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ABSTRACT

SMALL ANGLE X-RAY SCATTERING STUDIES OF
THE DEFORMATION OF POLYETHYLENE

July 1977

Stanley K. Baczek, B.S., Southeastern Massachusetts University
M.S., University of Massachusetts
Ph.D., University of Massachusetts

Directed by: Professor Richard S. Stein

Previous attempts to elucidate deformation mechanisms of crystalline

polymers by small -angle x-ray scattering (SAXS) using long slit geometries

have met with limited success since current desmearing procedures are

not rigorous for anisotropic scattering. Use of the ORNL 10 meter SAXS

spectrometer which utilizes pin hole collimation has alleviated this

problem. Intensities from uniaxially strained (90%) low density polyethy-

lene (LDPE), and (25%) high density polyethylene (HOPE), and (40%) special

texture (parallel lamellae stretched perpendicular to lamellar planes)

LDPE have been analyzed at specific azimuthal angles, reflecting angular

positions within the spherulites, by assuming the linear paracrystal 1 ine

Hosemann scheme. Results indicate onset of fiber formation or microscopic

yielding long before any macroscopic effects are observed. Lamellar orien-

tation functions are calculated and compared to various model predictions.

Effects of lamellar twisting and c-axis chain tilting are considered. A
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mechanism of lamellar buckling and interleaving for those perpendicular

to the stretch direction is proposed while amorphous compression and

interlamellar slip for those lamellae parallel to the strain is advanced.

Crystalline lamellar thicknesses are found to remain constant within

experimental error with strain irrespective of their initial positions

within the spherulite. Total scattering intensities are measured and

swelling experiments performed. These indicate the absence of microvoid

formation during deformation in LDPE. Some evidence for its existence

in HOPE is apparent.
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CHAPTER
1

INTRODUCTION

The mechanical responses of polymeric materials have been the
focus Of a Significant volume of research from both scientific and engi-
neering viewpoints for many years. They are understood quite well for
crosslinked rubbery and linear amorphous polymers above their glass tran-
sition temperatures (1,2). However, the presence of crystalline struc-
tures sufficiently complicates the response to stress so that only very

approximate theories of mechanical behavior may be applied (3,4).

It is well known (5) that the actual morphology of many semi-

crystalline polymers is lamellar, in which the crystalline regions exist

as thin sheets of the order of lOOA thickness and in which there is chain

orientation perpendicular to the lamellar plane. Interlamel lar regions

presumably consist of "amorphous" structures in which a more-or-less

random ordering of chains exists. Less-ordered regions may occur within

crystals as defects (6). Deformation of these "amorphous" zones depends

upon whether they are inter- or intralamel lar in nature and upon the

orientation of lamellae with respect to the stress. As Stein has

observed (7), "If the lamellae orient with their planes perpendicular

to the stress as in Figure la, then the interlamel lar regions act in

series with the crystallites (see References 7 and 8 for definitions of

series and parallel models), whereas if the stress is parallel to the

lamellae (Figure lb), the interlamel lar deformation is in parallel to

that of the crystalline lamellae. Here the interlamellar zones experi-

ence a tensile deformation. However, if lamellae are tilted with respect



to the stress, they tend to slide with respect to each other since the

interlamellar regions experience a shear stress (Figure Ic). Thus, the

deformational response of the disordered regions of a crystalline polymer

depends upon the nature of the regions and the local orientation of lamel-

lae with respect to the stress."

Microscopy and light scattering experiments have verified that in

certain cases the lamellae are organized into a superstructure in which

there is correlation of their orientations over rather large regions of

space. A spherulite is a particular case of this organization in which,

ideally, the lamellae are arranged with their planes radially emanating

from a central point. Sasaguri, et al . (9), showed that the tensile

deformation of polybutene-1 films containing a spherulitic morphology

involved the cooperative motion of lamellae such that an initially-

spherical structure transformed to an ellipsoidal one. The ratio of

the deformed to undeformed length of the spherulite was approximately

equal to the macroscopic elongation ratio of the sample (10). This has

not been observed for all polymers similarly studied (11,12) suggesting

variations in their deformation mechanisms.

Several model theories of the responses of semicrystall ine polymers

comprised of spherulitic or lamellar morphologies have been proposed. A

usual starting point is that of the affine scheme originally proposed by

Kuhn and Grun (13) for the characterization of the optical anisotropy of

rubbers. Affine deformation assumes that the microscopic strain on each

particular element, e.g. chains, crystals, lamellae, spherulites, etc.,

is equivalent to the macroscopic strain of the sample.
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Kuhn and Grun applied the affine deformation to chain segments.

Kratky (14) extended this on to the affine displacement of rods imbedded in

an amorphous matrix. Since the shapes of the rods remained constant but

were positionally and angularly displaced from their initial state

within the matrix, the deformation was termed "pseudo-aff ine"

.

Others have applied this general phenomonological model to semi-

crystalline polymers to explain results of birefringence (15-17), light

scattering (18,19), and x-ray diffraction experiments (17,20). Wilchinsky

(17) extended the affine description to spherulites as a whole. The

affine treatment is, of course, an oversimplification in that it has been

recognized that deformation is often positionally dependent due to

localized stresses at the various levels of structure (12,21,22).

An extension of the generalized Hooke's law for anisotropic elastic

solids to anisotropic linear viscoelastic solids was proposed by

Takanayagi (23) to explain the mechanical behavior of a series of oriented

polyethylene sheets. Recently, the treatment of polymer spherulites by

composite theories has been somewhat successful in describing the

mechanical responses to stress. Specifically, application of Halpin-

Kardos (24,25) theory by Phillips (26) in a rather simple manner, and

by T. T. Wang (27) using the more complex continuum approach, has yielded

mechanical responses at the three levels of lamellae, spherulites, and

the bulk sample. A theory of the mechanical properties of spherulites

was also presented in this laboratory by Kawaguchi (28). Other theories

also exist (29,30) and the list continues. However, a major obstacle

has been the fact that there is very little direct experimental evidence



as to the nature of the elastic deformation on the scale of the lamellae

which are obviously involved in the processes. Therefore, the object of

this work is not to add another theory of semicrystal 1 ine polymer defor-

mation, but rather to use an experimental approach to measure the changes

associated with the crystalline and amorphous regions in their relative

spatial positions within the spherulites during uniaxial deformation

and to test some of the existing models with the results. Appropriately,

then, the technique of small angle x-ray scattering (SAXS) has been mainly

utilized since data interpretation has yielded information regarding the

nature and sizes of lamellar and interlamel lar regions.

Figure 2 shows the photographic SAXS patterns generated from point

geometry for low density polyethylene at various stages of uniaxial strain

In the unstretched state, a symmetric pattern is obtained while at varying

degrees of elastic or plastic deformation, the anisotropic patterns are

observed. Presumably, proper analysis of the intensity profile along

any given azimuthal angle will yield information regarding those struc-

tures which scatter into that particular azimuth. It is well established

that a lamellar morphology exists for polyethylene. Since the lamellae

can be treated as x-ray reflecting planes, we know from the Ewald con-

struction (e.g. see References 31 and 32) that they must be perpendicular

to the direction of the analyzed azimuth. For a good qualitative des-

cription of the geometry of SAXS processes from lamellae, see pp. 404

and 405 of Reference 33. Thus, for the unstrained case the lamellae

are symmetrically distributed and generate a circularly-symmetric scat-

tering pattern. However, application of a strain changes the spatial
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is

distribution, and positional ly-dependent average long spacings

reflected in the anisotropic patterns. The fundamental idea, then,

to obtain intensity profiles at particular azimuths to learn something

of the structures generating them. Their angular variations will be

tested at various states of strain. Finally, the absolute intensity of

SAXS is monitored to gain information regarding electron densities in

the phases at various strains and spatial positions.

Two attempts to do a study very similar in some respects to this

one deserve mention. In the first, Labarbe, this author, et al. (20),

using similar samples to those analyzed here (Monsanto experimental low

density polyethylene, LDPE), a long-slit geometry SAXS spectrometer, and

application of Tsvankin/Buchanan (34-36) theory found that long periods

and crystalline thicknesses varied with elongation. Specifically, the

long period (crystalline plus amorphous thickness) decreased for lamellae

parallel to the strain while it increased for those perpendicular to it.

The crystalline lamellar and amorphous interlamel lar dimensional res-

ponses were similar but of differing magnitudes. However, crystal 1 inities

remained constant over the entire azimuthal range and with total macros-

copic strain (up to 60%). This latter result is to be compared with the

second study which is that of Schultz (37,38). He reported a decrease in

overall crystal 1 inity with strain (up to 20%) and a slowly-increasing

long period for lamellae perpendicular to the strain, and concluded that

lamellar thinning occurs for those lamellae perpendicular to the strain axis

during deformation. This conclusion is found to be in direct contradiction

with that of Labarbe, et al. The discrepancy justifies further study.
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An inherent assumption, especially in the Labarbe work, is that

the scattering anisotropy at a particular strain is small and for all

practical purposes can be treated as if it were spherically symmetric.

Spherical symmetry is a primary consideration for the application of

existing desmearing procedures (39,40). The ideal pinhole geometry

with our Rigaku-Denki spectrometer could not be fully utilized for the

practical consideration of the long counting times involved. However,

the photographic evidence of Figure 2 reveals a highly-anisotropic

scattering pattern even at the lower strains. Assuming a spherical scat-

tering symmetry would be very approximate indeed. This fact, along with

the interpretation of his results, casts serious doubt as to the validity

of the assumption.

To overcome these deficiencies we have used the 10-Meter SAXS

spectrometer (41,42) located at the Oak Ridge National Laboratory

(ORNL) in cooperation with Dr. R. W. Hendricks and his colleagues. This

spectrometer utilizes a rotating anode generator to produce a high inci-

dent x-ray flux, a monochromator, point geometry and a two-dimensional

position sensitive proportional counter. All azimuthal data is acquired

simultaneously at a given strain and is processed and corrected using a

dedicated computer. Rapid data acquisition and the ability to process

intensities without the constraint of having to correct for slit smearing

effects make this instrument invaluable for accurate results on these

deformed systems.



CHAPTER 2

THEORETICAL

A. General Theory of SAXS

It is well known that if we consider a system of thin parallel

plates separated by a distance, d, and a wave plane of wavelength. A,

incident upon them, the condition for constructive interference of the

scattered rays over the plane normal to them is given by Bragg's law

nx = 2d sine

where e is the angle between the incident beam and the platelet and n is

the order of the reflection (n = 1 , 2, 3 . .
. ) . it is also known that

most semicrystalline polymers give rise to rather broad scattering maxima

in the SAXS region (ca. < 3°). These maxima have generally been ascribed

to periodic fluctuations of structural order of tens to hundreds of

Angstroms within the sample. Interpretations based on two phase models

of alternating crystalline and amorphous regions and application of

Bragg's law have met with varied successes when results are compared to

electron microscopy (EM) studies (43,44) or to the line broadening tech-

niques (45,46) of wide angle x-ray diffraction (WAXD). Actually, Guinier

(Reference 40, pp. 140-148) demonstrates the limitations of Bragg's law

to SAXS by focusing on its original derivation and ways in which SAXS
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spectra deviate from this. Basically, Bragg's law is derived for equi-

spaced lattice planes and well-defined internal structural parameters

extending over an infinite array. Most polymer systems exhibit a broad

SAXS maximum with few, if any, observable subsidiary maxima reflecting

a distribution of lattice planes over a finite space and probably varying

structural patterns. Thus, a complete knowledge of the distribution of

scattering centers as well as structural parameters must be known.

Only average quantities can be reported. Therefore, Bragg's law cannot

be rigorously applied to determine "spacings" in SAXS patterns. How-

ever, its use is often illustrative of trends and, therefore, values are

still cited in the literature and will be reported here bearing in mind

the limitations set forth above. Crist (47) refers to the evidence that

since quantitative agreement is lacking in the majority of cases studied

by EM and that polyethylene, polypropylene, and polyoxymethylene fre-

quently show two SAXS maxima which cannot simply be related by Bragg's

law to order effects, work has proceeded to refine or expand the scat-

tering calculations from the simple two-phase model. Three such models

will be discussed herein to various depths and for various reasons which

will become clear later in the text. Since our work has shown that

among the Hosemann, Vonk, and Tsvankin/Buchanan models the former is

the more general for the systems studied, it will be described in greater

detail than the others. A table (Table 1) comparing the major similari-

ties and differences between the three models is included.
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B. Hosemann Linear Paracrystal 1 ine Model

The variation of SAXS intensity with angle for a lattice whose

entire distribution of scattering centers can be described if the dis-

tribution law for nearest neighbors is known was derived by Zernicke

and Prins (48) and Hermans (49) and generalized by Hosemann (50). The

subsequent derivations follow those of References 33, Chapter 5, and

51 , Chapter 5.

The statistical representation of paracrystal 1 ine lattice points

can be derived with reference to Figure 3 as follows. (A paracrystal 1 ine

lattice differs from a crystalline lattice in that in the former the

arrangement of lattice points is not perfect. Lattice points may fluc-

tuate about some mean value in position.) Considering a one-dimensional

system, let the lattice points in the x direction be A-j , A^, etc., where

A-j is the nearest neighbor to an arbitrary origin, 0. If the probability

of locating A-j by a vector y from the origin is H-j(y), then the probability

that A2 is located by an independent vector z from the end of ^ is given

by H-j(y) . H-j(z). The total probability, H2(x), that A2 will lie at the

end of a single vector x = y + z from the origin is given by

0

(1)

H ,
U :

• 1-1
^ U

I



If we assume no statistical correlation h .
.

correlation between the vectors y and zThe symbol (*) denotes th^ . .

~

, / convolution process which is defined inEquation (1) u .

^"

3
and represents the distributionlaw for first neighbors. FroMD we see that th

for th» .
^ ' '"^ '^^'^ '•istribution function

r ----^ that for the first
ne^Ohbors. The .ean distance between neighbors, T, is g,-.en b.

" = / X H,{x) dx
(2)

and Since the resulting interference function will be referred to one
scattering unit. H,(x) ™st satisfy the normalization condition.

Physically the convolution of H,(x) with itself means that H,(x), des-
cribing a certain displacement from the origin and a certain width,
is once more displaced and broadened so that the result is a broader

function Of lower peak height. The convolution process of Equation (1)
is readily generalized to



^^m^~^ ^1
* ^1 [the (m-1) convolution of H,] (4)

m m

where m is the number of points in the lattice. The lattice extends in

both the (+) and (-) directions and is centrosymmetric such that H (x) =
m

^-m^"?^- ^m^?^
^'^ sometimes represented asT^

If we specify a distribution function W(x) which describes the

random distribution of points in A(x), it will fully define the diffraction

properties of the linear array which is dependent on the location of scat-

tering units. Then

2 2

Z(x) = WiAi . + H^^ + +9^ +9
^

+

m m

^1

m m

I

m=l

[H^ + H_^] (5)

where N is the number of points in the lattice. Z(x) is, therefore, the

distribution function per unit scattering center.



The definition of a Fourier transform or actually a Fourier

transform pair is given in Equation (6).

I

F(X) = f G(Y) e^^''^^'^^ dv

G(Y) = r F(X) e-^^^'^^'^^ dv
J— oo X

(6)

or

F(X) = F [G(Y)]

G(Y) = F~' [F(X)] (7)

in which F and F represent the Fourier transform operators as defined

in Equation (6).

This, along with the theorem that

F[G^(X)*G2(X)] = F[G^(X)] FCG^lX)] ;

= ^(Y)F2(Y) (8)
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or that the Fourier transform of a convolution is the product of the

transforms of the convoluted functions, enables us to write

F[Z(x)] = Z(X) = F[Hq] +
I [f"^ + F*'^]

(9)
m=l

where

m

f"" = f'^IX) = F[H^(x)] = F[H^x)]

and

m
*m ,-*m

F = F "'(X) = F[H_^(x)] = F[H^(-x)]

Z(X) is the interference function for x-ray scattering. <2m>-''^ X
It is useful to point out at this point that F, the structure v<'*^^

factor or amplitude is of universal application in that, in general, it

extends the concept of scattering from a single point to any physical

scattering unit such as the lamellae considered here. Also, the intensity

of scattering is proportional to the square of its modulus or the product

of the amplitude, F, and its complex conjugate, F*.
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Summing the series in Equation (9) and realizing that

F[Hq] = 1, results in

= 1 + 2Re
1-F Re

HF
1-F (10)

since (9) contains conjugate quantities of the same form and the sys-

tem is centrosymmetric. Re represents the real part of the term and

X is any general scattering vector.

Either the interference function, Z(X), or a shape amplitude

factor, S(X), determines the shape of the intensity maximum depending

on whether the lattice is large or small, respectively. The shape

amplitude factor describes the shape in reciprocal space of the scat-

tering regions and is the Fourier transform of the shape function,

$(x) in real space defined by

cl>(x) =

1 inside object

0 outside object

(11)



To avoid complications introduced by the shape factor, it is meaningful
to consider the distribution function and its transform for finite N
rather than infinite N. In Equation (5), Z(x) = W(x)/N and all H (x)

are normalized to unity by (3). However, for a finite N, H fx) must bem -

normalized to N-|m|, thus in place of (5),

N

= N + I (N-Iml) [f'' + F*^]

m=l
(12)

which after summation and rearrangement leads to

Z(X)^= N Re
1+F
1-F

- 2 Re

(l-F)^-J
(13)

The subscript, N, refers to scattering from a finite array. The second

term in (13) has been shown to be similar to the Laue function (Reference

33, p. 129) which for small N broadens the intensity versus angle curve.

The form of the distribution functions, F, has not been specified here.

More recently, Bramer (52) utilized this concept for scattering

from a finite one-dimensional stack of lamellae separated by amorphous
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1nte..„en. .e,ions. ^oHowi^, Hose^ann^s .o.»U,:,on ,S0), .e te™.
these stacs ..clusters" and distnbute. the. .ando.,. i„ space as shown
- Fu,..o „en,-g (53.5.) added the contHh.tion to scatten'n, hy af-He t.ansmon .one th.c.ness hetween the c.stanine and a.o.phous
layers. A shematic is shown in Figure 5.

Let us assume that the la.ellae are larger in thei. lateral dimen-
sions than in their thicknesses. Clusters arp fh. .Clusters are the aggregation of alter-
natmg crystalline and amorphous or Intercrystal 1 1ne re.ions and they
co.plete,y f1l, the sa.ple vol„.e. Sizes along the crystalline and amor-
phous thicknesses are given by L = Nx, .here 1s the average long spacing
given by

. x^. „here x^ and x^ are the thicknesses of the crystalline
and amorphous layers, respectively. N is the nu,„ber of la.nellae within
a cluster. The average structure factor for the cluster is given by

and

<|F|^ = /jF|2 H(r) d^

^
N

"^^^cluster Ml (\-,n)
• I' (x.Ja an' c ^ cn

n=l

(14)

(15)

where H^(x^J and H^(x^J are the thickness distribution functions for the

crystalline and amorphous phases, H(0^i,3t^^ resulting thickness
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d.tMbutlon Of the cl.ste.. and F 1s the structure tacto. for the pani-
cular Cluster. The x direction Is ta.en along a line perpendicular to
the lateral lamellar dimensions and the line encounters regions of
alternating high and low electron density when passing through crystal-
line and amorphous regions, respectively, as shown In Figure 5 The
average structure factor in Equation (14) is obtained by Integrating
over all the clusters In space. The thickness distribution of a crystal-
line and amorphous layer together. H,. is given by the convolution theorem
Of Equation (1) as

00

"d(^dn)=//a Kn) '

"c(>^dn "
><an) = V 0^)

The relationships between the average values, ^, and the squared fluc-

tuations about the averages, (ax )^, are

\ ^d' " "Jo " ^a^^'^ ^ "
^a' \' ^d (17)

and
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" ' Xd
(18)

The average square Intensity is given by combining Equations (U)
and (15)

0 a-al' -al ••••
"a^^n) ^^an

He(x„) dx^, .... Hjx„) dx 1 (,9)

where s = (2/a) sine.

Let

= e-^^^ ="d.. . = x,. x,,

and

F • F =
a c d (20)
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Substituting and performing the Fourier operations similarly as

in Equations (5-13) yields the final result that

.

K r (l-F )(1-F ) ,i_F \2

Where K is a constant of proportionality used primarily as a scaling

factor in curve fitting. Here, N is an explicit parameter which after

integration is the mean number of parallel lamellae averaged over the

clusters in the entire array. This differs from the N in Equation (13)

since there, the averaging over clusters was not performed.

The generalized thickness distribution functions for the crystal-

line and amorphous phases are given by Gaussian s as

H (a) =
a

2tt (ax )
a

1/2 exp

2(AXJ
(22)

where a is c or a depending on whether the crystalline or amorphous dis-

tributions are to be specified. For purposes of simplification and

computer programming, the mean squared fluctuations can be represented by
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(ax )^ = q ^2
^ \ (23)

Where ,s now the deviation a.o.t the .ean .a1„e and Is a pa.a.ete.
specified in the calculations.

Equation (21, Is Identical to Equation (8, of Reference 50. page
^13. The first te™ in brackets 1s known as the diffuse or Bablnet T
component since it is symmetrical in and F^. it follows Bahinef s
reciprocity law (Reference 50. page 540, exactly, and is proportional
to the average number of lamellae in the cluster. The second term is
called the crystalline component. T,. It is small compared to when
N large and at angles where the zero order component Is negligible
The zero order scattering is that arising from the cluster size L. Hose-
mann (50) has shown that for large N. and in the limit of very small
angles, reduces to

f lim = \} !

s->0

where * is volume fraction crystal 1 inity or the mean packing density of the

material. Thus, in the region of SAXS, should not be neglected.



The above model assumes no interference effects from the arrange-
ment Of the clusters due to their polydispersity and, therefore the
Shape Of the SAXS curve is determined only by the inner structure of
the domains. Also, it is assumed that the lamellae are distributed

statistically with respect to their thicknesses over all the domains so
that each lamellar thickness can be found in every domain according to
its probability specified by the thickness distribution function. Thus,
any two clusters of the model are indistinguishable.

At this point we shall investigate the meaning of the parameter,

N. Obviously in the derivation N is taken to mean an absolute real

number describing the average value of parallel lamellae within a cluster

Because of our preliminary results and those of others (53-55), the

actual values of N were often found to be below 2.0. Obviously 1.2

lamellae, for example, cannot give rise to any interference and this

number has no physical significance. To test this problem, we calculated

the scattering from an array of parallel rods allowing for a statistical

fluctuation from parallelness to occur at specified intervals. The

actual details of the calculation and the computer program are given

in Appendix I. After a certain small angular deviation was reached,

the intensity at the maximum remained constant even with the introduction

of greater amounts of angular deviation. Figure 6 shows the results of

the intensity at the maximum vs. the number of parallel rods N. This

number was varied from 2 to 50 to generate the curve. Then 50 rods

were assembled with the introduction of angular deviation at specified

intervals as designated by limits surrounding numbers generated randomly.
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Thus, allowing 10% of the rods to vary at so.e angle with respect to the
other parallel rods, on the average, every 6th rod would be expected to
be non-parallel. We can see, however, that the scattering obtained here
IS much greater than that obtained from 5 parallel rods alone. Other
examples along with numbers are given in Appendix I. Also, the intensity
was calculated at the very exact angle of 90 degrees to the lamellar planes
Experimentally, one cannot achieve this due in least part to finite detector
or detector element sizes and, in fact, a distribution of scattering planes
is Observed. This effect would tend to reduce the accuracy of the average

N probably by raising it somewhat since lamellae at slightly different

angles could scatter into the particular range of azimuth. However, the

values reported here and in the Bramer and Wenig works tend to approach

1.2 for LDPE. The average value would, thus, have to be even lower.

Despite this, the M parameter is not used in any quantitative fashion

in any experiments reported to date and only trends and qualitative judg-

ments concerning the structures are deduced.

Now we can consider the stack of four lamellae shown in Figure 7.

The average number of parallel rods is 1.5 but, according to the conclu-

sions reached from the model calculations, this stack could scatter coher-

ently as if it contained between two and four parallel rods. One can envi-

sion low or high density polyethylene (LDPE or HOPE) stacks comprised of

many approximately-parallel lamellae. However, the average number of

exactly-parallel lamellae would be rather low, possibly 1.2, due to lamellae

branching effects, etc. Scanning electron microscopic evidence of Keller

(unpublished results) of spherulite fracture surfaces supports the rather

low values of N which have been reported here.
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Finally, the initial statement that 1.2 lamellae cannot give rise

to any interference is a perfectly true one unless one realizes that this

number is an average value relating the average number of parallel lamellae

within a larger cluster and is derived as such.

We now return to the addition of an electron density transition zone

in the calculation of SAXS from a finite number of lamellae as described by

the cluster model. Consider the electron density profile (projection of

electron density on the fibrillar axis) of Figure 5. According to Tsvankin

(34), the amplitude of scattering due to the transition zone is given by

F(s) = r""^ ^ exp (-kx) dx + r
''^^''^

exp (-kx) dx

+ I
c E X - x^ - 2x^

x^+x exp (-kx) dx (23)

where k = 27Tis and x^, the transition zone thickness.

Solution of these integrals and averaging appropriately as done by

Wenig (53) results in a factor Z-|(S) where

1

( 2-111 s) X

1 - exp (-2Tris x^) (24)
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which, When multiplied by the average Intensity of Equation (21), yields
the final Intensity fro. a cluster .odel Including the finite transition
zones

:

c V1-F

(1 - f!!)} • Z,(s)1^^^ (25)

This equation was used in all the calculations and a computer program (TCSC)

was written (see Appendix) to compare theoretical and experimental scat-

tering curves. The basic parameters governing the shape of the structural

part of the SAXS curves are, therefore, the average crystalline, x or c,

and amorphous, x^ or a, thicknesses, and their distributions,
g^ and g^,

the transition zone thickness, x^ or E, and the average number of parallel

lamellae within a cluster, M. More will be said concerning the nature

of the program and the parameters used in the Experimental section.

C. Vonk Correlation Function Approach

The correlation function was originally defined by Debye, et al.

(50,57), and by Porod (58) as:

Y(r)
<AnT Ano>

I 2 r

<An >
(26)



where An. = p. - p and represents the local deviations in electron den-
sity of the various phases, p., fro. the average value, p, at positions

1
and 2 separated by a distance r. The correlation function can be cal-

culated for various models and compared to that determined by Fourier

transformation of the experimental curve. Vonk. et al. (59,60). applied

this concept to analyze the structures of bulk polymers. Since then,

others have also utilized this technique (61-63). According to the Vonk

approach, the relationship between the desmeared or point-like intensity

and the one-dimensional correlation function is given by

y(i") =

00

2
/ s I(s) cos2tt r-s ds
^ 0

/ I(s)^ ds
0

^

(27)

in which y{r) is normalized to give a value of 1.0 when r = 0 and 0

when r = i(s)^ is the experimentally-determined intensity distribu-

tion as a function of the scattering vector, s. The position of the first

maximum in yir) corresponds approximately to the average long period.

It is termed a one-dimensional function since it is confined to a central

line perpendicular to the alternating crystalline and amorphous layers.

Details of the determination of y(r) will be given in the next chapter.



The theoretical correlation function derived by Vonk and Kortleve

(59) is based on a linear two phase .odel of randomly-oriented alternating
high (crystalline) and low (amorphous) electron density regions much like

that of the Hosemann treatment. Independent thickness distribution func-
tions P^(rJ and P^{r^) represent the distribution of crystalline and

amorphous layer thicknesses r^ and r^ whose mean values are c and a,

respectively. The one-dimensional calculated correlation function is

then given by:

y(^) =
f

"
(r -r) P (r

) dr + P
-'0 ccc cac

+ P + - 1
cacac '

(28)

where ^ is the volume fraction of lamellae

= rrr (29)

Equation (29) represents a linear crystal! inity in that it is calculated

strictly on the basis of the widths of the crystalline and amorphous

regions. P^^^ and P^^^^^ are the overall probability functions dependent



upon and such that the coordinate vector r has both of its ends in
a crystalline phase and traverses through on one (P ) or two (PCdC ^

amorphous layers. P^ and P^ are normalized such that

cacac )

(30)

and, therefore, P^^^ and P^^^^^ are also normalized functions. In fitting
the calculated correlation function to the experimental one, the unit of

length in the experimental curve is first equated to the value of r at

the first maximum. Then the parameters cj,, and B are adjusted to

give the best correspondence. B^ and B^ represent the widths of the

distribution functions P^ and P^ which themselves can be represented by

either Gaussian [Equation (31)] or log-normal [Equation (32)] functions.

P(r) = —L_

B/27
exp [-(r-(^)^/2B^]

(31)

B
P(r) - [exp V /(}. B/T ] exp 3B^/4 + In (32)



Sm.Ur to Reference 64, combinations of these distribution functions
were used so that one was not confined to describing both phases by
the sa.e distribution function. Negative values of r were obviously
not allowed and In cases of broad distribution. 1„ order to compensate
for any cut-off at r - 0. the entire function was renor.al1zed to 1 0
and recalculated. Brown, et al. (64), concluded that the choice of a

particular distribution function Is not critical for highly-crystal 1 Ized
samples

> 0.5) where the distribution widths would be expected to be
lower. However, for samples of lower crystalUnltles where rather broad
functions would be appropriate, their type becomes sensitive and signi-
ficant upon the final fit of the experimental and calculated correlation
function.

In comparing the Vonk and Hosemann calculations, Gaussian distri-

butions must be used for both phases in the former calculation. Also

in relating the distribution parameters and B of the Hosemann and

Vonk treatment, references to Equations (22), (23) and (31) reveal

that

(AX )2 =
a

Therefore,



9a
=

(AX
)

a

a

B

X
a
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(33)

Thus, direct comparison of the two Gaussian distribution parameters

can be made. However, one must also keep in mind that the major dif-

ference in the two approaches as described here is that the Hosemann

scheme analyzes clusters of finite width lamellae while the Vonk treat-

ment assumes an infinite one-dimensional stack. Also, in Vonk's deri-

vation, disorder of the first kind is used while that of the second

kind, described previously, is used by Hosemann. In the first kind,

the scattering centers are located then crystalline thicknesses built

up around them. Negative amorphous thicknesses are possible but are

generally corrected for by careful choice of distribution parameters.

No such problem exists in the latter case. Also, in the physical

building of the system, the former seems the more likely to occur and

thus define the statistics.

D. Tsvankin/Buchanan Model

The Buchanan (35) model is basically a correction and extension

of the Tsvankin (34,36) scheme which consists again of a one-dimensional

model of alternating crystalline (high electron density) and amorphous

(low electron density) layers. Scattering from such an assembly consists

of calculating the projection of electron density on to a line as was

done for the two prior cases.



