.

To verify this, the full planar creeping flow problem was solved numerically

by a Finite Element scheme that is detailed in Appendix D. The numer-

ically calculated pressure distribution is presented in Figure VII-6. One

important result of this "more exact" solution is that the level of the pres-

sure is somewhat reduced in comparison to the approximate lubrication

solution. The velocity field, however, was found nearly unaffected by this

"geometry effect". Within the experimental uncertainly, the Newtonian data

seem to validate the numerical result.

It was more difficult to assess the experimental data for the viscoe-

lastic fluid. One handicap involved in the use of manometers for measuring

"pressures" (or total normal tractions) generated by viscoelastic fluids, is

the so-called "hole-pressure error". This error arises from the presence

of a cavity adjacent to the flow field and it is directly related to the
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Theological properties of the fluid (Pipkin and Tanner 1972, Novotny and

Eckert 1973, Higashitani and Lodge 1975). The "hole-pressure error" is

usually negative and its magnitude can be estimated from a well accepted

correlation (Higashitani and Lodge 1975) that reads:

Perror- -0.2 ("Z^-Zjy)
(VII- 18)

This correlation has proved valid for polymer solutions at low Reynolds

numbers. Thus, in order to have an estimate of the "hole-pressure error"

one has to have sufficient information as regards the first normal stress

difference at the position where the pressure reading is taken. Z£„-

can be evaluated from the available viscometric data once the local shear-

rate is known. In the present work, the local shear-rates were estimated

by making the crude but not unreasonable assumption that the flow field is

controllable; that is, the velocity field for a viscoelastic fluid is the same

as for a Newtonian fluid. While this assumption is identically correct for

a viscoelastic second order-fluid, it is less good for the viscoelastic fluid

that was studied in this experiment. In any case, this assumption admits

the evaluation of the shear-rate using the Newtonian lubrication solution,

and thus the first normal stress difference can be calculated at any position

in the vicinity of the nip 0

Pressure readings, in this run, were taken for two speeds (53.1,

89.2 rpm) at seven positions relative to the nip. Also, the nip separation

for this run was set at H Q
= 0.19 cm. (i.e., ^5 - 0.0178). Thus, it is
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Figure VII-7. Experimental total (normal) stress distribution for H-l in

the submerged-roll system at two rotational speeds:

59.47 cm/sec. (0) and 99.92 cm/sec. (0), Full symbols

represent the data corrected for the pressure-hole error.
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expected that the Newtonian lubrication solution for this geometry will be

much closer to the "exact solution" than in the preceding run. The results

are displayed in Figure VTI-7 together with the corrections for the

"pressure-hole error". The corrected pressures are then presented in a

reduced form in Figure VII-8 where

^7 7*. U

and 7^ ,
the apparent viscosity, is evaluated at a nominal shear-rate of

^Ho"^ AccordinS to this representation < 1. However, if the

pressure is made dimensionless using the (estimated) zero-shear-rate

viscosity (as in the perturbation analysis for the CEF fluid) then it is found

/ 1

that
l~JzlJ

> 1 wnicn is consistent with the result obtained in the CEF

analysis. Furthermore, in conformity with the CEF solution, the experi-

mental stress function appears to be antisymmetric with respect to the

position of the nip
(

J: = 0).

A more critical assessment of the data is not possible, as no 'exact'

solution for a viscoelastic fluid is available at the present time. It can be

concluded, however, that the experimental total-stress distributions conform

qualitatively with the approximate analytical distributions for the CEF fluid.

In addition, elastic effects are apparently suppressed by purely viscous

effects as no "shift upward" of the total stress at the nip
(Jf=

0) is observed

within the experimental uncertainly.
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Inertia effects in this experiment were insignificant as the "nip"

Reynolds numbers, in both runs were small. (NRe was less than 5 in the

'Newtonian' run and it was less than 20 in the 'viscoelastic 1 run.)
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CHAPTER VIII

INSTABILITIES IN COATING FLOWS:
THE RIBBING PHENOMENON

VIII. 1 Background

In the roll coating analysis (VI. 2) the flow was assumed planar and

hydrodynamically stable for the entire range of variation of the parameter

Ng. It is, however, well established that unstable flow will ensue under some

conditions. This will inherently restrict the effective range of stable coating

and it is thus of interest to understand the nature and the mechanism of

the instability encountered in coating flows. A brief survey of experimental

and theoretical studies concerning this instability is presented in this section.

It is a common observation that when thick paint is applied onto a

smooth surface by means of a soft brush thin ribs (or crests) appear on

the coated surface running in the direction of brushing. A similar phenom-

enon is observed on coatings deposited by rolling contacts (such as journal

bearings, cylinder-plane configurations and counter-rotating rollers) where

evenly spaced ribs appear on the moving surfaces. A photograph portraying

the "ribbing instability" is shown in Figure VIII- 1. In this photograph, the

ribbed coating is issuing from the nip region of a sheet-and-roll system,

with the sheet and the roll moving in the same direction and at the same

lateral speeds.
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Figure VIII- 1. A pictorial view of the ribbing instability in a sheet-and-

roll system.
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The first documented reference to the ribbing phenomenon was made

in 1937 (Cf: Mill and South 1967) and it has since attracted considerable

•industrial' attention due to its obvious technological implications (especially

in the photographic, painting and printing industries). Pearson (1960) cites

some early industrial reports concerning the ribbing instability. This

important problem has received relatively little attention in the open litera-

ture, however. The few analyses and experimental studies to date have

dealt almost exclusively with Newtonian fluids and the results obtained so

far are not conclusive as to the exact physical origin of the ribbing instability.

Pearson (1960) appears to be the first to undertake a theoretical study

of this complex problem. By means of a linear stability analysis applied

to the wide-angled wedge (v shaped) spreader, Pearson was able to show that

the dimensionless group y-^/'i (the capillary number) is central to the rib-

bing phenomenon. Lacking a suitable set of boundary conditions for the

separation region, Pearson made some crude assumptions regarding these

conditions. He was, nevertheless, able to obtain an expression relating the

wave number of the nonuniform coating to the capillary number, which

agreed favorably with some of his experimental data, especially for high

• Pearson's theory, however, did not yield an explicit stability criterion.

An important contribution to the understanding of this problem was

made by Pitts and Greiller (1961). They investigated the system of counter-

rotating rollers and were able to devise a stability criterion that qualitatively
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agreed with their experimental data. As was noted earlier (VI. 3.1), Pitts

and Grelller used an approximate theory for determining the shape and

position of the separation meniscus. This allowed them to improve some-

what the basic ideas put. forth by Pearson.

Their stability theory consists of two parts. First, they attempt to

derive a criterion based on some plausible physical statements regarding the

dynamics of the separation region. This "physical analysis" yields

(VI1I-1)

where *

NC*al * 10

and the superscript * means "evaluated at the onset of ribbing". (Note

that Hq is half the gap thickness.) Then they carry out a more exact linear

stability analysis, which gives

* 28 (VIII-2)

This is a slight improvement over the previous result as their experimental

value for NCal was 02(115). Pitts :m<l driller attributed this apparent

discrepancy to the crudeness of both their theory and their experimental

technique.

A more refined experimental study of this phenomenon was reported

by Mill and South (1967). They used pairs of counter-rotating rollers with

equal and non-equal radii and arrived at the following stability criterion,

based solely on their experimental observation
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NCa2 10 - 3
(VIII-3)

where

N. . = -LLii t
R

}

3/4

Ca2 ^ 2H 0

This result is seemingly not in accord with Pitts and Greiller's criterion.

A more recent account of this problem was given by Savage (1977a).

In his analysis Savage made use of the same physical criterion originally

proposed by Pitts and Grciller. But, unlike Pitts and Greiller, Savage

combined this criterion with the rigorous Coyne and Elrod condition (see

IV. 4) for the separation region. This resulted in a marginal stability line

that gives the variation of the critical capillary number (N<ja ) with the

geometric parameter Hq/R. The functional dependence of Nca on Hq/R is

quite complex and it cannot be cast in the form of a single critical number

as in the aforementioned cases. Savage presented few experimental points

for a cylinder-plane system that agree well with his predictions. It is

regretable, however, that very little was said about the experimental pro-

cedure used.

In a companion paper, Savage (1977b) carried out a linear stability

analysis which, again combined with the Coyne and Elrod condition, gives

a relation between the wave number, the capillary number and the geometry

His solution exhibited a bifurcation point which implies mathematical (and

possibly physical) non-uniqueness.
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All that has been said so far applies exclusively to Newtonian fluids.

The ribbing phenomenon extended to viscoelastic fluids was given very

little attention in the literature. Sone et al. (1963) report on some experi-

ments in which viscoelastic fluids (irradiated silicone oils) exhibit ribbed

patterns in roll-milling with the relaxation time having generally an en-

hancing effect. Ribbed patterns produced with viscoelastic fluids were also

reported by Eckert and Novotny (1973). These patterns, however, were

observed for viscoelastic fluids (aqueous solutions of Polyox) issuing from

a narrow (and uniform) channel where the fluids were subject to a Poiseuille-

type flow. This case is evidently different from the cases discussed above

and it may well correspond to an altogether different phenomenon.

A more critical assessment of the various Newtonian stability criteria

together with additional data for Newtonian fluids are presented in the fol-

lowing section. Then, in Section 3, experiments with viscoelastic fluids are

described and discussed in detail. The strong destabilizing effect of vis-

coelasticity that was observed experimentally is rationalized in the context

of a physical stability analysis that is developed in Section 4.

VIII. 2 Some Observations on the Newtonian Ribbing Instability

The onset of ribbing and the nature of the instability for Newtonian

fluids were investigated and are reported in this section. The experiments

conducted were limited in scope as they were aimed at providing a compara-

tive basis for the more extensive study on the stability of viscoelastic fluids
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in roll coating which is reported in the following section. These experiments,

nevertheless, cover a wide range of fluid properties, and the results obtained

are compared with earlier studies on the ribbing phenomenon.

The experimental system used for this investigation is identical to the

one employed in the study of stable roll coating and it is described in

detail in VI. 4. The system of counter-rotating rollers was selected for

this study as it enables a relatively simple and reliable measurement of

the critical speed, and it allows a direct comparison with the experimental

data of Pitts and Greiller (1961) and Mill and South (1967).

The experimental procedure is as follows. A fresh sample of fluid

was placed in the square acrylic box filling it up to the level of the axes

of the steel rollers. The rollers were then set in motion and their speed

was gradually increased until ripples were first seen on the concave inter-

face between the rollers. This process was repeated many times to insure

consistent observation. It was. nonetheless, difficult to determine the speed

at which ribbing first appeared with sufficient accuracy, and the sizable

experimental error reflects this uncertainty. In a second experiment,

photographs of the wavy surfaces were taken (with a 35 mm SLR Nikon F2

camera and Kodak Tri-X film). These photographs were used for deter-

mining the variation of the wavelength of the perturbed coating with speed.

All the experiments were carried out at room temperature (24±3°c). The

temperature was recorded and the viscosities of the test fluids were
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measured at the temperature of the corresponding experiment.

Table VIII-
1 lists the various fluids used, their respective properties

and the averaged critical speeds observed. The results are presented

graphically in Figure VIII-2 where the modified capillary number, Nc*i, is

plotted against the "nip" Reynolds number (NRe = 5>H 0Uf). The resulting

correlation suggests that NCal ,
proposed originally by Pitts and Greiller

(1961), is indeed adequate for characterizing the Newtonian ribbing instability,

at least for the range of capillary numbers encountered, as this number is

nearly constant for a wide range of variation of the Reynolds number. In

all the cases considered, gravity and inertia effects were evidently unim-

portant, as NRe * < 1. 0 and N| < 0. 01 for all the fluids studied. The

quantitative agreement of the data with Pitts and Greiller' s work is somewhat

less satisfactory. As was noted in Section 1 the experimental value for

^Cal obtained by Pitts and Greiller was 62(115). This number is low

compared to 93(120) obtained in this work. The experimental difficulty in-

volved in determining the exact critical speed may well explain this gap.

Mill and South's (1967) data, recalculated in terms of Ncal. give NCal =

70-110 (for their combination "B"). This range agrees more favorably with

the results of this work. On the other hand, the empirical criterion

suggested by Mill and South, namely NCa2 = 10. 3, is not nearly in as good

agreement with our observation of Nc
*

a2
= 19. lt4. On the basis of the

present work it is not possible to determine which of the two criteria,
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Table VIII-

1

The Newtonian Ribbing Phenomenon:
Observed Critical Speeds

Fluid
1

fC
2 [poise] H

Q
/R U*3[rpm]

Glycerin (G) 10.5 0.0129 26 + 3

Karo Syrup (KS) 28.5 0.0228 21 + 3

GW-0. 90 2.30 0.0129 146 + 15

GW-0. 95 5.01 0. 0129 56+5

Motor-Oil (MO) 1. 44 0. 0129 110 + 10

GWS-0. 90 2.50 0. 0129 49+5

1 More complete information for the fluids listed is given in Table VI-4.

2 Viscosities measured at the room temperature for the corresponding

runs.

3 Errors represent standard deviation for repetitive trials.



229

1
1—o— ii

1—0—

'—(J)
—

.

'— —

1

i

—

•—<

—

1

» '

i

CD

z

03

* O
Z

9
cd

QQ Jh

c
CD

B
U 0> cS

d h ha o
x ^ c
W

CD

£
S

CO

a %
3 *
o
u

0) 3
CO

CD

3
c

o o
c

CD CD

St
2

3 S

I

CD
5*-'

5 °

* a
CD CD

fa >>

c
CD

u

a .S

S 2
a

CD

G c
* .3
o c
c o

u
CD

a
x

COo

CD

O

c

CO

a 55

S3 n
^ o
o

CM
I

CD

d
l-H

I

CD

QQ

^
;

H >

R
>
o



230

N Cal or N
C*a2>

is mor <? appropriate inasmuch as the variation of the

parameter H 0/R is quite limited and the experimental uncertainty involved

in measuring the critical speed is considerable.

The various criteria can be most conveniently cast in the form of

limiting stability curves of log (N
c
*) vs. log (H 0/R). Such a representation

allows to examine Savage's criterion in relation to the other available

stability conditions, both theoretical and empirical. In his analysis, Savage

derives a stability criterion for a cylinder-plane configuration (rotating

cylinder-stationary plane). He also gives the relevant equations for the

system of counter-rotating rollers without explicitly deriving the dependence

jig

of H 0/R on NCa . The necessary calculation was carried out (see Appendix

E) and the result for counter-rotating rollers is presented in Figure VIII-3

along with the theoretical and empirical criteria of Pitts and Greiller and

Mill and South. Close examination of this figure reveals that the slopes

of the empirical curves seem to conform locally with Savage's theory.

