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ABSTRACT

SEARCH FOR CONTACT INTERACTIONS AND LARGE
EXTRA DIMENSIONS IN DIMUON EVENTS FROM pp

COLLISIONS AT
√

s = 8 TEV WITH THE ATLAS
DETECTOR

FEBRUARY 2015

TÜLİN VAROL

B.Sc., BOĞAZİÇİ UNIVERSITY, ISTANBUL, TURKEY

Ph.D., UNIVERSITY OF MASSACHUSETTS, AMHERST

Directed by: Professor Stéphane Willocq

A search is conducted for non-resonant new phenomena in the dimuon final states,

originating from either contact interactions or large extra spatial dimensions. The

proton-proton collision data recorded by the ATLAS detector at the LHC in 2012 at

√
s = 8 TeV, corresponding to an integrated luminosity of 20.5 fb−1, is used. The

dimuon invariant mass spectrum is a discriminating variable in both searches, with the

contact interaction search additionally utilizing the dimuon forward-backward asym-

metry. No significant deviations from the Standard Model expectation are observed.

Lower limits are set on the new physics parameters of interest at 95% credibility level.

For qqµµ contact interactions, lower limits are set on the contact interaction scale Λ

between 11.8 and 20.5 TeV. Lower limits are also set on the string scale MS for large

extra spatial dimensions, from 2.8 TeV to 4.4 TeV. Results from the muon channel

are combined with the electron channel to further extend the range of the lower limits

vii



on the contact interaction scale Λ to 15.4-26.3 TeV and the range of the lower limits

on the string scale MS to 3.2-5.0 TeV. The lower limits both on Λ and MS are the

most stringent limits to date.
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INTRODUCTION

The Standard Model has been successful in explaining the experimental obser-

vations in particle physics so far. However, the Standard Model is not the ultimate

theory and suffers from many deficiencies since it offers no explanation for puzzles such

as the hierarchy problem, the matter/antimatter asymmetry, the origin of the free

parameters of the Standard Model, the number of quark/lepton families, etc. These

important shortcomings are the motivation to explore physics beyond the Standard

Model. In pursuit of that, contact interactions and Arkani-Hamed, Dimopoulos and

Dvali large extra dimensions model are considered as effective frameworks for new

physics searches.

This thesis presents a search for four-fermion contact interactions and large ex-

tra dimensions in the dimuon channel (qqµµ), based on the data collected with the

ATLAS detector in 2012. The first chapter describes the Standard Model, mostly

focusing on the electroweak interaction. The theoretical motivations for the proposed

models are also discussed here which is followed by the discussion of the parton distri-

bution functions. The design and layout of the experimental setup is given in Chapter

2. It begins with the description of the LHC and continues with the detailed descrip-

tion of the ATLAS detector, focusing on the Muon Spectrometer. The discussion of

muon reconstruction algorithms as well as the discussion of the muon reconstruction

performance are also given. Data taking with the ATLAS detector is included at the

end of the chapter. Chapter 3 begins with the discussion of Monte Carlo simulation

strategies and event reconstruction in ATLAS. The 2012 data, background and signal

MC samples used in this analysis are listed here. Then the corrections made to sim-

ulated samples are discussed. Chapter 4 is devoted to the description of the selection
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criteria applied to select muons and dimuon events in this analysis. Event yields and

kinematic distributions are shown. Chapter 5 presents the theoretical and experimen-

tal uncertainties that are considered in this analysis in detail. Chapter 6 begins with

the introduction of the Bayes’ Theorem. It is then followed by the discussion of the

methods that are used to check consistency between data and the SM expectation.

Since no significant excess of data is observed above the SM background, the the-

sis proceeds with a discussion of the expected and observed limit setting procedures

using a Bayesian approach. Chapter 7 presents the resulting limits for the contact

interaction and ADD large extra dimension searches. The combination of limits with

the electron channel is also discussed. Finally, the conclusion is given in Chapter 8.
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CHAPTER 1

THEORETICAL BACKGROUND

This chapter begins with the introduction of the Standard Model of particle

physics. It is followed by the discussion of the physics beyond the Standard Model in-

cluding contact interactions and large extra dimensions. Finally, parton distribution

functions are introduced.

1.1 Standard Model

The Standard Model (SM) is a gauge theory that characterizes all of the known

fundamental particles and describes the electromagnetic, strong and weak interactions

between them. By using the gauge symmetry group SU(3)C x SU(2)L x U(1)Y and

the concepts of a relativistic quantum field theory (QFT) in which the particles are

represented by fields, the SM incorporates quantum chromodynamics (the theory of

the strong interaction) and electroweak interactions. The SM has been tested in many

experiments and the predictions of the SM are verified with high precision.

1.1.1 Fundamental Particles

The fundamental particles of the SM are categorized as fermions (with half-integer

spin: 1
2
, 3

2
, 5

2
, ...) and bosons (with integer spin: 0, 1, 2, ...).

Fermions with spin-1
2

are the fundamental constituents of matter and the interac-

tions between them are mediated by gauge bosons with integer spin. Each particle

from the fermion group has an antiparticle counterpart with the same mass and spin

but opposite electric charge. Fermions are categorized into three generations (or
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families) of quarks (q) and leptons (charged: `, neutral: ν). The first generation

of quarks and charged leptons is composed of the lightest and most stable particles,

whereas the heavier and less stable particles belong to the second and third gener-

ations. Since heavier particles quickly decay to the next most stable level, the first

generation particles make all stable matter in the universe.

Leptons: There are six leptons in total, each with their antilepton counterpart.

Electrons (e−) are the lightest charged leptons and belong to the first generation.

Muons from the second generation (µ−) are heavier with mass 200 times greater than

the mass of electrons. The third generation particles, taus (τ−) are 3700 times more

massive than electrons. Each charged lepton has an associated neutral partner, or

neutrino; electron-neutrino (νe), muon-neutrino (νµ), and tau-neutrino (ντ ). Antilep-

ton counterparts of e−, µ−, τ−, νe, νµ, ντ are e+, µ+, τ+, ν̄e, ν̄µ, ν̄τ .

Quarks: There are six “flavors” of quarks that are paired in three generations. The

first generation is formed by up (u) and down (d) quarks, the second generation is

followed by the charm (c) and strange (s) quarks, then the third generation is made

up by the top (t) and bottom (or beauty) (b) quarks. Each quark carries a fractional

value of the electron charge; u, c, t (collectively referred as up-type quarks) have a

charge of +2/3, while d, s, b (down-type quarks) have -1/3.

Antiparticles of quarks are called antiquarks, and are denoted by a bar over

the symbol for the corresponding quark, ū, d̄, c̄, s̄, t̄, b̄. Antiquarks have the oppo-

site charge to their corresponding quarks; up-type antiquarks have charges of -2/3

and down-type antiquarks have charges of +1/3.

Quarks experience the strong force. In order to describe the strong interaction, a

new quantum number called color charge is introduced. Each quark has one of three

possible colors: red, blue, green. Antiquarks carry an anticolor: anti-red, anti-blue

or anti-green.
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Bosons: The fundamental particles such as photons (γ), gluons (g), W and Z bosons

are the force-carrying gauge bosons of the Standard Model. The only scalar boson is

the Higgs boson (H). There is also the graviton (G) which is a hypothetical particle

and not incorporated in the SM but if it exists, it must be a boson. These particles

are explained in the next section in more detail.

Elementary particles of the SM with their mass, spin and charge are shown in Fig.

1.1.

Figure 1.1: Elementary particles of the Standard Model.

1.1.2 Fundamental Interactions

The universe is governed by four fundamental interactions: the strong interaction,

the electromagnetic interaction, the weak interaction, and the gravitational interac-

tion. They work over different ranges and have different strengths. The first three
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interactions occur via exchange of spin-1 particles, namely bosons. The gravitational

interaction, postulated to be carried by a spin-2 graviton, has not been integrated

into the theoretical framework of the SM yet.

1.1.2.1 The Electromagnetic Interaction

The electromagnetic interaction acts only on charged particles. It holds elec-

trons and protons together in atoms and also allows atoms to bond together to form

molecules. The theory that describes the electromagnetic interaction is called quan-

tum electrodynamics (QED). The electromagnetic interaction is mediated by massless

photons. In QED, all electromagnetic fields are associated with photons, and the in-

teraction between charged particles occurs when one charged particle emits a virtual

photon that is then absorbed by another charged particle. The photon has to be

a virtual photon, because emission of a real photon would violate energy and mo-

mentum conservation. According to the Heisenberg uncertainty relation ∆E∆t ∼ ~,

if a system is observed in a time interval ∆t, the energy of the system can not be

known better than to within an uncertainty ∆E. Thus, the photon can have energy

∆E for a time interval ∆t ∼ ~/∆E, without anybody being able to know if energy

conservation is violated. As long as the photon is reabsorbed quickly enough, there is

no measurable violation of energy conservation. Although these virtual photons can

not be observed directly, they contribute to the probabilities of observable events.

Some calculations in QED can lead to infinities. In order to avoid mathemati-

cal inconsistencies and correct unphysical results, the technique of renormalization

is used. Renormalization can remove infinities from the theory by absorbing the in-

finities into available free parameters without violating known principles of physics.

Mathematically, QED is an abelian gauge theory with the symmetry group U(1).

Like gravity, the electromagnetic interaction is effective in an infinite range and

obeys the inverse square law. The strength of the electromagnetic force is set by the
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coupling constant:

ge =
√

4πα, (1.1)

where α is the fine structure constant and can be written as:

α =
e2

~c
' 1

137
. (1.2)

The electromagnetic current can be written as:

Jµem =
∑
f

qf ψ̄fγ
µψf , (1.3)

where qf is the charge of the fermion, γµ is the Dirac matrices operator, and ψf is

the spinor field with its adjoint spinor ψ̄f .

1.1.2.2 The Strong Interaction

The strong interaction originates from the color charge of quarks and acts only at

very short distances. The strong interaction binds quarks together to make nucleons

and binds nucleons together to make nuclei. The force between two quarks is mediated

by the exchange of massless gluons that carry one color and one anticolor. Color is

conserved at each quark-quark-gluon vertex as well as three-gluon and four-gluon

vertices. For example, a blue quark can turn into a red quark by emitting a gluon

with blue and anti-red color. Only colored particles can emit or absorb a gluon.

Leptons and the other gauge bosons are colorless. Neither quarks nor gluons can

appear in isolation but they can only exist within colorless (color-neutral) composite

states, which is known as “color confinement”.

Quarks combine to form colorless composite particles called hadrons. There are

two types of hadrons, baryons which consists of three quarks (e.g. the proton or

neutron) or mesons which consist of a quark-antiquark pair (e.g. the pion). Baryons

are fermions since they have half-integer spin values whereas mesons are bosons that
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have an integer spin. The quarks which determine the quantum numbers of hadrons

are called valence quarks. Within a hadron, there is also an indefinite number of

virtual (or sea) quarks, antiquarks, and gluons, which do not influence its quantum

numbers but can play a role in high energy collisions. Baryons are usually confined

within nuclei. If not inside the nucleus, they are unstable and decay. The exception

to this is the proton which is essentially stable in free space.

Colorless configurations can also be made out of gluons alone, which means that

gluons can couple directly to other gluons (bound states of interacting gluons, glue-

ball).

A special unitary group SU(3)C describes the color symmetry of strong interac-

tions. It has eight generators1 corresponding to eight color state massless gluons.

The theory of strong forces is called Quantum Chromodynamics (QCD). The

strength of the chromodynamic force is set by the “strong” coupling constant:

gs =
√

4παs. (1.4)

In this theory, the number that plays the role of coupling “constant” is in fact

not constant at all, but depends on the separation distance between the interacting

particles. It is a so-called running coupling constant. At relatively large distances the

strong force between quarks becomes stronger and at very short distances (less than

size of a proton), it becomes quite small. This phenomenon is known as asymptotic

freedom that means within a hadron, quarks bounce around without interacting much

and behaving like independent particles. This behavior can be explained qualitatively

as follows.

A charge q > 0 that is embedded in a dielectric medium causes the negative end

of each molecular dipole to attract toward q and positive end to repel away. Hence a

1A special unitary group of SU(N) has N2 -1 generators.
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“halo” of negative charge is formed around q which partially cancels its field. Then

in the presence of the dielectric, the effective charge can be written as:

qeff =
q

ε
, (1.5)

where ε the dielectric constant of the material. In a distance that is closer than the

nearest molecule, there is no screening effect. Thus, the effective charge increases

at very small distances. In quantum electrodynamics, the vacuum behaves like a

dielectric medium. Thus, screening is created by vacuum polarization. Again, in a

distance too close to q, there is no screening. Thus, one expects the interaction to

become stronger in a small distance. However, in QCD there is an important factor;

in addition to quark-quark-gluon vertex, there is also the direct gluon-gluon vertices.

The effect of gluon loops is the opposite; causing the interaction to become weaker at

small distances. In QCD, there are two contributions affecting the coupling strength:

the quark polarization diagrams that drive αS up and gluon polarization that drives

it down. The overall effect from both depends on the number of flavors (for quarks)

and the number of colors (for gluons).

In order to get rid of ultraviolet divergences that appear in the perturbative cal-

culation of the QCD theory, renormalization is required. After subtraction of UV di-

vergences, all renormalized quantities and renormalisation constant become functions

of the renormalisation scale µ. The development of the coupling constant with chang-

ing momentum and renormalization scale is determined by the so-called β-function,

which is defined as:

µ
∂α

∂µ
= − β0

2π
α2
S −

β1

4π2
α3
S − ......., (1.6)

where two coefficients β0 and β1 are independent of the renormalisation scheme. In

order to solve this equation, a constant µ0 is introduced. This is one of the constants
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in QCD theory and needs to be determined from experiments. Without going in any

details of calculation, αS that is derived from β-function is written below:

αS(Q2) =
αS(µ2)

1 + αS(µ2)
12π

(11c− 2nf )ln(Q
2

µ2
)
, (1.7)

where Q is the momentum transfer in the interaction, c is the number of colors and

nf is the number of flavors. This equation can also be written in terms of “cutoff”

parameter ΛQCD:

αS(Q2) =
12π

(11c− 2nf )ln(Q2/Λ)
. (1.8)

The critical parameter is 11c− 2nf . If this is negative then the effective coupling

increases at short distances and if it is positive then it decreases [1]. In the SM, there

are 6 flavors and 3 colors which gives 11c − 2nf = 21. Therefore, QCD coupling

decreases at short distances. The cutoff parameter ΛQCD defines spatial regions to

which quarks are required to be confined. The value of this parameter is ΛQCD ≈

200 MeV or ≈ 1 fm. At this distance and larger, the strong interaction is very strong

and leads to permanent confinement of quarks inside colorless hadrons. At a distance

smaller than this value, quarks are asymptotically free.

1.1.2.3 The Weak Interaction

The weak interaction acts upon all quarks and leptons, including those with no

electric charge. There are two kinds of weak interactions: the charged interaction

that is mediated by the W bosons and the neutral interaction that is mediated by the

Z boson. The weak interaction is the only interaction that can change the flavor of a

quark. The weak interaction is distinguished from other interactions by some charac-

teristic properties like lifetimes, strength of coupling, cross sections and violation of

symmetries. Historically, the first weak decay discovered was the β-decay, that allows

protons to transmute into neutrons and vice versa.

The fundamental interactions are listed in Table 1.1.
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Table 1.1: Fundamental interactions.

Force Theory Mediator Range
Strong Chromodynamics Gluon (g) 10−15 m

Electromagnetic Electrodynamics Photon (γ) ∞
Weak Flavordynamics W±, Z 10−18 m

Gravity Geometrodynamics Graviton (G) ∞

1.1.3 A Closer Look At the Weak Interaction

1.1.3.1 The Fermi Interaction

The process of β-decay (n → p + e−) occurs since the daughter nucleus has less

mass than the parent, and therefore the decay is energetically favored. By Einstein’s

E = mc2, an electron is expected to carry of the difference in masses in the form

of kinetic energy. However, experiments showed that the electron carries less energy

than expected. Also, instead of all electrons having the same energy, there was a

continuous distribution. This result was unexpected since that would violate the

energy conservation. In December 1930, Wolfgang Pauli proposed the existence of a

light neutral particle of spin 1/2 emitted in addition to the electron in β-decay [2].

Only with the emission of a third particle could momentum and energy be conserved.

The available energy is split between the electron and the undetected neutral particle,

thus, explains the continuous spectrum. Pauli gave the name “neutron” to this new

particle. However, it was renamed “neutrino” later by Fermi.

Fermi incorporated the neutrino into his theory of β-decay [3] (n→ p+ e− + ν̄e),

published in 1934. He described the interaction as a four-fermion process that happens

at a single point in space-time. His idea of β-decay is shown in Fig 1.2.

In analogy to the electromagnetic interaction, Fermi proposed the following matrix

element:

M =
GF√

2
[ūpγ

µuN ][ūeγ
νuν ], (1.9)
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p
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W−

d

u

ν̄e

e−

Figure 1.2: Fermi’s 4-point interaction describing nuclear β-decay (left) and the nu-
clear β-decay via the emission of a virtual W− boson (right).

where GF is a coupling factor, also known as the Fermi constant and uP , uN , ue, uν

are the proton, neutron, electron and neutrino wave functions.

The Fermi constant GF is equal to 1.166 ×10−5 GeV2. Fermi postulated that the

weak coupling factor is the same for all weak vertices without any dependence on

the lepton flavor. This is called universality. In this process, the hadronic current

has ∆Q = +1 whereas the lepton current has ∆Q = -1. This is called a charged

current interaction since there is a net charge transferred from the hadronic to the

lepton current. Also, there is no propagator in this description. In analogy to the

electromagnetic interaction, the currents have a vector character.

The intrinsic coupling at high energy can be estimated by assuming that the Fermi

theory is the low energy limit of the weak interaction. For the weak interaction, the

propagator term for the massive W± and Z bosons is 1
M2
W,Z−q2

. This reduces to 1
M2
W

at low energies (M2
W,Z � q2). In the Fermi limit, the coupling factor is GF√

2
. Hence

the strength of weak interaction can be defined by GF :

GF√
2

=
g2
w

8M2
W

, (1.10)

where gw is the weak coupling. Substituting the values for the W boson mass (80.4

GeV) and the Fermi constant (1.66 ×10−5 GeV−2) into Eq. (1.10), the weak coupling
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gw is found to be 0.65. The weak fine structure constant is then:

αW =
g2
W

4π
=

1

30
. (1.11)

Comparing this to the fine structure constant of the electromagnetic interaction

(1/137), one can say that the weak interaction is four times stronger than the elec-

tromagnetic interaction. What makes the weak interaction feeble is not the intrinsic

coupling but the mediators being so massive. In fact at very high energies (q2 ∼M2
W ),

the strength of weak interaction is comparable to the electromagnetic interaction.

1.1.3.2 Parity Violation and the V-A Interaction

Prior to 1956, it was believed that the laws of physics were invariant under parity

transformations which reverse spatial coordinates as:

x→ −x y → −y z → −z.

Parity conservation implies that the probability of one interaction happening in

this world is the same as the probability of its mirror image occurring.

In 1956, T.D. Lee and C.N. Yang realized that past experiments on the weak

interaction offered no evidence of the parity conservation after making a careful study

of all known experiments involving weak interactions. They were actually trying to

find an answer to a very puzzling problem which was known as the τ − θ puzzle.

Two strange mesons, called τ and θ at the time (it was found later that these are

both charged kaons), were found to be identical in every respect; same mass, same

spin, same charge, etc. However, τ was observed to decay into three pions π+π+π−

or π+π0π0 leading to an odd parity state, whereas θ was observed to decay into two

pions π+π0 with even parity state [4]. Even though it was considered that the two

particles were the same, that seemed impossible then since they have different parity

states. Also, the lifetime of τ meson was found to be longer than that of the θ meson.
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Later that year, C. S. Wu set up an experiment to test the possibility of parity

violation in β-decay. In her famous experiment, she aligned radioactive Co60 nuclei

in a magnetic field, so their spins pointed in the same direction, chosen as upwards

in the z direction. Atoms of Co60 decay into Ni60 via an electron emission. Hence,

Wu recorded the direction of the emitted electrons. If the mirror image of the same

process is considered, the nucleus rotates in the opposite direction. That means in

the mirror process, spins of Co60 atoms point downwards (see Fig. 1.3). However,

electrons in the mirror image are still emitted in the same direction as in the real

world. In the real world process, while electrons are emitted in the direction of the

nuclear spin, in the mirror process they are emitted in the direction opposite to the

nuclear spin. Parity conservation requires both processes occurs at equal probabilities.

However, Wu observed the emission of electrons “maximally” in the direction of the

nuclear spin. That implies parity is violated and it is not limited to β-decay in cobalt.

Parity violation is practically the signature of the weak interaction. Therefore, Fermi’s

theory needs to be revised to incorporate parity violation.

Figure 1.3: Parity Violation in β-decay of Co60 nuclei.
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By convention, the z axis is chosen as the axis of quantization for the angular

momentum. The orientation of the z axis is arbitrary. If one is dealing with a

particle traveling through the laboratory, choosing the direction of motion as the z

axis would be a natural choice. The helicity of a particle is defined as the projection

of the spin onto the direction of momentum. It can also be expressed as ms/s. If the

particle spin direction is the same as the direction of motion, the particle is said to

be right-handed. The helicity is +1 for right-handed particles (i.e: s = 1/2 and ms =

1/2, ms/s = +1). If the spin projection is in the opposite direction to the direction

of motion, it is called as left-handed. The helicity is -1 for left-handed particles (i.e:

s = 1/2 and ms = -1/2). Handedness is explained in Fig. 1.4.

Figure 1.4: The cartoon depicts the concept of handedness. When the spin of the
particle is aligned with its direct of flight (left) it’s called right-handed, if they are
anti-aligned (right) left-handed.

When talking about parity transformations, instead of using the concept of re-

flection in the mirror, the concept of inversion is used. For the reflection in the x-z

plane, the spatial coordinates transform as (x, y, z) → (x, -y, z). For the inversion,

they transform as (x, y, z) → (-x, -y, -z), which represents a reflection followed by a

180◦ rotation about the y axis.

Under parity transformations, the wave functions transform as

ψ → P̂ψ = ±γ0ψ. (1.12)

15



If the parity operator is applied twice, the original wave function is obtained

(P̂ 2 = γ02
= 1). Therefore, the eigenvalues of the parity operator are ± 1. According

to Quantum Field Theory, the parity of a fermion is opposite that of the anti-fermion,

whereas the parity of a boson is the same as its antiparticle. Positive parity is also

known as “even” intrinsic parity whereas negative parity is known as “odd” intrinsic

parity.

Behavior of scalars and vectors under the parity transformation is different. The

behavior of four independent bilinear covariant expressions is given below.

Scalar P(s) = s

Pseudoscalar P(p) = -p

Vector (or Polar Vector) P(v) = -v

Pseudovector (or Axial Vector) P(a) = a

Defining the current responsible for the weak interaction requires a combination

for which the charged weak interaction only couples to left-handed particles. Using

the left-handed projection operator introduced as PL = 1
2
(1− γ5), the current can be

written as:

ψ̄γµ
1

2
(1− γ5)ψ, (1.13)

where ψ is a fermionic field. If this is expanded:

1

2
ψ̄γµψ︸ ︷︷ ︸

vector current

− 1

2
ψ̄γµγ5ψ︸ ︷︷ ︸

axial vector current

. (1.14)

This is the famous V-A form [5] that is responsible for the parity violating nature

of the weak interaction. This theory modifies the Fermi’s theory which was repre-

sented by the vector current, by subtracting the axial vector current term. Parity

violation comes from the fact that the behavior of the vector and axial vector currents

under a parity transformation is different. As shown above, there is a charge flip in
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the vector current under parity whereas the axial vector current stays the same. The

interference between these two terms creates the parity violation. Considering the

fact that what we observe is usually the square of the amplitude and assuming the

amplitude is pure V-A, one can write [6]:

|M |2 ∼ (V − A)(V − A)

= V V − 2AV + AA. (1.15)

When applying a parity transformation, the sign of the V term flips, but the sign

of the A term doesn’t.

P̂{|M |2} ∼ P̂{(V − A)(V − A)}

= P̂{V V − 2AV + AA}

= (−V )(−V ) + AA− 2A(−V )

= V V + AA+ 2AV. (1.16)

Comparing the |M |2 and P̂{|M |2} we see a difference from -2AV to +2AV. This

cross term, AV, including currents with opposite parity behaviors, introduces a parity

violation. Without this term, |M |2 would be equal to P̂{|M |2} and no parity violation

would be observed.

The parity violation occurs maximally when both currents have the same strength.

The current including different V and A weights can be written as:

1

2
ψ̄γµ(cV − cAγ5)ψ. (1.17)

It is observed that the parity is violated in all charged weak interactions and

experimentally it is found that cV = cA = 1. Therefore, the weak charged current
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can be written as:

JCCweak =
gw√

2
ūγµ

1

2
(1− γ5)u. (1.18)

where u is the fermion wave function.

The charged current weak interaction is mediated by W bosons. The coupling

factor for a charged weak vertex is

gw

2
√

2
γµ(1− γ5). (1.19)

There is also a neutral current interaction, mediated by the Z boson. The fermion

flavor is not changed in a neutral current interaction. As opposed to that W boson

only couples to the left-handed fermions, the Z boson couples also to right-handed

fermions. The coupling factor depends on what the Z is interacting with and can be

written as:

gz
2
γµ(cfV − c

f
Aγ

5), (1.20)

where gz is the neutral current coupling constant and coefficients cfV and cfA depend

on the flavor of fermion (f) involved. A full list of coefficients is shown below.

Table 1.2: Neutral vector and axial vector couplings in the GWS model.

Fermion cfV cfA

νe, νµ, ντ
1
2

1
2

e−, µ−, τ− -1
2

+ 2sin θW -1
2

u, c, t 1
2

- 4
3

sin2 θW
1
2

d, s, b -1
2

+ 2
3

sin2 θW -1
2
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As seen from the table, these coefficients depend on the weak mixing angle (θW ),

also known as Weinberg angle, which relates the weak, neutral and electromagnetic

coupling strengths

gw =
ge

sin θW
, gz =

ge
sin θW cos θW

. (1.21)

The mass of the W and Z bosons can also be related using θW :

MW = MZ cos θW . (1.22)

The value of θW is determined experimentally and sin2 θW is measured as 0.23.

After the parity violation was revealed, most physicists still believed that the

parity along with the charge conjugation would still be conserved (CP-symmetry)

where the charge conjugation, C, converts each particle into its antiparticle. It was

found later that CP is also violated. This was first shown by J. Cronin and V. Fitch

in 1964. They expected to see short-lived K mesons always decay into two pions and

long-lived K mesons decay into three pions. However, they observed that long-lived

K mesons also decay into two pions (45 two-pion events in a total of 22700 decays).

This observation confirmed CP violation in weak interaction although it is very rare.

It means that there is a difference in the laws of nature in our world and in the mirror

world.

1.1.4 Forward-Backward Asymmetry

Because there is a parity violation in weak interactions, processes that involve

weak interactions can exhibit asymmetries in the distribution of particles in their

final states. As opposed to the fact that the charged weak interactions couple only

to left-handed fermions or right-handed antifermions, the neutral weak interaction

can couple to right-handed fermions. However, there is still a preference to couple to
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left-handed fermions mostly which gives rise to a forward-backward asymmetry, as

described below.

The Drell-Yan (DY) process in which lepton pair production occurs via an elec-

tromagnetic or a weak interaction (qq̄ → γ∗/Z → `+`−), as shown in Fig. 3.2, is one

of the processes that display asymmetries in the final state. This process is explained

by S. D. Drell and T. M. Yan in 1970 [7]. The DY process is the most important SM

background for new physics searches with dilepton final states.

Figure 1.5: The Drell-Yan process with a dimuon final state.

The other source of the forward-backward asymmetry in the DY process is the

interference between photon and Z boson exchange. The differential cross section for

the fermion production via the DY process can be written as [8]:

dσ(qq̄ → µ+µ−)

d cos θ∗
= C

πα2

2ŝ
[Q2

µQ
2
q(1 + cos2 θ∗)

+QµQqRe(χ(ŝ))(2gqV g
µ
A(1 + cos2 θ∗) + 4gqAg

µ
A cos θ∗) (1.23)

+ |χ(ŝ)|2((gqV
2 + gqA

2)(gµV
2 + gµA

2)(1 + cos2 θ∗) + 8gqV g
q
Ag

µ
V g

µ
A cos θ∗)],

where C = 1/9 which is the color factor for qq interaction, Q is the charge of a muon

or a quark, θ∗ is the angle between the lepton (antilepton) and the quark (antiquark)

directions in the rest frame of the lepton pair, as shown in Fig. 1.6, and
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χ(ŝ) =
1

cos2 θW sin2 θW

ŝ

ŝ−M2
Z + iΓZMZ

, (1.24)

where ŝ is the momentum transfer in the interaction, MZ and ΓZ are the mass and

the width of the Z boson, respectively.

q q̄

µ−

µ+

θ∗

Figure 1.6: Lepton decay angle θ∗.

The first and third terms in Eq. (1.23) correspond to the pure γ∗ and Z exchange

respectively while the second term stands for the Z/γ∗ interference. The various terms

either depend on cos θ∗ or (1 + cos2 θ∗). It can be clearly seen when the Eq. (1.23) is

written in a simplified form:

dσ

d cos θ∗
= A(1 + cos2 θ∗) +B cos θ∗, (1.25)

where A and B are functions that depend on the weak isospin, the charge of the

incoming fermions and also the momentum transfer in the interaction. The functions

A and B can be written as:

A = Q2
µQ

2
q + 2QµQqg

q
V g

µ
VRe(χ(ŝ)) + (gµV

2 + gµA
2)(gqV

2 + gqA
2)|χ(ŝ)|2, (1.26)

B =
3

2
gqAg

µ
A(QµQqRe(χ(ŝ)) + 2gqV g

µ
V |χ(ŝ)|2). (1.27)
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Events with cos θ∗ > 0 are called forward events and events with cos θ∗ < 0

are called backward events. The integrated cross section for the forward events is

σF =
∫ 1

0
dσ

d cos θ∗
d cos θ∗ and the integrated cross section for the backward events is

σB =
∫ 0

−1
dσ

d cos θ∗
d cos θ∗. The forward-backward asymmetry AFB can be written as:

AFB =
σF − σB
σF + σB

,

=
B

A
, (1.28)

=
3
2
gqAg

µ
A(QµQqRe(χ(ŝ)) + 2gqV g

µ
V |χ(ŝ)|2)

Q2
µQ

2
q + 2QµQqg

q
V g

µ
VRe(χ(ŝ)) + (gµV

2 + gµA
2)(gqV

2 + gqA
2)|χ(ŝ)|2

.

