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ABSTRACT 

THE POLITICAL ECOLOGY OF EARLY CHILDHOOD LEAD EXPOSURE 
AT THE NEW YORK AFRICAN BURIAL GROUND 

 
FEBRUARY 2015 

 
JOSEPH L. JONES, B.A., HOWARD UNIVERSITY 

 
M.A., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 
Directed by: Professor Alan H. Goodman 

 
 

Nearly 25 years ago federal officials unearthed over 400 skeletal remains in Lower 

Manhattan. The site of the excavation was the New York African Burial Ground (NYABG), a 17th- 

and 18th-century cemetery for the city’s mostly enslaved African population. Today, the burial 

ground serves as a reminder of New York’s 200-year experiment with slavery. It is the first 

National Monument to honor enslaved African New Yorkers. This recognition is a testament to 

the resolve of African American descendants and their allies who, through political activism, 

would see these ancestors afforded in death some of the respect denied them in life. 

Descendant community activism also paved the way for the site’s interdisciplinary 

investigation, the NYABG Project. Recovering complex diasporic biohistories from the NYABG 

was a major scientific undertaking made more challenging and rewarding by the project’s high 

standards of public inclusion and accountability. Co-developed by community members and 

scholars, the NYABG Project now stands as a model of critically engaged biocultural 

anthropology. 

This dissertation study draws upon and continues the work of NYABG researchers. It is a 

reconstruction of early life lead exposure via laser ablation-inductively coupled plasma-mass 

spectrometry (LA-ICP-MS) of dental enamel. With its high inorganic content, enamel provides a 
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stable chemical record of an individual’s diet, nutrition and pollution events, which in turn 

reflect political, economic and cultural factors. For this population, relatively high levels of 

skeletal lead suggest time spent in the Americas while low levels more likely indicate birth in 

Africa prior to forced migration. Here, lead concentrations in enamel that forms during the first 

several years of life are measured, mapped microspatially, and rendered as chronological age 

profiles. Mean differences and distribution/age profiles are compared for 44 NYABG children 

and adults in order to determine their African or American birthplaces and related health and 

cultural experiences (e.g., lead poisoning and dental modification). For some individuals, 

comparative analysis of later forming teeth was undertaken to explore the possibility of 

migration during childhood. 

Enamel-lead concentrations range from 0.39 μg g-1 (i.e., the instrument limit of 

detection or LOD) to 14.7 μg g-1, suggesting a range of exposures in which some individuals 

spent their childhoods in high-lead environments. The most striking finding is that mean 

enamel-lead concentration for young children (5.88 μg g-1) is over five times that of adults (1.11 

μg g-1), a significant difference reflecting these groups’ mostly American versus African 

geographic origins, respectively. Other findings raise questions at the intersections of natality, 

health and culture. For example, contra most reports, do relatively high lead concentrations for 

some individuals indicate that cultural dental modification persisted in the Americas? 

This study is the first quantitative LA-ICP-MS analysis of human lead exposure in early 

America. LA-ICP-MS has proven critical for assessing overall lead burden as well as age-related 

changes in the sources and nature of exposure. The methodology developed for this study has 

enabled a rich assessment of African diasporic environmental biohistory, health and culture 

during slavery. As with the “rediscovery” of the NYABG, this is a moment and a tool for 

discovering new history and new dimensions of the human experience, then and now.  
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CHAPTER 1 
 

INTRODUCTION 

 
In the spring of 1991 archaeologists unearthed human skeletal remains in Lower 

Manhattan while surveying land on behalf of the United States General Services Administration 

(GSA). The location was 290 Broadway, just north of City Hall, and the site of the planned 34-

story Ted Weiss Federal Building. The remains were soon discovered to be amongst the city’s 

earliest inhabitants, those of New York’s “African Founders” (Blakey 2010) – mostly enslaved 

children, women and men. To the surprise of many, under some 25 feet of landfill and debris, 

the archaeologists had uncovered the 18th-century “Negros [sic] Burial Ground,” soon to be 

renamed the “African Burial Ground” (Figure 1.1). 

The site’s excavation eventually yielded skeletal remains of over 400 individuals.  While 

only a fraction of the 15,000 people estimated to have been buried in the full 5.5-acre cemetery, 

these remains currently constitute the largest colonial African and African-American 

bioarchaeological sample (Blakey 2009). This unique and unexpected find garnered considerable 

attention within and beyond academic circles. Curious onlookers included journalists, 

legislators, scholars, activists and a host of other community members from varied backgrounds. 

Their interest was understandable. The bones and teeth of these enslaved Africans belied easy, 

uncritical depictions of a “free North.” Michael Blakey and others have written extensively about 

the site’s historical significance and controversies surrounding its “rediscovery” (Blakey 2009, 

2010; Epperson 2004; Harrington 1993). Such issues would inform the development of the New 

York African Burial Ground (NYABG) Project, a study groundbreaking in several respects 

including the leadership roles assumed by African diasporic scholars under Blakey’s direction. 

These issues and the project – its origins, primary goals and some major findings – are discussed 

in detail in chapter four. 
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Figure 1.1: Location of the New York African Burial Ground. 1 

 

The physical presence of ancestral skeletal remains affords the opportunity to assess 

collective and individual experiences or “biohistories” directly and in light of current biocultural 

theory and methods. This study is an attempt at recovering a part of these biohistories by 

reconstructing early life lead pollution. I hope to shed light on place of birth and early life 

migrations, as well as the sources and consequences of lead pollution. I have analyzed dental 

enamel, which develops incrementally as a near-permanent chronological archive of childhood 

elemental exposure. I collected enamel-lead data by laser ablation- (LA) inductively coupled 

plasma-mass spectrometry (ICP-MS), a versatile method for determining elemental 

concentrations in solid samples. 

                                                           
1 Following the convention established in the project’s scholarly reports, I refer to the full 
cemetery as the “African Burial Ground” and the excavated portion studied as the “New York 
African Burial Ground.” 
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Why focus on lead? Prior research suggests that, on average, NYABG children who likely 

grew up enslaved in the Americas experienced earlier and more chronic exposure to lead than 

did adults with and without culturally-modified teeth (CMT), a practice commonly associated 

with African-born individuals (Goodman et al. 2009). The main goal of this study is to further 

clarify these patterns while identifying sources, pathways, and biocultural consequences – i.e., 

the political ecology – of lead exposure and burden for those buried at the NYABG. 

For this dissertation study I analyzed enamel-lead distributions in order to better 

understand group and individual differences in the following. 

1) Natal or geographic origin and associated skeletal material culture. Skeletal-lead 

content potentially reflects different lead exposures during life and thus different 

pollutant environments. With the proper tooth, enamel-lead content in particular is 

useful for estimating natality or birthplace. Enamel-lead levels should reflect natural 

or background versus technological exposure. Lead use throughout the Americas 

was widespread during the 18th century and relatively lacking in western Africa 

where most enslaved people originated, making enamel-lead a potential biomarker 

of different pollutant and natal environments for enslaved Africans. 

 

This distinction is of interest because it allows for an evaluation of the position that 

CMT indicates African natality because dental modification was counter-adaptive in 

the Americas (Handler 1994; Corruccini et al. 1987; Schroeder et al. 2012, 2013). 

Following this logic and based on earlier NYABG studies, I hypothesized that average 

lead concentrations are higher for NYABG subadults than adults, reflecting the 

probable American geographic origins of most children. I also hypothesized greater 

variation in lead content for subadults than for adults with CMT given the likely 
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Figure 1.2: NYABG Burial 114, a 45-50-year-old man with 
culturally-modified dentition. 

 

restricted, low-level range of non-technological exposure for the latter. An example 

of CMT from the burial ground appears in Figure 1.2. 

 

2) Sources and pathways of lead exposure. Laser ablation-inductively coupled plasma-

mass spectrometry (LA-ICP-MS) enables the charting of microspatial and temporal 

lead distributions across enamel layers. As these layers form within known age 

ranges, the distribution profiles thus produced were used to determine the timing 

of lead exposure as well as the patterns, from highly variable to constant over time, 

which in turn may suggest specific pathways if not specific sources of exposure 

(Warren 2000). I turned to historical and epidemiological literature to explore the 

most likely sources of early-life lead exposure in 18th-century New York. 

 

3) Health and developmental consequences of lead exposure. An environmental 

poison, lead's toxicokinetic properties vary with age and physiological and health 
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status. In extreme cases, lead poisoning causes encephalopathy and death, but even 

low-level exposure can impair neurological development and cognitive function 

(Lanphear et al. 2005; CDC 2012). Without access to blood-lead data, it is difficult to 

determine who would have shown symptoms of clinical lead poisoning and what 

those specific symptoms might have been. The existing literature on enamel- and 

blood-lead relationships remains inconclusive. Nonetheless, I address this topic 

briefly in chapter nine. My primary focus, however, is on identifying health cohorts, 

i.e., groups of individuals consisting of those most and least likely to have suffered 

similar toxic effects of lead based on their overall early-life lead burden.  

This dissertation is organized into ten chapters. Following this introduction, chapters 

two through five provide necessary anthropological, archaeological and historical context for 

the current study. In this first section, I introduce the major theoretical elements (e.g., political 

ecology and diaspora) that inform my interpretations of enamel-lead data. I also explain the 

important role that skeletal-lead analysis has played in African diasporic bioarchaeology and 

why teeth are especially important for piecing together past lives, including detecting diasporic 

movements across the life span. The remaining five chapters lay out the study’s experimental 

component, the results of analysis and interpretation of data, and offer next steps for honing 

our understanding of enslaved African origins, migrations and lifeways. 

In chapters two and three I discuss theoretical developments that are enabling scholars 

to expand upon old and develop new interpretations of African diasporic biohistory. I begin in 

chapter two with an overview of biocultural anthropology from its emergence during the second 

half of the twentieth century through the current development of “social bioarchaeology.” I 

introduce political ecology as a synthetic approach to the study of human biology that combines 

adaptability, ecological and political-economic perspectives (Leatherman 2005; Leatherman and 
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Thomas 2001). Uniquely, this approach allows for integrative analysis of historical, evolutionary 

and political-economic forces that shape and alter skeletal biologies that comprise the 

bioarchaeological record (Thomas 1998; Armelagos et al. 2005). From this perspective, 

researchers are expanding the concept of human biology to include considerations of the 

“upstream” sociocultural conditions that promote or undermine optimal health. Often, these 

conditions – such as migration and poverty – result from structurally unequal access to 

necessary material resources and, therefore, constitute major risk factors for compromised 

health over the life span (Armelagos et al. 2009).My focus on early-life environmental health 

conditions for forced migrant and enslaved diasporic Africans is one example of what critical 

biological anthropologists have termed the “biology of poverty” (Thomas 1998).  

There are multiple African diasporas occupying various, sometimes overlapping times 

and spaces (Dodson 2001), and multiple ways of discerning diaspora at the population and 

individual levels. This study is concerned with the historical African diaspora of the Americas 

associated with the Transatlantic Slave Trade as part of the formation of an “Atlantic world.” 

Through processes of forced migration and social displacement, millions of captive and enslaved 

individuals moved from Africa and throughout the “New World.” These same violent processes 

that created African diasporic communities also created a restorative mandate to engage the 

questions of enslaved Africans’ geographic and ethnic origins and how these relate to cultural 

formations; a mandate pursued by historians, anthropologists and others through their 

respective analytical means (Blakey 2009a; Walker 2001). 

In chapter three, “Anthropology of the Historical African Diaspora,” I explain how 

historians, archaeologists and biological anthropologists have approached the diaspora concept 

and related issues of origins and identity over time. Included in this chapter is a discussion of 

cultural dental modification. As noted above, this practice is typically associated with African 
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birth in the bioarchaeological literature. Handler and co-workers (1986; Corruccini et al. 1987) 

argue this position most convincingly based on their study of skeletal lead variation at the 

Newton Plantation in Barbados and Handler’s (1994) subsequent analysis of runaway ads. 

Neonatal chemistry, especially as determined by LA-ICP-MS of teeth, may offer new 

perspectives on this topic. 

Attention shifts squarely to the New York African Burial Ground and its analysis in 

chapter four. The chapter begins with an account of slavery in New York in order to establish the 

burial ground’s historical origins and unique significance. The African Burial Ground is the largest 

colonial-era cemetery analyzed to date. I then present key archaeological and skeletal biological 

findings of the NYABG Project. Through an innovative biocultural and publicly engaged research 

program, NYABG researchers have generated new knowledge about (1) geographic origins, (2) 

biocultural transformations, (3) physical quality of life, and (4) modes of “humanity 

maintenance” for colonial Africans in New York (Blakey 2009). This study continued research 

began as part of the NYABG Project and its findings are relevant to each of these major research 

topics. 

In chapter five I detail some major sociocultural pathways of lead exposure and attempt 

to show that poverty in the present – like slavery in the past – increases the likelihood of 

childhood lead exposure and its ill effects. At its core, this study is about power and how its 

abuse rendered some people more vulnerable than others to this specific environmental 

stressor. In this respect, I join a growing number of anthropologists and other health researchers 

who view “vulnerability,” “disadvantage,” and “risk” as conceptual tools for understanding how 

power disparities reproduce inequality and patterns of morbidity and mortality (Adler and 

Stewart 2010; Leatherman 2005; deFur et al. 2007; Panter-Brick and Fuentes 2009; Swedlund 
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2010). This chapter also includes an overview of skeletal biomarkers of lead exposure and an 

explanation of why teeth are so valuable for reconstructing early-life environments. 

Today’s bioarchaeologists have at their disposal powerful tools for reading human bones 

and teeth as archives of “lives and life styles” (Larsen 2006). Among them, LA-ICP-MS is a 

recently developed method allowing for spatially- and time-resolved analysis of elemental and 

isotopic data (e.g., Dolphin and Goodman 2009; Farell et al. 2013). In chapter six, I describe this 

technique and how its use is expanding our knowledge of environmental chemical exposure, 

with a primary focus on nutritional and pollutant studies involving teeth. Following an overview 

of LA-ICP-MS and some examples of previous anthropological applications, I detail the study 

methodology: (1) the sampling strategy; (2) sample preparation; (3) LA-ICP-MS measurement; 

and (4) data processing and analysis. This study is the first quantitative LA-ICP-MS analysis of 

African diasporic natality and its methodology is applicable to other sites. As such, it is the 

foundation for future research into the comparative experiences of African- versus American-

born individuals and collectives. 

I report the results of analysis in two parts. Chapter seven focuses on the mean 

concentration of lead found in each individual. These data are used primarily to provide an 

independent test of place of birth and early-life lead exposure. Mean concentrations serve as 

the basis for statistical comparisons of NYABG groups. In chapter eight I present enamel-lead 

microspatial distribution patterns and chronological age profiles. These patterns and profiles 

illustrate graphically the extent, timing and nature of lead exposure for NYABG infants and 

young children. This chapter illustrates clearly how LA-ICP-MS of incrementally-developing 

tissues expands the analytical landscape with respect to issues of geographic origin and 

migration. 
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Chapter nine outlines the study’s major findings and includes a discussion of their 

biocultural implications. Drawing upon historical, bioarchaeological and cultural anthropological 

concepts and frameworks presented in earlier chapters, I interpret enamel-lead data in relation 

to patterns of natality, dental modification, potential sources of exposure, and possible health 

consequences for NYABG individuals and groups. Some findings were predicted. Others, 

particularly around the relationship of natality to cultural dental modification, suggest new and 

interesting scenarios that require further investigation. 

I conclude the dissertation in chapter ten with a summary of the study’s findings in light 

of the study goals stated above and those of the NYABG Project, and suggestions for an 

expanded bioarchaeometry of this important site. These were the bones that the builders 

rejected – twice – and this study is rooted in biocultural anthropology and political struggle. In 

keeping with the spirit and principles of the NYABG Project, this study is an attempt at a new 

science of human dignity (Jones et al. 2007). It is my fervent hope that the new histories 

revealed from within these ancestors’ teeth continue to move us toward a more accurate 

depiction of our shared and living human past. 
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CHAPTER 2 
 

BIOARCHAEOLOGY: RECONSTRUCTING LIFE HISTORY AND LIVED EXPERIENCE 

 
Introduction 

 

Human skeletons are reservoirs that record evolutionary and everyday events. One 

hallmark of biological anthropology has been the development and adoption of new methods 

providing ever-increasing access to these biohistories. Yet, the framing of human biology and 

variation is anything but straightforward and, often, contentious. Anthropology is an inherently 

political science. In this chapter I introduce bioculturalism as a general orientation toward 

accessing and interpreting the vital data archived within bones and teeth. I discuss its evolving 

goals and the developmental milestones that have led to a recent, critical re-synthesis of 

biological and socio-cultural analyses. Emphasis is placed on bioarchaeology and its increasingly 

relevant perspectives on human-environment interactions. Some of the themes introduced here 

are elaborated further in chapter five in the context of environmental lead exposure.  

 

Life Stories from Skeletal Remains 

 

Biohistory 

 

The forces that shape human bones and teeth are, at once, evolutionary, cultural and 

individual. Within a range of developmental plasticity or potential, the diversity of forms, 

microstructural arrangements and mineral content observed for calcified tissues reveal the 

evolutionary life history of the species. Their morphologies and chemical make-up also reflect 

practices and experiences such as migration, diet, poverty and (voluntary and involuntary) body 
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modification. Sometimes these practices and experiences play out more or less uniformly for 

human collectives while others unfold in ways unique to individuals. Contemporary 

bioarchaeologists – with theories and methods developed from paleopathology, skeletal biology 

and archaeology – seek to retrieve this information from skeletal remains recovered from 

archaeological contexts (Armelagos 2011). 

For my purposes, bioarchaeology is considered part of the larger academic endeavor of 

biohistory, defined here as an interdisciplinary area of research into biological, social and 

cultural factors that influence health, morbidity and mortality for a given population (after 

Rankin-Hill 1997).  Within this broad goal, research methods vary and the specific aims of 

biohistorical research unite but are conceptualized differently across disciplines including 

history, anthropology and biology. For example, demographic and economic historians use 

documentary evidence (e.g., anthropometric, military and court records) to infer past health 

and nutritional conditions (Steckel et al. 2002) while skeletal biohistory remains primarily an 

anthropological undertaking – even though historians may well find skeletal research techniques 

and data useful.2 Overall, Smith (2002: 2) suggests that biology can enrich historical research in 

two ways: 

by offering  techniques and methods, a new set of practical tools and approaches for 
addressing existing historical questions, and second, more controversially, by offering 
hypotheses derived from biology to interpret existing historical data. In terms of the 
material to be analysed, we can distinguish between two kinds of data sources: the 
written records accumulated by literate societies, and the various kinds of human 
remains, ranging in scale from mass burials to molecules, which can be scrutinized to 
describe in life the people they represent. 
 

                                                           
2 I use the term skeletal biohistory in reference to studies of historic populations such as this one 
that involve direct analysis of bones and/or teeth. Although much of their research certainly is 
captured within this broad definition, biological anthropologists do not use the term biohistory 
regularly, perhaps to avoid terminological confusion since their studies of past peoples often 
take the form of bioarchaeology (Blakey 2001). A few exceptions are studies of African diasporic 
populations by Larsen et al. (2002) and Rankin-Hill (1997). 
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History can contribute to a richer understanding of human biology and biological 

outcomes as well. Biological anthropologists have for some time found historical and 

ethnohistorical literature to be fertile ground for expanding interpretations of skeletal data (e.g., 

Blakey 1988; Herring and Swedlund 2002; Rankin-Hill 1997). In 2002 collaboration between 

economic historian Richard Steckel and skeletal biologist Jerome Rose resulted in the 

publication of The Backbone of History, a study in “macrobioarchaeology.” The contributors to 

this edited volume bridged methodological divides between history and anthropology in order 

to establish and compare patterns of health and stress for geographically and temporally diverse 

historic African American, European American and Native American populations. 

More recently, biological anthropologist Alan Swedlund (2010), a pioneer of critical 

bioculturalism, turned to historical archives as a resource for developing a rich biocultural 

history of illness, death and coping in New England during the mid-19th and early-20th centuries. 

These two examples illustrate the potential that disciplinary border-crossing holds for more 

biologically-informed history and more historically-informed biology. 

The historical scale of environmental interactions considered by biological 

anthropologists can vary greatly, from macroevolutionary processes to more localized variability 

within and across specific populations. What links much contemporary bioanthropological 

research is an ecological orientation informed by adaptationist models. Increasingly, these 

models are framed by life-history theory, which “provides a comparative evolutionary 

framework for understanding reproductive and developmental strategies, both within and 

across species” (McDade 2003: 101) as well as energetic and functional trade-offs associated 

with those strategies (Leonard et al. 2010). 

Central to evolutionary biology, life-history theory helps explain how the “evolved 

design for fitness optimization… generates the species-specific suite of features… that comprise 
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its distinctive life course” (Worthman and Kuzawa 2005: 96). From this perspective, researchers 

investigate the evolution and interaction of these features, sometimes called “life-history traits,” 

which include number, size, and sex of offspring; growth pattern; age and size at maturity; age-, 

stage- or size-specific reproductive effort; and lifespan (Fabian and Flatt 2012). Biological 

anthropologists have found a lifespan organizational framework to be quite useful for tracking 

health trajectories across the various stages of human growth and development, i.e., from the 

prenatal period through old age and senescence (Bogin 1999; Leidy 1996; Armelagos et al. 

2009). 

Recently, Roksandic and Armstrong (2011) have suggested that bioarchaeologists should 

adopt life-history-derived stages instead of the age groups currently in use. They argue that 

doing so will produce more predictable chronological age information and thereby bridge their 

research and that of paleodemographers, for a better understanding of health trends in the 

past. The life-history orientation has yielded powerful insights into menopause (Leidy Sievert 

2006), immune development and function (McDade 2003), and the fetal origins of health 

disparities (Worthman and Kuzawa 2005; Ellison and Jasienska 2009) and various other aspects 

of human health and primate evolution (Godfrey et al. 2001). 

 

Bioculture 

 

Though critical for probing human bio-variability, evolutionist ecological models alone 

cannot explain its range and complexities. This is the case for past as well as contemporary 

populations (Marks 2012a). What links biological anthropology to other fields of anthropology 

and defines its uniqueness is the exploration of evolutionary dynamics alongside social and 

cultural forces for a more comprehensive understanding of the factors shape biologies both 
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visibly and “under the skin” (Goodman 2009). In this section, I provide an overview of the 

historical background, ongoing development and major research domains of contemporary 

biocultural anthropology, the overarching mission of which is to realize this particular aspect of 

anthropological holism. Ultimately, I focus on the development and growing influence of a 

specific line of critical biocultural research – political ecology – as currently realized in 

bioarchaeology and biological anthropology more broadly. 

I begin this brief historical sketch by noting the nature and central role of bioculturalism 

within anthropology. The term biocultural does not refer to a methodology but, more broadly, 

to an entire analytical orientation for viewing and investigating the origins and politics of human 

variability. Thus, bioculturalism entails various foci and approaches that “explicitly recognize the 

dynamic interactions between humans as biological beings and the social, cultural, and physical 

environments they inhabit” (Dufour 2006: 1). Biocultural approaches are fundamentally alike, 

also, in that their implementation often invites certain challenges, which include: (1) defining 

key constructs (e.g., socioeconomic status and poverty), (2) operationalizing these variables 

such that they are measurable, replicable and valid ethnographically (or ethnohistorically), and 

(3) “defining and measuring multiple causal pathways” (Dufour 2006: 1). For those engaged in 

biocultural research, even defining core anthropological concepts such as culture and 

environment can be a process more complex than one might think (Armelagos 2003; Dressler 

2005). 

Despite these challenges, bioculturalism serves as the conceptual glue that links the 

fields of anthropology and, through critique of naturalized social orders, helps to redefine the 

discipline’s social relevancy beyond its colonialist roots. Traditionally considered the domain of 

biological anthropology perspectives, biocultural research is also a rich “borderland” for cultural 

anthropologists (Gravlee 2013), and particularly for “bridging subdisciplines” such as medical 
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anthropology and nutritional anthropology (Goodman and Leatherman 1998a). Indeed, 

intradisciplinary insights are likely to prove increasingly useful as biocultural anthropology 

expands and evolves new mechanisms for probing meanings and perceptions at the various 

poles and intersections of social construction and lived experience (e.g., health/wellness and 

nature/culture) where so much of the human condition is defined. 

As Crooks (1996) and Armelagos (2003) observe, human biological research that does 

not account for relevant cultural and social processes, by definition, is not anthropology. 

Moreover, inattentiveness to human action or agency and ideology may render research prone 

to biodeterministic pitfalls that plagued the discipline’s beginnings and, thus, can actually 

hamper knowledge production (Blakey 1998; Armelagos 2011). The pre-World War II 

proliferation of studies producing racist depictions of superior and inferior human anatomical, 

psychological and intellectual types, for example, is a well-documented example of this problem 

(Blakey 1987, 1998; Barkan 1992; Harding 1993; Armelagos and Goodman 1998).3 

Anthropologists continue to wrestle with this issue, now in the form of what might be called 

genetically-modified reductivism.4 In the current “age of genetics and genomics,” 

understandings and misunderstandings of human diversity and difference rest increasingly on 

interpretations of DNA sequences. While the tools have changed, for many, the search for race 

persists; a problem that Swedlund () identifies as "21st-century technology applied to 19th-

century biology" (cited in Armelagos and Van Gerven 2003). 

                                                           
3 Marks (2012b) argues that the pitfall of scientific racism persists today in the form of twin 
crises of (social) morality and (scientific) authority that arise when scientists fail to acknowledge 
the inherently intertwined and political nature of research into human evolution and diversity. 
This issue is part of broader debates about the future of biological anthropology as social 
science, the cohesiveness of the discipline, and the nature of science itself (Smith and Thomas 
1998). 
4  See McKinnon and Silverman [2005] for an excellent collection of critical responses to the 
resurgence of biodeterminism in the current “age of genetics.” 
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Figure 2.1: Nineteenth-century critiques of scientific racism by Frederick Douglass 
(left) and Anténor Firmin (right) foreshadowed contemporary critical biocultural 
perspectives on human biology, health and race.  

 

Also problematic is the misapplication of evolutionary principles to sociocultural 

phenomena. Throughout the late nineteenth and early twentieth centuries, as physical 

anthropologists created racial types, ethnologists and cultural anthropologists busied 

themselves constructing bounded and static culture groups. This period of rampant scientific 

ethnocentrism and racism was one in which interactions of biology and culture were viewed as  

mechanical and, therefore, little understood. By academic convention, races and their individual 

members “had” their proper, corresponding cultures, which so happened to reflect varying 

degrees of “civilization.” Thus characterized, different peoples were subject to ethnological 

ranking via the Eurocentric theory of unilineal cultural evolution (Blakey 1991, 1998; Baker 

2010). 

Valid alternative explanations of human variation existed. For example, Frederick 

Douglass (1950 [1854]; Figure 2.1) emphasized the role that social environments and poverty 

played in shaping bodies and producing the differences in health status and disease profiles  



 

17 

 

Figure 2.2: Franz Boas (left), William Montague Cobb (center) and Ashley Montagu (right) 
emphasized the importance of human plasticity over racial and racist explanations of human 
biological variation. 

 

observed across race and class. Indeed, his refutation of craniometric arguments for white 

supremacy by Samuel Morton and other polygenists seeded the 20th-century biocultural critique 

of bioreductionism (See Blakey 1998). Forty years later, Haitian anthropologist and statesman 

Anténor Firmin (2002[1885]; Fluehr‐Lobban 200) argued “the equality of human races” within 

the nascent anthropological establishment. Anthropologists such as Franz Boas (1911), William 

Montague Cobb (1936) and Ashley Montagu (1942) would follow in the early 20th century, 

eventually extending critique of bioreductionism to include the very notion of human biological 

races (see Figure 2.2). Prior to this development, Boas (1911, 1940), the founder of modern 

American anthropology, challenged the premise that biological race and culture are 

interdependent. In order uproot entrenched scientific racism, Boas sought to separate biology 

and culture as topics of scientific inquiry (Boas 1940). Boas collaborated at times with W. E. B. 

Du Bois, whose anthropological contributions to the study of race and African-American culture 

and health are often overlooked (Harrison 1992). 
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For decades, most American anthropologists would follow Boas’s lead and reintegration 

of biological and cultural analyses occurred slowly. Piece by piece, and aided at times by social 

forces outside of the academy, anthropologists acquired and articulated the theoretical lenses 

necessary to see beyond the racial worldview (Smedley 2007). This process began in earnest in 

the 1960s when some biological anthropologists turned to human ecology in order to frame 

their research on patterns of cultural and phenotypic variation.5 Ecology is the study of species-

environmental relationships. Researchers often emphasize homeostatic mechanisms amongst 

these relationships that protect against environmental degradation and provide for the survival 

of species within a niche or ecosystem. 

The 1960s was a period of growing environmentalist concern spurred by the publication 

of Rachel Carson’s Silent Spring (1962) in which she documented the harmful impact of synthetic 

pesticide use. Awareness and influence of ecology as a means of measuring and addressing such 

issues spread within the academy and well beyond. Originally associated with biology, ecological 

perspectives now inform geology, economy, history and various other disciplines within the 

natural and social sciences. Anthropologists of the time viewed ecological anthropology as the 

means to understand and bridge biological and behavioral adaptations to diverse environmental 

conditions (Moran 2006). 

The spread of ecological approaches coincided with other events that would shape the 

future of biocultural anthropology. One such event was Washburn’s (1951) call for a “New 

Physical Anthropology” based upon hypothesis testing and theory-driven research.6 Washburn 

                                                           
5 Dufour (2006) observes that, as early as 1930, Raymond Pearl’s work – much of which 
centered on biostatistics – included analysis of “culturally defined variables.” Pearl’s research 
was atypical in this regard; a precursor to biocultural approaches developed decades later. 
6 Throughout this section, I use the terms physical anthropology and physical anthropologists 
where appropriate for the time period under discussion. The term biological anthropology 
implies greater contemporary focus on evolutionary dynamics as opposed to physical structures 
(Fuentes 2012) and its use has largely supplanted that of physical anthropology in professional 
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sought to include physical anthropology within a broader scientific trending away from 

descriptive reporting and toward explanations of biological phenomena. Influenced by the 

“modern synthesis” of Darwinian evolution and Mendelian inheritance, he “explicitly 

emphasized a perspective wherein ‘process and the mechanism of evolutionary change’ would 

replace the archaic paradigm, the one concerned with ‘sorting the results of evolution,’ and 

followed by most” (Marks 1995:59). Eventually, this proposed emphasis on dynamic processes 

(mechanisms) instead of static typologies would provide a basis for exploring social and cultural 

factors that influenced patterns of human diversity and position biological anthropology as an 

ecological science (Goodman and Leatherman 1998a). 

Research into the cultural-historical ecology of sickle cell by Frank Livingstone (1958) 

demonstrated the promise of this new approach. In an oft-cited study, Livingstone (1958) 

established sickle cell trait as a balanced polymorphism maintained by heterozygous advantage 

in the context of endemic malaria. He found that regions of equatorial Africa with high rates of 

malaria correlated with areas where millennia-old agricultural practices facilitated an increase in 

human population size and, with it, likelihood of contact with mosquitos that transmit malaria. 

Moreover, this pattern of co-variation of endemic malaria with high frequency of sickle cell is 

observed in parts of southern Europe and Asia as well; an interesting finding because, for 

decades, this trait had served as a medical marker for Negro/black racial classification (Tapper 

1998; Wailoo 2001). 

The timing of the study was critical. In the United States context, African Americans do 

exhibit relatively high rates of sickle cell. Yet, Livingstone demonstrated clearly how culture-

environment-gene interactions explain the trait’s geographic distribution in Africa and 

                                                                                                                                                                             
self-identification. Recently, Fuentes (2012) has called for a “New Biological Anthropology,” i.e., 
an update and expansion of Washburn’s challenge in light of the “explosion in methodological 
and theoretical innovations over the past three decades” (4). 
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elsewhere. His research findings undermined the tautological race argument by uncovering how 

an actual evolutionary mechanism (natural selection) produced this distribution (Armelagos and 

Goodman 1998). With the position of bio-racial hardliners already weakened by social 

condemnation of Nazi Germany’s eugenic atrocities during the Holocaust, Livingstone’s research 

added momentum to the paradigmatic shift from the task of racial characterization that defined 

the field of physical anthropology. 

The 1960s and 1970s would prove a “golden age” of ecological bioculturalism in which 

researchers developed a deep understanding of how people adapt physiologically and 

behaviorally to extreme environmental conditions (Goodman and Leatherman 1998b). 

Unfortunately, however, Livingstone’s success in unlocking the biocultural history of sickle cell 

was not easily duplicated for other genetic traits. Nor, initially, did large numbers of physical 

anthropologists attempt to alter the typological course set by decades of racial anthropometry. 

Throughout the field, development was heavily weighted toward methodological advancement 

as researchers developed and adopted sophisticated new techniques for assessing and 

reconstructing diet, nutrition and health patterns. However, as Armelagos and Van Gerven 

(2003) observe, most maintained their descriptive foci on human differences with little apparent 

concern for their underlying mechanisms. Rarely did in-depth bio-profiling generate new 

questions or conceptual frameworks or lead researchers to question, critically, the nature or 

causes of human difference (see also Armelagos 2011). 

One important exception to this trend was the integration of an epidemiological 

component within paleopathology, i.e., the skeletal study of past health, migration, morbidity 

and mortality. The development of “paleoepidemiology” expanded skeletal biology’s scope of 

purpose far beyond the documentation and description of bone and dental lesions and their 

proximate (or immediate) causes to incorporate the study of population-wide demographic and 
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health trends. Ortner (2003) traces the origins of paleoepidemiology to The Indians of Pecos 

Pueblo, in which Earnest Hooton (1930) attempts to link patterns of anatomical change, disease 

and culture in New Mexico over time (1100 to ca. 1800 AD). Although tethered to the racialist 

tradition of identifying craniometric and “morphological types,” Hooton’s (1930) use of 

historical and archaeological research to contextualize skeletal data broke new methodological 

ground. However, attempts at linking multiple lines of evidence of this sort were limited in 

number until the 1970s when the influences of the “new” physical anthropology and 

“processual” archaeology would converge with “anthropologized” ecology and paleopathology 

to give rise to the distinct subfield of bioarchaeology (Zuckerman and Armelagos 2011). 

Biological anthropologists were not yet ready to reintegrate analyses of biology and 

culture, however. Early attempts often more closely resembled sociobiology than the “new 

biocultural synthesis” that would emerge toward the end of the century (Goodman and 

Leatherman 1998). Developed by evolutionary biologists, the overriding concern of sociobiology 

is in revealing how different behaviors evolved to maximize reproductive fitness. Unfortunately, 

for the anthropologist, this perspective allows for very little, if any, analysis of the ways that 

history and social power constrain and promote certain behaviors and thereby shape biological 

outcomes (Thomas 1998). From social Darwinism to evolutionary psychology, biobehavioral 

theories tend to explain sometimes important biological differences (e.g., health disparities) as 

expressions of “good” or “bad” genes and genomes (Gould 1996; Blakey 1998, 1999; Goodman 

2000), and presumably related cultural practices and behaviors to biological impulses. 

Hyper-functionalist adaptationism would come under fire from anthropologists and 

even evolutionary biologists (e.g., Levins and Lewontin 1985; Singer 1989; Goodman 1994). In a 

pointed critique, medical anthropologist Merrill Singer (1996) argued that, too often, studies of 

human adaptability were insensitive to the biological consequences of history and sociopolitical 
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marginalization, which exert a form of “unnatural selection” on human diversity. Meanwhile, 

cultural anthropologists and archaeologists were showing greater interest in issues of social 

power, human agency and political economy. In diverse settings, they increasingly turned to 

world systems, dependency/underdevelopment and other critical perspectives in order to 

explore particular global-local connections associated with the “modern world” as marked by 

global capitalist expansion (Goodman and Leatherman 1998b; Paynter 2000b; Roseberry 1988, 

1998; Wolf 1982). 

Importantly, some biological anthropologists agreed with the general assessment that 

their field had reached the explanatory limits of the adaptationist program – at least as applied 

independently to the study of human behavior and variation (Crooks 1996; Thomas 1998; 

Thomas 1997). In their view, creative response was necessary in order to address these 

criticisms and the larger, related problem of possible disciplinary fission. The Boasian biocultural 

separation, while necessary, had become a rift between biological and cultural anthropologists. 

As more and more biological anthropologists adopted a biomedical orientation, their 

training and research interests often aligned more closely with those in the natural sciences 

than with their fellow anthropologists. At the same time, many biological anthropologists found 

less and less of value in cultural anthropology, especially late 20th-century postmodern and 

poststructuralist theories perceived as having little material grounding. Moreover, it had 

become clear to some that anthropologists, like other scholars, have an ethical responsibility to 

work towards solving and not simply understanding the issues and problems they study. As 

these problems are often biocultural in nature, their full engagement necessitates common 

conceptual ground and interests within the discipline (Smith and Thomas 1998). Anthropology 

had to evolve. At stake was its own identity and relevance as a way of knowing and engaging 

the human experience. 
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The response to these challenges came primarily in the form of efforts to expand the 

scope of bioculturalism by infusing it with critical – mostly political-economic – theory. During 

the 1980s and 1990s, biological anthropologists adopting ecologically-oriented and historically-

informed population approaches systematically pushed the theoretical limits of ecological 

bioculturalism. Faculty and graduate students associated with University of Massachusetts 

Amherst led this new wave of conceptual modeling in which biology and culture were 

investigated as open and integrative systems responsive to social as well as biotic conditions. 

Their findings generally undermined traditionally progressive narratives of urbanity, 

industrialization, etc. by revealing how health often is compromised by the integration of local, 

small-scale economic units into larger sociopolitical entities. 

In Paleopathology at the Origins of Agriculture, Cohen and Armelagos (1984) and many 

of their contributors established negative health impact of the Neolithic Revolution and 

associated population growth. Using the paleoepidemiological approach, they found this to be 

the case for globally diverse prehistoric populations. By measuring skeletal as well as 

physiological indicators, Goodman et al. (1988) developed a robust model for studying health 

and its political-economic contexts in past and contemporary populations. Using the Selyean 

stress concept and the notion of “multiple stressors,” the authors illustrated the cyclical nature 

of stress and adaptive responses that can lead to “adaptive disintegration” and, ultimately, to  

compromised immune and cardiovascular function and other biological insults (see Figure 2.3). 

Also adopting a political-economic perspective, Leatherman and colleagues (1986) documented 

household-level impacts of the shift from small-scale agro-pastoralism to wage labor in the 

Andes (southern Peruvian highlands). These impacts included loss of “flexibility and control” (in 

the form of predictable labor) for men and greater productive responsibilities for women even 

as their productive capacities were undermined increasingly by illness. 
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Figure 2.3: Political economy model of stressor interactions that result in 
social inequalities and impaired adaptive capacity. From Thomas (1998, 
Figure 5) 

 

Swedlund and Armelagos’s (1990) edited volume, Disease in Human Populations in 

Transition: Anthropological and Epidemiological Perspectives highlighted or foreshadowed 

several approaches to the study of health and health disparities now prevalent or gaining 

currency in anthropology and public health (e.g., social epidemiology and an emphasis on the 

diaspora/migration studies). Meanwhile, Blakey (1994) expanded the biocultural domain to 

include an emphasis on psychophysiology and perceived stress alongside social and economic 

factors and launched the NYABG Project in which the current study is rooted. The model of 

engaged bioarchaeology developed by Blakey and colleagues for the NYABG Project (Blakey 

2010; Blakey and Rankin-Hill 2009; see chapter 4) would break new theoretical ground in 

conceptualizing descendant community members as “ethical clients” of anthropology. These 

were novel contributions to the study of past and contemporary health contexts and conditions. 
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Political Ecology 

 

The “UMass School” was instrumental in charting a path for biological anthropology that 

benefited from the extensive knowledge of adaptive responses developed during previous 

decades while avoiding adaptationist excesses. The goals and an immediate agenda for this 

project were defined in Goodman and Leatherman’s (1998a) important volume, Building a New 

Biocultural Synthesis: Political-Economic Perspectives on Human Biology. This book contains 

papers that were first presented at a Wenner-Gren Foundation-sponsored conference convened 

by the editors for the purpose of exploring the potential and potential directions of this research 

agenda. As defined by Goodman and Leatherman (1998b: 5), the contemporary biological 

anthropologist’s “ultimate concern is with understanding the roots of human biological 

conditions, which are traced to the interaction of political-economic processes and local 

conditions.” Accordingly,  

a bioanthropological political economy seeks to understand how particular local 
histories shape everyday realities of anthropological subjects, and moreover, how 
separate communities are connected through larger historical political-economic 
processes that affect human biologies (Goodman and Leatherman 1998b: 20). 
 
This is a particular vision of bioculturalism; a critical political ecological approach 

requiring the integration of political-economic, human adaptability, and ecological perspectives. 

Political ecology involves the study of social and cultural power relations (political economy) 

centered on human constructions of and interactions with various environments (ecology) 

(Hvalkof and Escobar 1998). Like biocultural anthropology, political ecology is an approach for 

addressing multiple sets of concerns and issues. Moreover, political ecology is not limited to any 

single discipline, but has emerged and matured over the past several decades into an 

interdisciplinary area of study that spans natural and social sciences. Thus, researchers are able 

to consider the consequences of human-environment interactions from various perspectives 
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and at multiple levels, from the political construction and dichotomization of nature and culture 

to international and national environmental movements to local toxin exposure (Hvalkof and 

Escobar 1998; Leatherman and Thomas 2001; Schell 1997). Specifically, Goodman and 

Leatherman (1998b) suggest that this particular biocultural synthesis will help to clarify: 

 
1) biological variation associated with social relations that form proximate 

environments by enabling or restricting access to needed resources and labor; 
 

2) sociopolitical and economic links between local and global conditions; 
 
3) history and historical contingency of social change and its biological consequences; 
 
4) human agency in the construction of environments; and 
 
5) the influence of ideology and knowledge (of subject and scientist) on human action 

including control of resources. 
 

Influenced by the postprocessual critique within historical archaeology (McGuire and 

Paynter 1991; Paynter 2000a) and its explicit focus on power relations, the critical political 

ecology described here is concerned with identifying and addressing the ultimate or structural 

causes and biological consequences of social inequality. As another biocultural pioneer, R. 

Brooke Thomas (1998: 44), explains, 

a complementary political-economy/human adaptability perspective that acknowledges 
the dialectic between adjustment and exploitation would seem to offer much in 
addressing a reality where hope and human action are entangled with oppression and 
marginality. The need to understand this dialectic seems to have intensified in recent 
decades as political-economic relationships constrain adaptive capacity, and people 
attempt to circumvent or counter the social conditions that cause them. 
 
From this perspective, instances and patterns of well-being and dysfunction 

fundamentally reflect the actions of human agents as they attempt to construct, alter and 

navigate living conditions and life chances for themselves and those for whom they care. 

Successfully implementing research of this nature requires a concept of environmental stressors 

not limited to biotic considerations. Rather, the total environment includes social and historical 
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processes and conditions of race/racism, class, etc. with which individuals and groups must 

contend. Likewise, adaptation entails more than favorable biological modification to 

environmental conditions, however defined, since physiological and genetic adjustments often 

serve as “backup responses” (Thomas 1998: 51) to behavioral strategies when social support 

systems fail (Singer 1998). Equally important is an understanding of how and why these 

strategies and systems break down, and how “disintegration” of adaptive measures leaves its 

biocultural mark on bodies, bones and teeth. Understanding these marks – their sociopolitical, 

economic and cultural roots; who is most likely to exhibit them; why and to what biological and 

social effect – is central to the line of research that Thomas (1998) has termed the “biology of 

poverty.” Current biocultural research has even begun to move beyond identification of 

political-economic forces necessary for framing health patterns or trends and is revealing how 

stressors affect specific physiological pathways (Panter-Brick and Fuentes 2009; Worthman and 

Costello 2009). 

The influence of biocultural and social theory within bioarchaeology has grown 

considerably since the late 1990s, prompting several recent assessments of “new directions” 

and research foci for the subdiscipline (Knudson and Stojanowski 2008; Martin and Harrod 

2012). According to Agarwal and Glencross (2011), this exciting period marks a third phase of 

theoretical innovation, the meaning of which is captured in the title of their recent book, Social 

Bioarchaeology. The “founding and first wave of theoretical engagement” saw widespread 

adoption of the population approach. The second wave was defined by critical assessment of 

sampling biases produced by “selective mortality and hidden heterogeneity” in the 

bioarchaeological record (e.g., Wood et al.’s [1992] “osteological paradox”) and accompanied by 
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development and adoption of important methodological (e.g., chemical, histological, DNA) 

techniques.7 

Zuckerman and Armelagos (2011), in their contributed chapter to Social Bioarchaeology, 

provide an historical overview of the emergence and development of biocultural 

bioarchaeology. They describe the growing acceptance and use of biocultural approaches as 

part of a maturation process that is enhancing the scope, social significance and ethical standing 

of bioarchaeological research. Thus, alongside established foci (e.g., the evolution of human 

diet; gender-based violence; studies of the African diaspora; and the emergence, ecology and 

evolution of disease), bioarchaeologists now engage a range of new topics. These include 

individual health and disease experiences in broad social contexts and relationships of biological 

and social identities (e.g., via critical theories of sexuality, gender, ethnicity, and disability). 

Bioarchaeological approaches to embodiment of sociocultural conditions (Joyce 2005; Sofaer 

2006; Nystrom 2011) and childhood e.g., (Perry 2005; Halcrow and Tayles 2011) seem especially 

pertinent to this study, which considers early-life lead exposure in the context of forced 

migration and culturally-modified teeth as “political artifacts” of social control and, possibly, 

resistance (Scheper-Hughes and Lock 1987). Importantly, biocultural approaches also enable 

(self-) critical appraisal of the ethical dilemmas and implications of bioarchaeological research in 

the United States and abroad as well as actions necessary to redress unequal power relations 

between academic and other stakeholders (e.g., Barrett and Blakey 2011; Blakey 2009, 2010; 

Turner and Andrushko 2011; Larsen and Walker 2004). I discuss the relevance of these particular 

theoretical developments further in the next two chapters.  