Yet, the various empirical results fall well within the envelope formed by

Savage's criterion. The significant numerical difference between the ex-

perimental data and Savage's theory does not necessarily repudiate this

theory. Savage maintains that his condition is necessary but not sufficient

for ribbing to arise. Moreover, he shows that a bifurcation point exists

beyond which the solution to the equations considered is non-unique. Only

one branch of the double-valued solution, Savage claims, is physically
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Figure VIII-3. The critical capillary number vs. Hq/R. Experimental

data of the present work (Key in Table VI-4) are com-
pared to the modified Savage (1977a) theory (S), Pitts

and Greiller f

s (1961) theory (PGT), Pitts and Greiller T s

experimental result (PGE) and Mill and Souths (1967)

experimental result (MS). The dashed lines are extrapo-

lations of empirical curves.
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admissible as the total energy for this branch is minimized. This latter

argument may suggest that his stability criterion is, in fact, a global

(universal) criterion rather than a neutral stability limit (Riley 1975). This

implies that the domain "below" the stability curve in Figure VIII-3 will be

globally stable whereas the domain "above" the curve will be conditionally

(asymptotically) stable. It is to be expected that the neutral stability curve

beyond which instability is guaranteed will lie somewhere above Savage's

global stability curve and perhaps much closer to the experimental data.

Further theoretical studies are needed in order to devise the more useful

neutral stability condition for this problem. Likewise, more data need to

be gathered over a wider range of Hq/R's in order to have a more complete

picture of the Newtonian ribbing phenomenon.

Some photographs showing the ribbing instability (for Glycerin) at

various roller speeds are presented in Figure VIII-4. A common feature

to all the fluids tested is the insensitivity of the wavelength of the unstable

coating to roller speed. It was observed, in fact, that the wavelength

decreases from infinity, at the onset, to some asymptotic value, Wo, at a

speed ~10% higher than the critical speed. This observation is compatible

with a similar observation made by Mill and South (1967) for much lower

Ho/R's.

Wavelength measurements were made for three Newtonian fluids:

Glycerin, Karo Syrup and GWS-0. 90. In analyzing the corresponding



Figure VIII-4. Photographs of the Newtonian ribbing instability.

a. Glycerin, 20 rpm, set #2,

b. Glycerin, 100 rpm, set #2.

c. Glycerin, 150 rpm, set #2.
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photographs waves near the edges of the rolls were excluded due to possible

end effects. The final results are listed in Appendix A. and are presented

in Figure VIH-12. The respective values of (W/2H0 )av. for Glycerin,

Karo Syrup and GWS-0. 90 are: 11.0, 9.7 and 16.0, which compares

favorably with Mill and South's data (11.5-15.8). They noted that these

numbers are independent of the capillary number for Nca > 2.4.

The data presented above can be similarly compared to Savage's

theory (Part II) (1977b) which permits the determination of the wavenumber

(2 TC/W) as a function of the geometry (H 0/R) and the capillary number.

Being formulated for the cylinder-plane geometry, Savage's theory needed

some modification in order to be used in the case of counter-rotating

rollers. These modifications have been worked out and are detailed in

Appendix E. A comparison of the calculated (W/2Ho)'s to the observed

values is presented in Figure VIII-5. It is noted that the calculated curves

display a clear dependence on the capillary number unlike the observed values.

Savage's theory should be commended, however, for approaching the ob-

served values in the limit of small capillary numbers. Savage also observed

a better fit of his data to the theory at low capillary numbers.

VTIL 3 Observations on the Viscoelastic Ribbing Instability

As many coating materials are viscoelastic it would seem appropriate

to extend the study of the ribbing phenomenon to viscoelastic fluids. This

will be the subject of this and the following sections.
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Figure VIII-5. The normalized wavelength vs. the capillary number.

Experimental data for Newtonian fluids are compared

to the modified Savage (1977b) theory (the solid curves):

See Table E-l. (Key in Table VI-4.

)
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The following questions are posed from the outset:

1. How do viscoelastic fluids compare phenomenologically to

Newtonian fluids in the inducement and the nature of the ribbing instability?

2. What are the dimensionless groups, viscoelastic and other, that

govern the formation of ribs?

3. What are the proper stability criteria for viscoelastic fluids?

An attempt to answer these questions, at least partially, will be made in

Sections 3 and 4. Experimental observations on the ribbing phenomenon in

viscoelastic systems are reported in this section, and the results are dis-

cussed and compared to corresponding observations in Newtonian systems.

In Section 4 a simplified physical stability analysis is carried out with a

modest attempt to elucidate the mechanism of rib formation and establish

useful stability criteria for viscoelastic fluids.

The experimental procedure in this study follows closely the procedure

described in the previous section, with viscoelastic fluids replacing the

Newtonian fluids considered there. A series of aqueous solutions of poly-

acrylamide in a concentration range of 0. 15-0. 75% by wt. were used. As

these materials are identical to those considered in Chapter VI the relevant

information concerning these fluids together with their viscometric proper-

ties are given in VI. 4. 3. A detailed description of the experimental

system (counter-rotating rollers) can be found in VI. 4. 2. Essentially, two

pieces of information were sought in the course of this experiment,
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1) the critical speed (U*) at which nonuniform coating first appeared, and

2) the wavelength of the unstable coating and its variation with speed.

The critical speed was determined, as before, by a careful observation

of the concave interface between the rotating rollers while gradually increas-

ing the speed of rotation.

This was repeated for each fluid at three different geometries (i.e.,

different Ho/R's). A common feature for all the viscoelastic fluids studied

was the sharp transition from stable to unstable flow. In contrast to

Newtonian fluids, the critical point was easily noticeable 'and the results

obtained were highly reproducible. Table VIII- Z lists the measured

critical speeds. In order to correlate these data in a coherent and mean-

ingful way it is necessary to decide what are the important dimensionless

groups that describe best the physical process considered.

In the Newtonian case, it was shown that the capillary number (or

rather N^,
al )

governs the phenomenon of rib formation. From the observa-

tions on viscoelastic fluids it is evident that elasticity plays a major role

in controlling the onset of ribbing. In addition, preliminary calculations

showed that, unlike the Newtonian case, gravity and possibly inertia need

to be considered in the assessment of the instability. Consequently, the

following dimensionless groups are used for correlating the data:

the "recoverable shear": SRi'i) = ^12(
.

^
if (VIII-4)

f gHo2
the gravity number: Ng(-£) = /^^u (VIII-5)
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Table VIII-2

The Viscoelastic Ribbing Phenomenon:
Observed Critical Speeds

Fluid
1

H
Q
/R U*2[rpm]

H-0. 15 0.0129 ioo
" 0.0228 152

H-0. 25 0.0129 48
" 0.0228 64
" 0. 0306 92

H-0. 35 0.0129 28.5
" 0.0228 38.5
" 0.0306 51

H-0. 50 0. 0129 16.

" 0.0228 22.5

0.0306 29

H-0. 75 0.0129 9.5

0.0228 12.5

0. 0306 15.5

HS-0.35 0.0129 26.5

0.0228 37

" 0.0306 50

HS-0. 50 0.0129 17.5

0. 0228 23.5

0.0306 29.5

1 More complete information for the fluids listed and a key to the

codes is given in Table VI-4.
»

2 +2,3, standard deviationfor repetetive trials.
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the modified capillary number:

NCttK*) . ^JiiaL-X
,VTTTnH H 0
(VIII-6)

and,

the Reynolds number:

In addition, the geometrical shape factor, H0/R, is considered.

Numerical evaluation of the various dimensionless groups is possible

only after a nominal shear-rate has been specified, since the fluids under

consideration have shear-rate dependent properties. Without an a-priori

knowledge of the origin of the viscoelastic instability it is reasonable to

select one of the following nominal shear-rates:

"^Ni
= T0

<
vm-8 )

and

^N2= mbl 1/2 (VIII-9)

T^N1 loosely represents shear-rates in the nip region, whereas ifN2
is a

characteristic shear-rate for the separation region. Both shear-rates will

be used for correlating the data and it will ultimately be decided, on the

basis of the resulting correlations, which one is more appropriate.

Inasmuch as elasticity was found to have a strong effect on the critical

speed, the recoverable shear, representing the relative elasticity of the

fluid, was selected as a principal correlating parameter for the data. The
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s

variation of SR with the other dynamic parameters is presented in Figure

VIII-6 to Vin-9 for both nominal shear-rates. Close examination of these

figures reveals the following:

1. Surface-tension (or the capillary number) is apparently unimportant

in the rib-formation process for the viscoelastic fluids studied. The fluids

H-0. 35 and H-0. 50 are nearly identical Theologically to HS-0. 35 and HS-0. 50

respectively. However, the surface tensions of the latter fluids are about

one-third those of the former (see Table VHfor details). The sizeable

difference in surface tension had only a marginal effect on the critical

speeds. This observation clearly illustrates the difference between Newton-

ian systems (where surface-tension is central) and the viscoelastic systems

considered in this experiment.

2. On the basis of the "goodness of correlation" as judged by eye,

*tTN2 seems better suited than for correlating the data. As was noted

previously, iTn2 *s representative of shear-rates in the neighborhood of

the separation region. This may indicate that events in the separation

region, rather than in the nip region, control the viscoelastic ribbing

instability.

3. From the given correlations it appears that gravity and viscoelas-

ticity govern the ribbing phenomenon. The apparent effect of viscoelasticity

is to destabilize the flow, as small increase in polymer concentration re-

sulted in a considerable reduction in the critical speed. Furthermore, the
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observed Nc
*
al 's (as calculated with both m and N2 ) were much lower

than those observed for Newtonian fluids. The gravity and, to a much

lesser extent, inertia seem to have a stabilizing effect. Seemingly,

Ng(|-) is more appropriate than Ng to represent the effect of gravity since

the data, as correlated with this parameter, are less sparse and they show

a clearer trend.

Some distinct differences between Newtonian and viscoelastic fluids,

with regard to the transition from stable to unstable flow were cited and

discussed. These differences persist in the domain of unstable flow as is

evident from the photographs shown in Figure VIII- 10. Upon the onset of

ribbing few wavy ripples appear in the center part of the interface between

the rotating rollers. As the speed is increased these waves start to

migrate towards the edges of the rollers and they are replaced by newly

formed ripples. The number of ribs is gradually increased with speed.

At high speeds the number of ribs stabilizes and they transform from

round wavelike ripples into sharp evenly spaced stripes. In the vicinity of

the separation region these stripes have the appearance of thin buttresses.

Only viscoelastic fluids, due to their ability to sustain normal stresses,

can allow the formation of such 'stable' liquid buttresses.

The Newtonian instability, as opposed to the viscoelastic one, is

characterized by a nearly constant wavelength that is attained shortly after

the onset. The ripples are round and wavy and their amplitude is generally
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Figure VIII-10. Photographs of the ribbing phenomenon, (a) H-0.5, 50

rpm, set #2. (b) Glycerin, 50 rpm, set #2. (c) H-0.5,

100 rpm, set #2. (d) Glycerin, 100 rpm, set #2. (e)

H-0.5, 100 rpm, set #2. (f) Glycerin, 100 rpm, set #2.

(g) H-0.5, 100 rpm, set #2. (h) Glycerin, 100 rpm,

set #2.
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smaller than in the viscoelastic case.

As in the Newtonian experiment, wavelengths were measured photo-

graphically (see Section 2 for a detailed account of the procedure) and the

results further demonstrate the distinct nature of the viscoelastic instability.

The variation of the (normalized) wavelength (W/2H
Q

) with speed for two

viscoelastic fluids is shown in Figure VIII-11. Despite the sparsity of the

data a clear trend emerges, and it shows a significant reduction in wave-

length with speed. The results for H-0. 35 are replotted in Figure VIII- 12

and compared to the results for several Newtonian fluids. The Newtonian

data are nearly stationary while the viscoelastic data show a clear variation

with speed.

In summary, apparent phenomenological differences between Newtonian

and viscoelastic fluids in the rib-formation process have been demonstrated.

These differences are manifested by distinct critical conditions for transition

from stable to unstable flow and by characteristic rib-patterns in the un-

stable flow domain. It is now necessary to have a closer look at the

intricate interplay of physical forces participating in the process in order to

account for the observed differences.

VIII. 4. Physical Stability Analysis

VIII.4. 1 General. The physical stability criterion, originally intro-

duced by Pitts and Greiller (1961) and later employed by Savage (1977a),

was found generally satisfactory in its ability to explain most of the features
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25

w
2H

15

5

AAA

0 u/u* 5

Figure VIII- 12 The normalized wavelength vs. the reduced speed. Experi

mental data for a viscoelastic fluid and three Newtonian

fluids. (Key in Table VI-4.

)
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observed in the Newtonian rib-formation process. This criterion is

reexamined and rederived here (as it was not strictly derived in Pitts and

Greiller's work) and it is later extended to a power-law fluid and a viscoe-

lastic second-order fluid.

Figure VIII- 13 shows a cross section of the separation region as it

is projected on the xz plane (for y = 0). As before x is the direction of

flow and z is the neutral axis. The slight waviness of the separation line

is assumed to arise from some small physical disturbances. The objective

of this analysis is to determine under what conditions these perturbations

will decay or, conversely, when the waves will grow in amplitude away from

a smooth surface. It is reasonable to state a-priori that whenever the

pressure at point "1" (P^) will be in excess of the pressure at point "2"

(P2) there will be sideway motion of fluid from point "1" to point "2",

thereby causing the perturbation to grow. Note that points "1" and "2" are

both at a distance X 1 from the nip. Point "3" which is located on the

perturbed interface is removed an infinitesimal distance, dx, from point

"2". The pressures at all three points, evaluated by a simple force balance,

are:

Pt = - JiL (Vin-10)
1 r

P = _ Jl + d (- ^
) dx (VIII-11)

3 r dx r

*2 ~ dx
{

r ' xi

(VIII- 12)
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Figure VIII- 13. A cross section of the separation region. The separation

line (the heavy curve) is slightly perturbed by physical

disturbances*
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f is the surface tension and r is the radius of curvature of the meniscus

on the xy plane at point "1". (The contribution to the surface tension

force from the curvature in the xz plane is ignored. This is justified so

long as the initial disturbances are indeed small. ) it follows that

AP . PrP2 . + «Lj
xl
,dx

dx
<

VIII- 13
>

and consequently the perturbation will decay whenever

A P < 0

or

S dr . dP
"72- — > — Ixl (

VI11- 14 )

Eq. (VIII-14) is the sought stability criterion for the system at hand.

Without giving explicit expressions for the terms appearing in Eq. (VIII-14)

it is possible to draw the following conclusions upon first examination of

this criterion:

1. Stability is guaranteed for systems with negative pressure grad-

ients in the vicinity of the separation region as the surface tension term

is always positive. This conclusion is consistent with observation.

Systems like blade-coaters and slider-bearings, for which the pressure

gradients near the exit point are always negative, do not exhibit the ribbing

instability.
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2. Surface tension has generally a stabilizing effect. This too

conforms with experimental observations.

As was noted in Section 2 this criterion is probably a condition for

global stability rather than for neutral stability, i.e., it is a necessary

but not sufficient condition for ribbing to arise. Hence, the merits of this

criterion should be judged accordingly.

VIII. 4. 2 The purely viscous power-law fluid. The stability criterion,

Eq. (VIII- 14), can easily be applied to a purely viscous power-law fluid.