The general relationship for the diffracted intensitv fro

" -^^.1". lengths is ,i.„ h/
""^'^

"^'==^nFVlF|^].|F|^ (N.Hexp (is,.,
ik^^ (34)

^
andk crystals. A rectangular distn-bution of crystal 1 1te sizes

of mean dimension c varying between c - a < c < c + a m^ < c < c + A, plus the following
tionssubstitutions

y - SjA = 27ra sin2e/A
(35)

oLj = c/a

3 = A/a

a = d - c

where again d is the long period, and a is the mean amorphous length,

led the authors to derive an analytical expression for I,, where



- 23y cosa^y sinBy + 23y^ sina-^y sinsy)

and is derived from Equation (34) where

(36)

-2 ^

H -11 = |F|2 (N + J J exp (is, . Z.J}
i/^k

(37)

Next, inclusion of a trapezoidal electron density profile within

a crystal similar to that of Figure 5 and use of Zernicke-Prins (48)

statistics to locate the average positions of the scattering centers

(a one-dimensional disorder of the firsi^kind) allowed the calculation

of the scattering amplitudes \F\^ and Ireland, therefore, the total

scattered intensity per unit scattering object, TJJJ/H. In order to

establish relationships between the calculated and experimental scat-

tering curves, a set of calibration curves based on the calculated

scattering intensities was generated. The quantity relating these two,

i/^(p), is given by
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^(P) = P/X^ - d q
{38a)

and

P = dq; X = d/dm e (38b)

Where and are the calculated and experimental peal, positions
respectively, and p and q are the calculated and experimental half'
widths at halt .eight, respectively. Tsvan.ln tound that the transition
Width parameter, E. only slightly Influenced the calculated intensity
distributions. However, the 6/.^ parameter describing the dispersion
Of crystallite lengths about their mean value very strongly influenced
the results. Thus. 6/.,. a,, and E. along with the running variable p
were systematically varied to generate the calibration curves. Typical

"

calibration curves can be found in References 20 and 36. From these
considerations, values of the mean long period, the crystallite length,
and the amorphous dimensions were obtained from Equation (38) and

c = (})d

(39)



Where
« is the linear crystallinity defined as in the Hose.ann and

Vonk treatment.
, and are obtained directly from the calibration

curves.

Thus the application of the Tsvankin/Buchanan model is a rather
convenient one to use since only the peak position and half-width at

half-.aximum are needed to fully characterize the scattering morphology
The full width at half maximum is used by some (65) but this depends

obviously on the way in which calibration curves are generated. More
will be said concerning this method in subsequent sections including

numerous criticisms.

E. The Total Integral-Invariant

The only parameter which can be determined with no a priori

assumptions concerning the nature of the inhomogeneities giving rise

to the scattering is the mean squared electron density fluctuation,

(p - p) . This has been termed the scattering power of the particular

system (38,58,66) and it is related to the total integral scatterina

intensity

r
°°

2
I s I(s) ds = Q, point geometry
0

or

/ s I(s) ds = Q, slit geometry (40)
0



Where I(s) and Q, and i(s) and q are calculated fro. po1nt-ll,e o.
infinite slit (smeared) geometry, respectively.

For a system of evenly-distributed electron densities in two
phases separated by a sharp bounday, we can write

where

P -
<i>^ P-l

+ <J)2 P2

*1 + 4-2 = 1.0

(41)

(|>1 and are the volume fractions of material in the phases.

Making the proper substitutions and rearranging terms leads to

the well-known expression, where

_ 2 2 9
\P - p) = (Pi - P2)

*i
<t>2

= <An >
(42)



We must keep in mind that the p's are electron densities in these equa

tions as opposed to mass densities normally thought of. "(T^T^will
be replaced by the more conventional terminology <An^.

Concerning the evaluation of the invariants, Q and Q, obviously

it is not possible to experimentally evaluate the integral over the

whole angular range from zero to infinity. The low angle region may

be obtained by a plot of s i(s) vs. s and extrapolation of the linear

position to zero angle. Conversely, extrapolation to higher angles

must be done accurately since it may account for over 10% of the final

result. Use of Porod's law (58) which states that for a two-phase

system s^ I(s) or s^ i(s) should assume constant values in the high

angle regions away from any obvious structural portions of the curve

will allow evaluation to infinity, as follows. The invariant may be

divided into two parts:

Q = Q' + Q" (43)

where

s ^

Q' = / s i(s) ds (44)
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and is evaluated numerically, while

Q" = /
"

s i(s) ds
(45)

Where s' is the scattering vector at which Porod's law begins to be

invoked. [A plot of s^ i(s) or s^ I(s) may first have to be corrected

for diffuse boundary effects (59,67).] Considering only the slit-

smeared case,

3
~

s I(s) = Const

and

s I(s) = K
~2 (46)
s

Substitution of (46) into (45) results in

Q"

s s

K . K
7 ds = ^ (47)
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Finally, substituting Equations (47) and (44) into (43) gives the result
we sought.

The observed or corrected tnt^^i -in+o irrected total integrals are related to the mean
squared electron density fluctuation by

2- (^S)

where r^ is the Thomson scattering factor, is Avagadro's number, P

the sample attenuated intensity of the primary beam, t^ the sample

thickness, and r^^ is the sample^to-detector distance in centimeters.

The energy of the incident beam must be determined experimentally.

This has been done using a Lupolen (polyethylene) calibration standard

(68,69) supplied to us by Professor 0. Kratky. The energy per cm

length of incident beam after sample attenuation is given by Equation

(49).
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where is the calibration constant supplied, A is the sample attenuation

factor measured experimentally, is the counting tube slit area, and

I5 is the intensity of scattering from the standard sample at the parti-

cular calibration angle. Since Q involves a measured intensity, the

values of and r^^ need not be determined for the calculation of
2

<An >. More will be said concerning the details of these calculations

in the Experimental section.

F. Swelling Studies - The Invariant

Swelling techniques have been used by Porod, et al . (58a, 70)

to elucidate the structure of regenerated cellulose. Air-swollen

and dried samples showed striking differences and the authors concluded

that the swollen matrix could be represented by a dilute system while

the dried one by a densely-packed colloidal system. The agreement with

the absolute scattering intensity was very good.

More recently, Sakai, et al . (71), used iodine (solvent) uptake

in conjunction with SAXS to study the density of the amorphous inter-

crystalline regions of poly(ethylene terephthalate) . By experimental

determination of the ratios of peak intensities with and without iodine

present and to varying degrees, and comparison with model calculations,

they were able to conclude that sorption sites were more numerous near

the crystal surface than in the interior of the amorphous phase. They

postulated that this was due to a lower density region at the extremities

of the amorphous phase rather than the interior.



In a Slightly different study concerning SALS
, Rhodes and

Stem (72) were able to show that light scattering patterns (V
)

fro. stretched polyethylene were not affected by swelling In tHchloro-
benzene or heptane. They concluded that refractive index heterogeneity
at the fibril boundary is a result of orientation fluctuations of the
optic axes rather than a density discontinuity. Blackadder. et al.

(73.74) have shown that solvent uptake alone can be a powerful tech-
nique for morphological Investigations.

In order to evaluate the validity of the two-phase model for the
stretched and unstretched samples in this study, specifically with res-
pect to voids or void formation, the technique of evaluating <An2>
in the swollen and unswollen cases and comparing the results to model

calculations was employed. The basic idea is that if a void exists and
Is characterized by essentially zero electron density and a fluid sub-

sequently is allowed to penetrate that volume, the relative electron

density will have increased. Since the total integral is proportional

to the difference in electron densities of the phases, swelling will

decrease this difference and the intensity should drop rather dramatically

If no voids were present initially, then the drop should not be as sig-

nif icant.

In the subsequent derivations, it is assumed that a void will

scatter x-rays coherently. The swollen amorphous phase which initially

had voids will now scatter as one new phase. The major possible situa-

tions are considered independently and compared as follows.



We shall assume that the rr\/<;f;,n -.-^^the crystalline and amorphous regions have
-^form densities and that the. are separated . sharp boundary Thi-^-t the case presented in Equations (41) and (42), changing sub-
scripts

1 and 2 to c and a for the crv.t.n.-the crystalline and amorphous phases
respectively.

Voids^^jln^uN^^

This consists Of a three-phase syste. comprised of crystals of
un,for. electron density and voids within the amorphous .ones The
general equation for the .ean squared electron density fluctuations of
a system containing n homogeneous phases is by definition

n

i=l

p
=

n

I

1=1

n

Pi *i' I ^.

1=1

= 1
(50)

Thus application to the three-phase system hare yields

\ ' *cv ("c - ^' + *av '^a
" ^' ^ \ (c, ' p)^ (51)
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where

*cv *av \ = 1-0' Pv = 0-0
(52)

and

' ' *cv "c ^ *av "a *
*v % (53)

Again, ^ represents the volume fraction of material in the system,

and are those volume fractions of crystalline and amorphous

phases adjusted for the presence of voids (the extra subscript v).

In these calculations, values of <t>^ must be assumed. Substitution

of Equations (52) and (53) into (51) and rearrangement gives
'

~- ^v *av ^'c - ' *v (*cv 'c^ ^ *av ^a^^ (^4)

In the limiting cases, when = 0, Equation (54) reduces to (42),

whereas, when = 1.0, <^^^ = = 0 and <An% = 0, which is the expected

result.
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At this point we must examine the work of Heikens (75) and

Hermans, et al. (76), who derived an expression for <An^> for a three

phase system containing voids using the relation

n n
2 1

<^^^> = i .1 (Pi-P3)%, (55)

which is presented as an alternative form of Equation (50), and is

basically a generalization from results of the two phase system. Thus

for a three-phase system (n=3) containing voids, the above equation

expands to

<An > = (p^ - P2) (f.^ - ^3)^ '^\ *3

+ (P2 - P3)^ *2 "^3

It is presented here as a test of the validity of Equation (55)

subscripts 1, 2, and 3 to denote phases to keep the solution completely

general. Hence, generalizing Equation (51),



-.2
3

"

where

P = ^1 Pi + ^2 ^2 *3 P3

and

Performing the subtractions in parentheses yields

- P = <^2 ^Pl - P2^ ^ *3 (p] - Po)

P2 - P = - P]) + - P2)

P3 - P = *1 (P3 - P]) + *2 (P3 - P2)

Substituting and squaring the terms, along with factoring terms

(p^- - pj) leads to
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+ 2

"3 - fl "2 - fl P3 - P2 P3]

Rearrangeraent and cancellation of cross-products leads directly to

Equation (56). Thus, at least for the three-phase syste., Equation (55)
is completely rigorous. When P3 = 0, Equation (56) reduces to (54).

Case nr. No Voids, t^i.^Mjan

Here it is assumed that the swelling only takes place in the

amorphous phase and that the liquid distributes itself homogeneously

throughout. The crystalline phase remains unaffected. The general

equation for <An > is given by

<in\ = (p^ - p)2 + (p . -)2
(5g)

where the s denotes the swollen case and

*as = *as ' *s

*cs *as ^
*s

= 1-0 (59)



By definition.

^ _a s

as V + V
a s

(60)

V

V
as

*^as
= V + V + V ' ^s

^ ^ ^scs as s ^ i> b
(61)

where W^, and V^, denote the weights and volumes of the amorphous

and solvent phases, and p^^ is the electron density of the swollen

amorphous phase. Substituting (61) into (60) and again rearranging,

- '^as Pa ^
'^s Ps

Final ly

,

P = *cs Pc *as Pa ^ *s ^s
^^^^



In this case, it is simpler to calculate Equations (59), (62) and (63)

explicitly and substitute the results directly into (58) rather than

try to simplify the expression. The volume fraction of solvent imbibbed

is found from swelling measurements or from results of SAXS model

calculations. We will see that the two techniques agreed to within

experimental error.

Case IV. Voids, Swollen
^.

Here it is assumed that the voids no longer exist after swelling

since the swollen amorphous phase completely replaces any space pre-

viously occupied by the voids. It, therefore, assumes that the crystal-

linity values used are completely free from the influence of voids.

Therefore, we can write down Equation (64)

<An^> = (P, - P)^ + (p^^^ - p)2 (64)

where

^asv ^asv ^s ^v

(() +6 +6+* =1.0
^csv ^asv ^s ^v (65)



and using similar definitions as in Case II,

where

and

where

W + W
a s

asv V + V + V
a s V

Vj = I V. ; i = a, s, V

1

Substituting Equations (67) into (66) and rearranging,
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and is the electron density of the swollen amorphous phase which initially
included voids. Finally,

'
~- W ^ ' (*asv ' ^) Pasv ^

*s ^ (69)

Calculation of Equations (65), (68) and (69) and substitution into (64)

gives the desired result. Use of an electronic, programmable, scientific

calculator makes these calculations quite manageable.

Case V. No Voids, Unswoll en. A Finite Tran^itjnr^uiH^

Here a two phase system is treated where the electrons are dis-

tributed uniformly in each of their respective phases but rather than a

sharp separating boundary, a linear transition zone is introduced. This

calculation was originally performed by Blundell (77) and subsequently

by Vonk (60) and Khambatta (78), where the result is given by

<An% = (p^ - p^)^ U^^^ - § ) (70)

The subscript E denotes the finite transition width. E denotes the

width of the transition zone in Angstroms, and S/V is the specific sur-

face area of the phase boundary. Vonk showed that for layer structures



such as lamellae, S/V = 2/d whprp d ic +-ho • ^^/
a
wnere d IS the long period. Substitution

into Equation (70) leads to the final result that

= (Pc Pa)' (Ma - ^ ) (71)

E/3d is actually equal to the volume fraction of this third phase,

<J.^, describing the contribution of the finite transition width.

Case VI. No Voids, Swollen, Fini teJTransiHr^^

Here we assume the same as in Case III and also that the transi-

tion width swells uniformly with solvent. We could also assume that

the transition width goes to zero with swelling and this reduces to

Case III. We can write

(72)

where



and

where

*csE = *csw - T

* _ *E
*asE = *asw " T *s (73)

'
~-

*csE 4e ^asE . (74)

*asE =
*asE *s ^

and
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({)'=({) - _h.
asE ^asE 2

Let P3(x) be the linear gradient of electron density.

asE "
E (75)

where x is the distance parameter along the thickness of the transition

zone, E. If we define

"^3 = PcsE ^ ^PasE ~ Pc^ f " p (76)

and substitute (74)

Now averaging
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'"3^ " E /q KsE -
"c'^ \ l- \^^y dx (78)

and performing the integration of (78) yields

and where

P
asE ^^^Pn; (80)

and

*csE ^
'^asE +

'^s
^

(81)

Combining the relevant equations leads to the final result that



2 -^2

(82)

Again it is easier to calculate the separate terms and feed them into

(82) rather than trying to simplify it.

Other cases or combinations could have been pursued but, because

of the nature of the experiments and their accuracy, only these six,

very distinguishable cases were analysed.

G. The Elliptically Symmetric Invariant

Due to the fact that the scattering from the elastical ly-strained

samples exhibited el 1 iptical ly-symmetric scattering patterns in some

cases (see Results) and that the 10 Meter ORNL spectrometer could easily

monitor the absolute scattered intensity, the total integral was derived

with the hopes of obtaining two major pieces of information.

The first is the determination of the invariant, previously

derived for spherically-symmetric scattering patterns (see e.g. Reference

31). If the shape of the scattering pattern is something other than

spherically symmetric, then the calculation of the invariant is meaning-

less, unless its shape is known and is mathematically expressed properly,

or unless a two-dimensional experimental integration is possible. The

second reason is to study deviations from the analytically expressed

scattering shape and to, therefore, characterize the system more fully.

The derivation is as follows.
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In the spherical coordinate system

s i>=0

(83)

assuming cylindrical symmetry about e, where now 6 is the space coordinate

in the spherical coordinate system (not to be confused with the scattering

angle), is the total volume of reciprocal space over which the inte-

gration is performed, and is the azimuthal angle.

For elliptically-symmetric iso-intensity contours (generated by

the computer ORNL processing of SAXS spectrometer data)

Hs) = r(s, ^) (84)

and the integration of (83) can go no further. However, if we allow s

to vary el 1 iptical ly , cyl indrical ly symmetric about an axis, then I(s)

is regenerated and
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2.2 2
a b a

a sin 4; + cos"^./. < sin + cos> ^
^

Where
. = a/b = .aJor/.1„o. axes, obtained directly fro. the iso-1„te„sity

contours. Here, a is not to be confused with the amorphous thickness
parameters.

Thus

s =

(k^ sin^t + cos2*)'/2 (86)

ds =

(k^ sin2* + cos2*)l/2 (8^)

and

I'(s, i>) = 1(a)

Substituting (86) and (87) into (83),
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' - L L 't^)
'^'O (K^ sin2*7^;;?;j;772

da (SS)

solution Of (88) 1s performed by a propitious change of variables

X = sini|j

y = cos^

which leads to an integral of the form

dx

resulting in

Q = ^TT J ^ 1(a) da
a=0 k'

(89)



Substituting Equations (85) and (87), results in the final

equation,

Q = ^ (k^in^ . cosV/^
/J^

s^(s)ds (90)

Note that this is identical to the case of spherical symmetry

except for the scaling due to the elliptical terms.

If we allow the strain to be along the y axis, and k = 2.0, at

<j> = 0°, a y axis average, Equation (90) gives

Q = u J s^ I(s) ds
0

while at = 90°, an x average, it reduces to

Q = 87T r s^ I(s) ds
-'0

A slightly-different approach was used by Hendricks (79) and simi-

lar results were obtained. Combining the two derivations has yielded



a .ore general relationship (Reference 79, than Equation (90) where any
g^ven ellipsoid can be considered, not only the prolate one assumed
above. Thus

Q = 4tt (k2 sin ip + cos i|>)
2,n3/2

I

CO

0

s I(s) ds (91)

Where k3 = b/a,
= c/a and describe the shape of the triaxial ellipse

(scaling factors). For a prolate ellipsoid, k3 = k^ =
i (.evolution

about the y, axis) and (91) reduces to (90).

Deviations in Q from different azimuthal slices will indicate

deviations from the elliptical symmetry predicted from the affine

scheme (see Discussion).

H. Small Angle Light Scattering (SALS)

The interpretations of (SALS) by deformed spherulites has been

the topic of a considerable research effort both in this laboratory

(7,10,15,16,18,19,21,81) and in others (11,29,30,82,83). Specifically,

Van Aartsen and Stein (19) calculated the (crossed polaroids) light

scattering patterns for uniaxially deformed three dimensional spherulites

assuming an affine deformation of the total spherulite. Thus a point

with coordinates (x, y, z) will assume coordinates (x', y'
, z') after

deformation, where x' = x, y' = y, and z' = A3 z where a.'s are



the strain .at1os a,o„, the ,1ven directions. To. uniaxial defecation
^1 = *2 and the .ajor strain direction is along .3 or the z axis The
optic axis Of a scattering element lying at an arbitrary angle with

- a .anner that depends upon its angular location within the spherullte
and according to so.e empirically assumed equation. Two general models
are considered. In the first, a constant density of scattering elements
1s preserved (Model I, while in the second. (Mode, H). the radial den-
sity Of scattering elements remains constant but the angular distribution
changes affinely. Constant volume deformation is considered. Also
twisting Of lamellae about their radii is considered. During deforma-
tion, the twist .ay remain unchanged from the undeformed case (random)
or may preferentially twist or detwist depending upon the location

within the spherullte relative to the strain. Finally, the variation

of the optic axis angle with respect to the radius is considered. It

can either allign itself more nearly parallel to the strain direction or

else remain constant. Doth the lamellar twisting and the optic axis

variations are described by semi-empirical compliance parameters.

The authors found that with Increasing spherulite elongation,

the absolute maximum in intensity with respect to both the reduced

scattering angle, U, and the azimuthal angle, „, moved to slightly

higher U values and appreciably higher „ values; i.e., toward the

equatorial regions of the pattern. They also found that experimental

separation of models I and II was impossible due to the small angular

variations which would have to be measured. The influence of a



non-random lamellar twist during deformation appears to increase the

overall intensity without appreciably changing the shape of the pattern.

Quantitative intensity measurements would have to be made here. Finally

there seems to be little effect from the reorientation of the optic axes

Because of the first observation, models I and II were combined

to give an average model from which, mathematics being simplified, the

intensity was calculated where

H,

2 2
sin e cos e [4 sinU* - U* cosU* 3SiU*]^ (U*)"^ (92)

where

U* = U L,^' sln^
(l)

. cos^
(l)

sm^p . cos2p)]V2

U = 4.
(f)

sin
(1)

COSe = C0sf|j COSyf~J



and

2

^2 ^3-1 (cylindrical symmetry)

Finally, the spherulite radius is R, the wavelength of light
within the medium is x anH a/9 -i-u^A, and e/2 is the scattering angle exiting the
medium

Maximizing the intensity as (al/a,)^ and (ai/au)^ simultaneously
predicts that the maximum intensity is to be found at

= 4.09 and cos^, = [{x^^ + 1) cos^
|

where A3 is the elongation ratio along the stretch direction. Thus

for small scattering angles we have the approximate relations

2 _ , 3

'max
tan y„,.. = A3

(93)

and



V = ^-00
(94)

Thus, a knowledge of the azimuthal angle at which the maximum in

scattering occurs either by photographic or photometric techniques'wi 1

1

characterize the elongation of the spherulite within the sample.

The above theory proves to be very useful in determining the

relationships between macroscopic and microscopic (spherulitic) defor-

mation characteristics. For polyethylene, when spherulite sizes are

too small to be successfully monitored by optical microscopy, it is

especially revealing. An important limitation, however, is due to

the contribution of background scattering which cannot always be

successfully subtracted and which, in fact, may vary with sample elonga-

tion. The source of background scattering is probably due to spherulite

imperfections arising from boundary regions, internal disorder, or inter

spherulitic interference.
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C A P T E R 3

EXPERIMENTAL

A. Sample Preparation

Low-Density Polyethylene: The samples studied were Monsanto experi.

mental M8011 (LDPE). Pertinent physical characterization properties are

given in Table 2. Thick films were prepared by melting pellets sand-

wiched between aluminum foil covered, cold-rolled steel platens and

subjecting the melt to 12000 psi in a bench-size Carver press. Melting

times, t^, and temperatures, T^, pressing times, tp, and temperatures,

Tp, as well as sample thicknesses are given in Table 3. Slowly-cooled

(SC) samples were prepared by allowing the pressed films to cool at the

natural cooling rate of the press. Quenched (Q) samples were prepared

by rapidly transferring the sample and platens into an ice-water bath.

High-Density Polyethylene: The samples studied were Monsanto

MPE 200/17942 high density polyethylene (HDPE). Again, the pertinent

physical characterization parameters are given in Table 2 while the film

preparation data are given in Table 3. The notation and preparation of

slowly-cooled and quenched samples is the same as for the LDPE.

Special -Texture LDPE: Monsanto M8011,Q was used in the preparation

of the parallel lamellae morphologies as described by Keller (84,85).

Strips 3" X 0.5" were cut from the polyethylene sheets and clamped into

an Instron. They were drawn through the yield and necking region to a

total strain of about 500 percent. They recovered to about 300% total

strain after removal from the clamps as estimated by distances measured



between fiducial marks. The necked portions were then passed several

times in the same direction through a two-roll mill at room temperature

until the thickness was about 60% of the original. Finally, annealing

of the strips between glass cover slips in a silicone oil bath at 115°C

for about 15 seconds produced the desired parallel lamellae morphology

as evidenced by photographic SAXS. Typical two-point patterns were

evident. Annealing at higher temperatures or longer times randomized

the orientation so that diffuse SAXS patterns were obtained.

B. Small-Angle X-Ray Scattering.

1 . Slit Geometry ,

a. Apparatus.

A Rigaku-Denki Small Angle X-Ray Diffractometer (Catalog

No. 2202) utilizing slit geometry and a scintillation counter detector

with pulse height analyzer was used for studies of the undeformed and

swollen samples. Analysis of stretched samples was performed for a slit

height study and for comparison with results of point geometry data.

The schematic of Figure 8 illustrates the collimation system. Slits s-j

and s^ collimate the x-rays prior to impingement on the sample, while

$2 serves to remove excess parasitic scattering from the s^ slit edges.

The sample is located directly behind s^- Scattered x-rays exit from

the sample and travel along the flight path through an evacuated chamber

to the scattering, s^, and receiving, s^, slits, and finally to the

detector. Slit widths and their arrangement are given in Table 4.
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Cu x-rays were generated at 40 kVolts and 1.5 m amps with a

G.E. CA8-F fine focus tube and G.E. XRD-6 generator. Cu radiation

was removed by a standard nickel filter. A Harshaw Chemical Company

Na HJi) scintillation counter (type K968SHG32K) including the NB-18A

preamplifier was used to detect scattered radiation in conjunction with

a Digital Automation Company (DAC) Model 200 Spectrometer equipped with

a pulse height analyzer. Spectrometer settings were determined according

to the procedures outlined in References 31, p. 119, and 86. Table 5

includes settings and conditions of the spectrometer for future reference.

A styrene-butadiene-styrene (SBS) block copolymer (Shell Kariflex 101)

with a sharp, strong reflection at 0.25° was used as a secondary standard

and also for transmission determinations. At the settings listed in

Table 5, this sample gave an average intensity of 79 counts per second

(cps), with a natural background of 0.9 cps. The natural background is

measured with the x-ray shutter closed. Also, a standard x-ray source,

1 29
'I (NES-1865 from New England Nuclear) taped to the detector face

gave an average reading of 16.8 cps.

The detector was supplied by the manufacturer with a metal colli-

mator consisting of a 1/8" x 1/2" slot. This was mounted on the face of

the detector directly in front of the Beryllium (Be) window. It was

replaced by a brass collimator containing a circular hole 0.7" in diameter;

approximately the size of the Be window on the detector face. Thus,

alignment of the detector was simple and uncritical and reduced the

probability of scattering from the metal slot edges. Possible fluorescence
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000

fro. copper 1„ the brass collar is .ini.ized by the large dia.eter of
the bored hole. The sa.e collar should be used 1n any intensity com-
parisons especially with the ''^l source since this is taped directly
to it.

Experimental scanning intervals were typically 0.05°. Also, 10
counts were usually obtained at each scattering angle through the maxi™
of the scattering curve, giving rise to a precision of about + 1%. Pre-

cision in this case is defined as + lOOX/T/N^ where is the preset

count. About i 5% precision was obtained at the tails of the curve

due to lower counting rates. The precision of background scans, the

major source of error, typically ranged from + 1% near zero angle to

about ± m at angles of 0.2° or more. The extremely-low counting rates

were the major causes.

The above equipment was integrated with a PDP-8 minicomputer to

store data and to direct the scanning and counting operations. A tele-

type equipped with a paper tape punch and reader served as the communi-

cations link to the PDP-8. Scattering data was output directly to

punched tape which was then fed into the CDC Cyber 70 computer at the

University of Massachusetts Computing Center,

b. Desmearing Procedures.

The theories of SAXS presented in the Theoretical section

are derived primarily on the basis of a point-like cross-section of the

incident beam which can be closely achieved by collimation with very



small pinholes. In fact, most theoretical treatments assume this
geometry unless otherwise specifically stated.

The need for greater intensity in the small angle regions has

prompted the use of slit collimators. Thus two approaches have resulted
in order to understand the data generated. The first has been to correct
the experimental curves to give the corresponding point-like pattern.

This has been termed "desmearing"
. The second approach has majored

on theoretical development of models including the effects of smearing.

Both methods assume an a priori knowledge of the shape of the scattering

pattern. However, the former method has been employed here since,

according to Alexander (Reference 31, p. 287), the second method suffers

from the deficiency that the "smeared" theory does not yield the complete

scattering curves for particles of various shapes and size distributions.

The former method suffers from certain approximations needed to solve

the equations which will become evident in the subsequent derivations.

Guinier (Reference 40, Chapter 3) has shown that for slits of

arbitrary height (length), but of negligible width, the experimental

intensity curve, I^(s) is related to the equivalent intensity function

for point collimation, I(s) by

/CO r-

W((|)) I(/s^ + d<})

0
(95)
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where w(^) is a weighting function describing the shape of the main beam

intensity profile along the length of the slit, depends on the collimating

system and x-ray source, and is normalized according to

/ w((j)) d({) = 1

0

The definition of the "height" of the beam relative to the slit

length and sample scattering can be clarified by the following considera-

tions. First, the general criterion for the "infinite" slit height

approximation is that the main beam must have a height at least equal

to the diameter of the circularly-symmetric interference ring. Another

more-easily determinable criterion (Reference 63, Sec. 2.4.5) is that an

infinitely-high beam must satisfy the condition that L > 2m + d, where

L is the height of the homogeneous part of the beam at the receiving slit,

d is the height of that slit, and m is the angular distance measured in

the plane of registration. Thus, the infinite beam approximation is not

only a function of the geometry of the spectrometer and sample, but also

the angle to which data can be recorded. If any two of these criteria

are not met, then the slits are considered of finite height.

Since this laboratory is in possession of the Schmidt desmearing

program (87,88) which desmears on the basis of a finite slit geometry,
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the details of these criteria were not. for the most part, Important.

See the Appendix for the Fortran IV program SAXSC. However, some work
Of Warner and Russell (private communation) in this laboratory showed

that desmearing as finite slit heights in cases where the infinite

criterion held showed insignificant differences in the resulting curves.

Kratky, Porod, and Kahovec (89) showed that for slits of arbitrary

height and a Gaussian approximation to w(<|,), i.e., w(*) = Z^^-^l'^ exp

'(^' = -^2^ /" (97)

Where p is determined by the slit height with perfect collimation corres

ponding to the limit of infinite p, and with the weighting function for

infinite slit height being obtained by letting p=0 in the exponential

function followed by assignment of a convenient factor by which the func

tion is multiplied, t is an arbitrary parameter of integration. N'(s)

is the first derivative of the intensity function, N(s), where

N(s) = I^(s) exp (-p^ s^)
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To find I(s) by Equation (101), the experimental data must be dif-

ferentiated numerically and, because of this, the relative error in I(s)

may be greater than the relative error in I (s).

Without going into the mathematical detail of the Schmidt method

(87) alluded to earlier, basically the analysis involves the numerical

differentiation of N(s) which is determined by least squares fitting a

cubic polynomial taking six experimental points at a time to determine a

smooth function which can be precisely differentiated. The experimentally-

determined curve is "hand" smoothed by plotting experimental points with

their error bars on large, 1 x 1 m, graph paper and drawing smooth curves

through them. Large "ships" curves similar to "French" curves are per-

fect for drawing smooth curves for the sizes and shapes of the scattering

curves encountered.

