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ABSTRACT 

THE EFFECT OF THERMOREGULATION AND ROADS ON THE 
MOVEMENTS AND HABITAT SELECTION OF MOOSE IN 

MASSACHUSETTS 
 

FEBRUARY 2015 
 

DAVID WILLIAM WATTLES, B.S., LAFAYETTE COLLEGE 
 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Stephen DeStefano 
 

Massachusetts, U.S.A. is located along the southern boundary of the geographic 

range of moose (Alces alces) in North America. This is an atypical environment for 

moose, because of its extremely high levels of human development and high year-round 

temperatures, which are possibly at the limits of moose physiological tolerances. I 

investigated the role of these two factors on moose movements and habitat selection to 

determine how human development of the landscape and temperature influence moose 

occupation of this extreme environment. In addition, the response of moose to these 

factors provides insights into the influence of development and temperature on individual 

fitness and population persistence. 

Thermal conditions in Massachusetts were consistently higher than the reported 

physiological tolerances of moose, and higher than parts of the range where high 

temperatures have negatively affected moose reproduction and survival. Moose greatly 

reduced their selection of open foraging habitat and increased selection for thermal 

shelters as temperatures increased above upper critical limits; this same pattern was 

apparent when comparing day (warmer) to night (cooler) activities. A strong transition in 
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the use of habitats occurred at dawn and dusk, which corresponded to peaks in hourly 

movement rates at these times, indicating a transition in state from foraging at night to 

bedding during the day. The ability of moose to adapt to this extreme thermal 

environment through thermoregulatory behaviors reveals the limitations of predicting 

species distributions based solely on theoretical temperature tolerances.  

Massachusetts has one of the highest rates of moose-vehicle collisions (MVCs) 

per-capita moose and resulting human fatalities. The majority (86%) of MVCs occurred 

on roads with high speed limits and traffic volumes, and occurred on these roads at much 

higher rates than would be predicted based on their availability on the landscape. The 

dense road network in Massachusetts had a strong negative effect on the movements and 

habitat selection patterns of moose. Moose avoided crossing roads and greatly reduced 

their use near roads. Road avoidance increased with increasing disturbance intensity 

associated with higher traffic volumes and busier times of day. Roadways reduced habitat 

availability and connectivity, were a major source of additive mortality for moose.  
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CHAPTER 1 

THERMOREGULATORY BEHAVIOR OF MOOSE: A NORTHERN UNGLULATE AT 

THE SOUTHERN EDGE OF ITS GEOGRAPHIC RANGE 

1.1 Abstract 

Moose (Alces alces) are well adapted to cold northern environments; however, they can 

experience hyperthermia at relatively low temperatures. Established upper critical temperatures 

for moose are between -5 and 0o C in winter and between 14 and 20o C in summer, and high 

temperatures are thought to be the main factor limiting the southern extent of their geographic 

distribution. Massachusetts, U.S.A. is located along the southern boundary of the geographic 

range of moose in North America. I assessed the thermal environment in Massachusetts and 

evaluated its suitability for moose. I then analyzed movement rates, activity patterns, and habitat 

use and selection relative to ambient temperature and time of day of collared moose to determine 

if moose were responding behaviorally to the thermal environment. Thermal conditions in 

Massachusetts were consistently higher than the reported physiological tolerances of moose, and 

were higher than in parts of the range where high temperatures have negatively affected moose 

reproduction and survival. Moose greatly reduced their selection of open foraging habitat and 

increased selection for thermal shelters as temperatures increased above upper critical limits; this 

same pattern was apparent when comparing day (warmer) to night (cooler) activities. A strong 

transition in the use of habitats occurred at dawn and dusk, which  corresponded to peaks in 

hourly movement rates at these times, indicating a transition in state from foraging at night to 

bedding during the day. The magnitude of the reduction in use of open foraging habitat and 

increase in use of thermal cover relative to high temperatures was greater than has been reported 

for other portions of moose range where temperature-habitat use interactions have been studied. 



 

2 

Climate change and increasing temperatures could potentially cause a northward shift of the 

geographic range of moose. However, the ability of moose to adapt to this extreme thermal 

environment through thermoregulatory behaviors reveals the limitations of predicting species 

distributions based solely on theoretical temperature tolerances. Other factors, including the 

presence or absence of predators or parasites, or habitat quality and configuration, along with 

thermal stress, will likely influence moose population dynamics and determine if and where 

localized population declines occur. 

1.2 Introduction 

Climate and local weather play a major role in influencing the distribution of flora and 

fauna (Gaston 2003). The range of temperatures that a species can tolerate, and that allow it to 

survive and reproduce, are one of the factors that control where organisms are found. These 

temperatures can be used to define the species’ thermal envelope, and this is one method used to 

delineate a species’ range (Pearson and Dawson 2003 and references therein). As a result, the 

prospect of global climate change has raised questions about the persistence and future 

distributions of many wildlife species. Several studies have observed and predicted northward 

range shifts for many plant and animal species and communities (Parmesan and Yohe 2003, 

Parmesan 2006).  

Moen (1968:1041) defined the thermal neutral range of homeotherms as “the heat 

exchange conditions which do not elicit a metabolic response to maintain normal body 

temperatures”. Temperatures within this range, also known as the thermal neutral zone, can be 

delineated with lower and upper critical temperatures (LCT and UCT, respectively). By 

definition, conditions outside this range require an individual to expend excess energy to 

maintain normal body temperatures. Several factors can influence the thermal environment of an 
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animal and either raise or lower operative temperature (the temperature experienced by an 

animal) relative to ambient temperature, including solar radiation, wind, and water (Moen and 

Jacobsen 1974, Moen 1968, Moen 1982, Parker and Gillingham 1990, Mysterud and Ostbye 

1999). Exposure to intense solar radiation can raise operative temperature of an animal or 

environment considerably, whereas convective cooling from wind and air circulation or 

conductive cooling from exposure to water can reduce the operative temperature.  

Animals can respond physiologically or behaviorally to cope with operative temperatures 

outside their thermal neutral zone. Individuals can alter their behavior to take advantage of 

various conditions in their environment in order to reach or move closer to a thermal neutral 

state, thereby expending less energy for metabolic cooling. Animals can change their daily 

activity patterns by reducing movement and overall activity, or become more nocturnal and 

crepuscular, thereby limiting exposure to solar radiation and the heat of the day. They can also 

reduce exposure to radiation by taking advantage of landscape features or vegetation that provide 

cover. Topography and vegetation can both influence exposure to the cooling effects of wind, 

and the use of water and wetlands can help in conductive cooling. However, these actions may 

contribute to an overall negative energy state if they result in decreased food intake, which can 

ultimately lead to reduced body condition, greater susceptibility to parasites, disease, and 

predators, and reduced survival (Murray et al. 2006; Lenarz et al. 2009, 2010).  

Moose (Alces alces) are strongly associated with the boreal forest of high northern 

latitudes and are well adapted for life in cold environments. Large body size, low surface-area-

to-volume ratio, and a dark, dense insulating coat help to minimize heat loss and protect them 

from the cold. However, these adaptations may be a hindrance during warm periods and in 

warmer climates. Moose begin to experience hyperthermia at relatively low ambient 
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temperatures. Based on experiments with captive moose (Renecker and Hudson 1986, McCann 

et al. 2013), exponential increases in heart rate, respiration, and metabolic rates occurred in 

moose at temperatures above -5o C in winter and 14o C in summer, respectively, while 

temperatures above 0o C in winter and 20o C in summer caused open mouthed panting. 

Ackerman (1987) also noted consistent increased respiratory rates in wild moose at operative 

temperatures above 30o C on Isle Royale, Michigan. Renecker and Hudson (1986) reported that 

metabolic rate increased at a rate of 0.7 kJ/hour/kg BW-0.75/o C and heart rate increased at a rate 

of 0.9 beats/minute/o C at temperatures above the seasonal UCTs. Additionally, respiratory rates 

increased at a rate of 3.2 breaths/minute/o C at temperatures above the seasonal UCT, to >40 

breaths/minute at temperatures over 11o C in winter and over 60 breaths/minutes at temperatures 

over 20o C in summer.  

Warm temperatures and thermal stress have been considered one of the most important -- 

if not the most important -- factor limiting the southern extent of moose distribution (Kelsal and 

Telfer 1974, Renecker and Hudson 1986, Peek and Morris 1998, Karns 1997). Telfer (1984) 

noted that the southern distribution of the species in North America closely matches the 20o C 

isotherm for July. Additionally, there is increasing agreement from across their range that moose 

are performing thermoregulatory behaviors to adapt to conditions outside their thermal neutral 

zone (Schwabb and Pitt 1991, Dussault et al. 2004, Borders et al. 2012, van Beest et al. 2012, 

Melin et al. 2014; however see also Lowe et al. 2010, Mech and Fieberg 2014).  

Recently, moose numbers have been in decline in several places along the southern edge 

of the range in North America, including Minnesota (Murray et al. 2006; Lenarz et al. 2009, 

2010), New Hampshire, Nova Scotia (Broders et al. 2012 ), Montana (DeCesare et al. 2014), and 

Wyoming. In Minnesota, where the decline has been most severe, high temperatures and global 
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warming have been thought to be interacting with parasites and disease in driving that decline 

(Murray et al. 2006; Lezarz et al. 2009, 2010; however see Mech and Fieberg 2014). At the same 

time, however, moose have expanded the extent of their range to the south in the northeastern 

United States (Wattles and DeStefano 2011). These seemingly conflicting events raise the 

question of how moose appear to be in severe decline in one portion of their southern geographic 

range yet are able to the south and become established in another.  

The objectives of this study were to assess the thermal environment along the southern 

edge of the moose’s geographic range in the northeastern United States and evaluate its 

suitability for occupation by moose. We documented how frequently temperatures in central 

Massachusetts exceeded the upper critical temperatures of moose, compared the thermal 

environment in Massachusetts to that in northeast Minnesota (where Lenarz et al. [2009] 

determined high temperatures were affecting moose survival), and determined if thermal shelters 

(vegetation cover that would allow moose to find relief from ambient conditions outside their 

thermal neutral zone) were available in the landscape that moose could use to limit their 

exposure to heat stress. Ultimately, we wanted to determine how moose were responding to the 

thermal environment of southern New England, if they were altering their habitat use and 

activity patterns to cope with high temperatures, and what were the potential consequences of 

those behaviors. 

1.3 Study Area 

 The study area was located in the southern extent of moose range in northeastern North 

America, in central and western Massachusetts and adjacent portions of Vermont and New 

Hampshire (between 42o 9’ and 42o 53’ N latitude and 71o 53’ and 73o 22’ W longitude) (Fig. 1). 

Topography is dominated by glaciated hills with abundant small stream valleys, lakes, ponds, 
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and palustrine wetlands whose size and nature varies with changes in beaver (Castor canadensis) 

activity. The central and western sections of the study area are separated by the Connecticut 

River Valley, which runs N-S through west-central Massachusetts. Elevation ranges from 100 m 

above sea level in the Connecticut River Valley, to 425 m in the hills of central Massachusetts, to 

850 m in the Berkshire Hills of western Massachusetts.  

The western two-thirds of Massachusetts was >80% mixed deciduous, second- or 

multiple-growth forest, much of it resulting from regeneration of farm fields abandoned in the 

mid-to-late 1800s (Hall et al. 2002). The forests in the area of Massachusetts used by moose 

transition across 4 forest types, including spruce-fir-northern hardwoods, northern hardwoods-

eastern hemlock (Tsuga canadensis)-white pine (Pinus strobus), transition hardwoods-white 

pine-hemlock, and central hardwoods-hemlock-white pine. Dominant species included spruce 

(Picea spp.), balsam fir (Abies balsamea), American beech (Fagus grandifolia), birch (Betula 

spp.), trembling aspen (Populus tremuloides), eastern hemlock, oaks (Quercus spp.), hickories 

(Carya spp.), and maples (Acer spp.), depending on area and type (see DeGraaf and Yamasaki 

[2001] and Wattles and DeStefano [2013a] for a more detailed description of forest types). 

Transitions between forest types can be gradual or distinct depending on localized physiography, 

climate, bedrock, topography, land-use history, and soil conditions, resulting in a patchwork of 

forest types and species groups (Westveldt et al. 1956, DeGraaf and Yamasaki 2001).  

Early successional habitat was created primarily through timber harvesting, and 

occasionally through wind and other weather events. During 1984-2000, about 1.5% of the forest 

was harvested annually, consisting of small (mean = 16.5 ha) cuts of moderate intensity (removal 

of 27% of timber volume) widely distributed on the landscape (Kittredge et al. 2003, McDonald 
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et al. 2006). The pattern of forest harvest and transitional forest types, as well as a history of 

glaciation, provided a patchy mosaic of well-interspersed forest types, age classes, and wetlands. 

Massachusetts is a coastal state and has a maritime climate. July was the warmest month, 

when mean high temperatures ranged between 26-29o C, and January the coldest when mean 

high temperatures ranged between 0 to -2o C (Fig. 2). Mean annual precipitation was 119 cm in 

central areas and 124 cm in western areas, with all months receiving 8-12 cm (The Weather 

Channel 2011a, 2011b).  

1.4 Methods 

1.4.1 Assessing the Thermal Environment 
 
1.4.1.1 Seasons 
 

We a priori defined the length and timing of 5 seasons based on several ecological 

factors such as vegetation phenology (leaf out, leaf drop, dormancy), weather (including 

temperature and snow conditions), and the moose reproductive cycle (Table 1). The 5 seasons 

included spring, summer, fall, and early and late winter. To facilitate comparison of a heat stress 

index (HSI) between Massachusetts and Minnesota, and for that analysis only, we used the 

seasons identified by Lenarz et al. (2009): Late Spring (April and May), Warm Season (April 

through October), January, and Cold Season (November through March). 

 
1.4.1.2 Ambient Temperatures versus Upper Critical Temperatures (UCTs) 
 

We calculated the mean number of days per season that the daily minimum, mean, and 

maximum temperatures exceeded the upper critical temperatures for moose, as originally 

estimated by Renecker and Hudson (1986), as 14o C and 20o C in summer and -5o C and 0o C in 

winter; the lower temperatures invoked exponential increases in respiratory rate, heart rate, and 
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metabolic rate and the upper temperatures caused thermal panting. The critical cut-offs for 

summer were confirmed by McCann et al. (2013). Identifying the appropriate UCT for spring 

and fall was more difficult, as moose are shedding or growing their winter coats and likely 

experience thermal stress at temperatures between the summer UCT and winter UCT.  We 

therefore present spring and fall temperatures relative to both summer and winter thresholds.  

We obtained temperature data during 2002-2008 from the Fisher Meteorological Station 

at Harvard Forest, Petersham, Massachusetts (42.53311 N, 72.18968 W, 342 m elevation), which 

was located centrally in our study area (Fig. 1). Temperature was recorded by a Vaisala 

HMP45C Temperature and Relative Humidity Probe, positioned 2.2m above ground (Boose 

2001). Temperature data were not available for the western portion of our study area for 2002-

2008. We therefore compared temperatures relative to seasonal UCTs and calculated a HSI for 

this period only for the central study area. 

 
1.4.1.3 Heat Stress Index (HSI) 
 

The comparison of ambient temperatures and UCTs revealed how frequently 

temperatures exceeded the UCT each season; however, it did not quantify the magnitude by 

which each UCT was exceeded. To do this, we calculated a heat stress index (HSI) for 

Massachusetts after the method of Lenarz et al. (2009), who compared ambient temperatures 

recorded at a weather station established in their study area in northeast Minnesota to the UCT 

for moose. This involved comparing the daily minimum and maximum temperatures to the UCT 

and summing the differences across a season. We performed similar calculations, using the 

formula: 
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Where HSI = Heat Stress Index for the season, tmin = the minimum ambient temperature for day 

i, and UCTmetabolic = the Upper Critical Temperature where moose experience metabolic and 

other physiological responses to temperature. This was repeated for the maximum daily 

temperature (tmax) and the Upper Critical Temperature where moose experience panting 

(UCTpanting) for each season, resulting in 4 HSI values for each season. On days where the 

minimum or maximum temperature did not exceed the UCT, we added zero to the HSI value. 

For comparison purposes, we calculated the HSI for the same years (2002-2008) and seasons as 

Lenarz et al. (2009).  

 
1.4.1.4 Thermal Shelters 
 
 To measure temperatures in potential thermal shelters in the study area, we placed 

Thermochron i-button temperature sensors (Embedded Data Systems, Lawrenceburg, Kentucky, 

USA) in 8 blocks of closely associated stands of regenerating forest, mature hemlock, and 

mature deciduous trees. We selected blocks where the 3 stand types were found in close 

proximity (<1 km), to insure that any temperature differences detected were due to stand type 

and not localized differences in climate. We placed two temperature sensors in each stand type in 

each block. Within stands, locations were selected that were out of direct sunlight, 50-100 m 

apart, and a minimum of 50 m from the edge of the stand. We placed the temperature sensors in 

pockets made from fiberglass window screening that we stapled to the north side of a 1 m tall 

wooden survey stake. We programmed the sensors to record a temperature reading every 60 

minutes from August of 2008 until August of 2009.  
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1.4.2 Moose Habitat Use and Thermoregulatory Behavior 
 
1.4.2.1 Capture and Marking 
 

We captured adult (>1 yr old) moose by opportunistically stalking and darting them from 

the ground between March 2006 and November 2009. Moose were immobilized using either 5 

ml of 300 mg/ml or 3 ml of 450 mg/ml xylazine hydrochloride (Congaree Veterinary Pharmacy, 

Cayce, South Carolina, USA) administered from a 3 or 5 cc Type C Pneudart dart (Pneudart, 

Inc., Williamport, Pennsylvania, USA). We used Tolazolene (100 mg/ml) at a dosage of 1.0 

mg/kg as an antagonist. Moose were fitted with GPS collars, either ATS G2000 series 

(Advanced Telemetry Systems, Inc., Isanti, Minnesota, USA) or Telonics TWG-3790 GPS 

collars (Telonics, Inc., Mesa, Arizona, USA). We programmed the collars to attempt a GPS fix 

as frequently as possible while allowing the battery life to extend for at least 1 year; depending 

on the collar, a GPS fix was attempted every 135, 75, or 45 minutes. Collars were equipped with 

very high frequency (VHF) transmitters, mortality sensors, and automatic release mechanisms 

that released the collars either at a low battery state or at a preprogrammed date. Capture and 

handling procedures were approved by the University of Massachusetts Institutional Animal 

Care and Use Committee, protocol numbers 25-02-15, 28-02-16, and 211-02-01. 

 
1.4.2.2 Temperature-Habitat Interactions 
 

We used ArcGIS 9.3 (Environmental Systems Research Institute, Inc. 2008) to map GPS 

location data from collared moose. We mapped the data on 1:5000 Color Ortho Imagery 

collected in 2004-2005 and again in 2008-2009, available through the Massachusetts Office of 

Geographic Information (MassGIS 2011), 2003 and 2009 National Agricultural Imagery 

Program (NAIP 2011) satellite imagery, and mid-1990s black and white orthophotographs 

(VCGI 2011). We used Massachusetts Department of Environmental Protection wetlands 
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polygon and arc layers to identify wetlands (MassGIS 2011), as well as state wetland layers for 

Vermont (VCGI 2011) and New Hampshire (NH GRANIT 2011). Because the available GIS 

landuse layers did not accurately identify forest structure and composition (e.g., deciduous 

versus coniferous growth and age classes), we manually delineated and identified forest types 

and age classes. We identified early successional patches visually using the ortho-imagery and a 

statewide layer of forest harvest plans (McDonald et al. 2006). We manually classified each GPS 

location into 1 of 8 habitat classes: coniferous forest (mostly coniferous with minimal deciduous 

component), deciduous forest (mostly deciduous with minimal coniferous component), mixed 

forest (mixed deciduous and coniferous), regenerating forest (logged areas <20 years old and 

powerline right-of-ways), wooded wetlands (conifer, mixed, and deciduous wooded wetlands), 

other wetlands (grassy fens, shrub swamps, bogs, deep wetlands, and open water), open (e.g., 

fields and meadows), and developed. We set the age restriction of regenerating forest at 20 years 

because while logged areas >20 years old may still provide browse, these stands more closely 

resemble mature forest stands in quantity of browse and thermal properties. In addition, older 

harvests were difficult to distinguish and map accurately.  

We merged ambient temperature data with GPS collar locations to represent ambient 

temperature conditions experienced by moose. We obtained temperature data from weather 

stations located centrally in either portion of the study area (Fig. 1), with all moose home ranges 

located <30 km from a station. We obtained temperature data for moose in central Massachusetts 

from the Fisher Meteorological Station at Harvard Forest, where readings were recorded every 

15 minutes, resulting in a maximum 7.5-minute difference between the time of temperature 

recording and the time of any moose GPS location (Boose 2001). Temperature data for western 

Massachusetts were obtained from weather station MAR 841 in Peru, Massachusetts (42.467171 
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N, 73.022499 W, 577 m) that used a Davis Instruments, Vantage Pro weather station. This 

weather station is part of the National Oceanic and Atmospheric Association (NOAA) MADIS 

(Meteorological Assimilation Data Ingest System) network. Temperature data at this station were 

recorded every 5 minutes.  

We created subsets of the moose location data first by season, then day and night, and 

finally temperature class. We classified moose GPS locations as either day or night based on the 

time the location was recorded relative to sunrise and sunset (day was after sunrise and before 

sunset; night was after sunset and before sunrise). We obtained sunrise and sunset times from the 

website http://www.arachnoid.com/lutusp/sunrise/. We assigned GPS locations to the following 

ambient temperature classes relative to the seasonal UCT: cool (<-5o C in winter (early and late) 

or <14o C in spring, summer, and fall), warm (>-5o and <0o C in winter or >14o and <20o C in 

spring, summer, and fall), and hot (>0o and < 10o C in winter or > 20o C in spring, summer, and 

fall).  We used a fourth temperature class in winter: very hot (>10o C). For each season-

day/night-temperature class combination, we calculated the mean proportional use of each 

vegetation cover type. Additionally, for each season we calculated the mean hourly proportional 

use of cover types and mean hourly movement rates. 

 
1.4.3 Statistical Analyses 
 
1.4.3.1 Thermal shelters 
 

We used mixed effect analysis of variance, with block as the random intercept, to test for 

differences in daily maximum temperature among forest stand types using the R-package nlme 

(Pinheiro et al. 2013). For all analyses we subset the data by season, and combined early and late 

winter into a single season, winter. We accounted for the heterogeneity of variance between 

stands types by using the VarIndent command in nlme. Comparison of models with and without 
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modeled variance structure was based on Akaike Information Criteria (AIC) and likelihood ratio 

tests (Burnham and Anderson 2004). Models that included the incorporation of variance 

structure were better for all seasons (all P < 0.001). Additionally, data exploration indicated that 

the temperature difference between stand types increased with increasing maximum daily 

temperature. We modeled the maximum daily difference in temperature between stand types 

compared to daily maximum temperature recorded at the Fisher Meteorological Station using 

mixed effect linear regression. We modeled the heterogeneity of variance for various models 

using fixed, power, and exponential variance structures and without modeling the variance 

structure. Likelihood ratio tests and AIC were used to determine the best variance structure, 

which was then used in the analysis. We used Bonferroni corrections to account for multiple 

comparisons within season. 

 
1.4.3.2 Proportional Use of Cover Types 
 

Within each season and for day and night we used mixed effect analysis of variance to 

compare the use of cover types across temperature classes, as well as overall daytime versus 

nighttime use. We used a random intercept model for all analyses, with individual moose as the 

random component, to account for repeated measures on an individual. Models were analyzed 

with the package lme4 (Bates et al. 2012) and post-hoc comparisons and MCMC P-values were 

calculated with the package languageR (Baayen 2011). 

 
1.4.3.3 Resource Selection Functions (RSF) 
 

We modeled how third-order habitat selection (Johnson 1980) was influenced by ambient 

temperature and photo-period (day versus night) by calculating resource selection functions 

(RSF) using a use:availability framework (Manly et al. 2002) and assuming the exponential form 
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(Johnson et al. 2006). We estimated model coefficients (βi) representing the relative probability 

of use (w) using mixed effect logistic regression with the equation: 

w(x) = exp(β1x1 + β2x2 + ... + βkxk + yi) 

where yi is the random effect of moose i.  

We based availability for each animal on a random sample of locations generated within 

the animal’s annual minimum convex polygon home range, plus a buffer to account for habitat 

available along the periphery of the home range. We used a 1,000 m buffer that was equivalent 

to the 95th quantile of between-location movements. We added the buffer around all locations 

then merged it with the MCP to define availability to represented habitat that was easily 

available to the individual. This sampling resulted in 1,175-1,527 random locations per 

individual. We classified the cover types for the random locations using the same method as for 

used locations. The availability data had no ambient temperatures associated with it; therefore, 

we generated temperature data for each moose and season by randomly drawing with 

replacement from the temperature data associated with that moose’s GPS locations for that 

season. To insure that no available location was associated with a single temperature value we 

first duplicated the available dataset 5 times; as a result, each available location had 5 

temperature values associated with it. Temperature data associated with the available locations 

varied by season, but availability of cover types was held constant for all analyses.  

