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INTRODUCTION

The light scattering from crystalline polymer films has been used to

characterize crystalline superstructures such as spherulites, rods and

disks which are usually found in crystalline polymer films prepared from

melts and cast or molded from concentrated solutions. The scattering has

been shovm to arise principally from internal heterogeneities of both

density and orientation of optic axes of scattering elements occuring in

polymer films over distances comparable with the wavelength of the light?""^

It is possible by analyzing and separating the heterogeneities to evaluate

the size, shape and type of the superstructures as a whole as well as the

internal perfection of such superstructures in terms of both density and

orientation. However the separation of the density and orientation

heterogeneities, and the separation of the internal heterogeneities

occuring in such superstructures from the properties related to the

superstructure as a whole are still not completely successful at this

moment.

The light scattering technique has been also applied to elucidate

4-7
deformation mechanism of such superstructures . In principle, one can

analyze the deformation of the superstructures as a whole from the change

of the entire scattering intensity distribution at low scattering angles

and the change of the internal heterogeneities within the superstructures

by that at high scattering angles. Such sort of analysis in terms of

deformation mechanisms can Again be carried out, in principle, from the

point of view of both density and orientation. The change of the density



heterogeneities may give additional information about the interpretation

of the deformation mechanism over that obtained from the orientational

heterogeneities. The other optical techniques such as wide angle x-ray,

birefringence, UV-, Visible- and IR-dichroism are only associated with

orientation of individual crystallities
, amorphous chains or special

chemical groups. The cooperative change in orientation of these structur-

al units gives rise to the change of the orientation heterogeneities

related to the light scattering technique.

The change of the internal heterogeneities may not necessarily occur

uniformly throughout the superstructure but may be quite angularly

dependent with respect to the stretching direction. In case of spherulitic

superstructure, the portion of the structure located parallel to the

stretching direction (polar part) is deformed in a different manner to

ft— 1 ^
that in a perpendicular direction to stretching (equatorial part) ,

Such angular dependence of the spherulite deformation may be quite tempe-

rature dependent. Just as the angular dependence of the deformation has

been interpreted by using the reciprocity principle between the small

12 13
angle x-ray scattering and its objects ' , a similar interpretation may

be also applied to the light scattering. The light scattering technique

may see the intra- and inter-lamellar deformations in different angular

portions of the spherulite. The angular dependence of the deformation

may be more directly studied by using the light scattering technique than

the other optical techniques mentioned above since all methods except the

small angle x-ray technique cannot distinguish the structure units located

in the polar part from those in the equatorial part except the case where



a microbeam technique is employed for those methods"^^'^^

,

The light scattering technique can also be applied to dynamic studie

where the change of the scattered intensity upon deformation is observed

as a function of the time-scale of the experiments. The technique can be

corrfcined with dynamic mechanical experiments under transient loading

patterns as employed in creep and stress relaxation experiments and with

periodic or dynamic loading. From such experiments one may obtain infor-

mations about the time dependent response of the superstructure as a

whole and that of the internal structures as well in terms of both den-^

sity and orientation. The time dependent response of the internal

structures may be, in general, angularly dependent. The technique may be

connected to dynamic mechanical experiments to unders'tand the mechanical

properties of bulk crystalline polymers.

It should be emphasized here that the light scattering technique by

itself does not provide enough informations but that it must be combined

with other optical techniques mentioned above in order to elucidate the

relationship between the deformation mechanism and the mechanical proper

ties of the crystalline polymers.

On the basis of the concepts discussed above this work has been

carried out in order to study the relationship between the morphology

and deformation mechanism of the crystalline superstructures by means of

static and dynamic light scattering.

An outline of the thesis is briefly explained as follows.

In Part I , a statistical description of the light scattering from

the crystalline superstructures is discussed on the basis of the general
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.on

rom

harmonic expansion approach and its special case, the delta funct

approach in order to describe the nature of the non-random orientati

fluctuations found in such systems. In Chapter II [adapted in part f

J. Polymer Sci., A2
, 8, 1127 (1970) with R. S. Stein], the theory is

developed for unorientated systems and in Chapter III [adapted in part

from J. Polymer Sci., A2 (in press) with R. S. Stein] the theory is

extended to oriented systems. Although the general approach can explain

the whole spectrum of experimental systems ranging from the structure

composed of random arrays of crystallites (random orientation fluctuations),

through rod or disk like superstructure to perfect spherulitic super-

structure (one of extreme case of non-random orientation fluctuations)
,

such a general theory is complex and the association of the higher order

expansion coefficients with physically visualizable structural variables

is difficult. The extensions of the theory to three dimensional case

and to oriented systems would compound this complexity. Because of such

complexity, the delta function approximation is introduced in the general

theory, which restricts the theory to systems having rod and disk-like

crystalline superstructures. The scattering from such systems are

described in terms of the various properties of such superstructures,

i. e., (1) size and perfection, (2) type (for examples rod, disk and so

on), and (3) mutual packing of superstructures in space. In case of

oriented systems, the scattering also depends upon C^) orientation of

the superstructure and (5) angular dependences of perfection and mutual

packing of superstructures with respect to stretching direction.



In Par^, the scattering is discussed for the system having spheru-

litic superstructure of crystalline materials with some degree of internal

imperfection. The over-all symmetry of the spherulitic structure is

treated by assuming a model of the anisotropic sphere^ and the internal

imperfections are treated in terms of the magnitude and correlation func-

tion for the internal heterogeneities by using a statistical approach.

In Chapter II [adapted from a paper to be published with R. S. Stein]

effects of such internal heterogeneities in terms of density, anisotropy

and orientation on the scattering intensity distributions are discussed

for undeformed spherulites. In Chapter III [adapted from a paper submitted

for publication with R. S. Stein] the theory is extended to the deformed

spherulites. The effects of angular dependence of the internal orien-

tation heterogeneities on the scattering patterns are discussed.

In Part III , the static light scattering studies are applied to the

dynamic light scattering (DLS) in which the variation of the light scat-

tering intensity from a sample subjected to stationery sinusoidal strain

is studied as a function of frequency and temperature of the experiment.

In Chapter II [presented in part in the APS meeting at Philadelphia,

March 1969 with Motegi, H. Kawai and R. S. Stein ^ and in part in the

lUPAC meeting at Leiden, the Netherlands, 1970 with R. S. Stein and P. J.

Phillips] the apparatus constructed for the DLS measurements are described.

In Chapter III a principle and some preliminary experiments of the DLS

for medium density polyethylene (MOPE) are discussed. In Chapter IV

[presented in part in the lUPAC meeting, Leiden, the Netherlands, 19 70
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with R. S. Stein and P. J. Phillips] and Chapter V , the experimental

results on angular dependence (Q) and temperature dependence of the DLS

are discussed qualitatively for the MDPE . Some speculations on the defor-

mation of the equatorial part of the spherulite involves time and tempera-

ture dependent deformation processes to the bulk strain. In Chapter VI

[presented in part in the lUPAC meeting, Leiden, the Netherlands, 1970

with R. S. Stein and P
. J. Phillips] some theoretical interpretations are

discussed on the experimental angular dependences of the DLS under cross-

polarizers based upon the deformation model of the spherulite proposed by

van Aartsen and Stein^. The experimental results are explained in terms

of time-dependent internal reorientation processes, i. e.,(l) twisting

of crystallites around their crystallographic b-axes occuring predominantly

in the equatorial part of the spherulites and (2) tilting of the crystal-

lites around their a-axes occuring predominantly in the polar part. In

Chapter VII , the results of the DLS study shall be briefly discussed in

relation to other type of experiments, especially to the dynamic experi-

ments such as dynamic mechanical, x-ray and birefringence experiments.

Finally in Part IV some other interesting studies which cannot be

carried out through this work shall be proposed as a future work.



PART I

THE LIGHT SCATTERING STUDIES ON SYSTEMS
HAVING NON-RANDOM ORIENTATION

In this part we shall discuss the scattering of light from systems

having so called non-random orientation fluctuations for both unoriented

and oriented systems. The scattering theories will be developed by using

a statistical approach in which the scattering is described in terms of

the magnitude of statistical fluctuations of orientation of the optic

axes of optically anisotropic scattering elements and their correlations.

For simplicity, the theories will be restricted to the two-dimensional

case with optic axes confined to lie in the plane perpendicular to

t

incident beam.

In most of the crystalline polymer films the crystallites generally

tend to form more or less crystalline domains rather than randomly

distributed arrays of crystallites. In such cases the orientation corre-

lations may become strongly anisotropic in a sense that the correlations

are greater along the extension direction. Namely, the orientation

correlations are non-random in such cases. The theory based upon this

concept may be applicable to structures having non-random orientation

fluctuations such as rod- and disk-like structures as well as structures

composed of random arrays of crystallites (i. e. structures having random

orientation fluctuations) as an extreme case of the theory. However an

application of such statistical theories to spherulitic polymers may be

rather poor except the theory based upon the general harmonic expansion
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approach which will be discussed in following chapters. The scattering

from spherulltic systems shall be discussed in Part II.

t
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CHAPTER I

INTRODUCTION AND PREVIOUS WORK

The theory for the scattering of light for polymer films having both

random and non-random^ ' orientation correlations has been discussed

previously. In both cases, scattering arises principally becaused of the

correlation in orientation between the optic axes of anisotropic scatter-

ing volume elements. The variation of the scattered intensity with the

scattering angle 6 (Fig. I-l) depends upon the variation of the orienta-

tion correlation with the distance r between volume elements (Fig. 1-2).

The larger the distance over which the correlation persists, the more

rapidly will the scattered intensity decrease with increasing 9.

For the case of random orientation correlations, the orientation

correlation was assumed to be independent of the angle 6 (Fig. 1-2)

between one of the optic axes and the vector r but only dependent upon

the magnitude of r. This led to region of correlation which were spheri-

cally symmetrical in shape and to scattering patterns which (at small

values of 6) were cylindrically symmetrical about the incident beam. Two

types of scattering experiments were proposed for unoriented systems; one

in which the intensity was designated as I|
|

in which the polarizer angle

and analyzer angle (Fig. I-l) were changed simultaneously so that

\l!
=

}l)
= ij^, , and a second where the intensity was designated as I_^ in

which the polarizer and analyzer angles were kept crossed so that =

= + 90*^. it was shown that at small values of 6, the values of Im
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and were Independent of i> and at larger values, the variation occurred

in a predictable manner. The experimental results on polypropylene films

were shown to confirm to this model"^^. Recently, Prins and coworkers^"*-

have proposed a slightly different relationship between ^ and ^ for I,,
1 2

II

and experiments leading to constancy of intensity even at large values

of e and intensity is independent of density fluctuations. The newly

proposed relationship between ij^^ and ii^ for I|| and experiments shall

be discussed in Appendix I.

Non-random orientation correlations are defined as those for which the

orientation correlation is dependent upon 6. Special cases of scattering

from spherulites^ ''"^
, rods and disks^^ have been treated where it is shown

that I|| and become highly dependent upon 4^. Such dependence is found

2 17
for spherulitic polymers in agreement with theory '

Most crystalline polymers are intermediate between these extrem.es,

A
\l)

dependence of scattering has been found for many polymers possessing

spherulite type order but the dependence is less than that predicted on

the basis of theories for scattering from perfect spherulites. This

indicates that there is a greater degree of randomness of correlation

than for perfect spherulites . One method for describing suck systems

21
employed by Keijzers, van Aartsen and Prins (K-VP) is in terms of a

"two-phase model" in which the scattering is thought to consist of two

components, one characteristic of the scattering from perfect spherulites

and one arising from the random structure
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' " s + *R \ (1)

The previous theories for Ig and are used, and and 4^ are the

fractions of the two components. Since most of the systems are completely

filled with spherulites, the random component consists of less perfectly

ordered material within the spherulite. An alternate approach to such a

system might be to consider it in terms of a single phase completely

spherulitic system with density fluctuations within spheres by Stein, Wilson

22
and Stidham

. Treatments of orientational disorder and anisotropy dis^^

order within spherulites shall be discussed in Part II.

These spherulite type theories are best for treating high degrees of

non-randomness where the symmetry of spherulitic order dominates. For

systems that are fairly random, a more reasonable approach is to consider

perturbations of the random theory. Two approaches of this type have been

described:

2
(a) A rod-disk interpolation theory has been described involving

an interpolation parameter e. For £ = 0^ the scattering is random but as

e approaches + 1, the scattering approaches that characteristic of an

assembly of isolated rods while as e approaches — 1, the scattering Is

like that of disks. While the theory predicts some features of the ob*=^

served scattering, it is semi-empirical, mathematically unappealing and

requires modifications leading to an unreasonable number of parameters in

order to fit data.

2 17
(b) A "harmonic expansion theory" ' in which the correlation



12

functions are expanded in Fourier series in B in two-dimensions or in

spherical harmonics in three has been proposed in which each of the coef-

ficients of expansion are functions or r and serve as additional corre-

lation functions describing the non-randomness. The theory is general and

is capable of describing all stages of order ranging from random to perfect

spherulitic. Such a general theory is complex and while it is capable of'

exactly describing data, the association of these higher order correlation

functions with physically visualizable structural variables is difficult.

The extension of the theory to the description of three-dimensional order,

oriented systems would compound this complexity.

Thus there is still need for a theory intermediate in complexity

between that of the KVP and the harmonic expansion apptoach as a perturb-^

atlon of random fluctuation theory to describe the properties of slightly

non-random systems. An approximate theory of this sort is described in

this part both for unorlented (in Chapter II) and for oriented systems

(in Chapter III) .

In case of oriented polymers the scattering of light has been

26 27 28
shown ' ' to depend also upon the angle which the principal axis of

orientation makes with regard to the normal to the scattering plane as

well as upon the scattering angle 6 and the polarization angles and

1^2 (Fig. I-l) . Usually, measurements are made under conditions designated

as Ij
j

where ^ ~
^2 ^+ ^^^^ ^ ~

i'-^
~ i'2 90°. Wliile an arbitrary

relationship between the values of and is possible, the birefringence

occurring in oriented systems will affect the scattering pattern so as to

29-33
malce interpretation difficult , The birefringence effect is minimized

when measurements are made under the condition that the stretching
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direction is parallel to the polaryzcr or analyzer^^

.

Intensities measured under these conditions will be designated

I|
I

(n) for I|

I

when = = , I^(^) when = ^ = ^ - 90°,

l^i^) for when = = ^- +, 90? It is noted that this definition of

I|| and I^ differs from the definition proposed by Keijzers, van Aartsen
21

and Prins as a result of their more elaborate and correct difinition of

the vector a. While a formulation in terms of their definition is perfer-

able, the results are stated in terms of the definition described above to

facilitate comparison with our earlier work. In practice, the numerical

differences resulting from our treatment quoted in this part will differ

negligibly from those obtained using their definition as shown in Appendix

I. These three intensities, I|j(fi), I_^(J2) and I_(ft) are functions of 6

and f2 and are equivalent to photographic patterns corresponding to

V^(y = 90° - fi), or V^Cy = 90° - Q) and H^(y = 90° - Q) , respectively.

Under these conditions of measurement, the effect of birefringence on the

light scattering pattern will be neglected, even though there will be some

effect resulting from the retardation of the scattered ray which becomes

more important at larger values of 8.

The statistical calculation of the scattering from a heterogeneous

medium involves the evaluation of the integral

I = C / (M. • 0)(M. • 0) cos k.(r • s) dr (2)

where C is a constant of proportionality, and M. are the induced
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dlpDles in the i^^ and j^^ scattering elements separated by vector dis^

tance r (Fig. 1-2), k is the wave number C2Tr/A) in the scattering medium

and s is the scattering vector defined by s = s - s^ where s, and s are

unit vectors along the scattered and incident ray. The unit vector 0

lies along the direction of the polarization passed by the analyzer in

the scattered ray. For unoriented systems at small values of the scatter-,

ing angle, 0, this leads to the result"*"^

1+ = fiM f(r) cos[k (r • s)] dr (3)
J « -

for the case of random orientation fluctuations in which the correlation

in orientation of the optic axes of elements i and j (represented by the

unit vectors a and a in Fig. 1-2) depends only upon r and is independent

of the angle 6 which a makes with r. Here 5 is the anisotropy in polar-

Izabllity of the scattering element, 6 = ^-^^ ^^^^^ ^1 ^2

polarizabilities along and perpendicular to the principal axis. The ori--

entation correlation function f(r) is defined as

f(r) = [3 <cos^e_>^ - 1] / 2 C4)

where 9.. is the angle between a. and a.. The synibbl < > designates an

average over all pairs of scattering elements separated by distance r.

This function^, which may be determined by Fourier inversion, describes

the size of the region over which the orientation of optic axes is corre-

lated and is related to the structure of the polymer.
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The I|
,

coTnponent of scattering has been shown to also depend upon

a density correlation function yCr) defined by

Y(r) = <Aa. Aa.> / <(Aa
1 J r ^ i-^ av (5)

where Aa. is the deviation of the local average polarizability of the i^^

element from the macroscopic average. It has been shown how the corre-

lation functions can be separated from a combination of I,, and I
I I

measurement

.

The random orientation function approach was generalized to oriented

systems. For uniaxial orientation, this led for example to the result

(at small e)^^

I^.Cfi = 0°) = €36^ <sin^0. cos^e.>^^

J*
f(r) cos kCr • s) dr (6)

where
8,^^

is the angle between a. and the stretching direction. This

expression deviates from Eq. (3) in two respects:

(1) The expression contains an orientation factor <sin^e cos^e > which
i i av

changes as the optic axes become oriented upon stretching a sample. This,

for example, leads to a decrease in scattered intensity upon stretching a

sample so that approaches 0°.

(2) The scaler correlation function f(r) is replaced by a vector function

f (r) . This means that the probability of optic axes being parallel

depends upon direction within the oriented sample. A consequence is that
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while for unorlented samples is independent of J^, for oriented

sample varies with as has been experimentally demonstrated^^ '^8^

The use of the random orientation correlation approximation in this

analysis is an oversimplification. Evidence for this comes from the

prediction with this approximation that for example, at small 6, I

should be independent of ^ for unorlented samples. Experimentally,

appreciable
^lJ dependence is found for many crystalline polymers. It is

Intuitively apparent that if non-randomness of correlations is important

for unorlented polymers, the effect should become more significant for

oriented systems where the dependence of correlations upon B should be

more important. The random orientation fluctuation theory for oriented

systems will be generallized in Chapter III to the system having non-

random orientation correlations with macroscopic orientation of optic

axes

.
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CHAPTER II

NON-RANDOM THEORY FOR UNORIENTED SYSTEM

II-l . The Model

The calculation will be carried out for the same system discussed in

our previous non-random theories^ The scattering volume elements

will be assumed to be uniaxially polarizable with principal polar^

izabilities a^^ and along and perpendicular to the optic axis of the
,th
1 scattering element lying in the direction of the unit vector a

The anisotorpy 6 = - a2 will be assumed identical for all volume ele-

ments so that the scattering arises only from correlation in the direc-

tion of a . For simplicity, the calculation is restricted to two-

dimensions with a confined to lie in the YZ plane perpendicular to the

incident beam (in the X direction). The scattering angle, e, is measured

in the horizontal (XY) plane. No macroscopic orientation is considered

so that all values of a, the angular coordj.nate of r, are equally

probable.

As shown in the previous paper^'', the scattering from two dimension-

al system is given, in general, by

'922 2 - '

1+ =
^

s±n ^lJ cos ^ (K^ + cos 9 - [K^ + J cose

2 2 2 ^ *

+ K^Ccos i|j cose - sin i))
- ([K^ + J

- [K^ + J cose)

2 2 2 2
(cos ^ cose — sin ip) sini|j cosi|; + K^sin ]|j cos

\l)

a - cose)^ > (1)



C
j

6 [K^cos 4^ + K^cos^o sin% + 2K3Cose sin^ cos%

+ 2K^cos^ii. sln^ (1 + cosG) + 2K^sin\ cos^ cos0 (1 + cos

+ K^(l + cose)^ sln% cos^-l;] + K^Ccos^ij. + cosB sin^^^)^

f 2 2

I "^^ti
' ^ * ""r 1^ (r . s) dr (3)

I
<(a • j)^ (a . j)^> cos k (r • s) dr (4)

r 2 2
I <(a • k) Ca. ^ j) > cos k (r • s) dr (5)
J - - - " I . ~ ~

I
<(a . j) (a . k) Ca, • j) (a. . k)

>

cos k (r • s) dr (6)
«t « ^

r 2

J
<(a • k) (a • j) (a. • k)> cos k Cr ^ s) dr C7)

2
<(a. • j) Ca. • j) Ca. . k)> cos k Cr • s) dr C8)

" '"3 — — J — r ^/
r

j
cos k (r * s) dr C9)
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upon solving these equation by using a hannonlc expansion approach. It

was sho™ that the scattered Intensity for unorlented systems Is finally

given by

and

+ = C <(A a.)^> Jq(w) Y(r) $^

+ (6^/4) [Tq Jq(w) *2 + - S^) J^Cw) $3

+ I (T^ - S^) J^(w) $^ + (Z^ + R^) J^Cw)

+ CZ4 + \) J^Cw) ^^3] i rdr CIO)

I = C ' ^ - ^2

I|
I

= C / ^ 2 <CA a,)^>jQCw) yCr)

+ (5^/4) [Tq JqCw) $^ + (T^ - S^) J^Cw) $^

+ ^^^4 + R4) ^4^^) *io^ 1 Cll)

where w = 27r (r/X) sin 6 and X is the wavelength of light in the medium.

In these equations C is a physical constant related to the absolute

intensity which is immaterial to these considerations. The terms

are trigonometric functions of the scattering angles 9 and i|; and are

defined as before by •
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^ .2,2. 0
$Q = sm ^ cos i|j (1 + cos e)

^•22, 2
^'-j^ = Sxn ij; COS Ij; Cl " COS 0)

2 2 ?
^2 " *0 (cos i|j cos e " sin

2 2 2
$2 = sin e sin ij; cos

2 ? 9
'J*^ " $Q - (cos i|j cos 6 ^ sin ^p)

2 2 2
*5 = (cos + cos e • sin

2 2 2
*g = + (cos 4j - cos e sin i/^)

= cos ijj
- sin

\l)
cos 0

2 2 2
$g " *Q " (cos ij;

- COS Q sin ij;)

2
$g = ($^) sin cos l|; (1 + COS 0)

2 2

$j^Q
= (cos i/j - sin cos 0) sin i|; cos (I + cos 0)

2 2
= (sin

}l)
- cos 4^ cos 6) sin cos ^
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^3 = ^1 CI + cos 6)
^^^^

2
I^ie term < (A a.) > is the mean-squared fluctuation in the spacial average

refractive index and y(r) is the correlation function describing these

"density" fluctuations defined by eq. C5) in Chapter I.

The correlation in orientation between optic axes of scattering

elements i and j is described in terms of two correlation functions

F (r, 3) = <cos 2e. .>
1 ij r, 3 U-3;

and

FoCr, 6) = <sin 26. .> qan

where e_^_. is the angle between the optic axes of elements i and j , The

averages are taken over all pairs of elements at constant r and with the

vector r making a constant angle with respect to the i optic axis.

For random orientation correlations, positive and negative values of

6^^ are equally likely so 'F2^'^y " Also, correlations depend only

upon r so that

F^(r, 3) = F rr) = <cos 26.. > =2 <cos^9.,> - 1 = f(r) (15)
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and is identical with the single orientation function introduced in the
theoxy of rando. orientation correlations. This has been shov.. to give
rise to scattering which is independent of ^ at s.all 6 and is character-

istic of correlated regions which are circular in shape.

When correlation depends upon 6, the correlation function was

expanded in Fourier series in 6. giving

F^(r, 6) = T^Cr) + E [T^(r) cos (n&) + Z (r) sin(na)]
n n (16)

and

F^Cr, 6) = R^(r) + I [R^Cr) cos(nB) + S (r) sinCng)J (17)

defining the coefficients T^, Z^, and of eqns, (10} and Qli. The

random orientation correlation case corresponds to T^Cr) = fCr) with_ all

of the other coefficients being zero. The scattering was shown to only

depend upon coefficients corresponding to values of n of 0, 2 and 4,

. Delta Function Approximation

As a simplification of this general treatment we shall consider a

special type of correlation somewhat like that introduced in the rod-^

disk interpolation theory. We shall assume that it is more probable

that optic axes are parallel at some particular value of 3 designated as

6^ and the probability of parallelness is less and equal at all other

values of 3. When 6 =0°, the correlation is rod-like while when it is
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90°. it is disk-like. This Will be mathematically represented by

F^Cr, B) = f^Cr) 6(6 - 6 ) + [1 - 6(6 -
6 ) 3 f(r)

and

F2Cr, 6) = gQ(r) 6(6 - 3„) + U - sCb - 6jJ g(r)
o C19)

The term 6(6 - 6^) is a delta function defined such that for an arbl^

tray function of 6, y(3)

^6=0
(3) 6(6 - 6^) d6 = y(6^) (20)

The correlation function i^ix) is that in the direction of strong corre-

lation whereas f(r) is that in any other direction. For a discrete

object such as a rod immersed in an isotropic medium, f(r) = 0 for

finite r.

Since the coefficients of the Fourier expansion can be given, for

example, by

1
„ = - / Fi cos n
^ Wo 1

6 da (21)

substitution of eq. (18) for F^ yields
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(22)

f 27r

+ [1 - 5(6 - 6^)] cos (jiB) d

= [fQ(r) - f(r)] cos (n6^) / ^

In the particular case when n = 0 , an extra term enters to give

Tq = f(r) + [ f^Cr) - fCr)J / 2tt (23)

Similarly

In this manner, all of the Fourier coefficients are related to f^Cr)
, fCr)

and B^. When f^Cr) and f(r) are indentical, the angularly dependent

terms vanish and the theory reduces to the random correlation case. f^(r)

may be related to the size and perfectness of the crystalline domains in

terms of orientation, while f(r) may be related to mutual arrangement of

these domains in space. 3^ is related to the type of these domains.

II-3 . Numerical Calculation

For purposes of numerical illustration, we consider first the case .

where at any B.; correlation at + 9.. and - 0.. are equally probable.
xj ij

This is a situation where there is no "liandedness'^ so that optic axes
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are arranged symmetrically about some symmetry axis of the correlated

region. Also correlations at n and -6 win be considered equally proba-
ble. Under these conditions = 0, = 0 so. for example, eqns. (10)

and (11) reduce to

+ " ^

I
2 <CZV a.)^> j^Cw) y(r) $^

+ (6^/4) (f(r) Jq(w) $2 + (I/tt) [f^Cr) - fCr)]

[| Jq(w) $2 + cos 26^ J^Cw) 4-3 + 1- cos 46^ J^Cw) rdr C25)

^2 /

+ COS 23^ J2(w) *7 -
f cos 4B^ J^(w)

$g]

j|
rdr (26)

The integrals over r were evaluated by assuming the Gaussian funct ions

2 2
f^Cr) = exp (-r / a^ ) (27)

2 2
f(r) = exp (-r / a ) (28)

and



26

yCr) = exp C-r' / a/)
^^8)

for which the integrations may be readily perforiBed. In the case where

the correlation is ssyiranetric in 3, additional terms associated with,

the cofficient must be added to eqns . (25) and (26). For intensity

this is given by

C 6^

^"^
Jo

^^^^""^ ^ ^^''^'^ 26^. J^Cw) + sin Agj J^Cw) $^3] rdr

and for case of 1 1 . intensity

ci! f
jo

CO

[f^(r) " f(r)J [sin 26 • J (w) 4)^ + sin 4& • J, Cw) * ^1 rdr^ o z y o 4 10

Some numerical results of such calculations are shown in Figs^ .1-3

through 1-7 for the case where a^ = 2JJ, a = IP and a^ = 4P using )> = 0.364

2 2 f\
in the medium, 5 and <CA a^) > are assumed to be 9 x 10~ and 9 x 10

,

respectively. The contour lines represent equal levels of logarithmic

intensity which are shown in table I-l

,



TABLE I--1

r

The Designation of Constant Intensity Contours

Contour No
. Relative Inteiisity Contour No. Relative

*
Intensity

1 60 1* 48

2 35 2» 30

3 20 3^ 15

4 10 4*
7

5 6 5»-
4

6 3.5 6» 2.5

7 2 1.5

8 11

* In arbitray unit;

•

It is seen from Fig. 1-3 that the I scattering pattern for g =~
. o

27

S0°

has four-fold symmetry with maximum intensity for values of ^ being odd

multiples of 45°. This pattern is somewhat like that of a spherulite

with optic axes parallel or perpendicular to the radius except that the

intensity decreases monotonically with e rather than exhibiting a

maximum at some 9 as for a spherulite^ '-"-^
. This prediction of

variation for disk-like correlation is in better agreement with exper-

ment than the earlier rod-disk interpolation theory .

The
1

1 I

pattern for 6^ = 0° is shown in Fig. 1-4. The pattern is

seen to have two-fold symmetry at small values of 9 but shows four--fold

symmetry at larger 9. The two-fold symmetry arises from the T term of
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4

eqns. (10) and (11) whereas the fourfold s,...etry comes from the T

ter:n. The coefficient multiplying the term decreases with e'more

rapidly than multiplying the term.

The pattern for
6^ = 0" is identical with that for b =90% This

occurs because the coefficient
$3 multiplying the cos tel of eq.

(25) approaches zero at small e and the cos 4 6^ term is identical at

6^ = 0' and 90°. The
1

1

|

pattern for = 90° eodxihits two-fold symmetry

and is rotated through 90° from the = 0° pattern.

The pattern for 6^ = 45° is shown in Fig. 1-5. It is noted that

the simplified eqns. (25) and (26) cannot be used In this case because

of the assymmetry in B and the additional terms associated witk and

must be Included. The pattern shows four-fold syiimetry with maximum

scattering at ^ =^ 0° .and 90° and is rotated through 45° with respect to

Fig. 1-3.

The I|| pattern for = 45° in Fig. 1-6 is seen to be skewed and

has two-fold symmetry about = - 45°. For 3^ = -.45'' the pattern is

the same but the I|| pattern is skewed in the opposite direction to

i|» = + 45°. Most real systems have overall symmetry and consist of

equal numbers of regions within the scattering volume corresponding to

positive and negative values of Q^: Thus, one might observe an 1
1 |

pattern shown in Fig. 1-7 obtained by summing fi = +A5° and R = -45°
o "o

pattern. The result has four-fold symmetry with maxima at odd multi--

pies of 45°. Such patterns have been obtained experimentally for poly--

(tetrafluoroethylene) and poly (chlorotrifluoroethylene) and had
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b.en explained on the basis of scattering fro. rods with optic axes at 45°

to the rod axis. The present explanation in terms of non-rando. orienta-

tion correlations is more physically reasonable.

. Conclusions

•
This special case of the non-random orientation correlation theory is

more easy to visualize than the more general case and yields predictions

of scattering patterns that correspond to experimental situations. It is

suggested that this simplification may be fruitful in extension of the

theory to three-dimensions and to oriented systems. The approach is

thought to be more general and realistic than the earlier rod-<3isk inters-

polation theory. The monotonic decrease of scattering with 9 predicted by

this theory is too simple, as a maximum intensity at some value of 8 is

often found experimentally. This oversimplification is a consequency of

the assumptions of eqs
. (27) and (28) of Gaussian correlation functions.,

^he appropriate correlation functions for real systems retain some sphex-

ulitic character and exhibit maxima, and minima. It is presently felt

that this behavior is more readily described by introducing disorder into

spherulite scattering theories, which will be discussed in Part II.
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CHAPTER III

NON-RANDOM THEORY FOR ORIENTED SYSTEMS

In the previous chapter a statistical theory for the scattering of

light from unorlented polymer films was discussed on the basis of a general

harmonic expansion approach and numerical calculations have been made for

a special case of the approach by using the delta function approach.

In this chapter, the theory is first extended to oriented polymer

films on the basis of the general harmonic expansion approach and then as

in the case of unoriented systems, the delta function approach, is adopted

to the general results ;.in order to make numerical calculations. The

theory is also confined to two dimensional case. For oriented syatems the

scattering depends upon two typea of distributions describing (1) the

orientation distribution of optic axes of scattering elements and C2) the

angular . dependence of correlation in orientation between pairs, of optic

axes. These distributions are expanded in Fourier series (J.n the two--

dimensional treatment) , the coefficients of which are functions of

elongation and describe the elongation dependence of the scattering

patterns.

III-l . General Descriptions of the Scattering from

the System Based upon Harmonic Expansion Approach

In case of oriented systems one must start from eqns. (1) to (9) in

Chapter II and derive equations by taking into account 1) macroscopic ori^

entation of optic axes and 2) the angular dependence of general orientation

correlation functions.
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We shall discuss first the evaluation of term in eq. (3) in

Chapter II for an oriented system. I^e evaluations of the other terms

given by eqns
.

(A) to (8) are carried out in a similar manner. No!

2. 2<Ca • k) (a • k) > = <cos-e, cos^e >

- (1/A) {1 + <cos 28. > + <cos 26 >
^ ^ j r

+ <cos 29. cos 26 > } (\\
1 j r'

flu

Now <cos 26. >^ is equal to <cos 26. since this is independent of r and

3 as it does not depend upon the location of element j. The angle 6. may

be expressed in tenr.s of the angle n between a. and the stretching direc-

tion Z' as shov^rn in Fig. 1-8 so that it follows that

<(cos 26 > = <cos [2Cri +
i av I V 1- y J av

= <cos 2rL> cos 2fi - <sin 2ri> sin 20. (2)av av

The distribution in orientation of the optic axes about Z' jnay be expanded

in a Fourier series such that the probability of a given orientation p(n)

is

pCn) = Pq[1 + 2(p2 cos 2ri + cos An + •••)] C3)

vb.ere for example, p is given by
•

. r2Tr

Jq pCri) cos 2a dn
P2 = <cos 2n>^^ = T^ryr:

/ pCru) dru
-'0
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and is the second moment of the orientation distribution. Only even

cosine terms are retained in eq. (3) so as to impose the reasonable sym-

Btry requirements that p(n) = pC-n) = p(n + tt) . It follows that <sin 2n

= 0 so that

<cos 29 > = p cos 2Q /es
i av 2 CjJ

We shall assume that at low degrees of orientation, it will suffice t

retain terms only up to p^.

To evaluate <cos 2d^>^ we will first evaluate the average at a given

e, <cos 2ej>^^g, and then 'average this over all 6, If we realize that

Qj = 9^ + O^y it follows that
I

<cos 2Q^>^^^ = (cos 26^) - (sin 26^)
'

; C6)

For simplicity, we shall restrict our treatment to cases which imply that

for any 6, the probability of finding 6 at + 6 . and - 6^ is the same.
ij iJ ij

Then F^(r, 3) may be expanded in an even cosine term Fourier series in 0

to give

00

Fj^Cr, 6) = ^ T^^Cr) cos 2n6 (7)

Now introducing the angle £ between r and the stretching direction,

eq . (7) becomes

oo

<cos 2Q^>^ g
= cos [2(n + U)] ^ '^2n^^^

[2nCn- - §)J C8)

n=0
'

The average over 3 is equivalent to averaging over n.. Thus one obtains
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[1 + 2 cos 2r\] [cos 2fi cos 2n

sin 2q sin 2^] {cos cos 2nrL + sin 2n2 sin 2nca| dcLL

C9)

<cos 2e.>

J ^2p2Cos 2fi ^ T^Cr) + cos {20^ + • T^Cr) +

P2C0S [2Cn + 2C)] -'T^Cr)| (jLO)

The last term of eq. (1) is evaluated in a similar manner to give

<cos 2e cos 2e.>^ = 1^ < (I + cos 40.) cos 2q.. - sin Ae. sin 20. >

- ' ....

r27r

= CI/Att)
/

p(n) [1-+ cos 40^ + n)J F/r, n)dn

=
i ^ 2 T^Cr) + p^[2cos 2^ + cos 2(2^2 + 0^ T^Cr)

+ coa 4(i2 + T^Cr) + P2C0S 2(2^ + 3^) ^ T^Cr)

aii

Thus, by combining eqns . (1), (5), (10) and (11) we obtain
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^i^' Ca. ^k)2,^ = icl + P2 cos 2^^)

+ Ye P2''°^ 2^ 2) T^Cr) + ^2 cos 2C^ +

+ P2 [2 cos 2C + cos (4?^ + 21) ] jT^Cr)

+ ^2 p^cos C2n + 40 + cos 4C^ +
£)j T^Cx)

+ P2 cos C4f^ + 60 * T^(r)] a2)

This expjres..sion la then ^uhatttiatexi into eq. O) in Chapter U in order

to evaluate . It is apparent that

cos Ik(r " s) ] dr = cos (w sin a) rdrda (13)

It is necessary to express the Fourier coefficients T Cr) in terms of
2n ,

-

the angular coordinates of r. This is done by expansion of e^ch. of thes

coefficients in an even cosine series in I to obtain

in=0
00

^ ^2n 2in^^^
C2m^) cos (Zma) + sin C2iu^) sin C2ma)J

39=Q '
.

a4i
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For unoriented systems T^^Cr) is idependent of K and only the . = 0 term

remains. The higher order coefficients describe the dependence of orien-^

tation correlation upon direction within the oriented sample. A typical

Integral encountered in substituting (M) and US) into D) in Chapter II

is

P
3 =

j zos liSl + 0 T^Cr) cos kCr • s) dr (15)

This is evaluated using Jacobins expansion

00

COS Cw sin a) = J^^Cw) + £ ^ ^2)^'^^ Cl6)

k=l

to give

^3 ~ / / < / „ Icos 2mf2 cos Imo. cos 2a

+ sin 2mn sin 2ina cos 2aJ U^Cw) + 2 ^ "^tS"^^
^kajl dardr

k=l J
00 00

£ . ^J^M, cos 2« + 2 2 X '2.2.

L . in=0 k=i ^ ^

[cos 2mfl cos 2ma cos 2a + sin ImQ, sin 2iua cos 2^]

J2j^(w) cos C2ka) da > rdr

s2inj^ Ccos2(jn ^l)a

+ cos2(m + l)a ) + sin2Tnr2 (sin2CTn + l)a + sin2(jn - l)a)J %
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*^2k^^^
cos C2ka) da \ rdr

oo

'2,2.M cos . [J,|^.^|Cw) ^ J M: rdr
in=0

a7)

The other terms are evaluated in a similar manner to give

^1 = i ^2 ^2 ^2^k ^2^3 + P2C2P4 + P5)

+ 2 p^p^ + p^ + p^Pg] as)

where

oo

^2 ^ X 7^=0 ''0'2m^^^
^2mfi]

• J^^Cw) rdr a9)
in=0

+ COS [2(m + Da] • J2
(jiri-1)

^"^ '

00
00

in=0

+ cos l2Cm " .