The slit-corrected intensity is, then, given as a sum of terms

which are the products of the experimental intensity values and constants

which depend only on the collimation system and which are the same for all

scattering curves measured under the same collimation conditions. The sum

is taken to be infinite, but must be truncated due to the finite number

of points in the experimental curve. This is a major deficiency of the

method.

Calculation of the weighting function, w(({)), is carried out according

to the method of Hendricks and Schmidt (90). The Beeman four-slit system

is assumed and defined in Reference (90). Schmidt found that the colli-

mation errors are relatively insensitive to the fine details of the form
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of the weighting function and that approximate functions can be used in

most cases. Therefore, the Gaussian weighting function

W(u) = W(o) exp (-p^ u^)
(98)

with the normalization condition of Equation (96) is used, u is related

to ^ and to the geometry of the spectrometer. W(o) is determined by

Equation (31c) of Reference 90 for the system in this laboratory.

Since calculations were done as a function of slight height in a

series of experiments, the appropriate values of W(o) and p where

p = vV W(o) (99)

are given in Table 6.

These experiments were performed in an attempt to experimentally

determine the accuracy of the desmearing procedures on the deformed

samples. The weighting functions of Table 6 were used as slits s-j

,

$2 and s^ were systematically varied in their heights. An unstretched

and a 30% stretched LDPE were characterized. Intensity versus scattering
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angle curves were obtained at 0, 30, 60 and 90 degree az1«thal angles
for the stretched samples. A plot of W(u) vs. u shown 1n Figure 9

calculated from Equation {3,c) of Reference 90 at various slit heights
shows that small variations in spectrometer geometry which may slightly
Change

. would greatly influence the value of the weighting function at
small slit heights. Conversely, due to the broad function displayed

for the longest slits, small variations In geometry would not affect

the results as dramatically. These variations may occur as a result

of imperfect alignment or non-paral lei ness of slits along the flight

path.

The smearing due to the slit width has been shown to be rather

insignificant (91) with respect to that from the height and, therefore,

has been omitted in these calculations.

An inherent assumption in these calculations is that of a circularly

or spherically symmetric true scattering pattern. The intensity I(s)

depends only on scattering angle and not on any azimuthal dependence.

Generalizations to any scattering shapes have been treated by Kranjc (92)

and by Synecek (93). The intensity distribution in the direct beam cross-

section must be accurately known in the former, while accurate integrated

intensities along various azimuthal angles must be determined or the

infinite beam approximation must be ensured in the latter. These generali-

zations prove intriguing to this work. However, the availability of the

ORNL-10 meter spectrometer, to be subsequently described, alleviates

the necessity for these elaborate mathematical corrections and they were,

therefore, not pursued.



c. Absolute Intensity Determinations.

A description of the equations needed for determination
of the total integrated scattered intensities is given in Section 2,

Equations (43) - (49). Some details concerning the calculations are

given here.

In using the Kratky Lupolen [designated (17/4)] calibration stan

dard. Equations (48) and (49) combine to give

f 1(6) G de

(100)

where the scattering vector, s, has been converted to the scattering

angle o to conform to Kratky's (68,69) notation. Also, the scattered

intensity, 1(e), is given in terms of counts/min. rather than the more

conventional cps. For the "17/4" standard provided, Equation (49)

reduces to

P. = 68.7
s sd

A (101)

where r^^ is 27.0 cm. The value of is found for the standard and the
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spectrometer by pUdng the standard into the scattering position and
counting the intensity at 0.589°. An average of five readings at a

preset count of 1000 was determined at the beginning and end of each
run. then averaged again. Drift could be, thereby, detected. The effect
of parasitic scattering was determined by placing the calibration stan-
dard at the detector position, recounting, and subtracting this value

from the above reading. Finally, the natural background (no x-rays)

was subtracted and determined. The sample attenuation factor, A.

was obtained by determining the scattering intensity from an SBS block

copolymer (Shell Kariflex 101) at 0.25° with, i^^^- ^"d without,

the test specimen at the absorbing position on the detector head.

Thus,

Again, this was measured five times and the values averaged.

The integrated intensity in Equation (100) was calculated accordi

to Equation (43). Q' of (44) was determined by application of Simpson's

rule using a Hewlett Packard programmable, HP-55, calculator.

2Determination of <An > for swollen samples included subtraction

of the scattering from the solvent as well. A special sample holder

consisting of mica windows and a thick teflon gasket was prepared for



these measurements. Scattering from an equivalent volume of solvent
was approximated by using a second gasket reduced in thickness by that
of the swollen polymer itself.

2. Point- Like Geome try,

a. Apparatus.

The spectrometer described here is located at the Oak

Ridge National Laboratories (ORNL), Oak Ridge, Tennessee, and was prin-

cipally built by Dr. R. W. Hendricks (41). It is referred to as the

ORNL 10-Meter SAXS Spectrometer. A schematic is given in Figure 10.

The spectrometer utilizes a 6 kw Rigaku-Denki rotating anode

generator (Cu KJ ,
graphite crystal monochromator and incident beam

monitor to produce the desired high intensity, monochromatic, and

monitored radiation. The collimation system consists of two pinholes

separated by 5 meters. The first slit is a 1 mm diameter hole in a

lead sheet mounted on an X-Y (perpendicular to incident x-rays, i.e.,

along Z axis) positioning stage at the front of the beam path. The

second contains four specially-polished tungsten edges to make a 1 mm

square hole also mounted on an X-Y positioning stage. The specimen com-

partment consists of a 30 X 30 X 35 cm vacuum chamber containing

externally-operated X-Y positioning devices for both the second slit and

the specimen holder. Scattered radiation emerges at the end. of the

flight path through a 30 cm diameter, specially-supported, 0.5 mm thick

beryllium window. The entire flight path from the first pinhole to the

exit window is evacuated to 20 urn of mercury.
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The detector is a Borkowski and Kopp (95) two-dimensional posi-

tion sensitive proportional counter which operates on the rise-time

method of processing the signal (see Reference 96 for details). Basi-

cally, when a scattered x-ray strikes a certain position on the detector,

a high resistance wire, a signal is generated in both directions from

that point. The difference in time required to detect it in traveling

through two symmetric systems of electronics locates its position along

the wire. The intensity is determined by the strength of the signal.

A good illustration is given in Figure 2 of Reference 96 for the case

of a one-dimensional detectoe.

The area detector is 40 cm in diameter and weighs approximately

25 kg. It is mounted on an X-Y-Z positioning stage designed for indi-

vidual adjustments. An incident beam stop is mounted on a thin finger

in the 20 x 20 cm active detector area and just touches the Be window

on the flight path. Data are processed via a Modular Computer System

Modcomp 11/220 CP and results are displayed on a Tektronix Model 4014

Graphics terminal. Among other capabilities, results can be displayed

both during and after data acquisition as two-dimensional contour maps,

angular perspectives or azimuthally cross-sectional or averaged intensity

profiles. A computer program to extract the azimuthally cross-sectional

data was written by D. Carlson (ORNL) and myself and is part of the ORNL

system. Data is stored either in on-line disk storage or the ORNL

360/91 computer. Data handling and processing can be done either on-line

(Modcomp II) or in the batch mode using the IBM 360/91. The Modcomp II
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is hard-wired directly to the IBM facility.

Resolution of the spectrometer is varied by simply inserting or
removing sections of the beam line and adjusting the detector appropriately
Following Hendricks, the resolution of the collimation system is defined

^ =
(102)

where y = maximum angular deviation in the incident beam and e = maximum

angular deviation of the rays recorded in the detector resolution element

For square pinholes of dimensions a^ x a^ and a^ x a^ separated

by a distance, and a detector with a resolving element of size

83 X a^ separated by from the specimen located directly behind the

second slit,

Y = (a^ + a^)/Zl^ (103)

and

e = 33)7212 (104)



Since
,
a^, and a3 are determined by the constraints of the

focal spot size, specimen size, and detector element size, only and

L2 are adjustable parameters. The aim is to optimize the system by

maximizing the power into a detector element. It turns out that this

maximum is obtained when

Y = e = R/2

given by Equations

and

L2 = ^^/^ (105)

Using the examples cited by Hendricks, in order to achieve a

resolution of 0.5 mrad, if a^ = 0.5 mm and a^ = 1.5 mm and a^ = 2.0 mm,

the optimum focal spot to specimen distance, is 4 m while the optimum

specimen-to-detector distance, is 7 m. Therefore, for a 20 x 20 cm

detector area, a total angular range of 0.5 mrad to 24 mrad is covered.
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Larger angles can be obtained by decreasing and 4 while maintaining

constant pinhole sizes. For the geometry which was used for these experi-

ments, the active detector area was electronically sectioned into a

64 X 64 array and the maximum attainable resolution was approximately

0.5 mrad or about 300oX for Cu radiation. The latter value is lowered

slightly when one considers effects of parasitic scattering and its

incomplete elimination.

The incident beam has a diameter of about 1.5 mm at the sample

plane. Very small specimens may therefore be observed. Concurrently,

the sample chamber is large and suggests the possibility of sophisticated

heating and stretching apparatuses, etc. A small sample stretcher was

used so as to ensure that the same sampling area was maintained at the

various elongations, i.e., the sample was simultaneously stretched from

both sides by hand - first one side then the other by the same amount

of screw turns. Typically, 15 minutes were needed to stretch the sample

about 2 mm so as to ensure complete orientation of the material within

and also to prevent premature necking of the specimen.

Typical experiment times of 50 minutes per elongation yielded all

the necessary data to analyze lamellae in their various spatial configu-

rations. This is to be compared to approximately 80 hours of similar data

acquisition in the case of the conventional slit spectrometer described

previously. Data handling such as background subtractions and transmis-

sion corrections have not been included in the latter estimate. Precision

was slightly lower, however, for a 50 minute run than a typical 8 hour
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slit geometry run where a total of 10.000 events per scattering angle

were detected. Typically, an average of 200 counts per channel were

recorded with the ORNL facility leading to a precision of about 1%.

b. Absolute Intensity.

In order to determine the absolute intensity to calculate

the invariants, the following is considered. For point geometry where

slit smearing effects may be neglected, the power detected in a given

detector element is given by (see Reference 96)

P(s, ^) = ^ AJ^^ e-^% § (s, ^)dQ ""2 (107)

where ^ = photons per second per unit area per unit solid angle emanating

from the effective source (the graphite crystal monochromator)
; F^ =

area of entrance slit; Afi-j = solid angle subtended by the second slit;

= sample thickness, in cm; = sample linear absorption coefficient,

in cm \ ~ = sample total scattering cross-section = rJ' I ;

r^ = Thomson scattering factor (7.94 x 10' ° cm ); I = absolute inten-

3 3
sity in electron units/cm , or eu/cm ; and = solid angle subtended

by a detector element.

The number of photons incident on the specimen, P^, is given by
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Pn = f F AH,
° S 1 (log)

By using the foil attenuation .ethod (97), was determined to be

3x10 photons/sec at 45 kV and 30 m amps. The detector solid

angle, A^^, is (2.553)2/(5108)2 for a 1 x 1 channel element. Thus to

convert data to absolute units

I (s, 1^) = P (s, ^)

where n is the number of detector elements in the azimuthal slice. All

of my data is normalized to one detector element; therefore, n = 1.

Equation (109) gives I^^ in eu/cm^ The more traditional value of

eu/molecule is determined by dividing Equation (109) by the number of

polyethylene molecules/cm^ However, since I have calculated mean

squared electron densities in eu/P from theoretical treatments of

Section 2F, data will be reported consistently in terms of the latter

dimensions

.



As mentioned previously, the „in beam power was monitored and
recorded for each experiment along with the total scattered intensity.
I (s, *). detected by the area proportional counter. Also, sample

transmission, T^, was determined with Equation (no) where

' *'standard+sample ' ^'standard
'"'^ '^'^ average (3 runs)

total intensities scattered into the area detector with the sample in

and out Of the scattering position. The standard is a piece of glassy
carbon which intensely scatters x-rays 1n the small angle region. Thus

"^'standard

Typically, I (s, ^) was determined in 100 seconds with about 9 x 10^

events recorded giving + 0.1% precision.

Scattered intensities were corrected for slight fluctuations in

the main beam intensity. These fluctuations were, however, usually

slight and could be ignored in most cases.

Also, all scattering curves presented except where noted are

background subtracted and sensitivity corrected. This entails the

automatic point-by-point (detector element-by-element) subtraction of

the results for a run of only the main beam without any sample present

from the desired curve. Adjustment for sample transmission and main

beam fluctuations is automatically included as well as correction for
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the sensitivity fluctuations of each detector element and for the

shadowing effect of the aluminum grid which supports the Be window.

The latter is done by placing an x-ray source (1 mCi^Spe) at the sample

position and allowing it to evenly illuminate the detector for a long

period of time, usually overnight. Thus, the sensitivity of each

detector element is determined, assuming the even x-ray saturation over

the entire active detector area.

3. SAXS Data Reduction .

a. Background Corrections.

Warner (63, Section 2.4.2) has discussed various sources

of "background" scattering in terms of four factors, including

a. natural background radiation and noise detected with the x-ray

shutter closed,

b. parasitic scattering from the edges of the collimating slits,

c. liquid scattering from the sample, and

d. foreign particle scattering from dust or other inhomogenei ties

such as residual catalysts or initiators.

The first two have been removed as corrected by the techniques

described in the previous sections for slit and point geometries. The

problem of parasitic scattering from the ORNL 10 meter spectrometer has

been minimized by the use of specially-machined and polished edges at the

second pinhole. For the slit system, scanning with the sample in the

absorbing position in front of the detector and subtraction from the

experimental curve reduces these effects.
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Removal of the liquid scattering background from the slit-smeared
curves was performed according to the method of Vonk, et al . (60,94).
A straightjine of zero slope was extrapolated from the very high angle
(about 2.5°) asymptotic regions to zero angle after corrections for

a and b. The entire area below this line was subtracted from the experi-
mental curve. The technique could not be applied to data from the ORNL

spectrometer since in the high resolution mode data was recorded to

only about 1.1 degrees. However, since the procedure is only important

for the accurate determination of invariants, it was not used for analysis

of intensity shapes or distributions by the model theories.

Correction for the effects of foreign particles includes a sub-

traction of the scattering from the sample in the molten state, especially

at very small angles where these presumably large particles would scatter.

Since this work includes studies of scattering from solvent-swollen

systems and this correction would be impractical, if not impossible, it

was not pursued. Also, in stretched samples, the asperities could

deform. Treatment of this problem would also be difficult since molten,

stretched samples would have to be studied, assuming that temperature

had no effect on the nature, positions, or shapes of the asperities,

b. The "Lorentz" Factor.

According to Alexander (31, p. 284), for a system containing

spherically-symmetric particles whose nature may be described by the

structure factor, F(s), the intensity of SAXS may be expressed as
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where L 1s so.ewhat analogous to the Lorentz factor of classical x-ray
crystallography. The classical Lorentz factor is dependent on the time
in Which a given family of crystal planes reflects x-rays under a certain
set of experimental conditions and arises in part fron, the lack of truly

parallel and monochromatic x-rays in the Incident beam. It takes a dif-
ferent form, for instance, for a rotating single crystal or a randomly-

oriented crysalline powder and is dependent upon the position of the

reflection.

In SAXS, the "Lorentz factor", or L, also depends on the geometry

of the experimental conditions and the nature of the scattering entities.

Crist (47b) has shown that L for point-like scattering from a disk-like

model which exhibits spherically-symmetric SAXS is ZttsI His reasoning

is as follows.

The intensity increment, dl(s), along a line of scattering in

reciprocal space arising from a thin disk of uniform electron density

in the limit of an infinite radius can be defined as

= 21<^)calc (112)
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where I{s)^^,^ can be readily calculated for an infinite plane of a

given thickness. The factor of 2 arises fro. the .s and -s scattering

directions. If „e now distribute this disk over all possible orientations,

the resulting intensity is spherically symmetric in reciprocal space and

dl(s) resides in a spherical shell of radius s. Since the measured inten-

sity is that in a fixed volume element of reciprocal space, we can now

equate the linear and averaged cases to obtain

dl(s) = 2I(s)^^^^ ds = 4,s^ Ks)^^^^ ds (113)

or

'( = 'calc = = ) obs (114)

Thus, the L factor for the isotropic scattering system is the well-known
2 o

s times the scaling factor 2tt. For curve fitting, only s need be con-

sidered. The 4tts in Equation (113) is derived from volume element con-

siderations in spherical coordinates.

Now, is L the same over the azimuthal range of a deformed system

exhibiting ell iptically-symmetric scattering? Rephrasing the question,

by what L should the intensity versus scattering angle curves at various

azimuthal angles be multiplied to ensure accurate results? Reasoning on
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similar lines as given above, we have shown that the total integrated

intensity for any triaxial ellipsoid is given by Equation (90). Thus,

analogous to Equation (113),

dl(s). = 4. -\ (k^^ sin^^ + cos^^)3/2 ^2
^^^^^

^2

Equating (115) and (112),

^^'^calc = 2^ A (^2^ ^^'"^^ cos^)^^^ s^ I(s)^^^ (116)
•^2

All the necessary terms have been defined previously. Therefore, the

result of Equation (116) reduces again to the familiar multiplied by a

scaling factor which now varies with the particular azimuthal angle at

which the curve is integrated. This factor varies between 2tt k^~^

at
if;

= 0° and 2tj k^^ k^ at = 90°. Again, in the curve fitting procedures,

the scaling factors may be ignored.

The result is that the "Lorentz factor" for curve-fitting purposes

is the same at any azimuthal angle as it is for undeformed spherically-

2
symmetric systems, namely, s . It should also be emphasized that in the

derivation for the deformed system, it is assumed that the scattering

can be uniquely described by an elliptical symmetry. This is obviously



not the case in some nfOf the .ore highly-deformed specimens
F'nally, we must ask whether the "Lorent7" .

for a system of h,'

correction is the samesystem of highly-oriented lamellae as in th»

—^ -same as that for an isotropic specimen Thic

that multiplication ,y s^ of •

" " '° '^^''^^^

' °' f--- two-point patterns
appropriate. This procedure generates unreal istic int :uiirediistic intensity curvesand results in the lack Of any reasonable curve fittin

analv.i. u ^ the Hosemann

•;~'""-~-----Pted but rather multipli.

'
assumed, then reasonable parameters and very good corres-

pondence in fits are obtained.

The solution to the discrepancy lies in the derivation of
«on(113,. It 1s here that the Observed scattering Shape is
assumed and derived in the spherical coordinate system, m the corres-
ponding cartesian coordinate system, Eguation (113) has the form

dl(x,y,2) = I(x,y,z)^|^^ dx dy dz (117)

while if we consider the scattering from the infinitely-extended disk of
a gi-ven thickness to be concentrated along the z axis, then Equation (112)
converts to
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dl(z) = 2 I(z) , dz
calc (118)

since we have concentrated the intensity In the Ideal real system along
the z axis only, then no Intensity exists in the x and y spaces, and

equating (117) and (118) as with (112) and (113),

dl(x,y,z) = dl(z) = 2,(z)^^,^ dz = I(x.y,z)^j,^ dx dy dx

or

2I(z)^^l^ = Hx,y,z) , = l(z)
obs '^^^obs (119)

Therefore, there exists no L factor (or L = 1) for a perfect two-point

pattern, only the scaling factor, 2. Theory and experiment can be

directly compared in this case. Experimentally perfect two-point patterns

do not exist, but azimuthal ly-broadened patterns are generally revealed.

In analysis of data long the "z" axis, no L factor has been used since

it is assumed that scattering in this region is due solely to lamellae
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whose normals are perfectly aligned to the -z" axis. The quotations are
used about z since this is considered the y axis in the ORNL equipment

from which these data are taken. Replacement of z by s is straightforward.

Recently, Kawai, et al. (98), used similar reasoning in deriving

the proper form of Porod's law for a system of completely-oriented

lamellae microdomains. Extension of their equation to derive the L factor

leads to the same result as above.

c. Correlation Function Tables.

In order to simplify the curve-fitting procedures for

the calculated and experimental correlation functions, a series of tables

(Table 7) were prepared by Dr. F. P. Warner from which the possible

choices of crystallinity, ^, and distribution parameters B and B could

be narrowed. The numbers in the table were produced by generating theo-

retical correlation functions then determining the defining parameters

which are the values of the minimum (absolute) and maximum in y{r) and

the ratio of their positions, \^^/r^^^. These are shown in the box

below according to the manner in which they appear in Table 7.

MIN. MAX.

r .

mi n

max
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One calculates the experimental y(r) as in Equation (27) and

program 'ECFl" and determines these parameters. Next, the choice of

Gaussian or log-normal distributions is made and values most closely

representing those obtained experimentally are found in the tables.

Finally, the corresponding values of B^, and are plugged into the

theoretical correlation function program, "TCFl", and the curves plotted

on the same graph. Minor adjustments in parameters can be done to ensure

the best possible fit between the two curves. Programs "ECFl" and

"TCFl" are given in the Appendix. One will observe that in interpre-

tation of Table 7 crystal 1 ini ties of * or (1 - ^) cannot be distinguished

due to Babinefs theorem. External evidence must be supplied to make a

choice between the two. Table 7 is published by permission of

Dr. F. P. Warner.

d. Buchanan Analysis.

Figure 11 gives the calibration curves used to calculate

the various physical sample parameters from SAXS intensities according to

the method of Buchanan (35). The experimental half-width at half-maximum

intensity, q, is obtained by dividing the full-width of the "Lorentz" cor^

rected curve by two. This quantity and the position of the maximum, d ,
e

must obviously be determined in the same units. They are multiplied as

in Equation (38). Other parameters are determined in a straightforward

manner from the figure.



C. other Methods

1. Wide-Angle X-Ray Diffraction (WAXD).

WAXD was used to determine initial crystal 1 ini ties of

undeformed samples by the method of Ruland (99,100) using a homemade

diffractometer, a Phillips generator, Nickel-filtered Cu K radiation and

scintillation counter. A Canberra Model 1701 spectrometer with pulse-

height analyzer was used to detect the scattered radiation. A PDP-8

minicomputer was used to perform spectrometer functions and to output

data on a paper tape. Details of the spectrometer, operations, and cal-

culations can be found in the thesis of R. Cembrola (in preparation).

2. Differential Scanning Calorimetry (DSC).

A Perkin-Elmer Model IB DSC was used to determine

crystal 1 ini ties of the undeformed polyethylene samples. Heats of fusion

were measured from areas under the melting endotherms referred to an

Indium (aH^ = 6.80 cal/gm) standard. aH^°, the heat of fusion of a

perfectly-crystalline polyethylene is taken as 66 cal/gm from References

101 and 102. Areas under the melting endotherms were determined by paper

weighing.

3. Density Determinations.

Crystal 1 ini ties were also determined by the method

of fluid displacement, or application of Archimedes principle. This

involved weighing samples in air then in a suitable liquid (ethanol/

water) whose density was accurately known. The sample density, dp, is

then determined by
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"p = %'<"p/^.' (120)

where W^^ I5 the weight of liquid displaced determined by measuring the

poly;ner in air and in the liquid and subtracting the two values W is

the weight of sample in the liquid and d^ is the density of the liquid.

is determined in a similar manner with reference to standard glass

beads of known density.

Densities of stretched samples were obtained similarly. Tensile

strips 1/4" X 2" were stretched on the Instron at 0.05 in/min. A small

aluminum sample holder (1 x 2.5 in) was fabricated to secure the speci-

mens in a stretched state during the weighing measurements. Tare

weight of the holder including the compressed portions of the sample

at the jaws was typically 7.8 gm while the total weight of the sample

and holder averaged about 8.3 gm. This ensured the needed precision

for accurate analysis. An automatic Mettler analytical balance with

+0.0001 gm precision was used throughout, removing the sample pan and

weighing from a tared wire. The wire was retared when weighing in

liquid due to the buoyant force of the liquid.

4. Small-Angle Light Scattering (SALS).

Photographic SALS was used to determine spherulite

deformation. A He-Ne red laser was used as a sourse of coherent parallel

light. The (crossed polaroids) mode was used throughout and the



sample was stretched along the direction of the polarizer (V). Polaroid
type 52 fil„ was used to record the patterns. The maxiwm in scattered
intensity was estimated in each of the four lobes on the photographs

and angles were measured and averaged. Error bars were determined from
the deviation in the measured angles.
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CHAPTER 4

RESULTS AND DISCUSSION

A. Spherulitic Morphology

This section deals with the bulk of the experimental information

gathered and its interpretation regarding low and high density polyethylene,

designated LDPE, SC; LOPE, Q; and HDPE, respectively.

1
• Two-Dimensional Contour Plots .

Computer generated two-dimensional SAXS iso-intensi ty contour

plots obtained at ORNL for LDPE, SC at various stages of strain are given

in Figure 12. These have been corrected for background scattering, sensi-

tivity of the various detector elements, sample transmission, and main

beam fluctuations.

In each plot, the space between the outermost and next-to-outermost

contour lines defines a region where the intensity is 16+8 counts per

second (cps). The intensity corresponding to the space between succes-

sive contour lines is incremented by a factor of two. Intensity incre-

ments can also be varied, but for all the plots presented in this report,

the above holds true. Also, the odd-shaped central contours, removed in

a and b by simply erasing for the sake of simplicity, are due to incom-

plete subtraction of the high background intensities about the beam stop.

The sample stretch direction is horizontal, along x. The y axis is vertical
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Figure 13 shows the iso-intensity SAXS plot roughly comparable to

Figure 12a before corrections for sensitivity, background, and sample

transmission. One notes the strong centrally, cross-shaped parasitic

scattering pattern indicative of the square pin holes used in the spec-

trometer. Other than a guide in aligning the instrument, this pattern

is of no practical use and data are reported, henceforth, as in Figure 12.

A similar series of plots is presented in Figure 14a-d for quenched LDPE.

For both LDPE, SC and LDPE, Q we observe a circularly symmetric

pattern in the unstretched material. On straining at various levels,

the patterns gradually change from circular to elliptical to symmetrically

distorted. If we assume that the scattering at any given azimuthal angle

originates from lamellae lying perpendicular to this angle as discussed

previously, then application of Bragg' s law at the approximate peak

positions* (limitations discussed in Chapter 2) should yield information

regarding the separation of lamellae at their relative orientations.

Within the level of approximations already present in the Bragg formula-

tion as applied to SAXS, simply taking the ratios of the major (M-j) to

minor (M2) axes of the innermost non-parasitic iso-intensity ellipse

gives information regarding the deformation characteristics of lamellae

^Observation of iso-intensity contours alone can be misleading since a

given space between successive contour lines may correspond to an

increase or decrease in intensity. Perspective plots (see Chapter 3,

Section II and Figure 43) or I(s) vs. s plots verify maxima and minima.
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perpendicular and parallel, respectively, to the stretch direction. The

ratios, M^/M^, for LDPE, SC are plotted as a function of sample stretch

ratio, A^, in Figure 15, along with those predicted for similar orienta-

tions from the affine deformation mechanism considering constant volume

on deformation. Thus (M^
)^

- M,A^ and (M^)^ = MqA^-^/^ .^ere the sub-

script a denotes the affine calculation, Mq being the diameter of the

innermost contour line of the unstretched sample. Results show a good

correspondence through an elongation ratio of about 1.4 after which a

strong deviation is apparent. Also, the elliptical shapes seen in

Figure 12 and 14 break down at strains of 50% or greater. Reasons for

these deviations will be explored after a full treatment of the data has

been presented.

Another illuminating piece of information can be obtained by direct

analysis of the contour plots by the Herman's type (103,104) orientation

function, f^, of lamellae defined as

^ _ 3 <cos^a> - 1 /,«-, N\ - 2 (121)

where a is the angle between the stretch direction and the lamellae, and
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<cos^a> =
-^0^^ ^^"^^ cos./.di/;

7r/2
~

lii)) sini/; di/> (122)

^ >• "e.,e values. Since, roraverag,ng over a unifo™ spherical distribution. <cos2a> = V3
= 0 for random orientation. If the lamMi,the lamellae are oriented perfectly

along the stretch direction. <cos2.> ,

'

tu 1
av and f = 1. Finally, if

the lamellae are aligned perpendicularly to the stretch
<cos'a> = 0 and f - ,„

- - For data presented in the format Of
an average orientation function can be obtained by

s.mply Placing a sheet of transparent polar coordinate paper over the
contour plots and measuring the angles at which iso-intensi ty regions
Of a given magnitude Intersect a circle through the peak Intensity
The circle remains constant In measuring f^ from the deformed patterns
The procedure Is carried out in all four guadrants and then averaged
Due to its approximate nature a circle of almost any practical radius

be used as long as enough iso-intensity lines are intersected. A
".ore rigorous procedure would be to calculate the integrated intensities
along azimuthal angles and then sum these according to Equation (122)
However, as will be seen in Figure 16, the results from the more simplified
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procedure are remarkably accurate. These are plotted for LDPE, SC

and LDPE, Q in Figure 16 along with the orientation function predicted

for uniaxial extension using the affine assumption, (f^) . (f ) is

obtained from Equation (123) shown in Figure 20 and is given by

'

where, again, is the macroscopic sample deformation or strain ratio.

Equation (123) is derived on the basis that the affine assumption predicts

2 1 r ?

®n^av " IT s''"^'' da' (124)

where N(a') sina' da' is the number of lamellae per cm making angles

between a' and a' + da' in the deformed state and Nq is the total number

of lamellae per cm . N(a') is given by the affine model as
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2

[cos^a' . (A^/A^)2 sin2a']3/2 (125)

Where and are the elongation ratios in the stretching and trans-

verse directions. Finally, the constant volume approximation is made

where
= A^ = a/^/^ which appears to be a good assumption (see

Reference 7).

We observe that the two polyethylenes follow the affine prediction

over their entire deformation ranges (up to A = 1.5 for LDPE, Q and

X3 = 1.87 for LDPE. SC). This is in contrast to the first result showing

a deviation in M^/M^ at about 40% strain. These results suggest an

overall affine transformation of lamellae deformation within spherulites

but localized, azimuthally dependent processes which deviate from affine-

ness.

Overall affine transformation is supported by SALS experiments.

Figure 17 shows the photographic SALS results of stretching LDPE, SC.

The scattering maximum moves to appreciably higher azimuthal angle, m,

predicted in the Theoretical part of this thesis. Use of Equation (93)

and location of the scattering maximum by eye in all four quadrants and

averaging the results leads to the results shown in Figure 18. One can

see that the overall spherulite (a^) versus sample (a^) extension for
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LDPE, SC follows the affine prediction to at least 50% strain. Higher

strains could not be accurately measured due to difficulties in locating

the scattering maximum by observation. Use of a two-dimensional optical

multichannel analyzer with proper signal display and data handling would

be most beneficial for extension to higher strain ratios. Also, the

accuracy of the experiment would probably be enhanced. However, Pakula

and Kryszewski (29) applied a special rotating sector method to analyze

SALS patterns from deformed low and high density polyethylene to x = 2.0

In a plot similar to that of Figure 18 (Reference 29, Figure 5), they

showed an essentially one-to-one correspondence with macroscopic and

microscopic dimensional variations for the LDPE. A lower slope was

seen for the HOPE with greater curvature at the higher elongations.