Expression for the pressure-gradient of a power-law fluid in a system of

counter-rotating rollers has been derived and it is given in VI. 3.2. Using

this expression, pressure-gradients for Newtonian and power-law fluids can

be evaluated at the point of flow separation (xi). It is found that

d i If 1
= 0.131 for n = 1 and = 1.30

}
and

d j£pl 0. 208 for n = 0. 4 and = 1. 40

^ and ^ are the dimensionless P and x and the values for A were taken

from the "stable" roll coating analysis for Ns 0. It can be shown that

in general,

d*7gpl d^l (
Vln- 15 )

1

Eqs. (VIII- 14) and (VIII- 15) imply that a power-law fluid will always be less

stable than a corresponding Newtonian fluid with identical surface tension.
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As stated before, a corresponding Newtonian fluid has a viscosity equal to

the apparent viscosity of the power-law fluid evaluated at ^ = u/H
0

. The

contribution of the surface tension term in Eq. (VIII- 14) is expected to be

comparable for both fluids.

In practice, many power-law fluids are also measureably elastic and

it would seem natural to examine the effect of elasticity on the stability of

the system. This and other effects are considered subsequently.

VIIL 4
-
3 The second-order fluid. The stability criterion is now

extended to a viscoelastic fluid. Eq. (VIII-14) is first modified by replac-

ing the pressure with the z-component of the total stress (-

T

ez = p ~X )

Thus,

£ _dr_
> _ _d_T

T2
" (VIII- 16)

This equation, however, will reduce to Eq, (VIII-14) since Z^= o for the

system at hand.. In order to evaluate the dynamic term in Eq. (VIII-16) it

is necessary to consider some viscoelastic constitutive equation. Due to

the complexity of the problem it would seem reasonable to attempt an

analysis with the relatively simple second-order fluid. The constitutive

equation for this fluid has been discussed in Chapter IV.

In an instant prior to the onset of ribbing the flow is planar and

creeping, thus the Giesekus-Tanner theorem, that was discussed and

employed previously (IV. 2), is applicable and can be used for evaluating

the pressure gradient in Eq. (VIII-16). Using the Giesekus-Tanner-Pipkin
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equation the pressure gradient for the second-order fluid can be written as

d£ = _dP0.
_

f

du dpO d2p0
dx d* <*i dx dx

+ U
"dx2~

]

(vm-17)

where P<> is the pressure distribution for a corresponding Newtonian fluid.

The dashed-underlined terms are negligible at or about the separation point

(x = xi, y = 0) where u = du/3y= 0. The expression for the pressure

gradient is now modified to include gravity effects. The gravity term is

taken to be simply additive to the pressure-gradient and Eq. (VIII- 17) takes

the form

dP dP° du dpO

dx"

=
"dx~" " (17 1T) " S « (VHI-18)

(Recall that the gravity field acts in the -x direction in the system of

counter-rotating rollers; see VI. 3. 3 for details.) Similar consideration of

the effect of inertia shows that inertia will have relatively little influence,

if any, on the dynamics of the rib-formation process since the leading

inertial term ^xt(du/dx), will vanish identically at separation (x= x^, y = 0,

u = 0) where the pressure gradient is to be evaluated. Eq. (VITI-18) can

now be substituted into Eq. (VIII-16) and the stability criterion becomes

dP° I *f dr
(

du dpQ \

dx I xx r2 dx o£
l

dx dx x
+ j)g (VIII- 19)

This inequality is made dimensionless with the result
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a2 ig-> Sr(^ -i*.

263

a a>

)

J
+Ng

(vm-20)

where a = r/(BHo^ and the various parameters are defined in Section 3.

(Sr has the form
[( ^/(^J f(U)/(RH 0 )

l
/2j. The definitions for the

dimensionless variables are given in the lubrication analysis, VI. 2. Upon

substituting expressions for <f and d^0/dj? (from the lubrication analysis))

Eq. (Vni-20) takes the form

o ^1- A 1 i da

^i 3 n^T 7" "djr
)+Ng

<
VIII-21

>

where ^ i ? ^
(J*

i).

This criterion can be made more explicit by using the relation = 3A

that has been derived in VI. 2.2 and is a result of the Prandtl-Hopkins

separation condition. In addition, the surface tension term in the above

criterion can be evaluated using Pitts and Greiller r

s (1961) theory, Pitts

and Greiller's physical stability criterion (Eq.. VIII-1) was found qualitatively

in reasonable agreement with observation even though it is quite far off

quantitatively from the observed behavior. This criterion can be conven-

iently incorporated in the present qualitative analysis to represent approx-

imately the effect of surface tension. With the proposed modifications the

stability criterion, Eq. (VIII-21), becomes
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1

2 <
(N^j 1/2 [H„ 1(3 A -l)}l/2 + Ng 9 X 2

-SR i£^L1/2 (VIII-22)

This expression is further complicated by the dependence of A (the

dimensionless flow-rate) on the parameters NCal ,
Ng and possibly SR .

One important consequence of the roll-coating analysis for the second-

order fluid model (VI. 2. 3) was that the velocity field, and hence the flow-

rate, of a second-order fluid in a roll-coating system is identical to that

of a corresponding Newtonian fluid. This permits the use of the results

for A =A(NS ,
Ng) that were derived for a purely viscous fluid in a system

of counter-rotating rollers. The calculation of A = A(NS ,
Ng ) is detailed in

VI. 3. 3 and the results are given in Figure VI- 14. Introducing

(Ncal.Ng) into Eq. (VIII-22), where NCal = (l/Ng) (R/Hq) 1/2
, allows

for a stability mapping of the flow domain. Such mapping is presented in

Figure VIII- 14 where Sr is plotted against Ng with NCal as a parameter.

This figure represents (physical) stability limits for a second-order fluid

in a system of counter-rotating rollers; the regime below a curve is

"stable" and the regime above the curve is "unstable". The general trends

displayed by this result are in conformity with observation. Specifically,

viscoelasticity (through Sr) has a destabilizing effect on the system while

gravity (for Ng < 0. 3) along with surface-tension are stabilizing. In the

limit of a Newtonian gravity-free case (S^, N —> 0) Nc
*

al
has the value of

~10 which is the result given by Pitts and Greiller. Also, it is found
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that for Nc
*

x
-» oo the system will be unstable for any value of N*.

In view of the approximations made in deriving the above criterion it

is not expected that it will be in a quantitative agreement with the experi-

mental results which are presented in Section 3. Three points in particular

may hinder such a quantitative fit. First, it is expected that the physical

stability criterion provide global stability limits rather than neutral stability

limits. Observed critical conditions are likely to fall closer to the neutral

stability limit and as exemplified by the Newtonian data, the gap between

these two limits may be considerable. Secondly, the fluids studied experi-

mentally, and for that matter any common viscoelastic fluid, are not

second-order fluids. Such constitutive approximation may be reasonable

only in the limit of low deformation rates. Even though deformation-rates

in the vicinity of the separation region (where the ribbing instability

originates) are relatively small it is doubtful that common viscoelastic fluids

will respond in a second-order fashion (i. e. , the actual deformation rates

may not be sufficiently low). Finally, the exact role of surface tension

is not completely resolved for Newtonian systems, let alone viscoelastic

systems. Pitts and Greiller's criterion, used here, is known to be in

poor agreement with observation. Yet, it was the only criterion that could

be readily applied in this analysis.

One obvious failure of this theory is the excessive importance that it

gives to surface tension. It was observed experimentally that surface
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Figure VIII-14. The critical recoverable shear vs„ the critical gravity

number. Experimental data (Key in Table VI-4) are

compared to theoretical stability limits. The solid curves

are for Hq/R = 0.01 and the dashed curves are for Hq/R
= 0,04.
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tension is secondary and has little effect on the critical conditions. The

calculated values of Nc
*

al (using tTn2 ) for the cases investigated range

from 7 to 50, while the corresponding data points in Figure VIII- 14 are

clustered between the theoretical curves for NCa
*

1
= 5 and NQ

*

al , 10.

Otherwise, this simplified theory successfully predicts the correct trends.

In face of all the approximations made the experimental results are in a

reasonably good agreement with the theory with regard to the dependence

* *
of N

g
on SR . It is also worthy of note that this analysis gives

ot2 U

1
(RH

0 )

Thus, according to this theory, tT N2 rather than Ni arises naturally

as a parameter for correlating the data. Indeed, the experimental data

are better correlated with 1$"n2-

Another interesting observation is that the data points in Figure VIII-

14 are clearly separable for the three geometries considered (H 0/R = 0.0129,

0, 0229, 0.0306). As seen, this behavior is consistent with the predictions

of the theory; the direction of the effect of geometry for both theory and

experiment is identical and the magnitude of this effect is comparable.

VIII. 4. 4 Summary and discussion. A simple stability criterion based

on some plausible physical arguments has been derived and discussed. It

was first applied to a purely viscous power-law fluid and later to a
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viscoelastic second-order fluid. In both cases the non-Newtonian fluids were

found less stable than the corresponding Newtonian fluids. With both effects,

elasticity (Sr) and shear-thinning, causing "destabilization" it is expected

that real viscoelastic fluids will be increasingly prone to the ribbing insta-

bility. In fact, the ribs are likely to appear at such an early stage that

gravity effects are expected to be dominant. These theoretical results

generally conform with the experimental observations presented in Section 3.

The stability model presented in this section should be put in the right

perspective, however; it may well be an oversimplification of the actual

situation especially as far as viscoelastic fluids are concerned. Hydrody-

namic instabilities occuring in polymer processing (viscoelastic) systems

are still far from being fully understood. Petrie and Denn (1976) in a

comprehensive exposition on this subject point out that any generalizations

concerning the behavior of polymeric systems, especially in stability problems,

are "extremely dangerous" since the molecular topology of polymeric species

may be in some cases of crucial importance. Indeed, instability behavior

is, in some instances, a sensitive detector of variations in molecular

structure. Such "topological effects" are sometimes overlooked by fluid

dynamicists. Several classical stability problems, such as "melt fracture",

are still subject to a number of conflicting interpretations. Petrie and Denn

name few possible instability mechanisms for pressure driven flows of

viscoelastic fluids. Some of, them are: inherent constitutive instabilities,
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hydrodynamic inertial instabilities, low Reynolds number instabilities, shear

waves (apparent slip at a solid wall) and die (or system) entry effects. In

the system considered herein, the presence of a free surface is an addition-

al potential source of instability; the behavior of viscoelastic fluids in the

vicinity of free surfaces is in itself poorly understood (Joseph and Beavers

1977).

The physical stability model that has been advanced in this section can

be categorized as a hydrodynamic (low Reynolds number) stability mechanism.

Other possible mechanisms, however, cannot be ruled out with complete

certainty.

In any case, the use of a roll-coater for an even deposition of a thin

fluid film seems feasible only at low speeds. If a uniform coating is

desired at high throughputs, a blade coater or a reverse-roll coater are to

be used as these devices do not exhibit the ribbing phenomenon for

sufficiently high speeds.
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CHAPTER DC

CONCLUSION

A comprehensive study of a subject as vast as coating flows requires

major thrust efforts in areas as diverse as free surface hydrodynamics,

lubrication theory, flow stability analysis, and weak and strong flow rheology.

Naturally, in a single study such as this one can hope to touch upon only

few of the many unresolved questions that need be considered. In this study

attention was focused on a specific but important subclass of coating flows.

These flows have been referred to as bounded coating flows and they are

characterized by a lubrication-like kinematics and by the controlling effect

of the dynamics in the bounded regimes on the performance of the corres-

ponding systems.

The objective of this study was to establish useful performance relations

for several technologically important systems via lubrication-based analyses

accompanied by some simple experiments. A special consideration was

given to the effect of fluid rheology. In a broader sense, this study was

intended to serve as a groundwork and give an impetus to a more systematic

and in-depth investigation of some important aspects of coating flows.

Indeed, the major accomplishment of this work is in opening up some poten-

tial avenues for future research in this area. Before listing the research
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topics that deserve further consideration it is useful to summarize briefly

the important results of this work.

Two major coating systems were studied in detail: blade coating and

roll coating. Some performance relations for a rigid planar blade coater

have been derived for Newtonian, second-order and CEF fluids. The

constitutive approximation utilized in this and other derivations is based on

the purely viscous approach due to Tanner. These calculations specifically

relate the coating thickness and the blade loading to the geometry of the

system and the properties of the fluid. Experiments were conducted in

which the coating thickness was measured for several fluids, both Newton-

ian and viscoelastic. The viscoelastic fluids produced a coating thickness

that was consistently higher than in the Newtonian case. However, the

observed difference was not statistically significant.

Performance relations have been derived for a sheet-and-roll system

that is representative of roll coating operations. Analyses have been

carried out for a power-law fluid, a second-order fluid, and a CEF fluid.

Some of these analyses were extended to the system of half-immersed

counter rotating rollers. This system was used in an experimental study

of roll coating in which coating thickness data were gathered for Newtonian

and viscoelastic fluids. Data for Newtonian fluids, both in gravity-free and

gravity-controlled regimes, were found in satisfactory agreement with the

lubrication solution. Similar experiments with viscoelastic fluids were not
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conclusive because of the onset of the "ribbing instability" under relatively

low speed conditions.

A brief study of a reverse-roll coating system was undertaken. A

simple qualitative analysis for a Newtonian fluid was carried out yielding

qualitative performance relations for the system. These relations were

well reproduced experimentally.

An attempt to elucidate the dynamics in roll coating was made through

a study of the submerged-roll system. This system was shown to be

hydrodynamically similar to the sheet-and-roll system and it was also found

amenable to experimental testing. An experimental study of the system was

conducted in which pressure distributions were measured in the converging-

diverging flow space for a Newtonian and a viscoelastic fluid, The Newton-

ian data were in agreement with a finite element solution of the problem.

The results for the viscoelastic fluid, while qualitatively in conformity with

the approximate theory, could not be evaluated because of a lack of an

exact solution to the related problem.

The important question of stability in coating flows was considered

through a study of the ribbing phenomenon. The related literature was

surveyed and the few empirical and theoretical studies were critically

assessed. Additional data for Newtonian fluids and some data for viscoelastic

fluids have been reported. These data show some phenomenological as well

as quantitative differences between Newtonian and viscoelastic systems. A
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simple physical stability theory that is capable of explaining some of the

observed differences has been presented.

The general conclusions that can be drawn from this study are: I
1. The lubrication approach is useful in evaluating the performance

of coating systems so long as the geometry of the system is consistent with

the lubrication approximation.

2. Viscoelasticity has some effect on the performance of coating

systems and it has a particularly strong influence on the stability of the

systems.

3. As anticipated, the role of the free surface dynamics in the

systems under consideration was at best secondary. Hence, these systems

can be broadly classified as high capillary number systems.

While this study has covered some important topics within the context

of coating flows, many areas were virtually untouched. Some immediate

tasks for future research are summarized below.

The study of low capillary number systems is definitely one of the

most important and challenging endeavors to be undertaken. While some

analytical work on this subject has been reported (Ruschak 1974), further

consideration of coating systems in which surface tension effects are dom-

inant is needed. In particular, a careful study of the separation zone, both

theoretical and experimental, will have to be undertaken. A relatively

simple problem, for immediate consideration, is the one encountered in the
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slot coating operation. Theoretical study of this problem will necessitate

the use of advanced numerical techniques (such as FEM) modified to tackle

free surface problems. Experimental investigation will require careful

tracer studies of flow patterns in the separation zone and photographic

studies of the shape of the liquid-air meniscus at separation. Such studies

should eventually be extended to non-Newtonian fluids and to more complex

geometries. This investigation can hopefully lead to separation boundary

conditions for the Reynolds equation that are less questionalbe than the

Coyne and Elrod conditions. The latter conditions are, at the moment,

the best boundary conditions for separation cavitation. However, as was

pointed out in IV. 4, they are not completely satisfactory at low capillary

numbers and they are flawed by some arbitrary assumptions.