^2Cm+l)^^^ ^ ^"^"^

in=0 L

+ cos [2(in + l)nj • •l2Ciiri-2("^ 1

'^"^'^ •
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and

P

111=0 ^ ^
L

8 " " Z. 7 . ^6.2Tn 1)J^J • J2
1 ,3 ,

(w)

+ cos I20n + m: . J2^3^Cw)
j

rdr (23)

The other terms can be evaluated similarly and be given by

h ' il' (2^1 - ^"2 ""^ ^°'> ^2 ^ ^'2^ * ^2^5 -

S'" 16 '^'"'2 " 2) ^2 ^^3 "
"I'-^^lt ^5^

+ 2p^?^ - - p^PgJ a6)

= ^ [2P3 + 2P2P4 - p^Pj - - p^Pg] . ^ (27)

S if-
^'"'2 ' ^2 + + PjP.o + 2^2?,,

+ P12 + P2P,3l C28)

h' ^'iho + ^12 + ^2^3^ '29)

.
'^6

=
if-^S ^^"^ 2n . P^ + 2Pj - p^P^O + 2P2P^- P12 - P^P^jJ 030)

''6'=ll'P2''lO-^fl2 + ^2J'l3l
' (31)
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where

oo

C32)

(33)

00 ^
00

p. =

in=0

^2lm-l|^''^
~ sxn[2(m - ^

"^2(11^-1)^''^^
^'^'^

- sin[2Cin + . ^
2 CM) ^ ^'^^ ^^^^

00

in=0

•'2(,^2) '"Y
-^^^

slnt2(ra + l)nj ^ Jj^j^jjCw)) rdr (37)
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Substituting terms into eq. (1) in Chapter II, one obtains

\(i>y fi, e) = C

+ *0,2'q,2-'2'"^ + *2,Q'2y2^>'i + *2,2'2.2^0«

*2,2''=2.2-'4^''> ^ \,0'i,0'&^ + \,2^.2-'2<">

+ A

^6,2 ^6,2*^8^^> + • • • ^ rdr (38)

where the ^ terms are functions of Q. and 6 given by

Aq^q = 4 + (<I'3 cos 2Q - sin 2f2) ]

^0,2 = ^0,0

A^ Q = 2 [2$^ + P2(2'^Q + -
2p2$j^3 sin 2nJ

A2
2

= ^^2*2 ^^*3 ~ "^12 ^^'^ '^2''*4 ^"^13 ^^'^

"^2 2 ^ ^2*4 ^^^3 "^12 ^"^^ "^^2*2 '^^^

A^ Q
= 2[(I'^ + 2p2C$2 cos 2J^ +

$^2

A, - = 2p^'J>„ + cos 2fl - 2$,^ sin 2fi
4,2 2 3 4 13
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A. .' = <!'

4,2 = % + 2$^3 sin 2^ + 2p^i<^^ cos 4f^ + sin 4J^)

^6,2 = P2^

^6,2 " ^2*4 ^^2*^13 ^^"^

The terms are functions of ^ and e which have been previously defined

in Chapter II. The term arises from density fluctuations which will

be neglected in this treatjijent. For unoriented systems = 0 and

^0,2 = *^2,2 = ^.2 = °

I^=(Tr/4) c/
I ^2^0,0^0^^> + V2.0'^2^">

2 *4^yA^''^^ ^'^^ (^0)

which agrees with the previously reported result"*"^ for which the scatter-

ing is independent of Q. For random orientation fluctuations in oriented

systems, only the t^ ^ terms are non-vanishing, and the result is the

27
two-dimensional equivalent of the Stein-Hotta result

The scattering from an oriented system may be generally described by

specifying the dependence of all of the t terms upon r. Such charac-
m,n

terization would require a large number of parameters that could not be

easily related to structural features of the polymer. A more compre-

hendible description may be formulated by extending the delta function
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approximation which has been useful for describing non-random correlations

in unoriented systems as shown in Chapter II.

Delta Function Approximation

As in the Chapter II, we shall assume that correlation is strong in

some particular direction 6^ and describable by a correlation function

f^Cr). Thus

F^Cr, B) = 5(6 -
6^) f^Cr) + [1 - aCs - 6 )] fCr) CAl)

- y,

where 6CB - 6^) is a delta function. We shall assume that each of these

correlation functions may be expanded in an even cosine series in ^ to

give

00

fQir) = f^Cr, 0 = ^ f2^°Cr) cos C2inc) C421

m=0

00

fCr) = fCr, 0 = ^ ^2m^^^ ^^"^^^ ^^^^

in=0

If one considers tlie structure to consist of an aaseinbly of substruc-^

tures within which correlation occurs, then the difference between f^^

and f^ functions detenuines the anisotropy of shape of the domain and the

difference between f. ^ and f^ describes the orientation of this domain
2m 2m

in the stretched sample. Now the t^^ 2^ coefficients in eq, Cl^) may be

related to the f fxmctions to give
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^II~3. Gaussian Correlation Functions

In previous discussions of random and non-randomly correlated systems,

a Gaussian correlation function was used as a good approximation""-^ '^^ '^^ '^^

for less ordered systems

fCr) = exp I-^r^ / a^] ^46)

where there was a correlation distance serving as a measure of the dis-

tance over which optic axis orientation was correlated. In delta function

approximation, a similar function was assumed for ^QCr) with a different

correlation distance a in the direction of g . The difference between a
^ o 0

and a is a measure of the anisotropy in shape of the correlated domain.

For oriented systems, an ellipsoidally symmetrical correlated domain

^17,26,27was assumed so that

fCr) = exp <-[(yVa)^ + (z'/c)^] > C47)

where c and a are correlation distances along and perpendicular to the

orientation direction (z'). This may be expressed in polar coordinates

as

2

f (r, 0 = exp [- \ CI + b cos 20] . .;

d

2 2

= e""" [1 + cA/d^) cos 2? + ^ * ^ J C48)
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and

If we compare this with the first two terms of eq. (43), we see that

2 2
f^Cr) = exp [-r /d ] (3Q)

and

fo^^) = or^ exp [-r^/d^J (51)

2
where a = b/d . For purposes of numerical calculation we shall assume this

form of correlation function is characterized by the parameters d, an

average correlation distance, and a, a correlation orientation parameter.

Similar types of functions will be assumed for ^Q^Cr) within the domain

with parameters d and a • More complex types of orientation could be

described by retaining additional terms in eq. C43) , but this would in-

volve introducing more parameters than could be experimentally charac-^

terized. Also domains of more complex shape,; in principle, be described

through use of other than Gaussian correlation functions, but again, the

complexity is not warranted.

With the use of such correlation functions the integrals over r

required in eq. (38) may be obtained. For example, noticing that
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-a X u-1 , ,
i K -y J o .

e J (bx) dx = ^ I

2^"-^
a^-^r(v+l)x=0 V ,v+l ^y-h; 1^^ 2 ' "Alj

for positive real part of (y + v), the third term gives

^2,0^2 rdr = -.-cos 23^- ^ \
d/ ^F^ (2; 3; - uJ^/A)

- (2; 3; - u^/h)} (52)

where u = kd sin 6, = kd^sin 9 . ^F^(a; y; z) is a Kummer's function

which is a special case of a generalized hypergeometric function and is

designated hereafter as F(a, y ; z)

.

oo

n°'> ^)
r (a)Z r (y + n) n! (53)

n=0

The other integrals over r are carried out similarly and as a final result

one obtains,

+ A^_gQ3 cos + Ag^gQ^ cos 60^ +
f

A^^^Qj + A^^^Q^ cos 28^

t f f

•
• + ^,2^7 ^,2*^8 " ^0,0^9 ^^0,2^10 *

*
'

(54)
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where

"l ' I to "(l- - V/^) - F(l, 1; - u2/4)]

. 2
p

"2 =
16 K ^<2, 3; - u// 4) - d" F(2. 3; - u^/*)]

^3 = 384 K "f^- 5: -
"o / - 1' F(3. 5; - u^/A)]

"5 ' r[ <"^^ r<3. 3; - u^M) - a^d^* F(3, 3; -
^J^/^)!

% ' 1 ^(2- 1: - - o^d^^" F(2, 1; - u^2/4)]

4 r

^7 = l28 L
^^""^ ^' - - F(4. 5; - u^^/^)

]

f ^6 r

(55)

(56)

(57)

(58)

(59)

(60)

(61)

8

,2

Qg = y- F(l. 1; - uV4) (64)

,26
^10 = - ^^3' ^' - ^ Z"^) (65)

by using a recursion relationship of Kuramer's function

aF(a + 1, Y + 1; z) = (a - y)F (a, y + 1; z) + YF(a, y; z)

(y - a)zF(a, y + 1; z) = y (z + y - 1) F (a , y; z)

+ y(1 - y) F (a, Y 2) (66)
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ion
the terms Q. are described in terms of more elementary Rummer's funct

like F(l, y; z) which in turn is described in terms of more fundamental

analytical functions. For example

F(l. 2; 2) = (e^ - 1) / z
^^^^

F(l, 3; z) = (e^ - 1 - z). 2/z^
(68)

III-A. Numerical Calculations

The effect of the various parameters upon the scattering patterns

was explored by performing numerical calculations using the CDC 3600

computer of the University of Massachusetts Research Computing Center.

Calculations are carried out for the patterns (I^ where =
if;) as a

function of the parameters 6^, d^, d, a, and p^. The significance of

these parameters is as follows:

3^ is the angle which the direction of maximum correlation of ori-

entation makes with the optic axis of the domains. For rod-like domains

•extended in the optic axis direction 3^ = 0° while for disk-like domains,

B = 90°.
o

d is the correlation distance in the direction of 3 whereas d iso o

the correlation distance in any other direction. For random correlations,

d = d .

o

is a measure of how the correlation distance in the 3 direction
o

depends upon direction in the oriented film, whereas a is a measure of this

dependence in other than the 3 direction, a may be taken as a measure
o o

of the orientation of correlations within the domain while a is related to
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the interdomain correlations. While and are measures of the angu-

lar dependence of size and perfection of the domains, d and a are associ-

ated with the mutual packing of these domains in space. For random

correlations, a = while for unoriented systems, a = a =0.
o

The parameter is an orientation function for optic axes which is

zero if these are randomly oriented parallel to the orientation axis of

the sample. The parameter differs from the a parameters in that p^

deals with the orientation of the optic axes of the individual elements

while the a's are associated with the orientation of the correlated domain

containing many scattering elements.

The numerical calculations are carried out for values of the parara-

eters which are summarized in Table 1-2. A comparison of Figs. 1-9 and

I-IO reveals the effect of orienting the optic axes without orienting

the disk shaped region of correlation. Without orientation, the

intensity distribution shows symmetrical maxima at odd multiples of

^ = AS"" as previously discussed. With increase in p^, the pattern is

oriented toward = 0° at larger scattering angles and ^ = 90° at smaller.

This would correspond to a shift of the lobes of the photographic pattern

toward the equator (\i = 90°).

One may see the effect of change, in the orientation of the correla-

tion direction for a given degree of optic axis orientation by comparing

Figs. I-IO and I-ll. There appears to be little effect on the scattering

pattern. It should be noted that while a = a = 1/16 for these two
o

cases (c /a ) = 1.3 and (c/a) = 1.06 so that orientation of correlation
o o
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within the domain is greater than that between domains.

The effect of a further increase in optic axis orientation function

for a given degree of domain orientation may be seen by comparing Figs.

I-ll and 1-12. This is seen to result in a greater asymmetry of the

pattern about ij; = 45".

The effect of orientation of correlations between domains without

having such orientation within the domain may be seen by comparison with

Fig. 1-14 where = 0 (c^/a^ = 1) but a = 0.385 (corresponding to c/a

= 1.5) where a build-up of intensity in the equatorial region of the

pattern is evident so that splitting into four lobes is less pronounced.

An increase in to 1/16 (in Fig. 1-15) with a held at 0.385 produces

little change indicating that the orientation of intradomain correlation

has less effect than that of interdomain correlation.

A change from disk to rod-like correlation is seen by comparing

Fig. 1-12 where 3^ = 90° with Fig. 1-13 where 6^ = 0° for the same value

of other parameters. It is noted that for rod-like correlation, the

pattern is oriented toward the meridian rather than the equator. This may

be compared with the patterns for unoriented systems where there is no

difference between patterns corresponding to 3 of 0° and 90°.
o

Considerations of and patterns would of course have been

possible using this same approach, but it was felt that the patterns

adequately served to illustrate some of the features of the scattering

from oriented systems.

It is noted that the theory is rather poor in describing the scatter-
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ing from systems where the domains are organized in well-ordered morphology

as found in spherulitic structures. Under such conditions, the correlation

functions vary in a more complex manner with r than the assumed Gaussian

form and dependence of correlation upon 3 is more complex than that

represented by the delta-function. Also the change in orientation and

correlation with strain depends upon the mechanics of the spherulite

deformation so that higher terms in the Fourier expansion in orientation

angles would be needed.

This theory may, however, be a good approximation for systems with

less ordered arrangement of the domains in which there is a small devia-

tion from random orientation correlations leading to rod or disk like

character. As has been discussed in the previous treatment for unoriented

system, this theory has some advantages over model calculations for the

scattering from oriented rods'^ in that one may include effects due to

interparticle interference as V7ell as those related to fluctuations within

the domains.
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TABLE 1-2

Fig. No.

Values of Parameters for Numerical Calculations

'2 6
d(y) a

o
/ Q

1-9 2 1 0 1.0 0 1.0 0

0

go**

I-IO 2 1 0 1.0 0 1.0 1/4 90*

I-ll 2 1 1/16 1.3 1/16 1.06 1/4 90"

1-12 2 1 1/16 1.3 1/16 1.06 1/2 90°

1-13 2 1 1/16 1.3 1/16 1.06 1/2 0"

1-14 2 1 0 1.0 0.385 1.5 1/2 90°

1-15 2 1 1/16 1.3 0.385 1.5 1/2 90°

* a) and (c^/Sq, c/a) are not independent to each other but depen-

dent upon in a manner as shown in eqns. (49), (50) and (51) •

TABLE 1-3

The Designation of Constant Intensity Contours

Contour No. Relative Intensity

1 200

.2 100

3 50

4 20

5 10

6 5

7 2

* In arbitrary unit.
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PART II

THE LIGHT SCATTERING STUDIES
OF SPHERULITIC POLYMERS

In this part we shall discuss the scattering of light from spherulitic

superstructures having internal heterogeneities in density, anisotropy

and orientation. The effect of such internal heterogeneities on the

scattering patterns shall be analyzed for undeformed (in Chapter II) and

deformed (in Chapter III) two-dimensional spherulites for mathematical

simplicity.

The theories based upon the two-dimensional treatment are not 'realis-

tic and general because most experimental systems are composed of three-

dimensional spherulites. However they appear to explain most of the

fundamental features of the scattering from polyethylene films.



CHAPTER I

INTRODUCTION

In the previous part (Part I) , the theory of light scattering has

been statistically described for systems having non-random orientation

fluctuations by using a correlation function approach. It was pointed

out there that although a general harmonic expansion approach Is capable

of exactly describing the scattering from spherulitlc systems, It Is

complex even for the case of the unorlented two-dimensional case, and the

extension of the theory to the description of three-dimensional and ori-

ented systems would compound the complexity to an extent where the appli-

cation of the theory would be Impractical.

Most of the complexity In such a statistical approach arise from the

difficulty In describing statistically the high degree of geometrical

symmetry found In the crystalline superstructures. For systems having .

such high symmetry, a model approach has been used to avoid this

complexity.

The theory of scattering of light from spherulltes has been developed

based upon the model approach in which the spherulltes are assumed to

be homogeneous anisotropic disks or spheres (for the case of two-^ and

3
three-dimensional undeformed spherulltes, respectively) or elliptical

6 4 5disks arid ellipsoids * (for the case of two- and three-dimensional

deformed spherulltes, respectively) having different polarizabilltles

along and perpendicular to radii of spherulltes. Spherulltes are assumed
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to be perfect in that there are no internal fluctuations of density,

anlsotropy and orientation. :

Such perfect spherulite theories predict quite well the qualitative

features of low angle light scattering patterns. Tke predicated patterns,

however, differ quantitatively from experiments in three important aspects

as shown in Chapter IV of Part III and in reference (35): (1) the theoret

ical patterns show a more rapid intensity decrease with the scattering

angle at larger scattering angles than do the experimental patterns, (2)

the theory predicts a greater azimuthal angle dependence of scattered

intensity than is experimentally found and (3) a "background intensity"

is always found for scattering patterns along y = 0° and 90° and at

very small scattering angles close to zero.

Such background scattering has been subtracted from the experimental

data to facilitate comparison with the perfect spherulite theory^ It

Is our feeling, however, that this background scattering conveys important

information about the internal arrangement of the structure within spheru-

lites so that its study is warranted. The background intensity is

believed to be primarily associated with the internal heterogeneities of

the spherulites which arises from three kinds of imperfectness of spheru-

lites: (1) intralamellar imperfections such as chain ends, short branches

or chain links, (2) imperfections on the surface of the lamellae such as

large loops, longer branches or chain ends and (3) interlamellar imper-

fections such as non crystalline part. It should be noted here that

Incomplete spherulite scattering such as from sheaf-like sectors '
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and truncations^^ also contribute to the background scattering. However

It appears that the internal disorders may make a principal contribution

to the background scattering in polyethylene films slooly cooled from melts

or isothermally crystallized at high temperature than the disorders in

spherulite shape. This is because the latter type of disorders are

relatively insensitive to intensity of the background scattering compared

with the former and require a fairly large amount of truncations and a

fairly thin sectors in order to produce an appreciable background intensity

At y = 0° or 90% the scattering from the perfect spherulite is negli-

gible in which case the experimental intensity yields direct information

about the background. Such measurements are quite pertinent in studies

Of the spherulite morphology and the dynamics of spherulite deformation

where it is believed that the time scales for the spherulite deformation

itself and the rearrangement of the internal structure are different, as

shown in Part III.

IVo type of the theories have been developed in order to take into

account the background scattering.

_1» Composite model

The model has been proposed by Keijzers, van Aartsen and Prins^''*

(KVP). As discussed in Part I, this model assumes the total scattering

Intensity to be a sum of the intensity from the two components, one from

perfect spherulites and the other from structures having random orientation

fluctuations. The model is verified experimentally for isotactic poly-

21propylene and polystyrene . However in the case of polyethylene.



55

deviations of the theory fro. experiments have been observed by Chu^^
and also In this work for .edlu„ density polyethylene (see Chapter ly'm
Part III). The deviations occur especially at high scattering angles where
the experimental Intensity distributions show greater azimuthal angle
(M or W dependence than those of the theory. The deviations are attrib-
uted to the non-randomness in orientation fluctuations within the spher-

A modified composft. model Is proposed^ to account for these

deviations. In this approach too. It is assumed that the total scattering

intensity Is a sum of the scattered Intensity from two different structure

components, one from the perfect spherullte as KVP and the other from

structures having non-random orientation fluctuations. For the scatter-

ing from the latter component, the theory based upon the delta function

approximation shown In Chapter I of Part I Is adapted. The theory is

more general than that of KVP and capable of taking Into account for the

deviations although It Is somewhat complicated compared with the KVP

theory.

In either case, however, the assumptions on the presence of the two

phases and on the incoherence of the scattering from each phase limit the

generality and the applicabity of the theory. In the case of poly-

ethylene, spherulites fill the sample space and impinge to each other^^

and the heterogeneities are built in within the spherulite or in bound-

aries between adjacent spherulites. In such a case the assumptions

introduced to the composite models may not hold but the scattering should

be discribed in terms of a single phase model (Disordered Spherulite
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Model) allowing internal perturbations of the spherulite in terms of den-

sity, anisotropy and orientation.

2^ Disordered spherulite model

The disordered spherulite theory has been recently proposed" for

two dimensional spherulites. The scattering intensity distribution was

calculated for the case of orientational disorder in which the orientation

angle
( 3) of the optic axes of scattering elements with respect to the

spherulite radii varies from place to place within the spherulite, while

the anisotropy of the spherulite (6) is kept constant. Therefore

0 = 6(r, a)

6 = constant
(1)

where r and a specify the position of the scattering elements within the

spherulite and are defined in Fig. II-l.

For mathematical simplicity two extreme case are considered: (1)

case of radial disorders , in which e depends only upon r but not upon a,

i. e., 3 = 3(r). (2) case of angular disorders , in which 3 = 3(a). It

should be noted here that such a kind of one dimensional disorder would

overestimate the non-randomness in the internal orientation heterogeneities

(of, in the KVP approach orientation fluctuations are assumed to be

random). The real system should be described in terms of combined radial

and angular disorder. The orientational disorder is statistically

described in terms of the magnitude and correlation distance of the ori-

entation fluctuations. In the case of radial disorder, the correlation
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function (f(r^2)) is defined as

f(r^2^ = <cos 26 >

12

and assumed to be

f(r^2^ = exp i-r^^la)
(2)

where a is the correlation distance for the radial disorder and r^2 the

radial seperation distance of the two scattering elements. 6 = A6

- A6j_, and A3j_ and t,^^ are the fluctuations in g at and from their

average (e ) . < > stands for the average under constant r .

12 12

Similarly in case of the angular disorder

G(Yto) = <cos 26.

= exp
[-|Y;l2I ^

where G(yj^2) ^^e angular correlation function and y = a^^^ ^ " ^2'

which is an angular separation of two scattering elements, c is the

angular correlation distance. The absolute value|Y^2l defined such

that if |yj^2I ^ Its supplement [2i\ - ^2^2!^ used. The magnitude of

2the orientation fluctuations is expressed by <cos 2A8 > for both cases.
1 av

The theory can take into account the scattering from systems ranging

2from perfect spherulitic order (in which c or a is large and <cos 2A3 >
1 av

2 2= l)to highly disordered systems <ln which <cos 2A6^> = <sin 2A6 >
1 av 1 av

= 1/2 arid c or a is small compared with size of the spherulites, which
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leads to the prediction that intensity is independent of azimuthal angl

y or ^.). The numerical calculations have been made for case of intermedi

ate order. The results indicate that (1) the radial disorder principally

affects the scattering at scattering angles greater than that of maximum

scattering,
6^^^, and that (2) the angular disorder principally affects

the scattering at the scattering angle less than 9 . It is also indi-

cated that (3) a build-up of the intensity at 0<6 or at e>e ismax max
increased with a decrease of a or c, that is with an increase of the

internal disorders, and that (4) the disorder can take into account the

background scattering at y = 0° and 90°.

In this part, theories for the scattering of light by spherulitic

polymers shall be developed both for undeformed and deformed spherulites

on the basis of the disordered spherulite model.
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CHAPTER II

THE SCATTERING OF LIGHT BY
UNDEFORMED DISORDERED SPHERULITES

In this chapter we shall first discuss the simplest case of disorder

In the magnitude of the anisotropy in section II-l and then in section

II-2, a case of combined disorder in orientation and anisotropy. Finally

in section II-3 we shall discuss the component of scattering and a

separation of density and orientation fluctuations occuring within the

spherulites. Numerical calcualtions have been made for the simplest case

only and the effect of anisotropy disorder on the H^ scattering shall be

discussed in detail.

II-l. The Effect of Disorder in the
Magnitude of the Anisotropy

In Chapter I of this part and in previous work , the scattering of

light from a disordered two-dimensional spherulite was analyzed where the

anisotropy, 6 of the scattering volume element was held constant but the

orientation of its optic axis vector a (see Fig. II-l) was allowed to

to deviate from its average orientation angle, 6 , with respect to the
o

spherulite radius. In this section(II"l) we shall consider the consequence

of holding the optic axis orientation angle 3 constant at 3^ but allowing

the magnitude of the anisotropy to fluctuate from its average value 6 .

The treatment discussed here is also thought to be an extension of the

theory on the isotropic sphere with internal density fluctuations^^ to

the anisotropic disk with internal anisotropy fluctuations.
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The Calculation

For a two-dimensional spherulite of radius R lying in a plane perpen-

dicular to the incident beam with optic axes lying in the plane of the

spherulite and at a constant angle, B^, to the radius, the amplitude of

scattering is given by^

^H^ ~
2 S ^2 / /

"SCr, a) cos 26^ sin 2a cos k(r, s) da rdr

(4)
The term is a constant related to C of the previous work^^ by C = C^6,

and and r are the circular coordinate of a scattering volume element.

The angle
p
2 is given by^

cos = cos 0 / [ cos^e + sin^e sin^y ]-^^^
(5)

As before k = lir/X, X is the wavelength in the medium, and s = s - s

where and s^^ are unit incident and scattered ray vectors. The anisot-

ropy (S(r, a) must be included within the integral because it is a function

of position in the disordered spherulite. As in the previous work^"^, we

shall use the correlation function approach to evaluate the scattered

intensity, which involves squaring eq. (4) prior to integration. Since

the general case would lead to a four-fold integral whose numerical cal-

culation would be prohibitive, we shall consider only special cases where

6(r, a) is only a function of a or of r but not both together.

Case of Radial Disorder

If 5(r, a) only varies with r but not a, then eq. (4) may be integrated
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over a to give

E = C^TT COS sin 2K^- /
^

6(r) J (x) rdr (6)V J r=0

where = y+ 3^, x = kr sin 6, and J^Cx) is the second order Bessel

function of x. Therefore, upon squaring.

2 2
lu = K cos p sin 2C^ ^ o

r =0 J r =
^

^
5(r2) 6(rp J^Cx^) J^Cx^) r^ r^ dr^ dr^

(7)

where K is a proportional constant related to C^. We shall now consider

6(r^) to fluctuate from its average value by an amount A(r^) defined by

6(r^) = 6^ + A(r.) •

(8)

Then

<6Cr ) 6(r )> = 6^ + 26 <A(r )> + <A(rJ A(rJ>
12 ° o i r^2 l 2 rj^2

(9)

where the average is found at constant r^^ ^ ^2 ~ ^1* since positive

and negative fluctuations are equally probable, it follows that

<A(r )> = 0 (10)X r^2
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Let us define a correlation function of anisotropy like, that introduced

by Stein and Wilson"""^

Then eq. (4) becomes

\ = ^ cos^p^.sin^
^ j ^^^ J

a^U^N^^x^) ^^dr^dr^

2
<(A(r )) > r R r R

i ^ / / ^

6/ Jr^=0jr=0 ^/ / _o
\(^12>'^2(^1>^2(^2) ^1^2'^^1^^2

(12)

The first term represents the scattering from a perfect spherulite, whereas

the second term represents the excess scattering from the anisotropy

fluctuations. Thus

= k cos^P2.sin^2^^6^^ J ^ [2 - j^(w) - w J (w)]^

<(A(r.))^> Tr Tr
1

^ ,2 / . \(ri2)J2(^l>^2(^2> ^1^2^^1^^2

o - 1 2 J

(13)

23where w = kR sin9. As In the previous work , an exponential correlation

function is assumed of the form

(14)
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where a is a radial correlation distance of anisotropy disorder. The

integral in the second term of eq. (12) is identical with that appearing

in the previous work^^ for radial disorder of orientation so that the

results of the numerical integrations of the previous work may be employed

here.

Numerical results have been obtained for 6^ = 90° (or 0°), R = 3p

,

X = 0.364y, and for a = 1,000 A\ 6,000 A° and 15,000 A° . The arbitrary

constant in the scattering intensity equation is chosen such that K6
^

5
°

- 10 . A plot of the Intensity at y = 45° is given in Fig. II-2 for

a = 15.000 A° and <(t.(r^))\j 6^^ ^f 0, 1 x IQ-^ 5 x IQ-^ 1 x lo""^

_3
and 1 X 10

.
It is seen that with an increasing amplitude of anisotropy

fluctuation, the fine structure of the higher order intensity variation

with 0 is lost, and also there is an increasing intensity of scattering

at larger values of 6. The even order intensity maxima tend to smear out

while the odd order tend to be broadened and enhanced in intensity.

As with orientation fluctuations in the radial direction, the zero

intensity at 9 = 0 which arises from the angular symmetry is preserved.

2The intensity varies with sin so that the variation of intensity with

the azimuthal angle y characteristic of a perfect spherulite remains.

Plots of the variation of the scattered intensity at y = A5° for

2 2a variety of values of <(A(r. )) > /6 are given in Fig. II-3 for a =
1 av o

6,000 A° and in Fig. II-A for a = 1,000 A° . It is noted that as the

correlation distance becomes shorter, the build-up of intensity at larger

scattering angles becomes greater.
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Case of Angular Disorder

In this case, 6(r, a) only varies with a but not r, so that eq. (4)

may be integrated over r to give

_ 1 2V "
2 V P2 ^ / <5(ot)-sin (2a + 26 )•£ (Y).da (15)

* J a = 0 ^

where y = ^ - y and

f (y ) = cos(w cos y) - 1 _^ sin (w cosy)
(w cos y)2 (w cos y) ^^^^

Thus if e =0" or 90°,
o

2 ^ r 27T r 2tt

I„ - K'. cos p .R / / 6(aj6(a_) sin 2a -sin 2a,^ 7a^=0 7a2=0 ^ ^ 12
f(Yi)f(Y2) da^da^ (17)

where K' = (1/4)K. As in the previous work^^, we assume that

<6(a,)6(a„)> depends only upon the angular seperation of the scatter^ ct J CI

2

Ing elements and is random and we define a fluctuation in 6(a) by

6 (a.) = 6q + A(a^) (18)

so that

2
<6(aj5(a^)> =6 + <A(ajA(a^)> (19)

where
0.-^2 ~ ^2 ~

*^l*
define an angular correlation function

4' (a.J = <A(ajA(a^)> / <(A(aJ)^> (20)
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So that eq. (17) becomes, as before

2 . 2,
sin 2\i

<(A(a ))2>
, 1 av r 2 2 1+ f^i^ 2yI^+cos 2yl2]

^ (21)

o

where

r 2v r 271

^
Jr,^=0 Jy^=0

^1*'°' 2y2-f(Y,)f(Y2) dy ^d,
^

(22)

and

r2^ r2Tr

^2 = \<Yi2) sin 2y^.sin 2r f (y ^ f (y 2)
dy^d y^

(23)

where y = y ^
- y^ = a^^. The angular correlation function may be

represented by an exponential function as before

'^a^^l2^
" ^""P t-|Yi2l/^i (24)

where |y^2I absolute value of y^^ (= ^^2^ ^^^^^ additional

restriction that if y^2 > 180% 'V^(.y-^2^ = "^^(^12 ~ 180").

The results of the numerical calculations of the previous work for

and may then be used. A calculated variation of I with 9 at

V
y = 45*^ is given in Fig. II-5 for a 3y spherulite and X = 0.364 for

2 2
c = 0.7 and various values of <(A(a.))> /6o . The arbitrary constant

1 av
2 4 5

Is chosen such that K*6^ R = 10 . Similar plots are given in Fig. II-6
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for <(A(a.))2>^y5^2 ^ ^ ^ ^^-3 ^ ^ ^ ^ ^^^^ ^^^^ ^^^^^^^

from the figures that angular disorder produces a somewhat similar effect

as does radial disorder, with the higher order ma.^ima and minima becoming

more diffuse with an increase in the mean-squared amplitude of the

anisotropy fluctuation, < (A (a,))^>^y6^^ and with a decrease in the

correlation distance, c. An important difference between the effects of

radial and angular disorder is that with angular disorder, there is an

increasing intensity at angles less than that of the maximum intensity,

®max'
"^^^^ increasing amplitude or decreasing correlation distance for the

anisotropy disorder whereas this region is not affected much by radial

disorders. On the other hand, the intensity at angles greater than 8
max

is more affected by radial disorder.

While the azimuthal dependence of intensity is not affected by

radial disorder of anisotropy, so that the intensity remains zero at

y = 0° and y = 90° (for 6 = 0° or 90°), there is an appreciable effect
o

on this y dependence by angular disorder of anisotropy. Thus it is

possible to distinguish between such radial and angular disorder from an

examination of this y dependence. It is noted that radial disorder of

orientation of optic axes does affect the dependence of scattered inten-

sity, which differs from the results for radial disorder in the magnitude

of the anisotropy.

The effect of angular disorder in anisotropy is demonstrated in the

contour diagram of Fig. II-7 where a perfect spherulite is compared with

disordered spherulites having an angular correlation distance of 0.7tt

radians and mean-squared fluctuations of anisotropy characterized by
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<(A(ap)2>^y5/ of 0.005 and 0.01. It is seen that increasing disorder

leads to patterns of the "tennis-racquet" type described by Kawai and

coworkers^^ The numbers on the contour lines refer to relative inten-

sities given in Table I. With increasing disorder, there is a build-up

of a connecting link of scattered intensity between the center of the

pattern and the typical scattering maximum.

TABLE II-

1

The Designation of Contour
Lines of Constant Intensity

Line No. Relative Intensity

1 4 X 10-^

2 3 X 10
3

3 2 X 10^

4 1 X 10^

5 5 X 10^

6 2 X 10^

7 1 X 10^

Summary

The contribution to the disorder scattering by imperfect spherulites

resulting from fluctuations in the magnitude of the anisotropy is analyzed

for two-dimensional spherulites. The fluctuations are> described in terms

of a parameter characterizing the mean-squared amplitude of the fluctua-

tions and correlation function describing the distance over which the

correlation occurs. Cases considered are those where the correlation
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depends on either the radial or the angular seperation of the scattering

VOW elements. Numerical calculations have been made for scattering.

As with the case of disorder in orientation, one finds that disorder in

anisotropy results in (1) a non-zero value of intensity at , = 0° and 90%
(2) a decrease in the higher order variation of scattered intensity with

e, and (3) an increase in the intensity of scattering at higher values of

e over that for a perfect spherulite. In addition, (4) disorder in the

angular direction leads to an increase in the scattered intensity at small

values of 9 as compared with the zero intensity of scattering from a

perfect spherulite at 9 = 0°.

II~2. Case of Combined Disorder in
Orientation and Anisotropy

Radial Disorder

If both the angle B and the anisotropy 6 are dependent upon r, one

must use, instead of eq. (6), the equation

" ^2" cos

J ^
sin 2c(r)-5(r) J^Cx) rdr (25)

where C<r) = y + g (r) and is a function of r which must be included in

the integral. The intensity is then

2
I = K cos p 1 / <6(r )6(r ) sin 2C(rJ- sin 2C(rJ>^ ^ J r^=0 Jr^^O ^ 2 r^

•^2^^ '^2^^2^ ^1^2 ^^l'^^2 ^2^^

It is then assumed that fluctuations in angle, 3 are independent of

fluctuations in the magnitude of the anisotropy. Thus it follows that



«S(r )6(r ) sin 2ar,)-sln 2arJ>
J- ^1' ^^2

<6(rj6(rJ>
r'^''2^'r^,r2 2ar^)-sln 2C(r2)>^

r
^^7)

Now from eqns. (9), (]0) and (11)

<6(rj6(rJ>
l^^^V>r^,r2 = ^ ^^^'^V> >av^r^^l2> (28)

We may adopt the procedure of the previous work^^ to show that

<sin 2c(r ).sin 2C(r )> =f(r,J isin22C .<cos22A3 >
1' 2

I

° 1 av

2 2+ cos 2^^<sin 2A3^>^^ ^ (29)

where

f (r^2> ^ 23 > (30)
12

and, as before^^ A3^ = 3 (r^^) - 3^ and = 3(r2) - 3(r^). Therefore

from eqns. (26) to (30), one obtains

2 J 2 2 2 ?I„ = K cos p < sin 25 <cos 2A3 > + cos 2E, <sin 2A3 >

V 2 j
o 1 av o 1 av

2

? rn Tr <(A(r )) >

Jr =0 Jr,=0 °o

J2(xp J^(x^) r^r^ dr^dr^
^3^^
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This equation reduces to eq. (28) of the previous paper^^ when
2

<(A(r^)) = 0 and when an exponential correlation function is assumed

for f(r^2^' ^° (13) of this part when A3 = 0 and ffr ) = ^
1 ^ 12

If there is a large amplitude fluctuation <cos^2AB > and
2 1 av

<sin 2AB^>^^ both approach 1/2. Also, under these conditions, the corre-

lation distances associated with the correlation function f (rj^2)

'l'j.(rj_2)will be small as compared with the radius of the spherulite, so that

the limits of integration may be extended to infinity without appreciable

error to give

1 2 2 r " <(A(r ))^>

f(r^2>
^z^""!^ ^2^''2'^

""l ^2 '^''l
^'^2 (^2)

omThis result is a two-dimensional analog of the Stein-Wilson rand

orientation correlation theory''"^. In this case there is sufficient

randomness so that the effect of the spherulitic superstructure is smeared

out, and the scattered intensity becomes independent of azimuthal angle

y and is cylindrically symmetrical about the incident beam. Furthermore,

the scattering pattern becomes independent of the spherulite radius, R

but depends only upon the correlation distances associated with the

disorder in anisotropy and orientation.

Angular Disorder

An analogous treatment applies to case of a combination of anisotro-

by and orientational disorder in the angular direction which leads to the
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equation

2
R 6/ asin^a^ <cos22A3 > + cos22r <sin22A6 ,> ] I

I
o 1 av^ 3

where

+ [sin^2C <sin^2AB > + cos^2C <cos22AB,>
] 1, [i dv o 1 av 4 (

(33)

<(A(a.))^>
I„ = / / n 4- 1 av

2Tr r 27r

Y^O A =0 ' '^^'12>^ cos 2,^ cos 2,

and

2
r2Tr r27r <(A(a,))'>

= / [1 +
^ "

Jv^=n /v =0 '-^'12>1 ^(^12) sin 2r

2 o

f(Y,) fCy.) dy. dr12 12
(35)

where 6(7^^2^ is an orientation correlation function in the angular

direction defined by

G(y ) = <cos 2B > (36)
^12

the average being evaluated for all pairs of scattering elements at the

same radial distance from the center of the spherulite but at a fixed

angular seperation
y-j_2- ^^^h the case of radial disorder, it is seen

that the intensity is the sum of two terms one of Which arises from
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orientatlonal disorder and the ether of which arises from both orienta-
tional and anlsotropy disorder.