The iso-intensity SAXS contour plots for the HOPE, SC sample are

given in Figure 19a, b. The sample was only measured at 0 and 25% strain

due to lack of beam time at the ORNL facility. Mt/Mo = 1 .04 at X =1 25
I d s

Also, the orientation function, f^, could not be accurately determined

by the graphical method due to the lack of sufficient anisotropy in the

scattering pattern. These observations along with the SALS results for

HOPE of Pakula and Kryszewski (29) can be accounted for by the rather

low compliance of the material. More will be said concerning this point

as we proceed.

For undeformed polyethylene the b crystal axis is aligned along

the radius (7) and the c axis (chain axis) is perpendicular and randomly
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oriented about the radius. ,f this were to re.ain so during deformation
then we should expect that the b axis orientation function, defined by

3<cos^e>L
f = b

where 8^ is the angle between the b crystal axis and the stretching direc-

tion, should be equal to the lamellar oreintation function, f . Com-

parison of Figure 15 and, e.g. Figure 4 of Reference 105, shows that

this is not the case. In fact, while f^ is always positive with strain,

f^^ becomes negative on stretching (105,106). This requires that the

crystal axes rotate with respect to the spherulite radius. Various

models for such rotation have been proprosed which involve lamellae

twisting, chain tilting with respect to the lamellae, unfolding of folded

chain crystals, etc. These processes are described by phenomenological

theories (15,16,25,206-109) and are believed to occur to varying extents

in different regions of the spherulites. For example, lamellar twisting

would not be expected in the meridian region since the stress is parallel

to the lamellae there, whereas chain tilting would be most prevalent

since the chains are initially perpendicular to the stress. The relative

changes of the orientation functions of the crystal axes depend upon

contributions of these processes. For example, lamellar twisting about

its b axis produces no change in f, but will affect f and f , while chain
0 a c
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tilting will affect f^. Consequently, the parameters of the orientation

theories may be fitted to the observed changes in the orientation func-

tions. Changes in lamellar orientation and interlamel lar spacing will

depend upon these parameters.

Figure 16 also includes the variation of f^ with elongation ratio

considering the correction derived in Appendix IIB for the effects of

lamellar twisting. As mentioned there, since evidence exists for the

fact that lamellae detwist when initially oriented perpendicular to the

strain, while those parallel remain relatively unaffected, a correction

factor, F(t|;), must be included to compensate for the increased scattered

intensity from the spherulite equator. Therefore, using Equation (A-14),
2

<cos a> may be determined by

IT ^

2 /q [I('l^)/F(i|j)] cos
\i)

sini/j &i)

<cos a> = _
(126)

where all the terms have been previously defined. Equation (126) is sub-

stituted into (121) to yield the final orientation function. When n = 0

in Equation (A-14), F(-j;) = 1 and the affine case is apparent, f is plotted

with values of n = 0.5, 1.0, and 1.5. Yoon (106) determined from WAXD

studies that n = 1.2 best described his data. We can see from Figure 16

that the experimental points favor the case of random twisting rather than
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preferred twisting. However, due to the conclusive evidence for the
variation of la.ellar twist changes with strain and Initial angular
positions within the spherulite (106), other factors „,ust be occurring
Which are uniquely observed by SAXS. For example, we know that WAXD
is sensitive .ainly to variations in orientation of the crystalline unit
cell. SAXS. on the other hand, reflects the average lamel lar/inter-

la.ellar habits. It is also to be noted that the calculation embodied
in Equations (123-125) is equivalent to that of the Kratky floating rod

model (165). Here, the crystals orient in the same way as the amorphous

displacement vectors. However, their Internal dimensions cannot vary.

The model has, therefore, been described as a "pseudo-aff ine" deformation.

In light of the above considerations, the effects of lamellar twisting

which produce the larger f^ values at a given strain in Figure 15 are

probably compensated for by effects such as lamellar bending or buckling

and interleaving at the equator or c-axis orientation tending to orient

the b-axis perpendicular to the strain near the poles. These mechanisms

would tend to distribute the scattering over reciprocal space which

would have the effect of decreasing the calculated f

It has been suggested that even at small deformations (10-20%)

lamellar bending may occur (110). Peterlin (111-114), Hosemann (115)

and Yeh (116) have proposed that at high strains lamellae dissociate

into mosaic blocks which reassemble to form new fibrillar lamellae in

the highly drawn state. These combined effects, then, tend to randomize
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the lamellar orientation relative to that expected from the affine or
pseudo-affine cases and explain the discrepancies noted above. Also,
the decrease in intensities from the equatorial parts of the spherulite
could be due to a decrease in the difference between electron densities
of lamellar and interlamel lar layers in these regions. If this is

indeed the case, which can only be speculative at this point, then it

would also tend to decrease the value of f ^ . Additional evidence will

be presented for the validity of the mechanisms suggested.

2
•

Qualitative Investigation of Intensity Dal^.

Figure 20 shows the effects of background subtraction and

"Lorentz" correction on the intensity curve for the LDPE, SC unstretched

sample. This data was obtained from an azimuthal slice (four channels

wide, normalized to one) of the contour plot similar to that of Figure 12a

but of uncorrected data using routine CIRAV (see Experimental part,

page 176). One notes the strong influence of the background on the

very low angle regions. The "Lorentz" correction produces a dramatically

different curve and shifts the peak position to a higher angle. These

effects are well known (64,117). Since the data of this curve is not

corrected for sensitivity of the detector elements, it is used here only

for illustrative purposes.

Figure 21a, b shows the fully corrected scattering profiles of

lamellae perpendicular and parallel to the stretch direction, respectively.
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and at various strains for LDPE, SC. Figure 22a,b shows similar curves

for LDPE, Q, while Figure 23 gives the curves for the HOPE. Some similar

trends are observed for each of the curves. First, for lamellae oriented

perpendicular to the strain we see a gradually decreasing intensity

and shift of the maximum to lower angles with increasing strain. The

latter effect is indicative of an increasing long spacing, while the

former reflects a decrease in crystal 1 inity or difference in electron

density between the two phases. The intensity decrease may also be due

to a decrease in the overall number of scattering centers within the

scattering volume, or the fracture and disorientation of lamellar planes

with respect to each other causing scattering at azimuthal angles other

than zero degrees. Finally, lamellar detwisting predicted for this

region would increase the intensity as described in Appendix II. Since

this increase is not observed, the process may be minimal or there may

be compensating effects such as those described above. These various

possibilities will be explored.

One also notes the simultaneous increase in intensity and in the

position of the scattering maximum with strain for lamellae parallel to

the strain. Again, similar reasoning as above would suggest that an

increase in the number of scattering centers could account for the inte-

sity effects while a decreasing long spacing would account for the shift

in the maximum. Since the two LDPE samples exhibit an initial crystal-

linity, ({> , of about 0.5, then, according to Equation (42), any increase



107

or decrease would reflect in a decrease in intensity assuming (p^ - p^)^
remained constant. Thus, the apparent increase in intensity for lamelL
parallel to the strain direction must be due to some other effects. Since
it is unlikely that during compression of the lamellae with simultaneous

stretching a large variation in (p^ - should occur, this effect

must be due primarily to an increase in the number of scattering centers

parallel to the strain within a given volume.

As mentioned previously, the Yoon theory (106) of spherulite defor-

mation predicts a lamellar detwisting in the equatorial region of the

spherulite with strain. Presumably this would increase the number of

lamellae which are oriented in such a manner as to constructively scatter

x-rays. This alone would predict an increase in the observed intensity

for lamellae perpendicular to the strain. The effect is not seen and

suggests the complicated nature of the deformation processes. These

processes alluded to earlier will be elucidated as we proceed.

Qualitatively the shapes of the scattering curves for the quenched

and slowly cooled (annealed) samples are similar; the quenched sample

having a slightly smaller long period. However, comparison with HOPE

shows the dramatic variations of larger long period and narrower inten-

sity distributions, i.e. the width at half height is much less for the

HOPE. Also, the appearance of the second order maximum in HOPE is

apparent. These qualitative differences have also been thoroughly dis-

cussed in the literature (see, e.g.. Reference 59).
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A plot Of the reduced long spacing, d/d^, versus strain ratio,
A3 = L/Lq, where d is the long spacing of the deformed structure either
in the parallel or perpendicular orientations, and d^ is that of the
undeformed sample calculated by simple application of Bragg's law is

given in Figure 24. d, = 143? for LDPE, SC, for example, while d, =

271^ for HOPE. The plot also contains the predicted response acc!rding

to the affine assumption utilizing constant volume deformation. We see

that the affine prediction is not followed for lamellae perpendicular to

the strain but is followed for those parallel. The quenched LDPE

exhibits marked deviation although the shape of the response is similar

to the affine prediction. The leveling off for lamellae parallel to

strain at = 1.4 is intriguing because of the similarity in Figure 15.

Due to the limited applicability of Bragg's law to SAXS data, mechanistic

judgments will not be advanced on the basis of this figure. A similar

plot will be presented after application of the SAXS model calculations.

The intensity versus scattering angle at various azimuthal angles

for LDPE, SC at 30% strain is shown in Figure 25. One notes a rather

constant intensity maximum but a shift to lower scattering angles in

going from the cases of lamellae parallel and perpendicular to the strain

direction. Multiplication of the intensities by (2e)^ shifts the curves

as in Figure 20 and also decreases the intensities for lamellae more

perpendicular to the strain while increasing those more parallel. This

effects is shown in Figure 26.
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3- Comparisons from Point-Like and Slit GenmPtHPQ

It is appropriate at this point to compare the SAXS curves

obtained for deformed and undeformed samples from the pinhole and slit

geometries. In the Labarbe (20) study the data was gathered as men-

tioned in the Introduction and the assumption made as to the approximate

spherical symmetry of the interference patterns from stretched samples.

Data was, therefore, desmeared according to the Schmidt (39,40) pro-

cedure. In an attempt to justify this assumption, slits of decreasing

height were used along with their appropriate weighting factors, as

given in Table 6 and the Experimental part, and the results of peak

position extrapolated to zero slit height, presumably yielding results

free from slit height effects. Thus, appropriate correction factors

could be utilized for data from finite slit heights.

Background subtracted, Lorentz corrected SAXS curves at various

slit heights are given in Figure 27a-d for a 30% stretched LDPE, SC.

Curves a to d represent the variations at azimuthal angles of 0, 30, 60

and 90 degrees. Intensities are normalized to a value of 1.0 at the peaks

We see that the peak positions vary slightly in going from 0 to 30 degrees

but increase for the two larger azimuthal angles. A plot of the observed

Bragg spacing versus slit height at the four azimuthal angles is given

in Figure 28. The increase in long spacing with azimuthal angle is

apparent and predicted. Also, because of the rather large error bars

due to poor precision in locating the peak positions, an exact dependence
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could not be specified for the larger azimuthal angles. The dependence

for the two smaller angles suggests that measurements taken with the

long slits would be accurate. However, more careful observation of the

curves in Figure 28 reveals that not only the position of the maxima

are difficult to locate but that the shapes of the curves vary. This

is especially evident in the high angle regions. Similar curves obtained

for the undeformed sample did not show this trend. These high angle

regions are especially important in curve fitting procedures and analyses

of total integrals. The conclusion reached from this study is that

although the peak positions may not be altered by the desmearing pro-

cedure, the shape of the scattering certainly is. The peak position is

suspect, also due to the lack of precision encountered. Finally,

Figure 25d reveals unusually shaped curves at all three slit heights.

This has been seen by the author for other cases of desmearing from

anisotropic scattering patterns. Reference to Figure 21a shows the

decrease in intensity scattered for lamellae perpendicular to the strain.

Also, since the curves are very broad in these regions, slight fluctuations

in the smoothed data will result in spurious peaks and bumps in the final

desmeared data. The need for comparisons of the desmeared data from

stretched samples and that from point-like geometry is apparent.

Figure 29 shows a plot of "Lorentz" corrected intensity versus

scattering angle for an unstretched LDPE, SC sample obtained by the long

slit geometry Rigaku-Denki spectrometer (desmeared) and a plot from the

ORNL-10 Meter spectrometer (point-like geometry). The areas of the two
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curves have been normal i zed. It is evident that the peak positions are

coincident within experimental error. However, the desmeared (slit)

curve is narrower than the point geometry curve suggesting either a

broadening due to finite pinhole sizes or an overcorrection in the

desmearing operation. Schelten and Hendricks (96) observed a similar

situation in studies of Lupolen using the one-dimensional pinhole

geometry spectrometer located at ORNL. They found that the effect was

due primarily to an overcorrection of the desmearing procedure, showing

that pinhole smearing was negligible by calculation of the collimation

errors due to both the width and height of the square pinholes used.

However, no rationalization was given for the overcorrection due to

desmearing. The problem may lie in the calculation of the proper weighting

function. Since point-like geometry facilities now exist and are readily

available (one dimensional systems can be built for about $15,000), the

proper weighting function could be determined by curve fitting the data

from both systems or eliminating the slit system entirely.

Plots of corrected SAXS intensities versus scattering angle from

slit desmeared and point-like geometries at azimuthal angles of 0° and 90°

for a sample stretched 60% are given in Figure 30a, b. It can be readily

seen that the peaks are shifted to higher angles for data from the slit

systems and that the overall shapes are completely different at each

azimuthal angle. Again we observe the odd shaped (double peak) curve

from desmeared data at p = 90°. Although this effect was not reported in
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the Labarbe (20) work. re-exa™,1nat1on of the original data revealed its

presence. However, because of the nature of the Tsvankin analysis (see

Chapter 2, Section D), it could be ignored. A smooth, average curve

was used in its place.

We have verified experimentally, therefore, that desmearing of

anisotropic scattering patterns leads to erroneous results. In the

remainder of this work only anisotropic scattering patterns obtained

from the ORNL facility will be analyzed.

4. SAXS Curve Analyses .

Analyses of the SAXS curves of stretched low and high density

polyethylenes obtained with the ORNL-10 Meter spectrometer by the Tsvankin/

Buchanan (Chapter 2, Section D) model are given in Tables 8 and 9 for

LDPE, SC and HOPE, respectively. This data is to be compared with that

obtained by Labarbe, et al . (extracted from Reference 20), in Table 10

for LDPE, SC. Both sets of data were obtained with reference to the

calibration plots of Figure 11 where the 3/a = 0.2 and e = 0.2. Compari-

son of Tables 8 and 10 shows that the initial long periods from the slit

data are approximately equivalent and the crystal 1 ini ties consistently

higher than the ORNL data. Also,
<J) , remains relatively constant with

strain in both sets of data confirming Labarbe' s observation in this regard

However, the large increase in d with strain observed by Labarbe is not

seen as dramatically in this work. This is probably due to the effects

of desmearing the anisotropic data.
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Studies of Warner, et al
. (55), and Stein, et al. (118), have

shown that Tsvankin analysis may lead to erroneous results. Specifically,
when the parameters are used to regenerate scattering curves, poor

correspondence results, suggesting an inadequacy in the method. Crist

(47) has observed that the derivation of Tsvankin's final intensity

expression [Equations (36) and (37)] is incorrect. In Equation (34),

where the double sum within the second term accounts fully for the lat-

tice statistics which cannot be affected by fluctuations in particle

sizes, Tsvankin includes the distribution of particle sizes and performs

the sums. This is in violation of the basic assumptions made in deriving

Equation (34) and resulting in counting the distribution of lamellae

sizes twice (once in the structure factor, F). The effect of this error

is small if the distribution of crystal or long period sizes is small.

However, we will see later that these distributions are in fact rather

broad. Kortleve and Vonk (59), Strobl and Muller (119) Brown, et al.

(64) and Wenig (53), as well as Crist, have reported broad thickness dis-

tributions for LDPE.

Studies of Warner, et al. (55), and Stein, et al. (118), also revealed

some interesting observations regarding the usefulness of the Tsvankin/

Buchanan and Vonk correlation function approaches for systems showing long

range correlations (periodicities in the SAXS range) over only a few

scattering entities. In the latter study SAXS of blends of isotactic poly-

styrene/atactic polystyrene, polystyrene/polyphenylene oxide, and polyvinyl
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chloride/polycaprolactone along with polyethylene (Figures 31 and 32)

were analyzed using the methods of Vonk, Tsvankin/Buchanan, and Hosemann.

After correcting the original SAXS profiles for liquid and foreign par-

ticle scattering the curves were desmeared then "Lorentz" corrected and

analyzed with the three models. Tsvankin/Buchanan parameters yielded

calculated curves which did not agree well with the experimental ones.

The Vonk correlation function, however, gave reliable fits in cases where

a corresponding Hosemann analysis yielded a high value of N, the average

number of parallel layers of alternating electron densities (see Appendix

I). At lower values of N, the Hosemann model gave reasonable crystalline

and amorphous thickness distributions, crystall inities, and transition

zone thicknesses. Thus, it was concluded that for the systems investi-

gated, the Hosemann analysis, with its additional parameter N, was the

most versatile and yielded results consistent with other experimental

techniques, namely thermal and WAXD methods.

Figure 31 shows the fit obtained by comparing the experimentally-

obtained SAXS from ORNL for LDPE, unstretched and that calculated by

using the Tsvankin/Buchanan parameters to generate the corresponding

curves. The two are normalized at the peak height. Figure 32 gives the

corresponding fit obtained for unstretched HOPE. We can see that the

correspondences are good at the peak and half-widths at the higher angle.

However, for both curves the low angle ends fit very poorly. In HOPE

the second peak at about 12 mrad is very poorly reproduced. These plots,
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as well as those mentioned in References ^r^^\ no ^,r%e[erences and 118, verify that Tsvankin/
Buchanan analysis should be used only with reservation.

Because of the results presented here and in the Warner and Stein

works, it was decided to do the remainder of the analyses in this study

using the Hosemann paracrystal 1 ine model. However, for completeness.

Figure 33, showing the correlation functions (both experimental and

theoretical) of unstretched LDPE, SC from the Rigaku-Denki spectrometer

is included. One notes the rather deep minimum, shallow maximum and

rapid loss of oscillation at about r = 18oH. From the two works men-

tioned above, this response is typical for polymers showing lamellar

structures with low values of N, or crystal 1 inities about 50%. The

theoretical curve was calculated using Table 7 for which log-normal

distributions of the crystalline and amorphous regions were used. The

crystallinity necessary for a good fit between the theoretical and

experimental curves was 0.55 while B = 0.05 + 0 02 and B = 0 ^2 +a — c —
0.02. This crystallinity is somewhat large when compared to other

techniques used in this study. Also, the crystalline thickness distri-

bution is broad suggesting that for this polymer c = 73 + 23^. This is

consistent with results of Kortleve and Vonk (59) who also point out the

difficulty of uniquely specifying the parameters of the fit for polymers

whose crystal 1 inities lie between 35% and 65%.

A plot of the "Lorentz" corrected SAXS intensity versus scattering

angle for unstretched LDPE, SC using the ORNL facility is given in
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Figure 34 along with the points calculated by the Hosemann analysis

[Equation (25)]. The goodness of fit is measured by the parameter, A.

calculated by

^max |l(s)^ - I(s)

mm

I.e., the sum of the normalized differences between the theoretical,

I(s)-^, and experimental, I(s)^, intensity values calculated at discrete

points. The criterion for an acceptable fit was A < 0.1. Typically,

A values of about 0.05 or 5% deviation were encountered. An 8% devia-

tion is observed in Figure 34. Parameters extracted from this fit along

with those for stretched LDPE, SC are given in Tables 11a, b for azimuthal

angles of 0° and 90°. Table 12 gives those for HOPE, SC also obtained

at the ORNL facility. Intensity profiles along with the Hosemann fits

for HOPE, = 1.0, 1.25 at = 0°, 90° are given in Figures 35a-c.

We see that, contrary to the Tsvankin/Buchanan results, linear crystal-

linities vary dramatically on stretching (Figure 36) while crystal

thicknesses remain relatively constant at the azimuthal angles tested.

Most of the dimensional changes are reflected in the amorphous regions.

Overall crystal 1 inity decreases of the samples on stretching have

been shown to be small by Peiffer, et al. (123). From the SAXS
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crystallinities obtained by Tsvankin analysis no overall crystallinity
change would be predicted. Because of the variations observed from

Hosemann analysis, the overall crystallinity of the spherulite,

could be calculated fro. the linear crystallinities obtained at

azimuthal intervals from an equation such as

However, linear crystallinities were only obtained at ^ = 0°, 90°,

hence, the above equation could not be fully applied.

A plot of reduced dimensions d/d^ and a/a^ (c/c^ =
1 throughout)

is given in Figure 37. For the LDPE, SC we see an increase in long

spacing roughly following the affine prediction for lamellae perpendicu

lar to the strain up to about = 1.3 with a leveling off followed by

a subsequent decrease at = 1.5 to a value reaching d/d^ =
1 at the

highest strain. A similar trend is observed for the amorphous compo-

nents with an abrupt decrease at = 1.5 and a final value of a/a =
1

i> 0

at the highest strain. This suggests that the lamellae initially

separate. With additional strain a deformation process takes over

causing the decreases seen. This process (processes) will be explored

later. At the meridian, interlamel lae material deforms as predicted by

the affine model with a decrease in thickness caused by extensional and
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compressional forces in this region.

The precision of the SAXS curves generated at the ORNL facility

depends on the times used to obtain the plots. For 3000 seconds, the

time used for most of the work presented here, the precision is about

± 7%. Therefore, generation of theoretical plots and their subsequent

comparisons need not be any better. However, precision limits are

given in Tables 13 and 14 based on the changes observed in repeated

calculations such that the deviation, a, varies + 1%. One can see that

variations in and g^ are large but do not change the final fit.

Also, the transition width parameter may vary by + 10? without severely

affecting the results. Its major influence is on the tails of the

curves, being important for total integral work but only secondary for

fitting procedures. Crystal and amorphous thicknesses vary by only a

few Angstroms and N may deviate by about only + 0.1 and is more specific

as it decreases. Thus, the major parameters controlling the fits are c,

a and N in this work. At higher values of N the thickness distribution,

parameters, g^ and g^, become more sensitive as evidenced in Table 14.

This work is, however, primarily concerned with the effects of tensile

strain on c, a, and N.

A plot of N versus for LDPE, SC given in Figure 38 reveals a

decrease in N for lamellae in the equatorial part of the spherulite

while remaining relatively constant for those at the meridian. As dis-

cussed in Appendix I, this parameter may qualitatively suggest something

of the relative ordering or disordering occurring within the spherulite
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with strain. Thus, a decrease in the average parallelness of lamellae

occurs for those oriented perpendicular to the strain. Those initially

oriented parallel seem to remain unaffected in this regard. Table 12

shows that for HOPE N = 8. This is to be compared with N = 1.6 for

LDPE, SC. These results are comparable to those of Wenig (53). Uniaxial

strain of 25% decreases this value to N = 5 for those lamellae perpen-

dicular to the strain while increasing to N = 10 for those parallel to

it. Again, the lamellae are seen to order or disorder relative to

each other when oriented parallel or perpendicular to the strain,

respectively.

5. Total Integrals and Swelling .

As mentioned in Chapter 2, Sections E and F, the total integral

or "invariant" in SAXS is used to elucidate the nature of the scattering

phases within the system. The existence of voids (microvoids according

to Peterlin, Reference 114) is also easily detected when combined with

solvent swelling methods.

Figure 39 shows the corrected scattering curves for swollen and

unswollen LDPE, SC. We see a change in shape of the curve on swelling

and a loss of the second order peak. Also the maximum is shifted

toward lower angles confirming that the swelling is occurring within the

scattering phases. If there was much extra-spherul i tic non-crystalline

material present and the swelling occurred preferentially in these

regions, the shift in maximum would not necessarily be observed.
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The swelling solvent, ethylbenzene (EB), was chosen since Bettelheim

and Stein (120) showed that the swelling ratio, q^, at elongations up

to 150% did not vary. Also, its electron density was sufficiently

different from the amorphous regions so that an appreciable change in

intensity could be observed (p^ = 0.285 eu/P versus = 0.301 eu/A^

where
p^ and p^ are electron densities of the solvent and amorphous

phases.) Macroscopic sample swelling was calculated by

V + V

% = (127)
s

where Vp and are the volumes of polymer and solvent, respectively.

At least ten days of swelling at room temperature was performed before

SAXS measurements. Utilizing the relationship between weight, W, and

volume, rearranges to

W /p
'

(128)

where W and W are the weights of the solvent and polymer, respectively,

3
and p ' and p ' are the solvent and polymer densities in gm/ in . Primes

s p
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indicate mass densities. Thus, the swelling ratio is easily obtained

by weighing the swollen polymer in a tared covered weighing bottle,

drying the polymer then reweighing. For a LDPE, SC sample studied,

S41B,
Q = 1.143 + 0.005, in agreement with the observations of Bettelheim

and Stein. The volume fraction of solvent in the polymer, used in

the equations of Chapter 2, Section F, is easily obtained from these

measurements and Equation (129).

''^p 77W '''''

For S41B, (|)^ = 0.11, If we now assume that all of the swelling is

reflected in an increase of the amorphous thickness (no crystalline

swelling or changes in lateral dimensions of lamellae or interlamellae

regions), then for a polymer whose initial linear crystall inity is 47%
0 oand long period is 136A the long period should increase to 146A from

(c + q^a). If, on the other hand, the swelling occurred to the same

degree in both phases, i.e. q^(c+a), then the long period should

increase to 155A. Experimentally we find that d^ = 142^ lending credi

bility to the first assumption. This assumption can be expressed

mathematically by
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V— - 1_
V

0 ~ 3O (130)
d

Where and are the volumes of the amorphous regions' in the swollen
and unswollen states. Therefore, a .ore critical test is to determine
a and a^ via a model calculation. This was accomplished using the

Hosemann scheme and a/a^ - 82^/72^ - 1.12 . 0.02. We see a very good

agreement with suggesting the reliability of Equation (130).

Using the equations of Section F, Chapter 2, the mean squared

electron densities were calculated assuming = 0.347 eu/S^ (p^' = 1.0O8

gm/cm^), p^ = 0.301 eu/A^ (p^ = o.87 gm/cm^) (see Reference 59), and

P3 = 0.285 eu/A^ (p^' = 0.867 gm/cm^). Crystal! ini ties (unswollen)

were determined by the gravimetric procedure outlined in Chapter 3,

Section 0.3, and are given in Table 13 for the polymers studied. Volume

fraction crystal 1 ini ties from density measurements were calculated by

the equation.

Volume fractions of voids present were assumed and varied as shown in

Table 14.
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2In calculating <An > experimentally care was taken to subtract not
only the liquid scattering of the polymer (see Section B.3, Chapter 3),
but also that due to the excess solvent in the scattering cell of the

swollen polymer. For this measurement the teflon gasket used in the

sample holder was decreased in thickness by an amount equal to the thick-

ness of the swollen sample. The scattering of the ethylbenzene was

then recorded and subtracted from the sample scattering after proper

correction for the sample attenuation. Equations (40) (slit-geometry)

and (43) to (49) were then used to calculate <An^>. Results are presented

in Table 14. The important parameter here is the ratio of electron den-

sities of the swollen to the unswollen cases (s/u). We can see that

the ratios predicted in the cases of no voids or a finite transition

width (columns 2 and 5) are greater than one, while those predicted for a

sample initially containing 2% or 4% voids by volume are less than one.

Also, the absolute values of <An > for samples containing 1% and 4% voids

are 5 to 9 times greater than that predicted for no voids. Experimentally

we observe that the absolute values are in the range predicted for samples

with no detectable voids. Also, the ratios are near a value of one

indicating that these two LDPE samples contain few, if any, voids which

are contributing to the observed scattering. If we take the smallest

possible ratio considering the experimental error, i.e. s/u = 0.8, a

back calculation using Equations (50) and (64) reveals the possibility of

about 0.02% voids. This is a rather minor amount. Thus, we see that



124

voids, of the order of the sizes of the lamellae or much smaller (about

20A) are not present in any effective amount in the starting material.

Any microvoids detected during uniaxial sample stretching would have to

arise from the deformation processes themselves.

A similar study was not performed with HOPE because of limited

resolution of the Rigaku-Denki spectrometer. However, <Ar,^ was calcu-

lated from the ORNL spectrometer using Equations (107) to (110) given

in the Experimental part. Results are given in Table 15 which show a

good agreement between the calculated and experimental values. In the

determination of the experimental invariant, Porod's law was confirmed
4

by the s I(s) versus s plot shown in Figure 40. Data extrapolated to

zero scattering angle was performed according to the procedure set forth

in the Experimental chapter. The fact that the calculated and experi-

mental invariants agreed well and, in fact, that the calculated value

was slightly higher suggests again that the starting material before

stretching was free from voids at least of sizes on the order of the

lamellae.

On stretching the sample 25%, the invariant was calculated using

Equation (90) assuming Porod's law could be expressed similarly for the

curves from deformed samples. From the iso-intensi ty contours of Figure

18, k = 1.04. We see excellent agreement with the unstretched case

indicating the validity of Equation (90) and that void formation, if

at all present, is rather slight. No calculated values are given in the
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table. In order to obtain this, the entire thickness distribution of

crystalline and amorphous phases would have to be known.

Similar calculations could not be performed on the LDPE samples

because of the finite size of the area detector, i.e. the low angle

portion of the curve where Porod's law is obeyed could not be obtained.

In order to obtain this information, the sample to detector distance

of the spectrometer would have to be reduced to a lower resolution mode

Curves from each spectrometer geometry would then be superimposed using

suitable correction factors.

However, the ORNL spectrometer system has been programmed such

that a quantity El(x,y) is monitored throughout the experiment [see

Equation (134)]. X and Y are the detector coordinates in real space

and zI(X,Y) is the total scattered intensity in counts recorded by the

detector. Although this is not the invariant of Equation 132

Aol^ "
-'vol (132)

where x, y, z are reciprocal space vectors and the integration is per-

formed over the entire reciprocal space, it can be used in a qualitative

manner to study any gross changes in scattered intensity. A plot of

El(X,Y) versus strain, corrected for sample transmission and beam
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fluctuations is given in Figure 41 and shows a steadily decreasing curve.

This effect could be the result of intensity spilling over the edges of

the detector but does, however, suggest that void formation of the sizes

of the deforming lamellae and interlamel lar regions is not an integral

part of the deformation mechanism.