                                                           
7 For a comprehensive rendering of theoretical and methodological developments in 
bioarchaeology, see also Armelagos (2003, 2011), Armelagos and Van Gerven (2003), Blakey 
(2001), Buikstra and Beck (2006) and Larsen (1997, 2002, 2006; Larsen and Walker 2010). 
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To summarize, biocultural anthropology is an approach to the study of human biology 

across time and place that emphasizes the important influences of cultural, historical and social 

processes on well-being and health. Critical biocultural approaches in particular serve as 

correctives to hyper-functionalist interpretations of human variability, the latter of which are 

not synonymous with an evolutionist approach. Sometimes juxtaposed, biocultural and 

evolutionist perspectives actually complement one another and both are integral components 

of anthropological, including bioarchaeological, analysis (Armelagos et al. 2005). Combined, they 

produce a more nuanced and layered understanding of the structure of human biological 

variation than is possible via from any single theoretical perspective (Armelagos et al. 2005). 

Still, one must acknowledge that different analytical orientations offer different “big pictures.” I 

have tried to illustrate that biocultural approaches for investigating human-environment 

dynamics and dialectics are best suited for investigating and exposing the biological 

consequences of social injustice and vulnerability, or biologies of inequality.  
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CHAPTER 3 
 

ANTHROPOLOGY OF THE HISTORICAL AFRICAN DIASPORA 

 
Introduction 

 

There is no single African diaspora. Various, often complex migrations gave rise to 

multiple African diasporic formations before, during and since the “long 18th century.”  As 

Singleton (2010: 119) explains, the African diaspora concept “refers to worldwide dispersal of 

Africans and their descendants usually of the last two millennia, particularly those diasporas 

emanating from slave trading.” The clear focus of this study is the “classical” or early historic 

phase of diaspora formation in the Americas (Harris 2001). Africans in early New York 

represented one of many transatlantic African diasporic communities that overlapped physically 

and culturally. These connections fostered locally diverse as well as shared “Afro-Atlantic” 

sensibilities and identities, all within the broader context of an emerging Atlantic world (Dodson 

2001; Harrison 2006). This modern, “new” world arose from networks of commercial, cultural 

and intellectual exchange intensified and forged by global processes of imperialism, colonialism 

and capitalist expansion from the 15th through the 19th centuries. Enslaved African labor fueled 

these processes which, in turn, transformed political and economic landscapes and reshaped 

social relations on four continents (Inikori 2001; Wolf 1982). 

In the previous chapter I presented bioculturalism as a theoretical orientation uniquely 

suited for investigating how NYABG individuals experienced and ultimately embodied diasporic 

environments. This chapter entails discussion of anthropology’s role in defining the African 

diaspora as a unit of study. In the next section, I explain how historians and anthropologists 

engaged the diaspora concept from its early pan-Africanist focus rooted in understanding the 

consequences of transatlantic slavery and countering racism to current studies that tend to 
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privilege more recent dispersals and transnational identify formations (Harrison 2006). I 

describe the prominent role of cultural anthropologists in framing debates over origins and 

agency and discuss how archaeologists have taken up these debates over the past several 

decades. I then discuss cultural dental modification as a locus for research into early diasporic 

migrations and identities in bioarchaeology. I conclude the chapter with a brief survey of the 

state of African Diaspora Studies and anthropology within this field. 

 

African Diaspora in History, Theory and Practice 

 

Human diasporas reflect a range of conditions and activities leading to voluntary and 

other forms of migration. The term diaspora derives from the Greek for “dispersion” or 

“scattering,” as one does seeds across a field. Hence, its traditional academic usage implies 

social scattering, dislocation or displacement of a people and tends to emphasize forced 

migration from a point of geographic origin (Braziel and Mannur 2003). Historians were the first 

to apply a diasporic approach to the study of Africans and their descendants in the Americas, 

usually as a means of understanding and countering racial discrimination.  Carter G. Woodson 

(2005 [1933]) and others saw racism as a system supported intellectually by formal “mis-

education” through which people of African descent learned their history through the prism of 

slavery. Therefore, education about a deeper history of African and diasporic connections and 

contributions was necessary for undoing racist social relations and structures. Frequently, these 

early adopters referenced Greek and Jewish historical literatures wherein the idea of human 

diaspora was already established and well defined. They drew parallels between collective 

experiences of migration, exile and sociopolitical alienation in antiquity and the Americas 

(Skinner 1993). 
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George Shepperson is often credited with popularizing the term African diaspora in a 

paper at the 1965 meeting of the International Congress of African Historians in Tanzania. This 

meeting and that widely-circulated paper, “The African Abroad or the African Diaspora,” marked 

an important moment in the development of African Diaspora Studies as a mainstream field of 

study (Butler 2010), although the concept was hardly new.  Since the late 19th century, 

professionally trained academics such as Alexander Crummell, George Washington Williams, 

W.E.B. Du Bois and Woodson emphasized the need to understand the “African background” of 

the black experience in the Americas. So, too, did activists and lay historians such as Marcus 

Garvey, Arturo Schomburg and John Edward Bruce (or “Bruce Grit”). Then, as now, philosophical 

outlooks and strategies for connecting Africans and African-descendants differed amongst 

scholars, activists and scholar-activists (Mullings 2009). Bracey et al. (1970) have detailed the 

various black nationalisms (cultural, economic, religious and so forth) that characterized this 

period, many of which persist today. Yet, theirs was the collective task of reclaiming “usable 

pasts” lost to the historical distortions necessitated by chattel slavery and its legacy, racism. 

These historians of the African diaspora typically acknowledged and embraced the 

political dimensions of intellectual work. For them, African diasporic history was a “weapon” in 

the struggle for racial justice (Cabral 1966). “Vindicationist” scholars reframed historical 

problems and rewrote black histories in an effort to destabilize entrenched narratives of Negro 

or black inferiority that supported discriminatory policies and practices of the day (La Roche and 

Blakey 1997; Reed 1997). A strong revisionist tendency thus links their efforts, as exemplified in 

seminal works by Du Bois (1970 [1935]) on southern Reconstruction and C.L.R. James (1989 

[1938]) on Saint Domingue’s revolutionary transformation into Haiti, the first black republic in 

the Americas. Taking on the then-dominant Dunning School, Du Bois was able to deconstruct 

claims that the black enfranchisement and corruption doomed Radical Reconstruction, 
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warranting “southern redemption.” In a similar vein, James reclaims the Haitian Revolution as 

the largest and perhaps only completely successful “slave” rebellion and the first revolution of 

the so-called Third World. Critical insights on racism, colonialism, and class inequality introduced 

by Du Bois, James and others remain central to diaspora, transnational and postcolonial studies. 

There are ongoing efforts to canonize these scholars’ neglected anthropological contributions 

(Harrison 1992; Paynter 1992; Paynter et al. 1994). 

If a primary goal of these first- and second-generation scholars of the African diaspora 

was to challenge white supremacy by promoting “proper” knowledge of human history and 

equality, what distinguished the research agenda articulated by Shepperson and his colleagues? 

What were the important points of continuity and departure and how did these influence the 

growth and development of African diaspora theory? Butler (2010) observes that Shepperson 

and his colleagues set out to situate diasporic experiences squarely within African history. They 

did so by enlarging the field’s scope of inquiry to include more explicit focus on contemporary 

political conditions in Africa. For Shepperson (1968: 153), the goal of African Diaspora Studies 

was to clarify ‘a series of reactions to coercion, to the imposition of the economic and political 

rule of alien peoples in Africa, to slavery and imperialism’ (cited in Butler 2010). This definition 

maintained and expanded upon the field’s traditional focus on slavery in the context of global 

capitalism. It also signaled at least two theoretical adjustments with long-term implications for a 

more expansive and dynamic view of “the” African diaspora as both a unit and mode of analysis. 

First, this conceptualization of the African diaspora concept was more integrative than 

previous incarnations. The modified approach of the mid-to-late 20th century attended to the 

“modernity struggles” of African and Afro-descendant peoples against the mechanisms of global 

white supremacy. This development marked a crucial step towards bridging substantively the 

efforts of Americanist and Africanist academics that generally did not reference each other’s 
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work. Outside of pan-Africanist circles, communication between these groups had been mostly 

one-sided and utilitarian in nature. Scholars working in the Americas sometimes attempted to 

establish African contexts and time-depth for diasporic cultural practices and traditions. 

Africanists saw little use for investigating diasporic dynamics outside the continent. Studies of 

slavery and imperialism unified Africans and their descendants as a single domain or unit of 

historical, political-economic and sociocultural analysis. 

Secondly, diaspora had evolved from being simply a thing or entity to be known into a 

way of interpreting why and how certain migrations occur. In referencing “a series of reactions” 

to slavery and imperialism, Shepperson (1968) highlighted a growing awareness of the variety 

and complexity of these diaspora-forming processes. Increasingly, study of the African diaspora 

entailed analysis of its political structuring (i.e., homelands, destinations and branches) as well 

as underlying structures of meaning associated with diverse “homeland/hostland relationships” 

and transnational identities (Butler 2010; Falola 2013; Skinner 1993). The study of slavery, 

particularly American slavery, maintained its central importance but scholars began taking 

greater pains to detail the institution’s geographic and temporal diversity throughout and 

beyond the Americas. Many continued to probe agricultural plantation settings of the South 

where most enslaved Africans lived, labored and died. Some branched out to explore other, 

lesser-known enslavement experiences. Of particular relevance to this study, during this period 

Edgar McManus (1966) produced one of the earliest contemporary treatments of slavery in New 

York. Still others studied historic free black (Litwack 1970) and maroon (Price 1973) 

communities. Moreover, the field of study extended beyond the Black or Afro-Atlantic 

framework, as demonstrated by Harris (1971, 1993) who focused attention on the East African 

and trans-Saharan Slave Trades. Ultimately, merging diasporic and Africanist perspectives meant 
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acknowledging multiple African diasporas with unique touchstones and internal workings of 

identity formation. 

This Afro-Atlantic framework emerged amid profound social and political changes as 

Africans and African Americans secured vital human and civil rights. The historians’ meeting in 

Tanzania took place only a few months after passage of the 1965 Voting Rights Act, a signature 

legislative achievement of the US Civil Rights Movement. As African Americans and their allies 

dismantled the legal basis of racial discrimination in the US, they watched with keen interest and 

pride and offered both material and moral support to Africans waging their own freedom 

struggles. Diasporic Africans celebrated as Ghanaians attained independence from British rule in 

1957, and then as Congo (1960), Kenya (1963) and other countries followed suit in attaining 

national sovereignty. For many, the reform and revolutionary movements of the “turbulent 

sixties” served to bolster historical relationships and affinities strained by slavery and the Middle 

Passage (Bracey et al. 1970; Skinner 1992).8 As Africa took on new political and social meanings 

in diasporic settings, important changes followed within the academy. Chief among them, the 

social movements of the 1960s and 1970s fostered the development of Black or Afro-American 

Studies. Around this time, archaeological investigation of African diasporic communities 

emerged as a formal area of study that, over time, would prove important to the maturation of 

African Diaspora studies (Ogundiran and Falola 2007; Singleton 2010).  

This also was a period in which scholars employed new theoretical and methodological 

tools to reconstruct demographic trends and cultural diversity within and across diasporic 

                                                           
8 Exceptions of course abounded. In the United States, some African Americans conformed to 
ethnocentric views of Africans that permeated society (and vice versa). All were well aware of 
the racial and cultural baggage that African descent represented in the politics of national 
reception and belonging. Constructing ancestral ties and collective identity is complex, unending 
work involving conflicting positions as seen in contemporary debates over the slave castle 
tourism in Ghana (Osei-Tutu 2007). Yet, successful freedom struggles of this period seemed to 
lighten this baggage and, to an unprecedented degree, diasporic peoples celebrated their 
African heritage openly. 
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communities. Some, like Philip Curtin, relied primarily upon cliometric approaches involving 

statistical and economic analyses of slave ship manifests and other documentary evidence to 

assess the numerical scope of transatlantic slavery. Over forty years ago, Curtin (1969) 

estimated that slavery in the Americas involved the forced migration of some 11 to 13 million 

enslaved and captive Africans, about 9 to 11 million of which actually made it to the Americas. 

Occasional updates have generally confirmed his findings. Recently, using archival sources for 

nearly 35,000 slave ship voyages between the 16th and 19th centuries, Eltis and Richardson 

(2010) derived that approximately 12.5 million enslaved and captive Africans left western 

African shores for the Americas. Among other things, Eltis and Richardson’s searchable Voyages 

Database (www.slavevoyages.org) allows users to reconstruct specific slave ships routes and to 

extrapolate geographic and temporal trends in the overall transatlantic trade. 

Curtin’s (1969) book, The Atlantic Slave Trade: A Census, helped integrate Africa into the 

broader study of the “Atlantic World.” Falola and Roberts (2008) explain that international 

leaders originally developed this construct in the wake of World War II when the Marshall Plan 

and the creation of North American Treaty Organization (NATO) led to discussion of an “Atlantic 

community.” Scholars of colonial British North America appropriated the construct in the 1960s 

to connote shared senses of place, social identity and political connection reflecting processes of 

“migration, colonialism, trade, and intellectual exchange that came to dominate the Atlantic 

region starting in the mid-fifteenth century” (Falola and Roberts 2008: ix). In the colonial 

Americas, this presence was early and large. Eltis and Richardson (2010) observe that, until circa 

1820, perhaps three times as many Africans as Europeans crossed the Atlantic. In recent years 

anthropologists and historians have employed the terms “Black Atlantic” (Gilroy 1993), “Atlantic 

Africa” (Ogundiran and Falola 2007) and “Afro-Atlantic” (Yelvington 2006) in reference to both 

http://www.slavevoyages.org/
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historic and contemporary diasporic formations. These terms also acknowledge the analytical 

tension between Atlantic and global or world history paradigms. 

Two other key interventions in the evolution of African Diaspora Studies warrant 

mention here. The first was the development of social history. With its emphasis on “average 

people, interactions, and institutions,” social history emerged as a means of focusing attention 

on those forgotten or diminished in historical narratives (Butler 2010); in the words of Eric Wolf 

(1982), on “people without history.” Yet, like “conventional” history, this approach is sometimes 

limited by inherent biases of documentary evidence against those without means to produce 

official narratives. This “impasse” led a previous generation of social historians to cultural 

history as “a way to examine the life worlds of populations only barely discernable in the 

archives of states, churches, and commercial enterprises” (Brown 2010: 220). Oral history, folk 

songs and other sources once off-limit now became valuable tools for exploring complex 

relationships between beliefs and behaviors (e.g., see Levine 1977). 

In the second edition of his influential book, Global Dimensions of the African Diaspora, 

Harris (1993: 3-4) defined the core elements of the African Diaspora as 

the global dispersion (voluntary and involuntary) of Africans throughout history; the 
emergence of a cultural identity abroad based on origin and social conditions; and the 
psychological or physical return to the homeland, Africa. Thus viewed, the African 
diaspora assumes the character of a dynamic, continuous, and complex phenomenon 
stretching across time, geography, class, and gender. 
 

Harris chaired the 1965 session in Tanzania at which George Shepperson spoke and later 

organized the First African Diaspora Studies Institute at Howard University in 1979. His 

definition references voluntary migrations that would begin to take center stage in the following 

decades but retained a primary focus on the homeland-exile dialectic associated with slavery 

and forced migration. Notable here is Harris’s explicit characterization of diasporic peoples and 

communities as cultural and not merely physical extensions of Africa, a clear reflection of the 
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important role of the social and cultural historiographical turns in African Diaspora Studies. At 

issue by this point are primary questions of cultural identity and agency that anthropologists 

have wrestled with for many decades. 

 

Origins, Agency and Artifacts 

 

The study of cultural transmission from Africa during slavery poses major challenges for 

scholars of the historical African diaspora in the Americas. Questions of cultural agency and 

identity have long garnered attention and generated strong debate amongst anthropologists 

and others as demonstrated perhaps most famously when Melville Herskovits, E. Franklin 

Frazier and other leading scholars clashed over the issue of “Africanisms” in the early-to-mid 

20th century. The terms and intensity of debate have changed over the decades but issues of 

cultural agency in the African diaspora remain grist for anthropological engagement; often tied 

to questions of geographic and ethnic ancestry and always responsive to the “racial politics of 

culture” (Baker 2010; Perry and Paynter 1999).  

The preeminent Africanist anthropologist of his generation, Herskovits (1930, 1941) was 

convinced that Afro-descendants in the Americas maintained direct cultural links to Africa – 

“survivals” or “retentions” evident across a wide range of behavioral domains including, for 

example, music, religion, and child-rearing practices. In the American context, Herskovits further 

developed his mentor Franz Boas’s acculturation thesis, based on the concept of intergroup 

“culture contact,” to account for processes of culture change. Focusing primarily on black 

culture in the Caribbean and South America, where he argued cultural survivals were most 

evident, Herskovits did much to establish “the New World Negro” as a “positive anthropological 

problem” (Scott 1991). Among others, his ideas were influenced by his work with Zora Neale 
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Hurston and the writings of Jean Price-Mars and Fernando Ortiz who studied Africanisms in Haiti 

and Cuba, respectively (Yelvington 2011). 

A major critic of the “survivals” paradigm, the sociologist Frazier (1939) saw little value 

in the study of “Africanisms.” He argued that the disciplines of the Middle Passage and 

enslavement erased many transatlantic cultural connections.9 Moreover, he viewed the 

academic pursuit of Africanisms as somewhat misguided during a period when emphasizing 

African roots did little to advance blacks socially, but served to confirm suspicions of their racial 

and cultural inferiority (see Baker 2010). Ironically, Herskovits and others (e.g., Woodson 1936; 

Turner 1949) saw establishing an African background as necessary for overcoming arguments of 

diasporic cultural deficiency or what Herskovits (1941) referred to as “the myth of the Negro 

past.” The black family unit was a focal point of dispute. Where Herskovits saw a great deal of 

cultural continuity in African and diasporic African family forms, Frazier suggested scholars were 

better served studying the roles that American slavery, racism and poverty played in eroding 

positive familial structures and relations. Yelvington (2011) notes that scholarly sparring did not 

impinge upon their friendship. Frazier actually allowed for linguistic and religious survivals and 

the two men shared research informants in Central and South America. Eventually, few would 

seriously question an African cultural presence in the Americas (Walker 2001). 

As the century progressed, anthropologists remained central to the study of early 

African diasporic culture. An essay written in 1973 by Sidney Mintz and Richard Price – “The 

Birth of African American Culture” – became a flashpoint for still-lively debate over creolization 

as a mode of cultural production. Recently, Price (2010) recounted the essays major goals and 

                                                           
9 For an overview of scholarship on the Middle Passage, the literal, tortuous link between Africa 
and the Americas, see Lovejoy (2008). Early demographically-focused scholars considered 
questions related to the overall volume of the Transatlantic Slave Trade such as whether or not 
“tight-packing” ships was an efficient means of maximizing cargo yields and, thus, profits. In 
contrast to the cliometric approach, some recent studies emphasize the human histories that 
unfolded on slave ships (e.g., Rediker 2007; Smallwood 2008). 
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arguments. Although now commonly associated with cultural processes and theory, Price (2010: 

56) notes that the concept of creolization – “the process by which people, flora and fauna, ideas, 

and institutions with roots in the Old World are born in the New where they develop and 

reproduce themselves “ – originated in the field of natural history before “migrating” to 

linguistics and then anthropology. He identifies a 1928 letter from Jonkeer L. C. van Panhuys to 

Herskovits as containing the earliest English usage of the term creolization in reference to 

cultural instead of biological processes. van Panhuys used the term to describe cultural change 

amongst the Suriname Maroons. The term would not gain significant traction amongst 

anthropologists until a 1968 conference on linguistic pidginization and creolization at the 

University of the West Indies, after which it was adopted “as an analytical tool applied to the 

unusual processes of culture change that first took place in the violent colonial cauldron of the 

early New World” (Price 2010: 57). 

Mintz and Price (1992) argued that the “‘miraculous’ contestational process” of 

creolization involved “cosmopolitan” Atlantic Creoles assuming primary responsibility for 

creating culture in the New World. These cultural innovators then transmitted important 

survival and other life lessons to recently imported African-born individuals. Price (2010: 57-58) 

explains that the essay’s “clarion call” was historicization and contextualization. To understand 

general processes of cultural change, he and Mintz raised a series of questions. 

“For example, how ‘ethnically’ homogeneous (or heterogeneous” were the enslaved 
Africans arriving in a particular locality – in other words, to what extent was there a 
clearly dominant group – and what were the cultural consequences? What were the 
processes by which these imported Africans became African Americans? How quickly 
and in what ways did Africans transported to the Americas as slaves, and their American 
offspring, begin thinking and acting as members of new communities – that is, how 
rapid was creolization? In what ways did African arrivants choose to – and were they 
able to – continue particular ways of thinking and of doing things that came from the 
Old World? What did ‘Africa’ (or its subregions and peoples) mean at different times to 
African arrivants and their descendants? How did the various demographic profiles and 
social conditions of New World plantations in particular places and times encourage or 
inhibit these processes? 
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Price (2010) reminds his readers that scholars of the African diaspora initially employed 

the creolization model to explain Afro-Caribbean culture change. Labor demands and 

demographic trends associated with diverse enslavement regimes would have altered the pace 

and course of creolization elsewhere. For Price, the analytical challenge of understanding these 

differences across space and time underscores rather than undermines the value of the 

creolization concept. As proof, he points to the work of Ira Berlin and other historians who have 

used the concept to explain how early generations of African Americans “re-created lifeways” 

that sometimes quickly gave way to “fully formed” cultural institutions. For example, a strong 

Atlantic Creole cultural influence was established early in Florida. Meanwhile, the intensive 

tobacco regime of the early Chesapeake required constant importation or “re-Africanization” of 

the labor force which, in turn, guaranteed considerable inter-African syncretism. By about 1720, 

however, a greater proportion of enslaved individuals were American-born and they had begun 

crafting a racial identity and a distinctive African-American culture. In the rice plantations of the 

Carolina Lowcountry a third pattern of constant African cultural “re-grounding” emerged as the 

ranks of American-born blacks did not outnumber those of African-born  “saltwater slaves” until 

the middle of the 18th century.10 

The Birth of African American Culture was published in book format in 1992, the same 

year as the first edition of John Thornton’s Africa and Africans in the Making of the Atlantic 

World, 1400-1680. The two books represented divergent approaches to the subject of enslaved 

African cultural production. Whereas Mintz and Price emphasized the creation of new culture in 

new lands, Thornton stressed historical and cultural continuity with African ethnicities. By this 

time, historians had identified seven primary export regions for captive and enslaved Africans: 

                                                           
10 For a cross-regional overview of slavery in British North America, see Berlin’s (2003) 
Generations of Captivity: A History of African-American Slaves. 
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(1) Senegambia (Senegal and Gambia); (2) Sierra Leone (including Guinea-Bissau, Guinea, Liberia 

and the Ivory Coast); (3) Gold Coast (Ghana); (4) Bight of Benin (Togo, Benin and southwest 

Nigeria); (5) Bight of Biafra (southeast Nigeria, Cameroon and Gabon); (6) west Central Africa 

(Democratic Republic of the Congo and Angola); and (7) Mozambique-Madagascar (southeast 

Africa, including part of southern Tanzania) (Richardson 1989). Thornton identifies Upper 

Guinea, Lower Guinea and Angola as three major western African “cultural zones” from which 

the majority of captive and enslaved Africans were taken. He and other Africanist historians like 

Michael Gomez (1998, 2006) and Paul Lovejoy (1997) drew upon an increasingly detailed 

demography of the Transatlantic Slave Trade – importation rates and ratios and destinations – 

to reconstruct social dynamics in relevant African societies and to track transatlantic migration 

patterns for specific ethnic groups. 

These scholars contend that relatively intact African ethnic groupings sometimes made 

it to the Americas where they utilized shared backgrounds and traditions to shape local and 

regional cultural development – religion, cuisine, song, dance, etc. Ethnicity also influenced the 

nature and outcomes of resistance to enslavement. Gomez begins his 1998 book Exchanging 

Our Country Marks with a narrative account of Denmark Vesey’s planned insurrection in 19th-

century South Carolina, noting that it was organized and, ultimately, compromised along African 

ethnic lines. He goes on to explain the varied regional impacts of groups linked by geography, 

language and religion in Africa such as Muslims and the Akan and Igbo peoples throughout the 

colonial and antebellum South. For Gomez, ethnicity is a “reductionist” enterprise; a marker of 

difference based on contrasting “networks of sociocultural communication.” He describes a slow 

shift from ethnically- based identities emphasizing intra-African differences and uniqueness to 

an African American collective identity that emerges as enslaved Africans “learned the 

significance of race.” Influenced by religious diversity and emerging class divisions, this shift or 
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“translation” is complete by the early 19th century. A prominent and somewhat unique example 

of Americanist scholarship in this vein is found in the work of Gwendolyn Midlo Hall (2005) 

whose meticulous research of ship records, court records and other documents revealed that 

enslaved Africans from Senegambia and the Bight of Benin contributed heavily to the creation of 

a distinctive Creole culture in 18th-century Louisiana. 

That African ethnicity was as an important consideration for enslaved and enslaver alike 

is undeniable. Slaver traders often targeted regions in Africa where they could acquire people 

known to possess knowledge and expertise necessary to meet regionally-specific American labor 

demands (e.g., see Carney [2001] on the transfer of African rice cultivation technology to South 

Carolina and Eltis et al. [2007] for a critical review of this “black rice” thesis). As historian Philip 

Morgan (2006: 53) explains, the Transatlantic Trade 

was no random, unsystematic business. In general, the slave trade of any African region 
was heavily centered at one or two places. About 80 percent of all slaves from the Bight 
of Biafra left from just two outlets, Bonny and Calabar. Ships leaving on a slave voyage 
would normally trade in only one African region, though occasionally at several locations 
in that region. Only about one in 10 slave vessels traded at two or more ports, and only 
one in 20 traded across regional boundaries. … Similarly, most Trans-Atlantic ships 
disembarked their migrants at a single port in the Americas. Over 95 percent of slave 
ships landed all their slaves at one place. And usually one or perhaps two ports in an 
American territory garnered most arrivals. 
 

As a creolist, however, Morgan finds that innovation rather than the staying power of African 

ethnicities best explains the general process of cultural production. He warns those who 

emphasize cultural continuity over discontinuity against projecting contemporary ethnic 

identifications onto the historical record. Moreover, like Price, he argues that these scholars fail 

to appreciate ethnicity as an inherently fluid component of identity, a condition intensified by 

the violence and social upheavals that accompanied forced migration on both sides of the 

Atlantic. Price (2010) in particular is skeptical of the “genealogical imperative” to seek out an 
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“authentic past” rooted in Africa, a practice he attributes to the influence of Herskovits and 

cultural nationalist identity politics within African Diaspora Studies.11 

For their part, “Afrogenic” or “Africa-centric” scholars counter that creolists 

underestimate the cultural authority that Africa held for enslaved Africans (Walker 2001), and in 

so doing diminish the mental and intellectual agency of enslaved Africans. They view their 

perspective as necessary (1) for realizing Africa and Africans as more than backdrops in the 

study of her diasporas and (2) for expanding the study of historic African diasporic peoples 

beyond that of slavery and its consequences. Certainly chattel slavery engendered extreme 

conditions for cultural production and reproduction. Nonetheless, these scholars contend that 

Africa loomed large in real-time; in the collective thoughts, actions and imaginations of those 

who faced the difficult task of forging new community and culture. Prior to the Middle Passage, 

some of these individuals were enslaved in Africa and some were captives perhaps months or 

only weeks removed from freedom. Others knew only life in the Americas. Whatever their 

particular and diverse circumstances, the counterargument here is that diasporic Africans drew 

heavily upon specific knowledge and traditions from Africa as crucial and foundational reference 

points for understanding and influencing their current and future fates (Brown 2010). 

Yet, ultimately, these perspectives do not so much compete as they emphasize different 

aspects of enslaved African agency in the overarching process of cultural identity reproduction. 

Creolists acknowledge the importance of probing African and American geo-cultural connections 

and Afrogenists recognize that demographic trends alone did not dictate cultural histories. Both 

cultural tenacity and creolization were likely operative in the production of diasporic cultural 

identities. 

                                                           
11 Ironically, Herskovits argued against the politicization of scholarship. However, many black 
scholars found solidarity and inspiration in his vision of diasporic cultural continuity. 
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How then to bridge these frameworks? Price (2010) suggests current ethnography might 

indicate common theoretical ground. As one example, he points to recent work by J. Lorand 

Matory on Yoruba identity in Nigeria and Brazil. Matory (2005, 2006) illustrates how individuals 

reproduce a particular form of black consciousness and distinctiveness through “live dialogue” 

and strategic deployment of traditions through transatlantic channels (Matory 2006). Although 

perceived as “authentically” African, these traditions are more accurately transnational in origin. 

One interesting and important implication of Matory’s study is that, even for those enslaved, 

transatlantic communication of culture would have been dynamic; a perpetual dialogue or 

conversation rather than a one-time, one-way transmission of ideas and behaviors from a static 

African background or past.12 Hence, as Brown (2009: 1245) suggests, the “meaning of the 

category ‘African’ was not merely a reflection of cultural tenacity but the consequence of 

repeated acts of political imagination.” Retrieving these acts and figuring out how and why 

these meanings shifted and overlapped locally and regionally seems a task for creolist and 

Afrogenic scholars alike. 

Ethnography of course can be a powerful tool for developing emic insights. However, 

problems associated with the use of ethnographic sources for reconstructing past African 

lifeways – e.g., conflation of indigenous with later colonial political constructions – are well 

documented (e.g., DeCorse 2001; Stahl 2007). Fortunately, there are means available to 

anthropologists for investigating historical matters of identity and agency directly, i.e., through 

the material remains of past actions. Here, I briefly sketch key issues and themes in the 

                                                           
12 Matory (2006: 163) develops his dialogue metaphor as a critique of Paul Gilroy (1993) and 
others ‘ use of “collective memory,” a conceptual tool that has produced “several rich 
discussions,” but overall “hides rather than highlights the unending struggle over the meaning 
and usage of gestures, monuments, words and memories” that cultural reproduction entails. For 
exceptions, see David Scott (1991) on tradition as the theoretical bridge between memory and 
tradition and Fabre and O’Meally’s (1994) edited volume, History and Memory in African-
American Culture.    



 

46 

emergence, development and current practice of Africa diaspora archaeology. My discussion 

follows that of Theresa Singleton (2010: 128), in which she summarizes the field in the following 

manner. 

Analyses of archaeological materials recovered from the places where Africans and their 
descendants of diasporas lived, worked, sought refuge, or died provide information on 
their materials world – housing, use of space, personal and household items, craft 
production, culinary practices, and so forth. Careful study of these material components 
of everyday life permits archaeologists to infer about nonmaterial aspects of diasporic 
peoples’ lives, including their agency, group formations, survival strategies, religious 
beliefs, cultural practices, power struggles, and interactions with other peoples.  
 

Archaeological findings may “be complementary and interdependent or contradictory and 

independent” with respect to historical accounts. Whether by documenting “striking” 

homogeneity or “unexpected variation, as autonomous lines of evidence or “cables of 

inference,” archaeology has deepened understandings of past lifeways, real and imagined 

(Wylie 1993). 

According to Singleton (2010: 128), archaeologists use the term African diaspora 

“primarily as a label for this research and not as an analytical, conceptual, or methodological 

tool as in some other disciplines to investigate experiences of displacement, trace specific 

groups from the homeland to the new settings, or compare linkages with other groups of the 

African diaspora.” Why does archaeological development of the African diaspora concept lag 

behind that observed for other fields? Late adoption of the diaspora concept probably explains 

some uncertainty and ambiguity around its use. Like other scholars, archaeologists studied Afro-

descendant peoples for decades without explicitly diasporic frameworks. Indeed, the term 

diaspora does not appear in the archaeological literature until the 1990s (e.g., Singleton and 

Bograd 1995; La Roche and Blakey 1997; Orser 1998). Also, there is the issue of the field’s broad 

scope, which spans five continents and over 2,000 years of human migration. Given this 

breadth, Singleton (2010: 127) suggests that “[p]erhaps the best way to tie the disparate time 
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periods and regions of African diasporas together is through theoretical and methodological 

approaches related to common themes: labor, everyday life, resistance, master/slave relations, 

identify formation, religious practices, and so forth.” A third and likely major consideration (for 

anthropology as a whole) is limited input from African Diasporan scholars and subjects whose 

often-critical and sometimes “excavated” perspectives are beginning to exert influence from the 

discipline’s margins (Battle-Baptiste 2011; Harrison and Harrison 1999; Harrison 2008; LaRoche 

and Blakey 1997; Blakey 2001, 2009; Patterson 2013). 

In response to these limitations, some scholars have undertaken to develop an 

integrative African/African diasporic research program. For example, inspired by early pan-

Africanist scholarship and Paul Lovejoy’s “revisionist” or “continuous historical experience” 

thesis, Ogundiran and Falola (2007: 6) propose an archaeology premised on the assumption that 

“African history is incomplete without the history of its diaspora in the Americas, and that 

African history holds the key to the comprehension of the diaspora.” For African diaspora 

archaeology, this project holds great promise. Africanist perspectives provide important context 

as they can help to clarify cultural formations potentially misinterpreted through “generalized, 

ahistorical and presentist” misunderstandings of African practices (Ogundiran and Falola 2007; 

DeCorse 1999; Kelly 2001). Conversely, theory generated by Americanist archaeologists may 

prove useful for the study of internal diasporas in Africa (Haviser and MacDonald 2006). 

Until recently, attempts to bridge African and African diasporic archaeologies have been 

hampered by the lack of a unifying research agenda and framework. In Africa, archaeologists 

initially explored the “origins of specific states, development of trade and ethnic group 

relationships, continuities and changes of indigenous African economic and social institutions, 

and other topics that could foster national pride for newly independent African nations” 

(Singleton 2010: 121). In the United States, African American archaeology outside of plantation 
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settings arose in response to the aforementioned socio-political and intellectual movements of 

the 1960s and 1970s. Singleton notes that black activists promoted archaeological studies as a 

method of documenting and preserving historic buildings and towns endangered by 

development and gentrification. Elsewhere in the Americas, African diaspora archaeology 

emerged and developed unevenly. For example, the tradition of plantation archaeology 

originated relatively early, by the 1950s, in Cuba where histories of slavery and resistance have 

long been recognized. Studies of Afro-descendants are less common in Argentina and other 

places where they have greater potential to unsettle normative myths of national whiteness. 

By the 1980s some Africanist archaeologists had begun investigating landscapes 

associated with the Transatlantic Slave Trade (e.g., Posnansky and DeCorse 1986). This was a 

crucial initial step toward the development of an Afro-Atlantic archaeology for which Singleton 

(2010) identifies the major themes. On the African side, current archaeological research focuses 

on: (1) the rise of towns and polities whose emergence or growth are tied to transatlantic trade 

such as Elmina and Dahomey; (2) changes in trade, production and consumption of certain 

commodities (e.g., iron and pottery); and (3) the demographic and landscape effects of slave 

raiding and warfare (e.g., site abandonment, depopulation, or the presence of fortified 

settlements). Major research themes In the Americas include: (1) plantation slavery and the 

various dimensions of enslaved African community life and identity (e.g., daily life, family 

formation, gender, use of domestic space, religious beliefs, etc.), particularly within the United 

States; (2) runaways or Maroon communities, especially outside the United States in countries 

such as Brazil, Cuba, Jamaica and Suriname; (3) free blacks (who gained freedom legally during 

the era of slavery); and (4) post-emancipation African-American communities in varied settings 

(e.g., black towns, tenant labor plantations, and western frontier settlements). 
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According to Singleton (2010: 127), archaeologists exploring these themes on both sides 

of the Atlantic are contributing to “a post-colonial discourse that allows us to reevaluate 

colonialism and gain insights into the lives of those who suffered from it.” Just as the physical 

life stresses of enslavement represent a distinct dimension of the biology of poverty, African 

diasporic landscapes contain important insights concerning the ways in which historical 

inequalities of race, gender and class shaped the modern Atlantic world (Paynter and McGuire 

1991; Paynter 2000b; Orser 2001; Battle-Baptiste 2011; Epperson 1999). From this perspective, 

African diaspora archaeology has a unique and important role in the larger, critical project of 

“decolonizing” or “reworking” anthropology (Harrison 1991, 2008); a project rooted in earlier 

attempts to “reinvent” the discipline beyond its colonial and imperial origins and legacy (e.g., 

Willis 1972).13 

But critical insights do not result automatically from the study of subaltern subjects. Also 

needed is historically sensitive theory linking identity and agency under conditions of economic 

and political domination or exploitation. Warren Perry and Robert Paynter (1999) make this 

point in their enlightening commentary on ethnicity and agency in African-American 

archaeology. They illustrate that theoretical limitations sometimes stem from methodological 

entrapment into addressing “nonproblems” such as the search for cultural agency in African 

survivals. In the United States an early focus on African-American ethnicity gave way to explicit 

                                                           
13 For Harrison (2008), success in reworking of contemporary anthropology into a primarily 
critical endeavor rests on achieving nine interrelated objectives and outcomes: (1) 
reconstructing or “rehistoricizing” understandings of relationships between researchers and 
those researched; (2) reassessing what constitutes and who produces valid theory and 
theorizing; (3) rethinking the possibilities and implications of intra- and interdisciplinarity; (4) 
pursuit of a socially responsible ethics and politics of ethnography; (5) mapping of the 
“mediated connections” between the local and supralocal sphere; (6) interrogating the 
organization and practice of academic and nonacademic anthropology in the United States and 
abroad; (7) further democratization of anthropology as an intellectual community; (8); 
mobilizing knowledge and professional resources for democratic engagements that link 
academic pursuits and public interests; and (9) decentering Western dominance by leveling the 
“grossly asymmetrical” power relationships between Northern and Southern anthropologies.   



 

50 

consideration of identity over the past several decades. The early studies of ethnicity were 

problematic on several fronts. For example, researchers often were hampered by notions of 

ethnicity that were wither “primordial” and essentialist (i.e., either equated to or conflated with 

biological race) or too fluid (i.e., insufficiently attentive to matters of power) for investigating 

slavery in (mostly) plantation settings. Frequently, claims of African ethnic heritage and African-

American cultural agency were subject to the litmus test of Africanisms. 

Perry and Paynter (1999) make the case that debates over Africanisms fundamentally 

are not about establishing or contesting an African cultural presence in the post-Columbian 

Americas. Rather, they remind their peers that debates over survivals, retentions, 

transformations, etc. are part of a long and torturous discourse about the nature and meaning – 

the “character” – of that presence in American culture. It is precisely for this reason that these 

debates persist and resonate so profoundly within and outside the academy. From this 

perspective, questions about cultural continuity and change take on new meanings. Questions 

about cultural “retentions” or transformations remain relevant, but the primary focus more 

interestingly becomes that of why people, perhaps at great risk, did or did not perpetuate old 

practices in new environments. These are questions of motivation and meaning. Specifically, as 

Brown (2009) observes, the point is to understand how enslaved people forged meaning for 

their lives and those of future generations by attempting to impose cultural order onto social 

chaos. 

Yet, identifying agency can be tricky. Its interpretation in the historical African diaspora 

presents the peculiar challenge of seeing “slavery as a condition…[while] viewing enslavement 

as a predicament, in which enslaved Africans and their descendants never ceased to pursue a 

politics of belonging, mourning, accounting , and regeneration” (Brown 2009: 1248). Hence, 

Perry and Paynter (1999) argue the need to interpret artifacts as potentially “multivalent” 
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expressions possibly reflecting multiple players and positions of power in varying contexts of 

racial slavery. Assuming and foregrounding agency frees one to pursue cultural logics rather 

than cultural provenience as an end in itself. In this way, archaeologists are better able to assess 

processes of structural power and dynamic ethnogenic and racial identity formations. 

Furthermore, as these processes and formations leave marks on bodies as well as landscapes, 

insights into the social origins and multivalent nature of artifacts have relevance beyond 

archaeology. Indeed, some bioarchaeologists have begun to conceptualize skeletal remains as a 

unique class of material culture (Sofaer 2006). 

 

Origins, Agency and Teeth 

 

In this section I present dental modification as a cultural practice through which 

bioarchaeologists also engage with complex interactions of origins, identity and agency. As 

discussed in chapter two, current biocultural theory addresses the question of how people 

mediate – and their bodies manifest – such interactions. In chapter nine I present a new 

biocultural analysis of dental modification amongst NYABG individuals based on findings of this 

study. Here, my goal is to provide an overview of this practice, which bioarchaeologists have 

come to accept as a means of distinguishing natal or “saltwater” Africans from those who were 

American- or “country-born.” For a comprehensive discussion, see Jones (2004) and Goodman 

et al. (2009). 

Non-therapeutic alteration of the dentition toward a cultural ideal is an ancient and 

widespread practice (Milner and Larsen 1991). This practice is one of the more obvious ways 

that humans assert their likeness or distinctiveness to other animals, including other humans. As  
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Figure 3.1: Cultural dental modification appears amongst historic 
populations from all parts of the world. These permanent central upper 
incisors from a Tamil man of uncertain have been sharpened and incised to 
create labial grooves. From Gonzalez et al. (2010; Figure 3) 

 

such, important similarities and variations exist with respect to associated methods, rationales 

and outcomes. For example, there are no reported cases of culturally-modified deciduous teeth. 

Modification is apparently restricted to the permanent dentition and, usually, to the most visibly 

prominent maxillary incisors and canines. Occasionally included are the anterior mandibular 

teeth and the premolars. Chipping, filing and staining are the most commonly reported methods 

for modifying teeth (Singer 1953; Gould et al. 1984; Alt and Pichler 1998; Milner and Larsen 

1991; Ikehara-Quebral and Douglas 1997). Other methods include labial incising, inlaying of 

precious metals, and tooth extraction (van Rippen 1918; Gould et al. 1984). The most extensive 

bioarchaeological studies of culturally-modified teeth (CMT) have been conducted for pre-

Hispanic South America where some of the most extensive modification patterns are found 

(Williams and White 2006; Mower 1999).  
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Figure 3.2: Furrowed incisors from a Viking Age archaeological site in Sweden. From Arcini 
(2005, Figures 2 [left] and 7 [right]) 

 

Modification styles and patterns often vary regionally and across ethnic and cultural 

groups. For example, Figure 3.1 is a photograph of sharpened incisors with labial grooves from a 

pre-19th-century Tamil man from India where reports of CMT are scarce (González et al. 2010). 

This modification differs significantly from the two examples of horizontal filing resulting in 

furrowed incisors seen in Figure 3.2. These teeth are from a Viking Age (800-1050 AD) 

archaeological site located in Europe (present-day Sweden) where reported cases of CMT are 

also rare. The Viking teeth also demonstrate a regular finding in studies of CMT, i.e., of style 

variation within populations. The reason for the differing depths and numbers of the furrows is 

unknown but Arcini (2005) suggests they may correspond to individual tolerance for pain or to 

differential levels of social status or achievement. 

Interpretations of dental modification in the African diaspora quite naturally rest upon 

knowledge of African practices. Finucane et al. (2008) report what they believe to be the  
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Figure 3.3: African dental modification. These are the CMT of a 
“liberated” African excavated at St. Helena Island in the South 
Atlantic. The notches of the permanent upper central incisors were 
produced by filing. From Pearson et al. (2011, Figure 4.12) 

 

region’s earliest finding of CMT. Four individuals with maxillary filing were recovered from a Late 

Stone Age (ca. 4500-4200 BP) site in contemporary eastern Mali. However, the authors note a 

general dearth of osteological data that complicates attempts to accurately assess the antiquity 

and prevalence of intentional dental modification. Unfortunately, skeletal preservation 

conditions are poor in tropical western Africa where most enslaved and captive individuals 

destined for the Americas originated. 

An example of African dental modification is seen in Figure 3.3. This maxilla is from 1 of 

325 articulated skeletal remains (and a “considerable volume” of disarticulated remains) 

unearthed during the recent excavation of a “Liberated African” graveyard on St. Helena Island 

in the South Atlantic (Pearson et al. 2011). British authorities used the island as a depot location 

for receiving and treating “Liberated” or “recaptive” Africans taken from slave ships intercepted 

after the abolition of transatlantic slavery in 1807. Interestingly, of 303 individuals with 
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assessable dentitions, 115 individuals (38%) had CMT; a high percentage relative to that found 

at the NYABG and in other diasporic settings. 

While the skeletal record may be limited, there is ample ethnohistorical evidence of 

dental modification in African societies impacted by the Transatlantic Slave Trade. European 

travel literature offers some explanations as to the major motivations and methods for 

transforming teeth (e.g., Almada 1984 [1594]; Jones 1983). Later ethnography may also yield 

important details concerning the circumstances of modification. As in other parts of the world, 

frequently cited reasons for having one’s teeth “prepared” include ethnic affiliation, aesthetic 

enhancement, and age-related and other (e.g., occupational or clandestine societal) initiation 

rites (van Rippen 1918). Typically, dental modification in West Africa was conducted on 

adolescents or adults by a skilled individual such as a blacksmith or carpenter and involved 

chipping and/or filing the teeth with iron implements or sharpened stones (Whitridge 1913; 

Bohannan and Bohannan 1953; Singer 1953). In most instances, the practice does not appear to 

have been sex-linked, although its particulars might. For example, amongst the Igbo it once was 

customary that females could not bear children and males could not achieve their first titles 

before having teeth their filed (Whitridge 1913). 