For all analyses, we used subsets of the data based on season and photo-period (e.g., 

summer daytime). Models for each subset included the categorical variable “cover type” and the 

continuous variable “ambient temperature”, plus their interaction. We generated separate models 

for central and western Massachusetts because of differences in seasonal habitat selection due to 

differences in forest type and plant community composition (Wattles and DeStefano 2013a). We 
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used a random intercept model for all analyses, with individual moose as the random component, 

to account for repeated measures on an individual and unequal sample sizes (Gillies et al. 2006). 

We analyzed the models with the package lme4 (Bates et al. 2012). We evaluated the robustness 

of our models using k-fold cross validation (Boyce 2002), withholding 20% of the data to test 

models generated with the remaining 80%. This method generates Spearman’s rank correlation 

coefficients (rs), with high rs indicative of good model fit. Finally, we used mixed effect analysis 

of variance to model differences in selection of cover types during the day versus at night. 

1.5 Results  

1.5.1 The Thermal Environment 

1.5.1.1 Ambient Temperatures versus UCTs. 

Daily minimum temperatures exceeded the lower (exponential increase in metabolism) 

UCTs on 66% or 38% days of the year (when -5o C or 14o C were used for spring and fall, 

respectively) (Table 2). The daily mean temperature exceeded these UCTs on 86% or 68% of 

days, respectively, and the daily maximum temperature exceeded these UCTs on 96% or 87% of 

days, respectively. When the maximum daily temperature exceeded the lower UCT, it did by an 

average of 6.8, 11.2, 6.8, 10.8, and 9.7o C from spring to late winter. The longest period the daily 

minimum temperature stayed above the 14o C UCT was over 22 days, when the mean minimum 

and maximum temperatures were 17.9 and 28.9o C, respectively. For that period, ambient 

temperatures were never within the thermal neutral zone of moose. During the same period, the 

daily minimum temperature remained above the 20o C threshold for over 4 days. 
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1.5.1.2 Heat Stress Indices 

Comparison of Heat Stress Indices for Petersham, Massachusetts and northeast 

Minnesota revealed that the mean annual daily and seasonal HSIs were greater for Massachusetts 

than Minnesota (Table 3). Mean annual and daily HSI values for Late Spring and Warm Seasons 

were only 20-28% greater in Massachusetts than Minnesota, but were 193% greater during 

January and 73% greater during the overall Cold Season. However, 3 of 4 single year maxima 

HSI for the Late Spring and Warm Season periods were greater in Minnesota, indicating that 

Warm Season temperatures can be more extreme in the continental climate of Minnesota than the 

maritime climate of Massachusetts. Cold Season HSIs were always greater in Massachusetts, 

including January, the period Lenarz et al. (2009) determine had the greatest effect on moose 

survival. 

1.5.1.3 Thermal Shelters 

Daily maximum temperatures were greater in regenerating stands in all seasons than 

either mature hemlock or deciduous stands, and mature deciduous stands were greater than 

mature hemlock stands in all seasons (Table 4; all P < 0.003). The mean differences in maximum 

daily temperature between regenerating and hemlock stands ranged from 5.81 (± 0.24)o C (  (± 

SE)) in summer to 3.19 (± 0.26)o C in winter. Additionally, the difference in maximum daily 

temperature between stand types increased with increasing daily maximum ambient temperature 

for most combinations of stands and seasons (Table 4, Fig 3, all P < 0.001; except for 

regeneration and deciduous in winter P = 0.028). The difference in temperature between 

deciduous and hemlock stands did not change with changes in daily maximum ambient 

temperature during fall (P = 0.471). 
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1.5.2 Moose Habitat Use and Thermoregulatory Behavior 

1.5.2.1 Capture and Deployment of GPS Collars 

 We deployed GPS collars on 26 adult moose (7 females and 19 males). Of the 26, we 

excluded 5 from the analysis due to mortality, suspected infection with brainworm 

(Parelaphostrongylus tenuis), or collar failure, resulting in 21 collared moose (5 females and 8 

males in central and 8 males in western Massachusetts). We recaptured and recollared 9 moose 

when the batteries in their initial GPS collars ran low. We obtained 127,408 locations of the 21 

moose used in this study, with an overall fix rate of 85%. Seasonal data for any animal was only 

included in the analyses if data were obtained across the entire season. The median number of 

locations per animal per season ranged from 402 in spring to 1,015 in late winter. The minimum 

number of locations was 281 for one animal in spring. 

 
1.5.2.2 Ambient Temperatures at GPS Locations 

Temperatures experienced by collared moose in our study were consistently outside of 

their thermal neutral zone in all seasons both day and night (Table 5). During summer, 

temperatures were above the 14o C threshold for over 90% of daytime and 75% of nighttime 

locations and above the 20o C threshold for over 56% of daytime locations. During early and late 

winter, temperatures were above the -5o C threshold for 85 and 75% of daytime locations and for 

76 and 57% of nighttime locations, respectively. 

1.5.2.3 Proportional Habitat Use versus Ambient Temperatures 

We combined males and females in central Massachusetts, as modeling results showed 

no differences between gender for habitat use and thermoregulatory behavior based on 

significance level and AIC (Figs. 4-7). In the central study area in spring, the proportional use (  
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(± SE)) of regeneration decreased from 0.545 (± 0.033) to 0.307 (± 0.033) to 0.231 (± 0.042) as 

temperatures increased from cool (<14o) to warm (14-19o C) to hot ( >20o), respectively, which 

represented 44 and 58% decreased use of regeneration from cool to warm and cool to hot 

temperatures, respectively. In summer, the proportional use of regeneration decreased from 

0.650 (± 0.046) to 0.488 (± 0.052) to 0.352 (± 0.040), a 25 and 46% decrease in regeneration use 

from cool to warm and cool to hot temperatures, respectively. In fall, use decreased from 0.484 

(± 0.048) to 0.349 (± 0.045) to 0.282 (± 0.039), a 28 to 42 % decrease in regeneration use from 

cool to warm and cool to hot temperatures, respectively. Additionally, use of regeneration was 

48% greater during the night (0.612 ± 0.038) compared to the day (0.413 ± 0.031) in spring, 55% 

greater during summer (0.663 ± 0.036 and 0.428 ± 0.043 for night and day, respectively), and 

63% greater during fall (0.632 ± 0.027 and 0.387 ± 0.039 for night and day, respectively). 

Comparatively, the use of wooded wetlands increased from 0.101 (± 0.014) to 0.332 (± 0.010) (a 

228% increase), from 0.118 (± 0.026) to 0.295 (± 0.035) (a 150% increase), and from 0.189 (± 

0.034) to 0.337 (± 0.053), (a 77% increase) from the cool to hot temperature class during spring, 

summer, and fall, respectively (Fig. 3). Proportional use of mature forest stands, particularly 

conifer, also increased with increasing temperature; however, the patterns were not consistent 

season to season. In addition, the use of all thermal shelters, such as wooded wetlands and 

mature forest stands, nearly doubled during the day compared to at night during these seasons.  

Changes in the proportional use of regeneration in relation to UCT was less pronounced 

in western Massachusetts in spring (0.199 (0.050) to 0.162 (0.052) to 0.165 (0.038) from cool to 

warm and hot), when deciduous forest was used heavily, and in summer (0.470 (0.061) to 0.388 

(0.059) to 0.342 (0.060) from cool to warm to hot) (Fig. 5). However, during fall changes in the 

proportional use of regeneration were similar to central areas, decreasing from 0.417 (0.052) to 
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0.305 (0.052) to 0.245 (0.064) as temperature increased. Use of wooded wetlands doubled as 

temperatures increased from cool to hot in spring (0.131 (0.018) to 0.254 (0.047)) and summer 

(0.090 (0.033) to 0.191 (0.025)) and nearly tripled from cool to hot temperatures in fall (0.130 

(0.031) to 0.367 (0.061)). The differences in use of cover types between day and night were 

similar in summer and fall for central and western areas, but not as pronounced in the west 

during spring.  

Examination of the use of cover types versus hour of the day revealed a clear transition 

from open cover types (particularly regenerating forest) to thermal shelters (most notably conifer 

and wooded wetlands) occurring at dawn, with the reverse pattern at dusk (Figs. 8 and 9). The 

transition in the use of cover types was matched by peaks in hourly movement rates during 

crepuscular times (Fig. 10).  

The magnitude of the decline in use of regeneration was much less at the identified UCTs 

in early and late winter than in spring, summer, or fall. During the day in central Massachusetts, 

use of regenerating forest stands decreased by only 5 and 7% from the cool (<-5o C) (0.534 

(0.067) and 0.543 (0.050) in early and late winter, respectively) to warm (>-5o and <0o C) 

((0.510 (0.067) and 0.505 (0.038) in early and late winter, respectively) temperature class and by 

13 and 17% from the cool to hot (>0o and < 10o C) (0.467 (0.042) and 0.449 (0.038), in early and 

late winter, respectively) temperature class in early and late winter, respectively (Fig. 6). 

However, compared to cool temperatures the use of regeneration decreased by 45% in early 

winter (to 0.295 (0.037)) and 44% in late winter (to 0.305 (0.047)) when temperatures were 10 

degrees above the upper UCT (very hot). Notably, the decrease in use of regeneration was also 

significant between both warm and very hot (>10o C) and hot and very hot temperatures. 
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Similarly, the change in the use of cover types at night versus day was also much lower in early 

and late winter than during spring, summer, and fall. 

 
1.5.2.4 Resource Selection versus Ambient Temperatures 
 

The analysis of habitat selection with RSFs showed that the relative selection for 

regenerating forest was several times the selection for all other cover types at low temperatures.  

As temperature increased the relative selection for regenerating forest decreased in spring, 

summer, and fall in central Massachusetts, with the decrease more pronounced during the day 

than at night (Fig. 11, Appendix A). At night, selection for regenerating forest remained high 

relative to closed canopy forest types, even at high temperatures. During the day, however, 

selection for regenerating forest was comparable to closed canopy forest at high temperatures. 

Relative selection for wooded wetlands increased rapidly with increasing temperature both day 

and night and was several times greater than all cover types, even regenerating forests at high 

temperatures. To a much lesser extent, selection for other wetlands and conifer also increased 

during the day. At night, the selection for open wetland types increased much more rapidly with 

increasing temperature and was similar in magnitude to the increase in selection for wooded 

wetlands. Similarly to proportional use, selection ratios at night and day showed increased 

selection of regenerating forest and lower selection for thermal shelters at night compared to day.  

In western Massachusetts, selection for regenerating forest declined with increasing 

temperature during the day in spring, summer, and fall (Fig. 12, Appendix B). Selection for 

regeneration also decreased with increasing temperatures at night during fall, but not at night 

during spring and summer. Selection for deciduous forest (the most heavily used cover type in 

spring) declined during both day and night as temperature increased. Similarly, during summer 

selection for other wetlands decreased as temperatures increased, both day and night. Wooded 
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wetlands remained the most heavily selected for thermal shelter during the day and selection for 

this cover type was several times that of other cover types at high temperatures. Selection of 

other wetlands also increased with higher temperatures at night during both spring and fall. 

 In central Massachusetts, selection for regeneration was high during winter, but 

decreased with increasing temperature during the day in both early and late winter (Fig. 13). At 

night relative selection for regeneration remained high even at seasonally very high temperatures 

and decreased less with increasing temperature than during the day. Selection for wooded 

wetlands increased rapidly with increasing temperature at both day and night, but relative 

selection remained below regeneration until temperatures were above the 0o C UCT. Differences 

in selection pattern complicated the results in western Massachusetts; however, the increase in 

selection for wooded wetlands with increasing temperature demonstrates its continued 

importance as a thermal shelter (Fig. 14).   

 K-fold cross validation showed excellent predictive performance of the models for all 

seasons in both study areas with rs = 0.97 (0.95 - 0.995) for central and 0.95 (0.92 - 0.98) for 

western models.  

1.6 Discussion 

1.6.1 A Critical Evaluation of UCTs for Moose 
 

Although the UCTs reported by Renecker and Hudson (1986) have been widely cited, 

there is also reason to be cautious with their results. They identified UCTs for moose based on a 

small sample (n = 2) of captive animals in one specific region of the species geographic range. 

As a result of the limitations of that study, several authors (van Beest et al. 2012, Broders et al. 

2012, McGraw et al. 2012, McCann et al. 2013, Melin et al. 2014) have cited the lack of 

thermoregulatory behavior by moose at the identified UCTs in Ontario (Lowe et al. 2010), as 
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evidence that either (1) moose response to temperature is variable across their southern range or 

(2) the UCTs identified by Renecker and Hudson are inaccurate or inappropriate across the 

range. 

However, while it is possible that moose in southern Ontario did not respond to the 

thermal environment, it is also highly probable that the coarse-grained analysis used by Lowe et 

al. (2010) would not have detected any thermoregulatory behaviors even had they been present. 

GIS layers commonly used to represent habitat availability often have associated error due to 

misclassification of cover types and blurred boundaries due to low resolution. In fact, Maxie et 

al. (2010) reported large inaccuracies in the GIS forest map used in the analysis in Ontario, and 

cautioned that its use may be inappropriate for many wildlife studies. Lowe et al. (2010) also 

used utilization distributions to represent habitat use, a smoothing method that removes the fine 

spatial resolution of animal location data that GPS collars provide. Finally, they merged early 

successional forest with mature forest types, did not distinguish between open and forested 

wetlands, and did not account for night versus daytime use. Alone each one of these factors 

would tend to dampen the patterns in the data; in combination, they likely smoothed all patterns 

out of the data.  

Lowe et al. (2010) also failed to detect differences in movement rates among temperature 

classes or between day and night, which they interpreted as a lack of changes in behavior at high 

temperatures and a lack of increased nocturnal activity. We performed an exploratory analysis of 

movement rates versus temperatures and did not see any clear relationship, despite the clear 

patterns of thermoregulatory behavior and habitat use we observed. Furthermore, our observed 

movement rates were similar during the day (when moose were using thermal shelters) and night 

(when moose were foraging in regenerating stands).  These results indicate that, despite the fine 
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spatial and temporal resolution of GPS collars, they do not have the ability to detect differences 

in within patch activity or foraging versus bedding based on movement rates.  

The preponderance of evidence from our and other studies suggests that moose are 

affected by and respond to high temperatures with thermoregulatory behavior at the temperatures 

proposed by Renecker and Hudson (1986) (Renecker and Hudson 1990, Schwabb and Pitt 1991, 

Demarchi and Bunnell 1995, Dussault et al. 2004, Broders et al. 2012, van Beest et al. 2012, 

Melin et al. 2014). Additionally, McCann et al. (2013) reported physiological responses to heat 

stress at a mean of 17o C in summer, confirming the temperatures Renecker and Hudson (1986) 

reported. This result supports the idea that there is a range of temperatures where individual 

moose will begin to experience thermal stress (Renecker and Hudson 1986, Renecker and 

Hudson 1990, McGraw et al. 2012). In fact, Renecker and Hudson (1986:326) reported that 

“upper thermal limits were found to be 14-20o C”, i.e., that range is bounded by their observed 

14o C exponential increase in metabolic rate and 20o C open mouthed panting temperatures. As 

such, temperatures between 14 and 20o C should be interpreted as the range where thermal stress 

begins to occur, and temperatures above 20o C could be interpreted as well above the thermal 

neutral zone of moose. We are thus confident that using the upper critical temperatures reported 

by Renecker and Hudson (1986) to represent thermally stressful conditions for moose is valid. 

 
1.6.2 The Thermal Environment of Southern New England 
 
1.6.2.1 Temperatures Relative to UCTs 
 

Comparison of mean daily minimum, maximum, and mean temperatures to seasonal 

UCTs indicated that moose were subjected to thermally stressful conditions frequently and for 

long periods throughout the year in Massachusetts. Maximum daily temperatures exceeded the 

lower UCT thresholds of -5 and 14o C on nearly 90% of the days of the year. Perhaps more 
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importantly, minimum daily temperatures often exceeded the lower UCT as well, and on these 

days ambient temperatures were never within the thermal neutral zone of moose. Furthermore, 

conditions outside the thermal neutral zone lasted for extended periods, often days and weeks at 

a time, particularly during summer.  

 
1.6.2.2 Factors Affecting the Thermal Environment 

Climatic conditions so consistently outside the physiological tolerances of moose would 

seemingly put Massachusetts and southern New England outside the suitable geographic range 

for moose. However, many factors can modify the thermal environment experienced by an 

animal, including vegetation cover, convective and conductive cooling, and exposure to solar 

radiation.  

Vegetation cover can have a large modifying effect on the thermal environment. Closed 

canopy forest can be cooler than more open habitats and can reduce exposure to solar radiation, 

which can have a dramatic effect on operative temperature. Parker and Gillingham (1990) 

suggested that operative temperature of an animal in cover may be 20o C cooler than ambient 

temperature due to the reduction in solar radiation. Demarchi and Bunnell (1993) stated that 

canopy closure of 26-35, 36-45, 66-75, and 76-85% allowed moose to remain below or near their 

UCT at temperatures of 15o, 20o, 25o, and 30o C, respectively. Bowyer and Kie (2009) found 

black body temperatures in open habitats to be over 10o C warmer than ambient temperature or 

in oak cover during the day, but cooler at night. 

We detected maximum temperature differences between open regenerating stands and 

closed canopy hemlock or deciduous stands of nearly 6o C in summer. Similarly, in Oregon 

Edgerton and McConnell (1976) reported that during summer mean hourly temperatures between 

clearcuts and adjacent unlogged conifer and partial cut stands differed by up to 7-8o C. In 
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Minnesota, McGraw et al. (2012) reported that differences in temperature among forest cover 

types increased with increasing temperature and was greatest in the afternoon, which is typically 

the warmest part of the day.  They also found that temperatures were considerably lower (~5o C) 

and the differences between stand types were less on cloudy versus sunny days. We report very 

similar results, indicating that the value of vegetation cover as thermal shelter increases on 

warmer and sunnier days when it is needed most.  

Wooded wetlands provide the cover benefits associated with closed canopy forests, 

including lower ambient temperature and reduced solar radiation, as well as and perhaps more 

importantly, a medium for conductive cooling with water. Renecker and Hundson (1990) 

reported that bedding in shallow water decreased energy expenditure by 2.9 kJ/hr/kg0.75 from the 

daytime average and decreased respiration from 26 breaths/min when bedded in the shade to 7.5 

breaths/min when bedded in a shallow wetland. Just standing in a shallow wetland decreased 

energy expenditure by 6.52 kJ/hr/kg0.75 compared to an animal standing in willow (Salix spp.). 

Demarchi and Bunnell (1995) and Parker and Gillingham (1990) noted that large animals have 

high thermal inertia, and their low surface area-to-volume ratio results in low rates of heat 

transfer to and from the animal or environment. As a result, animals like moose are slow to heat 

up when exposed to high temperatures and solar radiation. However, once they are outside of 

their thermal neutral zone it can take a long time to cool down. The use of wetlands can help to 

accelerate this cooling or halt and reverse thermal inertia. This could enable moose to spend time 

in regenerating forest when conditions were unfavorable, followed by rapid cooling in wetlands 

to quickly reduce body temperature. Ackerman (1987) and Renecker and Hudson (1990) noted 

that moose used wetlands as heat sinks in summer. 
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Convective cooling by air movements can also have a strong influence on the rate of 

energy exchange between an animal and its environment. Strong winds can quickly move 

warmth from a body and greatly accelerate cooling. McCann et al. (2013) determined that 

exposure to wind raised the ambient temperature where moose began to experience increased 

metabolic rates by 4-10 o C. Parker and Gillingham (1990) modeled how the operative 

temperature for mule deer (Odocoileus hemionus) was affected by air temperature, solar 

radiation, and wind speed. At 15o C and maximum solar radiation, winds of 0, 5, 10, and 15 m/s 

resulted in operative temperatures of 40.5, 23.9, 16.7, and 11.2o C, respectively. Conversely, at 

15o C and no wind, solar radiation of 0, 200, 400, 600, and 800 W/m2 resulted in modeled 

operative temperatures of 11.0, 20.7, 29.7, 38.4, and 40.5o C, respectively. Elevation and 

topography can influence the thermal environment by changing the exposure to wind. Elevation 

can also directly affect the thermal environment through adiabatic cooling, approximately 1o C 

for every 100m in altitude in dry air (0.6o C in moist air) (Begon et al. 2006).  

 
1.6.3 Moose Habitat Use and Thermoregulatory Behavior  
 
1.6.3.1 Habitat Use 
 
 Our results clearly indicate that moose in Massachusetts are living in an environment that 

is consistently outside their thermal neutral zone. Moose responded to these conditions by 

performing thermoregulatory behaviors, including altering their use of cover types and daily 

activity patterns, related to both temperature and time of day. Moose used more open 

regenerating forest that optimized foraging efficiency when conditions were favorable (e.g., at 

low temperatures and at night). Conversely, they greatly reduced use of open foraging habitat 

and increased their use of thermally advantageous forested wetlands and closed canopy forests as 

temperatures increased and during the day.  
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Proportional use analysis showed that moose responded to temperature at the identified 

UCTs, particularly during spring, summer, and fall, indicating heat stress was occurring at the 

temperatures identified by Renecker and Hudson (1986). The decreased use of open habitats and 

increased use of cover, particularly conifers or softwoods, when summer temperatures were 

above the UCTs were also reported for moose in British Columbia (Schwabb and Pitt 1991, 

Demarchi and Bunnell 1995), Quebec (Dussault et al. 2004), Nova Scotia (Broders et al. 2012), 

Norway (van Beest et al. 2012), and Finland (Melin et al. 2014). However, the magnitude of the 

response we observed was far greater, as would be expected given the location of Massachusetts 

in the range of moose and the thermal conditions relative to other locations where these 

interactions have been studied (Table 6). 

Our habitat selection analysis also revealed important insights into the energy balance of 

moose. Specifically, by incorporating temperature as a continuous variable in our models, we 

were able to identify the seasonal temperatures where moose switched between selecting for 

stands with high forage density that maximized energy consumption, to where it is more efficient 

to conserve energy through the selection of thermal shelters. At temperatures above this 

transition temperature, more energy would likely be expended to maintain normal body 

temperature than could be obtained through foraging. This pattern was much clearer in central 

Massachusetts, where regenerating forests were the most heavily used cover type in all seasons. 

In western Massachusetts, selection was complicated by the variability in seasonal habitat 

selection patterns related to differences in forest type between central and western Massachusetts 

(Wattles and DeStefano 2013a).  

During the day in central Massachusetts, the transition temperature was about 12o C in 

spring, 16o C in summer, and 6o C in fall. At night, transitions temperatures were about 5o C 
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warmer and likely reflected the impact of solar radiation on the heat exchange of an animal. The 

transition occurred at similar temperatures in western Massachusetts, except in spring when 

moose selected deciduous forest stands that provided both cover and forage. If the selection for 

the two main foraging habitats, which were deciduous and regenerating stands, were combined, 

the transition occurred near 15o C. The temperatures these transitions occur at further supports 

the accuracy of the 14o C summer UCT originally defined by Renecker and Hudson (1986) and 

confirmed by McCann et al. (2013). Additionally, the relative temperature of the transition 

between seasons supports the hypothesis that moose are most susceptible to thermal stress in 

spring, when they are shedding their winter coat and are in poor body condition, and in fall, 

when they are developing their winter coat and animals are expending energy during the active 

rutting period. Melin et al. (2014) suggested the greater use of cover at high temperatures, which 

they observed in August compared to June or July, was related to the development of the winter 

coat at that time.  

The response to temperature was much lower in winter than in the warm seasons. Based 

on proportional use analysis, moose did not appear to respond to temperature at the identified 

UCT in winter, which is in agreement with much of the literature. Van Beest et al. (2012) did not 

detect thermoregulatory behavior in winter in Norway and stated that most other studies did not 

detect changes in winter selection (except see Scwabb and Pitt 1991). Additionally, comparison 

of both overall night versus day use and hourly use of cover types revealed that the response to 

time of day was also greatly reduced in winter, which is not surprising given the much-reduced 

intensity of solar radiation at this time of year. However, we did see significant changes in the 

use of cover types when temperatures exceeded the upper UCT by 10o C in winter.  
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The lack of thermoregulatory response in winter at the identified UCTs indicated that 

perhaps the UCTs for winter are not as accurate or applicable across the species’ range as the 

summer UCTs. However, with the lack of deciduous cover (i.e., leaves are down) and lower 

ambient temperatures in winter, it may be that the differences in thermal conditions between 

cover types are not great enough to warrant the same level of thermoregulatory behavior that we 

observed during the warm seasons, even under thermally stressful conditions, except at the very 

highest temperatures. Furthermore, bedding in snow during warm temperatures likely provides 

some cooling effect regardless of cover type. The lack of response at the UCT may also reflect 

the interaction of solar radiation and ambient temperature in the heat exchange of animals. 

Without the high intensity solar radiation that occurs during spring, summer, and fall, ambient 

temperature alone may not result in thermal stress. However, we did see an increase in the use 

and selection of wooded wetlands as temperatures increased in winter, indicating that thermal 

stress was occurring.  