For HOPE, SC, the change of zI(X,Y) with strain varies as the

invariant calculated explicitly in Table 15. This suggests the quali-

tative accuracy of El(X,Y).

Finally, the change in density on deforming LDPE (S41) was measured

using the gravimetric technique described in Chapter 3, Section C.3.

The plot of decreasing density versus is given in Figure 42. Peiffer,

et al. (121), using WAXD also observed a decrease in crystal 1 inity from

46 to 43% at = 1.5. The decrease observed here is from 48 to 41%.

These are within the 2% experimental error often quoted for WAXD experi-

ments (31, Chapter 3).

From the plot of Figure 42 one can calculate Poisson's ratio, u ,

p

indicating any volume changes on stretching. Thus, by definition

^p4 l-^£l (133)

where V is the specific sample volume and dV/de is its change with
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Strain, if dV/dE = 0, then p - 0.5 showing no volume change on

stretching. Equation (133) is valid for small elastic strains; however,

it can be applied to a first approximation. Thus at e:
= 0.5, y = 0.490.

A better way to calculate ,p for these strains is using the Hanke

definition of strain where e = In (L/L^). Here = 0.492. These

results suggest a slight volume dilatation during strain but for the

level of precision of most of the analyses performed in this work the

constant volume assumption is adequate. From mechanical studies,

Darlington and Saunders (122) concluded that Poisson's ratio for highly

drawn polyethylene sheets was approximately 0.5.

Thus, a small overall decrease in crystallinity with stretching

is apparent for LDPE. This may describe the slight decrease seen in

the ZI(X,Y) values but these effects from SAXS can only be fully

realized when the entire scattering curves, including the Porod region,

are obtained.

B. Parallel Lamellar Morphology

Special morphology polyethylene samples of parallel lamellar

morphology, termed parallel lamellar sheets, were prepared and charac-

terized as described in Chapter 3, Section A. Their geometry is given

in Figure 43. In all cases studied, the x-ray beam path is along the

X' axis and is to be differentiated from the X axis of the detector.
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A unique capability of the ORNL spectrometer can be graphically

displayed using these types of samples. Figure 44 shows a three-

dimensional perspective plot of a parallel lamellar sheet designated S39.

The two point pattern can be clearly seen in the three dimensions of

intensity (vertical) and the X and Y axes of the recorder. The large

central spikes are unsubtracted parasitic scattering. However, the

usefulness of these types of data displays have not yet been fully

developed.

Contour plots from two undeformed samples, designated H29 and S39,

respectively, are given in Figures 45 and 46a. The machine direction

(MD) is horizontal. They both confirm the results expected from photo-

graphic SAXS (see Reference 123, Chapter 9). However, H29 exhibits a

much narrower overall distribution than S39. Calculation of the

orientation of lamellar normals, f^, using Equation (121) in a manner

similar to that for the spherulitic polymers reveals that f = 0.89 +

0.01 for H29 and f^ = 0.68 + 0.02 for S39 confirming the more highly

ordered state of the former sample. Note that the azimuthal angles

used in Equation 122 are measured from the axis through the two maxima,

thus describing the orientation lamellar normals. Since the samples

were both annealed at 115 + 0.5*^C the variability probably arises

from the annealing times which were not carefully monitored.

Sample S39 was subjected to tensile stress along MD. SAXS patterns

were recorded at strains of 10, 25 and 40% after which the sample failed

catastrophical ly. Contour plots are given in Figure 45b-d. The variation
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Of wUh strain is given in Figure 47. A disordering of the lamellae
reflected by the decrease in f^ is apparent, consistent with the qualita-
tive observations of Pope and Keller (85,124).

Sample stretching perpendicular to W was attempted but the sample

failed at less than 5% strain by a delamination parallel to the stretch

direction. No SAXS experiments could be performed here.

The sharpness of the intensity versus scattering angle corrected

for background and sensitivity for the scattering along the meridian

(parallel to MD) in S39 can be readily observed in Figure 48. The posi-

tion of the peak intensity decreases to smaller angles with strain indi-

cating a deformation of the lamellar/interlamellar regions. The long

spacing from Bragg's law for the undeformed material is 188A. This is

to be compared to 116A for a quenched LDPE, S42Q, prior to stretching,

rolling, and annealing indicating a thickening process in either of the

two phases or both.

Results of the application of the Hosemann paracrystal 1 ine model

are given in Table 16. In the unstretched state the initial crystal linity

is similar to that of the starting material. (j> = 0.42 compared to

(i>^ = 0.41 for S42Q from DSC. The crystal thickness remains constant

during strain while the amorphous and transition zone thicknesses

increase. The disorder parameter, N, decreases from a value of 2.5 at

= 1.0 to 1.7 at = 1.4 while the distribution width parameters g^

and g^ remain constant within experimental error. As for the spherulitic
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samples, N varies as with strain.

A plot of microscopic strain ratio (d/d^)^ and a/a^, versus is

given in Figure 49 for S39. The affine prediction is shown by the dashed

curve. Within experimental error and up to the maximum strain tested,

the deformation is taken up almost solely by the amorphous interlamellar

phases according to the affine scheme. Pope and Keller (85,124) also

concluded that stretching of these films in a direction perpendicular

to the lamellar plane primarily increases the separation between lamellae

It was also pointed out in References 85 and 124 that the increase

in separation of parallel lamellae should lead to a decrease in density

of interlamellar matter unless material can move in sidewards into the

interlamellar space to occupy the volume created by the lamellar separa-

tion. If such density depletion should occur, say by microvoid forma-

tion, then this should lead to an appreciable increase in the total

intensity of scattered x-rays. This was studied as with the LDPE sam-

ples using the total scattered intensity recorded by the area detector,

ZI(X,Y). Values as a function of strain, corrected for sample transmis-

sion, T, detector, sensitivity, and main beam fluctuations, BM, are

given below. SM is the sample monitor which records the total scattered

intensity.
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s

1.0

1.1

1.25

1.4

BM

107044

107125

107734

107214

SM

419707

444686

434588

394465

T

0.791

0.805

0.827

0.829

SI{X,Y)

X 10"^

5.306

5.520

5.221

4.751

where

(BM)^

It is seen that the relative value of zI(X,Y) decreased by about 11% at

40% strain. Pope and Keller reported little change in intensity with

stretching in agreement with this result. The slight decrease could be

accounted for by the decrease in linear crystal 1 inity. This alone would

contribute a 9% drop in the total scattered intensity considering the two

phase model. Incorporation of the variation in the transition width,

although in this case overcorrecting could account for the rest of the

difference.

Returning to the point of microvoids, it is inconceivable from

this data to account for their presence because of the stretching pro-

cess. Interlamel lar density is preserved on deformation.
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It is interesting that the sample failed just after 40% strain
Obviously, void formation had to occur about certain stress concentra-
tions prior to failure. This observation needs to be studied further
but it will be Shown to be consistent with the mechanism of deformation
put forth in the next section.

C. On the Deformation Mechanisms

1- Parallel Lamellar Sheet*^ .

The major findings of this report for the parallel lamellar

sheets uniaxially deformed perpendicular to the lamellar planes were:

1. a constant crystal lamellar thickness and a steadily

increasing interlamel lar thickness up to 40% strain,

2. a slight decreasing total scattering intensity,

3. a disordering of lamellar planes with respect to

each other, and

4. failure between 40-50% strain.

WAXD and SAXS studies in this laboratory (123) have shown that at

the annealing temperature of 115°C used here, the lamellae have rotated

to a position where they are perpendicular to the original draw direction

Here the shear stress for an interlamel lar slip mechanism becomes zero.

The chain axes (c-axes) have rotated via an intralamellar slip mechanism

to give a final lamellar/chain axis picture given in Figure 11 of

Reference 123, Chapter 9. For the sake of clarity, the lamellar normals
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are measured by an angle , to the machine direction „h1,e the chain

that 1n fact there Is a rather broad distribution o. U.eUar normals
about ({)

= 0 .

In the deformation work of Pope and Keller (124) no direct
separation of crystalline and amorphous contributions to the long period
was .ade. Rather, the long spacing was expressed by the formula

d = i cos(e + ,) . a
(,35,

where . Is the length of the chain in the crystal and the other symbols
are as previously defined. The sum of e . , is chain obliquity relative

to the machine direction and can be determined from WAXD and SAXS

experiments. Combining the results of Table 18 and Figure 10 of

Reference 123. Chapter 9, Into the above equation yields a crystal chain

length of 112A
( * = 0°. 6 = 50°). If the strains are expressed by c,

then accordingly the existence of lamellar separation is identified In

extension by the fact that e(d) > e[cos(e + i.e. the strain reflected

by the long spacing is greater than that seen by the crystal. The

results of Table 16 directly obtained via the Hosemann model calculation
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do indeed suggest the lamellar separation mechanism in agreement with
the Pope and Keller findings.

It must be pointed out that the authors applied Bragg's law at

the "center of gravity" of the scattering curves to calculate e(d). We

have seen that application of the Hosemann paracrystal 1 ine model

decreases the apparent d especially if the curves are broad. In calcu-

lating the strain in lamellar periodicity versus sample strain, they

obtain a positive deviation from the affine prediction noted in

Figure 49. We feel that our observations are quantitatively more

accurate due to the application of the more sophisticated scatttering

model

.

Regarding the question of an increase in volume change on stretchi

these particular samples, the authors found a very slight increase (pos-

sibly too high due to preceding arguments) from their strain measure-

ments. It was much less than that expected from the total strain of

the sample. They proposed three types of explanations for this effect.

Either (1) the samples are not completely filled with the lamellae

which give rise to the scattering patterns, (2) lamellar separation

involves a process leading to no increase in volume such as pulling chai

through the lattice or (3) the interlamellar material somehow contracts

laterally and microvoids formed at the edges of lamellae are filled

either by extralamel lar material or by the edges of other lamellae.



135

After various arguments including swelling studies by the authors and

by Point, et al
. (125) who showed that the maximum degree of swelling

occurs in a direction parallel to the lamellar planes, it was concluded

that explanation 3 was the most consistent with the experimental

findings. We too agree with this mechanism.

A general mechanism consistent with these results and which will

hold for the spherulitic lamellae similarly oriented is shown graphi-

cally in Figure 50. It is assumed that area, L x W in the y, z plane,

is conserved on stretching while the third orthogonal dimension, x, is

unaffected. Experimentally, the deformation up to about 40% strain is

governed by the empirical equation

d = X a + c
s 0

where the symbols have retained their prior meanings. Also

L X W = nd x W
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where the total length of the stack L 1s nd and n is the number of

lamellae. In Figure 50, n = 4. W is the width of the stack which, for

purposes of illustration, is set equal to the probably unreal i stical ly
low value Of W = L. Also, d^ = L/4 and c = a^ = Thus, the

initial crystallinity of the stack is 50%. It is important to emphasize

here that this illustration is meant only to justify the long period and

total intensity results. It implies nothing directly of lamellar

twisting, or lamellar deformation, only that the lamellae (b-axis as

shown) are discontinuous along the spherulite radius and interleave upon

stretching perpendicular to their b axes. Thus, we can see an increase

in the long spacing between adjacent lamellae while material is moved

sidewards to conserve the total electron density and therefore a con-

stant SAXS invariant. Actually, the slight decrease seen may be related

to an increase in the amorphous electron density due to the fact that

crystals rather than other amorphous material are moving in between

adjacent lamellae. At some point enough of the crystalline lamellae

have interleaved to begin decreasing the apparent long period and the

amorphous interlamel lar width as seen in Figure 37. The point at which

this phenomenon is observed is obviously dependent upon the initial

thickness parameters and their distributions and upon the initial crystal

Unity of the sample. In the geometry of Figure 50, it can be estimated

that this point occurs at = 1.7 since here the crystals overlap each

other by half their lengths. Since the long period is averaged over the

entire width of the central portion, it will tend to offset the increase
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still apparent at the edges. If the lamellae were continuous along W

and maintained their integrity during stretching, then the increase in

long spacing would be continuous with strain and the scattering inten-

sity would increase due to depletion of material in the interlamellar

zones. We can see that this is the case at x =1.0 with further

stretching.

In Chapter 4, Section B, a lamellar orientation function f

was calculated versus strain. It was assumed that the meridional spread

in azimuthal intensity was caused by the disorientation of lamellae due

to inhomogeneous strain fields. We must, however, examine more critically

the observations and possible mechanisms which could produce them.

The important parameters and observations are given in Table 17 along

with predictions for three possible cases which could arise due to

stretching. They are (1) fewer lamellae are present in scattering

volume, (2) lamellae fracture but remain parallel to each other, and (3)

lamellae disorient with respect to each other; a prior fracture may or

may not be involved. We can see that the results (observations) can

best be justified on the basis of the disorientation of lamellae. The

reader is referred to the proper references footnoted which explain the

parameters and their behavior.

The large increase in the transition width parameter, E, with strain

seen in Table 16 cannot be readily explained on a molecular level since

it is inconceivable that a 40% strain should produce a six-fold increase
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in E. It has been shown in Appendix II, Parts A and B, that the unique
separation of effects due to transition width and lamellar twisting is

difficult. Since we do not have the capability at the ORNL facility as

yet to calculate the true scattering invariant from these two point

diagrams, we can calculate an approximate value from the four channels

centered about the meridian and normalize to one channel invoking

Equation (90) where the front factor becomes 2u, and Equations (107)-

(110). It is not meant to be an invariant reflecting the nature of the

system as a whole since there are intensity components which have not

been properly considered; however, it does reflect the nature of the

lamellae scattering into the meridian. The normalized results versus

strain ratio are given in Table is. The correction factor, F(^), where

i> = 90° in this case, is calculated according to Equation (A-14). Since

lamellae are initially detwisted, the possibility exists that upon defor-

mation a twisting occurs due to inhomogeneous deformation of the amorphous

regions at the molecular level. This conclusion was in fact reached by

Ladizesky and Ward (126) in mechanical studies of parallel lamellar

sheets. Therefore, the experimental relative intensity must be multiplied

by F(90) as done in Table 18. We see that the correspondences are quite

good suggesting that lamellar twisting may be indeed occurring during

the deformation. Since stress will be relieved by this process, the

mechanism of intralamel lar c-axis slip or shear will be reduced. This

has been found to be the case in Pope and Keller's work (124).

Several authors (12,43,124-129) have pointed out that the c-axis

rotates toward the stretch direction in not only the parallel lamellae
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sheets but in most semicrystalUne polymers. This seems to be the case

for the sample studied here also (Reference 123). The data, therefore,

suggests that as the chain axes align the lamellae disorder, twist

about the b-axis, and interleave to conserve overall volume while the

amorphous interlayer material increases in thickness with the macroscopic

Strain

.

Finally, the mechanical failure of the sample between 40% and 50%

strain is probably due to the anisotropic nature of the system combined

with built-up stress concentrations. Since the tie molecules transmit

stress between lamellae, near the point of failure they must be fully

extended. Further tensile strain probably produces failure in both the

crystalline (mosaic blocks produced) and amorphous phases causing the

final rupture of the sample. The more isotropic mechanical nature of

the spherulite allows the transmission of stress by various relaxation

mechanisms delaying the rupture of the sample and even allowing a new

morphology to come into existence through yielding. No macroscopic

yielding is observed in the parallel lamellar sheets deformed perpendi-

cular to the lamellar planes.

Also, failure at 40% strain is consistent with the theoretically

based predictions of Petraccone, et al. (130). This study will be des-

cribed in greater detail in the next section.

2. Spherulitic Morphology .

The major findings of this work concerning the tensile defor-

mation of spherulitic texture polyethylenes up to about 90% strain for
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LDPE and 25% strain for HOPE are:

1. lamellae thicknesses remain constant despite their

initial angular positions within the spherulites,

2. amorphous thickness changes can be predicted by the

affine model up to 40% strain for lamellae perpendi-

cular to strain and 90% for those parallel in LDPE.

HOPE showed affineness up to 25% strain,

3. lamellae orient toward the stretch direction

according to the affine prediction,

4. significant decreases in d/d^ and a/a^ are observed

for LDPE at strains greater than 40%, and

5. the total scattered intensity remains relatively

constant with strain.

Since the results in LDPE, SC for lamellae oriented perpendicular

to strains are completely analogous to those of the parallel lamellar

sheets up to 40% strain, we can envision a similar deformation mechanism

as presented in Figure 50.

Kausch (131) has calculated the maximum stress which can be borne

by a chain before it pulls through the crystal and has shown that for

polyethylene it is less than the breaking strain. Rabinowitz and Brown

(132) have shown that intralamel lar c-axis chain slip (i.e. pulling

through crystal) can occur at very low stresses so that these slip

processes are expected to occur during early stages of deformation.

Petraccone, et al . (130), developed a theory for amorphous orientation
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in spherulite polymers based upon conformation changes in the tie chains,

loops, cilia (one end attached) and unattached chains located between

crystalline lamellae within a spherulitic superstructure assumed to

undergo affine deformation. They found that for tie chains the orien-

tation function, f, is negative at small interlamel lar separation, i, but

becomes positive and increases at larger £. It increases as the number

of bonds between boundaries, Ng, decreases. The calculated responses

are shown in Figure 13 of Reference 130. Loops, cilia, and unattached

chains are of minor importance for this discussion. The major point

here is that f approaches a value of 1 with strains and' interlamellar

separations similar to those found experimentally in this work. The

rate of approach to the value 1 is governed by the lamellar twist

parameter, n, the interlamellar thickness, and N^, the details of which
D

are described in the reference cited. Thus, it is not inconceivable

that for the interlamellar spacings reported in this study (Tables 11, 12

16), a large fraction of the amorphous tie chains are fully extended at

about 40% strain for LDPE and possibly 25% strain for HOPE. Further

extension induces the mechanisms described by Kausch, Rabinowitz, and

many other authors (43,112,114,128,133) of c-axis slip through the

lamellae. With further stretching a continuous alteration of the lamellae

by this mechanism occurs and the lamellae break up into smaller sections

(mosaic blocks) while the c axes rotate toward the stretch direction.

The result is a zig-zag lamellae pattern perpendicular to the stretch



142

direction. This type of pattern has been reported from deformation studies

of polyoxymethylene (POM) by Geil (134) and qualitative photographic SAXS

studies of the deformation of polyethylene by Tsvankin (135). Tsvankin,

however, started with strains of 100%. He made no conjecture as to the

smallest strains at which this phenomenon could be observed. Figure 51

gives his concept of the buckling mechanism which this author agrees with

but with the addition of an interleaving mechanism (Figure 50) before

and during the buckling. The similar mechanism of Petraccone, et al. (130),

is given in Figure 52. It includes the arrangement of amorphous tie

chains

.

Finally in this regard, the work of Peterlin (136) on SAXS studies

of deformed high density polyethylene at various temperatures suggests a

rigid lattice at room temperature in which plastic deformation primarily

proceeds in the interlamel lar regions, along spherulite boundaries, and

along the boundaries of stacks of parallel lamellae, lamellae, and mosaic

crystalline blocks. At room temperature he concludes that the lamellae

are brittle, show very little chain tilt and slip, and fracture at low

values of strain in agreement with the results presented here. Figure

4 of Reference 136 shows that the long period along the meridian initially

increases to = 1.3 then discontinuously drops to a value below the

undeformed long period and remains constant with further strain. This

is exactly the effect seen in Figure 37 and, therefore, we are quantifying

here the onset of fiber formation, i.e. the transformation of the spheruli-

tic structure into the fiber structure by the process of micronecking by
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Which every ribbon-like lamella of the original structure is fractured
into smaller folded chain blocks and the blocks incorporated into the
microfibrils with very nearly complete chain orientation. It should be

emphasized that at this point in the deformation, macroscopic yielding
is not visually evident! For the HOPE, SAXS results suggest that this

transformation point has not yet been reached at 25% strain.

Studies very similar in nature to Peterlin's were performed by

Kakudo and Kasai (33, p. 412; 137,138). They reported extensive WAXD

and SAXS results for polyethylene drawn at room temperature. At low

elongations elliptical SAXS patterns were presented very similar in

shape to those in this report. No elliptical patterns were seen by

Peterlin even at elongations as low as 10% for samples stretched at

120\ but a four point pattern, typical of the final fiber structure,

evolved immediately. The differences are obviously due to the drawing

temperature. At 120°C the sample is at a temperature far above that

necessary to impart various loss mechanisms. Specifically, the a loss

peaks, occurring at about 70°C, have been associated with inter- and

intracrystalline processes (i, p. 181; 139,140). Specifically, the

lower temperature process involves a slipping of crystalline lamellae

or their mosaic blocks past each other while the process involves

rotation and translation of chains within crystals. Hence, at the higher

drawing temperatures the spherulitic structures can more easily trans-

form into the fiber morphologies.
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Peterlin concludes that a lamellae thinning process occurs for

those lamellae oriented parallel to the strain due to chain tilt. Within

the accuracy of the experiments included in this report, no such thinning

is observed for LDPE. Using the equation developed by Yoon (106) to

describe the chain tilting process [Equation (3) of Reference 106], one

can calculate the decrease in crystal thickness due to chain tilt. Since

the initial crystal thickness, c^, varies as sine where 6 is the angle

which the chains make with the spherulite radius (lamella plane) one

can assume that the chain lengths remain constant within the crystal and

calculate

c _ sin3
c sine
0 "^0

If we also assume that the chains are aligned perpendicular to the

radius along the polar axis then we can assume various values of the

compliance parameter, K, and determine the expected decrease in the

crystal thickness, c, with strain. For an elongation of 20%, assuming

K = 1.2, the value determined by Yoon, the crystal thickness would be

expected to decrease by about 30%. However, if K = 0.5, then the

expected decrease is only 7%, well within the experimental error.

Therefore, the ease of c axis tilt from SAXS disagrees with that
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found by Voon by a facto, of about 2 suggesting that this process does
not contribute as .uch as expected to the overall deformation process
at least for strains up to 20%. At the higher strains studied, calcu-
lat,ons similar to those above Indicate the necessity for even lower
values Of K. This suggests that at these strains other .echanis.s .ay
predominate. Possibly inter- and intrala.ellar shear processes pre-
dominate in Which lamellae slide past each other and crack at disordered
regions such that the mosaic blocks enter into the microfibrillar

structure in a similar manner as for those lamellae perpendicular to the
strain. Others (124) have shown that the chain tilt mechanism cannot

fully account for the increase in spherulite dimension along the pole

during strain. More will be said concerning these mechanisms shortly.

A model for deformation of spherulites in terms of lamellae

parallel to strain is embodied in Figures 51, 52 and 53. In Figure 53,

the strain is along y and the dimensional changes are assumed to be

taken up by the amorphous chains solely. Assuming the lamellar blocks

cannot move from the imaginary edges confining the stack, a large area

develops between separating but compressing lamellae. This would pro-

duce an increase in the scattered intensity. Concurrently, according to

the dimensions involved in the figure, the adjacent lamellae would

impinge on each other at = 1.5 according to the equation

d = a^/A^ + c (136)
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assuming conservation of area (.^,^ = i). since the intensity is not
seen to Increase dramatically (so.e Increase is observed) the la.ellae
.ust be free to slide past each other while amorphous regions compress
and elongate. Lamellae may crack along the c-axes as the chains rotate
toward the strain direction thereby shortening along the lamellar axes
and interleaving to a greater extent.

The slight intensity increase seen must be due, in part, to an

increase in the number of lamellae scattering coherently in a given

scattering volume due either to compression or to increased parallelness

of lamellae with respect to each other. The relatively constant N in

LDPE (Table 13a) suggests a similar average parallelness with strain

while the increase seen for HOPE suggests greater alignment.

It is known that at low elongations (10-20%) crystal axis rotation

occurs by twinning along the (110) diagonal (17,43,114,125,133) and

phase transformation (43,125) from the orthorhombic to the monoclinic

crystalline form. The relative contributions of these processes depend

upon the orientation of the lamellae with respect to strain. Deformation

experiments on solution grown linear polyethylene single crystals (114)

showed that for draw directions parallel to the b axis or the (110)

plane the phase transformation was dominant while drawing parallel to

the a-axis resulted principally in twinning. Neither of these mechanisms

could fully account for the total applied strain, c-axis slip and chain

tilting were invoked, also. Both the twinning and martensitic (stress
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induced) transformations in PE have been carefully studied and cataloged

using WAXD (141-143). However, this study has dealt mainly with the

macroscopic lamellar deformations and since twinning and phase transfor-

mations produce small changes in the overall thickness of lamellae,

nothing definite can be inferred about these processes.

Direct observation of high density polyethylene spherulites by

scanning electron microscopy (SEM) by the group at Maryland (144) has

shown that the melt pressed samples exhibited deformation behavior very

similar to that proposed here. The increase parallel to the strain axis

in the spherulite was equivalent to the macroscopic strain and resulted

in an increased separation of the twist bands. Perpendicular to the

strain, a decrease in the twist period was observed. A shortening mecha

nism comprised of either buckling of the lamella or chain slip along

the c-axis was proposed!

A valid concern in all of these SAXS experiments is that we are

treating the real three dimensional system as a two dimensional cross-

section.* Hence, twisting lamellae radiating from the spherulite center

parallel to the incident x-ray beam are completely not accounted for in

the model but in fact contribute to the overall scattering detected.

^Personal discussions with Dr. F. Khoury, National Bureau of Standards.
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Th>sproble.,sg.aphicany
demonstrated in Figure 54 A ,a n

axis is perfectly parallel to the

" " defor.atio„ .ecanis. la.ellae .a.scatter into the same volume of reciprocal sn .

K . .

i-eciprocal space due to their orientation

T
-^^-^^ - ---ent deformation mechanisms, .he- we ™st .eep i„ mind the limitations of these interpretations

and the fact that they reflect
' ''''''' ^"^^^9^ properties. However, because of" -— the support Of the numerous

-est^ations yielding or implying similar results, the concern, although
real, may in fact by unfounded. ^^Uo. the tas. of composing a model
tak,ng into account all the possible orientations would be massive
expensive, and probably unnecessary in the long run.

^- -^sMi^iisM^toJtech^^

The deformation of spherulites in polyethylene has been studied
by Wang (27) from a mechanical viewpoint based on linear elasticity and
cont,nuim micro-macroanalysis. The model consists of a spherical
spherulite with the center of anisotropy at its geometrical center and
a large homogeneous matrix with the overall isotropic properties of the
bulk polymer. Dimensions of the spherulite boundaries deform as does
the matrix, which consists of other spherulites. so as to preserve

material continuity, i.e., voids do not form between spherulites. The
stresses and strains are calculated from the center to the edge of the

spherulites for radial and tangential elements parallel and perpendicular
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to the polar axis (strain direction). Figures 1 and 2 of Reference 27b

illustrate the responses showing generally the overall non-affine nature

of the strains and the large stress concentration at the center of the

spherulite. Strain in the stretching direction is much larger at the

equator than at the poles. Also the tangential strain (0°) and the

radial strain (90°) are both negative indicating a compressive mode

along the radii at the particular angles measured from the poles.

By assuming that the HOPE spherulite as a whole deforms affinely

and from SAXS data of this report (Table 12), the strains necessary to

calculate the appropriate stresses according to Equations (9) - (n) of

Reference 27b are obtained. Table 19 lists the values. HOPE is con-

sidered because the elastic constants of the polyethylene spherulites

are given in Table 1 of Reference 27b for the case of HOPE. We can see

that the average stresses vary depending on their position within the

spherulite. The largest stress magnitude calculated is for those lamellae

perpendicular to the stretch direction along the equator of the spheru-

lite. This has been observed by other authors from microscopy studies

of strain distributions (10,12). Note that the experimental strain

values are averages since the SAXS and SALS experiments lead to average

values themselves.

4. Conclusions .

The picture of spherulite deformation which evolves from this

study is one which is consistent with some other works in the field.

Crystalline lamellae, however, do not vary in thickness dramatically as
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had been thought previously but rather dimensional changes are reflected
in the intercrystalline layers. Crystalline lamellae are very susceptible
to internal ordering and disordering depending on their initial positions
Microvoid formation may not play as large a part in deformation mechanisms
at these strains and temperatures. The onset of fiber formation (des-

truction of spherulite) has been uniquely characterized by application
of a powerful model in SAXS. Also, the use of special morphology samples

has facilitated our understanding of spherulite tensile deformations at

the level of lamellae. Finally, such determinations will be useful in

the accurate mechanical analysis of these structures by various mathe-

matical models.

D. Future Experiments

The availability of the ORNL-10 meter spectrometer has generated a

whole host of possible new experiments we can incorporate in the elucida-

tion of lamella deformation. Some of these are mentioned below. Their

order is not meant to specify their relative importance. Also, the

availability of Thesis Contracts (T-Contract) from Oak Ridge Associated

Universities (ORAU) for students involved in research similar to that

described herein helps to defray the total expense of travel to and from

the research facilities. ORNL personnel have details concerning this

option. Due to the nature of the research agreement with ORNL, it is

best if all possible experiments are run by the principal investigator.

A complete set of blueprint copies concerning the spectrometer sample

chamber is in our office or can be obtained from Dr. R. W. Hendricks.
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Th.s would 5e 1.pona„t for the stud, of .1„ovo1d fo™atio„ and to test'
the e„ipt1ca„. s„1c 1n.an-a„t den'ved he.e (Chapte. 2, Section G,
It would involve shortening the spect.o.ete. .e.ova, of tube sections'

- the bea™ path and .eall.n^ent of the electronics and „ould 5e dependent
upon the cooperative effort of the ORNL personnel and proper tiding since

because of spectrometer down time.

2. Swelling studies in the stretched state should be completed
in order to confirm the results here concerning microvoid formation during
deformation (see Reference 136). A sample holder for stretched and

swollen samples was designed and built to fit directly into the sample

chamber of the 10 meter spectrometer. Samples are elongated on the

Instron or any appropriate stretching device then clamped in place by

small, circular stainless steel clamps which fit directly into the

aluminum holder. Solvent is introduced from a small set screw hole and

is prevented from escaping by a thick teflon gasket and doubly thick

mica windows epoxied in place.

Again, an unsuccessful attempt was made to use this equipment due

to rupture at the mica windows caused by the high vacuum inside the

spectrometer. The system was fully tested prior to shipment and we sus-

pect that damage may have occurred during that time. Hence, this equip-

ment should be "hand carried" to its destination.
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Both HOPE and LDPE as well as the special texture samples should

be analyzed in extension by this technique.

3. Because of discrepancies noted in Chapter 4, Section C2,

concerning the variability in SAXS patterns and, therefore, mechanisms

as a function of temperature of stretching, a study should be performed

in this regard. A variable temperature cell including a stretching jig

could be made similar to the one used with the Rigaku-Denki spectrometer

in our laboratory. Possibly this same one could be modified and used.