Ethnohistorical accounts also reveal some of the patterns one might have encountered 

during this period. For example, two commonly observed patterns were incisors filed to points 

and mesial filing or “notching” between the maxillary central incisors that resulted in an 

“inverted V” shape (Singer 1953; Gould et al. 1984; Jones 1992). Although ethnic affiliation 

clearly was one of the motivating factors behind dental modification, the ethnohistorical record 

does not reveal how patterns varied along ethnic lines. Gould et al.’s (1984) survey suggests 

considerable overlap occurred in the distribution of patterns across western Africa (see Table 

3.1). One implication of this observation is a general inability to link individuals to specific  
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Table 3.1: African dental modification patterns and contemporary national boundaries. From 
Gould et al. (1984; Table 1, Figure 5)  

Mesial filing of maxillary central incisors 
(Guinea, Togo, Angola, Democratic Republic of the Congo, Uganda, Kenya and Tanzania) 

Mesial and distal filing of maxillary central incisors 
(Guinea, Central African Republic, Democratic Republic of the Congo, Angola) 

Filing six maxillary anterior teeth to pointed shape 
(Democratic Republic of the Congo, Zimbabwe) 

Filing four maxillary and four mandibular incisors to pointed shape 
(Guinea, Cameroon, Republic of the Congo) 

Horizontally filing maxillary central incisors 
(Guinea, Democratic Republic of the Congo) 

Central notching of incisors 
(Sierra Leone) 

Serrating incisors 
(Mozambique) 

Mesial triangular notching of the gingival one-third of central incisors 
(Republic of the Congo, Sudan) 

Concave filing of maxillary incisors with convex filing of mandibular incisors 
(Tanzania, Mozambique) 

Extracting maxillary central incisors 
(Zambia) 

Extracting mandibular central incisors 
(Uganda, Kenya) 

Extracting primary mandibular canines 
(Democratic Republic of the Congo, Sudan, Uganda) 

Extracting four maxillary incisors 
(South Africa) 

Extracting four mandibular incisors 
(Sudan) 

Extracting four maxillary and four mandibular incisors 
(Democratic Republic of the Congo, Uganda) 

Extracting single lateral incisor (note: maxillary in diagram) 
(South Africa) 

Artificial prognathism with facially flared maxillary central incisors 
(Senegal, Kenya) 

Red-staining teeth (from chewing “mkua” fruit or guru [kola] nuts) 
 (Morocco, Niger) 
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African locations via observed modification patterns. In other words, one cannot infer regionally 

specific or ethnic origins solely from CMT. 

At a larger geographic scale, however, dental modification serves as a marker of African 

versus American birth. The presence of CMT suggests not only African ancestral or cultural ties, 

but also physical African origin. Stewart and Groome (1968) were perhaps the first to make this 

connection in a study of skeletal remains from Grenada and St. Croix (while entertaining the 

possibility that first-generation American-born individuals engaged in the practice). However, 

this position is most often associated with Jerome Handler and colleagues as first set forth in 

their study of the 17th- to 19th-century Newton Plantation in Barbados. Through archaeological, 

paleopathological, and chemical (bone-lead) analyses, Handler et al. (1986; Corruccini et al. 

1987) determined that enslaved Barbadians with CMT were African-born. Based on these 

findings and a subsequent study of runaway ads from the American South, Handler (1994) 

reasons that enslaved Africans would have foregone dental modification as these indelible 

markings made them easily identifiable and, thus, undermined any attempts at escape. 

Subsequent studies employing elemental and isotopic analyses of tooth enamel for 

individuals with CMT support the hypothesis that CMT indicate African birth (e.g., Price et al. 

2006, 2012; Schroeder et al. 2012, 2013; Prevedorou et al. 2010). In a sense, then, dental 

modification, although likely traced to Africa, functions analytically more or less as the opposite 

of Africanism. It is treated as a practice that could not persist in the early Americas because it 

was “maladaptive” in the context of slavery. Interestingly, the only possible exception to date 

comes from the NYABG (Goodman et al. 2009). I revisit this issue in the next chapter on the 

NYABG Project, and the Newton Plantation study in chapter five, as part of a discussion of early 

African diasporic environmental lead exposure. 
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In concluding this chapter, I ask: what is the current state of African Diaspora Studies 

and of the anthropology of the historical African diaspora? Clearly, both have come a long way 

since the original Africanism debates of the mid-20th century. More integrative studies of the 

Afro-Atlantic and more nuanced analyses of diasporic identities have only bolstered the African 

diaspora’s academic appeal. A steady stream of scholarship attests to this. Yet, as always, 

challenges remain. 

The past half-century has seen African Diaspora Studies evolve into a specialized field 

involving a range of humanistic and scientific approaches from various disciplines. Yet, 

questions, problems and solutions demand interdisciplinary attention. As a result, although the 

study of diasporic Africans is an academic field currently enjoying rapid growth, it does so at risk 

of developing with too little programmatic interdisciplinary collaboration. Olaniyan and Sweet 

(2010) address this issue in their co-edited book The African Diaspora and the Disciplines. This 

important volume brings together perspectives from disciplines with longstanding focus on 

African diasporic issues such as history, anthropology and ethnomusicology. Also included are 

perspectives from relatively new fields such as Cultural Studies and others logically connected 

to, but less known for their theoretical contributions like theater studies, philosophy and 

geography. Underscoring anthropology’s longstanding central importance to the field, the first 

section of the book, “Histories,” includes three chapters by anthropologists. Here, one will find 

the essays on creolization by Price and African diaspora archaeology by Singleton that inform 

this chapter. The third chapter by Fatimah Jackson and Latifah Borgelin is a discussion of “How 

Genetics Can Provide Detail to the Transatlantic African Diaspora.” 

Olaniyan and Sweet (2010) offer four suggestion that, together, comprise a general 

framework for those invested in the interdisciplinary study of African diaspora peoples. First, 

they suggest that Africa as a homeland, whether “real or imagined,” should remain the 
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intellectual starting point of African Diaspora Studies. Perhaps once intuitive, such a position can 

no longer be assumed as one considers the increasing focus on transnational movements and 

internal diasporas that may not originate with or involve African locales. Secondly, because the 

African diaspora is “mutually constitutive of other political formations such as race, class, 

gender, sexuality” (4), it must be studied from an overlapping, comparative perspective. To 

these “axes of inequality” (Farmer 1999) one might add social age and disability, topics that 

bioarchaeologists now engage. 

Thirdly, they call for a renewed emphasis on an African diaspora intellectual genealogy, 

with particular attention to the pioneering works of figures such as W.E.B. Du Bois, C.L.R. James, 

Frantz Fanon and Walter Rodney. This position echoes that of Faye Harrison (2008) and others 

(e.g., Baker 1998; Blakey 2001; Drake 1980, 1990; Watkins 2007) who have critiqued the 

omission of African diasporic scholars and their critical perspectives from anthropological 

cannon. Lastly, noting that “sources are inscribed in some of the most unexpected places – 

objects, memories, shrines, and even bodies,” Olaniyan and Sweet (2010: 5) urge scholars to 

remain “open to the multitude of nondiscursive expressions that constitute ‘sources’ for the 

study of the African diaspora.” Indeed, scholars of the African diaspora should take notice of the 

growing literature on embodiment of lived experiences. Such experiences range from 

performances of cultural knowledge (e.g., through dance [Daniel 2001]) to the physiological 

mediation and skeletal incorporation of environments and inequality (Krieger 2003, 2005; 

Nystrom 2011). 

Finally, a recent shift in focus away from themes of trauma, exile, alienation and 

oppression has prompted anthropologist Faye Harrison (2006: 384-385) to ask: “Is this 

broadened mapping a consequence of diaspora studies being mainstreamed and losing the 

critical conceptual and political edge they once had? Or is it simply a reflection of how 
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heterogeneous the field of study is, with competing definitions and models of what constitutes a 

diaspora?” For Harrison, there is danger in conceptualizing diaspora too broadly and she 

cautions against uncritical application of the term to all forms of transnational migration. Price 

(2010), also, is troubled by some current uses of the creolization concept, especially outside of 

the Caribbean context. Specifically, he warns that scholars will misemploy this concept unless 

due consideration is given to location-specific political dimensions of culture change. These 

observations serve as reminders that African diaspora, like all analytical perspectives and 

frameworks, evolve and are open to redefinition – and that their reformulations are, likewise, 

subject to critique. 

 

Popular in some academic circles since the 1960s, but in use for much longer, the 

African diaspora framework continues to provide fresh insights into cultural, national and 

transnational connections and conditions of Africans “at home and abroad.” Anthropologists 

have long been and remain central to the study of Afro-Atlantic peoples. In this chapter I have 

presented some of the main concepts and debates through which they do so, concentrating 

primarily on questions of origins, agency and identity. In the following chapter, I discuss how 

NYABG Project researchers addressed these issues by integrating diasporic and biocultural 

analysis, in ways that broke new ethical, theoretical and methodological ground in 

bioarchaeology. 
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CHAPTER 4 

THE NEW YORK AFRICAN BURIAL GROUND 

 
Introduction 

 

The 17th- and 18th-century African Burial Ground was quite possibly New York's first 

African-American institution (Medford and Brown 2009). Estimates put the number of people 

buried in this approximately 6-acre Lower Manhattan cemetery as high as 15,000. Most of these 

would have been enslaved individuals although, quite possibly, free Africans and individuals 

from outside the African community were buried there as well. Virtually lost to public memory, 

the burial ground’s partial excavation in the early 1990s provided the opportunity to reconstruct 

these individuals’ lives and deaths through bioarchaeological analysis. The biocultural and 

interdisciplinary study of this site and population was the purpose of the NYABG Project. 

In this chapter, I draw upon the work of NYABG Project researchers to discuss the burial 

ground’s historical and cultural significance and the material evidence of African life in early 

New York. The bulk of this chapter centers on the city’s history of slavery from the Dutch 

colonial period through the mid-19th century. Using the work of project historians and others, I 

reconstruct living conditions for those buried at the site. I then explain the project’s emergence 

as an early example of “social bioarchaeology,” outlining its major goals and some of its key 

research findings. I focus primarily on bioarchaeological findings of population and individual 

origins, as determined from analyses of mortuary practices, genetics and especially dental 

chemistry that preceded and informed this study. 

 

Slavery in New York and the African Burial Ground 
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The first documented reference to the African Burial Ground appears in 1712. In 

“Proposals for Erecting a School, Library and Chapel at New York,” Chaplain John Sharpe (1881, 

cited in Howson et al. 2009) of Her Majesty’s Forces in the Province of New York observes that 

African New Yorkers conducted burials outside the city in the Common. A standard feature of 

European colonial settlements, the Common was an area where townspeople could freely 

access water, timber, and other collectively held resources and attend to tasks that required 

open space and distance from the city. Colonial New Yorkers used the Common – located just 

north of the city near the Collect (Kalkhook or Fresh Water) Pond – for grazing, livestock 

slaughtering and beer brewing among and other activities. As NYABG researchers observe, the 

Common was the “locus of the unwanted.” It was here that Africans, prisoners and the poor 

were buried and that public executions took place. For example, Africans allegedly involved in 

the 1741 “Negro Plot” or “conspiracy” to burn down the city were executed at the Common 

(Howson et al. 2009). The African Burial Ground was contained mostly within Calk Hook Farm 

and the Van Borsum patent, privately owned land located just north of the Common’s northern 

edge, but may have extended into the Common as well. 

Sharpe’s (1881) document and 18th-century maps help to locate the burial ground 

spatially. Yet, the date of its earliest use is uncertain. Unfortunately, archaeological analysis has 

not resolved this matter as the excavated portion may not contain the earliest burials. NYABG 

researchers suggest a probable 17th-century origin. In 1697 the Anglican Trinity Church banned 

the burial of Africans, Jews and Catholics in its cemetery, possibly necessitating the 

establishment of an autonomous burial site for the growing African population prior to the turn 

of the 18th century (Medford and Brown 2009). Alternatively, the burial ground may have 

originated earlier, around the middle of the 17th century, on land owned by free and “half-free” 

Africans. Located at the northern edge of the Collect Pond, this land fell outside the commercial 
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designs of Dutch colonial administrators and would have afforded a degree of privacy for 

cultural expressions eventually outlawed within city limits (Howson et al. 2009a). Early use of 

the burial ground probably coincided with that of public and congregational cemeteries within 

the city as well as burial plots on farms where Africans labored (Medford and Brown, 2009). 

Whether originating in the mid-17th or early 18th century or sometime in between, the site’s 

significance would have increased over time with the advent of racial slavery and as colonial 

officials restricted the burial of Africans at these other sites. The African Burial Ground remained 

in use until 1795 when the African Society – a mutual aid society – secured a new cemetery on 

Chrystie Street for “the interment of people of color.” 

Thus, the African Burial Ground’s story is rooted in the history of slavery in New York, 

which spans the Dutch (1624-1664) and British (1664-1783) colonial periods and extends 

halfway through the 19th century. This long history begins shortly after the establishment of a 

permanent European presence in the region. This was a slow process begun by traders who, by 

1614, referred to the southern tip of Manhattan Island as “New Netherland.” In 1615 

Amsterdam merchants founded a trading company in the area for the primary purpose of 

facilitating the increasingly lucrative fur trade with Mohawk and other indigenous peoples. Six 

years later, in 1621, the newly-formed Dutch West India Company attained a trading monopoly 

and began the process of settling along the Hudson River. 

Initial attempts to attract labor proceeded slowly at first. Prospective European migrants 

seeking greater economic freedom and opportunity in the New World instead found 

disappointment in the Company’s restrictive policies that ensured its tight control over land and 

livestock (Medford et al. 2009). In 1624 the Company’s efforts at transforming New Netherland 

from a small trading post or village into a permanent settlement were bolstered by the arrival of 

some 30 families of French-speaking Walloons (Protestants) (Blakely 2006). Two years later, 
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Director-general of the Company, Peter Minuit, “purchased” the island from indigenous 

(probably Lenape) peoples for trade items valuing 60 guilders. The European population of New 

Netherland became more diverse over the next few decades when the colony was “awash in the 

swirl of international economic competition” (Blakely 2006: 64). Although variously at war with 

other colonies such as New England and New Sweden, German, Norwegian and Swedish 

residents comprised as much as half of the New Netherland population by the middle of the 17th 

century. 

Historians are uncertain as to precisely when, but the first enslaved Africans arrived at 

the island shortly after the wave of Walloon settlers. In 1625 or 1626 privateers traded eleven 

African men captured from Spanish vessels to the Company in exchange for provisions; the 

beginnings of a permanent African presence in the area. The Company would become the 

largest owner of enslaved labor. These men labored on farms and in various public works 

including construction of Fort Amsterdam, the colony’s administrative center. Eventually, these 

eleven men attained “half-free” status and, with their wives, helped to establish the 

aforementioned free /half-free African community that possibly initiated the African Burial 

Ground. Historian Christopher Moore (2005) contends this may have been the first community 

of legally emancipated African Diasporans in North America. 

By 1630, Dutch colonists were importing African laborers for whom enslavement was a 

permanent condition. Enslaved Africans built much of the colony’s main city, New Amsterdam. 

They built forts and palisades, cleared and farmed land and were critical to the city’s upkeep and 

growth (Blakely 2006). Most enslaved Africans arrived from Curaçao and elsewhere in the Dutch 

Caribbean. Others came directly from western Africa; primarily West Central Africa as the New 

Netherland colony was restricted from trading in “Guinea” or West Africa until near the end of 

Dutch colonial rule. Indeed, Medford et al. (2009) report that 92.8 % of all Africans imported to 



 

65 

the Americas between 1601 and 1650 were West Central Africans. This pattern is reflected in 

surnames such as “Angola” and “Congo.”14 

Within this context of quickened migration and social change, slavery emerged in the 

North, initially, as a set of unregulated practices and relationships. The African experience in 

Dutch New Amsterdam has been characterized as one of “quasi-freedom” because enslaved 

people held legal rights and protections later done away with under British rule. For example, 

enslaved Africans testified in court, worked for wages, and bore arms in defense of the colony 

(Harris 2004; Medford et al. 2009). Some African men attained “half-freedom” for themselves 

and their wives by paying an annual tax (e.g., of maize or wheat and a hog) and providing a 

specified amount of labor for the Company (Higginbotham 1978). As noted above, among these 

rights was landownership, including the ability to purchase, sell and will land. However, failure 

to meet their obligations to the Company meant a return to “full” slavery. Worse, half-free 

status did not extend to children who remained “bound and obligated to serve the honorable 

West India Company as slaves” (Moore 2005: 45). With great difficulty, some free and half-free 

Africans purchased, successfully petitioned for, or otherwise negotiated freedom for their 

children and other relatives. 

                                                           
14 Heywood and Thornton (2009) note that the trade region in West Central Africa extended 
over 700 miles and was politically diverse, including the major states of Kongo and Ndongo as 
well as numerous small, “semiautonomous” polities. Still, individuals from the region likely 
exhibited a degree of familiarity with one another that would have informed their cultural 
responses to life and slavery in colonial America. Those from major states may also have been 
familiar with Europeans as Dutch, English and Portuguese traders had established a strong 
presence in West Central Africa by this time. Initially limited to existing commercial networks 
and constrained by political alliances, with time Europeans exerted considerable influence over 
indigenous politics and economies. The Portuguese in particular had longstanding relations in 
the area, having launched the Atlantic trade in enslaved Africans in the mid-15th century. The 
nature of European influence and African agency in the promotion, growth and evolution of 
slavery is a major topic of debate in Afro-Atlantic historiography (Rodney 1966; Fage 1969; 
Inikori 2001). 
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Various factors likely contributed to Africans’ ambiguous legal standing in New 

Amsterdam. Hodges (1999) points to the fact that Holland did not recognize slavery and, 

therefore, provided colonial administrators with no legal model for its institution. Others note 

that granting half-freedom was a trade-off that allowed the Company to secure a portion of the 

labor of half-free Africans while absolving itself of any costs associated with their care (see, for 

example, Higginbotham 1978). Furthermore, by locating free and half-free Africans’ farmland 

north of the Common, the Company created a buffer zone between the city and hostile Indian 

country (Swan [1998] cited in Medford et al. 2009). 

Whatever its basis, the relatively humane treatment of Africans in New Amsterdam was 

undermined by the turn to race and racism and the emergence of a racialized hierarchy of labor. 

Economic competition with slavery led European wage laborers to champion newly racial 

arguments of African inferiority for the specific purpose of deskilling enslaved laborers. Harris 

(2004:341) explains how 

[p]ractically from the arrival of the first slaves, European indentured servants and free 
laborers sought to distinguish themselves from African slaves because of competition 
with them in a tight labor market; one slave could be purchased for the same amount as 
a free laborer’s annual wages. In 1628, white workers requested that the Dutch West 
India Company not train slaves for skilled labor as it did in other American colonies. In 
appeasing white laborers by agreeing to exclude slaves from skilled occupations such as 
bricklayer and carpenter, the Dutch West India Company unwittingly encouraged 
settlers to use racial differences to determine who was suitable for certain occupations. 
By the 1650s, European settlers had begun to declare publicly that Africans were not as 
competent skilled laborers as Europeans. 
 

Efforts at limiting the use of enslaved Africans were unsustainable, however, as their skilled and 

non-skilled labor proved essential for the colony’s prosperity. To secure this labor, Dutch 

colonists combined race and slavery as core aspects and markers of New World identity and 

social status.  

In 1664 the colony’s Director-general, Peter Stuyvesant, ceded New Netherland to the 

British who renamed the New Netherland colony and the city of New Amsterdam in honor of 
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the Duke of York. Slavery flourished in New York. British officials sought to make Manhattan “a 

major North American slave port, and the New York colony a major market for slaves” (Harris 

2004: 342). The next year, legislators began drafting the colony’s slave code. New laws 

established business incentives for promoting the growth of the slave market. Slavers imported 

Africans to work in local industries and domestic settings and to speculate on the buying and 

selling of enslaved Africans in trading with other colonies. At the same time, authorities set 

prohibitive costs and time constraints on the use of white indentured servitude (Higginbotham 

1978). Harris (2004: 342) observes that the provincial assembly, fearing reprisal by local tribes, 

prohibited the enslavement of Native Americans in 1679 and that a 1706 British law 

stated explicitly that “Negroes only shall be slaves” and that “baptism shall not alter the 
condition of servitude of the Negro slave.” This legally sundered the already tenuous 
connection between Christianity and freedom for African slaves. In the same law, the 
British ensured the hereditary nature of slavery by having children inherit the mother’s 
condition of slavery or freedom.  

 
Thus, under British rule and a solidifying “racial worldview” (Smedley 2007), slavery expanded 

and came to be associated exclusively and permanently with Africans and African descent. By 

the end of the 17th century, New York’s African population was the largest of any North 

American city. By the middle of the 18th century, Africans accounted for just over 20 percent of 

the city’s population and trailed only Charleston and New Orleans amongst urban centers 

(Medford et al. 2009). 

Who were these enslaved individuals whose labor enabled the transformation of a small 

Dutch trading post into an American metropolis? This study assumes a subpopulational 

approach or perspective at the group (e.g., children and adults with dental modification) and 

individual level. However, a deep, biohistorical understanding of who these people were begins 

with a broader assessment of patterns of forced migration. Analyses of ships’ logs and 

merchants’ records reveal different pathways by which enslaved and captive people arrived at 
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New York. By reconstructing these pathways – which included direct trade with Africa, the 

provisions trade with the West Indies and Chesapeake colonies, privateering and piracy – 

scholars are able to shed light on who these enslaved individuals were genetically, 

geographically and socio-culturally (Goodman 2007; Jackson et al. 2009). 

Building on demographic studies by James Lydon (1978), David Eltis (1999) and others, 

NYABG Project historians have identified important patterns concerning the ethnic and 

geographic origins of this population. Medford et al. (2009:43) report that “[t]he period of 

greatest importation of enslaved laborers was between 1715 and 1774, when upward of 6,000 

arrived” and go on to note that, primarily, “trade to the city consisted of two types: a direct 

trade with Africa… and smaller shipments (rarely more than 10 individuals) from the West 

Indies.” During the 18th century, most enslaved Africans (57%) arrived in New York via the 

provisions trade with the West Indies – primarily from the British colonies of Jamaica, Antigua, 

Barbados and Bermuda. In exchange for foodstuffs and other critical products such as lumber 

and value-added products such as beer and snuff, New Yorkers received sugar, rum, European 

goods and enslaved laborers. The Dutch West Indies continued to supply enslaved Africans to 

New York, albeit in a diminished capacity, as did some Danish and French colonies. 

Many of those who reached New York City via the West Indies were African-born. The 

estimated ethnic origins of those imported via the West Indies are found in Table 4.1. West 

Central Africans from Angola remained a significant presence in the city as they had been under 

the Dutch, but were joined now by large numbers of captives from West Africa. Medford et al. 

(2009: 53) observe that some individuals procured as part of the provisions trade “would have 

been in the islands for mere days before being transshipped to New York, but others may have 

spent months—if not years—there, finally suffering sale as superannuated laborers unfit for 

plantation work.” Indeed, as one of the last American stops for slaving voyages, New Yorkers  
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Table 4.1: Importation of captives to New York by region (via West Indies). From Medford et al. 
(2009, Table 7) 

Region/Coast Percentage Estimated Total 

Senegambia/Sierra Leone 25 800 

Gold Coast 14 448 

Bight of Benin 9 288 

Bight of Biafara 33 1,056 

Angola 19 608 

Note: Original source of data: Eltis et al. (1999) 

 

Table 4.2: Direct trade of captives from Africa to New York. From Medford et al. (2009, Table 6) 

Region/Coast Percent Estimated Total 

Senegambia 77 2,156 

Gold Coast 20 560 

Angola 3 84 

Note: Original source of data: Eltis et al. (1999) 

 

complained of slavetraders’ who sought to unload superannuated workers deemed undesirable 

in West Indian and southern American markets.15  

Forty-three percent of enslaved laborers arrived in New York directly from Africa. In a 

shift from the Dutch colonial period, this direct trade drew most heavily from West Africa (see 

Table 4.2). British New Yorkers imported captives from five of the seven major regions of export 

of enslaved Africans: (1) the Senegambia, (2) the Sierra-Leone-Liberia region, (3) the Gold Coast, 

(4) the Bight of Benin, and (5) the Niger Delta (Figure 4.1). The vast majority of this group 

embarked from the Senegambia (77%) and Gold Coast (20%) regions. Thus, African New Yorkers  

                                                           
15 See chapter nine for a discussion of dumping in relation to dental modification. 
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Figure 4.1: Eight primary coastal regions that exported captive and 
enslaved Africans to the Americas during the Transatlantic Slave Trade. 
These regions included (1) Senegambia, (2) Sierra Leone, (3) the 
Windward Coast, (4) the Gold Coast, (5) Bight of Benin, (6) Bight of 
Biafra, (7) west Central Africa, and (7) Southeast Africa (including part of 
southern Tanzania). Source: Eltis and Richardson (2010)  

 

were culturally diverse; a mix of Ashanti, Igbo, Gur, Mande and other peoples of primarily 

western African geographic and ethnic origin, reflecting different religious backgrounds and  

degrees of creolization. For example, a strong contingent of Mande and other Senegambian 

peoples would have ensured a strong Muslim presence. “Illegitimate” trade with privateers and 

pirates contributed even more regional diversity.16  

                                                           
16 For example, Medford et al. (2009) report that Frederick and Adolph Philipse, members of a 
prominent merchant family, were “avid participants” in an illegal trade with pirates who 
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At any given time, the New York African demographic profile reflected shifting and 

interrelated social, cultural and economic dynamics. Consider, for example, some of the factors 

that would have influenced decisions to import people directly from Africa as opposed to the 

West Indies. Slaveowners’ generally preferred laborers “seasoned” by time spent in the West 

Indies who knew European languages, were familiar with work routines, and had acquired some 

resistance to New World diseases (Berlin 1998). This preference helps to explain why the 

majority of enslaved Africans arrived in New York from the West Indies during the 18th century. 

Other factors favored direct trade from Africa. Cost was a primary consideration. 

Seasoned laborers typically were more expensive than those imported directly from Africa. 

Availability was another issue as slave ships usually arrived at New York after traveling to 

southern American markets where buyers had the first option to acquire these laborers. 

Enslaved individuals’ actions influenced these decisions as well. Seasoned laborers – and men in 

particular – were implicated in the planning of revolts and, thus, were sometimes viewed as 

“troublesome property.” In slaveowners’ calculations, this perception might offset any potential 

advantages associated with seasoned labor. Apparently, this was the case in the aftermath of a 

1712 enslaved African uprising and the uncovering in 1741 of a “conspiracy” to burn down the 

city that involved a diverse network including enslaved Africans, Irish soldiers, and descendants 

of some of the original Dutch settlers. Direct importation from Africa increased following both 

events (Blakey 2010; Barrett and Blakey 2011).17 

                                                                                                                                                                             
brought hundreds of captives to the city from Southeast Africa (Madagascar) in the late 17th 
century. 
17 Recall that many who arrived in New York via the West Indies were African-born. So, the 
important question here is that of how seasoning promoted shared, creole identities or ethnic 
solidarity. In the case of the 1741 “plot,” at least some organization occurred along ethnic lines 
as a group of friends and alleged conspirators had Akan day names. See chapter three for a 
comparison of the creolization and ethnic tenacity models. 
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Attempts to characterize this population must also account for gendered and child labor 

practices and associated shifts in age and sex distributions. Medford et al. (2009) provide an 

overview of the range of labor required of African men, women and children during the 18th 

century. As the city urbanized and assumed a prominent role in the Atlantic shipping industry, 

demands on enslaved laborers naturally expanded and became more diverse. Enslaved men 

continued working on farms and in mines outside the city while being utilized increasingly for 

jobs related to maritime trade such as coopering, sailmaking, shipbuilding and sailing. African 

women served primarily as domestic laborers tasked with sewing, cooking, cleaning and caring 

for slaveowners’ children, but were employed for work in the field and other tasks as needed. 

Of course women “bore the added burdens of childbirth and rearing, usually without a 

co-residential mate” (Medford et al. 2009: xix). Most slave owning households in the North 

included two or three enslaved individuals; typically, a mother and her child or children. With 

different owners, adult males usually lived in separate houses. Limited visiting rights with their 

families were a source of tension that may have contributed to the 1741 incident Medford et al. 

(2009). 

Children also served primarily as domestic laborers. Most 18th-century censuses defined 

a “child” as an individual younger than 15 years. This legal classification was subject to change 

and, thus, of limited use for assessing the onset of “adult” work stresses. Indeed, children as 

young as age 6 were advertised for sale and it was not unusual for a child to begin learning a 

trade between the ages of 6 and 12 (Barrett and Blakey 2011). Like their counterparts 

throughout the colonial Americas, slaveowners in early New York exhibited a general preference 

for young adult male laborers. When importation rates for men declined, women and children 

found their labor roles expanded accordingly. Such would have been the case following the 1712 

revolt and 1741 “conspiracy” to burn down the city (Blakey 2010). Women and children 



 

73 

enslaved to shopkeepers and merchants were especially vulnerable to conscription for labor 

typically assigned to men (Medford et al. 2009). Chapter nine provides a discussion of labor 

practices, particularly those that would have resulted in lead exposure. 

While the factors driving the demographic formation and transformation of this 

population were dynamic and complex, the overarching narrative of 18th-century New York 

African life is rather straightforward. Returning once more to the 1712 uprising, one observes in 

its immediate aftermath the implementation of severe restrictions on the movements of 

enslaved Africans and their ability to congregate within the city. New laws limited the number of 

people who could attend funerals and proscribed heavy fines for free Africans who sold goods 

to enslaved individuals or those who entertained them in their homes or workplaces. 

Unfortunately, this period was defined by the “tightening vise” of racial slavery and greater 

psychosocial stresses for enslaved people. 

Free Africans were also vulnerable in 18th-century New York. Representing perhaps only 

5 percent of the growing African population at midcentury (Blakey 2010), members of this small 

community faced the loss of economic independence and property. All free workers suffered as 

enslaved Africans undertook a growing range of labor and became even more central to the 

city’s economy. Growth of the enslaved African population actually outpaced that of the 

European population between 1698 and 1738. In response, many Europeans opted to establish 

independent farms or businesses or relocated to places like Pennsylvania where conditions for 

free or indentured workers were more favorable (Harris 2004). However, those European 

workers who stayed benefited from legal protections against free black labor competition. 

Caught between New Yorkers’ preferences for enslaved labor on one hand and a racially 

segregated free workforce on the other, some free Africans were forced into indentured service 



 

74 

in order to avoid being charged as indolent or in violation of vagrancy laws (Medford et al. 

2009). 

Another major issue facing free Africans at this time was the collective loss of their 

landholdings as the city expanded northward. Laws passed following the 1712 revolt forbade 

individuals freed after 1712 from purchasing land and stripped free African landowners of 

property, some of which had been accumulated since Dutch rule. By 1716, African landholdings 

in Lower Manhattan were a thing of the past. The loss of property had symbolic as well as 

material significance. The emerging American republican ideology stressed political 

independence and landownership as the basis of true freedom. Hence, these developments 

served the dual function of further positioning white freedom and black slavery as antithetical 

even as they blurred the line between free and enslaved status for Africans. Figuratively and 

sometimes literally, those who did not own property were at risk of becoming the property of 

another. Such was the case especially for free Africans. 

Chattel slavery remained the lot of most African New Yorkers throughout the 18th and 

well into the 19th century when manumissions debates intensified. During the Revolutionary 

years, abolitionists portrayed as hypocrites those who championed freedom from British 

tyranny while maintaining a large enslaved labor force at home. Proponents of slavery 

countered that legislated emancipation was tantamount to robbing slaveowners of their 

Lockean natural rights of property. Members of both groups questioned whether blacks, the 

vast majority of whom owned no property (and, thus, lacked political independence) had the 

capacity for self-government. Eventually, some individuals earned their freedom by fighting 

alongside British soldiers during the American Revolution. When the British evacuated in 1783, 

some 4,000 black loyalists – many of them fugitives from slaveowners – emigrated to Nova 

Scotia, Sierra Leone and England where they faced harsh new realities of discrimination in 
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freedom (Medford and Brown 2009). Others escaped slavery through military service with 

American patriots from whom promises of emancipation came more begrudgingly. 

For most enslaved New Yorkers, however, emancipation came decades later, the result 

of a gradual legislative process. Compared to other northern states, emancipation in New York 

came particularly slowly amid increased reliance on enslaved labor that fueled postwar 

economic growth. 18 A measure for eventual emancipation proposed in 1777 began a “long 

death” for slavery in New York that proceeded over half a century of “cautious steps toward 

black freedom” (Rael 2005: 124). Another important step in this process was the founding of the 

New York Manumission Society in 1785. The Society pressed for abolition through the 

legislature, lobbied slaveowners to manumit enslaved Africans voluntarily, provided legal 

representation and protection against kidnappers for free and enslaved individuals, and was 

instrumental in establishing African Free Schools for black children (Rael 2005; Medford and 

Brown 2009). Nor can the significance of African-American efforts toward freeing themselves be 

overstated. Enslaved individuals escaped the countryside in the hope of blending into the 

“anonymous masses” of the city while free blacks stepped up efforts to purchase enslaved loved 

ones. 

Following more than a decade of debate, the New York state legislature passed the 

Gradual Emancipation Act of 1799. This act did not provide for universal abolition. Rather, it 

freed only children born after July 4, 1799 and, even then, after a long period of indentured 

servitude or apprenticeship. Male and female children were indentured to their mothers’ 

enslavers for 28 and 25 years, respectively. A second emancipation law passed in 1817.  

                                                           
18 According to Rael (2005:126), “New York City became a haven for slavery. Of all the major 
northeastern cities, it alone remained committed to forced labor. In 1790, Philadelphia counted 
only 300 enslaved African Americans; even Baltimore, the rapidly expanding Southern port city, 
listed only 1,300. In contrast, over 2,300 resided in New York.” The free black population grew 
immensely as well, by over 200 percent during the 1790s. 
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According to this new law, all enslaved African Americans born before July 4, 1799 would 

become free on that date in 1827. Enslaved individuals born between 1817 and July 4, 1827 

became free following indentured service of up to 21 years; their labor essentially providing 

slaveowners compensation for the loss of future profits. Thus, an African-American New Yorker 

born in 1827 could be bound until 1848. Indeed, Berlin and Harris (2005b) report that federal 

census enumerations included black men and women as “slaves” until 1850. The last piece of 

legislation addressing slavery in New York passed in 1841. This law prohibited non-New Yorkers 

from staying in the city with enslaved African Americans for more than 9 months. 

 

New York City was an extremely important site with respect to the length of time and 

the scale at which its citizens participated in the institution of slavery. For 200 years, New 

Amsterdam and then New York maintained an enslaved African population through direct trade 

with Africa and a provisions trade with West Indian and Chesapeake colonies. Slavery began 

under the Dutch as a relatively informal set of practices and evolved under British rule into a 

racially codified system of labor, punishment and political-economic stratification. Enslaved New 

Yorkers built much of the city that came to symbolize American wealth. Yet, as Medford and 

Brown (2009: 102) observe, “[I]n time, the cemetery and the people interred there became a 

deeply buried memory, inaccessible to posterity and denied their rightful place in New York 

history.” Shortly after the cemetery’s closing in 1795, developers targeted the Common and 

Collect Pond as sites of new commercial and residential properties. With construction activity, 

the burial ground itself was buried under landfill, disappearing from sight as well as public 

awareness. Also fading was the memory of enslaved New Yorkers interred there, who became 

historical footnotes in the city’s official narrative. In the words of Wolf (1982), these were a 
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“people without history.” It would be almost 200 years before further construction efforts and 

subsequent activism and scholarship rectified this situation. 

 

The NYABG Project 

 

Background 

 

Currently, the African Burial Ground is located in the Civic Center area of New York 

beneath various government facilities among other structures; its recent reappearance the 

result of a United States General Services Administration (GSA) building project. Having 

obtained Congressional approval in 1988, the GSA planned to construct a 34-story office tower, 

the Ted Weiss Federal Building, and a 4-story pavilion at 290 Broadway, one block north of City 

Hall. With the unearthing of hundreds of burials came awareness of the site’s unique cultural, 

spiritual and research significance and, today, its place in history seems secure. 

A major research project culminated in 2003 with the Rites of Ancestral Return, the 

ceremonial reinterment of excavated remains at the original site. The excavated and analyzed 

portion of the burial ground was designated a National Monument in 2006. The site memorial 

was unveiled in 2007 and a permanent interpretive center opened in 2010. As of October of 

2009, the site operates under the auspices of the National Park Service and plays host to regular 

educational forums and cultural celebrations. 

And, yet, the journey from forgotten cemetery to National Monument was not smooth. 

The GSA building project was contentious from its start as public fascination with the cemetery 

and its hidden history morphed into anger and protest over what many came to see as its – and 

their – disrespectful treatment. Why and how did this happen? What factors drove this conflict? 
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Was conflict avoidable? Most importantly, how were the exposed issues addressed and what 

have scholars and others learned from attempts to resolve them? 

A key question, often raised in public presentations on the NYABG Project, is that of 

whether or when the GSA knew that burials would be encountered at this site. As the burial 

ground appears on maps dating to the mid-18th century, federal officials acknowledged early on 

the possibility of uncovering skeletal remains. As dictated by the 1966 National Historic 

Preservation Act (NHPA), identification of a cultural heritage resource such as a historic 

cemetery on federal land requires efforts to protect those resources; in this case, to mitigate the 

potentially destructive impact of building activity. Specifically, amongst other responsibilities, 

Section 110 of the NHPA directs federal agencies to protect and preserve the integrity of 

“nationally significant historical properties.” The African Burial Ground met this criteria and in 

1993 would be designated a New York City Landmark and a National Historic Landmark. 

To develop an environmental impact statement, the GSA hired the firm Edwards and 

Kelcey who subcontracted Historic Conservation and Interpretation (HCI) for cultural resource 

management (CRM). HCI was tasked with determining those areas most likely to contain intact 

burials. In May of 1991, HCI confirmed the presence of skeletal remains approximately 15 feet 

below grade level. As anticipated by the environmental impact statement, these burials had 

been disturbed by prior construction. However, further testing revealed in situ burials; a finding 

that naturally stirred tremendous interest and curiosity when first reported the following month 

in The New York Times (Hays 1991). Under these circumstances, a prudent (and typical) next 

step would have entailed more testing to assess the full scope of the undisturbed cemetery 

context, towards the development of an appropriate archaeological excavation and research 

plan. Instead, the GSA acted upon HCI’s initial estimation of 50 in situ burials within the 

construction site and ordered the analysis of 10 burials. This, GSA officials reasoned, satisfied  
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Figure 4.2: Construction and partial excavation of the African Burial 
Ground at the 290 Broadway Block in Lower Manhattan. 

 

legal obligations to “protect and preserve” the cultural heritage represented by the affected 

portion of the burial ground and construction was underway by October of 1991 (Figure 4.2). 

It soon became apparent that HCI grossly underestimated the extent of recoverable 

burials when remains of several hundred people were unearthed over the course of the next 

few months. These burials had been protected from prior construction activity beneath 25-30-

foot-thick 19th-century landfill deposits. Now, some were being damaged by the use of backhoes 

and other heavy equipment. Also lost or destroyed were original ground surface features and 

other archaeological context valuable for dating purposes. Under pressure from the GSA to 

speed up excavation and analysis of the site, HCI subcontracted with Metropolitan Forensic Area 

Team (MFAT) and Michael Parrington, the latter of whom had excavated the 19th-century First 

African Baptist Church site in Philadelphia. 

By this point, several factors conspired to strain relations between the GSA and a 

growing, increasingly agitated segment of the public. While GSA officials may not have 
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anticipated unearthing hundreds of burials, critical observers concluded that actions following 

this important discovery fell short of meeting the agency’s legal responsibilities. For example, in 

violation of the NHPA, the GSA initiated excavation and construction without having in place an 

approved research design. Furthermore, Section 106 of the NHPA instructs federal agencies to 

involve the public and “other parties” or consultants during the early stages of project planning. 

While public hearings on the project occurred, many members of the African-American 

descendant community complained of their perfunctory nature. To them, the purpose of these 

meetings seemed to be their appeasement rather than constructive dialogue with potential for 

real influence on the site’s handling. Although Michael Parrington brought valuable experience 

from the First African Burial Ground archaeological site, this impression was reinforced by GSA 

officials’ apparent resistance to consult with African-American scholars. The critique was 

strengthened, also, when the President’s Advisory Council on Historic Preservation (ACHP) 

found that the research plan finally produced for the GSA inadequately addressed African 

diasporic perspectives. Meanwhile, Howard University Biological Anthropologist Michael Blakey 

inspected excavated remains at Lehman College and found poor preservation conditions 

including mold growth, lack of temperature control, and insufficient storage space. As a result, 

for many, interest and curiosity gave way to concern and contempt for GSA officials’ perceived 

intransigence and apparent insensitivity toward the descendant community, the broader public, 

and this sacred site (Figure 4.3).  

Organized protest ensued. The voices of descendant community members and other 

concerned citizens were unified if not uniform. Some viewed excavation under any 

circumstances as an act of desecration and called for a permanent halt to all construction 

activity as well as immediate reburial at the site. Other protesters focused their outrage on 

federal officials’ lack of transparency and rushed, unsystematic excavation practices employed  
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Figure 4.3: Protesting the GSA’s handling of the African Burial 
Ground. Many community members viewed construction on the 
site and excavation without an accepted plan for scientific research 
plan as disrespectful to their ancestors and themselves. 

 
 

by various CRM firms. Members of this latter group were more amenable to, and even 

advocated for, the site’s scientific analysis but expected from GSA an adequate research design 

and, if appropriate, a modified construction plan. Overall, most protestors agreed that the GSA’s 

treatment of the site seemed to mark yet another chapter of institutional insensitivity and 

racism for African-American New Yorkers; disrespect that mirrored the identification and 

treatment of their recovered ancestors as “slaves” in life. 

For the GSA, financial considerations trumped community and scientific concerns; even 

those concerns largely shared by other governmental agencies. GSA officials saw as their first 

and main priority the expedient removal of skeletal remains from the work site. Accordingly, 

substantive responses to the requests and demands of other stakeholders were usually slow-

coming and often negative. On several occasions, then Mayor David Dinkins, who had 

established a Task Force to oversee the site, requested an end to the excavation. In its official 
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“watchdog” capacity the ACHP recommended that the GSA secure additional consultants and 

perhaps work with the Army Corps of Engineers which was better equipped to address an urban 

project of this scope. The GSA hired John Milner Associates, Inc. (JMA) to oversee excavations 

and revise the research design. Under mounting public pressure over the exclusion of African-

American personnel and perspectives, the GSA also hired Michael Blakey to collaborate with 

JMA on the new research plan – only a few weeks before the ACHP’s requested deadline. 

The GSA’s reluctance to comply with its requests led the ACHP to recommend 

suspending all work at the site pending an approved research plan, lack of which constituted a 

violation of the GSA’s memorandum of agreement (MOA) for the project. In their advisory roles, 

however, entities such as the ACHP and the Mayor’s Task Force exerted limited influence on 

GSA officials’ decision-making. Michael Blakey has written extensively about the events 

surrounding the African Burial Ground’s “rediscovery,” analysis and memorialization (e.g., 1998, 

2001, 2009, 2010; La Roche and Blakey 1997).  

As Blakey (2010: 62) summarizes the situation, 

[t]he bureaucratic strategy was to plough forward with construction while holding 
required public meetings and expediting the archaeological excavation needed to 
mitigate the total destruction of cultural resources. The public strategy, consistent with 
the legacy of the Civil Rights Movement, was to organize mass public protests and to 
lobby legislators to end excavation and construction when meetings with the GSA were 
found to be without substance. 
 

Calls to halt excavation and/or downscale construction were dismissed by GSA officials who 

estimated the cost of doing so in the tens of millions of dollars.  

The combination of public protest and lobbying proved critical for ending the standoff 

between community activists and the GSA. This strategy succeeded in garnering vital 

Congressional support for those seeking to end the excavation. At the conclusion of a 

Congressional Subcommittee Hearing on the African Burial Ground held in July of 1992, U.S. 

Representative Gus Savage, the Chair, concurred with community members and the ACHP that 
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the GSA was in violation of Section 106 of the NHPA. Congressman Savage found that GSA 

officials had not acted in good faith in their dealings with public stakeholders and immediately 

convened a Federal Steering Committee to oversee proper compliance with the MOA. 

Ultimately, Congressional intervention resulted in: (1) an early end to excavation (which, 

unchecked, likely would have meant disturbing over 100 additional burials); (2) modification of 

construction plans to accommodate reburial of skeletal remains; (3) development of an Office of 

Public Education and Interpretation and, later, a memorial and visitor center; and (4) 

involvement of African-American scientists in future research. For members of the descendant 

community and their supporters, this was a victory for human dignity and heritage rights – for 

the living as well as the dead.  

When excavation ceased and the African Burial Ground closed officially in October of 

1992, workers had identified over 400 burials. The excavated portion of the cemetery, 

technically referred to as “The New York African Burial Ground,” is considered one of the most 

important archaeological discoveries of the 20th century (Cantwell and Wall 2001). In 1993, GSA 

contracted with Howard University to conduct the site’s scientific analysis – the New York 

African Burial Ground Project – as detailed in the research design developed by Blakey and JMA. 

Blakey, then curator of the university’s William Montague Cobb Skeletal Collection, would serve 

as the project’s Scientific Director. 