1.1.5 Charged Current Coupling to Quarks

The charged weak interaction only couples to leptons within a particular gener-

ation (e− → νe + W−, µ− → νµ + W−, τ → ντ + W−). One might expect that is

also true for coupling to quarks (i.e the up quark will couple to the down quark, the

charm quark to the strange and the top quark to the bottom quark). However, the

kaon decay process, K+ → µ+νµ, shows that this is not true. Since K+ includes an

up quark and anti-strange quark, the W boson couples to the up quark from the first

generation and anti-strange quark from the second generation. The other problem

is that the lifetime for the strangeness-changing process is 20 times longer than the

strangeness-conserving one, which leads to the strangeness-changing process to be 20

times weaker than the strangeness-conserving one.

In 1963, Nicola Cabibbo proposed that the weak interaction acts on a linear

combination of the down and strange quarks [9], which is denoted by d′. Thus, he

introduced the Cabibbo angle (θC) in order to preserve the universality of the weak

interaction. Using the Cabibbo angle, a rotated state is given as:

d′ = d cos θC + s sin θC . (1.29)
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Experimentally, θC = 13◦. Hence, if the interaction is reduced to the down quark,

the vertex factor is smaller by a factor of cos θC . If it is reduced to the strange quark,

then the vertex factor is smaller by a factor of sin θC which has a value around 0.22.

Then the probability that the W boson scatter off a strange quark is sin2 θC ∼ 0.05,

solving the lifetime discrepancy problem. Therefore, in Cabibbo’s theory, the first

generation of quarks that the weak interaction sees can be written as:

(
u

d′

)
=

(
u

d cos θC + s sin θC

)
. (1.30)

Although Cabibbo’s theory was successful to explain many decay rates, there was

still a remaining problem which comes from the process K0 → µ+µ−. This is a flavor-

changing neutral-current process (FCNC) in which a strange quarks turns into a down

quark and a virtual Z boson. The amplitude should be proportional to sin θC cos θC .

Thus, the decay rate of this process should be comparable to the one for the process

K+ → µ+νµ. However, experiments show that it is much less than the calculated

value.

Γ(K0 → µ+µ−)

Γ(K+ → µ+νµ)
∼ 10−8. (1.31)

In attempt to solve this problem, S. Glashow, J. Iliopoulos and L. Maiani (GIM)

proposed the existence of a new quark, the charm c, whose couplings to the strange

and down quarks carry factors of cos θC and -sin θC , respectively [10]. Thus, the

amplitude is proportional to -sin θC cos θC and cancels the term with sin θC cos θC in

the lagrangian. Therefore, adding a fourth quark actually explains the very small

branching ratio of decays involving a FCNC. Thus, Cabibbo’s theory is extended by

adding another rotated state:

s′ = s cos θC − d sin θC . (1.32)
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Then the coupling to the physical particles are given by:

(
c

s′

)
=

(
c

s cos θC − d sin θC

)
. (1.33)

The two rules given in Eqs. (1.29) and (1.32) are combined in the matrix equation:

 cos θC sin θC

− sin θC cos θC


d
s

 =

d′
s′

 . (1.34)

The vector
(
d
s

)
is rotated into the vector

(
d′

s′

)
by the transition matrix.

Uud Uus

Ucd Ucs

 =

 cos θC sin θC

− sin θC cos θC

 . (1.35)

The GIM mechanism was confirmed in 1974 by the discovery of a charm quark

observed in the cc̄ bound state denoted as J/ψ [11]. M. Kobayashi and T. Maskawa

wanted to explain CP violation within the Cabibbo-GIM scheme. They realized that

in a four-quark model, this is not possible. Hence, before the second generation

of quarks were found, they proposed a third quark generation and generalized the

Cabibbo matrix into the Cabibbo-Kobayashi-Maskawa matrix (or CKM matrix) [12]

to handle three generation of quarks:


d′

s′

b′

 =


Uud Uus Uub

Ucd Ucs Ucb

Utd Uts Utb



d

s

b

 , (1.36)

where weak interaction quark generations are given by:

(
u

d′

)
,

(
c

s′

)
,

(
t

b′

)
(1.37)
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The entries in the matrix are not all independent and can be reduced to four

independent terms. They are free parameters of the SM and need to be measured

experimentally [13].

The matrix element describing Fermi’s beta decay now becomes:

M =

[
gw√

2
ūe

1

2
γµ(1− γ5)vνe

]
1

M2
W − q2

[
Uud

gw√
2
ūu

1

2
γµ(1− γ5)ud

]
= Uud

g2
w

8

1

M2
W − q2

[
ūeγ

µ(1− γ5)vνe
] [
ūeγ

µ(1− γ5)ud
]
. (1.38)

Comparing this matrix element to Fermi’s original matrix element given in Eq. (1.9)

at high energies (q �MW ), the coupling equation is obtained again:

GF√
2

=
g2
w

8M2
W

. (1.39)

The problem with the theory of intermediate vector bosons is that it is not renor-

malizable. This is due to the huge masses of the intermediate particles. One solution

may be to find a gauge theory that describes the weak interaction. However, this

causes a problem since no mass term is allowed in the Lagrangian for the gauge

bosons. The solution to this problem requires a unified theory of the weak and elec-

tromagnetic interactions. Then the bosons acquire their masses in the process of

spontaneous symmetry breaking (EWSB) via the “Higgs mechanism”.

1.1.6 Electroweak Unification

Between 1961 and 1967, Sheldon Lee Glashow, Abdus Salam and Steven Weinberg

proposed the theory of electroweak interactions, which predicted the existence of

vector bosons with huge masses (∼100 GeV). The unification of the electromagnetic

and weak interactions is accomplished under an SU(2)L x U(1)Y gauge group. The

weak interaction is described by the SU(2)L group where subscript “L” implies that it

acts only on the left-handed particles. The conserved quantity in SU(2)L is the weak
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isospin2 ~I whereas in the U(1)Y group, the conserved quantity is weak hypercharge

Y. Their relation to the electromagnetic charge Q is given by Q = I3 + Y
2

where I3 is

the third component of the weak isospin.

Initially four massless bosons are required by the requirement of local gauge invari-

ance: three SU(2)L gauge bosons (W 1, W 2, W 3) and one U(1)Y gauge boson (B0).

The spontaneous symmetry breaking via the Brout-Englert-Higgs mechanism results

in the four physical bosons: W+, W−, Z0, and γ bosons that are linear superpositions

of the W 1, W 2, W 3, and B0 bosons.

The Z0 and γ can be written in terms of the initial bosons by using the relation:

Z0

γ

 =

cos θW − sin θW

sin θW cos θW


W 3

B0

 . (1.40)

The spontaneous symmetry breaking leads to a mass term appearing in the neutral

weak field, while the mass term for the photon field cancels out. Thus, the photon is

massless.

In 1983, the W and Z bosons were discovered by the UA1 and UA2 collaborations

at the Super Proton Synchrotron at CERN. The Higgs boson that is the quantized

state of the Higgs field had been the last missing piece of the SM until 2012. The

discovery of the boson that is consistent with the Higgs boson and at a mass around

126 GeV was announced by the ATLAS and CMS collaborations at the LHC at CERN

on the 4th of July 2012. It will take further work to determine whether or not it is

the Higgs boson predicted by the Standard Model.

2Weak isospin is a quantum number and parallels the idea of isospin under the strong interaction.
The weak isospin of a particle describes how the electroweak force transforms under the SU(2)L
group.
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1.2 Beyond the Standard Model

The Standard Model has been the most successful theory of particle physics to

date. However, it is not a complete theory. There are still lots of questions that the

SM offers no explanation for. For example, it does not explain why the amount of

matter and antimatter is not the same in the universe. There is also no explanation

for the number of quark and lepton families. Moreover, even though neutrinos are

massless in the SM, neutrino oscillation experiments have shown that neutrinos do

have mass. The origin of free parameters of the SM is another unanswered question.

In order to address these imperfections, theories including various extensions of

the SM, “new physics”, are proposed. Models for physics beyond the SM include

supersymmetry, extra dimensions, quark/lepton compositeness, etc.

1.2.1 Contact Interactions

One approach to address the open questions of the SM is to search for a contact

interaction that would result from new phenomena such as quark and lepton compos-

iteness. Moreover, the energy scale that the LHC provides may not be high enough

for the direct observation of a new gauge boson mediating a new interaction. This

approach is very similar to the one that Fermi used to explain nuclear β-decay before

the discovery of the W boson. Hence, without knowing the intermediate process, one

can still write the Lagrangian by describing it as a four-fermion contact interaction

(CI) between two incoming quarks and two final state leptons [14]:

L =
g2

Λ2
[ ηLL

(
ψ̄Lγ

µψL
) (
ψ̄′Lγµψ

′
L

)
+ ηRR

(
ψ̄Rγ

µψR
) (
ψ̄′Rγµψ

′
R

)
+ ηLR

(
ψ̄Lγ

µψL
) (
ψ̄′Rγµψ

′
R

)
+ ηRL

(
ψ̄Rγ

µψR
) (
ψ̄′Lγµψ

′
L

)
] , (1.41)

where g is a coupling constant chosen as g2/4π = 1, ψL,R and ψ′L,R are the incoming

and outgoing left and right fermionic fields. The energy scale of the new interaction
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is given by Λ. It may have different interpretations depending on the model pro-

posed. For instance, in the quark and lepton compositeness model, Λ is the energy

scale below which the fermion constituents are bound together. The parameters ηi,j

where the indices i,j are L or R (left or right) determine the chiral structure of the

new interaction and may have values of -1, 0, +1 by convention. By choosing the

appropriate combinations of these values, different chirality models are built:

• The left-left contact interaction model: ηLL = ±1 and ηLR = ηRL = ηRR = 0,

which is often considered as a benchmark model for the contact interaction

searches.

• The right-right contact interaction model: ηRR = ±1 and ηLL = ηLR = ηRL = 0.

• The left-right/right-left contact interaction model: ηLR = ηRL = ±1 and

ηLL = ηRR = 0.

In this study, the last choice is referred to as left-right contact interaction model.

The Lagrangian can be written particularly for the process qq̄ → µ+µ− as:

L =
g2

Λ2
[ ηLL (q̄Lγ

µqL) (µ̄LγµµL) + ηRR (q̄Rγ
µqR) (µ̄RγµµR)

+ ηLR (q̄Lγ
µqL) (µ̄RγµµR) + ηRL (q̄Rγ

µqR) (µ̄LγµµL) ] , (1.42)

The signature of the new interaction would appear as an excess in the tail of the

dimuon mass distribution of the SM DY production as well as in the lepton angular

distribution.

The differential cross section for the process q q̄ → µ+µ− with the addition of the

new interaction (see Fig. 1.7) can be written as

dσ

dmµµ

=
dσDY
dmµµ

− ηij
FI
Λ2

+
FC
Λ4

, (1.43)

28



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

Figure 1.7: Leading order production mechanism for Drell-Yan with additional con-
tact term with scale Λ in the dimuon final state.

which includes the SM DY term, the pure contact interaction term (FC) and the

DY-CI interference term (FI), in terms of the dilepton mass mµµ. Depending on

the value of ηij, the interference between SM and new physics processes may occur

constructively (ηij = −1) or destructively (ηij = +1).

1.2.1.1 Quark and Lepton Compositeness

The SM fails to explain the variety of observed quark and lepton flavors and their

masses. Also, there is no obvious logical reason why these particles fall into a pattern

of three families. One possible explanation is that quarks and leptons could be made

of more fundamental constituents, often called preons [15], tightly bound together.

The preons interact via a new gauge interaction named metacolor. In this model, the

scale of compositeness is defined as the characteristic energy scale below which the

metacolor interaction becomes strong and binds the preons to form metacolor-singlet

states like the quarks and leptons. If the collision energy goes beyond the energy scale

Λ then the multiple production processes would dominate over the two-body parton

scattering processes. In other words, unconventional events such as multijets, jets with

leptons and multileptons will dominate standard model processes. The cross section

for these allowed inelastic processes of the order of 4π/Λ2, would be different than the
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SM cross section, which is of the order of πα2/ŝ where α is the fine structure constant

and ŝ is the partonic center of mass energy. However, if the collision energy does

not reach the compositeness scale, even though the direct evidence is imperceptible,

compositeness might be visible through deviations in the cross section, the angular

distribution or the dilepton mass tail. At this energy scale, the quark and lepton

compositeness can be described as a four-fermion contact interaction.

1.2.2 Large Extra Dimensions

One of the deficiencies of the SM is the hierarchy problem. The enormous gap

between the electroweak scale and the Planck mass scale (∼16 orders of magnitude)

remains unexplained to date. Also, the weakness of gravity as compared to the other

three interactions of the SM is another intriguing question waiting to be answered.

Arkani-Hamed, Dimopoulos and Dvali (ADD) [16] postulated the existence of large

extra dimensions to address these issues. This model anticipates the existence of n

extra spatial dimensions compactified to a radius R. In accordance to this scenario,

gravitons propagate freely in the bulk of 4+n dimensions while the other known

forces are constrained to the brane of 3+1 space-time dimensions, which leads to a

relative dilution of gravity on the 4-D membrane. The mass MD is introduced as the

fundamental Planck scale in the “fixed-brane” scenario, expected to be of the order

of a few TeVs which is achieved by requiring the volume of the extra dimensions to

be large. It can be formulated as:

M2
Pl = Mn+2

D Rn, (1.44)

which is calculated by integrating out the extra dimensional degrees of freedom from

the 4+n Einstein-Hilbert action which depends on the parameter MD. This action is

compared to the four dimensional effective action which includes the parameter MPl,

the Planck mass scale (MPl ∼ 1 x 1016 TeV) to obtain the relation given in Eq. (1.44).
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The propagation of gravity in the large extra dimensions results in Kaluza-Klein (KK)

modes of the graviton. The mass splitting of these modes for each n dimension is

1/R. KK modes have small spacings since the extra dimensions are required to be

large to resolve the hierarchy problem. This leads to an almost continuous spectrum

of the KK graviton states and an expected non-resonant broad excess over the SM

prediction.

The production of dimuons via virtual KK graviton exchange involves a sum over

many KK modes that needs to be cut off at some value. In this analysis, the ultraviolet

cutoff is chosen to be the string scale MS. This scale is related to MD via the Gamma

function, Γ, by;

MS = 2
√
π
[
Γ
(n

2

)]1/(n+2)

MD. (1.45)

Leading order virtual graviton exchange occurs via two processes, a qq̄ initiated

process which is similar to the SM DY process, and a gluon initiated process which

does not have a SM analog. The Feynman diagrams for these processes are shown in

Fig. 1.8.

Figure 1.8: Virtual graviton exchange via qq̄ initiated process on the left and a gluon
initiated process on the right.

The differential cross section for the qq̄/gg → µ+µ− process is:
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dσ

dmµµ

=
dσDY
dmµµ

+
Fint
M4

S

+
FG
M8

S

, (1.46)

which includes the SM DY term, the interference term Fint and the pure graviton

exchange term FG, in terms of the dimuon mass mµµ.

There are three different formalisms for this model depending on the way of

performing the summation over the tower of KK modes: Giudice-Rattazzi-Wells

(GRW) [17], Hewett [18], and Han-Lykken-Zhang (HLZ) [19]. In the presence of

extra dimensions, the strength of gravity can be parameterized as F/M4
S , where F is

a dimensionless parameter that encodes the dependence of the virtual KK graviton

exchange on the number of extra dimensions. The definition of F depends on each

formalism:

F = 1, (GRW)

F =
2λ

π
=
±2

π
, (Hewett)

F = log

(
M2

S

s

)
for n = 2, (HLZ)

F =
2

n− 2
for n > 2. (HLZ) (1.47)

As opposed to the HLZ formalism, GRW and Hewett have no explicit dependence on

the number of extra dimensions. While gravitational effects interfere constructively

with the SM processes in the GRW and HLZ formalisms, the interference may occur

constructively or destructively in the Hewett formalism. The sign of λ determines

if it is a constructive interference (λ = +1) or a destructive interference (λ = -1).

Interference effects between the DY and virtual KK graviton processes are small due

to dimuon production by virtual KK gravitons being predominantly gluon-induced

rather than quark-induced.
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1.2.3 Review of Previous Searches

Previous searches for quark and lepton compositeness include studies from the

Neutrinos at the Tevatron (NuTeV) [20], the Stanford Linear Accelerator Center

(SLAC) [21], the Large Electron-Positron Collider (LEP) [22–26], the Hadron Electron

Ring Accelerator (HERA) [27, 28], the Tevatron [29–33], and recently from ATLAS

(A Toroidal LHC ApparatuS) [34–36] and CMS (Compact Muon Solenoid) [37] ex-

periments at the LHC. Thus, quark and lepton compositeness searches have been per-

formed in neutrino-nucleus and electron-electron scattering and at electron-positron,

electron-proton, and hadron colliders. All of these studies have resulted in exclusion

lower limits on the compositeness energy scale and the searches have been carried out

in dilepton and dijet final states.

The SLAC E158 collaboration used the measurement of a parity violating asym-

metry to set limits on Λ in the LL model for the eeee interaction. The DELPHI

collaboration at the LEP set the limits for eebb interaction, using the measurements

of Rb (defined as σbb̄/σqq̄) and Ab
FB. The fits of Rb and Ab

FB as a function of
√
s are

compared to the SM predictions. The other collaboration at the LEP, the ALEPH

collaboration, also set limits on Λ for generic hadronic final states by performing fits

to the hadronic cross sections assuming that the contact interaction affects all fla-

vors with equal strength. The OPAL collaboration derived the limits for the same

interaction but in the specific case of first generation quarks. At HERA experiment,

the H1 collaboration investigated contact interactions by searching for deviations in

the neutral current differential cross section dσ/dQ2 from the SM expectation at

high Q2 for the eeqq interaction. The limit is also set on the light quark radius;

Rq < 0.65 × 10−18 m. The CDF collaboration from the Tevatron used cos θ∗ as a

discriminating variable to set limits on Λ.

At the LHC, the CMS collaboration conducted the contact interaction search

in the dimuon channel with the 2011 data at
√
s = 7 TeV, corresponding to an
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integrated luminosity of 5.3 fb−1. The best published limits in the case of qqµµ

contact interactions come from the ATLAS analysis of 2011 data corresponding to

5 fb−1 for which only the dilepton invariant mass was used as a discriminating variable.

Both collaborations only investigated the LL CI model with the 2011 data. The most

stringent limits on qqqq contact interactions are obtained by using the inclusive jet

pT distribution [38].

The list of previous limits from the experiments mentioned above is shown in

Table 1.3.

The most recent limits from the CMS collaboration are not included in the table.

For the recent results [39], the 2012 data at
√
s = 8 TeV, corresponding to an inte-

grated luminosity of 20.6 (19.7) fb−1 for the dimuon (dielectron) channel is used. The

limits are Λ− < 15.2 TeV (Λ− < 18.3 TeV) for constructive case and Λ+ < 12.0 TeV

(Λ+ < 13.5 TeV) for destructive case for the qqµµ (qqee) interaction. These limits

can be directly compared to the results of this analysis which shows that the limits

obtained in this analysis are the most stringent to date.
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Table 1.3: Previous limits on the contact interaction scale Λ.

Previous Limits on Λ (TeV)

Experiment Collaboration Proces Λ−LL Λ−LL Λ−RR Λ−RR

SLAC E158 eeee 16 7 - -

LEP DELPHI eebb 10.2 8.4 2.2 5.7

LEP ALEPH eeqq 7.2 12.9 5.3 10.2

LEP OPAL eeqq 9.1 8.6 - -

HERA H1 eeqq 4 4.2 3.9 4.4

TEVATRON CDF qqee 5.9 3.7 5.6 3.9

LHC CMS
qqµµ 13.1 9.5 - -

qqqq 14.6 10.6

LHC ATLAS
qqµµ 12.7 9.9 - -

qqee 13.8 10.4 - -

Previous searches for large extra dimensions in the context of the ADD model have

been carried out at LEP [40–45] , HERA [46], the Tevatron [47, 48], and the LHC.

The D0 experiment at the Tevatron, using proton-anti-proton collisions, performed

the extra dimension searches in dimuon, dielectron, dijet and diphoton channels.

At the LHC, both ATLAS [49, 50] and CMS [51–53] have searched in dimuon,

dielectron and diphoton channels. The observed lower limits that ATLAS produced

by using the 2011 data at
√
s = 7 TeV, corresponding to an integrated luminosity of

4.9 (5.0) fb−1 are MS > 2.83 TeV and MS > 2.73 TeV for the dimuon and dielectron

channels, respectively, for the GRW formalism. The observed limit from the combi-

nation of these channels is 2.85 TeV which is then further combined with the limits

from the diphoton channel resulting MS > 3.22 TeV. The CMS limit obtained with

the 2011 data at
√
s = 7 TeV, corresponding to an integrated luminosity of 2 fb−1 is
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MS > 2.8 TeV both for the dimuon and dielectron channels. The combined limit is

MS > 3.1 TeV.

The most recent results that the CMS recently released are obtained using the

2012 data at
√
s = 8 TeV, corresponding to an integrated luminosity of 20.6 (19.6)

fb−1 for the dimuon (dielectron) channel [54,55]. The observed (expected) limits are

MS > 3.64 TeV (3.65 TeV) for the dimuon channel, MS > 3.90 TeV (3.89 TeV) for

the dielectron channel and MS > 4.01 TeV (4.00 TeV) for the combined dilepton

channel. These limits can be directly compared to the results of this analysis which

shows that the limits obtained in this analysis are the most stringent to date.

1.3 Parton Distribution Functions

The idea of quarks and antiquarks as the building blocks of hadrons was proposed

in 1964 by Gell-Man and independently by Zweig. Five years later, in 1969, Richard

Feynman proposed that when a hadron moves with a speed close to that of light, it

appears as a collection of infinite number of point-like constituents called “partons”

with a wide-spread momentum distribution.

The partonic structure of a nucleon is best probed in scattering processes like

Deep Inelastic Scattering (DIS) of leptons (electrons, muons or neutrinos) off nucleons

where the square of the 4-momentum transferred between the electron and nucleus,

Q2, is large. The nucleon was found to have substructure at electron-proton DIS

experiment at SLAC in 1966. Jerome Friedman, Henry Kendall and Richard Taylor

were awarded by the Nobel Prize in 1990 for performing this experiment.

The three-quark model assuming that a proton or a neutron is made of three free

non-interacting quarks is too simple. Those valence quarks are actually imbedded in

a sea of virtual quark-antiquark pairs generated by the gluons which hold the quarks

together in the nucleon. Valence quarks, sea quarks and gluons are all called partons.
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The momentum distribution functions of the partons within the nucleon are called

Parton Distribution Functions (PDFs). They represent the probability densities to

find a parton carrying a momentum fraction x at a squared energy scale Q2 (f(x, Q2)).

The behavior of PDFs are different at low and high Q2. At low Q2, three valence

quarks become more dominant in the nucleon. At high Q2, there are more sea quarks

with low momentum fraction x. It was found in DIS experiments that only the half of

the nucleon momentum is carried by quarks and antiquarks. The remainder is carried

by gluons.
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Figure 1.9: Next-to-leading order parton distribution functions as a function of mo-
mentum fraction x, taken from MSTW2008NLO PDF set, for a momentum transfer
of 10 GeV2 (left) and 1000 GeV2 (right).

This behavior is encoded in the QCD evolution equations for parton densities

called DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equations. These are the

consequence of the asymptotic freedom which implies that at high energy partons
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behave as free particles, emitting color radiation whereas at low energy their interac-

tion with the gluon field increases in strength. The equations are formulated relative

to different powers of αs(Q
2) in the perturbative development. They give the Q2

dependence but not the prediction of the x dependence of the parton distributions at

given Q2. Thus, this needs to be extracted from the data.

Hadronic collisions which involve a hard scattering can also be described by the

parton model. Assuming that A and B are incoming partons which are confined in

protons. The longitudinal momentum fraction of parton a in proton A is denoted by

xa and the parton density of a in A by fa/A(xa). The cross section for producing a

quark or lepton c in the inclusive reaction is obtained by multiplying the subprocess

cross section σ̂ by dxafa/A(xa) and dxbfb/B(xb). It needs to be summed over parton

and antiparton types a, b and integrated over xa and xb. Also, an average must be

made over the colors of a and b. The resulting cross section is shown as:

σ(AB → cX) =
∑
a,b

Cab

∫
dxadxb[fa/A(xa)fb/B(xb) + (A↔ B if a 6= b)]σ̂(ab→ cX).

(1.48)

where Cab is the initial color-averaging factor. Also, σ̂ is summed over initial and

final colors. The color-average factors for quarks and gluons are

Cqq = Cqq̄ =
1

9
, Cqg =

1

24
, Cgg =

1

64
. (1.49)

Here X denotes all other interactions in a proton-proton collision apart from the

hard scattering between the two partons including initial and final state radiation

(ISR and FSR), parton showering, hadronization, etc.

In DY production at a proton-proton collider, in the case of initial state radia-

tion, one of the incoming fermions emit a photon or a gluon before the interaction

with other particles. For final state radiation, the leptons produced after the hard

scattering emit a photon.
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In a proton-proton collision, since the incoming and outgoing partons of the hard

scattering have a color, they radiate gluons which in turn can split up in gluon-gluon

or quark-antiquark pairs. The resulting partons will generally radiate further, hence

producing more pairs. This leads to a cascade of partons. This process is called

parton showering. The quarks are then combined into colorless hadrons, which is

called hadronization. Resulting unstable hadrons then subsequently decay into stable

particles that can be detected.

Therefore, the resulting event after the proton-proton collision in which a hard

scattering occurs contains particles that originate from the two outgoing partons (plus

initial and final state radiation). It also includes particles that are left over after a par-

ton is knocked out of each of the initial protons, which are called beam-beam remnants.

Particles other than the two outgoing particles from the hard scattering process are

referred to as the underlying event. This set of particles includes contributions from

the beam-beam remnants as well as initial and final state radiation.

These physics processes are simulated by dedicated software tools. As a first

step, the interaction between partons that originate from the colliding protons is

simulated. The partonic composition of colliding protons is modeled by PDF sets.

The hard parton-parton scattering cross section is calculated by using the matrix

element. The power of a coupling constant that is used in this calculation determines

the order of the generator. The lowest order of a given process is called leading order

(LO). Calculations for higher order QCD effects for the hard scattering are notoriously

difficult and generally not included in the matrix element calculation. Thus, effects

of some interactions such as parton showering are added in the next stage of the

simulation. However, there is a difference between the calculation for gluon radiation

in the matrix element and the calculation of gluon radiation in the parton shower.

Because in the matrix element calculation, spin interactions and interference effects

are taken into account. Next stage of the simulation is hadronization which is then
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followed by the simulation of interactions between beam-beam remnants. Different

generators have different approaches to account for these processes:

• Pythia [56] is a general purpose LO event generator, both in QCD and QED

diagrams. The matrix elements for the hard process are evaluated at LO. Cor-

rections are applied due to beam remnants, parton showering and hadronization.

In order to account for final state radiation, Pythia can be interfaced with the

program Photos [57].

• Herwig [58] is a general purpose event generator similar to Pythia. It provides

initial and final state radiation via its parton shower algorithm. The implemen-

tation of the simulation of hadronization is the major difference with respect to

Pythia. Its hadronization algorithm is referred to as “cluster fragmentation”

which determines whether a hadron will decay based on its mass.

• Powheg [59] is a next-to-leading order (NLO) event generator. The hard

process is evaluated at NLO in QCD. For parton showering and hadronization,

Powheg has its own algorithms but it can also be interfaced with Pythia in

order to simulate these effects.

• MC@NLO [60] calculates the hard processes, including real gluon or quark

emissions and virtual particle loops, at NLO in QCD. However, the calculations

for electroweak diagrams are performed in LO. It is interfaced with Herwig for

parton showering and hadronization.

• Sherpa [61] is a multi-purpose generator which contains a very flexible LO

matrix-element generator for the calculation of hard scattering processes within

the SM and various new physics models. The initial and final state QCD radi-

ation is described through a parton shower model. For hadronization, it uses

the cluster model.
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CHAPTER 2

EXPERIMENTAL SETUP

This chapter describes the design and layout of the experimental setup. Section

2.1 gives an overview of the LHC technologies. Section 2.2 focuses on the ATLAS

detector, by describing its subdetectors, each optimized for a specific task. Due to

its importance for this study, special attention is given to the Muon Spectrometer.

Detailed description of the muon reconstruction algorithms and a discussion of the

muon reconstruction performance are also included in this section. In the last section,

data taking with the ATLAS detector is discussed.

2.1 Large Hadron Collider

The Large Hadron Collider (LHC) [62] is a proton-proton (pp), lead-lead (Pb-Pb)

and proton-lead (p-Pb) collider, operated by the European Organization for Nuclear

Research (CERN). The main accelerator ring has a circumference of about 27 km. It is

situated underground in the former Large Electron-Positron (LEP) collider tunnel at

a depth that varies between 50 and 150 m. The collider goes around the neighborhood

of the city of Geneva and crosses the border between France and Switzerland. The

ultimate design center of mass energy (
√
s) for pp collisions is 14 TeV.

2.1.1 Choice of a Circular Hadron Collider

There are two fundamental shapes of colliders: linear colliders and circular col-

liders. These colliders generally collect particles into bunches and these bunches are

then set to collide. However, only a small fraction of the particles in each bunch
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actually collide. In circular colliders, the remaining particles keep circulating and are

used for future collisions whereas they are lost and cannot be re-used in linear col-

liders. Hence, using a circular design enables a high rate of collisions and facilitates

collecting a large amount of data which is important for precision measurements and

observing rare processes. However, the beam energy is limited due to synchrotron ra-

diation, which is electromagnetic radiation emitted when charged particles accelerate

in a curved path. That, on the other hand, is not an issue for a linear collider since

particles are accelerated along a straight line and do not suffer from the synchrotron

radiation.