Incorporating additional variables such as wind speed, elevation, aspect, cloud cover or 

intensity of solar radiation, and precipitation, all of which could modify the thermal environment, 

would undoubtedly improve models of animal response to the thermal environment. Likely some 

use of open habitats when temperatures were above the UCTs occurred under cloudy, windy, or 

rainy conditions, which lowered an animal’s operative temperature and confounded the habitat 

selection-temperature relationships we modeled. The strength of the relationships between 

habitat selection and temperature and the magnitude of the changes in habitat use with changing 

temperature, despite this source of environmental variation, are compelling evidence that 

ambient temperature is a main driver of habitat selection for moose along their southern range 

boundary. The difficulty in accurately modeling wind, cloud cover, and precipitation, given 
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changes in locality, as well as the effects of elevation, aspect, slope, and cover, make accurately 

incorporating these variables extremely difficult. However, during this study moose were located 

almost exclusively in the uplands of the study area. This may have involved a home-range scale 

selection for lower temperatures and greater exposure to wind in the uplands or it may be 

avoidance of the more highly developed valley bottoms (Wattles and DeStefano 2013b, see also 

chapter 3). We believe it is likely combination of these two factors. 

1.6.3.2 Activity 

In addition to altering their habitat use and selection patterns in response to thermal 

conditions, moose also modified their activity patterns. Moose in our study were highly 

nocturnal in spring, summer, and fall, intensively using regenerating stands and to a lesser extent 

open wetlands at night. We documented a clear shift in the use of open regenerating habitat and 

thermal shelters that occurred at dawn and dusk, coupled with peaks in movement rates at these 

times. We interpreted this as a shift in activity from primarily resting and bedding during the day 

to foraging at night. Additionally, the peaks in movement rates that we observed at dawn and 

dusk represented movements between foraging and cover patches, not simply peaks in foraging 

activity, as is normally interpreted (Belovsky and Jordan 1978, Renecker and Hudson 1989, 

Neumann et al. 2012).  At night, moose used regenerating forest extensively to feed, but their 

rates of movements during this time were low and similar to the rates they showed when in 

thermal shelters during the day. However, moose likely performed feeding bouts just prior to 

entering and after leaving thermal shelters at dawn and dusk, respectively. 

Increased nocturnal activity and reduced foraging time and activity with increasing 

temperature are commonly reported for moose in the literature. Belovsky and Jordan (1978) 

stated that moose are primarily nocturnal during summer, with peaks in activity at dawn and 
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dusk, and reference Knorre (1959), who claimed a nocturnal activity pattern. Renecker and 

Hudson (1989) reported highest levels of foraging at dawn and dusk, but noted increased 

nocturnal foraging in late spring and summer. A biphasic activity pattern with peaks at dusk and 

dawn is commonly reported during the growing season (Cederlund 1989 and references therein), 

but not during winter. However, Cederlund (1989) noted that their activity measurements were 

recorded remotely and only distinguished between active and inactive, which could represent any 

movement and not necessarily increased foraging behavior. 

Nocturnal activity combined with reduced feeding as temperatures increased lead 

Belovsky and Jordan (1978) to speculate that moose limited their activity due to thermal 

conditions, and that high temperatures could restrict forage intake. Moen (1968) noted that both 

activity and food consumption increase metabolic heat production several times basal 

metabolism; given this, it is not surprising moose reduce activity during the day. Cederlund 

(1989) reported shorter and more frequent activity bouts, which he believed to be an attempt to 

maximize forage intake during the growing season. Van Ballenberghe and Miquelle (1990:395) 

also noted a decrease in the length of activity bouts during mid-day that “appeared to be related 

to temperature”. Ackerman (1987) and Broders et al. (2012) reported reduced movement rates at 

high compared to low temperatures. However, we were unable to detect a relationship between 

movement rates and ambient temperature. Renecker and Hudson (1986) and Demarchi and 

Bunnell (1995) both described decreased activity with increasing temperature. Dussault et al. 

(2004) reported higher activity by moose during the day than night in all seasons; however, they 

also reported that nocturnal activity increased with warmer temperatures in summer and fall.  
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1.6.4 Impacts of Temperatures Above UCTs 
 
Conditions outside the thermal neutral zone can affect the energy budget of an animal by 

decreasing inputs and increasing expenditures. Renecker and Hudson (1992:54) stated, “thermal 

stress preempted feeding when ambient temperatures rose above 0o C in winter and 22o C in 

summer”. Reduced time feeding (Knorre 1959, Belovsky and Jordan 1987, and Renecker and 

Hudson 1986, Schwabb and Pitt 1991) and reduced dry matter intake (Renecker and Hudson 

1990) that resulted in associated static weight or weight loss (Renecker and Hudson 1986) or 

reduced weight gain (Knorre 1959) during periods of high temperature are widely reported. At 

the same time, physiological responses (Renecker and Hudson 1986) to maintain normal body 

temperature are a direct energy expenditure. Thermal panting is energetically costly and 

increases in metabolic rate are, by definition, a greater expenditure of energy. Therefore, when 

temperatures exceed UCTs moose expend energy that they would not have to in a thermally 

neutral environment. In Massachusetts, the 11.2o C average that daily maximum temperatures 

exceeded the 14o C UCT by in summer would result in an increase in metabolic rate of 7.8 

kJ/hour/kg BW-0.75, an increase in heart rate of 10 beats/minute, and an increase in respiration 

rate of 35.8 breaths/minute compared to temperatures below the threshold.  

Belovsky and Jordan (1978) stated that summer was the most nutritionally demanding 

season because moose need to raise young and store fat for winter. Van Ballenberghe and 

Miquelle (1990:392) also believed that summer is the most important time of year, when fat and 

protein stores are replenished and that “the size of those stores determines how long animals 

survive in a negative energy balance during winter”. Given the importance of the season in the 

annual energy balance of moose, periods above the UCT in summer are likely extremely costly. 

If thermal stress during the growing season reduced energy reserves going into winter, then 
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presumably the probability of survival would decrease. During the day in summer, we observed 

high use of regenerating forest even at temperatures above 20o C. This likely reflected the almost 

continuous state of temperatures outside of the thermal neutral zone during summer (98% of 

daytime locations) and the necessity to feed at this critical time of year regardless of the 

metabolic energy required to do so.   

Iason et al. (1999) showed that domestic sheep were able to compensate for restricted 

grazing times by increasing their instantaneous foraging rates and increasing the length of their 

foraging bouts. However, they could only offset the restrictions in grazing time when food was 

abundant. Foraging in lower quality habitat resulted in a reduction in daily food intake compared 

to sheep allowed unrestricted grazing. Presumably, the short passage and digestion times of 

summer vegetation may allow moose to compensate for reduced food intake during periods of 

thermal stress through the intensive use of high quality regenerating forest on cooler days 

(Renecker and Hudson 1992) or at night. However, the use of thermal shelters may result in 

decreased energy consumption because they represent lower quality foraging habitat. 

The use of thermal shelters and thermoregulatory behavior may allow moose to minimize 

the energy expenditure required to maintain body temperature. However, the use of thermal 

shelters does not automatically confer a thermally neutral and therefore energetically neutral 

environment. We observed a large bull bedded in the shade at a time when there was a moderate 

breeze and an ambient temperature of about 24o C; he was breathing at a rate of over 60 

breaths/minute, about 10 times the rate expected at temperatures below the UCT (Renecker and 

Hudson 1986). Nevertheless, given the reduced metabolic rates reported by Renecker and 

Hudson (1990) for moose standing in shallow water compared to a standing in willow (6.5 

kJ/hr/kg0.75), thermal shelters can minimize energetic costs. For a 275 kg (600 pound) moose, 
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this represents a savings of approximately 439 kJ or the equivalent of 105 kilocalories per hour 

spent in a wetland compared to using a regenerating stand. The large thermoregulatory benefits 

of bedding or standing in water are apparent in the very high use and selection for wooded 

wetlands at increasing temperatures that we observed. 

Regardless, whenever temperatures exceed the UCT moose must make a choice whether 

to maximize foraging in open habitats at the expense of greater metabolic energy expenditure or 

to minimize energy expenditure by using thermal shelters at the expense of foraging efficiency or 

even feeding at all. Irrespective of the choice, the result is a decrease in stored energy compared 

to more favorable thermal conditions. In terms of the energy balance of an individual, this energy 

must be compensated for at another point, or the result will be a net negative energy balance. As 

a result, greater time outside an animals’ thermal neutral zone can lead to declines in body 

condition, potentially greater susceptibility to disease, parasites, and predators, lower body 

reserves for winter, and overall declines in survival and reproduction (Murray et al. 2006; Lenarz 

et al. 2009, 2010). 

  
1.6.5 Heat Stress Index 
 

Despite documenting nearly 50% reductions in the daytime use of optimal foraging 

habitat, we were unable to quantify the energetic costs associated with conditions outside the 

thermal neutral zone or determine the cost or benefits of performing the thermoregulatory 

behaviors we observed in our GPS collared moose. Further, we did not determine how these 

environmental conditions affected moose body condition, reproduction, or survival. However, 

high temperatures and periods outside the thermal neutral zone of moose have been determined 

to negatively affect survival in Minnesota (Murray et al. 2006; Lenarz et al. 2009, 2010, however 
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see Mech and Fieberg 2014). We compared temperatures experienced by moose in 

Massachusetts to those in Minnesota to extrapolate potential impacts. 

We compared temperatures relative to seasonal UCTs and a HSI calculated for both 

areas: this analysis revealed that moose in southern New England were subjected to conditions 

outside of their thermal neutral zone more often and for longer periods than in Minnesota 

(Lenarz et al. 2009, McGraw 2012). This, combined with the strong negative correlation between 

the Minnesota HSI and moose survival (Lenarz et al. 2009), would lead one to predict that moose 

survival in Massachusetts would be similarly if not more negatively impacted. This might be 

especially true in light of Lenarz et al.’s (2009) conclusion that temperatures outside the thermal 

neutral zone in January and the overall Cold Season had the greatest effect on survival; the HSIs 

in Massachusetts were 193% greater in January and 78% greater in the Cold Season than 

Minnesota. 

However, we did not see drastic thermoregulatory behaviors at high temperatures in 

winter, indicating heat stress was not a major issue at that time. Additionally, we do not suspect a 

large decline in the population in Massachusetts (Wattles and DeStefano 2011, Massachusetts 

Division of Fisheries & Wildlife unpublished data) as has been documented in Minnesota 

(Murray et al. 2006; Lenarz et al. 2009, 2010). This suggests that many factors other than 

temperature, such as habitat configuration and quality, predators, parasites and diseases, and 

moose density, all additively contribute to moose body condition and survival (Murray et al. 

2006).  

It may be that the actual day-to-day patterns in weather, including the range of daily, 

seasonal, and annual temperatures, may influence the impacts of thermal stress on moose. The 

continental climate of Minnesota leads to larger differences in seasonal temperature than the 
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maritime climate of Massachusetts. Winter temperatures in Minnesota are typically much colder 

(January mean maximum -10.2o C and minimum -23.1o C) than Massachusetts (0.5o C and -10.7o 

C; PRISM Climate Group 2013), whereas summer temperatures are much more similar (July 

24.9o C and 11.6o C and 27.3o C and 14.9o C, for Minnesota and Massachusetts, respectively; 

PRISM Climate Group 2013). The narrower range of temperatures in Massachusetts could 

potentially limit the impacts caused by high temperatures, as the necessity to be able to cope with 

the extreme cold during winter in Minnesota may prevent moose there from adapting 

physiologically to warmer temperatures. Additionally, the typically colder conditions in 

Minnesota mean that when temperatures do exceed the winter UCTs, that those temperatures 

represent a greater deviation from the norm; this in turn could cause greater thermal stress than 

the same conditions in Massachusetts. In general, the more consistent maritime climate of 

Massachusetts may limit the impacts of heat stress despite the overall warmer environment. 

 
1.6.6 Climate Change, Range Shift, and Edge of Range 

 
A species geographic range or distribution is defined by the set of conditions and 

resources that individuals require and can tolerate, all of which combine to affect energy balance 

and fitness (i.e., the ability to survive and reproduce) (Hall et al. 1992, Gaston 2003, Begon et al. 

2006). Outside of the range, one or more conditions, past or present, exist that prevent successful 

occupation of that area. Given the presence of other requirements and absences of conditions and 

factors that prevent occupation by a species, the thermal environment of an area (including mean 

and extreme temperatures) can determine suitability of the area and can be a limiting factor for 

both homeotherms and heterotherms. Gradational changes in climate or the thermal environment 

toward the periphery of a species’ range should result in a ramp or decrease in animal density 

and body condition as environmental conditions move closer to physiological limits and further 
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from a species’ “ideal” (the thermal neutral zone), which is normally closer to the core of the 

range (Caughley et al. 1988, Hall et al. 1992).  

However, species distributions or fundamental niches are defined by a multitude of 

interacting components of the environment, with temperature being but one of them. Our results 

clearly elucidate the complexity in modeling species distributions based on a single factor, such 

as with thermal envelope modeling (Pearson and Dawson 2003, Hampe 2004). Differences in the 

availability, distribution, and quality of suitable food, cover, and water, and the abundance and 

distribution of parasites, disease, and predators can all influence a species’ energy balance and 

ability to cope with a set of thermal conditions. These factors combine to determine the realized 

versus fundamental niche of a species. The apparent unsuitability of the thermal environment of 

Massachusetts would theoretically exclude it from a modeled species distribution; however, 

moose have occupied the state for the past several decades, are reproducing, and are currently 

adapted to the environment.  

There is little evidence that the moose population in Massachusetts is currently in severe 

decline. However, population level monitoring is difficult in our region and limited to indices of 

abundance such as reported moose-vehicle-collisions and moose sightings by deer hunters. As 

such, confidence in the accuracy of population estimates is low. Given those limitations, we do 

believe the initial exponential growth of the population following reoccupation of the region 

appears to have leveled off and the population seems to be stabilizing at the current level 

(Wattles and DeStefano 2011, U. S. Geological Survey and Massachusetts Division of Fisheries 

& Wildlife unpublished data). The influence of thermal stress on moose survival and 

reproduction may be one reason for the apparent lack of further growth in the population.  
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Moose have shown that they are able to cope with the existing thermal environment in 

southern New England by altering their habitat selection and activity patterns. However, regional 

climate models for the northeastern United States predict that seasonal temperatures in 

Massachusetts will increase by 3.1-3.2o, 2.1-2.2o, 2.5-2.7o, and 2.5-2.6o C in winter, spring, 

summer, and fall, respectively, for the period 2041-2070 compared to 1971-2000 (Rawlins et al. 

2012). This will likely result in an increase in the frequency, duration, and magnitude of 

temperature events outside of the thermal neutral zone for moose. Whether moose will continue 

to be successful given this additional demand on their energy balance remains to be seen. We 

may already be observing a northward range shift of moose in the upper mid-western United 

States, and it is not hard to imagine a similar scenario unfolding in Massachusetts and southern 

New England under predicted climate change scenarios.  

1.7 Management Implications 

This study revealed how unfavorable the thermal environment in Massachusetts is for 

moose; however, it also reveals how moose have adapted to the environment by altering their 

activity patterns and through the selective use of cover types. Habitat configurations that allow 

moose to find high quality forage (early successional forest) and thermal cover (closed canopy 

forest and wooded wetlands) in close proximity are likely the main reasons moose have been 

able to survive in a climatic environment that would seem to be highly unsuitable to the species. 

Habitat quality is likely to become even more important for the long-term survival of moose in 

southern New England if predicted climate impacts do occur (Rawlins et al. 2012).  

The continuous creation of early successional habitat through logging and protection of 

wetlands are essential to maintain this favorable habitat configuration. Logging is the only 

significant means of creating young forest in Massachusetts. Given the fine energy balance 
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moose experience in Massachusetts and their clear heavy selection of this cover type, its 

importance as foraging habitat cannot be overstated. These stands allow moose to maximize their 

forage intake over short periods with minimal energy expenditure due to the high stem density 

they provide, and in this way help to minimize exposure to harsh thermal conditions. Use of 

regenerating stands may allow moose to compensate for reduced foraging time caused by 

conditions outside their thermal neutral zone; something that lower quality foraging habitat may 

not provide (Iason et al. 1999). This is extremely important given the large expected costs that 

high temperatures have on the energy balance of moose in Massachusetts. Additionally, the 

typical style of logging in Massachusetts, which results in small cuts of limited intensity, 

produces regeneration in close proximity to forest edges or within partially closed canopy, 

further facilitating thermoregulatory behavior by moose.  

However, declines in body condition caused by the direct impact of high temperatures 

and thermal stress on the energy balance of moose could result in reduced survival and 

productivity. Declines in body condition can lead to immunosuppression and greater 

susceptibility to parasites and diseases, which can further impact the energy reserves of 

individuals (Murray et al. 2006). McCann et al. (2013) also suggested that sick and diseased 

animals experience the effects of thermal stress at lower temperatures than healthy animals, 

suggesting a reinforcing cycle between thermal stress, immunosuppression, and parasites and 

diseases. Furthermore, warmer temperatures may provide conditions that are favorable to the 

survival and spread of some parasites (e.g., winter tick [Dermacentor albipictus], Bergeron et al. 

2014).  

Our results, along with the growing body of literature on moose-temperature relationships 

(Renecker and Hudson 1986, 1989, 1990, 1992; Ackerman 1987; Dussault et al. 2004; Murray et 
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al. 2006; Lenarz et al. 2009; Broders et al. 2012; van Beest et a. 2013; McCann et al. 2013, 

Melin et al. 2014), support the theory that high temperatures resulting in thermal stress are a 

limiting factor for moose and one, if not the main, factor delineating the southern range boundary 

of the species (Kelsal and Telfer 1974, Telfer 1984, Renecker and Hudson 1986, Karns 1997, 

Peek and Morris 1998). 

Recent declines in moose populations across the southern range edge in North America, 

including in Minnesota (Murray et al. 2006; Lenarz et al. 2009, 2010), New Hampshire, Montana 

(DeCesare et al. 2014), and Nova Scotia (Broders 2012), have been linked with warming 

temperature. However, wolves and winter ticks are two factors that increasingly appear to have  

major impacts on these moose populations. Evidence from Minnesota indicates that wolves are 

having a strong influence on moose survival and population structure (Mech and Fieberg 2014, 

Minnesota DNR unpublished data). Mech and Fieberg (2014) reanalyzed the data from Lenarz et 

al. (2009) and reported that increasing wolf numbers, not thermal stress, may be driving the 

decline in Minnesota. In New Hampshire and Maine, studies initiated in 2014 have shown very 

high mortality rates, particularly in calves, that are preliminarily being attributed to winter ticks 

(New Hampshire Department of Fish and Game, unpublished data; Maine Department of Inland 

Fisheries and Wildlife, unpublished data).  

Most likely, the impacts of high temperatures on moose body condition work additively 

with parasites, disease, habitat degradation, predators, winter severity, and other factors in 

affecting the energy balance of individual moose and moose populations in these areas. As these 

declines have occurred in recently healthy populations, it may be that increasingly unfavorable 

thermal conditions along the edge of the range are pushing these environments outside the 

physiological tolerances and suitable range of moose, making moose less able to cope with 
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parasites and other factors that they otherwise could in a more thermally neutral environment. As 

a result, we may be observing a gradual range shift, as moose densities decline and local 

populations disappear entirely along the southern periphery of the species’ range. Where these 

range contractions occur will likely depend on the interaction of thermally stressful conditions 

and the presence or absence of other additive factors. For example, the absence of the main 

predators of moose in Massachusetts, wolves (Canis lupus) and brown bears (Ursus arctos), 

eliminates one factor that affects moose energy balances and populations dynamics elsewhere.  
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Tables 

 
Table 1.1 Seasons used for calculating seasonal thermal stress and thermoregulatory behaviors in moose in Massachusetts. 
 

Season Dates Vegetation/Browse Temperature a Movement Season length (d) 
Spring 16 April - 31 May Growing season; bud-

break-leaf out 
Cold-Hot Not snow restricted, 

potentially temperature 
restricted 

46  

Summer 1 June-30 Aug Growing season; full 
leaf out 

Hot Restricted by temperature 92  

Fall 1 Sept-31 Oct Leaf out to leaf off Hot-Cool Rut and temperature 
influenced 

61  

Early Winter 1 Nov-31 Dec Dormant season; 
woody/evergreen 

Warm-Cold Not snow restricted, 
potentially metabolism 

restricted 

61  

Late Winter 1 Jan-15April Dormant season; 
woody/evergreen 

Cold-Warm Potentially snow and 
metabolism restricted 

107  
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Table 1.2 Mean percentage of days per season that the mean daily minimum, mean, and maximum temperatures in central 
Massachusetts exceeded the established thermal stress thresholds for moose (increased metabolic rates, -5 and 14o C, and open 
mouthed panting, 0 and 20o C, for winter and summer, respectively; Renecker and Hudson 1986). Data from 2002-2008. Season 
lengths are 104, 47, 92, 61, and 61 days for late winter, spring, summer, fall, and early winter, respectively.   

 
  Minimum Temperature   Mean Temperature   Maximum Temperature 

 

5oC 0oC 14oC 20oC 

 

5oC 0oC 14oC 20oC 

 

5oC 0oC 14oC 20oC 

Late Winter 44.2 13.4 0 0 

 

69.8 38.4 <1 0 

 

88.0 66.3 7.2 1.3 

Spring 100 91.1 4.3 0.0 

 

100 100 29.8 4.0 

 

100 100 70.9 36.8 

Summer NA NA 53.4  4.2 

 

NA NA 91.2 43.3 

 

NA NA 98.7 88.5 

Fall  100 89.5 10.0 0 

 

100 100 42.6 5.6 

 

100 100 73.6 41.6 

Early Winter 61.1 25.7 0 0   83.1 54.1 1.0 0   95.6 79.2 9.8 1.0 
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Table 1.3 Comparison of a heat stress index (HSI) for central Massachusetts and northeastern Minnesota. HSI calculated after Lenarz 
et al. 2009. Data for Minnesota reproduced from Lenarz et al. 2009. 
 
Physiologic 

Threshold 

Season Location Daily 

Ambient 

Temp 

Mean 

Annual 

HSI 

Mean 

HSI/day 

Min Max 

14 C Late Spring (Apr-May) Massachusetts Max 239.8 3.9 167.8 290.3 

  

  Min 1.9 

 

0 6 

  

Minnesota Max 189 3.1 45 360 

 

    Min 1 

 

0 3 

 

Warm Season (Apr-Oct) Massachusetts Max 1,590.4 7.4 1,472.8 1,704.2 

  

  Min 168.6 0.8 127.8 232.8 

  

Minnesota Max 1,329 6.2 873 1572 

      Min 64 0.3 19 123 

20 C Late Spring (Apr-May) Massachusetts Max 72.7 1.2 30.9 108.1 

  

  Min 0 

 

0 0 

  

Minnesota Max 57 0.9 4 141 

 

    Min 0 

 

0 0 
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Warm Season (Apr-Oct) Massachusetts Max 679.9 3.2 605.4 787.1 

  

  Min 2.7 

 

0.8 5 

  

Minnesota Max 552 2.6 253 793 

      Min 2 

 

0 9 

-5 C Jan Massachusetts Max 170 5.5 57.3 278.7 

  

  Min 37.6 1.2 6.5 64.8 

  

Minnesota Max 58 1.9 11 152 

 

    Min 6 0.2 0 13 

 

Cold Season (Nov-Mar) Massachusetts Max 1350 8.9 1095.6 1680 

  

  Min 334.3 2.2 225.3 460.2 

  

Minnesota Max 779 5.2 618 1010 

      Min 118 0.8 86 160 
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Table 1.i a: Mean seasonal difference (SE) in maximum daily temperature between forest stand 
types and b: rate of increase in difference in maximum daily temperature between forest stand 
types (SE) per one degree increase in maximum daily ambient temperature. 
 
  Regeneration-Hemlock   Regeneration-Deciduous   Deciduous-Hemlock 

Season Mean (SE) P-value 

 

Mean (SE) P-value 

 

Mean (SE) P-value 

a. 

        Spring 5.57 (0.48) <0.001 

 

5.05 (0.51) <0.001 

 

2.52 (0.44) <0.001 

Summer 5.81 (0.24) <0.001 

 

4.74 (0.25) <0.001 

 

1.08 (0.19) <0.001 

Fall 3.60 (0.36) <0.001 

 

2.65 (0.36) <0.001 

 

0.95 (0.32) 0.003 

Winter 3.19 (0.26) <0.001 

 

1.43 (0.28) <0.001 

 

1.77 (0.26) <0.001 

b. 

        Spring 0.28 (0.02) <0.001 

 

0.22 (0.02) <0.001 

 

0.08 (0.01) <0.001 

Summer 0.42 (0.03) <0.001 

 

0.36 (0.03) <0.001 

 

0.06 (0.01) <0.001 

Fall 0.17 (0.01) <0.001 

 

0.16 (0.01) <0.001 

 

-0.01 (0.01)  0.471 

Winter 0.06 (0.01) <0.001   0.02 (0.01)  0.028   0.04 (0.01) <0.001 
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Table 1.5 Percent of moose GPS locations recorded when temperatures exceeded seasonal upper 
critical temperatures (increased metabolic rates, -5 and 14o C, and open mouthed panting, and 0 
and 20o C, for winter and summer, respectively; Renecker and Hudson 1986). 
 