IIzl^ The Component of Scattering and the Seperation
of Dens ity and Orientation Fluctuations

In previous work on the scattering from media with random fluctua-

tions
,

it was shown that the scattering arises primarily from

orientation fluctuations but that the scattering also contains a con-

tribution from density (or average refractive index) fluctuations. Thus

from a combination of measurements of and scattering, it is possible

to separate the two contributions. For a perfect spherulite, the

scattering arises from the anlsotropy of the spherulite, 6 , whereas the
o

scattering also depends upon the refractive index of the surroundings^

Thus it is expected that the scattering from a disordered spherulite

will depend upon the anlsotropy of the spherulite and upon the fluctua-

tions of anlsotropy and optic axis orientation, while the scattering

also depends upon the refractive index of the enviroment and upon the

fluctuation of the density of the spherulite from the average.

From previous results^, one obtains the expression for the amplitude

of the scattering.

-'r=0 J a

|/r=0 fa
- C2 cos ^ I I

a^(r, a) cos[x cos(y - a)] da rdr

) cos^Y cos[x cos(p - a)] da rdr V (37)

where cos p is given by^
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1

cos = COS e / [cos^e + sin^e cos^y]^ (38)

We shall first consider the case of only radial disorder where eq. (37)

may be integrated over angle a to give

+ J^ -SCr) [Jq(x) - J^Cx) cos 2c] rdr^ (39)

Upon squaring to calculate the intensities, one obtains

where

"S ~
/ /

<ap(rja^(r )> JA^,)Jr.(^^) r,r,dr,dr
-'r^=0Jr2=0 ^ J- ^ ^ r^,v^ 0 1

/" /^ r =0 J r

0^ 2' 12 12

(41)

R

=
/ /

<a2^^1^^^^2^^
r "^O^V

[Jq(x2) - J2(X2) <cos 2?(r2)>_^^ ^\ r^ r^ dr^ dr^ (42)

and

I

<cos 25(r^)>^ <cos 2? (r^) cos '^^i^^'^^^
^

(x^) (X2) ]

1 2 1 2

^1 ^2 '^^i ^^2 ^^^^
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It has been assumed that anisotropy and density fluctuations are indepen-

dent of orientation fluctuations. The integral depends only upon

density fluctuations, depends upon anisotropy and orientation fluctua-

tions, while depends upon cross correlations of density and anisotropy

fluctuations.

In eq. (42), < cos 2^ (r )> depends only upon r, and
l'^2 2

<cos 2Ur2)>^^^^^ = <cos 2^(r^)>^^ = <cos(2m + 2^2)>^^

- <cos(2p + 26 + 2Ae )> = <cos(2c + 2A3 J>^ ^ o Z av

- cos 2^^<cos 2A32 " 2i^<sin 2^B^>^^ = 0 (44)

Since <sin 2A32>3^ = ^"""^
^^^2\v

= ° positive and negative values of

A32 equally probable. Here 32 is defined by = 6 (r2) . Similarly,

in eq. (43), <cos 2^ (r )> ^ = 0 thus it follows thatr^,r2

^
/,=0 /r2=0 ^"2(^l)^(^2>>r^,r2 'o^\^W V2 ^^1^^2

(45)
and

2)

+ <cos 2^(rj^) cos 2c(r2)>^_^^^^ J2 (x^) J2 (X2) ] r^r2 drj^dr2 (46)

As before one may use

2 2
• <cbs 2^(r ) cos 2^(r_)> = [cos 2^ •<cos 2A3,>

1 2 rj^,r2 ^o "^1 av

+ sin^2c •<sin^2A3i> ] f(r, J (47)
o 1 av LZ
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In the Stein-Wilson theory^^ it was assumed that density and an-

isotropy fluctuations were independent. We shall not .alee this assumption
here since we consider that density and anisotropy fluctuations both arise

from the same origin, that is the fluctuation in the number of crystals

per cm
.

It is conceivable, of course that anisotropy fluctuations could

arise, in part from fluctuations in the amorphous orientation but we

shall not consider this possibility.

To interconnect the fluctuations in density and anisotropy, we shall

consider the fluctuations in p (r) , the number of crystals at distance r

from the origin (assuming only radial fluctuations). If the principal

polarlzabilities of the crystals are and a^, the polarlzability per

unit volume at radius r is

a^(r) = p(x)a^

a^ir) = p(r)a2 = (a - 5/3)p(rj^)

6(r) = a^(r) - a^Cr) = p (r) (a^ - a^) = p(r)6 (48)

where 6 is anisotropy of the crystal itself and 6 = - and the

average polarizability of the crystal is (a^ + 2a^)/3. Thus

<a2(r^)a2(r2)>
^

= (a -.6/3)^ <p(r )p(r )> (49)
1' 2 ^ ^l'^2

Now since p (r^) = + Ap^^ where is the average number of crystals

3
per cm , it follows that

<p(ri)p(r2)>^^^^^ = p/ + <(Ap)\^ Y(r^2)

SO
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where y (r^^^) is a correlation function defined

'^^12>-<^PlAP2>r^,,^/<(Ap)2>^^ :

^^^^

Thus we see that

2

Similarly, It follov/s that

2

Upon substituting these quantities into eqns. (41), (42) and (43) for I ,

and I^, one obtains

= K cos^p^.p^^
I
(4a^ + (4/3)a6 + (1/9)6^)

V

TR TR <(Ap)^>

Jr =0 jr =0 ^-7T-^^(^12)] ^o(V^o(^2) ^2 ^^1^^

2 1 *"^o

2 2 2 2 9+ 6 [cos 2C <cos 2A3,> + sin 2C <sin 2AB > 1o 1 av "^1 av

R <(Ap)^>
[1 + ^—^Y(r,o)] f (r, JJ^(xJJ^(xJ r,r^dr,dr

/r,=0 /r =0'"
p 2 '^'12'^ .^.,2^2-1-2-2^ ^1^2-^1-2

^ 1 o

(54)

The first term is associated with density fluctuations while the second

term is associated with both density and orientation fluctuations. The

first term is y independent while the second term is dependent upon y

.
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The eq. (31) may be written in terms of these same variables as

\ = ^ ^°^'^2
1

^i"'2?^<cos22A6^>^^ + cos^Z^ <sin22A3,> I 6^ ^

o

R <(Ap)^>
[1 +

^ 1 o

(55)

It is possible to seperate the contribution to scattering arising from

density and orientation fluctuations by measurement of I and I at

appropriate angles. Thus it might be possible to obtain the parameters

<cos 2A6^>^^ and < (Ap) ^>^^/p^^ and the correlation functions y (r ) and

fCr^^) required to specify the disorder in a given system.

A similar but more complex analysis may be made for systems with

disorder in the angular direction.
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CHAPTER III

THE SCATTERING OF LIGHT BY
DEFORMED DISORDERED SPHERULITES

In this chapter the change in the light scattering patterns upon

deforming two-dimensional disordered spherulites is shown to arise from

three effects occurring upon stretching: (1) the change in shape of the

spherulite, (2) the change in deviation of the optic axis orientation

angle from its average value, and (3) the change in the distance over

which this deviation is correlated. The effects of these contributions

upon the experimental scattering patterns are analyzed.

III-l. Introduction
*

The change in light scattering patterns upon deforming perfect spher-

ulites has been considered in two^ and three dimensions'^'^. The theories

are based upon a model of affine deformation of an anisotropic sphere

(or circle) to an ellipsoid (or ellipse) and lead to predicted scattering

patterns which change shape with deformation in a manner which is approx-

imately in agreement with experiment. The results are somewhat dependent

upon the assumptions concerning the way in which the optic axes of the

anisotropic elements constituting the spherulite change their orientation

as the spherulite is deformed.

It has been shown in previous chapters of this part that the scattered

Intensity from spherulites is superposed on a background intensity, and

that the background intensity arises from internal heterogeneities of the

spherulites in terms of density, anisotropy and orientation. Such

background scattering has been also observed with deformed spherulites^'^.
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The change of background scattering upon stretching the spherulite is

believed to be associated with the change of the internal heterogeneities

resulting from the internal rearrangement of structure within the deformed

spherulites. Thus the background scattering is believed to convey impor-

tant information on the deformation mechanism of the spherulites. Direct

information about the background may be obtained by measurements of

scattering at p = 0° and 90° where spherulitic contribution vanishes.

In this chapter, a similar analysis is carried out for the effect of

disorder in orientation from deformed spherulites.

III-2. The Calculation

Consider a two-dimensional spherulite with the optic axes a lying in

the plane of the spherulite (in YZ-plane) at an angle 6 to the radius

(Fig. II-l). The plane of the spherulite lies perpendicular to the inci-

dent beam. The angular coordinates of the radial vector r to a given

scattering element are r and a. The scattered intensity is given by

= K cos / sin [2 (a + 3)] cos [k (r • s)] dr (1)

where as before, cos = cos 0 / [cos^e + sin^e sin^y]"^'^^, 9 and y are

the scattering angles, k = 2tt/A and s = s - s where s and s are unit

incident and scattered ray vectors. is the density of scattering

material at position r in the spherulite. K is a proportional constant

associated with in the previous chapter of this part. Upon deformation,

this becomes

E„ = K cos P2 / N (r', a') sin[2(a' + 3')] cos[k(r' • s)] dr (2)
I *• M» 1^
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where the priced quantities designate the deformed state. The scattering

density N (r', a') is generally a function of position in the spherulite

as is the angular orientation of the optic axis with respect to the radius

As before
,
we shall assume an affine deformation such that all parts

of the spherulite deform with the same strain with an extension ratio X3

in the stretching direction (vertical and parallel to the direction of

polarization of the incident light) and ^2 in the transverse direction.

It is usual but not necessary to assume that these spherulite extension

ratios correspond to the sample extension ratios. This affine deforma-

tion results in the following transformations^.

^i_^r, 2 .2^? 2 ,1/2r - r [A^ sm a + cos a] '
, (3)

sin a
I 2sm a =

and

r, 2 .2^2 2 ,1/2sm a + cos a]

A 2 cos a
cos a' = 7: -z

2 ^^2 ^ ^ 2 ___2 ,1/2 (5)
sin a + cos a]

It is then convenient to define an angle y such that

X2 sin y

^ ° ,,2 .2 rM2 (6)
sm y + X cos y J

and
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and a variable q such that

q = kr sin 6 [X s±n\ + X cos%]^^^
(8)

In which case

k (r' • s) = q cos ii

where ^ - a - y. It also follows that rdr = (R^/X^) qdq where X = kR sin 6

2 2 2 2 1/2[X^ sin p + cos y] and R is the initial (undeformed) radius of the

spherulite.

We shall also adopt the assumption of Case I of the previous paper^

that the total density of scattering material remains constant at every

point within the spherulite so that rdr da = N (a
' , r' ) r'dr 'da '

.

Upon substituting eqns. (3) through (9) into eq. (2) one obtains

fx r
Eji^ =

J ^ J
{B(a) cos 23' + C(a) sin 23'}

q=0 J ^=0

cos [q cos ip] dip qdq (10)

where K = (1/2)K cos p. N (R^/X^) and
-L Z O

sm a + cos aj

, 2 2 2.2'
COS a " sm a

C(a) = --^-2
2 2 2~ (12)

sin a + cos a]
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and

X = kR sin e [X^^ sin\ + X cosW^^
(12a)

Case of Angular Disorder

We shall assume that at a given polar angle a' within the deformed

spherulite, the optic axis angle 3' is independent of r and hence of q.

In this case, eq. (10) may be integrated over q holding ^ constant. Let

us define a function f(i|j) by

1
^(i>) - I cos [q cos qdq

X Jq=0

« cos [X COS - 1 _^ sin [X cos ij^ l

[X cos X cos (13)

Then eq. (10) becomes

2 r^^
= X / [B(a) cos 26' + C(a) sin 26'] f(^) di]) (14)

If 3' is constant, this integral may be evaluated numerically to give

results equivalent to those previously published^ (for g' = 0") for

uniform spherulites. Numerical integration can also be carried out for

the case where 6' is a function of a in the deformed state.

The case of interest here is that where there is heterogeneity in g'

in the deformed state. As in the earlier paper , we shall adopt the

correlation function approach involving squaring eq. (14) prior to

integration to obtain for the scattered intensity
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2 r 27T r 2rr

% ' Vl /, , / 2e • + C(aJ sin 26/

[BCa^) cos 262' + CCap sin 2^^^] f(^^) f(^^)
2

where

^1

- Vl' til + I2+ 2I3]
(15)

/ r^ / . ^^""l^ ^^°'2^ COS 26 • cos 26 ' f(,|; ) f ) d^,

'Ji'i'^
2^1^ 2

(16)

^2

and

I

"
/ ^ / C(o'i) C(a2) sin26.' sin26„' f(,|;,) f(^i>J d^^ ^

»/ 11^2=0 J ^2=0 ^
,
^ 2 ^1 ^2

(17)

/27r pTT

I
B(a ) CCa.) cos 26 ' sin26 ' f(^.) f(^l>.) di, ^

d^^
i|;2=0 1^1=0 ^ J. z i 2

(18)

We may now assume, as before, that 6/ = 6 / + A6/ where 6 / is the
1 oi 1 ol

average value of 6^' in the deformed state at the angular location

corresponding to a^, and AB^ is the fluctuation from the average at this

position. Then

cos 26^' cos 262' = cos 26^^* cos 26^2* cos(2a6j^') cos(2a62')

+ sin 26^^' sin 26^2' sin(2A6j^') sin(2A62')

- 2sin 26^j^' cos 26^2* sin(2A6i') cos(2A62') (19)
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Now if A3^2' = ^^2*
^^l''

then

cos(2a3j_') cos(2aB2') ^ c°s^2A3^') cos(2A3^')

- sin(2A3^') cos(2a3j_') sin(2A3^2'^
(20)

We shall adopt the previous assumptions that (1) the fluctuation

A3 is independent of A3/ and (2) positive and negative fluctuations of

A3i ' are equally probable. Thus, for a given and ^ eq. (20) b,ecomes

<cos(246^') <=°=(2Ae2')> = <cos2(2AB,')>^ <cos (2AB , ' )>
,

(21)

Similarly, it follows that

<sin(2A3 ') sin(2A32')>, = <sin^2A3 / )> <cos (2A3 , ' )>

(22)

and

<sin(2A3/) cos(2a3-,')>
, ,

= 0 (23)1 2 ll)^y^p^
^^^^

We shall now define a correlation function

G(;J.^, ^2) = <^°^(2a3^2'^>^^,^, =
^('^'r '^12> (24)

Then eq. (19) becomes

<cos(2e ') cos(23 ')> = [cos23 / cos23 <cos^(2abJ>
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Similarly

and

(26)

<sln(2B^') cos(232')>^^^^^ = (sin23^,' 00323^^' [< cos2(2A3,'

)

>

<sin2(2A32')>
]} G(^^,

(27)

The evaluation of the integrals I^, and then depends upon the

way in which quantities such as 3^^', <sin2 (2A33^' )> and
^^^l' '^^'^^

upon angular position within the spherulite. Let us consider a simple

case first where 3^^' = 3^' and is independent of position within the

spherulite. Then for the simple case where
3
J = 0°, the integrals become

27r r 27T

^ =0 =0
'^"1^ <cos^2A3^')>^_^ G(^^,^^P ^^^P ^^^^

^ (28)[2. fl.
^

I I ^^'^o^ <sin (2A3/)>, f(i/»J f(,|;J

^^'^1' ^12^ "^"^l
"^^^2 ^^^^

and = 0. The integration next depends upon the v/ay in which terms like

2
<sin (2a3j_')>^^ depend upon and upon the functional form of

A simple assumption to study first is that where the angular dependence

of disorder is not affected by the deformation so that these terms are
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independent of in which case

2 f 2ir flu
I = <cos (2A3 ')>

/ / B(a ) B(a ) f(ij; ) f(^ ) G(i|;^ J
J J 11^^=0

J- ^ 1 2 12

d^3^ dij;^ (30)

2 r l-n flu
I2 = <sin (2A3.')>

/ / C(a-) C(aJ f(^J f(^J G(^,J
J ^2^^ ^ 11^3^=0 1 ^ i

2 12

^^^^

One may assume that ^(^2_2^ represented exponentially as in the

previous work so that

where c is an angular correlation distance. It is noted that =

The quantity 14^22^ defined such that if
1^3^21

^ ^' supplement

(2tt -
I ^-^2^ ^ used.

If disorder is dependent upon deformation quantities like

2
<sin (2A3-')> depend upon position within the spherulite. A simple

^1

assumption is that it varies ellipsoidally with the angle a so that

2 2
<cos (2A3j^')>^ = g^(l + a sin a^) (33)

so that it increases from g^ in the polar part of the spherulite to

g (1 + a) in the equatorial part. When a = 0, this reduces to the
o

previous case.
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Similarly, the correlation distance varies with a so that as a

simple assumption

G(Yj^,Y^2) = exp [-\y^^\/ca + p sin^a^)]
(34)

These equations may then be used in the evaluation of the integrals in

eqns. (28) and (29) where a and p are parameters describing the effect of

orientation on the random contribution to the scattering. These parameters

each vary with elongation.

Results

Calculations of intensities for various values of the parameters

have been carried out using the CDC 3600 computer of the University of

Massachusetts Research Computing Center. The calculations were made for

uniaxial deformation at constant volume so that X = \ and \ = X
'"^

3 s 2 s
•

Values of the undeformed spherulite radius R = 3y and wavelength of light

in the medium A = 0.364y were chosen (corresponding to the mercury green

line in air = 0.546y with refractive index n = 1.5). The angular

disorder correlation distance, c, was assumed to be independent of angle

and elongation and was taken to be 0.7 radians. The proportionality

2 2 sconstant K^/cos p^ was arbitrarily set at 10^. The values of parameters

corresponding to the various figures are summaized in Table II-2. The

intensity contours are indicated by numbers which are relative intensities

as shown in Table II-3.
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X
s

TABLE II-2

A Summary of Parameters for Scattering Calculati:

°
.
Fig. No. Comments

ons

1.0 1.0 0.0 TT_q Contour Diagrams
1.0 0.9 0.0 TT_Q fh.\ Contour Diagrams
1.0 0. 7 0 0 ii-y (c) Contour Diagrams
1.0 0.9 0.0 II-IO 0 Dependence
1.5 0.8 0.0 II-12(a) Contour Diagrams
1.5 1.0 0.0 II-12(b) Contour Diagrams
1.5 1.0 -0.2 II-12(c) Contour Diagrams
1.5 1.0 • -0.5 ll-12(d) Contour Diagrams
1.5 0.5 1.0 11-12 (e) Contour Diagrams
1.5 1.0 0.0 to -0.5 11-13 6 Dependence at y

1.5 1.0 0.0 to -0.5 11-14 6 Dependence at y

TABLE II-3

The Designation of Constant Intensity Contours

Contour No. Relative Intensity

1 1.4 X 10^

2 1.0 X 10^

2' 8.0 X 10^

3 7.0 X 10^

3' 6.0 X 10^

4 5.0 X 10^

5 4.0 X 10^

6 3.0 X 10^

7 2.0 X 10^

8 1.0 X 10^
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It is seen from a comparison of the undeformed perfect two-dimensional

spherul.ite pattern of Fig. II-8 with the patterns of Fig, II-9 for the

undeformed disordered spherulite that, as has previously been pointed out^^,

the effect of disorder is to give a "tennis racquet" type pattern where

there is a build-up of intensity toward the center of the pattern as

disorder increases. This is further seen in the plot of Fig. 11-10 for

the variation of intensity with 0. The absolute intensity of scattering

tends to decrease with increasing disorder*. For the perfect spherulite,

the scattered intensity is zero at 9 = 0 and at all values of 0 along

y = 0° and 90°. For the disordered spherulite, there is a build-up of

intensity at these values of y

.

The next set of figures are for the case of a spherulite which is

deformed by an elongation ratio = 1.5. In Figs. II-l2a and 12b, a = 0

2designating an angular variation of <cos (2a6 ')> which is independent
1 av

of direction in the film. The disorder parameter in II-12a is 0.8 while

it is 1.0 in II-12b.

It is seen that the patterns undergo a characteristic change in

shape with deformation as previously pointed out^ , with the intensity

maxima moving toward higher values of y and 0. For the undeformed spheru-

lite, the maximum occurs at y = 45° and 0 = 4.4° while at an elongation

ratio of 1.5, it occurs at y = 60° and 0 = 4.8° for g =1.0. It is seen
o

* It should be noted that in case of angular disorder of the anisotropy,
the absolute intensity is increased with increasing disorder. The reason

of the difference may be easily seen by comparing eqns . (20) to (22) with

eqns. (15), (25) and (26) under = = 1.
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With increasing disorder, as goes from 1.0 to 0.8. the pattern ass

a more -deformed tennis racquet" appearance with an increase in intensity

at small values of 0 and at y = 0° and 90°.

The effect of an angular dependence of <cos^2A6^'> is seen in Figs.

II-12C and II-12d where a is allowed to assume values of -0.2 and -0.5

while is kept constant at 1.0. I^e variation of <cos22A3^'> correspond-

ing to these values of a is shown in Fig. 11-11. These negative values of

a correspond to spherulites in which the disorder is greater in the

lateral region than the polar region. Fig. II-12e corresponds to g^ = 0.5

and a = 1.0 which, as shown in Fig. II-ll, is where the disorder is

greatest in the polar region of the spherulite.

It is noted that the y and 9 at which the maximum scattering occurs

is rather insensitive to the disorder parameters. As the amplitude of the

orientation fluctuations becomes larger in the equatorial regions of the

spherulites, there is a build-up of intensity in the polar region of the

scattering pattern (at p = 0°). This may be seen in Fig. 11-13 represent-

ing a plot of the variation of scattered intensity with 6 at y = 0°

for a deformed spherulite with X = 1.5, g = 1.0 and o changing from
s o

0.0 to -0.5 which may be compared with Fig. 11-14, the corresponding

variation in the equatorial region of the scattering pattern at y = 90"*.

*

The changes in the equatorial region of the pattern are more complex.

The effect of such angular dependence of disorder is greater at y = O*'

and 90*^ than at the y corresponding to the intensity maximum.

Similarly, a comparison of Figs. II-12b and II-12e reveals that an

increase in the amplitude of the orientation fluctuation in the polar
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region of the spherulite leads to a pronounced increase in intensity at

the equator of the scattering pattern (at y = 90°).

Experimental scattering patterns from deformed polyethylene more

closely resemble theoretical patterns like Fig. II-12c suggesting that

larger fluctuations occur in the equatorial region of the deformed

spherulite.

In these calculations, the angular correlation distance was kept

constant. An angular variation of this is expected to have similar effect

as produced by an angular variation of the amplitude of the fluctuation.

Also, it has been assumed that the average optic axis tilt angle, g '

, is

independent of angle in the deformed state. A more thorough analysis

would allow this to vary with a, perhaps in the manner of the empirical

equation of van Aartsen, et.al.^. These additional variations are not

included in this paper because of the desire to avoid introducing an

unmanageable number of empirical parameters.

III-5. Conclusions

The introduction of non-randomness into the theory of the scattering

from deformed spherulites produces changes in the predicted scattering

patterns analogous to those predicted for undeformed spherulites. The

disorder results in an increase in scattered intensity at small values of

the scattering angle 9 as well as non-zero intensities at y = 0° and 90".

The relative effect on the intensity at y = 0° and 90° depends upon the

angular dependence of the amplitude and correlation distance associated

with the fluctuations from orientational order within the spherulite.
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The experimental observations of scattering patterns from stretched

polyethylene indicate that a greater degree of disorder occurs in the

equatorial part of the spherulite.
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PART III

THE DYNAMIC LIGHT SCATTERING
STUDIES ON SPHERULITIC POLYI-IERS

CHAPTER I

Introduction and Previous Works

The light scattering from crystalline polymer films has been used to

characterize the crystalline superstructure and has been shown to arise

principally from correlations in orientation of crystals occurring over

distances comparable with the wavelength of light^^'^\ Procedures for

the separation of the contributions to scattering from density and ori-

entation fluctuations were described for systems containing random ori-

entation correlations. Most crystalline polymer systems have non-random

orientation correlations represented by such structures as spherulites.

Scattering patterns from uniform two and three dimensional spherulites

have been calculated theoretically^'^ and found to qualitatively agree

with experiment. Such spherulite theories predict scattering patterns

characteristic of a greater degree of order than is experimentally found.

Deviations are described in terms of disorder of orientation of crystals

within spherulites and disorder in the shape . The scattered inten-

sity at higher angles is usually found to exceed that predicted by the

uniform spherulite theories and results from heterogeneity of crystal

orientation within the spherulite which may be characterized by orienta-

tion functions.

Upon deformation of the sample the scattering patterns change in a
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Banner characteristic o£ the orientation of the crystalline superstructures

and can be approximately described by assuming that the spheruUtes become

ellipsoidal when the samples are stretched''-^ Details depend upon the

specific model employed for describing the change in orientation of the
'

crystals within a spherulite when the spherullte deforms''''.

Dynamic mechanical, birefrlngence*\ and x-ray diffraction experl-
45 45ments

> have been employed to study polymer deformation mechanisms

associated with molecular orientation changes. These confirm previous

proposals that the alpha mechanical loss peak consists of at least two

components, the lower temperature one (a^) being related to lamellar slip

accompanying the twisting of the lamellae about their b axis which lies

along the spherulite radius, while the higher temperature" component (a2)

is related to molecular motion within the crystalline lattice. The mecha-

nism which is proposed supposes that a rapid spherulite deformation

accompanies the stretching of the sample and that this is followed by a

slower orientation change of the crystals within the spherulite occurring

by the a^^ and o.^ processes. Previous evidence for the rapid spherulite

deformation comes from high speed light scattering motion pictures in which

the fast change in the low angle light scattering pattern is demonstrated^^

It is proposed that the variation of the light scattering intensity

accompanying the vibration of a sample may further characterize the defor-

mation processes. Earlier works of photometric dynamic light scattering

studies have been carried out by LeGrand et. al. for polyethylene under

stress relaxation^^ and sinusoidal tensile loading process^^. One signifi-

cant results of those studies may be in the fact that the variation of
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intensity when the stretching direction is perpendicular to the scattering

plane occurs appreciably for a time scale of 1 second to lOOOsecond during

the stress relaxation process while the variation of the intensity under

the same condition is hardly observable for that time scale^^ The fact

may then suggest a significant factor underlying deformation process of

crystalline polymers that a relaxation process associated with the change

of density fluctuations may occur at longer time scale than that asso-

ciated with crystalline reorientation processes.

The above discussion may be just an example to illustrate applica-

tions of the dynamic light scattering (DLS) technique. The DLS intensity

depends upon i) static (e^) and dynamic (e^) strain, ii) time and tempe-

rature of the measurements, lii) stretching direction of the sample (fi) ,

iv) scattering angle (6) and v) polarization conditions for polarizer and

analyzer as well as iv) samples being studied. The studies of the DLS

as a function of these variables may give us much informations for char-

acterizing deformation processes occurring in crystalline superstructures.

For example, in the case of polyethylene spherulites the deformation of

the spherulites is, more or less, heterogeneous and is shown indirectly

by x-ray orientation studies"'"''" to be quite different in the polar and

equatorial part of the spherulites in terms of the orientation of the

crystallographic axes. Such angular dependence of spherulite deformation

with respect to the stretching axis may be studied more directly in terms

of both orientation and density fluctuations by observing the DLS inten-

sities as a function of the azimuthal angle Q and the polarization con-

ditions. One can also study the DLS as a function of scattering angle 0.
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At small e the DLS depends upon the response of the average spherulitic

contour to the applied strain, while at large e the DLS depends upon the

response of the heterogeneities correlated over shorter distances than the

spherulite size. Therefore the dependence of the DLS may provide addition-

al information over those determined by the Q dependence.

The DLS may also be measured as a function of other variables as

discussed above to confirm a proposed deformation mechanism . For this

purpose, a DLS apparatus has been constructed. The apparatus is designed

to observe the DLS intensities from samples subjected to sinusoidal tensile

Strain,
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CHAPTER II

The Apparatus

An outline of the apparatus is schematically sho;m in Fig. III-l.

A mercury vapor lamp (General Electric Supply Company, Type H100A4/T) has

been used as a light source. The lamp is fired by a 110 volt AC power

supply through a ballast transformer (General Electric Supply Company,

Type 89G182). An incident beam from the mercury arc is monochromatized

by a combination of a narrow band pass filter (Type No. 90-50550, Bausch

& Lamb Incorporated) and a color glass filter for mercury green light,

546 my. The half width of the band pass filter is about 50 mp. The inci-

dent beam is collimated by a set of lenses which will be shown later. The

collimated monochromatic incident beam with wavelength 546 my is passed

through a polarizer. The plane polarized incident beam irradiates the

sample which is subjected to a sinusoidal tensile strain. The variation

of scattered beam intensity due to the sample vibration, after passing

through an analyzer under certain polarization conditions, is detected

synchronously with the phase of strain by a detecting system composed of

a photomultiplier(PM) tube^ preamplifier, integrator, electronic counter

and an oscilloscope. In the following, each part of the apparatus shall

be discussed in more detail.

II-l. Light Source Part

Fig. III-2 shows a schematic diagram of an optical arrangement of the

light source part. The lenses LI, L2, L3 and a pinhole P are used to

collimate the incident beam. The pinhole P is placed at the front focus
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point of the lens L3 to make the beam from L3 parallel. The size of the

pinhole determines the divergence (or parallelness) of the incident beam.

By using a pinhole with 1 mm diameter a divergence of about 30 minutes is

obtained. The lens LI is chosen to be such one that collects a relatively

large flux of energy of the incident beam by using a lens with a relatively

large diameter. The lenses L2 and L3 are chosen to satisfy a condition

that the size of the output beam from the lens L3 is as small as the

desired beam area (about 8 mm in diameter) which irradiates the sample.

Therefore in this system, a diaphragm D is primarily used to cut off the

diffused stray light in the incident beam but not to determine the size of

the output beam diameter. By this way a part of the loss of the incident

beam energy accompanying the process to determine the* incident beam area

is avoided.

The collimated monochromatic incident beam is finally passed through

a polarizer P (whose polarization direction (i)^) can be rotated through

360") to produce a plane polarized incident beam.

A part of the incident beam is reflected by a slide glass and is

detected by a PM tube (RCA 1P21) to monitor fluctuations of the incident

beam intensity. Because of the reflection at the slide glass, the final

incident beam after the slide glass G is partially polarized and has

degree of polarization about 21%. The correction for this effect is shown

on Fig. III-3.

Pictures of the light source part are shown in the right hand side

of Figs. III-4(a) and III-5. The symbols of A, B, F and PM stand for the

same meaning as those of Fig. III-2.
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Deformation Apparatus

Pictures of the deformation apparatus are shown in the left hand

side of Figs. III-4(a) and III-5 and in the right hand side of Fig. III-

4(b). The picture in Fig. III-4(b) is taken from the left hand side of

the picture in Fig. III-4(a) and includes the detecting part of the DLS

apparatus (which will be discribed in later) in the left hand side. The

picture in Fig. III-5 is taken from the right hand side of the picture

in Fig. III-4(a). The apparatus was designed by professor H. Kawai,

Department of Polymer Chemistry, Kyoto University, Kyoto, Japan, and

constracted by Iwamoto Machinery Company, Limited, Kyoto, Japan. In Fig.

III-4(a), a sinusoidal tensile strain is mechanically imposed on the

sample by using a set of eccentric cams (E) . The static and dynamic

strain can be changed almost continuously by using cams with various

eccentricity and by adjusting initial sample length. The stretching of

the sample is done simultaniously from both ends so that the part of the

sample irradiated by the incident beam stays in the same position during

the stretching process. The stretching direction of the sample (fi) can

be rotated from the vertical = 0°) to the horizontal (Q, = 90°) direc-

tion by rotating a worm gear D (Fig. III-4(a)). One can also change the

tilting angle (<{)) of the sample normal with respect to direction of the

incident beam propagation by rotating a worm gear F (Fig. III-4(a)).

Therefore the apparatus can be used for the study of biaxially oriented

systems as well as uniaxially oriented systems. Two holders for PM tubes

can be set on the disk Dl and D2 and can be rotated through 180° to

vary the scattering angles , 9^^ and 6^ (Fig. III-4(a)).
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Frequency of the sample vibration can be changed from about 10 Hz to any

lower frequency desired.

II-3. Detecting Part

The detecting part of the scattered beam intensity is composed of two

part; one for the optical and the other for the electronic part.

a) Optical Part

Details of the optical part for detecting the scattered beam are

schematically shown in Fig. III-6(a). The scattered beam is observed

through an analyzer A (A in Fig. III"4(a)) whose polarization direction

can be rotated through 360^ A diaphragm D is set at the back focus point

of the lens L so that only a parallel flux of the scattered beam which

occurs at some scattering angle 6 can be passed through the diaphragm D

and detected by a PM tube (RCA 1P21) . The diameter of the pinhole in the

diaphragm determines the angular resolution of the scattered intensity

distribution with respect to 9.

The system has advantages in the following points compared with a

conventional system shown in Fig. III-6(b) in which the angular resolution

is directly determined by the size of the pinhole D, an irradiated area

of the sample and a distance between sample and the pinhole D;

i) The system in Fig. III-6(a) requires no correction for the

change of irradiated volume of the sample when the scattering

angle is changed, while in the conventional system the correction

is needed.

ii) It is possible in this system to increase the scattered beam

energy without losing the angular resolution by increasing the

42
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Irradiated volume of the sample. On the other hand, in the

conventional system, one cannot increase the irradiated volume

of the sample without decreasing the angular resolution.

_b) Electronic Part

In this section we shall discuss the electronic problems for detect-

ing the DLS signals and the electronic system which has been used in the

DLS experiments.

b-1) The electronic problems for detecting the DLS signals

As we shall discuss in later, the DLS signal is generally (1) quite

small compared with static scattering intensity and therefore (2) fluctua-

tions of static scattering intensity, even though they are very small,

produce a baseline drift (of the DLS signal) which is* comparable or even

greater than the DLS signal itself. The DLS signal is generally less than

10% and quite often even less than 1% of the static scattering intensity

and (3) noisy especially at high scattering angles. In order to achieve

an amplification of the small DLS signals to a satisfactory level, one

has to block off the largo baseline signal corresponding to the static

scattering intensity by some means because of the factor (1). Otherwise

a power saturation will occur in the preamplifier before a satisfactory

amplification is achieved to the DLS signals.

The baseline drift pointed out by the factor (2) may arise from i)

fluctuations of the incident beam intensity, ii) fluctuations of high

voltage power supply for PM tubes, iil) drift of electronics which are

used, iv) random noise from PM tubes and v) sample vibrations. The drift

and noise problem seem to be the most important. For example if there is
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a 1% fluctuations of the baseline due to incident beam intensity fluctua-

tions, for example and if the magnitude of the DLS signal is 1% of the

baseline signal, then DLS signal is of the same magnitude as the baseline

drift. Because of this noise and drift problem, the DLS signals are de-

tected by using a signal averaging technique.

b-2) The electronic system

An outline of apparatus is shown in Fig. III-l. An output of the

monitor and the detctor PM tube are matched to each other in voltage by

adjusting the supply voltage for monitor PM tube. The dynode string

resistors for the PM tubes are wired in a manner shown in Fig. III-7. The

detrctor PM tube is cooled for operation with high stability and minimized

noise by using a refrigerated PM tube chamber (Model TE-109TS, Products

for Research Inc., Mass.) R in Fig. III-4(b). The cooling may not be

necessary for the measurements at low scattering angles but may be useful

at high scattering angles.

The two outputs matched to each other are then fed to a differential

preamplifier where the outputs are differentiated and then amplified. In

this manner a large baseline signal accompanied with the DLS signals are

cancelled out and only the small DLS signals are subjected to the pream-

plification, so that the power saturation problems are not encountered.

(The amount of voltage change supplied for monitor PM tube in order to

bring the two signals into balance is associated with the static scatter-

ing intensity.) At the same time the fluctuations of the baseline signals

may be effectively cancelled out through the process of the differentiation
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because two outputs are matched to each dther. ' An offset voltage arising

from the DLS signal is amplified by the differential preamplifier, and

the DLS signal after the differential preamplifier is then fed to an inte-

grator (Type CW-1 Box Car Integrator, Princeton Applied Research Corpora-

tion, N. J.) where further amplification and signal averaging can be

carried out.

As an ideal stable preamplifier, a differential amplifier which is

built in a 502 Dual Beam Oscilloscope (Textronix Inc. Oregon) has been

used. The preamplifier has a variety of functions and can be used as a

simple D.C and A.C preamplifier or a differential D.C and A.C preamplifier.

An output of the preamplifier is taken from a poir.t shown in Fig. III-8.

The preamplifier has a wide rang of input attenuation so that it can be

used for a wide range of input signals.

In Fig. III-9 a block diagram of a part of CW-1 Box Car Integrator

which has been used in these experiments is shown. As seen from the

figure an input signal is amplified in the A.C or D.C coupling mode of

in Integrator with a range of time constants. The amplification of the

signal can be carried out either in a continuous manner or in a manner

determined by an external gate controlling signal. In the case of static

light scattering measurements, the amplifier is operated in continuous

mode by using D.C coupling and the noise of the signals accompanying the

static scattering intensity is averaged out with an appropriate time

constant.

In the case of DLS measurements, the DLS is characterized by a set of

measured quantities, tan y and I^ or AI* and Al". Tan y is the tangent of
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the phase angle between the DLS intensity and strain. AI' and AI" are

In-phase and out-of-phase part of the DLS intensity. These experimen-

tal variables are related to the kind of response of structures in

polymer films to the applied dynamic strain.

A simple detection of these experimental variables by observing

Lissajous figures of the variation of the DLS intensity and the dynamic

strain is not, in general, possible because of the reasons already

mentioned. Therefore the detection has been carried out by using a

signal averaging technique in which the DLS signals have been averaged

over a number of periods of vibrations at particular phase intervals.

The experimental variables are then calculated as shown in later from

these averaged DLS signals. Such a technique of synchronous detection

of DLS signals with respect to the phase angle of strain is designed

to be carried out by using an external trigger signal with the same

frequency and phase relation to the dynamic strain.

The trigger signal is produced by a liner variable differential

transformer (LVDT) (Model PC-210 gauge head and model CAS-2500 carrier

amplifier demodulator power supply, Schaevitz Engineering, Pennsauken,

N. J.) and a helical cam. The helical cam is attached to a shaft

connected to one of the eccentric cams so that it rotates with same

frequency as the sample vibration and has a definite phase relationship

to the phase of vibration. The LVDT (L) and the helical cam (H) are

seen in Fig. III-5. Fig. III-IO shows details of the helical cam.