The descendant community’s decision for African-American leadership and intellectual 

stewardship of the project was not an automatic or unthinking one. Rather, this was an 

organized attempt to make scholarship relevant by opening up new critical space in an academic 

field where African-Americanist theoretical influence has been traditionally marginalized (Blakey 

2001; Watkins 2007). The descendant community’s position on this matter proved instrumental 

when the ACHP and some scholars voiced concern over some of the vindicationist aspects of the 
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Blakey/JMA research design. Critics questioned the objectivity of such an approach. Presented 

with alternative scientific viewpoints, community members in turn questioned the objectivity of 

scientists who favored bio-racial assessments traditionally linked to arguments of black 

inferiority – and that obscured important biohistorical information. In this light, many came to 

see the proposed research agenda as a necessary corrective to the types of Eurocentric 

historical distortions that rendered the African Burial Ground invisible in the first place. 

As a colonial-era cemetery in New York, the African Burial Ground held unprecedented 

potential for exploring processes of ethnogenesis and early racial formation. Howard University 

received 419 individuals; a fraction of the estimated 15,000 individuals buried at the cemetery, 

yet still the largest African diasporic skeletal sample in the Americas.19 Moreover, the site dates 

to a foundational stage of African-American identity in the North, a region for which scholarship 

on slavery is relatively scarce. In light of the project’s contentious history, researchers sought to 

demonstrate that public and scholarly interests and goals concerning this sacred site could be 

compatible, even shared. Tapping the burial ground’s research potential would require a new 

model of bioarchaeology: one that was fully interdisciplinary, biocultural and publicly engaged. 

 

Research Goals 

The NYABG Project differed from previous bioarchaeological studies of the African 

diaspora in several important ways. For example, under Blakey’s direction, the research team 

assembled was exceptionally diverse, drawing upon the expertise of over 30 scholars at 9 

institutions. The large sample size and the site’s distinctive historical and geographic location 

required researchers, from art historians to geneticists, to approach the project from multiple 

“cross-fertilizing” perspectives. Technological advances also played an important role in defining 

                                                           
19 From 436 burials assigned in the field, 419 individuals were inventoried. Of these, 391 
individuals were sufficiently preserved for laboratory analysis. 
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the project’s potential as the research design called for the use and development of 

sophisticated and emerging analytical techniques such as the laser sampling employed in this 

study. These divergences from prior practice were primarily of a technical nature or matters of 

scale. 

A more fundamental challenge to bioarchaeology “as usual” came from project leaders’ 

efforts to redefine the power dynamics that govern interactions between scientist and subject. 

Blakey has written extensively about the racial politics of the NYABG Project that influenced this 

new model of engaged anthropology (e.g., see Blakey 1998, 2001, 2009, 2010; La Roche and 

Blakey 1997). What most distinguished the NYABG Project’s theory of public engagement was 

an insistence that the descendant community fulfilled the role of "ethical clientele." This 

framework pushed the envelope of engaged anthropology beyond attempts to identify 

community “partners.” 

As with most academic projects, NYABG researchers reported to a funder. In this case, 

the “business client” was the GSA. Within this new model, the research team was also 

accountable to the descendant community, which received regular scholarly updates and had 

the power to propose and even deny specific research avenues (such as those involving invasive 

measures). Not surprisingly, this latter condition – i.e., community approval for research plans 

and methods – proved controversial within the discipline. On what grounds, some asked, should 

non-experts determine acceptable or proper scientific protocol? In response, project leaders 

argued that scientists should learn from GSA officials’ missteps, and not seek to exert their own 

authority over the skeletal remains. Indeed, they could not. When community members 

asserted their heritage rights and demanded an end to excavation and proper memorialization 

of the site, they also earned the right to help determine what information gleaned from these 

ancestral remains was most valuable and worth securing. Respecting this right was an important 
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step away from anthropology’s colonial and colonizing legacy, and in line with current efforts to 

move the discipline constructively beyond academic walls (Low and Merry 2010).20 

This theoretical approach combining community experience with scientific experience 

and technical expertise had major and overwhelmingly positive implications for the nature and 

scope of the project. In addition to determining that Howard University could undertake the 

project, community input was solicited to help determine the major research questions. 

Collaboration between community members and researchers produced 3 key areas of inquiry, 

which appear in the Blakey/JMA plan: 

1) What were individuals' geographic origins and cultural backgrounds? 
 
2) What cultural and biological processes were associated with African-American 

identity formations? 
 
3) What was the physical quality of life wrought by enslavement? 
 

Project leaders later added a fourth: 
 

4) What modes of resistance or "humanity maintenance" did enslaved New 
Yorkers employ? 

 
As we have seen, racial slavery influenced every aspect of black life in early New York. 

These questions acknowledge this reality while anticipating as well the facts of human agency 

and diaspora and experiences that crosscut varied political, economic and cultural settings, 

sometimes within a lifetime. Their primary purpose, therefore, was to establish a biocultural and 

diasporic framework that would enable a full exploration of lived experiences leading up to and 

including life and death in New York. Thus charged, NYABG researchers undertook to investigate 

the full humanity of this population. 

 

                                                           
20 Interestingly, the NYABG Project approach captured the full range of anthropological 
engagements identified by Low and Merry (2010): sharing and support; teaching and public 
education; social critique; collaboration; activism and advocacy. 
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Major Research Findings 

The final research findings were published in 2009 as a series of edited volumes under 

the title The New York African Burial Ground: Unearthing the African Presence in Colonial New 

York. These technical skeletal biological (Blakey and Rankin-Hill, 2009), archaeological (Perry et 

al. 2009) and historical (Medford, 2009) reports represent over a decade of research into early 

African New Yorkers' origins, migrations, lifeways and deaths, all in diasporic perspective. Many 

of the major historical findings appear above, in the first few sections of this chapter. Here, I 

summarize key archaeological and skeletal biological research findings, with emphasis on those 

relevant to this study’s focus on geographic origins and migration. 

Construction activity destroyed valuable surface features typically associated with 

religious-based African diasporic mortuary practices before they could be recorded by the field 

archaeologists. This loss affected the interpretation of the social and ideological contexts 

surrounding the deaths of the overwhelming majority of the recovered individuals. It also 

destroyed information that could have informed an understanding of the chronological order of 

the burials. Despite this loss, the NYABG project archaeologists, using coffin characteristics and 

the very few temporally diagnostic artifacts recovered from the graves,  were able to categorize 

burials within one of four temporal groupings: Early (pre-1735); Middle (circa 1735 to 1760); 

Late-Middle (1760-1776; and Late (post-1776). These temporal groupings are used throughout 

my study. 

Most individuals, and all children, were buried in coffins. Coffin use was increasingly 

common on both sides of the Atlantic during the 18th century e.g., among the Akan whose 

burials required either coffins or shrouds. The west-headed orientation and supine extended 

burial position found for so many of the burials is a level of consistency very suggestive of the 

existence of a distinctive mortuary program being practiced by the New York African  
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Figure 4.4: Artifacts from the NYABG. Pictured here are shroud pins (left), cuff links 
(center) and a silver pendant (right). 

 

descendant community to address the spiritual needs of people from such a wide variety of 

cultures throughout Africa (Perry et al. 2009). A few coffins were shared and were generally 

interpreted as evidence of familial relations. Researchers plan to test this hypothesis through 

genetic analysis. 

The destructive recovery practices certainly help to explain why there are not many 

artifacts. This said, other studies of cemeteries and quarters of enslaved populations also report 

a limited number of artifacts (Handler et al. 1986; Parrington and Roberts 1984; Samford 2007). 

Among the artifacts that were recovered, most of them were copper shroud pins. Shrouding 

was associated primarily with infants, children and adult females – but also with nearly half of all 

males. Also recovered were beads, cowries, shells, and several types of adornments (e.g., 

buttons and cuff links) (Figure 4.4). Of particular interest for this study, Figure 4.5 is a photo of a 

lead musket ball found lodged in the rib cage of Burial 25, a 20 to 24-year-old woman. 

 

Skeletal remains are an invaluable source of insight into processes of migration, health 

and disease that underlie demographic patterns. Project researchers employed historical  
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Figure 4.5: Lead musket ball found 
lodged in the ribs of Burial 25. 

 

demography and paleodemography to establish patterns of migration, fertility, mortality, and 

population structure for enslaved African New Yorkers. Historical data affirmed the steady 

importation of enslaved people from the colonial South, the Caribbean, and directly from Africa. 

However, Rankin-Hill et al. (2009) note several inherent limitations of the documentary record. 

These factors include insufficient biographical details and intentional undercounting of enslaved 

Africans for purposes of smuggling and tax evasion. Given such limitations, the authors suggest 

that paleodemographic reconstructions based on skeletal age and sex determinations may be 

more appropriate in African diasporic bioarchaeology.21 

The NYABG paleodemographic sample consisted of 301 individuals: 102 males and 69 

females for which age and sex were assessed and 130 subadults for which age was determined. 

Rankin-Hill et al. (2009) stated 4 primary objectives of paleodemographic research: 

                                                           
21  Paleodemography is not without its own controversies and limitations. For example, in their 
influential critique, Wood et al. (1992) argued that paleodemographic interpretations too often 
failed to account for dynamic and changing migration patterns, the selective nature of mortality 
(for which rates may not be readily inferred from pathological observations), and “hidden 
heterogeneity” based on differential susceptibility to disease. Also, bioarchaeological analyses 
are also subject to the question of just how representative the skeletal sample is of the actual 
living population of the time. 
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1. establishing population profiles and demographic trends that integrate historical 
and paleodemographic evidence; 

 
2. contextualizing the New York African population within its surrounding temporal, 

political, economic and sociocultural landscape; 
 
3. placing the skeletal sample within an African diasporic biohistorical framework; and 

 
4. providing a conceptual framework for archaeological research. 

With these objectives in place, the authors were able to identify important trends with respect 

to mortality, fertility and population structure. Mortality rates were high for infants and young 

children, with approximately a third of all individuals dying before age 5. Among those less than 

15 years of age, nearly a quarter died younger than 6 months. Another 17% died before age 1 

and over half of all children died before reaching age 2. For adults, Rankin-Hill et al. (2009) 

report that more females (25%) died between the ages of 30 and 34 than any other age range, 

compared to a peak mortality rate (18%) for males between the ages of 40 and 44. For males, 

this rate is just slightly above that observed for age ranges 45-49 (17%) and 50-54 (15%).  

Adult sex ratios seem to suggest that the NYABG population did not achieve natural 

increase through childbirth. Blakey (2010) observes that the NYABG adult sex ratio, while 

dynamically responsive to changing labor demands, generally resembled that of the Caribbean 

where men outnumbered women leading to low fertility rates and population growth. This 

finding of low fertility rates may seem to contradict that of high infant and young child mortality 

rates. However, Rankin-Hill et al. (2009) point out that overall population growth was slow for 

African New Yorkers during the 18th century, and most likely the result of increased childhood 

importation rates over time. 

Demographic trends provide an overview of population health conditions or, more 

accurately, reflect their consequences. Paleopathological analysis, on the other hand, offers a 

direct and sometimes specific view of actual health and disease processes down to the 
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individual and even lifespan level. Here, 306 (86%) of 358 individuals for whom analysis was 

possible showed evidence of skeletal pathology. Some diagnostic markers point to specific 

conditions, such as porotic hyperostosis, generally considered an indicator of anemia. Others, 

like periostitis, are general or nonspecific indicators of disease. Periostitis is a nonspecific 

indicator of infectious disease. Both porotic hyperostosis and periostitis were frequently found 

amongst NYABG individuals. 

Another class of skeletal pathological markers are enamel developmental defects. 

Enamel defects are extremely informative as they indicate metabolic stress from nutritional 

disorders or infectious diseases during specific periods in life (Goodman et al. 1980). As tooth 

crowns form during well-documented age ranges (Reid and Dean 2006), lesions occurring during 

enamel matrix formation (hypoplasias) or mineralization (hypocalcification) are nigh-permanent 

records of health disruptions during fetal, early childhood and adolescent periods of growth and 

development (see chapter 5). NYABG Project researchers found that, for the 65 individuals for 

whom teeth that formed between birth and age 6.5 years could be assessed, 71 percent (n=46) 

of the 65 individuals had hypoplasias (Blakey et al. 2009). The authors note that a peak 

hypoplasia frequency between 3.5 and 6.5 years of age suggests that this was a particularly 

stressful for enslaved African children, perhaps related to approaching and reaching the age at 

which one might be sold and separated from parents and other loved ones. 

Skeletal research indicates that this population endured harsh work regimes as 

evidenced by advanced (early onset) osteoarthritis, fractures, and work stress lesions or 

markers. For example, excessive loading on top of the head (axial loading) may have resulted in 

the ring fracture of the base of the skull observed for Burial 107, a female aged 35-40 years. This 

was a perimortem fracture occurring at or near the time of death. Musculoskeletal stress 

markers (MSM) associated with intense physical labor include hypertrophic bone development 
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and furrows at tendinous attachment (enthesopathies) or ligamentous attachment sites 

(syndesmoses). Such indicators of work stress were observed for men, women and children. 

Instances of interpersonal violence were also observed, and some may have reflected 

forms of punishment. Such cases included perimortem fractures possibly occurring at or near 

the time of death and highly polished bones consistent with burning. Among the more striking 

cases was that of Burial 25, the young woman noted above for the presence of a lead musket 

ball in her rib cage. This woman also had evidence of blunt-force trauma to her face and a 

“spiral” fracture just above the right wrist caused by twisting and pulling action. Possibly, this 

woman faced a violent response to her attempts at resistance (Wilczak et al. 2009). Skeletal 

analysis also reveals possible cases of grave-robbing, which Medford and Brown (2009) identify 

as a common practice in late-18th-century New York. 

Finally, concerning ancestry, the primary focus of this study, Goodman (2007) identifies 

three often-entangled and yet distinct types: genetic, geographic and social-ethnic. NYABG 

researchers have explored all three forms of ancestry as each potentially plays an important role 

in the construction of human identities. Craniometric and mitochondrial DNA analyses suggest 

genetic affinities to contemporary Senegambia, Ghana and Benin for some individuals (Jackson 

et al. 2009). Overall, genetic research supports historians’ conclusions that African-born New 

Yorkers hailed primarily from West and West Central Africa. 

Chemical analysis provides the most direct means of geographic sourcing at the 

individual level. Prior research suggests there was considerable variation in dental enamel lead 

levels among NYABG individuals (Goodman et al. 2009; Webb et al. 2005). This finding is 

consistent with widespread lead use documented during the colonial period for North America 

and the West Indies through which many New York-bound captives were routed (e.g., McCord, 

1954; Handler et al. 1986; see chapters 5 and 9). An especially important and consistent finding  
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Figure 4.6: Strontium isotope ratios for NYABG children and adults. Values for 
adults with cultural dental modification were more variable and, generally, 
above the 0.711-0.712 “local” Manhattan range. Higher values suggest 
African birth. From Goodman et al. (2009, Figure 48) 

 

of dental chemistry has been that young children exhibit higher average and more variable lead 

content than adults. One study found that children's enamel had over four times the lead 

content of adults with culturally-modified teeth: 5.9 μg g μg versus 1.4 μg g μg, respectively 

(Jones et al. 2007). While it is intriguing to find that lead is both present and variable in 

concentration in NYABG teeth, many questions remain unanswered such as the sources of lead 

and the consequences of high-level lead exposure.  

In addition to enamel-lead analysis, NYABG researchers have conducted strontium 

isotopic (87Sr/86Sr) analysis of dental enamel (Goodman et al. 2009). 87Sr/86Sr analysis is a widely 

accepted method in bioarchaeological studies of geographic origin and migration (e.g., Price et 

al. 2012). This method is based on the principle that a landscape’s unique isotopic signature will 

be incorporated into forming skeletal structures. 87Sr/86Sr isotope analysis of early-forming 
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enamel and dentine revealed greater variation for adults with culturally-modified teeth (fig. 

4.6). Values for most of these individuals were higher than the assigned “local” Manhattan 

range of 0.711-0.712 (Goodman et al. 2009), suggesting African birth. Interestingly, for nearly all 

individuals with non-local enamel values, the less-stable dentine 87Sr/86Sr values appeared to 

equilibrate towards the Manhattan range. However, interpreting dentine chemistry is 

complicated for reasons noted in the next chapter and these values may reflect in vivo or 

diagenetic change. 

 

This dissertation continues the work of reconstructing biohistories begun by the NYABG 

Project and addresses these questions. It pushes dental chemical methodologies in ways that 

are relevant to each of the four main research areas, albeit with a primary focus on geographic 

ancestry. The next chapter situates this study in a broader academic context of human 

environmental health research, i.e., the political ecology of lead exposure. Then, in the second 

half of the dissertation, I detail the current attempt to understand lead, literally, an “element of 

diaspora.” 
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CHAPTER 5 
 

POLITICAL ECOLOGY OF HUMAN LEAD EXPOSURE 

 
Introduction 

In this chapter I seek to explain some of the major pathways of lead exposure and how 

lead, once in the body, can become a “legacy pollutant” and part of the “viciously biocultural 

cycle” (Goodman 2009: xv) that reproduces poverty today. Here, I pick up on threads from 

chapter 2, which introduced biocultural conceptions of “environment” and “political ecology,” 

and combine these with concepts such as biomonitoring and risk focusing from environmental 

science and public health. 

This chapter also contains a discussion of bones, teeth and biomarkers. Tooth 

development is one of the best studied areas of human anatomy, resulting in a plethora of 

studies in the past decade. Most of these studies are of modern populations, and the teeth are 

not exposed to diagenesis and taphonomic issues associated with excavated human remains. I 

describe some notable studies in this vein. However, I focus on studies of past populations 

known through bioanthropological research that provide comparative skeletal biological 

findings for the NYABG population. This discussion is geared towards understanding how certain 

groups become more highly exposed (or at least more at-risk) than others to environmental 

stressors. 

 

Environmental Lead and Human Biology 

 

Lead (Pb; density: 11.3 g/cm3) is a metal, defined by certain physical and chemical 

properties including its luster, malleability, heat/electricity conductivity and tendency to form 

positively charged ions, or cations. Lead's low boiling point (327°C) and the ease of smelting 
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galena (lead sulfide) help to explain the presence of lead artifacts from the late seventh 

millennium BC (Rapp and Hill 1998). All metals up to uranium occur as natural elements, but 

their roles in human health vary substantially. Some such as iron and zinc are essential to human 

life while others such as barium serve no known physiological role. Lead is among the latter 

group. Like other heavy metals such as arsenic, cadmium and mercury, lead is also xenobiotic; 

even trace-level exposure may adversely affect health (Hu 2002). Hence, the problem with lead: 

what industry has dubbed "the useful metal" is also a "versatile, subtle, and persistent poison" 

(Needleman 1998) that ultimately finds its way into bones and teeth. 

 

Social and Cultural Pathways of Lead Exposure 

Human lead exposure results from a variety of social, cultural and biological sources and 

pathways. At natural or background level, lead is introduced into human environments through 

atmospheric deposition of geological and anthropogenic emissions. Natural sources such as the 

erosion of the earth's crust, production of sea spray and volcanic eruptions account for earliest 

human lead exposure but only a small portion of contemporary environmental lead (Davidson 

and Rabinowitz 1992). Because human evolution has occurred primarily in this low-level 

exposure context, human biology is lead-intolerant. 

Most current human lead exposure results from anthropogenic emissions due to 

industrial activity, especially combustion of oil and its derivatives and metal production and 

recycling (Davidson and Rabinowitz 1992). Lead, which occurs in various forms, is used 

extensively in the manufacture of batteries and the production of pigments, glazes, solder and 

cable sheathing among other products (Hu 2002). Globally, most lead emissions are due to use 

of leaded gasoline, which was introduced in 1923. The phase-out of leaded gasoline begun with 

federal regulatory legislation during the 1970s has contributed to a drastic decrease in overall 
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blood-lead levels in United States children, from 12.8 μg dL-1 to 2.3 μg dL-1 between the late 

1970s and the early 1990s (Pirkle et al. 1994). Currently, a worldwide phase-out effort is 

underway, but leaded gasoline and other exposures are still prevalent in many parts of the 

world (e.g., Jain and Hu 2006; Adebamowo et al. 2006; Olivero-Verbel et al. 2007), and 

continued industrial lead use ensures that contemporary and future populations are at risk for 

environmental lead exposure. Table 5.1 lists some commonly used lead compounds. 

Employing risk focusing modeling, biological anthropologist Lawrence Schell and co-workers' 

(e.g., Schell 1997; Schell and Denham 2003; Figure 5.1) have shown how so-called universal 

exposures may become unevenly distributed and subsequently reproduced due to political and 

economic factors. This is clearly illustrated by the current race-class profile of pediatric lead 

poisoning. The primary source of pediatric lead poisoning is deteriorating lead-based paint in 

the form of dust and chips ingested by infants and young children. Once considered a universal 

exposure source for all United States residents, this threat has subsided greatly since the 1978 

federal ban on use of leaded paint on interior surfaces (Pirkle et al. 1994). 

 

Table 5.1: Commonly used lead compounds. 

Compound Name Use 

PbS Lead sulfide, or galena Ore 

PbO Lead monoxide Glazed pottery 

PbCrO4 Lead chromate Yellow pigment (road lines) 

Pb3O4 Red lead Paint (corrosion resistance) 

Pb3(CO3)2(OH)2 White lead, or lead carbonate Paint (prior to 1971) 

Pb3(AsO4)2 Lead arsenate pesticides 

Pb(C2H3O2)2 · 3H2O Lead acetate ("sugar of lead") Paint and varnish drier 

Pb(C2H5)4 Lead tetraethyl Gasoline antiknock compound 
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Figure 5.1: Risk focusing model on the relationship of social class and toxic 
exposure. Poverty "recycles" lead exposure over a life span, undermining 
efforts at social mobility necessary for escaping high-lead environments. 
From Schell and Denham (2003, Figure 3; see also Crooks 1995). 

 

However, leaded paint is still found in many urban environments, mainly in old housing 

where cases of elevated blood-lead levels and pediatric lead poisoning are most prevalent 

(American Academy of Pediatrics 2005; Lanphear and Roghmann 1997). In fact, 40% of the 

nation's housing stock may still contain leaded paint (Wakefield, 2002; cited in Barbosa et al. 

2005). Soil contaminated by airborne lead is another major source of pediatric lead poisoning 

also concentrated in urban environments (American Academy of Pediatrics 2005). Families living 

in these areas and homes are mostly poor and disproportionately racial minorities (Lanphear 
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and Roghmann 1997; Weintraub 1997; Melwani 2006). According to 2007-2010 National Health 

and Nutrition Examination Surveys (NHANES) data, overall blood-lead levels for all children aged 

1 to 5 years (1.3 μg dL-1) continue to decrease, but remain significantly higher for blacks at 1.8 

μg dL-1 compared with 1.3 μg dL-1 for both Mexican Americans and whites (Wheeler and Brown 

2013). 

Trotter (1990) suggests the following four cultural "parameters" or domains useful for 

investigating lead exposure and poisoning. 

1) Subsistence-related exposures result from lead's many modern technological uses, 
which increase ambient lead levels and affect most people in industrialized and 
developing countries. 

 
The other three domains "are areas where lead poisoning occurs due to beliefs and behaviors 

outside the boundaries of technological exposure... [and] are extremely insidious because they 

are unexpected" (Trotter 1990: 79). They are:  

2) Food habits (or foodways). This refers to the conceptualization as well as the 
consumption of food and beverages. Food growth, processing and preparation are 
potential sources of lead exposure through contaminated soil or, as in the well-
known case of the Roman Empire, high lead content storage vessels and utensils. In 
contemporary societies, contamination is most likely to occur during food 
processing. Needleman and Bellinger (1991) note higher lead levels for food from 
soldered cans than for unprocessed food or food from seamless aluminum cans. 
Also, leaching from lead-glazed pottery remains an important dietary exposure 
source in Mexico and other places (Olaiz et al. 1996; Brown et al. 2000; Tunstall and 
Amarasiriwardena 2002). 

 
3) Health practices; an exposure source since antiquity. Metallotherapy has long been a 

part of medical experimentation and practice. Lead and its compounds, due to their 
antiseptic properties, were among the first mineral drugs and still are used in herbal 
and "folk" medicinals throughout the world (Nriagu 1992). 

 
4) Beauty or aesthetic practices involving leaded pigments or cosmetics are yet another 

longstanding exposure source. Elevated blood-lead levels in the Middle East, Asia 
and Nigeria have been linked to leaded eye applications as children may ingest the 
pigments after touching their mother's or their own faces (Needleman and Bellinger 
1991). 
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These cultural pathways may also overlap, as seen with the practice of pica or geophagy 

in which potentially lead-contaminated non-food items such as soils and clays are consumed, 

sometimes as an attempt to address nutrient deficiencies.22 Whether or not pica is practiced for 

health purposes, materials deemed appropriate for consumption are often culturally defined 

(Vermeer 1970). 

The exposure sources described above are all exogenous or external in nature. They are 

introduced into the body and the bloodstream via environmental and dietary sources. Once in 

the body, blood-lead is sequestered and stored in bone. Although highly mineralized, bone is 

dynamic. Throughout life, the skeleton is renewed through episodic resorption of old tissue that 

is replaced with newly-formed tissue (Scheuer and Black 2004). This process is known as 

remodeling. One of the functions of bone remodeling or turnover is to provide the body with 

stored calcium and phosphate (Tuross 2003). In the process, however, bone-lead may also be 

liberated and remobilized into the bloodstream (Mushak 1992; Hu and Hernandez-Avila, 2002; 

Gulson et al. 1996). In this way, bone-lead becomes a potential source of internal or 

endogenous exposure. 

Lead workers subject to ongoing exposure and those who undergo rapid bone 

remodeling are particularly susceptible to endogenous contamination. Among the latter are 

individuals with certain (e.g., calcium, iron and zinc) nutrient deficiencies, pregnant and lactating 

women, and fetuses and young children. Gulson and co-workers (2003) found that greater bone 

turnover rates correlate with increased blood-lead levels during pregnancy. Lead concentrations 

were even higher for postpartum women. 

Infants and children are vulnerable to their own as well as maternal endogenous lead. 

Schell et al. (2003: 95) report that “lead burden begins before birth with lead transferred from 

                                                           
22 See chapter 9 for a discussion of pica as a possible source of lead exposure for enslaved 
Africans. 
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maternal circulation and increases rapidly in the first few years of life, as exposure to 

environmental lead increases.” Despite its many health benefits, breastfeeding is energetically 

demanding and facilitates further mobilization of bone-lead in lactating women. Maternal lead 

is transferable via breast milk, and has been linked to increased blood-lead levels in infants 

(Chuang et al. 2001; Téllez-Rojo et al. 2002; Gulson et al. 2003, 2004; Manton et al. 2003).23 

Thus, while Schell and Denham (2003) describe lead as a "legacy pollutant" due to its 

persistence in urban environments, the term also suggests the lifelong and intergenerational 

nature of exposure. 

 

Lead Uptake, Metabolism and Tissue Deposition 

 

Understanding lead's bodily distribution and toxicological properties, and charting the impacts 

of lead regulatory legislation, requires routine assessment of human exposure at two levels. 

Environmental monitoring refers to “quantitative measurement of lead levels in those 

environmental media which also serve as exposure routes for humans” such as air, leaded paint, 

dust and soil, while biological monitoring (or biomonitoring) “describes the quantitative 

assessment of lead in biological media from exposed individuals, the total body lead burden, and 

the toxicologically active lead burden” (Mushak 1992: 47). These biological media include blood, 

bones and teeth and are known as biomarkers. The public health significance of regular 

biomonitoring for exposure to lead and many other chemical pollutants is increasingly 

recognized. In 2001, the US Centers for Disease Control and Prevention (CDC), as part of 

NHANES, tested blood and urine for only 27 chemicals, but now tests for over 200 (Paustenbach  

                                                           
23 Other research suggests this effect is modified somewhat by calcium supplementation. Gulson 
et al. (2004) and Ettinger et al. (2004) observed low levels of lead in breast milk even for women 
with documented high lifetime exposures. For a good overview of this topic, see Bellinger 
(2005). 
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Figure 5.2: Generalized model of elemental exposure, uptake, tissue deposition, and 
biomonitoring. Postmortem chemical alteration and contamination from diagenesis and 
sample preparation are minimized with solid sample analysis of teeth (see chapter 6). 
Modified from Jones (2004) 

 
 

and Galbraith 2006). Figure 5.2 is a model of trace element flow from environmental sources 

to human biomarkers. Here, one sees that numerous sources potentially contribute to the 

skeletal deposition of environmental elemental exposures, which is mediated by various 

physiological factors. 

Environmental monitoring may be preceded by emission and source distribution 

monitoring, and biomonitoring involves biological effect assessment (Mushak 1992). Barbosa et 

al. (2005) caution against conflating exposure and effect, or toxicity, biomarkers (see also 

Schmidt, 2006). Exposure is best measured as lead concentrations directly from tissues and 

fluids while biological effect is assessed via metabolite levels in fluids known to be influenced by 
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lead exposure. This distinction is important because associations between exposure, uptake and 

toxic effect are mediated through complex physiological processes that vary by age and sex 

among other factors. Depending upon these variables, similar exposures may produce dissimilar 

effects. The proposed study entails historical biomonitoring of lead exposure, although I will 

explore possible relationships between exposure and health trends for NYABG individuals.   

Finally, an individual's body lead burden is a function of recent and past exposure and 

lead biokinetics, i.e., exchange or cycling among bodily fluids and tissues (Barbosa et al. 2005). 

Measuring variation in the sources, duration and intensity of exposure over time requires use of 

different biomarkers, which reflect different periods and/or rates of elemental exposure and 

uptake (Barbosa et al. 2005; Mushak 1992; Paustenbach and Galbraith, 2006; Sexton et al. 

2004). Following is a brief overview of four primary biomarkers of lead exposure: blood, bone, 

tooth dentine and tooth enamel. Other biomarkers such as saliva, hair, nails, and urine are 

generally less temporally informative and, in most cases, not preserved in bioarchaeological 

populations.24 

 

Lead Biomonitoring 

  

Blood 

Environmental lead enters the body primarily through ingestion into the gastrointestinal 

system, inhalation into the lungs, and dermal transfer (Ferguson 1990). Ingestion is the most 

common route, especially for children. Once absorbed, lead circulates via the bloodstream until 

its level plateaus, at which point it is excreted through the kidneys or deposited in soft tissues 

("target organs"), bones and teeth (Baird 1999). Over 99% of circulating lead is located in the 

                                                           
24 Hair and nails are sometimes recovered, as some hair samples were at the NYABG. 



 

104 

whole blood compartment bound to erthrocytes (red blood cells) that have a lifespan of about 

90-120 days (Paustenbach and Galbraith 2006). The remainder is found within plasma. The 

mean excretory half-life or "residence time" of whole blood-lead has been reported as 

approximately 35 days for healthy adult males, but longer for children and pregnant women due 

to bone remodeling (Rabinowitz et al. 1976). Blood-lead levels begin to rise within hours of 

increased uptake (Mushak 1992). Thus, blood-lead has long served as a biomarker of recent and 

short-term or transitory (e.g., acute) exposure. Indeed, as early as the 1890s, blood and urine of 

lead-exposed factory workers was screened as part of efforts to prevent acute lead poisoning 

(Sexton et al. 2004). Table 5.2 summarizes the benefits and limitations of blood and other 

biomarkers of lead exposure. 

For about the last 50 years, whole blood-lead has been the most commonly used 

biomarker for exposure and toxicological research (Barbosa et al. 2005). During this time, 

advances in analytical chemistry included powerful new methods enabling reliable assessment 

of trace element concentrations and isotopic profiles directly from body tissues at extremely 

low detection limits (i.e., on the order of parts per billion [ppb] or lower). Among these, atomic 

absorption spectrometry (AAS) and ICP-MS are commonly used for lead research (ATSDR 2007). 

The interpretation of measured lead concentrations is complicated by several issues related to 

lead biokinetics. First, as noted in the previous section, lead deposited in bone may be 

remobilized into the bloodstream, and, thus, serves as a source of ongoing contamination. This 

is also the case for lead stored in soft tissues (Rabinowitz et al. 1976; O'Flaherty 1998). Hence, 

researchers today recognize blood-lead as an index of both recent and past exposure, and some 

attempt to assess long-term exposure (e.g., through serial sampling), as an elevated blood-lead 

value may reflect chronic high-level or a single acute exposure (Barbosa et al. 2005). 
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Table 5.2: Biomarkers of human lead exposure and uptake. 

Biomarker Exposure Benefits Limitations Comments 

Blood (whole) Integrated recent 
and 
past/endogenous 

Accurately, reliably 
measured; 
associated with 
toxic effects 

Serial sampling 
required to discern 
chronic from acute 
exposure 

Commonly used 
for screening, 
diagnosis and long-
term 
biomonitoring 

Blood (plasma and 
serum) 

Integrated recent 
and 
past/endogenous 

Exhibits rapid 
exchange with 
other fluids, 
tissues; 
increasingly 
reliable 
measurements   

Difficult, costly and 
time-sensitive 
analysis; lack of 
certified reference 
materials 

Possibly better 
index than whole 
blood-lead 

Bones Cumulative over 
years  

Associated with 
toxic effects; in 
vivo analysis; 
preserves 
archaeologically 

Turnover rates vary 
significantly by 
bone type, age and 
metabolic status; 
diagenesis 

Increasingly used; 
more research 
required on 
remineralization 
(esp. for children) 

Teeth Cumulative during 
formation (enamel 
and primary 
dentine) and life of 
tooth (secondary 
dentine)  

Easily collected, 
(exfoliated); little 
turnover/loss (esp. 
enamel); 
chronological data; 
preserves well 
archaeologically 

Variation by 
tissue/region and 
type; age and/or 
sex influence not 
known; diagenesis 
(mostly dentine) 

Probably best 
indicator of 
cumulative early 
life and childhood 
exposure; recent in 
vivo studies 

Saliva Ongoing, long-term Easy, noninvasive 
collection; may 
correlate with 
blood- and urine-
lead 

Highly variable ion 
content over short 
periods; no 
reference range 

Not widely 
accepted; further 
validation required 

Hair Cumulative during 
growth 

Easy, noninvasive 
collection; low-cost 
analysis 

Contamination; no 
reference range 

Not yet widely 
used/accepted 

Nails Long-term Easy, noninvasive 
collection 

Age-related and 
intraindividual 
(including within-
sample) variation 

Not widely 
accepted; findings 
lack reproducibility 

Urine Ongoing, long-term Easy, noninvasive 
collection; may 
correlate with 
plasma-lead 

Highly variable 
over short periods, 
24-hr sampling 
required 

Commonly used 
for screening and 
long-term 
biomonitoring 
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Biomarker Exposure Benefits Limitations Comments 

Feces Integrated dietary 
and environmental 
exposure and 
intake 

Should indicate 
total body burden 

Requires sampling 
over multiple days 

May prove 
valuable; more 
info. on biliary 
physiology 
required 

Sources: Barbosa et al. 2005; Gomes et al. 2004; Gwiazda et al. 2005; Koh et al. 2003; Mushak 
1992; Paustenbach and Galbraith 2006; Sexton et al. 2004. 
 

Second, in assessing current environmental conditions, it is important to establish the 

relative contributions of exogenous and endogenous exposures to current blood lead levels. This 

is a potentially difficult process as blood-lead exchange with other body compartments is 

continuous. The issue is further complicated by substantial variability of lead's biokinetic 

properties with age, physiological and nutritional status, and possibly sex (Popovic et al. 2005). 

Fortunately, toxicokinetic studies involving stable isotope ratio analysis are helping to establish 

exchange rates between blood, bone and teeth. For example, Smith et al. (1996) determined  

that bone-lead contributed 40-70% of blood-lead for individuals without high-level exposure. 

Gulson et al. (1996) reported similar findings from a study of women who had recently 

emigrated from Eastern Europe to Australia. Gwiazda et al. (2005) found that bone-lead 

contributions to blood-lead may exceed 90% for children with elevated blood concentrations. 

Lastly, current research takes into account specific kinetic properties of various blood 

subcompartments when monitoring for exposure, uptake or toxic effect. For example, although 

it accounts for less than 1% of total blood-lead, plasma/serum-lead may provide a "more 

relevant index of exposure to, distribution of, and health risks associated with lead than does 

BPb [or whole blood-lead]" (Barbosa et al. 2005: 1670). The plasma/serum component has the 

fastest exchange rate of all blood compartments and plasma-/serum-lead is toxicologically 

active while whole blood-lead is bound (Chuang et al. 2001). It is likely, then, that plasma/serum 



 

107 

concentrations are better indicators of lead levels in target organs such as brain and liver and, 

by extension, of toxic effect (Barbosa et al. 2005). Chuang and co-workers (2001) found that 

maternal plasma levels were more highly correlated with fetal lead exposure than whole blood-

lead. The value of plasma-/serum-lead for biomonitoring is increasingly recognized, although its 

more involved, difficult analysis – and the need to further validate reported findings – has, thus 

far, served to limit its widespread use (Barbosa et al. 2005). 

 

Bone 

Vertebrate calcified tissues are "complex, composite structures" comprised of cellular, 

vascular, mineral, collagenous (except for enamel), and extracellular noncollagenous protein 

phases (Tuross 2003). Over the course of years, many elements are incorporated into the 

hydroxyapatite mineral component, which consists mostly of calcium phosphates and is usually 

represented in its simplified form as Ca5(PO4)10(OH)2. These include major impurities such as 

carbonate (CO3) as well as minor substitutions "from environmental contaminants, biological 

processes such as enzymatic reactions, and trace nutrient constituents" (Tuross 2003: 67). 

Among the minor or trace substitutions are divalent cations such as lead (Pb2+), strontium (Sr2+), 

barium (Ba2+) and zinc (Zn2+), which may replace isovalent calcium sites through (1) adsorption 

onto crystal surfaces, (2) direct or coupled ion substitution, and (3) growth of discrete trace 

metal-phosphate phases (Webb et al. 2005; Trueman and Tuross 2002). Skeletal lead accounts 

for most of the body's lead burden; approximately 95% and 70% for adults and children, 

respectively (Barbosa et al. 2005). Losee et al. (1974; cited in Curzon 1983) reported that lead 

was one of 41 elements incorporated into dental enamel during development, and the only 

element with an atomic number greater than 60. 
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Lead and other "bone-seeking" elements are not evenly distributed throughout the 

skeleton (Wittmers et al. 1988), and bone and tooth levels may reflect exposure during different 

periods of an individual's lifespan. The specific information archived within a given tissue 

depends upon several related factors. For example, bone-lead accumulates with ongoing 

exposure and has a residence time of up to 30 years (Rabinowitz 1991), reflecting its unique 

crystalline and kinetic properties. Compared to those of dental tissues, bone apatite crystals are 

small (200-400 Å), less densely packed, and have large, highly reactive surface areas (Tuross 

2003). 

As noted above, bone remodels continuously, slowly releasing lead at a rate that varies 

by age and health and physiological status as well as bone type. Trabecular bone remodels five 

to ten times faster than cortical bone (Ortner and Turner-Walker 2003). Furthermore, bone 

apatite has a substantial organic component (i.e., about 22% by dry weight) (Hillson 1996), 

which serves as a ready source of biologically active lead for incorporation during remodeling. 

Thus, bone provides a cumulative and integrative record of lead exposure during the last 

approximately 10 years of life – roughly the time it takes to remodel a "new" skeleton – but is 

quite susceptible to foreign ion exchange. Tibia (cortical) and patella (trabecular) bone are 

commonly used in lead studies. 

Bone-lead biomonitoring of contemporary populations has increased over the last 

decade with greater acceptance of X-ray fluorescence (XRF) for in vivo analysis (Barbosa et al. 

2005). However, an important consideration in the use of archaeological remains is diagenesis, 

the postmortem physical and chemical alteration that occurs within burial contexts. Simply put, 

processes that introduce lead and other elements into living bone may continue postmortem via 

water and soil contact and microbial invasion, resulting in net loss or gain of skeletal lead 

(Trueman and Tuross 2002). Diagenesis is not easily distinguished from biogenic signals of 
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interest (Sillen et al. 1989), and some researchers who pioneered the anthropological study of 

bone-lead have cautioned strongly against its use (Wittmers et al. 2002, 2008). 

 

Teeth 

Dental chemistry offers a means of overcoming the potentially confounding effects of 

diagenesis and provides alternative chronologies of elemental exposure that complement the 

information recorded in bone. From a biomonitoring perspective, each tooth is an archive or a 

capsule of "snapshots" revealing elemental and isotopic exposure during early life development 

(Grupe 1998; Webb et al. 2005). Teeth consist of 3 incrementally-formed tissues that vary in the 

amount and composition of their mineral components. Dentine surrounds the innervated pulp 

cavity and comprises the majority of the tooth, serving as its main force-bearing structure. A 

thin layer of dental cement, or cementum, covers the dentine in the root portion of the tooth.  

The primary function of cementum is to attach the periodontal ligament to the root's surface. 

Unlike bone, dentine and cementum are avascular and do not remodel continuously 

(Hillson 1996). The proportion of organic content in dentine and developing cementum is similar 

to that of bone; approximately 20% and 25% by dry weight, respectively. This amount varies 

substantially in mature cementum (Hillson 1996). Dentine and cementum undergo 

remineralization and post-formative (including diagenetic) lead incorporation, albeit at a slower 

rate than bone. Both tissues record integrative and cumulative exposure. Epidemiological 

studies have tended to focus on dentine in order to understand the consequences of ongoing 

exposure in contemporary populations (Grandjean et al. 1984; Rabinowitz et al. 1991; 

Needleman and Bellinger, 1991; Fergusson et al. 1997).25 

                                                           
25 A notable early exception is Purchase and Fergusson's (1986) study of variation in lead 
concentration within and between dentine and enamel, in which the authors found the enamel 
to dentine to secondary dentine ratio to be 1:2:6. Secondary (or circumpulpal) dentine is the 
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This study involves analysis of enamel, the visible outer layer of the tooth crown.  

Mature enamel is avascular, acellular, almost totally (>96%) inorganic, and basically does not 

remodel. Enamel is the hardest and most heavily mineralized tissue in the body. These 

properties confer resistance to in vivo chemical alteration upon ameloblast degeneration, as 

well as to the fungi and bacteria that transport soil cations to skeletal tissues in burial contexts, 

so that enamel resists diagenesis (Grupe 1998; Budd et al. 2000; Lee-Thorp and Sponheimer 

2003). The exception to this generalization is that the outermost enamel is subject to some 

degree of remineralization as it is "regularly challenged by acid from plaque bacterial 

metabolism" in the oral environment (Curzon and Featherstone 1983: 131). Reitznerová et al. 

(2000) determined that this remineralization zone is limited, extending at most 150 μm from the 

enamel surface. 

Thus, dental enamel is a virtually permanent record of elemental exposure during crown 

formation, the timing of which varies by tooth and occurs in well-documented stages. In humans, 

these stages extend from the prenatal period through adolescence, when third molar crowns 

form (Massler et al. 1941), and variation in the developmental timing of dental enamel across 

human populations is minimal (Goodman and Song 1999; Reid and Dean 2006). The stable 

biogenic signals found in enamel may be compared for different teeth to reconstruct dietary 

regimes and other aspects of trace metal exposure at different ages (Prowse et al. 2007). 

Combined with biomarkers of lifetime or more recent exposure, enamel is the basis for 

estimating natality and establishing elemental and isotopic "life history trajectories" (Bower et 

al. 2007; Cox and Sealy, 1997; Cucina et al. 2005; Price et al. 2006; Prowse et al. 2007). Enamel-

lead has been analyzed to understand changes in atmospheric exposure over time (Budd et al. 

                                                                                                                                                                             
thin, innermost layer, which lines the pulp cavity and accumulates lead from the completion of 
root formation through the life of the tooth. 
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2000), pre- and neonatal exposure (Arora et al. 2006), and migration (Gulson and Gillings 1997; 

Bower et al. 2005). 

 

Consequences of Lead Burden 

Lead is highly toxic to humans in all its chemical forms. Lead poisoning has been 

recognized since antiquity and the subject of medical inquiry since the 18th century (McCord 

1953, 1954; Nriagu 1983; Aufderheide 1993; Hernberg 2000). Lead's toxic effects are dose-

dependent and determined by its source and form as well as the age and health status of the 

affected individual. Modern standards recognize two "polarities": chronic versus acute, and 

clinical versus subclinical lead poisoning (Warren 2000). 

Prior to the 1940s, occupational “plumbism" was the focus of nearly all research on lead 

toxicity, which was identified only by its wide-ranging clinical manifestations (Warren 2000).  

With low-level exposure, symptoms include headaches, constipation and slowed nerve 

conduction. At blood-Pb levels of 80 μg dL-1 or greater, symptoms include lethargy, 

encephalopathy, convulsions, coma, peripheral neuropathy and even death. Within these 

extremes, lead impairs numerous aspects of growth, development and functioning such as 

hearing, vitamin D and zinc metabolism, erythrocyte production and hemoglobin synthesis (Hu 

2002). According to Aufderheide (1993: 820), "The symptom of lead poisoning most commonly 

encountered in the historical literature is abdominal pain… usually attributed to intestinal 

spasm, though the abdominal muscles may participate in the painful, uncontrolled contractions 

usually termed 'colic'." Such acute lead poisoning is now relatively uncommon. When 

encountered, it is usually treated with chelation therapy. Chelation involves administration of 

compounds (e.g., ethylenediaminetetraacetic acid [EDTA]) that attract lead more strongly than 

do target enzymes, so that upon their excretion, lead is expelled as well (Baird 1999). Chelation 
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is often followed by an immediate drop in an individual's blood-lead concentration. However, 

levels tend to rise gradually with ongoing exposure or as stored lead is released from tissues 

back into the bloodstream (Warren 2000). 