In the high resolution mode, the spectrometer is suited for complete

analysis of HOPE patterns as implied in Chapter 4. Therefore, it may be

necessary from an experimental viewpoint to concentrate effort on HOPE

and its variations rather than LDPE.

4. We have seen that the onset of fiber morphology begins at a

strain depending upon various factors including the crystal and amorphous

thicknesses. A mechanism of deformation in which the lamellae fracture

into mosaic blocks after the amorphous tie chains are fully extended has

been suggested here. In order to test this more fully, use of samples of

controlled molecular weight and narrow molecular weight distributions such

as those prepared by Mandelkern (145-148) could be studied. Crystalline

lamellae and amorphous interlamel lae thicknesses could be discerned by

application of the Hosemann SAXS model and the nature of the interlamel lar

tie chain could be characterized possibly by infrared or nuclear magnetic

resonance studies. Its influence oh the deformation characteristics could
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2" -— since t.e.e U a.ea.. so. .pen.nce ... .

be simplified (123,1/19, 150).

5. Another powerful advantage of the ORNL spectrometer Is Its

Of following the ti.e dependence of deformation either In relaxation
experiments such as those of stein and his associates (3,151-153) or in
dynamic experiments where the electromagnetic response Is compared to
a mechanically oscillating Input (see, e.g., 3,151-153).

The time dependence of spherulite deformation has been studied by
Erhardt and Stein (154-156) using a high speed stretching apparatus
whose speeds could be varied from 500 to 4000 in/mln in conjunction with
a high speed camera to record SALS pictures during the deformatlonal

process. They concluded that the velocity of spherulite deformation was
Of the same order of magnitude as that of the sample straining within

the strain rates studied, i.e., no spherulite relaxation processes could

be detected with regard to the spherulite as a whole. The rheo-optics

of crystalline orientation in various polymeric systems has been studied

as mentioned above. For the present work, results of Stein, et al. (152),

and Fukui, et al. (157), are particularly interesting. Stein observed the

temperature dependence of the orientations of the a, b and c axes of

polyethylene from WAXD experiments. Replotting data of Figure 26 in

Reference 152 to yield the time at which orientation Is a maximum, one

obtains the results given in Figure 55. A sharp increase in time for the
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b-axis orientation is evident with decreasing temperature. Since the
b-axis is aligned along the radius of the spherulite or parallel with
the long axis of the la.ella. the result suggests a similar dependence
for lamella orientation. Fukui has shown a similar result and his
Figure 2 is plotted in the same way as Figure 55 above (see Figure 56).
His data was obtained using infrared measurements and the samples were
annealed to a greater degree than in the Stein work. Relaxation times
are much longer but a similar trend is observed. Relaxation times of

the order of seconds are evident. The results suggest similar studies

using the ORNL facility. Hence, the time dependent behavior of lamellae

can be compared to crystal lographic axes and suitable deformation

mechanisms suggested and compared to existing ones. A variable tempera-

ture sample chamber would have to be designed and constructed for this

purpose.

For dynamic experiments a variable temperature sample chamber

equipped with stress and strain transducers capable of fitting into the

evacuated sample chamber of the ORNL spectrometer would, again, have to

be designed and constructed. This would require sophisticated, miniaturized

mechanical and electrical components. Hendricks has suggested to us that

he can control the detector to turn on and off at the very short times

involved in sinusoidal ly straining the sample.

6. In the analysis of SAXS data a relatively new treatment of the

direct analysis of curves has been presented by Strobl (119,158). Without

the use of model calculations, parameters such as lamellar thickness, c,
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and its distribution, the voiu.e fraction of the two phases, the electron
density defect per square unit of la.ellar interface, and the boundary
layer thickness distribution can be obtained. The mathematics is based

on the assumption that the interference and structure factor curves can

be separated uniquely since fluctuations in c are of the order of 1/c.

The reader is referred to the appropriate references cited for details

of the mathematics.

Results obtained for polyethylene are remarkably good, suggesting

densities for crystalline and amorphous phases in HOPE in line with

literature values, but for LDPE a lower crystalline density is reported

(p^' = 0.967 g/cm versus 1.003 g/cu?) and only a slightly different

amorphous density (p^' = 0.85 g/cm^ versus 0.86 g/cm^). This result

suggests the defective nature of the crystalline phase in LDPE and its

ramifications as to mechanistic differences in deforming LDPE and HOPE.

The detailed mathematical procedure could be applied to the data for

stretched samples and p^' and p^' obtained directly. The procedure must

first be rigorously analyzed for application to deformed systems.

7. Finally, additional insight may be gained as to the deformation

mechanisms of semi-crystalline polymers by the coupling of SALS and

swelling experiments. Since the intensity of scattering (H^ mode) for

the unswollen polymer, I is proportional to V ^ (a, - a„) ^ where V
" 0 1 CO 0

is the volume of a spherulite, swelling by an amount q with an appropriate

solvent will change the scattered intensity I by
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= %^ [{a^ - a3)//q 2j

Thus, by cancellation of terms we can see that there is no change in

scattered intensity, a prediction which has only some preliminary veri-

fication (159), but needs further study. Also, since the volume goes

as R where R is the spherulite radius, swelling should change the
1 /3

R as (q^) .
If we allow the sample to swell by 10% or q =1.1,

then the radius will increase by about 3%. Photographic SAXS obviously

does not contain the precision necessary for this determination. How-

ever, careful use of the optical multichannel analyzer (OMA) (see

Reference 160) should increase the precision. Also, studies at higher

temperatures where swelling would presumably increase would be beneficial

The above simplified analysis has assumed that effects due to

amorphous orientation and form birefringence effects are negligible.

Deviations from the predictions noted above could be indicative of

these effects. Form birefringence especially could be studied using

solvents of differing refractive indicies at constant q . Constant a
s ^s

could be obtained for different solvents by either varying the time of

swelling, varying the temperature or using mixed solvent pairs.
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CAPTIONS FOR TABLES

Comparison of SAXS theories of Hosemann, Vonk and Tsvankin/

Buchanan.

Physical characterization properties of samples studied.

Sample preparation conditions.

Geometry of Rigaku-Denki SAXS slit spectrometer.

Settings for DAC Model 200 spectrometer.

Weighting factors versus slit heights used in desmearing calcula^

tions.

Correlation function tables. Explanation and use described on

page 90. .

Analysis of LDPE,SC by Tsvankin/Buchanan theory.

Analysis of HOPE by Tsvankin/Buchanan theory.

Labarbe results for LDPE,SC.

Analysis of LDPE,SC by Hosemann theory, (a) ./^
= 0^, (b)

i,
= 90^.

Analysis of HOPE by Hosemann theory.

Crystal lini ties from densities and WAXD,

Invariant analysis for LDPE in swollen and unswollen LDPE. Calcu

lated values included.

Invariant for HOPE from ORNL spectrometer. Calculated values

included.

Analysis of parallel lamellar sheets via Hosemann scheme.
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17 SAXS parameters and observations for the special morphology
sample.

18. Effect of F(,^) on intensity parameters.

19. Results of HOPE applied to Wang calculations.
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TABLE 2

Physical Properties

Density (gm/cm"^)

Melt Flow (MI^q)^

Elongation at Yield (%)

CH3/IOO

M
n

M
w

MPE20G/17942

_(HDPE)

0.9516

4.4

12.3

0.29^^

15,500

163,000

M80n

ILDPE)

0.9254

2.9

4.5
2b

15,000

W n 10.5 11.5

1.

2d.

2b.

3.

ASTM-D-1238.

By infrared.

Estimate via density.

By gel permeation chromatography



TABLE 3

MPE200/

^^^^ 120-140

*m
('"I"")

15

(inches)"^ 0.050

130-140

15

145-150

*p ^^^'^^
15

15

0.092

Subscripts m and p refer to melting (plates
together with minimum pressure applied) and
pressing (12000 psi added stepwise), respectively

Actual thicknesses used in calculations may
vary somewhat due to sample variations These
are clearly noted.
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TABLE 4

Slit Number ci^iit Number

— — 2 Sampl e - i Detector

Distance in (mm)

2« 535 575 580

Slit Widths (mm) 0.10 do Q 18 - 0.1 0.05



TABLE 5

DAC Model 200 Spectrometer Settings
*

Hy = 1100 Volts

Baseline = 100 Volts

Window = 700 Volts

Time Constant = 0.5

Differential Mode of Operation

Coarse 16 Volts
Gain

Fine 2 Volts



Slit Length

S S S

10 mm

4 mm

2 mm

TABLE 6

W(o)

11.01

27.52

55.04

£

19.51

48.78

97.56
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TABLE 8

LDPE, SC

Strain
^(P) (± 0.02) m d (

1 . 0 0.43 0.475 1.21 123

^ = 90°

1.1 0.37 0.51
I oU

1.2 0.38 0.50 1.21 134

1.3 0.45 0.46 1.21 140

1.4 0.41 0.48 1.21 147

1.5 0.53 0.43 1.21 143

1.6 0.50 0.44 1.21 140

1.87 0.42 0.48 1.21 140

0 V (A)

149

0

71

0
^iA)_ a (A)

78

157 80 77

162 81 81

169 78 91

179 85 94

173 74 99

169 74 95

169 81 88

^ = 0°

1.1 0.40 0.49 1.21 106 128 63 65

1.2 0.42 0.48 1.21 103 125 60 65

1.3 0.41 0.48 1.21 96.4 117 56 61

1.4 0.41 0.48 1.21 94.6 114 55 59

1.5 0.41 0.48 1.21 90.7 110 53 47

1.6 0.38 0.50 1.21 88.1 107 53 54

1.87 0.40 0.49 1.21 81.1 98 48 50
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= 90°

0°

TABLE 9

HDPE, SC

Strain ^ (± 0-021 ^ MA) X^d (A) ^
^

1.0 0.39 0.49 1.21 270 327 160 167

1-25 0.41 0.48 1.21 285 345 166 179

1.25 0.37 0.51 1.21 257 311 158 153
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TABLE 10

LDPE, SC

(From Labarbe, et al.)

Strain i/^(p)

1.0

= 90°

1.1

1.2

1.3

1.4

1.5

1.6

^ = 0°

1.1

1.2

1.3

1.4

1.5

1.6

;± 0.02)
d ih

0 ,0
a (A

0.45 1 18 157 71 86

0.47 1.18 147 174 82 92

0.46 1 19
1 Do 184 85 99

0.44 1 1

Q

ICC
\ DO 197 86 111

0.44 TOO
1 oJ 229 101 128

0.44 1 1 q 252 112 140

0.46 1 19 991 262 120 142

0.46 1.18 132.5 157 72 85

0.47 1.18 132.5 157 74 83

0.46 1.18 131 155 71 84

0.46 1.19 no 131 60 71

0.46 1.19 • 102 121 55 66

0.45 1.19 102 121 55 66



<
+1

o
+1

00o
•

O
•

^ Jo
•

o
•

o o LT)o 00

o o o o •o •o •o •o

o o o
+1 +1 +1

o o o o o o o o

LO LO LO LO

CO
<:

oo

o
t/)

cn

o

-e-

ro —

-

CX OJ

+1

•r- O

+-> fO

CM
• • • • • •O o o o o o •o •

O
+1 +1 +1 +1 +1 +1 +1 +1

CM CM r—• •
• •o o o o CD o o •

o

CM
•o •o •o •o •o •

o •o •o
+1 +1 +1 +1 +1 +1 +1 +1

CO CM

O o o o o o O o

o o CM CO
LO LO LO LO LO

• • • • • •o o o o o o CD o

LT) o o LO CM CM
LO LO

o O o 00 o
LO LO LO LO LO LO LO

1^O CM 00 LO LD CO
• • • • • • • •



182

<
+1

COo
•

COo
•

«^o
•

o
•

COo o LOo o
o o o o •o •o •o •

o

Oct
o o o o
+1 +1 +1 +1

o o o o
+1

o

o
+!

O
CNJ

oo
-Q II

<—

LU .

-J o
CQ GO

O

O
+1

^^^^cocorotsj^
r-^ 1-^

*****
•

€^ I— r— r-oooooood
+1 +t +1 +1 +1 +1 +,

OJ I— ^ ^ ^ ^^ ^ • • • • •oooooooo
+' +1 +1 +1 +1 +1 +1 +1

r-,— r-r-,— r—OOOOOOOO
-e- •

CO
•

LO
00 CO CO CO

CO

o O •O •O •O •o •o

+1
a^
c
•r- O

CO CO CO CO CO (NJ

+1 +1 +1 +1 +1 +1 +1

r—
LO

CTi LO
CO

o
cr»

LO
00

o CO
LO

LO LO
«^
LO

o
LO

o
LO

LO O
LO

o CO LO LD 00
• • • • • • • •



183

+1

O OOO o

o
OO o o

CO

o

+1

00

03
cn

o
CO OO

o
o

o

UJ
Dl.Q U

OOO
o
+1

OJ
CO

LOo
o
+1

CO

o

LOo
o
+1

LO
CO

o 00
in
CO

o
00

o<: OJ

+1
fd —

-

CO
CO
CO to

0<C LO

+1

o
CTi

o o
cn

c
•r- O
5- -M

oo LO

oo
II

LO
OO



X

o

LOo
o
+1

cn

o
COQ

CMo
o
+1

CM

o
•o

+1

o

cn

+ d
u

-e- II

00
»o

II

Q. CI

CO
oo 00

^ r- O
u

-e- II II

a fo
CX CL

CO

E
cn

Cl

O
o
+1

o
o
+1

CO

oo
o
+1

CM
cn

o
o
+1

o
00

o
+1

o

o
o
+1

CM
00

mo

cri
cn
LO

CU CD
u o
c
CU CD

CD CD
M-

QJ CD
a: D::

E E
O o
C|- 4-

tA U)
CD CD
13 :3

> >

Q.

U
Q.

Q.

u
a

"O
CD

CD O
<c o

Q- LU
E D_Q CM >>
C>0 _J to r—

o
r—

• cr
+-> cn
X oo
CD OO
I—

E
• o

cr cy CX s-
CM CT> C/)

CO
tn m i- .

CD CL
I— CD

CD a.



E

CO
• • •

ID

o o o •o •o o
+1 +1 +1 +1 +1 4-1

CM
• • •

CO CT>

CO
• •

O

185

CO

oo

CI.Q

CM

CO

o
X
A

CM

<
V

c:
o o<c
•I- O • CM
+j cu r— to
•r- C C
I/) o II cr
C LU r—

s-
I—

O
o
II

>o -e-
"O LO

CM
O • o> to •

c o
cr
UJ II

COo
•r-

O>
o

>
-e-

• 00
U) LO
c
cr ^
LU CM—^

CO vo LOLO
• • • • • •

LO LO

CM CO CM CO
r— o 00

• • • • •

LO 00 O LO LO o

CM
CO OO CO
00 CM

• « • • • •

LO LO O IT) o
CM CM

00 CO
CM 00 CM o

• • • • « «

LO LO LO LO

+->

+->

CO

cu

CI.

E
fO
CO

13
c: c:
cu i/) cu in

c:
cu cu

o o o o
3: •r— 3: •r—
CO o </) o +->

c 3: c
CO a:

Cl
E
fO
CO

o
OO

CO

o
H

>
e-

o
II

>
-e-



TABLE 15

HOPE, SC

A-,-; 4-u 1 Calculated
Azimuthal 7,

^IL^ Angle Experimental Table 14)

0°^ - 1.5 ± 0.2

25% 0° 1.8 ±0.2

25% 90° 1.7 ±0.2

1.91
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1.0

1.1

1.25

1.4

TABLE 18

, 2
<An > ,

rel

1.0

0.86

0.66

0.46

F (90°)

1.0

1.6

2.2

2.55

<An > X F

1.0

1 .38

1.45

1.17



TABLE 19

Stresses

Strains x 10^° dynes/cm^

Orientations

0° 0.25* -0.02* 0.96 -0.6

90° -0.02* 0.04+ -0.28 1.05

*From SALS

"^From SAXS, Table 12
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CAPTIONS FOR FIGURES

Lamellae for which stress is (a) perpendicular, (b) parallel, and
(c) at an angle to the lamellae planes.

SAXS photograph from LDPE stretched to elongation ratios, x ,

given. Stretch direction, S.D., as shown.

Graphic representation of the distribution of points in a linear

paracrystalline lattice. From Reference 33.

Random arrangement of lamellar "clusters".

Electron density profile including finite transition thickness, E

P, and are electron densities of the crystalline and amorphous

regions, respectively.

Intensity versus number of parallel rods for finite number of

parallel rods (
) and for 50 rods with random angular disorder

(I). Values of random number limits are shown.

Stack of four lamellae, one of which is angularly disordered.

Geometry of Rigaku-Denki SAXS spectrometer. Slit mode.

Weighting function, W(u) versus u at various slit heights.

Schematic of ORNL 10-Meter SAXS spectrometer.

Tsvankin/Buchanan calibration curves.

Computer generated two-dimensional SAXS contour plots of LDPE,SC

at various stages of strain A^. For plots a-h, A = 1.0-1.6,
s s

1.87, respectively. S.D. horizontal.
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SAXS contour plot of LDPE.SC before sensitivity, background, and

sample transmission corrections.

SAXS contour plots for LDPE,Q. For plots a-d, X = 1.0, 1.1, 1.25,

1.50, respectively.

Ratios of long spacings perpendicular and parallel to strain versus

stretch ratios. Affine prediction (M^/M^)^ also included (solid

1 ine)

.

Lamella orientation function, f^, versus strain ratio, x , for

LDPE. Affine prediction, solid line, as well as that including

lamellar twisting, n, given.

SALS of deformed LDPE, SC. Strain ratio and direction as shown.

Spherulite, x^, versus sample, x^, extension for LDPE,SC from

SALS.

SAXS contour plots for HOPE. For plots a and b, = 1.0 and

1.25, respectively.

Background and Lorentz correction effects on unstretched LDPE.

Data obtained with ORNL facility. No sensitivity correction applied

SAXS intensity (corrected) versus scattering angle for LDPE, SC.

Experimental points are omitted for simplicity, (a) Lamellae

perpendicular to strain; (b) lamellae parallel to strain. Stretch

ratios: 1.0 , 1.1 , 1.2
, 1.3 — « , 1.4

-I-©-, 1.5 — 0 , 1. 6-0-0-0

SAXS intensity (corrected) versus scattering angle for LDPE,Q.

(a) Lamellae perpendicular to strain, (b) Lamellae parallel to

strain. Elongation ratios as shown.
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SAXS intensity (corrected) versus scattering angle for HOPE. 0°

and 90° designate lamellae parallel and perpendicular to strain

at = 1.25. 0% is unstretched sample.

Reduced long spacing, d/d^, versus strain ration, L/L^, for sam-

ples studied.

SAXS intensity versus scattering angle at various azimuthal

angles for LDPE,SC at 30°^ strain. Azimuthal angles, 0°

10P ^^0
, 20 , 30° — » — ,

40° - I - « - fi, 50° 0

' 70° 0 , 80° - 0 - 0 - 0, 90° — 0 - 0 —

.

Lorentz corrected curves of Figure 25a.

Background subtracted, Lorentz corrected SAXS curves for 30%

stretched LDPE,SC. Curves a-d represent azimuthal angles of 0,

30, 60 and 90 degrees, respectively. Slit heights: 10 mm ,

4 mm , 2 mm .

Observed Bragg spacing versus slit height at various azimuthal

angles.

Comparison of corrected intensity versus scattering angle for

unstretched LDPE,SC from slit desmeared and joint-like geometry.

Same as Figure 29 except 60% strain, (a) 0° azimuthal angle,

(b) 90° azimuthal angle.

Comparison of Tsvankin/Buchanan fit (points) of corrected intensity

versus scattering angle for LDPE,SC unstretched (line). ORNL

spectrometer.
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Same as Figure 31 but for HOPE.

Experimental (line) and calculated (points) correlation function

of LDPE,SC.

Corrected SAXS intensity versus angle for LDPE,SC. Experimental

( ), calculated («) via Hosemann analysis.

(a) Same as 35 but for HOPE, (b) = 1.25, ^j;
= 0^ (c) A =

s

1.25, IP
= 90°.

Linear crystal 1 inity versus elongation ratio for LDPE,SC. From

application of Hosemann analysis.

Reduced long periods, d/d^, and amorphous thicknesses, a/a^,

versus strain ratio, x^, for LDPE,SC from Hosemann calculations.

Hosemann N versus elongation ratio for LDPE,SC.

Corrected SAXS intensity versus scattering angle for swollen

and unswollen LDPE.

Porod's law plot of HOPE.

Total intensity versus strain for LDPE. From ORNL spectrometer.

Density versus elongatio ratio of LDPE, SC. From hydrostatic

weighing.

Geometry of parallel lamellar sheets.

SAXS three-dimensional perspective plot of parallel lamellar

sheet.

SAXS contour plot for H29, parallel lamellar morphology.

SAXS contour plots for S39 parallel lamellar morphology. Stretch

direction perpendicular to lamellar planes. Curves a-d represent

X = 1.0, 1.1, 1.25, 1.40, respectively.
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47 versus % strain for parallel lamellar morphology. Strain

perpendicular to lamellar planes.

48. Intensity versus scattering angle for S39 at various strain ratios.

A3 = 1.0 , 1.1
, 1.25

, 1.4
.

49. Reduced long periods, d/d^, and amorphous thicknesses, a/a^,

versus strain ratios for parallel lamellar sheets. Affine pre-

diction shown ( ).

50. Proposed deformation mechanism. Stretch direction perpendicular

to lamellar planes (along z).

51. Tsvankin (135) deformation mechanism.

52. Petraccone (130) deformation mechanism.

53. Proposed deformation mechanism. Stretch direction parallel to

lamellar planes (along y).

54. Effect on SAXS from lamellae lying parallel to incident x-rays,

Iq, and twisting about the spherulite radius. Tensile, F
.

, and

compressive, F^, forces are shown as well as crystal lographic axes.

55. Temperature versus time at which orientation is maximized. From

data of Stein, et al. (152).

56. Temperature versus time at which orientation is maximized. From

data of Fukui, et al . (157).

57. Intensities at first ( ) and second ( ) order maxima versus

disorder angle for 50 rods.

58. F(i|j) versus ^ for various elongation ratios, X .
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59. Optical diffraction .ask. 1.5X magnification of original (10 ™).
60. Computer generated calcomp plot of Figure 59.

61. Optical diffraction apparatus.

62. Optical diffraction analogs (interference) from corresponding

masks.

1
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GLOSSARY OF SAXS TERMS

This
Work

x^, d

Hosemann Vonk

D

T/B
Meaning

Long spacing

Crystal thickness

x^, a

x^, E

y^, x^
Amorphous thickness

Transition thickness

X-ray wavelength

e

s, s,
1

e

b, h

271 .

-y Sine

e

2ir .

-y Sine

e Scattering half angle

Scattering vector
47r .

-J Sine

a a
a Electron density of

phase, a

a Mass density of phase, a

I, I I, ISN
Scattered intensity

a F , f
a a F, A Structure factors

H , P
a a

H
a Pa' ^ Thickness distribution

functions
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Thickness distribution
parameters

Mean squared electron
density fluctuations

Linear crystal 1 inity

Volume crystallinity

Weight average crystal lini

used for T/B notation in text.

and denote general functional forms
refers to specific Gaussian types.
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APPENDIX

I. ^™ING FROM ANGULARLY-DISORDERED
RODS

y^^- a syste. 0. N, .ctan^.W .ds w.ose centers a.earranged along a lattice line who.P in .whose long axes (termed "axes" or "axis")lie perpendicular to the linP c^. .
'

i-rie line as shown below.

y

6 7

The length and width of a .od are given by and W^. respectively, and
each rod is identical. We now allow a certain probability that a given
rod axis .ay deviate fro. the lattice line nor.al by an angular a.ount
± lb

n

The scattering amplitude from a given rod, may be calculated

from Equation (A-1).
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E„ = K W L
n r r

sin
a W
_n r

2

a W
n

sin
b L
n r 1

b L
n r

(A-1)

and K is a constant, and

''n
^ (t) '^""Q K - {A-2)

where y is the azimuthal angle of observation of the scattered rays and

X is the wavelength of the incident monochromatic radiation.

For an array of N lamellae, the scattering amplitude, E^^, may be

represented by

N

=
I E^ exp [-ik (R^ • s)] (A-3)

n=l
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where is shown in the above figure and i s given by

^"'-"'l (A-4)

d is the distance between adjacent rod centers, or the long spacing,
k = (2Tr/A), and i = /IT.

The scattering vector, s, is given by

s - (1 - cose) i - sine siny j - sine cosy k (A-5)

where i, j and k are the unit vectors along the three orthogonal axes,

X, y, and z.

Performing the dot product and substitution into (A-2) yields

- I exp [i k n d sine siny] (a-6)

1=1

According to (A-1 ) and (A-2), depends on
i>

where ib
=

i, ^ +
n ^n ^n ^n-1

m5. 6 is the angular disorder which is specified in a given calculation
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n, can be either . 1, 0, or -1 for a given rod. It 1s determined by

defining H.lts (lower Zl
, upper 12 as in "DRODS") such that for rando.

numbers falling between Zl and Z2 m = o while below Zl and above Z2

m = + 1 , respectively.

The effect of angular deviations may be cumulative since deviations

with the same integer m are simply added; the total angular deviation

of a given rod is dependent on that of the previous one.

The final intensity of scattering from the array, I^^, is given

by

^
"^l h h (A-7)

where is a constant, and E* is the complex conjugate of the amplitude
*

of the array, and Ej^ are calculated individually then multiplied in

the program "DRODS" given at the end of this section.

This calculation has been performed assuming values of
0 0 0

= 80A, = 1,000A and d = 200A. No distribution parameters have

been included. Also, the scattered intensity has been observed at y =

90° throughout; i.e., along a line parallel to the lattice line axis in

reciprocal space. Finally, in all cases where angular disorder was

varied, N = 50 was chosen as a reasonable value to study since larger

values gave very similar results and because of computing costs. Also,
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N was systematical!, decreased in one instance with . = o to study its
effects on the intensity scattered from a perfect array.

Figure 57 shows the effects of varying the angle of disorder

6, on the scattered intensity of the fi.st and second order maxima. In

this calculation, m was allowed an equal probability of being . 1, o, -1.

A rapid decrease in intensity is observed in going from perfectly-ordered
rods (6 = 0) to 6 = 3 X 10-^ degrees between adjacent rods. The intensity

reaches an asymptotic limit and remains there at subsequently higher

values of 6. The ratios of the intensities of the first and second

order peaks (at 200? and 100?, respectively) remain relatively constant

throughout the decreasing portion of the curves. The minimum in at

3.5 X 10-7 radians and the strange shape of the curve in this region

remain unexplained at this time. However, we feel they are insignificant

relative to the major trends seen.

Thus, the total scattered intensity decreases but does not dis-

appear in a set of N rods containing a certain amount of angular disorder

with respect to each other. In a real system of lamellae, the disorder

would probably vary by an amount greater than the 3 x 10"^ degrees

observed here if disorder were to occur at all. Therefore, the con-

trolling factor in determining the observed intensity may not be the

value of 6 but rather the number of disordered rods relative to the size

of the stack. Figure 6 shows the intensity, I^ , as a function of the

number of parallel rods in a perfect stack where N is systematically

varied from 0 to 50. The relationship is given by the solid line.
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SupeH.posed on this curve a.e points obtained f™. calculations «here
N = 50, the value of . In the local region of Figure 57 and only the
probabilities of the amounts of . = . i. o, -i varied. For Instance
taking the uppermost point on the curve obtained with a probability that
10% Of the rods would angularly deviate, or every sixth rod would deviate
yields an Intensity of scattering which would be comparable to the case
Of scattering fro. an array of approximately 41 perfectly-aligned rods
Yet, on the average only five rods will be perfectly aligned at any given
position throughout the stack of 50 rods. Another example Is the case
where the rods have an equal probability of orienting In the +

1 , o, -i

orientations. Here the average number of parallel rods along any position

1n the stack of 50 approaches a value of about one since It Is expected

that only every third rod may. In fact, be normal to the lattice line.

Other examples are shown In Figure 6 and calculation of the average

numbers of parallel rods is straightforward and left to the reader's

enjoyment. A check on these average values was done by outputing the

results of the random number generator and the limits set to allow

either m = + 1 , 0, or -1
. An average of ten calculations of Equation

(A-7) was performed to ensure a statistically average intensity. The

average numbers of parallel rods were determined by actually counting

those bundles of rods parallel to each other and perpendicular to the

lattice line and the numbers of rods within a bundle, and averaging the

results over all 500 rods (50 rods calculated 10 times). Results were

as expected. Thus the average N values quoted above are accurate.
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The computer printout of the Fortran IV program, "DRODS'', is given
the next page, followed by a sa.ple output of the Intensity data.
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C /^7-J=;i7IK.jTHML ANGLE IN DPr n-, r.

no- LOMG ^F^Tnr I^. flisjGSTPr^^ 7i
LENGTH im angstrms

C TH-: RANDOM MUMBFkS ANd'apVu^fD tp^^^?
' ''^^ ^^'^"^ ^ UPPER LIMITS

DIMENSION ^ST (?nn^ -M/oon. ^' ^^^'^

TYPE CO.PLJ'Ex!^Jcrr'c^"^'^^^'^^^^^^^*^^^00). SCATir.no,
ft= ?. 0*3. 1^,16/1. 5/.16

lE (EOEdO) ) 80,3
3 REAOdP,-) A7MU,nELTA,W,Xl n 71 7-^ toWPITE(11,6) Ni,N.;wM.;?'

''''''''"^^^

o f^ORMAT (£+15 )

W^ITr(ii,7) AZMU,n-LTA,W.XL H 7i 7^

'•^PITE( 11 ,5)

no 7C J=ril,N2,NN
SCAT = 0 .

n

SCATI(I) =0,0

T A = T A / n

THETA = TA
SIMTA r 1.3^12*TA
S = l.n/TA
TO 65 M=l,in
p (K) =n.n
y=RTi"E<n)
X = RANE(X)
no 25" < = i , I?
R{K) = RA^'F(O)
i"^ (R(K) . LT .71 ) POa^^lP

?nc ^ (K) =--1. n

GO TO
If"(P(K) .GE.71.AN0.K(K) .Lr.7^) ?20,23n

P2P R (
i<) = 0.0

-0 TO 25 0

270o(K)=l.n
?5n COiiTlNij-

-^KI) =C.Q
''Sim = n.T
00 an 1=2,12
= I

M = T _ ^

(M) .