  Spring   Summer   Fall 

 

Day Night Season 

 

Day Night Season 

 

Day Night Season 

Below 14◦C UCT 50.4 80.8 63.6 

 

8.2 24.6 14.9 

 

44.4 73.9 59.8 

Above 14◦C UCT 49.6 19.2 36.4 

 

91.8 75.4 85.1 

 

55.6 26.1 40.2 

Above 20◦C UCT 19.8 2.0 12.1 

 

56.6 16.6 40.3 

 

18.3 3.6 10.6 

            

 

Early winter 

 

Late Winter 

    

 

Day Night Season 

 

Day Night Season 

    Below -5◦C UCT 15.1 24.0 20.7 

 

24.3 42.7 34.6 

    Above -5◦C UCT 84.9 76.0 79.3 

 

75.7 57.3 65.4 

    Above 0◦C UCT 57.7 41.5 31.7   48.1 28.5 37.2         
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Table 1.6 Comparison of the magnitude of change in proportional use of thermal shelters and open habitats across temperature classes 
during summer from recently published articles on moose habitat use-temperature interactions. Proportional use values were estimated 
from Fig. 3 of van Beest et al. 2012 and Fig. 1 of Dussault et al. 2004. Temperature classes for Dussault et al. 2004 represent the 
coldest 20th percentile, the middle 20th percentile, and warmest 20th percentile of ambient temperatures. 

 
Authors Location Vegetation Cover Temperature Classification Change 

       and Proportion of Use in use 

van Beest et al. 2012 Norway  <14o C > 14oC and < 20oC > 20oC  

 Telemark Mature Conifer 0.42 0.52 0.57 + 0.15 

  Young Spruce 0.39 0.29 0.25 - 0.14 

 Hedmark Mature Conifer 0.57 0.61 0.6 + 0.03 

    Young Spruce 0.05 0.05 0.04 - 0.01 

Broders et al. 2012 Nova Scotia  10oC - 16oC   20oC - 26oC  

  Softwood 0.4  0.48 + 0.08 

  Mixwood 0.3  0.26 - 0.04 

  Open 0.2  0.15 - 0.05 

    Water 0.06   0.07 + 0.01 

Dussault et al. 2004 Quebec  < 20th 

percentile 

40-60th percentile 80-100th 

percentile 
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    Mature Conifer 0.23 0.3 0.35 + 0.12 

Wattles and DeStefano Massachusetts  <14o C > 14oC and < 20oC > 20oC  

  Conifer and 

Wooded 

Wetlands 

0.19 0.28 0.43 + 0.24 

    Regeneration 0.64 0.49 0.36 - 0.28 
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Figures 

Figure 1.1 Study area location in west-central Massachusetts and bordering areas of adjacent 
Vermont and New Hampshire; state borders marked with heavy solid lines, central and western 
portions of the study areas depicted with dashed lines, and major roadways shown with fine solid 
lines. Higher elevation depicted with darker colors. Location of study area in northeastern United 
States in inset map. 
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Figure 1.2 Mean daily minimum and maximum temperatures (2002-2008) in central 
Massachusetts relative to upper critical temperatures for moose (increased metabolic rates, -5 
and 14o C, and open mouthed panting, and 0 and 20o C, for winter and summer, respectively; 
Renecker and Hudson 1986). Upper critical temperatures (UCT) for spring and fall are 
represented with dashed line due to the uncertainty of the appropriate UCT during these seasons. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

52 

Figure 1.3 Mean daily maximum temperatures recorded by ibuttons temperature sensors in 
regenerating (circles and top line), mature deciduous (+ and middle line), and mature hemlock 
(triangles and bottom line) stands relative to daily maximum ambient temperature for spring, 
summer, fall, and winter. 
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Figure 1.4 The proportional use of cover types with 95% confidence intervals versus temperature 
class and time of day in central Massachusetts during spring, summer, and fall. ‘A’ denotes use 
significantly different than hot, ‘B’ use significantly different than warm, and ‘C’ daytime use 
significantly different than night. Definition of cover types; Regenerating forests (Regen), 
Deciduous forest (Decid), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mixed), Forested wetlands (WWet), and Open wetlands (OWet). 
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Figure 1.5 The proportional use of cover types with 95% confidence intervals versus temperature 
class and time of day in western Massachusetts during spring, summer, and fall. ‘A’ denotes use 
significantly different than hot, ‘B’ use significantly different than warm, and ‘C’ daytime use 
significantly different than night. Definition of cover types; Regenerating forests (Regen), 
Deciduous forest (Decid), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mixed), Forested wetlands (WWet), and Open wetlands (OWet). 
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Figure 1.6 The proportional use of cover types with 95% confidence intervals versus temperature 
class and time of day in central Massachusetts during early and late winter. ‘A’ denotes use 
significantly different than hot, ‘B’ use significantly different than warm, , ‘C’ use significantly 
different than very hot, and ‘D’ daytime use significantly different than night. Definition of cover 
types; Regenerating forests (Regen), Deciduous forest (Decid), Coniferous forest (Con), Mixed 
coniferous and deciduous forest (Mixed), Forested wetlands (WWet), and Open wetlands 
(OWet). 
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Figure 1.7 The proportional use of cover types with 95% confidence intervals versus temperature 
class and time of day in western Massachusetts during early and late winter. ‘A’ denotes use 
significantly different than hot, ‘B’ use significantly different than warm, ‘C’ use significantly 
different than very hot, and ‘D’ daytime use significantly different than night. Definition of cover 
types; Regenerating forests (Regen), Deciduous forest (Decid), Coniferous forest (Con), Mixed 
coniferous and deciduous forest (Mixed), Forested wetlands (WWet), and Open wetlands 
(OWet). 
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Figure 1.8 Seasonal hourly proportional use of vegetation cover types with 95% confidence 
intervals in central Massachusetts, scale for regeneration is 0-0.8, for all other cover types it is 0-
0.4. 
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Figure 1.9 Seasonal hourly proportional use of vegetation cover types with 95% confidence 
intervals in western Massachusetts. Note scale for regeneration is 0-0.8 and 0-0.4 for all other 
cover types; except for deciduous in spring, which is also 0-0.8. 
Spring 
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Figure 1.10 Seasonal hourly mean movements (m) with 95 % confidence intervals in central 
(top) and western (bottom) Massachusetts. 
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Figure 1.11 The relative probability of selection of cover types versus ambient temperature for 
day and night, and mean selection ratios of cover types with 95% confidence intervals for day 
and night in central Massachusetts during spring, summer, and fall. For relative probability of 
selection the magnitude of the y-scale is meaningless, but allows for the comparison of selection 
between cover types within any one season and photo-period. Note ambient temperature scale 
differs among seasons and photo-period. For day-night selection ratios ‘A’ signifies significant 
difference in selection between day and night. Definition of cover types; Regenerating forests 
(Reg), Deciduous forest (Dec), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mix), Forested wetlands (WWet), and Open wetlands (OWet). 
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Figure 1.12 The relative probability of selection of cover types versus ambient temperature for 
day and night, and mean selection ratios of cover types with 95% confidence intervals for day 
and night in western Massachusetts during spring, summer, and fall. For relative probability of 
selection the magnitude of the y-scale is meaningless, but allows the for comparison of selection 
between cover types within any one season and photo-period. Note ambient temperature scale 
differs among seasons and photo-period. For day-night selection ratios ‘A’ signifies significant 
difference in selection between day and night. Definition of cover types; Regenerating forests 
(Reg), Deciduous forest (Dec), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mix), Forested wetlands (WWet), and Open wetlands (OWet).  
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Figure 1.13 The relative probability of selection of cover types versus ambient temperature for 
day and night, and mean selection ratios of cover types with 95% confidence intervals for day 
and night in central Massachusetts during early and late winter. For relative probability of 
selection the magnitude of the y-scale is meaningless, but allows for the comparison of selection 
between cover types within any one season and photo-period. Note ambient temperature scale 
differs among seasons and photo-period. For day-night selection ratios ‘A’ signifies significant 
difference in selection between day and night. Definition of cover types; Regenerating forests 
(Reg), Deciduous forest (Dec), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mix), Forested wetlands (WWet), and Open wetlands (OWet). 
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Figure 1.14 The relative probability of selection of cover types versus ambient temperature for 
day and night, and mean selection ratios of cover types with 95% confidence intervals for day 
and night in central Massachusetts during early and late winter. For relative probability of 
selection the magnitude of the y-scale is meaningless, but allows for the comparison of selection 
between cover types within any one season and photo-period. Note ambient temperature scale 
differs among seasons and photo-period. For day-night selection ratios ‘A’ signifies significant 
difference in selection between day and night. Definition of cover types; Regenerating forests 
(Reg), Deciduous forest (Dec), Coniferous forest (Con), Mixed coniferous and deciduous forest 
(Mix), Forested wetlands (WWet), and Open wetlands (OWet). 
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CHAPTER 2 

MOOSE-VEHICLE COLLISIONS IN MASSACHUSETTS: DISPROPORTIONATE 

RISK IN A HUMAN-DOMINATED LANDSCAPE 

2.1 Abstract 

Massachusetts is one of the most densely populated states in the United States and has an 

extremely dense road network that receives very high traffic volumes. Roads and road networks 

have many negative impacts on wildlife population, one of the main effects being direct 

mortality associated with vehicle collisions. Moose-vehicle collisions (MVCs) occur throughout 

the geographic range of moose where roads bisect moose habitat. I analyzed the database of 

moose-vehicle collisions reported to the Massachusetts Division of Fisheries and Wildlife to 

assess the risk of MVCs in this human-dominated landscape and to determine if there were any 

landscape features or features of the road network that increase the probability of MVCs.  

Moose-vehicle collisions were a considerable source of additive mortality for the state moose 

population, with an estimated 3-5% of the population involved in a MVC each year. This was 

one of the highest rates of moose-vehicle collisions relative to the size of the moose population 

reported in the literature. The human fatality rate resulting from the MVCs is the highest reported 

anywhere, with 1 out of every 140 MVCs resulting in a human fatality. The majority (86%) of 

MVCs occurred on interstate and state highways, which were roads with high speed limits and 

high traffic volumes. Moose-vehicle collisions occurred on these roads at much higher rates than 

would be predicted based on their availability on the landscape and were much more likely to 

occur where major roads bisected relatively ecologically intact portions of the landscape.  
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2.2 Introduction 

 The natural reoccupation of the northeastern United States by moose (Alces alces) is an 

excellent example of how successful population and habitat management helped to restore a 

species that was essentially eliminated from a large portion of its historic range (Alexander 1993, 

Bontaites and Gustafson 1993, Wattles and DeStefano 2011). However, this conservation 

success story has resulted in a potentially dangerous situation with a large and wide-ranging 

animal now living in a landscape that became human dominated in its absence (Wattles and 

DeStefano 2013b).  

 Moose-vehicle collisions (MVCs) are common wherever moose and vehicle traffic co-

exist (Table 2.1). States, provinces, and countries with large, high-density moose populations 

almost invariably have high frequencies of moose-vehicle collisions, including the northeastern 

United States (Danks and Porter 2010, Wattles and DeStefano 2011). In the northeastern United 

States >1,000 MVCs and between 2 and 8 human fatalities resulting from those collisions 

occurred annually from 1998 to 2007 (Wattles and DeStefano 2011).  

 While the moose population in Massachusetts is relatively low, the human population and 

levels of human development are extremely high. As a result, as the moose population grew 

rapidly in the 1990s, the number of MVCs correspondingly increased (Fig. 2.1, Wattles and 

DeStefano 2011). As moose move about their large home ranges (mean home ranges 62, 89, and 

176 km2 for mature females, males, and immature males, respectively) (Wattles and DeStefano 

2013b), they invariably encounter, interact with, and cross roads of various types, traffic 

volumes, and speed limits. With each crossing, moose and unsuspecting drivers are at risk of a 

potentially fatal collision.  



 

70 

 Due to their large body size, long legs, and high center of gravity, vehicle collisions with 

moose often result in the vehicle taking the legs out from under the moose and the body of the 

moose colliding with the windshield and passenger compartment. These devastating collisions 

often lead to the death of the moose, extreme damage to the vehicle, and driver and passenger 

injury or even death. High speeds and traffic volumes increase the risk and severity of these 

collisions (Lavsund and Sandegren 1991, Belant 1995, Joyce and Mahoney 2001, Seiler 2005, 

Danks and Porter 2010, Rolandsen et al. 2011, Neumann et al. 2012).  

 Moose-vehicle collisions and vehicle collisions with other large wildlife have been 

studied extensively and many factors have been shown to contribute to the likelihood of 

collisions, including roadway configuration, traffic volumes, speed limits, time of day, season, 

habitat associations, and topography (Joyce and Mahoney 2001, Dussault et al. 2006, Danks and 

Porter 2010). Our objectives were to examine the record of 424 MVCs reported to the 

Massachusetts Division of Fisheries & Wildlife (MassWildlife) from 1980 to 2012, determine 

the factors that contribute to those collisions, and see how these patterns in a highly developed 

landscape compared to other portions of moose range.  

 

2.3 Study Area 

Our study area was located in western two-thirds of Massachusetts, USA (Fig. 2.1). The 

area was bounded on the east by Interstate (I-) 495 from the New Hampshire border to its 

intersection with I-290, then by I-290 between I-495 and I-90, by I-90 between I-290 and I-84, 

and by I- 84 south of I-90 to the Connecticut border. This area encompassed all reported MVCs 

of known location in Massachusetts, with the exception of 8 that occurred on Interstate highways 

in the greater Boston metropolitan area. 
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The study area is composed of six ecoregions that differ in the frequency of MVCs as 

well as several factors that likely influence the distribution of MVCs, including the amount and 

quality of forest habitat (Hall et al. 2002), moose density (Massachusetts Division of Fisheries 

and Wildlife, unpublished data), topography, and levels of human development, road density, 

and traffic volumes (Hall et al. 2002). The 6 ecoregions are the Southern New England Coastal 

Plain (CP), the Worcester Plateau (WP), the Connecticut River Valley (CTRV), the Berkshire 

Plateau (BP), the Western New England Marble Valleys, and the Taconic Mountains. Due to the 

limited number of MVCs in the Taconic Mountains (n = 4) and the Western New England 

Marble Valleys (n = 7), we combined those two ecoregions with the BP and the CTRV, 

respectively (ecoregions of similar characteristics), and hereafter refer to the combined regions 

as the Berkshire Plateau and the Connecticut River Valley. 

Massachusetts has by one of the lowest densities of moose reported in the literature, 

about 0.14 moose/km2 (MassWildlife, unpublished data; Van Ballenberghe and Ballard 2007), 

and one of the highest densities of humans, human development, and road densities in the United 

States (5th most densely populated state with 324 people/km2 statewide) (DeStefano et al. 2005, 

U. S. Census Bureau 2010, Fig. 2.3 and 2.4). However, neither humans nor moose occur evenly 

on the landscape. The majority of moose in that state occur in the Worcester Plateau and 

Berkshire Plateau ecoregions (Massachusetts Division of Fisheries and Wildlife, unpublished 

data). These two ecoregions have greater amounts of forested habitat (Hall et al. 2002), higher 

elevation and more varied topography (Fig. 2.2), and lower human populations (Fig. 2.3), and 

correspondingly lower levels of human development, road density, and traffic volume (Figs. 2.4, 

Table 2.2), than the Connecticut River Valley and Coastal Plain.  
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2.4 Methods 

2.4.1 Moose-Vehicle Collisions and Large Animal Response Team Data 

We obtained records of MVCs reported to the Massachusetts Division of Fisheries and 

Wildlife and the Massachusetts Environmental Police from 1980 to 2012. The records contained 

information on the date, town, roadway, sex and age of the animal, and other data pertaining to 

the MVCs. The spatial accuracy and other details of the reports were variable. We screened the 

reports to remove duplicate and questionable reports and separated the reports into “known” and 

“unknown” location reports. Known locations reports were those that at a minimum had 

information on the town and roadway where the MVCs occurred. Unknown reports typically 

only had information on the town where the MVC occurred and were not used in the analysis. 

Using the known records, we created a GIS layer that mapped the location of the MVCs. Many 

of the known locations had further detail on the specific MVC location (e.g., at an intersection, 

near an exit ramp or mile marker, or near a business or other identifiable feature) that allowed for 

reasonably accurate mapping of the location. Other known location reports only contained 

information on the town and roadway. For these reports, we randomly located the MVC along 

the length of the roadway in that town. To represent the available roads in the study area we 

generated 2,000 random locations along the road network. We measured all the variables for the 

random locations in the same manner as we did for the MVC locations. We performed all GIS 

work in ArcGIS 10.1 (Environmental Systems Research Institute, Inc. 2011). 

We also obtained records of Large Animal Response Team (LART) events related to 

moose in Massachusetts. The LART is composed of Massachusetts Division of Fisheries and 

Wildlife and Massachusetts Environmental Police personnel that respond when moose wander 

into highly developed areas and pose a risk to public health and safety or the safety of the 
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animal. LART responses to these situations range from doing nothing to hazing the animal out of 

the area, tranquilizing and relocating the animal, or euthanizing the animal. We compiled and 

mapped all LART responses that resulted in the moose being relocated or euthanized.  

2.4.2 Moose-Vehicle Collision Modeling 

2.4.2.1 Model Structure 
 

We used Program R version 3.0.1 for all statistical analyses (R Development Core Team 

2005). We modeled the patterns in MVCs using the R package lme4 (Bates et al. 2012). We used 

logistic regression in a use:availability framework (Manly et al. 2002) and assumed the 

exponential form after Johnson et al. (2006). The relative probability of selection, or in this case 

occurrence of MVC ŵ(x), is a function of the coefficients (βi) of the model variables xi, and was 

estimated using logistic regression (Manly et al. 2002) with the equation:  

ŵ(x) = exp[β1xi + β2 xi + β3 xi] 

Based on the obvious differences in moose density, topography, habitat integrity, and 

level of human development among ecoregions we modeled the patterns of MVCs separately for 

the four ecoregions: the Worcester Plateau, the Connecticut River Valleys, the Berkshire Hills, 

and the Coastal Plain. 

2.4.2.2 Roadway and Landscape Covariates 

To determine what factors influenced the likelihood of moose vehicle collisions we 

measured variables of the roadway and landscape around the MVC and random locations, 

including the road class, speed limit, traffic volume, topography, and several measures of habitat 

integrity (see Table 2.3 for variable description). Due to the limited number of MVCs on class 4 

and 5 roads we combined class 3, 4, and 5 roads into a single category, hereafter referred to as 
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class 3 roads. We were unsure of the most appropriate scale to measure the habitat integrity 

variables; therefore, we measured the variables connectivity, natural, and road density at scales 

of 2.5, 5, 7.5, and 10 km out from the MVC and random locations and tested for the most 

appropriate scale. In each ecoregion, we selected the most appropriate variable and scale of the 

variable by comparing 12 identical saturated models, each containing one of the three habitat 

integrity variables at one of the four scales. We used Akaike information criteria difference for 

small sample sizes (AICc ) and Akaike weights (w) (Burnham and Anderson 2004), to identify 

the best variable-scale combination, then used that variable-scale combination for the remainder 

of the model selection procedure for that ecoregion.  

2.4.2.3 Model Selection and Validation 

We screened combinations of variables for high levels of correlation and limited 

candidate models to those where all variables had a variance inflation factor (VIF) < 3 (Zuur et 

al. 2010). This screening prevented using a combination of speed limit and average daily traffic 

for models for the Coastal Plain; we therefore restricted model selection to models using road 

class in that ecoregion. We used the variables relief and slope to describe topography around the 

MVC; however, the two variables were highly correlated. Based on AICc and w, slope was a 

better predictor of MVC location than relief, and so we used slope as the topography variable in 

model selection. 

We started the model selection procedure with two saturated models, each containing 

either class or both speed and average daily traffic (ADT) as roadway variables, plus slope and 

the selected habitat integrity variable (e.g., natural at a scale of 10 km) as landscape variables, 

and several interactions (e.g., class*natural10 or speed*ADT, speed*natural10, and 

ADT*natural10). We then used a drop one procedure (Zuur et al. 2010) and AICc , w, and 
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likelihood ratio tests to select the most parsimonious best fitting models (Burnham and Anderson 

2004). If no single candidate model was clearly selected, based on AICc  and w, we used model 

averaging to estimate model coefficients and standard errors using full model averaging 

(Burnham and Anderson 2004, Symonds and Moussalli 2011). Model averaging was only 

required for models of the Coastal Plain. 

Akaike information criteria can be used to select the best fitting and most parsimonious 

of the candidate models; however, it cannot be used to determine how well the models fit the 

data. We used k-fold cross-validation (Boyce et al. 2002) to evaluate model fit. This method uses 

subsets of the data, withholding 20% of the data to test models generated with the remaining 

80%, and then generates Spearman’s rank correlation coefficients (rs) with high rs indicative of 

good model fit. 

2.5 Results 

2.5.1 Annual and Monthly Patterns of MVCs 

From 1980 to 2012, 424 moose-vehicle collisions were reported to the Massachusetts 

Division of Fisheries & Wildlife (Fig. 2.1). Between 30 and 50 MVCs have been reported 

annually since 2003, with the exception of years when the state’s Deer and Moose Project Leader 

position, the person responsible for recording reports of MVCs, was vacant or recently filled 

(2007-2009 and 2011). There have been 3 MVCs that resulted in a human fatality, one each in 

2003, 2007, and 2012; a rate of 1 human fatality for every 140 MVCs or 0.7% of reported 

MVCs. During this time, 78.9 % of known location and 77.2% of unknown location MVCs 

resulted in the animal dying or being euthanized due to its injuries. The status of the moose from 

the remaining collisions was reported as unknown, left the scene, or injured. Moose-vehicle 
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collisions were most frequent in May (n = 75), with the frequency in June (n = 48) and July (n = 

47) remaining high, and a secondary peak observed in September and October (n = 48 and 57, 

respectively) (Fig. 2.5).  

2.5.2 Location of MVC and LART Responses 

Moose-vehicle collisions were most likely to occur in the Worcester Plateau, with 56% of 

known and 51% of unknown location MVCs, respectively (Table 2.4). The Berkshire Plateau, 

Connecticut River Valley, and Coastal Plain had 19, 11, and 14% of known location MVCs and 

21, 16, and 12% of unknown location MVCs, respectively. Large Animal Response Team events 

were far more common in the more heavily developed CP (20 relocations [R] and 19 

euthanizations [E]) and CRTV (33 R and 3 E) than in the WP (8 R and 4 E) or the BP (5 R and 0 

E). An additional 6 relocations and 10 euthanizations occurred in the Coastal Plain outside our 

study area in the greater Boston metropolitan area. Large Animal Response Team responses most 

commonly occurred in urban centers and to a much lesser extent on major roadways (Fig. 2.6).  

 In the Worcester and Berkshire Plateaus, MVCs were most common on state highways 

(class 2 roads), accounting for 61.8 and 62.5% of MVCs, respectively (Table 2.4), followed by 

interstate highways (class 1 roads) with 29.0 and 20.3% of MVCs, respectively. In the 

Connecticut River Valley and Coastal Plain class 1 roads were the most likely location for 

MVCs (45.9 and 48.9%, respectively), followed by class 2 roads (35.1 and 28.9%, respectively). 

Of the 3 human fatalities resulting from MVCs, 2 occurred on class 1 roads and the third on a 

class 2 road; all three occurred in the WP. Throughout the study area, MVCs occurred on class 1 

and 2 roads at a rate that was highly disproportionate to the availability of those roads types on 

the landscape (Table 2.5). The likelihood of MVCs occurring on major local arteries was much 

lower (3.2-11.1% of MVCs) and occurred in proportion to the availability of these roads, with 
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the exception of in the WP. Moose-vehicle collisions were far less likely on the original class 4 

and 5 roads and occurred at a rate far below the availability of these roads on the landscape. 

2.5.3 Model Selection and Fit 

2.5.3.1 Worcester Plateau 
 

Road class was a much better predictor of MVC location than average daily traffic, speed 

limit, or both in the Worcester Plateau (AICc  = 42.6 between the final model and the best 

model with speed limit and ADT; Table 2.6 and 2.7). The proportion of natural habitat at a scale 

of 5 km around collision and random locations was the best habitat integrity variable in the WP; 

the probability of MVCs increased with increasing proportion of natural habitat. There was an 

interaction between road class and natural in the WP, and the influence of natural on the 

probability of MVCs occurrence was greatest on class 2 roads. The relative probability of 

occurrence of MVCs increased rapidly on class 2 roads with increasing proportion of natural 

habitat, especially across the range of natural from 0.7 to 0.9 (Fig. 2.7). The relative probability 

of MVCs occurring on class 1 roads was high across the range of natural occurring in the WP, 

and increased at a low rate with increasing proportion of natural habitat. The relative probability 

of MVCs on class 3 roads was low across the range of natural, but increased slightly above a 

proportion of natural of 0.9. The relatively probability of MVCs on class 1 roads was many times 

greater than class 2 or 3 roads at low levels of natural and remained many times greater than 

class 3 roads across the range of natural. However, the difference in probability of MVCs on 

class 1 and 2 roads decreased rapidly at levels of natural above 0.7, and eventually the 

probability was greater on class 2 roads at the highest levels of natural. The relative probability 

of a MVC decreased by a factor of 0.84 for each 1-degree increase in slope. 
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2.5.3.2 Connecticut River Valley 

Models for the Connecticut River Valley that contained speed limit and average daily 

traffic were better predictors of MVC location than those with road class (AICc  = 3.8 between 

the final model and the best model with class) (Table 2.6 and 2.7). Connectivity at a scale of 7.5 

km was the best habitat integrity variable in predicting MVCs. There was a strong positive 

relationship between the relative probability of a MVC and both speed limit and ADT. The 

relative probability of a MVC increased by a factor of 1.55 for every 10 kph increase in speed 

limit and increased rapidly with increasing ADT, beginning at an ADT of about 10,000 vehicles 

per day. An interaction between ADT and connectivity resulted in a higher rate of increase in the 

probability of MVCs with increasing ADT at higher levels of landscape connectivity (Fig 2.8). 