Energy loss due to the synchrotron radiation is directly proportional to the energy

of a particle (E) and inversely proportional to its mass (m), as well as the radius of

the curvature of its trajectory. The relation is given by:

dE

dt
∝ E4

m4R
. (2.1)

Since the mass of a proton is 2000 times larger than the mass of an electron, with

the same energy and the same collider dimensions, an electron loses more energy

than a proton by the amount of (mp/me)
4 ∼ 1013. On that account, it is more

advantageous to use heavy hadrons such as protons for circular colliders.

2.1.2 LHC Parameters

For colliders, the instantaneous luminosity L is a measure of the number of parti-

cles in the beam, e.g protons, that pass through a surface of unit area per unit time.

The instantaneous luminosity is measured in units of cm−2s−1. The number of events

generated per second in the LHC collisions is correlated to a cross section (σevent) for

a given physical process and the instantaneous luminosity by:

Nevent = Lσevent. (2.2)
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The cross section depends on the type of particles involved in the collision as well

as the considered processes, whereas the instantaneous luminosity depends on the

properties of the colliding beams and can be written as:

L =
N2
b nbfrγr

4πεnβ∗
F, (2.3)

where Nb is the number of protons per bunch, nb is the number of bunches per

beam, frev is the revolution frequency, γr is the relativistic gamma factor, εn is the

normalized transverse beam emittance1, β∗ is the beta function2 at the collision point

and F is the geometric luminosity reduction factor due to the crossing angle at the

interaction point.

For a fixed center-of-mass energy, the size of the instantaneous luminosity rep-

resents the amount of data collected per unit time. The luminosity integrated over

time, Lint =
∫
Ldt, is a measure for the total number of events.

The design value of the instantaneous luminosity at a center of mass energy of 14

TeV is L = 1034 cm−2s−1. The beam structure is composed of bunches of protons,

where each bunch is made up of about 1011 protons. The design number of bunches

is 2808. The bunches are organized into “trains” in which they follow each other at

separation of about 7.5 cm in length or 25 ns in time. That means two proton beams

collide 40 million times per second (collision rate ≈ 40 MHz).

2.1.3 Accelerator Chain

The primary source of the protons for the CERN accelerator complex is a “duo-

plasmatron” source that has a cathode (tungsten) filament emitting electrons into

1The transverse emittance is a measure of the beam size in the transverse plane. The nominal
normalized transverse emittance for the LHC is εn = 3.75 µm.

2The beta function is a measure of how focused the beam is. Reducing the beta function decreases
the beam size at the collision point and results in a more focused beam. The nominal design value
of the beta function at the LHC is β∗ = 0.55 m.
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hydrogen gas. The filament is surrounded by a solenoidal coil that produces a mag-

netic field. That causes the emitted electrons to spiral around the field lines, which

increases the distance they travel, which in turn increases their probability of colliding

with a hydrogen molecule. These collisions free additional electrons. The process can

be simplified as the following:

H2 + e− → H+
2 + 2e−

H+
2 + e− → H+ +H + e−,

H + e− → H+ + 2e−

The protons extracted from duoplasmatron source are sent through a linear accel-

erator (LINAC2) after traveling less than a meter through a radiofrequency quadrupole

(RFQ2) where they are accelerated to 750 keV and divided into bunches.

In LINAC2, positively and negatively charged conductors are arranged succes-

sively along 30 meter distance so the protons pass through them pushed by the con-

ductor behind and pulled by the one ahead, which in turn accelerates the protons.

At the end of the line they gain an energy of 50 MeV.

The journey of protons continues in a series of synchrotrons that use magnets to

bend the protons into a closed path. Since the energy gain of particles in synchrotrons

is limited by the strength of their magnets, particles need to be transported to another

ring with a larger radius.

The Proton Synchrotron Booster (PSB) is the first circular accelerator that the

protons are injected into. It is composed of four rings, stacked on each other. Three

of these rings are filled with a single bunch that is accelerated to 1.4 GeV.
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Three proton bunches accelerated in PSB are sent into the Proton Synchrotron

(PS), the oldest machine in the chain. Since two revolutions of the PSB correspond

to one revolution of the PS, a total of 6 bunches are fed into the PS. Each of the 6

bunches are then further split into 3 bunches, giving a total of 18 bunches which are

accelerated to 26 GeV. These 18 bunches are again split into 2, resulting in a total

of 36 bunches which is called a “bunch train”. Injecting protons at once in a form

of bunch train to the next machine is a time saving process and allows to keep more

bunches in the ring.

The next accelerator in the chain, the Super Proton Synchrotron (SPS), collects

between 1 and 4 bunch trains coming from the PS and accelerates them to 450 GeV.

Finally, all bunches are transferred to the LHC. The SPS sends bunch trains to

the LHC through two different lines to allow for collisions of two beams of protons

circulating in opposite directions. From LINAC2 up to this step takes approximately

17 seconds and injecting all bunches to the LHC takes 20 minutes. When all bunches

are collected by the LHC, they are accelerated to 4 TeV. This “ramp-up” process

takes around 11 minutes. The bunches are kept circulating for 6 more minutes until

beams are “stable”. After a 5-minute “squeezing” process to focus the beams, they

are circulated for 10 more minutes to prepare for physics collisions. A run started for

data collection typically lasts between 10-20 hours. After 20 hours, since half of the

luminosity is lost, the beam is dumped.

The acceleration chain of the lead ion is slightly different. They are first acceler-

ated by the linear accelerator 3 (LINAC3) before being collected and accelerated by

Low Energy Ion Ring (LEIR). Then the ions are further accelerated by the PS, the

SPS and the LHC in sequence. A layout of CERN accelerator complex is shown in

Fig. 2.1.
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Figure 2.1: CERN accelerator complex.

2.1.4 LHC Status

On 10 September 2008, the LHC started its operations by successfully circulating

proton beams in opposite directions without a collision. Unfortunately, on 19 Septem-

ber 2008, a fault occurred in the electrical bus connection in the region between a

dipole and a quadrupole during powering tests of the main dipole circuit in Sector

3-4 of the LHC, resulting in mechanical damage of 53 superconducting magnets and

release of several tons of helium gas into the tunnel [63]. In order to repair the damage

and consolidate the machine, the further operations were delayed by 14 months.

On November 20, 2009 proton beams were successfully circulated again. Three

days later, the first proton-proton collisions at
√
s = 900 GeV were recorded. By

increasing the center of mass energy to 2.36 TeV on 16 December 2009, the LHC

set a new world record for the highest-energy particle accelerator by beating the

Tevatron’s previous record of 0.98 TeV per beam. On 30 March 2010, the proton-
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proton collisions were recorded at
√
s= 7 TeV and the LHC began its planned research

program. During the running period in 2010, an integrated luminosity of 48.9 pb−1

was delivered by the LHC and an instantaneous luminosity of 2.1×1032 s−1cm−2 was

reached.

In 2011, the collisions continued at the same center of mass energy. The luminosity

delivered by the LHC corresponds to an integrated luminosity of 5.61 fb−1, with a

peak instantaneous luminosity of 3.65×1033 s−1cm−2.

The collisions at
√
s = 8 TeV started on 5 April 2012 and a total of 23.3 fb−1 of pp

collision data was delivered. During the 2012 run, a maximum instantaneous lumi-

nosity of 7.73×1033 s−1cm−2 was reached, which is very close to the design luminosity

of 1034 s−1cm−2.

The 2012 proton-proton running period was ended on 16 December 2012. After

lead-lead running period between 20 January-14 February in 2013 , the LHC was

shut down until 2015 to prepare the machine to operate at its design center of mass

energy of 14 TeV with a peak instantaneous luminosity of 1034 s−1cm−2 and with 25

ns between bunches.

2.1.5 Experiments at the LHC

Two proton beams are circulated in opposite directions and are set to collide at

four interaction points. There are four main experiments built around each of these

collision points: ATLAS (A Toroidal LHC ApparatuS), CMS (Compact Muon

Solenoid), ALICE ( A Large Ion Collider Experiment) and LHCb ( LHC beauty).

ATLAS and CMS are general purpose detectors, designed to understand the SM

and search for the physics beyond the SM, as well as the Higgs boson. The purpose

of LHCb is to explore the properties of hadrons containing bottom quarks at high

energy. ALICE is a heavy ion collision detector and specially designed for observing

a new likely phase of matter, namely a quark-gluon plasma.
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Two rather small experiments operating at the LHC are the LHCf (LHC forward)

and the TOTEM (TOTal Elastic and diffractive cross section Measurement). They

are situated close to ALICE and CMS respectively and are specialized to study very

forward physics that is not accessible to the general purpose detectors.

LHCf uses the high energy particles thrown forward by collisions as a source to

simulate cosmic rays in laboratory conditions in order to understand the reaction

chains induced by cosmic rays in the atmosphere. TOTEM is built to study the

structure and interactions of the proton and to calibrate the luminosity at great

accuracy.

2.2 ATLAS Detector

ATLAS [64] is one of two general purpose detectors at the LHC, designed to mea-

sure high-pT objects such as electrons, muons, photons, jets, etc. with high precision

for the general physics studies including the measurement of the SM parameters,

searching for the Higgs boson and physics beyond the SM.

The ATLAS detector is located 92.5 m underground at interaction point 1 of the

LHC tunnel. It was constructed between 2003 and 2008. The ATLAS detector is the

biggest particle detector ever built with the outer dimensions of 44 m in length, 25 m

in height and weighs about 7000 tons (∼ weight of a hundred 747 jets). The overall

layout of the detector is shown in Fig 2.2.

ATLAS is comprised of layered concentric subdetectors situated around the beam

line, each optimized for a specific task. All subdetectors have a central part called

“barrel” and a forward section on each side, called “end-cap”. The ATLAS detector

has four major components:
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• Inner Detector (ID) finds vertices3 and measures the momenta of the charged

particles,

• Calorimeter measures the energy of the particles,

• Muon Spectrometer (MS) identifies and measures the momenta of muons

• Magnet System bends charged particles for momentum measurements

Figure 2.2: A detailed computer-generated image of the ATLAS detector and its
systems.

The ATLAS collaboration was formed in 1992. Now it consists of about 3000

physicists from more than 177 universities and laboratories in 38 countries.

2.2.1 Coordinate System and Conventions

The ATLAS coordinate system is a right-handed coordinate system with the z-axis

directed along the beam pipe. The x-axis points to the center of the LHC ring and

3Vertices are the positions of interesting physics interactions, such as proton collisions and particle
decays.
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the y-axis points upwards, towards the surface. The azimuthal angle φ is measured

in the x-y plane around the beam axis and φ = 0 corresponds to the positive x-axis.

It can be written in terms of linear coordinates as:

φ = arctan
(y
x

)
. (2.4)

The polar angle θ is measured relative to the positive z-axis and shown as:

θ = arctan

(√
x2 + y2

z

)
. (2.5)

In this context, the pseudo-rapidity is defined as:

η = −ln

(
tan

θ

2

)
. (2.6)

For cases where the particle is massless or E � m, the pseudorapidity approximates

the rapidity, defined as:

y =
1

2
ln

(
E + pz

E − pz

)
. (2.7)

The radial distance to the interaction point in the x-y plane is denoted by r and

defined as r =
√
x2 + y2. A distance in η − φ space is shown by ∆R that can be

written as ∆R =
√

∆η2 + ∆φ2. Furthermore, the parameters given with a subscript

“T” such as pT, ET, Emiss
T are the parameters projected on the transverse (x-y) plane.

The track of a particle with charge q can be represented by five main parameters;

inverse momentum (q/p), φ, θ, transverse impact parameter (d0) and longitudinal

impact parameter (z0). The impact parameter d0 (z0) is defined as the transverse

(longitudinal) distance to a given reference point which is generally the collision point.

2.2.2 Inner Detector

The ID is the innermost system of the ATLAS detector, designed to provide a

precise measurement of charged particle trajectories in a dense track environment.
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The ID tracks are reconstructed within the pseudo-rapidity range |η| < 2.5. It is

immersed in a solenoidal magnetic field of 2 T and its overall dimensions are 2.1

m in diameter and 6.2 m in length. A computer-generated image of the ID can be

seen in Fig. 2.3. The ID exploits three types of detectors, covering different radial

distances from the interaction point (IP): the Pixel detector, the Semi-Conductor

Tracker (SCT), and the Transition Radiation Tracker (TRT).

Figure 2.3: Cut-away image of the ATLAS Inner Detector.

The Pixel Detector is directly built onto the beryllium beam pipe to provide

the best possible primary vertex (PV)4 and secondary vertex5 resolution. It consists

of three layers in the barrel and three disks in each of the two end-caps. With over

80 million pixels, it has 90% of the total number of ATLAS readout channels. The

nominal pixel size is 50 µm by 400 µm, while about 10% have the dimensions of 50 µm

4The primary vertex is the one that has the largest
∑
p2T of the associated tracks.

5The secondary vertex is the position where relatively long lived particles like τ -leptons and
b-hadrons coming from the PV decay.
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by 600 µm. The pixel detector operates at ∼150 V and suffers from intense radiation

since it is very close to the collision point.

The pixel detector consists of semiconducting silicon elements. The working prin-

ciple of the pixel detector is very similar to the one of a camera which has an array

of 6 million silicon pixels. A camera is designed to capture light coming from one

particular direction. When a photon passes through the silicon material of the pixel,

it knocks out an electron in the silicon so creates a hole. Similar to a camera, the pixel

detector is interested in the particles coming from one particular direction; interaction

point. In order to achieve that, it is built very close to the beam line covering radii

from 5 cm to 15 cm. Instead of a photon with an energy of a few eV passing through

a pixel of a camera, the interesting particles passing through the pixel detector have

energies in GeV or TeV scales. One particle passes through the detector knocks loose

a bunch of electron-hole pairs. Electrons and holes are then pulled in the opposite

directions by the electric field. The charge built on a pixel produces a current that

flows to the read-out electronics. Since each pixel has a separate circuit and elec-

tronics, the pixel that sends the signal is known. That provides a precise position

measurement of the original particle.

The Semi-Conductor Tracker is located outside of the pixel detector, covering

radii up to 52 cm. It is similar to the pixel detector but instead of the pixels, it

consists of long silicon microstrips with a size of 80 µm by 12.6 cm, that are placed

parallel to the beam line in the barrel and radially in the end-cap, thus providing a

precision measurement in r - φ. The silicon strip tracker is arranged in four concentric

cylinders for the barrel and in six end-cap disks on both sides of the IP. The SCT,

together with the pixel detector, allows impact parameter measurements and vertex

reconstruction. They ensure an accurate particle momentum measurement.
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Figure 2.4: Scheme of the ATLAS inner detector barrel being crossed by one high-
energy particle (shown by red line).

In order to reduce the leakage current that increases linearly with the integrated

radiation dose, both the pixel detector and the SCT are cooled down to operate in

the temperature of -5◦C to -10◦C.

The Transition Radiation Tracker surrounding the SCT is comprised of 4

mm diameter and 1.44 m long straw tubes filled with a gaseous mixture of xenon

(70%), carbon dioxide (27%) and oxygen (3%). The tubes are placed parallel to the

beam in the barrel region and radially in wheels in the end-cap region, providing a

measurement in r - φ. The TRT covers a pseudorapidity region of |η| < 0.7 in the

barrel and of 0.7 < |η| < 2.5 in the end-cap.
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The space between the layers of straw tubes are filled with radiators (polypropy-

lene foils or fibres). A charged particle traveling through the radiator leads to a

transition radiation which is an electromagnetic radiation emitted when a relativistic

particle passes through an inhomogenous media, such as the boundary of two mate-

rials. Hence, when a charged particle passes through the material between the tubes,

photons are produced. Within the tube, the particle ionizes the gas. Also, the accom-

panied radiated photons interact with the molecules of xenon and free more electrons.

The signal amplitude produced as a result of the photon interaction is much larger

than the ionization signal itself. Since, a 30 µm diameter gold-plated tungsten wire

in the center of the straw (kept at the ground potential) acts as an anode and each

straw (kept at -1530 V) acts as a cathode, a voltage difference is created in a tube.

Hence, liberated electrons move towards the wire at the center of the tube. A gas

mixture inside a straw helps increasing the electron drift velocity (max 45 ns) and

photon-quenching.

In the TRT, transition radiation is used to distinguish between electrons and

pions. If the initial particle is an electron far more photons are radiated than if it is a

charged pion so more negative charges are measured on the wire. Because an electron

is much lighter than a pion, an energy needed to create transition radiation is much

less than a pion needed.

2.2.3 Calorimeter

The ATLAS calorimeter system includes two main calorimeter types; the Elec-

tromagnetic (EM) Calorimeter and the Hadronic (Had) Calorimeter. It is composed

of six subsystems divided into three groups depending on their position in barrel,

extended barrel and end-cap regions. The barrel includes an electromagnetic Liquid

Argon (LAr) calorimeter and a hadronic Tile Calorimeter (TileCal). The end-cap

region is comprised of ElectroMagnetic End-Cap (EMEC), the Hadronic End-Cap
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(HEC) and the Forward CALorimeter (FCAL). The hadronic calorimeter in the

extended barrel region surrounds the end-cap calorimeters. A computer generated

image of ATLAS calorimeters can be seen in Fig. 2.5.

Figure 2.5: Overview of ATLAS calorimeters.

The LAr Electromagnetic Calorimeter is optimized to measure the energy

of electrons and photons as well as their positions. Also, it provides electron and

photon identification.

The LAr EM calorimeter has a coverage up to |η|=3.2. The two halves of the LAr

EM calorimeter in the barrel region are separated by a small gap (4 mm) at z=0 and

together spans up the pseudorapidity range of |η| < 1.475. In the end-cap region, two

coaxial wheels cover a pseudorapidity range of 1.375 ≤ |η| < 2.5 and 2.5 ≤ |η| < 3.2.

Between the barrel and the end-cap regions, in a coverage over 1.375 ≤ |η| < 1.52, a

crack region exists in order to accommodate instrumentation and cooling infrastruc-

ture to the inner detector. A region with dead material in front of the EM calorimeter

leads to energy loss. In the region, 0 < |η| < 1.8 the electromagnetic calorimeters are
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complemented by a PreSampler (PS), an instrumented argon layer, which provides

a measurement of the energy loss in front of the electromagnetic calorimeters.

In order to ensure the maximum azimuthal coverage and allow for fast read-out,

the EM Calorimeter was designed with an accordion geometry. Its accordion shape

structure consists of many layers of lead and steel that serve as absorber materials.

Between them is liquid argon cooled down to -185◦C. Liquid argon is used as an active

material since it has an intrinsic linear behavior and its response over time is stable.

Immersed in a liquid argon is a copper grid which acts as an electrode.

When an electron passing through the EM calorimeter meets the lead layer, it

interacts with the material and produces a shower of low energy electrons, positrons

and photons. A high energy electron that passes through several layers of absorber

material creates a large shower before it eventually stops. The shower of low energy

particles then passes into a liquid argon and ionizes the atoms creating more nega-

tively charged electrons and positively charged ions. The negative charge is attracted

towards the copper electrode. From the amount of charge deposited on the electrodes

along its path, it is possible to measure the energy possessed by the original electron

or photon when it entered the EM calorimeter.

The depth of the EM calorimeter is defined in terms of radiation lengths (X0).

A radiation length corresponds to the distance after which an electron (or positron)

loses (1 − 1/e) of its initial energy. The total thickness of the EM calorimeter is

greater than 22X0 in the barrel, as seen in Fig. 2.6, and 24X0 in the end-cap.

The Hadronic Tile Calorimeter uses steel as an absorber material and scin-

tillating tiles as an active material. It provides energy measurements of hadrons that

includes neutrons, protons and mesons. The hadronic calorimeter also provides jet

energy measurements.

The hadronic tile calorimeter is comprised of three parts; one in a center barrel

region covering the pseudorapidity range of |η| < 0.8, two in the extended barrel
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Figure 2.6: Sketch of a barrel module of the EM calorimeter.

region giving coverage over 0.8 < |η| < 1.7. There is a vertical gap between these

two regions that provides some space for cables and is partially instrumented with

the Intermediate Tile Calorimeter (ITC).

When a high energy hadron like a proton passes through the steel, it interacts with

an atomic nuclei. These nuclear reactions lead to the production of more particles

which initiate further interactions leading to a shower of particles. The particle shower

passing through layers of scintillating6 tiles produce light in these tiles. Long fibers

located at the edge of the steel-tile sheet then carry the light to devices where the

light intensity from many tiles is measured and converted to an electric current. Using

6A scintillator is a material which radiates light when struck by a charged particle.
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the intensity of the light collected, it is possible to measure the energy possessed by

the high energy hadron which entered the hadronic calorimeter.

For the hadronic calorimeters, the depth is expressed in terms of an interaction

length (λ) which is the average distance a hadronic particle travels inside the material

before any inelastic interaction occurs. The total thickness of the active calorimeter

material in the barrel region is 9.7 λ and 11 λ in the end-cap region. The thickness of

the hadronic calorimeter is good enough to provide good resolution for high energy

jets and also to limit the energy leakage into the muon spectrometer.

Forward Calorimeters are the hadronic calorimeters placed in the forward re-

gion (HEC and FCAL) and due to the large radiation environment in this region, they

all use LAr as an active material rather than scintillating tiles. As an absorber mate-

rial, instead of lead, HEC and one section of FCAL use copper and the remaining two

sections of FCAL uses tungsten in order to cope with the high radiation. The HEC

covers a pseudorapidity range of 1.5 < |η| < 3.2 whereas the range 3.1 < |η| < 4.9 is

covered by the FCAL.

2.2.4 Muon Spectrometer

The MS [65] is the outermost component of the ATLAS detector. It allows for

precise momentum measurements independently of the inner tracking detector and

provides identification and reconstruction of muons. It is comprised of two main

parts; a barrel region within the pseudorapidity range of |η| < 1.0 and the end-cap

region covering over 1.0 < |η| < 2.7. A barrel toroid and two end-cap toroids produce

a toroidal magnetic field of approximately 0.5 T and 1 T for the muon detectors in the

central and end-cap regions, respectively. The layout of the MS with its subdetectors

is shown in Fig. 2.7.

In the barrel region, precision tracking chambers are located between and on the

eight coils of the toroid whereas in the end-cap they are placed behind and in front of
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Figure 2.7: Overview of the Muon Spectrometer.

two end-cap toroids. Eight-fold symmetry of the MS toroids reflected in the structure

of the muon chamber system as a sixteen-fold symmetry since each octant is divided

into two parts in the azimuthal direction, including small sectors (aligned with the

coils) and large sectors (aligned between the coils). These sectors are designed to

have a small overlap in φ in order to minimize gaps between the detector parts and

achieve maximum coverage.

The chambers are placed into layers. There are three layers called as “Inner”,

“Middle” and “Outer”, with increasing distance from the IP. The naming convention

of the MS chambers is based on their location (in the Barrel (B) or End-cap (E)),

their layer type (Inner (I), Middle (M), Outer (O), Extra (E)), and also the sector

type (Small (S) or Large (L)). For instance, BIS (Barrel, Inner, Small) is located in a

small sector of the barrel in the inner layer whereas EML (End-cap, Middle, Large)

lies in the large sector of the middle layer of the end-cap.
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In the barrel region, precision measurements are done by the Monitored Drift

Tubes (MDT), placed in a form of three concentric cylinders around the beam axis,

in combination with Cathode Strip Chambers (CSC). The inner layer is located

inside the barrel toroid coils and arranged at a radius of ∼5 m from the beam axis

(BIS and BIL chambers). The BIL chambers next to the rails7 cannot have the

same dimensions as in the other sectors and are therefore narrowed. Since this would

introduce an unacceptable loss in coverage, this is recovered by placing BIR (R for

rails) chambers below the rails. Encompassing the inner layer, the middle layer is

located in the middle of the coils and at a radius of 7.5 m from the beam axis (BMS

and BML chambers). The outer layer is placed outside the coils at a radius of ∼10

m (BOS and BOL chambers). In order to reduce the acceptance losses due to the

ATLAS support system, special chambers (BOF and BMF chambers) are placed in

this region called as the feet region. Fig. 2.8 shows the transverse view of the barrel

part of the MS.

In the end-cap region, the muon chambers are located perpendicular to the z

axis. The inner layer, in other words small wheel including EIS and EIL chambers

are located inside the end-cap toroids at distances of z = ±7.4 m from the IP. The

middle layer or large wheel including EMS and EML chambers is placed outside the

end-cap toroid at a distance of z = ±14 m. The outer layer including EOS and EOL

chambers is located on the cavern walls at z = ± 21.5 m. There are additional cham-

bers, namely EES and EEL chambers, which are placed in the magnetic transition

region between the barrel and end-cap’s magnetic fields covering a pseudorapidity

range of 1.0 < |η| < 1.4. The other special chambers are the BEE (Barrel,End-Cap,

Extra) chambers that are located in the castellations of the end-cap toroid cryostats.

Although labelled barrel chambers, the BEE are used in the measurement of tracks

7The muon end-caps and calorimeters have been placed on the rail support system so they can
be moved out of position in order to have access to every part of the ATLAS detector.
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Figure 2.8: Transverse view of the muon spectrometer.

passing from the barrel to the end-cap. The BEE chambers consist of a single multi-

layer of four tube layers.

There are also trigger chambers that serve a three-fold purpose: to help muon

transverse momentum measurement, to provide high-speed timing to assist in bunch-

crossing identification and to measure the muon coordinate in the non-bending φ

projection to complement the MDT measurement. For these purposes, Resistive

Plate Chambers (RPCs) are used in the barrel and Thin-Gap Chambers (TGCs)

are used in the end-cap.

61



Monitored Drift Tube chambers consist of three to eight layers of drift tubes

and provide a precise measurement of the muon momentum in |η| < 2.7 (except in

the innermost end-cap layer where their coverage is limited to |η| < 2 and CSCs are

used instead of MDTs for the region of 2 < |η| < 2.7) and measure the position in

the bending plane, namely η. An average resolution of 80 µm per tube or 35 µm per

chamber is achieved.

Each tube is made out of 400 µm thick aluminum with a diameter of 29.970 mm.

It is filled with a gas mixture of argon (93%) and carbon dioxide (7%) and pressurized

to operate at an absolute pressure of 3 bars. At the center of the tube, a tungsten-

rhenium wire with a diameter of 50 µm is placed to collect the electrons produced as a

result of ionization of the gas when a charged particle passes through. The tubes are

arranged into layers. Each layer then stick onto each other by an epoxy glue to form 3

or 4 tube layers, so called multi-layers. A regular MDT chamber consists of two multi-

layers separated by a mechanical spacer. Thus, the chambers in the middle and outer

layer of the muon detector include 2 × 3 tube layers while the inner layer chambers

(BI, EI) consist of 2 × 4 tube layers in order to enhance the pattern recognition

performance. The shape and the dimensions of the chambers are optimized to achieve

the maximum solid angle coverage possible permitted by the magnet coils and support

structures. The chambers are rectangular in the barrel and trapezoidal in the end-

cap, and are mounted on a rigid support structure. Despite the solid construction

of the MDT chambers, there may be deformations and displacements occurring over

time due to temperature gradients. In order to monitor these, the alignment system

is implemented in the chamber. It is composed of four optical alignment rays; two of

them are running parallel to the tube direction, two are placed in a diagonal direction,

as shown in Fig. 2.9.

In the middle of the chamber light ray lenses are located whereas CCD cameras and

LEDs are placed in the outer spacer. This system can record deformations of a few
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Figure 2.9: Mechanical structure of a MDT chamber.

µm. Using the in-plane system as reference, deformations can be corrected with a

precision of about 10 µm.

There is also the projective alignment system which gives the chamber position

within a tower. The MDT and CSC chambers are installed with a precision of 5 mm.

However, in order to achieve the required momentum resolution, the position of the

chambers should be known with a precision less than 30 µm. On that account, an

alignment system was built which relates the position of each chamber to that of its

neighbors, both within an MDT layer and along r-z trajectories within MDT towers.

Fig. 2.10 shows a schematic representation of the alignment system in small and large

sectors.
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Figure 2.10: A schematic representation of the alignment system in small and large
sectors in the r-z plane.

Cathode Strip Chambers are located at about 7 m from the interaction point

covering a pseudorapidity region of 2 < |η| < 2.7 in the first layer of the end-cap.
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The particle fluxes and muon track density are the highest in this region so the limit

for the safe operation of MDT chambers (at counting rates of 150 Hz/cm2) would

be exceeded. However, for CSCs, operation at counting rates up to 1000 Hz/cm2 is

considered safe so CSCs are used instead of MDTs in this specific region. The other

characteristics that make CSC convenient for the regions with high particle densities

are small electron drift times (max. 30 ns), good time resolution (7 ns), low neutron

sensitivity due to the absence of hydrogen gas in the chamber gas and good two-track

resolution.

CSCs are multiwire proportional chambers with cathode strip readout. The anode-

cathode spacing is equal to the anode wire pitch. CSCs are arranged in 2 × 4 layers,

a similar configuration like in the multi-layer of the MDT system in the end-cap, but

with much finer granularity. A segmented cathode with the strips oriented orthogonal

to the wires provides the measurements in the bending plane, namely η and the other

cathode strip placed parallel to the wires provides measurements in the non-bending

plane, namely φ. Thus, both coordinates are measured from the charge induced on

the cathode strips due to the charge avalanche formed by the ionization trail of a muon

in the anode wire. The position of the track is obtained by interpolation between the

charges induced on neighboring cathode strips. The resolution of 60 µm is achieved

in the bending plane and about 5 mm in the non-bending plane. The difference in

resolution between different planes is due to the larger spacing of the readout strips

in the bending plane.

Resistive Plate Chambers are used as a trigger system in the barrel region.

There are three layers of RPCs; one layer is attached to the inside and one attached

to the outside of the middle layer (BM) while the third layer is placed on the outside

of the outer layer (BO), as shown in Fig. 2.11. They are referred to as three trigger

stations. The large distance between the inner and outer RPCs allows the trigger

to select high-pT muon tracks in the pT range of 9-35 GeV. Two chambers around
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the middle layer provide the trigger for low-pT muons in the pT range of 6-9 GeV.

Each station includes two independent detector layers which in turn provide the

measurements in η and in φ, giving a total of six measurements.