The diameter of the cam linearly increases with rotation. The cam is

made under a computer-control and has a precision of about 0.1% in its
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linear increment and 0.15 inch of maximum displacement. The output of

the LVDT is, therefore, a saw-tooth type signal as shown in Fig. Ill-

11 (signal C) and fed to the trigger gate of the integrator (see Fig.

III-9) .

The gate controlling circuit is composed of 1) a slope threshold

controller, 2) an input Schmitt trigger circuit, 3) a gate pulse

shaper and 4) a field effect transistor as sho;m in Fig. III-9 . The

threshold voltage determines a point at which a triggering occurs in

the input Schmitt circuit, so that it determines a phase interval of

gate-on and -off. The gate signal after the input Schmitt circuit is

shown In Fig. III-ll (signal G) where the gate-on and -off time are

equal in this particular case.

The gate signal is now used to operate the field effect transistor

which makes the operational amplifier of the integrator turn on and off

synchronously with the phase of the strain. In this way, one can get

an averaged DLS signal for a given phase interval of strain. A part of

the gate signal is used to determine the time interval over which the

DLS signals are averaged by an electronic counter (Hewlett Packard,

model 5216A) . An additional electronic device is needed for this pur-

pose in between the gate signal of the integrator and the counter.

The circuit for this electronic device is shown in Fig. III-12.

Fig. III-ll shows an example of a relationship between the strain,

trigger and gate signals. The top figure shows the trigger signal (C)

synchronized with zero phase of the strain signal (S) . In the middle

figure, the gate signal (G) is adjusted such that it makes the field
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effect transistor on for a half period of vibration. The bottom figure

shows a relationship between strain and gate signal in which the DLS

signal is averaged for a phase interval of strain from 0 to . over many

periods of vibration.

An adjustment of the starting phase of signal averaging with re-

spect to the phase of strain can be achieved by rotating a helical cam

around the shaft leading to an eccentric cam as shown in Fig. III-13.

In this manner the gate signal can be generated at any phase and phase

interval of strain.

Finally a few coments may be added about the electronic system.

As mentioned already the cancellation of the large baseline signal and

its drift are carried out by matching and differentiating the two out-

puts of the detector and monitor tubes. The signal matching has been

carried out by adjusting the supply voltage for the monitor PM tube.

By this process the baseline stability of the DLS signals is improved

very effectively compared with the system without having the differen-

tial process as in (b-3). However the stability is still not good

enough when the electronic system is operated completely by D.C coupling

(for both the differential amplifier and the integrator).

For this reason, the baseline drift is avoided by using A.C cou-

pling for both the differential amplifier and the integrator when the

DLS measurements are carried out at fixed frequency. The loss of gain

and the phase shift between input and output of the electronics itself

are then calibrated to obtain genuine DLS results. Obviously this

method may be applicable only when the frequency of vibration is high

(at least higher than 1 Hz). When the frequency of vibration is lowered,
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there is too much loss of gain and phase shift so that the method is

not usable. In such a case an alternative method has been adopted by

using D.C coupling for both the preamplifier and the integrator. In

this case the baseline drift is avoided by putting an external blocking

capacitor of about 500 microfard (Mf) to the input of the integrator.

The blocking capacitor is used to cut off a component of baseline drift

which occurs with a rate lower than that characteristic of the capaci-

tor and Input impedance of the integrator. The drift occurring with

higher rate may be easily averaged out through signal averaging

process. A relatively large size of the capacitor is chosen to carry

out the measurements at low frequency end (about 0.1 Hz when a 500 Mf

blocking capacitor is used and a small correction made for the loss of

gain and the phase shift) .

For measurements in a wider range of frequencies, from about 10 Hz

to any lower frequencies, it is necessary to use the electronic system

with complete D.C couplings, which in turn requires some m.eans to de-

press and/or to avoid the baseline drift. In order to depress the

drift, one has to improve the factors which are responsible to the

drift as discussed before. In our case the drift of electronics itself

like the differential preamplifier and the integrator seems to be very

small and the drift of the baseline seems to arise mainly from factors

i) and ii) discussed on page 101. (According to these factors the in-

cident and static scattered beam intensity has fluctuations of few

percent.)

There may be two processes in order to avoid the drift problem.
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The one way may involve an improvement of the cancellation process of

the drift. In the electronics discussed in Fig. IIl-l, the cancella-

tion may not be perfect, because the supply voltages for the two PM

tubes are not identical and therefore the two outputs are not complete-

ly equivalent in noise and drift. Therefore an improvement may be made

by using the same supply voltage for the two PM tubes and matching the

two outputs electronically or optically or a combinations of them.

The second approach to avoid the drift problem which seems to be most

effective for our case may be made by simultaneous averaging the DLS

signals for different phase intervals of the strain using several

integrators. Using this technique the drift may be cancelled out.

Actually in the condition when the dynamic strain is small enough

(order of 1%) so that the DLS is varying sinusoidally , the character-

istics of the DLS are obtained by averaging the intensity at three

different phases of strain for which three integrators are required for

the simultaneous signal averaging.

b-3) An eletronic system which has been used for preliminary
experiments

In the electronic system the output of the detector PM tube is fed

to a D.C preamplifier whose circuit diagram is shown in Fig. III-14.

The output of the preamplifier is fed to the integrator. The maximum

preamplif ication is about a factor of ICQ and the maximum input is

about 15 volt. The rest of the mechanisms are similar to those of the

electronic system discussed before. For the measurement at a fixed

higher frequency, A.C coupling is used for the integrator and at lower

frequencies D.C coupling is used with an input blocking capacitor.
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The system was not satisfactory except when the DLS signals are rela-

tively big because of the drift problem and a statisfactory amplifica-

tion of the DLS signals was not possible by this system.

IIZ^ Variation of Frequency and Temperature

The frequency is varied by a combination of pullies of various

diameters connected to a driving motor with fixed speed rotation. A

diagram of various combinations of the pullies is shown in Fig. III-15

and the frequencies associated with the combinations are also shown in

the figure. The frequencies are measured by an oscilloscope.

The DLS is also measured as a function of temperature of the sam-

ple vibration. The temperature is controlled by blowing dried air or

nitrogen gas whose temperature is precontrolled in a temperature con-

trolling chamber into a small temperature enclosure surrounding the

sample area. A diagram of the chamber for temperature control is shown

in Fig. III-16. Dried air is blown into the chamber in which two

toaster heating elements are placed. The air passes slowly through

many small holes of the elements. Two filaments are connected to a

swich where the elements are connected in parallel (H-position) or

series (L-position) or only a single element (M-position) is used. The

temperature of the air in the chamber is controlled by a temperature

controller (proportional null 1300 series with a sensor, type E157-2762,

Cole-Paramer Instrument Co., Chicago, Illinois) which is designed to

control the temperature from -100°F to 500°F with an accuracy + O.S^C.

Compressed air is blown into the chamber in the case of temperature

elevation, while cooled nitrogen gas is blown into the chamber in the
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case of temperature lowering. A picture fnrB ^ iJxcture tor the temperature controll-

Ing chamber is seen in Fig. Ili-4(b) (TC) . The precontrolled air or

nitrogen gas is then blown through the temperature enclosure whose

diagram is shown in Fig. III_17. The air flow is diffused by a few

layers of fine mesh. Also a small copper sheet is used in the vicinity

of the entrance of the air flow in order to avoid a direct flow of the

air to the sample specimen. The temperature in the vicinity of the

sample is measured by a thermocouple and is controlled within a

variation of few degrees centigrade. The temperature enclosure is

seen in Figs. III-A(a) and 4Cb) in which an upper cover for the

enclosure is removed.
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CHAPTER III

PRINCIPLE OF THE DLS MEASUREMENTS
AND SOME PRELIMINARY RESULTS

J-T-T--^', Principle of the Measurernervr^

In this section, the principle of experimental evaluation of the

DLS signals will be discussed based upon the signal averaging technique.

If the applied dynamic strain (e^) is small enough, the DLS inten-

sity (I^) may respond linearly and their relation may be given by

e = Eg + sin
4,

I = Ig + I^ sinC^ + y)

(J)
= U)t

where e and I are the total strain and the scattered intensity, while

^s
^'^^

"""s

static strain and the static scattered intensity.

The static strain is imposed on the sample in order to prevent the

sample from slackening, is an angular frequency of the sample

vibration, y is a phase difference between the dynamic strain and the

DLS intensity and is defined here as an angle of the phase lead of

the DLS intensity with respect to the dynamic strain.

An averaged DLS signal for a phase interval of strain between

((J)
- 6) and (({> + 6) defined as I is given by

I
,

= I I d(j) / 26 C2)
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It should be noted here that the integrator which has been used here is

an analog integrator and the averaged intensity obtained is a time-

averaged intensity. As shown in eq. (1), l' is characterized by three

variables and therefore at least three averaged DLS intensities at

different phases of the strain are required to evaluate those variables.

Experimentally this has been done by obtaining the averaged inten-

sities at ^ = + ,/2 and + These averaged intensities are

defined as
, ^^^^ and I respectively. The change of the

o o
starting phases of the signal averaging is done by rotating the helical

cam by 90" increment as already discussed in previous section. i is
*o

set closely to zero of the strain phase. Three averaged intensities

^
are given by

^ ^ ^1 ^^^^^ Y>

I
. /O = I + COSC(f) + y)+ TT/2 s Id '

. , =1 I
,

sin((f) + y)
9 +7T s Id '

I
d
o

and

= (sin 6) / (5 (3)

In the case of the signal averaging over a half period of the vibration,

6 is Tr/2 radian, so that = 2/77. In case of 5 being very small, ic^^

is almost 1. In this study, 6 is set small enough so that bc^^ is 1

within 1% by changing the gate threshold voltage in the integrator as

already discussed in tha previous section, 6 is calculated from the
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time peroid for one cycle of vibration and the time period for the

gate being opened which are measured by the electronic counter. The

time period for one cycle of vibration is obtained by summing the gate-

open time and the gate-off time. The gate-off time is measured from the

time displaced on the electronic counter when the polarity of the

threshold voltage is reversed. From eq. (3) one can estimate I and v
d '

if
(j) is known,
o

(J)^ is measured by using a standard signal which is synchronized

with the phase of strain and has the same frequency as the strain. To

make the standard signal two metal pieces are clamped to sample jaws of

the deformation apparatus. One metal piece is just a flat rectangular

• sheet, while the other has a rectangular slit in its center. The

sample clamps are adjusted such that a slit made out of the two sheets

by overlaping each other comes in the middle of incident beam area. If

the two clamps are vibrated, then the size of the slit made by two

sheets varies sinusoidally in phase with the dynamic strain and with

the same frequency of dynamic strain. Consequently the transmitted

beam intensity through the slit can be used as a standard signal. One

can change the amplitude of the standard signal by changing the width

of the slit in one of the sheet. One can also change the height of the

baseline on which the dynamic part of the standard signal is superim-

posed. The width and area of the slits are adjusted in such a manner

that the standard signal is comparable to the actual DLS signals. In

this case obviously y is zero, so that
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T O _ O o

I °-T°-LtO

^ ~ ^1 *o (A)

where the superscript o denotes the quantities related to the standard

signal. From eq. (4) is obtained and used for eq. (3) to obtain the

DLS quantities.

As discussed in the previous section, when the baseline drift for

the DLS signal is rather big, it may be useful to use A.C coupling for

both the differential amplifier and the integrator, or to use an input

.
blocking capacitor for the integrator by operating both electronics in

D.C coupling in order to avoid serious errors on the averaged intensity

due to an unstable baseline. However in this case one has to correct

the intensity for the frequency dependence of the electronics. In this

case eqns. (1), (3) and (4) must be modified as follows:

and therefore

\ = 's ^^1 ^2 ^d (*o' 'Y)

\ -hr/2
=

^s
"^^1 ^2 ^d ^'^o'

""Y)
o

\-H = " ^1 "2 ^d ^*o'
^>
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where

^2 ' (Vob I h

6 ' = (f) + Y
o ^ ^e (7)

and

^„-h./2 ' C ^'^1 '=2 <=°= *o'

o

o

O T o , o
*^-hT - " ^1 ^2 *o' (8)

where is a phase shift between the input and output of the electron-

ics and is a loss of gain due to the electronics, k ^ Is defined as

a ratio of a magnitude of the DLS signal with loss of gain to that of

the true DLS signal without the loss of gain. An apparatus constant

(()
• is obtained from eq. (8) by measuring T °, T ^ ,

° and I ° for
(}> (}) -hT/2 (j) -hr
o o o

the standard signal. From eqns. (6) to (8), the corrected DLS quanti-

ties are obtained and given by

AI- -[(AD^^ cos + (AI")^^ sin

and

tan Y = AI" / AI' (9)

where AI' and AI" are the corrected in-phase and out-of-phase part of

the DLS intensities defined by
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AI' = I cos Y

AI" = I , sm Yd ' (10)

(AI')^^ and (AI")^^ are observed uncorrected in-phase and out-of-phase

part of the DLS intensities which are obtained from the experimental

quantities I^ , and I^ ^ as follows;

^"^'^ob =\ = -2 h (*o'o

^^^"^ob = \ -hr/2
- ^3 = ^1 ^2

o - o

and

' *\-h'> ' ^ (11)

Three different types of measurements are proposed in order to

seperate relative contributions of density and orientation heterogene-

ities; one designated as Ij
j

(fl) where the intensity is measured under

conditions of
\l)

= i)^ = = Q and one designated as where Q =
i{i =

^ ^2 designated as where Q = = ^ - 90°.

In any cases the stretching direction is set parallel to one of the

polarization direction of the polarizer and analyzer in order to

minimize an effect of birefringence on light scattering''"''". These

components of scattered intensity may be associated with H^, and

scattered intensity defined in photographic systems by following

relations

;
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The corresponding intensities in the case of the DLS measurements are

defined by Al|
|

'(fi), MJ (n) and AI'^C^^) for the real part of the DLS

and AI"|| (ft). Al"^(fi) and Al-^(ft) for the immaginery part.

111~2. Some Preliminary Results

Some preliminary experiments have been carried out for medium

density polyethlene (MDPE) with molecular weight^^ 33000 (F)
, degree

of branching'^) 1.3 CH3/IOO C, density^) 0.937 g/cm^ (Sumikasen, Sumitomo

Chemical Co. ltd., Japan)*. Pellets of mPE are melted at 160°C for

about 10 minutes and then pressed by a laboratry press and naturally

cooled down to room temperature in between the hotplates by turning off

the switch. The time spent for the process of natural cooling to room

temperature is about 6 hours. In this way MDPE films with thickness

about 3 to 5 mil were carefully prepared from two points of view. (1)

The films must have fairly clean surface to avoid surface scattering,

especially for the case of DLS measurements under parallel polarization

* a) Calculated from intrinsic viscosity in xylene solution at 75°C by
using the Harris equation. (I. Harris, J. Polymer Sci. , 8, 353
(1952)).

b) Determined from infrared spectroscopy at 1376 and 1368 cm"""" at melt.
• c) Measured by floatation method in mixture of benzene and carbon

tetrachloride at 25.0''C.
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conditions. In case of static measurement, the surface scattering may

be avoided by sandwiching the sample in between glass slides and using

an immersion fluid whose refractive index is' close to that of the

sample. However in case of DLS measurements this may not easily be

done. As a second point, (2) the sample must have uniform thickness

In order to achieve a uniform deformation throughout the sample speci-

men. This may be especially necessary when the DLS is measured as a

function of temperature.

Fig. III-18(b) shows an angular distribution of the scattering

intensity with respect to scattering angle 6 for undeformed MDPE under

l_^_(i> = 45°). The scattering angles 9 indicated in the figure are those

.
in air and the scattering angle in the film is obtained by dividing 9

by the refrective index of the sample (close to 1.5). The scattering

angle at which the scattering intensity becomes maximum (9 ) is about
max

2.25° and the size of the spherulites calculated from a scattering

. 3
equation is about 9.5 microns in radius. As seen from the figure, the

intensity distribution is symmetrical around 9=0° indicating a fairly

good optical arrangement of the apparatus in the 9 direction. In Fig.

III-18(a)
i) dependences of 1^ intensity at 9 = 9 and 9 = 7° are+ max

shown. The intensity is a maximum at odd multiples of i|) = 45° and a

minimum at i|) = 0° and 90° as usually found in the case of scattering

typical for spherulitic stractures. As seen from the figure the inten-

sity distribution is symmetry around ti*
= 0° indicating again a fairly

good optical arrangement of the apparatus in the i) direction, too.

The preliminary DLS measurements have been made for the MDPE
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sample stretched 8.2% statically and 0.85% dynamically. The thickness

of the sample specimen is 4.3 mil. In the electronic system, the in-

tegrator and the preamplifier are operated by A.C coupling so that the

baseline drift is not serious in this case. The frequency of the

vibration is 2.9 Hz and the measurements have been made at room tempe-

rature.

Fig. III-19(a) shows the direct outputs from the detector (upper

signal) for I_^(fi = 0°, 6 = 7°) and the monitor (lower signal) PM tubes

which are matched to each other in voltage and are 180° out of phase.

Since in this study, the mercury vapor lamp is fired by A.C power

(60 IIz), the two output signals have 120 Hz frequency. As seen from

. the figure, the upper signal corresponding to the total DLS intensity

(I in eq. (1)) has wiggling on the bottom which arises from the fact

that the scattered intensity is varying sinusoidally due to the sample

vibration. In all oscilloscope pictures, one division in the scale

corresponds to 2 volts and the sensitivity of the integrator is kept

constant (one volt) when it is used. Fig. III-19(b) shows again the

detector (upper) and the monitor (lower) signals obtained by using a

lower sweep rate of the oscilloscope. The broad white line on the lower

signal is associated with the static scattering intensity, while that on

the upper signal is associated with the static scattered intensity plus

the DLS signal which appears as a v/iggling on the bottom. From the

figure it may be seen that the DLS signal is quite small (about 1%)

compared with the baseline signal corresponding to the static scattering

intensity.
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The matched signals are now differentiated by the differential

preamplifier and further amplified and averaged by the integrator. In

Fig. III-19(c), the lower signal is that after the differential pream-

plifier. The detector and monitor outputs shown in Fig. III-19(a) and

III-19(b) are added at the same sensitivity. The signal arises from

an offset of the null point due to the variation of the scattered

intensity to the applied strain. The lower signal corresponding to the

DLS signal is then fed to the integrator where the signal is amplified

and averaged. In this case the signal was averaged simply by RC

filtration with a time constant of 0.1 second. The DLS signal after

the integrator is shown in the upper part of Fig. III-19(c). It may be

seen that the signal is sinusoidally varying with a frequency of the

sample vibration (2.9 Hz).

The differential output itself is quite small as shown in Fig.

III-19(c) so that it can be amplified satisfactorily without having the

problem of power saturation. The corresponding signals after further

amplification of the signals in Fig. III-19(c) are sho;m in Fig. III-

19(d) where the lower one is again observed after the differential

amplifier and the upper one is observed after the integrator. The

noisiness of the lower signal may arise from the lack of complete can-

cellation of the baseline signal and its noise. The imperfectness of

the cancellation process may not affect the final DLS data so long as

it is not large enough to involve the power saturation problem and so

long as it does not involve extra instabilty of the zero line for the
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DLS singals. As seen in the upper signal of Fig. III-19(d), the noisi-

ness can be removed relatively easily by even a simple RC filtration

process. In actual DLS measurements, the signal averaging technique is

applied to the final signal and the signal is averaged synchronously

with the phase of strain over many periods of vibrations as discussed

before. Consequently the final DLS signal may be improved much more

in noise and stability than the signal shown in Fig. III-19(d).

The DLS for I_^(ft = 0, 6 = 7°) arises from internal heterogeneities

of the spherulites in terms of orientation^^ and anisotropy as discussed

in Part II and shown briefly in the next chapter. Therefore the DLS

signal shown in Fig. III-19 results mostly from the response of the

internal heterogeneities to the applied dynamic strain.

In Figs. III-20(a) and (b) , the DLS signal for I_|_ at $7 = 0°
, <|;

=

AS** and e = 0° is shown. Figs. III-20(a) and (b) correspond to Figs.

III-19(b) and (d), respectively. The signal in this case corresponds

to the dynamic birefringence signal^-'". The sinusoidal modulation of

the signal is quite large and clean compared with that of Fig. III-19,

and consequently one may detect the dynamic behavior simply by analyzing

the lissajous figures between the signal and the dynamic strain. Since

the orignal signal is quite big, 600 volts D.C is supplied for the

detector PM tube in this case. Throughout most of the light scattering

experiments, 920 volts D.C is supplied for the detector PM tube. From

a comparison of Figs. III-19(d) and (b) with Figs. III-20(a) and (b),

it turns out that for this particular case the DLS signal shown in Fig.

III-19 is smaller than the signal in Figs. III-20(a) and (b) by factor
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of about 250.

In fig. III-20(c), the corresponding figures to that in Fig. Ili-

19(d) is shown for at
.J.

= 45% = 0° and 6 = 7°. This is a case

where a considerable effect of birefringence may be expected on the

DLS signals while in case of Fig. III-19, the effect may be very small^^

From a comparison of Fig. III-19(d) with Fig. III-20(c), it may be seen

that the DLS signal is much bigger in Fig. III-20(c) than in Fig. III-

19(d) by 30% because of the birefringence effect.

The effect of birefringence on light scattering patterns may be

seen in Fig. III-21, where the MDPE sample is stretched by 20%, and the

scattering patterns are taken keeping the polarization of polarizer and

analyzer + 45* with respect to vertical direction. The stretching di-

rection (fi) is changed from vertical = 0°) to horizontal (n = 90°).

At ft = 0°, the effect may be maximum and as a consequence the scatter-

ing pattern is diffused and distorted. With increasing ft, the effect

may become smaller, which leads to clear-cut four leaves clover patterns

characteristic of those for deformed spherulites under a minimum bire-

fringence effect. The effect seems to be minimized at ft =• 45° where the

stretching direction is parallel to one of the polarization direction

of the polarizer and analyzer.

The DLS signals at 9 = 9 for I, (ft = 50°) and I,
i

(ft = 0°) are
max +

II

shown in Figs. III-22(a) and (b), respectively, while that at 6 = 7° for

Ij
j
(ft = 0°) is shown in Fig. III-22(c). Ratios of maximum DLS signals

at e = 6 to that at 6 = 7° for I. and Ii . intensity are about 2.5
max +

II

and 5, respectively, which seems, however, to be considerable smaller
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than the value expected for perfect spherulites. The fact may then

suggest an important contribution of internal heterogeneities both in

density and orientation to the DLS intensities. The DLS signal for

I|

I

(fi = 0°, e = e^^^) is bigger than = 50% 6 = 0 ) by a factor

of 4. A bigger DLS intensity is associated with I|| polarization. In

the next chapters more quantitative DLS studies for I||, I_ and

polarization conditions shall be discussed as a function of 6 and «

as well as the temperature of vibration.
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CHAPTER IV

ANGULAR DEPENDENCE OF THE DLS

In this chapter we shall discuss the dynamic light scattering

(DLS) behavior as a function of the scattering angle (6) and the

stretching direction of the sample (Q) for the medium density poly-

ethylene (MDPE) whose characteristics were described in the previous

chapter (Chapter III). The DLS experiments have been made at a fixed

frequency (2.9 Hz) and at room temperature for three types of polar-

ization conditions, I_^(fi), I_(q) and I|
|

(f^) which were defined in the

previous chapter.

IV-1. Introduction

The idea for studying the angular dependence of the DLS arises

from the reciprocal relationship between the scattering phenomena and

52 53the scattering entities ' . From this principle one may predict that

the DLS at small scattering angles arises principally from a response

of a large structure contour to the applied strain, while that at large

scattering angles from a relative motions of small structures seperated

by shorter distance than the size of the larger structure. In case of

the MDPE, the large structure is associated v/ith the spherulitlc struc-

ture and the DLS at small scattering angles may therefore depend upon

(1) variation of the average spherulite shape, (ii) variation of an

average distribution of scattering material which may be closely

associated with variation of lamellae distribution and deformation, and

(iii) variation of an average reorientation of optic axes within
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lamellae to the applied strain.

On the other hand the small structures may be associated with

crystallites or crystalline blocks constituting the lamellar structure

so that the DLS at high scattering angles may be related to the relative

motion of these within the spherulite. By measuring the DLS as a fun-

ction of the scattering angle one may separate the response of the

average spherulitic contour from that of the internal structures within

the spherulite.

The motion of structures within the spherulite may produce varia-

tions in two types of fluctuations, those of density and orientation.

The separation of the fluctuations may be achieved by comparing the

DLS obtained for I|
|

,
I_ and The DLS for arises essentially

from the variation of the orientation fluctuations which is associated

with the variation of the internal reorientation processes of optic axes

On the other hand the DLS for I_ and I|| depends both upon the varia-

tion of the density fluctuations as well as orientation fluctuations.

It is obvious that if the DLS arises essentially from the variation of

density fluctuations, then the DLS for I_ and I| | must be similar

because the density fluctuations is optically isotropic in its nature

and should be independent of polarization directions. Consequently the

differences of the DLS under these two different parallel polarization

conditions depend upon the relative contribution of the two types of

fluctuations and therefore the two measurements may be used to separate

the two contribution in addition to the other separation method which

involves a comparison of the DLS intensities between and either I
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or polarization condition.

The density fluctuations may be associated with (i) a difference

of the refractive index between the spherulite and its surrounding

medium^ and (ii) mutual packing of the crystalline lamellae and amor-

phous regions within the spherulite. The first factor may be signifi-

cant at very small scattering angles corresponding to the centarl part

of and scattering patterns and may become less important with

increasing the scattering angle. On the other hand the second factor

may be much more important at usual scattering angles than the first.

The DLS behavior related to the density fluctuations may provide us an

Interesting information about the relative motion of crystalline lamellae

and/or crystalline blocks constituting the lamellae (i. e., separation

of the lamellae and the crystalline blocks).

The reciprocity principle may also be applied, at least qualitative-

ly, to Q. dependence of the DLS. In the photographic coordinate system

the principle may be stated in such a way that the DLS at equatorial

(y = 90°) region of the scattering pattern is primarily associated with

the response of structure in the polar region of the spherulite, while

the DLS at meridional (y = 0°) region is associated with the response

of structure in the equatorial part of the spherulite. In the photo-

metric coordinate system, y = 0° and 90° are replaced by = 90° and 0°,

respectively. Consequently one may study the angular dependence of the

spherulite deformation in terms of both density and orientation by

measuring the DLS for I_^, I^ and I,
|
as a function of fi.
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Some Static Experimental Results

The static scattering experiments were carried out to elucidate

some of the morphological features of the sample. In Fig. III-23, H

and scattering patterns are shown for the undeformed MDPE. The

patterns suggest a presence of a well developed spherulitic structure.

The size of the spherulite can be estimated by finding 6 at which
max

the 11^ scattering has maximum intensity"^.

In Fig. III-24(a), Intensity distribution is shown for i|;
= 0°

and 45* for the undeformed MDPE. The scattering angle 0 is referred to

the 0 in air here and hereafter. The sine of the scattering angle in

the sample (G ) can be obtained by dividing .sin 0 by the refractive

index of the medium (about 1.5). At sufficiently small angles, the

sine of the angles may be approximated by the angles themselves. The

42
corrections for the reflection of the scattered beam at the sample-

air interface and for the secondary scattering were not made throughout

this study. According to the correction theory by Stein and Keane^^ it

may be easily seen that the correction factors for the reflection and

the secondary scattering are independent of the scattering angles when

the scattering angles are small less than 10°. Therefore these two

factors do not affect the angular dependence of the scattering intensity

at the small scattering angles. From the experimental intensity distri-

bution for iM = 45°) one finds 0 is 2.20°, from which the size of+ max
3the spherulite is calculated by using the equation ,

*

4Tr max , ^ ...— R sin—^— = 4.1 (1)
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is
max

where X is wavelength of the light in the medium (0.364 y) and 6

the scattering angle of maximum intensity in the sample. R is the

radius of the spherulite which was 9.5 y for the sample.

The theoretical curve is based upon the perfect spherulite model

by Stein and Rhodes and is matched to the experimental curve for

= 45°) at the peak. From a comparison between the experimental

and theoretical curve it may be seen that the deviations from the theory

are observed in each side of the peak for = 45°) and at any scatter-

ing angles for l^i^l> = 0°). It should be noted that the theoretical

intensity for I_^(.^ = 0°) is always zero for the perfect spherulite^.

The divations are especially prominent at high scattering angles and

.
at any scattering angles for = 0°

, indicating the scattering may arise

almost from the internal heterogeneities under these conditions.

In Fig. III-24(b), the experimental intensity distribution of

[l^(.\p = 45°) - = 0°)] is plotted against 6 and compared with the

theoretical intensity distribution of I_^(t|j = 45°). The treatment is

21based upon the composite model proposed by KVP which is described in

Part I. According to this approach, the scattering from the spherulite

is given by weighted average of the scattering from perfect spherulite

(I ) and random orientation fluctuations (I„) . Therefore the total I,

intensity is given by

where
(f)

and (}) are the fraction of each component. And
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= 45°) = ^^l^ = 450) ^ ^^j^ ^

I+Ci' = 0°) = ^^i^ = 0°) -

As already discussed in Part I, the rando. orientation fluctuations

gives rise to the Intensity distribution which Is cyllndrlcally sy.mef
ry around the Incident beam axis, so that

= 45«) = = 0°)

Therefore

= 45°) - 1 a = 0°) = * T = 45°)

The Intensity distribution of = 45°) - = 0°)] should be

proportional to the scattering from the perfect spheruUte term. As

shown in Fig. III-24(b), the experimental Intensity distribution deviates,

slightly from the theoretical one at 6 less than 0* and the deviationmax

Is much greater at 9 greater than 6^^^. 6^^^ is defined as the scatter-

ing angle at which = 45") - = 0°)] becomes maximum (about

2.5"). The deviation may arise from the following factors;

(I) The Internal fluctuations may not be random but non-random in their

nature.

(II) The assumption given by eq. (2) may be ovorsimplifIcatlon in a

sense that the two types of scattering are assumed to be Incoherent

to each other. In actual system the disorders are built in the

spherullte and therefore the two components are coherent to each

other. Consequently an additional term related to a cross corre-



130

latlon between the two components must be added In eq. (2) and

the additional te™ may take Into account the greater
j, dependence

found in the experimental result.

In this regard the disordered spherulite theory discussed in Part

II may be more general than the KVP approach. In this general approach

the extra intensity at high scattering angles may be uniquely related

to the correlation distance of the disorder. However it should be

noted that in the theory the disorder is treated separately for the

case of angular and radial disorder simply for mathematical simplifi-

tion
,
which may imply implicitly that the treatment assumes quite

strong non-randomness of the disorder. In actual systems the disorder

may have an intermediate non-randomness between the tv.o extreme cases

of random disorder and one-dimensional disorder.

In Fig. III-25, the
i> dependence of I|| intensity is shown at

^ "
°max ^""^ 0 = 7°. It is seen from the figure that the ratio of

^11^^ "
°max^ " about 10, while that of I (0 = 9 )

' ' II + max
to I_|_(0 = 7°) is shown to be about 6 in Fig. III-2A(a). These ratios

shall be compared with those obtained for the DLS in next section.

The scattering patterns for the samples stretched by 10% and 20%

are shown in Fig. III-26 for H and in Fig. III-27 for V„ and H . The

stretching direction (SD) and polarization direction of the polarizer

(P) and the analyzer (A) are shown in these figures. Upon stretching

the sample, the patterns is elongated toward equator (p = 90°),

suggesting the deformation of the spherulite from a sphere to an

ellipsoid. In more detail it may be seen that the patterns become more
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diffuse and that the intensity build up is pronounced along the , = 0°

and 90° direction. This fact .ay suggest increased internal disorders
in orientation and anisotropy which .ay result fro. the internal

rearrangement of the structure within the deforced spherulite. Q.^Hta-
tively the disorder .ay be greater in the equatorial part of the

spherulite than in the polar part as pointed out in Part II.

The and scattering patterns also become more diffuse with
increasing stretching, which .ay be related to the increased internal

disorder in ter.s of both density and orientation. An another pro-

nounced change .ay be seen in "the central part of the and

patterns. The intensity re.arkably increases in the ceLral region,

which .ay suggest that the refractive index difference between the

spherulite and its surrounding .ediu. increases with increasing elonga-

tion. It may be seen from a co.parion of the and pattern that the

scattering pattern in the central part is almost independent of the

polarization condition. The fact may suggest that the central part of

the patterns arises essentially fro. the density heterogeneities

occurring over a large distance comparable with the size of the spheru-

lite. On the other hand, outside the central region the and H^^

patterns are quite different from each other, indicating the static

scattering primarily depends upon the orientation fluctuations in this

region.

IV~3. ^ Dependence of the DLS at
Small Scattering Angle

The DLS measurements were carried out as a function of at 9 = 0
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for the san,e MDPE sample. The sample was elongated statically by 7.1%

and dynamically by 0.9%. The measurements were carried out at constant

frequency (2.9 Hz) and at room temperature. The same sample specimen

was used for the whole measurements. The specimen was mechanically

conditioned for about two hours to achieve stationary deformation. The

thickness of the specimen (designated by t) was A. 3 mil.

In Fig. III-28, the ^ dependence of the DLS for I (e = e ) ig+ max
shown. The real part of the DLS. AI'^, changes from a small positive

value to a large negative value with a minimum at = 50° by changing

from 0" to 90°, while the imaginery part, AI"_j_, changes from a

negative value to a positive value by changing Q from 0° to 90°. The

.
"scattering loss tangent", tan y, passes through infinite value at

about = 20° where the real part AI'_^ becomes zero but the imaginery

part AI"_j_ has definitely non-zero value. The negative tan y indicates

that the DLS intensity is lagging to the dynamic strain. The angular

dependence of the DLS may be primarily associated with the variation of

spherulite shape from sphere to ellipsoid. The variation of the shape

may occur in phase with the applied strain as shown in the earlier work

on photographic dynamic light scattering study^^. If this is true, then

the loss component of the DLS may suggest that the internal rearrange-

ment of optic axes within the spherulite must occur out of phase with

the applied strain. The internal reorientation processes may affect,

more or less, the angular dependence of the DLS. In Chapter VI of this

part, it will be shown that two internal reorientation processes, a

tilting process occurring primarily in the polar part of the spherulite
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and a twisting process Jn the oquntorUl part, appreciably affect the

angular dependence of the DLS and are associated „J th the loss component

of the DLS.

The origin of the DLS intensity at f2 = 0° and 90° is not zero. The

non-2cro Intensity may arise fron, the variation of the spherulitc dis-

order. One may consider here two types of disorder, i) internal disor-

der and 11) disorder in shape such as truncation^^ of the spheruldte.

The response of those two types of disorder to the applied strain can

produce non-zero value for DLS at = 0° and 90°. On the basis of

photographic DLS result one may predict that the disorders of the second

type may not be accompanied ],y the large loss component as shown in the

data and Hint tlie loss component may result from the disorder of the

first type. Consequently the disorder of the first type may make a

greater contribution on lUv DLS at <^ - 0° and 90° than ll.at of the

second type.

The azlmuthal angular dependences of the DLS are shown in Fig. Ill-

29(a) for I_(0 = 0 ) at 27°C and (b) for 1 , , (0 - 0 ) at 28°C. In"1^^
I I

max

case of the DT,S for I^, the real part is negative at small Q and posi-

tive at large fi, which corresponds to the intensity of the H^^ pattern

being decreased in the equatorial region (p = 90°) and increased in the

meridional region (ii - 0°) with Increasing strain by a small amount.

The angular dependence of Al_^'
, Alj' and tan y are associated with the

variation of (i) spherulitc shape and (ii) the Internal reorientation of

optic axes as well as (iii) the variation of den,-, I Ly distribution of the

scattering materials. The tliird factor affects the DLS for Iii and I_
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but does not appreciably affect that for
'

It is related to the

seperation of the lamellae and the crystalline blocks as discussed

already.

In case of the DLS for I|
| , the anuglar dependence of AI||' shows

an opposite tendency to that of AI^' . which corresponds to the inten-

sity of pattern being increased in the equatorial region and

decreased in the meridional region upon increasing the strain. The

angular dependence of tan y for I| | and is fairly similar at large

fi but quite different at small Q.

If the total DLS intensity (AI^*) under parallel polarizers is

given by weighted average of the intensity due to the density variation

(AI^ ) and that of the orientation variation (AI ), then

"t* =
''d "d* +

''o
''\* (6)

where and X^ are the weight fraction of each component. If the

Imaginery part of AI^ and AI^ are not large then, the loss tangent of

the total DLS (tan y) is given by

tan Y - X , tan y . + X tan y (7)a d o o ^ '

where tan and tan y^ are the loss tangent of the density and orienta-

tion term, respectively. The term associated with is optically

isotropic in nature and is independent of the polarization conditions,

while the term associated with is optically anisotropic and dependent

upon the polarization conditions.
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The observation that tan y at large n is almost independent of the

polarization condition suggests that the DLS at large n may essentially

arise from the variation of the density term. In more detail, one may

see that | tan y |

for I_ is greater than that for I|
|
by approximately

0.1 for the DLS at large fi. The difference may be due to the minor

contribution of the internal reorientation process on the DLS. In the

DLS for I|| at n = 90% the applied field of the incident beam is

parallel to the orientation of optic axes, while in the DLS for I at

n = 90°, the field is perpendicular to the orientation of optic axes.

Therefore the contribution of the orientation term may be greater in the

DLS for I|| than in the DLS for I_. From the experimental evidence and

the theoretical consideration it is proposed that (1) the deformation of

structures in the equatorial part of the spherullte Involves a time

dependent process which occurs with rather large phase lag to the

applied strain and that (11) the variation of the density in the equa-

torial part may occur with a larger phase lag than that of the Internal

reorientation.

On the other hand, the fact that tan y at small fi is quite depenent

upon the polarization condition may suggest that there is a significant

contribution of the orientation term on the DLS coming principally from

the polar part of the spherullte. The difference of tan y for the two

polarization conditions may be Interpreted as the difference of the

orientation contributions. In the polar part of the spherullte the

variation of the orientation may occur principally by the chain tilting

process. If this is the case and if the tilting process is not too
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extensive, (which .ay be legitimate for s.all static and dynamic strain),

then the variation of the tilting process may involve a greater varia-

tion of the induced dipole moment for the Ij
|

case than for the case,

suggesting that the DLS for I|
|

may be more sensitive to the orientation

variation than that for I^. This tendancy may also be seen in tempera-

ture dependence of the DLS at ^ = 0^ in Chapter V of this part. In any

case tan y is much smaller at small n than at large indicating that

less optical loss mechanism is involved in the deformation of the

spherulite in the polar part.