The relative probability of a MVC decreased by a factor of 0.84 for each 1-degree increase in 

slope. 

 
2.5.3.3 Berkshire Plateau 

Models for the Connecticut River Valley that contained speed limit and average daily 

traffic were better predictors of MVC location than those with road class (AICc  = 6.6 between 

the final model and the best model with class) (Table 2.6 and 2.7). The proportion of natural 

habitat at a scale of 10 km was the best habitat integrity variable in the BP. The final model for 

the BP included interactions between both speed limit and ADT, and ADT and natural. The 

multiple interactions make determining the influence of any individual variable or interaction 

difficult. However, it is clear that the relative probability of a MVC increased with increasing 

speed limit and that the probability increased rapidly with increasing ADT from <1,000 to 5,000 

vehicles per day (Fig 2.9). It also appears that for any speed limit-ADT combination, the relative 

probability increases with increasing proportion of natural habitat. Discerning this pattern in 
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made more difficult by the influence of slope, which decreased the probability of a MVC by a 

factor of 0.92 for every 1-degree increase.  

2.5.3.4 Coastal Plain 

Models for the Coastal Plain that contained speed limit and average daily traffic were 

better predictors of MVC location than those with road class (AICc  = 1.9 between the final 

model and best model with class) (Table 2.6 and 2.7). However, a high correlation between 

speed limit and ADT (VIF > 3.0) prevented those variables being included in the same model; 

therefore, road class was used in models for the CP. Class was the dominant variable in 

predicting MVCs in the CP. The relative probability of a MVC occurring on a class 1 or 2 road 

was 74.8 and 12.4 times greater than on a class 3 road. Connectivity at a scale of 10 km out from 

MVC and random locations was the best habitat integrity variable in predicting MVCs and 

increased the probability of a MVC by a factor of 1.69 for a 0.1 increase in connectivity. Slope 

had a minimal effect on MVC location; a 1-degree increase in slope decreased the relative 

probability of a MVC by a factor of 0.98 in the CP.   

 
2.5.3.5 Model Validation 

Model fit was reasonable for all models; rs of 0.77 (0.51 – 0.97), 0.79 (0.51 – 0.97), 0.83 

(0.76-0.87), and 0.60 (0.31-0.94) for the Worcester Plateau, Connecticut River Valley, Berkshire 

Hills, and Coastal Plain, respectively.  
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2.6 Discussion 

2.6.1 Relative Risk 

The absolute number of reported MVCs in Massachusetts is relatively low, as would be 

expected with a low-density moose population. However, the risk of a moose being involved in a 

MVC relative to the size of the population (3-5% of the estimated population) is as high as or 

higher than elsewhere in moose range (Table 2.1). Massachusetts also has the highest rate of 

human fatality resulting from MVCs (0.7%) reported anywhere (Table 2.1). The large proportion 

of moose in the population involved in MVCs and the heightened risk of human deaths can be 

attributed to the human-dominated landscape of Massachusetts, particularly the high density of 

very high traffic volume and high-speed roads that bisect the landscape. High speed limit 

(Lavsund and Sandegren 1991, Joyce and Mahoney 2001, Seiler 2005, Danks and Porter 2010, 

Neumann et al. 2012) and high traffic volume (Belant 1995, Joyce and Mahoney 2001, Seiler 

2005, Danks and Porter 2010, Rolandsen et al. 2011) are widely reported to increase the 

likelihood and severity of MVCs. 

2.6.2 MVC Location and Modeling 

Moose-vehicle collisions were most common in the two blocks of more contiguous 

moose habitat in Massachusetts where moose density was greatest, the Worcester Plateau and the 

Berkshire Plateau, with the WP containing over half of reported MVCs in the state. The far 

greater frequency of MVCs in the WP than the BP reflected the gradient of increasing human 

development, road density, and traffic volume west-to-east, as one gets closer to the greater 

Worcester and Boston metropolitan areas. Within the WP, moose-vehicle collisions were more 

frequent in the eastern portion of the ecoregion in the towns with higher human population 
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density and traffic volume. The frequency of moose-vehicle collisions in the CTRV and CP, 

despite the scarcity of resident moose in those ecoregions, suggests how inhospitable those 

environments are to moose because of the high levels of human development. Moose-vehicle 

collisions in these ecoregions would be even more frequent if not for the number of moose 

removed from problem animal situations by the LART. 

In all ecoregions, the vast majority of MVCs occurred on the high speed limit and high 

traffic volume class 1 and 2 roads. Occurrence ratios for class 1 roads (proportion of total 

MVCs:proportion of road density) were very high relative to all other road types, even class 2 

roads. Traffic volumes on class 1 roads in Massachusetts were extremely high, with mean 

average daily traffic of 23,000-79,000 vehicles per day depending on the ecoregion (Table 2.2). 

Additionally, traffic on class 1 roads traveled at very high speeds. Posted speed limits were 89 to 

105 km*h-1 (kph) but traffic typically moved at speeds of 105 to 130 kph. The combination of the 

high vehicle volume and extreme speed means that moose have very little chance of successfully 

crossing these roads when they encounter them. As a result, in the WP and BP, MVCs are 

common where these roads bisect the ecoregions, despite class 1 roads being very limited. The 

greater frequency and odds that MVCs occurred on class 1 roads in the CTRV and CP was likely 

due to the even greater traffic volumes in those ecoregions -- 2-4 times the ADT on class 1 roads 

than in the WP and BP (Table 2.2). The odds of MVCs on class 2 roads were still very high 

compared to lower classes of roads, and MVCs were actually more frequent on class 2 than class 

1 roads in the WP and BP due to their greater density in those ecoregions. The traffic volumes on 

class 2 roads in Massachusetts were still very high and were comparable to the upper end of the 

range of ADT reported in other regions and that represented the greatest risk of MVCs (Seiler 

2005, Danks and Porter 2010).  
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Not surprisingly, either road class or the combination of traffic volume and speed limit 

were the driving variables in models predicting MVCs in all ecoregions. The risk of MVC 

occurrence increased rapidly with increasing speed limit and average daily traffic (or on class 1 

and 2 roads). Similarly, human fatalities resulting from MVC occurred on high-speed roads.  

 Danks and Porter (2010) reported that the odds of a MVC in Maine increased 35% for 

every 8 kph increase in speed limit, and the probability of MVC increased sharply at speeds 

above 70 kph. Seiler (2005) reported that 57% of MVCs in Sweden occurred on roads with speed 

limits of 90 kph and that 65 and 83% of human fatalities in Sweden occurred on those roads in 

his model and test areas, respectively. Joyce and Mahoney (2001) reported that the risk of severe 

injury was 2 times greater at highway (80 to 100 kph) compared to non-highway speeds in 

Newfoundland. Lavsund and Sandegren (1991) reported 3 times the likelihood of severe injuries 

in collisions at 70 to 90 kph compared to lower speeds in Sweden. Seventy three percent of 

known location MVCs in Massachusetts occurred on high-speed roads (n = 43, 136, and 63 for 

posted or estimated speed limits of 72, 80-89, and 105 kph, respectively). The posted speed 

limits for the roads where the 3 human fatalities occurred in Massachusetts were 89, 89, and 105 

kph.  

 Similarly, Joyce and Mahoney (2001) showed nearly a doubling of the risk of MVCs at 

high compared to low traffic volumes regardless of moose density. Danks and Porter (2010) 

determined that the odds of MVC increased 57% for each 500 vehicle/day increase in traffic 

volume. Dussault et al. (2006) reported a 42% increase in MVCs on Fridays when traffic was 

highest. Neumann et al. (2012) reported that 64% of all MVCs occurred on major roads; 

however, major roads were only 29% of all roads.  
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Both Seiler (2005) and Danks and Porter (2010) reported a humped pattern in the 

probability of MVCs compared to average daily traffic in Sweden and Maine, respectively. That 

is, probability increased with increasing ADT, peaking at 5,000 and between 2,500 and 6,000 

vehicles per day (vpd) in Sweden and Maine, respectively, before decreasing to near zero 

probability at 8,000 to 10,000 and 12,500 vpd. Seiler (2005) suggested that roads of the highest 

traffic volumes were repellents to wildlife and actually reduced the likelihood of collisions. 

Seiler (2005) also proposed that roads with traffics volumes of 1,000 to 10,000 vpd would result 

in considerable mortality, but that ADT >10,000 vpd would be insurmountable barriers. The 

traffic volumes at the peaks suggested by these authors correspond with the mean ADT on class 

2 roads in Massachusetts. Traffic volumes on class 1 roads in Massachusetts far exceeded the 

upper limits suggested to be complete barriers to movement and repellants to wildlife.  

The high risk of MVCs on class 1 roads does suggest that they serve as barriers to 

movement and that moose that attempt to cross them have a high probability of being involved in 

a collision. If higher traffic volume roads did not repel moose as Seiler (2005) suggested, the 

number of attempted crossings would not be limited, and the already high occurrence ratios on 

these roads would be even higher. Data from our collared moose suggests that moose cross class 

3, 4, and 5 roads at a much greater frequency than class 2 roads and that moose may avoid higher 

speed and traffic volume roads (USGS Massachusetts Cooperative Fish & Wildlife Research 

Unit [MACFRU], unpublished data). The high frequency of MVC one class 1 and 2 roads 

despite reduced crossing frequencies on these roads reinforces the risk of MVCs when moose do 

attempt to cross them.     
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2.6.3 Habitat Integrity 

Increasing habitat integrity amplified the probability of moose-vehicle collisions in all 

ecoregions. Moose-vehicle collisions were clustered where high speed and high traffic volume 

roads bisected or ran adjacent to blocks of more intact moose habitat; i.e., where there was a 

greater probability moose would encounter the roads. This is similar to the pattern reported by 

Mountarkis and Gunson (2009) in Vermont, where MVCs were clustered on state highways 

where they intersected good moose habitat. 

The interaction between habitat integrity and road class or traffic volume in the models 

revealed a thresholds of habitat integrity and traffic volume where the risk of MVC increased 

dramatically. Traffic volumes equivalent to those on state highways (class 2 roads) caused a 

rapid increase in the probability of moose-vehicle collisions. In the WP where class 2 roads 

passed through areas of >70% forested and wetland habitat, the probability of a MVC increased 

at a very high rate. In a similar way, higher levels of connectivity in the CTRV increased the 

probability of MVCs for a fixed level of ADT. In the uplands of the WP and BP, road shoulders 

along class 2 roads are very narrow and forested habitat verges along the edge of the pavement. 

This condition means that moose have to be practically in the roadway before they can be seen 

by drivers. Combined with the typically winding nature of class 2 roads in these areas and the 

speeds traveled on them, reaction time for drivers to avoid a collision is limited.      

2.6.4 Seasonal Patterns 

The seasonal patterns in MVCs differ between southern and northern portions of the 

species geographic range. In the southern range (e.g., Minnesota, Newfoundland, Quebec, 

Vermont), MVCs peak from May to July with a lesser peak during September and October  

(Belant 1995, Lavsund and Sandegren 1991, Groot Bruinderink and Hazebroek 1996, Joyce and 
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Mahoney 2001, Dussault et al. 2006, Montrakis and Gunson 2009, Danks and Porter 2010). 

However, northern portions of moose range (e.g., Alaska, Sweden, British Columbia) have their 

greatest occurrence of MVCs in winter due to deep snow and limited daylight hours (Child et al. 

1991, Del Frate and Spraker 1991, Lavsund and Sandegren 1991, Garrett and Conway 1999, see 

also Dussault et al. 2006 and references there-in). The seasonal patterns of MVCs we observed in 

Massachusetts were very similar to the pattern reported for most southern portions of moose 

range.  

Dussault et al. (2006: 422) stated that, “Peak accident rates are usually associated with 

major activity periods of cervids fulfilling particular requirements such as feeding, reproduction, 

seasonal migration or even dispersal of juveniles.”. The pattern we observed closely matched the 

seasonal movement patterns of moose in Massachusetts (Wattles and DeStefano 2013b). The 

peak in MVCs in May that continues through July parallels the relative peak in daily movement 

rates at the end May and early June observed in both males and females, which corresponed to 

the peak of vegetation quantity and quality. Additionally, calves of the year are dispersing at this 

time of year, resulting naïve animals moving about the landscape. The secondary peak in 

September and October corresponded with the large peak in daily movements for males 

associated with the rutting period. The low rate of MVCs during the winter months agreed with 

the low observed daily movement rates at that time of year (Wattles and DeStefano 2013b). 

2.6.5 Mortality 

Mortality related to moose-vehicle collisions likely has a considerable influence on 

moose population dynamics in Massachusetts. Nearly 80% of reported MVCs resulted in the 

direct death of the moose. Given the high speeds at which MVCs typically occurred, it is likely 

that a large portion of the MVCs that resulted in an “injured” moose, or moose that “left the 
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scene”, also eventually resulted in death. We observed a GPS-collared female that had greatly 

reduced movement rates and injuries consistent with road rash after crossing a state highway; she 

survived for several months before dying from her injuries. If we consider the suspected 

considerable under-reporting of MVCs, it could be estimated >5% of the population in 

Massachusetts is killed each year as a result of vehicle accidents. That is far greater than reported 

elsewhere, with 1.2 – 1.8 % reported for Norway, Sweden, and Finland (Groot Bruinderink and 

Hazebroek 1996), 0.6% in Newfoundland (Joyce and Mahoney 2001), 1% of the population and 

19% of allowable harvest in Minnesota (Belant 1995), and <1% of the population but up to 10% 

of allowable harvest in British Columbia (Child et al. 1991).  

 
2.6.6 Mitigation 

Large Animal Response Team activities related to moose in urban areas and on high-

speed roads is the primary form of mitigation of MVCs currently in use in Massachusetts. Team 

responses occurred at much higher frequency in the more heavily developed CTRV and CP 

ecoregions and were located primarily in urban centers. As such, LART responses likely do 

reduce the number of MVCs in these areas; without them, the frequency of MVCs in the CTRV 

and CP would be much higher. However, LART responses were rare in the WP and BP and had 

almost no effect on MVCs along the state highway network in these ecoregions.  

Fencing of roadways has been reported to be a highly effective means of limiting MVCs 

and vehicle collisions with other wildlife (Lavsund and Sandgren 1991, McDonald 1991, 

Clevenger et al. 2001, Leblond et al. 2006), with 70-95% and 80% reductions in MVCs along 

fenced sections of road reported in Alaska and Sweden, respectively (Lavsund and Sandgren 

1991, McDonald 1991). Approximately 20-30 years ago, all interstate highways in 

Massachusetts were fenced with 2-meter chain-link fencing along the edge of the right-of-way 
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away from the road (Tim Dexter, Massachusetts Department of Transportation, personal 

communication). The fencing has not been maintained and is often in forested areas. As a result, 

there are likely breaks and downed fencing resulting from tree-fall and other factors. Despite 

this, fencing along the interstate highway system has likely prevented some moose from getting 

onto the roads and reduced MVCs; however, what portion of the fencing remains as a barrier 

given the lack of maintenance is unknown. Fencing also has the obvious negative side effect of 

further reducing landscape connectivity for many wildlife species in an already highly 

fragmented landscape and can trap wildlife on or within the fenced area if they manage to cross 

the fence.  

Wildlife crossing structures have been shown to be effective in reducing vehicle 

collisions with wildlife and increasing landscape connectivity (Huijser et al. 2009). However, 

construction costs for these and other active forms of mitigation can be prohibitively expensive. 

In as developed a landscape as Massachusetts, construction of a sufficient number of wildlife 

over and under-passes to increase permeability of the road network is not practical.    

Driver speed has been shown to greatly increase the probability and severity of vehicle 

collisions with moose and other wildlife. Traditional, permanent diamond warning signs with the 

image of a moose or other wildlife are believed to do little to affect driver behavior, reduce 

speed, and reduced vehicle collisions (Sullivan and Messmer 2003, Hedlund et al 2003). This is 

likely especially true if collisions with or sighting of the animals are rare, as with MVCs and 

moose in Massachusetts. Similarly, seasonal wildlife warning signs had limited effectiveness in 

reducing vehicle collisions with wildlife compared to more active mitigation methods (Huijser et 

al. 2009). However, in Massachusetts warning signs may actually be effective with urban drivers 

traveling in more rural portions of the state as the signs will be novel and may cause the driver to 
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take note. However, in Massachusetts signs warning of moose road crossing or MVCs have been 

relatively rare.  

 
2.6.7 Reporting 

The number of reported MVCs likely underrepresents the true frequency of MVCs in 

Massachusetts. Underreporting has been estimated to be 40% (Lavsund and Sandegren 1991), 

50% (Dussault et al 2006), or up to 2 to 6 times the number of reported accidents (Child et al. 

1991). Belant (1995) recommended standardized reporting of MVCs for Minnesota to enable 

MVCs to be used as an index for monitoring trends in the population. Annual reported moose-

vehicle collisions, along with deer-hunter moose-sighting surveys, has been one of the best 

indices to monitor the growth and trends in the moose population in Massachusetts. However, 

variability in the reporting of MVCs limits the usefulness of this index and makes it difficult to 

determine if the recent decline in reported MVCs represents an actual trend in the state 

population or if it can simply be attributed to changes in reporting or recording of MVCs. This is 

extremely important, especially given the widespread concern about declining moose numbers 

along the southern extent of moose range in North America (Murray et al. 2006, Lenarz et al. 

2010, Broders et al. 2012, DeCesare et al. 2014).  

Greater accuracy in the spatial recording of MVCs would allow for more fine-scaled 

analysis of MVC locations. The fit of our models would undoubtedly improve with increased 

spatial accuracy. The values for speed limit and ADT would not change with increased accuracy, 

but measurement of slope and our habitat integrity variables likely would. By measuring slope 

out to 1.5 km and habitat integrity variables out several kilometers from our MVC locations, we 

partially minimized the influence of location error in the models; however, location error likely 

decreased model fit. Furthermore, increased accuracy would allow us to incorporate additional 
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habitat variables that likely influence where moose are crossing roads, such as proximity to 

forest harvest or wetland habitats (Wattles and DeStefano 2013a).  

2.7 Management Implications 

Our results emphasize the negative impacts of human-development and increasingly 

human-dominated environments on the ability of wide-ranging species to successfully move 

about the landscape. The greater proportion of the state’s estimated moose population that are 

involved in MVCs compared to less developed portions of moose range and within the state the 

greater risk of MVCs in areas of higher human development underscore the impacts of high 

levels of human development on wildlife. The Connecticut River Valley and Coastal Plain are 

essentially non-moose habitat due to extreme habitat fragmentation and the density of high-speed 

and high-volume roads, which serve as lethal barriers to moose movements. In the Worcester and 

Berkshire Plateaus, state highways and interstates fragment the landscape, but not to an extent 

that has prevented occupation by moose. Moose interactions with class 1 and 2 roads have 

decreased survival in these ecoregions, as the risk of MVCs on these roads is very high, 

especially where they cross more intact blocks of habitat. Moose-vehicle collisions constitute the 

greatest known cause of mortality of moose in Massachusetts (MACFRU, unpublished data) and 

is possibly one of the main factors preventing further growth of the moose population. 

Additionally, the high proportion of MVCs in the state that result in human fatalities highlights 

the risk to the human population. 

Our results can be used to draw inference on the impacts that the highly developed 

landscape of Massachusetts has on other wildlife species. While high speed and traffic volume 

roads pose a great risk to moose that attempt to cross them, moose are a large and highly vagile 

species that can cross roads rapidly. Species with lower mobility likely have even greater 
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mortality rates when attempting to cross roads and as a result, these roads may serve as 

population sinks or barriers to movements for some populations or species.  

The high costs of alternative mitigation measures means that increasing public awareness 

of the risk of moose-vehicle collisions, with the goal of reducing driver speed, is likely the best 

method currently available to reduce MVCs. A recent collaboration between the Massachusetts 

Division of Fisheries and Wildlife, the Massachusetts Department of Transportation, and the 

MACFRU has centered on these goals, particularly in MVC “hot spots”, where the risk is 

exceptionally high (~10% of total known location collisions per hot spot). The focus has been on 

the use of permanent warning signs placed at access points to highways in the hotspots. 

Additionally, mobile electronic messaging boards may be deployed during peak risk seasons. 

Whether increased signage in these hot spots will affect driver behavior and actually reduce 

MVCs remains to be seen. However, the low cost of installing signs relative to the savings from 

preventing even a single MVC strongly supports these efforts. Perhaps cooperation with local 

and state police departments to increase enforcement of speed limits and reduce driver speed 

would be the most effective strategy.  

Given the current mitigation options at the disposal of wildlife and transportation 

departments, the density of roads, the volume of traffic, and the speeds vehicles travel, moose-

vehicle collisions will continue to pose a threat to both moose and humans in Massachusetts. 

These conditions may mean that frequent and potentially deadly collisions are an unavoidable 

reality where large wide-ranging wildlife species live in human-dominated landscapes. 
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Tables 

 
Table 2.1 Summary of annual moose-vehicle collisions (MVCs) reported for states, provinces, and nations reported in the literature, 
including; the size of the moose population, annual MVCs, percent of the moose population involved in MVCs, and the human fatality 
rate (HFR) from those collisions. 
 
Country/ 

Province/State 

Estimated Moose 

population 

Annual MVC Percent of 

population 

HFR Date Citation  

Massachusetts, USA 1000 30-50 3-5 0.7 2003-2012 This paper 

Maine, USA 30,000 - 60,000 650 1-2 0.4 1995 - 2007 Wattles and DeStefano 2011 

New Hampshire, USA 4,000 - 6,000 250 4-6 0.3 1995 - 2007 Wattles and DeStefano 2011 

Vermont, USA 4,000 - 5,000 150 3-4 0.6 1995 - 2007 Wattles and DeStefano 2011 

Norway 100,000 - 150,000  711 - 1,464 1.2 NA 1987 - 1993 Groot Bruinderink and 

Hazebroek 1996 

Newfoundland, CAN NA 168 - 460 NA 0.1 1983 - 1990 Oosenbrug et al. 1991 

Newfoundland, CAN 150,000 616 - 897 0.4-0.6 0.26 1988 - 1994 Joyce and Mahoney 2001 

Sweden NA 4,000 1.8 NA NA Groot Bruinderink and 

Hazebroek 1996 

Finland NA 150 1.2 NA NA Groot Bruinderink and 
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Hazebroek 1996 

Minnesota, USA 4,300-6,800 24 - 31 0.4-0.7 NA 1993 - 1994 Belant 1995 

British Columbia, 

USA 

180,000 111 - 234 0.1 NA 1983 - 1990 Child et al. 1991 

British Columbia, 

USA 

180,000 700 (estimate) 0.4 NA 1983 - 1990 Child et al. 1991 

Maine, USA NA 583 NA NA 1992 - 2005 Danks and Porter 2010 

Kenai Peninsula, 

Alaska, USA 

NA 112, 216 NA NA 1977 - 1982, 

1984 - 1989 

Del Frate and Spraker 1991 

Quebec NA 161 - 300 NA NA 1990 - 2002 Sebbane and Courtois 2000  

(Ref in Dussault et al. 

2006b) 

Sweden 200,000 - 250,000 4,000 - 6,000 1.6-3 0.25-0.4 1980 - 1990 Lavsund and Sandegren 

1991 

Sweden  5,000  0.2-0.3 1990-1999 Seiler 2005 

Alaska (rural) NA NA NA 0.5 NA Garrett and Conway 1999  
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(citing Thomas 1995) 

Anchorage, AK 450 (900) 100 11 0 1991-1995 Garrett and Conway 1999  
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Table 2.2 The density of roads (km/km2) of class 1-5 in each ecoregion and the mean average daily traffic (ADT) for that class of road 
in that ecoregion for Massachusetts. 
 
  class 1   class 2   class 3   class 4   class 5   Overall 

 

density ADT 

 

density ADT 

 

density ADT 

 

density ADT 

 

density ADT 

  Worcester Plateau 0.03 31000 

 

0.22 4300 

 

0.13 1300 

 

1.22 100 

 

0.33 100 

 

1.95 

Connecticut River Valley 0.07 43000 

 

0.38 8700 

 

0.41 6000 

 

2.72 300 

 

0.35 100 

 

3.99 

Coastal Plain 0.14 79000 

 

0.37 9100 

 

0.51 4600 

 

3.39 300 

 

0.17 200 

 

4.72 

Berkshire Hills 0.01 23000   0.15 2700   0.08 800   0.63 100   0.43 100   1.32 

 
 



 

95 

Table 2.3 Description and source of data for variables used in modeling of moose vehicle collisions in Massachusetts. 
 