RPC consists of two bakelite plates placed parallel to each other and separated

by 2 mm. The plates are interleaved with insulating polycarbonate spacers. A gas

mixture of tetrafluoroethane (97%) and isobutane (3%) between the plates allows for

a relatively low operating voltage. The outside of the plates are coated with a layer of

graphite and then connected to the voltage supply. The resulting electric field of 4.9

kV/mm between the plates multiplies the primary ionization electrons into avalanches

giving a pulses of 0.5 pC. The signal is read out by the capacitively-coupled strips

outside of the two plates.

There is no wire in the structure of RPC, which leads to a simple structure and

manufacture. Each chamber is made from two detector layers and four readout strip

panels.

Thin Gap Chambers are multiwire proportional chambers, providing bunch

crossing identification with an efficiency greater than 99% and participating in muon

triggering. TGCs are arranged as seven layers in the end-cap middle layer (EM) and

two layers on the support structures of the barrel toroid in the end-cap inner layer

(EI), as shown in Fig. 2.11.

TGCs consists of anode wires, cathode planes, cathode strips and honeycomb

support structures. Anode wires are used as readouts for trigger and cathode strips

provide measurements of the second coordinate. High electron field and small wire-

to-wire distance (1.8 mm) lead to good time resolution for most of the muon tracks.

TGCs are filled with a gas mixture of 55% carbon dioxide and 45% n-pentane. The

highly quenching nature of the gas mixture prevents streamers to occur.
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Figure 2.11: Schematics of the muon trigger system with the typical trajectories of
low-pT and high-pT muons.

2.2.5 Magnet System

The magnet system that generates the bending power for the momentum measure-

ment of charged particles is an essential part of a detector. In the ATLAS detector,

this is achieved by two different magnet systems; a central solenoid and outer toroid

system.

The ATLAS Central Solenoid (CS) [66] is a 5.3 m long cylinder with inner

and outer radii of 2.44 m and 2.63 m, respectively. It surrounds the inner detector

and is designed to provide an axial magnetic field of 2 T, with a peak magnetic field

of 2.6 T at the boundary of the CS. The magnetic field deflects each charged particle

coming from the collision. Since the LAr EM calorimeter is situated just outside the

solenoid, the material thickness of the magnet should be minimized to be transparent

enough for the particles to traverse. In order to achieve that, the CS is installed in

a common cryostat with the LAr EM calorimeter. It does not have a cryostat of its

own. The CS uses NbTi/Cu Rutherford superconducting cables in a pure aluminum
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sheath, that carry the current generating magnetic fields. Since they operate at a

temperature of 4.5 K, the cooling of the cables is needed. The pipes with aluminum

coating contain circulating liquid helium and are in a good thermal contact with the

cables. Thus, the cooling is provided indirectly by liquid helium.

The ATLAS Toroid System [67] is comprised of the Barrel Toroid (BT) and two

End-Cap Toroids (ECTs) to generate the external toroidal magnetic field in the MS

for tracking, shown in Fig. 2.12. As in the CS, NbTi/Cu Rutherford superconducting

cables are used and cooled by liquid helium indirectly.

Figure 2.12: The ATLAS Toroid System, showing 8 coils of the barrel toroid and 8
coils of each end-cap toroid.

The BT consists of eight flat racetrack coils. Each coil has an axial length of

25.3 m and extends radially from 9.4 m to 20.1 m. The superconducting cables are

arranged as two “pancakes”, each with two layers of cables inside the coil. Each coil

has its own cryogenic system. The peak field provided by the BT is 3.9 T in the inner

surface of the coils. Because of the spacing between the coils, the magnetic field is

around 0.6 T throughout the BT, in the region |η| <1.4.
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The ECT design is based on eight superconducting, racetrack type coils with two

double-pancakes of superconducting cables. This design is very similar to that of the

BT’s. However, the ECTs are much smaller and therefore assembled as two single

cold masses each in a vacuum vessel. Each coil has an axial length of 5 m and extends

radially from 1.65 m to 10.7 m. The peak magnetic field provided is 4.1 T, that gives

an average of ∼1 T throughout the ECTs, in the region 1.6 < |η| < 2.7. The ECT

coils are rotated by an angle of 22.5◦ with respect to the BT coils in order to provide

the radial overlap.

The “magnetic transition region” where the magnetic fields of the barrel and end-

cap toroids overlap covers a pseudorapidity range of 1.4 < |η| < 1.6 and leads to an

irregular magnetic field. In this region, the particle track is mostly straight, as in

the case of high-pT muons, due to the complex geometry of the magnetic field. That

makes muon reconstruction more difficult. Bending power
∫
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system is shown as a function of |η| in Fig. 2.13.
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Figure 2.13: Predicted field integral as a function of |η| from the innermost to the
outermost MDT layer in one toroid octant, for infinite momentum muons. The curves
correspond to the azimuthal angles φ = 0 (red) and φ = π/8 (black).
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2.2.6 Trigger System

The proton-proton collision rate at the LHC reaches 40 MHz. Considering that one

event has a size of about 1.5 MB, the collision rate provides too much data to store.

However, not all of these events are interesting. Minimum bias events including elastic

scattering or soft collisions can be filtered. In order to perform preselection and reduce

the total data-flow without losing interesting physics, a three-level trigger system has

been developed: Level 1 (LVL1), Level 2 (LVL2) and Event Filter (EF). Each level

of the trigger refines the previous decision by using more advanced algorithms and

more amount of information from the subdetectors.

The LVL1 is a hardware based trigger and uses coarse-granularity data from the

calorimeter and the muon spectrometer. It reduces the event rate of ∼20 MHz (40

MHz by design) to a rate of ∼65 kHz (75 kHz by design). The corresponding output

is reduced to ∼100 GB/s. Decision time or latency is 2 µs for LVL1. The LVL1 muon

trigger system consists of low-pT and high-pT triggers. The momentum cut-off for the

low-pT trigger is 6 GeV and it uses information from the middle layer RPC stations in

the barrel, two outer layers of TGC in the end-cap. The high-pT trigger, on the other

hand, uses information from all trigger stations and applies a cut-off momentum of

20 GeV. LVL1 defines a Region of Interest (RoI) for LVL2 to use. Once the decision

is made by LVL1, the data is passed to LVL2.

The LVL2 is a software trigger and works on full-granularity RoI data from

LVL1. The fast software algorithms are used for track matching and tightening the

requirements on the objects. In order to improve momentum estimate, the LVL2

trigger also uses information from the precision chambers. It reduces the event rate

from ∼65 Hz (75 kHz by design) to ∼5 kHz (3 kHz by design), which corresponds

to data output of ∼7.5 GB/s. Decision time for LVL2 is 60 ms. Until the decision

is made in LVL2, full detector data is kept in Read-out Buffers (ROBs). Then, if

selected, the data is passed to the final trigger or if not, it is discarded.
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The EF is the third and final level trigger that uses full event information from

all detector systems. It runs advanced reconstruction algorithms, also in offline re-

construction, to enable full reconstruction of the events. It runs on a computer farm

located at CERN. The latency for the EF is about 1 second and it reduces the event

rate from ∼5 kHz (3 kHz by design) to ∼400 Hz (200 Hz by design). Final data

output is ∼600 MB/s. After processing in the EF, the data is written to ATLAS

data storage and made available for further offline analysis.

2.3 Data Taking with the ATLAS Detector

The Run I can be divided into three main data taking periods corresponding to

the years 2010, 2011 and 2012.

In 2010, the LHC delivered pp collisions at
√
s = 7 TeV corresponding to a total in-

tegrated luminosity of 48.9 pb−1 where ATLAS recorded 45 pb−1 with an uncertainty

of 3.4%.

In 2011, the collision energy remained the same but the total delivered luminosity

increased to 5.61 fb−1. During this period, ATLAS recorded an integrated luminosity

of 5.25 fb−1 with an uncertainty of 3.7%.

In 2012, the collision energy is increased to
√
s = 8 TeV and a total integrated

luminosity of 21.7 fb−1 is recorded by ATLAS with an uncertainty of 2.8% out of the

delivered 23.3 fb−1.

Cumulative luminosity versus day delivered to ATLAS and also cumulative lumi-

nosity versus time delivered to and recorded by ATLAS during stable beams can be

seen in Fig. 2.14.

ATLAS online data taking is divided into subperiods. The time interval during

which the luminosity is supposed to remain constant is called “Luminosity Block”

(LB or lbn) and is roughly 2 min. A “run” is a collection of luminosity blocks and its

duration depends on the beam conditions. Status and functionality of all subdetectors
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Figure 2.14: Left: Cumulative luminosity versus day delivered to ATLAS during
stable beams and for pp collisions. This is shown for 2010 (green), 2011 (red) and 2012
(blue) running. Right: Cumulative luminosity versus time delivered to (green) and
recorded by ATLAS (yellow) during stable beams and for pp collisions at

√
s = 8 TeV.

are known for each lbn in each run. Thus, each analysis is required to use data from

“good” luminosity blocks in each run. For this purpose, a “Good Run List” (GRL) is

prepared and used to determine the integrated luminosity for a given analysis. The

total luminosity used in the analysis presented in this thesis is 20.5 fb−1, recorded

with the ATLAS detector during the year 2012 with
√
s = 8 TeV and with a time

interval of 50 ns between bunches.

2.3.1 Pile-up

The high instantaneous luminosity and short bunch spacing introduces some chal-

lenges for the ATLAS detector and its subsystems during data taking. Multiple in-

teractions per event, called “pile-up”, are directly correlated with the instantaneous

luminosity. The parameter µ is defined as the average number of particle interactions

per bunch crossing. If the multiple interactions occur in the same bunch crossing, the

pile-up is referred to as “in-time”. There are also overlapping signals in the detector

from other neighboring bunch crossings, so called “out-of-time” pile-up. This occurs

due to the existence of electronic signals from previous bunch crossings. Considering

that the signal length of LAr calorimeters is ∼500 ns whereas the bunch spacing is
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50 ns, out-of-time pileup is highly possible to occur. In order to account for that, µ is

averaged over all bunches in the collider in a given lbn (<µ>) and used as a measure

of pile-up. Average number of interactions per bunch crossing for 2012 data is shown

in Fig. 2.15.
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Figure 2.15: The luminosity-weighted distribution of the mean number of interactions
per crossing for 2012 data.

2.4 Muon Reconstruction

2.4.1 Muon Reconstruction Algorithms

In ATLAS, four kinds of muon candidates are distinguished depending on the

way they are reconstructed; stand-alone (SA) muon, combined muon (CB), segment

tagged (ST) muon and calorimeter tagged (Calo) muon. Several independent al-

gorithms have been developed to implement different muon reconstructions. The

algorithms are grouped into collections, also known as chains. The STACO [68]

and Muid [69] collections are two main collections including standalone, combined
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and tagging algorithms. The third collection, CaloMuonTag, consists of calorimeter

based muon tagging algorithms. The analysis presented in this thesis uses the muons

reconstructed by Muid.

2.4.1.1 Standalone Muon

For the standalone muon reconstruction, only the information from the MS is used.

The track is entirely reconstructed in the MS and then extrapolated back to the beam

line in order to determine the track parameters of the muon at the interaction point.

The muon momentum measured in the MS is corrected for the parametrized energy

loss in the calorimeter.

• Muid Standalone Algorithms:

– The MOORE (Muon Object Oriented REconstruction) uses hit infor-

mation in the MS to build segments. Segments are built by pattern recog-

nition algorithms. First, “regions of activity” (ROA) are identified in the

muon system, through the trigger chambers. Then, in each muon station of

these ROA, “local straight track segments” are reconstructed. Track seg-

ments constructed in φ and in R-z planes are approximated to be straight

due to the minimal bending of toroids in the φ plane and negligible bending

power of toroids over a distance of one single precision layer. Constructed

track segments from each plane are matched to form a road. Finally, the

global fit of hits along the road is performed. An energy correction is ap-

plied to account for energy loss upstream the material as well as that arises

from multiple scattering in the MS. The track parameters are expressed at

the entrance of the MS.

– The MuidStandalone extrapolates tracks from MOORE back to the

interaction point by taking energy loss in the calorimeter into account.

Thus, track parameters are expressed at the primary vertex.

74



• STACO Standalone Algorithms:

– The Muonboy uses hit information to create segments in the MS.

Pattern recognition algorithms provides segment finding. ROA is iden-

tified through the trigger chambers and then, in each muon station of

these ROA, “local straight track segments” are reconstructed, as similar

to MOORE strategy. These track segments of different muon stations are

used to form track candidates. A global track fit of the muon track can-

didates is performed through the full system. Tracks are extrapolated to

the primary vertex and the momentum is corrected using an energy loss

parametrization. Track parameters are expressed at the primary vertex.

This algorithm is very similar to the MuidSA algorithm in the Muid col-

lection.

2.4.1.2 Combined Muon

The combination of independent measurements from the ID and MS is performed

to reconstruct a combined muon. Energy losses in the calorimeter are taken into

account using parametrization and possibly calorimeter measurements. This recon-

struction strategy provides the most precise measurement of the momentum and

position of a muon. The combined algorithms Muid and STACO perform a matching

between pairs of inner detector and muon spectrometer tracks, both by calculating

a χ2
match. It is defined as the difference between the track parameter vectors (T)

weighted by their combined covariance matrix (C) and can be shown as:

χ2
match = (TMS − TID)T(CID + CMS)−1(TMS − TID). (2.8)

The value of χ2
match decides whether the match is successful and the inner detector

track is identified as a muon. The Muid and STACO combined algorithms follow a

different approach to obtain combined track parameters.
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• Muid Combined Algorithms:

– Muid Combined muons are reconstructed by refitting the tracks which

are obtained according to χ2
match and by using the measurements and scat-

terers from the inner detector, calorimeter and muon spectrometer systems.

The full hit information in the ID and MS is also used to perform a refit.

The matches with a satisfactory combined fit are identified as combined

muons. Reconstruction efficiency for Muid CB muons as a function of η

for muons with pT >20 GeV is shown in Fig. 2.16.

Figure 2.16: Reconstruction efficiency for Muid combined muons with pT > 20 GeV
[70].

76



• STACO Combined Algorithms:

– STACO Combined muons are reconstructed by a statistical combina-

tion between the ID tracks and the Muonboy MS tracks. This statistical

combination is defined as:

T = (CID
−1 + CMS

−1)−1(CID
−1TID + CMS

−1TMS). (2.9)

The value of χ2
match of the global fit is required to be below a maximum

value chosen. If there are more than one ID tracks matching an MS track,

only the pair giving the best combined χ2
match (or the minimum χ2

match ) is

kept and defined as a combined muon candidate.

2.4.1.3 Segment Tagged Muon

Segment tagged muons consist of ID tracks with an additional information from

the MS. If a track in the ID, extrapolated to the MS, is associated with straight track

segments in the precision muon chambers, it is identified as a muon. This provides

efficiency recovery in regions with low MS detector coverage. Besides that, tagging

muons increase the identification efficiency for low-pT muons. These muons may be

absorbed in the calorimeter or even if they reach the MS, they only hit few stations

due to their large curvature. Thus, tracks are not reconstructed in the MS but the

segments are available for muon tagging.

• Muid Tagging Algorithms:

– The MuGirl algorithm extrapolates the ID tracks to the inner and middle

layer of the MS and performs a matching at hit level. It uses artificial

neural networks to define a matching discriminant. The ID tracks and

the matched muon hits are combined by performing a refit. If the MS

information is not enough to perform combined muon reconstruction, then
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an ID track with an associated muon segment in the MS is “tagged” as a

muon.

– The MuTagIMO (MUon TAGged Inner-Middle-Outer) algorithm ex-

trapolates ID tracks to the all stations in the MS. It searches for MOORE

segments and performs a χ2 based match. There may be multiple segments

associated with the ID tracks.

• STACO Tagging Algorithms:

– MuTag complements the combined muon algorithm by using the

segments that do not share any hits with the muons reconstructed by

STACO. It extrapolates the ID tracks to the inner layer of the MS and

searches for Muonboy segments. Matching to the segments is performed

based on the value of χ2. This algorithm recovers low-pT muons and also

the muons from the regions with poor MS coverage.

2.4.1.4 Calorimeter Tagged Muon

An ID track with an energy deposition in calorimeters compatible with a min-

imum ionizing particle is identified as a muon. This algorithm recovers the muon

identification efficiency in the region around |η| = 0 where there is a large acceptance

gap in the MS for services of the ID and the calorimeters.

• CaloMuon Tagging Algorithms:

– The CaloMuonTag algorithm extrapolated ID tracks to calorimeters,

collecting the energy measurements in the cells closest to the extrapolated

track.
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Table 2.1: A summary of the muon reconstruction collections.

Muon Type Muid Collection Staco Collection CaloMuon Collection
Standalone MOORE Muonboy -
Combined Muid STACO -

Tagged MuGirl, MuTagIMO MuTag CaloMuonTag

2.4.2 Muon Reconstruction Performance

The designed resolution of the MS is ∆pT/pT = 10% for muons with pT = 1 TeV.

The momentum resolution of muons depends on the detector geometry, magnetic field

and material effects. The η − φ map of ten detector regions is shown in Fig. 2.17.

Contributions to the momentum resolution for muons reconstructed in the MS as

a function of transverse momentum for |η| < 1.5 is shown in Fig. 2.18. Dominant

contributions to the muon momentum resolution in the detector depend on the muon

momentum. Those can be categorized into three main groups:
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Figure 2.17: Muon spectrometer detector regions.

• The momentum resolution of muons with pT < 30 GeV is determined by the

energy loss in the calorimeter.
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• For the muons in a pT range of 30 < pT < 100 GeV, the momentum resolution

is dominated by multiple scattering.

• The single tube resolution, precision of the calibration and the alignment be-

comes more important for the momentum resolution when the muon pT is above

100 GeV. Radiative losses become the dominant energy loss mechanism for

muons with pT > 300 GeV so showers resulting from bremsstrahlung make the

muon reconstruction more difficult.
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CHAPTER 3

DATA AND MONTE CARLO SAMPLES

This chapter begins with the discussion of Monte Carlo simulation strategies and

event reconstruction in ATLAS. It is followed by the description of the 2012 data,

MC samples representing SM backgrounds and signal samples, used in this analysis.

The final section focuses on corrections made to simulated samples to better model

the data.

3.1 Monte Carlo Simulation Strategies and Event Recon-

struction

Simulation tools are important for the design of a detector and for the development

of the reconstruction algorithms. In order to make a comparison between recorded

and simulated data, a common output format should be used. In ATLAS, production

of Monte Carlo event samples consists of four steps; Event generation, physics and

detector response, digitization and reconstruction (detailed in the ATLAS Computing

TDR [71]). The output of digitization has the same format as the data retrieved from

the ATLAS detector. Thus, the reconstruction step is common both for recorded and

simulated data.

3.1.1 Event Generation

Event generation is performed with a variety of event generators. Each event

from the event generator contains particles from a single interaction vertex at (0,0,0).

Particle type and four-momenta of these particles are also included in the event record.
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The events can either be written to a file for further processing, or passed directly

into the further simulation stages.

3.1.2 Physics and Detector Response

The second stage of the simulation process is the simulation of the passage of

particles through the detector material. A description of the full ATLAS detector,

including misalignments and material distortions, has been made available in the full

simulation. ATLAS detector simulation methods can be categorized into two groups:

full simulation and fast simulation.

The full simulation in ATLAS is based on the Geant4 [72] simulation toolkit.

Geant4 provides functionalities including the propagation of particles through the

detector and the description of the material. It has a high precision capacity. The

only downside is its long processing time. Thus, for the generation of samples with

very high statistics, Geant4 is not very convenient to use due to a great amount of

time needed. For this purpose, fast simulation, mostly based on ATLFAST-II or

ATLFAST-IIF, is developed.

ATLFAST-II is a parametrized simulation based on Geant4. It reduces the

processing time by using a fast calorimeter simulator (FastCaloSim). Since 95%

of the detector simulation is spent in the calorimeter simulation, a fast simulation

makes the process a factor of 10 faster. Thus, by using ATLFAST-II, the inner

detector and the muon spectrometer simulation are performed by Geant4 whereas

FastCaloSim is responsible for the calorimeter simulation. ATLFAST-IIF, on the

other hand, uses fast ATLAS Tracking Simulation (Fatras) for the inner detector

and muon spectrometer simulations. Detector simulation produces “hits” as output,

which are records of the interactions of particles in the detector.
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3.1.3 Digitization

The hits produced by the detector simulation need to be translated into the output

actually produced by the ATLAS detectors. Thus, in the digitization stage, the

response of each subdetector element is simulated in appropriate detail. The final

output of the digitization step is in the form of Raw Data Objects (RDOs) equivalent

to those from the read-out drivers of the real experiment.

3.1.4 Reconstruction

After the RDO output format is produced, the next step both in the simulation

chain and the real detector data chain is to perform pattern recognition to identify the

trajectories of particles, to measure momentum and energy and to identify individual

particles. In order to ease the usage of a vast amount of data produced for physics

analysis, the reconstruction step is divided into different stages, each of which requires

a different type of dataset. The following are the available datasets in ATLAS, listed

in decreasing order of their sizes:

• Byte-stream Data is reflecting the format in which data are delivered from

the detector, rather than in any object-oriented representation. Events coming

from the Event Filter are in byte-stream format.

• Raw Data Object is a C++ object representation of the byte-stream infor-

mation. Hence, the initial stage in the reconstruction pipeline is to convert

the byte-stream information into RDOs which are then used for subsequent

reconstruction.

• Event Summary Data (ESD) is produced from the raw data, containing the

detailed output of the detector reconstruction. It includes sufficient information

for particle identification, track re-fitting, jet calibration, etc. The design of the

ESD is intended to make access to raw data unnecessary.
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• Analysis Object Data (AOD) is an event representation with reduced infor-

mation for physics analysis, derived from ESD. It contains physics objects such

as electrons, muons, etc. and other elements of analysis interest.

• Derived Physics Data (DPD) is a data representation for end-user analysis.

It is a suitable format for direct physics analysis. Examples of DPD formats

are dESD (derived from ESD, for performance groups), dAOD (derived from

AOD, for physics groups), or NTUP (ROOT n-tuples, both for physics groups

and end-users).

• TAG is a format holding event-level metadata. Event tags provide a summary

of some general features of events, allowing a particular event selection and

quick access of the required events.

The summary of the derived data types is shown in Fig. 3.1.

Figure 3.1: Schematic view of ATLAS raw and derived data types and associated
workflows [73].

Events produced from simulated datasets have an additional “truth” component

which allows a detailed comparison to be made between the results of reconstruction

and the original event.

3.2 2012 Data

The data used in this analysis consist of the full 2012 dataset collected during

pp collisions at
√
s = 8 TeV. This corresponds to 20.5 fb−1 of data (after quality
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conditions have been applied) in the muon channel. Events are required to be collected

with stable beam conditions and operational inner detector and muon spectrometer.

3.3 Standard Model Backgrounds

The analysis is performed using D3PDs designed for use in Standard Model group

analyses. The ATLAS Detector response was simulated with Geant4 and all MC

events were reconstructed with the same software as for the data. The SM back-

ground to a non-resonant dilepton search consists of an irreducible component due to

Drell-Yan (qq̄ → Z/γ∗ → `+`−) as well as photon-induced events (γγ/γq/γq̄ → `+`−,

through t̂ and û channel processes), and reducible non-negligible components origi-

nating from tt̄ and diboson production.

3.3.1 Drell–Yan Process

The largest and irreducible background in this analysis is the DY process that

is shown in Fig. 3.2. The expected contribution from this process is simulated with

Powheg in conjunction with Pythia 8 for parton showering and hadronization.

The CT10 PDF (The Coordinated Theoretical-Experimental Project on QCD Par-

ton Distribution Function) [74] set is used for the event generation. To ensure an

adequate number of events throughout the distributions of interest (such as dilepton

invariant mass), 13 mass-binned samples were created with true dilepton invariant

masses ranging between 250 GeV and 4500 GeV. To cover the region below 250 GeV

an inclusive sample (all SM decays switched on, with no mass-binning) was gener-

ated above ∼60 GeV. This “unbinned” DY sample is stitched to the mass-binned DY

samples at 250 GeV. Since the inclusive sample also includes events above 250 GeV,

to avoid double-counting events in this region, an upper limit of 250 GeV is applied

on the true dilepton invariant mass. This inclusive sample has small statistical uncer-
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tainties and is important for use in the data/MC normalization region between the

dilepton invariant mass of 80 GeV and 120 GeV.

Figure 3.2: The Drell-Yan process with a dimuon final state.

The DY process is generated using next-to-leading order (NLO) matrix elements.

Next-to-next-to-leading order (NNLO) generation of this process with Powheg is

not available. Thus, NNLO QCD and EW corrections are derived by using the

FEWZ 3.1 (Fully Exclusive W and Z Production) program [75] with the MSTW2008

NNLO PDF [76, 77] in order to normalize the DY cross section at NLO to NNLO.

More details on the DY samples used in the analysis are included in Table A.1 of

Appendix A.

3.3.2 Photon-Induced Process

There is also a contribution to DY from Photon-Induced (PI) events, which are not

taken into account in the samples produced with the Powheg event generator. The

PI process arises from initial state γγ, γq or γq̄. Examples of born-level diagrams

of PI processes can be found in Fig. 3.3. Even though a derived PI K-factor is

available to correct DY cross section to account for PI processes, the dedicated PI

MC samples are used in the analysis since the inclusion of these samples leads to a

better description of the lepton angular distribution. The PI processes are simulated

with Pythia 8 at LO using the MRST2004QED PDF [78]. To ensure adequate
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statistics, PI samples are generated in 4 mass bins, covering true dimuon invariant

mass 60-200 GeV, 200-600 GeV, 600-1500 GeV and 1500-2500 GeV.

Figure 3.3: Born-level production of photon-induced processes.

3.3.3 Diboson Production

The diboson processes (WW, WZ, ZZ) can lead to a dilepton final state if the W

and Z boson decay leptonically. One of these processes is shown in Fig. 3.4. These

processes are generated with Herwig 6.510 at LO with the CTEQ6L1 [79] PDF.

To increase the statistics at higher invariant masses, two mass-binned samples per

diboson process is generated; one covering true dilepton mass in the range between 400

GeV and 1000 GeV and one above 1000 GeV. For these samples, events are required

to have at least two same flavor leptons with pT > 10 GeV, |η| < 2.8. Inclusive

samples for each diboson process is also created to cover the mass range below 400

GeV. In order to stitch unbinned and binned samples properly, only the events with

true dilepton invariant mass below 400 GeV are kept in the inclusive samples.

The LO diboson background description is scaled to NLO in a mass-independent

way as described in Reference [80]. This mass-independent scaling is allowed as long

as one of the bosons is always on-shell, which was found to hold in the range used

for this search. More details on diboson samples used in this analysis can be found

in Table A.2 of Appendix A.
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Figure 3.4: Diboson production that leads to a dimuon final state.

3.3.4 Top-quark Production

The “Top” background includes tt̄ and Wt (a single top is produced in association

with a W boson) processes. Top quark decays into a W boson and a bottom quark.

Hence, if a W boson resulting from top quark decay further decays into a muon and

a neutrino, that leads to a dimuon final state for tt̄, as shown in Fig. 3.5. The tt̄

background is simulated with MC@NLO 4.06 with the CT10 PDF to generate the

matrix elements. Multiple parton interactions are described by Jimmy 4.31 [81] and

Herwig is used to describe the remaining underlying event and parton showers. The

simulated tt̄ events are generated for a top quark mass of 172.5 GeV/c2. The Wt

background is also simulated with MC@NLO and Jimmy.
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Figure 3.5: tt̄ production that leads to a dimuon final state.

The cross sections of the tt̄ andWt processes are calculated at NLO with MC@NLO.

Higher-order corrections are computed with Top++ 2.0 [82–87] to derive a K-factor
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which brings this background description from NLO to NNLO in QCD, including

resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms. Each

process is scaled to its calculated cross section and then two processes are combined

to have one single “Top” background. More details on tt̄ and Wt samples can be

found in Table A.3 of Appendix A.

Due to the lack of statistics at high invariant mass, a binned χ2 fit is performed.

The choice of a fitting function is made depending on both the stability of the function

with variation of fit range, and the χ2 fit probability in the optimal fit range. Two

fitting functions are explored and the function chosen to perform the fit is the so-called

dijet function:

a · xb · xc·ln(x). (3.1)

The fit range is from the dimuon invariant mass of 191.5 GeV to 733.9 GeV. The

fit result is converted into a binned histogram. The top background estimate is taken

from scaled tt̄ and Wt samples up to 561 GeV (stitching point) and for the mass region

greater than 561 GeV, results from the fit are used. Both statistical and systematic

uncertainties are quantified for the fit. The statistical uncertainty for the fit stems

from the errors on the number of entries in each bin extrapolated from the fit. This

is taken from the fit’s covariance matrix and errors returned on the fit parameters.

Two systematic uncertainties are considered; first by examining the effect of using a

different fit function and secondly by varying the fit range. The other fit function

used to quantify systematic uncertainty is the inverse monomial function:

a

(x+ b)c
. (3.2)

The difference between the dijet and inverse monomial fit functions is taken as the

first source of systematic uncertainty for the fit extrapolation. The second systematic

error is calculated by varying the upper and lower boundaries of the dijet fit range,
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which gives a total of 25 different fits. The maximum difference between these fits

and the central fit is taken as the systematic uncertainty. Systematic uncertainties

calculated for the top background are added to the statistical uncertainty in quadra-

ture. The resulting uncertainty is assessed as the statistical uncertainty on the top

background. In other words, systematic uncertainties are included in the statistical

uncertainty. The top background fit and resulting final distribution are shown in

Fig. 3.6. Since the analysis is performed not only in different mass bins but also in

two different cos θ∗ bins, top background fits are also provided separately for forward

and backward events, as shown in Fig. 3.7 and Fig. 3.8.
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Figure 3.6: Dimuon mass distribution for tt̄ and single-top MC events. Left: The
nominal (dijet) fit to the top background is shown by the red curve. Black histogram
shows the simulated top background including statistical errors, blue lines show the
fit range and the dashed pink line shows the stitching point. Right: The final
distribution is shown with statistical errors (green) and combined errors (red).

3.4 Signal Samples

The contact interaction signal processes are generated using Pythia 8.165 at LO

with the MSTW2008LO PDF. The detector response is simulated with ATLFAST-II.