I^zAi. Dependence of the DLS at High Scattering Angle

In this section the angular dependence of the DLS shall be dis-

cussed at high scattering angle (0 = 7°) where the scattering arises

mostly from the internal heterogeneities which are shovm to be non-

random in terms of. orientation in Chapter IV-2 of this part. The vari-

ation of the internal heterogeneities due to the applied dynamic strain

may be characterized by the variation of (i) the magnitude and (ii) the

correlation distance of the heterogeneities which may result from the

relative motion of structures separated at a shorter distance than the

spherulite size.

The experimental results shall be qualitatively interpreted on the

basis of the reciprocity principle of the scattering phenomena to its

objects and compared with the previous results obtained at small

scattering angle.

The angular dependence of the DLS for I_^(e = 7°) is shown in Fig.

III-30. The real part is positive at small Q and negative at large ^,
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which corresponds to the intensity of pattern being increased at the

equator (m = 90°) and decreased at the meridian (p = 0°). The loss

tangent of the DLS, tan y , is very small and negative at small n and is

large and negative at large ^. On the basis of reciprocity it may be

qualitatively proposed again that the variation of orientation fluctua-

tions in the equatorial part of the spherulite occurs with large phase

difference to the applied strain and is associated with a time-dependent

process, while that in the polar part occurs almost in phase with the

strain and is independent of time. From a morphological point of view

the variation of the orientation fluctuations is indirectly related to

the fluctuations of some sort of internal reorientation processes, one

suitable example of which may be the tilting process occurring in the

polar part and the twisting or rotation process of lamellae around

their crystallographic b-axls in the equatorial part of the spherulite.

The DLS for I_^(0 = 7°) at = 0° and. 90° show quite large Intensity

compared with the DLS at other fi and are larger than that for I (0 = 0 )+ max
at fi = 0° and 90° by a factor of about 2, indicating that the DLS at

high scattering angles arises mostly from the variation of the internal

heterogeneities with the applied strain. It may be also worthwhile to

point out the fact that a ratio of maximum intensity for the DLS at

^ "
®max ^° ^^^^ at 6 - 7° (about 1.6) is much smaller than the ratio

for the static scattering intensity for undeformed sample (about 6 as

shown in Fig. III-24(a)). The fact may then suggest that scattering

intensity associated with internal heterogeneities has much greater

"scattering-strain coefficient" (defined by the gradient of the scatter-
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Ing Intensity vs strain) than that associated with th. average spheru-

litic contour.

The angular dependence of the DLS is shown in Fig. III-31(a) for

I^(e = 7°) and (b) for
|

(e = 7°). aI^' is always positive and large

at n = 0*' corresponding to the intensity of the H^^ pattern being

Increased as a whole with increasing elongation, while AI|
|

' is posi-

tive at small Q and negative at large Q corresponding to the intensity

of pattern being increased at the equator and decreased at the merid-

ian. The ratio of maximum intensity at e = e to that at 6 = 7" formax ' iwi.

the DLS is about 1.5 for and about 2.5 for Ij
|

, while the ratio for

the undeformed sample is about 10 as shown in Fig. III-25. Again as in

the case of the DLS for I_^(e = 7°), the DLS for and I|
|

at 9 = 7°

has much greater intensity than that expected from the static light

scattering, suggesting that the scattering may arise almost from the

internal density and orientation heterogeneities at 9 = 7" and that

the scattering-strain coefficient is much greater at 9 = 7° than at

0 = 9.
max

The angular dependence of tan y for I_(9 = 7°) and I|
|

(9 = 7*") are

similar to each other at large 9. and somewhat different at small fi,

indicating again that the density fluctuations may be major contribution

to the DLS in the equatorial part of the spherulite and that the contri-

bution of the orientation fluctuations is significant in the polar part.

In any case tan y is appreciably large at large Q and quite small at

small indicating again that a significant loss mechanism is associated

with the motion of the structures in the equatorial part of the
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sphe.uUte and tha. the „oUon of st..cu,.es ' „ay occu. aW. in pHase
with strain in the polar part.

In ™ore detail, at large U,
|
tan y |

is large for I_(e - 7") than
for

I| I
(e = 7°) by about 0.1 as found for the DLS at e = 9 which

- max

'

-y indicate again that the variation of the density fluctuations is

associated with a process having greater ti„e dependence and which
occurs In greater phase lag with the applied strain than that of orien-
tation fluctuations in the equatorial part of the spherulite.

IV-S^ Some_Conclusions of the Study on
the Angular Depenflnr.,-o nf i-[,g pj^g

In the previous sections. IV-3 and IV-/,. the experimental results

for the angular dependence of the DLS have been qualitatively inter-

preted on the basis of the reciprocity principle of the scattering

phenomena. It may be proposed on the basis of such qualitative inter-

pretation that:

(i) The DLS at high scattering angle (G = 7°) may arise essentially

from the variation of internal orientation and density hetero-

geneities, while that at small scattering angles may arise

essentially from the variation of the average spherulitic contour

in terms of shape, orientation of optic axes and distribution of

scattering materials.

(ii) The variation of the average spherulitic contour may not occur

always in phase with strain. This may be due to the fact that

the internal rearrangement of structures in terms of density and

orientation may not occur in phase with strain, although the

variation of spherulite shape may occur essentially in phase with
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strain as dcn.onstrated from the previous photographic DLS

44
experiments

(iii) The time dependence of such internal rearrangement of structures

within the deformed spherulite may be quite angularly dependent.

The deformation of the spherulite in the equatorial part may

occur with a rather large phase lag with the strain and be

associated with a time-dependent process, while that in the polar

part may occur almost in phase with the strain and be associated

with an almost time-independent process. The deformation of the

spherulite may produce a variation of both density and orienta-

tion heterogeneities. In terms of a morphological point of view

the variation of the density heterogeneities may be related to

the separation of the lamellae and the crystalline blocks consti-

tuting the lamellar structure, and the variation of the orienta-

tion heterogeneities may be related to the twisting or rotation

of the lamellae around their crystal b-axes in the equatorial

part of the spherulite and tilting of the optic axes (or c-axos)

*

around their crystal a-axes in the polar part. The details of

the mechanisms shall be discussed in Chapter VII of this part.

(iv) In the equatorial part of the spherulite, the variation of the

density heterogeneities may occur with a greater phase lag to the

applied strain and may be associated with a greater time-dependent

process than that of the orientation heterogeneities. The

prediction that the larger loss mechanism is related to the den-

sity variation is consistent with the previous results obtained
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43by LeGrand et. al. under stress relaxation experiments which

were briefly discussed in Chapter I of this part,

(vi) The relaxation time involves in the rearrangement of the structures

in large scale may not be the same as that in short scale.
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CHAPTERV
TEMPERATURE DEPENDENCE OF THE DLS

In this chapter the temperature dependence of the DLS shall be

discussed to confirm the previous results obtained and predictions made

from the study of the angular dependence. The dynamic mechanical

properties shall be discussed birefly for purposes of characterization

of the sample.

Dynamic Mechanical Propert ies of the Saniple

The dynamic mechanical experiment was carried out for the same

sample as a function of temperature and frequency by using the vibron

viscoelastometer (Toyo Measuring Instrument Co,, Ltd., Japan). The

results are shown in Fig. III-32(a) for the mechanical loss tangent,

tan 6, and in Fig. III-32(b) for the real (E') and imaginery part (E")

of the complex dynamic modulus.

As shown in the figure, the temperature dependence of E" and tan 6

are rather broad and do not show clearly the mechnical loss peaks related

to the motion of chain molecules or some structure units in the crys-

talline (a-peak) and amorphous regions (3-pcak) . By looking at the

data in detail it may be seen, however, that 3 mechanical loss peak

is shovm around -10°C at 110 Hz and that a mechanical loss peak is

shown around 40°C at 3.5 Hz and around 60°C to 70°C at 110 Hz. The

temperature dependence of E" at 11 Hz is not sho\m in the figure but

is almost the same as that at 110 Hz except in the temperature region

from lO^C to 60°C in which the intensity of mechanical absorption is
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quite dependent upon frequency. E" at 11 Hz in th^t tc.r.r.r. --I jr. ctL J.X nz m tnat temperature region

lies in between E" at 110 Hz and 3.5 Hz. In this temperature region

there may be a tendency to shift the peak toward the higher temperature

side with increasing frequency. It is also seen that the intensity of

the mechanical absorption is decreased with increasing frequency. On

the other hand at temperatures above approximately TCC, E" hardly

shifts with the change of frequency. The fact may suggest that there

are two relaxation mechanisms which are quite different in their

activation energies. It is impossible, however, in this case to apply

the time-temperature superposition in order to obtain the activation

energies for the two relaxation processes, since the intensity of

absorption varies with frequency.

In general it has been proposed^^"^^ that the a loss mechanism is

composed at least two components, the lower temperature mechanism (a^)

being associated with inter-lamellar slip and the higher temperature

mechanism (a^) being associated with molecular motion within the crys-

talline lattice. Although the presence of a^^ and loss mechanisms

cannot be clearly seen for this particular sample, it may be still

conceivable to expect the presence of these two a loss mechanisms.

y-2. Temperature Dependence of the DLS

The temperature dependence of the DLS has been studied for the

same sample (MDPE) at a fixed frequency (2.9 Hz) under three different

conditions, I_^, I|j and I^ in order to separate the contribution of

density and orientation fluctuations to the DLS. The measurements were

carried out for = 0° and 90° at the high scattering angle where the
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DLS arises essentially fro. the variation of the internal heterogeneities
in ter.s of density and orientation. Fro. the comparison of the DLS
at . = 0° With that at . = 90% it .ay be qualitatively possible to study
the angular dependence of the spherulite deformation as a function of

temperature. The measurements for a given 6 and . were carried out

during the heating cycle for the same sample. The specimen was mecha-

nically conditioned for at least one hour at the room temperature and

for about 20 minutes at each temperature of measurement.

The temperature dependence of the DLS is shown in Fig, III-33(a)

for 1^(0 = 7% at = 90° and (b) for I_^(e = 7°) at U = 0\ From the

figure it may be seen that the DLS at f2 = 90° is accompanied by a much

.
greater phase lag with respect to the applied strain than that at

= 0° and that the temperature dependence of tan y is greater at

= 90° than at fi = 0°
. In more detail, | tan y | at fi = 90° increases

slightly and reaches to a maximum at about 40°C with increasing tempe-

rature from 10°C to 70°C. Upon further increase of temperature,

I

tan y| decreases rapidly toward 0. On the other hand tan y at = 0°

changes gradually from a small negative value to small positive value

with increasing temperature from 20°C to about 60°C and stays constant

with further increase of temperature. From the figure it is suggested

that the variation of the orientation heterogeneities in the equatorial

part of the spherulite is accompanied by a bigger phase lag with respect

to the applied strain for the measured temperature range than that in

the polar part of the spherulite and that the loss tangent shows much

greater temperature dependence for the deformation of the spherulite
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in the equatorial part than in the polar part.

The temperature dependences of the DLS under parallel polarization

conditions arc shovm in Fig. III-34(a) for
1

1

|
(0 = 5°) at Q = 90° and

(b) for I||(0 = 7°) at =^ 0°, and in Fig. III-35(a) for I^(e = 5°) at

Q = 90° and (b) I^(e = 7°) at fi = 0°. The DLS for and
1

1

|

at Q =^ 90'

were measured at 0 = S** instead of 9 = 7% because the DLS signals at

0=5° were accompanied the noise less than those at 0 = 7°. As shown

In Fig. III-24, the DLS at 0 = 5° still arises primarily from the vari-

ation of internal heterogeneities rather than the variation of the

average spherulitic contour. Therefore the DLS at 0 = 5° may arise

from the same origins as the DLS at 0 = 7°.

From the figures it may be seen again that the DLS for both and

I|

I

at = 90° are accompanied by much greater phase lag to the applied

strain than those at = 0°. |tan y| for I|
|

and I_ at = 90° show

a similar tendency that they show a maximum value at about 30°C and

then decrease monotonically with further increase of temperature.

I

tan y| for I|
|

and I_ at = 0° show also a similar tendency in that

they increase by a small amount with increasing temperature from 20°C

to about 60°C and then stay constant with further increase of tempera-

ture. The tendency is also similar to that for at = 0° . The

temperature dependence of AI|
j

' at f2 = 0° and 90° are quite similar

to those of ^I^' at = 0° and 90°, having a maximum Intensity at about

50°C for and |aI_j_'| at ft = 90° and at about 80°C for AI||' and

AI_j^* at ft = 0°. On the other hand the temperature dependence of AI^'

is somewhat different from those for and ^^'^ increases
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montonically with Increasing the temperature.

The differences in the temperature dependence of the DLS under

different polarization conditions may arise from the difference of the

relative contribution of the density and orientation fluctuations. The

experimental observations are consistent with the previous predictions

based upon the study on the angular dependence of the DLS at room tempe-

rature that the contribution of the orientation fluctuations is greater

on the DLS for I|
|

than for and that the DLS for Ij
|

is associated

with the variation of both density and orientation heterogeneities, while

the DLS for I_ may arise mostly from the variation of density hetero-

geneities.

From the comparison of tan y at f2 = 0' and 90° for I , I,
, and I+

11

it may be proposed again that the variation of structures in terms of

the density and orientation heterogeneities is accompanied by much

greater loss component in the equatorial part of the spherulite than in

the polar part. From the comparison of the DLS for 1^ with that for I_

at Q = 90", it is proposed that in the equatorial part of the spherulite

the variation of the density heterogeneities occurs with a larger phase

lag with respect to the applied strain than that of the orientation

heterogeneities and that the variation of the density heterogeneities

has a much greater temperature dependence than that of the orientation

heterogeneities. The variation of the density heterogeneities increases

and becomes easier with increasing temperature. It may be also seen

that the difference of tan y between the DLS associated with the varia-

tion of the orientation and density heterogeneities decreases with
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increasing the temperature, from which it is "proposed that the difference

of the hindrance opposing the variation of the density and orientation

heterogeneities becomes smaller with increasing temperature.

By comparing the DLS for I|
|

and at = 0°, it may be seen

that the DLS for I|
|

is primarily related to the variation of orientational

heterogeneities, while the DLS for I_ depends upon the variation of den-

sity heterogeneities as well as those of orientational heterogeneities.

The experimental observation may be consistent with the previous pred-

ictions based upon the study on the angular dependence that the DLS for

I|

I

is more sensitive to the variation of orientation heterogeneities

than that for at = 0°.

In addition to those observations discussed above, there are the

following interesting observations whose detailed interpretations shall

not be made here but left to future work.

(i) The change of tan y at = 0° for 1^, I|
|

and I_ levels off at

about 50°C to 60°C. The change must be associated with the or/

and a2 mechanical loss processes.

(ii) In connection with factor (i) , tan y at Q = 0° for I , Ii i and
+

I I

I^ is positive in some cases, suggesting that the DLS is appar-

ently leading the applied strain in phase. It should be noted,

however, that the absolute value of tan y is quite small and

may involve some uncertainly in experimental evaluation.

(iii) tan y for I , Ii i and I_ at = 90° reaches a maximum value at—

about SO^C to 40°C. This temperature is apparently correlated

to the temperature at which the a^^ mechanical loss peak was
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observed at 3.5 Hz.

(iv) tan Y for at = 90° decreases quite rapidly above 70°C. while

tan Y values for I_ and I|
| decrease gradually. The difference

of tan Y associated with the variation of orientation and density

heterogeneities becomes minimum at about 70°C. Again the changes

shown in (iii) and (iv) must be associated with the oi^ and/or

mechanical loss processes.

In Chapter VII of this part, we shall intcrpretc the tendancies of

these changes in relation to other type of optical studies as well as

dynamic mechanical studies.
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CHAPTER VI

A THEORETICAL STUDY ON THE DYNAMIC LIGHT SCATTERING
ARISING FROM THE DEFORMATION OF SPHERULITES

The dynamic light scattering (DLS) intensity has been calculated

for cross polarization condition as a function of the scattering angle

(6) and the stretching direction (Q) based upon the spherulite deforma-

tion models of (i) Samuels, and (ii) van Aartsen and Stein. The de-

pendence of the DLS on is discussed in terms of internal reorientation

processes of crystals, i. e.
, (i) the tilting and (ii) twisting motions

occuring within the deformed spherulites which are introduced as time-

dependent process and is compared with the previous experimental results

described in Chapter IV of this part.

VI- 1 . Introduction

The theories for light scattering from deformed spherulites have

been developed for both two-dimensional^ ' and three-dimensional^'^

spherulites for a variety of deformation models. It may be worthwhile

to apply all these theories to the case of dynamic light scattering.

In this work, however, we shall restrict ourselves to the three-

dimensional cases only for the purpose of comparing the theories with

the previous experimental data obtained for a system having three

dimensional spherulites.

The first model to be considered is that proposed by Samuels^ for

the scattering by an anisotropic ellipsoid, which is an extension of

the Roess and Schull^^ approach to the scattering due to an isotropic
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ellipsoid. In this approach, the original equations for the (eq. (i))

and scattering of Stein and Rhodes^ for an undeforn^ed spheLlite

(treated as an optically anisotropic sphere) are extended to a deformed

spherulite (anisotropic ellipsoid) simply by changing the shape factor

U in eq. (2) into U* in eq. (3) and using it instead of U in eq. (1).

For Hy scattering,

H„ "
0 27T 7~2 T" f^°'r ~

"r^ 9" ^in y cos pV U cos 6 + sin e sin y ^ r 2

(4 sin U - U cos U - 3 Si U)]^
(1)

AttR

n - 0 . 0
u - — — sm ~

X' 2 (2)

4lTR

(3)

where and are the volume and the radius of the spherulite in the

undeformed state, respectively, and are the polarizabilities of

the spherulite along the tangential and radial direction. X' is the

wavelength of light in the medium and X is the extension ratio of the
s

uniaxially deformed spherulite along the stretching direction. It is

assumed here that the deformation of the spherulite occurs under

constant volume. 6 and y are the scattering and azimuthal angles as

defined in Fig. III-36.

Although this approach can take into account in a semi-empirical "

manner shape of the spherulite upon deformation, it ignores any internal

reorientation processes of optic axes of the optically anisotropic
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scattering elements occuring within the deformed spherulite. The optic

axes remain perpendicular to the radii of the spherulite through the

deformation process.

The other model to be considered in the Model I of van Aartsen and

Stein^ which requires an affine transformation for the scattering power

distribution upon deforming the spherulite such that

N'(a', r', fi') (r')^ sin a' da' dr' dfi'

2
" " ' = N (a , r, fi) r sin a da dr (4)

where

cos = X^? "-^^
cos n

sin = P""'"''^ sin

"1/2
cos a' =

(J) cos a

sin a* = f^^^ sin a

(() = [P sin^a + A^^ cos^a]

and

2 2 2 2P = sin + A^ cos (5)

a', and r' are defined in Fig. III-37 and refer to the deformed

state, whereas unprimed quantities refer to the undeformed state.

and N are the amounts of scattering material per unit volume at a given

position within the spherulites. A^, A^ and A^ are the extension ratio

of the spherulites along the x, y and z directions. For the case of

uniaxial stretching at constant volume
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2 ?

^1 = ^2 = l/*3

and

N' (a'
, r'

, fi' ) = N = constant

Fro. this, the scattering field strengths for V^, and polarisation

conditions are given by

I I

- K(a^ - a^) [ cos^4. I / \, sin a
-'O Jo ^

E
cos(q sin 6 cos a)

J^iq cos 6 sin a) q^da dq + sin^i^
| f
Jo Jo

2 2 2(cos B' + sin 3' cos u)') sina cos(q sin6 cos a)

0 Jo
J^Cq cos 6 sin a) q da dq - sin ijj

f

J
p^sin a

J- (q cos 6 sin a)
cos (q sin 6 cos a) q^da da

q cos 6 sin a ^ ^^t aq

.2
+ sin

i> j j
F sin a sin(q sin 6 cos a) J, (q cos 6 sin

^ 0 J 0 1

q da dq] + KCa^ ~ "^g^

J j " cos a)

2J^Cq cos 5 sin a) q da dq (6)

From the eq. (6), E and E are given by
V %
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\ ^^11 ^^^^ = 90° : (7b)

and

~ ^^"l ~ ^^2^
/ I

^3^^^ " sin(q sin 6 cos a)
V *^ 0 J 0

2J^(q cos 6 sin a) q da dq (8)

The factor K is given by

K = CNEq . 27T Rq^/(U*)^
(9)

where CNE^ is a proportional constant. U , F^,F and F are given by

TT* r. . 0 2 . 2 6 , 2 6 , 2 2 2 2 1/2
0^^"^

2 ^^2 2 ^^^ 2 ^ 2 ^ cos m)]^

(10)

= (cos^3' " sin^3' cos^w') cos^a* + sin^3' cos^co*

- 2 sin 3' cos 3* cos sin a' cos a' (11)

F2 = " + cos^3-,^' + sin^3j^' (cos^co* - sin^o)') (12)

2 2 2
^3 " (^^^ ^' "* sin 3* cos co*) sin a* cos a'

2 2
+ sin 3' cos 3* cos 00* (cos a* - sin a') (13)

and 6 is defined as
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sin 6 = A3 cos
I cos y [a/ sin^ | + cos^

|

(A^^ sin^y + A^^ cos^m)]~^/2 ^^^^

a, and are the polarizabilities along and perpendicular to the optic
axes of uniaxlally anisotropic scattering elements, respectively, and

Is the polarlzability of the medium surrounding the spherulites.

The angles 3' and are the tilting and twisting angles of the optic

axes with respect to the radii of the spherulites in the deformed state

and are defined in Fig. III-37. In general, 3' and are not constant

throughout the spherulite but depend on location within the deformed

spherulite. The angular dependences of 3' and are assumed to have

the functional forms assumed by van Aartsen and Stein^ where optic axis

tilting process is assumed to predominate at small a' (i. e. in the polar

region of the deformed spherulite) while the optic axis twisting

process is assumed greatest near a' =90° (i. e. in the equatorial

region)

.

3' = 3 exp [-K (A^ - A.^) cos^a']

g(a)') = 2<cos co'> -1 = 1- exp [-na_^ - A.^) sin^a'] (16)

(15)

av

Because of the inclusion of these two relationships the model does

take into account the effects of internal reorientation processes as

well as the change of spherulite shape.
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Both of the theories considered are based upon models of perfect

spherulites in which the effects of internal heterogeneities are

Ignored. In real systems, however, additional scattering arises from

internal heterogeneities^^ of density and anisotropy as well as orienta-

tion as discussed mainly in Part II and in Chapter IV of Part III. The

effect of such internal heterogeneities is especially important for

scattering at = 0° and 90° where perfect spherulitic scattering is

zero, and at very small and high scattering angles. Therefore computa-

tions based upon models of perfect spherulites would not be expected

to predict well the experimental behavior for those particular regions.

VI- 2. Application to the DLS

The theories have been applied to the DLS in which the variation

of the light scattering from sample subjected to sinusoidal strain is

considered.

In the Samuels' model, the scattered intensity is a unique function

of (eq. (3)) and the DLS intensity for H (AI ), for example,
V

is given by

AIu * = I« + AA *) " I„ (A )

V
i\j H„ ^ s s ^ H„ s

where A and AA are static and dynamic extension ratios of the

spherulites, respectively. The asterisk (-) in the superscript refers

to complex quantity. The equation is valid only when |aA
|

is small
s

enough to give a liner relation between scattering intensity and

extension ratio. Experimental results indicate thaf this will be so

for dynamic strain amplitude up to at least about 1% for the MDPE
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sample. In these studies AX^ was assumed to be in phase with the

applied strain, although, in general, a phase lag may exist. This

assumption appears to be verified by its experimental predictions'^^

indicating a very rapid response of change of spherulite shape from

sphere to ellipsoid in the case of polyethylene spherulites.

Experimental results of dynamic light scattering, dynamic birefrin-
41 ,c

gence
,
and dynamic x-ray diffraction^^ demonstrate that response of

molecular orientation in amorphous and crystalline region occurs out of

phase with the applied strain. The fact may be empirically introduced

into our model by allowing two types of strain to occur, the first is

related to the change of distribution of scattering materials within the

deformed spherulites, and the second to the internal reorientation

processes involving changes in 3' and g(w'). The former strain is

designated \^ and is related to X^, ^2 and in eqns . (5), (10) and

(14), the latter strain is designated X and is related to \^ and A
i 23

in eqns. (15) and (16). A^ and A^ in the case of a dynamic strain are

assumed to be given by

^ ^ - 1 J- A> iwt
A - A + AA e
s s s

(17)

where X and A.^ are the total dynamic extension ratios, A and Ao iC s Z

are the static and AA and AA^ the dynamic extension ratJos. y is a
S i ' £

d dphase difference betv/een A„ and A • As the simplest case it is

assumed that A and AA are equivalent to A and AA
, respectively and

S S jL jC
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that both and x/undergo constant volume deformation. It is also

assumed that and (AA^)* for the tilting (3) and twisting (g(a)'))

processes are equivalunt to each other except a case to study an effect

of irreversibility of the tilting process.

Consequently the DLS intensity is in general, a complex quantity

and is given by, for example in case of 11^ scattering,

""V*
' \ ^ ^ " \ ^'s- \>

and

[tan y]„ = AT " / AI ' (I9)
V V V

where primed and double primed quantities are the in-phase and out-of-

phase component of the DLS, and tan y is the loss tangent of the DLS

d ^ ^
intensity relative to A . AI and AI are also given in the same

V "h
manner and these are numerical calculated by using eqns. (7a), (7b) and

(8).

In order to compare theory and experiment, it is useful to rewrite

the equations in terms of the photometric system shown in Fig. I-l.

This can be done by using the following relationship between the

photographic and photometric notations as already discussed in section

III-l of Part III.
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AI^'(^^) = AI '(p = 90° - a), and AI "(fl) = m n
(, . _

V +

= AI^ '(p = 90° - fi), and AI|,"(f^) . ai "(y . 90° - n)

AlJ(n) = Aljj^'Cy = 90° - J^), and Alj'(^2) = AI^ "(p = 90° - ^)

(20)

y^"3. Results of Numerical Calculations and
Comparison with the Experimental Results

Numerical calculations of the DLS theory were made for I . The

results shall be compared with the experimental results discussed in

Chapter IV and V of the Part III.

(a) Samuels' model

Numerical calculations have been carried out using the CDC 3600

computer of the University of Massachusetts Research Computing Center

for A' = 0.364 y. An arbitrarily chosen value of AV^^(a - a )^ of 10^
0 t r

was used. The ^ dependence of the DLS has been calculated for values of

of A.O and 12.63. These are equivalent to G = 1.5° and 4.67° in the

sample, or 2.25° and 7° in air if = 9 y. The values of 9 used

hereafter refer to the scattering angle in air.

The dependences of the DLS at 0 = 2.25° and 7° are shown in Fig.

III-38(a). At e = 2.25°, AI_^' is negative for all indicating a

decrease of the scattered intensity for a small increase of the

stretching ratio for all n. However, at 6 = 7°, AI,' is small and

positive at small values of fi, and large and negative at large fi,

reflecting the shift of y (the angle y at which there is a maximum
max

scattering intensity at a given scattering angle and elongation) toward
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higher values ot , at high scattering angles! It Is seen that the
'

predicted values ot AI^- at a = 0' and 90" are .ero. which results tro„
the assumption of a perfect spherullte model. The observed Intensity

changes at these values of result from the background Intensity asso-
ciated with internal spherullte disorder. Experimental results differ

also from the theory in Fig. III-38(a) in that AI^- Is found to change

sign with increasing n, being positive at small fl and negative at lar^e

In Fig. III-38(b) is shown the 6 dependence of the DLS for various

values of p. The values of AI^' are predicted to decrease with in-

creasing e much more rapidly than is experimentally observed. The fact

again suggests that the DLS at high scattering angles arises mainly

from a response of the internal heterogeneities to the applied strain

in the real system, and that the heterogeneities give rise to additional

scattering at large 9 and at = 0° and 90°. The maxima and minima

predicted for the DLS at high scattering angles in Fig. III-38(b) may

be due to the variation of the scattering intensity in the higher order

maximum region.

While the Samuels' model has the virtue of simplicity and is quite

useful for predicting the qualitative changes in the scattering patterns

with elongation, it does not appear adequate for describing the more

subtle changes in the DLS experiments. Consequently, the other model,

the van Aartsen-Stein model, has been used for further computations and

discussions

.
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b) van Aartsen-Stein model

Fig. III-39 shows the angular dependence of twisting (g(aj')) and

tilting (B') factors calculated for = 1.09 for various values of the

parameters K and n using the empirical equations (15) and (16). As

discussed previously it is seen that the effect of twisting is greatest

in the equatorial region and zero in the polar regions of the spherulite,

and that the effect of tilting is greatest in the polar regions and zero

in the equatorial region. For a given angular position (a'), the effect

of tilting and twisting increases with an increase of the local strain

(X^) and with an increase of the adjustable compliance parameters n and

K.

The effects of the tilting and twisting processes are shoxra in

Fig. III-40 on the Q, dependences of AT ' and AI " at 0 = 2.25° for X+ + s

= = 1.09, AA^ = AA^ = 0.01, and = Tr/32 for both 3' and o)'. (The

positive tan of order of 0.1 corresponds to the local strain which

leads the applied strain in phase if the applied strain is assumed to

be indentical to the spherulitic strain (A and AA ).) The case where
s s

n = K = 0 is the case where no internal reorientation processes can

take place. In such a case, AI ' depends uniquely upon the change ofT

spherulite shape and, as a consequence, AI_j_' is positive at small

and negative at large corresponding to the intensity of the

patterns increasing at the equator (y = 90°) and decreasing in the

meridional (y = 0°) region. It is obvious from tlie assumption made

that AI_j_" = tan y = 0 is in this case. The prediction for the case of

n = K = 0 is somewhat different from that based upon the Samuels' model.
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This arises from the difference in the distribution of scatterin;

material within the deformed spherulite between the two models. The

model of van Aartsen-Stein assumes the affine transformation for the

distribution of scattering materials as shown in eqns. (4) and (5), while

m the semi-empirical approach of Samuels the change of the distribution

upon stretching may obey some sort of non-affine transformation process.

From the figure it is seen that the tilting and twisting processes give

rise to opposing effects on the DLS, twisting tends to increase AI^'

and AI_^" and to shift the peak towards higher values of ^ whereas tilting

tends to make them more negative and to shift the peak toward smaller

values of. Q.

The fi dependence of tan yCFig. III-41) is such that the tilting

process causes a large phase difference at small and the twisting

process gives rise to a similar effect at largo ^. This would seem

reasonable as the variation of the tilting and twisting motion to the

applied strain occur most effectively in the polar and equatorial part

of the spherulite, respectively. It is found that AI ' and AI " are+ +

again zero at = 0° and 90° because the model cannot take into account

the variation of the background scattering intensity due to the effect

of the applied dynamic strain on the internal heterogeneities.

The effect of the magnitude of dynamic strain may be inferred from

Fig. III-42 where the dependences of AI.' and AI " are shown for AA+ + s
.

= AA^ = 0.005, all other parameters being unchanged from the data given

In Figs. 111-40 and 41. By comparing Fig. III-42 with Fig. III-40, it

may be seen that the ^ dependences have similar tendencies but that
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the magnitudes of AI_^' and AI^" are half as large as before. This

suggests that the equations behave in a linear manner leading to a

proportionality between the DLS and strain when the dynamic strain is

small.

Fig. III-43 shows the Q dependences of AI_^' and AI_j_" under the same

conditions as the data shown in Fig. III-42 except that the static strain

(Ag = A^) has been decreased from 9% to 6%. By comparing Fig. III-42

and Fig. III-43, it is apparent that the DLS depends upon static strain,

i. e. on the original structure upon which the dynamic strain is super-

Imposed, even though the tendencies are not much affected. Increasing

the static strain from 6 to 9% causes AT ' and AT." to increase in a

negative sense, the effect being much more appreciable for the tilting

process. In this calculation it is assumed that both the static and

dynamic strains are reversible and that the crystal reorientations re-

sulting from both are given by eqns. (15) and (16). It is found exper-

imentally that if one stretches polyethlene beyond a few percent the

recovery of length is not complete on releasing the stress^^. It would

appear to be quite possible that the orientation change accompanying

such an irreversible deformation may differ form the simple behavior

described by eqns. (15) and (16).

The DLS at high scattering angle is illustrated in Fig. III-44

where the predicted Q dependences of AI * and AI " at 6 = y"" are shown.
4* "T

The effects of the tilting and twisting processes on AI ' and AI " at
+ +

small Q are similar to those observed for 0 = 2.25°. The ratio of the

maximum DLS intensity at 6 = 2.25° to that at 0 = 7° is much higher
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IS zero at
than that observed experimentally, and the DLS intensity

fi = 0" and 90°. This is again a consequence of the presence of internal

heterogeneities, the variation of which has a greater effect on the DLS

intensity at high scattering angles. Thus the predicted dynamic inten-

sity changes occuring at 9 = 7° really represent only a small part of

the total intensity change, so that a comparison of the predictions of

the theory with experiments at these 0 and ^ is not too meaningful.

In Fig. III-45 the effect of reversiblity of the tilting process on

the DLS at 0 = 2.25° is illustrated. Here it is assumed that X = X
s I

= 1.09 for both tilting and twisting processes and that AA = 0 for

tilting and 0.01 for twisting. This is the case in which only the tilting

process is irreversible, and gives rise to positive values of AI_^' and

Al^" and to a large tan y at fi = 90°. The tendencies are quite similar

to the case where only a twisting process exists without any tilting

process. A comparison with the theory with the previous experimental

results suggests that both tilting and twisting processes must occur

reversibly.

The values of chosen may also affect the DLS, and an illustra-

tion of this may be seen in Fig. III-46 where 9 = 2.25° for the case of

Ag =.X^ = 1.09 and AX^ = AX^ = 0.01 for both tilting and twisting. It

is apparent from the figure that doubling y gives rise to doubled

values of tan y and Al^j^". It is also worth noticing that if the sign

of Y is changed, then the signs of tan y and AI," are also changed,

but the sign of Al/ remains the same.+
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So far the dependences of the DLS for have been diseussed for
the case where either K orn is zero as the simplest case to elucidate

effects of the internal reorientation processes on the DLS. By comparing

the theoretical and experimental results, it is proposed that reversible

variations for both tilting and twisting must occur simultaneously to

the applied strain. In Fig. III-47, the effect of a combination of

tilting and twisting motions on the DLS is shown for a constant values

of K = 0.6 and various values of the parameter n, all at 9 = 2.25°. Here

Y, is again ./32. = = 1.09 and AX^ = AA^ = 0.01 for both processes

Both AI^' and AI^" increase positively with increasing degree of twist-

ing, and
I

tan Y I

at n = 90° also increases with increasing degree of

twisting. The general tendencies are quite similar to those described

for data in Figs. III-40. 41 and 42, except that now both components of

^ are of much greater magnitude simply because the reversible compo-

nents of structural response are greater in this case. From a compari-

son of the result with the previous experimental result, the values of

K and n of 0.6 and 0.5 respectively seem to fit rather well to the

experimental result, indicating both tilting and twisting motions must

occur equally well to the applied dynamic strain at room temperature.

It should be also noted that the best fit of the theory to the experi-

ment requires positive value of
y ^. In another words it is necessary

to assume the local strain leads the applied strain in phase.

The DLS under parallel polarization conditions depends upon den-

sity fluctuations which appear in the last term of eq. (6) as well as

upon orientation fluctuations. Consequently an additional parameter

*
AT
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("2 - a^) Is required In this case. Fro. the previous experimental

evidences (a^ - a^) nay be dependent of a' (1. e. the angular location

within the spherulltes) and the local strain related to this term may

have out-of-phase component with respect to the applied strain. Theories

of the DLS for I|
I

and 1_ are now under Investigation by using the same

model described In this chapter and a new model'^ based upon a non atflne

deformation concept.

An interpretation on the positive for the local strain shall be

made in terms of a simple mechanical model In Chapter VII of this part.
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CHAPTER VII

RELATIONSHIP TO OTHER OPTICAL
AND DYNAMIC MECHANICAL STUDY

In this chapter the results of dynamic light scattering (DLS)

studies shall be discussed in relation to the results obtained by other

types of static and dynamic optical studies such as small angle x-ray

scattering, wide angle x-ray diffraction and birefringence as well as

dynamic mechanical spectra.

We shall try to qualitatively correlate the tendencies shown by

these studies. However at this moment, quantitative discussions are

very difficult because of two principal reasons; (1) The quantitative

study of the DLS has just been started, so that at this stage, experi-

mental and theoretical evidence must be cumulated in order to further

elucidate the deformation mechanism and time-dependent response of

internal structures of the spherulite. Secondly, (2) each study has

not been made for the same sample with the same molecular weight, degree

of branching and thermal history. The morphology (including size and

perfection of lamellae and spherulites etc.) and deformation mechanism

of spherulites are believed to appreciably depend upon these factors.

Consequently in order to make quantitative correlation of the various

physical properties it is desirable to study them for the same sample

under the same conditions.
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Relationship to Static X-ray Study

In Chapter IV of this part, it has been suggested that the time-

dependence of the spherulite deformation is angularly dependent

with respect to the stretching axis where (1) internal rearrangements

of structure in the equatorial part of the spherulite lags with applied

strain in phase and be associated with time-dependent viscoelastic

processes, while (2) the rearrangements in the polar part occur almost

in-phase with the applied strain and are associated with less time-

dependent processes. The inhomogeneities of the response of the internal

structure to the bulk strain has been studied in terms of the response

of both density and orientation fluctuations. It has bees suggested

that (3) in the equatorial part of the spherulite, the response of

density fluctuations may occur with greater phase lag with the bulk

strain than that of orientation fluctuations, while (4) in the polar

part both type of fluctuations may occur relatively in phase with the

applied strain.

The change in density and orientation fluctuations must be corre-

lated with the results of small angle x-ray scattering (SAXS) and with

those of orientation studies by wide angle x-ray diffraction,

respectively.