A second subject that deserves further consideration is the study of

coating systems with geometries that cannot be handled by the lubrication

approach. This study will require the use of advanced numerical methods

for dealing with the complex boundary-value problems for such systems;

it also must be accompanied by careful experimental observations. A

special consideration should be given to systems such as the knife coater,

the blade coater (both rigid and flexible) with a large angle of inclination,

and the reverse-roll coater. The latter system was considered in this

study only superficially and it was noted that the lubrication approximation

is quite limited in its ability to characterize the strongly two-dimensional
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flow near the liquid-air meniscus. A more rigorous study of this system

is clearly needed.

Another important problem that is not fully resolved is the question

of coating flow stability. The ribbing phenomenon which is a common

performance failure in coating operations was discussed in detail in

Chapter VIII and it was concluded that a more rigorous consideration of

this problem would be needed since the current theories are at best qual-

itative and they are in poor agreement with experimental observations.

Also, the present body of experimental data is insufficient and more ex-

periments with Newtonian and viscoelastic fluids need to be undertaken for

a better understanding of the ribbing instability.

Because of the inherent difficulty in evaluating Deborah-number effects

in flows with complex stretch histories such as bounded coating flows, these

effects have been completely overlooked in this study. It was argued (in

II. 4) that relaxation effects may be important in some instances in the

systems under consideration and a rational approach to tackle this problem

was proposed in II. 4. The importance of this question lies beyond the

scope of coating flows. It was noted that the current understanding of

viscoelastic lubrication flows is far from satisfactory, and that the study

of relaxation effects in viscoelastic lubrication systems may well resolve

some of the mysteries in the behavior of viscoelastic lubricants.
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NOMENCLATURE

(i)

A = The Rivlin-Ericksen tensors (sec~l).

a - Dimensionless radius of curvature.

C = Constant of integration

^C = The Cauchy-Green tensor.

C"* 1 = The Finger strain tensor

F = Dynamic loading per unit width (dyne cm" 1
)

g = Accelaration of gravity (cm sec-2)

Hq = Characteristic film spacing (cm)

Hi = Characteristic film spacing (cm)

Hf Coating thickness on a forward roll in reverse-roll coating (cm)

Hr = Coating thickness on a reverse roll in reverse-roll coating (cm)

H co = Coating thickness (cm)

h = Lubricated film height (cm)

K = Geometric parameter of a blade coater (Def. Eq. V-4)

L * Characteristic length (cm)

m = Kinematic parameter (Def. Eq. II—9)

1 n
m' = The consistency index of the power-law fluid (poise sec "

)

N^a = The capillary number (Def. P. 56)

N = A modified capillary number (Def. Eq. VIII- 1)
Lai

NCa2 = A modified capillary number (Def. Eq. VIII-2)
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NDe ~ The Deborah number (Def. Eq. 11-28)

Ne A viscoelastic parameter (Def. Eq. IV-15)

Ng = The gravity number (Def. Eq. VI-31)

NRe = The Reynolds number (Def. Eq. VII-7)

Ns = The surface tension parameter (Def. Eq. VI-4)

The Trouton ratio (Def. Eq. ni-4)

n = The power-law exponent

P = Pressure (dynes cm-2
)

p = 3-n

Q = Flow-rate (cm^ sec" 1
)

q = (1/n) + 1

R = Radius (cm)

r = Radius of curvature (cm)

SR = The "recoverable shear" (Def. Eq. VIII-4)

s = The "backward running elapsed time" (sec)

T = The total stress tensor (dyne cm"2
)

t = Time (sec)

tR = Relaxation time (sec)

U = Characteristic speed (cm sec" 1
)

Uf = Lateral speed of forward roll in reverse-roll coating (cm sec" 1
)

Ur = Lateral speed of reverse roll in reverse-roll coating (cm sec -1 )

u = The x-component of the velocity vector (cm sec" 1
)



ui = Velocity vector components (cm sec-1)

W = Wavelength of the ribbing instability (cm)

Wg = The Weissenberg number (Def. Eq. IV- 15)

X = Hydrodynamic function (Def. V-19)

x = Primary flow coordinate (cm)

X = Cartesian coordinates (cm)

xi = Position of flow separation (cm)

Y = Hydrodynamic function (Def. Eq. V-20)

y = Cross film coordinate (cm)

z = Neutral axis (cm)

Greek

°£ 1>^2>£< 11 = Parameters of the second-order fluid

P>
= Shape function for the separation geometry (Def. Eq. IV-22)

= Surface tension (dyne cm" 1
)

^ = Shear-rate (sec" 1
)

'"£~l>
= kinematic parameters (sec" 1

)

A = The rate-of-deformation tensor (sec" 1
)

Strain rate (sec" 1
)

0

Tj = Dimensionless cross film coordinate

( f) = The shear viscosity function (poise)

0
Zero shear rate viscosity (poise)

Elongational viscosity (poise)
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Dimensionless total stress tensor

Speed ratio in reverse roll coating.

Dimensionless coating thickness and/or flow-rate per unit width.

Newtonian viscosity (poise)

Coating thickness ratio in reverse-roll coating

Dimensionless primary flow coordinate

Position coordinates for a fluid particle at past time t + s.

Dimensionless pressure

Dimensionless pressure gradient

Density (gr cm~3)

Position of the lubricated film height (dimensionless)

Dynamic stress tensor (dyne cm"^)

Dimensionless velocity component in the primary flow direction

Dimensionless loading per unit width

Shape function for the separation region (Def. Eq. IV-23)

The first normal stress coefficient (poise sec)

The second normal stress coefficient (poise sec)

Vorticity tensor (sec-1)

The identity matrix

The second-invariant of the rate-of-deformation tensor (sec'2 )



281

REFERENCES

Abdel-Khalik, S. I.
,

O. Hassager and R. B. Bird, "Prediction of Melt
Elasticity from Viscosity Data", Pol. Eng. Sci.

, 14, 12, 859 (1974)

Banks, W. H. and C. C. Mill, "Some Observations on the Behavior of
Liquids Between Rotating Rollers", Proc. Royal Soc.

, A, 223 414
(1954)

Bird, R. B. , "Useful Non-Newtonian Models", Annual Review of Fluid
Mechanics, 8, 13 (1976)

Bird, R. B. , W. E. Stewart and E. N. Lightfoot, Transport Phenomena .

John Wiley & Sons, New York (1960)

Bird, R. B. , O. Hassager and S. I. Abdel-Khalik, "Co-rotational Rheological

Models and the Goddard Expansion", AIChE J.
, 20_, 6, 1041 (1974)

Bird, R. B. , R. C. Armstrong and O. Hassager, Dynamics of Polymeric

Liquids. Vol. 1. Fluid Mechanics. John Wiley & Sons, New York
(1977a)

Bird, R. B. , O. Hassager, R. C. Armstrong and C. F. Curtis, Dynamics

of Polymeric Liquids. Vol. 2. Kinetic Theory . John Wiley & Sons,

New York (1977b)

Birkhoff, G. , "Free Boundary Problems for Viscous Flows in Channels",

in: Cavitation in Real Liquids, R. Davis, ed. , Elsevier Publishing

Co., Amsterdam (1964)

Birkhoff, G. and D. F. Hays, "Free Boundaries in Partial Lubrication",

J. Math. Phys. (MIT), 42, 2, 129 (1963)

Bliesner, W. C. , "Basic Mechanisms in Blade Coating", Tappi, 54, 10

1673 (1971)

Booth, G. L. , in: The Science and Technology of Polymer Films, Vol. 1,

O. J. Sweeting, ed. , Interscience Publishers, New York (1968)

Briston, J. H. , Plastics Films, Iliffe Books, London (1974)

Cameron, A. ,
Principles of Lubrication, Longmans, London (1966)



282

Canard, P.
,

"Rheological Properties of Coating Colors at High Sheer Rates
and Their Behavior in Blade Coaters", Tappi, 57, u, 95 (1974)

Coleman, B. D. and W. Noll, "An Approximation Theorem for Functionals
with Application in Continuum Mechanics", Arch. Rat. Mech Anal
6, 355 (1960)

Coyne, J. C. and H. G. Elrod Jr., "Conditions for the Rupture of a
Lubricating Film. Part I: Theoretical Model", ASME Paper No. 69-
Lub-3 (1969)

Coyne, J. C. and H. G. Elrod Jr. , "Conditions for the Rupture of a

Lubricating Film. Part II: New Boundary Conditions for Reynolds
Equations", ASME Paper No. 70-Lub-3 (1970)

Criminale, W. O. , J. L. Ericksen and G. L. Filbey Jr.
,

"Steady Shear
Flow of Non-Newtonian Fluids", Arch. Rat. Mech. Anal.

, 1, 410 (1958)

Crowley, D. G. , F. C. Frank, M. R. Mackley and R. G. Stephenson,

"Localized Flow Birefringence of Polyethylene Oxide Solutions in a

Four Roll Mill", J. Polym. Sci. (Polymer Physics Ed.), 14, 1111

(1976)

Davies, M. J. and K. Walters, "The Behavior of Non-Newtonian Lubricants

in Journal Bearings - A Theoretical Study", in: The Rheology of

Lubricants, T. C. Davenport, ed. , John Wiley & Sons, New York

(1973)

Eckert, R. E. and E. J. Novotny Jr., "Ribbed Flow from a Float Channel",

Nature Phys. Sci., 241, 147 (1973)

Floberg, L. , "Cavitation in Lubricating Oil Films", in: Cavitation in Real

Liquids , R. Davies, ed. , Elsevier Publishing Co. , Amsterdam (1964)

Floberg, L. , "On Hydrodynamic Lubrication with Special Reference to

Sub-cavity Pressures and Number of Streamers in Cavitation Regions",

Acta Polytech. Scand. , ME 19 (1965)

Floberg, L. ,
"Sub-cavity Pressures and Number of Oil Streamers in

Cavitation Regions with Special Reference to the Infinite Journal

Bearing", Acta Polytech. Scand., ME 37 (1968)

Gains Jr. , G. L. , "Surface and Interfacial Tension of Polymer Liquids -

A Review", Pol. Eng. Sci. , 12, 1, 1 (1972)



283

Gatcombe E. K "Lubrication Characteristics of Involute Spur Gears.A Theoretical Investigation", Trans. ASME, 67, 177 (1945)

GraeS
fn

e

s^' I ^ V^ 1
'

"F1°W BehaVi° r °f ^lystyrene Systems
in Steady Shearing Flow, "Macromolecules, 2, 1, 49

(
i969)

Greener, J. and S. Middleman, "Blade Coating of a Viscoelastic Fluid"
Polymer Eng. Sci.

, 14, 11, 791 (1974)

Greener, J. and S. Middleman, "A Theory of Roll Coating of Viscous and
Viscoelastic Fluids", Polymer Eng. Sci., 15, l, 1 (1975)

Harnoy, A.
,

"Stress Relaxation in Elastico-viscous Lubricants in Gears
and Rollers", J. Fluid Mech.

, 76, 3, 501 (1976)

Higashitani, K. and A. S. Lodge, "Hole-Pressure Error Measurements in
Pressure Generated Shear Flow", Trans. Soc. Rheol. 19 2 307
(1975)

'
~'

Hiuch, E. J.
, "Mechanical Models of Dilute Polymer Solutions for Strong

Flows with Large Polymer Deformations", Proc. Int. Conf. C.N.R.S.
Polymers and Lubrication, Brest, France (1974)

Hintermaier, J. C. and R. E. White, "The Splitting of a Water Film
Between Rotating Rolls", Tappi, 48, 11, 617 (1965)

Hoffman, R. D. and R. R. Myers, "The Splitting of Thin Liquid Films.

Cavitation Dynamics", Trans. Socl, RheoL
, 6, 197 (1962)

Hopkins, M. R. , "Viscous Flow Between Rotating Cylinders and a Sheet

Moving Between Them", Brit. J. Appl. Phys.
, 8, 442 (1957)

Huebner, K. H. , The Finite Element Method for Engineers , John Wiley &

Sons, New York (1975)

Hutton, J. F. , "The Rheology of Petroleum-Based Lubricating Oils and

Greases: A Review", in: The Rheology of Lubricants, T. C.

Davenport, ed. , John Wiley & Sons, New York (1973)

Joseph, D. D. and G. S. Beavers, "Free Surface Problems in Rheological

Fluid Mechanics", Rheol. Acta, 16, 169 (1977)

Langlois, W. E. , Slow Viscous Flow, The Macmillan Co., New York (1964)



284

Leppard, W. R. and E. B. Christiansen, "Transient Viscoelastic Flow of
Polymer Solutions", AICHE J.

, 21, 5, 999 (1975)

Lin, O. C. C, "Rheology and Surface Coatings", Chemtech, 51 (1975)

Marrucci, G. and G. Astarita, "Linear, Steady, Two-Dimensional Flows
of Viscoelastic Liquids", AICHE J., 13, 5, 931 (1967)

McKelvey, J. M.
,
Polymer Processing, John Wiley & Sons, New York

(1962)

Metzner, A. B.
,
"The Significant Rheological Characteristics of Lubricants",

J. Lub. Tech., Trans. ASME, 90, 531 (1968)

Metzner, A. B. , "Extensional Primary Field Approximations for Viscoelastic
Media", Rheol. Acta, 10, 434 (1971)

Metzner, A. B. , J. L. White and M. M. Denn, "Constitutive Equations for

Viscoelastic Fluids for Short Deformation Periods and for Rapidly

Changing Flows: Significance of the Deborah Number", AICHE J., 12,

5, 863 (1966)

Middleman, S. , The Flow of High Polymers, Interscience Publishers,

New York (1968)

Middleman, S. , Fundamentals of Polymer Processing. McGraw-Hill Book

Co., New York (1977)

Mill, C. C. and G. R. South, "Formation of Ribs on Rotating Rollers",

J. Fluid Mech. 28, 3, 523 (1967)

Miller, J. C. and R. R. Myers, "A Photographic Study of Liquid Flow in

a Role Nip", Trans. Soc. Rheol., 2, 77 (1958)

Modrak, J. P. , "Effect of Coating Color Rheology on the Blade Coating

Process", Tappi, 56, 10, 70 (1973)

Myers, R. R. and R. D. Hoffman, "The Distribution of Pressures in the

Roll Application of Newtonian Fluids", Trans. Soc. Rheol., 5, 317

(1961)

Noll, W. , "A Mathematical Theory of the Mechanical Behavior of Continuous

Media", Arch. Rat. Mech. Anal., 2, 197 (1958)



285

Novotny Jr., E. J. and R. E. Eckert, "Direct Measurement of Hole
Error for Viscoelastic Fluids in Flow Between Infinite Parallel
Plates", Trans. Soc. Rheol.