Variable Description Source 

Road class (class) 1. Interstate and major highways, 2. state highways, 3. major local 

arteries, 4. light duty roads, 5. unpaved roads  

CAPS Roadline layer 

(www.masscaps.org, McGarigal et al. 

2012) 

Speed limit 

(speed) 

Posted speed limit reported on EOTroadlines_arc layer. If speed limit 

was not posted we assigned speeds of 65, 50, 40, 30, and 25 mph 

(miles per hour) (104.6, 80.5, 64.4, 48.3, and 40.2 kph (kilometers per 

hour)) for class 1, 2, 3, 4, and 5 roads, respectively.   

MassDOT 1:5000 Roads layer 

(MassGIS 2013)  

Traffic volume 

(ADT) 

Average daily traffic from the CAPS roads layer 

(www.masscaps.org). 

CAPS Roadline layer 

(www.masscaps.org, McGarigal et al. 

2012) 

Slope (slope) The mean slope of 8 - 1.5 km transects radiating at 0, 45, 90, 135, 180, 

225, 270, and 315 degrees from MVC locations. Each of the 8 means 

was the mean of slope measurements every 30 m along the individual 

transects.  

30 m Digital Elevation model (Mass 

GIS 2013) 
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Relief (relief) The mean maximum relief recorded along the 8 transects used for the 

slope calculation. 

30 m Digital Elevation model (Mass 

GIS 2013) 

Connectivity 

(conn) 

The mean connectivity within a circular buffer around each MVC 

location, measured from a 30 m resolution connectivity layer. We 

used a connectivity layer available at www.masscaps.org. (McGarigal 

et al. 2012)  

CAPS Connectivity layer 

(www.masscaps.org, McGarigal et al. 

2012) 

Road density 

(road) 

The density (km/km2) of all roads within a circular buffer around each 

MVC location.   

MassDOT 1:5000 Roads layer 

(MassGIS 2013)  

Natural (nat) The amount of forest and wetland habitat within a circular buffer 

around each MVC location.  

2009 Landuse layer (MassGIS 2013) 
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Table 2.4 The distribution of known and unknown location moose-vehicle collisions (MVCs) by ecoregion and the distribution of 
MVCs by road class in each ecoregion of Massachusetts, 1980-2012. 
 

 

Known location MVC 

 

Unknown location MVC 

 

Class   

 

Proportion 

  

Proportion  

 

1 2 3 4 5 Total by Ecoregion 

 

Total by Ecoregion 

Worcester Plateau 54 115 6 9 2 186 0.56 

 

46 0.51 

Connecticut River Valley 17 13 4 3 0 37 0.11 

 

15 0.16 

Coastal Plain 22 13 5 5 0 45 0.14 

 

11 0.12 

Berkshire Hills 13 40 4 6 1 64 0.19 

 

19 0.21 

Statewide 106 181 19 23 3 332     91   
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Table 2.5 Occurrence ratios of moose-vehicle collisions on roads of the 5 classes in each 
ecoregion. Occurrence ratios were calculated by taking the proportion of moos-vehicle collisions 
that occur on each road class and dividing by the proportion of that class of road in each 
ecoregion. 
 
  Road Class 

 

1 2 3 4 5 

Worcester Plateau 19.53 5.41 0.50 0.08 0.06 

Connecticut River Valley 25.03 3.74 1.06 0.12 0.00 

Coastal Plain 16.06 3.68 1.03 0.15 0.00 

Berkshire Hills 23.21 5.46 1.02 0.20 0.05 
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Table 2.6 Comparison of models used to predict the relative probability of moose-vehicle collisions in Massachusetts, one model for 
each ecoregion with the best model shown in bold. Included are number of variables (k), difference in Akaike information criteria for 
small sample sizes (AICc∆), AIC weight (w), and log-likelihood values (LL). 
 
  k AICc∆ w LL 

Worcester Plateau 

class + slope + nat5 + class*nat5 7 0 0.75 -183.508 

class + slope + nat5   5 2.2 0.25 -186.753 

     Connecticut River Valley 

speed + ADT + slope + conn7.5 + ADT*conn7.5 6 0 0.6975 -77.012 

speed + ADT + slope + conn7.5 + ADT*conn7.5 + ADT*speed 7 2.1 0.2502 -76.506 

speed + ADT + slope + conn7.5 + ADT*conn7.5 + ADT*speed + 

speed*conn7.5 8 5.2 0.0523 -76.431 

     Berkshire Plateau 

speed + ADT + slope + nat10 + ADT*nat10 + ADT*speed  7 0 0.779 -105.868 

speed + ADT + slope + nat10 + ADT*nat10 + ADT*speed + 

speed*nat10 8 2.5 0.221 -105.821 
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Coastal Plain*,** 

class 3 0 0.4038 -106.42 

class + conn10 4 0.1 0.3893 -105.25 

class + conn10 + slope 5 1.5 0.1873 -104.72 

class + conn10 + slope + class*conn10 7 6.1 0.0195 -104.23 

     * VIF >3 prevented consideration of models with speed and ADT 

    ** final model weights for model averaging calculated without saturated model (0.412, 0.397, 

0.191) 
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Table 2.7 Parameter estimates (± standard erro (SE)) and odds ratios for RSF models predicting moose-vehicle collisions in 4 
ecoregions of Massachusetts, significant coefficients (P-value < 0.05) in bold (P-value <0.1 in italics). Class 3 was the reference 
category for class in models for the Worcester Plateau and Coastal Plain. 
 

Worcester Plateau (n = 186)   Berkshire Hills (n = 64) 

  Estimate (± SE) 

Odds 

Ratio 

Adjusted 

odds   

 

  Estimate (± SE) 

Odds 

Ratio 

Adjusted 

odds   

Intercept 6.67 (± 2.84) 

    

Intercept -4.86 (± 3.51) 

   class1 7.00 (± 6.22) 1096.6 -- 

  

speed 6.43e-02 (± 1.32e-02) 1.1 -- 

 class2 -4.04 (± 3.59) 0.02 -- 

  

ADT 6.04e-04 (± 4.97e-04) 1.0 -- 

 slope -0.18 (± 0.06) 0.84 -- 

  

slope -8.04e-02 (± 3.78e-02) 0.92 -- 

 nat5 5.90 (± 3.35) 365.0 1.80 a 

 

nat10 -6.05e-01 (± 3.83) 0.55 0.99 a  

class1*nat5 -2.52 (± 1.57) 0.08 0.78 a 

 

ADT*nat10 1.39e-03 (± 6.81e-04) 1.00 1.15 f 

class2*nat5 9.40 (± 4.21) 12088.4 2.56 a 

 

speed*ADT -1.74e-05 (± 3.54e-06) 1.00 0.84 g 

           CT River Valley (n = 37) 

 

Coastal Plain (n = 45) 

Intercept -6.86 (± 1.03) 

    

Intercept -4.15 (± 1.56) 

   speed 4.4e-02 (± 1.54e-02) 1.04 1.55 b 

 

class1 4.32 (± 1.62) 74.8 -- 

 ADT -5.2e-05 (± 2.8e-05) 1.00 0.95 c 

 

class2 2.52 (± 1.35) 12.4 -- 
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slope -1.65e-01 (± 6.53e-02) 0.84 -- 

  

conn10 5.27 (± 12.24) 194.2 1.69 d 

conn7.5 -5.96 (± 4.38) 0.003 0.55 d 

 

slope -0.021 (± 0.11) 0.98 -- 

 ADT*conn7.5 1.6e-03 (± 3.2e-04) 1.00 1.17 e             

           a) natural in scale from 0 to 1, odds ratio for nat5 represents a 1 or 100% increase in proportion nat5, adjusted odds for 0.1 

change in nat5 

 b) odds ratio for speed for 1 kph increase in speed, adjusted odds for 10 kph increase in speed 

   c) odds ratio for ADT for 1 vehicle per day increase in ADT, adjusted odds for 1000 vehcile per day increase in  

   d) odds ratio for conn7.5 for 1 unit increase in conn7.5, conn7.5 at a scale of 0 to 0.6, adjusted odds for 0.1 increase in 

conn7.5 

  e) odds adjusted up from 1 to 1000 vehichles per day for ADT and down from 1 to 0.1 for conn7.5 

   f) odds adjusted up from 1 to 1000 vehciles per day for ADT and down from 1 to 0.1 for nat5 

   g) odds adjusted up from 1 to 1000 vehicles per day for ADT and from 1 to 10 kph for speed 
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Figures 

 
 
 
 
Figure 2.1 Annual moose-vehicle collisions from 1980-2012 reported to the Massachusetts 
Division of Fisheries & Wildlife. 
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Figure 2.2 Digital elevation model of Massachusetts, USA. Study area and ecoregions are 
outlined in red. Reported moose-vehicle collisions are shown with blue dots. Class 1 and 2 roads 
are depicted with in black lines, class 1 roads are bolded. 
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Figure 2.3 Human population density (individuals/km2) of Massachusetts towns (2010). 
Reported moose-vehicle collision locations shown as blue dots. 
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Figure 2.4 Average daily traffic (vehicles per day) of roads in Massachusetts. Reported moose-
vehicle collision locations shown as blue dots. 
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Figure 2.5 Total moose-vehicle collisions per month reported to the Massachusetts Division of 
Fisheries & Wildlife from 1980-2012. 
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Figure 2.6 Location of Large Animal Response Team events from 1980 to 2008, moose 
relocations are shown with green dots and euthanizations with blue dots. 
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Figure 2.7 The interaction between the proportion of natural habitat around the roadway and road 
class on the relative probability of moose-vehicle collisions in the Worcester Plateau. 
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Figure 2.8 The interaction between traffic volume and connectivity on the relative probability of 
moose-vehicle collisions in the Connecticut River Valley (CTRV). 
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Figure 2.9 The interaction between speed limit and connectivity with traffic volume on the 
relative probability of moose-vehicle collisions in the Berkshire. 
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Figure 2.10 The relative probability moose-vehicle collisions on class 1, 2, and 3 roads in 
relationship to connectivity in the Coastal Plain. 
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CHAPTER 3 

THE INFLUENCE OF A HIGH-DENSITY ROAD NETWORK ON HABITAT 

SELECTION AND MOVEMENTS OF MOOSE 

3.1 Abstract  

Road networks and the disturbance associated with vehicle traffic can have major impacts 

on wildlife and alter animal behavior, movements, and habitat selection. Roads fragment the 

landscape, which can reduce wildlife movements and therefore landscape connectivity. 

Additionally, road avoidance by wildlife can reduce the amount of suitable habitat that is 

available to animals. Massachusetts is one of the most densely populated states in the United 

States and has an extremely dense and heavily used road network. I used correlated random 

walks and resource selection functions to analyze movement and location data from collared 

moose in Massachusetts to determine how the road network influenced moose movements and 

habitat selection. The road network had a strong negative effect on both the movements and 

habitat selection patterns of moose. Moose crossed roads at a much lower rate than predicted by 

the simulated movement paths and greatly reduced their habitat use near roads. Road avoidance 

increased with increasing disturbance intensity associated with roads, such as higher traffic 

volumes and times of day when traffic and human activity is greatest. Overall, roads were a 

major factor determining what portions of the landscape in Massachusetts moose considered 

suitable habitat and how they moved between habitat patches. 

 

3.2 Introduction 

The expansion of roads and road networks are one of the most common mechanisms of 

habitat fragmentation throughout the world. Even in relatively contiguous habitats, habitat 
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fragmentation can occur where roads and corridors bisect the landscape. The fragmentation by 

roads can affect almost all sizes and classes of animals, and can result from a single road passing 

through an otherwise intact ecosystem or by a high-density road network that fragments a 

landscape into many smaller patches (Fahrig and Rytwinski 2009). 

Roads can have many direct and indirect effects on wildlife populations, including 

reducing the survival of individuals and altering population dynamics, influencing movements 

and habitat selection patterns, and decreasing gene flow and genetic diversity (Foreman and 

Alexander 1998, Coffin 2007, Balkenhol and Waits 2009). Roads and associated vehicle 

collisions can be a direct cause of mortality for wildlife and in many instances is one of the 

greatest known causes of mortality for some species. For example, it is estimated that over a 

million cervid-vehicle collisions occur each year in Europe and North America (Groot 

Bruinderink and Hazebroek 1996, Grosman et al. 2011 and references there in). Roads can serve 

as barriers that prevent or restrict movement between blocks of habitat, which can reduce or 

prevent the use of otherwise suitable habitat and functionally isolate habitat patches (Riley et al. 

2006). If barriers to movement are great enough, they can prevent gene flow and completely 

isolate portions of populations (Riley et al. 2006). Fragmentation also directly reduces both the 

size of habitat patches and the amount of interior or core area habitat that is preferred by many 

species, through the road effect zone (Forman et al. 2002). The road effect zone can be 

associated with direct habitat alteration along patch edges, characterized by changes in 

microclimate and species composition of both plants and animal assemblages. Edge effects for 

wildlife species can also take the form of avoidance of vehicle traffic, human activity, noise, and 

other factors close to roadways.  In many cases, roads that penetrate intact blocks of habitat also 
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provide access to humans that result in other impacts, such as direct mortality from hunting or 

poaching, or habitat degradation through logging or development. 

  Moose (Alces alces) historically occupied the forests of Massachusetts and southern New 

England but were extirpated in this portion of their range by the mid to late 1800s, primarily 

through unregulated hunting and clearing of forests for agriculture (Wattles and DeStefano 

2011). Moose populations in the northeastern United States have since rebounded and moose 

have reoccupied much of their historic range (Wattles and DeStefano 2011). However, in their 

absence, the landscape was drastically altered. While the region had largely undergone 

reforestation after farms were abandoned, it also became one of the most human-dominated areas 

in the United States (Hall et al 2002).  

Massachusetts is one of the most densely populated states in the country (DeStefano et al. 

2005, U.S. Census Bureau 2010) and has an extremely extensive and dense road network that 

fragments the largely forested landscape (Fig. 3.1). Expansion of suburban areas outward from 

cities continues at a rapid rate (5.25 hectares of land developed per day from 2005 to 2013; 

Lautzenheiser et al. 2014). People commute long distances to and from work, which adds greatly 

to the growing number of vehicles on the roadways, which now bisect the forested habitat of 

previously rural portions of Massachusetts.  

Moose are a large, highly mobile, and wide-ranging species with large home ranges 

(Wattles and DeStefano 2013b), which in a landscape like that of Massachusetts, inevitably 

encompass roads and human development. As moose move about and attempt meet their life 

history needs, they must choose whether or not to select cover types near roads and whether or 

not to cross roads. While roadways were suspected to have a major impact on wildlife, including 

moose (Forman and Deblinger 2000), no studies had been conducted to examine the direct effect 
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of the road network on the movement and habitat selection of wildlife. Understanding how road 

networks affect wildlife is essential for conserving wildlife populations and wildlife diversity as 

human development continues.  

Wattles and DeStefano (2013b) showed that moose avoided more highly developed areas 

at the landscape scale (home range selection; 2nd order habitat selection according to Johnson 

1980) and at coarse scales within home ranges (3rd order selection). Additionally, Wattles (2014) 

reported a disproportionately high risk of moose-vehicle collisions on high speed and high traffic 

volume highways compared to all other classes of roads in Massachusetts.  

We used Global Positioning System (GPS) technology to further investigate the 

relationships between road characteristics and moose movements and habitat use in 

Massachusetts. Our objectives were to determine how the high density, high traffic volume road 

network influenced the movements and fine-scaled habitat selection patterns of moose. We 

hypothesized that roads would influence both the movements and habitat selection patterns; 

specifically, that moose would avoid crossing roads and avoid using areas adjacent to roads. We 

hypothesized that the magnitude of the road effect would vary by road type, season, and time of 

day, and that avoidance would increase with increasing traffic volume, speed, and in areas of 

higher road density.  

 

3.3 Study Area 

Our study area was located in western two thirds of Massachusetts, USA and adjacent 

portions of southern Vermont and New Hampshire (between 42o 9’ and 42o 53’ N latitude and 

71o 53’ and 73o 22’ W longitude). Topography is dominated by glaciated hills with abundant 

small stream valleys, lakes, ponds, and palustrine wetlands whose size and nature varies with 
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changes in beaver (Castor canadensis) activity. The central and western sections of the study 

area are separated by the Connecticut River Valley, which runs N-S through west-central 

Massachusetts. Elevation ranges from 100 m above sea level in the Connecticut River Valley, to 

425 m in the hills of central Massachusetts, to 850 m in the Berkshire Hills of western 

Massachusetts.  

The western two-thirds of Massachusetts was >80% mixed deciduous, second- or 

multiple-growth forest, much of it resulting from regeneration of farm fields abandoned in the 

mid-to-late 1800s (Hall et al. 2002). The forests in the area of Massachusetts used by moose 

transition across 4 forest types, including spruce-fir-northern hardwoods, northern hardwoods-

eastern hemlock (Tsuga canadensis)-white pine (Pinus strobus), transition hardwoods-white 

pine-hemlock, and central hardwoods-hemlock-white pine (see DeGraaf and Yamasaki [2001] 

and Wattles and DeStefano [2013a] for a more detailed description of forest types). Transitions 

between forest types can be gradual or distinct depending on localized physiography, climate, 

bedrock, topography, land-use history, and soil conditions, resulting in a patchwork of forest 

types and species groups (Westveldt et al. 1956, DeGraaf and Yamasaki 2001). Early 

successional habitat was created primarily through timber harvesting, and occasionally through 

wind and other weather events. During 1984-2000, about 1.5% of the forest was harvested 

annually, consisting of small (mean = 16.5 ha) cuts of moderate intensity (removal of 27% of 

timber volume) widely distributed on the landscape (Kittredge et al. 2003, McDonald et al. 

2006). The pattern of forest harvest and transitional forest types, as well as a history of 

glaciation, provided a patchy mosaic of well-interspersed forest types, age classes, and wetlands. 

Massachusetts has one of the highest densities of humans, human development, and road 

densities in the United States (5th most densely populated state with 324 people/km2 statewide) 



 

118 

(DeStefano et al. 2005, U. S. Census Bureau 2010, Fig 1). Mean road densities in the two 

portions of the state where the majority of moose occur are 1.95 and 1.32 km/km2, respectively, 

for the Worcester Plateau and Berkshire Hills. Road densities in the more highly developed 

Connecticut River Valley and eastern Massachusetts are 3.99 and over 5 km/km2, respectively.  

3.4 Methods 

3.4.1 Moose Capture and Telemetry 

We captured adult (>1 yr old) moose by opportunistically stalking and darting them from 

the ground between March 2006 and November 2009. Moose were immobilized using either 5 

ml of 300 mg/ml or 3 ml of 450 mg/ml xylazine hydrochloride (Congaree Veterinary Pharmacy, 

Cayce, South Carolina, USA) administered from a 3 or 5 cc Type C Pneudart dart (Pneudart, 

Inc., Williamport, Pennsylvania, USA). We used Tolazolene (100 mg/ml) at a dosage of 1.0 

mg/kg as an antagonist. Moose were fitted with GPS collars, either ATS G2000 series 

(Advanced Telemetry Systems, Inc., Isanti, Minnesota, USA) or Telonics TWG-3790 GPS 

collars (Telonics, Inc., Mesa, Arizona, USA). We programmed the collars to attempt a GPS fix 

as frequently as possible while allowing the battery life to extend for at least 1 year; depending 

on the collar, a GPS fix was attempted every 135, 75, or 45 minutes. Collars were equipped with 

very high frequency (VHF) transmitters, mortality sensors, and automatic mechanisms that 

released the collars either at a low battery state or at a preprogrammed date. Capture and 

handling procedures were approved by the University of Massachusetts Institutional Animal 

Care and Use Committee, protocol numbers 25-02-15, 28-02-16, and 211-02-01. 
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3.4.2 Road Crossings and Correlated Random Walks 

We analyzed the road-crossing frequency of moose by quantifying the intersection rate of 

their movement paths with Geographic Information System (GIS) road layers for Massachusetts 

(Conservation Assessment and Prioritization System (CAPS)) and adjacent portions of Vermont 

(Vermont Center for Geographic Information) and New Hampshire (New Hampshire 

Geographically Referenced Analysis and Information Transfer System; NH GRANIT). All GIS 

work was performed using ArcGIS 10.1 (ESRI 2011).  

We classified roads into 6 categories: class 1 (Expressways, which were roads with 

multiple lanes in each direction), class 2 (Primary state highways), class 3 (secondary highways 

or major local arteries), class 4 (Light duty roads previously classified as class 4 with >200 

vehicles per day average daily traffic (ADT), class 5 (Light duty roads previously classified as 

class 4 with <200 ADT), and class 6 (forest roads and roads with ADT <10).  

We used correlated random walks (CRW) (Turchin 1998) generated with the 

“movement.simplecrw” tool in Geospatial Modelling Environment (Beyer 2012) to represent the 

expected distribution of moose road-crossing rates under the null model of no road effect (Beyer 

et al. 2013). For all analyses we split the data into 3 seasons based on differences in seasonal 

movement rates (Wattles and DeStefano 2013b): summer (16 April – 31 August), fall (1 

September – 31 October), and winter (1 November – 15 April). We initiated the correlated 

random walks (n = 100 for each moose-season) at the first actual moose location for that season. 

Subsequent locations were determined by randomly drawing a step length and turn angle from 

the seasonal distribution of step lengths and turn angles of that moose for that season, until the 

number of steps equaled the number taken by the moose. We restricted the CRWs to the seasonal 

minimum convex polygon (MCP) home range of the moose plus a 1,000 m buffer. We use the 
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buffered MCP home range rather that the MCP (Beyer et al. 2013) because roads outside the 

MCP could serve as boundaries to movement that the moose were reluctant to cross. Using only 

the MCP would exclude those roads from the analysis and prevent us from determining their 

effect on moose movement. One thousand meters represents a distance that moose could easily 

travel within one GPS fix sampling interval.  

 We used mixed-effect linear regression with the package lmerTest (Kuznetsova et al. 

2014) to compare the road-crossing rate of our collared moose with the mean of the 100 CRW 

paths for each moose-season. We used Program R version 3.0.1 for all statistical analyses (R 

Development Core Team 2005). For all models, we included the moose ID, a variable to identify 

each individual moose, as a random intercept to pair the crossing rate of each moose with the 

associated crossing rate for its seasonal CRWs, and to account for repeated measures on an 

individual (Gillies et al. 2006). For each season and road class, we compared saturated and 

reduced models for the road-crossing rate using Aikaike Information Criteria (AIC) difference 

for small sample sizes (AICc) and Akaike weights (w) (Burnham and Anderson 2004). The 

saturated model included the density of that road type in the animal’s buffered home range, a 

variable named “moose” stating whether the crossing rate was associated with the real moose or 

the CRW, and the interaction between density and moose. We assessed model fit using pseudo-R 

squared after Nakagawa and Schielzeth (2013) and the package MuMin (Barton 2014). 

Additionally, we compared step lengths when moose crossed roads to the mean and 95th quantile 

of all movements step, including road crossings, to determine if moose altered their movement 

rates when traversing roads.  
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3.4.3 Habitat Selection Relative to Road Network 

We modeled within home range habitat selection (3rd-order, Johnson 1980) with and 

without a roads variable to determine if the road network influenced habitat selection by moose. 

We calculated mixed effect (Zuur 2010) resource selection functions (RSF) using a 

use:availability framework (Manly et al. 2002) and assumed the exponential form of the model 

(Johnson et al. 2006). We used mixed effect logistic regression to estimate model coefficients 

(βi) for the fixed effects (xi) representing the relative probability of use (w) with the equation: 

w(x) = exp(β1x1 + β2x2 + ... + βkxk + yi). 

Where yi is the random effect of moose i.  

We based availability for each animal on a random sample of locations generated within 

the animal’s annual MCP home range, plus a 1,000 m buffer to account for habitat available 

along the periphery of the home range. We buffered all locations, then merged the buffer with 

the MCP to define availability, which represented habitat that was easily accessible to the 

individual. This sampling resulted in 1,175-1,527 random locations per individual. 

To determine the influence of the roads on moose habitat selection, we created kernel 

density surfaces (30 m resolution) of the roads network in our study area. We allowed the 

magnitude of the road affect to vary by road class by assigning weights to each of the 5 road 

classes (weight = 1 for class 6 roads, 10 for class 5, 25 for class 4, 50 for class 3, and 100 for 

class 2 or weight = 0 for all road types for a model with no difference among types). The weight 

assigned to each road type represented the number of times each road of that type was counted  

when generating the kernel surfaces. For each combination of weights, we created kernels 

surfaces at 5 scales using smoothing parameters of 250, 500, 750, 1,000, and 1,500 m. We 
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extracted the values from the resultant kernel surfaces to our moose and random datasets to 

represent the road effect at each location. 

We generated kernel surfaces with several combinations of weights and scales and 

calculated road-only RSFs where selection was predicted by a single variable “roads”. We used a 

random intercept and random slope model, which takes into account repeated measures on an 

individual and allows for variation in the response to roads by individual moose (Gillies et al. 