These samples are produced at five benchmark Λ values (7 TeV, 10 TeV, 14 TeV, 20

TeV, 28 TeV) for each of three CI models (Left-Left, Left-Right, Right-Right chirality

models), in both constructive and destructive interference scenarios. To ensure an

adequate number of events to maintain a relatively small statistical uncertainty, three
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Figure 3.7: Dimuon mass distribution for tt̄ and single-top forward MC events. Left:
The nominal (dijet) fit to the top background is shown by the red curve. Black
histogram shows the simulated top background including statistical errors, blue lines
show the fit range and the dashed pink line shows the stitching point. Right: The
final distribution is shown with statistical errors (green) and combined errors (red).

mass binned samples are created, covering the true dimuon invariant mass range 300-

600 GeV, 600-1200 GeV and > 1200 GeV. The CI signal needs to be generated with

the SM DY background in order to provide the correct DY-CI interference description.

Thus, CI samples include the SM DY background, the pure CI signal and the DY-CI

interference contribution. Table 3.1 shows the relative contributions of DY only, DY-

CI interference, and pure CI terms to the total production cross section under the LL

scheme. As seen from this table, the pure CI contribution increases with increasing

dimuon invariant mass, and more so for lower Λ values than higher values. In cases

where higher than 100% of the cross-section is reported for the pure CI fraction, the

destructive CI-DY interference fraction is always large enough to bring the sum of

the pure and interference terms below 100% of the total cross-section as would be

expected. More details on LL, LR and RR CI samples can be found in Table A.4,

Table A.5 and Table A.6 of Appendix A, respectively.

As discussed in the previous chapter, the dominant DY background is generated

with Powheg, although the DY contribution in the signal samples is generated with

Pythia. It is important to generate the main background at NLO with Powheg

since that accounts for higher order effects and model the DY background more

91



Dilepton Inv Mass [GeV]
100 200 300 400 1000 2000 3000

­1
E

v
e

n
ts

 S
c

a
le

d
 t

o
 1

 p
b

­610

­5
10

­410

­310

­210

­110

Reconstructed MC

Dijet Fit

MUON CHANNEL / TOP BACKGROUND

Dilepton Inv Mass [GeV]
100 200 300 400 1000 2000 3000

­1
E

v
e

n
ts

 S
c

a
le

d
 t

o
 1

 p
b

­610

­5
10

­410

­310

­210

­110
Reconstructed MC

Central Dijet Fit

Dijet + Systematics

MUON CHANNEL / TOP BACKGROUND

Figure 3.8: Dimuon mass distribution for tt̄ and single-top backward MC events.
Left: The nominal (dijet) fit to the top background is shown by the red curve. Black
histogram shows the simulated top background including statistical errors, blue lines
show the fit range and the dashed pink line shows the stitching point. Right: The
final distribution is shown with statistical errors (green) and combined errors (red).

accurately. The CI signal samples are generated at LO with Pythia 8 as this is the

only current generator in which the process is implemented. To scale the Pythia 8

CI and DY samples to the same order as the main Powheg Drell-Yan background,

a LO to NNLO QCD+EW K-factor is calculated using the FEWZ NNLO estimate.

K-factor is explained in more detail in Section 3.5.1.

The ADD signal samples are generated with Sherpa 1.3.1 at LO using multi-leg

matrix elements and the CTEQ6L1. The generation includes the production of up to

one jet and implements a UV cut-off on the dilepton invariant mass set equal to MS,

as the model becomes a quantum theory and so is no longer valid beyond that scale.

The full simulation is available for the simulation of ADD model events in the GRW

formalism. The results obtained with the GRW formalism can be converted into the

Hewett and HLZ formalisms. However, this conversion does not work for the HLZ

n=2 case because of the additional dependence on the dilepton mass. Therefore, the

HLZ n=2 formalism is also simulated and the results for this formalism is presented

for the first time in ATLAS.

The ADD signal samples are created for seven benchmark values of MS (2.5 TeV,

3 TeV, 3.25 TeV, 3.5 TeV, 3.75 TeV, 4 TeV, 4.75 TeV), in three mass bins covering
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Table 3.1: Relative contribution of DY-CI Interference (term depending on FI) and CI
(term depending on FC) to the total cross section (σ×B(X → µµ)) in the LL model
as a function of benchmark Λ values for different true mµµ ranges for constructive
(η = −1) and destructive (η = +1) interference. Specifically the terms in the table
can be read as: XI = −η(FI/Λ

2)/σDY+CI , and XC = (FC/Λ
4)/σDY+CI .

Λ [TeV]
True mµµ range [GeV]

300 – 600 600 – 1200 > 1200
XI , XC XI , XC XI , XC

Constructive Interference: η = −1
7 10.5%, 6.15% 23.7%, 39.4% 15.3%, 79.5%
10 5.7%, 1.64% 20%, 16.3% 23.5%, 60%
14 3.03%, 0.445% 13.1%, 5.44% 27.2%, 35.4%
20 1.51%, 0.109% 7.17%, 1.46% 22.6%, 14.4%
28 0.678%, 0.0217% 3.36%, 0.305% 13.2%, 3.73%

Destructive Interference: η = +1
7 -12.5%, 8.46% -32.2%, 69.3% -19.2%, 112%
10 -6.15%, 2.03% -24.7%, 26.1% -38.2%, 109%
14 -3.09%, 0.521% -13.6%, 7.32% -51%, 74.3%
20 -1.5%, 0.124% -6.57%, 1.73% -35.9%, 25.6%
28 -0.66%, 0.0243% -2.86%, 0.335% -16.1%, 5.09%

true dimuon invariant mass range 300-600 GeV, 600-1200 GeV and > 1200 GeV. As

with the CI generation, both DY and ADD signal are produced as a single process.

The pure DY contribution has been estimated by setting MS = 50 TeV because no

Sherpa fully simulated DY was available. Low values of MS yield more signal-like

event samples and, thus, setting MS = 50 TeV allows one to produce an essentially

pure SM DY spectrum.

A summary of MC samples for signal and background processes used in this search

can be found in Table 3.2.
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Table 3.2: Summary of MC sample information for signal and background processes
used in this search. The columns from left to right give the process of interest,
generator, matrix element order, parton shower program, and PDF utilized.

Process Generator Order Parton Shower PDF
qq̄ → Z/γ∗ → `+`− Powheg [59] NLO Pythia 8.165 [56] CT10 [74]
γγ/γq/γq̄ → `+`− Pythia 8.165 [56] LO Pythia 8.165 [56] MRST2004QED [78]
tt̄→ `X, Wt→ X MC@NLO 4.06 [60] NLO Jimmy 4.31 [81] + Herwig 6.510 [58] CT10 [74]

WW,WZ,ZZ → `X/`ν/`` Herwig 6.510 [58] LO Herwig 6.510 [58] CTEQ6L1 [79]
CI: qq̄ → `+`− Pythia 8.165 [56] LO Pythia 8.165 [56] MSTW2008LO [76,77]

ADD: qq̄/gg → G∗ → `+`− Sherpa 1.3.1 [61] LO (multi-leg) Sherpa 1.3.1 [61] CTEQ6L1 [79]

3.5 Corrections to the Simulated Samples

Due to imperfect modeling of some characteristics of data in simulation, MC

samples need to be corrected. Thus, in order to ensure a fair comparison between

data and MC, data derived corrections are applied to the MC where required. In this

analysis, higher order corrections are made to the DY cross section and corrections

to the muon momentum are applied to account for differences in resolution between

data and MC simulation. The average number of interactions per bunch crossing is

also corrected in MC to have a better match to data.

3.5.1 Higher Order Cross Section Corrections

Higher order corrections are applied to the simulated samples on an event-by-event

basis to account for additional diagrams to the DY process that are not included in

the MC generation. There are two main types of higher order corrections; QCD and

EW corrections. The QCD corrections account for gluon radiation or quark/gluon

loops, which only affect initial state quarks. The EW corrections have contributions

from initial state photon radiation, final state photon radiation and electroweak loop

corrections. Some examples of higher-order diagrams are shown in Fig 3.9.

The DY process is simulated at NLO in QCD and LO in EW with Powheg.

Since the DY has the largest contribution in the background of this analysis, its

precise modeling is important. Hence, higher order corrections are calculated with
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Figure 3.9: Examples of higher-order diagrams in DY production. The left diagram
shows the vertex correction. The correction to the propagator is shown on the right
diagram.

FEWZ at NNLO in QCD and NLO in EW. The final state QED radiation, which

is the dominant part of EW corrections, is simulated with Photos and included in

the MC simulation. On that account, FSR corrections are excluded from the higher

order (HO) EW corrections. NNLO QCD and HO EW corrections (except FSR) are

calculated simultaneously in order to have a consistent EW parameter scheme. An

overall K-factor per invariant mass bin is introduced as:

σbest(m``) = K(m``)× σMC(m``), (3.3)

K(m``) =
σbest(m``)

σMC(m``)
, (3.4)

where “best” refers to an external NNLO QCD calculations and NLO EW calcula-

tions.

Higher-order corrections to the Powheg DY samples are made with the following

mass-dependent function:
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KPOWHEG
QCD,EW (mµµ) =



1.04 − (1.49× 10−4)×mµµ + (3.08× 10−7)×m2
µµ

− (3.44× 10−10)×m3
µµ + (2.02× 10−13)×m4

µµ

− (6.27× 10−17)×m5
µµ + (9.78× 10−21)×m6

µµ

− (6.04× 10−25)×m7
µµ

.

(3.5)

where mµµ is given in GeV.

As discussed in Section 3.4, CI signal samples also have a DY contribution which is

simulated with Pythia at LO. Thus, higher order corrections are applied to normalize

the cross section to NNLO, the same order as the main Powheg DY background

estimate. Since the higher-order QCD contributions are expected to be the same

for signal and background processes, QCD corrections should also be applied to the

signal samples. Because the intermediate process is unknown in the CI model, it is

not clear whether EW corrections should also be included. However, EW corrections

are also applied to CI signal samples in order to be conservative. The K-factor for

Pythia samples, applied to CI signal samples, is given by:

KPY THIA
QCD,EW (mµµ) =



1.29 for mµµ ≤ 116 GeV

1.26 +(1.50× 10−4)×mµµ for mµµ > 116 GeV

−(4.88× 10−07)×m2
µµ

+(3.59× 10−10)×m3
µµ

−(1.26× 10−13)×m4
µµ

+(2.22× 10−17)×m5
µµ

−(1.59× 10−21)×m6
µµ

. (3.6)

where mµµ is given in GeV. The K-factor functions given above numerically are shown

in Fig. 3.10.
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Figure 3.10: SM Drell-Yan NNLO QCD+EW K-factor derived using the FEWZ
NNLO differential cross-section calculation with MSTW2008NNLO PDF. Shown are
both the Pythia 8 (MSTW2008LO) LO to NNLO QCD+EW K-factor and the
Powheg+Pythia 8 (CT10) NLO to NNLO QCD+EW K-factor.

3.5.2 Muon Momentum Resolution

In this analysis, muons are reconstructed as combined muons using the Muid

algorithm. The momentum resolution is measured separately for each track in the

ID and MS systems. That leads to the higher statistical sensitivity of the momentum

resolution and higher momentum resolution than each of the individual tracks could

achieve.

As discussed in Section 2.4.2, the muon momentum resolution is affected by the

limited knowledge of the magnetic field, the uncertainty in the energy loss of muons

and the alignment of the muon spectrometer.

The uncertainty in the bending power of the toroidal fields can be translated into

an uncertainty in the momentum measurement. However, this is much smaller than

the uncertainties due to the multiple scattering and the impact of misalignments.

Therefore, its effect is neglected.

97



Another source limiting the momentum resolution is the energy loss of muons in

the calorimeter. Muons with energy below 100 GeV lose an average of 3 GeV of their

transverse momentum traversing the calorimeter. The amount of material muons

pass through has an uncertainty of 5% which which translates into a 5% uncertainty

in the energy loss.. The contribution due to energy loss in the calorimeter is strongly

suppressed above ≈ 20 GeV and completely negligible for high-pT muons.

For high-pT muons, the dominant contribution to the momentum resolution is the

intrinsic resolution caused by the spatial resolution of the detector components and

any residual misalignments. The best estimate of the initial alignment accuracy is

obtained by studying straight muon tracks from cosmic ray events and the collision

data from the dedicated runs with toroidal magnetic field off. The analysis of the

measurements of the optical alignment sensors also provides information on the MS

detector misalignment. The MS misalignment is modeled more realistically in the

2012 simulation since the measurements of the misalignment is taken from the 2011

data. By taking the impact of realistic misalignment into account, the resolution for

muons of 1 TeV of energy, reaches 13% in the barrel of the MS, 17% in the end-cap

of the MS and 15% in the region covered by the CSC (2 < |η| < 2.7).

For a given value of η, the resolution in the MS can be parameterized as a function

of pT [89]:

σ(pT)

pT

=
pMS

0

pT

⊕ pMS
1 ⊕ pMS

2 · pT, (3.7)

where pMS
0 is related to the energy loss in the calorimeter material; pMS

1 describes the

multiple scattering; pMS
2 is the intrinsic resolution term.

The resolution in the ID is expressed by a similar parametrization. The curvature

measurement depends on the distance that muons traverse in the ID. Hence, reduced

track length close to the edge of the TRT fiducial volume (|η| ∼ 1.9) leads to a

uniform response in the central part and a rapid worsening beyond this region. The

approximate parametrization of resolution in the ID can be written as:
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σ(pT)

pT

= pID1 ⊕ pID2 · pT, for |η| < 1.9 (3.8)

σ(pT)

pT

= pID1 ⊕ pID2 · pT
1

tan2 θ
, for |η| > 1.9 (3.9)

where pID1 and pID2 are coefficients related to multiple scattering and the intrinsic

resolution terms, respectively.

Muon momentum resolution studies are performed by the Muon Combined Per-

formance group in the ATLAS collaboration. In order to determine muon momentum

resolution and scale, Z → µµ decays are used. The most recent study [90] is per-

formed with the 2012 data sample. Events are required to include two isolated CB

muons of opposite charge, with pT > 25 GeV. To select muons from Z decay, the

µ+µ− mass is required to be within 15 GeV of the Z boson mass (91.2 GeV). Z → µµ

MC events are generated with Powheg. The resolution is the width of the Gaussian

which is convoluted with the Breit-Wigner shape in Z→ µµ decays at generator level.

To study low-pT muons, dimuon decays of J/ψ and Υ are also used.

Due to imperfect modeling of the muon momentum resolution in MC samples, the

simulation needs to be corrected in order to match the measured resolution in data.

Thus, the reconstructed simulated muon momenta must be smeared and shifted. The

first term corrects the multiple scattering contribution and second term corrects the

intrinsic resolution. Also a momentum scale correction (s) that accounts for a shift

in the momentum, is applied to the simulation. The left part of Fig. 3.11 shows that

the measured Z→ µµ mass spectrum for the experimental data has a slight shift and

larger spread with respect to the simulated one.

For the overall momentum resolution measurement, two quantities are used:

• The width of the reconstructed dimuon invariant mass peak at the Z pole.

• The difference between ID and MS momentum measurements weighted by the

muon electric charge (q/pT
ID - q/pT

MS). The weighting by the electric charge
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reduces systematic effects of the curvature due to local misalignments, which

reduces the bias on the estimation of the resolution and correction parameters.

Figure 3.11: Dimuon mass distribution for Chain 2 (Muid Chain), CB muons, isolated
and with pT > 25 GeV [90]. Left: No smearing and scale corrections are applied on
the plot. Right: Smearing and scale corrections are applied to the MC simulation.

A corrected momentum measurement pT
Corcan be written in terms of the simu-

lated momentum reconstruction pT
MC , the scale correction factor s(η) and the cor-

rection parameters ∆p1(η) and ∆p2(η) as follows:

pCor,detT = pMC,det
T · sdet(η)(1 + ∆pdet1 (η)G(0, 1) + ∆pdet2 (η)G(0, 1)), (3.10)

whereas det = MS, ID and G(0,1) is a normally distributed random variable with

mean 0 and width 1. For the ID momentum correction, the above formula is valid

for the region |η| < 1.9. For the region |η| >1.9, the term with ∆p2(η) is multiplied

with 1/tan2 θ. Smearing parameters and scale factors calculated with the 2012 data

are shown in Fig. 3.12 and Fig. 3.13, respectively.

The corrections are applied separately to ID and MS momentum measurements.

The correction to the CB muon momentum is computed as the average of the ID
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Figure 3.12: ∆a (∆p1) resolution correction term for the MS (left plot), and ∆b (∆p2)
resolution correction term for the ID (right plot) for MC, derived from Z → µµ data
for the Muid reconstruction chain. The systematic uncertainty on the correction is
shown in yellow.

Figure 3.13: MS (left plot) and ID (right plot) momentum scale correction, for MC,
derived from Z → µµ data for the Muid chain reconstruction. The systematic uncer-
tainty on the correction is shown in yellow.

and MS momentum corrections weighted by the inverse square of the ID and MS

resolutions, shown as:

pCor,CBT = pMC,CB
T

[
1 +

∆(MS)
σ2(MS)

+ ∆(ID)
σ2(ID)

1
σ2(MS)

+ 1
σ2(ID)

]
(3.11)

where ∆(MS,ID) is the overall correction applied to the simulated MS and ID pT and

σ(MS,ID) is the resolution in the simulation at pT
MC .
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The correction (smearing) parameters are the quadratic differences in the reso-

lution parameters between data and simulation. These are derived in 16 different

η regions using a MC template technique. By applying smearing to the simulation

according to Eq. (3.10) many times by varying the correction parameters, a set of

dimuon invariant mass distributions are derived. Then a binned likelihood fit is per-

formed to find the best-match to the data mass spectrum. The template fitting is

iterated across 16 η regions defined for the detector. Firstly, the fit is performed by

requiring two muons from Z decay to be in a same η bin. The following fit allows

one of the muons to be in the previous eta bin. After all η bins are analyzed, the fit

is iterated again, in order to ensure the stability of the results.

The combined dimuon mass resolution obtained from the fit performed in the mass

window mµµ ∈ [75 GeV, 105 GeV] is shown in Fig. 3.14. Error bars are the sum of

the statistical error and the absolute value of the change of the resolution when the

fit range is reduced to mµµ ∈ [82 GeV, 100 GeV] from mµµ ∈ [75 GeV, 105 GeV].

Figure 3.14: Combined dimuon mass resolution near the Z peak [91].
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In the analysis, muon momentum resolution corrections are applied using the tool

provided by the MCP group; MuonMomentumCorrections-00-09-08.

3.5.3 Muon Identification Efficiency

Combined muons use independent measurements from the ID and MS. Hence,

the muon reconstruction efficiency is the product of the ID reconstruction efficiency

(εID), the extrapolated MS track reconstruction efficiency (εMS) and the matching

efficiency between the MS and ID measurements (εmatch), shown as:

εCB = εID × εMS × εmatch. (3.12)

The muon reconstruction efficiency calculations are based on the tag-and-probe

method since it provides a clean sample of muon candidates. In the study performed

with the 2012 data, the tag-and-probe method selects events using Z → µµ decays

with one well reconstructed CB muon, the tag, and one opposite-charge track, the

probe. The probe must be an “MS track” (SA or CB muon) if the ID reconstruction

efficiency is to be measured. When measuring εMS and εmatch, ID tracks are used as

probe. Therefore, εID can be defined as the fraction of MS track probes which can

be associated to an ID track.

In order to study the muon reconstruction efficiency, events are selected by requir-

ing two oppositely charged isolated muons with pT > 20 GeV and dimuon invariant

mass within 10 GeV of the Z pole mass. The tag and the probe in a selected pair

need to have the same charge and to be close in the η − φ plane (∆R < 0.01 for ID

probes, ∆R < 0.05 for MS probes) for the match to be successful.

In the study performed with the 2012 data, CaloTag muons are used as probe

instead of ID tracks since CaloTag muons reduce the background in the Z → µµ

sample without biasing the efficiency measurements.
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The efficiencies measured with experimental data using muon pairs produced in

the decays of Z bosons are compared with muon reconstruction efficiencies predicted

by the MC simulation. A scale factor (SF) is then derived to correct the simulation

to have a better agreement with data and can be written as:

SF =
εdata
εMC

. (3.13)

The difference between SFs calculated using CaloTag and ID tracks as probes is

assigned as a systematic uncertainty. Also, the efficiency for low-pT muons is measured

separately in Z → µµ and J/ψ → µµ decays, and the 2% difference between these

measurements is assigned as a systematic uncertainty.

3.5.4 Pile-up

In order to account for in-time and out-of-time pile-up conditions present during

the 2012 run, as discussed in Section 2.3, MC samples are also simulated with these

conditions. However, the distribution of the number of interactions per bunch crossing

in MC samples is not exactly the same as in data. Thus, events from the simulation

need to be corrected to data. This is applied using the official pileup reweighting

tool [92] (PileupReweighting-00-02-12) on all MC12, using the final 2012 Run I

recommendations. The Pile-up reweighting is done by comparing the average number

of interactions per bunch crossing as measured in the collected data, to that in the

generated MC sample. Figure 3.15 shows these distributions for data (dots) and

MC before the correction is applied (shaded red). The MC distribution after the

correction applied is also shown (green).
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Figure 3.15: Average number of interactions per bunch crossing as measured in data
(dots), DY MC before pile-up reweighting (red) and after pile-up reweighting (green)
applied.
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CHAPTER 4

EVENT SELECTION

This chapter discusses the selection criteria applied to select muons and dimuon

events in this analysis. Background estimation is also discussed, which is followed by

kinematic and angular distributions.

4.1 Event Level Selection

A series of selection criteria are applied in order to select the events with a dimuon

pair. These are chosen to preserve the efficiency of potential signals, while minimizing

background processes. The following criteria show the event-level selection require-

ments which are applied in the order listed.

• Events are required to have the luminosity blocks that belong to the Good Runs

List (GRL) to assure that data are collected with the best detector operations

so having a good quality of data.

• Events are required to pass coreFlags which is a flag for ”incomplete events”.

In 2012 data taking, in order to recover certain detector busy conditions, a

restart of a relevant subdetector, so-called TTC restart, without a run-restart is

developed. A TTC restart may result in incomplete events where some detector

information is missing from the event. Thus, these events are removed from the

analysis.

• Events are required to pass the single-muon triggers with pT thresholds of 24

GeV (EF mu24i tight) which is the primary trigger or 36 GeV (EF mu36 tight),
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the secondary trigger. The primary trigger requires muon isolation at the on-

line level. Inefficiencies arising from muon isolation with low threshold trigger

requirements are removed by the second complementary trigger with the higher

threshold.

• Events are required to have at least 1 PV with at least 3 tracks and with longi-

tudinal distance from the center of the detector (zPV ) less than 200 mm. This

suppresses non-collision backgrounds such as cosmic-ray muons and ensures that

the event is the result of a hard process.

4.2 Muon Level Selection

After events are selected by applying event-level selection criteria listed in the

previous section, each event is required to have at least 2 MUID combined muons.

The object-level selection criteria applied on each muon in the event are listed below.

• Muons are required to have pT > 25 GeV.

• Muons are required to pass the ID hit requirements determined by the MCP

group in order to provide the best ID reconstruction:

– At least 1 B-Layer hit, if one is to be expected. When track is outside

of the B-Layer region or passes through dead sensors, this selection is not

imposed.

– At least 1 Pixel hit, including Pixel dead sensors crossed.

– At least 5 SCT hits, including SCT dead sensors crossed.

– No more than 2 missing hits on the track in Pixel or SCT.

– If 0.1< |η| <1.9, at least 6 TRT hits, including TRT outliers, with outlier

fraction <0.9.
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– If |η| ≤ 0.1 or |η| ≥ 1.9, if at least 6 TRT hits, including TRT outliers, are

observed, then require the outlier fraction to be < 0.9.

• Muons are required to have a muon transverse distance to the beam axis (trans-

verse impact parameter of muon; d0) less than 0.2 mm. This requirement sup-

presses the backgrounds from cosmic-ray muons and ensures muons come from

the hard process (See Fig. 4.1).

• Muons are required to have longitudinal impact parameter relative to the PV

less than 1 mm: |z0 − zPV | < 1 mm. That suppress the backgrounds from

cosmic-ray muons and ensures muons come from the hard process (See Fig. 4.2).

• Muons are required to be isolated, i.e., the pT sum of all ID tracks, except the

muon itself, in a cone of size ∆R < 0.3 relative to the muon combined pT must

be less than 0.05;
∑

pT
(∆R < 0.3)/pµT < 0.05. That suppresses background

from hadronic decays. Fig. 4.3 shows the distribution of relative track isolation

for single muons after all selection criteria are imposed except the one on relative

track isolation. The discrepancy between the data and the expected background

in the tail is due to the missing contribution from heavy flavor decays in the

latter. After the isolation selection, this absence becomes irrelevant and has no

effect on the final results.

• Muons are required to pass stringent MS hit requirements. The quality of

the muon momentum measurement is important for the non-resonant dilepton

analysis since mismeasured DY events could give rise to an excess of events at

high invariant mass and mimic a signal. Hence, only 3 station muons are used

for this analysis. MS hit requirements are listed as:

– One of the following criteria must be satisfied:

∗ At least 3 hits in each of the BI, BM, BO MDT precision layers.
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∗ At least 3 hits in each of the EI, EE, EM MDT precision layers.

∗ At least 3 hits in each of the EI, EM, EO MDT precision layers.

∗ At least 3 hits in each of the EM and EO MDT precision layers, along

with at least 2 CSC unspoiled eta hits.

(See Fig. 4.4 for the distribution of hits in the inner, middle and outer

precision layers.)

– At least 1 φ hit in two different RPC/TGC/CSC layers.

– No hit in the BEE, BIS7 or BIS8 MDT chambers since these chambers

have poor alignment.

– The independent ID and MS track q/pT must agree within 5σ of the stan-

dalone measurement uncertainties added in quadrature.
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Figure 4.1: Muon transverse distance (d0) from the primary vertex after all selection
criteria are imposed except the one on d0. The number of events in simulation is
normalized to the data.
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Figure 4.2: Muon longitudinal distance (z0) from the primary vertex after all selection
criteria are imposed except the one on z0. The number of events in simulation is
normalized to the data.

4.3 Dimuon Pair Selection

After applying the requirements listed in the previous section on each muon can-

didate, events are required to have at least two such muons to be retained. Then

dimuon selection criteria as detailed below are imposed on muon pairs.

• Muons in dimuon pair are required to have opposite-sign charges.

• If there are more than one dimuon pair with opposite-sign charge in an event,

the pair of oppositely charged muons with the highest scalar sum of pT (Σ|pT|)

is selected.

• The invariant mass of the muon pair is required to be greater than 80 GeV;

mµµ > 80 GeV.
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Figure 4.3: Distribution of relative track isolation for single muons after all selection
criteria are imposed except the one on relative track isolation. Here the number of
events in simulation is normalized to the data.

The event- and object-level selection criteria detailed above are applied to the

data and all MC background samples. A total of 5193313 events are found with

mµµ > 80 GeV in the 2012 dataset. The acceptance times efficiency for DY events

with dimuon mass of 1 TeV (2 TeV) is found to be 47% (45%). The relative and

cumulative efficiencies are given for DY events with dimuon mass of 1 and 2 TeV in

Table 4.1 after each successive selection is applied. The selection criterion shown by

“Object Quality” in the table includes the requirements on the impact parameters

(d0, z0) and ID hits.

4.4 Background Estimation

Monte Carlo simulation is used to estimate the Standard Model contribution

from processes which have two real muons that pass the event selection criteria
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Figure 4.4: Distributions of precision hits in the inner, middle and outer stations
(top, middle and bottom, respectively) after all selection criteria are imposed except
the MS hit requirements. Here the number of events in simulation is normalized to
the data.
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Table 4.1: Dimuon channel cutflow table, presenting the relative and cumulative
efficiencies for each important criterion in the non-resonant dilepton analysis. These
values are given for the dominant Drell-Yan background at dimuon masses near 1 and
2 TeV. Binomial errors are quoted for each value.

Criterion
Relative Eff [%] Cumulative Eff [%]

1 TeV 2 TeV 1 TeV 2 TeV

Trigger 89.77± 0.10 89.21± 0.10 89.77± 0.10 89.21± 0.10
≥ 2 Combined Muons 88.80± 0.11 88.77± 0.11 79.71± 0.13 79.20± 0.13

pT 98.21± 0.05 98.28± 0.05 78.30± 0.13 77.84± 0.13
Object Quality 98.56± 0.04 98.41± 0.05 77.16± 0.13 76.60± 0.13

Isolation 97.47± 0.06 97.82± 0.05 75.20± 0.14 74.93± 0.14
3 Station Muons 63.10± 0.18 62.10± 0.18 47.44± 0.16 46.52± 0.16

Charge 99.97± 0.01 96.62± 0.08 47.43± 0.16 44.95± 0.16

and present a non-negligible background to the signal processes under investigation.

The dominant background is from the DY process, followed by tt̄, PI and diboson

(WW,WZ,ZZ) processes. There are also other background contributions coming

from the QCD multijet, W+jets processes and cosmic rays. The multijet and W+jets

background is defined as events which contain a maximum of one real lepton, and

one or more jets which fake a lepton. The QCD multi jet background in the muon

channel is due to bb̄ and cc̄ production and subsequent decay to muons. These muons

tend to be non-isolated and the isolation requirement strongly suppresses this source

of background. Therefore, this background is excluded from the SM background

estimate. The background coming from a W boson associated with a number of

jets are suppressed mostly by requiring two combined muons with pT > 25 GeV. It

is further suppressed by the isolation requirement. The final contribution from this

background is found negligible. The cosmic background is not predicted in the Monte

Carlo simulation and has to be measured directly from the data. The estimation of

cosmic background is performed with the 2011 data and found to be negligible. Since

then, data have been collected at higher instantaneous luminosity in 2012, therefore

reducing exposure time to cosmic rays relative to integrated luminosity.
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After applying event and object level selections on each MC simulation sample

representing SM backgrounds, each of these samples is subsequently scaled to the

same integrated luminosity (1 pb−1). These separate background contributions are

then summed together into a total MC background estimate. The dimuon invariant

mass region between 80 GeV and 120 GeV is used as a normalization region in

this analysis. Hence, the total MC background estimate is normalized to data in

this region. This normalization protects the analysis against any mass-independent

systematic uncertainties, e.g., the uncertainty in the integrated luminosity or the

overall muon efficiency, leaving only mass-dependent systematic uncertainties to be

considered. The ratio of data and MC background estimate in this region gives a

value of the would-be integrated luminosity, to which all MC samples are scaled.