, 17, 2, 227 (1973)

Olabisi, O. and M. C. Williams, "Secondary and Primary Normal Stress,
Hole Error, and Reservoir Edge Effects in Cone and Plate Flow of

'

Polymer Solutions", Trans. Soc. Rheol., 16, 4, 727 (1972)

Padday, J. F. , "Theory of Surface Tension. Part II", in: Surface and
Colloid Science. Vol. I, Matijevic, E. , ed. , John Wiley & Sons,
New York (1969)

Park, W. R. R. , ed. , Plastics Film Technology
r
Van Nostrand Reinhold

Co., New York (1969)

Pearson, G. H. , Elongational Flow of Polymer Solutions , Ph.D. Thesis,

University of Massachusetts, Amherst (1975)

Pearson, J. R. A. , "The Instability of Uniform Viscous Flow Under Rollers

and Spreaders", J. Fluid Mech.
, 7, 4, 481 (1960)

Pearson, J. R. A. , "The Lubrication Approximation Applied to Non-

Newtonian Flow Problems: A Perturbation Approach", in: Nonlinear

Partial Differential Equations , Ames W. F. , ed. , Academic Press,

New York and London (1967)

Perry, J. H. , Chemical Engineer's Handbook, 4th Ed., McGraw-Hill Book

Co., New York (1963)

Petrie, C. J. S. and M. M. Denn, "Instabilities in Polymer Processing",

AICHE J., 22, 2, 209 (1976)

Pinkus, G. and B. Sternlicht, Theory of Hydrodynamic Lubrication ,

McGraw-Hill Book Co., Inc., New York (1961)

Pipkin, A. C. and R. I. Tanner, "A Survey of Theory and Experiment

in Viscometric Flows of Viscoelastic Liquids", Mechanics Today, 1,

262 (1972)

Pitts, E. and J. Greiller, "The Flow of Thin Liquid Films Between

Rollers", J. Fluid Mech., 11, 33 (1961)

Reiner, M. , "The Deborah Number", Physics Today, 17, 62 (1964)



128(3

Reiner, M.
,

M. Hanin and A. Harnoy, "An Analysis of Lubrication with
Elastico-Viscous Liquid", Isreal J. Tech., 7, 4, 273 (1969)

Riley, P. J., Part I. Hydrodynamic Stability of Time Dependent Flows ,

Ph.D. Thesis, University of Massachusetts, Amherst (1975)

Roe, R. J., V. L. Bacchetta and P. M. G. Wong, "Refinement of
Pendant Drop Technique for the Measurement of Surface Tension of
Viscous Fluids", J. Phys. Chem.

, 71, 4190 (1967)

Ruschak, K. J., The Fluid Mechanics of Coating Flows , Ph.D. Thesis,
University of Minnesota (1974)

Ruschak, K. J. and L. E. Seriven, "Developing Flow on a Vertical Wall",
J. Fluid Mech.

, 81, 2, 305 (1977)

Savage, M. D. , "Cavitation in Lubrication. Part I. On Boundary Conditions
and Cavity-Fluid Interfaces", J. Fluid Mech., 80, 4, 743 (1977)

Savage, M. D. , "Cavitation in Lubrication. Part n. Analysis of Wavy
Interfaces", J. Fluid Mech., 80, 4, 757 (1977)

Sone, T. and M. Fukushima, "An Anomalous Flow During Rolling of

Viscous Materials", in: Fourth Int. Congress on Rheology. Proceedings.

Lee, E. H., ed. , Brown University, Rhode Island (1965)

Stevenson, J. F. , S. C. K. Chung and J. T. Jenkins, "Evaluation of

Material Functions for Steady Elongational Flows", Trans. Soc.

Rheol. , 19, 3, 397 (1975)

Swift, H. W. , "The Stability of Lubricating Films in Journal Bearings",

Proc. Inst. Civil Engrs. ,
London, 233, 267 (1932)

Tanner, R. I. , "Full-Film Lubrication Theory for a Maxwell Liquid", Int.

J. Mech., 1, 206 (1960)

Tanner, R. I. , "Non-Newtonian Lubrication Theory and Its Application to

the Short Journal Bearing", Aust. J. Appl. Sci. , 14, 129-36 (1963)

Tanner, R. I. ,
"Study of Anisothermal Short Journal Bearings with

Non-Newtonian Lubricants", J. Appl. Mech., Trans. ASME, Ser. E,

32, 781 (1965)



287

Tanner R I. ''Plane Creeping Flows of Incompressible Second-Order
Fluids", Phys. Fluids, 9, 1246 (1966)

Tanner, R. I.
,
"A Test Particle Approach to Flow Classification for

Viscoelastic Fluids", AICHE J.
, 22, 5, 910 (1976)

Tanner, R. I.
,
and R. R. Huilgol, "On a Classification Scheme for Flow

Fields", Rheol. Acta, 14, 959 (1975)

Taylor, C. and P. Hood, "A Numerical Solution of the Navier-Stokes
Equations Using the Finite Element Technique", Computers and
Fluids, 1, 73 (1973)

Taylor, C. M.
,
"Research Note: Separation Cavitation, Solutions for the

Infinite Width Cyclinder-Phase and Journal- Bearing Configurations",
J. Mech. Eng. Sci.

, 15, 3, 237 (1973)

Taylor, C. M.
, "Separation Cavitation in Lightly Loaded Fluid Film

Bearings with Both Surfaces in Motion", J. Mech. Eng. Sci., 16, 3,

147 (1974a)

Taylor, C. M. , "Film Rupture for a Lubricated Cylinder Lightly Loaded
Against a Plane", J. Mech. Eng. Sci.

, 16, 4, 225 (1974b)

Taylor, G. I. , "Cavitation of a Viscous Fluid in Narrow Passages", J.

Fluid Mech., 16, 595 (1963)

Trusedell, C. , "The Meaning of Viscometry in Fluid Dynamics", Annual

Review of Fluid Mechanics, 6 (1974)

VanDyke, M. , Perturbation Methods in Fluid Mechanics, Academic Press,

New York (1964)

Walters, K. , "New Concepts in Theoretical and Experimental Rheology",

in: The Rheology of Lubricants
,

Davenport, T. C. , ed. , John Wiley

& Sons, New York (1973)

Walters, K. , Rheometry , John Wiley & Sons, New York (1975)

Williams, G. and R. I. Tanner, "Effects of Combined Shearing and

Stretching in Viscoelastic Lubrication Flows", Trans. ASME, J. Lub,

Tech., 217 (1970)



288

Williamson, A. S.
,
"The Tearing of an Adhesive Layer Between Flexible

Tapes Pulled Out Apart", J. Fluid Mech.
, 52, 4 (1972)

Windle, W. and K. M. Beazley, "The Mechanics of Blade Coatine" Taooi
50, 1, 1 (1967)

5
'

PP
'

Windle, W. and K. M. Beazley, "The Role of Viscoelasticity in Blade
Coating", Tappi, 51, 8, 340 (1968)

Yamada, Y.
,

K. Ito, Y. Yokuchi and T. Ohtusbo, in: Finite Element
Methods in Flow Problems , University of Alabama Press, Huntsville
(1974)



289

APPENDIX A

EXPERIMENTAL DATA

The pertinent experimental data of this study are presented in this

appendix in a tabular form. This presentation is complementary to the

graphical presentation of the results in the text. Each table heading con-

tains reference to the experimental section where a detailed account of the

corresponding experiment is given. Experimental errors and standard

deviations (for repetetive trials) where given were calculated in the usual

manner (Perry 1963).



Table A-l

The Blade Coating Experiment (V. 3):

Coating Thickness Data

Fluid 1
Blade Position2 H<* 3 [cml \ 4A

G K-10 0. 097 0 59 + n OS
G K-13 0. 107 0 72 + 0 0^
G K-15 0. 112 0. 81 + 0. 06
G K-18 n in U. 88 + 0. 06
KS K-10 0. 095 0.57 + 0.05
KS K-13 0. 102 0.69 + 0. 05
KS K-16 0. 109 0. 81 + 0. 06
KS K-18 0. 107 0. 83 + 0. 06
H-1.

5

K-10 0. 094 0.57 + 0.05
H-1.

5

K-13 0. 117 0. 79 + 0. 05

H-1. 5 K-15 0. 124 0. 90 + 0. 06

H-1. 5 K-16 0. 120 0. 89 + 0. 06

H-1. 5 K-18 0. 129 1. 00 + 0. 06

H-1 K-18 0. 124 0.96 + 0.06

CMC-2.5 K-18 0. 122 0. 94 + 0. 06

1 Key in Table V-2.

2 Key in Table V-l.

3 Arithmetic average of about eight multiple runs.

4 Errors represent standard deviations for repetetive trials.
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Table A-2

The Roll Coating Experiment (VI. 4):

Coating Thickness Data for Newtonian

Fluids in Gravity-Free Regime

Fluid 1

£
2 [poise] H 0/R U[rpm] Ho« 3 [mils] X

11.4

GW-0. 95 5.01

GW-0. 90 2.08

0. 0219

0. 0228

0. 0306

0.0129

0.0306

0. 0129

0. 0228

0. 0306

8.5

13.5

18

37.5

48

57

67

28

37.5

48

67

18

28

37.5

48

86.5

76.5

67

57

48

37.5

57

76.5

97

57

67

76.5

86.5

67

76.5

86.5

97

17.7

17.5

17. 8

29.

28. 8

29. 1

29. 1

38.7

38.8

38.8

38.6

17. 1

17.4

17. 0

17.3

28.5

29. 1

28.8

28. 7

28.7

17. 2

17.2

17. 1

17.4

28. 1

28.4

28. 3

28. 3

38.6

38.6

38. 8

38.8

1.36

1.35

1.37

1.29

1.28

1.29

1.29

1.29

1.29

1.29

1.29

1.31

1.34

1.31

1.33

1.27

1. 29

1.28

1.28

1.28

1. 32

1. 32

1.31

1.34

1.25

1.26

1.26

1.26

1.29

1.29

1.29

1.29
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Table A-2 Con't

Fluid 1
^2[poise ]

GWS-0. 90 2.50

GW-0. 75 0.51

MO 1. 44

H
Q
/R U[rpm] H^ J

[mils] /\

0. 0129 18 17. 7 1.36
28 17.5 1.35
37.5 17.6 1.35

0. 0228 97 17.8 1.37
120 16. 9 1.30
138 18. 0 1.38
155 17.5 1.35

0. 0129 18 17.4 1.34

37.5 17.3 1.33

57 17.0 1. 31

76.5 17.3 1.33

97 17.5 1.35

0. 0228 181 29.0 1.29

163 28. 9 1.28

146 28. 9 1.28

129 28.7 1.28

1 Key in Table VI-4.

2 Viscosities measured at the room temperature for the corresponding runs

3 +2 mils.
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Table A-3

The Roll Coating Experiment (VI. 4):

Coating Thickness Data for Newtonian Fluids. Gravity Effects.

Fluid 1
fl

2 [poise] H Q/R U[rpm] H^mils] \

GW-0.90 2.08 0.0306 18 26.9 0.90

28 32.2 1.07

37.5 35.9 1.20

48 37.2 1.24

57 37.8 1.26

67 38.6 1.29

76.5 38.6 1.29

86.5 38.8 1.29

97 38.8 1.29

0. 0228 18 22.3 0.99

28 25.9 1.15

37.5 26.8 1.19

48 27.3 1.21

57 27.7 1.23

67 27.7 1.23

76.5 27,9 1.24

86.5 28.4 1.26

97 28.3 1.26

112 28.4 1.26

GW-0 75 0.51 0.0306 18 8.9 0.30

28 12.2 0.41

37.5 14.9 0.50

48 17.6 0.59

67 21.4 0.71

86.5 24.4 0.81

112 27.0 0.90

129 29.8 0.99

146 31.6 1.05

168 34. 4 1. 15

190 35.1 1.17

MO 1.44 0.0306 18 22.0 0 73
iViU

28 27 « 4 0.91

37.5 31.2 1.04

48 33.1 1.10

^7 34.3 1.14
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Table A-3 Con't

Fluidl
J^

2 [poise] H
0/R U[rpm] H^3 [mils] A

MO 1.44 0.0306 67 35.3 1. 18
76.5 36.0 1.20
86.5 36.8 1.23
97 36.9 1.23
H2 36.9 1.23
120 37.1 1.24
129 37.6 1.25
138 37.7 1.26
146 37.7 1.26

0.0228 28 25.1 1.12

48 27. 1 1.20

67 27.9 1.24

86.5 28. 0 1.24

112 28.2 1.25

129 28.7 1.28

146 28.9 1.28

163 28.9 1.28

181 29.0 1.29

1 Key in Table VI-4.

2 Viscosities measured at the respective room temperatures for the

corresponding runs.

3 + 2 mils.
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Table A-4

The Roll Coating Experiment (VI. 4):

Coating Thickness Data for Viscoelastic Fluids

Fluid 1 H
0
/R U[rpm] H M 2 [mils] A

H-0. 15 0.0129 37.5 8.9 0. G8

48 8.6 0.66

57 9.0 0.69

67 9.1 0.70

76.5 9. 0 0.69

86.5 9.1 0.70

97 9.0 0.69

0.0228 37.5 10.0 0.44

48 10.7 0.48

57 11.6 ' 0.52

67 12. 4 0. 55

76.5 13.2 0.59

86.5 13.6 0.60

97 14. 5 0. 64

112 14.9 0.66

120 15.1 0.67

129 15.7 0.70

138 16.1 0.72

H-0 25 0.0129 18 10.2 0.78

23 10.4 0.80

28 10. 5 0.81

32.5 10.4 0. 80

37.5 10.2 0.78

42.5 10.2 0.78

0.0228 48 14.5 0.64

52 14.3 0.64

57 14.6 0.65

62 14.5 0.64

0.0306 62. 20.6 0.69

67 20.7 0.69

71.5 20.9 0.70

76.5 20.7 0.69

81.5 20.8 0.69

86*. 5 20.8 0.69



Table A-4 Con't

llfMi

Fluidl

H-0. 36

II -0.50

H-0. 75

HS-0.35

H 0/R

0.0129

U[rpm| A

0.0228

0. 0306

0. 0129

0. 0228

0. 0300

0. 0129

0. 0228

0. 0129

0. 0228

0. 01306

8.5 9. 8 0. 76
13.5

to, 1 0.78
18 10.0 0. 77
23 10.0 0. 77
28 16.0 0. 71
32.5 16.4 0. 7-A

37.5 16.5 0.73
37.5 19.2 0.64
42.5 19.3 0.64
48 19.5 0.65
8.5 11.8 0.91
13.5 11. 9 0.91
13.5 16.9 0.75
18 16. 9 0. 75
13.5 21.2 0. 71
18 22.0 0. 73
23 21.7 0. 72

8.5 13. 0 1.0

8.5 19. 0 0. 84

13.5 11.0 0. 85

18 11. 1 0. 85

23 11.0 0. 85

18 16. 7 0. 74
23 16. 8 0. 75

28 17.1 0. 76

32.5 17. 0 0. 76

18 17. 0 0.57

28 19.0 0.63

37. 5 20. 7 0. 69

1 Key in Table VI-4

2 +2 mils.
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Table A-5

The Reverse-Roll Coating Experiment (VI. 6):

Coating Thickness Data for Newtonian Fluids

Fluid 1
fc

2lpoise] K 2H
0
3[cm) Uflrpm] Hf4[mils] 9

9.2 0.57 0.065

I. 75 0. 005

1. 00 0. 065

1.00 0.114

1.00 0. 152

GW-
0.90

1.47 0.57 0.065

1.75 0. 065

31.5

49

66

84

100

117

18

28

37.5

48

57

67

18

28

37.5

48

18

28

37.5

48

57

67

28

37.5

48

57

67

o

66

100

134

175

18

37.5

57

25.2

29.3

33.0

36.2

39. 1

42.0

45.4

60.5

42.4

82.9

94.4

104.0

35.0

41.6

48. 8

54.2

26.0

34.3

39.5

44.8

49.4

54.0

29. 8

35.3

41. 1

45.3

48.9

17. 3

21.8

25. 1

27.8

30.6

18.9

30.5

40.5

0.84 t
0.81 +

0.77 E
0.77 t
0.78 +

0. 77 t
1.05 +

1. 17 t
1.21 t
1.26 £
1.31 +

1.35 1
1. 07 +

1.04 t
1.05 £
1.06 £
0.93 £
0. 99 1
1.01 £
1.01 t
1.01 1
1.02 £
0.94 £
1.00 +

1.03 +

1,03 t
1.03 +

1.04 +

0.95 1
0.89 1
0.85 +

0.82 1
0.77 +

0.91 +

0.96 +

0.06

0. 05

0. 05

0. 04

0.04

0.04

0.05

0. 04

0. 04

0.04

0.03

0. 03

0.07

0. 05

0. 05

0. 04

0.07

0. 06

0.05

0. 05

0. 04

0.04

0.07

0. 06

0.05

0. 05

0.05

0. 05

0.09

0.07

0.06

0.05

0. 08

0.06

0. 05
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Table A-5 Con't

GW- 1.47 1.75 0.065

0.90

1.00 0.065

TTfrrnrn 1ul[l pill
j tlx [musj

76.5 '

49.4 1.03 + 04

100 58,0 1.06 + 0.04

18 16.9 0.96 ± 0. 12

37.5 25.