Relationship to Small Angle X-ray Scattering

The variation of density fluctuations which is sensitive to the

scattering at high scattering angles principally arises from motion

or/and deformation of lamellae and interlamellar regions within the

spherulite. Such deformation may also cause changes in density
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fluctuations correlated over a short distance characteristic to small

angle x-ray scattering. Thus a component of the light scattering

arising from density fluctuations is correlated v/ith the small angle

x-ray scattering. The variation of the density fluctuations observed in

the equatorial part of the spherulite is related to the change of small

angle x-ray scattering at the meridian. The earlier small angle x-ray

12,13,78 ^studies have shox^m that the meridional small angle x-ray maximum

first shifts very slightly to smaller angle and then gradually dis-

appears with increasing stretching. This fact suggests that the

lamellae are first separated, and then irregularly deformed and bent with

increasing stretching, so that the regularity of interlamellar spacing

is lost.

Similarly the variation of the density fluctuations in the polar

part of the spherulite is related to the change of small angle x-ray

scattering at the equator. The equatorial small angle x-ray scattering

12 13 78
has been shown * ' to shift to larger angles as a consequence of

slight compression of lamellae or interlamellar spacing. The lamellae

13
may eventually slip over each other which may promote rotation of the

crystal c- and a-axes around the b-axis.

The observation that the meridional small angle x-ray maximum is

diffused more rapidly than the equatorial maximum and soon disappears

with increasing stretching suggests that irregularity of interlamellar

spacing tends to become greater in the equatorial part of the spheru-

lites than in the polar part with increasing stretching. This fact

may be consistent with the previous DLS predictions that the contribution
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Of density fluctuations to the DLS is greater in the equatorial part of

the spherulites than in the polar part where orientation fluctuations

are supposed to predominate. Other evidence for greater density fluctu-

ations in the equatorial part of the spherulites than in the polar part

comes from observations with the polarizing microscope^.

The change of long spacing in initial stage of stretching has been

shown to depend upon stretching temperature and initial long period,

i. e. thermal history of the sample.

In this work the time-dependent response of density fluctuations

to the bulk strain has been studied by qualitative separation of the

density contribution from orientation contribution to the DLS. It is

obvious that an application of small angle x-ray scattering to the

dynamic Studies (although not feasible at this moment) does provide more

directly information about the time-dependent response of the density

fluctuations than the light scattering method. Such a study is

believed to be of great value to further confirm the deformation mecha-

nism of spherulites as v/ell as the previous DLS results.

Relationship to Wide Angle X-ray Orientation Study

The variation of the orientation fluctuations with applied strain

is related to the mobility of the motion of individual crystallites and

amorphous chains. As seen in Part I and II, this is composed of three

types of variations; (1) variation in average degree of orientation of

optic axes of the scattering elements, (2) variation of correlation

distance in orientation of the optic axes, and (3) magnitude of the

orientation fluctuations. These variations cannot be independent of
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each other but .ust be closely interrelated in the spherulitic systems.

Iliis may be so because each crystallite must move, more or less, as a

member of a lamella, the motion of which, in turn, correlates with

other lamellae through tie chains, which may be considered as part of

the amorphous structure. Therefore the interrelation between these

effects may depend upon the fine structure of the spherulite, the degree

of stretching, the stretching temperature as well as the rate of

stretching.

Consequently the change of orientation fluctuations may be closely

correlated with the change of orientation of crystallites as studied by

wide angle x-ray diffraction, although these two observations are

somewhat different from each other as discussed above.

As shown in the previous chapter, the response of the orientation

fluctuations to the bulk strain is quite different in the polar and

equatorial part of the spherulite. This observation is believed to be

associated with different orientation mechanisms of crystallites in

different parts of the spherulite as proposed from the studies by

microbeam x-ray, polarizing microscope, electron microscope^^ and

conventional (macrobeam) x-ray^^'^^'^°'^^^'^^. The orientation behavior

of the crystallographic, a-, b- and c-axes, of polyethylene f ilms"^-^'^^'^"^'^^'^^

has been shown to change with increasing uniaxial stretching in such a

way that (i) crystal c-axis tends to orient parallel, while crystal b-

and a-axes tend to orient perpendicular to the stretching direction and

that (ii) the crystal a- and c-axes orient preferentially over the

crystal b-axis.
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es

As well born out from electron microscopic study the spherulit

are radiating aggregates of crystals. In the case of polyethylene, the

crystal b-axis is oriented in the radial direction (extension direction

of a lamella) ^2 spherulites, while the a- and c-axes are oriented

perpendicular to the radius and rotate, more or less, in a helicoidal

fashion about the radius". If such spherulites are uniaxially

stretched, they may be initially deformed more or less homogeneously

into elliposoids. Accompanying this shape change, lamellae tend to

orient toward the stretching axis, so that the lamellae (i. e. crystal

b-axis) tend to orient parallel to stretching direction. However such

positive orientation for the crystal b-axis has hardly been observed for

•statically drawn polyethylene films*. The fact that crystal a-, b- and

c-axis orientations do change in such a fashion of (i) and (ii) as stated

above, instead of positive b-axis orientation is believed to occur as a

consequence of the ease of internal reorientation processes of crys-

tallites within the deformed spherulites.

The internal reorientation mechanism has been proposed to be

different in different parts of the spherulites'^"'"*^^'^^'^^'^^. The

process is summarized in a manner similar to that by Hay and Keller^^

as follows;

(1) Internal Reorientation Processes in the Polar Part of the Spherulite.

This is composed of following processes;

* However the positive b-axis orientation is seen in case of dynamic
x-ray diffraction and dynamic birefringence for annealed polyethylene
films at lov;cr temperature (see ref. (90) and (91)).
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(la) rotation of crystals as a whole around the crystal a-axis^^.

(lb) plastic deformation of crystals themselves by [001] (010)

11,64,66slip '
'

(Ic) crystal traustion from folded crystals (b-axis paralled to the

radius of spherulites) to fibrillar crystals (c-axis parallel

to the radius)^^"^^.

All these processes cause rotation of crystals around the crystal a-axis

and tend to make c-axis orientation positive.

(2) Internal Reorientation Processes in the Equatorial Part of Spherulite

This is composed of following processes,

(2a) rotation (twist and detwist) of lamellae around crystal

u . 11,64
b-axis

(2b) interlamellar slip with lamellar interfaces as slip planes by

shearing force^^

(2c) intralamellar slip involving [001] (100) slip by shearing

f 11,64
force '

All of these processes cause rotation of crystals around the crystal

b-axis and tend to make c-axis orientation positive.

(3) Internal Reorientation Processes in the Section of 45° Direction.

The reorientation processes are very complicated and involve both

rotation around the crystal a- and b-axis.

All of these mechanisms cause, reversibly or irreversibly, posi-

tive orientation of the crystal c-axis. The previous static orienta-

tion behavior of the crystal axes has been interpreted by the

combination of these mechanisms. In the treatment of Stein et. al.^^'^^



the factors, (Ic) and (2a), and in the treatment of Kawai et. al/^'^^

the factors, (lb) and (2a) are taken into account.

The previous results of the DLS arising from the internal orienta-

tion fluctuations and the dynamic x-ray are associated with the

reversibility of these various modes of motion with respect to the

applied strain. In this work, the mobility of the reversible components

has been shown to be quite different in the equatorial and polar parts

of the spherulites by means of light scattering.

Relationship to Dynamic X-ray Study
and Dynamic Mechanical Properties

The dynamic x-ray diffraction technique"^^"^^ has been developed

for the purpose of studying the mobility of crystal orientation. From

the variation of diffracted intensity (related to specific crystallog-

raphic planes) of polyethylene film subjected to sinusoidal tensile

strain, dynamic orientation compliances for crystal a-, b- and c-axes
* * * gQ

^ a ' S ^c ^ ^^^^ ^^^^ analyzed
. These compliances are given by

C.* = (df./de) = C + i C."11 IX
C.' = |C.| cos X.

C " = - C. sin X.i ' x' X

where is complex dynamic orientation compliance of i-th crystal

it

axis, and C.' and C." are the real and imaginary part of the C, . f,XX o y r
^ ^

is the second moment orientation function defined by
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2
f .

= [3<cos a .> - 11 / ?
1 1 av J /

^

The orientation functions for crystal a-, b- and c-axes are designated

as f^. f^ and f^. „ .
is the angle that the 1-th crystal axis makes „lth

respect to the stretching direction, x, Is the angle related to the

loss tangent (tan x .) of the crystal orientation with respect to the

bulk strain,

tan X . = - C." / C.

'

The dynamic compliance C.* is related to tlie mobility of the

reversible components of the various internal reorientation processes

of crystals which, in turn, may be a principal contribution to changes

In the internal orientation fluctuations in the DLS. As discussed

before, it should be noted, hov.ever, that the response of orientation

fluctuations and crystal orientations are not necessarily the same.

Now among the various kinds of internal crystal reorientation

processes in the polar part of the spherulites, the only reversible

process may be the process of (la) in the previous section. One may

consider a crystal block as a unit of the reversible motion. The

lamellae may be composed of numbers of such crystallographically

coherent blocks which are connected to each other by structures with

less perfect lattice fit » , The lamellae may be deformed more

easily at the bounderies of the blocks than inside the blocks. The

blocks may slip over each other and rotate as a whole around the crys-

tal a-axis. In the polar part of the spherulite, lamellae tend to be
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compressed aad eventully slip, which .ay favor the rotation o£ the

blocks as a whole. Bending of the lamellae may also cau.e the reversible
rotation of crystals around their a-axes.

The process of (lb) may be irreversible and may become important

with Increasing temperature, especially above the disordering tempera-

ture (T_j) where the expansion coefficient of the crystal a-axls

changes'''22.23_

In the equatorial part of the spherullto. the processes of (2a) and

(2b) may be reversible, while the process (2c) may be Irreversible and

be activated at elevated temperature, especially aboved T .

d

The effect of temperature upon the orientation functions of the

.crystal a-, b- and c-axes (f^, f^ and f^) was studied by Kawai et. al.^^

for low and high density polyethylene films slooly cooled from melts.

The results showed that with increasing temperature from room tempera-

ture to temperatures aboved T^, the magnitudes of f^ and f^ decreased

by nearly the same amount, while that of f^ slightly increased for both

polyethylene films at an initial stage of stretching (elongation percent

less than about 30%). This fact is interpreted in such a way that with

increasing the stretching temperature above T^, the crystal rotation

around the crystal b-axis by the reversible processes of (2a) and (2b)

is depressed by the onset of the irreversible process of (2c), while

the crystal rotation around the crystal a-axis is promoted by the

irreversible process of (lb).

The temperature dependence of C,^^* has been studied for low den-

sity polyethylene slowly cooled from melt^^'^^.
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It has been shown from the study that (i) C ' and C ' are positive and

negative, respectively as in the case of static f and f (i e f > 0c a c '

< 0) and that (ii) magnitude of C^' and C^' increases with increasing

temperature near and then decreases with a further increase of tempe-

rature above T^. Compared with C^' and C^'
, C^' has been shovm to be

very small negative and almost constant with respect to temperature.

The tendency can be generally interpreted in terms of competing

effects of the reversible processes, i. e. (la), (2a) and (2b) and the

irreversible processes, i. e. (lb) and (2c). With increasing tempera-

ture, mobility of the former modes of motion increases because of the

decreasing viscosity for the interlamellar slip (2b), rotation (2a) and

the slip in between the crystal blocks (la). With a further increase

of temperature above T^, these reversible motions are partially or en-

tirely replaced and absorbed by irreversible motions of (lb) and (2c).

As a consequence, C^' and -C^' increase with increasing temperature at

the lower temperature side of T, and decrease with a further increase
d

of temperature above T^. C^' becomes small and negative as a con-

sequence of a compensation of negative C, ' due to the internal reorien-
b

tation processes (la) and (lb) by the reversible lamellar orientation

process which tends to make C^' positive. Thus the constancy of C^^'

with respect to temperature may be kept by the ballance of the opposing

effects.

*
In relation to the changes of , the DLS intensity for I_^ at

high scattering angles (which arises from the internal orientation

fluctuations) changes v;ith temperature (see Fig. III-33)

.



The changes may be qualitatively interpreted as follows;

1) In the DLS for at = 0° (corresponding to variation of the

fluctuations in the polar part of the spherullte)
. M^' increases with

increasing temperature up to about 80»C partially due to the increasing

mobility of the rotation of the crystals around their a-axis, (la) or/and
due to the increasing variation of the orientation correlation distance

related to the process of (la). The loss tangent is very small, suggest-

ing that the process is fairly elastic in nature, especially at higher

temperature above about 50°C. With a further increase of temperature,

AI^' tends to decrease, which may arise from the effect of the irrevers-

ible plastic deformation of (lb).

2) In the DLS for I^ at = 90° (corresponding to variation of the

fluctuations in the equatorial part of the spherulite), the magnitude

of AI^' again increases with increasing temperature and decreases with

a further increase of temperature above about 70°C. Again the tendancy

may be qualitatively interpreted in terms of two opposing effects;

reversible (2a) and (2b) processes, and irreversible (2c) processes.

The loss tangent at temperature below 70°C shows big phase lag, suggest-

ing that the processes (2a) and (2b) are encounterd a viscoelastic

opposing effect. Above 70°C, the loss tangent tends to rapidly

decrease. This may be due to the fact that the crystallites tend to

move as members of a smaller subgroup rather than a larger subgroup of

a lamella or a lamella as a whole as in the case at lower temperature.

At higher temperature the viscosity of the surrounding may be decreased

considerably and the motion of the subgroups may be subjected to less
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viscoelastic opposing force than for the mode of motion at lower tempe-

rature.

It may be apparent that the various internal reorientation processes

studied by dynamic x-ray, birefringence and light scattering are

essentially related to the dynamic mechanical a loss processes. The

motions of (la), (2a) and (2b) are associated with a^, the lower tempera-

ture loss mechanism, while (lb) and (2c) are associated with a^, the

higher temperature loss process. It should be noted, however, that

the process observed by the rheo-optical studies are, more or less,

modified from the dynamic mechanical a process by the fact that static

and dynamic strain imposed on the rheo-optical studies are quite large

compared with the dynamic mechanical study.

In the discussions of the preceeding sections, we qualitatively

discussed the DLS results and the results of static and dynamic x-ray

measurements in terms of the reversible and irreversible components.

However the details of the relative contribution of each mode of motion

may depend upon properties of polyethylene samples, thermal history,

degree of branching, molecular weight and so on as well as conditions

of stretching.

Finally it should be again noted that the DLS depends upon both

crystal and amorphous orientation, since orientation of optic axes of

the scattering elements depends upon both components. However, at this

moment, the contribution of each component to the total DLS is not

known. This problem is left to future work, and may be solved by

combining the results of DLS with those of dynamic birefringence and
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dynamic x-ray diffraction techniques.

^^^"3- A Simp le Mechanical^Jodel Treatment
for Rheo-Optical Properties

~

In this section we shall discuss the DLS results at small and high

scattering angles in terms of a simple mechanical model which is adopted
49 83by Iwayanagi

' et. al. in order to explain dynamic mechanical pro-

perties of crystalline polymers.

Iwayanagi et. al. have represented the mechanical properties in

terms of a six-parameter model as shown in Fig. III-48. The Voigt

element a represents the retarded viscoelastic response of crystalline

lamellae while element 3 represents the viscoelistic deformation of the

interlamellae amorphous material. These elements are associated with

moduli E and E viscosities and and retardation times t = n /E^ p a p a a a

and = '^^ isolated spring with modulus E^ represents the

instantaneous elastic deformation of both the crystalline lamellae and

the interlamellar amorphous material V7hile the isolated dashpot with

viscosity represents the viscous flow of the interlamellar material.d

Although Iwayanagi formulated the equations in terms of shear moduli e ,

1

we have substituted these by tensile moduli since our experiment is

carried out in tension.

An application of the six-parameter Voigt model to the description

80
of the rheo-optical behavior has been proposed by Stein et. al in order

to describe time-dependent crystal orientation behaviors (C C, ' and
a b

C^*) of polyethylene films. We shall adopt here the same principle in

order to describe the DLS results. Although the phenomenological
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description of the rheo-optical behavior in terms of the six-parameter

Voigt model is less general and rigorous compared with that in terms of

generalized Maxwell model«°'8\ it is easier to interrelate the simpli-

fied model to molecular processes. The application of the simplified

model may be of great value to elucidate qualitatively the nature of the

response of structures to the applied strain..

On the basis of the Iwayanagi's model, stress a and strain e are

given by

J

where and e_, are the components of stress and strain related to the

j-th viscoelastic mechanism and e . are given by
J

= (1/E^) e^"*^ (3)

1 - iwT
_ .

g loj t

" E (1 + 0) T
°

a

E(l + 0) T„ )
p

= - a/m^) e^"^^ (6)

In the treatment of the orientation compliance, by Stein et.

al,, the total orientation function of i-th crystallographic axis of

polyethylene was assumed to be given by
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il I la a iB B ia a
j

where the coefficients L.
. and M.^ are those associated with strength of

contribution of each viscoelastic mechanism to the total orientation fun-

ction. They discussed variation of the orientation-stress coefficient,
* *

*

Si " (9^^/30) ,
and the orientation-strain coefficient, C.* = Of /a^)*

as a function of frequency, temperature and thermal history of the sample

in terms of relative contribution of the respective viscoelastic mecha-

nxsms

.

Instead of the orientation function, we apply here eq. (7) to the

internal reorientation processes, i. e. , 1) the tilting process related

to 3' and 2) the rotation process related to g which have been defined

in Chapter VI of this part in order to explain theoretically the DLS

at small scattering angle.

g(a)') = 2<cos^i^'> -1 = 1- exp[-n(X„^ - ~) sin\']av X, A,

(8)

3' = 3„ exp[-Ka.^ - f-) cos^a'] (9)

On the basis of the simplified mechanical model, both g and g' processes

are represented by the single mechanical model and given by a formular

in eq. (7). For example,

g=L_e^+L e+L^e„+M e (10)
gl I ga a g3 3 ga a

where as before, L . and M are the coefficients associated with relative
gl ga

contribution of the respective viscoelastic mechanism to the rotation
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factor g.

It has been shown In Chapter VI of this part that the local st

associated with the and g processes leads In phase to the applied

strain. The phase relation of the local and applied strain shall be

qualitatively discussed here in this section in terms of this simple

model.

Now rotational compliance designated by C is given by

Cg* = Og/3e)* = Og/9Ap 0X^/3e)* (H)

where c is the applied strain and is the local strain. The asterisks

designate complex quantities. From eq. (11) the phase relationship

between e and is obviously equivalent to that between e and g.

From eqns. (4), (5), (6) and (10), the rotation-stress coefficient

is given by

C,/ ^ Og/3a)* = C^^' - 1 C "
(12)

where

C ' = + ^ + gB

and

The loss tangent of the rotational motion with respect to the applied

stress is given by

tan Y ^ = C " / C ' (15)sg sg sg ^ ^
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tatiY^g should be physically positive in this definition, since the

tational motion cannot lead the applied stress in phase.

The rotational compliance is similarly given by

where

V= f'sg'/"- /
^^^'^'^ (^"^'^ (18)

where C^^' and C^^" are given by eqns. (13) and (14). J* is dynamic

mechanical compliance and is given by

ro

J* = J' - i J" (19)

where

jti = + ^ + B
^21)

Now the loss tangent of the rotational compliance is given by

tan Y = C " / C ' = (C ' J" - C ' J") / (C ' J' + C " J")
g g g sg sg ' ' ^ sg sg

^

= (tan 6 - tan y ) / (1 + tan y tan 5 ) (22)
sg sg
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sg

where tan 6 is the mechanical loss tangent and is positive. Consequently

sign of tan depends upon the relative magnitude of tan 6 and tany_^.

In another words, the phase relationship between the local strain, A

and the applied strain, e is determined by the relative magnitude of

tan 6 and tan y^^. If tan 6 is greater than tan then the localSg
strain for the rotational motion leads the applied strain in phase.

Suppose that the frequency of the DLS experiment (3Hz) is such that

T3 «(l/a)^) « for the medium density polyethylene at room tempera-

ture, that is, the frequency is low enough for the 3 process to occur

but not low enough for the a process (related to the motion of crystal

Itself) and for viscous flow to occur, then tan 6 and tan y are given
sg ^

by

'^I'^R 1 1
tan 6=-^ / (i^-^i-) (23)

tan y = L / (
-Sl + ^

^sg g6 E ^ ^
^ (24)

Thus

tany^-v. (tan 6 - tan y^^) '\. _ _ 1 (25)

Consequently in such a condition as decribed above

tan y > 0 if L ^ / L > 1
8 gl g3

tan y^ < 0 if L^^ ^ ^gg ^ ^26)
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Therefore the local strain of the rotational motion leads (lags) the

applied strain in phase if the elastic contribution (L^^ is greater

(less) than the contribution of the viscoelastic mechanism (L ) . It is

easxly seen that the same conclusion is also reached for a frequency or

temperature of (1/to ) t << t .

At lov/er frequency or higher temperature where the a process is

activated, i. e.
, a)„T^ « w r l,

tan '^^ (tan 6 - tan v )

.

S sg

(l/03n^) + (1/2E^)
^a^'^^a^

+ (L /2E )

07v-TTi/2E ) + (1/E-)- oT^Tv^ir^ P gi I ga a ^ g3 3

(27)

where the viscous flow is included in this equation. Thus in this case

the phase relation "is determined by the relative magnitude of L , L
gl ga

'

^ga ^® viscoelastic constants.

The local strain was observed to lead the applied strain in phase

In the DLS at small scattering angles. In terms of this model, this

observation shows that the rotational motion is primarily controlled by

the elastic mechanism related to L^^ rather than the viscoelastic

mechanism related to L^^. The elastic mechanism may result from the

instantaneous rotation of the lamellae around their crystal b-axes

accompanied by the instantaneous change of the spherulite shape'^'^ to

the applied stress.

On the other hand the DLS for I_^ at large Q. and at high scattering

angle have been shown to lag the applied strain in phase as shown in
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ions in

Chapter IV and V of this part. This observation has been interpreted

as indicating that the variation of internal orientation fluctuat

the equatorial part of the spherulite lags the applied strain in phase.

As discussed in the previous section of this chapter this variation of

the internal orientation fluctuations is, in principle, related to .otic

of crystals around their b-axes which is correlated over a shorter dis-

tance than the spherulite radius. Therefore the experimental evidence

may be interpreted as showing that the rotational motion is primarily

controlled by the viscoelastic mechanism rather than the elastic mecha-

nism (i. e. Lgj/Lg^ < 1), when larger angle scattering arising from

correlations over distances smaller than the radius of the spherulite

.
is studied. The viscoelastic mechanism may arise from an interaction of

motion of one lamella over the other through slip or rotation processes.

The DLS at small scattering angle arises from the motion of structure

correlated over distances comparable with spherulite sizes, so that it

is insensitive to such viscoelastic mechanisms.

From the same argument, the DLS behavior at small and at high

scattering angle may be qualitatively interpreted such that the visco-

elastic contribution to the tilting process related to the factor of

^* ^^3 '3^ comparable to or even less than the elastic contribution

(L^.j). The model can be also applied to the dynamic orientation

behavior of crystals. The phase relationship between the crystal ori-

entation and the applied strain is again determined by the relative

contribution of the elastic and viscoelastic mechanism.

It should be noted here that the mechanical model adopted here is
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an oversimplification in two major points as pointed out by Stein et
, 80

ai. as well as in the previous section of this chapter. (1) Each

process has been associated with a single retardation time. Instead,

each process should really be described in terms of a distribution of

retardation times. (2) The model implies a homogeneous stress model

in which the stress on the crystalline and amorphous regions is the same

This may be reasonable for the equatorial part of the spherulite where

the stress is perpendicular to the lamellar axis and crystalline and

amorphous regions are mechanically in series with each other and may be

subjected to the same stress. However a homogeneous strain model may be

more reasonable for the polar part of the spherulite where the stress is

parallel to the lamellar axis and crystalline and amorphous regions may

be subjected to the same strain. In this regard and in regard to the

different orientation mechanism in the polar and equatorial part as

discussed in the previous section of this chapter, it is more reasonable

to establish a model which is able to take into account the difference

of the response in the polar and equatorial part of the spherulite.
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PART IV

FUTURE WORK

Theoretical

1. Effect of non-affine deformation of the spherulites.

In Chapter VI of Part III, the result of dynamic light scattering

(DLS) at small scattering angle has been treated in terms of affine

spherulite deformation model. The model may be an oversimplification in

that the deformation of structure within the spherulites may not neces-

sarily occur affinely, even though the changes in the external dimensions

of the spherulite are proportional to the changes in the external

.
dimensions of the sample in the initial stage of elongations^^ The

non-affiness of the internal deformation of the spherulites is especially

prominent in the case where they are deformed in their equatorial part

8 93more easily than in their polar part '
. In such a case, (1) the

degree of volume increase is angularly dependent and is large in the

equatorial part of the spherulite, and (2) the local strain for internal

reorientation of optic axes of the scattering element, X (see Chapter

VI of Part III) is no longer constant throughout the spherulite but i.s

angularly dependent.

In order to take into account the effect of non-affine deformation

on the light scattering, one has to modify the previous equations in

94
Chapter VI of Part III, For example as the simplest case

^ = 1 + ^ " 1) sin\* (1)
3s 2s 3s
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and

^3lhz^ = 1 + ^(^3/ - ^> ^i"^^^'
(2)

where X^^ and X^^ are the spherulitic strain parallel and perpendicular

to the stretching direction, and and X^^ are the local strain

parallel and perpendicular to the stretching direction. ^ is a parameter

describing the non-affineness and characterizing the degree of volume

increase which is a function of a' and is maximum at a' = 90°. When

5=0, the equations reduce to the previous affine deformation

model with constant volume. As before the first and simplest case to be

considered is where = ^33 = ^- ^ "'^y again a complex number

resulting from time-dependent reorganization of structure within the

spherulltc.

The same spherulite deformation model can be also applied to

evaluate static and dynamic birefringence^^ and crystal orientation for

spherulitic polymers, the study of which is very important for charac-

terization of the deformation mechanism of sphcrulites as well as for

futher checking the proposed model.

2. Quantitative interpretations of the dynamic light scattering at
high scattering angles.

In Chapter IV and V of Fart III, the dependence and the tempera-

ture dependence of the DLS at high scattering angles are qualitatively

interpreted on the basis of the reciprocity principle of light scatter-

ing. It has been shown that static and dynamic light scattering at

the high scattering angles arise mostly from internal density and ori-

entation fluctuations.
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Although this analysis is not rigorously correct and only applied

as a first approximation to the case of polyethylene as discussed in

Chapter IV of Part III, it appears to be of great value to analyze the

data in terms of the two-phase model proposed by Keijzers, van Aartsen
18

and Prins
.

The two phase model can be extended to oriented systems.

For the scattering from the spherulitic component the deformed spheru-

lite scattering calculated by van Aartsen and Stein^, and for the

scattering from random component the random orientation fluctuation

theory calculated by Stein and Hotta^^ can be used.

According to this model, the total DLS intensity for I_^ scattering,

for example, is given by

"+* = *s \ "+,R* (3)

where and <i>^ again the fractional contributions of the spherulitic

and random orientation fluctuations to the total DLS where these frac-

tions are assumed to be independent of dynamic strain. Tl\e asterisk

designates a complex number resulting from the component of the DLS

out-of-phase to the bulk strain. From the angular dissymmetry of the

DLS for polarization with respect to scattering angles
0^^

and 0^ at

y = 0° and 90'' (or = = O"" and 90°), one can evaluate the response

of orientation correlation distances parallel (c) and perpendicular (a)

to stretching direction. This is done for the assumption of a

Gaussian correlation function for the internal orientation fluctuations

given by
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f(r) = [3<cos2e^.>^^ - 11/2 . exp iu./o' + (yM^^ W„2j

The evaluated responses of c and a with respect to the bul, stral!'
manifest tl.e-dependent response of Internal orientation fluctuations.
It should be noted that the tl.e-dependent responses of c and a thus

obtained are the averaged responses over all angular positions within
the spherullte. Actually the response Is probably different In the

polar and equatorial parts of the spherullte so that one cannot easily

resolved the response of the structures Into the contributions from

these parts.

One might also evaluate the time-dependent response of the orienta-

tion of optic axes by separating the contribution of the spherulite

term from the random part and then analyzing the dependence of the

random term. Also the variation of the internal density fluctuation

may be analyzed by separating the contribution of density fluctuations

from orientation fluctuations and then analyzing the density fluctua-

tions. Again the evaluated response of the density fluctuations are

the average of those from the equatorial and polar parts of the

spherulites.

Other possibilities for theoretical interpretation of the DLS at

high scattering angles might involve further elaboration and applica-

tion of the theories of non-random orientation fulctuations discussed

in Part I and disordered spherulite discussed in Part II. Although

these theories are more general than the two-phase model, the applica-

tion of them to the DLS v,7ould compound complexity and may not be
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feasible at this moment.

Experimental

1. Instrumentation

The DLS apparatus constructed for this work was satisfactory and

yielded significant data to elucidate the deformation mechanism of poly-

ethylene sphcrulites. However from the discussions in Chapter II of

Part III, it would be apparent that one needs further improvements of

the apparatus, especially for stabilization of the small DLS signals in

order to extend the study to that of frequency dependence. These

improvements will also be required to extend the technique to systems

with low scattering power found in non-spheruli tic crystalline or non-

crystalline polymers as well as in spherulitic polymers. This will

also be required for polymers with less reversible deformabili ty such

as high density polyethylene having high degree of crystallinity . For

the latter systems one must decrease dynamic strain, which again requires

the stabilzatlon of the small DLS signals.

Some possibilities for further refinements of the apparatus have

been already pointed out in Chapter II of Part III.

2. Frequency dependence of the DLS

In this work the DLS experiments have been carried out at a

constant frequency (2.9 Hz), because of the problem on stability of

the baseline signal of the DLS. However the DLS for I^ and I|
j

at

0 = 0 are fairly big and are accompanied by less noise as compared
max

with the DLS for I . Consequently the frequency dependence for the
+

DLS under these conditions may be studied with a satisfactory accuracy.
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It is our feeling that the frequency dependence of the DLS for I and

I|

I

at small and high scattering angles may be also studied without

great difficulties by the aid of two additional integrators as discussed

in Chapter II of Part III.

The study of the frequency dependence of the DLS serves to confirm

further the previously proposed mechanism of spherulite deformation and

elucidate the nature of the deformation through the process of time-

temperature superposition.

3, Static strain dependence of the DLS

The DLS is also expected to depend upon static strain upon x^hich

the dynamic strain is superimposed. By studying the static strain

dependence, one may study the effect of the orlglanl structure upon

which the dynamic strain is applied on the mobility of structure

elements.

4. Effect of morphology on optical and mechanical properties.

4-1. Study of low and medium density polyethylene with different thermal
histories

In this work the DLS behavior has been studied for medium density

polyethylene (MDPE) slowly cooled from the melt. Since the deformation

mechanism of polyethylene depends upon the thermal history of the

sample, it is interesting to carry out the DLS experiments for various

thermal histories.

Recently dynamic x-ray diffraction, dynamic birefringence and

dynamic mechanical properties have been investigated for two kinds of

90 91low density polyethylene with different thermal histories ' i. e.,



194

one obtained by quenching molten polyethylene into dry ice-ethanol

temperature (Q sample) and the other obtained by annealing the Q sample

at 95°C for 1 hour. The dynamic mechanical properties and the change

of scattering patterns upon deformation of these samples are shown

in Figs. IV-1 and IV-2.

From a comparison of Fig. III-32 with Fig. IV-1, it is seen that

the temperature dependences of E" and tan 6 of the MDPE sample studied

in this work are fairly different from those for Q and H samples. A dif-

ference in deformation behavior of spherulitic superstructure as a whole

between these Q and H samples and the MDPE is seen by comparing Figs.

III-23 and III-26 with Fig. IV-2. From the comparison, it is seen that

(1) average sizes of the spherulites for the Q and H samples (about 2 y

radius) are quite different from those of the MDPE sample (9.5 y radius),

and that (2) the change of the patterns is also different between the

low density polyethylene samples (Q and H) and the MDPE sample. The

difference can be seen in that for the Q and H samples, four leaf

clover type patterns with a clear dark cross along y = 0° and 90°

are maintained up to a high elongation percent. In the MDPE sample

however, the patterns become diffuse with an increase of elongation.

Simultaneously with this change, the dark cross becomes diffuse and tends

to dissappear. The difference is believed to arise from a difference

in the deformation of the superstructure as a whole. It is also expected

intuitively that the response of internal structures to the bulk strain

would be different for the Q and H samples and the MDPE sample. In this

regard the dynamic x-ray and dynamic birefringence studies for the
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MDPE sample would be Interesting.

On the other hand the patterns for Q and H samples are similar,

suggesting that in this case there is not a 'significant difference in

the deformation of spherulite as a whole between the two samples.

However as shown by the study of dynamic x-ray dif fraction^^ there is

a significant difference in the dynamics of crystal orientation between

these two samples, suggesting that the mobility of crystallites and/or

lamellar within the spherulite are quite different in these two samples.

The difference of the dynamic orientation mechanism may also cause a

subtle difference in the static and dynamic light scattering intensity

distribution with respect to n. In this regard light scattering studies

for these two sample would be very interesting.

4-2. Ring scattering

An another interesting application of the static and dynamic light

scattering is for the study of rigned spherulites^-^' The wide

angle light scattering intensity maximum arising from the periodicity

of the helicoidal twisting of the lamellae was first observed by Stein

and Rhodes^. Moore et. al.
''"^'^"'''^^

extended the study to the deformed

ringed spherulite and photographically investigated the change of the

ring scattering upon deforming high density polyethylene at room tempe-

rature. They showed that the ring spacing increased in the polar part

of the spherulite and decreased in the equatorial part in the initial

stage of stretching. The change of ring spacing is believed to be

related to the detailed deformation mechanism of the polar and equatorial
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part of the spherulite such as discussed in Chapter VII of Part III.

In this regard it would be of great value to study this as a func-

tion of temperature and time-scale of experiment in relation to the

a mechanical loss mechanism of polyethylene. The reversibility of defor-

mation in the polar and equatorial part of the spherulites manifested by

the reversibility of the change of the ring spacings upon stretching and

releasing the sample can be studied as a function of temperature more

precisely by the photometric method. Such studies may provide an

additional information on the a relaxation mechanism of polyethylene.
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CAPTIONS FOR FIGURES
I-l. The coordinate system for scattering experiment.

1-2. The orientation correlation between optic axes of scattering

elements.

1-3. A calculated I scattering pattern for R = 90°

1-4. A calculated Ijj scattering pattern for 3^
= 0°

.

1-5. A calculated I scattering pattern for r = 45°
-t- Pq

1-6. A calculated I,, scattering pattern for ft = 45°
M ""^o

*

1-7. A calculated I|| scattering pattern for an equal mixture of

regions with g = +45° and -45°.
o

1-8. The orientation of optic axes of scattering elements i and j

separated by distance r in a uniaxially oriented film with the

orientation direction rotated through away from vertical

direction Z

.

1-9. A calculated scattering contour for an oriented film where

6 = 90"* and a = o = = 0 . d - 2)j and d = In in this andu o z o

the following figures

.

I--10. A calculated 1 scattering contour for an oriented film where g =
* ^o

90\ o = o = 0 and = 1/4.

I-ll. A calculated scattering contour for an oriented film where

B - 90% o - 0 = 1/16 end p^ = 1/4.
o o z

1-12. A calculated scattering contour for an oriented film where

= 90% a - = 1/16 and p^ = 1/2,

1-13. A calculated scattering contour for an oriented film where

3 = 0"*, a = a = 1/16 and p^ = 1/2.
o o I
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1-14. A calculated scattering contour for an oriented film where

I-15. A calculated scattering contour for an oriented film where

^ % ^ 1/16' P2 = 1/2 and a= 0.385.

II-l. Hie coordinate of the scattering element in a t^.o dimensional

spherulite

.

The calculated variation of scattered intensity with o

45° for 3y spherulites having radial disorder with a = l,5y

and X= 0.364p , and various <(A(r ))^> /6
2

i av o

II-3. The calculated variation of scattered intensity for the

case of Fig.( 11-2 ) for a = 0.6 y.

II-4. The calculated variation of scattered intensity for the

case of Fig. (II-2) for a = 0.1 y.

.11-5. The calculated variation of scattered intensity with 6

at y = 45" for 3 y spherulites having angular disorder with

c = 0.7iT radians and A = 0.364 y and various values of

<(A(a.))^> /6 ^
1 av o

II-6. The calculated variation of 11^ scattered intensity for the

case of Fig.(II-5) for <(A(a.))^> /6 ^ = 5 x 10~^ and c = tt,
1 av o '

0.7 V and 0.5 tt radians.

II-7. Intensity contour diagrams for scattering for a 3y spheru-

lite with angular disorder in the magnitude of the anisotropy

characterized by angular correlation distance of 0.7 ti radians

and <(A(a.))^> /& ^ of (a) 0, (b) U .005 and (c) 0.01. The
1 av o
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nuAers on the contour lines refer to relative Intensities

enumerated in Table II-l.

II-8. An scattering pattern corresponding to an undeformed perfect

two dimensional spherulite.

II-9. The intensity contour diagram for an undeformed spherulite

( = 1.0 ) for various values of the mean square orientation

fluctuation parameter g^ equal to (a) 1.0, (b) 0.9, and (c) 0.7.

II-IO. The variation of scattered intensity with q for an undeformed

spherulite with g^ = 0.9 for azimuthal angles of 0°C90°),45°

and 30° (60°).

II-ll. The variation of <cos22 Ag^ ' with a corresponding to g^ = 1.0

and a = 0, -0.1, -0.2, -0.3, -0.4, -0.5 and for g^ = 0,5 with

a = 1.0.

11-12. Scattering intensity contour diagrams of a deformed spherulite

with = 1.5 and (a) g^ = 0.8 and a = 0.0 ( no angular depen-

dence of fluctuation amplitude) and for g^ = 1.0 with angular

dependence of fluctuation amplitude characterized by values of a

(b) 0.0, (c) -0.2, (d) -0.5 and (e) for g = 0.5 and a = 1.0.
o

11-13. The variation of scattering intensity with e for a deformed

spherulite (A^ = 1.5) at azimuthal angle p = 0° for g^ = 1.0

and for curve 1 at a = 0.0, 2 at o = -0.1, 3 at a = "0.2, 4 at

a = -0.3, 5 at o = -0.4 and 6 at o = -0.5.