Comparison of this value to the integrated luminosity of the data (20.5 fb−1) yields a

ratio of 1.002, and is therefore well within the luminosity uncertainty of ±2.8% [93].

After estimating all SM contributions using MC simulation, data and MC distri-

butions are compared to search for a non-resonant signal-like excess. In the control

region, from the dimuon invariant mass of 120 GeV to 400 GeV, good agreement is

found between data and the MC background estimate. Until the event selection is

finalized, all studies are performed in the control region and the data is kept blinded

in the signal region.

4.5 Signal Search

This analysis searches for non-resonant new physics signatures in events with two

same flavor opposite-sign leptons. The signal would be seen as an excess in the tail

of the dimuon mass spectrum. For the contact interaction search, the signal region

is chosen to consist of six invariant mass bins (in GeV): 400-550, 550-800, 800-1200,

1200-1800, 1800-3000, 3000-4500. The ADD search is conducted only in one single
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mass bin in the range 1900-4500 GeV where the lower mass boundary is optimized

based on the strongest expected exclusion limit.

Dimuon mass distributions for data and the predicted background are shown in

Fig. 4.5 along with a few benchmark CI (left) and ADD (right) signals overlaid.
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Figure 4.5: Reconstructed dimuon invariant mass distributions for data and the SM
background estimate. Also shown are the predictions for a benchmark Λ value in the
LL contact interaction model (left) and benchmark MS value in the GRW ADD model
(right). The distribution bin width is constant in log(mµµ). The ratio is presented
with the total systematic uncertainty overlaid as a band.

4.5.1 Using Angular Distributions as a Search Variable

In addition to the dimuon invariant mass, the distribution of cos θ∗, where θ∗ is

the dimuon decay angle, would also be modified by the new physics interactions at

large mass scales so it is important especially for the non-resonant searches. Thus,

cos θ∗ is also used as an additional discriminating variable for the CI search.

When the incoming quarks has no transverse momentum relative to their parent

protons, θ∗ can be determined from the four-momenta of the particles calculating the

angle between the incoming quark and the outgoing muon in the center-of-mass frame

of the muon pair. However, if either of the incoming quarks has significant transverse

momentum, that leads to an ambiguity in the four-momenta of the incoming quarks

in the frame of the dimuon pair. In order to minimize the effect of the transverse
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momentum of the incoming quarks, θ∗ is defined in the Collins-Soper (CS) frame [94].

The CS frame is constructed with the z-axis bisecting the angle between the incoming

parton momentums, and the x-axis perpendicular to this.

cos θ∗ =
pz(µ

+µ−)

|pz(µ+µ−)|
2(p+

1 p
−
2 − p−1 p+

2 )

m(µ+µ−)
√
m(µ+µ−)2 + pT (µ+µ−)2

(4.1)

where p+
n (p−n ) denotes (E+pz)/

√
2 ((E−pz)/

√
2), and the subscript 1 or 2 describes

whether the particle is the µ+ or µ− respectively.

In order to determine the sign of cos θ∗, the direction of the incoming quark has

to be known. In pp collisions, which one of the beams contributed the quark to

the collision and which one the anti-quark is unknown. Thus, the boost direction

of the combined dimuon pair is used as the incoming quark (as opposed to anti-

quark) direction. This introduces a “dilution” of the asymmetry in the reconstructed

spectrum as compared to theory. This dilution effect is suppressed at higher dimuon

rapidity where the probability of the incoming quark direction being aligned with

that of the dimuon system increases. This is due to the fact that in the parton

distribution functions the regions at high fractional momentum x are dominated by

valence quarks.

From cos θ∗, a forward-backward asymmetry, which is sensitive to the chiral struc-

ture of the interaction, is defined as follows:

AFB =
NF −NB

NF +NB

(4.2)

where NF is the number of events with cos θ∗ > 0 (forward events) and NB is the

number of events with cos θ∗ < 0 (backward events).

Fig. 4.6 makes it clear how the discriminating nature of the angular distribution

comes about, and why this discriminates against the SM DY background. It is seen

from this figure that the existence of interference modifies the AFB distribution. The
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Figure 4.6: Forward-backward asymmetry as a function of dimuon invariant mass
for different processes. The red and blue solid curves show processes that includes
γ∗/Z interference. If only the pure Z contribution is considered and no interference
is assumed, the red and blue dashed lines are obtained. Other processes which only
have the pure Z contribution are shown by the light purple and green solid lines. The
dashed black lines show the distributions for the CI processes for LL, LR, and RR
chirality models. These CI processes correspond to pure CI contribution ignoring γ
and Z.

red and blue solid curves showing the processes with Z/γ∗ interference turn into red

and blue dashed lines when no interference is assumed and only the contribution

from the pure Z is considered. By comparing these dashed and solid lines, it is seen

clearly how the existence of interference alters the distribution. The processes shown

by the light purple and green solid lines can only occur via Z exchange since there

are neutrinos in the final state. Thus, there is no interference for these processes and

AFB is constant throughout the dimuon invariant mass. The CI processes shown by

black dashed lines, correspond to pure CI contribution ignoring any interference with
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γ and Z. Thus, AFB is constant and has the same magnitude for the LL, LR and RR

CI models. However, there is a sign flip in the asymmetry for the LR model.

The discrimination power between the SM and the new physics of AFB is stud-

ied with the LL, LR and RR CI models. Fig. 4.7 compares the forward-backward

asymmetry as a function of dimuon mass for different chirality structures at the truth

level. As can be seen in the figure, LL and RR models are very SM-like. However,

a slight positive (negative) deviation relative to the SM is observed in constructive

(destructive) case. The largest discrimination power is seen for LR chirality model

for both destructive and constructive cases. The reason of seeing a larger deviation

for the LR CI model is due to a sign flip in AFB. The different DY AFB shown in

Figs. 4.6 and 4.7 is explained by the dilution.
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Figure 4.7: Forward backward symmetry (AFB) versus true dimuon invariant mass
distribution for Standard Model Drell-Yan and for three contact interaction helicity
models at Λ = 20 TeV for constructive (left) and destructive (right) cases.

In order to use cos θ∗ as a discriminating variable in the CI search, each dimuon

mass bin is further divided into forward and backward events for the statistical in-

terpretation of the results. Since for each of six mass bins there are two cos θ∗ bins

defined, as a total of 12 search bins are used in the contact interaction analysis. The
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cos θ∗ distributions of data and background in the control region and in the signal

region are presented in Fig. 4.8. The distribution in the signal region also display CI

signal predictions.
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Figure 4.8: Reconstructed dimuon cos θ∗ distribution for data and SM background
estimate in the control region (120 GeV < mµµ < 400 GeV) (left), and in the signal
region (400 GeV < mµµ < 4500 GeV) (right).

Table 4.2 shows the total number of expected and observed events in the control

region. A good agreement between data and the SM expectation is observed. Ta-

ble 4.3 and Table 4.4 show the total number of expected and observed events in the

signal region mass binning and it is also shown in presence of contact interactions

for a few benchmark Λ values for the LL chirality model. As seen from these tables,

the CI contribution to the total number of expected events increases by increasing

invariant mass. The total number of expected events in each mass bin is also shown

graphically in Fig. 4.9.

Similarly, Table 4.5 presents the observed events in data, the total number of

expected events from the Standard Model, and in the additional presence of different

MS values under the ADD model.

The Fig. 4.10 shows the expected and observed AFB distribution as a function

of reconstructed dimuon invariant mass. This plot is particularly interesting as it
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clearly presents the data/MC agreement and how data would diverge from the SM

expectation if the LR model was present in nature.

Data/MC comparisons are also shown for muon η, φ, and pT distributions in

Figure 4.11. A gap in chamber coverage left open to allow for services to magnets,

calorimeters and the ID can be clearly seen in the η distribution around |η| ≈ 1 and

1.2. The structure in φ is mostly due to the fact that we are using three station

muons and the muon spectrometer is eight-fold symmetric. It’s not always possible

to have three station muons everywhere in φ since we don’t use hits from some of

the chambers (i.e BIS7 or BIS8). Also, there may be muons which have hits in the

MS but only leave track in two stations so are not selected. In this distribution,

the structure around φ ≈ -1 and -2 is the result of the detector feet in that region.

Dimuon pT and rapidity distributions are shown in Figure 4.12.
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Table 4.2: Table presenting the expected and observed number of events for contact
interactions within the control region between 120 and 400 GeV. No signal contri-
bution is expected in this region, therefore signal lines are excluded for this table.
The errors quoted originate from both MC statistical and systematic uncertainties.
The first column of the table for each mass bin shows all events, where as the second
and third columns show the number of events in the forward and backward region
respectively.

Process
mµµ [GeV]

120 – 200 200 – 400
All Forward Backward All Forward Backward

Drell-Yan 64000± 4000 37000± 2300 26600± 1500 10100± 700 6200± 400 3860± 270
Top 5400± 330 2670± 160 2740± 170 2170± 130 1060± 70 1110± 70

Dibosons 1170± 60 630± 34 543± 29 488± 27 274± 16 214± 13
Photon-Induced 1100± 1100 600± 600 600± 600 400± 400 190± 190 190± 190

Total SM 71000± 4000 40800± 2400 30400± 1600 13100± 800 7800± 500 5380± 330
Data 70724 40341 30383 12912 7647 5265
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Table 4.3: Table presenting the expected and observed number of events search for
contact interactions within the search region between 400 and 1800 GeV. Benchmark
LL model parameter of interest values are given for both constructive (Λ−) and de-
structive (Λ+) interference, which are summed with the total background estimate on
the signal lines. The errors quoted originate from both MC statistical and system-
atic uncertainties. The first column of the table for each mass bin shows all events,
whereas the second and third columns show the number of events in the forward and
backward region respectively.

Process
mµµ [GeV]

400 – 550 550 – 800
All Forward Backward All Forward Backward

Drell-Yan 670± 50 435± 29 239± 20 217± 18 142± 11 75± 7
Top 128± 10 61± 6 66± 7 16.3± 1.4 6.8± 1.0 6.7± 0.9

Dibosons 47.6± 2.7 28.7± 1.8 18.9± 1.3 15.3± 0.9 9.7± 0.6 5.7± 0.4
Photon-Induced 34± 34 17± 17 17± 17 13± 13 6± 6 6± 6

Total SM 880± 60 543± 35 341± 27 261± 22 165± 13 94± 10
Data 814 510 304 265 171 94

SM+CI (Λ− = 7 TeV) 1070± 60 660± 40 411± 30 452± 26 293± 16 157± 12
SM+CI (Λ− = 10 TeV) 950± 60 590± 40 357± 29 339± 24 216± 14 120± 11
SM+CI (Λ− = 14 TeV) 900± 60 550± 40 346± 29 285± 23 177± 14 105± 11
SM+CI (Λ− = 20 TeV) 870± 60 520± 40 352± 29 265± 23 168± 14 94± 11
SM+CI (Λ− = 28 TeV) 910± 60 540± 40 363± 29 265± 23 168± 14 93± 11
SM+CI (Λ+ = 7 TeV) 860± 60 510± 40 348± 29 313± 23 187± 14 123± 11
SM+CI (Λ+ = 10 TeV) 850± 60 510± 40 338± 29 248± 23 156± 14 89± 10
SM+CI (Λ+ = 14 TeV) 870± 60 530± 40 340± 29 252± 23 152± 14 97± 11
SM+CI (Λ+ = 20 TeV) 890± 60 560± 40 330± 29 247± 23 155± 14 89± 11
SM+CI (Λ+ = 28 TeV) 920± 60 560± 40 363± 29 257± 23 157± 14 96± 11

Process
mµµ [GeV]

800 – 1200 1200 – 1800
All Forward Backward All Forward Backward

Drell-Yan 45± 4 29.6± 2.7 15.4± 1.9 5.9± 0.8 3.9± 0.5 2.1± 0.4
Top 1.66± 0.11 0.44± 0.09 0.58± 0.07 0.103± 0.007 0.018± 0.011 0.026± 0.003

Dibosons 3.75± 0.26 2.54± 0.19 1.21± 0.12 0.556± 0.030 0.372± 0.021 0.184± 0.011
Photon-Induced 3.3± 3.3 1.6± 1.6 1.7± 1.7 0.5± 0.5 0.27± 0.27 0.28± 0.28

Total SM 54± 6 34.2± 3.2 18.8± 2.5 7.2± 1.0 4.5± 0.5 2.5± 0.5
Data 47 31 16 7 3 4

SM+CI (Λ− = 7 TeV) 203± 12 138± 8 64± 5 83± 7 58± 5 25.1± 2.2
SM+CI (Λ− = 10 TeV) 108± 7 71± 5 35.9± 3.2 29.4± 2.2 20.2± 1.5 9.2± 0.8
SM+CI (Λ− = 14 TeV) 70± 6 48± 4 22.0± 2.8 14.4± 1.2 9.8± 0.8 4.5± 0.6
SM+CI (Λ− = 20 TeV) 58± 6 38.7± 3.5 18.9± 2.7 10.0± 1.1 6.4± 0.6 3.5± 0.5
SM+CI (Λ− = 28 TeV) 57± 6 36.4± 3.4 20.0± 2.7 8.6± 1.0 5.7± 0.6 2.8± 0.5
SM+CI (Λ+ = 7 TeV) 125± 8 79± 5 44.6± 3.5 58± 5 37.9± 3.0 20.3± 1.7
SM+CI (Λ+ = 10 TeV) 64± 6 40.2± 3.5 22.7± 2.7 18.0± 1.4 11.6± 0.9 6.4± 0.6
SM+CI (Λ+ = 14 TeV) 51± 6 32.1± 3.4 18.5± 2.7 7.5± 1.0 4.8± 0.6 2.6± 0.5
SM+CI (Λ+ = 20 TeV) 50± 6 30.9± 3.4 18.1± 2.7 6.4± 1.0 3.8± 0.6 2.5± 0.5
SM+CI (Λ+ = 28 TeV) 52± 6 34.1± 3.4 17.5± 2.7 6.6± 1.0 4.3± 0.6 2.2± 0.5
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Table 4.4: Table presenting the expected and observed number of events in muon
channel search for contact interactions within the search region between 1800 and
4500 GeV. Benchmark LL model parameter of interest values are given for both
constructive (Λ−) and destructive (Λ+) interference, which are summed with the
total background estimate on the signal lines. The errors quoted originate from both
MC statistical and systematic uncertainties. The first column of the table for each
mass-bin shows all events, where as the second and third columns show the number
of events in the forward and backward region respectively.

Process
mµµ [GeV]

1800 – 3000 3000 – 4500
All Forward Backward All Forward Backward

Drell-Yan 0.58± 0.12 0.38± 0.07 0.21± 0.06 0.027± 0.008 0.016± 0.005 0.011± 0.004
Top < 0.005 < 0.002 < 0.001 < 0.001 < 0.001 < 0.001

Dibosons 0.056± 0.005 0.038± 0.004 0.018± 0.002 < 0.003 < 0.002 < 0.002
Photon-Induced 0.07± 0.07 0.033± 0.033 0.035± 0.035 0.003± 0.003 0.002± 0.002 0.002± 0.002

Total SM 0.71± 0.14 0.45± 0.08 0.26± 0.07 0.032± 0.009 0.019± 0.005 0.013± 0.004
Data 1 1 0 0 0 0

SM+CI (Λ− = 7 TeV) 25.8± 3.2 17.3± 2.2 8.4± 1.1 2.4± 0.5 1.53± 0.32 0.83± 0.22
SM+CI (Λ− = 10 TeV) 7.9± 0.9 5.3± 0.6 2.60± 0.34 0.66± 0.14 0.44± 0.10 0.22± 0.06
SM+CI (Λ− = 14 TeV) 2.89± 0.33 1.8± 0.2 1.08± 0.16 0.18± 0.04 0.137± 0.033 0.040± 0.014
SM+CI (Λ− = 20 TeV) 1.49± 0.18 1.00± 0.11 0.49± 0.08 0.103± 0.022 0.059± 0.015 0.044± 0.012
SM+CI (Λ− = 28 TeV) 0.96± 0.15 0.62± 0.09 0.34± 0.07 0.068± 0.016 0.041± 0.011 0.027± 0.009
SM+CI (Λ+ = 7 TeV) 20.3± 2.5 13.5± 1.7 6.7± 0.9 2.4± 0.5 1.64± 0.33 0.79± 0.18
SM+CI (Λ+ = 10 TeV) 4.8± 0.6 3.3± 0.4 1.45± 0.19 0.40± 0.08 0.26± 0.06 0.14± 0.04
SM+CI (Λ+ = 14 TeV) 1.45± 0.18 0.97± 0.11 0.48± 0.08 0.113± 0.023 0.078± 0.017 0.035± 0.010
SM+CI (Λ+ = 20 TeV) 0.74± 0.15 0.42± 0.08 0.32± 0.07 0.048± 0.013 0.027± 0.008 0.021± 0.007
SM+CI (Λ+ = 28 TeV) 0.63± 0.14 0.40± 0.08 0.23± 0.07 0.040± 0.011 0.029± 0.009 0.010± 0.005

Table 4.5: Table presenting the expected and observed number of events in the signal
region for the ADD model. Benchmark ADD model parameter of interest values are
given for the GRW formalism. The errors quoted originate from both MC statistical
and systematic uncertainties.

Process 1900 ≤ mµµ ≤ 4500 GeV

Drell-Yan 0.44 ± 0.09
Top 0.005 < 0.001

Diboson 0.047 ± 0.005
Photon-Induced 0.05 ± 0.05

Total SM 0.54 ± 0.09
Data 0

SM+ADD (MS = 3.25 TeV) 6.4 ± 0.7
SM+ADD (MS = 3.50 TeV) 3.9 ± 0.4
SM+ADD (MS = 3.75 TeV) 2.4 ± 0.2
SM+ADD (MS = 4.00 TeV) 1.7 ± 0.1
SM+ADD (MS = 4.75 TeV) 0.8 ± 0.1
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Figure 4.11: Reconstructed muon η (top left), φ (top right), and pT (bottom) distri-
butions for data and the SM background estimate.
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CHAPTER 5

SYSTEMATIC UNCERTAINTIES

This chapter is devoted to the detailed discussion of the theoretical and experi-

mental uncertainties that are considered in this analysis.

Systematic uncertainties generally stem from limited knowledge of the detector

response and assumptions made in the analysis. To ensure a fair comparison between

data and MC simulation, data derived corrections are applied to the MC simulation

where required. These corrections have uncertainties that need to be considered in

this analysis.

Normalizing the total background estimate to data in the dimuon invariant mass

region from 80 GeV to 120 GeV protects the analysis against mass independent

systematic uncertainties as any overall constant scale factors cancel out. However,

mass dependent systematic uncertainties still need to be considered since the shape

of the discrimination variables is affected by these uncertainties.

The sources of systematic uncertainties are categorized as theoretical and experi-

mental, as listed below.

Theoretical systematic uncertainties:

• PDF variation.

• PDF choice.

• PDF αs scale.

• Higher order electroweak corrections.
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• Photon-induced process.

• Z/γ∗ production cross section.

Experimental systematic uncertainties:

• Muon reconstruction efficiency.

• Muon momentum scale and resolution.

• Beam energy scale.

• Monte Carlo statistics.

All these systematic uncertainties (detailed below) are accounted for in the CI

and ADD searches. Systematic uncertainties are calculated as a function of true

dimuon invariant mass, for both signal and background estimates where relevant.

Additionally, for the CI search, systematic uncertainties are assessed as a function of

true dimuon invariant mass for forward (cos θ∗ > 0) and backward (cos θ∗ < 0) events

separately. Thus, any variation in the uncertainty that might affect the expected

asymmetry is taken into account. Most of systematic uncertainties are found to have

a negligible dependence on cos θ∗, except for uncertainties on the PDF and photon-

induced processes. These uncertainties with non-negligible variation with cos θ∗ are

then considered as a function of true dimuon invariant mass in two different cos θ∗

regions.

Signal systematic uncertainties are taken into account as a function of the cor-

responding model’s parameter of interest, in addition to invariant mass. The incor-

poration of these systematic uncertainties in the statistical treatment is explained in

Section 6.3.3.

Systematic uncertainties that are relevant for the SM background are only applied

to the DY process. Since the contribution of top and diboson backgrounds to the
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overall background is small (∼11% and ∼5% of the total background, respectively),

uncertainties in their rate have a negligible impact on this analysis.

5.1 Theoretical Uncertainties

Theoretical systematic uncertainties are only applied to the expected SM back-

ground except for the Z/γ∗ production cross section uncertainty in the normalization

region. As standard ATLAS Exotics procedure, theoretical uncertainties are not ap-

plied to the signal processes but their effects on signal acceptance times efficiency are

investigated. The systematic uncertainties are calculated as a function of true dimuon

invariant mass (except for the flat Z/γ∗ cross section uncertainty and uncertainty on

the PI effect).

5.1.1 Uncertainties Due to PDF Variation

The biggest theoretical uncertainty in this analysis is due to the uncertainty in

the proton structure (parton distribution functions (PDFs)). Varying the PDFs can

change the DY cross section as a function of dilepton invariant mass m`` (or Q2).

Each PDF has a set of independent parameters, in the parton function space, known

as “eigenvectors”. Systematic uncertainties associated with the PDF variation are

quantified by varying these eigenvectors in orthogonal directions.

In this analysis, the nominal PDF set used is MSTW2008NNLO with 20 eigen-

vectors. The DY cross section at NNLO is calculated as a function of m`` using the

VRAP program [95] by varying each of the eigenvectors at 90% C.L. Results are

compared to the nominal values. The difference between them is quantified as the

systematic uncertainty on the cross section for a given eigenvector. These asymmetric

uncertainties are shown for each PDF eigenvector in Fig. B.1, B.2, B.3 of Appendix

B. As a result of this method, there should be an associated systematic nuisance

parameter for each eigenvector. However, incorporating every single parameter in the
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likelihood for a limit calculation requires huge amount of computing power in the

statistical analysis framework. As a solution to this problem, in the previous round

of the analysis, systematic uncertainties were added in quadrature in order to obtain

one single nuisance parameter for the PDF variation. However, it has been observed

that using a single nuisance parameter for the uncertainty due to PDFs can lead to

an over-constraint. Since eigenvectors dominating the low mass region are different

from the ones dominating the high mass region, they should be treated as uncor-

related. Therefore, PDF eigenvectors are grouped into four bundles (denoted A-D)

depending on the invariant mass region in which they dominate. The eigenvectors for

each group are listed below. A minus sign means that the definition is inverted such

that the upward eigenvector variation is exchanged with the downward one or vice

versa, whereas the eigenvectors with a plus sign are taken as they are. This procedure

results in all eigenvectors in a given group behaving in a similar way.

• Group A consists of eigenvectors 2+, 13+, 14-, 17-, 18+ and 20+. It is dominant

nowhere, but its contribution is not negligible.

• Group B consists of eigenvectors 3-, 4-, 9+ and 11+. It is dominant for m`` <400

GeV.

• Group C consists of eigenvectors 1+, 5+, 7+, and 8-. It is dominant in the

range 400 GeV < m`` < 1500 GeV.

• Group D consists of eigenvectors 10+, 12+, 15-, 16- and 19+. It is dominant

for m`` > 1500 GeV.

The remaining eigenvector 6 does not fit any of these groups and its uncertainty

contribution is negligible.

Within each group, uncertainties from constituent eigenvectors are combined in

order to calculate the total asymmetric uncertainty at each mass point. The combi-

nation of uncertainties is performed according to the following:
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∆σ+
G = signG

√√√√∣∣∣∣∣
nG∑
i=1

sign(σ+
i − σ0) · (σ+

i − σ0)2

∣∣∣∣∣, (5.1)

∆σ−G = signG

√√√√∣∣∣∣∣
nG∑
i=1

sign(σ−i − σ0) · (σ−i − σ0)2

∣∣∣∣∣, (5.2)

where the sum is over the PDF eigenvectors in a given group G, σ+
i is the cross section

for the upward variation of the ith PDF eigenvector (downward variation, if inverted),

σ−i is the cross section for the downward variation of the ith PDF eigenvector (upward

variation, if inverted), σ0 is the cross section for the central value PDF, and signG is

the sign of the sum inside the square root.

The total symmetric uncertainty that is obtained by adding total asymmetric

uncertainties of each bundle in quadrature, is also calculated by using FEWZ for

a cross check. A good agreement is found between the uncertainties obtained with

FEWZ and VRAP; within 0.35% below 3.5 TeV and under 1% below 4.5 TeV.

Systematic uncertainties are studied as a function of dimuon invariant mass. Since

uncertainties due to PDF variations have a dependence on forward and backward

events, it is needed to look into forward and backward events separately. However,

uncertainty calculations with FEWZ or VRAP cannot easily split up into separated

forward and backward components. Therefore, instead of using FEWZ or VRAP

for systematic uncertainty calculations, the LHAPDF (Les Houches Accord PDF)

tool [96] with the MSTW2008NNLO PDF set is used. Evolution codes within the

LHAPDF produce the PDF at any desired Q2 at the user’s request, using the external

files of parameters that describe distributions of the parton momentum fraction x

at the relevant Q2. In order to perform uncertainty calculations, on an event-by-

event basis, using the parton momentum fraction x of incoming partons, the up

and down variation of each eigenvector for the PDF is determined. The difference
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between the central value of the CT10 PDF which is the base PDF of the LHAPDF,

and the central value from MSTW2008NNLO is also accounted for. Hence, bundle

histograms for A, B, C and D, which contained all of the variations for the respective

bundles of eigenvectors, are filled. Comparing these shifted histograms to the nominal

ones (produced by using the central values) a systematic variation for each bundle is

calculated. As a first step, these uncertainties are studied only as a function of true

dilepton invariant mass, as shown in Fig. 5.1. These results are compared to the ones

from FEWZ to check the consistency. Agreement within a few percent on average is

found between calculations using FEWZ and LHAPDF. Then the study is extended

to look at forward and backward events using LHAPDF.

The programs FEWZ and VRAP are still used for the PDF scale, αs uncertainties,

which are explained in more detail in the next part, because these are not expected

to vary much with cos θ∗.

The effect of the uncertainty, that is obtained by merging different bundle un-

certainties, on the reconstructed dimuon invariant mass is shown in Fig. 5.2. The

mass-only dependent result for each bundle separately can be found in Fig. B.4 of

Appendix B.

Signal PDF variation systematics were also studied for each model. As stan-

dard ATLAS Exotics procedure, theoretical uncertainties do not directly apply to

the signal. In other words, signal yields are not directly shifted by the uncertainties.

However, if uncertainties have a significant impact on the signal acceptance times

efficiency, then they are taken into account. Hence, signal events are weighted by the

PDF variation uncertainty and then compared to the nominal acceptance. The differ-

ence is found to be less than 0.1%, so negligible for CI processes. In the ADD search,

a single high threshold mass bin is used between 1900 and 4500 GeV, therefore this

study is repeated taking into account the total acceptance times efficiency, including

the signal excluded. This can give a different result from the first study performed for
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Figure 5.1: PDF uncertainty study using Drell-Yan events with MSTW2008NNLO
PDF eigenvector variations (bundled into like groups A – D) to assess shape change.
(Top) shows the mass-only dependent result of the PDF uncertainty, while (bottom
left) and (bottom right) show the mass-cos θ∗ dependent study for “forward” and
“backward” events separately.

the CI search, because the PDF uncertainties no longer cancel in both the numerator

and denominator of the calculation. Therefore, a larger systematic uncertainty of

≈3% is observed for the ADD model, as shown in Fig. 5.3, at an almost constant

value versus the parameter of interest of MS. Thus, the effect of the PDF variation

is included in the acceptance times efficiency of the ADD signal. This approach is

taken to avoid signal bias introduced via the specific theoretical uncertainty choices.

5.1.2 Uncertainties Due to PDF Choice, Scale and αS

In addition to parton contributions to the proton structure, there are contributions

to PDF from the strength of the strong coupling (αS) and the renormalization (µR)
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Figure 5.2: The effect of the uncertainty due to the PDF variation on the recon-
structed dimuon mass. The mass-only dependent result is shown by the top plot,
while bottom left and bottom right show the mass-cos θ∗ dependent study for “for-
ward” and “backward” events separately.

and factorization (µF ) scales. Thus, uncertainties associated with these quantities

need to be evaluated. Also, DY cross section calculations are performed using different

PDF sets in order to study the impact of PDF set choice.

In order to quantify the uncertainties due to αS, DY cross sections are calculated

for αS values between 0.11365 and 0.12044 (the 90% C.L αS limits of MSTW) as a

function of m``, using VRAP. The calculated cross sections are compared to the ones

from the calculations with nominal PDF set. The maximum difference is assessed as

the asymmetric systematic uncertainty due to αS.

Uncertainties on the QCD corrections are quantified by varying the µR and µF

scales up and down by a factor of two simultaneously. The largest deviation of the
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Figure 5.3: The change in acceptance times efficiency due to PDF variation for the
ADD search.

calculated cross sections from the nominal cross section is taken as the symmetric

uncertainty.

Potential differences in the underlying theoretical framework between the modern

PDF fit collaborations are also studied by comparing nominal MSTW2008NNLO with

four other PDF sets: CT10NNLO [97], NNPDF2.3 [98], ABM11 [99] and HERAPDF1.5 [100].

The cross section as a function of m`` is calculated for each of these PDF sets by us-

ing their central values. The deviation of these cross sections from the one calculated

using the nominal MSTW2008NNLO PDF set is compared to the MSTW2008NNLO

PDF uncertainty at the 90% C.L. for the same µR and µF scales, and value of

αS = 0.11707. Cross section values obtained for the different PDF sets, except

ABM11, are found to be within the MSTW2008NNLO 90% C.L uncertainty. There-

fore, the deviation in the cross section obtained with the ABM11 PDF set is included

as an additional systematic uncertainty due to the PDF choice.