1

1.01 + 0.09

57 29.7 0.97 + 0. 07

76.5 34.3 0. 97 1 0.06

100 37.9 0.97 + 0. 05

1 Key in Table VI-4.

2 Viscosities measured at room temperature for the corresponding runs

3 +0. 005 cm

4 +2 mils.
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Table A-6

The Submerged-Roll Experiment (VII. 3) :

Newtonian Pressure Distribution

Fluid : Karo Syrup

Viscosity : 19.7 poise at 27.8 + 1. 5°c

Hq : 0.64 cm

R : 10. 70 cm

Position K [cm] Gl

P 1 [cm
»

u2

CC1 4 ] at speed2 :

u 3 U4

30 3. 0 -1.2 -2.4 -3.6 -4.5

40 2.0 -1.5 -2.7 -3.9 -5. 1

50 1. 0 -1. 0 -1.8 -2.6 -3.4

60 0.0 -0.2 -0.2 -0. 3 -0. 3

70 -1. 0 1.4 2.6 4.3 5. 3

80 -2. 0 2. 0 3.6 5.5 7.4

90 -3. 0 1.9 3.5 5.2 7. 1

fcCl4 = 1.58 g/cc; P= t 0. 3 cm CCt
4

Ui = 24. 4 rpm

U2 = 45. 4 rpm

U
3

= 67. 4 rpm

U, = 87.6 rpm
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Table A-

7

The Submerged Roll Experiment (VII. 3) :

Viscoelastic Pressure Distribution

Fluid : H-l

Temperature : 27. 0 + 2°c

H
Q : 0. 19 cm

R : 10.70 cm

Position X [cm] U[rpm] P X[cm CCI4] Pe2[cm CCI4]

130 -3. 0 53. 10 0.7 -0. 16
120 -2.0 1.4 -0.02
110 -1. 0 2. 9 -0.40
100 0. 0 0.8 -0.63
90 1.0 -2.6 -0.40
80 2.0 -2. 1 -0.02
70 3.0 -1. 1 -0. 16

130 -3. 0 89. 22 1.4 -0.22
120 -2.0 2. 7 -0. 03

110 -1. 0 4. 1 -0.55

100 0. 0 1.2 -0. 90

90 1. 0 -3.4 -0.55

80 2.0 -3. 1 -0. 03

70 3. 0 -1. 8 -0.22

1 f CCl
4:

= L58 g/CC >
P = I0 *

3 Cm CCl
4

2 Hole-Pressure error. For discussion see VII. 4.
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Table A-8

The Newtonian Ribbing Phenomenon (VIH.2):
Wavelength-Speed Data

Fluid ^
2
[poise] H 0/R u[rpm ] u/u* w /2Hq 3

G 9.60 0.0129 37.5 1. 29 n. i

48 1.66 11.4
57 1.97 ll.l
67 2.31 11.1
76.5 2.64 10.7
86.5 2.98 10.5
97 3.34 10.8

KS 21. 0 0.0228 57 1.84 9.6

67 2. 16 9.

0

76.5 2.47 9.5

86.5 2.79 9.6

97 3.13 9.2

37.5 1.21 10.5

48 1. 55 10.

5

GWS-0. 90 2.50 0.0129 76.5 1.42 17.2

86.5 1.60 16.5

97 1.80 16.9

112 2. 07 16.6

120 2.22 17.2

129 2.39 15.7

138 2.55 15,8

146 2. 70 15.4

163 3.02 13.5

181 3.35 15.4

1 Key in Table VI. 4.

2 Viscosities measured at the room temperature of the corresponding runs.

3 Measured photographically.
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Table A-

9

The Viscoelastic Ribbing Phenomenon (VIII. 3)

Wavelength-Speed Data

Fluid 1 Hq/R U[rpm] U/U* W/2H 0
2

H-0. 35 0.0129 32.5 1.14 23.1

37.5 1.32 24.6

48 1.68 22.3

57 2. 0 18.8

67 2.35 16.0

76.5 2.68 14.8

86.5 3.03 13.7

112 3.93 14.3

120 4.21 14.5

138 4.84 12.8

155 5.44 12.8

173 6. 07 12.6

0.0228 67 1.74 14.6

76.5 1.99 14.5

86.5 2.25 10.8

97 2.52 13.6

112 2.91 12.4

129 3.35 12.5

163 4.23 9.3

181 4.70 11.1

0.0306 67 1.31 H.5

86.5 1.70 12.3

112 2.20 12.8

129 2.53 9*0

146

163

H-0. 75 0.0129 13.5 l.« 29.2

18

28

37.5 3.95 16.9

48

67

86.5

112

129

2.86 8.9

3.20 9.2

I. 42 29.2

1.89 21.5

2.95 18.5

3.95 16.9

5.05 19.1

7.05 16.6

9.10 14-2

II. 80 10.0

13.58 lO- 6
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Table A-9 Con't

Fluid H
Q
/R U[rpm] u/U* W/2H 0

2

H-0. 75 0.0129 H6 15.39 10.2
163 17. 16 10.

9

0.0228 18 1.44 20 6

28 2.24 16.7
37. 5 3.00 12.3
48 3.84 12.3
67 5. 36 10.9
86.5 6.92 10.4

112 8.69 7.4
129 10.32 7.6

146 11.68 7,4

163 13.04 8.2

181 14.48 8.0
0.0306 18 1.16 13.5

28 1.81 11.2

37.5 2.42 11.0

48 3.10 9.5

67 4.32 9.9

86.5 5.58 9.0

112 7.23 9.0

129 8.32 7.1

146 9.42 6.6

1 Key in Table VI-4.

2 Measured photograhically
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APPENDIX B

VISCOMETRIC DATA

A tabular listing of the viscometric functions "7 and V for all the

viscoelastic fluids used in this study is presented. These functions were

measured by a Rheometrix Mechanical Spectrometer using a cone-and-plate

mode. The geometric parameters for the set used in all the measurements

are:

diameter - 100 mm

cone angle - 0. 040 rad.

gap - 0. 050 mm

Inasmuch as the various solutions were prepared in a slightly different

manner in each of the experiments conducted (see respective experimental

sections), the corresponding experiments are specified in each of the tables

presented below.

Errors arising from finite inertial effects were corrected using a

well accepted formula for the inertial contribution to the normal force

(Olabisi and Williams 1972, Walters 1975).

_ _ 2*?SL 2 R2
(B-l)

40

SL is the rotational speed of the cone (in radians/sec. )
and R is the cone

radius. Eq. (B-l) can be easily written in terms of the first normal-stress
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coefficient and for the system used one finds

^12°0rr - = ^ l2
meas

- + 0.006 (in poise x sec.) (B-2)

Thus, the inertial correction should be considered only in the limit of

Uj meas. ^ A -X 10 1 0. 1 poise x sec.
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Table B-l

Viscometric Data for H-l
(Blade Coating Experiment)

Temperature: 25. 0°c

't

1SeC
" 1

'

21
toolse] ^12[poiSe x sec ]

°- 025 300.0
0. 04 281.2 I
0.0625 270.0
°- 1 225.0
0-157 l 80a9
0.25 142.4
0.40 116.2 781

"

2
0- 625 88 . 8 39£)<9
1

- ° 68.2 218.8
1-575 51.17 i26.o
2.5 39.0 60.0
4.0 29.1 29.3
6.25 21.3 15.2
10.00 15.4 7.50
15.75 11.4 3. 90
25.00 8.25 1.90
62.5 4.38 0.540
100.0 3.19 0.275
157. 5 2.36 0.141



307

Table B-2

VlHcoinnhk' Dutti for || |

(Blude (.'outlay Kxp^rlianat)

Twnperuluru: :'.[». O'V

0.020 H24.0

0. 04 705.

0

0.0020 7IM.I

0. 157 401.4

0.98 344.4

0.4 209.5 234.2
l.o i:ih.(1 5:10.8

L.B7B 100.2 :u)4.o

2.0 76.4 130.9

0. 20 30.5 32.0

10.0 28.5 10.

0

15.78 1:0.2 7.50

88.0 14.0 :i.H0
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Table B-3

Viscometric Data for CMC-2.5
(Blade Coating Experiment)

Temperature: 25. 0°c

^[sec-1] /Tj [poise] ^12 [poise x sec]

0.1575 47.6

0. 25 45. 0

0.40 42.2

0.625 39.0
1.0 35.6

1-575 32.1 .75.6

2.5 28.5 40.0
4- 0 23.9 19o5

6.25 21.0 8.48
10.0 16.5 3.44
15.75 13.81

25. 0 11.4 0.600

40. 0 9.56 0.312
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Table B-4

Viscometric Data for H-0. 15

(Roll Coating Experiment)

Temperature: 26. 0°c

'f[sec~
l

] °J[poise] X^2[P°ise x sec l

10.0 0. 940 0. 380 1

15. 75 0.710 0.210 1

25.0 0.600 0. 130 1

40.0 0.420 0. 065 1

62.5 0. 330 0. 036 1

100.0 0. 280 0. 020 1

157.5 0.210 0. Oil 1

250. 0 0. 172

1 Corrected for inertial effects.
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Table B-5

Viscometric Data for H-0. 25

(Roll Coating Experiment)

Temperature: 23. 0°c

~£ [sec-1] STJ [poise] jK^poise x sec]

1. 0 7.50 25. 0

1.575 5. 95 12.6

2.5 4.50 6.00

4. 0 3.75 3.51

6.25 3. 00 1.92

10.0 2.25 1. 00

15. 75 1.67 0.530

25. 0 1.29 0. 280 1

40.0 0. 980 0. 150 1

62.5 0. 750 0. 083 1

100.0 0. 562 0. 045 1

157.5 0. 460 0.025 1

250.0 0. 340 0.014 1

1 Corrected for inertial effects.
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Table B-6

Viscometric Data for H-0. 35
(Roll Coating Experiment)

Temperature: 23.0°c

^[sec-1] fDoisel — 12lP01se x s gcJ

0. 4 14 1 117. 2
0. 625 13.2 64.0
1.0 13. 1 37.5
1. 575 9.52 20.2
2.5 6. 75 11.0
4.0 5.34 6.05
6.25 3. 72 3. 12

10. 0 3.37 1.50
15. 75 2.48 0.831
25. 0 1.87 0.450 1

40. 0 1.50 0.2401

62.5 1. 17 0. 131 1

100. 0 0.862 0. 070 1

157. 5 0.678 0. 0381

250. 0 0.510 0.0211

Corrected for inertial effects.
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Table B-7

Viscometric Data for HS-0.35
(Roll Coating Experiment)

Temperature: 24. 5°c

^ [sec" 1
] 2? [poise] S 1̂2[poise x sec]

0. 4 14.0 109.4
0.625 12. 0 64.0
1. 0 13. 1 35. 0

1.575 9.52 21.2
2.5 6.75 11.6

4. 0 5.34 5. 78

6.25 4.20 2. 88

10.0 3.37 1.45

15. 75 2.48 0.786

25.0 1. 87 0.450 1

40.0 1.45 0.237 1

62.5 1. 14 0. 131 1

100. 0 0. 862 0.070 1

157.5 0.643 0. 038 1

1 Corrected for inertial effects.
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Table B-8

Viscometric Data for H-0.5
(Roll Coating Experiment)

Temperature: 23. 0°c

*~C [sec *1
L J '/ Lpoisej ^ r

•

-T^ipoise x sec]

0. 25 37 S 300. 0
0.40 37.5 156. 2

30. 0 96. 0
1.0 22.5 68. 8
1.575 16.7 37. 8

2.5 12.9 20.0
4.0 9. 84 10.2
6.25 7.20 5.44

10. 0 5.25 2. 75
15. 75 4.05 1.41
25. 0 3.22 0. 750 1

40. 0 2.44 0. 400 1

62.5 1.80 0.217 1

100. 0 1.29 0. Ill 1

157.5 1. 01 0.060 1

250.0 0. 750 0. 0321

Corrected for inertial effects.
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Table B-9

Viscometric Data for HS-0.