-c.P(K) ) 2oa ,2-n
^e-n ?sr(i) =G. n

",0 T ? 2^0
270 ^SKII = PSI(M) f F{K) *PELTA
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28 0 GnMTINMf
f'Si (1 ) =n. n

A^. = A + W-^XL*3PJTA

AM r AW»SIM(PA)
ON = AW+GOSfPA)
mNN = A^J*W/?.0
INM = 'Jv|»XL/?.n
IF (AMM.tQ. 0.0) nQ,un

IOC Sfl=i.n
GC TP 12D

110 >A = (SIN(ANN) ) /AiNiV
120 TF(qNN.EQ.O.G) 1^0, UO
130 S° = 1.0

no TO tyo
l^tO SP = (SINCBNN') ) /3NN'
1E>0 COriTTMUE

?N(M) = H*XL-'SIN(SA) ''^IN (SH)

•^NS = A*XM-D^ST,NTA*SPi(A7MU)
EX = COS(PMS) + (0.n,l.n) >'SlN(ONS)
^XC = C3S(f^N3) - (n.Q,l.n)*siN(PMS)

i+n '^OK'TIMUE
o U M = 0.0
SUMC =0.0
GC ^^G 1^1,12
SUM = SUM + £(I)
SUMC = SUMC +rc(i)

50 CONTIMIJP
SCATIf N) =SUfv^SUMC

65 rONTlMUE
DO 500 M=l ,1^

SCAT = SCAT f SCATK N) /lO. 0

50 0 CONTINUE
r, - ALHf; ( r sen ) )

GL = G/?.303
WPITF(ll,eO) THETA ,S,SCAT,G,GL

6 0 FOP^^AT (lX,ri^. 5,5x ,F12.5,5X,P12.?,5X,F'^.?,'^X,F'^,2)
7 0 CONTINUE ,

.

GO 1

8 0 CGNTIMIJE
STOP
'"^!^
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II. EFFECT OF LAMELLAR TWISTING ON SAXS

("THE VENETIAN BLIND PROBLEM")

A. The concept of twistin, 1n la.elU. st.uctu.es Has .uch expen'-
.ental .eM.1cat1on ,7.43,44). The question then aHses as to the Influ-
ence Of the twisting on the natu.e of the SAXS patterns and thei. subse-
quent interpretation. An approach to iiiu.inating this prohle. was under-
taken ,y or. P. P. Warner* and ..self h. considering the ,eo.etr. involved
in cooperative rotation of la.ellae about a given axis within the. perpen-
dicular to the incident x-rays and the influence on the resulting projec-
tion of electron density.

As viewed from the axis of the incident x-rays, this geometry paral-

lels that encountered in opening and closing a Venetian blind and has been

referred to as the "Venetian Blind Problem". The geometry is given below.

Post-doctoral fellow from Loughborough University
of Technology, Loughborough, England.
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The position of the rotation axis will not atfect the final
results to any g.eat extent since it will p.,.an-,v shift the electron
density profile alon, the vertical. The rotation point. RP. as shown
was Chosen for ease of geometric calculations. C and A are the dimen-
sions of the crystalline and amorphous thicknesses, and t is the length

Two limiting cases of rotation are defined strictly for ease of computer
calculations. In the fir^t t^n Cfirst, tan 0, <

J-
, such that the projection of

the edges of adjacent crystals do not coincide while in the second
case, tan „ >,

^
^^^^^.^^ ^^^^ ^ ^^^^^ ^^^^^

lamellae have rotated about RP relative to the direction of incident
x-rays. When . = 0. the transition boundary width. E, is also zero.

Thus, for Case I, the new dimensions at a given rotation angle
are given by

C = C cos w + L
--
sin 0)

A' = A + c - C cos w + L sin^

' = L sin (0
(A-8)



While for the case of . > tan"! (c)
, ^ase II,
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C = C + A « C cos 0)

A' = C cos CO

E' = C + A - L sin w
(A-9)

These equations were 1nco.po.ated Into the Hose.ann prog.a. calculation
(TTSC) to determine the variations of C, A', and E' with . and to

calculate the appropriate scattering curves. The program Is Included at
the end of this section. Initial dimensions were specified such that
C = UOI A = 80l and L - 50oX. The Gaussian width parameters,

g^ and

g,, were set to the nominal values of 0.15, and the average number'of

lamellae In a stack was set equal to 100. It should be emphasized that

the "cases" studied are arbitrary and only distinguished for convenience

in performing the computer calculations. Rotational angles were varied

from 0 to 20 degrees In Increments of 4 degrees; 20 degrees being the

angle at which the crystals physically tough for these dimensions.

Rotation, or twisting by an angular amount, oj, did not change

the crystalline and amorphous thicknesses to any great extent. However,

the transition width, E, varied from 0 to 56A as shown In the subsequent

table. This had the predictable effect of lowering the calculated
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intensities in the tail of the scattering curve. The computer printout
and program are given in this appendix.

A relative mean squared electron density difference may be cal-
culated using Equation (71) in the Theoretical Section. Values of E

are obtained directly from the computer program or from Equations (A-8)

and (A-9). The mean squared electron density difference between the

crystalline and amorphous zones may be estimated by

- L (in amorphous region)

(A-10)

for angles greater than 12°; the approximate angle at which adjacent

crystal edges may intersect along the line parallel to the incident

X-rays. Here, tan w > |- . The following table gives the expected

results.
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E(A)

( ^2

[Eqn.

(A-lO)l 3D ^ <An > ^
rel

0 0 1.0
0.24

4 34.9 1.0
\J • 1 O 0.18

8 69.6 1 n n TO
U. \d 0.12

12 96. 0,59 0.08 0.05

16 62. 0.34 0.14 0.05

20 29. 0.22 0.19 0.04

One can see that for the dimensions chosen, the relative mean

squared electron density fluctuation decreased by a factor of five at a

twist angle of 12 degrees. Since real lamellae systems probably have

larger lateral dimensions than those studied here, the intensity drop

is likely to occur at even smaller twist angles.

It is evident, then, that the twisting of lamellae can be dis-

cussed in terms of its effects on the apparent transition zone thicknesses

and, therefore, characterization of the twisting of lamellae in various

regions of the spherulite on deformation cannot be uniquely described by

this particular model approach. Conversely, changes in the apparent

transition zone thickness on stretching, as observed in the Keller-type

samples, cannot be ascribed strictly to molecular interpretations of

changes in electron densities, but must also include the possibility of



302

lamellae twisting. External evidence mu.t k. •t^v-iaence must be incorporated to sort out
the problem. This has been done in thP ni.r •aone in the Discussion section of this work
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DIMENSION MiODj.zsCSOO)

C THIS PROGRAM CdMPUTBS ^IAVQ rnowc^
C AND COMPARES THEM TO THE LpERIMf.^l^.^'L'^ TREATMENT
C THE EOUATIgN:? USED WITHIN TMI^ PunJi^^^ DETERMINED ONE,

C JHE PROGRAM WAS i N I f T Atpd R v r = '
^ ^ ' ^1^"* {U9MK)r

C ON tO»i4^76,- IT JlPcm AT^c'Tr^^^ COMPUBTEP By S.K.BaCZEK
C POINTS DeTERHlNED B Jhe d^MeS.^hm^' ^ ^^^^^^ 0> SciTTERiNG
C OF TH5 PROGRAM, THE nSmbep OP rnoJ^*^^^^^^^ 7HE BEGINnJng

"

C UMITS O^E-sSTs for the GXC GXA^ 2f w^P;?*''^^
DEPENDS ON THE

C HAS REMAINED VERY CLOSE TO THa? HcJn^^^^^^^^S- THE NOTATION
"

c refbrred-to above and iTl rlER^Fnpc^ l\Jn^ hosemann paper
C MEaiSing: a deviation q rli rm ISc^ l^^^^^ OBVIOUS as to
C THIS NUM^Sff SHoirS BE i?«fi^S^k NqRMALUED DATA AND
C THIS tS avgTLJIrr?^?vM2 ^AjE ANY CeNrTOBNCE IN A rfT.I
C A SET Or-D??A!%K^*J|^^^^I,VA.YlN|^^

I
«00D LUCK,*,

2 REaD(1,U0) nOENT{I);i;:r,5)
110 r0RMAT(5AlQ) ^'^V-

IP"<EOF(t)) 3U0,3
3 WRlTE<2iU3) (JDENTCn, |ai,5)

115 rORHAT<ll11,lX,9410) ^

READ a,") SHIN,SS.SMAX
READ(1,*J XLiDTl.DTF.DTS
NDT8(DTr'"DT|?yDTS*l- - - _
REaD(1,*) XCiiXAl

~ "

READdi^j exCl,GxCM,DGxC
REaD(1,#> UXAX,GXAMiDSXA
REaD(1,*) HN1,HNM,DRN
MN3(sMAX»SMIi>i*SS)/SS
DTaDTl - '

- - •

DO 250 Nal/NUT
SINDT''SIN{3,14^*DT/180,0?
COSDT'COS(3,i42#DT/180,0 7

ZZ = XCl*xn*2^o«XL*sINDT.XCl*COSDT*XL*SiNDT*COSDT«COSPT
<ZZ.LT,9,y) GO TO 321

XC = XCl*COS0T*XL*(SrNDT**3) -

XA = Xci*XAl«(XCl^C0sDT)*Xi;*(SlNDT**3;f)y
X9=yu*SINDT

'

GO To 32ii
"

321 XCsXci*XAl«(XCi*COSDT)
XAsXC1*CUSUT"'
XBByci*XAl«xL*SlNDT

322 CONTINUE
WRiTg(2,e) xw

6 F0RMaT(2X,*tkANSITI0N BOUNDARY = Fft.



PRINT*, MN 304
^0 14159

Pl2»PI*Pi

IGC
1 <GXCh.GXCl)/DGXC

GXc' : Jx.l^'^' • ^^^^^^^^

DO 200 lUX » 1,
Dxc B Gxc*«xi;*xc*xr

DO 210 lUY B i.iGA
DXA B GXA*«xA*XA*XA
RN « RNl ^ " _
DO 220 IKNX 5 1, JRN

—
SD •» 0 , 0

SIT s 0;O
S SHJN
DO S MpiiMN

'

T(MI S

rCi#EXP(.2jo»Pj2*5*S*DXC)
"

rAi*EXPC2|fO»Pi?*s^S^O)^A,

SlBi.a.U-FCJMl.O^rAl/d.o.FC.PA)
5lBfM)?SiB3./^2,0*Pl?*S*sr
sico»(j.u^rc//a.o-Pc*PA)
sicfoSica^sii'O
SlCSpPA^KC
SlC3sRN*(;L0GtSlC3> -

.

SlC<JsCEXP(SIU3)
SlC9£:rA*Cl|0»SlC4)
SjC<M)?(SlDl«SlC2)/(2,0*ei2*S*S)
Sl<M)«<S.iCjM;/KN)4SlBJM)
I^(XB,5Qi070i GO TO 320
TP 1 -1,U/;4,0*PI2*S*S*X3)

Ccl p (t iO»Ct:A)*(i,o»GEBy -~-
ZS(H) ? KPtcei
GO To 33a

320 ZS(Mj 8

i530 CONTIMIJE
SI(H) « 5>Um/*ZS(M)
SITbSITaShm)
S a S f S5

5 CONTfNUe
WRITE(2,/'0J XL,DT

70 rORMAT(/.5X. •CRYSTAL LENGTH ?*F6 . 1 . A* . 5X, tROTATl ON ANGLE
111 DEGREc5»

)

WRITE (n^60) WU,RN,XC,Gxe,XA,GXA
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DO 410 M a li MN
•'•-'1*1 /'XjOHWAA a ^F7,3J

I a M

Sl(M)«(5nf1)/5lT)*iOO.O
no CONTlNgs

•

PO 420 M 1 1, MN
.

10 roRHATaux,r£o,6,5x,ri3,9)
CONTINUH -

WRITEC2,12)
12 F0RMATauX,**,,,„SSSSSS$SSS-*r.«O

RN » RfyJ URN
I

...

220 CONTINUE
GXA r; GXA * UGXA

2:0 continue' "
-

'

GXC a GXt'' ^ UGXC
' DT=nT*PTS
200 continue' _
250 CONTINUE

GO to 2
500 STOP -

END
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venetion blinds the mind
Transition boundary =

25

CRYSTAL LENGTH = 5O0

1 .00 0

xc a 120.0
V A o 0 U 1 g

ft n 1 n n n
, U U 1 U 0 0—

ft n o ft ft

ft ft *z n n ft,000000
fi f\ A fi n f\

n n ^ n n n
» U U P 0 U ij

,006000
007000
,008000
,009000
.010000
,011000
,012000
.013000
',014000
,015000
,016000
,017000
,018000
,019000
,020000
,021000
,022000
.023000
,024000
,025000

- SSSSSS5SSS* w '^'^m

A ROTSTTON ANQLE-g q.ODEGREES

N i lOOfO

,61926

,92l72
3

,
ooopo

-80 , 4^627
2 ,9/9g7
,9V031
,79425 r-"~

1 ,2y244
,20542
,7^4^5
,3^7550

,301^7
,4V902
,60395
,52024
,4/437
,4V6e>3

,516^6
,463.29

,3O0i0
,2/469
,2iioio

,1»971
|1(56J
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25
Transition BouNDAev = 95, OA

CRYSTAL LENGTH = 500
, OA

xc
XA

!? .413
= 82,6
= 117,4
,001000
,002000
,003000
,004000
.005000
,006000
,007000
,008000
,009000
,010000
,011000
,012000
,013000

RUTAtiON ANGLE alg.QDEGREES

N 3

Gxe
GXA

lOOiO

u?o
1,0^037
1,10764
l,65i772
4, 40513

2,12078
,3V2y9—
,l3007
,05795

-,007^2—
.00422
,014S?0

,04176

,014000
, 015000
,016000
,017000

" ", 0180 0 0

,019000
,020000
,021000
,022000
,023000
,024000
,025000

= ». = r-SSSSSSSSSS-«-

,00407
,00049
.0^812
,02272
,00990
,00174
, 00006
,00171
,00399
,00590
,00705
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B. A Se™i-Emp1rical Approach to LamelUe Twisting *

Let us assume that the d1stn-but1on of lamella, twist anglesM about the .ad1a, o. h-axis direction In a polyethylene sphe.ullte
may be described in terms of

PU) = A . B COS 2 .

Where A and B are the Fourier coefficients. The function is even and
symmetric about zero. The distribution is normalized such that

/^^"^ = ^ = // ^ ^'-^ B /^^' cos 2 CO d. (A-11)

or A = I/Ztt. The average value of the lamellae twist angles, cos^a., is

given by

2
cos CO / P(a>) COS CO uco

*
The mathematical derivation was accomplished by Professor R. S. Stein.
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which, after substitution of (A-IQ) and tho c kl« 'Uj and the subsequent mathematical
operation, leads to

cos 0, = i
(1 + Btt)

which rearranges to

B = 7 (2 cos^o) -1)
^ ' (A-12)

According to the semi-empirical approach of Yoon (106) the coefficient B
is given by

B = ^ [1 - exp(-n (A^ - X sif)^^)-]
s

- \ ) sin (A_i3)

where n is a compliance parameter associated with the ease of twisting

about the radial direction and is obtained from WAXD methods described

in the reference. For random twisting of lamellae, n = 0 A is the
s

strain ratio and ij is the particular azimuthal angle of observation of

the scattered x-rays.
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The SAXS intensity. I. 1s proportional to the nu.ber of la.ellae
scatten-ngat^

= 0. I.e.
.

at a "B.a,,.. angle to the Incident bea..
Thus

,

I = K P(a) = 0) = K (A + B)

K

TT

Therefore, the ratio of the intensity of scattering fro. a non-rando.
set of twisted lamellae to a random array Is given by

I

I

K

TT

- exp [- n (x

Random l(n=0)

sln^^]

K

7r
1

which reduces to

i = c/'.r.^ -no r /, 2 , -1

random
T = = 3-2 exp [-n (a^ - A^~') s1n>] (A-14)
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(A-U, one can see that e.pen-.enta, 1, ,ete™i„ed intensities~st .e divide. an a.ount r„) to compensate .0. the increase in inten
sity by this amount. Convpr<;plv i 4. ^ .tonversely, calculated intensities could be multi-
plied by this amount.

A Plot Of Equation (A-U) is given in Figu.e 58 for various values
Of strain ratio and for azi.uthal angles, fro. o to 90 degrees n

-

1.2 according to Voon. The limiting value of 3.0 Is readily observed
at the higher elongation ratios. As an example, for = ,.6. the inten-
sity .ust be corrected by a factor of about 2.8 for la.ellae oriented
90 degrees to the strain while at x = l.l a factor of I s ^5

a ractor ot 1.6 is necessary.
Physically, this is rationalized according to the Yoon theory by the fact
that lamellae perpendicular to the strain undergo a "detwisting" In

which a greater proportion of lamellae planes in the two-dimensional

electron density projection can now scatter x-rays in a constructive

manner (n ^ 0). The greater the strain, the more pronounced the effect.

Conversely, lamellae parallel to the strain undergo an untwisting to

account for the increase in spherulite length, but retain their twisting

randomness (n = 0). Therefore, F(*) = 1 throughout the strain range for

these lamellae. Intermediate values are obtained for intermediate azimu-

thal angles and strains as described in the plot.

An attempt was made to incorporate the FM correction into the

Tsvankin intensity relationship given in Equation (37) as

I = N [|F^| - |F|2] + |F|^ I^ F(*)
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It was ,u1cUy .eaUze. that .his co..ect1o„ .acto. would have to be
-Coded fo. each strain and azl™tha, angle studied and that a set of
calibration curves for each set of conditions

(.^, ,) ,,,,

attempt was abandoned.

A Simpler and more direct approach would seem to be inclusion
into the overall intensities calculated by the Hosemann equations or
into direct experimental curves. This is mentioned in the Discussion
section and will not be repeated here except to say that again the dis-
tinction between lamellar twisting and the diffuse boundary effects

becomes somewhat difficult to separate. According to this method, how-
ever, the intensity is proportional to the number of lamellae scattering
at any azimuthal angle, N(^). This number is given by

^^'apparent

where the apparent number of lamellae scattering coherently HU)
^ 'apparent'

is proportional to the intensity of scattering. This would tend

to affect the intensity of the entire scattering curve, not just the tail.

The latter would be the predominant effect if only the value of E were

varying. The line of reasoning is completed in the Discussion section

for the particular samples studied.
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III. OPTICAL DIFFRACTION ANALOGS

The history and usefulness of optical diffraction analogs to
scattering and diffraction processes is well documented in a book by
Taylor and Lipson (161) and has been used by .any workers (6,1 62-164)

Experimentally, a broad bea. of parallel monochromatic light impinges
perpendicularly on an opaque mask punched with clear holes or con-

versely a transparent mask covered with opaque structures. The resulting
scattering of light by the holes or structures and the mutual inter-

ference Of the scattered waves generate the optical transform which is

then recorded in some fashion. This technique was used in a very deci-

sive manner (162) to interpret the SAXS from drawn fibers. It was incor-

porated into this study to verify if in fact the si ightly-anisotropic

patterns observed photographically from stretched LDPE could be explained

by internal changes in the lamel lar/interlamel lar dimensions. The pro-

cedure is as follows.

Chartpak pattern film, type PT055, and graphic tape, type 1501,

were used to design the masks. They were chosen because of their very

accurate preparation and fine edges when viewed microscopically. The

"undeformed" spherulite dimensions were 10 cm in diameter and 1 cm

bundles of 5 black lines each. An actual mask is shown in Figure 59.

Deformation of the pattern was accomplished using the affine scheme

considering constant volume on deformation. Therefore
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tan
(f)

= A
3/2

tan (p

0

and

' ^l-" (A-15)

the orinin soerifi^H
distance from

9 spec,f,ed a polar coordinate syste.. . and r arecorresponding values after uniaxial . .
'

> ,

^^f°™"1or. by a strain ratio\ along the y axis.
°-

The beginning and end points of each blacK li
k„ .

'^'^ '^"^ were determinprt

program written around Equation (A-15) Th.15). The program is given at the
end of this section. The resultc- +u ^^

^^^^t quadrant were output to
a Calcamp plotter which drew the "deformed" .t. ^aetormed structure and mirrored it to
the other three quadrants. Finally fhp fo.h • •Mnally, the technician, Mrs. Stanley Baczek
meticulously placed individual pieces of Chartn..^ .pieces or Lhartpack tape over each line
A computer printout of a deformed mask is given in Figure 60.
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These masks were thpn nhn+r.then photographically reduced thirty-two times

- — --lit posted .yw COJ~ ,la.s tahle as a ll,ht source. Reductions were done 1„ steps
Of 4X, 4X, and finally 2X TvDir.i oy ^A. lypical exposures were f/16 at 2 to 8
seconds depending on the optical density of the mask hp- .i-y OT tne mask being photographed.

Reduced masks were then nl^rpri -i^^^
^PP^'-^tu, Whose diaqraraatlc

details are shown In Figure 61 and which resembles that of
Taylor and Lipson (see Reference 31, p. n9 for diagram). Scattering
patterns were recorded on Polaroid type 57 f1,. at typical exposures
Of 1/125 sec at f/8 using a 0.9 neutral density filter. The scattering
from two masks is shown In Figure 62.

Determination of the repeat period giving rise to the scattering
maxima and their orders verified th^fufc^rb verined that they were due to interference
effects from adjacent parallel lines, i.e., the long period as defined
in our one-dimensional models. For the undeformed case, many maxima

were noted. In the example shown, only three are visible, but this, of

course, depends on the exposure and power of the beam. Visual observa-

tion of the pattern revealed at least nine rings.

Upon deformation to 60% strain in the manner prescribed, only a

broad, diffuse anisotropic scattering was observed. Obviously since

only one or two maxima are commonly seen for polyethylene in the

unstretched state, the disorder of lamellae in terms of the bundles

as envisioned here and in the Hosemann analysis must be greater than in

our simple model. Also, one could predict from the interference pattern
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Shown 1n Figure 62 that upon stretching a rather well n h .
• .u

'dLner well ordered structurp- the prescribed .anner, a loss of higher order .axl.a would occur
Evidence for this Is seen 1n the scattering patterns for HOPE where
two orders are visible in the unstretched state while only one regains
after about 25% strain at any gi„en azi.uth. ,f the blocks were to
defor. positionally as entire units, retaining their internal integrity
then this should not be the case Tn f^^rf ^r.^ ^u-tdse. in fact, for this extreme case, the
pattern would retain its circular symmetry!

No attempt was made to consider the statistics of the scattering

centers nor to determine the intensity profiles from these models. Since

our laboratory has recently acquired a one-dimensional Optical Multi-

channel Analyzer (OMA) (Princeton Applied Research), this technique

could be extended to a more elaborate study similar to that presented

here for the analysis of SAXS data. This indeed would be a controlled

situation in which the theoretical models could be scrutinized with

respect to a large, fully-characterized physical model.
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PROGRAM nrroP'l ( TMPiiT nnrr^,,^
CALL PL0TS(6)

'^'^^^
'
^ '^^^'^ =I^-^P'JT , TAT?r7

CALL PLOKi,. 0,5. 0,-3)
RFAD (5, ICJ.ELRTio

10 F0RMAT{F5.?) ' '

30 F0PMAT(«*F5.P) 'y-^^
IF.(E0F(5))l,G,i+Q

'0 COMTI^'U-
EP=ELPTlo

Xl = THtTAl/57. 29578 ""^^ ^^'^^

X2=THFTA2/57.^g578
Pl=°l/25.i4
R2 = P2/2 5,/,

X11^ATAM( (EP*^i.q) *TA^' ( XI ) )

X21 = ATAN( (Ec**l.q)»TAN(yp))
Pll^Ri*--Kll-Ri*.-P*rFo*.+ ' r^,P^<^ ^ — .

X12 = Pil*rosfJii?-^ <^2S(X2l,)*.z.,.(SlN(XZLL)_*JLlL.G)J^1*C0S (Xll)
V12 = 9ii>.siN{Xil)
X22^P?1 *cns( X?l)
-Y2a=R21*SlN(X^l)
CALL °LOTf X12, Y12, 3)
CALL PLOT (X22,Y22,2

)

CALL PLOT (-X12,Y12,3)
. .

CALL °LnT{-X22,Y22,2)
CALL PL0T(-Xl2,-yi2,^)
QALL_.PLOT (-X22,-y22,2)
CALL P L 0 T ( X i 2 , - Y i' ^ , 3

\~

'

CALL PL0T(X22,-y22,2)
GO TO 20

ICQ CALL °LOT (u . J , 0. 0 ,99Q)
STOP

. PNQ- _



ADDITIONAL COMPUTER PROGRAMS



A. TCSC

Hosemann, Telex



.0:1.00

00:1.20

0 .1.30

:i.40

0^)1 A'5

•.160

;> 0.1.70

Oo;i.oO

0:1. 90
./ 0200
00220
^'230
..02Z5
00240
0 0250
00260
00 0
00280
0 0290
00300
003:1.

0

00320
00330
00340
00350
003.^0

00370
0 0330
00390
00400
004:1.

0

0 0420
0 0430
00440
00450
00460
00470
00480
00435
00490
00500
0 ; : .!. 0

OOS2O
00S30
00^40

550
560

0570
CS80
(;590
^600
•6.i, 0
^ '>20

.?630

.^640

:.'650

J6 60

320

DlhENSIGN FL(300;

FK-i.^. ^>i'ENTER n:i;-:NT:[F:i:cAT:i:oN. 50 spm:fs^
Ki::.A^.: llO^ :i:i:hNr

110 r 0RiiAT(5A:!.0)
Pr^:ir^r..|.-NTER SHxNi-SS.SHAX. FRFF Fi OA i>l^

Ri-j'il:. Sh.!:NySSySMAX
MN - ( 3;;AX--SHIN-f-i3;/SB
:i. .L i•CiV^^AT^6XyF6.0 )

REVU.\ 1.2 vl 1 ) (I"
< ) y :[:::: :UHW)

;:;E?J5;':"^''".,y^-;'-^
^'''^^^ i-Of^B^iz correct this data? y or

Ki::.i-U.< <..idy J. AN
:i:f( .i:an»eq» :i.HY) go to 450
i-n 0,0
DO 400 .i::^:::l. vMN
E:i:T::^:F.i: I iF( I >

400 CONTINUE
GO TO 776
450 FIT 0,0
no 555 1^:^:1 vhN

( I ) (. Sh 1Hm2 ) >!cF ( I ) 1

1

000 ,0
PI... ( I ) F (!)/(( )tl 000 . 0

)

PIT - FIT i F(l)
Sfilh - SHIN fCO

555 CONTINUE
776 CONTINUE
PKjNTy ?;:UANT TO NGRnALIZE DhTA^i' Y OR m
REAL 38 y I AW
:::f( lAuj.EQ., iHN) go to 360
I--' R :[

N
•

i y i;;: n

t

i:;: r n

o

rmi.

i

z a t :i:

o

f a l;

t

i}r , f r

e

e f l oat
READv FNORM
FIT -0.0
DO 355 I=:::1>-MN

P(I) F( I >>j^FN0RI'1

EE (I) FE(I;Ji?FNORM
FIT FITiF(I)
355 CONTINUE
3oO CONTINUE
777 CONTINUE
i-'

R

1 ;<Tv^ E

N

T ii f;; i::r y s

t

. y am

o

r p i-i . y and rr an s i

t

i:

o

n t i-i :i c

k

* in a n

g

. t

READs-XCyXA?XB
FR 1 N "i y ;K t: N T E R G X € :!. y GX C M y D (^5 X C; y i"" R i;;: E F L 0 A T ^

READ.GXCI yGXCMyDGXC
! R ]; N i0 * i;;:n i' i;:; r x a :i. y g x a o y d g x a y i r e e f l o a t *

READy GXA.L yGXAiw DGXA
I"' R ... a T / E N I E R R H .;. y R H ri J R N y I- R i;- E F E 0AT*
READyRNlyRNhvDRN
PI ^ 3. 141 5

V

PI2 Pljt^PI

yc -o c/' xciXA)
IC; ' }-(GXCM - GXCI //DGXC
IGA -i. }(GXAh-GXAI)/DGXA
IR:\ 1 r ^ RNM--RN1)/DRN
i.i .X i : •..) X C :'.

BEol oD 500 »0



^0670

00690
00700
0 0? J. 0
0072C
00730 iVN::::RN;l.

NZ - 2

;;'0 200 LGX :uroc

GXA :::: GXAl
^'0 2:!.0 JGY -

:i . TGA

[..' \ I .... !"i \ ! -I

321

./.;7.40

0 0750
00760
0;)770
OC /80
00790
OOSOO

''^^'> 220 IRNX
Ob 3 CGNTlNnF"
SIT -0.0
Si!:-::0.0

DO 5 M::::;|.yMN

IRN

0-FC>!<FA)

00B60 FAS^';;,^-^;^*^^'^'^*^^^>^^^-^^^^-i-->>^si^

00870 o:i:B:I.::::(:Uo-FC)^.(;UO--FA)/(i
<>0880 SIB(ri)::::BIB:U^2.0>kPI2^S>^S)
0 0 ci 9 0 S I C:0 - ( :l. . 0 FC)/(U(^ .... |::-p ^^ f a >00900 3IC:l.::::Blco>f<?:rir;o '

''^^

0C910 s;i:co-FA;{<Fn
00920 Slc:y^^RmcU)G(^if:?i)
00930 S:i.C4-CFXP<STn3)
00940 SIC2-FA>K<:(..0-Srn4)
009;:H) ;-|:c(H):::=(Si:c;i..^Bic2)/(2,o.P:i;2^^

-.'•<H^-(S:i;C(M)/RN)i3IB(M)
'XE»FQ,0*0) GO TO 320

F !•• :•:: - 1 . 0 / C 4 , 0 >i< p 1 2tSt^CKB)

CFB^cn'
[ '

^
oip ?

T

''^r '

^ ' ' ^''"^^ ^
'
o.P:i:.s.xB

>

cu. ^::: ( :> :o::cF A ) i!