Most current research focuses on pediatric lead poisoning and, increasingly, on the 

cognitive effects of low-level exposure (Needleman 1998; Silbergeld 1997), although Spivey 

(2007) notes a reemerging concern with adult exposure. As explained above, children are most 

susceptible to lead poisoning due to their exploratory behavior and rapid physiologic activity, 

which increases the rate of absorption and metabolism of bioavailable lead. The fetus is 

especially vulnerable to neurological insult from transplacental lead transfer due to immaturity 

of its blood-brain barrier (Goyer 1990, 1996). In adults, chronically elevated lead levels have 

been positively associated with presence of dental caries (Moss et al. 1999); risk of hypertension 

(Cheng et al. 2001; Rothenberg et al. 2002; Vupputuri et al. 2003); male infertility (Hu 2002); and 

renal failure (Spivey 2007). High maternal lead levels may increase risk of preterm and low birth 

weight pregnancy (Schell and Denham 2003). As with other toxicants, males may be more 

sensitive to lead (Needleman and Bellinger 1991). 

The underlying mechanisms of lead's toxic effects are not fully understood. Much of 

what is known regarding these mechanisms comes from experimental animal studies. Lead and 

other "calcium impostor" cations share a strong affinity for sulfur, competing with and replacing 

calcium at sulfhydryl sites on proteins, with the effect of inhibiting and retarding enzymatic 

processes that control the rate of critical metabolic reactions (Baird, 1999). Among its many 

other effects, lead inhibits heme synthesis and calcium entry into cells (contributing to 

apoptosis, or cell death) and distorts neurotransmission (Needleman, 2004). One recent 

experimental study suggests that lead impairs cognitive development by stifling neurogenesis in 

the hippocampus, a region of the brain important for learning and development. Verina et al. 
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(2007) found that hippocampal neurons were fewer and less likely to be replaced in lead-

exposed rats. Further, the lead-exposed rats' neuronal processes (dendrites) were short, twisted 

and less densely connected when compared to untreated rats, which resulted in subsequent 

communication and learning difficulty. In a recent study of non-occupationally exposed adults, 

Weisskopf et al. (2007) found that hippocampal glial effects may be more sensitive than 

neuronal effects to cumulative lead exposure as indicated from bone-lead concentrations. 

Finally, lead's toxic effects are modified by dietary practice and nutritional status. These 

relationships are influenced by nutrient interactions and other physiological factors, and thus 

are not easily interpreted. For example, while lead level may be positively related to dietary 

quantity (i.e., total caloric intake) due to lead ingestion (Schell et al. 2003), lead absorption and 

tissue retention is enhanced with reduced caloric intake (Mahaffey 1990). Lead absorption and 

retention also increase with poor dietary quality (i.e., caloric sources). Experimental and human 

studies suggest that lead levels are inversely related to calcium, iron, phosphorus, zinc, vitamin 

(C, D and E) and perhaps other nutrient intake (Mahaffey 1990; Yip 1990; Cheng et al. 1998; 

Schell et al. 2003; Kemp et al. 2007). Maternal diet, nutrition and anthropometric attributes also 

affect lead levels for very young children (Schell et al. 2004). 

Today, lead poisoning is defined as the presence of elevated blood-lead levels. However, 

establishing what constitutes an "elevated" level is a controversial and unresolved matter. The 

framing of lead exposure and lead poisoning as public health issues has major social and 

economic implications, as evidenced by resistance to regulatory efforts by the lead industry, real 

estate and insurance interests, and others (Needleman 1998). Until 1970, the blood-lead level of 

concern was 30 μg dL-1 or greater. In 1991, the CDC action level for exposure among children 

was set at 10 μg dL-1. As evidence mounted for cognitive and behavioral impacts below this 

level, the CDC in 2012 established the current “upper reference range value” of 5 μg dL-1 (). The 
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Occupational Safety and Health Administration (OSHA) threshold for exposed workers is 40 μg 

dL-1. These action levels, representing the lowest clinically significant blood-lead levels, are 

contested. Quite possibly, there is no actual threshold at which absorbed lead does not result in 

some form of biological impairment (Spivey, 2007). 

 

Lead in African Diasporic Biohistory 

 

Sources of lead exposures have been well-documented only since the 1970s and must 

be inferred for historical populations from studies of past dietary, health and labor practices 

(Warren, personal communication). Much of what is known of lead's role in African diasporic 

biohistory is derived from skeletal research, mainly at plantation sites (e.g., Handler et al. 1986; 

Corruccini et al. 1987; Aufderheide et al. 1988). The specific value of lead research in African 

diasporic bioarchaeology lies in the fact that lead use was much more pervasive in early New 

York and throughout the colonial Americas than in contemporaneous western Africa. Thus, 

studies of lead exposure may also provide information on geographic origins. Here, I summarize 

key anthropological findings. 

Bioarchaeological research indicates that among enslaved and captive Africans' new 

experiences in the Americas was increased lead exposure. Studies of lead and North American 

slavery have been conducted at historic plantation sites in the South. For example, Rathbun 

(1987) analyzed remains of enslaved individuals unearthed at a construction site near 

Charleston. Mean lead concentration was higher for males (102.7 μg g-1 compared with 87.1 μg 

g-1 for females). Overall, these values are higher than those reported for other African American 

skeletal populations and slightly lower than reported for the Newton plantation. 
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Aufderheide et al. (1981, 1985) measured bone-lead concentrations for remains of free 

and enslaved Africans and whites buried in 17th to 19th-century Virginia, Maryland and Georgia. 

Skeletal lead patterns proved useful for identifying subgroups within these populations. At the 

Clifts Plantation in Virginia, remains of wealthy slaveowners produced the highest mean values 

(185 μg g-1) and those of enslaved Africans, the lowest (35 μg g-1). At the College Landing site, 

also in Virginia, mean lead concentration for free blacks (41.9 μg g-1) was comparable to that of 

enslaved individuals at the Clifts plantation, but more variable, ranging from 9.9 to 93.3 μg g-1. 

Aufderheide et al. (1988) suggest that skeletal lead may be used (1) to assess the extent of lead 

technology in a cultural group; (2) to separate socioeconomic subgroup within a population; (3) 

identify specific individuals' social or occupational roles; (4) to assist in separating mixed skeletal 

tissues; (5) to predict health effects; and (6) to identify remains as ancient or modern. 

In the most complete study of lead exposure and its health consequences for enslaved 

Africans, Jerome Handler and co-workers (1986; Corruccini et al. 1987 ) found evidence of a 

"previously unappreciated epidemic" at the mid-17th to early 19th-century Newton Plantation 

cemetery in Barbados.  Atomic absorption spectrometry of cortical bone samples from 48 

individuals yielded lead concentrations of 0 to 424 μg g-1, the widest range of any population in 

the Americas. Mean lead concentration was 118 μg g-1, comparable to values found for Romans 

and mainland North American slaveowners for whom high lead exposure is well-documented 

(Waldron et al. 1976), and considerably higher than those found for most other enslaved 

populations (Aufderheide et al. 1981). Sex differences were observed but not statistically 

significant. Female lead levels were generally higher and more variable, possibly due to their 

greater representation among domestic workers with easier access to pewter items. 

Enslaved Barbadians' widely ranging bone-lead concentrations likely corresponded to 

diverse health effects. Handler et al. (1986) compared Newton bone values to those of living 
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individuals for whom bone- and blood-lead concentrations were correlated to lead poisoning 

symptoms. The authors concluded that most enslaved individuals experienced mild symptoms 

of lead toxicity while others would have suffered severe intestinal, nervous, and cognitive 

dysfunction. Lead accumulation may have reflected length of residence in Barbados as age-at-

death correlated positively with lead content. The authors suggest that lead fumes from the 

refining of sugar and rum contaminated by lead-based distillation machinery were the major 

exposures for enslaved Africans and poor Europeans (Handler et al. 1986; Corruccini et al. 1987; 

Wittmers et al. 2002). 

All Newton individuals determined to be African-born had low bone-lead 

concentrations. Corruccini et al. (1987: 237) suggested low lead content as one aspect of a 

"burial trait complex" indicating African natality. This complex also included "dental modification 

and tooth root hypercementosis… associated with north-headed burial orientation and/or 

absence of a coffin." Individuals with dental modifications had relatively low mean lead 

concentrations – 44.7 μg g-1 versus 126.2 μg g-1 for non-modified individuals – and none were 

particularly young at death (Corruccini et al. 1987). 

Lead played important roles in industry and health elsewhere in the Caribbean. In his 

study of New Montpelier village, a Jamaican plantation site dating from 1739 to 1912, Higman 

(1998: 216) observes that 

Lead was almost as common as iron…. It occurred in sheets, rings, cones, pipes, 
balls, and lumps. Most of this lead probably started its use-life in the estate' 
boiling house or distillery, where its malleability made it a preferred material for 
many purpose, particularly piping to carry liquids. In this way it contributed 
heavily to the mortality of slave and free alike by poisoning the water, rum and 
cane juice which they drank. The uses of lead in the village community included 
sinkers for fishing, musket ball, and personal adornment; the easy working 
characteristics of the metal and its ready availability must have made it an 
attractive material for kitchen and yard. 
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Lead 'bracelets,' possibly sawn from the ends of pipes, were also excavated. Jamaica and 

Barbados contributed considerably to New York's African population when both the Newton and 

New Montpelier village cemeteries were in use. 

Thus, bioarchaeological evidence has proven critical for generating interest in lead as 

one of the many "life stresses of slavery" (Kelley and Angel 1987). As Rathbun (1987) observes, 

comparison of findings across sites should take into account differences in soil chemistry, 

sampling strategy, and analytical methods. One may safely conclude, however, that lead 

exposure and toxicity among enslaved individuals would have resulted from a wide range of 

practices and experiences. Some were common to the colonial or colonial African situation, 

while others were unique within the varied political economies and cultural geographies of 

American slavery. The remaining chapters begin to illuminate and situate the experiences of 

enslaved New Yorkers within this broader environmental biohistory of the African diaspora. 
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CHAPTER 6 
 

MATERIALS AND METHODS 

Introduction 

 
This chapter begins with a brief introduction to laser ablation-inductively coupled 

plasma-mass spectrometry (LA-ICP-MS), the technique employed for chemical analysis in this 

study. I describe the basic underlying principles and key components of LA-ICP-MS and some of 

its recent anthropological and archaeological applications. In the next section, I explain the 

sample selection process including the rationale for comparing enamel-lead concentrations for 

subadults, adults with dental modification, and adults without modified teeth. I then detail the 

methodology developed for this study, the first to combine quantitative LA-ICP-MS 

measurement with recent developments in histology to produce age-resolved microspatial 

distribution profiles of early-life lead burden. 

 

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) 

ICP-MS is a widely used tool for elemental and isotopic measurement. The basic 

mechanics of ICP-MS include three principal components: 1) sample introduction (as solution, 

vapor, solid or slurries); 2) sample atomization, ionization and excitation (usually by argon 

plasma); and 3) ionic separation by quadrupole or magnetic sector mass analyzer where analyte 

ions are separated according to their mass-to-charge ratios (m/z) (Günther and Hattendorf 

2005). The analyte ion signal is plotted against the m/z ratio, and this plot is called mass 

spectrometry. Using a series of known analyte standards, the instrument can be calibrated. This 

calibration function is then used to determine the concentration of an unknown analyte (i.e., 

lead). Rapid sample throughput and high sensitivity (below parts per billion, or ppb) capabilities 

have made digestion or solution-based ICP-MS the analytical “gold standard” in the earth and 



 

119 

environmental sciences (Pollard et al. 2007). However, “bulk analysis” through acid digestion 

may entail loss of valuable sample and information. LA-ICP-MS provides a solution to this 

problem and other unique benefits and, since its introduction in 1985, has developed into a 

reliable method for analysis of diverse environmental and biological materials.  

LA-ICP-MS began as a tool for "exploratory geochemistry" where in situ analytical 

capability proved ideal for identifying mineral inclusions useful in provenance studies employing 

elemental "fingerprinting" or signature analysis (ESA) (Outridge 1996; Gray 1985). Nearly a 

decade ago, Durrant and Ward (2005: 821) noted that laser ablation of solids had become 

“routine for many applications." Like other ICP-MS techniques, LA-ICP-MS provides highly 

sensitive analysis, with lower limits of detection (LODs) reported in the parts per million (μg g-1) 

to ppb range (Resano et al. 2010). LA-ICP-MS is distinguished, however, as a microprobe 

technique that enables both surface area and depth profiling of solid materials (Kang et al. 

2004). With this method, sampling occurs when a high-energy pulsed laser interacts directly 

with a solid. Spatial distribution profiling is enabled by placing the sample within a cell on a 

movable, computer-controlled stage where minute amounts of the sample are vaporized along 

a pre-programmed track and introduced into the ICP-MS unit via an argon gas stream.  

LA-ICP-MS analytical performance (e.g., LOD) can vary considerably depending upon 

various factors including sample matrix, analyte, ICP-MS type, laser characteristics  and 

optimization, and desired spatial resolution (affecting the amount of sample ablated) (Durrant 

and Ward 2005). The major limitation of LA-ICP-MS relative to solution-based analysis is the 

difficulty of quantifying measurements. This process can be complicated by non-uniform 

ablations and, especially, the lack of solid, matrix-matched standard reference material (SRM) 

calibrants with certified values (Belloto and Miekeley 2000; Günther et al. 2000). Data initially 

collected in the form of ion intensity counts per second (cps) signals may be background-
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subtracted and normalized to an internal standard (such as 43Ca in teeth), with accuracy of ± 30-

50% (Amarasiriwardena et al. 1997). While this level of uncertainty may be acceptable for 

screening purposes in qualitative or semi-quantitative analysis (Habicht-Mauche et al. 2002), 

quantified concentrations must be obtained via element-for-element, response curve or internal 

calibration (Durrant and Ward 2005; Bellis et al. 2006, 2009). 

Researchers have made significant progress in overcoming the analytical challenge of 

converting intensity counts to concentrations for lead measurement by LA-ICP-MS. In an early 

attempt at quantitative LA-ICP-MS measurement, Uryu et al. (2003) reported good agreement 

for human enamel-lead concentrations derived from LA-ICP-MS and digestion methods (ICP-MS 

and ICP-atomic emission spectrometry [AES]). However, this study involved one-point 

calibration with an "in-house" reference material (pelletized chicken bone). Bellis et al. (2006) 

achieved true quantitative measurement of lead in bone through calibration with multiple-level, 

candidate reference materials produced from physiologically-enriched, ground bone of lead 

acetate-dosed cows and goats. The caprine (goat) reference materials were produced as part of 

a controlled study by the New York State Department of Health.  

Despite the challenge of quantifying intensity counts as concentrations, various unique 

capabilities make LA-ICP-MS an attractive alternative to destructive bulk analytical techniques. 

Compared to solution-based ICP-MS, for example, laser sampling enables higher sample 

throughput with less preparation and contamination risk, and is influenced by fewer polyatomic 

interferences that result from interaction of water and acid with the argon plasma (Belloto and 

Miekeley, 2000). The separation of the sampling and ionization steps with LA-ICP-MS grants 

independent control of each process such that laser operating parameters including the pulse 

mode and repetition rate, energy level and degree of focus may be optimized according to 

specific research goals (Denoyer et al. 1991). Advances in laser technology are allowing for 
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increasingly high-resolution spatial analysis and ablation craters of less than 10 μm in diameter 

are now attainable. Thus, laser ablation is minimally disruptive, often allowing repeat analyses 

even when sample integrity and preservation are primary concerns. Finally, laser ablation does 

not require loss of valuable chronological data stored in teeth and other incremental hard 

tissues as does sample digestion. Rather, LA-ICP-MS provides information on the microspatial 

distribution of elements and isotopes. 

With these unique capabilities, LA-ICP-MS is perfectly suited for archaeological and 

biomonitoring research. Archaeologists have used this method to characterize and source 

precious metals, ceramics, obsidian flakes, coins and other heterogeneous matrices, including 

glass beads, which are difficult to analyze by traditional means such as XRF (Eastwood et al. 

1998; Guerra et al. 1999; Habicht-Mauche et al. 2002; Speakman and Neff 2002, 2005). In a 

recent study, Speer (2014) combined LA-ICP-MS with multivariate statistical analysis to 

determine the local versus nonlocal sources of chert artifacts in a study of hunter-gatherer 

mobility during the Clovis period. 

This method has been used to investigate the spatial distribution of various trace metals 

across different regions of incrementally-formed hard tissue structures including fish otoliths 

(Outridge et al. 2002), shells (Perkins et al. 1991; Fuge et al. 1993; Belloto and Miekeley 2000), 

hair (Steely et al. 2007; Byrne et al. 2010; Bartkus et al. 2011), and teeth (Budd et al. 1998; Farell 

et al. 2013; Humphrey et al. 2008; Kang et al. 2004; Dolphin et al. 2005; Arora et al. 2006; Bellis 

et al. 2009). In the first published LA-ICP-MS environmental study, Perkins et al. (1991) reported 

that lead levels increased when sampling inner to outer layers of marine bivalve shells, 

indicating increased pollutant exposure over time. Evans et al. (1995) and Outridge et al. (1995) 

found that arctic walrus and beluga whale cementum layers formed during early life had higher 
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lead, zinc and copper content than those formed later, possibly indicating decreased metal 

intake with the shift from reliance on maternal milk. 

LA-ICP-MS studies of human trace metal exposure often focus on lead given the 

element’s longstanding and well-documented environmental health impact. Cox et al. (1996) 

first analyzed human teeth with LA-ICP-MS to reconstruct pollutant exposure, comparing teeth 

from contemporary Poland and 19th-century Spitzenberg (northern Scandinavia and Russia). 

The authors suggest that higher lead and tin levels in the older tooth may reflect the use of 

pewter utensils. In a study of lead, strontium, tin and zinc in incisors from lead acetate-dosed 

rats and deciduous human teeth, Lee et al. (1999: 182) conclude that "lead is incorporated into 

the hydroxyapatite (enamel) under formation at the time of injection and for the period of time 

afterwards when lead is still available in the body." They reported 43Ca normalized elemental 

intensities. Calcium is the major element in dental tissues (~37% enamel and ~27% dentine, dry 

weight) and 43Ca is free of isobaric and polyatomic interferences, making it an ideal internal 

standard for tooth (and bone) analysis. Enamel-lead was among the trace metals analyzed by 

Cucina et al. (2005) in their study of geographic origins of enslaved Africans in colonial 

Campeche, Yucatan. 

Many early studies compared elemental compositions across tooth tissues and regions, 

especially pre- versus postnatal formations. For example, comparing intensity counts for 14 

elements in human deciduous teeth, Lochner et al. (1999) observed increased levels of lead and 

most other elements in postnatal tissue formations. Kang et al. (2004) rastered 196x339 μm2 

areas including pre- and postnatal enamel, the neonatal line (enamel), enamel-dentine junction 

(EDJ), primary dentine, and the dentine-pulp junction. They found that lead and zinc levels were 

highest in the pulp region and that the order of magnitude for 43Ca normalized intensities 

followed a general pattern: Sr > Mg >> Zn > Pb > Fe > Cu. An earlier study by Budd and co-
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workers (1998) identified significant and similar differences between enamel and dentine 

elemental intensities for modern and archaeological teeth including elevated Pb/Ca levels for 

the EDJ and surface enamel (SE). The observation of surface Pb/Ca peaks for modern teeth led 

them to conclude that these were not diagenetic in nature, but the result of lifetime effluvial 

interaction. Budd et al. (1998) also report good agreement between Pb/Ca findings of LA-ICP-MS 

and lead concentrations measured by isotope dilution-thermal ionization mass spectrometry 

(ID-TIMS). 

Arora et al. (2006) measured pre-and postnatal enamel and dentine lead in deciduous 

teeth from children enrolled in the Broken Hill Lead Management Program in New South Wales, 

Australia. Enamel-lead values were consistently low, but the authors reported a significant 

increase in mean postnatal dentine lead levels, which they attribute to increases in blood-lead 

levels from birth to age 1. Interestingly, in light of dentine’s remineralization properties (see 

chapter 5), they suggest that dentine-lead is a valid biomarker for reconstructing pre- and 

neonatal lead exposure. Assuming the roles of historical detectives, Stadlbauer et al. (2007) 

quantitatively measured Pb, Cr, Hg, As and Sb concentrations from hair, bones and tooth 

enamel in an attempt to authenticate the "Mozart cranium." Trace elemental analysis proved 

insufficient for this task but revealed different patterns of heavy metal uptake reflecting changes 

in background environmental (Pb) and medical (As, Hg, Pb and Sb) exposures over the last 

several centuries. 

I conclude this section with some examples of LA-ICP-MS application within biological 

anthropology. Such examples are limited in number, undoubtedly due in part to the limited 

availability of necessary equipment. As costs decrease and analysis becomes more automated, 

one would expect that LA-ICP-MS analysis will evolve into a regular, if not routine, feature of 

bioarchaeometric research, with implications for expanding the boundaries of knowledge 
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concerning the recent human past and even early human evolution. For example, Sponheimer 

et al. (2006) used laser sampling to reconstruct seasonal dietary behavior and climatic 

conditions for South African australopithecines (Paranthropus robustus). Carbon (δ13C) and 

oxygen (δ18O) isotopic enamel profiles suggest Paranthropus, like early Homo species, employed 

flexible dietary strategies incorporating forest- and savanna-based foods. Their findings 

challenge the well-established hypothesis that Paranthropus overreliance upon savanna-based 

foods contributed to its extinction during the late-Pleistocene when savanna environments 

became increasingly arid and seasonal. 

Several studies conducted at Hampshire College under the direction of Drs. Dula 

Amarasiriwardena and Alan Goodman illustrate the potential of LA-ICP-MS analysis for opening 

new avenues of biocultural inquiry into health conditions. In her doctoral dissertation, Song 

(2004) explored ancient Mayan infant weaning and dietary practices, finding cultural continuity 

with modification (i.e., extended breastfeeding duration) following contact with colonial 

Spaniards. In a longitudinal study of the functional consequences of mild-to-moderate 

malnutrition, Goodman et al. (2003) correlated lead intensities of prenatal enamel with reduced 

height and weight in the Sólis Valley (Mexico). In a follow-up paper, Dolphin et al. (2005) 

reported that intensities for lead and nutritionally significant elements (Fe, Zn and Ba) were 

generally higher and more variable in postnatal enamel. Magnesium values were lower for 

postnatal enamel and strontium values for the two regions did not vary significantly. Finding an 

inverse relationship between maternal consumption of foods with high zinc bioavailability and 

Zn/Ca ratios in prenatal enamel of their infants, Dolphin and Goodman (2009) conclude that zinc 

is not a reliable indicator for paleodiet reconstruction. 

The growing body of work involving LA-ICP-MS analysis of human tissues reflects the 

method’s value for excavating lifespan experiences and life history events. Spatial elemental 
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analysis is especially important for uncovering complex experiences embedded and often 

hidden, until now, within incrementally-formed bones and teeth. I now refocus attention on the 

New York African Burial Ground. The remainder of this chapter details the methodology 

developed for quantitative measurement of lead and the construction of chronological age-

exposure profiles from the teeth of children, women buried there.    

 
Study Sample 

The study sample includes NYABG teeth and an archaeological control from Kasana 

(northern Ghana). The NYABG sample set was selected from teeth located at Hampshire College, 

the site of ongoing chemical and histological analysis under the direction of Dr. Alan Goodman, 

Director for Chemical Studies of the African Burial Ground Project. Hampshire College currently 

houses samples of 456 teeth from 122 NYABG individuals. From these, initially 62 permanent 

teeth from 45 NYABG individuals were selected for analysis, including subadults, “modified” 

adults (i.e., with CMT) and “non-modified” adults (i.e., without CMT). The rationale for 

investigating these subsamples and tooth types is given below. Two teeth from Burial 281, a 

modified male of indeterminate age, showed evidence of diagenesis and were excluded from 

the study. Listed in Table 6.1, the complete study sample thus consists of 61 teeth from 45 

individuals: 

1) NYABG subadults (n=11 teeth/11 individuals); 
 
2) NYABG adults with CMT (n=28 teeth/19 individuals); 
 
3) NYABG adults without CMT (n=21 teeth/14 individuals); and 
 
4) Kasana adult (control) (n=1 tooth). 
 
NYABG subadults and modified adults are critical to this study as they potentially 

represent American and African birth cohorts, respectively. The ratio of African- to American-  
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Table 6.1: Study sample 

Burial a Tooth/Teeth b Age (y) c Sex d Cohort e Temporal Group 

Subadults      
7 LRM1 4.0 u SA Late-Middle 
22 LRM1 3.5 u SA Middle 
35 ULM1 9.0 u SA Middle 
39 LRM1 6.0 u SA Middle 
43 LRM1 3.5 u SA Late-Middle 
126 LLM1 4.5 u SA Middle 
138 URM1 4.0 u SA late 
180 ULM1 12.0 f SA late 
219 LRM1 4.5 u SA Late-Middle 
244 LLM1 7.0 u SA Late 
405 URM1 8.0 u SA Middle 

Modified adults      
6 LLM1, ULM3 27.5 m MA Late 
9 LLM1, LRM3 40.0 m MA Middle 
23 URM1 40.0 m MA Early 
47 LLM1 40.0 m MA Middle 
68 LRM3 23.0 m MA Early 
101 LRI1, LLM3 30.5 m MA Late-Middle 
106 LRM1, LRM3 30.0 f MA Late-Middle 
115 LLM1, LRM3 30.0 f MA Middle 
151 LRM1 40.0 m MA Late 
165 LLM1, LRM3 u u MA Late 
241 URI1 60 f MA Late 
243 ULI1, URM3 45 m MA Late 
266 URM1, URM3 30.0 f MA Late 
270 LLM1, LLM3 u m MA Middle 
281 ULM1, ULM3 u m MA Early 
366 LLM1 u u MA Middle 
367 ULM1 30.0 f MA Middle 
377 ULM1 45.2 f MA Late-Middle 
384 ULM1 35.0 f MA Middle 
397 ULM1 35.0 f MA Middle 

Non-modified adults      
12 ULM1 40.0 f NMA Late 
25 URI1 22.0 f NMA Middle 
25 LRM3 22.0 f NMA Middle 
49 ULM1 45.0 f NMA Middle 
63 LRM3 40.0 m NMA Late 
135 LRM3 35.0 m NMA Late 
150 LRM1 24.0 f NMA Late 
172 LLM1, LLM3 30.0 f NMA Late  
176 LRM1, LLM3 22.0 m NMA Late-Middle 
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Burial a Tooth/Teeth b Age (y) c Sex d Cohort e Temporal Group 

179 LRM1, LLM3 27.5 m NMA Late 
196 LRM1 22.0 u NMA Late 

262 LRM3 16.0 m NMA Late 
323 LRM1, LRM3 24.5 m NMA Late 
324 ULM1, LRM3 30.0 f NMA Middle 
335 LLM1, URM3 30.0 f NMA Middle 

KAS ULM1  u f control n/a 
a 

Tooth type/position key: L or U = lower or upper; L or R = left or right; M or I = molar or incisor; 1 or 3 

= first or third. All teeth are from the permanent dentition (e.g., LLM1 = permanent lower left first 
molar).

 

b
 Age in years = midpoint of the assessed osteological age range; u = undetermined 

c
 m = male; f = female; u = undetermined 

d
 SA = subadult; MA = modified adult (i.e., w/CMT); NMA = non-modified adult (i.e., without CMT) 

e
 Early = pre-1735; Middle = ca. 1735-1760; Late-middle = ca. 1760-1776; Late = post-1776 

 

born enslaved individuals in early New York shifted temporally, increasing or decreasing in 

response to economic and social dynamics. As noted in chapter four, such factors included 

changing labor demands, bias against importation of African-born adults – especially males – in 

the aftermath of uprisings, and the eventual abolition of the Transatlantic Trade which took 

effect in 1808. Further complicating matters, the age parameters of “childhood” and labor 

expectations of children also shifted over time. Enslaved children in New York frequently were 

sold between the ages of 6 – the mean age of subadults included in this study – and 12 

(Medford et al. 2009). However, overall, young adults capable of hard manual labor were the 

primary interests of transatlantic slave traders. As a practical economic matter, young children 

in particular were much less likely than adults to survive the rigors of the Middle Passage, 

contributing to their overall greater likelihood of being born in New York. 

Conversely, as noted in chapter three, the bioarchaeological literature describes cultural 

dental modification as a rite of passage linked exclusively to individuals born in Africa. Historical 

and preliminary chemical research cautions against assuming these subsamples are 

homogenous with respect to geographic origin, as will be discussed in chapter nine. Yet, their 
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comparative analysis may help to inform estimations of geographic origin of individuals without 

CMT or other possible indicators of natality. To assess this possibility, a third subsample 

comprised of non-modified NYABG adults is included in the study. 

All NYABG teeth initially were inventoried, measured and inspected for “morphological 

traits, attrition rates, enamel defects, culturally induced alterations, and pathological 

observations” (Blakey et al. 2009:60) under the supervision of Mr. Mark Mack, laboratory 

director at Howard University. Teeth were included for analysis in this study barring the 

presence of severe attrition and large caries. Ideally, all teeth sampled would be free of any 

crown defects, but this criterion proved impractical given the overall poor dental health of the 

NYABG population. Strict adherence to this criterion would have further restricted access to the 

already limited sample of NYABG individuals with CMT. Fortunately, data collection problems 

posed by sampling defective enamel were offset somewhat by the localized, high-resolution 

sampling capabilities of laser ablation as well as data processing techniques discussed below.  

Selected teeth included permanent first molars (M1s), first incisors (I1s) and third 

molars (M3s). When available, M1s were analyzed to reconstruct early-life exposure. M1 

enamel-lead is an ideal biomarker for this task as crown formation begins at birth (or in utero) 

and usually completes circa three years of age. Four NYABG adults (Burials 25, 101, 241 and243) 

were selected although their M1s either were not recovered or were unsuitable for analysis. 

These individuals warranted inclusion in the study because they exhibited dental modification 

and/or were otherwise identified as distinctive with respect to pathological assessment, burial 

orientation or associated material culture. For these individuals, I1s were analyzed in place of 

M1s. I1s also capture early life exposures despite their slightly later developmental timing. 

According to Reid and Dean (2006), upper I1 enamel forms from about 4 months to 4.6 years of 

age and lower I1 crowns develop from approximately three months to 3.6 years of age. 
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Third molar enamel was analyzed for a subset of 20 modified and non-modified adults in 

order to assess early versus late childhood exposure. Reid and Dean (2006) estimate that M3 

enamel formation occurs from about 8 to 11 years of age, but note that the timing of initial 

mineralization is highly variable for M3s relative to other teeth. Variation in first and third molar 

lead concentrations may result from a variety or combination of factors. Among such factors, 

migration between areas with substantially different environmental lead levels would be 

expected for some NYABG individuals. 

Previous NYABG enamel-lead studies included control samples from Dominase and 

Eguafo, villages located in the hinterland adjacent to the coast in Ghana’s Central Region 

(Goodman et al. 2009).26 This study includes an M1 control sample from an adult female burial 

excavated in Kasana, located in the Upper West Region of northern Ghana near the Burkina Faso 

border. The burial dates to the 17th century and predates slaving activity in the area, which 

probably began circa the 1870s (Boachie-Ansah, personal communication). Kasana later became 

a base for Zabarima slave raiders from Mali, which archaeological research suggests resulted in 

the departure of its organized iron smelting community (Boachie-Ansah, 2005). The sample is a 

proper control for elemental and isotopic investigations of NYABG individuals’ geographic 

origins as it represents the interior hinterland of western Africa where many captive Africans 

would have originated (as opposed to coastal regions to which many were transported from the 

interior for departure). For this study in particular, it should provide a reliable signal of low 

environmental lead since the burial predates widespread use of lead technology in the region. 

The sample was graciously provided by Mr. James Boachie-Ansah of the University of Ghana, 

                                                           
26 The samples were collected in the summer of 2000 as part of the Central Region Project, an 
archaeological survey of late 17th- and 18th-century Ghanaian changes in settlement and 
subsistence patterns, trade networks, and craft production associated with European “culture 
contact.” This project is directed by Professor Christopher DeCorse of Syracuse University 
(DeCorse et al. 2000). 
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Legon who, along with his colleagues, has begun systematic excavation of numerous sites 

important to the Transatlantic Trade as part of The Slave Route Project initiated by UNESCO in 

1994.27 

 

Sample Preparation 

Preparation of samples for LA-ICP-MS analysis involved an extensive cleaning process for 

removal of organic and inorganic contaminants followed by embedding and sectioning to 

produce the microscopically flat surface necessary for laser focusing during ablation (Pollard et 

al. 2007). The five-day process began with removal of loose debris by manual brushing and 

cleaning with Millipore 18 MΩ cm distilled deionized (DDI) water (Millipore, Billerica, MA, USA).  

Each tooth was then soaked for two days in a 1% (v/v) papain solution for removal of protein 

material. The teeth were rinsed several times with DDI water, cleaned of any lingering organic 

material via a 30-second bath in 3% (v/v) hydrogen peroxide (diluted from 30% v/v strength; 

Fisher Scientific, Fairlawn, NJ, USA), rinsed again with DDI water, and allowed to air-dry 

overnight. 

The dry teeth then were fixed in resin using a slightly modified version of the procedure 

described by Marks and colleagues (1996). Each sample was secured in a 10 mL cuboid plastic 

mold with glue (instead of copper wire) with the buccal or labial surfacing facing up and 

embedded in a 5:1 w/w ratio mixture of epoxy resin and hardener (Buehler, Lake Bluff, IL, USA). 

The embedded samples were placed in a vacuum for 20 minutes to minimize the number of air 

bubbles that formed throughout the resin and left for two days to harden in the vacuum 

dessicator. To avoid contamination, all glassware used during the above steps was cleaned with 

50% (v/v) nitric acid and rinsed three times with DDI water. 

                                                           
27 Additional information about The Slave Route Project may be found online at 
http://www.unesco.org/new/en/culture/themes/dialogue/the-slave-route/. 



 

131 

 Once fixed within the resin, teeth were sectioned bucco-/labio-lingually using a low-

speed Isomet cutting unit (Springfield, VA, USA) affixed with a diamond-tipped wafering blade. 

The blade was cleaned with acetone and cooled and lubricated with a steady stream of DDI 

water during sectioning. Two thin sections (approximately 150 μm) were taken for histology and 

a 1- to 2-mm section was taken for LA-ICP-MS and other chemical analyses. Ablation surfaces 

were polished with a 0.3-μm alumina micropolish-DDI water solution, microscopically inspected 

for defects, and digitally photographed. As a final precaution against contaminants introduced 

after processing of the samples, ablation surfaces were etched with 1 mol L-1 hydrochloric acid 

for 15 seconds, quenched with DDI water, and dried with acetone just prior to laser sampling. 

 

LA-ICP-MS Measurement 

LA-ICP-MS measurement was conducted using a 266 nm Nd:YAG CETAC-LSX 100 laser-

ablation system (CETAC Technologies, Omaha, Nebraska, USA) coupled to a Perkin Elmer Sciex 

Elan 6000 (Shelton, CT, USA) following instrumental parameters for analysis of teeth established 

by Kang et al. (2004) (Figure 6.1). Lens voltage and nebulizer gas flow rate were optimized to the 

88Sr signal from line scans of the National Institute for Standards and Technology glass standard 

reference material (NIST SRM-612). This process was carried out twice for the lens voltage and 

once for the argon carrier gas flow. Line scans of the reference materials also served to optimize 

the energy level and number of shots for the laser system. Optimized operating conditions are 

summarized in Table 6.2. 

Following external calibration (described below, page 135), sectioned teeth were 

positioned within the ablation chamber platform such that a single line scan would track 

elemental intensities chronologically, from early- to late-formed lateral enamel. Preliminary 

research confirmed that a single scan produces replicable data (see Figure 6.2). For the 
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Figure 6.1: Laser ablation (A) and ICP-MS (B) instrumentation 

 

Table 6.2: Laser ablation and ICP-MS optimized operating conditions 

Laser ablation operation parameters 
Laser type 
Laser mode 
 
Repetition rate/Hz 
Laser energy/mJ 
Sampling scheme 
Scanning speed/μm s-1 

 
Nd:YAG 
Frequency quadrupled 266-nm UV, Q-
switched mode 
10 
0.74 – 1.5 at level 13/20 
Linear raster scan 
20 

ICP-MS operation parameters 
Forward power/kW 
Ar gas flow rates/min-1 

Coolant 
Auxiliary 
Nebulizer gas 

 
1 
 
15 
1.2 
0.7 – 1.0 

Measurement conditions 
Dwell time (ms) 
Resolution 
Readings/replicates 
Isotopes measured 

 
10-30 
High 
200 
43Ca, 64Zn, 88Sr, 138Ba, 206Pb, 207Pb, 208Pb 

Internal standard 43Ca 

 

B 
 

A 
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Figure 6.2: Triplicate scans of B-101 showing reproducible LA-ICP-
MS results. This is a graph of the distribution of lead across dental 
tissues from a separate study. The two peaks represent elevated 
lead concentrations in secondary dentine on either side of the pulp 
cavity.  

 

purpose of standardization, buccal or labial enamel was sampled unless insufficiently intact or 

otherwise defective, in which case lingual enamel was sampled. Initial ablations included the 

occlusal surface enamel and traversed the full available crown height, but a more time-efficient 

strategy was developed for sampling only inner enamel, which best preserves the record of 

environmental chemical exposures (Humphrey et al. 2008). With the new ablation strategy, 

scans began in the upper portion of the lateral enamel and proceeded downward and slightly 

outward toward the cervix (Figure 6.3). In addition to further standardizing the ablation process 

and scan length (given the varied levels of occlusal wear observed especially for adults), this new 

strategy minimized the likelihood of detecting maternally- derived lead incorporated into cuspal 

enamel due to exposure in utero or via breast milk. Data collected for surface and cuspal enamel 

was excluded from data processing and analysis for all teeth ablated under the original sampling  
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Figure 6.3: Epoxy-embedded and polished permanent upper left first 
molar in bucco-lingual cross-section showing dental tissues and the 
pulp cavity (Burial 35; 9x). The red arrow indicates the path of laser 
ablation sampling, from early- to late-formed lateral enamel. 

 

strategy. 

For each sample, LA-ICP-MS measurement generated a large amount of time-resolved 

data, with a single elemental intensity data point being reported every 1.1 to 1.4 seconds. At a  

scan speed of 20 μm s-1, typical data acquisition time was approximately 3 minutes per tooth 

depending upon the angle of the scan, which varied somewhat across samples in order to avoid 

ablating fractured or discolored enamel where possible. Care was taken, also, to avoid ablating 

near the enamel-dentine junction (EDJ) as a number of studies document elevated trace metal 

levels, including lead, at this feature (e.g., Kang et al. 2004). Ablations were monitored in real-

time via remote camera. 

Dentine 
Pulp 
cavity 

Enamel 

1 mm 

Cementum 
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Data were collected for the following isotopes: 43Ca, 46Ca, 64Zn, 88Sr, 138Ba, 206Pb, 207Pb 

and 208Pb.  Intensity counts per second (cps) were measured for approximately 30 seconds prior 

to and following each ablation in order to determine argon background intensities. The mass 

abundance of 43Ca is measured relatively free from isobaric and polyatomic interferences. Thus, 

43Ca served as the internal standard for normalization, or signal correction against instrumental 

drift or ablation variations. 208Pb was the analyte isotope (mass abundance) as it provides a 

better signal and signal-to-blank ratio compared to those of other lead isotopes. 64Zn, 88Sr and 

138Ba data will be incorporated into a future nutritional study. A digital photograph of the 

ablated tooth section was taken to document the line scan location and fractures or other 

features within the tooth that might affect the analytical signal, and for creation of chronological 

age-of-exposure profiles. A sample data and laser conditions record form is included as 

Appendix A. 

 

Data Processing and Analysis 

Quantification 

Data processing began by importing the intensity data into Microsoft Excel for background 

subtraction and normalization to the 43Ca signal (see Appendix B). Quantification of the 

normalized 208Pb intensity data (i.e., 208Pb/43Ca) was achieved by three-point calibration using a 

series of calcium phosphate discs spiked with known concentrations of lead (0.12, 2.09 and 

18.45 μg g-1) and other elements. Calcium phosphate is the primary component of enamel's 

inorganic hydroxyapatite phase, represented as Ca5(PO4)10(OH)2. As part of this study, the 

standards were being evaluated as external calibrants for tooth analysis. Dr. Peter Outridge of 

the Geological Survey of Canada kindly provided the standards. 

Figure 6.4 shows a plot of mean 208Pb/43Ca ratios from LA-ICP-MS (y-axis) against the 
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Figure 6.4: A typical plot of 208Pb/43Ca vs. Pb concentration (0.12, 2.09 
and 18.45 μg g-1) in calcium phosphate external calibration standards. 
Dots and error bars represent mean values ± SD for triplicate line scan 
measurements. 

 

known bulk lead concentrations (x-axis) of the calibration standards. While lead distribution was 

not totally homogenous for any of the discs, mean 208Pb/43Ca ratios derived from the individual 

means of three successive 60-s line scans of each are in very good agreement with the bulk lead 

concentrations. Typical regression fit of the data yields a linear calibration curve (y = 0.0162x - 

0.0027, R2 = 0.9999), indicating the standards' suitability for quantitative LA-ICP-MS lead 

measurement. 

As noted above, LA-ICP-MS lower limits of detection (LODs) can vary substantially 

depending on sample matrix, operating parameters, and other factors. For a given day, the LOD 

was calculated as 3 times the standard deviation of pre- and post-ablation argon blanks. The 

LOD for this study was estimated to be 0.39 ± 0.29 μg g-1 (n = 8). Values measured below this 

concentration are not reliable. For statistical analyses, a value of 0.39 μg g-1 was used for all 

teeth measured at or below this concentration and a value of “<0.39 μg g-1” (LOD = 3 x < s.d. of 

208
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argon blank.; n = 8) is reported for these teeth in the results and discussion sections of the 

dissertation. 

 

Distribution and Age Profiling  

The 1.1- to 1.4-second data acquisition time increments were converted to micrometer-

scale distances based on the laser scan speed of 20 μm s-1. Plotting enamel-lead concentrations 

against these distances in Excel produced graphs of the microspatial distributions of enamel-

lead. These graphs were then superimposed onto the post-ablation photographs such that the 

distance (x) axes corresponded precisely to the laser tracks. The result was a visual 

representation of how lead distributes from early- to late-forming lateral enamel in each tooth. 

The next step of data processing was to convert these microspatial distribution profiles 

into chronological age profiles. Here, recent advances in dental anthropology enabled me to 

convert elemental distributions along the enamel growth axis into age-resolved exposure 

profiles. These age profiles were produced for individuals whose M1 or I1 and M3 distributions 

revealed patterns of chronic exposure and/or acute exposure episodes. For these individuals, 

the post-ablation photographs were modified further by adding estimated age (in years) of 

enamel formation for each decile of crown completion. 

The age estimates were histologically-derived by Reid and Dean (2006) who counted 

and measured daily (cross-striations) and long-period incremental markings (Retzius lines) in 

permanent teeth in order to determine fractional growth rates (see Figure 6.5). They report 

total crown formation time as the sum of cuspal and lateral enamel formation time. Their 

sample included over 600 teeth from contemporary and historic populations from southern 

Africa, northern Europe and North America. From these growth rates, Reid and Dean (2006) 

calculated ages at which each decile of crown height was completed, identifying a previously 
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Figure 6.5: Diagram of a molar tooth in bucco-lingual cross-section. 
Histological features (cross-striations and Retzius lines) were used by 
Reid and Dean (2006) in their estimations of enamel formation 
timing. Imbricational enamel is another term for lateral enamel (Max 
Planck Institute for Evolutionary Anthropology 2005, Figure 1). 

 

unrecognized trend of gradually increasing formation time. Importantly, they observed low 

geographic variation across populations, suggesting their calculated age ranges are widely 

applicable for human tooth studies such as this one. Reid and Dean’s (2006) mean estimates of 

chronological age of enamel formation for permanent anterior teeth (incisors and canines) and 

molars are presented in Figures 6.6 and 6.7. 

Yet, two important sources of variation and potential error should be noted with respect 

to these chronological age-at-exposure profiles. First, are Reid and Dean’s (2006) assumptions 

concerning the timing of initiation for crown development in the tooth types included in this 

study. Those assumptions are: birth for upper and lower M1s, 128 days for upper I1s, 90 days 

for lower I1s, and 8 years for upper and lower M3s. They cite Antoine (2001) who observed as 

much as 250 days variation for initial mineralization of some anterior teeth and note, also, that 

initiation of M3 crown development is particularly variable at the individual and population 
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Figure 6.6: Estimates for chronological ages of human enamel formation for 
permanent molars by decile of crown growth. The numbers on the left are mean 
estimates for the southern African sample and those on the right are mean 
estimates for the northern European sample. For each decile, an average of 
these values was used to create the M1 and M3 chronological age profiles lead 
exposure presented in chapter 8. From Reid and Dean (2006, Figure 4) 

 

levels. Another potential source of error is the amount of occlusal wear observed especially for 

NYABG adults. For many individuals, age- and diet-related wear resulted in substantial loss of 

cuspal enamel. Thus, these age profiles are necessarily approximations and are perhaps most 

accurate for subadults.  

Finally, the microspatial distribution-tooth overlay images were critical with respect to 

two data processing quality control measures. First, they were used to determine whether 

fluctuations in lead concentration, particularly spikes or other substantial increases, were the 

result of ablating fractured or defective enamel. Fractures and hypocalcified enamel can yield 

artificially high lead readings due to a decrease in the 43Ca internal standard signal used to 

normalize elemental intensity data prior to quantification. Secondly, from these images, I was 

able to identify lead-enriched surface enamel zones. These limited zones of elevated lead 
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Figure 6.7: Estimates for chronological ages of human enamel formation for 
permanent anterior teeth (incisors and canines) by decile of crown growth. The 
numbers on the left are mean estimates for the southern African sample and 
those on the right are mean estimates for the northern European sample. For 
each decile, an average of these values was used to create the I1 chronological 
age profiles lead exposure presented in chapter 8. From Reid and Dean (2006, 
Figure 4) 

 

concentration may reflect remineralization in the oral cavity after the early-life period of crown 

development that is of interest for this study (Budd et al. 1998; Humphrey et al. 2008). Thus, 

elevated surface values for lead are not included in calculations of mean enamel-lead. However, 

these data were retained in the microspatial distribution and age graphs for illustrative purposes 

and to maintain the integrity of the distance/age axes. 