5

(Roll Coating Experiment)

Temperature: 25.0°c

"fl [sec
-1

] ^7 [poise] Jt i2[poise x sec]

0.25 37.5 320.0
0.40 37. 5 91ft 7^ 10. (

0.625 33. 0 140.8
1. 0 24.4 72.5
1.575 17.9 42.3
2.5 12.0 20. 0

4.0 9.84 10.2

6.25 7. 80 5.28

10.0 5. 62 2.69

15.75 4. 17 1.41

25. 0 3.30 0. 770 1

i
40.0 2.53 0.408 1

62.5 1.83 0. 217 1

100.0 1.39 0, 108 1

157.5 1.07 0.060
1

Corrected for inertial effects.
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Table B-10

Viscometric Data for H-0. 75
(Roll Coating Experiment)

Temperature

[sec-1]

0. 0625

0. 1

0. 1575

0. 25

0.4

0.625

1.0

1.575

2.5

4.0

6.25

10.0

15. 75

25.0

40. 0

62.5

100. 0

157.5

250. 0

23. 0°c

^ [poise]

150. 0

150.0

119. 1

90. 0

75.0

50.6

45.0

33.3

25.5

18.7

14.4

10.5

7.38

5. 70

4. 12

3. 00

2.25

1.67

1.20

it
12

[poise x sec]

1250'

1512'

860. 0

507. 0

320.0

150.0

73. 1

34.0

16.8

9.44

4.94

2.59

1.36

0.680

0. 380

0. 193 1

0. 106 1

0.0561

Corrected for intertial effects



Table B-ll

Viscometric Data for H-l
(Sumberged Roll Experiment)

Temperature: 27.0°c

^ [sec" 1
] ^1 [poise] ^i2 [poise x sec]

1.0 45. 0 60.0
1.575 33. 3 34.3
2.5 24. 0 19. 2

4. 0 18. 0 10. 9

6.25 13.4 6. 40

10. 0 10.2 3.20

15. 75 7.62 1. 79

25. 0 6. 12 0. 960

40.0 4.42 0.510

62.5 3.48 0.280 1

100.0 2.62 0. 150 1

157.5 1. 95 0. 077 1

250.0 1.44 0.0421

Corrected for inertial effects.
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APPENDIX C

PERTURBATION ANALYSES

C. 1 Preliminaries

The (approximate) solution of the dynamic equation, Eq. (IV-2),

combined with the empirical viscosity model (Eq. IV- 12), can be carried

out conveniently using a regular perturbation technique. The essentials of

the perturbation scheme are presented and discussed in IV. 3.

The perturbation solution, though conceptually simple, can be in some

cases quite involved algebraically. For systems in which the velocity field

does not possess a plane (or axis) of symmetry, for example, the solution

is particularly lengthy. Two such systems were encountered in the course

of this study: the rigid planar blade coater and the submerged roll. In

both systems, the analytical solution is hampered by the need to integrate

functions that contain absolute-value operators. This difficulty can be

overcome by dividing the flow domain into zones which are characterized

by the general shape of the local Newtonian velocity profile. The pertur-

bation analysis is then carried out separately for each zone with the condition

that all the hydrodynamic functions are continuous across the zone boundaries.

The analysis begins with Eq. (IV- 16) which reads:

§£= (VCHI+Nedf^) 1-! (<>l)



318

Ne is a viscoelastic characteristic of the system and it is utilized in

this analysis as a perturbation parameter. All the dependent variables in

Eq. (C-1) are linearized in the following manner

and also

9 - <p o + Ne^ 1
+ ... (C-2)

ra = ^° + Ne^ +
(C-3)

c = CO + N
e

cl +
(C-4)

X = A 0 + Ne A
1
+ ... (C-5)

where A is a dimensionless flow rate defined by

X - J0 ^ d "]

^] = 0 and *f=^ are the positions of the lower and upper boundaries of

the system.

The linearized functions are introduced back into Eq. (C-1) and after

equating the first-order terms one is left with a first-order equation to be

solved. The boundary conditions for the first-order functions appearing in

this equation can be formulated by assuming that these functions vanish

identically on the system boundaries where the zeroth-order functions meet

exactly the physical boundary conditions. This is a common practice in

regular perturbation analyses.

Finally, it is useful to define the following functions

*°<s- 1

X = - —r~ + -g- (C-6)
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and

Y = £f + 1

2 « (C-7)

Both are used for characterizing the various zones in the corresponding

flow domains.

Complete perturbation solutions of the blade coating problem and the

submerged-roll problem are presented below.

C.2 The Rigid Planar Blade Coater

The various physical considerations of this problem are discussed in

V. 2. It was found that the Newtonian velocity distribution for this system

has the form

<e° =
\ ni

0
of

- Y-y+ 1 <c-8)

or

?f °T| - Y (C-9)
d <r\

From inspection of Eq. (C-9) it is seen that the velocity profile in this

system can have three general shapes. These possible shapes are pre-

sented schematically in Figure C-l. Conditions for each such configuration

can be easily derived in terms of the functions X and Y. It is found that,

in Zone A : X > 0, Y > 0 (C-10)

in Zone B : X < 0, Y > 0 (C-ll)

and in Zone C : X > 0, Y < 0 (C-12)



Figure C-l. The rigid planar blade coater: possible velocity profiles
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These are necessary and sufficient conditions.

Zone.A.. Introducing the linearized functions into Eq„ (C-l) and

equating first-order terms, one finds

1
Since d^°/d->] < 0 in Zone A one can write

^ 1 i
= ^A 7

]

+ C A - (Y - ^Ifl 0 2-

n

d ") " *
I

A "li-'C-^)
(C-U)

and integration gives

where is a constant of integration. and C^ 1 can be determined by

specifying:

^ - 0 @ ^=<^

and (C-16)

= 0<?
l

A
= 0 @

and it follows that

1 = ^l J. ii +
xP - YP

^ A A 2 ^ A 2 pVe°
'

<y-.*Pvf-

(C-17)

\ 1 can now be evaluated from integration of cf
l

, and after some rearrange-

ments it is found that
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*i =
" 12^T - [XP + YP]

-
,

12
[XP+1 - Y^ 1

] (C-m
<£ 3 ^uz

p (p + 1)
J (L 18)

Zone B
- The analysis begins again with Eq. (C-13). However, since

d ^%l<r] is not monotonous across the film in this zone, it is necessary

to divide the flow cross-section into two regions: region Bl corresponds to

<y < E where d *f°/d "] < 0 and region B2 corresponds to
"J

> *n
£

where d^ °/d^ > 0. Separate integrations of Eq„ (C-13) for each region

give

* Bl " *J ~¥- + C
Bl")

+

p-fe>
<Y " *V + C

B1 <C " 19 »

and

(V?
1 = 7C

1 JlL + C 1 ~ + 1 C7t% - Y)
P + C' (C-20)^ B2 B 2 B2 1

p 7j|0 I
B2

The constants of integration C 1
, C , C 1

, C' n are determined from the
Bl Bl B2 B2

following boundary conditions

ci?
1 = 0 @ "1 = 0

Bl
'

= ° @ i = *
(C _ 21)

~ Bl B2 1
'

1 1

d<*Bl =
d ^B2

d "j d
@
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The last two are continuity conditions. Finally, the following expressions

tor V B1 and ¥g2
are obtained

p
^0

(Y ^7) (C-22)

and

v L = K ¥ - -4- i*i -^i- + ifcYL,BZ B 2 o B 2 ~T0 J

p 72

+

P~t°"
(

"
Y)P

(C "23
>

Again, A 1 is evaluated by integration of across the film, that is

(C-24)X
1

- d* + JV dr,
' J

o Bl / ^ B2 '

and after some rearrangements, the following expression for fn
1

is
B

found

- [<
-x)P+ypi

+ o r t(-X) P+1 + YP+1
] (C-25)

^ 3 7C02 p(p+l)

Zone C. The analysis in this case follows closely the analysis for

Zone B and the results for ^ 1 and Id} can be obtained by inspection. In

this zone, region C
l
corresponds to ^ < ^ E where d^/d^ > 0 and

region C 2 corresponds to 7| >
^ E where d ^°/d ^ < 0.
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The first-order functions for Zone C arc as follows:

C 2 ()

r ( 75
*J

- Y)P - -I-.
(- Y)P (C-26)

P Tc

+
1

n
(Y - - —1

(
_Y )P

fa 21\

and

1 %1 12 672
c

=
" A - 3™- [xp

(
-y)P]

12
[XP+l + (-Y)P+1

] (C-28)
H 02 p(p+l)

Once expressions for 75.
1 arc on hand it is possible to solve for A 1

by specifying in addition that

Wl) + Ne 1^(1) = 0 (c-29)

This additional constraint yields (see Eq„ V-31)

This equation needs to be solved simultaneously with the equations for "ft
1

Such solution has been carried out via successive approximations and the

final results for ^(K,"*) and for 7£ (N
,

K, y\ ) are presented in V, 2. 3.
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C.3 The Submerged-Roll System

A physical statement of this problem is given in VII. 2. The

Newtonian velocity distribution in the submerged-roll system was found to

have the form

1 (C-31)

or

ion

d^f
= 72 °1

+ X (C-32)

In this case, the velocity profile can assume two distinct shapes. These

cases are presented in Figure C-2 and it can be shown, using the express!

for ft
0

,
that these are the only physically admissible forms of the velocity

profile. The zones corresponding to these profiles are distinguished by the

following conditions

in Zone A X > 0 , Y > 0 (C-33)

(and it corresponds to <$ < 2)

and in Zone B : X < 0 , Y > 0 (C-34)

(and it corresponds to <s> > 2).

As before, these are necessary and sufficient conditions.

Zone A. Introducing the expanded functions into Eq. (C-l) and equating

first-order terms yields the following first-order equation,

d ^ 1 1 -o u d 'e°.\''
y>
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This equation is equivalent to Eq. (C-13) in the analysis for the blade

coater. Since d<f 0/d^ > 0 in Zone A one can write,

d A / A A 7 ' (C-36)

and integration gives

Specifying

<^ = 0 @ oj= o

and

= 0 @ 7=

(C-37)

(C-38)

allows the evaluation of the integration constants C* and CA and it follows

that

<e
1 = 7?

1 -ZLi . JL
f

^A^ 2 xP - Yp .

A Q A 2 2^7?0p )

(C-39)

+
(
v,0 + X)P _ _X£_

Integration of with respect to ^ across the film gives an ex-

pression for X which can be rearranged to

yp
1 = _ \l J! 6 . p p ,

C A ^2p itP
LA J

12

^ 3 Vc
02 p(p + 1)

[X
p+1 - YP+ 1

]
(C-40)
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Zone B
-

In order t0 integrate Eq. (C-35) it is necessary to

distinguish between two regions since c(>0 is not a monotonous function in

this zone. In region Bl d<-(<Vd^ < 0
E ) and in region B2

d^O/d^ > 0 (
-*] > "]

e
). Eq. (C-35) can now be integrated separately

in each region to give

(C-41)

and

a? 1
= X 1 _2lL_ + C

1
*r\ + _L_ ( rP

0
'* + X)P + c'

B2 B 2 B2 1 i^P '
B2

(C-42)

As before, the various integration constants are evaluated using the follow-

ing conditions

<0 l = 0 @ *\ = 0
Bl I

Cf?
1 =0 @ T) = <<

B2 I

C^ 1
= <f

1
i "I T B^ Bl B2 I

1

and

d^Bl = d^B2 @ ^ = °]

d d T|

and it follows that
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V 1
= -3i ZL >B^ 2

J-X)P. YPT B1 B 2 ^ 1 ~ ' '^Op 1

+ h^ " X)P
- ife" <"X »

P
<C-44,

and

*! -?1 -4- i -
<-X)1

:,

- ?p
]B2 B 2 2

p
J

,0

*O
p <*V X)P- ^(-X)P (C -45)

A 1 can now be evaluated using Eq. (C-24) and after some rearrangements

it is found that

+
*<« ^p(P ; i)^ + YP+1

'

At this stage the equations for 7£ contain an unknown quantity, X .

Thus, in order to solve for 7?
1

it is necessary to consider an additional

constraint. One such constraint can be supplied by the statement

- 0 (C-47)

This statement is physically reasonable since it is expected that the pressure

function would be anti-symmetric relative to the geometric axis of symmetry

^ S
= °'* ^

See VI1 * 2 * 3 ^or further considerations).

It is now possible to evaluate ^2 1 by solving Eq. (C-47) simultan-

eously with the equations for 7£ . Such a solution was carried out by
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successive approximations with a result for A 1 (n), The solution for

X1^) is presented in Figure C-3, With A 1 on hand it is possible to

calculate the pressure distribution by numerical integration of the expres-

sions for . Several pressure distributions for the submerged-roll

system, based on this calculation, are presented in VII. 2. 3.

•
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C-3. The first-order flow-rate function vs. the power law index.

Perturbation analysis result for a CEF fluid in a submerged-

roll system.
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APPENDIX D

A FINITE ELEMENT (FEM) SOLUTION OF
THE CREEPING PLANAR FLOW PROBLEM

D. 1 Scope

The lubrication approximation was employed in the current study for

solving the flow equations for the systems under consideration. It was

shown that this approximation essentially transforms a two-dimensional flow

into a unidirectional flow, thereby allowing a straightforward solution of

the dynamic equation (at least for Newtonian fluids). Some degree of arbi-

trariness, however, is involved in the application of the lubrication assump-

tions and it is clearly of interest to assess the error associated with such

approximation. The most direct way for assessing the validity of the

lubrication solution is to solve the full (planar) creeping flow problem for

the pertinent geometries and compare the result with the approximate

solution. Since a simple analytical solution of the planar flow equations is

not possible (for the geometries considered) one has to resort to some

effective numerical technique.

The finite-element method (FEM) is an extremely versatile numerical

tool and it is particularly adaptive to boundary-value problems with complex

geometries. This method was selected for solving the two-dimensional flow

equations and it is applied for two systems: the rigid planar blade coater
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and the submerged-roll system. Phy5lcal statements Qf ^ cmonAing
problems are given in Chapters V and VII respective!,. m both cases the

solution is carried out for geometries similar to the corresponding experi-

mental geometries.

The FEM approach for solving the slow viscous flow problem is

presented and discussed in D. 2. Subsequently, in D. 3 and D. 4 the FEM

models are introduced and the numerical results are presented. The

computer code for the FEM scheme is given in D.5.

»

D. 2 Slow Viscous Flow and the FEM Approach

Creeping planar flow systems are governed by the following equations

(in cartesian coordinates),

Continuity

^ + ^Y_ = o
d X ?y

Momentum:

(D-l)

22. -
(
|iu + A, (D. 2)ay <9x^ 5y2

f

9P _ ,a 2 v 3 2v= v d*v
)

(D-3)

c> y 3 x2 ay2

T

P is a viscosity normalized pressure and u and v are the x- and y-compon-

ents of the velocity vector. The objective of the FEM analysis is to

evaluate the unknown functions P, u and v throughout the flow domain subject

to the above equations. There are several ways in which the FEM equations
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can be formulated for slow viscous flow problems. In this analysis a

"pressure and velocity" formulation is adopted following a procedure out-

lined by Yamada et al. (1974) and Huebner (1975).

The finite element solution begins by dividing the flow domain into

arbitrarily shaped small subdomains that contain three or more nodes.

These subdomains are called finite elements. All three hydrodynamic

functions are then approximated over a single element domain by suitable

interpolation functions whose coefficients are the unknown nodal values of

the unknown functions. This can be written in the form

u(e) =
k\j{

u
} (D _ 4)

v(e) = [AJW (
D~ 5

)

p(e) = (D-6)

u (e ), v(e ) and p( e ) are the approximate functions over the domain of

element (e). an^ are row vectors with components which are

the nodal interploation functions for the velocity and the pressure respec-

tively. £u} ,
|"v| and are column vectors of the nodal degrees-

of-freedom-(DOF).