11-14. The variation of scattering intensity with q for a deformed

spherulite (a = 1.5) at azimuthal angle u = 90° for g =1.0
S op
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and the same values of ^ as for Fig. 11-13.

III-l. A block diagram of the dynamic light scattering (DLS) apparatus.

III-2. A schematic diagram of the light source part:

M; mercury vapor lamp, B; lamp housing, C; cooling pipe,

LI; lens ( fl*= 106, dm'^^ 52 ), F; filter boxCfor neutral

density and monochromatic filters), L2
; lens(fl-ll4, dm = 29),

P; pinhole with dm =1, L3 j lens (fl - 82, dm = 32), G, partial-

ly reflecting slide glass, diaphragm and shutter, A; polarizer,

PM; monitor photomultiplier tube (RCA 1P21)

.

III-3. The correction factor for the partial polarization of the inci-

dent beam. I^^ is intensity of incident beam under parallel

polarizer and analyzer (arbitrary unit)

.

III-4a. A picture of a part of the DLS apparatus showing the light

source part (in the right half) and the deformation apparatus

(in the left half) .

Tlie l ight source part :

B; lamp housing, F; filter box for neutral density and mono-

chromatic filters, P; polarizer, PM; monitor PM tube.

The deformation apparatus :

D; worm gear for varying ^, F; worm gear for varying the sample

tilting angle, ({). Dl and D2 ; disks on which the detector PM

tubes are set. Tl and T2 ; worm gear to vary 9. E; eccentric cam.

S; sample clamp, TE
;
temperature enclosure, A; analyzer.

* fl and dm are the focus length and diameter of the lens in millimeter.
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III-4b. A picture of a part of the DLS apparatus showing the detector

part and the deformation apparatus. The light source part is

behind the deformation apparatus.

TC; temperature controlling chan^^er, R; refrigerated PM tube

chamber

.

III-5. A picture of a part of the DLS apparatus showing the deforma-

tion apparatus and a part of the light source part.

L; LVDT, H; helical cam.

III-6. The optical system to detect scattered beam,

(a) The system v;hich has been used in this study.

(b) A conventional system,

S; sample, A; analyzer, B; shutter, L; lens(fl = 283, dm = 27.6),

F; field stoppers, D; diaphragm, C; filter box, Ej frosted

glass, P; detector PM tube (RCA 1P21)

.

III-7. The dynode string resistors for the PM tubes,

III-8. Tlie circuit diagram for the differential preamplifier. A point

at which the output signal is taken in the preamplifier is

shown in the diagram.

III-9. A block diagram of a part of the integrator (CW-1 BOX CAR INTE-

GRATOR) which has been used in this study.

III~10 . A schematic diagram for the helical cam to produce the trigger

signal

.

III-ll. An example of the relationships among strai.n, trigger and gate

signals.

S; strain, C; trigger, Qjgate signal.
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III-12. The electronic circuit which is used in between the integrator

and the electronic counter to measure gate-on and -off time.

III-13. The device to adjust the starting phase of the gate signal.

III-IA. The D.C preamplifier which has been used for the preliminary

experiment.

III-15. A diagram for various combinations of the pullies to change fre

quency of vibration. A symbol R represents a reduction gear.

III-16. A diagram of the chamber for temperature control:

A; toaster heating element with many ' small holes
,
B; sensor,

C; heat insulator, D; air flow diffuser, E; entrance for air

flow, F; exit for air flow, G; air flow stopper.

m-17. A diagram for the temperature enclosure;

A; exit for air flow, Bj air flow diffuser, C^; front window

for scattered ray,
; rear window for incident ray, D; sample

clamp, E; entrance for air flow.

III-18. scattering intensity distributions for undeformed medium

density polyethylene (I^ffiPE) .

(a) if; dependences at 9 = 9 and 9 = 7°.
max

(b) 9 dependence at \p= 45°.

III-19. The DLS signals for l_j_(fi= 0°, 9 = 7°) for MDPE at room tempera-

ture, e = 0.082, = 0.0085.
8 d

(a) output signals of the monitor (lower) and detector (upper)

PM tubes after the differential preamplifier with sensitivity

of 0.5 volt.
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(b) same as (a) except that a lower sweep rate is used in (b)

for the oscilloscope.

(c) the output of the differential preamplifier (lower) with

the same DA (=0.5 volts) as in (a) and (b)
, and the output

of the integrator (upper)

.

(d) same as (c) except that a higher DA (= 50 millivolts) is

used in (d)

,

III-20. The DLS signals for l^(n=0% 4, - 45% 0 - 0^) and for I^^C^, =

45% = 0% e = 7^).

(a) Output signals for the monitor (lower) and detector

(upper) PM tubes for = 0% ^ = 45% 0 = 0^) after the

differential preamplifier with DA = 2 volts,

(b) Output signals of the differential preamplifier (lower)

and the integrator (upper) for = 0*",
i(j

= 45"*, 0 = 0'').

DA = 1 volt.

(c) Output signals of the differential preamplifier Qower)

and the integrator for = 45'', = 0"*, 6 = 7"*). DA = 0.1

volts

.

III-21. The effect of birefringence on light scattering patterns for

MDPE stretched by 20%. The stretching direction of sample {9)

is changed from vertical (fi = O'') to horizontal {9. = 90^) keep-

ing the polarizer and analyzer axes +45° and -45° with respect

^' DA is referred to the sensitivity of the differential preamplifier

hereafter.
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III-22

to the vertical direction.

The DLS signals for (a) I (f^ 50"
^ 9 q ) ; (b) I (0 = 0°

insx
j I

*

® ^
^max^ ^||(" = 0°, 6 = 7°). The DA is 0.2 volts for

(a), 0.5 volts for (b) , and 0.1 volts for (c) . In each figure

the upper signal is after the integrator and the lower signal

is after the differential preamplifier.

1

III--23. and scattering patterns for the undeformed ^©PE.

III-24. 0 dependences of scattered intensity for the undeformed MDPE

(a) 0 dependences of theoretical and experim.ental I_^(^ - 45°)

and l^i^p = 0°) .

(b) 0 dependences of theoretical I_^CiJj = A5°) and experijnental

= 45°) - 1^(4. = 0°)].

III-25. dependences of I||(e = 6 ) and I, ,(6 = 7°) for the undefor-
I 1

med MDPE.

III-26. scattering patterns for MDPE stretched by 10 and 20%.

III-27. and scattering patterns for ^mPE stretched by 10 and 20%

III-28. dependence of the DLS for 1^(0 = 0 ) at 24°C. e, = 0.009,+ max d

e = 0.071 and t = 4.3 mil.
s

III-29. dependences of the DLS for (a) I (0 = 0 ) at 27°C and (b)= max

I||(8 = 0 ) at 28°C. = 0.009, c = 0.071 and t = 4.3 mil.
II

max d s

III-30. dependence of the DLS for 1_^(,Q = 7°) at 24°C. = 0.009,

e = 0.079 and t - 4.2 mil.
s

III-31. dependences of the DLS for (a) 1^(0 - 7°) and (b) I,
,
(0 = 7°)

- at 23°C. - 0.009, e = 0.070 and t - 3.8 mil.
d s
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III-32. Temperature dependence of dynamic mechanical properties.

(a) tan 6

t M
(b) E and E

III-33. Temperature dependences of the DLS for I at e
= 7°

.

(a) at =90% = 0.009, = 0.072 and t = 4.7 mil.

(b) at = 0% = 0.009, = 0.080 and t = 4.8 mil.

III-34. Temperature dependences of the DLS for I||

(a) at fi = 90° and 0 = 5°. . = 0.009, ^ = 0,079 and 0.077,

and t = 4.7 and 4,8 mil.

(b) at = 0° and Q - 7\ ^ = 0.009, ^ = 0.080 and t = 4,8

mil.

' III-35. Temperature dependences of the DLS for I

(a) at f2 - 90° and e - 5\ = 0.009, = 0.076 and 0.074,

t = 4.8 and 4.7 mil.

(b) at n = 0° and e = 7°. = 0.009, = 0.080 and t = 5.1 mil

III-36. The definition of the angles g, ^ and ^.till t

III-37. The definition of the angles, a > , r , 6 and ^ ,

III-38. The DLS results based upon the Samuels* model.

t

(a) dependences of aI. at e = 2.25° and 7°.

t

(b) e dependences of at = 30^, 45°, and 60°.

X and AA are 1.09 and 0.01, respectively,
s s

X

III-39 . The angular dependences of the tilting Cg ) and twisting factor

t

( g(co )) for various K and ri at A = 1.09.

III--40. Q, dependences of the DLS for at 6 = 2.25'' for various K and

n. A - A = 1.09, AA = AA^ = 0.01 and y„ = ^/32.
s £ si Si
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(a) AI^'.

(b) AI "

III-41. Tlie dependences of the DLS for at o 2.25° for various

values of ^ and K. The values of a^, A^,AA 3, AA^ and Y, are

the same as those for Fig. 111-40.

(a) tan y for various values of K in the case of = 0

.

(b) tan Y for various values of n in the case of K = 0.

III-A2. The effect of dynamic strain on Al^' and Al^" at 0 = 2,25° for

various values of n and K. a = A = 1.09 , aA = AA = 0.005s jt s I

and = 7t/32.

The effect of static strain on Al^' and Al^" at 6 = 2.25° for

various values of n and K. A = X = 1.06, AX = AX = 0.005

and Y^= ir/32.

III-A4. The ^ dependences of AI^* and AI^" at 0 = 7° for various

values of ^ and K under the same conditions as Figs.III-40 and

I 11-41.

(a) AI^'

(b) aV
III-45

. The effect of irreversibility of the tilting motion on the

dependences of Al,' and AI," at 0 - 2.25°. AX = 0.01 and X =
T + s s

X = 1.09 for both tilting and twisting processes. AX = 0.01

for twisting process but AX^ 0 for tilting process.

(a) AI.'

(b) AI,^"

III-46. The effect of on tan y for I at 0 - 2.25® under various ri
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and K. The solid line is for y = ,/16 and broalcen line for ,

- 7T/32. \ - X^- 1.09 and AA^ = AA^ = 0.01.

III-47. The effect of a coupled tilting and twisting processes on the

dependences of the DLS for at q = 2.25° for various values

of n and constant K (= 0.6). = A^ = 1-09, aA ^
= AA =0.01

and = 7t/32,

(a) AI^\

(b) Al^".

(c) tan Y

III-48, The Iwayanagi's six-parameter Voigt model for representing the

mechanical and optical properties of polyethylene.

IV-1. The dynamic mechanical properties of low density polyethylene

( data by A. TaJiaka ),

(a) Q-sample

(b) H-sample

lV-2. The change of scattering patterns upon deforming the Q- and

H-samples

.

A-1. The relationship between ijj^ and i|;2 according to the new defi-

nition of Q vector.
**

A-2. The relationship between and ij;2 according to the new defi-

nition of 0 vector.

A-3. The relationship bet^N^een and according to the new defi-

nition of 0 vector.

A-4 . The relationship between and according to the new defi-

nition of 0 vector.
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APPENDIX I

THE RELATIONSHIP BETWEEN AND i|; IN I AND I

SCATTERING IN LIGHT SCATTERING THEORY AND
"

EXPERIMENT ACCORDING TO THE NEW DEFINITION OF 0 VECTOR

18Prins et. al proposed a new relationship between polarization

direction of polarizer (i> ^) and analyzer ^) with respect vertical

direction of the apparatus (Z-direction) (see Fig. I-l). According to

their definition a vector 0 which is a unit vector along polarization

direction of the analyzer is defined as follows.

1) 0,
I

is unit vector parallel through the plane of t (unit vector-
' I >p

along polarization direction of the polarizer) and s' (unit vector along

scattered beam), and is perpendicular to s'.

2) 0 is unit vector perpendicular to the plane of t and s'.
-P

An advantage of using the new relationship between and over

the conventional relationship used in this work (see Part I) is that in

the new relationship, I_^ scattering is independent of the density flucta

ations and only depends upon the orientation fluctuations, while in the

conventional relationship it depends upon both (see Part I).

18Since the geometry of their apparatus is different from that of

our apparatus, the relationships between and ip^ according to the new

definition are recaluculated for our experimental system shown in Fig.

I-l, and are given by

taxi(\p^),, = tan • cos 0 (Al)

tan (1^2)+ = - 1 /(tan • cos e) (A2)



A2

Where (t^)
,

,

and (,^)^ the values of t/for I

,

,

and scattering

intensity, respectively.

Numerical calculations tor the values of
|

|

and (t )^ are

carried out as a function of scattering angle 6 and polarl/er^angle

the results of which are shown In Figs. Al. A2. A3 and A4. Fro. the

figures it is shown that the difference of the values of (tp
|

|

and (^^^
between the new dlflnltlon and the conventional definition Is negligible^"

when the scattering angle Is less than 10° but Is significant when the

scattering angle is large.

In Figs. Al to A4, the ordinate scale shown in the parentheses shows

the value of for greater than 90°. The value of
(^^)^^ and (^^^

are given by

^^2>|r^2 • (A3)

(^2>+ = ^2 (A4)

where can be read for a given set of 6 and ij;^ from the figures.
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APPENDIX II

FORTPvAN COMPTER PROGRAMS FOR TllE CALCULATIONS
OF LIGHT SCATTERING THEORIES

Each program given by appendices II-l to II-7 is for numerical

calculations of the follov/ing theories;

II -1. Program for I_^ scattering from unoriented systems having

non-random orientation fluctuations.

II-2. Program for I|| scattering from unoriented systems having

non-random orientation fluctuations.

II-3. Program for scattering of light from oriented systems having

non-random orientation fluctuations.

II-4. Program for scattering of light from the disordered

spherulites with radial disorder in spherulite anisotropy.

II-5. Program for scattering of light from the disordered

spherulites with angular disorder in spherulite anisotropy.

II-6. Program for scattering of light from the deformed

disordered spherulites.

II-7. Program for the dynamic light scattering from spherulites.
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PROGRAM LIGHTS

^ ncfl^'Jr^I^I^''^^^^
UISTRIBUTION FOR iX ScaTTeRI NG .MODEU \^ USED.

DISTaNcI

C DenNlTlONS
C CD = FIRST TERM IN EQ, (i?)
i; co=2Nd term in eot (i?) ich'sRd " teRm in eq.Mi?)
y ALt:HA = AVERAe& SUUaRE OF POl^AR I Z aB 1 1 1 T Y FUUcTUATjONb
u deita^average suuare of anisotropy or Scattering elements
U DcU = DENSnv correlation D I STaNcE / OcD = OR I ENTa T

I ON c'JRRtLATlON Dl

^
Rau=?kaoius op domain structure, ct=total IX scaTtering'intensity

r. SkSi'S^^^^I'^^^?^ correlation DISTANCE WlTHJN THE DOMAIN"
L- OLD^^ORIENTATION CORRELATION D I STANCE OUTSUDE' THE DOMAIN - - -

DIMENSION THM30>iCTTA(30),TUO>
lOU HEAD lO#ALPHA*DELTArDCD^OCDl/OCD2*-RAD
1>^_ f:0RMAT(6Fllj^8?
"TRINT 20i ALRHA,0ELTA,DCD,0cDl,0CD2rRAD

20 f.0RMAT(2X,6HALPHA = ,FH,9;2X,6HDELTA = .Fl3.,9*2X,4HDqD=5#
1 P'll »9^2X#^HUCDi = ,Fii,9,2X,5H0CD2 = ,Fu ,9,2X,4HRAD = ,FiY,9,2X>
PRINT 30

~

"30 t0RMAT(2X,5HTHGTA;4Xi4HBETA/4Xi4HTHIA,6XV2HC0,a2X,2HC0,12X|-
1 2HCH,12X,2HCT)
IF(ALPHA)99,5*5 —

5 tHETA'OtO
" lt> BETA'O.O

— — — —
-

—
"00 45 'J51V30

' ^

455"CTTA(vi)70,0
IMIA = 0 ,0

(> IHIAR-Tbl A*371^15971'80T0

BETAR-BETA*3,14159/180V0
ThET AR = THET A*;? ,14159/180 ,0

^ XisSINFJ THI ARJ
X2=C05F(Th1AR)
-X3PC0SFJTHBTAR)
X4=SINFi THETAR)

-X55 (DCDt3,l4l5»9*X4/5746E«05)**2
UOl=(OCDl*2iO»3tl4i59*X4>/5t'»6E«'05

- U025 <0CD2*2iU*3,l4l59*X4)/5i'^6E'tQi>
XEXPlsEXPC-U01*«2/4.o)
XEXP2 = EXP(«U02**2/4,o?
X7=SINF12,U*THIAR)

-X8=THl AR*2iO*BETAR
X9c4,0*yETAH

-XiosCOSF <X8) -

XllsSINF us)
- Xi4sRADt5,46E''05/(3il4l59*2T0*X4 J

Xi5=C0SK<2.U*THlAR)
-XKl=Xl*t2*X2**2*(l,0-X3)**2
W=2,0*3»l4l&9*RAD*X4/5,46E-05

- CD = 3,l4i^>9*ALPHA*XKl*DCD*2*EXP(•X5)~
Ao='0 i5*tX2**2*X3**2*Xl**2)

-A2 = 0,5*X7*(l,0'X3)*Ul*XlO*X3^X2*Xir)-
Xl65C0SF(X9?

- xi7=siNF U9;
- •-
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i <X2**2*X3**2*X1**2)*X17)
"""

Xl8sOCDl**2*XfcXPi
Xl9 = 0CD2**2*XE:XP2

KODE=0
IJALI. OE5<NO^W,-K0DE,RESUt"T,-T)

-2.1.*.^7_1*2*X3)*X3.6*

0 >*Xi9)

C3

^2U8,o*OCU2**2*(XEXP2-l.o*U02**2
3B,o*OCD2**2*(l ,o^XEXP2)/U02**2*
t;0=(COltC02*Cg4)*t3EL,TA*o ,25

- yHa{3,l»)l59*g,5?*DEl.TA*XKl*Xl4*
CT5CD*C0*CH
PRIM 40iTHETA,BETa,THIA;COiCD/

_40 [0RMAT(2X,F^,2/4X,F5,2/3X,F5,2'
1 Ei4,5,3X,El4,5;3X,Bl4,5,3
INK n^THIA

"'
CTTa( I)?CT

" '

_ _ THIA=THJ A*5,

0

iF(THlAfi90,0)6,6,7
7 CALL GR^PH2nHI,CTTAi"I/5HSMALL
1 — -

- 6HTHIA.T,21HINTENSIT
WETA = BETA*4t?,0

' lF(BETA!y90 ,Q)b,8,ll
_ll tHETAcThETA*2, U

"""IF(THETA-20 10)15,15712
l2 UO TO lOU
9^" i>TOP " r

fcND

UCSU BBS ^BESSEL-pyNCTJON —

)/UOi**2«Xia*0.5)
''X19*0 ,5n - -

0*UOl**2/4 0)/gOi
0 .5*X18)« -

Oa5*X19) }

RESULT

CH,CT —
2Xi

XiE14V5>

**4

*4HAUT0#16HINTENSITY PLOT, if
Y M0DEL4 lXr.f3? ~' "
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05/23/69 A6
PROGRAM LIoHT? ' • -

-

~

" COEFINITIGNS, - "
-

C_CD =FIRST TERM IN EQ,(lb)
c co=2no Term IN E«."(i8) ich=3kd term" in EQ.(ia)
C ALPHA =AVEkAGE square Ot PCLARiZAblLlTY FLUCTUATIONS
C OELTA=AVERAbE SgUAwE OF An1SCt«0PY OF" SCATTERING ELEMfNTS
C DCD DENSITY CORRELATION DISTANCE " ^ c

.
.

C OCDi=ORiENTATICN CORRELATION DISTANCE wITh IN THE DOMAIN
_C__0CD2 = 0R1nTaTI0N CCkRELaTION DISTANCE CUTSlDE

r., ^ r -
'^^^ DOMAIN

DIiMENSlON fhl (60) ,CTTA(bO) ~ ^
HEAD I'^^ALRHA, DELTA, DCDfOcDl »0C02

10 FORNiAT (Spl 1 .«) ~ ' .

PRINT 20, ALPHA, DELTA, DCD, OCDI ,0C02
20 pCRMAT(2x,bHALPhA=,Fll,9,2x,6HDELTA=»Fll.y,2x,^HDCD=.
_^ Fll.9»^X,t>d0cDl = ,Fil.9»2x,bH0cD2a,Fll.9,2x)

PRIN r 30 - - - _ — _ . . ,

30 FOR^iAr (2x,5HthEiA,Ax»4HBEtA,4x,4HtHIA,6x,2HC0,12x.2HCD,12x»
1 2riCri,l2X,2HCT)

' -

IF (ALPHA)99,5,5
5-TheTa=0.0 •

15 BETA=-4b.0_

DO J=l OO
ThI (J)=0.0

4b CTTA(J)=0,0
ThIa^o.o -----

6 ThIaR=THIA^3. UI59/I8O.O

dETAR=^iETA^^3.UlS9/ 180.0
ThETAr=ThETa^-^. I4lb9/le0.0
x1=cosf (ThIaP)
'X2 = SINF (ThlAi^)

'

X3=cCSF(TMETAfO
'X4=SI,NJF (TheVaR)^

"

X5 = xl<H^2

'X6 = x2<H>2 ^•

X7 = X3<K>2

"X8 = x1h^o3

X9=1.0+X3
"X10 = X2tti>3

Xk1= (X5 + X6<*X3)
XK'^=x5<n^2

"

Xk3 = x7<>X6'>o2

'XK4 = X6<>x5<*x3
Xk5 = x2*X8*^X9

'XK6 = AlOox^<^x3<i-x9

Xk7 = Xoh^XS<*X9*^*<'2

"Q0 = Xk2 + xk3-2.0<^ak4VXk7
Xl 1 = c0Sf (2.0^L,prTAR)
x12 = SiivjF'(2.0<>p.£TaR)

Xl3 = c0SF(^.O"'>bETAR)
XU = SInF (4.0H^^t;TAR)

XK8=Xk2-XK3
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Xk1^-'=X.k2 + XK3-?.0-:>xK4-xK7
XK^^=^Ko-A^^
'J^ = ^.')wxl I<>a,Kk-cJ,0*X1^«XK9
g^ = Al '^^^XK ^^' + '^.'^*-^-Xl '^-^XK^ ^

^

I C = ^^^ + A^-i+^A /

xl5 =£XP (-UC<**^/'+,^)
xl6 = £XP (-UH<-^-«-^'/'+.^M

>^ ^ 8^=000 ^ • ^ ^

Al9 = 0r()^<^<>'^*^'.b*xl6 ^
'

X2^=i.»-Xlb
X2l=l.o-xlb

x23=:tj^iHi'2'»n^^?5

x2^=ocn^''*^"=^/uc<i-*<-2

X?^ = 0Cu'^<*''*'^/Uk'»'>2

x27 = 0cn^<*<^'^/U.<-»'^^

CC^= JC^MX^hi-X^V)

CO^ = J'^<M l^^/'^^X^'+^^x^'^-X^b) - (2,0«x26<vx^l-xN) )

00^*= ^'+^-* n^b. ^^''X'^So(x2?-X^^)-t3.*^**x2^^x2'^x^8)-
1 (^ri/^*X'=^/<* (z'^^-X^^) -d.^^-X^tj<>x'=^^*X^) )

I iM r 4*J TueiTM 1 dE T A « Th 1 A • C^^ ' CI) 1 CH . C T

THr< 1) =ThIA
CTTAn)=C^
THlA=rHlA*5.U

~? CALU GRAPri^(THl»cTTAi--I»5HSMALL»^hAUTCil6HlNTE:N5lTY PLOT

I bHl HiA« • '^^jiINTtNSiTY_ MCOE-L^ I""".',!!

theTa='theta+^.^
IF (Trit lb»lb»l2

^12 ^r. TO U)0

99 STOP
END

i



APPENDIX II-3
"FTN5.4B — 08/26/69—^^

Pfi 0G RAM- -UI 6 K.T.3

C HASHIMCTC/MCnHANDCM orientation ^:LUCTUATlo^l THEORY FOR
C TWO-UTMENSIONAL AMD ORIENTED sYStEM. _. .- — ..

C INTENSITY FOR I ( CROSS ) SCATTER

i

nG . DENS I TY cCNTHIhUTION IS NOT INCLUDED
C-INTENSITY ARE CALUCULATED UNDER a CONDlTION-.OF--lHI = OMf:GA»——

DIMENSION THI (60) ,CTTA (bO)

l^t>_READ -1 0 DELTA , UO , D^ SIGMA, pHO —
C D0 =0RTENTATICN CC^yRELAT^ON DlsTA'^CE ALONG THE DOMAIN,

. C O = ORIENTaTION CORRELATION D1STANCE--FCR--THE DIRECTION OTHER-THAN
C DOMAIN AXES.
C- SiGMAsANISoTRORY PARAMETER- FOR SriAPE- OF-CoRREL-ATEO-RE-GION

C IN ORIENTATION
C- RHCaORIENT ATION PARAMETER- FGR-0PT~IC-AXES.

10 FORMAT (bFll. 8)

-110 PRINT HO,OELTA,DO,D,SIGMAvRHU —
|. 20 FORMAT (2x,<SHDELTA=»Fll. 9, 2X*JHD0=,Fn.9,2x,2HD=»
L .

-j^
-
-p 1 1 , 9 , 2X 1 bHS IGMA= , Fl U V ,2X 4HRHC=TF-m-9 r2Xl

I PRINT 30
30--F0RMAT ( 2X « 5HTHET-Af/+X-,Ti*HeE-TA-» VX>-4HT-Hl A-F6-X-,

I bHRANDOMi 12X,4hXNGN» 1^X»^HT0TAL)
C~RANdOM =SCATTERING DUE--TO HANDC^^ Or i ENTAT roN»-FLUC^TUAT

I

ONS s

C XN0N=SCATTERING due to NONRANdOM ORIENTATION FLUCTUATIONS
_ c-total=total scattering-intenstty*

120 IF (DELTA) 99»5»5
^._-p^pJ^-f^,Q

15 HETAsO.O
- --8- I«0

130 00 45 J=l»30
! 140 THI (J) =0.0

45 CTTA(J)=0,0
TK rA a0,0

—
6 THIAR=THIA03. 14159/180.0

160 UETAR = RETA<*3. 14159/180.0
1 7 O-THETAR = THETA<*3.-14 159/18 0,-0

180 Y1=C0SF (2.0**THIAR)

-Y 2= S I N F-( 2 -.-0<> T H-I-a R~)
—

Y3 = C0SF (^.'-^^THIaR)
_ -Y4 = SINF(^.OOTHIAR) ; ~ '

Y5 = SINF (THIAR)

I

190 Y6 = C0SF-(THIAR) :

'

Y7 = Y5<*o2
.— Y8 = Y6o-«2 "

~" '

~
Y9 = Y7<>Y8 _

,

: Yio=Y5oY6 ;

'

' 200 Y11=C0SF(THETAR)
;

-Y12=1.0*Y11 -

Y13 = 1.0-Y11
;

.

_ _ : Y 1 4 a Y 12 ^ 2 '

~
y15 = y13<>*>2 .— 21Q PhO = Y9<>y1^ -

PH2 = PH0* (YeoYn-Y7) ***2 _
PH3=(1 .O-Yll *»*>2->**Y9 : — "

PH11=(Y7-YBoY11)<>y10 ^
PH 1 2=RH l-l 1-3- ~

~

PH4 = PH0-(YB*>Y11-Y7)*^<^2 .
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P4m^p.K_l_l^Y4-2

220 AOO = it.O<* (PH2 + 2.0«RHC<* (PH3<^Yl-PHl2oY2) )

221-A02 =^.0* (PH2-»-?.OOKHC<*(PH3<>Yl-'PHl2-»^Y2h)-«^i -—
222 A20 = 2.0^ (2.0<>PH3 + rhO<> ( ( 2 , 0*>PfiO + PH2 ) Y 1 -2 , 0<vPH 1 3<> Y2 ) )

223 - A22 = 2 .0<*HH0*>PH2 + 2 ,0<> <PH3<>y1-^H12<^y2)-^
1 KMC** (PHAOY3-2.0<>PH13<>yA)

2 2V-A-2 ? 1= KH ( PH4> ^. a^xH H 2^^ Y-3->--2-.-t>^^-^PH 3^vY^nrP++i-2-»-Y-2i

225 AA0 = 2.0** (PH^ + 2.0oRMG* (PH3<Wl PH12<>yH) )

226- A42 = 2,0<^^HC^*PH3*PHAttYl-2.o^^P^n3<^Y2
227 A421=PH4OYl+2.0<*PHl3<>Y2 + 2.0«-KHC^^ (PH3*^Y3*PH12^Y'^)
228-A60 = 2,0OHH0*> (PH^oy1*2-.0oPh13oy2)
229 A62 = HHC<*PH^
2 30--A 6 2-1 =HH0 { P HA-«iJy3^^-,-0*PH-)-3^^^^-)

231 XH = 2.0*»3. 141590SINF ( THET Ar ) /0 , 364
232-Z0 = - (XH<H)0)<»<>?/^.0
233 Z=- (XHoU) <»<*2/4,0

234-T = F:XPF (Z)

235 TO=EXPF(ZO)
23 6-F hl'T

F12= (T-1.0)/Z
F 13 = 2 . 0<> (

T - 1 . 0- Z )-/Z^>* 2

F14 = 6.0<MT-l«0-Z-7^^*»2/2»0') /Z**o3

F 15 = 24 .00 ( T-1.0-Z-Z*^>2/2vn-Z''*<*3/6Tt))-/r***^

F16=120.0<> (T-1 •0-Z-Z<><>2/2,0-Z<H>3/6.0-Z*^^^V?^.0)/Zo<>5

F l 7 = 72Ot 0 <t (-r - 1 T<^ "TT'l * /27O- Z «-3-/ er7<}-7<v^^4y24-i-0 -"Z^^ «6-/i-2OrOr/Z^*-*^
^"

237 F110=T0
F120=(T0-1 •0)/Z0 ;

Fl30 = 2.0<v (TO-1 .0~z0) /z0<><v2

F14U =6,0<MT0-1 .0-Z0-Z0<><>2/2.0)/Z0<v<*3

F 150 = 24, 00 (TO- 1 .0-Z0-Z0*><'?/2.0-Z0*><>3/6.0) /zO<*<j4

Fi 60= 1 20. 0^M \0'H^'ZO^•ZO<>^y^/<^^-vO-ZO^^h^^^''-^^^

F 170 = 720,0* (To- 1 .0-ZO-Z0<K>2/':i.O-ZO<>**3/6,0-

V
— -Z0<><»4/24.0-Z0<^**5/ 120-0 )/Z0**6

238 HGOl=FllO
HGl = Fll — ~

239 F230 =-Fl30 + 2.0<^F120

H60 2 o F2-3 0- —
2^0 F23 = -F13 + 2.0<^F12

HG2 =F23
241 F250=-3.0*»F150*4,0*^F140

F?'+0 = -.2.0<*F140 + 3.0<*F 1-30

F350=-1.0#F250 + 2,0<>F240

HG03=F-350— — ~

242 F25 = -3.0*F15 + 4,0*^F14

F?4=-2,0<>Fl4 +3,0oFl3 —
F3b=-1.0oF25*2,0op24— HG3 = F35

243 F260 =-4.0oFl60*5.0oF150
—— F2 7-0 B-5^ 0* F l-7^(>-.-0 Fl-6Q—

F360 = -l .5oF260 + 2.5*<^F250
- p370 =-?,0<^F270*3,O<>F260

F470=-f370*2.0oF360
HG04 =F470 ~

244 F26 = -'4.0<vFl6*5,0oFl5

F-?-7-=-5,0 <* F4-7 -K^^-,-© o F-1 6
—

—

F36=-l ,5HfF26 + 2,5oF25
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fL3 -7 = - 2 -.ait F 2-7-+3-, aiiF-a6

F47 = -F37 + 2.0*>F36

2A5 F33=T
HG5 = F33 •

F330=T0
HG05 = F-330

246 F21 = T<* ( 1 .0 + Z)— HG6 = f21
F21U = T0<M1 ,0*20)— HG06 = F?10
F34 = -0,b<>F24*l .b<>F23
F45 =-F3b/3.0 + 4.-Qi>F34/-3.0

HG7=F45
24^7-F 3 4 0 = -0 . 5 F 2^0 * 1 . 50 F-2 3 0

F45U =-F350/3.0 + 4. 0<*F 340/3.0
HG07=F450

248 F3B = 7,0^ (Z + 6,0) *^F37/ (4,0<>7) -^1 .0*^F36/ (2.0<>Z)
-F-39 = B ,0** ( Z+~7-. 0 )-<>F-3BA(-5^, 0<>-7->-t>6-^F3^"^vH5-.-0^>-Z4

F48 = -^,0<>F38/3.0 + 7.0oF37/3,0
FA9=-5.0oF39/3.0 + 8.0oF38/-3.0
F5B=:-3,0<>F4d/4,0 + 7,0<*F^7/4.0
F59 =-F49 + 2.0*>F4fe

F69 = -0,6*>F59 + 1 .6<>F^8

-HG«=F69
249 F380=7.0*^ < Z0*6.0) <'-F37o/ ( 4 . 0^ Zq) -21 ,0^F.360/ ( 2,0<»Z0)

F-3 9 0 = ti , O ( ZO 7 . 0 ) F 3 8 0 / ( 5 . 0 ZO ) -56 ,0** p3 7G/^-(-5-rO*^Z0

)

F4B0 =-4.0<*F3B0/3.0 + 7,0*tF370/?,0
F 4 9 0 = - 5 V 0 o F 3 9 0/ 3 , 0 + B . O <> F3 B0/^vO
F5eu="3»0<^F480/4.0*7. 0*»F470/^.0
-f-5-9Q=-F4 9 . -Qiy HfBO-
F690 = -0»6*>F590*1.6<>F580
HG0B = F690

2491 F46=---.2,0<>F36/3. 0 + 5. O^F 35/3,0
—F S-7 =-a,5 F4 7h-1-,-5 ^ FA 6

HG9=F57
24^2-F-^» 6 0= - 2 , 0^^ F3 60-/ 3-,-e^5-,-0<> F35^-/^,-0

F570=-0-5<*F470+l,5<^F460
HG09 = F570-

250 XK1=0.5<MD0<*<^?<>"HG01-'D<>**2oh61)
— 251- XK2=XHo02** (00<^<>4<>HG02-D**''>4**H^2-)V16 ,0

252 XK3 = XHo<>4<» (D0<>*6<tHG03-Doo6*^ri^3) /384,0

2.53_X K 4= X K<* 6 00 <^ <> 8OH^ 0-^-0 ^ 8 o Hi^4 )-/-
( 2-.-0^-»'^-*»-l-20^)

254 XK5 = SlGMA<tXH">*o2*> (
0<><*6h^HG5-D0<*o6<»HG05 ) /8,0

-255 - XK6 = 0.5*>SlGMA^ (0<^o4<>HG6-D0*>**^oHG06) —
256 XK7 = S1GMA<*XH^*»4^(D**^8<^HG7-00*'^8<>HG07)/128.0

- 257 -XK8 = SIGMA*XHo<»8^ {Qiiii.l2<iHGQ'00*i»lZiiHOOb)-/'i^<i-mO<i*>9^33(> ,V)

258 XK9 = D<H^2oHGl/2,0
_25-9_x K 10=- SI GMAO X H ^0^-<i^h<^HQ^-/-Q^

~

XK71=SIGMA*>XH^<>6<M0****10<*H69-L»0«*^10*>H609) / (2,0o<*7w30,0)

260-Y16=C0SF(2,0<>bETAf^) .

Y17 = CCSF (4,0Ob£TAR)
Yi8=ccsF (6,0<>bEl AR)^

~

27O x1=0,5oA00h>XK1
^X^rA^-O-n-Yl^oXK?-

X3 = A40<*Y17-»>XK3



r

F TN5v'+B \ \ : 0 8 / Z67 6^

X4=A60« Y-1 XK4
280 X5 = 0.5oA02<^XK5

X6 = A22<vYl60XKb
X7 =A22lOYl6<»XK7
XR = A^2^Y17<*XKS——
X9 = A^21^^Y17^>XK71—2^0—X ]-0= A6?«-Y 1 fi-^XK^——
Xn=Ab2l*>Yl8^XK8
Xl2 = A0n^XK9 —
Xl3 = A02*^XKlO

-3 00- H A N p 0 M = 3 , 1 4 1 5 9 0 ( X l 2 XI 3 ) 0 E L-T-A-Ai e-. O

C DF.LTA = A\/EWA(3E SOUARE ANISCTRCPy CP SCAtTERIN(3 ELEMENTS
31-o-XNC N=0EtT A^ ( X r*- X-2 ^X3-*-X^4*-X5'*"X^*X7>-XH-*-X^9^1-rr-^l^r^ It^TO

320 TOTAL = RANDOM + XNCN
330- PR I N T" AO , THET A 1 WET ATTHrATRANUCMrXTNCI^^^OTAl:;
40 FORMAT ( 2X F6 . 2 , 4x , F6 , 2 , 3x , F6 . 2 , 2x

r f- 1 4.5 ,3 )rf E 1 4t5t3 E v^T^ )

340 THI(I)=THIA
3 ^ 0-C T T Ai-i-1 - TOT AL— —
360 THlA=rHlA*i3.0
370- -IF (TH1A-90.0) 6*6,7^ — '

7 CALL GRAPH2(THltCTTA,-It5HSMALL»^HAUTC»
Y 1 6 H I N T E N 5 1 T Y-PlO T-»-.-» ^ H T H I ^ .-.-»

"
2 14HINTEN51TY I=.,»3)

3 8 0-4^ E-T-Aa B E T A 90 .
0 _—

~

-

390 IF (BETA-90,0) 8»8» 1 1

11-THETA = THETA*2.0 —
;

400 IF (THETA-20.0) 15,15,12
12-60 TO 100 —
99 STOP

-41O-EN0 "
~~



APPENDIX II-4 A12

• ^ ^ ~~0
3 / 2 8/70

^i;ATj£j;Uj^^ SPMERULITE IN TERMS OF

C K lb THc KAU IU^ OF SPhERULITE»A IS THE CCKRELATICN DISTANCE
C IN HAoiA<L i^lHtv^ ri"0|NL,

C DELTA IS KM (1 0 C F AVERAGE SQUaRE OF THE ANISCTROPY FLUCTUATIONS
C rcT^hAl 01- bPhLr<ULlTE Al^ISOTR'CJPY'T
C ^/P AND HViM ARE TH£_HV SCATTERING QUE TO PErFEcT SPHERULITE
C AND iHAi DUt lC~TiiL RAuT7\Unr^:S0m)i:R"S7RESPECTrVEL'Y^.
C H\yT Is THE TOTAL HV SCAVTERINb.