 

Analysis 

The primary analytical goal of this study is to explore variation in the extent, nature and 

age of lead exposure for NYABG children and adults. The first part of analysis focuses on whole 



 

141 

tooth enamel values overall and by subgroups within the NYABG. The second part involves more 

detailed study of the pattern of lead deposition by location/age at development in order to 

discern and consider variations within individuals over early childhood as well as among 

individuals. Additionally, early and late childhood exposure is compared for a limited number of 

adults.  

Data analysis proceeded through two main phases: enamel-lead content analysis and 

evaluation of lead distribution and age at deposition profiles. The first phase involved 

characterizing lead burden for the entire sample set and assessing variation in mean lead 

content within and among subadult, modified adult and non-modified adult cohorts. This 

process began by determining mean enamel-lead concentrations for each tooth, i.e., the 

average of (quantified) data values produced during a single line scan. Individual tooth mean 

values were in turn used to calculate subadult, (modified/non-modified) adult, male, female, 

etc. group means for statistical analyses. 

A combination of non-parametric and parametric statistical tests was necessary to 

identify significant differences in mean enamel-lead content. Variables assessed include age, 

sex, temporal group, absence/presence of enamel hypoplasia and tooth type. Comparisons of 

subadults with adults required non-parametric procedures (the Mann-Whitney U, Kruskall-

Wallis tests and Spearman rank correlation) that do not assume normal distribution or similar 

variances of the data; problematic assumptions given the hypothesis that most subadults spent 

their early childhoods in relatively high-versus low-lead environments. Parametric tests 

(independent samples t-test and paired samples t-test) were used for comparisons involving 

only adults (e.g., mean differences for M1s/I1s versus M3s). All statistical procedures were 

performed using Statistical Package for the Social Sciences (SPSS) 20.0 (IBM, Armonk, NY, USA). 
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The second phase of data analysis focused on the evaluation of enamel-lead 

microspatial distributions and age graphs. The purpose of this phase is to better understand the 

nature and age of individuals’ experiences of lead exposure by assessing intra-tooth variation. 

For those individuals with discernible enamel-lead signals, the specific objectives are to 

determine: (1) whether exposure was chronic or episodic; (2) whether increases in lead 

concentrations were gradual or acute; and (3) the specific age(s) at which lead burden increased 

and/or decreased. Building upon interpretations based on mean lead content in this fashion 

raised interesting and important questions largely unanswerable until now – questions that both 

expanded and gave focus to the interpretive process. For example, does a relatively high mean 

lead value reflect consistently high-level exposure, distinct periods of greatly elevated exposure, 

or perhaps even large “spikes” representing acute exposure events amid generally low-level 

exposure? Conversely, might a low average value mask single or infrequent acute exposures 

with potential health significance? Results of analysis appear in the next two chapters, followed 

in chapter nine by a discussion of their biocultural interpretations and implications. 
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CHAPTER 7 
 

RESULTS: MEAN ENAMEL-LEAD CONTENT 

 
Results of dental lead analysis are presented in two parts. First, in this chapter, I 

compare mean enamel-lead concentrations for individuals within and among the main analytical 

cohorts. In chapter eight, I provide the microspatial distribution and age profiles that illustrate 

the unique capabilities and value of LA-ICP-MS in dental analysis. Comparing lead content levels 

within and among groups is the first step towards identifying who was most at-risk for exposure 

and why. Specifically, analysis of mean lead concentrations suggests the extent of lead exposure 

for NYABG individuals and groups and enables comparison of the total sample with historical 

and contemporary populations, including reference populations with documented high- and 

low-level exposures (Budd et al. 2000, 2004). Here, I report patterns related to age, sex, and 

temporal grouping. I first present data from permanent first molars (M1) or first incisors (I1) for 

all individuals. Then, for a subsample of adults, I compare lead content of these early-forming 

M1 and I1 teeth with those of later-forming third molars (M3).  

 

Permanent First Molars/Incisors 

Mean enamel-lead concentrations by individual are listed in Table 7.1. Of the 41 M1s or 

I1s measured, values for teeth from 16 individuals (39%) are below the 0.39 μg g-1 limit of 

detection (LOD). For statistical analyses, the 0.39 μg g-1 LOD value was assigned to these 

individuals, all adults: 10 modified and 5 non-modified NYABG individuals and the control 

sample from Kasana. Analysis of teeth for 25 individuals – 11 subadults, 8 modified adults and 6 

non-modified adults – produced readings above the 0.39 μg g-1 LOD. 

Figure 7.1 is a box plot graph of M1 or I1 concentrations that illustrates the variation 

within and among these three groups. Enamel-lead distributions are presented around the  
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Table 7.1: Enamel-lead concentrations by individual/tooth. 

Burial a Tooth b Cohort c [Pb] (μg g-1) 

Subadults    

7 LRM1 SA 2.86 

22 LRM1 SA 4.66 

35 ULM1 SA 10.5 

39 LRM1 SA 6.09 

43 LRM1 SA 2.41 

126 LLM1 SA 11.6 

138 URM1 SA 2.30 

180 ULM1 SA 1.20 

219 LRM1 SA 14.7 

244 LLM1 SA 4.35 

405 URM1 SA 3.98 

Modified adults    

6 LLM1 MA <0.39 

6 ULM3 MA <0.39 

9 LLM1 MA 1.34 

9 LRM3 MA 0.69 

23 URM1 MA <0.39 

47 LLM1 MA 1.31 

68 LRM3 MA <0.39 

101 LRI1 MA 7.80 

101 LLM3 MA 7.38 

106 LRM1 MA 0.93 

106 LRM3 MA <0.39 

115 LLM1 MA <0.39 

115 LRM3 MA <0.39 

151 LRM1 MA <0.39 

165 LLM1 MA <0.39 

165 LRM3 MA <0.39 

241 URI1 MA <0.39 

243 ULI1 MA 0.89 

243 URM3 MA <0.39 

266 URM1 MA 0.56 

266 URM3 MA <0.39 

270 LLM1 MA <0.39 

270 LLM3 MA <0.39 

366 LLM1 MA <0.39 

367 ULM1 MA 0.76 

377 ULM1 MA 2.82 

384 ULM1 MA <0.39 

397 ULM1 MA <0.39 



 

145 

Table 7.1: Enamel-lead concentrations by individual/tooth. 

Burial a Tooth b Cohort c [Pb] (μg g-1) 

Non-modified adults    

12 ULM1 NMA <0.39 

25 URI1 NMA 0.40 

25 LRM3 NMA <0.39 

49 ULM1 NMA 1.72 

63 LRM3 NMA 2.08 

135 LRM3 NMA <0.39 

150 LRM1 NMA <0.39 

172 LLM1 NMA <0.39 

172 LLM3 NMA 2.31 

176 LRM1 NMA <0.39 

176 LLM3 NMA 0.61 

179 LRM1 NMA 1.60 

179 LLM3 NMA <0.39 

196 LRM1 NMA <0.39 

262 LRM3 NMA <0.39 

323 LRM1 NMA 4.35 

323 LRM3 NMA <0.39 

324 ULM1 NMA 1.39 

324 LRM3 NMA 1.96 

335 LLM1 NMA 0.42 

335 URM3 NMA <0.39 

Kasana ULM1 control <0.39 

a 
Tooth type/position key: L or U = lower or upper; L or R = left or right; 

M or I = molar or incisor; 1 or 3 = first or third. All teeth are from the 

permanent dentition (e.g., LLM1 = permanent lower left first molar). 

b 
SA = subadult; MA = modified adult (i.e., w/CMT); NMA = non-

modified adult (i.e., without CMT) 

c
 LOD of Pb = < 0.39 μg g

-1 

 

median for each group (subadults: 4.35 μg g-1; modified adults: 0.39 μg g-1; non-modified adults: 

0.40 μg g-1), which is represented by the bold horizontal line within each box. The box 

represents the interquartile range (IQR), i.e., the 25th (lower edge) to 75th (upper edge) 

percentiles, and the “whiskers” extend to the lowest and highest non-outlier values. The value 

ranges for each of the adult subsamples are increased substantially by the presence of extreme  
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Figure 7.1: Box plot of M1 or I1 enamel-lead concentrations by analytical 
cohort for NYABG individuals. 

 

outliers Burials 101 and 377 within the modified adults and Burial 323 as an outlier for non-

modified adults.28 Values for the bottom half of both adult samples cluster tightly around the 

medians due to the large number of individuals measured below the 0.39 μg g-1 detection limit. 

 

Subadults and Adults 

The overall mean enamel-lead value for NYABG M1s or I1s is 2.42 ± 3.38 μg g-1 (range: 

0.39 to 14.7 μg g-1; n=40). The mean enamel-lead concentration for subadults is 5.88 ± 4.4 μg g-1 

(n=11); more than 5 times that of the overall adult sample (1.11 ± 1.56 μg g-1; n=29). This 

difference is statistically significant (Mann-Whitney: z = -4.295; p < .001). The subadult mean 

                                                           
28 An outlier, indicated in Figure 7.1 by a circle, is defined as a sample with a value between 1.5 
and 3 times the IQR. An extreme outlier has a value greater than 3 times the IQR and is indicated 
by an asterisk. 
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also is significantly higher than those of both modified (1.13 ± 1.77 μg g-1; z = -3.946; p < .001) 

and non-modified (1.06 ± 1.16 μg g-1; z = -3.435; p < .001) adults. The difference between the 

mean values for modified and non-modified adults (z = -.388; p = .698) is not significant. 

In addition to their higher average lead content, children’s teeth exhibit a much wider 

distribution of values than both adult groups. Subadult M1 or I1 values range from 1.20 to 14.7 

μg g-1. By comparison, the distributions of modified and non-modified adult M1 or I1 values are 

similar and narrow, ranging from the 0.39 detection limit to 7.80 μg g-1 and 4.10 μg g-1, 

respectively. Subadults show the greatest variation and non-modified adults, the least. 

 

Age 

Figure 7.2 further illustrates the enamel-lead variation present both within and among 

groups as well as a general pattern to the relationship of enamel-lead to age. Of the 40 NYABG 

M1s or I1s analyzed, this scatterplot graph includes data for 37 individuals with age-at-death 

estimates. Estimated ages are reported as midpoints of age ranges determined from 

osteological indicators. Included among them are 11 subadults, 15 modified adults and 11 non-

modified adults. While highly variable particularly among subadults, overall lead concentrations 

tend to decrease with age. This negative correlation is significant according to Spearman’s rho (r 

= -.497, p < .01). Lead concentrations decrease slightly when adults are considered exclusively 

but this correlation is not significant (r = .146, p = .476) (see Figure 7.3). 

Ninety percent (n = 26) of all adults have lead concentrations below 2 μg g-1 and most 

(72%; n = 21) are below 1 μg g-1, the suggested lower limit for technological exposure (Budd 

2004; see chapter 6). By comparison, all but 1 of the subadult M1 or I1 values are above 2 μg g-1, 

with a small majority (55%; n = 6) measured between 2 and 6 μg g-1. A few modified adults,  
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Figure 7.2: Scatterplot of M1 or I1 enamel-lead concentrations by age-at-
death for NYABG individuals. Most adult values are below 2 μg g-1 while most 
subadult values fall between 2 and 6 μg g-1. 

 
 

Burials 323 and 377, fall within this range of relative mid-level exposure. The lowest subadult 

value is 1.20 μg g-1 (Burial 180). The remaining five individuals with the highest concentrations 

include 4 subadults and 1 modified adult, Burial 101. Thus, the first part of the analysis shows 

measurable lead levels in most teeth and a clear trend of great variation and greater 

concentrations in teeth of children. One implication to be discussed later is that children are 

most likely to have grown up in the Americas. 
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Figure 7.3: Scatterplot of M1 or I1 enamel-lead concentrations by age-at-
death for NYABG adults. Lead concentration does not correlate significantly 
with age for adults. 

 

Sex 

The 40 NYABG individuals in the study sample included 16 females, 11 males, and 13 

individuals of undetermined sex. Of the 27 individuals positively assessed as either female or  

male, all were adults with the exception of Burial 180, an approximately 12-year old girl. Sex 

could not be determined for 10 subadults and 3 adults. Table 7.2 lists the mean lead 

concentrations by sex and analytical cohort. Comprised mostly of subadults, the undetermined 

sex group had the highest mean enamel-lead concentration as well as the widest distribution of 

values (4.98 ± 4.59 μg g-1; range: 0.39 – 14.7; n=13), followed in both respects by males (1.75 ± 

2.32 μg g-1; range: 0.39 – 7.80; n=11) and, lastly, females (0.81 ± 0.68 μg g-1; range: 0.39 – 2.82;  
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Table 7.2: NYABG M1 or I1 enamel-lead concentrations by sex and 
analytical cohort. 

  [Pb] (μg g-1) 
a Sex N Mean ± SD Min-Max 

Females    

Subadults 1 1.20 N/A 
Mod. adults 8 0.83 ± 0.83 0.39 –  2.82 

Non-mod. adults 7 0.73 ± 0.57 0.39 – 1.72 

Total 16 0.81 ± 0.68 0.39 – 2.82 

Males    
Subadults - - - 

Mod. adults 8 1.61 ± 2.54 0.39 – 7.80 

Non-mod. adults 3 2.98 ± 1.94 1.60 – 4.35 

Total 11 1.75 ± 2.32 0.39 – 7.80 

Undetermined    

Subadults 10 6.35 ± 4.36 2.30 – 14.7 

Mod. adults 2 0.39 ± 0.0 0.39 
Non-mod. adults 1 0.39 0.39 

Total 13 4.98 ± 4.59 0.39 – 14.7 

a 
Individuals of undetermined sex were not included in group 

comparisons. 

 
 

n=16). The mean male concentration is thus a little over twice that for females. An independent 

samples t-test indicates that this difference is not statistically significant (t = -1.308; p = .217). 

Although the results are not significant, the sample sizes are low and thus a gender difference, 

perhaps related to dietary or caretaking practices, cannot be ruled out entirely. It is also worth 

reminding the reader that the concentrations are from early life. Thus, while they are from 

adults of osteologically determined sex, the enamel-lead is from enamel that is a window onto 

infancy and early childhood. 

As Figure 7.4 shows, the majority of values for both groups fall within the < 0.39 (LOD) 

to 2 µg g-1 “adult” range identified in the previous section. The median concentration for 

females is 0.41 µg g-1 compared to 0.89 µg g-1 for males. Burials 101 and 323 are again (male)  
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Figure 7.4: Box plot of M1 or I1 enamel-lead concentrations by sex 
for NYABG individuals. The median value is higher for males although 
the distributions are similar with the exception of the outliers, 
particularly Burial 101. 

 

 

Figure 7.5: Box plot of M1 or I1 enamel-lead concentrations 
by sex and analytical cohort for NYABG adults. The median 
values fall below 2 µg g-1 for males and females for both 
groups. Non-outlier tooth values are more widely distributed 
for non-modified than for modified individuals. 
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outliers and Burial 377 is the only female outlier. Hers is the only female value above 2 µg g-1. 

Figure 7.5 compares concentrations for modified and non-modified males and females. With the 

exception of a few extreme outliers, the distribution of tooth values is wider for non-modified 

adults. Median concentrations are slightly higher for modified (0.48 µg g-1) than for non- 

modified females (0.40 µg g-1). For males, the opposite is observed: median value is 0.64 µg g-1 

for non-modified males as compared to 1.60 µg g-1 for modified males. 

 

Temporal Groups 

Temporal variation in M1 or I1 enamel-lead concentration is illustrated in figure 7.6. This graph 

is a representation of lead exposure among NYABG individuals from approximately 1735 AD 

through the American Revolutionary era (see chapter four). It does not include the Early period 

(prior to ~ 1735 AD), which was represented in the study sample by just a single individual, 

Burial 23, whose mean concentration was below the 0.39 µg g-1
 LOD.  Subadults, modified adults 

and non-modified adults are fairly evenly distributed among the Middle (circa 1735 to 1760), 

Late-Middle (circa 1760 to 1776) and Late periods (post-1776) although the Late- Middle group 

includes only 1 non-modified adult. Overall mean concentration increases when comparing 

teeth from the Middle (n = 17; 2.71 ± 3.58 µg g-1) and Late-Middle (n = 7; 4.56 ± 5.07 µg g-1) 

Groups (see Table 7.3). The lead distributions for these two groups are comparable and all 

outliers are subadults: Burials 35 and 126 for the Middle Group and Burial 219 for the Late- 

Middle. Mean lead concentration decreases significantly from the Late Middle to the Late Group 

(1.22 ± 1.39 µg g-1) (Mann-Whitney: z = -2.227; p = .026). 

Table 7.3 provides mean M1 or I1 concentrations for the three main analytical cohorts 

and shows distinct trends for each across temporal groups. Subadult mean values decrease  
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Figure 7.6: Box plot of M1 or I1 enamel-lead concentrations by 
temporal group for NYABG individuals showing variation from the 
mid-1730s through the post-American Revolutionary era. The 
highest median value (2.85 μg g-1) was measured for the Late-
Middle cohort corresponding approximately to the period of 1760 
through 1776. Median values for the Middle and Late groups are 
1.31 μg g-1and 0.40 μg g-1, respectively. 

 

steadily across all periods; slightly from the Middle to Late-Middle Groups and then considerably 

for the Late Group.  Following a general pattern, subadult values are consistently higher than 

those of modified and non-modified adults. For modified adults, mean concentrations increase 

from the Middle to Late-Middle periods and then decrease to their lowest levels for the Late 

period. Non-modified adult values follow the opposite pattern, decreasing from the Middle to 

Late-Middle periods before increasing to their highest levels in the Late period. Among adults, 

mean concentrations are higher for non-modified than for modified adults for the Middle and 

Late periods. Mean concentration is higher for modified adults in the Late-Middle Group. Note, 

however, that this group includes a single non-modified individual with concentration measured 

below LOD. The typical sex pattern of higher enamel- lead concentrations for males persists for  
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Table 7.3: NYABG M1 or I1 enamel-lead concentrations by temporal 
group and analytical cohort. 

  [Pb] (μg g-1) 
a Temporal group n Mean ± SD Min-Max 

Middle    
Subadults 5 7.37 ± 3.47 3.98 – 11.6 
Mod. adults 8 0.67 ± 0.42 0.39 – 1.34 
Non-mod. adults 4 0.98 ± 0.67 0.40 – 1.72 

Total 17 2.71 ± 3.58 0.39 – 11.6 

Late-Middle    
Subadults 3 6.66 ± 6.97 2.86 – 14.7 
Mod. adults 3 3.86 ± 3.55 0.93 – 7.80 

Non-mod. adults 1 0.39 0.39 

Total 7 4.56 ± 5.07 0.39 – 14.7 

Late    
Subadults 3 2.62 ± 1.60 1.20 – 4.35 

Mod. adults 6 0.50 ± 0.20 0.39 – 0.89 
Non-mod. adults 6 1.25 ± 1.59 0.39 – 4.35 

Total 15 1.22 ± 1.39 0.39 – 4.35 

a
 The sample included a single individual from the Early Group (Burial 23 

with enamel-lead concentration measured below the 0.39 µg g-1
 LOD. 

 
 
 
all three temporal groups although sample sizes are small and the differences are not 

statistically significant (see Table 7.4). 

 

Comparison of Permanent First Molars or Incisors and Third Molars  

A comparison of early- and late-forming tooth enamel may reveal changes in lead 

exposure, uptake or skeletal deposition during an individual’s life. I analyzed M3s for 20 NYABG 

adults for this study. The mean concentration for this group is 1.14 ± 1.74 µg g-1, virtually the 

same as that observed for the NYABG adult M1 or I1 sample (1.11 ± 1.56 µg g-1; n=29). Seventy 

percent (n=14) of the M3 teeth produced measurements below the LOD (< 0.39 μg g-1) as 

compared to 52% (n=15) of the M1 or I1 teeth (see Table 7.1). 
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Table 7.4: NYABG M1 or I1 enamel-lead concentrations by temporal 
group and sex. 

  [Pb] (μg g-1) 
a Temporal group n Mean ± SD Min-Max 

Middle    
Female 8 0.73 ± 0.53 0.40 – 1.72 
Male 3 1.01 ± 0.54 1.31 – 1.34 
Undetermined 6 6.20 ± 4.21 0.39 – 11.59 

Total 17 2.71 ± 3.58 0.39 – 11.59 

Late-Middle    
Female 2 1.89 ± 1.36 0.93 – 2.82 
Male 2 4.10 ± 5.24 0.39 – 7.80 

Undetermined 3 6.66 ± 6.97 2.41 – 14.7 

Total 7 4.56 ± 5.07 0.39 – 14.7 

Late    
Female 6 0.55 ± 0.32 0.39 – 1.20 

Male 5 1.52 ± 1.66 0.39 – 4.35 
Undetermined 4 1.86 ± 1.89 0.39 – 4.35 

Total 15 1.22 ± 1.39 0.39 – 4.35 

a
 The sample included a single individual from the Early Group (Burial 23 

with enamel-lead concentration measured below the 0.39 µg g-1
 LOD. 

 
 

The larger percentage of M3s below the LOD may indicate a general decrease in lead 

exposure during adolescence for NYABG adults. However, an analysis of paired early- and late-

forming tooth data for 16 NYABG adults indicates that M1 or I1 concentrations for most of these 

individuals are below the 1 μg g-1 upper limit for non-technological exposure. Thus, these 

individuals most likely spent their early years (when M1s and I1s form) as well as their 

adolescent years (when M3s form) in low-lead environments. 

Figure 7.7 shows the distributions of M1 or I1 and M3 mean enamel-lead 

concentrations. The median concentration for both groups is 0.39 μg g-1 and the ranges of their 

concentration values are similar: <0.39( below LOD) to 7.80 μg g-1 for M1 or I1 teeth and <0.39  
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Figure 7.7: Box plot comparison of M1 or I1 and M3 enamel-lead 
concentrations for NYABG adults. The median concentration for both 
groups is 0.39 μg g-1, the limit of detection, but the range of values is 
considerably narrower for M3s. 

 

to 7.38 μg g-1 for M3s. Burial 101 has the highest lead concentrations and is an extreme outlier 

for both tooth types. Other extreme outliers within the M3 group are Burials 63, 172 and 324. 

While the mean concentrations and range of values for both groups are very similar, the 

distribution of non-outlying M3 values is narrower and – contra the M1 or I1 group – none of 

these values exceed 1 μg g-1, the suggested threshold for technological exposure. 

Paired M1 or I1 and M3 enamel-lead concentrations are available for 16 individuals, 5 of 

which – Burials 9, 101, 172, 179 and 324 – appear in Figure 7.8. I highlight these individuals  

because they do not conform to the trend of low M1 or I1 concentrations (i.e., < 1 μg g-1) and 

lower M3 concentrations (below LOD [< 0.39 μg g-1) observed for a slight majority (n = 9 or 56%) 

within this group. This general pattern indicates that these individuals spent their earliest as well 

their adolescent years in environments with low-level non-anthropogenic or background lead  
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Figure 7.8: Paired NYABG M1 or I1 and M3 enamel-lead concentrations. 
Relatively stable concentrations for M1s or I1s and M3s suggest a stable (high- 
or low-) lead environment throughout childhood and adolescence. Substantial 
variation between tooth types for an individual may indicate migration during 
childhood years. 

 

exposure. Individuals whose concentrations deviate from this trend likely had different 

experiences. For example, like most individuals with paired M1 or I1 and M3 data, Burial 101 

shows little inter-tooth variation. However, this individual differs from the general pattern of 

low-level and decreasing lead exposure as his high concentrations for I1 and M3 teeth suggest 

little change in infant and adolescent lead environments. These data seem to indicate that 

Burial101 grew up under conditions of relatively high-level lead exposure. 

Of particular interest are those individuals whose increases or decreases in early- to 

late-forming tooth concentrations cross Budd et al.’ (2004) suggested 1 μg g-1 threshold of non-

technological exposure. Such findings may indicate migration from low- to high-lead 

environments, or vice versa. This seems to be the case for Burial 172, an individual whose M1 

and M3 lead concentrations suggest movement from a low-lead (presumably African) to a high-

lead (presumably American) setting. Meanwhile, Burials 9, 179 and 323 may also have migrated 
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as children albeit from high- to low-lead environments given their age-related decreases in 

enamel-lead concentration. This latter finding is fascinating as it points to the potential 

importance of regional variation of diasporic conditions associated with different enslavement 

regimes in the Americas and, possibly, within Africa. 

 

Conclusions 

In this chapter I have shown that enamel-lead concentrations varied greatly within and 

across groups and sometimes for different teeth of the same individual. Mean M1 or I1 

concentrations were highest for children; over five times that of adults, whether considered 

collectively or as modified and non-modified subgroups. Mean concentration for males was 

higher than that of females and early-life exposure was greatest for individuals in the Late-

Middle group, i.e., those buried between approximately 1760 and 1776, the years leading up to 

the American Revolutionary War. For most individuals with measured M1 or I1 and M3 

concentrations, M1 or I1 values were higher than but comparable to those measured in their 

later-forming M3 teeth, indicating a degree of stability in environmental lead conditions. For 

some, however, inter-tooth variation suggests exposure increased or decreased substantially 

with age. 

Comparisons of mean concentrations begin to tell a story about lead exposure in 18th-

century America and in the lives of enslaved New Yorkers. Yet, for all these data reveal, they 

also potentially mask important patterns with respect to the age and nature (i.e., chronic versus 

acute) of exposures. The unique promise of the method developed for this study is its ability to 

capture such experiences. Therefore, in the next chapter I describe enamel-lead microspatial 

and age distributions. I then explore the potential relevance of these and other findings in 

chapter 9. 
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CHAPTER 8 

 
RESULTS: ENAMEL-LEAD PROFILES 

 
This second chapter of analytical results focuses on the microspatial distribution and 

chronological age of enamel-lead deposition. I present the data in two sections. In the first, I 

describe various enamel-lead distribution patterns observed amongst NYABG individuals. In the 

second section, I combine these patterns with estimated ages of enamel formation to produce a 

series of age-at-deposition profiles. These profiles reveal the natures as well as the extent of 

early life lead exposure. As in the preceding chapter, I compare measured lead across 

individuals, groups and tooth types (earlier developing M1s or I1s versus later developing M3s) 

in order to characterize variation in the extent of enamel-lead deposition at each of these levels.  

The spatial distribution and age profiles presented below take full advantage of the laser 

ablation capabilities of the ICP-MS. A unique analytical feature of laser ablation is its ability to 

detect tissue level distributions of lead. Here, this feature is particularly useful for identifying 

intra-tooth (and by extension intra-individual) temporal trends that enable a more in-depth 

analysis of the timing and amount of lead content than can be attained from mean or “total” 

enamel-lead data alone. Potentially, these profiles can shed light on the varied nature and 

perhaps, by extension, the actual sources of lead exposure for NYABG individuals and groups. 

Throughout this chapter, distribution graphs appear in log scale for selected – and in linear scale 

for all – teeth that yielded clear analytical signals. For comparative purposes, log scale graphs for 

all of these teeth are included as Appendices B-D, although the condensed scale may serve to 

obscure some of the patterns described below.29 

                                                           
29 A log scale is useful for presenting data values that range widely. Rather than actual values, 
logarithms of values are graphed on a scale that increases exponentially according to an 
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Microspatial Pb Distribution Profiles 

Thirty-two teeth – 28 M1 or I1s and 4 M3s – from 29 NYABG individuals produced clear 

lead signals via LA-ICP-MS analysis, from which I graphed microspatial distributions for early-to-

late formed core enamel developed during infancy. This sample consists of: M1s from all 11 

subadults included in this study; 8 M1 or I1s and 2 M3s from 8 modified adults; and 9 M1 or 1s 

and 2 M3s from 10 non-modified adults. Comparison of their distributions reveals four general 

patterns of intra-tooth variation, described below and presented as log scale graphs in Figures 

8.1-8.4. For each of these graphs, surface enamel peaks have been removed in order to 

emphasize the core enamel-lead trends that are the focus of this chapter. These interesting 

features are retained in all other graphs. 

Pattern A: A steady lead signal that does not deviate much from the mean enamel-lead 

concentration reported in chapter seven (see Figure 8.1). The lack of major increases or 

decreases in lead concentration suggests lead is fairly evenly distributed throughout the enamel. 

Subadult, modified adult and non-modified adult teeth exhibit this pattern.  

 Pattern B: A lead concentration that trends upward (see Figure 8.2). This pattern of 

increasing lead deposition is evident amongst subadults and a few non-modified adults. Lead 

concentrations sometimes increase rather quickly and span a wide range of values, as is the case 

with Burial 126 (M1). For other individuals such as Burial 324 (M1 and M3), lead levels rise 

slowly by comparison and stay within a relatively limited range. 

 Pattern C: The inverse of pattern B; for teeth with this pattern, lead concentrations 

decrease from early- to late-formed enamel, i.e., with an individual’s chronological age. Here, 

again, the rate of change may vary, from the relatively rapid drop in lead concentrations seen 

for Burial 9’s M1 to the slight, more gradual decrease observed for that of Burial 335 (see Figure 

                                                                                                                                                                             
assigned base – here, 10. The result is a compressed scale that reduces analytical noise and 
enables easier comparison of trends across orders of magnitude. 
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Figure 8.1: Examples of NYABG M1 or I1 208Pb microspatial 
distribution pattern A, a steady lead signal. Surface enamel peaks 
(approximately 150 µm) have been removed. 

 

 

Figure 8.2: Examples of NYABG M1 or I1 208Pb microspatial 
distribution pattern B, an increasing lead signal. Surface enamel 
peaks (approximately 150 µm) have been removed. 

 

8.3). Teeth of four modified adults and a single non-modified adult exhibit this pattern. 

Pattern D: A more complicated, random or otherwise mixed lead signal, i.e., one that 

lacks an overall or unidirectional trend. Instead, zones of increasing or decreasing lead 

concentration are often discernible (see Figure 8.4). Teeth from several subadults, modified 
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Figure 8.3: Examples of NYABG M1 or I1 208Pb microspatial 
distribution pattern C, a decreasing lead signal. Surface enamel 
peaks (approximately 150 µm) have been removed. 

 

Figure 8.4: Examples of NYABG M1 or I1 208Pb microspatial 
distribution pattern D, a “mixed” or fluctuating lead signal. 
Surface enamel peaks (approximately 150 µm) have been 
removed. 

 

adults and non- modified adults have this mixed lead signal. None of these patterns vary by sex 

or temporal group. Teeth exhibiting these different patterns are listed in Table 8.1. 

These four patterns represent the intra-tooth variation observed for all subadult M1 

teeth. However, LA-ICP-MS analysis of over half of the modified adult and about a quarter of the 
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Table 8.1: NYABG M1 or I1 enamel-lead microspatial distribution 
patterns by analytical cohort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

non-modified adult M1 or I1s failed to produce stable lead signals above the 0.39 µg g-1 LOD. 

Distribution graphs for many of these teeth are blank with the exception of surface enamel 

peaks or occasional signal spikes from ablation of fractured enamel. Thus, they are not useful for 

determining trends even for limited portions of the tooth crown. To illustrate, I include the 

graph for the Kasana control sample as Figure 8.5. This lack of a clear distribution pattern is 

evident for all teeth with mean lead concentrations below the LOD (0.39 µg g-1) as well as those 

of Burials 6, 165 and 243, modified adults with quantified M1 or I1 concentrations.  

Finally, only four (20%) of the M3s analyzed for this study produced stable lead signals; 

Distribution Pattern n Burial(s) 

Steady Pb signal (A)   

Subadults 5 43, 138, 180, 244, 405 
Mod. Adults 2 47, 367 
Non-mod. Adults 3 12, 150, 179 
Total 9  
   

Increasing Pb signal (B)    

Subadults 4 7, 35, 39, 126 
Mod. Adults - - 
Non-mod. Adults 1 176, 324 
Total 5  
   

Decreasing Pb signal (C)    

Subadults - - 
Mod. adults 4 9, 106, 266, 366 
Non-mod. Adults 1 335 
Total 5  
    

Mixed Pb signal (D)    

Subadults 2 22, 219 
Mod. adults 2 101, 377 
Non-mod. adults 3 25, 49, 323 
Total 7  
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Figure 8.5: Enamel-lead distribution graph for the Kasana control 
tooth sample. Throughout much of the crown, lead concentrations 
are below instrument detection limits (0.39 µg g-1). The signal 
spikes at the beginning and latter portion of the graph represent 
fractures within the tooth crown where low calcium readings due 
to less ablated enamel produce artificially high lead values. 

 

two teeth from modified adults (Burials 9 and 101) and two teeth from non-modified adults 

(Burials 63 and 324). Their spatial distribution graphs appear in the following section and in 

Appendices C and D. The M3 lead signals for Burials 9, 63 and 101 are mixed, with no clear lead 

deposition trend while that of Burial 324 indicates a slight but continuous increase for most of 

the measured period. For Burial 63, there was no M1 or I1 available for comparison of lead 

levels or distribution. Intra-tooth variation for the other individuals and patterning of 

distributions (or lack thereof) across subadults, modified and non-modified adults is described 

below and discussed in more detail in chapter nine. 

 

Chronological Age Profiles 

In this section, I present enamel-Pb distribution/age profiles for NYABG subadults, 

modified adults and non-modified adults. These are visual representations of the intensity and 

timing of lead deposition at specific chronological ages. Each profile consists of a micro-
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photograph of a longitudinal cross section of an ablated tooth scaled to Reid and Dean’s (2006) 

enamel formation timing estimates with the corresponding microspatial distribution graph 

superimposed upon it. The graphs are positioned over the photographs such that the ablation 

tracks, indicated by red lines, are located in place of the x-axes.  

Subadult distribution/age profiles are immediately below, followed by profiles for 

modified adults and, lastly, non-modified adults. Each profile includes: (1) the age and sex 

estimates of the individual, (2) the mean enamel-lead concentration for the sampled portion of 

the tooth, and (3) a detailed description of the enamel-lead distribution, including the lead 

signal pattern and an explanation of significant fluctuations or sustained increases and 

decreases with age. 

 

Subadults 

  

Figure 8.6a: Enamel-Pb/age graph for Burial 7 (LRM1), a 3- to 5-year-old subadult of 
undetermined sex. Mean enamel-lead concentration for this tooth is 2.86 μg g-1. The red line 
indicates the location of the ablation track. This is an example of an increasing lead signal. Lead 
concentrations rise gradually until about 2.3 years of age when they decrease prior to a surface 
enamel peak. Note that the zone of highest lead concentration coincides with sampling near the 
dentine-enamel junction (DEJ). This zone is indicated by the red arrow. 
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Figure 8.6b: Enamel-Pb/age graph for Burial 22 (LRM1), a 2.5- to 4.5-year-old subadult of 
undetermined sex. Mean enamel-lead concentration for this tooth is 4.66 μg g-1. This is an 
example of a mixed and particularly noisy lead signal. Note that several peaks in the analytical 
signal are due to ablation of fractured enamel. Disregarding the first of these (indicated by the 
red arrow), lead concentrations rise from about 1.3 to 1.5y, then decrease until becoming 
somewhat stable after about 1.8 years. 

 

  

Figure 8.6c: Enamel-Pb/age graph for Burial 35 (ULM1), an 8- to 10-year-old subadult of 
undetermined sex. Mean enamel-lead concentration for this tooth is 10.52 μg g-1. This is an 
example of an increasing lead signal. Lead concentrations begin on the high end of the spectrum 
for NYABG individuals and rise fairly consistently from about 1.7 to 2.3y. Following a major 
fluctuation around 2.6y, lead levels again rise – and at a faster pace – throughout the remainder 
of the sampled enamel (i.e., until circa 2.8y). A similarly rapid increase in lead levels within late-
formed enamel is seen for Burial 126. 
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Figure 8.6d: Enamel-Pb/age graph for Burial 39 (LRM1), a 5- to 7-year-old subadult of 
undetermined sex. Mean enamel-lead concentration for this tooth is 6.09 μg g-1. This is another 
example of an increasing lead signal. A slight, gradual increase in lead concentration begins 
around 1.5y and becomes more pronounced beginning at about 2y. Note, however, that lead 
levels decrease between 2.6 and 2.9y – and the presence of large occlusal and cervical surface 
enamel peaks. 

 

 

Figure 8.6e: Enamel-Pb/age graph for Burial 43 (LRM1), a 2.5- to 4.5-year-old subadult of 
undetermined sex. Mean enamel-lead concentration for this tooth is 2.41 μg g-1. This is an 
example of a steady lead signal that indicates no major increases or decreases in lead 
concentration. 
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Figure 8.6f: Enamel-Pb/age graph for Burial 126 (LLM1), a 3.5- to 5.5-year-old subadult of 
undetermined age. Mean enamel-lead concentration for this tooth is 11.59 μg g-1. This is an 
example of an increasing lead signal. Lead concentrations begin to increase just before 1.8y and, 
following a period of steady by relatively slow increase, rise dramatically beginning at about 
2.3y. A similar zone of rapidly increasing lead concentrations in late-formed enamel is seen for 
Burial 35. Note that this tooth also has an area of raster ablation near the y axis and between 
1.5-1.8 years from an earlier elemental signature analysis (ESA) study. 

 

 

Figure 8.6g: Enamel-Pb/age graph for Burial 138 (URM1), a 3- to 5-year-old subadult of 
undetermined age. Mean enamel-lead concentration for this tooth is 2.30 μg g-1. This is an 
example of a steady lead signal, with no major increases or decreases in lead concentration. 

 



 

169 

 

Figure 8.6h: Enamel-Pb/age graph for Burial 180 (ULM1), an 11- to 13-year-old female. Mean 
enamel-lead concentration for this tooth is 1.20 μg g-1. This lead signal for this tooth is steady, 
with no major increases or decreases in lead concentration. Note the occlusal surface enamel 
peak. 

 

 

Figure 8.6i: Enamel-Pb/age graph for Burial 219 (LRM1), a 4- to 5-year-old subadult of 
undetermined age. Mean enamel-lead concentration for this tooth is 14.70 μg g-1, the highest 
value observed amongst NYABG individuals. This is an example of a mixed lead signal. Lead 
concentrations increase steadily from 1.2y, peak between 1.4 and 1.5y, and then decrease 
through 1.7y. From this point, lead levels are relatively stable given the large amount of lead 
concentration oscillations for this sample. Note that the occlusal surface enamel peak is small 
compared to those observed for most other subadults. 
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Figure 8.67j: Enamel-Pb/age graph for Burial 244 (LLM1), a 5- to 9-year-old subadult of 
undetermined age. Mean enamel-lead concentration for this tooth is 4.35 μg g-1. This is an 
example of a steady lead signal indicating no major increases or decreases in lead concentration. 
Note that the occlusal surface enamel peak is small relative to those observed for most other 
subadults. 

 

 

Figure 8.6k: Enamel-Pb/age graph for Burial 405 (URM1), a 6- to 10-year-old subadult of 
undetermined age. Mean enamel-lead concentration for this tooth is 3.98 μg g-1. This is an 
example of a steady lead signal. A few minor fluctuations occur but there are no major increases 
or decreases in lead exposure/deposition. Note the presence of occlusal and cervical surface 
enamel peaks. In addition to the linear ablation, this tooth was also ablated in three other 
directions around mid-crown as part of an earlier study. 
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Modified Adults 

 

Figure 8.7a: Enamel-Pb/age graph for Burial 9 (LLM1), a 35- to 45-year-old female. Mean 
enamel-lead concentration for this tooth is 1.34 μg g-1. Overall, lead concentrations decrease 
with distance/age. The slight increase in lead levels in the late-formed enamel likely results from 
sampling near the dentine-enamel junction (DEJ). Note the presence of occlusal and late-formed 
enamel surface peaks. 

 

 

Figure 8.7b: Enamel-Pb/age graph for Burial 9 (LRM3), a 35- to 45-year-old female. Mean 
enamel-lead concentration for this tooth is 0.69 μg g-1. This suggests low-level early-childhood 
exposure/deposition despite several spikes of considerable intensity, the largest of which 
exceeds the occlusal surface enamel peak. Her lead signal is mixed, decreasing from 9.3 to 9.7y 
and then increasing slowly after the large spike until about 10.4y. From this point, the signal 
decreases briefly (with a few more spikes) before rising again as the line scan approaches the 
crown cervix and dentine-enamel junction (DEJ). 
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Figure 8.7c: Enamel-Pb/age graph for Burial 47 (LLM1), a 35- to 45-year-old male. Mean enamel-
lead concentration for this tooth is 1.31 μg g-1. Disregarding the high concentrations at the latter 
portion of the graph, which correspond to fractured enamel, this is an example of distribution of 
a steady signal with no major increases or decreases in lead concentration. Note the lack of an 
occlusal surface enamel peak. 

 

 

Figure 8.7d: Enamel-Pb/age graph for Burial 101 (LRI1), a 26- to 35-year-old male. Mean enamel-
lead concentration for this tooth is 7.80 μg g-1, the highest value observed for an NYABG adult. 
His “mixed” lead signal is consistently in the high range for NYABG individuals and indicates 
several periods of increased exposure/deposition prior to 1.6y and around 2.2y. 
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Figure 8.7e: Enamel-Pb/age graph for Burial 101 (LLM3), a 26- to 35-year-old male. Mean 
enamel-lead concentration for this tooth is 7.38 μg g-1, quite similar to that observed for this 
individual’s M1. Likewise, the lead signal for this tooth is also mixed. Lead concentrations are 
consistently high with a period of marked increase; here, between 9.6 and 9.9y. Concentrations 
for the discolored portion of the tooth, which corresponds to a large carie, are not included in 
the mean calculation. Note the presence of an occlusal surface enamel peak. 

 

 

Figure 8.7f: Enamel-Pb/age graph for Burial 106 (LRM1), a 25- to 35-year-old female (probable). 
Mean enamel-lead concentration for this tooth is 0.93 μg g-1. For this tooth, lead concentrations 
decrease, albeit slightly, with distance/age. 
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Figure 8.7g: Enamel-Pb/age graph for Burial 266 (URM1), a 25- to 35-year-old female. Mean 
enamel-lead concentration for this tooth is 0.56 μg g-1. This is another example of a decreasing 
lead signal. Note the presence of occlusal and (fractured) late-formed enamel surface peaks. 

 

 

Figure 8.7h: Enamel-Pb/age graph for Burial 366 (LLM1), a 34- to 62-year-old adult of 
undetermined sex. Mean enamel-lead concentration for this tooth is > 0.39 μg g-1. Lead 
concentrations decrease gradually with distance/age. The increased lead signal at 1.5y is due to 
ablation of fractured enamel. Note the presence of occlusal and late-formed enamel surface 
peaks. 
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Figure 8.7i: Enamel-Pb/age graph for Burial 367 (ULM1), a 25- to 35-year-old female (probable) 
adult of undetermined sex. Mean enamel-lead concentration for this tooth is 0.76 μg g-1. This is 
a steady signal with no major increases or decreases in concentration indicating minimal lead 
exposure. 

 

 

Figure 8.7j: Enamel-Pb/age graph for Burial 377 (ULM1), a 33- to 58-year-old female. Mean 
enamel-lead concentration for this tooth is 2.82 μg g-1. This is an example of a steady lead signal. 
Lead levels rise modestly around 1.3 and 1.9y but overall there are no major increases or 
decreases in lead exposure/deposition. 
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Non-modified Adults 

 

Figure 8.8a: Enamel-Pb/age graph for Burial 12 (ULM1), a 35- to 45-year old female. Mean 
enamel-lead concentration for this tooth is < 0.39 μg g-1. The lead signal is quite steady with no 
major fluctuations. Note the surface enamel peak at the end of the graph. 

 

 

Figure 8.8b: Enamel-Pb/age graph for Burial 25 (URI1), a 20- to 24-year-old female. Mean 
enamel-lead concentration for this tooth is 0.40 μg g-1. Its lead signal is mixed, rising and falling 
(occasionally below detection limit) throughout the crown. Note the presence of a surface 
enamel peak. Note, also, that the graph for this tooth represents a series of four line scans. The 
separate scans were necessary in order to sample the lingual enamel, which is less affected by 
the hypocalcification indicated by the cream and brown discoloration throughout the labial 
enamel. 
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Figure 8.8c: Enamel-Pb/age graph for Burial 49 ULM1, a 40- to 50-year-old female. Mean 
enamel-lead concentration for this tooth is 1.72 μg g-1. The lead signal is mixed. Lead 
concentrations decrease for a brief period (between 1.3 and 1.4y) and then rise slowly, peaking 
just after 2.0y and decreasing again thereafter. Note, however, the overall relatively poor 
condition of this tooth (enamel and dentine) and that the signal increase coincides with 
sampling of discolored, hypocalcified enamel. Occlusal and late-formed enamel surface peaks 
are present. 

 

 

Figure 8.8d: Enamel-Pb/age graph for Burial 63 (LRM3), a 35- to 45-year old male. Mean enamel-
lead concentration for this tooth is 2.08 μg g-1. This is an example of a mixed lead signal. Lead 
concentrations are below detection limits until 9.9y and then fluctuate substantially, reaching 
fairly high levels for this population, before peaking at the crown surface. 
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Figure 8.8e: Enamel-Pb/age graph for Burial 150 (LRM1), a 20- to 28-year-old female. Mean 
enamel-lead concentration for this tooth is < 0.39 μg g-1. The lead signal is steady and 
concentrations are consistently low (under 1 μg g-1) until the late-formed enamel surface peak. 