The governing equations are now transformed into a set of algebraic

equations for a single element using the method of weighted residuals

combined with Galerkin ? s criterion. This criterion is applied in a node

i of element (e) in the following manner:
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fAi r
* 2uje>

,
3 2u(e) aife)

J
(e)

[

9x2
+
-J-JT - dxdy = 0

(D-7)

f A r 32v (e)
3
2
v<e ) 3p(e) m 8 .

rA P ^ + i^) ]dxdy = 0
J(e) M (D-9)

Insertion of Eqs. (D-3) - (D-5) into Eqs. (D-6) - (D-8) and integrating by

parts yields a set of linear equations which can be written in the form

[S]<e> {z} (e) * (R](e) (D. 10)

[S](e > is a stiffness matrix for element (e), [z} (e
^ is the vector of nodal

unknowns and |r] is a reaction vector which results from the integrat

by parts. From considerations of computational consistency A i should

be higher by one order than (Taylor and Hood 1973). Thus it is
i

natural to choose Ai to be quadratic and Ap
to be linear interpolation

1
i

functions. Further, if the elements are chosen to be triangular in shape,

the various DOF are distributed among the nodes as follows:

ion
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in this element nodes 1, 2, 3 are considered primary nodes. For this

case Eq. (D-9) can be written in the form

where

(a)

(b)

(c)

(d)

(e)

6x6

[Ki]

6x6

[0]

3x6

[K 2 ]

K
2ij

K
3ij

R;

6x6

[0]

6x6

3x6

[K 3 1

6x3

[K2 J

6x3

[Kg]

3x3

[0]

u
6

v l

V6

J V

R

12R

0

0

^° J

>

Kllj = f <±£l IAj. +
aAi_ aAj

J
-'(e) 9x Z x 3y a y

) dxdy

-f gAj AP dxdy
J(e) 3x iX

3

AP dxdyy (e) 5 y * *j y

: X* ds i = 1, 6

R - (Aj Y* ds 1=7,..., 12

R{ are evaluated along the system boundaries and

X* = V u (
e )oo _ 7l,i(e )

(D-ll)

(=
on
x

1 + ^y]) is an otward unit normal to a boundary segment ds



337

One is now left with the task of selecting proper interpolation functions

so that the various terms in Eq. (D-10) can be evaluated explicitly. It is

convenient to write these functions in terms of natural coordinates, L«

(see Huebner 1975, Chapter 5). For a triangular element, a proper set

of interpolation functions is as follows:

(a) Aj " L1" L1<L2

<b>A
2

•' L2-VL
!

(cA
3

• l23-VL
1

<d>A
4

" 4L
1
L
3

<e> A
5

= *L
X
L
2

(0 A6
.= 4L2 L

3

(g) Ap
1

Li

where

L
x

= ^ (ai + b x x + Ciy)

L
2

=
2p

(a
2

+ b
2

x + C 2y)

L
3

=
2D

(a
3

+ b
3

X + C3y)

(D-12)
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D is an area of triangle 1-2-3,

a
i

= X
2 y

3
_X

3 y2

bl = ?2 " ?3

01 = x
3 " x

2

and the other coefficients are obtained by cyclic permutation.

By inserting the chosen interpolation functions into the integrals in

Eq. (D-ll) all the terms in Eq. (D-10) can be evaluated; the integration is

tedious but direct. From here the solution proceeds in the usual FEM fashion.

This is summarized by a computer algorithm presented in Figure D-l.

D. 3 The Rigid Planar Blade Coater

The FEM model for this problem is presented in Figure D-l. The

dimensions of the system are: Hq = 0.5, = 3.5, and L = 30. (in

arbitrary units) using the nomenclature of Chapter V. These dimensions

correspond to K = 7.0 and a blade angle of 5°43\ The model consists of

28 elements and a total of 174 DOF.

The following boundary conditions are applied:

0 @ y = 0

0 @ y = H (position of blade surface)

0 @x=0, x = L (D-13)

@ x = 0, x = L

(a) u = 1, v =

(b) u = 0, V =

(C) e> U _ 3 V _

S> n 3^

(d) P = 0
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Figure D-l. A computer algorithm for the finite element solution,



START

Data input:

geometry, topology

!
Evaluate stiffness matrices

for all the elements in the system

*

Assemble the elements to

obtain a global stiffness matrix

i
Modify reaction vector and
global stiffness matrix to

account for boundary

conditions

i
Solve the modified global

matrix equations by a

'linear equations solver'

routine

Print final results

END
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Figure D-2. A FEM model for the blade coating problem (not to scale).
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The physical basis for these conditions has been discussed in V. 2.

The numerically calculated pressure distribution is shown in Figure

V-12 together with the lubrication solution. Since slight variation of the

pressure across the film was obtained (i.e., Dv/Sy is indeed much

smaller than 5P/3x) the values shown in Figure V-12 represent the

average pressures for any x-position. As seen, the "numerical" distribution

is in excellent agreement with the lubrication solution for the geometry

considered. Also, as expected, the velocity field and, hence, the flow

rate as predicted by the lubrication solution match closely the "more exact

numerical solution.

D. 4 The Submerged-Roll System

The FEM model for the submerged-roll system is shown in Figure

D-3. The geometric parameters for this model are H
Q

= 0.32 and

R = 5. 35 (in arbitrary units) using the terminology of Chapter VII. Thus,

Hq/R for this case is identical to that value for the experimental setting

in the run with the Newtonian fluid (see VII. 3). The symmetry of the

system about the nip position allows the consideration of only one half

of the flow space thereby reducing considerably the number of EOF to be

determined.

The boundary conditions for this system are as follows:
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(a) u=v=o @ y =o
(b) m + vj = 1 @ y = H (position of roll surface)

(c) a_u = _sv = 0 @ x = 0, along E m-14)

(
d

)
p = 0 @ x = 0, along E

E is a cross-section of the flow space "far" upstream from the nip whose

position is yet unspecified. By the term "far" is meant a point or a

plane sufficiently removed from the nip region such that the local hydro-

static pressure is unaffected by the hydrodynamic events in the converging

flow space. In order to determine the position of E without increasing

substantially the number of elements, it is necessary to consider a

reasonable model and then expand it several times by some increment

until the pressure distribution is not affected by the expansion. Three

such models were considered in this study as seen in Figure D-3. Each

expansion required the addition of several elements and degrees-of-

freedom. The number of elements and degrees-of-freedom for each model

are given below:

Model Elements DOF

1st 19 136

2nd .24 161

3rd 28 184

The second boundary condition for the pressure (P(0)=0) is based on

symmetry considerations. This point is discussed in Chapter VII.
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in
The calculated pressure distributions are presented in Figure D-3 i

terms of the dimensionless variables defined in VII. 2. Inasmuch as the

variation of the pressure across the film was relatively small, the results

in Figure D-3 represent pressure values that are averaged for each x-

position. It was found that the pressure distributions for the first and

second models differed by -v 0. 05 using the units of Figure D-4. However,

the second and third models gave nearly identical values. The final results

(for the 3rd model) are still lower than the lubrication solution. It seems

that this difference is primarily due to incorrect upstream boundary con-

ditions for the pressure in the lubrication analysis rather than the two-

dimensional nature of the flow. Numerically calculated velocity profiles

(u (x vy)) were found nearly identical to the velocity field predicted by the

lubrication solution (see Figure D-5).

D. 5 The Computer Program

The computer program for the finite element scheme is based on the

algorithm presented in Figure D-l. This program is written in FORTRAN for

the CYBER 74 (CDC) system in the University of Massachusetts in Amherst.

The various codes are defined and explained in the body of the program.

Also, comment statements are added prior to any major operation to assist

in following the logic and structure of the program. The solution of the

global matrix equations is carried out by the subroutine MATINV that is

available in the computer library of the University of Massachusetts.
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APPENDIX E

APPLICATION OF THE COYNE AND ELROD (CE) SEPARATION
CONDITIONS TO THE SYSTEM OF PARTIALLY IMMERSED

COUNTER-ROTATING ROLLERS

E. 1 Scope

This appendix outlines the way by which the CE conditions (Coyne and

Elrod 1969, 1970; see also IV. 4) are applied in the system of partially

immersed counter-rotating rollers. The first part, E.2, deals with the

stable flow problem and a relation for the position of film separation is

obtained. In the second part (E. 3) a critical condition for stability is

derived based on Savage's theory (Savage 1977a). A linear stability analysis

for the system of counter-rotating rollers is presented in E.4 in a manner

that parallels Savage's (1977b) work. This analysis yields an algebraic

equation for the wavenumber. The terminology and nomenclature, in this

appendix, follow VI. 3 and Vin.2.

E.2 Stable Flow

The Coyne and Elrod theory yields two functions that are characteristic

of the separation region in a partial film lubrication system. These func-

tions are:

(E-l)



358

and,

%
"

=
* (Nca

"

Ng
' %e) (E_2)

As specified, both jl and X are dependent upon three dynamic parameters

However, in the present calculation gravity and inertia effects are not

considered.

From the lubrication analysis (VI. 3) the pressure-gradient in the

bounded regime (for 01 = 1.0) is given by

7t> - -J- n £ ^
*

'L ~ ^2" (1 " ~> (E-3)

or, using Eq„ (E-l),

^ =
~ilT (1 " ) (E-4)

From a simple force balance the pressure at separation ( £ =
J ^ is,

- _ Ns 9cTY (E "5)

where the radius of curvature (r) has been evaluated using Eq. (E-2).

Eqs. (E-4) and (E-5) are, in fact, the CE boundary conditions, f ± t
the

point of separation, is the only unknown so far and it can be evaluated by

equating the upstream pressure to the pressure specified at separation.

Thus,

/.

7C, (E-6)
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The integration in Eq. (E-6) can be carried out analytically by using the

transformation ^ - 2 ^ oC
. Eventually, the following equation for

cx'l (=tan- 1
J x/ VT) is obtained,

- J5L 3_ C0S2^ . «1_ * . sin 2
6 % 1

2 4 i

—

A «n / /
(E_7)

+ —4 (

3 2i + + sin 2 0^1 + Sin4^i .
cos2 c^

1
8 16 4 3 2

This transcendental equation in was solved graphically and the results

in terms of
J j are given in Figure E-l where G (NCa ) and ^ (frCa )

were taken from Coyne and Elrod's work. The results can be easily cast

in the form of a /\ (= |3>

/

COs
2
0^) vs. Ns curve which can be compared

to the corresponding curve for the approximate separation model discussed

in Chapter VI. Such comparison is presented in Figure VI- 16.

E.3 Stability Criterion for the Ribbing Phenomenon

This derivation follows closely Savage's (1977a) work. Savage has

derived an explicit stability criterion for the cylinder-plane system (rotating

cylinder parallel to a stationary plane). However, his derivation for the

system of partially immersed counter-rotating rollers is not complete and

it is rederived here in full. Pitts and Greiller's physical stability criterion

(VIII. 4) reads,
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figure h-l.
P>
,X and f x

(the position of film separation) vs. the

capillary number. The functions /3 and ^ are extracted

from Coyne and Elrod f s work (1969, 1970). J x
is cal-

culated for the system of partially immersed counter .

rotating rollers ( H
Q
/R - 0,005, H

Q
/R = 0, 05).
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or, in dimensionless form,

** <
-if <^

After some algebraic manipulations using Eqs. (E-2), (E-4) and (E-9), the

following expression for the stability limit is obtained,

N * _ 3 v? 9C*a-n *)
S ~ 2 ton J* (E-10)

where the superscript * denotes critical conditions. Eq. (E-10) can be

written as a relation between the geometric parameter H 0/R and the critical

capillary number, Nc *, in the form

HO
= 9 * 2

R 2
1

tan
Ca J

<
E-11)

This equation is coupled with Eq. (E-7) for o<
l

that is still valid. Combin-

ation of Eqs. (E-7) and (E-ll) gives,

{
B *-l) to* 2

°fl = + + sin_2<_ E_12
/ 2tano^i 4 2 d

1 ;

- M
, ( + 3£i +

3in2<
+

sin_4o£T
cos 2

o^i 16 8 4 32

This equation gives the relationship between ^ and /3 * which is

presented in Figure E-2 . Since * is a known function of Nca * (or ?C *)

it is possible to solve Eq. (E-ll) for H
Q
/R. The relation between Hn/R and

NCa constitutes a stability criterion for the system of partially immersed

counter rotating rollers. This criterion is plotted in Figure VIII-3.
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E-l. The position of film separation under critical conditions vs„

the function y3*. Calculations are for the system of partially

immersed counter rotating rollers.
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E.4 A Linear Stability Analysis

In the second part of Savage's work (1977b) a linear stability analysis

is carried out for a cylinder-plane geometry. This analysis results in a

second-order ordinary differential equation combined with a set of boundary

conditions that are based on Coyne and Elrod's theory. A solution to this

equation yields a relation between the wavenumber, Jf*, the geometry

(Hq/R) and the capillary number.

In the unstable flow domain the pressure function is assumed to be

expressed by

P (x,z) = P°(x) + £G(x)sin^fz (E-13)

where P°(x) is the pressure function in the unperturbed case, is the

magnitude of the perturbation « X ) and G(x) is an unspecified

function. The objective of this analysis is to determine bothtA^ and G(x).

As this analysis (for the system of counter-rotating rollers) parallels

Savage's treatment, the resulting boundary-value problem is presented

without derivation. Essentially Eq. (E-13) is introduced into the governing

equations of motion and after some manipulations the following differential

equation is obtained.

(E-14)

where
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and N2 = Jp2(Kn )

This equation is evidently slightly different from the equation given by

Savage due to the geometric differences between the systems considered.

Eq. (E-14) is accompanied by the following boundary conditions

g(-o#) = 0 (E _ 15)

' 3NCa^ R Jl
(E-16)

H 0

3NCa R
) N2

(1 + ±j2}
2

and

(E-17)

In addition, the position of flow separation ( is given by Eq. (E-7) which

is assumed to be still valid. Eq. (E-15) results from specifying zero pres-

sure at the system inlet. Eq. (E-16) is a force balance at separation and

Eq. (E-17) is a statement of conservation of mass 0

The boundary-value problem defined by Eqs, (E-14) - (E-17) and (E-7)

is clearly too complex to be handled by exact analytical methods. Savage

showed, however, that the expression

g(Jh = g()i) exp [w( (E-18)

is a reasonable approximation of the exact solution for g. In order to satisfy

Eq. (E-14) w should have the form

w = -k + [k
2 + N2

]

1/2 (E-19)

where
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2 1+ 1/2 )2

Also g( | x )
is given by Eq. (E-16). Finally, using Eq. (E-17), the follow

ing cubic equation in w is found

w3 + 2 kw2 - lw + m = 0

where

1 ,
H 0 1/2 fc

=£.(1+1/2)2)2
R J 1

and

3N
m = Ca

HQ
(1 + 1/2 }2

}

3

R

Once the coefficients k, 1 and m are known, the equation can be solved

graphically for w. These coefficients can be determined, using Coyne and

Elrod T s theory, for any specified Nca an^ Hq/R (see Figure E-l). As was

pointed out by Savage, only one solution (out of the three possible) is

physically admissible. This solution yields the wavenumber for a particular

set of Hq/R and N^a .

Some calculated values of JP for the data given in VIII. 2 are listed

in Table E-l. A comparison of these values, expressed as normalized

wavelengths, to the measured values is presented in Figure VIII-5.
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