5.1.3 Uncertainties Due to Higher Order Electroweak Corrections

As stated in the previous sections, an EW K-factor is applied to the DY samples in

order to account for the effects of virtual gauge bosons and real gauge boson emissions.
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The higher order EW corrections are calculated both using SANC and FEWZ. Thus,

a systematic uncertainty on the EW corrections corresponds to the difference in the

theoretical calculations between these two programs. Systematic uncertainties due

to the higher order EW corrections as a function of true dilepton invariant mass are

shown in Fig. 5.4.
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Figure 5.4: Systematic uncertainties due to the higher order EW corrections as a
function of true dilepton invariant mass.

5.1.4 Uncertainties Due to the Photon-Induced Process

In this analysis, the photon-induced background is used due to the better de-

scription at high | cos θ∗|. In order to assess the systematic uncertainty due to PI

contributions, the ratio between PI+DY and DY MC samples is investigated. The

ratio is provided as a function of dimuon invariant mass, also for forward and back-

ward events separately. These distributions are shown in Fig. 5.5. An arbitrary

choice is made to vary the PI contribution by 100% to assess the uncertainty which

is based on the expectation that the MC sample we use already corresponds to an

overestimate of the effect.
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Figure 5.5: The effect of including the photon-induced MC in the dimuon non-
resonant search, as a function of mass-only (black), and mass-cos θ∗ for forward (red)
and backward (blue) events.

5.1.5 Uncertainties Due to Z/γ∗ Production Cross Section

A uniform uncertainty of 4%, due to the uncertainty on the Z/γ∗ NNLO cross

section in the normalization region is applied to the signal yield since it affects the

signal normalization. This flat uncertainty is due to uncertainties in PDF variation,

scale and αS. These are obtained from the 90% C.L. MSTW2008NNLO PDF error

set and by using VRAP for the calculation of the NNLO DY cross section in the

normalization region.

5.2 Experimental Uncertainties

Experimental systematic uncertainties are applied both to the expected SM back-

ground and to the signal processes.
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5.2.1 Uncertainties Due to Muon Reconstruction Efficiency

At pT values above 300 GeV, the energy loss mostly comes from radiative loss

(bremsstrahlung). That makes pattern recognition in the muon spectrometer difficult

if an electromagnetic shower produced is sufficiently large and close to the muon

spectrometer. This may result in mis-measuring the MS track parameters if some

of the hits from the shower are wrongly associated with the muon tracks. This

radiation affects the muon reconstruction efficiency and needs to be considered as a

systematic uncertainty in the analysis. This issue becomes more relevant as the muon

pT increases.

5.2.2 Uncertainties Due to Muon Momentum Resolution

Since at high pT the muon tracks are almost straight, any misalignment of the

muon spectrometer chambers can lead to a mis-measurement of pT. Hence, the biggest

contribution to muon momentum resolution for high-pT muons comes from the in-

trinsic resolution. The muon momentum resolution is discussed in detail in Section

3.5.2.

Corrections applied to the simulation to account for the differences in the de-

scription of the muon momentum resolution between data and MC are parametrized

as shown in Eq. (3.11). Correction (smearing) parameters, which are basically the

quadratic differences in the resolution parameters between data and simulation, have

uncertainties associated with them. In order to investigate the effect of the muon

momentum resolution uncertainty on background and signal expectations, two dif-

ferent methods are used. In both methods, the ratio between oversmeared (smear-

ing parameters are shifted upwards by their uncertainty) and smeared dimuon mass

distributions is used to determine the systematic uncertainty. In order to produce

oversmeared distributions, extra smearing is applied on muons on top of the nominal
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smearing performed using the official tool. The extra smearing is provided in two

different ways.

The first method utilizes the specialized functions provided by the official MCP

tool: MuonMomentumCorrections-00-09-08. The second directly applies a uniform

extra 0.1 TeV−1 smearing to barrel muons and 0.2 TeV−1 to end-cap muons in addition

to the nominal smearing provided by the official tool. The systematic uncertainty on

the DY background is shown in Fig. 5.6 for the combined resolution systematic

uncertainty obtained from the two different methods.

 [GeV]µµm

500 1000 1500 2000 2500 3000 3500 4000 4500

S
m

e
a

re
d

/N
o

m
in

a
l

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Extra smeared/Nom

MS UP (MCP Tool)/Nom

Figure 5.6: The ratio of extra smeared and nominal smeared invariant mass distri-
butions. Additional flat smearing is shown with the red curve whereas additional
smearing with the official tool is shown with the blue curve.

The impact of the muon momentum resolution uncertainty on the ADD signal

estimate is shown in Figure 5.7.
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5.2.3 Uncertainties Due to Muon Charge Misidentification

After the selection criteria are applied on each muon in the event, a dimuon pair

is selected by requiring muons in the pair to be oppositely charged. If the charge of

one of the muons is misidentified, the muons in the pair end up with the same charge

and the opposite-sign charge requirement is not satisfied. This results in a decrease

in the event selection efficiency. The percentage of misidentified muons is expected to

be small since combined muons use independent measurement from the ID and MS.

In order to quantify the impact of the systematic uncertainty due to muon charge

misidentification, the study is performed by following the steps below:

• The object selection criteria are applied on muons in each event.

• Before selecting a muon pair in an event, truth matching is performed in order

to find the associated true muon for a selected reconstructed muon.

• The charge of the reconstructed muon is compared to the charge of the corre-

sponding true muon to check if the muon has a charge flip.

• The event rejection probability which is defined as the probability of one of

the muons to have a charge flip so the event is rejected as a result of having
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a same sign pair, is shown in Fig. 5.9 (left plot). It shows the ratio between

number of events with one of the muons has a charge flip and the total number

of events. It is as a function of the ”truth” invariant mass in order to make

a comparison between the relative efficiencies we have from mass binned DY

samples generated in different true mass regions. The plot on the right shows

1-rejection probability, in other words, selection efficiency, which can be directly

compared to the numbers in Table 5.1.

Figure 5.8: Event rejection probability (left) and event selection probability (right)
due to muon charge misidentification.

• Dimuon invariant mass distribution of the DY process is produced as a func-

tion of true invariant mass by assigning 20% of the rejection probability as a

systematic uncertainty. This distribution is then compared to the nominal dis-

tribution. Muon charge misidentification uncertainty is estimated to be < 0.1%,

< 0.5%, and 1% for true dimuon mass of 1, 2, and 3 TeV, respectively, as seen

from Fig. 5.9.

The systematic uncertainty due to muon charge misidentification is not taken into

account since this uncertainty is folded into the uncertainty due to muon momentum

resolution. As discussed above, extra smearing is applied on muons in order to quan-

tify the muon momentum resolution uncertainty. Since q/pT is smeared instead of pT,
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dimuon mass.

Table 5.1: The relative efficiencies due to the opposite-sign charge requirement cal-
culated using mass binned DY samples.

m`` [GeV] Relative Efficiency [%]
1000 – 1250 99.96
1250 – 1500 99.77
1500 – 1750 99.13
1750 – 2000 98.07
2000 – 2250 96.61
2250 – 2500 95.06
2500 – 2750 93.34
2750 – 3000 91.77
≥ 3000 88.96

a charge flip is taken into account. Therefore, the possibility of a charge flip is cov-

ered by the muon momentum resolution uncertainty and not applied as a separate

systematic uncertainty in the analysis.

5.2.4 Uncertainties Due to Beam Energy Scale

A beam energy at 4 TeV at the LHC is measured as E4TeV = 3988 ± 5 (stat) ± 26

(syst) GeV which shows that a systematic uncertainty on the LHC beam energy is
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0.65%. This uncertainty mostly originates from an unexplained drift in measurements.

The production cross section is calculated using VRAP by varying the beam energy

up and down by its uncertainties. Then the ratio between the varied and nominal

invariant mass distributions, shown in Fig. 5.10, are used to quantify the systematic

uncertainty for signal and background. It can be as high as 5% at 3 TeV dilepton

masses whereas the effect of this uncertainty for the signals on acceptance times

efficiency is very small (< 1%).

Figure 5.10: Experimental uncertainty due to LHC beam energy and effect on vector
boson production rate.

5.2.5 Uncertainties Due to Monte Carlo Statistics

The limited MC statistics are taken into account as a source of systematic un-

certainty. This uncertainty is considered for all background and signal samples. As

similar to the treatment of other systematic uncertainties, shifted distributions are

provided and by comparing them to the nominal ones, uncertainties due to the limited

MC statistics are quantified.
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Table 5.2: Quantitative summary of the systematic uncertainties taken into account
for the expected number of events in the non-resonant dimuon analysis. Values are
provided at three relevant benchmark dimuon masses of 1 TeV (2 TeV) [3 TeV]. NA
indicates that the uncertainty is not applicable.

Source
Dimuons

Signal Background
Normalization 4.0% (4.0%) [4.0%] NA
PDF Variation < 0.1% (< 0.1%) [0.1%] 5.0% (12.0%) [17.0%]
PDF Choice NA 1.0% (6.0%) [12.0%]

αS NA 1.0% (3.0%) [4.0%]
EW Corrections NA 1.0% (3.0%) [3.0%]
Photon-Induced NA 6.5% (9.5%) [10.5%]

Efficiency 3.0% (6.0%) [9.0%] 3.0% (6.0%) [9.0%]
Scale/Resolution 1.0% (4.0%) [10.0%] 1.0% (4.0%) [10.0%]

Beam Energy 1.0% (3.0%) [3.0%] 2.0% (3.0%) [3.0%]
Statistical 3.0% (3.0%) [3.0%] 0.5% (0.5%) [0.5%]

Total 6.0% (9.3%) [14.7%] 9.2% (18.7%) [27.5%]

5.3 Summary of Systematic Uncertainties

Theoretical and experimental systematic uncertainties considered in this analysis

have been described above. For each systematic uncertainty that is applied on the

SM background, shifted histograms (reconstructed events weighted by the relevant

uncertainty) of the DY process and nominal histograms are produced to be used

in the statistical treatment. On the other hand, systematic uncertainties for the

signal processes are parametrized as a function of a parameter of interest. Therefore,

shifted and nominal signal parameterizations are fed into the limit calculation. All

sources of systematic uncertainty are quantitively summarized in Table 5.2 at three

benchmark dimuon mass values of 1 TeV, 2 TeV, and 3 TeV. A summary of systematic

uncertainties is presented separately for forward and backward events in Table 5.3.
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Table 5.3: Quantitative summary of the systematic uncertainties separated into those
for forward and backward events. The uncertainties are taken into account for the
expected number of events in the non-resonant dimuon analysis. Values are provided
at three relevant benchmark dimuon masses of 1 TeV (2 TeV) [3 TeV]. NA indicates
that the uncertainty is not applicable.

Source
Dimuon Channel Signal

Forward Backward
Normalization 4.0% (4.0%) [4.0%] 4.0% (4.0%) [4.0%]
PDF Variation < 0.1% (< 0.1%) [0.1%] < 0.1% (< 0.1%) [0.1%]
PDF Choice NA NA

αS NA NA
EW Corrections NA NA
Photon-Induced NA NA

Efficiency 3.0% (6.0%) [9.0%] 3.0% (6.0%) [9.0%]
Scale/Resolution 1.0% (4.0%) [10.0%] 1.0% (4.0%) [10.0%]

Beam Energy 1.0% (3.0%) [3.0%] 1.0% (3.0%) [3.0%]
Statistical 3.0% (3.0%) [3.0%] 3.0% (3.0%) [3.0%]

Total 6.0% (9.3%) [14.7%] 6.0% (9.3%) [14.7%]

Source
Dimuon Channel Background

Forward Backward
Normalization NA NA
PDF Variation 4.0% (8.5%) [14.5%] 6.0% (15.0%) [19.0%]
PDF Choice 1.0% (6.0%) [12.0%] 1.0% (6.0%) [12.0%]

αS 1.0% (3.0%) [4.0%] 1.0% (3.0%) [4.0%]
EW Corrections 1.0% (3.0%) [3.0%] 1.0% (3.0%) [3.0%]
Photon-Induced 5.0% (7.5%) [8.0%] 9.5% (13.5%) [14.0%]

Efficiency 3.0% (6.0%) [9.0%] 3.0% (6.0%) [9.0%]
Scale/Resolution 1.0% (4.0%) [10.0%] 1.0% (4.0%) [10.0%]

Beam Energy 2.0% (3.0%) [2.0%] 2.0% (3.0%) [3.0%]
Statistical 0.5% (0.5%) [0.5%] 0.5% (0.5%) [0.5%]

Total 7.6% (15.6%) [25.1%] 11.9% (22.9%) [30.2%]
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CHAPTER 6

STATISTICAL ANALYSIS

This chapter begins with the discussion of the Bayes’ Theorem. Then the methods

that are used to check consistency between data and the SM expectation are discussed.

Finally, the expected and observed limit setting procedures using a Bayesian approach

and the limit inputs are described.

6.1 Bayesian Analysis

There are two separate approaches that can be followed when performing a sta-

tistical analysis: one can follow a frequentist approach or a Bayesian approach. The

frequentist approach focuses on the probability of observing a certain set of data given

a hypothesis. This approach treats data as random and restricts probabilities to out-

comes of repeatable measurements. Bayesian statistics focuses on the probability of

the hypothesis, given the data. This approach treats data as fixed and a hypothesis as

random (the hypothesis might be true or false, with some probability between 0 and

1). The main idea of Bayesian statistics is to use subjective probability to quantify

degree of belief in different models [101].

In this analysis, the observed event yields are compared to the expected event

yields for different new physics model parameters. The significance of any observed

excess is assessed using a Bayesian approach. In the absence of a signal, 95% C.L.

lower exclusion limits are set on that parameter.

Bayes’ Theorem was published by Thomas Bayes in 1763. Suppose A and B

represent two outcomes to which probabilities are to be assigned. These may be
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outcomes of a repeatable observation or hypotheses for which a degree of belief needs

to be stated. As long as the probability of B, P (B), is nonzero, the conditional

probability of A given B, P (A|B), can be defined as:

P (A|B) =
P (A ∩B)

P (B)
, (6.1)

where P (A ∩B) represents the probability that A and B are both true. Since A and

B are arbitrary labels, as long as the probability of A, P (A), is nonzero, the equation

can be rewritten by reversing the labels:

P (B|A) =
P (B ∩ A)

P (A)
, (6.2)

whereas P (B ∩ A) represents the probability that B and A are both true. Since “A

and B” is the same with “B and A”, their probability equations are set equal and

solved in order to obtain Bayes’ Theorem:

P (A ∩B) = P (B ∩ A), which gives
P (A|B)

P (A)
=
P (B|A)

P (B)
, (6.3)

Hence, Bayes’ Theorem is defined as:

P (A|B) =
P (B|A)P (A)

P (B)
. (6.4)

where P (A|B) is known as the “posterior probability” of A given B, P (B|A) is known

as the “likelihood” and can also be written as L(B|A). The likelihood is multiplied

by P (A), called the “prior probability”, which reflects the degree of belief before any

measurements are performed. In Bayesian analysis, there is no rule specified for prior

probabilities. They might be based on previous measurements, physical intuition,

etc. Generally, in physics analysis, uniform prior probabilities are used not because
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they represent real prior judgements but because they provide a convenient point of

reference. Integrating P (B|A) over all values of A, in order to normalize P (A|B)

to unity, determines the constant of proportionality 1/P (B). Thus, P(B) in this

equation is a normalization constant.

In the context of new physics searches, in a given bin, A denotes the number of

expected events, also often written as µ, and B is the number of observed events,

represented by n.

The number of expected events in a given search region is

µ = ns(Θ, ν) + nb(ν), (6.5)

where Θ represents a set of parameters that defines a given model or hypothesis. In

the CI analysis, Θ corresponds to the energy scale Λ and interference parameter ηij,

whereas in the ADD analysis it corresponds to a string scale MS and specific formalism

(GRW, Hewett, or HLZ). The quantity ns(Θ, ν) is the number of events predicted by

the CI or ADD signal for a particular choice of model parameter Θ, whereas nb(ν) is

the total number of background events. In both cases ν represents the set of nuisance

parameters that account for systematic uncertainties on the number of respective

signal and background events.

Since the number of observed events follows a Poisson distribution, the likelihood

of observing n events in one mass bin can be written as:

L(n | Θ, ν) =
µne−µ

n!
. (6.6)

Unlike the ADD analysis which is performed in a single mass bin, the CI analysis

is performed in 12 separate bins correspond to a choice of two different cos θ∗ and 6

different mass bins since the background and the signal are not as clearly distinguished

as they are in the ADD case. Consequently, Eq. (6.6) needs to be expanded to include
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Nbins invariant mass bins. It can simply be written by taking the product of the

Poisson probabilities for each mass bin k:

L(n | Θ, ν) =

Nbins∏
k=1

µnkk e
−µk

nk!
. (6.7)

According to Bayes’ theorem, the posterior probability density function for the

parameter Θ given n observed events is:

P(Θ | n, ν) =
1

Z
L(n | Θ, ν)P (Θ, ν), (6.8)

where Z normalizes the posterior probability density function. P (Θ, ν) is the prior

probability function and it depends on the new physics parameter Θ and the nuisance

parameters P (Θ, ν).

In order to marginalize the nuisance parameters and obtain a marginalized likeli-

hood LM, each Poisson distribution is convolved with a Gaussian probability distri-

bution.

L(n | Θ, ν) =

Nbins∏
k=1

µnkk e
−µk

nk!

Nsys∏
i

Gaus(0, 1, νi). (6.9)

A multi-dimensional integral over the probability functions of the nuisance param-

eters is performed. As a result, the dependence on nuisance parameters is removed.

LM(n | Θ) =

∫
L(n | Θ, ν1, ν2, ν3, ...)dν1dν2dν3.... (6.10)

After integrating out the nuisance parameters by taking the correlation of these

parameters across all mass bins into account, the posterior can be rewritten as:

P(Θ | n) =
1

Z
LM(n | Θ)P (Θ) (6.11)
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The prior probability P (Θ) is chosen flat in either 1/Λ2 or 1/Λ4 in the CI analysis,

or in 1/M4
s or 1/M8

s in the ADD analysis. In the absence of a signal, 95% C.L. limits

are then found by performing the integration over the posterior and solving for Θlim:

∫ Θlim

0

P(Θ | n)dΘ = 0.95, (6.12)

where Θ is chosen as 1/Λ2 or 1/Λ4 in the CI analysis, 1/M4
s or 1/M8

s in the ADD

analysis. The calculations given above are performed with the Bayesian Analysis

Toolkit (BAT) [102], which uses a Markov Chain Monte Carlo (MCMC) technique to

integrate over the nuisance parameters.

6.2 Consistency Check Between Data and SM

In order to check the consistency between the data and the SM expectation,

the log-likelihood ratio (LLR) between the signal+background and pure background

hypotheses obtained in the data is compared to the results of pseudo-experiments.

The log-likelihood ratio is the log of the ratio between the likelihood computed for

the signal+background hypothesis and the likelihood for the background hypothesis

only. It is the best discriminant between two hypotheses (in this case between sig-

nal+background and background-only hypotheses) according to the Neyman-Pearson

Lemma.

To construct the background-only likelihood for the data, Eq. (6.7) is used by

taking µk as the number of SM-only events from simulation and nk as the number

of observed events, in each mass bin k. The same calculation is done for each of

the pseudo-experiments by pulling out the value of nk from the Poisson-distributed

background-only function. For the SM expectation, 1000 pseudo-experiments are per-

formed. The signal+background likelihood is constructed by taking µk as the number

of signal+background events and evaluated at the Λ (MS) value that maximizes the
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likelihood for the CI (ADD) analysis. The background-only likelihood is chosen as the

likelihood at Θ=0. Then the negative log-likelihood ratio is calculated for the data

and for each of the pseudo-experiments. The p-value is derived by taking the ratio

of the integral from the value of the log-likelihood in data to infinity relative to the

total integral of the pseudo-experiments. The p-value corresponds to the probability

of observing a fluctuation in the pseudo-experiments that is as or more signal like

than that seen in data, when assuming only the SM background:

p-value = P (LLRPE ≥ LLRdata | SM only). (6.13)

The common convention in particle physics is that a p-value < 1.35 ×10−3 cor-

responds to evidence for a signal, whereas a p-value < 2.87 ×10−7 is considered a

“discovery”. These values are the one-sided integrals of the tails of a unit Gaussian

distribution beyond +3σ and +5σ, respectively.

6.3 Bayesian Limit Setting

6.3.1 Choice of Prior

The prior probability function can be written as P (Θ|ν) = P (Θ)P (ν) and P (Θ) is

chosen as flat in Θ. P (ν) is taken as a set of normalized Gaussian distributions each

corresponding to one of the systematic uncertainties considered in this analysis. The

posterior dependence on ν is integrated out with 100000 iterations of the MCMC.

The choice of prior is performed by studying the relative impact of the interference

and pure CI terms in Eq. (1.43) that defines the differential cross section of the CI

process. The relative impact of these terms depends on both the dilepton mass and

Λ. The term with 1/Λ2 is the interference term and becomes increasingly dominant

when the DY and new physics contributions are of similar magnitudes and its impact

is maximum when both contributions are equal. When Λ → ∞, the cross section
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looks like DY-only. The term with 1/Λ4, on the other hand, denotes the pure CI

contribution. It is dominant at high mass since the DY contribution decreases more

quickly than the CI contribution. Hence, there is no special reason for choosing any

of these terms over the other one so both of them are used. Therefore, for the CI

analysis, priors flat in either 1/Λ2 or 1/Λ4 are chosen and the limits are provided with

both priors.

In the ADD analysis, as similar to the CI case, a role of both interference and new

physics terms is studied. Unlike the situation with the CI case, interference effects

between the DY and virtual KK graviton processes are small due to the dominance

of gluon-induced over quark-induced dilepton production by virtual KK gravitons.

Nevertheless, priors flat in either 1/M4
S or 1/M8

S are chosen in the ADD analysis.

6.3.2 Limit Setting Procedure

Since signal samples are generated for only five benchmark Λ (MS) values for the

CI (ADD) analysis, counting events in each search bin is performed only for these Λ

(MS) values. These are not enough for posterior calculations since for any random

value of Λ (MS), the total number of expected events (N exp) is not available.

For the construction of the posterior for an arbitrary Θ value, it is necessary to

fit the available numbers of expected events at fixed Θ values. The fits are performed

according to the theoretical dependence of the differential cross section as a function

of the parameter of interest, according to Eqs. (6.14) and (6.15) for the CI and ADD

models, respectively.

N exp(Λ) = c0 +
c1

Λ2
+
c2

Λ4
, (6.14)

N exp(MS) = d0 +
d1

M4
S

+
d2

M8
S

. (6.15)

These fits are performed in each signal mass-cos θ∗ bin (12 search bins in total)

for the CI analysis and in a single mass bin for the ADD analysis.
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When Λ → ∞ or MS → ∞ (so Θ → 0), N exp corresponds to the number of

SM-only events. Thus, the constant c0 or d0 gives the SM expectation. In the ADD

analysis, N exp(Θ = 0) is obtained using an ADD signal sample with a very high MS

value, 50 TeV. For such a high value of MS, the dilepton mass spectrum does not

deviate from the pure DY prediction.

Examples of signal parameterizations can be found in Figs. 6.1 and 6.2 for the

CI and ADD analyses, respectively. A complete set of parameterizations is included

in Appendix D. As seen from the signal parameterization for the CI search, DY+CI

events are fitted and the non-DY background is not included here. Next section

discusses in more detail the way in which these parameterizations are used in the

statistical analysis.
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Figure 6.1: Number of DY+CI events in each of the cos θ∗ bin in the mass bin from
1200 GeV to 1800 GeV for the contact interaction LL model as a function of 1/Λ2

for the constructive (destructive) interference case is shown on the left (right).

The fit functions are then used to calculate the likelihood:

L(n | Θ) =

Nbins∏
k=1

N exp
k (Θ)nk . e−N

exp
k (Θ)

nk!
. (6.16)

Finally, the posterior probability is calculated by taking the prior probability as

flat in either 1/Λ2 or 1/Λ4 for the CI model and in either 1/M4
S or 1/M8

S for the ADD

model. The limit is set on Θ according to the Bayesian method.
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Figure 6.2: Number of expected events in a single mass bin from 1900 GeV to 4500
GeV for the GRW formalism as a function of 1/M4

S.

When calculating the observed limit, nk is the number of observed events and N exp
k

is the total number of expected events for signal and background processes in each

mass bin k. The likelihood is calculated many times with a corresponding variation

in the number of expected events via Eq. (6.14) (Eq. (6.15)) for the CI (ADD)

model, whereas nk is always the same for a given search bin. Using the distribution

of these likelihood values as a function of Θ and using Eq. (6.12), the observed limit

is calculated.

When calculating the expected limit, only the events from simulation are used,

as opposed to using data in the observed limit calculation. Thus, for the expected

limit calculation, nk is the number of SM background events and N exp
k is the number

of signal+background events. By taking steps in Θ and following the same proce-

dure used in the observed limit calculation, a limit value is calculated. Due to the

uncertainty on the SM background, this limit calculation is repeated 1000 times by

pulling out a value of nk for a given bin each time from the Poisson-distributed func-

tion of background-only events. Therefore, 1000 limits are obtained as a result of

performing 1000 pseudo-experiments (as opposed to having only one observed limit).

The expected limit is set by taking the median of these limit values, then converting
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this value to the limit on the parameter of the new physics model chosen (Λ in CI

analysis, MS in ADD analysis).

6.3.3 Inputs for the Limit Calculation

In this analysis, the limit calculation is performed using BAT. Inputs for the limit

calculation, that are fed into BAT are:

• Signal parameterizations are provided in order to obtain the number of DY+CI

events at any value of Θ chosen.

• The number of SM-only events in each search bin defined is provided.

Adding the expected number of pure signal events obtained from the signal parame-

terizations to the number of SM-only events, the total number of expected events is

obtained.

Systematic uncertainties that are incorporated in the likelihood are calculated in

BAT. Inputs which are provided to BAT for the calculation of systematic uncertainties

are discussed below:

• Signal parameterizations including DY+CI processes are shifted by each of the

systematic uncertainties relevant for the signal processes. Using the ratio be-

tween shifted and nominal signal parameterizations, BAT assessed the system-

atic uncertainties in terms of Θ.

• Since the impact of systematic uncertainties in the non-DY contribution is neg-

ligible, only the systematic uncertainties in the DY contribution are taken into

account (except for the MC statistics uncertainty). Therefore, the number of

DY-only events as well as the number of DY-only events shifted by each of the

relevant systematic uncertainties are provided.

153



• The systematic uncertainty due to the limited MC statistics is applied to all

SM backgrounds as opposed to the other uncertainties applied only to the DY

background. In order to quantify its impact on the signal, event counts that

are shifted by their statistical uncertainty are fitted and the shifted signal pa-

rameterizations are obtained. These are then compared to the nominal param-

eterization.
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CHAPTER 7

RESULTS

This chapter presents the results for the contact interaction and ADD large extra

dimension searches. The combination of limits with the electron channel is also

discussed.

7.1 Contact Interaction Search Results

For the CI search, results are presented using a search in both invariant mass

and cos θ∗. In order to check consistency between data and the SM expectation, as

discussed in Section 6.2, 1000 SM-like pseudo-experiments are generated. The log-

likelihood ratios calculated both for data and the SM background are compared to

each other. Distributions of the negative log-likelihood ratio for all pseudo-experiments

and also for the observed results are shown in Fig. 7.1 for the LL CI model. Same

distributions for the LR and RR CI model can be found in Figs. E.1 and E.2 of

Appendix E, respectively.

Good agreement is observed between the data and expected background yields.

This can be seen from Tables 4.3 and 4.4 for different signal regions.

The most significant deviation from the expected background is seen with a p-

value of 8% in the LL model with destructive interference given the 1/Λ2 prior. A

full list of p-values is shown in Table E.1 of Appendix E.

Since no significant excess of data is observed above the SM background, the

analysis proceeds by setting expected and observed 95% C.L. lower exclusion limits on

Λ. The results are provided for both choices of priors: 1/Λ2 and 1/Λ4 priors. In order
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Figure 7.1: Expected and observed negative log-likelihood distributions for the LL
contact interaction model, for constructive (plots on the left) and destructive inter-
ference (plots on the right). All systematic uncertainties are taken into account, and
a uniform positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used with
the 2D search approach.

to compute expected limits, a set of 1000 pseudo-experiments are performed. The

median of these pseudo-experiments is taken to be the expected limit. The expected

limit distributions are shown in Fig. 7.2 for the LL CI model. Same distributions

for the LR and RR CI model can be found in Figs. E.3 and E.4 of Appendix E,

respectively.

The posterior distributions from which the observed limits are calculated are

shown in Fig. 7.3 for the LL CI model. Same distributions for the LR and RR

CI model can be found in Figs. E.5 and E.6 of Appendix E, respectively.

The resulting expected and observed limits are presented in Table 7.1 and also

displayed graphically in Fig. 7.4. These limits are the most stringent to date. The

CMS experiment recently quoted the lower limits on Λ for the LL CI model, using the

2012 data at
√
s = 8 TeV, corresponding to an integrated luminosity of 20.6 fb−1 in
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Figure 7.2: Distribution of expected limit values from pseudo-experiments for the LL
contact interaction model, for constructive (plots on the left) and destructive (plots
on the right) interference. A uniform positive prior in 1/Λ2 (1/Λ4) for the plots
on the top (bottom) is used. All systematic uncertainties are taken into account.
These results are derived using the 2D search approach. The blue arrow indicates the
median limit and the black arrow shows the observed limit.

the dimuon channel [39]. These observed (expected) lower limits are 15.2 TeV (16.9

TeV) for constructive interference and 12.0 TeV (13.0 TeV) for destructive interference

whereas the lower limits from the analysis presented here are 16.7 TeV (18.0 TeV)

for constructive interference and 12.5 TeV (12.7 TeV) for destructive interference.

Thus, the limits from this analysis are ∼1 TeV stronger than the limits from the

CMS experiment.

In this analysis, angular information is added for the first time in a search at the

LHC. Different chirality models for the CI is also studied for the first time in addition

to the LL CI model which is always considered as a benchmark model for CI searches.
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Figure 7.3: Posterior distributions for the LL contact interaction model, for construc-
tive (plots on the left) and destructive (plots on the right) interference. A uniform
positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used. All systematic
uncertainties are taken into account. These results are derived using the 2D search
approach.