2006). For each season and period of the day, we used AIC difference and weight (w) to identify 

the best weight-scale combination (Burnham and Anderson 2004). Based upon the combinations 

of weights supported in the first set of candidate models we iteratively changed the weights 

assigned to the various roads classes and repeated the process to achieve the best combination of 

road weights and scale to represent roads in the model. We removed 2 animals from the analysis 

due to their disproportionate effect on model coefficients. These 2 animals nearly exclusively 

used large blocks of protected habitat in state forests and water-supply areas. As a result, their 

avoidance of roads was extremely high and inclusion of them in the models resulted in 

population level coefficients for roads that far exceeded the individual coefficients (random 

slopes) for all of the remaining animals in the analysis.  

After finding the best road-only model we ran a habitat-only model that contained 7 

categorical cover types (regeneration [logged areas <25 years old], mature deciduous forest, 

mature mixed coniferous-deciduous forest, mature coniferous forest, wooded wetlands, open 

wetlands, and other [open and developed areas]). We manually assigned cover types to used and 

random locations through examination of orthophotography and other GIS layers (Wattles 2014 

chapter 1). The habitat-only model included a random intercept to account for repeated measures 

on an individual (Gillies et al. 2006). Finally, we created 2 global models that contained both the 
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road and habitat variables, one included an interaction between roads and habitat the other did 

not. The global models included a random intercept and random slope for roads. We used AIC to 

determine the best overall model between the 2 global models, the roads-only, and the habitat-

only models.  

Akaike information criteria can be used to select the best fitting and most parsimonious 

of the candidate models; however, it does not provide information on how well the models fit the 

data thus, we used k-fold cross-validation (Boyce et al. 2002) to evaluate model fit. This method 

uses subsets of the data, withholding 20% of the data to test models generated with the remaining 

80%, and then generates Spearman’s rank correlation coefficients (rs), with high rs indicative of 

good model fit. 

3.5 Results 

3.5.1 Capture and Deployment of GPS Collars 

We deployed GPS collars on 26 adult moose (7 females and 19 males). Of the 26, we 

excluded 5 from the analysis due to mortality, suspected infection with brainworm 

(Parelaphostrongylus tenuis), or collar failure, resulting in 21 collared moose (5 females and 8 

males in central and 8 males in western Massachusetts). We recaptured and recollared 9 moose 

when the batteries in their initial GPS collars ran low. We obtained 127,408 locations of the 21 

moose used in this study, with an overall fix rate of 85%.  

3.5.2 Road Crossing and Correlated Random Walks 

We documented 9,162 road crossings in 87 total moose-seasons (number of moose x 

number of seasons; 428 for class 2, 121 for class 3, 1,482 for class 4, 818 for class 5, and 6,313 

for class 6 roads. Observed road crossing rates varied by season and increased as seasonal 



 

124 

movement rates increased, from lowest in winter, to moderate in summer, to highest in fall (χ2 > 

10, df = 2, P – value < 0.01, for all road classes; Table 3.1, Fig. 3.2-3.4; Wattles and DeStefano 

2013b). Therefore, to aid in interpretation of the seasonal response to roads we ran separate 

models for each season-road class combination.  

Moose displayed a strong avoidance of roads of all types and crossed much less 

frequently than predicted by the null model (simulated CRWs) for most season-class 

combinations (Tables 3.1-3.2, Fig. 3.2-3.4). There were exceptions to this, however: moose 

showed no avoidance of class 4 roads in summer, minimal avoidance of class 6 roads in winter, 

and no response to class 6 roads in summer and fall (Table 3.2, Figs. 3.2-3.4). The null model 

predicted a linear increase in the crossing rate of roads of all classes with increasing road density 

within the buffered home range. In most season-class combinations, however, the actual crossing 

rate by moose was lower and increased at a lower rate with increasing road density than 

predicted by the null model (no road effect). As a result, model selection supported the saturated 

models for most seasons (Tables 3.2-3.3 (m1- rank 1), Figs. 3.2-3.4). In these season-road 

combinations at low road density, the crossing rate by moose was very low and similar to the 

null model, but as road density increased the difference in crossing rate between the simulated 

and real moose increased. The crossing rate for class 6 roads in winter and class 2 and 3 roads in 

fall were lower than predicted by the null model, but there was no difference in the rate of 

increase with increasing road density (Tables 3.2-3.3 (m2 rank 1), Figs. 3.2-3.4). The crossing 

rate of class 4 and 6 roads in summer and the crossing rate of class 6 roads in fall were not 

different than the null model ((Tables 3.2-3.3 (m3 rank 1), Figs. 3.2-3.4) indicating no avoidance 

of these road types during those seasons. Psedo- R2 values for crossing rate models were very 

good, indicating strong explanatory power. Psedo- R2 for fall class 6 roads model was 0.511, 
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while the Psedo- R2 for all other seasonal models ranged between 0.678 and 0.898. Moose also 

altered their rates of movement when crossing roads: step lengths for road crossings were greater 

than the 95th quantile of movements during all seasons (Fig. 3.5). 

3.5.3 Habitat Selection Relative to Road Network 

In Massachusetts, roads had a significant influence on habitat selection by moose. Global 

RSF models that included the interaction between habitat and road variables were the highest-

ranking models for all seasons and times of day (Tables 3.4-3.5). Models that did not include the 

road-habitat interaction, as well as the road-only and habitat-only models, received much less 

support. Additionally, multi-model inference indicated that there were seasonal and diel 

differences in the influence of the road and habitat components in predicting habitat selection 

patterns. The road network had a greater influence than cover type on diurnal habitat selection 

patterns in summer and fall and both diurnal and nocturnal habitat selection in winter. For these 

seasons-period combinations the roads only model performed much better than the habitat only 

model in predicting moose habitat selection (AIC w < 0.001 for habitat only models, when only 

the road-only and habitat-only models were considered). However, the influence of roads on 

nocturnal habitat selection in summer and fall was secondary to the influence of cover type (AIC 

w < 0.001 for road-only models, when only the road-only and habitat-only models were 

considered).  

There was also a difference in the magnitude of the road effect on diurnal and nocturnal 

habitat selection patterns. Model selection supported models with smaller spatial scaling during 

the day in summer and fall (500 and 1,000 m, respectively) compared to at night (1,500 m). 

Kernels created at smaller scale resulted in very strong road avoidance at close proximity to the 

roadway and resulted in probability of selection maps with very low probability of use close to 
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roads (Figs. 3.6-3.7). Models of the road affect created with larger scale kernels resulted in a 

much lower difference in the relative probability of selection close to versus far from roads, 

which is what occurred at night in summer and fall (Fig. 3.8).  

 Multi-model inference also supported the hypothesis that roads with greater traffic 

volumes and speeds of travel would have a greater negative impact on habitat selection adjacent 

to the roadway. Models with variable weighting by road class performed far better than equal 

weight models and road weights increased as expected with increasing class (Table 3.6). The 

effect of increased weights was to reduce the relative probability of selection adjacent to higher 

weighted roads. Road weights were similar for all seasons and diel periods, with the most 

variation being in the effect of class 6, forest, and low traffic volume (ADT < 10) roads. There 

was no effect (weight = 0) for class 6 roads in fall and at night in summer. The effect of these 

roads was 5 during the day in summer and 20 both day and night in winter.  

 K-fold cross validation showed good model fit, mean rs  of 0.741, 0.969, 0.970, 0.991, 

0.930, and 0.977 for summer day, summer night, fall day, fall night, winter day, and winter 

night, respectively.   

3.6 Discussion 

Roads had a clear two-fold influence on the movements and fine-scale habitat selection 

patterns of moose in the highly developed landscape of Massachusetts. Expected between-patch 

movements and, as a consequence, landscape connectivity were reduced, as was the overall area 

of suitable habitat. Moose tended to avoid roads and the areas adjacent to roads. Avoidance was 

positively related to disturbance intensity as indicated by the difference in strength of diurnal  

versus nocturnal road avoidance, and the increased weights for higher classed roads in RSF 

models. Additionally, the higher rates of movement moose exhibited when crossing roads 
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indicated that moose attempted to move as quickly as possible through developed portions of the 

landscape and reestablish a secure distance from roads after crossing. These results, combined 

with the coarse scale avoidance of areas of higher road density reported by Wattles and 

DeStefano (2013b), indicate that the road network is a strong determining factor of moose 

occurrence and movements in the state. 

There is general agreement that the avoidance that moose and other ungulates have of 

roads, developments, and human activity is akin to antipredator behavior and varies with the 

intensity of disturbance (Lima and Dill 1990, Frid and Dill 2002, Creel et al. 2005, Dodd et al. 

2007, Lykkja et al. 2009, Elgard et al. 2012, Leblond et al. 2013, Nuemann et al. 2013). 

However, attraction to roadways to exploit preferred habitat (e.g., timber harvest units or 

wetlands along roads; Dodd et al. 2007, Rea et al. 2010), avoid predators (Berger 2007, Laurian 

et al. 2012), or obtain rare resources (e.g., salt, young vegetation; Fraser and Thomas 1982, 

Miller and Litvaitis 1992, Laurian et al. 2008, Grosman et al. 2011) has also been reported. 

Laurian et al. (2012) reported greater avoidance of forest roads than of highways by moose in 

Quebec, revealing the complexity in the relationships between the avoidance of risk or 

disturbance and the influence of other factors in the behavior of wildlife. They attributed the 

greater use of highway verges to an attraction to sodium deposits associated with roadway de-

icing, as well as avoidance of predators by females with calves (see also Berger 2007). The 

avoidance of forest roads by moose was attributed to use by hunters and wolves. Despite the 

common reporting of attraction of moose to roadside salt licks to obtain sodium (Fraser and 

Thomas 1982, Miller and Litvaitis 1992, Laurian et al. 2008, Grosman et al. 2011), we did not 

observe this behavior in any of our moose. Additionally, moose in Massachusetts are free from 
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the selective pressure of predation by wolves (Canis lupus) or from human hunters. Therefore, 

the response to roads we documented was directly attributable to disturbance intensity.   

Depending on the diel period and the corresponding amount of vehicle traffic and human 

activity, roads and cover type (the two factors considered in our RSF models) influenced habitat 

selection in a hierarchical manner. This hierarchy provides insights into the manner in which 

roads influence moose behavior in a human dominated landscape. During the day, when the 

perceived safety risk associated with roads was greater, the road network was the main driver of 

moose habitat selection, determining what portions of the landscape moose considered suitable 

habitat. Within those suitable areas, selection was driven by cover types used to provide food, 

water, and shelter. At night, when human activity and traffic volumes were greatly reduced, the 

constraints on habitat selection by the road network were relaxed and cover type drove habitat 

selection, with the influence of roads a secondary consideration. The stronger avoidance during 

the day, when traffic rates are much higher, and support for RSF models with variable and 

increasing weight for roads with higher speed limits and traffic volumes, shows that the strength 

of road avoidance was positively correlated with disturbance intensity. The variable response in 

relation to risk intensity is consistent with the risk-disturbance hypothesis purported by Frid and 

Dill (2002).  

Movements, activity levels, and concealment cover near roads were factors that most 

affected seasonal differences in the influence of roads on moose habitat selection. During fall, 

when the rut drives moose behavior, moose showed lower daytime avoidance of roads and 

crossed major roads more readily than during summer or winter. In winter, when moose attempt 

to conserve energy reserves, moose greatly reduced their activity levels and movement rates in 

response to both metabolic constraints imposed by the low nutritional quality of their diet 
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(Schwartz and Renecker 2007, Wattles and DeStefano 2013b) and restrictions on mobility 

caused by deep or crusted snow (Cody 1974). At this time, the energy expenditure required to 

move between cover types close to and away from roads made those movements prohibitive.  

Consequently, the daytime avoidance of roads drove both diurnal and nocturnal habitat selection 

in winter. These energetic constraints were not present during summer and fall, and moose 

altered their habitat selection patterns in response to the change in disturbance intensity at night 

versus during the day. Additionally, the greater avoidance of even class 6 roads in winter may be 

linked to greater visibility and a resultant greater sense of vulnerability during the winter. A 

moose that was essentially invisible in the understory next to roads during the growing season 

would be visible much further from roads in winter. The result of this was that the amount of 

suitable habitat for moose in winter was greatly reduced compared to during the growing season. 

Animals are often forced to make choices in habitat selection in response to 

environmental factors that influence energy balance and survival. These choices often contain 

trade-offs in terms of costs and benefits: e.g., increased cover for better thermoregulation 

coupled with reduced forage quality, or increased forage quality but increased risk of predation 

(Lima and Dill 1990, Frid and Dill 2002, Creel et al. 2005). It thus follows that the choices 

animals make can provide insights into the roles of environmental factors in determining fitness 

for the individual. Rettie and Messier (2000) suggested that the scale (2nd order versus 3rd order; 

Johnson 1980) of these influences is related directly to the strength of the influence of the factor 

on fitness. Additionally, the limiting factors should continue to influence behavior until their 

influence becomes less than the next most important limiting factor.  

Moose avoidance of roads at both the home range and within home range scales is an 

indication that roads have an influence on moose fitness. However, the energetic costs associated 
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with moose road avoidance may have been minimal unless moose were denied access to 

resources because of road avoidance. If, however, they could obtain the same resources further 

from roads, but decreased the risk of being killed in a vehicle collision and reduced other 

negative impacts from roads (e.g., stress, vigilance), the only cost would be the energy expended 

to move away from the road. In winter, when moose avoided roads both during the day and at 

night and the costs associated with moving back and forth were high, there was a greater chance 

of there being an overall negative consequence to avoiding roads, as resources are not as 

plentiful and road avoidance essentially reduced the amount of suitable habitat available to 

moose. The choice of whether to use habitat close to roads is similar to the decision of whether 

or not to cross roads. Is the risk of a vehicle collision worth access to habitat patches available on 

the other side of the road?   

The results of the correlated random walk analysis showed that moose movements across 

the landscape were restricted by roads, and that movements among habitat patches were lower 

than expected based on the null models. However, compared to RSF analyses, there was a less 

obvious difference in the road-crossing rate in relation to disturbance intensity (i.e., traffic 

volume). Class 6 roads (i.e., lowest levels of traffic) were an exception to this, in that moose 

crossed these roads as predicted. Among roads with higher traffic volume (classes 2-5) there was 

slightly stronger avoidance of crossing roads with higher disturbance levels, but the difference 

was not as clear. 

Most roads in Massachusetts did not serve as complete barriers to movements as moose 

crossed roads of all classes. However, in several instances class 2 and 3 roads did serve as 

boundaries to moose home ranges (Fig. 9); in general, moose crossed these roads very 

infrequently and the roads themselves appeared to act as home range boundaries. This was 
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consistent with the avoidances of roads at the home range scale reported in Wattles and 

DeStefano (2013b). Interstate highways (class 1) roads were not located in or immediately 

adjacent to any moose home ranges in this study. This is primarily due to moose capture 

locations not being in close proximity to these roads and not necessarily a sign of a detectable 

avoidance by any of our study animals. However, given the extreme traffic volumes, speeds of 

travel, vehicle noise, and disproportionately high rate of moose-vehicle collisions on interstate 

highways compared to even state highways in Massachusetts (Wattles 2014; chapter 2), we 

expected that they may serve as strong barriers to movement.  

The high density of roads and high levels of fragmentation of the landscape in 

Massachusetts may force moose to cross roads that they would otherwise avoid. With very few 

exceptions, individual habitat blocks are not large enough to encompass an entire moose home 

range. State highways and high traffic roads bisect the landscape at a coarse scale, creating large 

blocks of habitat (Fig. 1). Typical moose home ranges consist of several of these larger blocks, 

with local, normally class 4, through-roads further fragmenting the larger blocks into smaller 

patches. As a result, in order to avoid higher-class roads, moose have no choice but to cross these 

local through-roads. This may be the reason we observed no difference in the crossing rate of 

class 4 roads by real versus simulated moose during summer, and is an indication that the 

magnitude of disturbance influenced crossing rate as well as habitat selection. Conversely, 

despite being relatively low traffic volume roads, moose avoided crossing class 5 roads to a 

greater extent. Moose may be able to avoid crossing these roads by moving around them, as they 

typically bisect smaller portions of the landscape.  

The results of our habitat selection analysis can be used to predict the relative probability 

of selection of habitat patches (Fig. 6-8). However, these predictions represent the suitability of 
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the patches taken in isolation from the overall landscape, are based only on the roads out to the 

scale of the analysis, and do not incorporate the likelihood of moose crossing roads to reach the 

patches. To determine how likely a patch is to be used, one would need to combine the results of 

the RSF modeling, the avoidance of road crossings indicated by the CRW analysis, and a 

cumulative effect of the fragmentation of an area. Our analysis did not specifically address the 

likelihood that moose would cross multiple roads to move between habitat blocks. However, 

given the evident reluctance to cross roads, it seems that moose would be less likely to traverse 

multiple roads and areas of high road density to access isolated habitat patches. Additionally, 

areas of higher fragmentation would represent less desirable areas at a home range scale, despite 

relatively high probability of selection of individual patches.   

In highly developed landscapes, facilitating wildlife movements among habitat patches is 

essential for conserving wildlife populations. Highway crossing structures have proven effective 

in assisting wildlife movements in places like the Trans Canada Highway between Banff and 

Jasper National Parks (Clevenger and Waltho 2000), where a single highway bisects intact 

habitat and multiple crossing structures have been built. However, in more developed landscapes 

achieving those levels of connectivity are extremely difficult. Nevertheless, even in highly 

developed areas, road crossing structures and underpasses have been shown to facilitate highway 

crossings and improve linkages on the landscape where they exist (Foster and Humphrey 1995, 

Poessel et al. 2014). 

3.7 Management Implications 

Habitat fragmentation caused by roads, as well as direct road effects, can influence how 

animals perceive and use a landscape. Understanding how road networks influence animal 

movements and habitat selection is essential for conservation planning in order to facilitate 
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animal movements, maintain landscape connectivity, and the availability of suitable habitat in 

increasingly human dominated landscapes.  

Urban sprawl and expanding road networks can have multiple negative impacts on 

animal movements and habitat selection by reducing landscape connectivity and the availability 

of suitable habitat. Attempts should be made to concentrate future development in already 

developed portions of the landscape and to limit further development in areas that separate larger 

blocks of contiguous habitat. New roads and developments in existing habitat blocks greatly 

reduce the amount of suitable habitat available to wildlife and have impacts that extend beyond 

the footprint of the development. Road and development avoidance may functionally eliminate 

blocks as suitable habitat if edge effects of the new road(s) merge with edge effects of roads 

bounding the block. Furthermore, new developments that provide a new link between existing 

roads may have a greater impact than cul-de-sacs, as they will serve as a new through-road with 

greater traffic volume. Infrastructure planners should also consider the impact of the 

“improvement” of unpaved or narrow local through roads. Moose displayed a greater willingness 

to cross local through-roads than major local arteries and state highways when moving about 

their home ranges. Widening or paving will likely increase speeds and traffic volumes, 

potentially increasing the negative effects of the roadway as well as habitat fragmentation. 

Where possible, highway crossing structures or underpasses that facilitate animal movements 

should be included in new road and highway projects and incorporated into improvements and 

upgrades of existing highways and bridges. 

 

 



 

134 

Tables 

Table 3.1 Frequency (number of days between road crossings) of road crossings by collared 
moose and simulated movement paths (CRW) for summer, fall, and winter. 
 
    Moose   CRW 

Class 

 

mean min max 

 

mean min max 

Summer 

2 

 

13.58 4.61 NEVER 

 

5.5 2.0 142.9 

3 

 

27.84 5.32 NEVER 

 

8.2 3.0 500.0 

4 

 

3.66 0.70 NEVER 

 

2.7 1.0 27.8 

5 

 

9.60 2.42 NEVER 

 

3.6 1.1 76.9 

6 

 

1.21 0.56 12.50 

 

1.4 0.6 5.0 

Fall 

2 

 

12.98 2.75 NEVER 

 

5.0 1.7 500.0 

3 

 

20.60 6.10 NEVER 

 

9.4 3.2 58.8 

4 

 

3.64 1.20 NEVER 

 

2.1 0.7 550.0 

5 

 

4.61 1.06 NEVER 

 

2.5 0.7 74.5 

6 

 

0.92 0.27 30.30 

 

1.0 0.3 3.4 

Winter 

2 

 

35.86 9.80 NEVER 

 

9.1 4.1 55.6 

3 

 

57.94 8.13 NEVER 

 

12.3 5.5 752.4 

4 

 

12.04 2.23 NEVER 

 

3.6 1.3 250.0 

5 

 

19.83 2.63 NEVER 

 

5.8 1.1 142.9 

6   2.59 0.72 32.26   2.0 0.7 9.6 
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Table 3.2 Model coefficients (β) and standard errors (SE) for best models comparing the road-crossing rate of class 2 to 6 roads in 
winter, summer, and fall, of real and simulated moose in Massachusetts, USA and adjacent parts of Vermont and New Hampshire, 
from 2006 to 2011. 
 
  class 2   class 3   class 4   class 5   class 6 

  β SE   β SE   Β SE   β SE   β SE 

Winter  

            

a 

Intercept -0.018 0.019 

 

0.005 0.016 

 

-0.036 0.028 

 

0.024 0.032 

 

-0.014 0.106 

road density 0.873 0.124 

 

0.810 0.144 

 

0.949 0.073 

 

0.681 0.092 

 

0.768 0.153 

moose 0.023 0.018 

 

-0.016 0.018 

 

0.015 0.040 

 

0.000 0.025 

 

-0.058 0.024 

density*moose -0.721 0.119 

 

-0.517 0.164 

 

-0.632 0.102 

 

-0.538 0.084 

   
               Summer 

   

b 

         Intercept 0.062 0.019 

 

-0.005 0.044 

 

-0.048 0.105 

 

-0.004 0.033 

 

0.172 0.133 

road density 0.720 0.092 

 

1.194 0.371 

 

0.776 0.154 

 

1.179 0.101 

 

0.869 0.185 

moose -0.027 0.025 

 

0.040 0.041 

    

-0.015 0.031 

   density*moose -0.492 0.119 

 

-0.527 0.430 

    

-0.671 0.103 

   
               Fall c 

 

d 
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Intercept 0.068 0.052 

 

-0.017 0.036 

 

0.026 0.079 

 

-0.053 0.107 

 

0.360 0.204 

road density 0.869 0.419 

 

1.772 0.416 

 

1.577 0.218 

 

1.667 0.287 

 

0.956 0.285 

moose -0.102 0.033 

 

-0.041 0.008 

 

-0.030 0.065 

 

0.003 0.070 

   density*moose -0.159 0.117         -0.624 0.179   -0.702 0.203       

               a Coefficients and SE based on model averaging of m2 and m3 (final w = 0.506 and 0.494, respectively) 

   b Coefficients and SE based on model averaging of m1 and m2 (final w = 0.601 and 0.399, respectively) 

   c Coefficients and SE based on model averaging of m1 and m2 (final w = 0.307 and 0.693, respectively) 

   d Coefficients and SE based on model averaging of m2 and m3 (final w = 0.697 and 0.303, respectively) 
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Table 3.3 Comparison of candidate models predicting the road-crossing rate of class 2 to 6 roads by real and simulated moose for all 
season-class combinations in Massachusetts, USA and adjacent parts of Vermont and New Hampshire, from 2006 to 2011. Model 
structure for m1 = Road density + Moose + Density * Moose, m2 = Road density + Moose, and m3 = Road density, all models 
included a random intercept for individual moose to pair the actual and simulated crossing rates for each moose. Included are the 
difference in Akaike information criteria for small sample sizes (AICc∆), AIC weight (w), and Model Rank. 
 
  class 2   class 3    class4   class5   class 6 

 

AICc∆ w rank 

 

AICc∆ w rank 

 

AICc∆ w rank 

 

AICc∆ w rank 

 

AICc∆ w rank 

Winter 

                   m1 0 1 1 

 

0 0.716 1 

 

0 1 1 

 

0 1 1 

 

4.6 0.049 3 

m2 21.2 <0.001 2 

 

1.9 0.284 2 

 

23.3 <0.001 2 

 

21.2 <0.001 2 

 

0 0.481 1 

m3 

                

0 0.470 2 

                    Summer 

                   m1 0 0.983 1 

 

0 0.601 1 

 

6 0.036 3 

 

0 1 1 

 

7.3 0.023 3 

m2 8.2 0.017 2 

 

0.8 0.399 2 

 

2 0.256 2 

 

21 <0.001 2 

 

4.3 0.103 2 

m3 

        

0 0.708 1 

     

0 0.874 1 

                    Fall 
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m1 1.6 0.306 2 

 

9 0.008 3 

 

0 0.929 1 

 

0 0.920 1 

 

7 0.026 3 

m2 0 0.693 1 

 

0 0.691 1 

 

5.2 0.071 2 

 

4.9 0.081 2 

 

4.4 0.098 2 

m3 13 0.001 3   1.7 0.301 2                   0 0.876 1 
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Table 3.4 Comparison of candidate RSF models used to predict habitat selection of moose in Massachusetts, USA and adjacent parts 
of Vermont and New Hampshire, from 2006 to 2011.  Included are the difference in Akaike information criteria (AIC∆), AIC weight 
(w), and Model Rank. The habitat only model included a random intercept for individual; all other models included a random intercept 
for individual and a random slope for roads. 
 