 

 

Figure 8.8f: Enamel-Pb/age graph for Burial 176 (LRM1), a 20- to 24-year-old male. Mean 
enamel-lead concentration for this tooth is < 0.39 μg g-1. This is an example of an increasing lead 
signal, with concentrations rising slowly from about 1.8 to 2.6y. Note that the peaks on either 
side of this graph result from ablating fractured, not surface, enamel. Note also two areas of 
raster ablation. 
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Figure 8.8g: Enamel-Pb/age graph for Burial 179 (LRM1), a 25- to 30-year-old male. Mean 
enamel-lead concentration for this tooth is 1.60 μg g-1. This is an example of a steady lead signal, 
with no major fluctuations besides an increase due to sampling fractured enamel just before the 
surface enamel peak. 

 

 

Figure 8.8h: Enamel-Pb/age graph for Burial 323 (LRM1), a 19- to 30-year-old male. Mean 
enamel-lead concentration for this tooth is 4.35 μg g-1; relatively high for NYABG adults. The 
lead signal is mixed. Lead concentrations rise roughly threefold, from about 2 to 6 μg g-1, 
between 1.3 and 1.4y. The signal then decreases until approximately 1.7y and, from that point, 
concentrations fluctuate between 4 and 8 μg g-1 throughout the remainder of the core enamel. 
Note the presence of two surface enamel peaks. 
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Figure 8.8i: Enamel-Pb/age graph for Burial 324 ULM1, a 25- to 35-year-old female. Mean 
enamel-lead concentration for this tooth is 1.39 μg g-1. The lead signal increases continuously 
with distance/age. Note the occlusal surface enamel peak and the large spike in the late-formed 
enamel. 

 

 

Figure 8.88j: Enamel-Pb/age graph for Burial 324 (LRM3), a 25- to 35-year-old female. Mean 
enamel-lead concentration for this tooth is 1.96 μg g-1, slightly higher than that of her M1. 
Beginning at 9.4y, the lead signal increases until almost 10.4y. Thus, the main trend observed for 
this tooth, like that of her M1, is a gradual increase in lead concentration. Here, however, the 
signal decreases slightly as it nears the cervical region of the crown.     
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Figure 8.8k: Enamel-Pb/age graph for Burial 335 (LLLM1), a 25- to 35-year-old female. Mean 
enamel-lead concentration for this tooth is 0.42 μg g-1. Lead concentrations are consistently low 
(i.e., under 1 μg g-1) and decrease gradually with distance/age with the exception of the surface 
enamel peak. 

 

The distribution patterns of enamel-lead described and illustrated above are not group-

specific although some clustering is evident for subadults and modified adults. Nine of the 11 

subadults exhibit either a steady (pattern A) signal or increasing (pattern B) lead concentrations 

with age. Two subadults had random or mixed signals identified as pattern D while none showed 

evidence of decreasing lead deposition with age (pattern C). Similarly, three patterns – A, C and 

D – are found amongst modified adults, with a majority represented by patterns C (decreasing 

lead deposition with age) or D (random). None of the modified adults had increasing lead 

concentrations. All four patterns could be found amongst non-modified adults. It may be worth 

noting that the subadult (Burial 219), modified adult (Burial 101) and non-modified individuals 

(Burial 323) with the highest enamel-lead concentrations for their respective groups all had 

random/mixed early life signals, possibly indicating high-level but also episodic exposure. 
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Early Versus Late Enamel-lead 

I lastly report on a comparison of mean lead concentrations of core enamel formed 

before and after age two, which marks a critical period when children are most vulnerable to 

environmental lead (see chapter five). I compared mean concentrations for “early” (pre-age 

two) and “late” (post-age two) stages of M1 or I1 enamel development for 27 of the 28 

individuals with age profiles.30 For most M1s, line scans captured enamel that formed over the 

course of approximately 12 or 13 months, from about 1.4 or 1.5 until 2.6 years of age. Scans of 

I1 teeth for Burials 25 and 101 sampled a greater age range, particularly for late enamel. The 

results for subadults, modified adults and non-modified adults are listed by individual/tooth in 

Table 8.2 and by sex and temporal group in Tables 8.3 and 8.4, respectively.  

For the entire sample, mean lead concentration increases from 2.85 ± 3.27 μg g-1 (range: 

0.21 to 15.3) for early enamel to 3.67 ± 4.92 μg g-1 (range: 0.15 to 21.04) for late enamel. Sixteen 

(59%) of the NYABG individuals – including 6 subadults, 6 modified adults and 4 non-modified 

adults – follow this pattern of higher mean concentrations for late enamel. The difference 

between early and late enamel lead levels was minimal or even negligible for some individuals 

such as Burial 244 whose mean concentrations decreased from 4.35 to 4.34 μg g-1. Others 

experienced far greater change in lead deposition during the first years of life. The greatest 

difference in early and late lead levels occurs for Burial 126, for example, a subadult whose 

mean concentrations increased nearly fivefold after age two, from 4.26 to 21.0 μg g-1. 

Overall, subadults follow the general pattern of more lead deposition after age two and have 

the highest mean concentrations of all subsamples: 4.86 ± 4.01 μg g-1 and 6.95 ± 6.08 μg g-1 for 

early and late enamel, respectively. For adults, modified and non-modified, early enamel values 

are greater. The decrease in early to late mean concentration is slight for both adult  

                                                           
30 Sampling captured only early enamel formed prior to age two for Burial 323, a non-modified 
adult male (see Table 8.2; Figure 8.5h). 



 

183 

Table 8.2. NYABG early and late M1 or I1 enamel-lead concentrations. 

  Mean [Pb] (μg g
-1

) 

Burial 
a
 Sample Early (Pre-2y) Late (Post-2y) 

Subadults (n = 11) 
 

  

7 LRM1 1.75 5.16 

22 LRM1 5.50 3.09 

35 ULM1 8.54 14.2 

39 LRM1 4.28 8.50 

43 LRM1 2.13 2.85 

126 LLM1 4.26 21.0 

138 URM1 2.45 2.09 

180 ULM1 1.26 1.08 

219 LRM1 15.3 9.96 

244 LLM1 4.35 4.34 

405 URM1 3.69 4.19 

Mean ± SD  4.86 ± 4.01 6.95 ± 6.08 

Modified adults (n = 8) 
 

  

9 LLM1 1.51 1.08 

47 LLM1 1.24 1.49 

101 LRI1 7.34 8.31 

106 LRM1 0.94 0.84 

266 URM1 0.65 0.42 

366 LLM1 0.41 0.29 

367 ULM1 0.78 0.73 

377 ULM1 2.93 2.62 

Mean ± SD  1.98 ± 2.30 1.97 ± 2.66 

Non-mod. adults (n = 9) 
 

  

12 ULM1 0.27 0.17 

25 URI1 0.29 0.43 

49 ULM1 1.76 1.45 

150 LRM1 0.36 0.15 

176 LRM1 0.21 0.42 

179 LRM1 1.53 1.74 
b
 323 LRM1 4.35 - 

324 ULM1 1.12 2.14 

335 LLM1 0.48 0.36 

Mean ± SD  1.15 ± 1.33 0.86 ± 0.79 

Sample mean ± SD   2.85 ± 3.27 3.67 ± 4.92 

a 
Tooth type/position key: L or U = lower or upper; L or R = left or right; M or I = 

molar or incisor; 1 or 3 = first or third. All teeth are from the permanent dentition 
(e.g., LLM1 = permanent lower left first molar). 

b Only early enamel was sampled for this individual. 
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Table 8.3. NYABG M1 or I1 early and late enamel-lead concentrations by sex and analytical 
cohort. 

 

  [Pb] (μg g-1) (mean ± SD) 

Sex n  Early (Pre-2y) Min-Max Late (Post-2y) Min-Max 

Females      

Subadults 1 1.26 N/A 1.08 N/A 

Mod. Adults 4 1.33 ± 1.08 0.65 – 2.93 1.15 – 0.99 0.42 – 2.62 

Non-mod. adults 6 0.71 ± 0.60 0.27 – 1.76  0.78 ± 0.82 0.15 – 2.14 

Total 11 0.99 ± 0.79 0.27 – 2.93 0.94 ± 0.82  0.15 – 2.62 

Males      

Subadults - - - - - 

Mod. Adults 3 3.36 ± 3.45 1.24 – 7.34 3.63 ± 4.06 1.08 – 8.31 

Non-mod. adults 3  2.03 ± 2.11 0.21 – 4.35 1.08 ± 0.93 0.42 – 1.74 

Total 6 2.70 ± 2.66  0.21 – 7.34 2.61 ± 3.23 0.42– 8.31 

Undetermined      

Subadults 10 5.23 ± 4.04 1.75 – 15.3 7.54 ± 6.07 2.09 – 21.0 

Mod. Adults 1 0.41 N/A 0.29 N/A 

Non-mod. adults - - - - – 

Total 11 4.79 ± 4.10 0.41 – 15.3 6.88 ± 6.16 0.29 – 21.0 

 
 

subsamples, especially modified adults for whom these values are nearly identical (see Table 

8.2). For early enamel, the subadult value is over twice that of modified adults and over four 

times that of non-modified adults. Late enamel mean concentration for subadults is over four 

times that of modified adults and over eight times the non-modified adult value. 

As indicated in Table 8.3, overall mean concentration decreases slightly after age two for males 

and females. Early and late enamel mean values are nearly threefold higher for males than for 

females. Male individual values also range much more widely for both age ranges. Within male 

and female cohorts, most of the differences observed between early and late mean 

concentrations for modified and non-modified adults are also minimal. For individuals with sex 

estimates, only non-modified adult males show a substantial difference in early and late enamel  
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Table 8.4. NYABG M1 or I1 early and late enamel-lead concentrations by temporal group and 

analytical cohort. 

  [Pb] (μg g-1) (mean ± SD) 

a Temporal group n  Early (Pre-2y) Min-Max Late (Post-2y) Min-Max 

Middle      

Subadults 5 5.25 ± 1.95 3.69 – 8.54 10.2 ± 7.47 3.09 – 21.0 

Mod. adults 4 0.99 ± 0.49 0.41 – 1.51 0.90 ± 0.51 0.29 – 1.49 

Non-mod. adults 4 0.91 ± 0.67 0.29 – 1.76 1.10 ± 0.86 0.36 – 2.14 

Total 13 2.60 ± 2.49 0.29 – 8.54 4.54 ± 6.37 0.29 – 21.0 

Late-Middle      

Subadults 3 6.39 ± 7.72 1.75 ± 15.3 5.99 ± 3.63 2.85 – 9.96 

Mod. adults 3 3.74 ± 3.28 0.94 ± 7.34  3.92 ± 3.90 0.84 – 8.31 

Non-mod. adults 1 0.21 N/A 0.42 N/A 

Total 7 4.37 ± 5.34 0.21 ± 15.3 4.31 ± 3.67 0.42 – 9.96 

Late      

Subadults 3 2.69 ± 1.56 1.26 ± 4.35 2.50 ± 1.67 1.08 – 4.34 

Mod. adults 1 0.65 N/A 0.42 N/A 

Non-mod. adults b 4 1.63 ± 1.90 0.27 ± 4.35 0.69 ± 0.91 0.15 – 1.74 

Total 8 1.90 ± 1.67 0.27 ± 4.35 1.43 ± 1.49 0.15 – 4.34 

a Data for the Early Group are not presented because the enamel-lead concentration for the sole 

representative was below the LOD (< 0.39 µg/g). 

b Only early enamel was sampled for non-modified adult Burial 323 LRM1. 
 
 

values, i.e., a decrease of 0.95 μg g-1. In contrast to the overall adult pattern, late enamel values 

increase slightly for non-modified adult females and for modified adult males. 

I provide data on temporal group differences in early and late enamel-lead 

concentrations in Table 8.4. Within the Middle group (circa 1735 to 1760), mean enamel lead 

generally increases after age two. Only modified adults exhibit a very slight increase in mean 

late enamel concentration. Subadults and non-modified adults follow the major trend. The only 

significant difference in early and late enamel-lead values for this time period is observed for 

subadults, for whom the late enamel value is nearly double that of early enamel. Subadult 
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values are higher than modified and non-modified adults within all temporal groups, but the 

differences are greatest in this period. 

For the Late-Middle period (circa 1760 to 1776), overall mean concentration is highest 

for early enamel although the difference between early and late enamel values is not very large; 

a decrease of 0.06 μg g-1. Lead concentration is also higher in early enamel for the Late (post-

1776) period. Across temporal groups, early enamel mean concentration increases from the 

Middle to the Late-Middle period and then decreases to its lowest level for the Late period. Late 

enamel values decrease slightly from the Middle to Late-Middle period and then more 

substantially – again, to the lowest level – for the Late group. 

 

Conclusions 

As captured in microspatial and age distributions, enamel-lead was prevalent and 

concentrations were especially high and variable for subadults. At the individual level, 

distribution patterns indicate that levels of early-life deposition remained stable, increased, 

decreased or reflected some combination of these trends. Increasing or fluctuating (“random”) 

lead concentrations may be accounted for under conditions of early American industrialization 

where lead use and exposure opportunities abounded. Decreasing concentrations are less easily 

explained but perhaps reflect age-related metabolic changes, declining maternal contributions, 

or other factors. This question will be explored further. 

While none of these patterns are exclusive to specific groups, teeth of subadults were 

most likely to reveal chronic (steady) or increased deposition. Recall that all subadults or 

children appear to have been born in New York or somewhere else in the Americas. Age profiles 

suggest that increased deposition, probably due to greater childhood exposure, often occurred 

around and after age two. Random or combined patterns were also useful for determining 
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specific ages when lead deposition/exposure changed substantially (see, for example, Burial 219 

[Figure 8.6i]). In the next chapter, I attempt to interpret these data, drawing upon historical, 

archaeological and other skeletal biological research for necessary context. 
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CHAPTER 9 
 

DISCUSSION 

This study builds upon a number of recent bioarchaeological investigations that use 

dental chemistry to probe the lives of historic individuals. Like genetic research, chemical studies 

of the body serve as the basis for reconstructing collective and individual histories – intimate life 

stories – once unimaginable or beyond analytical reach. Arguably, in some respects, chemical 

life profiles are even more informative than those produced from alleles. Chemical elements 

and isotopes can quite possibly reveal a wider range of actual experiences as opposed to 

ancestral backgrounds or health susceptibilities that may not have directly influenced an 

individual’s well-being. The chemistry of the body, and teeth especially, reflect what actually 

happened. The hard part, now that we can measure tooth chemistry, is interpreting the possible 

significance for individuals and groups. That question – (What does it mean?) – is the focus of 

this chapter.     

Researchers are now capable of exploring simultaneously numerous trace element 

interactions and patterns of isotopic variation from skeletal remains and are using these data to 

identify and compare experiences of residential mobility, nutrition and pollution within and 

across populations or within a single lifetime (Dolphin and Goodman 2009; Prowse et al. 2010; 

Webb et al. 2005). Combined with historical data, multi-elemental/isotopic analysis of dental 

enamel in particular is a powerful means of reconstructing, refining and even reshaping human 

pasts by offering new perspectives on old questions (Goodman et al. 2009; Turner and 

Armelagos 2012; Price et al. 2012; Schroeder et al. 2009). This is not the extent of their value, 

however. In addition to confirming or challenging existing interpretations of past peoples, 

combinations of elemental and isotopic analyses can open new biological windows onto often 

complex social, cultural and individual histories whose interpretations may require entirely new 
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theories of bodies as “sites of memory” (Morrison 1995) and material culture (Sofaer 2006), and 

new understandings of human pasts in relation to the present (Armelagos 2003; Singleton 

2010).  

I have taken a different approach from combining multiple chemical methods and 

instead have focused on a single element: lead. LA-ICP-MS analysis involved the measurement 

of concentrations for various elements at tissue level, which should shed light on nutritional and 

other aspects of health status for NYABG individuals. Yet, this dissertation study focuses solely 

on lead as a central “element of diaspora” with unique biomonitoring value, the exploitation of 

which can illuminate otherwise hidden aspects of African-American ethnogenesis. As explained 

in chapter five, this singular focus is warranted for the NYABG population on at least three 

fronts.  

First, lead use was prevalent in the colonial Americas but limited in those parts of West 

Africa where most enslaved individuals were captured. Since the 1980s, bioarchaeologists have 

recognized lead’s usefulness for distinguishing African- from American-born individuals based 

upon this distribution of lead technology throughout the 18th-century Atlantic world (Handler et 

al. 1986; Corruccini et al. 1987; Aufderheide et al. 1981, 1988). Analysis of tooth enamel at 

micrometer resolution by LA-ICP-MS is a methodological update of this approach. In addition to 

mean concentrations, laser sampling measures lead’s distribution within a tooth along a 

time/age-axis. As a result, it is now possible to assess the nature and intensity of exposure 

during developmentally important stages.    

Secondly, by focusing on colonial-era exposure during childhood, this study has begun 

to fill several important gaps in the scientific literature. Much of what is known about lead 

poisoning amongst enslaved Africans has been inferred from historical accounts of lead sources 

or derived from bone-lead analysis (e.g., Handler et al. 1986; Rathbun 1987). Although the basis 
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for confirming the “hidden epidemic” of lead poisoning in colonial Barbados, bone chemistry is 

fraught with interpretive limitations and pitfalls with respect to the reconstruction of biogenic, 

age-based exposures (Barbosa et al. 2005; Wittmers 2002). By comparison, early-life lead 

exposure and possible health consequences may be more accurately reconstructed and inferred 

via tooth enamel. However, such studies are limited in number within anthropology (see 

Goodman et al. 2009 for an exception). As the first study to apply an explicitly political ecological 

framework to the quantitative measurement of enamel-lead via LA-ICP-MS, these findings 

should prove of interest to anyone concerned with the history of lead poisoning and 

environmental health as well as social bioarchaeology and the bioarchaeology of childhood, 

important emerging areas of study. 

Third, lines of inquiry and evidence from lead analysis potentially converge in interesting 

ways to reveal both biological and cultural consequences of social vulnerability. Lead poisoning 

is yet another dimension of the “biology of poverty” (Thomas 1998; Leatherman and Thomas 

2001). What new insights into patterns of lead exposure in early New York does a critical 

biocultural framework offer? How might study findings influence future studies of African 

diasporic biohistory and culture? As we shall see, a political ecological approach can expand the 

scope of inquiry and, thereby, of knowledge concerning the cultural geography of slavery. 

Enamel-lead data presented in the preceding two chapters reveal considerable variation 

with respect to the extent, timing and nature of early-life lead burden. Throughout the 

remainder of this chapter, I explore the significance of this variation for reconstructing this 

diasporic population’s biocultural beginnings. The discussion unfolds in three parts as I consider 

how the results of analysis may provide or supplement information useful for determining: (1) 

natality or geographic origins, (2) sources and pathways of lead exposure, and (3) possible 
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health consequences for NYABG individuals. Discussion revolves around the following major 

study findings, which suggest who was most vulnerable to lead.  

 A slight majority (53%) of the NYABG sample – all adults – appears to have been 

born in Africa. American-born individuals include subadults, modified adults and 

non-modified adults. The relatively high enamel-lead concentrations suggestive of 

American natality for four modified adults are quite intriguing in light of the 

longstanding hypothesis that dental modification indicates African birth (Handler 

1995; Handler et al. 1986; Schroeder et al. 2012). 

 

 Age-based variation was measured in several ways. M1 or I1 mean concentration is 

significantly higher and distribution of values is wider for subadults than for both 

modified and non-modified adults. Individual M1 or I1 tooth means are quite 

variable but tend to cluster into three ranges. Most adult teeth have values below 2 

μg g-1. Most subadult teeth fall between 2 and 6 μg g-1, and a small number of 

individuals have values above 6 μg g-1. A review of the enamel-lead literature, 

including a study of early-life lead exposure amongst enslaved Barbadians 

(Schroeder et al. 2013) discussed below, suggests that most individuals in this study 

experienced relatively low-level exposures. However, some individuals – mostly 

subadults – quite possibly experienced severe symptoms of lead poisoning. 

 

 Comparison of lead concentrations in enamel formed before and after age two also 

suggests subadults, on average, experienced lead-enriched early childhood 

environments. Of four individuals for whom M1/I1-M3 comparisons were possible, 
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three exhibit a slight increase in mean concentration from M1s to late-forming M3s 

while a slight decrease is observed for the fourth.  

 

 Lead burden differed by sex as well, with mean M1/I1 concentration for males over 

twice that of females. This pattern is not statistically significantly. However, it is 

consistent amongst modified and non-modified adults and across temporal groups, 

a reflection of variation in the sources or intensity of lead exposure, perhaps, or 

possibly of sex-based differences in early life lead metabolism and biokinetics.  

 

 Overall, lead levels decrease within the sample cohort from approximately 1735 

through the end of the 18th century. However, the decline in lead concentrations is 

not steady but occurs despite a slight increase circa 1735 until the onset of the 

Revolutionary War. This finding is somewhat surprising given a general increase in 

lead usage and, thus, environmental lead during the 18th century.  

 

 Four enamel-lead distribution patterns are evident for M1/I1 and M3 teeth. With 

age (i.e., over microspatial distance), the lead signal either (1) is relatively steady or 

flat, (2) increases, (3) decreases, or (4) fluctuates randomly. Interestingly, none of 

these patterns are exclusive to any demographic group (age, sex or temporal) 

although not all groups are represented by each pattern.  
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Natality 

Identifying enslaved individuals’ geographic origins is a fundamental concern of African 

diasporic bioarchaeology and was a primary goal of the African Burial Ground Project. The natal 

estimations presented above represent refinements of those developed by Goodman et al. 

(2009) through elemental signature analysis, which involved semiquantitative LA-ICP-MS 

measurement of lead in relation to numerous other trace metals. Enamel-lead concentrations 

serve as an independent chemical source of information regarding individuals’ birthplaces and 

early residences. The current estimates will be further refined through the addition of 

strontium, oxygen and carbon isotope data. Here, I integrate these chemical data with skeletal, 

historical and cultural data as an initial step toward clarifying and contextualizing observed 

patterns. African Burial Ground researchers have identified the primary sources and routes from 

which enslaved Africans arrived in early New York (see chapter four). Historical and genetic 

research indicates that most enslaved New Yorkers originated in West and West Central Africa. 

Through pirating, some Malagasy were imported into New York from Southeast Africa 

(Madagascar). While enamel-lead data does not pinpoint specific regions within Africa or the 

Americas where a person was born, determining continental natality for NYABG individuals is a 

major step toward understanding how slavery and the processes of enslavement influenced 

individual health trajectories and patterns of cultural production. 

Before addressing the question of individuals’ geographic origins directly, it is worth 

pointing out that the mean sample concentration of 2.90 μg g-1 for M1/I1s does not rank highly 

among reported enamel-lead values for human populations of known technological exposure, 

which range from 0.04 to 82 μg g-1 (Fergusson and Purchase 1987; Budd et al. 2004). It should be 

noted, however, that the wide variety of methodologies employed in studies of enamel-lead 

complicates comparison of values across studies, which entail a range of tissue preparation, 
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sampling and analytical techniques. Here, direct comparison of NYABG core enamel-lead 

concentrations with those reported for other populations may prove somewhat dubious in the 

absence of other quantitative LA-ICP-MS data. Nonetheless, this relatively low sample mean 

concentration is plausible given the mixed residential origins of early African New Yorkers that 

would have included regions with varying levels of environmental lead. 

The first step in assessing African and American natality from enamel-lead 

concentrations was to determine an upper limit value associated with low-level or non-

technological exposure. I used the threshold of 1 μg g-1 suggested by Budd et al. (2004; see 

chapter 6). I then compared mean concentrations for the entire sampled portion of M1 or I1 

teeth and the portion developed after age two for each individual. While the former provides a 

fuller depiction of early-childhood exposure, the latter likely best reflects environmental lead 

conditions without direct maternal input via breastfeeding. No substantial differences were 

found with respect to the 1 μg g-1 threshold. For all individuals, total mean concentrations above 

or below the threshold correspond to similarly high- or low-level exposure exclusively after age 

two. Thus, mean (total) M1 or I1 concentrations were deemed appropriate for natal estimation, 

with values above 1 μg g-1 attributed to American natality and those below considered indicative 

of natal Africans. Based upon this criteria, enamel-lead data suggest that a slight majority (53%; 

n = 21) of the 40 NYABG individuals with sampled M1 or I1s were born in Africa. This subsample 

includes the following 14 (78%) adults with CMT and 7 (64%) non-modified adults. 

Modified adults: Burials 6, 23, 106, 115, 151, 165, 241, 243, 266, 270, 366, 367, 384 and 
397 
 
Non-modified adults: Burials 12, 25, 150, 172, 176, 196 and 335 

The American-born cohort includes subadults and individuals from both categories of adults. 

Subadults: Burials 7, 22, 35, 39, 43, 126, 138, 180, 219, 244 and 405 

Modified adults: Burials 9, 47, 101 and 377 
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Non-modified adults: Burials 49, 179, 323 and 324 

These findings compare quite well with the hypothesized residential origins. American 

natality was deemed most likely for subadults given slavers’ general preference for importing 

captives – most often young adult males – capable of carrying out the difficult labor of building 

early New York and the unlikelihood that children, particularly young children, withstood the 

rigors of the Middle Passage in appreciable numbers. Historian Paul Lovejoy (2006) observes 

that there were very few children age 2 – 5 in the Transatlantic Slave Trade. However, age and 

sex structure of imported captives varied over time and regionally with labor demands. For 

example, Medford and co-workers (2009) indicate that slightly more females than males were 

imported to British colonies from the Bight of Biafra between 1658 and 1713. 

Some very young children did make the journey as well. Although relatively few in 

number, Medford et al. (2009) note that children as young as four years old were imported to 

New York to learn trades and provide domestic labor. West Central Africa was a primary source 

of enslaved children but throughout coastal Africa, slave traders balanced the demand for 

healthy and strong young adults and the need to quickly fill cargoes, even if this entailed the 

purchase of children (Lovejoy 2006). Thus, although mean subadult values were four to five 

times higher than modified and non-modified adult values, respectively, it is interesting that all 

of the children appear to have been born in the Americas. It is perhaps noteworthy, also, that 

the lowest subadult values belong to Burial 180, the oldest subadult at age 12. Burial 180’s 

mean M1 and post-2 year-old concentrations – 1.20 and 1.08 μg g-1, respectively – are not much 

higher than the suggested 1.0 μg g-1 background limit. 

There were no expectations with respect to the specific geographic origins of most non-

modified adults. As hypothesized, these individuals originated throughout Africa and the 

Americas. The sole exception is Burial 323, a 19-to-30-year-old male for whom prior strontium 
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isotope analysis indicated probable American natality (Goodman et al. 2009). Interestingly, 

Burial 323’s M1 and M3 87Sr/86Sr ratios were lower than most subadults’ and below the 0.711 to 

0.712 hypothesized local Manhattan range, possibly indicating Caribbean origins (see chapter 4, 

Figure 4.6). Interestingly, this value is just above Price et al.’s (2012) predicted range of 0.7077 

to 0.7092 for Campeche, Mexico. 

The chemical indication that a small number of modified adults may have been born in 

the Americas is intriguing. Several researchers left unresolved the question of modified 

individuals’ geographic origins (e.g., Ortner 1966; Stewart 1942), but in most instances where 

natality is estimated, CMT are attributed to residential origins in Africa. Evidence for this 

perspective comes in part from ethnohistorical accounts of slave traders in coastal Africa who 

selected against individuals with dental modification. For example, Newson and Minchin (2004) 

report 82 cases of missing teeth from a list of daños (defects) recorded for 291 captives shipped 

from Angola and Upper Guinea to Cartagena, Colombia between December 1623 and 

September 1633. The authors attribute most cases to poor nutritional and dental health, but 

also note several entries referring to “…’missing teeth, two below and two above’ that might 

suggest deliberate removal...” (Newson and Minchin 2004: 25). If these were in fact cases of 

intentional tooth ablation – whether or not slave traders recognized them as such – these 

cultural “defects” would have resulted in discounted prices for the affected individuals upon 

arrival in the Americas; a strong disincentive for including individuals thus modified in slave 

cargoes. Selection against CMT by slave traders may at first seem an indication that dental 

modification necessarily happened in the Americas. However, it is important to realize that slave 

traders’ biases in Africa reflected slaveholders’ aesthetic tastes and concern over the health and 

fitness of enslaved Africans upon arrival in the Americas. These were primary economic 

considerations. 
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Ethnohistoric and skeletal chemistry of diasporic communities provide direct evidence 

of dental modification as a marker of African natality. As detailed in chapter five, Jerome 

Handler and co-workers (Handler et al. 1982, 1986; Corruccini et al. 1987) articulated this view 

compellingly as part of their bioarchaeological investigation of the Newton Plantation in 

Barbados, finding low bone-lead concentrations for modified individuals. In a follow-up study 

involving 18th-century runaway ads, Handler (1994: 118) observes that indelibly altered teeth 

would have presented a major problem during escape attempts and, thus, concludes that 

“Investigators who discover remains of persons of identifiable African ancestry showing signs of 

tooth mutilation can conclude with a certain degree of confidence that such persons were born 

in Africa and not in the New World.” While the skeletal studies of Newton Plantation remains 

involved bone-lead analysis, recent tooth chemistry from sites in Mexico and the Caribbean also 

support the association of CMT with African natality (Price et al. 2006, Cucina et al. 2011; 

Schroeder et al. 2012). 

Perhaps understandably, then, most interpretations of CMT emphasize reasons that 

enslaved Africans would have discontinued dental modification under slavery in the Americas – 

despite the practice’s ethnographically documented presence in later diasporic Africans (e.g., 

Ortiz 1929; Higman 1998). Slave trader bias against modified individuals in Africa and the 

difficulties that CMT would have posed for runaways in the Americas certainly help to explain 

the limited number of individuals with CMT reported thus far from the diasporic skeletal record. 

But do these factors also explain the exclusive association of CMT with African geographic 

origins, i.e., the implied sudden “disappearance” of a cultural practice then widespread in 

western Africa? 

The possible American origins of Burials 9, 47, 101 and 377 – adults with CMT – suggest 

otherwise. This finding is fascinating given the universal association of CMT with African natality 
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noted above and raises interesting and important questions about biology as a medium of 

contested cultural and social power. Specifically, it underscores the importance of theorizing 

diasporic maintenance as well as discontinuance of dental modification. Most current studies 

account only for the latter possibility. As a result, and probably unintentionally, they tend to 

align theoretically with the position that the Middle Passage and enslavement “denuded black 

people of any ancestral heritage from Africa” (Brown 2009: 1241). From this perspective, slavery 

was a form of “social death” through alienation that rendered the enslaved culturally empty 

vessels (Patterson, 1982). Once dominant within the historiography of slavery, the “culture loss” 

position has always been contentious; one side in the major debate over the presence and 

nature of “Africanisms” or cultural “retentions” and “transformations” in the Americas (Brown 

2009, 2010; Perry and Paynter 1995; Mintz and Price 1992; Price 2010; Walker 2001).  

In the extreme, this position juxtaposes elite power on one hand and agency under 

oppression on the other, as mutually exclusive rather than shared, coexisting realities. In other 

words, the prevailing focus on CMT as defective or maladaptive in the context of slavery 

presents only one side of an equation that fails to account, conversely, for what Scott (1985) has 

termed “weapons of the weak,” or the will and power of people to maintain and assert both 

their individuality and collective humanity even under conditions of extreme oppression (see 

also Levine 1977). There is little question that diasporic Africans abandoned cultural dental 

modification more quickly than other expressive biocultural ties to Africa such as “country 

marks” (cicatrization), quite possibly due to external social pressures suggested by Handler 

(1994) and others. However, association of dental modification solely with natal Africans would 

seem to indicate their complete disavowal of its practice on emic terms as well. Although 

possible, this level of complicity with the sudden demise of a longstanding cultural practice 

invested with social and ethnic meaning is unlikely and at odds with current theories of diaspora 
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as both a condition and a process (Olaniyan and Sweet 2010) as well as emerging 

understandings of how cultural and historical memories are forged and reproduced (Eyerman 

2004; Patterson and Kelley 2000; Scott 1991). This argument is also inconsistent with 

archaeological and historical models that are revealing in great detail how various aspects of 

African lifeways persisted in the Americas in spite of slavery and in response to regionally-

specific labor needs to produce “Afro-Atlantic” or “Atlantic African” cultural zones (Ogundiran 

and Falola 2007; Yelvington 2006; Lovejoy 1997). 

Critical perspectives on human biology and culture can serve to “rehistoricize” early 

diasporic peoples by providing interpretive alternatives that incorporate a wider range of 

complex social and individual experiences (Harrison 2006). With respect to the perception of 

CMT as defects, one might envision different scenarios in which this logic encouraged some 

individuals to modify teeth. One such case might involve the chipping, filing or removal of teeth 

in order to reduce their or their loved ones’ market value in an effort to prevent being traded. 

Depending on various factors such as how strongly a particular slaveowner felt about CMT or 

the nature of the affected individual’s typical work regime (e.g., domestic versus industrial, 

which might influence the degree of freedom individuals enjoyed to engage in body 

modification), the risk of punishment may have been present, but possibly outweighed by the 

importance of preserving tradition and family. At the other extreme, it is at least as easy to 

envision the perpetuation of dental modification as “underground culture,” in which patterns 

were more subtle, perhaps recognizable only to the initiated, and social significance of CMT now 

reflected new, diasporic realities of American ethnogenesis and racial formation. Unfortunately, 

few, if any, interpretations of dental modification offer or entertain rationales for its 

continuance in diasporic settings. Such considerations are important for understanding dental 

modification as a biocultural “transformation” (Blakey 2009). 
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From a broader, critical vantage point, the observation of dental modification in 18th-

century New York, while unique, is less surprising than one might think. Indeed, it is perhaps 

more remarkable to note that all other bioarchaeological instances of CMT are attributed to 

natal Africans. This new perspective is a major shift in African diaspora “biohistoriography”; a 

shift best facilitated through political ecological analysis of social and economic forces that 

constrain but do not completely determine cultural options and choices (Blakey 2001; Goodman 

and Leatherman 1998b; Leatherman and Thomas 2001). Specifically, a political ecological 

framework might prove useful for assessing why the first and only skeletal case of diasporic 

dental modification to date occurred in New York. Was New York (or the colonial North in 

general) an environment that uniquely allowed for the perpetuation of cultural dental 

modification or should one expect to find similar cases elsewhere in the Americas?  

Just as economic considerations of slave traders in coastal Africa limited the number of 

modified individuals who entered the Middle Passage, attention to the constrained choices of 

slaveholders and the enslaved may help to explain the specific geographic and temporal 

distribution of dental modification in early America. With respect to geography, it is instructive 

to consider the practice of “dumping” whereby a disproportionate number of enslaved Africans 

who were “[b]roken, enfeebled, and generally unfit for plantation labor… found their way to 

northern ports when no one else would purchase them” (Berlin 1998: 47). As one of the last 

destinations for many slave voyages, it was not uncommon for New York slaveholders to 

complain of the “recalcitrant nature” or low quality of the enslaved Africans who arrived in their 

markets, sometimes as rejects from the West Indies or the South (Berlin 1998; Medford et al. 

2009). Reports of dumping do not constitute direct evidence that American-born individuals 

modified their teeth. Yet, the higher concentration of modified individuals in the North that 

would have resulted from dumping may well have produced an environment of relative 
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familiarity of dental modification that made it more attractive as a cultural option for the 

enslaved and possibly more tolerable for slaveholders. 

One important point when considering whether dental modification persisted in New 

York is the proportion of individuals who arrived directly from Africa versus those who first 

landed in the Caribbean or the South and then re-embarked to the city. For example, the 

restricted importation of “unseasoned,” “salt water Africans” following the rebellion of 1712 or 

the “great conspiracy” to burn down the city in 1741 would have limited, to an extent, their 

cultural influence in diasporic communities, including, presumably, any influence they wielded in 

perpetuating a practice like dental modification. Similarly, increased surveillance following 

rebellions – e.g., bans on the number of individuals who could gather for funerals or other social 

events – would have limited opportunities to modify teeth. As indicated above, however, it is 

unlikely that such restrictions would have resulted in the disappearance of even so brazen a 

form of cultural expression as dental modification. It is quite possible that, under such 

circumstances, CMT came to represent a form of resistance more attractive to enslaved 

individuals than before.  

Finally, this runaway advertisement from a Tennessee newspaper underscores the need 

to excavate the potentially multivalent meanings of CMT carefully (Perry and Paynter 1999): 

“One Kentucky master described a runaway in 1815 as having ‘a black streak on his 
nose, which is very plain, it extends on his left cheek near the size of one little finger.’ ‘I 
filed several notches between several of his upper fore teeth, which I expect is also very 
plain,’….’ (Nashville Whig, 8, 15; cited in Franklin and Schweninger 1999: 217)  
 
In most cases, dental modification indicates African natality. Clearly, however, dental 

modification continued in American settings, and in ways more diverse than often realized. This 

slaveowners’ use of incisal notching is a strong reminder of just how complex the biocultural 

record – the experiences and histories embedded in bones and teeth – can be. So, too, is the 

observation that just over 20% of modified NYABG adults apparently were American-born. This 
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unique finding warrants further investigation. Isotopic elemental ratios (Sr, C and O) should help 

to affirm or clarify their geographic origins as well as those of a small number of individuals 

whose “borderline” natal estimations are based on enamel-lead concentrations just above or 

below the 1 μg g-1 g environmental exposure threshold. For example, Burial 101’s 87Sr/86Sr 

isotopic ratio falls within the “Manhattan” range of values while that of B-47 suggests possible 

Caribbean origins. Isotopic analysis might also help to clarify whether Burial 9 migrated at some 

point from a lead-enriched to a low-lead environment as might be indicated by comparison of 

his M1 and M3 concentrations. Eventually, such information will also prove useful in narrowing 

down possible sources of lead exposure and their health implications for NYABG individuals, 

topics that I explore via enamel-lead concentrations and profiles in the following sections. 

 

Sources and pathways of exposure 

Pinpointing sources of skeletal lead is a difficult task. When assessing technologically 

exposed individuals, it is particularly challenging to distinguish actual sources from amongst 

numerous possible exposures associated with widespread industrial and household use. There is 

the possibility, also, that skeletal lead is intergenerational in origin, involving maternal transfer 

in utero or through breastfeeding. Body burden, therefore, may reflect exposures over several 

lifetimes – and beyond. As well, some methods need to contend with diagenesis, further 

confounding simple source interpretations. 

Still, some researchers have attempted to identify individuals’ specific sources of lead 

exposure with interesting results. Following their recent study of the “Mozart cranium,” for 

example, Stadlbauer et al. (2007) suggest that lead-containing medicines may have contributed 

to the famous composer’s elevated enamel and hair concentrations. Initial analysis of hair and 

bone samples of Ludwig van Beethoven led researchers to conclude that lead-contaminated 
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wine and medicinal salves may have contributed to his death as well. These findings are 

plausible although some have challenged this interpretation (Eisinger 2008). 

My goal is to identify the most likely sources of lead for NYABG infants and young 

children. Some major exposures may be inferred from contemporary environmental health 

research. For example, common sources of contemporary pediatric lead poisoning such as 

leaded paint and contaminated soil and dust certainly posed a threat for children in early New 

York as well. To identify other likely sources of lead exposure for NYABG individuals, I turn to the 

historical record. Three studies are particularly useful for this purpose. The first study is 

Historical Perspectives of the African Burial Ground: New York Blacks and the Diaspora, the 

history report of the African Burial Ground Project in which Medford et al. (2009) identify 

several possible exposures including alcohol and pewter used for tools and food storage 

containers. Medford and co-workers (2009) also list forms of labor through which enslaved 

Africans would have been lead-exposed. The second study is Lead and Lead Poisoning in Early 

America by Carey McCord (1954), a prominent industrial hygienist and amateur historian of the 

twentieth century. Originally published as a series of essays in the journal Industrial Medicine 

and Surgery (McCord was an editor of this journal), his studies provide one of the most 

comprehensive accounts of lead use in the American colonial and early national periods (circa. 

1600 to 1850). It is a critical resource for gauging the full scope of the threat posed by 

environmental lead for in the 18th century. 

Lastly, in Brush with Death: A Social History of Lead Poisoning, Christian Warren (2000) 

identifies three primary modes or social pathways of human lead exposure: universal, 

occupational and pediatric.31 As Warren (personal communication) notes, these categories are 

not mutually exclusive, but overlap and indeed tend to “leak at every seam.” While meant to 

                                                           
31 See chapter five for a full description of Warren’s (2000) categories of human lead exposure. 
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inform, they – like all attempts to capture or conceptualize fluid lived experiences – have the 

capacity to miss and/or mask important connections. Like all biosocial boundaries, they can be 

more real and meaningful at certain times than others. 

Warren (2000: 5) acknowledges as much when he observes that “Occupational and 

pediatric lead poisoning can be studied in isolation, but referring each to the other and both to 

larger political, scientific, and social issues in which they were embroiled is far more informative. 

…Workers, children, and workers’ children – these subjects must be integrated.” 

This call for integrative and ecological analysis is duly noted and, for the purposes of this 

study, I emphasize that pediatric toxicity often results from both universal and occupational 

exposures. By definition, universal lead sources are distributed broadly (though not necessarily 

evenly) and will reach all segments of a population, including children. Yet, certain behaviors can 

place children at greater risk of exposure to universal sources such as lead-contaminated soil, as 

will be clear from the discussion of pica (geophagy) below. As well, epidemiological research 

indicates that children of industrial lead workers are at heightened risk of lead poisoning. Thus, 

some occupational exposures become pediatric exposures. Nonetheless, these broad and 

sometimes overlapping categories provide a valuable framework for tracking the distribution of 

anthropogenic environmental lead across specific segments of a population. As we shall see, the 

framework’s utility extends well beyond twentieth-century United States. Here, it proves 

indispensable for assessing the web of early-life exposures – and within that web, the most 

likely sources – for NYABG children. 

 

Alcohol 

Table 9.1 summarizes potential sources and modes of environmental lead exposure for 

NYABG individuals. Biological anthropologists will recognize alcohol and pewter as important  
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Table 9.1: Potential sources of lead exposure for the NYABG population. 
 

Universal Occupational Pediatric 

Alcohol Mining Foods and beverages 

Foods and beverages Painting Drinking water 

Drinking water Plumbing Soil (via hand to mouth activity) 

Medicines Printing Dust 

Soil Ammunition casting Lead-glazed pottery 

Dust Pewter or brass working Pica? 

Lead pipes 
Fishing (e.g., casting 

weights) 
 

Lead paint Glassmaking  

 Glazing  

 Alcohol production  

Sources: McCord (1954); Medford et al. (2009) 

 
 

sources of lead for enslaved Africans owing largely to the work of Jerome Handler and 

colleagues (1986, 1987) who linked adulterated rum in particular to epidemic lead poisoning in  

Barbados.32 As discussed in chapter five, contamination of rum from the West Indies occurred 

when producers used still heads and worms made from the metal during distillation (Wittmers 

et al. 2002). Adulterated wine resulted from use of lead-fitted presses and storage vats lined (or 

tinned) with lead alloy (Mushak 2011). Medford et al. (2009) observe that pewter tools and 

storage vats most likely were used in New York distilleries as well. While pewter, strictly 

speaking, refers to an alloy in which the dominant metal, tin, is hardened through inclusion of 

small amounts of antimony, copper or bismuth, McCord (1954) notes that colonists often used 

the term in reference to “any metal shaped into useful objects.” Lead content of colonial pewter 

ranged widely, with some objects consisting wholly of lead while others contained none. 

Mushak (2011: 33) reports that “Pewter ware containing high fractions of lead – up to 50% - was 

                                                           
32 Available now are a number of social histories of rum that touch upon its role in the lead 
poisoning of early America including archaeologist Fred Smith’s (2005) Caribbean Rum: A Social 
and Economic History. 
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popular for about 600 years, until the early nineteenth century, because of durability and 

attractive appearance, and the wide variety of dining and food-related objects made of this 

alloy.”  

Exposure via alcohol did not occur solely from unintentional contamination. Following a 

practice dating at least to the Roman Empire, alcohol producers in Europe and early America 

used lead to sweeten and retard unwanted fermentation in various alcoholic beverages (Lessler 

1988). In this way, lead – referred to as sapa by the Romans – found its way into beer, cider, 

wine and various foods. In such instances, alcohol production presented an occupational hazard 

as those who oversaw the fermentation process were at great risk of lead exposure via 

inhalation of vapors. 

Despite the likelihood of numerous occupational exposures, McCord (1954) concludes 

that lead poisoning, primarily, was a “consumer affliction.” Rum consumption was ubiquitous 

throughout the Americas during the 18th-century; such a part of the cultural fabric and of daily 

life that some laborers received liquor as payment for their services.  

…[T]here were instances of black and white laborers being routinely supplied 
with alcohol. For instance, an invoice submitted by William Dudgale details the 
expenses incurred in preparation of an execution. The invoice preparer claims to 
have ‘Paid negro hire, cartage, hire of ladders, ropes… with liquor to carpenter 
and negros’…. Similarly, when the City Ferry House was under repair, John 
Deane submitted a bill for expenses that included the labor of at least four black 
men, two of whom were known as ‘Negroe Ben and Negroe Roben.’ Aside from 
the wages the men received, there was a charge for ‘Liquor at Sundry times for 
all the workmen’ (New York Municipal Archives, Unfiled Papers of the Common 
Council) (Medford et al. 2009: 83-84). 
 

All rum was not created equal. Those who consumed underaged “new rum” produced from the 

first distillation were especially susceptible to acute lead poisoning. It is safe to assume that 

payments to enslaved and other poor laborers in the form of alcohol consisted primarily, if not 

exclusively, of such cheap, low-quality liquor. Whether inadvertent or intentional, the 
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introduction of lead into alcohol produced an Atlantic world plague; a universal exposure that 

likely posed the greatest threat for enslaved and other poor laborers. 