Di'^iENblO.NJ THLI (100) i WUOO) » HVP O 00 )"VHvT^TTl'OOT
DI'"'FNSI0i>i HVT 1 100) ,T l«^00) »Ti (200)
oI'^EnSTOn Xh V ?"( i 00 ) » ^hVTTTuoT
D ii^if;i\iSion oniMiuQ)
^0 700 J=i,iUO
THE T ( J) =0>u
w (

j") =0 .0
HVP ( J) =0.0
HVJIM( J) -^.0
HVT ( J) =0»U
XHVp

, J) =u,0
XHV i (J) ^-0.0

Ol IN (J) =0.0
you COl^lTl^UE

RtAo i0U» aK»c}LTaZ»R» WAVE
100 F 0HMAf( ^F2o ^)

pRiNT n^'»A"K»t3[:.TAZ»R»WAYE

110 FOHmAT ( 2 a , 3HAK= » F20 . t 3x , 6HbETAZ=jF2o . 8

1

lOOO DO 2()0 Ji = i,tju

READ 2"iuTTriE 1(1), om^(T)^
210 FORMAT (Flo,4,t:2o.6)

PTTi N T 2'2Tyrrr i L I (TT7 DTTTs (T)

220 FORMA I (2A,7HTHETAR=,Flo.A»^i>^» 12H INTEGRATIONS »E 20.6)

200 COiMTIlMUE

Pi = 3»l^i!^'^ ^

T H E T R = THtT ( 1 ) ^^P I/l80»0
'STTHrblNK (THL I K).

CO fH-CO S F ( Tj

l

ElR)

s rrH2^s rrh> ^> 2

CO I H2 = C0Th<>^2
¥(i )

=*;,U^PI*R^'5ITH/WAV£
Y=w (I)

R^ = R^><*^

"Cr?Aul71IE"STT}7TT0TAJO » ( )

CALL dES(l,Y»U,AJl,T^)
xTiFpTr)"=^(^Tu^'^To^O'-^^

qOO CONTINUE _
2"3'U~Rc'7\lT~250 f u b. L TA

25o F0|<MA i"
(Fci.3)

'P RTNl^GoTITEtl'A'

260 FORMAT (2X,6HUElTA=,F8^3)
Tt^rO'ETrT^TT9V-fVTcnr2TD

27o AMU='f!3.0

* Numerical value were obtained according to the program by

W.Chu (see ref . 35)



FTl\b,4B 63/2BVY0 Ar3

Al~'tOR = Mi^|U/i8U-UH^Pi

Ti=AMt.J+t)r. 1 AZ

Si f IHc!=bi,\F- ( UHH)
DO BOO i=i,bu

SirH = i5l'^>i^- (THLTR)
CC 1 H =CCbF (TriL I K)

i

Si VH^ = SITH^^^^
1

1

C0lH2 = C0lri<i-^>^i

•

C CKo^ = X N U 1V u UN 0)^1 ^
"C 0 c F = K V. C WO S i T I R 2"^^ 2

500
XHv'i ( X ) -COtr-'^^Ul IN ('I

)

CO
00 600 i=i»ou

HV l (f)=fiVV (i) +HVIM(I)
PK 1 NT 300 » TUt. I ( i ) , W_( Jl) >hVP ( I) yHV I_Mm tHVT ( I

)

300 rCrTMAl ( ^AV/MTnirrATf=~»'f'. o'.TTa"^* 2 H W - rFB . ^»
^

1 ?X*4 MH\/P=yt::i5.6t 2X » 5HHV I M= 1 E 1 5 . 6 » 2X *

2 4hhV I =1 ti'-^.b)

600 CONTiiNUt _

6l 0~C ALL ^ hi A?R2T^"^hrv PT-^TTBTTS MT^n. » ^FTTVUTCTrnTTTiYp-pUC 1 . . , 3?ir, .

6111 1 UUNr^JMbiTY. « <3)

6l3llltiINl f'J^lTY, r ,3)

-6-1^—CATa:n5

K

mFn2TvVTHVlV-^rbl^^ "3HW

.

61^111 MiN rb:i^' SlTY. * ^3)

TO i^^O

970
GO
GO

99^
TO 1000

STup

I I

i .



L.-.'-'^o^P. APPENDIX II-5
. , ^-j^^

c '('ht~i-T'7H"FbCATTciYjvi^ spHLKuLiTf::s ~liM Terms" Of-"

C The MMlbClf-^CPY iiJ ANGUUAH Opn-.CTlON,
C kuKmujUo Orihc SPHEKUuTTt~C=THL''CORi^ED^TTCN DISTANCE" IN ANGULAR""!
C L) I WELTI UN . l.n-.UTA=H_AT iC OE (liE a^ERa^^E SyUAKE OK THE ANISOIR'JRY
C I- LUC I U /\ I fCiM S I C^-fTiAr~CF~A'V E R E~ S P H E R UH T A N I S 0 T R G P

Y

\

C HVR»ri\/ii^i /\NlJhV| ARE ThE hV iCATTERiNu FOR TmE PERFECT SPHERUlITE,
"CTThE' TfJR^r^ i7uE^XCr^iJTjLXR~DTbCR0ER3~AN^ HV SCATTERING. — -- —

.

Dii-iENSl vivl ANU (^0) ,THt i" (30) it-lNTU (30) ,EINT21 (30) i

l)i«'iFivib iOiM XhV (2(^,,3()) iW (3o) ' I (2uO) HI i'etOO^

0 i NF.Nb I OiM_rivR ( 2oj>^3{})_*^y}^U^O^ 3_0 ) » HV r ( ^0

'

uTi''ei-i^ton AiWp'(-:,Q^) lAiriViM Q'o) rxiHVK 30

r

OC J 1 = 1 19
OO 1 Jsi »3o
Ai'io

( i ) =(j.o
n\y. T ( J) =^ . 0 , i.

E i in i J- ( -J r= 0 .

0

El ivr^ i ( J) sQ.u - i

xVv(r,j)=o,o
;

w.i^.)_= C_. iV-
' •

: —I
HVP(i»J)=U.U
}}y.AM(J--'AJ rJJ • u

:

Hv'r'{'ii j)=u.o
X_i 1 1 \/ p_UJ =0.0

,

- -

'XiHy p'. ( J) =0.0
XirlvT ( J) =0,0 , ,

XihvTM J) =0.0 •

1

i_ci^'^T ij\ot; i

P i= 3'". l<>Tb9 "
I

Rr^M) 1 00 » /iK » f^l^T^Z » 1 -
'

~f0o~F"0 k>Ta T ( ?/o V«-M

pKiMi' lio,Ar\'LiETAZ»R»'''AV£
_;

^ » ^hR - 1" do- ' 3A SHW'-v VE^ F clo . 8_)^ . ..j

Y(^(^'l<tAvn"]^,ZAf^iOVTHE,OiNTl»'OTN^^
j

1 QQ i _ F 0 R |vi A U r
I Q . OjZ E 2 o . ^1 i

' I>TTtrL)'^vy»2O00'i?0O0

2 2 ~T H cT ("jy^ f H E
"

T H L T i ^
= T 1 1 t-J_(_0 ) P I /lrtO«

CO l H2=C0M-!^C0Trl

s nH = b I Nf" ( TrlETH)

SiTHP = Si Th^^Si I H

( J) =:Hi*2.0"'''PJ-^i>i"'>^/*^'^^^

Kli^Tli (-"^ =Oii^T 1 . _ . _ _
EiNT21 (0) =DINT2

i = (J) :_

-l,j£> = Y"<>-i>A-"

GALE uE3(u»V»OiaJ0_»T)

XHvp=(2.0-2.0'*AJo-Y^^AJ\)H><^2/i^^

i,

2()oi"r=i

8 0 0 0 Ai'i U ( I ) Z /Vr' U_
:

—
i\ A mUTD ^P^ /T8"0 .0

* Numerical values were obtained according Co the program by

W.Chu (see ref. 35)



I.'

3. i ,Li < v'rj »_L
!ifJ r J. Hj

COT
I
i<£: = CO r IrC"'-"'^

Sij i.ul' = S ii:lUJ>.lS.ii'iij

Oj'' Uh/Vu
A15

—

^

, X.I <:=Cvjj K ^j^L.ii.iT ,e .L( J ) 0FO
. XHV ( I » J) =XI i+Xi^J
H t,JL».JJ = AM y 'i'i^il r I H ^ C C £F 1

^
^^^^'ANuTn^THt r (J) ,Ei^nn CJ)~,^LHl^uJ)

Ir l/A.^'iij-'tD.uj y 00, 900 » 950^

-9.0„0_ J_=i_+J.

3

550
99^

GO TO bOuo
bO TO lOOu

i I- Tf) t" L T .'\ J V y V ':'
» ^ b

5

1 2 y 0
26b G O TO
27u 00 300 i=l»iu

HV r
( I , J) =nVii^ (I , J) +r|Vp (I , J)

300 CONTliMUf.
00
DO 400

5700

PHiMi" 5o,j,AilU(i) ,THt'V(J) ,W(J) »hVP(I»J) *HVIM( [,J) »hVT(I»J)
FO.iM"An jriiVTai^yroV pVieX>7HTHErrAh;= , F6-.-2 2X » 2HW= » FB . 4>

l2A»4iih\/P=,k:i^^-^»2X,5flHVlM=:»t:i5.0,2X»4HHVT=,£i5.6)

DO 700 K=l»lb
Xih\/H (K^ =hVP Uo,K)
XIHvIIMa^ =}Wit'i ( 10,K)
Xinw r (Ki =hV r i iO»K) "1

xinv fi (K) =hv r ( i »K) i

700 CONTIinUl
-i ,6HSi^ALL»4HaUT0, UHIHVP .PLOT,. 1

I

I

, , J in Tui^SlTY.

.

CAL[ or^Ai-'h 2 ( XihVXN
»3)

5HSt'lALL»4HAUTC 12HIhViM PlCT..»

1

1

i3i^J, . ! iiliN I'c^iMSiTy .

.

CAU| otMt''h2 <""'»X1H\/T»

3)
-i i5hSMaLL»4HAUT0, UHIhVT PLOr..i

i3MW, . , 1 1 LiNSi TY. .

CAUL y^</^pM2 ''^»XlHVTi
J)

»5H^'''aLL»4HAUTC »12HIHVTl Pl0T..»
t

I3f1'^. • »i iillNi r-iMSiTY,

.

»3)
—

1

i



__r_i 1''-' .^^t:).

(i'J TO 99':<

END

A16

^-..A ,

C3 UCSO Of-'S

1

1

\

t

i

1

t

»

•

— —

—

-—— —

1

*
,

i
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PHOGIUM LIGhTi?

r'^ul^^^^^^^ ANGUUK
P UPPP^nPNri u'-'^^'' (^ODELID WHICH ALLUWS ,H ANCiUUAR

Dl'^£NsjON-THEi (20)*AMU(20) ,W(20-) ,PHlH200 i *FPH1(20UK.-
On-'E'^SIUN PH^2(200 ),FPH2 (200 ),GGA(2^0^PKUUl(200 )

^ !I^i;il^^-^^^^2l2OiV)^8SUMlC-2lO)-,BSUK,2(20o^tlNTUA2O
.

DK^ENb ON bALl(20O).CAU(2O0).BAU2f20O),cAu2C200
) '

'

QlME:\JSlON-XiP<2U,20 )
"

Dl^ENbiON THETl(20),AMUi(20).ElNTl(20J,EIiNT2(20)
DlMENSlUN--XIl(2'J,20),XI2(2f),?0)
Dir^E^S UN KAYHr2u;20);RAYU( 20 /20 ),(5^AYP^2y,20),GRAYU( 20 , 20 )

D I M E N S I U N..-H V.( 2 .) r2 0 G H V ( 2 0 ,-2 Q )
"

'

DIMENSION KHVl(2Q);i^HV2(20)
1-RbAU lUUi AK, cJc TAZrRAMDA

lOU FO^MAT^ JF^U,8)
PHInT -lot' AK,dETAZ-,RAMDA

101 rOKi^ATl2Xfv5MA^ = ^F2 0.8*5X,6HBETA2 = ,P20'8#5A,6HRAMDA=»r20|8)
2-R b A D-1 J 2 »- C , - K W A V E — ~

C C IS A^GULAH GOKRELATIOiN) DISTANCE IN KaUJAN, R JS Tht RADIUS
C OF- SPHtRULIfE--IiN-CM.-,-WAVE-lS-WAVE-Lf:iNGTH'-lN MEDIUM IN CM,
0 RAMDAlii EXft'^^lUNKA no OF SPHERUiJTe AL,UN^ SlrtETCHiNG PIRECTIUN,— 1-y <i--F u H M A T ( 3 r ^ 0 , 8 )

" ' 1—" _
PRINT 10''5* U, R# WAVE

lOvJ - FORMAT ^2-^^ 2lHC0KREUATI0N-DlSTANC6=#F-l^,8*»5X|l8HSPHfcHUL,lTE RADIUS
1F1^,8,.5X/12MWAVE ,LEiNGTH=,Fi4,8) - -

.
- .

.

.

_

pi=3.in5y
DO 3 I I t^l/lV

D0-3-NN=l; lu-
DO 3 LU = l/2i;U
AMU(-I I-)?U,u

—

Af^Ui (I i ) = U . 0

THfcTl(NN)=OiO
W(NNi = 0 rO

-PH I 2^LU=U . (J

—

FPHi^LL^so , u

--FPH2(UI-;=U.U—
GGA(UL?=Q.U

-PHUUKUU^ =0.0-
PRUD2(UL,? = 07y
-BSUMK UL J = OiU-

-8AU1-CLL? =0 , U—
CAl,l^LL) = U.U

-BAL2(LL. J =U , U—
CAL2<Lt.? = U ,U

'ElNT2((NNi = u7u
-E-Ii^TlllNNJcUfU
eint2i^nn; = u . U

-XIK( u 'INf^i=U»U

Xli( I I »NM/=U tU

-X-IZU I rWNj=U.U



RAYp( I 1 ;NiN) = 0 , 0

-RAYU( I I ,NN) = oT-iJ ..

GHAYP( I I / NN; = U ,U
-GHAYU( I I /lS,M>=o-,-{> '-

GHV ( I I /nNJ ,1)— ^

RhV2 ( NN ) = U-. U —^-
:

i CONTINUE
1 = 1-—'
ZANU = (mO

2 S>-A H U (
- 1 ) = ^ A n U —

Al'iOR = AfiU U ) *P 1 /180 . 0

-CO(^U = CUbrl AI-iUK ) —
.

SiMu2 = iiiriij^:sihU

Dt:Nor"'l = bUKTK(bir.U2 + COMU2*RAMt)A**4-)
SItiA = bln'^'^I^t:NUfil

C0tiA = CUMU*RAMUA**2/DEN0Ml
SI^GA = i'4Q*vSlGA*C0GA
CG2GA = C0GA«C0bArSIGA*StGA
J=l " '

-Tht = i ,
0

'd'ii THtT(J^=THfc
THE:TR = iMtl U)*P| /160
cotH = cubranbTK)
COTH? = GOTM^t:uf H-'

SlTH = biNMTMe:fR^
SI TH2 = ^lTH*bl TH

' —
DfcNOM=§UKTF ^G0TH2+S1TH2*SImU2)
-COKO = cOt H/Ub NUM — —
CCf^02 = GURU'^G0K0
W ( J) =R*2iO*H I *b I TH/WAVE-
X=iR*2»U*PI*iinH/WAVE)*^DEN0Ml/RAKDA>
K = V — ~

Phl=0 .

0

10-PH 1
1 (

K ' =PH1
C0PH1 = C0SMPHJ1U) )

TfcHMlrX^UUPHl-
ATtRM= iCObl- atKMi) -1, 0 )/'(TERMl*TEHi::ll)

BTt:RM = blNF" ( rtKMD/TERMl
FPHi (k'J ^ATERfKyTERM

Oa-SIPHl = ^ 1 Nh tPHUiK) )

SI2pHl=2.U*blPHl*C0PHl
CU2PH3. = C;UPH1*C0PH1-SIPH1*SIPH1
SI2Al-l = iiUPf-ll*CU2GA + C02PHl*SI2GA
SI ALl=blPHl*CUGA+COPHl*SIGA
SIALl2 = !iI ALl*bIAUl
COALl = l-UPHl*CUGA-S JPH1*SJ|GA

C0AL12 = COAL.l*COAL,l
RAri2 = RA(^DA*KAMDA
F;An4 = RAM2*R>^M2
_nfcN0M2 = ij I AL.12 + RAM4*C0AL12
BAUl(K?=RANii*bl2ALj./DEN0M2
CAUi-lM= CKAi14*C;0ALl2-SIAL12)VDBN0M2—



PH^ilcU .-U

10 Phl2(L)=PHk;

-CTtRr'i=luObr^.TbWii2)n .0)y-MERH2*TERM2 )

FPH^^L) =(JU:h{M*DTE:RM —
14 OU SIPH'c: = MNK (PHl2a) )

SUPM2 = if .U^LiIPH2*C0PHi? -

CC2PH2=c;UPH^*U0PH2-SIPH2*SIPH2
-Sl2Al2 = bl2t-'H2«CU2GA + C02PH2*SI2GA-
SI ALr:: = i>iPh2»'CUCiA + C0PH2*bIGA

-SI AL22 = bI AL^^'blAL/^
C0AL:^ = CUPh2''CUGA-bIPH2*SlGA

~C0AL22 = UQAL.*i*UOALid '

RAM2 = HAfiDA*HAriDA
— RA^''4 = RAn;r:»-KAM2

DtNori3 = b J Al.^2 + RAfH*GnAL22
BAL2 < L-^=KAr,^*b I2AI-2/DEN0M3 — —
CAU2^Li = CKAiU*CUAL22 = bIAL22)/DbN0M3
Pn 1 12 = AtiSl- ( M ( K ) -PH I 2 ( H ) -
IF <PHI12-PJ

6

>-GGA (L ) = bXP|-A-PHU 2/C)
GO TO 7

-fc-GGA (L ) = bXPF A (2 , l.*PI ''PHI12 )/C->
/ PH(JU1 ( t-

;
- bGA(U )*HAL2 CL ) BAL 1 f K )*rPHl (^ )*rrH2 (L )*bl AL,12

PhUD2(L.>=GGA(L)*CAU2CL-)-*CALi-(K-)*FPHl(A)«F?^H2< l.)*SiAl.l2
DPH = 2. U*Pl/lt>o ,U
pH2 = PH2ton-i :

DlPp=pH2-2.U*PI

t = U + l—GO- TU lu

Sun2=oTu
DO 11 Mrl/L
IF-lM--lJi2#lii>l3

12 SUMi = SUivil + 0i^*(PR0Dl<M + l)*PHl2<M*in
SUn2 = bL'r.2 + 0't5* CPR0D2(M + l.)>PHI2 'K' + l )

^

GO TO 11
"

li_SUhl = bUM3,t'U it>* (PRODI (M + 1 )+PRODl (f^ ) )*DPH-
SlJM2 = SUii2 + 0'i t?*<PR0D2(M"^l )*PR0D2 (M) )*DPH

11-CCiMT I NUfc . 1—
BbUMl ( =bUMl—asuri2(K) = bufi2

phl=PHl+DpH
1 F i PHl^2 » U*-KIM4rl4 * 15

14 K = t^*l

GO --TO .16

li) DI^JT1 = U ,1)

DHJT2 = U ,(;

DO 17 N=l*^
-_IF ^N-l^li)'l«»l9

Iti Dll^Tl = UlNTl + u.5*(BSUni(N + l)*pHll<Ntl)^,
——Dl-NT2 = UIN.T2tu7t?nBbUK2(N*l ) *PHl2 (N + 1 >-f



U,5/06/70

GC TO X7

~1 V-D 1 rm = 1' I N T 1 * 0 . 5 * ( B S UM 1( N + 1) + B S M M N J -) * D H H

DINT^sUINlt + uTb^CBSUMZCN + D+BSUMStNn^DHH
'17- C 0 N T I N U b ——^—

-

EIi'lTll^ J)=UINTl
El'^T2l^ J)=UiNT2
PUNCH boa, AmOi I ),THET(J>,EINTll(J)'EiNT2Hs))

PKINT fU2#AriU^ n,THET(J>/ElNTllU) *t:IiNT21^J)

5U<;--T0K|ViAT(iiX/4iiAHU=;F6-.-2^-3X-r5HTHE-T=,F6i2^3^#H'^INTll=»b;iU ,6i3X

1 6HlNT2l=;hkiU ;6)

Xlil=CUbFi*tlNTll( J)
XI2i = CUbF"l*bIiNT2i( J)

Xl^'U I J) = Xill-XI21
Si:—THScTht-*-! , u

^

IF UHE-IQ .U -;2U /21i21
2U^-J = J + i

GCJ TO ?.2

21-ZAMU = ZAMU + 5?, U

IF ^ifAfiU-9u , U )23;23*24
2^J-I'l+i

GO TO 2tj

— 2^-GU T-0- ^99
999 READ 5'J1CI'/AMU1,THE1,DINT1,DINT2

501V -FORMAT ^ 2f- 'i-i;f5#2t20 ,6) — -~

IF CTHE1)3UOU*^!UOO*4000
400U--I F < ^Afiyx-U . 0 MOlil * 40 01 / 4002

4U01 I«l
GO -TO t?O0U

4002 IFUAMU1'-4,U)^U'0 3,4 08 3,4D04
4aU>5-PF< INT-6 0'jU

600U FORMAT C2X/a/lHI1liiTAKE IN AHU)

0
"
T 0 -t? 0 U U — —

40y4 IF UAmOi-9 , U ) 40 J5, 4005, 4006

4U0t'-ls2
GO TO 500U

4 U 0 0— I F-^ Z A K 0 1 - 1 4 r U ; 4 U 0 7 r4 0 077-4 0 0 8"

4UU7 1^3
GO "TO 5U0U

40UtJ iFUAMOl-19,uMU09*4009i40lO
-4 U U V-I = 4

GO TO 500U

-4 010-^lF ^ZAMU1^24, 0 > 4U11;4011#4 012-

4011 I=i?

G0--Ta--!?OOU

4012 IF UAMUl'ii9i,UMul3, 4 013^014
-4 013-1 s6 —

qo"'TO 5000

-4 0l^-If^-^ '^AM^l"^^i^ -l^^^^' ^"^^^'^"^^^

4015 1=7
G(j„.TO_ 5 00 U

401«) IF(ZAM01-39,OMU17, 4017 / 4018

-4 0 1 /- 1 = ^
"

GO TO 50 0 0

4Dlti-lF-UAMOlT44-,or4ol9/40l9/-4020
^

—
~ 7"""

; P.og;a.s for-nu.;rIcal caluculations o^ these are
f _

These were caluculated in a manner similar to the caiucu

of EINTll(J) and EINT21(J ) in this program.



FTN5 ,^ti

401V 1=9

GC-TO, - !> U 0 U-

•4Uiil-I =10—
GO TU tJUOU

-GO—T 0-5? 0 0 0-

)4u21M0iJl» 4022

rU )4u23r4023»-;024

4U'^^

-4 U ^

GO—TO-J^OOO
IF ^ZAMyi-:?yjUM0 2i3 MO 25*4026
1=1^
GO TU t>UOU

4U2 6-IF ZAMUi^i)4-,-0-Ho27-# 4 027-*4 028-
4U27 1=13

GO„TU->0MU —
4 02 0 IF ^ZAMU3.-t.9jU Mu29; 4029/ 4030
4 u 2 y- 1 = 1 4 "-J:—^ :

GO TO 5U0U
-4 0 3 U F-l /, A M y 1 7 4

i-
0 ; -4 0 3 1-, 4 03U A 032

4U31 1=15
Ga-TO-t>UOO-Ga-TO-t>UOO

4u3'<^ IF t^AMUl-/9tUMu33M033# 4034

4 0 33-1 = 16 —
[

GO TO :>O0U

.4y34_jf:.C /AMUl-'ti4j^U ) 4U35, 4035i 4036-
4U3t> 1=17

:—GO--TO-:?ooo—
4 0 30 IF tZAM'jl-ti9,u MU37»4 037i 4 038

-4 03/— I =18
GO TO t>U0O

^4 0 3{i-
I
=19

GO TO t50CU

-t?0U0- AKOl C I
i =^AMiJl•ftC'^a.^ I '
- •'-t

AKORi = AhUl( I )''PI/180 ,0

.SIMUl = ^U't- UMOKl)
SlMU12 = blMUl*bIt1Ul

— J=THtil
THhTK J? = THk:l

THt:TKl = THbTl C J)*P-I/180 .0

C0THl = OUiih C rut TKD
_CCTHl2 = 00THi*0UTHl

SITH1 = MnP( fHtTKi)
_ - . . a --..••r'T TLl"' TLltsiTHi2=srrHi*biTHi
DtN0rii = i)OKTMCUrHl2 + SITHl2*SIMUl2)

C0H01 = 00TAl/lJtNUMl :

"

COK012 = COK01*OQK01
..

coeFii = AK*c;uKOiii_
Eir^Tl(vij=uii'jri

f 1 N T 2 ( j ) - U 1 N T •

XIK I *^J=O0t:ril«EINTlU)
yi2(I|j)=00tFll*EINi2U )

l \ )

^PHINT t,02U,Al^Uin).THETl(J),ElNTl(J^tINT^^J)

,020 F0KMAT^2X.bHAflUl=,r6.2.2X,6HTHt:Tl=,t6.2.2A.i
5Hll^jri='t^0'6/2X,5HlNT2=,E20.6)

^ r,

' r n G (J Q .
—

GO -TO. vyy

30UU R&AD 7000/OUi^lOMA

7 U 0-U—F-C 1^ MAT I 2 (^-/ • ^ ^—



' l)s5/06/7Q A22

PRINT 7lOU/UOii>iGhA
71U'U - FGKMAH 3MCij = ;F7-,3r5X ,-6HSIGMAs , F-7:i3^

IF ^G'j )V99y/y9^y « 7200
-7 2 U-U- D 0 -7 3 •; U • I = 1 rlV ;

'

DU 73.1U J = l#9 \

R A Y U ( I > J ) = G 0 * X 1 1 ( I , J ) + ( 1-, 0 - G ()-) -* X I 2i l i
)

RAYPU * jj=l^U*bIGMA*XIP( W J)

HV ^ I I J) tKAY.J^ I rJ )+RAYP(-I i-J)
—

73UU CONT iNUh'
PRINT- -7400 — -

74UU F0RMATUX>3r|Ai1UMXi5HTHtTA,4X,lHWi9X,l2HHY J NJEN^ I T Y < 14X , 4HHAYP )

KAYP-'SHO^^b AN - tFFtCT-OF-ANGUUAR-DEPENUEiNCc UF- MaGN I TUUt OF

URIEMTATION FLUCTUATION TO HV SCATTERING ]n|ENSITY|
L-D 0- - 7 6 0 0 - I J = i < i 9— — — '

DO 760U J(S = 1»9
PR I N T 77 0 u . rtMU ( IV) rTH£-T-(-JK-)vW ( JK >-i MV ( i JN )-|

1 RAY^UJ^JK)
7 7 U U - F 0 H M A T ( F 5 . 1 # 3 X / F 4 . 1-/ 2 X , F 6-,-3v2-< 2 XrE 2 U , 5 J"^.

76UU CONTINUE "
•

DO 7at'U tn = li9 — -—— —— —
RHVl(LM) = HVClf Li^)

-RHV2^LM)=HVV1U;LM)
78UU CONTlNUt "

CACb-G'^APH2vTHElvRHVl-#-J/5HSMAlL:>4MAUT0#
—

1 ' 19HIHV PLUT'FOR MU = 0 , . ,6HTHET, i
aiHiNl^ENSlTY,.! #«J J

CAUL 'GRAPH2< rhET#RHV2*-J;5HSMALL*^HAUl0#

1 20HIMV>UOT FOR MU = 45 , , ; 6HTHET j w liH J N I ENS IjY j^i f^3^

GO TO-3UoU——
9999 STOP "

^

-tNU



f^Ii^ll'Jl :. „. .
. .

APPENDIX II-7 0^5/08/70 A23

PROGf?AM DLSii

S '-^^^^^ SCATTERING FROM THREE DlMbNSlQNAU SPHERULITES
C ACCORDINC. 10 UEPOHHATION N0DFL1 OF VAN AaRT^EN WITM PHaSf
C UAG iNlROyycED JNTO TItTiNG AND TWISTInO OF'THE UAMGLl^AE.
C_ P1 = RAi1DA,RAMUA::E)^T6NSI0N RATIO OF SPHE^RUU

J
TEb i BZ = 8ETAR ZERO

C P2 = RAMDA + DEl,TA RAMOA- "
' '

'

RAM =

• C U = PMA3£ ANGL,E OF tOCAL STRAIN TO EXTERNAL, SfRAiN,
C EXT31,EXT32*EXT21 A^'0 EXT22 ARE THE SPMbRUtlTlC STRAIN.
C EXT'1l'EXT4;i,EXT51,EXT52 ARE LOCAL STRaInT ' '

"

..:
DIMENSION Y1UOU,Y2{101),Z1 ( 30 , 30 )#Z2(30»30)
COMPLEX D,EXT4l,EXT<2;EXT5l,EXT5?;XPl
COMPLEX XP2,EXP1,EXP2;BTA1,BTA2,G0M1
COMPLEX GUM^,DIVJ.;DIV2,Z1,Z2
COMPLEX SUM4l,SgMZ2iAHVl,AHV2»HVl
COMPLEX HV2,DeLHV

'~ " "

_ _ DO 300 si
= l;3.01

DO 300 1 = 3., 30
Yl( J)r.O,0

Y2( J)=0*0
?1( I ) = CniOiO,0>
Z2( P = ^OiUiOiO)

N.K, Following statements are added in

betv/een the statements of
COMPLEX HV2,DELHV and DO 300 J=l,101

DIMENSION DHVS(2)

EQUIVALENCE (DELHV , DHVS

)

300 CONTINUE
READ 7dQrAK

_70_0 F0Rl-lAT(F20,a)
"print 7iO,'AK"

_7J10_^F0RMAT ( 2X ; 3H AK = , F20 8

)

~ i READio>r'l/P^» AZGI ,DAZ#AZMA,Q
10 F0f^HAT(2F6,3f ^1F6,2)

PRiNTllOiPl»P2»Q
110_FO'^MAT<l^X»3HPl-«F6,3c5X,3HP2"if6,3j5X»2HQ3*F6,2) _""50 RE AD ' 5X1 D . -

.
.

-

forma7(c(;k3,i»fio,5) ) _ _ _
PRINT 52,0 - •

'52 F0«MAT(2X/2iiD^,C{F3,l;F3.0,5) )

"T05' READ 80,BZ,Q,RAN .

"

_JJJ_ FORMAT C3Pi0, 2) _ _ _
'

pR iNT09; 0/.VG, rtAN

__89 F0RMAT(2X*3tlB4 = iF10,2»5X,2HQ=.,FlC ,2/5X,^iHHAN=,ri0i2)>

10 0 UNREAD i OQ/y
_10_0 F0RMAT(F6,2J

PR I NTl20/y " '

"

_12U F0F^flAT(2X,2HU-/F6,2) _„...L...

IF (U)9^9/iOt^i 2000
2000 EXT3l=Pl

EXT32r.P2
PXt2l-SQRTF(Q/Pl)
"ixT22 = 5QRtF<Q/P2)
PP3. 1^159

2 azg=azgi
pRlN^tjOO

-yOO F0HMAT(4X,2HHg, 6X,9HrtV2C REAL) 5 QX 1 1<1HMV2U IMAGINARY) I

13XM3HDSUTA I PR I ME , 5X , ?,4HDEUT A I DPaf.Mli , j X

,

' 23 2HA[^5( DELTA I ) 1 7X , lOHT AN ( GAMMA ) >

__3 aZ-5AZG/36(J , 0^2 , Q*Pl _ -

" " sja^-sinf; A/J

i



1

I

C0A2 = C0SFU4)
SIAZ2 = 5I Ai'vyj AZ

"

C0AZ2 = COA2;*C0AZ
ARGl = EXT2i*^2^SlAZ2<-EXT3l*^2*C0AZ2

t

ARG2 = EXT22^'"^2*S{AZ2-^GXT32*<'2i'C0AZ2
USTARl = U*5S0KTr ( ARGl)
UStAR2=U*SQKTn ARG2)
XNOmI =:6,^T3lrtcOA4

"

XD6Nl = E>;t21*SI AZ
,

" xrati=xnOmi/xpeni -
-

' _ DEUTAl = ATANK(XRATi)
XNUH2 = ext32^-iCQAZ

'_ XDEN2 = Ext22«S| AZ
XRAT2=XnOM2/XOEN2

:
DEl.TA2 = AtANF{XRAT2>
Al, = OiO
DA = 5 1 0/360 I 0*2 , 0*PI
DO 12 I=lil9
RHOl=OiO
RH02-OiO
DO 9 J=l»21
SIAU = SINPUL,)

- COAU =COSFUO
'SlAl,2 = SlAl,*silAL.

^ COAU2 = CQAL,*COAL
XT-RHOI^/COS!-^ ( DGl,fAl ^''S i AU
X2"RH02^''C0SP(DEl«TA?)v«SiAL
X22;=X2*X2
Xi2---Xi*^,l

5_CNT = 2,0
T6RMlsXj./2,0 " "

'
""
""

"

As)l = TERtn

CNTr:CNt'}-2»0
' ' DEN-jCNt^>-DiNl '

|rACjL = xi2/DEN_ _ _ •

TERM1 = TGRM1-^FACA1
Aji=Aji>T5Rni'
TERX-ABSFHtiRMl)

" ~ " "Dlf^l-l.E-'OG^TERi
lF(DlFi)7i7,200

7 GO to 6
^

200 CNT:;2,0
TERH2=X2/2.0
Av)2?TERM2

CNT=CNtj2tO

FAC?=X22/UEN
' FACA2 = B-^FAC2

TERK2 = T£Rri2^FACA2
:"

AJ2 = Aj2^TtRf1^
' T£R2 = ABSFa6RM2)

"Dlf"2 = l»5'06-rTEK2



210 GO TO 253
'

-
-

a Ani::RHOl*SINF<DEUTAl)*C0AL
AR2 = RH02*SIr|F-lDGLTA2>*C0AU

"

__Y3.( J)=SINF( AR3.)*AJi,vRH01^<*2
" Y2(J)=SINF(AR2)<'AJ2*RH02<'*2 " "

'

"

_ RHOl = RHQl<'0
, 05'''USTAR1

F<;-lUi;-=KH02<-0 ,05*QSTAR2 "

'

SUMY1 = 0^0
~"

SUMY2=0 ,0

DOll M=l/9
_ SUMYl = SUMYl-44iO*Yl(2*H><f2iO*Yl(2*Mfll)
SUMY2 = SUMY2-!'4, 0<'Y2(2<'ti)<j2,0*Y2(2*H'!;i>
CONTINUE
AMPa-0 • 05'>UyTARl/3. 0<'(Y1(1 WSUHYl<-'4f 0*Y1(20 ><-Yl(21) )

AKP2 = 0 I 05^^USTAR2/3 , Oi( YadJ^SU'na + ^To'^Y^Ci^O )->Y2(2ain
TA'^l = E^T21<tSI AL/(EXT51.*C0AL>
TAN2-EXT2^i*SIAU/(EXT32^C0AL) _
AlPRl-ATANFCTANi)
ALPR2=ATANF(TAN2)

_ Exr4a = E:iT3i
""eXT42 = Ext31*^(EXT32"EXT33,5*CGXP(D)

"

EXt[5l-SQRTF(g/EXT41) _ _

EXt52sCS0lU(Q/EXT42)
_XPi-EXT41-^^'^-EXT5J.*^2
XP2"Ext42<i>iJ'?EXt52<">2
COAUPI^CO^FULPRI)
C0AUP2'-'G0i;FUL,PR2)

__SlAuPl"hilNFUl,PRl)
S IALP2-SINF W\l,PR2)

"

C0Ai,Pl2u-CQAl,."i^'i-2

C0At.P22^'CUAl,P2^^2
' SlAl,f'l2^^Si AL,P3,**2

^SlAi;P22nSJ Ai,P2*^2
...

EXPi = cexP^-q-^XPi^'aoAUPi2) :

'EXP2-"CE:':iP^"a*'<P2-^00Al,P22>

_ „ BTAl^B^X'RO^jEXPi ...
•

" BtA2ng7.EH0^/EXP2
f;OMi = -i,0''GEXP(-RAM^XPl^$IAtPi2)
"G0'-l2'1.0''C^e'XP^"RAN-^XP2*SlAl,P22>

.

Dl.Vi" (U0^3,0->CCOS{nTAl)>'^2 + GOMi<'CSlN(BTA?J^^^2

)

'

" D I V 2 =
( U 3 0 C C 0 S ( 8 T A 2 ) * * 2 * G 0 M 2 C S I N ^ B T A 2 ^ * •> 2 >

_ .Zl( n"SlAUMl<'COAUPl''DlVl'^AMPl*SIAi,
"

22( I) -SI AUP2^C0AUP2"^'DlV2iAMP2*Sl AU

Al.sAL-'^DA

U CONtlNue
suMzi=<0tO* 0,0)

" SUMZ2=(0t(J;0,0)
DO. 13 N.si,8 .

SUMZl = SUnZl«4 , 0*Z1(2'='N)<'2,0'-'Z1 (2*N-^1
j

SUHZ2 = 5UMZ2->4 , 0^Z2{2''^N)-^2, 0*Z2(2'^N''''1|

O^T I N>JE

AHvl::OA/3,0^(Zl(l)'>SUMZl*4,0*Zl{lO^.*:^i^l^
J

j

AHy2i^DA''3, 0*(22(l)-^3UMZ2*4,0*Z2(10)-:'^2(l9)

)
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These two statements are replaced by following statements;

DHVR = DHVS(l)**
DHVX =..DHyS(2)

TANGAMA = DHVS (2) /DHVS (1)

'DHVR 'and DIIVI are the real and inaginery "part ~of the—

complex. .dynamic light., scattering intensity .(DEL.HY)_

. ".•L"."

I
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