  Summer   Fall   Winter 

  ΔAIC w Rank   ΔAIC w Rank   ΔAIC w Rank 

Day 

           Road * Habitat 0 1 1 

 

0 1 1 

 

0 1 1 

Road + Habitat 144.2 <0.001 2 

 

40.2 <0.001 2 

 

57.4 <0.001 2 

Road 3104.7 <0.001 3 

 

1915.5 <0.001 3 

 

2041.7 <0.001 3 

Habitat 4032.8 <0.001 4 

 

3065.5 <0.001 4 

 

6753.7 <0.001 4 

Night 

           Road * Habitat 0 1 1 

 

0 1 1 

 

0 1 1 

Road + Habitat 72.4 <0.001 2 

 

58.1 <0.001 2 

 

52.6 <0.001 2 

Road 5334.4 <0.001 4 

 

4435.9 <0.001 4 

 

3288 <0.001 3 

Habitat 2518.3 <0.001 3   3084.5 <0.001 3   7557.1 <0.001 4 
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Table 3.5 Model coefficients (β) and standard errors (SE) for final resource selection functions 
modeling on seasonal day and night time moose habitat selection in Massachusetts, USA and 
adjacent parts of Vermont and New Hampshire, from 2006 to 2011. 
 
  Summer    Fall    Winter  

Parameter β SE   β SE   β SE 

Day 

Intercept -0.220 0.156 

 

-0.911 0.151 

 

-0.004 0.140 

Con 0.157 0.045 

 

-0.006 0.064 

 

0.723 0.041 

Mix -0.268 0.044 

 

-0.403 0.061 

 

0.457 0.039 

Other -1.858 0.241 

 

-1.597 0.409 

 

-1.644 0.271 

Reg 0.613 0.040 

 

0.706 0.053 

 

0.830 0.039 

WO -0.096 0.067 

 

-0.079 0.088 

 

-0.939 0.081 

WW 1.259 0.048 

 

1.331 0.063 

 

0.811 0.049 

Road -24.732 4.657 

 

-28.059 5.007 

 

-24.337 3.598 

Con * Road 0.527 0.980 

 

2.707 1.627 

 

-0.565 0.981 

Mix * Road 1.615 0.943 

 

2.173 1.632 

 

-0.868 0.939 

Other * Road -2.124 1.603 

 

-7.611 5.446 

 

-2.700 2.026 

Reg * Road 5.649 0.879 

 

-1.181 1.466 

 

3.754 0.913 

WO * Road 9.541 1.139 

 

9.138 1.805 

 

2.958 1.513 

WW * Road 2.668 0.982 

 

1.949 1.540 

 

0.917 1.073 

Night 

Intercept -0.799 0.180 

 

-1.257 0.181 

 

0.126 0.147 

Con -0.506 0.074 

 

-0.443 0.088 

 

0.720 0.040 

Mix -0.649 0.068 

 

-0.629 0.081 

 

0.517 0.038 
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Other 0.384 0.159 

 

0.775 0.195 

 

-0.857 0.185 

Reg 1.332 0.054 

 

1.789 0.062 

 

1.235 0.038 

WO 0.812 0.081 

 

1.099 0.088 

 

-0.722 0.074 

WW 0.870 0.072 

 

1.223 0.080 

 

0.655 0.048 

Road -19.070 5.172 

 

-24.772 5.254 

 

-25.630 6.047 

Con * Road 1.948 1.474 

 

2.162 1.998 

 

-0.904 0.937 

Mix * Road 1.835 1.411 

 

0.299 1.975 

 

0.787 0.871 

Other * Road -5.729 1.876 

 

-11.620 2.803 

 

-2.000 1.477 

Reg * Road 5.692 1.166 

 

-4.152 1.532 

 

3.626 0.864 

WO * Road 5.043 1.495 

 

4.990 1.897 

 

2.032 1.440 

WW * Road 0.079 1.445   -1.270 1.803   0.113 1.037 
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Table 3.6 Final weights assigned to five roads classes (class 2, 3, 4, 5, and 6, respectively) and 
the scale (smoothing parameter – h (m)) used to create kernel density surfaces representing the 
road effect on seasonal day and night time moose habitat selection in Massachusetts, USA and 
adjacent parts of Vermont and New Hampshire, from 2006 to 2011. 
 
  Weights Scale 

Day 

  Summer 100 - 85- 65 - 40 - 5 500 

Fall 100 - 85 - 60 - 40 - 0 1000 

Winter 100 - 80 - 60 - 40 - 20 500 

Night 

  Summer 100 - 85 - 60 - 40 - 0 1500 

Fall 100 - 85 - 60 - 40 - 0 1500 

Winter 100 - 80 - 60 - 40 - 20 500 
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Figures 

 
Figure 3.1 The road network (top) and estimated average daily traffic (ADT) on the road network 
in Massachusetts, USA. 

 



 

144 

Figure 3.2 Comparison of road crossing rates versus road density (km/km2) in winter by real and simulated (correlated random walk 
(CRW)) moose in Massachusetts, USA and adjacent parts of Vermont and New Hampshire, from 2006 to 2011. Real moose are 
represented by triangles and a dashed line, simulated moose with circles and a solid line. 
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Figure 3.3 Comparison of road crossing rates versus road density (km/km2) in summer by real and simulated (correlated random walk 
(CRW)) moose in Massachusetts, USA and adjacent parts of Vermont and New Hampshire, from 2006 to 2011. Real moose are 
represented by triangles and a dashed line, simulated moose with circles and a solid line. 
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Figure 3.4 Comparison of road crossing rates versus road density (km/km2) in fall by real and simulated (correlated random walk 
(CRW)) moose in Massachusetts, USA and adjacent parts of Vermont and New Hampshire, from 2006 to 2011.. Real moose are 
represented by triangles and a dashed line, simulated moose with circles and a solid line. 
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Figure 3.5 Mean (+/- standard error) length of movement steps when moose crossing roads of class 2 to 6 compared to the  mean and 
95th quantile of all seasonal movements including road crossings by moose in Massachusetts, USA and adjacent parts of Vermont and 
New Hampshire, from 2006 to 2011. 
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Figure 3.6 The relative probability of selection of the landscape in Massachusetts relative to the road network during the day in 
summer based on the results of the Road only model for that period. Black rectangle represents the enlarged area depicted in Figures 
3.7 and 3.8 for comparison of seasonal and diel patterns of selection relative to roads. 
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Figure 3.7 The road network (upper right; heavy lines are state highways, solid lines are public roads, and dashed lines forest roads) 
and seasonal daytime relative probability of use based on Road only resource selection functions for summer (upper right), fall (lower 
left), and winter (lower right). 

 

 



 

150 

Figure 3.8 The road network (upper right; heavy lines are state highways, solid lines are public roads, and dashed lines forest roads) 
and seasonal nighttime relative probability of use based on Road only resource selection functions for summer (upper right), fall 
(lower left), and winter (lower right). 
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APPENDIX A 

MODEL RESULTS FOR RESOURCE SELECTION FUNCTION MODELING FOR MOOSE IN CENTRAL 
MASSACHUSETTS. REFERENCE CATEGORY FOR COVER TYPE WAS DECIDUOUS FOREST. 

 
 
 
Variable Beta SE z-value P-value   Variable Beta SE z-value P-value 

     

 

Spring day 

  

Spring night 

Intercept -3.108 0.220 -14.10 < 2e-16 

 

Intercept -3.485 0.204 -17.085 < 2e-16 

           Conifer -0.129 0.150 -0.86 0.391 

 

Conifer -0.417 0.174 -2.391 0.017 

Mixed -0.343 0.153 -2.24 0.025 

 

Mixed -0.265 0.166 -1.599 0.110 

Regen 1.460 0.132 11.06 < 2e-16 

 

Regen 1.462 0.136 10.739 < 2e-16 

Wwet -0.206 0.159 -1.29 0.197 

 

Wwet -0.206 0.182 -1.132 0.258 

Owet -2.039 0.287 -7.10 0.000 

 

Owet -2.135 0.314 -6.797 0.000 

Other -0.962 0.362 -2.66 0.008 

 

Other -0.348 0.251 -1.385 0.166 

           AmbTemp -0.017 0.008 -2.08 0.038 

 

AmbTemp -0.012 0.013 -0.949 0.343 

           ConiferxTemp 0.056 0.010 5.77 0.000 

 

ConiferxTemp 0.039 0.016 2.348 0.019 
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MixedxTemp 0.028 0.010 2.81 0.005 

 

MixedxTemp 0.007 0.016 0.464 0.643 

RegenxTemp -0.037 0.009 -4.15 0.000 

 

RegenxTemp -0.008 0.013 -0.574 0.566 

WetxTemp 0.100 0.010 10.03 < 2e-16 

 

WetxTemp 0.092 0.016 6.505 0.000 

OwetxTemp 0.110 0.016 6.86 0.000 

 

OwetxTemp 0.158 0.024 5.621 0.000 

OtherxTemp -0.067 0.029 -2.33 0.020 

 

OtherxTemp -0.013 0.025 -0.523 0.601 

 
    

  
    

 

Summer day 

  

Summer night 

Intercept -2.849 0.262 -10.88 < 2e-16 

 

Intercept -3.918 0.393 -9.977 < 2e-16 

           Conifer -0.428 0.256 -1.67 0.094 

 

Conifer -0.932 0.469 -1.985 0.047 

Mixed -0.009 0.256 -0.04 0.972 

 

Mixed -1.543 0.526 -2.933 0.003 

Regen 2.030 0.216 9.38 < 2e-16 

 

Regen 2.532 0.367 6.892 0.000 

Wwet -0.082 0.242 -0.34 0.735 

 

Wwet 0.067 0.419 0.161 0.872 

Owet 0.271 0.273 0.99 0.321 

 

Owet 1.018 0.411 2.481 0.013 

Other -0.550 0.954 -0.58 0.565 

 

Other 0.893 0.500 1.787 0.074 

           AmbTemp -0.003 0.010 -0.34 0.737 

 

AmbTemp -0.006 0.021 -0.298 0.765 

           ConiferxTemp 0.034 0.012 2.82 0.005 

 

ConiferxTemp 0.059 0.028 2.148 0.032 
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MixedxTemp -0.009 0.012 -0.70 0.484 

 

MixedxTemp 0.048 0.031 1.563 0.118 

RegenxTemp -0.044 0.010 -4.31 0.000 

 

RegenxTemp -0.013 0.022 -0.593 0.553 

WetxTemp 0.085 0.011 7.57 0.000 

 

WetxTemp 0.093 0.025 3.782 0.000 

OwetxTemp 0.030 0.013 2.38 0.017 

 

OwetxTemp 0.063 0.024 2.574 0.010 

OtherxTemp -0.119 0.050 -2.36 0.018 

 

OtherxTemp -0.025 0.030 -0.829 0.407 

 
    

  
    

 

Fall day 

  

Fall night 

Intercept -3.515 0.191 -18.41 < 2e-16 

 

Intercept -3.730 0.183 -20.330 < 2e-16 

           Conifer 0.064 0.169 0.38 0.707 

 

Conifer -0.529 0.184 -2.873 0.004 

Mixed -0.055 0.166 -0.33 0.741 

 

Mixed -0.532 0.171 -3.117 0.002 

Regen 1.755 0.138 12.73 < 2e-16 

 

Regen 2.164 0.126 17.129 < 2e-16 

Wwet 1.186 0.155 7.66 0.000 

 

Wwet 1.018 0.150 6.807 0.000 

Owet 0.318 0.206 1.55 0.122 

 

Owet 0.747 0.163 4.583 0.000 

Other -0.553 0.517 -1.07 0.285 

 

Other 0.428 0.211 2.033 0.042 

           AmbTemp 0.035 0.008 4.60 0.000 

 

AmbTemp 0.029 0.010 2.928 0.003 

           ConiferxTemp -0.008 0.010 -0.76 0.448 

 

ConiferxTemp -0.008 0.015 -0.538 0.591 
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MixedxTemp -0.025 0.010 -2.50 0.012 

 

MixedxTemp -0.019 0.014 -1.355 0.176 

RegenxTemp -0.079 0.008 -9.40 < 2e-16 

 

RegenxTemp -0.050 0.010 -4.834 0.000 

WetxTemp 0.012 0.009 1.35 0.176 

 

WetxTemp 0.025 0.012 2.125 0.034 

OwetxTemp -0.015 0.012 -1.17 0.243 

 

OwetxTemp 0.037 0.013 2.875 0.004 

OtherxTemp -0.197 0.048 -4.14 0.000 

 

OtherxTemp -0.104 0.020 -5.065 0.000 

           

 

Early winter day 

  

Early winter night 

Intercept -3.102 0.184 -16.88 < 2e-16 

 

Intercept -2.862 0.177 -16.145 < 2e-16 

           Conifer 0.284 0.063 4.47 0.000 

 

Conifer 0.101 0.057 1.761 0.078 

Mixed 0.362 0.059 6.16 0.000 

 

Mixed 0.550 0.050 10.976 < 2e-16 

Regen 1.004 0.054 18.44 < 2e-16 

 

Regen 1.448 0.046 31.260 < 2e-16 

Wwet 0.701 0.070 10.06 < 2e-16 

 

Wwet 0.782 0.058 13.429 < 2e-16 

Owet -1.204 0.146 -8.27 < 2e-16 

 

Owet -0.914 0.107 -8.544 < 2e-16 

Other -3.325 0.367 -9.06 < 2e-16 

 

Other -2.257 0.188 -11.988 < 2e-16 

           AmbTemp 0.018 0.007 2.44 0.015 

 

AmbTemp 0.018 0.007 2.622 0.009 

           ConiferxTemp -0.023 0.009 -2.40 0.016 

 

ConiferxTemp -0.051 0.009 -5.623 0.000 
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MixedxTemp -0.027 0.009 -3.08 0.002 

 

MixedxTemp -0.033 0.008 -4.180 0.000 

RegenxTemp -0.039 0.008 -4.83 0.000 

 

RegenxTemp -0.020 0.007 -2.705 0.007 

WetxTemp 0.059 0.010 5.24 0.000 

 

WetxTemp 0.036 0.009 4.036 0.000 

OwetxTemp 0.092 0.017 6.08 0.000 

 

OwetxTemp 0.065 0.016 4.106 0.000 

OtherxTemp 0.018 0.052 0.35 0.727 

 

OtherxTemp 0.037 0.029 1.266 0.205 

           

 

Late winter day 

  

Late winter night 

Intercept -1.910 0.749 -2.55 0.011 

 

Intercept -2.270 0.165 -13.790 < 2e-16 

           Conifer 0.438 0.047 9.26 < 2e-16 

 

Conifer 0.243 0.047 5.201 0.000 

Mixed 0.285 0.045 6.27 0.000 

 

Mixed 0.229 0.044 5.194 0.000 

Regen 0.952 0.042 22.87 < 2e-16 

 

Regen 1.061 0.040 26.453 < 2e-16 

Wwet 0.452 0.055 8.23 < 2e-16 

 

Wwet 0.220 0.054 4.055 0.000 

Owet -1.614 0.125 -12.90 < 2e-16 

 

Owet -1.271 0.095 -13.363 < 2e-16 

Other -2.654 0.191 -13.87 < 2e-16 

 

Other -1.832 0.118 -15.512 < 2e-16 

           AmbTemp 0.005 0.005 1.05 0.294 

 

AmbTemp 0.032 0.005 6.178 0.000 

           ConiferxTemp 0.002 0.006 0.27 0.791 

 

ConiferxTemp -0.037 0.006 -5.881 0.000 
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MixedxTemp -0.015 0.006 -2.48 0.013 

 

MixedxTemp -0.035 0.006 -5.756 0.000 

RegenxTemp -0.032 0.006 -5.58 0.000 

 

RegenxTemp -0.041 0.006 -7.392 0.000 

WetxTemp 0.047 0.007 6.57 0.000 

 

WetxTemp 0.010 0.008 1.328 0.184 

OwetxTemp 0.068 0.014 4.95 0.000 

 

OwetxTemp 0.060 0.014 4.242 0.000 

OtherxTemp 0.057 0.022 2.58 0.010   OtherxTemp 0.105 0.017 6.239 0.000 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

157 

APPENDIX B 

MODEL RESULTS FOR RESOURCE SELECTION FUNCTION MODELING FOR MOOSE IN WESTERN 
MASSACHUSETTS. REFERENCE CATEGORY FOR COVER TYPE WAS DECIDUOUS FOREST. 

 
 
Variable Beta SE z-value P-value   Variable Beta SE z-value P-value 

     

 

Spring day 

  

Spring night 

Intercept -2.037 0.189 -10.77 < 2e-16 

 

Intercept -2.477 0.192 -12.93 < 2e-16 

           Conifer -1.539 0.142 -10.86 < 2e-16 

 

Conifer -2.074 0.210 -9.86 < 2e-16 

Mixed -1.291 0.121 -10.66 < 2e-16 

 

Mixed -0.923 0.125 -7.37 0.000 

Regen -0.304 0.104 -2.93 0.003 

 

Regen -0.267 0.100 -2.69 0.007 

Wwet -0.781 0.126 -6.19 0.000 

 

Wwet -1.455 0.175 -8.33 < 2e-16 

Owet -2.145 0.286 -7.50 0.000 

 

Owet -1.649 0.245 -6.74 0.000 

Other -15.595 513.127 -0.03 0.976 

 

Other -4.527 1.063 -4.26 0.000 

           AmbTemp -0.031 0.005 -6.27 0.000 

 

AmbTemp -0.024 0.007 -3.53 0.000 

           ConiferxTemp 0.056 0.009 6.02 0.000 

 

ConiferxTemp 0.015 0.020 0.74 0.459 

MixedxTemp 0.047 0.008 5.78 0.000 

 

MixedxTemp -0.013 0.013 -1.04 0.301 
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RegenxTemp -0.003 0.008 -0.40 0.688 

 

RegenxTemp 0.030 0.009 3.22 0.001 

WetxTemp 0.085 0.008 10.48  < 2e-16 

 

WetxTemp 0.093 0.014 6.63 0.000 

OwetxTemp 0.085 0.017 4.89 0.000 

 

OwetxTemp 0.112 0.019 5.89 0.000 

OtherxTemp -0.560 235.484 0.00 0.998 

 

OtherxTemp 0.081 0.082 0.99 0.324 

           

 

Summer day 

  

Summer night 

Intercept -1.896 0.218 -8.69 < 2e-16 

 

Intercept -3.537 0.318 -11.11 < 2e-16 

           Conifer -1.068 0.254 -4.21 0.000 

 

Conifer -0.267 0.501 -0.53 0.594 

Mixed -1.023 0.247 -4.14 0.000 

 

Mixed -0.423 0.462 -0.92 0.360 

Regen 1.319 0.201 6.56 0.000 

 

Regen 2.374 0.308 7.72 0.000 

Wwet -0.836 0.251 -3.34 0.001 

 

Wwet 0.667 0.419 1.59 0.111 

Owet 1.830 0.290 6.31 0.000 

 

Owet 2.778 0.359 7.74 0.000 

Other 2.022 1.737 1.16 0.244 

 

Other -0.479 1.062 -0.45 0.652 

           AmbTemp -0.018 0.009 -2.10 0.035 

 

AmbTemp 0.010 0.018 0.56 0.575 

           ConiferxTemp 0.061 0.013 4.85 0.000 

 

ConiferxTemp -0.023 0.031 -0.75 0.453 

MixedxTemp 0.045 0.012 3.69 0.000 

 

MixedxTemp -0.013 0.028 -0.48 0.634 
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RegenxTemp -0.020 0.010 -1.92 0.055 

 

RegenxTemp -0.008 0.019 -0.41 0.684 

WetxTemp 0.091 0.015 7.42 0.000 

 

WetxTemp 0.003 0.025 0.14 0.892 

OwetxTemp -0.054 0.012 -3.55 0.000 

 

OwetxTemp -0.042 0.022 -1.93 0.054 

OtherxTemp -0.382 0.137 -2.78 0.005 

 

OtherxTemp -0.039 0.065 -0.60 0.547 

           

 

Fall day 

  

Fall night 

Intercept -3.076 0.208 -14.81 < 2e-16 

 

Intercept -3.521 0.194 -18.19 < 2e-16 

           Conifer 0.139 0.130 1.07 0.285 

 

Conifer 0.239 0.129 1.85 0.065 

Mixed -0.158 0.131 -1.20 0.229 

 

Mixed -0.134 0.131 -1.02 0.308 

Regen 1.422 0.103 13.77 < 2e-16 

 

Regen 2.073 0.096 21.54 < 2e-16 

Wwet 0.098 0.133 0.73 0.465 

 

Wwet 0.350 0.139 2.51 0.012 

Owet -0.515 0.221 -2.33 0.020 

 

Owet 0.693 0.155 4.46 0.000 

Other -3.597 1.215 -2.96 0.003 

 

Other -1.300 0.379 -3.43 0.001 

           AmbTemp 0.013 0.007 1.89 0.059 

 

AmbTemp 0.029 0.008 3.47 0.001 

           ConiferxTemp -0.024 0.010 -2.32 0.020 

 

ConiferxTemp -0.055 0.013 -4.12 0.000 

MixedxTemp -0.027 0.010 -2.59 0.010 

 

MixedxTemp -0.047 0.013 -3.49 0.000 
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RegenxTemp -0.058 0.008 -7.09 0.000 

 

RegenxTemp -0.045 0.009 -4.82 0.000 

WetxTemp 0.065 0.009 2.14 0.000 

 

WetxTemp 0.030 0.013 2.34 0.019 

OwetxTemp 0.034 0.016 6.87 0.032 

 

OwetxTemp 0.032 0.014 2.30 0.022 

OtherxTemp -0.029 0.096 -0.30 0.764 

 

OtherxTemp -0.018 0.037 -0.48 0.629 

           

 

Early winter day 

  

Early winter night 

Intercept -2.927 0.223 -13.11 < 2e-16 

 

Intercept -2.549 0.222 -11.49 < 2e-16 

           Conifer 0.759 0.051 14.81 < 2e-16 

 

Conifer 0.663 0.044 15.02 < 2e-16 

Mixed 0.287 0.052 5.48 0.000 

 

Mixed 0.310 0.044 6.98 0.000 

Regen 0.601 0.051 11.86 < 2e-16 

 

Regen 0.909 0.041 21.95 < 2e-16 

Wwet 0.463 0.065 7.07 0.000 

 

Wwet 0.493 0.054 9.20 < 2e-16 

Owet -0.632 0.125 -5.05 0.000 

 

Owet -0.097 0.081 -1.20 0.230 

Other -5.254 1.124 -4.68 0.000 

 

Other -4.626 0.750 -6.17 0.000 

           AmbTemp 0.004 0.006 0.72 0.473 

 

AmbTemp 0.005 0.005 0.98 0.325 

           ConiferxTemp -0.008 0.007 -1.02 0.307 

 

ConiferxTemp -0.031 0.007 -4.83 0.000 
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MixedxTemp -0.030 0.008 -4.00 0.000 

 

MixedxTemp -0.024 0.007 -3.58 0.000 

RegenxTemp -0.013 0.007 -1.79 0.073 

 

RegenxTemp 0.009 0.006 1.43 0.151 

WetxTemp 0.054 0.009 5.93 0.000 

 

WetxTemp 0.011 0.008 1.42 0.157 

OwetxTemp 0.106 0.016 6.76 0.000 

 

OwetxTemp 0.085 0.012 6.90 0.000 

OtherxTemp 0.046 0.155 0.30 0.767 

 

OtherxTemp 0.207 0.103 2.01 0.045 

           

 

Late winter day 

  

Late winter night 

Intercept -2.422 0.210 -11.53 < 2e-16 

 

Intercept -2.240 0.212 -10.56 < 2e-16 

           Conifer 1.088 0.039 27.89 < 2e-16 

 

Conifer 1.021 0.041 25.20 < 2e-16 

Mixed 0.661 0.039 16.74 < 2e-16 

 

Mixed 0.661 0.040 16.39 < 2e-16 

Regen 0.426 0.041 10.29 < 2e-16 

 

Regen 0.534 0.042 12.83 < 2e-16 

Wwet 0.903 0.047 19.14 < 2e-16 

 

Wwet 0.878 0.048 18.41 < 2e-16 

Owet -1.108 0.112 -9.92 < 2e-16 

 

Owet -1.058 0.112 -9.48 < 2e-16 

Other -5.557 1.078 -5.16 0.000 

 

Other -4.623 0.638 -7.24 0.000 

           AmbTemp 0.004 0.004 0.98 0.326 

 

AmbTemp 0.031 0.004 7.35 0.000 
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ConiferxTemp -0.032 0.005 -6.59 0.000 

 

ConiferxTemp -0.062 0.005 -12.28 < 2e-16 

MixedxTemp 0.002 0.005 0.39 0.695 

 

MixedxTemp -0.018 0.005 -3.46 0.001 

RegenxTemp -0.016 0.005 -3.19 0.001 

 

RegenxTemp -0.034 0.005 -6.35 0.000 

WetxTemp 0.046 0.005 8.63 < 2e-16 

 

WetxTemp 0.007 0.006 1.20 0.230 

OwetxTemp -0.029 0.014 -2.06 0.040 

 

OwetxTemp -0.033 0.013 -2.45 0.014 

OtherxTemp 0.133 0.075 1.77 0.076 

 

OtherxTemp 0.107 0.078 1.37 0.171 
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