Limits are approximately 3 TeV stronger for the LR model comparing to the limits

for the LL and RR models, which is as expected since the sensitivity gain from the

angular information is the largest for the LR model. Also, limits become weaker with

a prior flat in 1/Λ4. The decrease in the expected limit is approximately 2 TeV and

1 TeV for constructive and destructive cases, respectively.

7.2 Large Extra Dimensions Search Results

For the ADD search, results are presented using a single mass bin from 1900 to

4500 GeV. As for the CI analysis, consistency between data and the SM expectation

is checked by performing 1000 SM-like pseudo-experiments. The log-likelihood ratios

calculated both for data and the SM background are compared to each other. Distri-
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Table 7.1: Expected and observed 95% C.L. lower exclusion limits on Λ for the LL,
LR, and RR contact interaction search using a uniform positive prior in 1/Λ2 or 1/Λ4.
Limits are shown for both the constructive and destructive interference cases.

Expected and observed lower limits on Λ [TeV]

Channel Prior
Left-Left Left-Right Right-Right

Const. Destr. Const. Destr. Const. Destr.

Expected
1/Λ2 18.0 12.7 21.6 16.3 17.7 13.0

Observed 16.7 12.5 20.5 14.9 16.5 12.7

Expected
1/Λ4 16.2 12.0 19.8 15.3 16.2 12.1

Observed 15.6 11.8 19.0 14.3 15.4 11.9
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Figure 7.4: Summary of 95% C.L lower exclusion limits on Λ for the dimuon contact
interaction search, using a positive prior in 1/Λ2 (left) and in 1/Λ4 (right). Previ-
ous ATLAS search results are also presented for comparison. Exclusion limits were
previously only set on the LL model.

butions of the negative log-likelihood ratio for all pseudo-experiments and also for the

observed results are shown in Fig. 7.5 for the GRW formalism. Same distributions

for the HLZ n=2 formalism can be found in Fig. E.7 of Appendix E.

In the ADD search, as seen from Table 4.5, the number of expected events is 0.54

whereas the number of observed events is 0. The most significant excess is observed

with a p-value of 6% in the GRW formalism for the 1/M4
S prior whereas for the 1/M8

S
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Figure 7.5: Negative log-likelihood distribution resulting from pseudo-experiments
with fluctuations on the number of expected SM-only events for the ADD model with
GRW formalism with a uniform positive prior in 1/M4

S (left) and 1/M8
S (right).

prior the derived p-value is 49%. These values indicate that there is no significant

evidence for new physics in the ADD signal region and thus 95% C.L lower exclusion

limits are set on the string scale MS. The results are provided both 1/M4
S and 1/M8

S

priors. In order to compute expected limits, a set of 1000 pseudo-experiments are

performed. The median of these pseudo-experiments is taken to be the expected limit.

The expected limit distributions are shown in Fig. 7.6.
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Figure 7.6: Distribution of expected limit values from pseudo-experiments in the
muon channel for the GRW ADD model assuming a 1/M4

S (left), and 1/M8
S (right),

uniform positive prior. The results take all systematic uncertainties into account.
The red arrow indicates the median limit.

The observed limits in the ADD search are well within the range of expected

limits. The corresponding posterior distributions are shown in Fig. 7.7 for the GRW
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formalism. Same distributions can be found for the HLZ n=2 formalism in Fig. E.8

of Appendix E.
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Figure 7.7: Posterior pdf distributions for the GRW ADD model, with a uniform
positive prior in Θ = 1/M4

S (left) and Θ = 1/M8
S (right).

The results are obtained using the GRW formalism. These results are then trans-

lated into the HLZ and Hewett formalisms using Eq. (1.47). For the special case

of HLZ with n=2, which has a different dependence on the dilepton mass than the

other models, conversion of GRW results is not trivial to perform. Thus, dedicated

MC samples are generated and subjected to the same analysis and statistical inter-

pretation as the GRW formalism. All results are presented in Table 7.2 and are also

displayed graphically in Fig. 7.8. These limits are the most stringent to date. The

recent observed (expected) limits from the CMS experiment [54, 55] are 3.64 (3.65)

TeV for the GRW formalism whereas in the analysis presented here observed (ex-

pected) limits are calculated as 3.73 (3.72) TeV. Thus, the limits are stronger than

those from the CMS Collaboration. Using a prior flat in 1/M8
S rather than in 1/M4

S

weakens the limits by approximately 0.2 TeV.
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Table 7.2: Expected and observed 95% CL lower exclusion limits on MS including
systematic uncertainties, for ADD signal in the GRW, Hewett and HLZ formalisms.

Expected and Observed Limit on MS [TeV]

Channel Prior GRW Hewett
HLZ

n= 2 n=3 n=4 n=5 n=6 n=7

Expected
1/M4

S

3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0
Observed 3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0
Expected

1/M8
S

3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8
Observed 3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8
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Figure 7.8: Summary of 95% C.L lower exclusion limits on MS for the dimuon ADD
large extra dimensions search, using a positive prior in 1/M8

S . Previous ATLAS search
results are also presented for comparison. Exclusion limits were not previously set on
the HLZ n=2 ADD model.

7.3 Combination of Limits with the Electron Channel

Assuming lepton universality, limits obtained for the muon channel are combined

with the results for the electron channel both for CI and ADD searches. The likelihood

given in Eq. (6.7) can be rewritten when channel combinations are considered:
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L(n | Θ, ν) =

Nchannel∏
l=1

Nbin∏
k=1

µnlklk e
−µlk

nlk!
, (7.1)

where, nlk is the number of events observed in data, and µlk is the total number of

expected events (signal plus background), both in mass bin k and channel l. Ac-

cording to Bayes’ theorem, the posterior probability for the parameter Θ given n

observed events is then calculated according to Eq. (6.8). When integrating out the

nuisance parameters, systematic uncertainties that must be treated as correlated or

uncorrelated between two channels are taken into account by the BAT. Sources of sys-

tematic uncertainties that are treated as correlated are: PDF, electroweak K-factor,

photon-induced, beam energy and Z/γ∗ cross section. All other sources are treated

as uncorrelated.

Good agreement is observed between the data and expected background predic-

tions in both CI and ADD searches. The derived p-values are included in Table E.2

and E.3 of Appendix E for the CI and ADD analyses, respectively. In neither case is

the deviation significant. The expected and observed 95% C.L. lower exclusion limits

are set on the parameter of interest in each search, with the resulting limits for the CI

and ADD searches presented in Tables 7.3 and 7.4 respectively, including conversions

to other formalisms. These results are also displayed graphically in Figs. 7.9 and 7.10

for the CI and ADD analyses, respectively. These limits are the most stringent to

date. The CMS experiment recently released the combined observed lower limits on

Λ for the LL model, using the 2012 data at
√
s = 8 TeV, corresponding to an inte-

grated luminosity of 20.6 (19.7) fb−1 for the dimuon (dielectron) channel [39]. These

observed lower limits are 16.9 TeV for constructive interference and 13.1 TeV for de-

structive interference in the dilepton channel whereas in the analysis presented here

combined observed limits are calculated as 21.6 TeV for constructive interference and

17.2 TeV for destructive interference. Therefore, the combined CI limits calculated
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in this analysis for the LL model are much stronger (∼4 TeV) than the ones obtained

by the CMS Collaboration.

In the ADD search, numbers of expected events are 0.54 in the muon channel and

0.61 in the electron channel whereas in both channels numbers of observed events are

0. This small number of expected SM background events in the ADD search, which

is due to the high mass threshold chosen, leads to similar expected and observed

exclusion limits within the separate channels. Thus, a large fraction of the pseudo-

experiments return a result of zero expected events so the median value that is taken

as the expected limit gives also zero expected events. For the combined dilepton

channel, the total number of expected SM background events is large enough that

a wider range of limits is obtained in the ensemble of pseudo-experiments and the

slight data deficit translates into stronger observed limits (4.2 TeV) than expected

(4.0 TeV). The most recent observed (expected) limit on MS that the CMS experiment

announced is 4.01 (4.00) TeV. Again in the combined case, stronger limits comparing

to the ones from the CMS experiment are quoted.
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Table 7.3: Expected and observed 95% C.L. lower exclusion limits on Λ for the LL,
LR, and RR contact interaction search using a uniform positive prior in 1/Λ2 or 1/Λ4.
The dielectron, dimuon, and combined dilepton channel limits are shown for both the
constructive and destructive interference cases.

Expected and observed lower limits on Λ [TeV]

Channel Prior
Left-Left Left-Right Right-Right

Const. Destr. Const. Destr. Const. Destr.

Exp: ee
1/Λ2 19.1 14.0 22.0 17.4 19.0 14.2

Obs: ee 20.7 16.4 25.2 19.2 20.2 16.6

Exp: ee
1/Λ4 17.4 13.0 20.1 16.3 17.2 13.1

Obs: ee 18.6 14.7 22.2 17.7 18.3 14.9

Exp: µµ
1/Λ2 18.0 12.7 21.6 16.3 17.7 13.0

Obs: µµ 16.7 12.5 20.5 14.9 16.5 12.7

Exp: µµ
1/Λ4 16.2 12.0 19.8 15.3 16.2 12.1

Obs: µµ 15.6 11.8 19.0 14.3 15.4 11.9

Exp: ``
1/Λ2 21.4 14.7 24.8 18.5 21.0 15.0

Obs: `` 21.6 17.2 26.3 19.0 21.1 17.5

Exp: ``
1/Λ4 19.1 13.8 23.1 17.6 19.1 14.2

Obs: `` 19.6 15.4 23.8 17.8 19.3 15.6
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Table 7.4: Expected and observed 95% C.L. lower exclusion limits on MS, using a
uniform positive prior in 1/M4

S or 1/M8
S . The dielectron, dimuon, and combined

dilepton channel limits are shown for ADD signal in the GRW, Hewett and HLZ
formalisms.

Expected and observed lower limits on MS [TeV]

Channel Prior GRW Hewett
HLZ

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Exp: ee
1/M4

S

4.0 3.5 3.6 4.7 4.0 3.6 3.3 3.1
Obs: ee 4.0 3.5 3.6 4.7 4.0 3.6 3.3 3.1

Exp: ee
1/M8

S

3.7 3.3 3.1 4.4 3.7 3.4 3.1 3.0
Obs: ee 3.7 3.3 3.1 4.4 3.7 3.4 3.1 3.0

Exp: µµ
1/M4

S

3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0
Obs: µµ 3.7 3.3 3.4 4.4 3.7 3.4 3.1 3.0

Exp: µµ
1/M8

S

3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8
Obs: µµ 3.5 3.1 3.1 4.2 3.5 3.2 3.0 2.8

Exp: ``
1/M4

S

4.0 3.6 3.9 4.8 4.0 3.6 3.4 3.2
Obs: `` 4.2 3.8 4.2 5.0 4.2 3.8 3.6 3.4

Exp: ``
1/M8

S

3.8 3.4 3.5 4.6 3.8 3.5 3.2 3.1
Obs: `` 4.0 3.6 3.7 4.7 4.0 3.6 3.4 3.2
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Figure 7.9: Summary of 95% C.L lower exclusion limits on Λ for the combined dilepton
contact interaction search, using a positive prior in 1/Λ2. Previous ATLAS search
results are also presented for comparison. Exclusion limits were previously only set
on the LL model.
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the HLZ n=2 ADD model.
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CHAPTER 8

CONCLUSIONS

A search for contact interactions and large extra dimensions has been performed

in dimuon events produced in LHC proton-proton collisions at
√
s = 8 TeV. The data

sample corresponds to an integrated luminosity of 20.5 fb−1 of pp collisions recorded

with the ATLAS detector. For the first time in ATLAS, the angular distribution

(cos θ∗) of the muon pair was used in addition to the invariant mass as a discriminating

variable when searching for evidence for qqµµ contact interactions. Again for the first

time in ATLAS, left-right and right-right chirality models of contact interactions are

studied in addition to the left-left contact interaction model. No significant deviation

from the Standard Model is observed either in contact interaction or the ADD large

extra dimension searches. Therefore, 95% C.L. lower bounds are set on the parameter

of interest in these models (Λ and MS for the CI and ADD models, respectively).

These limits represent the strongest exclusion limits to date on these models.
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APPENDIX A

MONTE CARLO SAMPLES

A.1 Background Samples

A list of all DY, diboson and top MC samples used in this analysis are shown in

Tables A.1, A.2 and A.3, respectively.

Table A.1: Powheg+Pythia 8 Drell-Yan Monte Carlo samples used in the anal-
ysis. The first column gives the process, the second column gives the mass range
in which the Drell-Yan process was simulated. For each sample the cross section
times branching ratio with which the Powheg generator produced the sample, and
the number of produced events are given. In last column, the integrated luminosity∫

L.dt = Nevt/(σB) of each sample is given.

Process m`` [GeV] σB [pb] Nevt [k]
∫

L.dt [fb−1]
Z → `` > 60 1.109 × 103 10000 9.01
Z → `` 250 – 400 5.492 × 10−1 100 1.82 × 102

Z → `` 400 – 600 8.966 × 10−2 100 1.11 × 103

Z → `` 600 – 800 1.510 × 10−2 100 6.62 × 103

Z → `` 800 – 1000 3.750 × 10−3 100 2.67 × 104

Z → `` 1000 – 1250 1.293 × 10−3 100 7.73 × 104

Z → `` 1250 – 1500 3.577 × 10−4 100 2.80 × 105

Z → `` 1500 – 1750 1.123 × 10−4 100 8.90 × 105

Z → `` 1750 – 2000 3.838 × 10−5 100 2.61 × 106

Z → `` 2000 – 2250 1.389 × 10−5 100 7.20 × 106

Z → `` 2250 – 2500 5.226 × 10−6 100 1.91 × 107

Z → `` 2500 – 2750 2.017 × 10−6 100 4.96 × 107

Z → `` 2750 – 3000 7.891 × 10−7 100 1.27 × 108

Z → `` ≥ 3000 5.039 × 10−7 100 1.99 × 108
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Table A.2: Diboson Monte Carlo samples used in the analysis. The first column
gives the physics process and the second gives the mass range in which the diboson
processes were simulated. For each sample, the cross section times branching ratio
with which the Herwig generator produced the sample and also σB at NLO which
was used for the normalization are given. The number of produced events and the
efficiency (εG) with which the sample was filtered are also included. In last column,
the integrated luminosity

∫
L.dt = Nevt/(σB) of each sample is given.

Process m`` [GeV]
σB [pb]

εG [%] Nevt [k]
∫

L.dt [fb−1]
Herwig NLO

WW → `X - 3.25 × 101 5.68 × 101 38.21 2500 2.01 × 102

ZZ → `X - 4.69 7.36 21.17 250 2.52 × 102

WZ → `X - 1.20 × 101 2.15 × 101 30.55 1000 2.73 × 102

WW → µνµν 400-1000 0.38 0.66 0.75 10 3.51 × 101

WW → µνµν ≥ 1000 0.38 0.66 0.01 10 2.63 × 103

ZZ → µµ 400-1000 0.35 0.54 0.001 10 2.86 × 104

ZZ → µµ ≥ 1000 0.35 0.54 0.00003 10 9.52 × 105

WZ → µµ 400-1000 0.46 0.83 0.003 10 7.25 × 103

WZ → µµ ≥ 1000 0.46 0.83 0.0001 10 2.17 × 105

Table A.3: Top Monte Carlo samples used in the analysis. The first column gives
the physics process. For each sample, the cross section times branching ratio with
which the MC@NLO generator produced the sample and also σBr at NNLO which
was used for the normalization are given. The number of produced events and the
efficiency (εG) with which the sample was filtered are also included. In last column,
the integrated luminosity

∫
Ldt = Nevt/(σB) of each sample is given.

Process
σB [pb]

εG [%] Nevt [k]
∫

L.dt [fb−1]
MC@NLO NNLO

tt̄→ `X 2.08 × 102 2.53 × 102 54.26 1.5 × 104 1.32 × 102

Wt→ X 2.07 × 101 2.24 × 101 100.00 0.2 × 104 9.67 × 101

A.2 Signal Samples

A list of all DY+CI signal MC samples used in this analysis is shown in Tables A.4,

A.5, and A.6 for the LL, LR, and RR CI model respectively. The columns from left

to right show: model, parameter value, mass bin, cross-section, number of generated

events, and corresponding integrated luminosity.
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Table A.4: Pythia 8 Monte Carlo samples for all DY+CI signal samples in LL model.

CI Model Λ [TeV] m`` [GeV] σB [fb] Nevt [k]
∫

L.dt [fb−1]

LL Λ− = 7
300 – 600 3.03 × 102 20 6.60 × 101

600 – 1200 4.51 × 101 10 2.22× 102

≥ 1200 1.13 × 101 10 8.81 × 102

LL Λ− = 10
300 – 600 2.73 × 102 20 7.31 × 101

600 – 1200 2.65 × 101 10 3.77 × 102

≥ 1200 3.81 10 2.62 × 103

LL Λ− = 14
300 – 600 2.62 × 102 20 7.64 × 101

600 – 1200 2.03 × 101 10 4.93 × 102

≥ 1200 1.58 10 6.33 × 103

LL Λ− = 20

120 – 300 9.50 × 103 20 2.10
300 – 600 2.57 × 102 20 7.78 × 101

600 – 1200 1.83 × 101 10 5.47 × 102

≥ 1200 0.95 10 1.05 × 104

LL Λ− = 28
300 – 600 2.55 × 102 20 7.85 × 101

600 – 1200 1.74 × 101 10 5.74 × 102

≥ 1200 0.74 10 1.35 × 104

LL Λ+ = 7
300 – 600 2.43 × 102 20 8.23 × 101

600 – 1200 2.65 × 101 10 3.77 × 102

≥ 1200 8.13 10 1.23 × 103

LL Λ+ = 10
300 – 600 2.43 × 102 20 8.23 × 101

600 – 1200 1.70 × 101 10 5.89 × 102

≥ 1200 2.16 10 4.63 × 103

LL Λ+ = 14
300 – 600 2.47 × 102 20 8.10 × 101

600 – 1200 1.57 × 101 10 6.39 × 102

≥ 1200 0.77 10 1.30 × 104

LL Λ+ = 20

120 – 300 9.47 × 103 20 2.11
300 – 600 2.50 × 102 20 8.02 × 101

600 – 1200 1.59 × 101 10 6.29 × 102

≥ 1200 0.55 10 1.82 × 104

LL Λ+ = 28
300 – 600 2.51 × 102 20 7.96 × 101

600 – 1200 1.63 × 101 10 6.14 × 102

≥ 1200 0.54 10 1.85 × 104
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Table A.5: Pythia 8 Monte Carlo samples for all DY+CI signal samples in LR
model.

CI Model Λ [TeV] m`` [GeV] σB [fb] Nevt [k]
∫

L.dt [fb−1]

LR Λ− = 7
300 – 600 3.27 × 102 20 6.12 × 101

600 – 1200 6.40 × 101 10 1.56 × 102

≥ 1200 2.00 × 101 10 5.00 × 102

LR Λ− = 10
300 – 600 2.81 × 102 20 7.13 × 101

600 – 1200 3.11 × 101 10 3.21 × 102

≥ 1200 6.06 10 1.60 × 103

LR Λ− = 14
300 – 600 2.62 × 102 20 7.62 × 101

600 – 1200 2.15 × 101 10 4.66 × 102

≥ 1200 2.07 10 4.83 × 103

LR Λ− = 20

120 – 300 9.46 × 103 20 2.11
300 – 600 2.58 × 102 20 7.75 × 101

600 – 1200 1.85 × 101 10 5.39 × 102

≥ 1200 1.07 10 9.35 × 103

LR Λ− = 28
300 – 600 2.53 × 102 20 7.91 × 101

600 – 1200 1.74 × 101 10 5.74 × 102

≥ 1200 0.76 10 1.32 × 103

LR Λ+ = 7
300 – 600 2.58 × 102 20 7.76 × 101

600 – 1200 4.47 × 101 10 2.23 × 102

≥ 1200 1.74 × 101 10 5.73 × 102

LR Λ+ = 10
300 – 600 2.43 × 102 20 8.23 × 101

600 – 1200 2.16 × 101 10 4.63 × 102

≥ 1200 4.68 10 2.14 × 103

LR Λ+ = 14
300 – 600 2.46 × 102 20 8.13 × 101

600 – 1200 1.68 × 101 10 5.96 × 102

≥ 1200 1.40 10 7.14 × 103

LR Λ+ = 20

120 – 300 9.50 × 103 20 2.10
300 – 600 2.49 × 102 20 8.04 × 101

600 – 1200 1.61 × 101 10 6.23 × 102

≥ 1200 0.72 10 1.39 × 104

LR Λ+ = 28
300 – 600 2.49 × 102 20 8.02 × 101

600 – 1200 1.62 × 101 10 6.16 × 102

≥ 1200 0.58 10 1.72 × 104
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Table A.6: Pythia 8 Monte Carlo samples for all DY+CI signal samples in the RR
model.

CI Model Λ [TeV] m`` [GeV] σB [fb] Nevt [k]
∫

L.dt [fb−1]

RR Λ− = 7
300 – 600 3.04 × 102 20 6.58 × 101

600 – 1200 4.47 × 101 10 2.24 × 102

≥ 1200 1.11 × 101 10 8.98 × 102

RR Λ− = 10 ≥ 1200 3.72 10 2.69 × 103

RR Λ− = 14 ≥ 1200 1.53 10 6.54 × 103

RR Λ− = 20 ≥ 1200 0.93 10 1.08 × 104

RR Λ− = 28 ≥ 1200 0.73 10 1.37 × 104

RR Λ+ = 7
300 – 600 2.39 × 102 20 8.36 × 101

600 – 1200 2.66 × 101 10 3.76 × 102

≥ 1200 8.39 10 1.18 × 103

RR Λ+ = 10 ≥ 1200 2.24 10 4.46 × 103

RR Λ+ = 14 ≥ 1200 0.81 10 1.23 × 104

RR Λ+ = 20 ≥ 1200 0.57 10 1.75 × 104

RR Λ+ = 28 ≥ 1200 0.54 10 1.85 × 104
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APPENDIX B

PDF EIGENVECTORS

The asymmetric uncertainties calculated by the VRAP program for each PDF

eigenvector are shown in Figs. B.1, B.2 and B.3.
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Figure B.1: Asymmetric uncertainty on the Drell-Yan cross section as a function of m``

due to each PDF eigenvector taken separately. Here eigenvectors 1 to 6 are shown.

The effect of the PDF variation uncertainty on the reconstructed dimuon invariant

mass is shown for each bundle separately in Fig. B.4.
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Figure B.2: Asymmetric uncertainty on the Drell-Yan cross section as a function of m``

due to each PDF eigenvector taken separately. Here eigenvectors 7 to 12 are shown.
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Figure B.3: Asymmetric uncertainty on the Drell-Yan cross section as a function of m``

due to each PDF eigenvector taken separately. Here eigenvectors 13 to 20 are shown.
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structed dimuon mass shown for each bundle separately.
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APPENDIX C

OPTIMIZATION OF LOWER MASS CUT IN THE ADD
MODEL

For the ADD analysis, a one bin search is performed above an invariant mass

threshold and below 4500 GeV. The lower bound in invariant mass (mmin
µµ ) of the

search region is selected by calculating the expected limit on MS as a function of the

lower mass threshold. The lower edge of the single mass bin is varied from 1000 GeV

to 2200 GeV in 100 GeV steps and the expected limits are calculated. For the limit

calculation, for each mass cut, the number of expected events for each benchmark MS

is counted and expressed as a function of 1/M4
S or 1/M8

S . To provide more values of

N exp than could be obtained from the limited number of ADD MC samples, a fit of

the number of expected events in each bin is performed according to the Eq. (6.14).

These fits are shown in Fig. C.1 as a function of 1/M4
S for two possible minimum

mass cuts: 1300 and 1900 GeV as an illustration.
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Figure C.1: Number of expected events as a function of 1/M4
S for minimum mass

mass cuts of 1300 GeV (left) and 1900 GeV (right) in the muon channel.
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Then the expected limit is calculated as explained in Section 6.3.2 by performing

1000 pseudo-experiments for each lower mass cut chosen, using both the 1/M4
S and

1/M8
S priors. Among the varied lower mass values, the one which gave the highest

expected limit is chosen as a lower mass cut in the ADD analysis.

In order to determine the optimal value of mmin
µµ , two definitions of the limit on

MS is used; the mean and the median of the expected limit distribution. Due to the

high mass cuts that are applied, the statistics in the single bin is low, which leads

to the discreteness of expected limit distributions. Thus, if the median definition

is used, the limit value can change quickly as the median jumps from one value to

another. To avoid this behavior the limit is taken to be the mean of the expected

limit distribution. The resulting limits are shown in Fig. C.2 using 1/M4
S prior.

Considering the expected limits, using both the 1/M4
S and 1/M8

S priors, the lower

cut is chosen to be 1900 GeV and used for setting observed limits using both choices

of prior.
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APPENDIX D

ADDITIONAL PARAMETERIZATIONS

This section displays all signal parameterizations used in the CI search.
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Figure D.1: Number of expected events in each of the cos θ∗ bins in the mass bin
from 400 GeV to 550 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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Figure D.2: Number of expected events in each of the cos θ∗ bins in the mass bin
from 550 GeV to 800 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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Figure D.3: Number of expected events in each of the cos θ∗ bins in the mass bin
from 800 GeV to 1200 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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Figure D.4: Number of expected events in each of the cos θ∗ bins in the mass bin
from 1200 GeV to 1800 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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Figure D.5: Number of expected events in each of the cos θ∗ bins in the mass bin
from 1800 GeV to 3000 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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Figure D.6: Number of expected events in each of the cos θ∗ bins in the mass bin
from 3000 GeV to 4500 GeV for the constructive (left plots) and destructive (right
plots) interference cases of the contact interaction LL (top plots), LR (middle plots),
RR (bottom plots) models as a function of 1/Λ2. Benchmark Λ values are shown as
points and the lines represent the results of the fit.
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APPENDIX E

SUPPLEMENTAL RESULTS

E.1 Supplemental CI Results

Distributions of the negative log-likelihood ratio for all pseudo-experiments and

also for the observed results are shown in Figs. E.1 and E.2 for the LR and RR CI

models, respectively.
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Figure E.1: Expected and observed negative log-likelihood distribution for the LR
contact interaction model, for the constructive (plots on the left) and destructive
interference (plots on the right). All systematic uncertainties are taken into account,
and a uniform positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used
with the 2D search approach.

A full list of p-values for the contact interaction search is shown in Table E.1.
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Figure E.2: Expected and observed negative log-likelihood distribution for the RR
contact interaction model, for the constructive (plots on the left) and destructive
(plots on the right) interference. All systematic uncertainties are taken into account,
and a uniform positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used
with the 2D search approach.

Table E.1: Derived p-values for the contact interaction search in all of the parameter
space considered. This includes the LL, LR, and LR model, constructive and destruc-
tive interference, as well as assuming a uniform positive prior of either 1/Λ2 or 1/Λ4.
All systematic uncertainties are taken into account and the 2D search approach is
used.

p-value [%]
1/Λ2 1/Λ4

Constructive Destructive Constructive Destructive
Left-Left 31 8 24 40

Left-Right 40 15 22 15
Right-Right 40 50 24 37

The expected limit distributions are shown in Figs. E.3 and E.4 for the LR and

RR CI models, respectively.
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Figure E.3: Distribution of expected limit values from pseudo-experiments for the LR
contact interaction model, for constructive (plots on the left) and destructive (plots
on the right) interference. A uniform positive prior in 1/Λ2 (1/Λ4) for the plots
on the top (bottom) is used. All systematic uncertainties are taken into account.
These results are derived using the 2D search approach. The blue arrow indicates the
median limit and the black arrow shows the observed limit.

The posterior distributions from which the observed limits are calculated are

shown in Figs. E.5 and E.6 for the LR and RR CI models, respectively.

E.2 Supplemental ADD Results

Distributions of the negative log-likelihood ratio for all pseudo-experiments and

also for the observed results are shown in Fig. E.7 for the HLZ n=2 formalism.

The posterior distributions for the HLZ n=2 ADD model is shown in Fig. E.8.
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Figure E.4: Distribution of expected limit values from pseudo-experiments for the RR
contact interaction model, for constructive (plots on the left) and destructive (plots
on the right) interference. A uniform positive prior in 1/Λ2 (1/Λ4) for the plots
on the top (bottom) is used. All systematic uncertainties are taken into account.
These results are derived using the 2D search approach. The blue arrow indicates the
median limit and the black arrow shows the observed limit.

E.3 Combined Channel Results

The derived p-values calculated for the dimuon, dielectron and combined dilepton

channels are shown in Tables E.2 and E.3 for the CI and ADD models, respectively.
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Figure E.5: Posterior distributions for the LR contact interaction model, for construc-
tive (plots on the left) and destructive (plots on the right) interference. A uniform
positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used. All systematic
uncertainties are taken into account. These results are derived using the 2D search
approach.
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Figure E.6: Posterior distributions for the RR contact interaction model, for construc-
tive (plots on the left) and destructive (plots on the right) interference. A uniform
positive prior in 1/Λ2 (1/Λ4) for the plots on the top (bottom) is used. All systematic
uncertainties are taken into account. These results are derived using the 2D search
approach.
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Figure E.8: Posterior pdf distributions for the HLZ n=2 ADD model, with a uniform
positive prior in Θ = 1/M4

S (left) and Θ = 1/M8
S (right).

Table E.2: Derived p-values for the contact interaction search in all of the param-
eter space considered. This includes the LL, RR, and LR model, constructive and
destructive interference, as well as assuming a uniform positive prior of either 1/Λ2

or 1/Λ4. Results are presented for the electron, muon, and combined channel using
the 2D search approach, with all systematic uncertainties taken into account.

p-value [%]
1/Λ2 1/Λ4

Constructive Destructive Constructive Destructive
LL: ee 58 60 76 58
LR: ee 35 36 85 62
RR: ee 35 68 75 62
LL: µµ 31 8 24 40
LR: µµ 40 15 22 15
RR: µµ 40 50 24 37
LL: `` 20 63 64 54
LR: `` 59 31 72 43
RR: `` 42 84 67 51
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Table E.3: Derived p-values for the GRW ADD search assuming a uniform positive
prior of either 1/M4

S or 1/M8
S . Results are presented for the electron, muon, and

combined channel, with all systematic uncertainties taken into account.

p-value [%] 1/M4
S 1/M8

S

ee 50 55
µµ 6 49
`` 7 51
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