^

' > >
-^^^^^^ o.pi.s.xb >

0:1.020 ZS(ri)::::FF>KnFI
'

0:1.030 GO TO 330
0:i.040 320 Zo(M) -
0,1.050 330 CONTINUE

S:i:(M)::::S.i;(M);{;ZS(M)

00960
00970
0u9b0
00990
01000
0 .1. 0 :i 0

0 :!.060

0:1.070

01080
0 1090
0 1.1 00
0

1

1 :i 0
oii:.:o

0 1130
0 l;i.40

0 1130
0 :i. 1 6 0
0 1 170
01 1 80
01.i.90

0 1200
0121

0

01220
0 .1. 230
01 240

BIT SITfSKM)
S^:::SiS8

5 CONTINUE
DO 41(' n::::lyMN

81(H) :=::SI (M);f?Fl T/3I

T

X ::: ( f ( 1) -S 1 { M ) J / F ( 1)
SD::::8DiABSU)
410 CONriNUE
BD::::bD/fiN

1F(NZ.>E;..!. 1 ) GO TO 999
1

1

•
( 8 D . !... 1% B E 8 T 8 D) B E8 TG

X

C GX C
BE8T8D)
BE8T8B)
BE8T8B)

IF(Sr.LT.
1 F(S1.! J...T*

1 F(8D J... T*
F>N :::•!< N-fBl-^N

220 CONTINUE
GXA-"GXAiDGXA

BESTGXA::::GXA

BE8TRN^=:RN

BE8"! 8D:::-8i;i



0:i 2::>o

20 c j^.i ;i;NUE

0:L.>;!0 RN-SESTF;:N
01Z20 [:.(., iu 838

'v- vv Cunt I NUF

322

0;!.260

0 1280
01290
0-1. 30-/

,;.50

W 1.^60 PRINT lis, (IDENTCf ),!•::::•( .'^^^

01370 iMRrrE(2.6) XB
"

01380 PRINT 6i. XB

01410 GXA^^^BiiBTGXA
01420 URrrE(2.60) WCvRNyXCyGXC.XA.GXA
01430 PRINT 60y WC . RN . XC , GXC . XA v GXA
01440 60 FCR^iA Tc /y lox,;^:;HWr vP'i -^ty t-,-- , .

014o0foMGAL y!- / ..^y/
y lOXyl^HXA :::: yFi^^.j .7Y,6HGXA • .r- •

01460 lJR;i:TE(2y8) BD
'

^
.1.

.
. y

ol !Uah -• vhy.^j

01470 PRINT 8y 8B
01480 8 FGRMAT(25Xy)KDEy:i;ATIi;)N - *F7,4..//^
01490 IPdANJl-Q. IHY) GQ f G 430
01500 Du 420 i-j^^^^lyMN

01510
0 1 520 !w i-< i Ti;;; ( 2 y :i. 0 ) km) ? f < m ) y s :i; <

>

PRiNT 10 y r (M) yP(M) ,31 (n)
:l. 0 F0R M A T < 1 0 X y 1 0 . 6 . 5 X y 1 3 . 5 y 5 X y F :i 3 * 5

)

420 CDNllNUE
GG 10 441
430 CONTINUE

01580 UO 440 M::^:iyMN

01590
01<?>00 l«iRrrEC2yl2) T(n) yFL(M) yF(H) ySKH)
01610 PRINT 12 y T(h) yFL(M) yF(M) yS L (M)
0

1

6 2 0 1 2 I"-0R MA T ( :i. 0 X y F :l. 0 . 6 y 5 X y !•• 1 3 . 5 y 5 X y

01630 440 CONTINUE
01640 441 CONTIMUE
01650 PR.i NT y*WOULD YOU LIKE TO CHANGE PARaMFTFRS '^ Y OR m
01660 READ 88 y 1AN8
01670 88 FORMAT ( A :l)

01680 IP (lANS.EQ . IHY) GO TO 777
C H

'

.. i... R E F 1... A C li;; ( 5 1-i TA F" E 2 y 5 i- l J A P E 2 y 0 y 0

)

81- UP
PNIi

01530
0 1540
01550
01560
01570

F13.>5y5XyF13.5)

0 1690
01700
0

1

7

1

0
REAliY
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B- ECFl (H109)

Vonk Experimental Correlation Function, Batch;

Adapted by F. p. Wa rner

(
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)

'=- = UijTPuT
)

• .•^ = -« 3.' p.;temsity puimt^-^k^
^ ) * I I A \ y c T 3 n M

AY BE

= )
I? T^.-E «^Ju^-c.Rr w,nTwnrr««GSTR0M3

r^.-'-^^;^

— 1 f- c T "I t L' )

IJQ 34 r li NO
A

t- 0 ^NA T f c Ai -
1
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( C'^M/>T ( 1-1

,

"'-11)

0 , f- 6
, ,

r 6 .

i ^ LA , MX, E, MP
11

. r
, 7 / 2 0 X

,

f"GRM'^TTl?r-^ ,1 )

« (• c ^ c"*? X
,
cTTn TrrrH 5 1 r y *-( s * * ? ) a s^ e a d

'
r

1^ rcr^l AT rA/T-
uc 10 ^' = l,'^'v,iO
r-rr-- f/ir9-""

-

wqlTP (^^, /^ -ii^li (=^(^'i2:).'^2 = M,vi)
—lu CO^Ti'iTUt:

/ f-O^^N'AT l-^ri r-
, ,!4,2H - , I , i? X , 1 C F S . 1

)

{.p_-^^-«_^_r7-u\-rr-CT:-Trr-T4

= 1 1 '^^ * * ^ ) / 3 , G

I C Q ,v = 1 ,
-

^

S 2 = s 1
•*

"
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1 ^

i /

1 <
U , H - , I !:i , 'p X , 1 6,1)

GO

" ea^rrtx-T' t:
-

HCS=n,- -

fj C 13 ^' = '1 P , r. N

SzHS^y _

f^*irT£^ c ^ + " CT-^'

P C a p u 3 / ( M r-; , n p + 1

)

' ccut rr.ut
-~

RzG.n
"

-f-rA-x-=fr^'«x/-^-K+T
,
Q ^ —

H(jriA = c . u

scMap=n7o
If 1 1, -0,1^ TO ?o

» 5XT5H-3-

S = H * q

7 '.^

PIH-Hc:}

SOMA-SOfA^F I His

^0''t& = sn n^rrxH
o 0 M A - S S " 3 0 * A

^^O^tB = Sr*Scr'^a

MY = M" + 1

t) G 7 V ""^-i V .
I'i X

S=M*SS

7 7

-r7-rtp7: p r / ( 5" '^^J
F'IHSL^:.-CL!S(7_^0*3,l<l5?i:*S*R)*FlHF
-v5 C-ft7r°"= ^ n M H

^ C B ^ = " ' b ^ * f-
i ri P

"^TT^X^ - <^tr*-^"'^r^!r P

- l^A-M c S ^ * ^ W-^^A " ) / (
S c He + S 0M P P )

C G M T I N '
!^

ivKtT^^ (^•ti^^) GAK, SOr-A; SQf^AP, SCMh, SO.MBf:

FORMAT
(

^ 0 ,
i , >

,
F5

,
5', X , Fb , ^ .

7X
,
F

. 5 ,
i F6

. p , , Fe . 5 )

STOP
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C. TCn (H112)

Vonk Theoretical Correlation Function, Batch;

Adapted by F. P. Warner



PFOGFAM H112 (INPUT, OUTPUT, TAPE1=INPUT,TAPE2=0UTPUT)

OIMENSION PA(30Q), PC(3CU), TEKST(20), S(2C0,M, Tti+), B(300 . 19)DIMENSION PCA( 30 0 ), PAA(3CQ> .

t5i .3UU,i^>

DOUBLE X,C,Y,B
READ (1,1) NO
FORMAT (12)
D 0- 3 fy -KK-^1 , HO

.

FEAO (1,2) TEKST,LZ,C,eA,CA,BCA,C8,BCR
FORMAT ( iaA3,/10ASWIi+,6F6,t+)
VV=10.0**L7
PEAO (1,1+) NDC,NDA,N)ABC,NC,HA-
FORMAT (512)
•DO -^—1=4-1-100

PA (i)=a.o
PC(I)={>.0
WR1T£_(2,3 2) TEKST,C,eA,CA,BCA,CB,BCB

32 FO RMA r- { IHl , IG A8 , /IX , 10 A8 , // ,lX-^,^^HSPECIFIC -PATA^, //tOX ^SH G-=^-,-F
1C.6/10X,6H BA = ,F10 .6,/lCX,6H CA = , FIG . 6 , / 10 X , 6HBCA = ,F10.6,/1
2X-r&H-€-B-=^, Fttr,-6-,y-l e-X-,-6++6e-B—=^-^ Rt6-. 6^
IF (NDC.NE.if) GO TO k9
WRITE (2»50)

50 FORMAT < // , 2 X, 2H YC , 8X , 3HPCI , /)— Yc = a. 0 —
DO 1*2 N=1,MC
DO- V3~M=^1* 30-P-

U3 PCA(M)=O.Q
PCS = C-* 0

PCXS=0.0
00 i+l M=l, 3(;G

X=FL0ATCM-1)»C,G1
P G A -( m-^D^-S-T B N ( r X-, Y^) -—
PCS=PCS*PCA (M)— PCX = PCA( M) *X
PCXS=PCXSf PCX

if-1 CONTiriUE
PCI= (PCS-0 .5»PCA (1) ) O.Ol
^ G-X I-=J?^X 0-1

AVXC=PCXI/PCI
YC = YC+(AVXC-C)
WRITE (2,U5) YCPCI
F0RMAT-(2F8. tf)—

kZ CONTIMUE
S^/Vbtd-^P^i

^9 IF (N0A.NE.2) ^o TO
WRITE - 12>51)

51 FORMAT (//,2X,2HYA,8X,3HPAI,/)
— YA=O.C

ro ^6 N=1,NA
DO it7-M=l*-300

1*7 PA A ( M) =0 .0— PflS=C-.0

PAXS=0.0
DO i+p M=i»3nr- —
X=FL0AT (M-l)*r.01
pa a { ,M)-=DIST8N (6A .,i .D-G >X-vYA)

—

PAS=PASfPAA (M)
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PAX=PAA(M)»X
p AXS=^p-AXS+ PAX '

CONTINUE
- — P^T=(PAS-G.5»PAA(1))*C-,D1

PAXI=PAXS*0.01
AVX/V=PAXI/PAI
YA=YA+CAVXA-(1,C-C))
WfcrilE_C2-,5 24 -XA^P-M

52 FORMAT (2F8.i+)
~

46 CONTIMUE
-

SCALF2=PAI "
"

- ^^ 00 1 it I = 1 , 3 0 0 - _

X = FLOATa-l)*0.01
I-Z-=^I

GO TO (6,7,8,5) , NDC
--5- CONTINUE

PC(I)=OISTBN(eCA,C,X,YC)
P&a) =PC (ty7 SCAL El -

.

GO TO 9—6-car4X-iNug
IF (I.EO.l) GO TO 9
PC X-I V^OAU (W^X-aCA> C-^-X) .

GO TO 9

_7-GQNTINUE '

PC(I)=DISTBNC(C,CA,BCA,Ce,8CB,X,YC)
PC^-L )-^RQ-{-lVZ-SC-M-F-l .

GO TO 9
- «- G0N1^INUE-

PC (I) =SQOISB(eCA,C,X)
- -9 CONTINUE ^

GO TO (10> 11/ 12» 13) # NDA
C-ONI-INU.T

IF (T.EQ.l) GO TO li*

PAXI)=0AL0G(BA,1.C-C,X)
GO TO 13

-1-1 CONTINUE . 1—
PA (I) =OISTBN(BA, 1, 0-C,X,YA)
R/^(_I_)-^p,A.<-I4.^AL-E-2

GO TO 13
--12 G ONT^I NU E

PA(I)=SaDISB(8A, 1,0-C,X)
-1-3 - C 0 N T I NU E

IF (PCfl) •LT.VV. AND.PACI) .LT, VV.AND.X.GT.C) GO TO 15
_l.i^_C4D-N-X-INUi

15 I=IZ
DO-lT-ll = l,tf

DO 16 12=1*300
S(I2,Ti)=G,a

16 CONTINUE
-T-<Il-)^G*-0

17 CONTINUE
00 19 11 = 1* 3n^ —

—

DO 18 12=1,19
B(I1,T2)=J.0

18 CONTINUE
-CCijIXliUE ^—

20 1=1-1



X=FL0AT(I-1)»L.,Q1
&o-^^>~(^2r^3-,-£^t-r^i^,-N&c

21 CONTINUE
- FC = DISTBN(8CA,C, X+O, r.05, YC>

FC 1=01 ST BN (BCA,C>X^O .0025* YC)
FC3 = DIST6N(PCA,C ,X+0»-3 0 75, YC)
FC=FC/SCALE1

1 = F€-l / S G A L-Et
FC-? = FC3/SCALE1

— GO TO 2 5

22 CONTINUE— FC = DALOG (BCA ,C,X+C-,005) —
FC1=0AL0G(BCA,C, X+0. 0G25)
F e ?=&AbO&{ Be Ar G^-X^-Q-^{^•75-)

GO TO 25
-23 COf^TlNUE

FC=OISTBNC (C,CA, BCA,CB,BCr,X*0.0C5,YC)
F C 1 = DI S TBm t C , C A , PC A , e B , B C B ^XH'0-,"&6^25^, Y C>
Fj3 = DIST9NC(C,CA,BCA,CB,BCB,X4-U,0075,YC)
F C-:>F€-AS e A bE-i

FC1=FC1/SC ALEl
FC3 = FG3/SCALE1
GO TO 25

2h CONTINUE —
FC=SQOISB( BCA,C,X+0. 0 0 5)

FCl-=^0f>FS64^€-A-,-5-fy-«-e-r{Hh25^)-

FC3 = S0DIS3 (BCA,C/X-i-0 .0 075)
-2 5 CONTINUE -

IF <NABC.N£, 1) GO TO 27
01 = 0 .0025* (PC(I) 4-PC<I+l) +2vG*FC +**.0*(FCl+FC3)) /3.G
03 = 3. 0025* (X'DC (I) + (X + 0.C1) »oc(l+i) +2.0*FC» (X*-0. 005) 0*FC1* t X + 0

1

0

Z^y+i* . C * F G 3» t-X+ L . {>£-7 5>-) A3 • G

GO TO 29
-27 CONTINUE

D1 = 0.'jG25*C.5* (PCCI) tFC 1 + FCl +FC + FC+FC3 + FC3I-PC ( I f 1 ) )

D 3 = 0 . 0 0 2 5"^ 5 * { X C ( I ) ( X-i-a* 0 1 ) *Pe-( I+l Z t 0 » FC * { XH-Mr-5 ) +-2 . 0 »Ee t*

lX+0. Q0 25) +2. C*FC3* (X+0.CC75)

)

-2-e-e^-N^fi-NHE

T(l)=T(i)+Dl
T (5) = T ( 3> 1-03 —
DO 29 L-l^k

29 S C I , L ) = T ( L )

IF (I.NF.l) GO TO 20
£>0—30-L--1-/-I-Z
X = FLOAT <L-1)*0.01
SMr, 1)=S(L,1)/C
S{L,3)=S(L,3)-C*S(L,i)*X

-30 CONTINUE "
CALL CONV (S U,l) ,PA ,P(1,2) , C .31)

GAbL- -G0NV-(B(l, 2) , S< H l)Tfi-<l-r3)-,-G-.^3i>

CALL CONV (PA,PC,B(1,6) ,0.01)
- CALL CONV (B(l»6)>B{l#6)/e(l»7l/0.01)

CALL CONV (B(l,6) ,B(1,3) ,F(1,10) ,0.01)

CALL CONV (^(1,7) ,B(1,3) ,F(1,13) ,0.01)

CALL CONV (8(1,13) ,B(1, 6) ,B(1,1'+) ,0.01)

CA tL—CON V - ( B ( l^^W r^Al f 6 ) r a-( 1-^-1 5->-r-a*-0-l)

F=C* (1.0-G)
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00 11 I = 1>30C

S2 = 3(I,3) +8(1,10) +B(I ,13) +8(I,l^f) +B(I,15)
B(I,19) = (C/(1.0-C))»lS0*S2-t^) 1—

31 CONTINUE
1 F—( NOC . Ne , if ) - G T 0^ Z7
WPITF (2,3g) YCSGALEl

37 IF tNDA,NE.2) GO TO 36
H-two^

WRITE (2,i+G) YA,5CALE2
UQ FORMAT (/10X,6H YA = , FlC . 6, /I OX, lUH SCALE2 = ,F1C,6)
38 K=l._ '

KV = 1

WP-I-T-E-(2, 33)

33 FORMAT < IH 1 , ^X , IHX , 6 X , 2HPC , 8X , 2HP A , 8 X , 2HQC , 8X, 2HI C, 6X, 2HB? , 8X , 2H

B

- l»eX,2H86,8X,2HB7,7X,3HB10,7X,3HB13,7X,3HGAM)
3it K=K*-KV

X = FLOAT (K-1) *G.ai -

WRITE (2,35) X,»r(K) ,PA(K) ,S(K,1) ,S(K,3),B(K,2),e(K,3) ,B(K,6) ,B(K
-1 71^,.3_ac,^l 5 )-, B-t K-^l-3)-t-^-(4< , -1-9 y

35 FORMAT (lX,F5.2f 2X/ IIFIO .6)
IF- (K^Ea..llV- -KV = 2

IF (K,E0.31) KV=5
IF - (K.-En.81)-^KV^10
IF (K.LT.291) GO TO 3h

57 CO N-T-I-f4UE

58 CONTINUE
IF—( KK. EQ,-NO) -5T0P-

36 CONTINUE
ENa
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D. SAXSC

Schmidt Slit Desmearing Program, Batch
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'^''"'(^';y.E?';^J^^;:^^,^?;^^^^^^^^ ^^^^ ^aussia. weighting punctiom

TH. USrR HEFPKEP TO (P w ^^M, tot ^ GAUSSIAN WEIGHTING FUNCTION

IH£ ANGULA. DATA IN'^f --nrMr t% 7 m m, ^
FOLLOWS.

GIV.N ror,. SCaIV:^:'^ if GL-'' i^::'^
iNTcNSITY VALUES F(I|

SYrOOL * WILL P£ US.--D TO CENut"^ m.I^tto, I^^S^^^'
A-I.^AX. (THE FORTRAN

^OR iNTcNriTIFc; AT WHirS EXP^Jtm ntI. ^1^^^°'* USED FOR F(I)
IMTZNSITY VAlGcs'IrE^PUT 0^ 3^13 TfoV.lj''''''

''''

^^^^oj::r^^nri^t'i^^^^^ --^lo*. hilliraoians-
CO^-EniEO PITEN.I^t'c COMPUlt'L NEXT ^P^

'
' I LL IR AD I A NS .

THFOUGH N.^A .TLLlHADIAMi . ;S FR^^

"

f1h °NU?^'rfofCA^rfP^r^r^ HILLIRAOTANS, rI.AROuIs'oF
"

^'^

'^'rAon'i^^''''^^
PPOGF.AM, THE CAKOS AkE ARRANGED AS FOLLOWS.

rA;>n 2. jc ame ihax. (the value of jo on this card must equalME S,"^ALl::5i JO VALUE Ubc:D WITH ANY OF THF SCATTERING
EQUAL TMc LARGEST I!'AX VALUc USED FOR ANY OF THE CURVES
BEING CORRECTED.)

CARD 3. Nl, N2, N3, ti^, U5, MS
CAPD a, JO ANO IMAX FOF. THE FIRST CURVE
CAfD 5.^^THE FIRST CARD OF THE SET OF CARDS WITH THE INTENSITIES

T^'E OT^'E^ CA^LS FOR VMIS CURVc T^'cU FOLLOW. FUR EXAMPLE, IF THERE ARE 80
F(^) I^.' f'- FihST CUrVc, IHAX = 6C, AND THERE 16 CARDS IN THE S cT . FOR
-^CH SUGCEcDiNG CUkVE, THE StT OF Fd) CARDS IS PRECEDED BY A CAkD GIVING
JO AND IfiAX FCP THIS CURVE.

AFTEP THE LAST CURVE FAS BEEN CORRECTED, THE COMPUTER GIVES A STATE-
MENT INDICATING THAT THE END OF THE DATA HAS GlEN REACHED.

USUAU Y IT IS MOST CONVENIENT TO HAVE THE VALUES OF N3 AND N5 BE AT
LtiAST AS LARGE AS Nl AND N3, Rc^SPECTI VELY, WITH N2 AND N^* BEING NO LESS
THATN N^ AND N6, RESPECTIVELY. mqwEVEF, THESE CONDITIONS ARE NOT NECES-
SAkY. FOR EXAMPLt, IF CORRECTED VALUeS ARE DESIRED ONLY FOR A SINGLE
mNGULAk IKCPEHcNT, THE APFfOPPiATE VALUES OF Nl ANO N2 CAN BE CHOSEN, AND
N3, N^f, NE, AND N6 CAN ALL BE SET EQUAL TO ZERO, OR THESE POSITIONS CAN

'".^ LEFT FjLANK on '"ARP 3,

THE lAi.GEST VALUES ALt OWED FCF V HE NUMBt-f-S ON CARDS 2, 3, AND ARE
[,-.TEI-'!!INl(; PV THE DIMENSION STATEMENT AT THE BEGINNING OF THE PkOGRAH.
(THIS STAT.NiNT CAN BE CHANGED WHEN NECESSARY.) NO Ih^AX VALUE ON CARDS
2 OR ir CAN EXCEE^^ JCO, ANT NO INPUT CURVES CAN HAVE MORE THAN ^uO DATA

c>r.JNTS, aC^O-PxNG "i 0 THE DIMENSION STATEMEriT USED IN THIS PROGRAM. WITH
Tfu- NUr!B"T- ^: 1 USED IN THE SECOND SUBSCKlPT OF T(i,JJ) IN THE DIMENSION
>TATEfH-NT, rron^roTcO INTcNSTTTcS CAN BE CALCl'LATED AT UP TO 50 ANGLES.
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.j;^^ERy'o;:%SRor^r.rANrj" ^'^^^^^^ ^^^^^^^^^ by the

=>Av .d-AM lu'.i^J'/v ?M .tL^t^t -'I'"''
successive SLITS ANC WITH THE X-

IFT-n Fnr c:i t~ cc^^t CEMlMtTrKS. TH- CONSTANT SL MUST B£ SPEC-
IN cur -ASLS TH- w^t ;'.p°tu'"J''

cohk.ectigns are calculated.
7HroP.>irAL?^CALn i AT-n Pv^

GAUSSxAN WEITHTIMG FUNCTION IS

-Cr'^lh u Vil ^w^-n^'''^ °^ "-PORTED BY R.W.HENDRICKS AND P.W.

CALC.ILlTID'r
bEPAKATED PROGRAM CALLED WEIGHT FOR THIS

nE^^^.^°irT^rn^^lN^kn^^° THE^ PrJ C^A^^"^^ ^^^^^^ ^^^^^^^^^^

rHANGEG^F0rS0.''?0.^UTERSr''''
LOGARITHM. THIS NOTATION HAY HAVE TO

T^'. AMGLF. S=2*SlN(THETA)/5uAK WHEKE SLAH = LA..BDA IN ANGSTROMS

CQf-'DUTATION OF LEAST SQUARES FIT TlJ
f'lr'ENSICN 7 ( 72C, lOJ) , F(2CC>
CCi' MOr; T

C'lh-ENSION FA (2^0)
DIMENSION IMA (U) , JJM( i+) , AT
I'llMENSiON ID::mT (5)
DOUBLE PRECISION SI, PLcLH, SOPI, ^, SJ1(22J), SJ2{22G),

1 SJ^(?2G), B, r, L, E, DD, EE, H, UIJ, V32IJ,V33IJ,
2 1"<1TJ, ncL5l, DEL 5 2* L.£L53> nEL^2> VV
L: = bC

L 1= 61
PJ= 3. 1415927D 00
A1=2.D?*18C.OD*60 .00
SQPI = 1. 772^+53^55 ICO
"I -.LH = SQ^I*11. OC«DO
SLAii = 1.5^17

1 FOFil AT (Fb.-*, It.)

2 FCl' MAT (2Ii+)

3 FOt "^AT (61U)
L Fl -^HAT (/, '-X , ICHANGLE ( S ) , 9X, lOH AMGLE (NIN) , dX ,l£*HCORRcCTED INT.,
19X, litHKEarUPEL IN T 2 » HLOR? NT 7-r, £0M . CORRECT. INT. )

5 FCf ^fAT (5E13. 7)

6 FCr MAT(/iX,F12,6,bX,Fi2.6,i.X,E2J.6,2X,E18.e,5X,E18.6)
7 FOMiAT (5X,F1':!, 6,E 15. 6, 5X, Fia.6, 2cl5.6)

^EAn(LO,l) A, IF A

RcAtJ (10,2) Jr-/ IMAX
; LAD {L0,3) Ni, N2, N3, N^t, N5, NE

^ ( 2.0C^^^PI) /Al
N - Nl

- N2
" - t nL -

!J - 0

TF ITA .^T., r VQU WAN'i ^ATA LOR^^NIZ CCRRECTEO ONLY
It- ( IFA .G I . > C-0 TO 20 0
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too DO 115 J = JC, NN
iii = I'-IAX - ,J + 12
JJ = JJ f 1

no ic? I = 6, n
S J 1 ( I ) = 0 , T

SJ2 (I) = 0.

0

IJ? S J3 ( I ) = C.

0

B = J

I Ml = IM + 1

DO I = 11, IMl
C ^ I - 10
0 = d'-c + ?nQ*c*8
E ~ (C-IDO)* (C-IOC) i-2DC*3* (C-IDO)
DD=030rT(D)
EE= DSO^.Ti^.)

ni SJl (r^=CL0r((C*-b*-Dn>/(C+B-10C+£t))
SJ? tl) =(C+B-G .5D0)*SJ1(I) -PO + EE

13't SJ3(I)- 0.5D0*( (C+B)**2-lCC/3nG + G.5DG*G**2)+SJl(I)
1 -n.75D0''(Cf6)*OO+(0.7=5DL*(C + B)+C.25D0)'EE
H = A * POEL'^
KA= 0

00 605 I = 10, IM
C = T - 12
uiJ=o»-: Yp ( - fn-"'-H) * ( c^c+ 2nG*u^C) > / c^^^SQPi)
V32i.J = SJ2 (I-l) -2r i»SJ2(I-2) +SJ2(I-3)
\/33IJ=S J3(i)-3D0^SJ3(I-1 ) +30a*b J3 (1-2 )-SJ3(I-3 )

T31IJ = !JiJ'' (SJ1(I-1 >-SJl(i-2 )+V32TJ + V33IJ)
DEL 51 r (i+i ) -^,nQ*cj|(i) + l_QQjA^;^ji )-loOJ*SJl (1-2 )+5DQ*

1 bJl(l-3 )-3Jl(I-U )

. 0EL52 = SJ2(I+1 )- 5L0* S J2 ( i) + 1 C DO*SJ 2 ( I- 1 ) -1 0 OO* S J2 tI-2 >

~

1 + 5DG*SJ2(I-3 ) -SJ2(I-i+ )

PEL53=rJ3 (I + 1)-5PC*SJ3(I) +mn G* S J 3 ( I- 1) -10 D 0* S J 3 ( I - 2)

1 + 5Dn*3J3(I-3) -SJ3(I-tf)
DEL ^? = SJ2 (T)-i+D0*SJ2(I-i) +e 00 *S J2 (1-2 ) - iiD D^S J 2 ( I- 3 ) fSJ2(I-it>
VV=-2DC*DEL5l+DEL5 2 + qDn*0tl + 700* DEL 5

3

T(I,JJ) = T31IJ (5.*UIJ*\/V) /126.

IF ( K^»[ T, it) GO TO 605
KA=KA+1
IMA(KA)=I
jjr(KA)=jj

—>A7(KA)=T(I, J J)

km FOFMAT (5X,2Ii+,wl6.&)
f.0 5 CCMTINI'E
1'^? cor'"Tir'i!E

IF (N - N3) li:, 111, 111

IIG K = M3
NN =

'jr = (,i +

JGl = JJ - 1

GC TO lOQ
ni IF (M - N^) 112, 20Q, 20'^

II? N - NT
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MM =

JO = rj3 +

JC? = jj - 1
nc TO IQn

^ SI IT IrTMGTH nOh'RECTIOM
?00 Rh-AO (LG,2) JC, IMAX

IF(r.OF(L0>) ^CC,701

WKiT£ (LI, IGOO) STF-ATE,NA2IF

REAa(L0,iCG2r(T"nENTa) ANGLE.
100? FORMAT (SAi:)

Mi i,^)

WKITE (Li, 1GQ3) ( I DENT ( I ) , I = i , 5)
Wf ITc (62,ir01) (lO'^NTd) ,l-i.r)

10 0 3 FC^'^IATdXjSAir) '
^'^^

REMJ (LG,-.) (Prn, x = 1, i^AX)

r
SLiO I VALUE OF COMSTANf LlOUiO ?C~ATT. VIA VOM<

3 FGnI>AT(F5.3,I5,F5.3,F6.3)

DC iOO 1= 1,I,^AX
eCO F(I) = (F(I) - SLIQ)'^CFAC

TF( IFA.GT .CO nc TO 60f^

IF (JC - Nl) ?01, ?Qa, 20^-
?01 = N2

JJ = (JC - JCO/N?
IP (Nl - IMAX) 202» 203, 2C3

?C2 N = Ml
•

GC TO 220
203 N = I MAX

GO TO 220
20^4 IF (JC - N3) 205, 208, 208
20 F MK =

JJ ^ JCl + (JC -

IF (.>J3 - IMAY) 2 0 6, 2 07, 20 7
206 iV = N"?

GO TO 220
?G7 iv = I .MAX

GC TO 22':^

J J = J .2 + ( Jb - r^3) /f^6
IF (i'.E - li AX) ?n9, 210, 210

2 09 N =

GC TO 22"
Pin N = I ''i\y

2 23 Of 21': J = JO , Is', I N

IMA Xi = IMAY + 12 - J
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JJ = JJ + 1

SUM = C,n
00 ?25 I = iQ, j.^^^^K= J +T- 12

225 bU^ Si),'1 . F(K)n(I,jj)

XA ^ A^X
X = XA/SLA.V
Y = X A*57, 29578*60. r»

FA(J)rSUM
AC= ( FL CAT ( J) A) ^^^2
Ff^iJ) ^FA(J)*flC -

'
"<?;^^c^,:^J:^^^°4J^^'

"^^'^^

235 CCMTINUE
PA( J) r FA(J)*i U3CC0. 0
IF(FA (J) .L-. , OP^O ,2ii5

2^C FA(J) = 0.0
2^5 COMINUE

WKIT.- f 62, 50h) rA(J)
Snu FGPMAT(l.jF6.l)
2 30 CCN'Tir.'UE

IK (N - IMAX) 251 , 20 0, 20C-
251 IF(K - 252, 261,261
252 JD = Nl + N/+

r, 0 TO 20 5

261 IF(N - N5) 262, 2C0, 200
262 JC = M3 + N6

GO TO 2G8 - -

6 00 WhITE (LI, 6^1)

Afr= (FLOAT (1) -*A*2. 0) **2
FA(I) =F(I)*A3

501 Wfarc(Ll, 502) F(I),FA(I)
502 FCf-;-1AT(/ElP.6,7X,cl3.6)
5 07 CCMTINUS

GO fO 2JC
7 00 CC'vTIMJE

STOP
Ef.'P
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