Eventually, the various symptoms of lead poisoning associated with rum consumption 

drew the attention of colonial doctors. Concerned, too, were rum manufacturers, as “rumors” of 

their product’s detrimental health effects threatened this very lucrative market. From North 

Carolina, for example, came complaints that New England rum “causes people who drink it to 

have great pain in the belly with constipation [i.e., the “dry gripes”] and later weakness of the 

wrists and ankles [peripheral neuropathy]” (Fitz 1938). In response, on September 3, 1723, 

Massachusetts Bay Colony legislators passed An Act for Preventing Abuses in Distilling of Rum 

and Other Strong Liquors, with Leaden Heads or Pipes. This ordinance was one of the first pieces 

of American public health legislation. 

Here, the central question is whether or not contaminated alcohol contributed to 

elevated enamel concentrations observed for young children? Rum consumption on the part of 

enslaved women is well-documented (Medford et al. 2009), as is the transfer of endogenous 

lead from mother to child during pregnancy and via breastfeeding (Téllez-Rojo et a. 2002). 

Women need not have consumed leaded alcohol while pregnant for this transfer to occur. 

Pregnancy and lactation are periods of accelerated remineralization involving release of skeletal 

lead back into the bloodstream. Once liberated, lead from alcohol and other sources deposited 

in bone years earlier could be incorporated into the developing fetus or breast milk. Indirectly, 

then, NYABG infants and children may have been subject to alcohol-derived lead. 

Unfortunately, my focus on first molar lead deposition between one and three years of 

age does not lend itself to a more definitive answer regarding lead’s role as a “legacy pollutant.” 

Future studies of co-buried women and children dyads possibly related biologically may offer 

more insight concerning this topic. Analysis of co-buried NYABG children’s deciduous teeth 
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should prove especially useful and interesting. Deciduous teeth begin developing in utero and, 

thus, reflect more directly mother-child-environment interactions, the complexity and “mixed” 

chemical signals of which will present novel interpretive challenges (e.g., Dolphin and Goodman 

2009). What is clear from my brief historical survey, however, is that early New Yorkers would 

have been lead-exposed in numerous ways other, and perhaps more impactful, than alcohol. 

Here, again, it is useful to recall McCord’s (1954) depiction of colonial-era lead poisoning as first 

and foremost a consumer affair – and then to ask, “What did children consume?” 

 

Water 

Today’s parents are not encouraged to supplement infant diets with water until at least 

six months of age. This was not the case during the 18th century when drinking water 

transported and collected via lead pipes and vessels was another important source of 

cumulative lead exposure from the earliest days of life (Handler et al. 1986; Mushak 2011). 

According to McCord (1954), the first substantial case histories of lead poisoning in early 

America aside from those attributed to alcohol are related to lead plumbing. Bored-out logs 

served as the first water mains in colonial America. Apparently, colonists did not bring sheet 

lead from Europe for plumbing use during the 17th century. By the late 1700s, however, 

references to lead pipes were common especially in the Middle Atlantic and Northeast. In most 

cases, these pipes did not reach the interior of the home, but were used for gutters and 

downspouts. The combination of lead plumbing and lead or lead-painted roofing put all who 

relied on runoff drinking water at risk for exposure. Often, illness was attributed to well water 

drawn in lead buckets or rain water “conveyed by leaden pipes, or which had fallen upon roofs 

covered with this metal, and afterwards been retained in vessels” (Orfila 1818, cited in McCord 

1954), as in this case of acute lead poisoning from 18th-century West Indies. 
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… [A] Gentleman who possessed many slaves, built a spacious house which was 
covered with shingles…. [and] painted with red lead. The rain that fell upon this 
roof, was conveyed by pipes into an open cistern of Lead for the use of the 
family; the individuals of which had been peculiarly incident to violent, and 
sometimes fatal colics (Percival 1774, cited in McCord 1954: 31). 
In 1786, Benjamin Franklin penned a letter now famous among lead epidemiologists. 

Writing to British diplomat and friend, Benjamin Vaughan, Franklin expressed his concerns 

about lead’s “baneful” qualities and the problem of contaminated drinking water. 

In America I have often observ'd that on the Roofs of our shingled Houses, 
where Moss is apt to grow in northern Exposures, if there be anything on the 
Roof painted with white Lead, such as Balusters, or Frames of dormant 
Windows, etc., there is constantly a streak on the Shingles from such Paint 
down to the Eaves, on which no Moss will grow, but the wood remains, 
constantly clean and free from it. We seldom drink Rain Water that falls on our 
Houses; and if we did perhaps the small quantity of Lead descending from such 
Paint might, not be sufficient to produce any sensible ill Effects on our Bodies. 
But I have, been told of a case in Europe, I forgot the Place, where a whole 
Family was afflicted with what we call Dry Bellyach, or Colica Pictonum, by 
drinking Rain Water. It was at a Country-Seat, which being situated too high to 
have the Advantage of a Well, was supply'd with Water from a Tank, which 
received the Water from the leaded Roofs. This had been drunk several Years 
without Mischief; but some young Trees planted near the House growing up 
above the Roof, and shedding their Leaves upon it, it was suppos'd that an Acid 
in those Leaves had corroded the Lead they cover'd and furnished the Water of 
that with its baneful Particles and Qualities (Franklin 1981[1786]: 274). 
 

Thus, awareness of the health problems posed by corroded lead water delivery systems dates at 

least to the late 18th century. 

In 1994, the U.S. Environmental Protection Agency (EPA) estimated that up to 20% of 

total childhood lead exposure in the United States may result from drinking water (Miranda et 

al. 2007). Still, researchers typically investigate water-Pb levels as a secondary exposure, i.e., 

when other major exposures such as paint, soil or dust cannot be confirmed (Brown and 

Margolis 2012). Recent controversies over substitution of the disinfectant chloramine for 

chlorine in Washington, DC and Greenville, NC have brought a new focus to this issue, however 

(Brown and Margolis 2012; CDC 2005; Maas et al. 2005). In both cities, the altered water 

chemistry resulting from the shift to chloramine is associated with elevated residential tap 
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water levels, particularly in areas with the highest concentrations of lead service pipes. 

Increased attention to water-Pb as a major source of historical and contemporary lead toxicity 

appears warranted. 

 

Foods and other beverages 

Water and alcohol were not the only dietary sources of lead. Colonial methods and 

instruments of food preparation, storage and consumption provided many other opportunities 

for lead contamination; once again, a mix of intentional and inadvertent exposures. Lead was an 

important ingredient used to enhance the presentation and taste of certain foods. For example, 

bakers used white lead to sweeten and whiten bread while both white and red lead salts were 

red pepper additives (Lessler 1988). Grape juice cooked down in lead and lead-lined pots was a 

commonly used sweetening agent (Mushak 2011). In an unfortunate tradeoff, lead helped to 

prevent the unsavory taste that resulted when other metals such as copper leached into foods, 

unknowingly at the potential cost of lead poisoning. Acidic liquids and foods such as vinegar, 

applesauce and tomatoes were especially prone to lead contamination via leaching from 

cooking and storage vessels (McCord 1954). Molasses produced by boiling sugar cane in lead-

containing kettles was another significant source of lead exposure for individuals of all ages 

(Handler and Lange 1978; Medford et al. 2009), and one to which young children conceivably 

were quite susceptible. 

Dietary lead was a universal problem with class-stratified dimensions. Both wealth and 

poverty buffered individuals from certain exposures while increasing the likelihood of others. 

For example, use of metal kitchenware and utensils was uncommon. Access even to low-grade, 

high-lead content items was limited primarily to people of high social class position. 

Impoverished, most early Americans used wooden utensils if any at all. According to McCord 
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(1954: 17), “Utensils of no type were plentiful.” As a result, risk of culinary exposure from lead 

or lead-containing tankards, pitchers, utensils, etc. generally increased with social status 

(Aufderheide et al. 1988). While the wealthiest families could afford sterling silver or the highest 

quality (lead-free) pewter utensils, even they could scarcely avoid consuming food somehow 

tainted during its preparation and/or storage.  

Not all impoverished people were safe from lead-based utensils. Aufderheide et al. 

(1981, 1988) observe that enslaved and other domestic laborers would have had regular access 

to foodstuffs in the homes where they labored. From the perspective of early-life lead exposure, 

it also is important to note that so, too, would infants and young children who accompanied 

domestic laborers during their daily routines. Still, for most, access to pewter reflected high 

social standing and wealth and resulted in a social gradient of dietary lead exposure, with 

increasing consumption of toxic foods and beverages with social class. 

Poverty also meant unique exposure opportunities for enslaved individuals. Throughout 

the Americas enslaved people prepared, stored and served foodstuffs using lead-glazed 

ceramics variously referred to as “Colono-Ware,” “Yabbas” and other regional names (Hauser 

and DeCorse 2003). These poorly fired coarse earthenware vessels were important sources of 

lead, the solubility of which increased when combined with certain colorants and fluxing agents 

such as copper oxide (Handler et al. 1986; McCord 1954). As with other lead-based food 

preparation and storage vessels, acidic foods, sauces and beverages can leach substantial 

amounts of lead from glazed surfaces. Anthropological, epidemiological and chemical studies of 

contemporary populations confirm the transfer of bioavailable lead from glazed ceramics into 

foods at levels capable of inducing clinical lead poisoning (Hailey 1994; Tunstall and 

Amarasiriwardena 2002; Perez et al. 2010). Fumes and soil contaminated through localized 

production of lead-glazed ceramics would have contributed to elevated lead levels as well. Thus, 
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social class position influenced the source and extent of culinary lead intake in important, if not 

always predictable, ways. 

 

Dust and soil 

The last major source of lead considered in this chapter is that of dust and soil. NYABG 

children would have been exposed to leaded dust and soil through some of the same pathways 

available to children today including housing contaminated by leaded paint. Additionally, some 

children quite likely were exposed occupationally through time spent in high-lead work 

environments. “Take-home” lead brought home on the bodies and clothing of lead workers may 

have been a significant source of lead for others. Infants and children who ingested leaded dust 

and soil were at high risk of lead poisoning. 

Most contemporary cases of pediatric lead poisoning in the United States result from 

contaminated dust and soil (American Academy of Pediatrics 2005). The primary source of the 

contamination is flaking or deteriorating lead-based paint in or near homes, often found in paint 

chips and in dust on window sills, walls and floors as well as painted toys and other objects 

readily available to children. Although banned from use on interior surfaces since the 1970s, 

leaded paint still stalks many children, mainly those who live in old structures built prior to 1940. 

Dermal transfer and inhalation of lead particles can occur, but ingestion is the primary concern. 

Thus exposed, children may absorb nearly 50% of ingested lead from the intestinal tract (Berney 

1996). 

For children, paints containing the sweet-tasting pigment white lead, or lead carbonate, 

constitute a special hazard – and an old one. It was not until the early 19th century that white 

lead production became profitable in the United States, the result of exclusionary trading 

practices associated with the War of 1812. However, earlier generations of Americans found the 
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environmental toxin irresistible and widespread use of this British import preceded the war. 

Warren (2000: 45-46) notes that, “[f]rom colonial days, Americans demanded white lead for 

paints, enamel, cosmetics, and medicines, and its manufacture, a process of ‘corroding’ metallic 

lead in acidic vapors, was one of the first chemical industries in the United States.” Then, as 

now, the intense and indiscriminate mouthing behavior characteristic of infants and young 

children during the first two to three years of life rendered them uniquely vulnerable to this 

sweet, versatile poison.33 Possibly, enslaved children in the North may have been exposed to 

leaded paint in domestic settings in greater amounts than their southern counterparts. On 

southern plantations, enslaved individuals typically lived some distance from the main house, 

often in unpainted cabins. In northern urban settings, however, it was more common for 

enslaved women and children to reside in separate quarters within a slaveowner’s home. 

Quite possibly, NYABG individuals were exposed to lead through pica, “the craving and 

purposive consumption of items that the consumer does not consider to be food for more than 

a month” (Young 2011: 3-4). Frequently, studies of historical and contemporary populations 

identify pregnant women and children as most likely to engage in pica behavior.34 For children, it 

is the “purposive” nature of pica that distinguishes it from infant mouthing behavior. The 

intensity of infant mouthing decreases drastically beginning at about age one such that 

intentional discovery and consumption of pica substances may be attributed to a normally 

developing child after age two (Young 2011). Although traditionally pathologized in the medical 

literature, pica’s broad geographic range and some recent research suggests its current 

classification as an eating disorder may be problematic.  

                                                           
33 Fessler and Abrams (2004) hypothesize that avid infant mouthing evolved as a mechanism for 
calibrating the immune system to the local disease ecology. 
34 Interestingly, a recent study by Golden et al. (2012) found pica to be more common amongst 
Malagsay men but the authors note that taboos against speaking about pregnancy may have led 
to underreporting on the part of pregnant women. 
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The term pica covers the consumption of numerous substances and other terms are 

necessary to indicate the specific item being consumed. The primary focus here is on geophagy, 

the ingestion of earth (soil, dirt and clay).35 Geophagy appears in primary accounts of slavery in 

the Caribbean and the American South but most likely was not limited to these regions (Handler 

2009, Higman 1995; Kiple 2002 [1984]). Medford et al. (2009) speculate that enslaved New 

Yorkers with hookworm infection, which often leads to iron-deficiency anemia, may have 

resorted to consuming earth. 

Actual physiological mechanisms and functional consequences of pica remain something 

of a puzzle. Since at least the 18th century, medical explanations for pica have focused on its 

possible relationship to poor nutrition, with colonial doctors hypothesizing a causal role for 

hunger. Current research explores the more specific question of whether pica behavior is a 

response to micronutrient (e.g., iron or zinc) deficiencies. From her thorough review of the 

scientific literature, Young (2011) concludes that hunger does not cause pica and that tests of 

the micronutrient deficiency hypothesis thus far have yielded mixed results, with dietary 

supplementation only inconsistently leads to cessation of the practice. Pica may actually lead to 

mineral deficiencies as certain substances have been shown to inhibit absorption of nutrients 

from the gut into the bloodstream. Sometimes prescribed for religious or medicinal purposes, 

other geophagic substances exhibit detoxifying properties.  

Whatever their sources, as Young (2011) notes, geophagic and other pica cravings are 

not indiscriminate. Rather, the types of substances deemed suitable for consumption are 

culturally defined and vary according to age and status. For example, according to Kim and 

Nelson (2012), children who engage in geophagy are more likely than pregnant women to eat 

                                                           
35 Other common pica substances include ice, starch, chalk, glue, flour, ash, paper and hair. 
Easily produced, a longer list would reveal even greater diversity with respect to smells, textures 
and tastes of items selected for consumption. 
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topsoil, the easily accessible surface layer of earth containing the highest concentrations of lead, 

arsenic and other metals. Meanwhile, some studies of pregnant women with elevated blood-

lead levels have revealed lead-glazed pottery consumed during pregnancy to be the probable 

source of exposure for the women as well as their newborns (e.g., Hamilton e al. 2001; Klitzman 

et al. 2002). 

Although geophagy is a documented mechanism of toxic chemical exposure in children, 

bioarchaeologists have yet to explore the likely role it played in early-life lead intake and lead 

poisoning for enslaved individuals. Given the contaminated soil certainly produced from 

increasing levels of industrial activity during 18th-century (discussed below), geophagy may help 

to explain why mean subadult enamel-lead concentrations exceed significantly those of adults. 

Most intriguingly, this form of pica may also account, in part, for the higher mean 

concentrations observed after age two in subadults. By this time, infant mouthing and 

breastfeeding (as a means for transferring maternal lead) played minor roles, if any, in exposing 

children to lead. The post-two-year-old increase is rather dramatic for several individuals such as 

Burial 126 (see chapter 8, Figure 8.6f). 

Labor was another way that people were exposed, and exposed others, to lead and 

lead-contaminated dust and soil.36 Table 9.2 lists occupations of household heads for New York 

City households with black residents in 1703 and indicates specific routes of lead exposure. 

Some of the occupations listed have long been linked to industrial lead poisoning, e.g., painters, 

printers and glaziers (Franklin 1981[1786]). Others garnering less attention from epidemiologists  

                                                           
36 The impact of labor is an important dimension of a developing social bioarchaeological focus 
on childhood. Some bioarchaeologists emphasize the need to differentiate childhood as a phase 
of the human life span marked by biological immaturity and accelerated growth and developed 
from the social designation “child,” with its culturally defined parameters and meanings (e.g., 
Halcrow and Tayles 2011). This focus on unique challenges faced by children in the past mirrors 
the emergence of “children’s health” as an area of study in public health. Here, the distinction 
between chronological and social age categories draws attention to the prospect of lead 
exposure as a consequence of child labor. 



 

216 

Table 9.2: Distribution of blacks in New York City households in 1703, by occupation of 
household head. Reproduced from Medford (2009: 56) 

Occupation Number of 
Households 

Black 
Males 
(over 16) 

Black 
Females 
(over 16) 

Black 
Male 
Children 

Black 
Female 
Children 

Total 
Blacks 

Merchant 50 49 57 19 20 145 

Ship’s master 17 11 17 7 5 40 

Bolter 7 14 5 3 0 22 

Brewer 3 8 4 5 1 18 

Gentleman 8 6 10 1 0 17 

Cordwainer 10 7 5 1 2 15 

Victualler 6 4 4 3 4 15 

Baker 10 6 4 3 1 14 

Cooper 7 7 4 1 0 12 

Mariner 7 4 5 1 1 11 

Carpenter 3 4 3 2 0 9 

Bricklayer 3 3 3 3 0 9 

Attorney 3 1 4 1 2 8 

Blacksmith 3 2 1 2 1 6 

Goldsmith 2 0 2 2 1 5 

Sailmaker 2 1 3 1 0 5 

Painter 1 1 1 1 1 4 

Shipwright 2 2 1 0 1 4 

Chirurgeon 3 0 1 0 2 3 

Blockmaker 1 0 1 1 0 2 

Printer 1 0 2 0 0 2 

Shopkeeper 1 0 2 0 0 2 

Butcher 2 2 0 0 0 2 

Yeoman 1 1 1 0 0 2 

Boatman 1 0 0 1 0 1 

Weaver 1 0 1 0 0 1 

Tailor 1 0 1 0 0 1 

Barber 1 0 1 0 0 1 

Glazier 1 1 0 0 0 1 

Silversmith 1 0 0 0 0 1 

Total 159 134 143 58 43 378 

 
 

and historians of medicine still were capable of generating significant exposure. For example, 

Warren (personal communication) emphasizes the risky nature of trades associated with 

boating such as “Ship’s master” and “Mariner” given the many uses of lead at sea and the 

practice of casting molten lead below-decks. The range of potentially lead-based work that 
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enslaved New Yorkers performed was much broader than can be inferred  from the occupations 

of heads of households since “… transience was the norm; even workers with particular skills 

changed employment seasonally [and] summer’s painter might be winter’s longshoreman. … 

[E]ven if the census listed an individual as a ‘fisherman,’ he may have spent his winters working 

in a print shop” (Warren, personal communication). Or, he might have labored in a lead mine in 

Dutchess County, New York where the nation’s lead mining industry began circa 1740.37 

Work as a possible pathway of early-life lead exposure and intake requires some 

explanation. First, without question, children engaged in work that resulted in lead contact. As 

Rosner et al. (2005: 297) observe, “For much of American history, children worked alongside 

their parents – planting, harvesting, and tending crops, and eventually toiling in factories and 

cities.” 18th-century New York, like other industrializing urban centers, afforded workers ample 

opportunity for lead exposure; a risk, therefore, shared by child and adult laborers alike. 

Children who resided in households headed by occupationally exposed adults – such as those 

indicated in Table 9.2 – were in jeopardy of following those adults into trades requiring 

significant lead contact. 

Here, the crucial question, then, is not whether but when occupational lead became a 

salient aspect of the childhood “leadscape.” Specifically, did labor begin early enough to 

influence patterns of enamel-lead variation found in M1, I1 and/or M3 teeth? Medford et al. 

(2009) report advertisements for the labor of enslaved children as young as age six. By this time, 

                                                           
37 McCord (1954) provides a brief history of the origins of the lead mining industry in the United 
States. The first colonial European lead operations may have occurred in 1621 near Jamestown, 
Virginia. These would have been minor operations. As noted, Dutchess County, New York 
became the site of the first commercially viable lead mine around 1740. About a quarter-
century later, in 1767, Frederick Philipse leased a silver-lead mine from the British Government 
for development. The Philipses were a major mercantile and slaveowning family based in New 
York. The Revolutionary War also created demand for lead mining in New York. As ammunition 
stores waned, the Colonial Congress in 1777 urged more extensive development of the state’s 
lead deposits using forced labor of prisoners of war. By the early 19th century, the Mississippi 
River Valley had become the seat of American lead mining activities. 
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M1 and I1 crown development is complete so enamel-lead concentrations for these teeth would 

not reflect time spent laboring at industrial or other high-risk sites. More useful for assessing 

direct occupational exposure are M3 teeth, the sampled portion of enamel for which formed 

between 9.3 and 11.3 years of age. Of the individuals with measurable M3 enamel-lead 

concentrations, the outlier Burial 101 appears most likely to have spent a portion of his later 

childhood in a high-lead (possibly work) environment. His M3 concentration of 7.38 μg g-1 is the 

highest measured and far exceeds the 1 μg g-1upper limit for natural or background exposure 

and is high relative even to most M1s and I1s. Also, his M3 lead signal is consistently high, 

indicating the constant or chronic nature of exposure consistent with labor in a high-lead 

environment (see Figure 8.7e). Occupational exposure is a highly plausible explanation for these 

observations. 

M1 and I1 teeth may not have recorded personal experiences of occupational lead 

exposure, but their enamel-lead concentrations may reflect potentially significant secondhand 

exposure. Consider, for example, a recent crisis of acute lead poisoning in northwestern Nigeria 

and its impact on young children. In early 2010 meningitis surveillance activities conducted by 

Médecins Sans Frontières (MSF, or Doctors Without Borders) and local Nigerian public health 

officials uncovered widespread pediatric lead poisoning in the country’s rural Zamfara region. 

This situation necessitated intervention from a multiagency, international rapid response team 

who identified artisanal gold mining and ore-processing within villages as the source of lead 

exposure (Lo et al. 2012).38  Typically, gold mining does not yield lead but Zamfara is something 

of a “geological anomaly” (Living on Earth 2012) where lead ore is found in conjunction with 

                                                           
38 Hansen (2012) describes the situation in Nigeria as resulting from a perfect storm of 
geochemical uniqueness, inadequate occupational and environmental health awareness and 
protocols, and political negligence. Unfortunately, the fundamental issue of poverty and the 
increased vulnerability to chemical “social toxins” that it creates is not unique. Throughout the 
global South, millions of impoverished people resort to small-scale or artisanal mining, with all 
of its associated health hazards, as a source of primary or supplemental income. 
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gold ore close to the earth’s surface. Furthermore, millennia of weathering have resulted in 

partial oxidization of these lead ore deposits and conversion of lead sulfide into more 

bioavailable lead carbonate (Hansen 2012). 

Ore-processing activity within villages exposed children to extremely high levels of lead 

in dust and soil. Samples from some villages measured at > 1,200 μg g-1, far above the current 

EPA hazard standard of 400 μg g-1for areas of bare soil where children play (EPA 2001). The 

resulting morbidity and death was widespread and unprecedented. For example, Dooyema et al. 

(2012) found that, of 204 children less than five years of age, all were lead poisoned and 97% 

had blood-lead levels ≥ 45 µg dl-1, requiring chelation therapy. Zamfara State officials banned 

ore-processing operations within villages in 2012 and, after months of delay, released funding 

for soil remediation in 2013, but not before approximately 400 children died and thousands 

more exhibited convulsions, brain damage and other symptoms of severe lead poisoning. 

Beyond rare, the crisis in Zamfara may be the worst-ever documented outbreak of clinical and 

fatal lead poisoning; a vivid illustration of the danger that artisanal mining presents for lead 

workers and their children. 

With this region’s historical ties to American slavery, the current situation also raises the 

interesting question of whether some enslaved individuals were significantly lead-exposed prior 

to the Middle Passage. The topic of anthropogenic lead exposure in West Africa during this 

period is rarely, if ever, discussed in the bioarchaeological literature. Yet, the recent discovery of 

near-surface gold-lead ore deposits in Zamfara may suggest historical as well as contemporary 

risk of lead exposure. Falola and Heaton (2008) explain that Zamfara and other Hausa states 

relied upon free and enslaved labor to produce grain, livestock, leather goods and other 

commodities including gold. Also economically important was the trade in enslaved people 

themselves. In the early 18th century, these Hausa states shifted the focus of their commercial 
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relations from the trans-Saharan routes leading to North Africa toward increasingly more 

lucrative coastal West African and, ultimately, American markets. Additional historical research 

is necessary to gauge the nature and extent of gold mining and ore-processing in this region; 

activities that could have resulted in contaminated soil and households, thereby affecting 

children. Other possible sources of lead in western Africa during this time include European 

trade goods like rum and guns requiring lead bullets or shot. However, circulating primarily 

amongst elites, these high-status items would not have had a major impact on West African 

disease ecology as seen, for example, with rum throughout the Americas, and related pediatric 

exposure most likely was limited. 

My goal in this section has been to convey the breadth of the sources of lead available 

to NYABG individuals while highlighting those sources from which early-life exposure was most 

likely. Early studies of colonial-era lead poisoning involved measurement of bone-lead. While 

identifying other possibilities, these studies tended to focus on alcohol as a primary source of 

lead; understandably, given that bone-lead concentration reflects lifetime exposure and rum 

clearly played an important role in producing an early American “dry gripes” epidemic. 

However, there were other, more likely sources of early-life exposure during the colonial and 

early national periods including foods, water and other beverages contaminated by lead and 

pewter cooking and storage vessels. Importantly, historical and epidemiological studies suggest 

that contemporary sources of pediatric lead exposure such as leaded paint and soil also would 

have impacted children in early New York in a major way. So, too, would have lesser known 

pathways like pica and “take-home” occupational lead. In the last section of this chapter, I 

explore the question of what varied levels of lead exposure via these different sources meant 

for the health of NYABG infants and young children. 
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Health consequences 

As explained in chapter five, lead adversely affects numerous systems in the human 

body. The effects of lead are dose-dependent and determined by its source and chemical form 

as well as the age, diet and physiological and nutritional status of the exposed individual. 

Symptoms of lead poisoning in humans range from impaired nerve conduction to fatal 

encephalopathy and, in young children, lead targets the still-developing central nervous system 

(Needleman 2004). Here, I compare results of this study to another recent analysis of enamel-

lead amongst enslaved Africans: Schroeder et al.’s (2013) study of the Newton Plantation in 

Barbados in which the authors attempt to correlate early life lead exposure with clinical 

symptoms of lead poisoning. I consider what specific health effects can be inferred from the 

range of enamel-lead variation observed in early-forming M1/I1 teeth. 

Using digestion ICP-MS, Schroeder et al. (2013) measured lead in dental enamel from 26 

enslaved Africans buried at the Newton Plantation. Their analysis included an early forming 

tooth from each individual; M1s and one deciduous molar for a single individual for whom an 

M1 was not present. The authors report a mean enamel-lead concentration of 11 µg g-1 and a 

range of 0.2 to 47.3 µg g-1. The mean enamel-lead concentration for Newton individuals is 

considerably higher than that observed for African New Yorkers (2.9 µg g-1; range: below LOD 

[<0.39] to 14.7 µg g-1). Such a large difference may simply reflect higher levels of pediatric 

exposure in Barbados, or methodological differences in the two studies may be a factor, as 

discussed below. 

Based on the estimated enamel-to blood-lead ratio of 10:1 proposed by Grobler et al. 

(2000) and the scale of severity of lead poisoning symptoms employed by Handler et al. (1986), 

Schroeder et al. (2013) conclude that most children in their study either were asymptomatic or 

would have experienced mild symptoms of lead poisoning during their earliest years. These 
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symptoms would have included occasional abdominal pains and headaches. Over a third of the 

children, however, had concentrations above 80 µg dl-1 and “probably suffered more severe 

symptoms such as frequent colic, seizures, paralysis, and even life-threatening coma” 

(Schroeder et al. 2013: 208). While lead concentrations do not correlate with age-at-death, the 

authors note with interest that two individuals with very high derived blood-lead values – 209 

and 473 µg dl-1 – died before the age of ten. 

Table 9.3 lists NYABG individuals’ M1/I1 enamel- and derived blood-lead concentrations. 

According to Grobler et al.’s (2000) model, blood-lead concentrations for these individuals 

ranged from 1.3 to 230 µg dl-1. Here, too, the majority of individuals (27, or 84 %) would have 

exhibited mild symptoms of lead poisoning according to Handler et al.’s scale. Four individuals 

would have shown moderate to severe symptoms such as vomiting, weakness and convulsions, 

and one (Burial 138) might have experienced very severe symptoms such as paralysis or spasms 

or been subject to coma.39 All of the individuals for whom symptoms would have been 

moderate, severe or very severe were subadults. Of 32 individuals, nine would have had blood-

lead levels below the current 5 µg dl-1 reference level at which the CDC recognizes a child 

between the ages of one and five as lead-exposed and recommends case management to 

prevent future exposure (CDC 2012). 

If the difference in blood-lead concentrations for enslaved Barbadians and New Yorkers 

reflects genuine diversity in environmental lead levels, exposure was more variable and greater 

for young children in Barbados than in colonial/early national New York. However, this is 

difficult to discern without knowing whether Schroeder et al.’s (2013) sampling strategy entailed 

analysis of core enamel exclusively, as did this study (see chapter six), or allowed for analysis of  

                                                           
39 Handler (1996) suggests that lead-induced convulsions or spasms might have led to 
differential treatment in life, including accusations of witchcraft, and in death through mortuary 
treatment. 
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Table 9.3: Enamel-lead and blood-lead derived concentrations by individual/tooth 
(following Grobler et al. [2000]). 

Burial a Sample b Cohort Enamel (μg g-1) 
c Estimated 
Blood (μg g-1) 

Subadults     
7 LRM1 SA 2.86 28.6 
22 LRM1 SA 4.66 46.6 
35 ULM1 SA 10.5 105 
39 LRM1 SA 6.09 60.9 
43 LRM1 SA 2.41 24.1 
126 LLM1 SA 11.6 116 
138 URM1 SA 2.30 230 
180 ULM1 SA 1.20 120 
219 LRM1 SA 14.7 147 
244 LLM1 SA 4.35 43.5 
405 URM1 SA 3.98 39.8 

Modified adults     
6 LLM1 MA <0.39 (3.9) 
6 ULM3 MA <0.39 (3.9) 
9 LLM1 MA 1.34 13.4 
9 LRM3 MA 0.69 6.9 
23 URM1 MA <0.39 (3.9) 
47 LLM1 MA 1.31 13.1 
68 LRM3 MA <0.39 (3.9) 
101 LRI1 MA 7.80 78 
101 LLM3 MA 7.38 73.8 
106 LRM1 MA 0.93 09.3 
106 LRM3 MA <0.39 (3.9) 
115 LLM1 MA <0.39 (3.9) 
115 LRM3 MA <0.39 (3.9) 
151 LRM1 MA <0.39 (3.9) 
165 LLM1 MA <0.39 (3.9) 
165 LRM3 MA <0.39 (3.9) 
241 URI1 MA <0.39 (3.9) 
243 ULI1 MA 0.89 8.9 
243 URM3 MA <0.39 (3.9) 
266 URM1 MA 0.56 5.6 
266 URM3 MA <0.39 (3.9) 
270 LLM1 MA <0.39 (3.9) 
270 LLM3 MA <0.39 (3.9) 
366 LLM1 MA <0.39 (3.9) 
367 ULM1 MA 0.76 7.6 
377 ULM1 MA 2.82 28.2 
384 ULM1 MA <0.39 (3.9) 
397 ULM1 MA <0.39 (3.9) 

Non-modified adults     
12 ULM1 NMA <0.39 (3.9) 
25 URI1 NMA 0.40 4.0 
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Table 9.3: Enamel-lead and blood-lead derived concentrations by individual/tooth 
(following Grobler et al. [2000]). 

Burial a Sample b Cohort Enamel (μg g-1) 
c Estimated 
Blood (μg g-1) 

25 LRM3 NMA <0.39 (3.9) 
49 ULM1 NMA 1.72 17.2 
63 LRM3 NMA 2.08 20.8 
135 LRM3 NMA <0.39 (3.9) 
150 LRM1 NMA <0.39 (3.9) 
172 LLM1 NMA <0.39 (3.9) 
172 LLM3 NMA 2.31 23.1 
176 LRM1 NMA <0.39 3.9 
176 LLM3 NMA 0.61 6.1 
179 LRM1 NMA 1.60 16 
179 LLM3 NMA <0.39 (3.9) 
196 LRM1 NMA <0.39 (3.9) 
262 LRM3 NMA <0.39 (3.9) 
323 LRM1 NMA 4.35 43.5 
323 LRM3 NMA <0.39 (3.9) 
324 ULM1 NMA 1.39 13.9 
324 LRM3 NMA 1.96 19.6 
335 LLM1 NMA 0.42 4.2 
335 URM3 NMA <0.39 (3.9) 

Kasana ULM1 control <0.39 (3.9) 

a 
Tooth type/position key: L or U = lower or upper; L or R = left or right; M or I = molar or incisor; 1 

or 3 = first or third. All teeth are from the permanent dentition (e.g., LLM1 = permanent lower left 
first molar). 

b 
SA = subadult; MA = modified adult (i.e., w/CMT); NMA = non-modified adult (i.e., without CMT) 

c LOD of Pb = < 0.39 μg g-1 

 
 

lead-enriched surface enamel. The latter scenario certainly could also explain the much higher 

values for some individuals buried at the Newton Plantation. Likewise, it is unclear how Grobler 

et al. (2000) accounted for the fluctuating nature of blood-lead. By most accounts, the 

relationship of enamel-lead to blood-lead is not yet sufficiently understood or quantified 

(Barbosa et al. 2005).40 

                                                           
40 Studies exploring the relationship between enamel- and blood-lead have yielded mixed 
results. Cleymaet et al. (1991) reported a significant positive correlation between lead 
concentrations in blood and enamel for Belgian children between the ages of 7.5 and 9.5 years. 
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Conclusions 

While enamel-lead as a biomarker of lead exposure has increased in recent years, 

inferences of lead poisoning or its specific symptoms for individuals should still be viewed 

critically. However, the underlying patterns of enamel-lead variation, understood through 

emerging frameworks of vulnerability and risk (Leatherman 2005; Panter-Brick and Fuentes 

2009), are extremely valuable for identifying those most likely to have encountered and suffered 

from lead. Analysis of NYABG teeth suggests that children and possibly males were at greatest 

risk of lead exposure – patterns that mirror findings from contemporary lead epidemiology (e.g., 

de Almeida et al. 2011). Future research combining dental chemistry with skeletal 

paleopathological indicators of nutritional stress and infectious disease will help to further 

elucidate the impact that lead had on enslaved New Yorkers within these high-risk groups and as 

individuals. 

 

 
 

  

                                                                                                                                                                             
On the other hand, de Almeida et al. (2011), in a recent study involving Brazilian schoolchildren, 
observed no such correlation; a finding they attributed to the different time periods captured by 
enamel- and blood-lead concentrations. In general terms, enamel records “cumulative” past 
exposure while blood-lead primarily reflects recent exposure although the latter may also 
include lead released back into the bloodstream during bone remodeling (see chapter 5). 
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CHAPTER 10 
 

SUMMARY AND CONCLUDING REMARKS 

 

The African Burial Ground's reappearance in the early 1990s sparked new interest in the 

early northern African presence. Historical monographs published in the wake of the cemetery’s 

excavation clarify and reinterpret aspects of African-American slavery, resistance and racial 

formations (e.g., Harris 2003; Foote 2004; Lepore 2006). In 2002 Northeast Magazine of The 

Hartford Courant produced a special report titled “Complicity: How Connecticut Chained Itself to 

Slavery.” From 2005 to 2007 the New-York Historical Society hosted two major exhibitions on 

slavery in New York. Slavery in New York explored the city’s role as a “capital of American 

slavery.” 41This exhibition was followed by New York Divided: Slavery and the Civil War, which 

highlighted northern economic ties to southern cotton, sugar and “slave power”; relationships 

that expanded alongside and in direct contradiction to the growing anti-slavery movement as 

war approached. 

The burial ground’s excavation also brought political struggle over this once again sacred 

site. The stakes were high. What was to be the burial ground’s final disposition and meaning? 

What would become of the remains of over 400 children, women and men unearthed there? 

How would they be memorialized? Could the descendants of enslaved people demand and 

receive respect, in death for those who had been so profoundly disrespected in life? From this 

perspective, the struggle over the African Burial Ground was twofold: a protest for the dignity of 

enslaved Africans whose labor had built the city and for their own dignity and cultural heritage 

                                                           
41 The exhibition companion volume includes a series of informative essays detailing various 
aspects of African-American political, cultural and economic life in New Amsterdam and early 
New York (Berlin and Harris 2005a). As Singleton (2010) observes, the exhibit and some of these 
essays would have benefited from incorporating more archaeological and skeletal interpretation 
from the NYABG Project. 
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rights as descendants. This struggle gave rise to a new model of public anthropology and a new 

paradigm for descendant community cooperation in the form of the NYABG Project (Purcell 

2000; Blakey 2010). 

My intent for this dissertation study has been to further the work of the NYABG Project 

by generating new biohistories of geographic ancestry and health. My specific goal was to use 

the biomarker enamel-lead to explore: (1) geographic origins, (2) sources and pathways of lead 

exposure, and (3) health and developmental consequences of exposure for NYABG individuals. 

Toward this end, I applied quantitative LA-ICP-MS analysis to NYABG teeth (M1s and I1s) that 

formed during early life. I analyzed a separate set of teeth for which enamel develops during 

adolescence in order to identify migration-related changes in lead concentration. Culturally-

modified teeth offered another window onto the migrations and other lived experiences of 

NYABG individuals. In this concluding chapter I summarize the study’s important findings in 

relation to these goals and the broader goals of the NYABG Project and offer suggestions for 

future research directions.  

This study’s primary focus on determining African versus American natality derives from 

the NYABG Project’s first research goal of identifying geographic and ethnic origins. LA-ICP-MS 

analysis clearly distinguished individuals and groups with varying degrees of lead burden. Lead 

was ubiquitous in 18th-century New York and other American regions where enslaved Africans 

originated or traveled before reaching the city – and certainly much more prevalent than in 

most parts of western Africa during this period. Thus, relatively high enamel-lead concentrations 

probably indicate American early-life settings. Working from this assumption, it appears that 

children were most vulnerable to lead and, thus, most likely to have been born in New York or 

elsewhere in the Americas. Mean enamel-concentrations for all of the children (n = 11) were 
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above the threshold for technological exposure (1 µg g-1). In comparison, 28% of the adults – 

some bearing culturally-modified teeth (CMT) – were identified as possibly American-born. 

As a measure of environmental conditions and health, enamel-lead data speak to the 

question of material quality of life for enslaved Africans. This was the second research area of 

the NYABG Project. From infancy or earlier, toxic lead entered the bodies of enslaved New 

Yorkers. Researchers typically emphasize the role that tainted rum played in the “dry gripes” 

epidemic that afflicted many throughout the colonial Americas. Yet, exposure resulted from 

multiple sources and pathways. Another well-documented source was food and beverages 

contaminated during production or through the use of lead-based pewter. Most pediatric 

exposures were probably similar to those observed today, primarily in economically 

impoverished communities. These sources would have included leaded paint, dust and soil, and 

water. Geophagy has not received much attention but may well have been an important source 

of ingested lead particularly for children and pregnant women. Occupational exposure was a 

foregone conclusion in print shops, dockyards, and other work settings in rapidly growing and 

industrializing 18th-century New York City. The modern distinction between childhood and 

occupational exposure pathways would have mattered less for enslaved laborers for whom 

apprenticeships and work often began prior to adolescence.  

Also related to the issue of material quality of life is the question of whether or not 

NYABG individuals experienced clinical lead poisoning; a question that, unfortunately, remains 

unresolved. My hypothetical exploration in chapter 9 aside, it is not yet possible to infer lead 

poisoning or its symptoms from enamel-lead concentrations. The relationship of enamel-lead to 

blood-lead – the biomarker for which concentrations are associated with clinical symptoms – is 

extremely complicated, dynamic, and simply not well understood as yet. What can be said with 

some degree of confidence is that NYABG children represent a relatively high-lead cohort. 
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Within this study sample, children and adults with the highest enamel-lead concentrations – i.e., 

those born into high-lead environments – were most likely to have exhibited clinical symptoms 

of lead poisoning during early life. Symptoms could have ranged from anemia and lethargy to 

death. 

One finding from this study has particular relevance for the last two NYABG Project 

research areas, i.e., biocultural transformations associated with the construction of African-

American identities and efforts at “humanity maintenance,” or resistance to enslavement. 

Amongst the individuals identified as natal Americans are 4 adults with CMT. If Burials 9, 47, 101 

and 377 were born in the Americas, this finding is a bioarchaeological first. As noted throughout 

this study, CMT are exclusively linked to African natality in skeletal research. Yet, as an 

independent test of natality, the enamel-lead data here seem to support the notion that some 

individuals, at least, attempted to keep this cultural practice alive in the Americas. 

 

Within the limits of sample representativeness, time constraints, and various challenges 

associated with their engaged anthropological approach (Blakey 2009), project researchers have 

learned a great deal about African slavery and life in early New York. This study extends that 

process. Yet, much work remains to be done, and here are some possible methodological and 

theoretical directions for further bioarchaeometric analysis of the NYABG remains. 

1. Quantitative lead analysis of an expanded M1 and I1 sample would enable us to 

characterize the skeletal sample and test the patterns observed in this study. 

Some of these patterns, like the mean difference observed between children 

and adults, seem quite stable. Others, such as the higher concentrations for 

males and the differences across temporal groups, may simply result from 

inadequate sample sizes. 
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2. Likewise, more comparisons of M1 or I1 versus M3 and other teeth would help 

to identify migrants and the age at which migration occurred. Analysis of 

canines and premolars that form in the developmental interim between M1s or 

I1s and M3s will enable a more fine-grained construction of geographic 

ancestries. 

3. The assumption of high-level lead exposure in the Americas is reasonable. 

However, the higher mean enamel-lead concentration reported for enslaved 

Barbadians by Schroeder et al. (2013) relative to NYABG individuals serves as a 

reminder that lead exposure was not uniform throughout the Americas. 

Regional diversity of exposure conditions is an important consideration when 

reconstructing diasporic movements. 

4. The opposing assumption of a total lack of lead exposure in Africa is also worth 

revisiting. For example, captive or enslaved individuals who spent their early 

years in coastal regions of western Africa where Europeans traded and 

established outposts most likely would register higher enamel-lead 

concentrations (and/or more acute exposures) than those from the hinterlands. 

5. Beyond lead, other elemental experiences reside in the enamel archives of 

teeth. The methodology developed for this study may be used to mine them. 

For example, future research might also target mercury given the possibility of 

mercury poisoning due to artisanal silver-mercury amalgamation practices   

(Dula Amarasiriwardena, personal communication).  

6. Integration of independent lines or “cables” (Wylie 1993) of data (e.g., 

elemental, isotopic [e.g., Pb, Sr and O], paleopathological, etc.) will enable us to 

check for interpretive errors or excesses in studies such as this, and develop 
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fuller understandings of personal and collective experiences that define and link 

individuals. 

This study has moved the investigation of diasporic origins, migration and health 

to the microspatial level. With a novel approach to the old question of colonial-era lead 

exposure – one focused on revealing the nature, extent and timing of lead exposure in 

early New York – this study has also opened up new avenues of inquiry in the study of 

slavery. Did resistance efforts in the Americas include dental modification? How will an 

expanded dental sample and isotopic data further hone and enrich our understanding of 

enslaved African lifeways? How are migrations and other experiences reflected at the 

individual level? One of the study’s most exciting implications is the ability to now probe 

the processes and consequences of enslavement and identity formation with specific 

knowledge of those individuals that endured the Middle Passage. How do we use these 

individual biohistories to reconstruct collective experiences? 

Importantly, the methodology developed for this study is not limited to the 

African Burial Ground or African diasporic populations, but may be applied more broadly 

to questions of migration and health in bioarchaeology and even to studies of 

contemporary health. Future research will further evolve this new analytical tool by 

incorporating recent and ongoing technical developments such as certified solid lead 

standards for calibration for probing variation at the lowest levels of human exposure. 

The biohistory thus recovered will intersect with and help make whole other histories, 

e.g., of childhood and environmental health in the early Americas. This new 

development in historical biomonitoring represents a small but important step towards 

a much richer and more refined understanding of a once forgotten people and the 

world they helped build.  



 

232 

APPENDICES 
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APPENDIX A 
 

SAMPLE RECORD FORM 

 
  

Figure A.1: Sample data and laser conditions record form. 
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APPENDIX B 
 

DATA PROCESSING IN EXCEL 

 

 

Figure B.1: Data processing in Excel (background subtraction and 
normalization steps). 
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APPENDIX C 
 

ENAMEL-LEAD MICROSPATIAL DISTRIBUTION GRAPHS: NYABG SUBADULTS 

 

 

Figure C.1: M1 or I1 enamel-lead microspatial distribution graphs (log scale) for 
NYABG subadults. Surface enamel peaks are indicated by a red arrow. 
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APPENDIX D 
 

ENAMEL-LEAD MICROSPATIAL DISTRIBUTION GRAPHS: NYABG MODIFIED ADULTS 
 

 

Figure D.1: M1 or I1 enamel-lead microspatial distribution graphs (log scale) for NYABG 
modified adults. Surface enamel peaks are indicated by a red arrow. 

 
 



 

237 

APPENDIX E 
 

ENAMEL-LEAD MICROSPATIAL DISTRIBUTION GRAPHS: NYABG NON-MODIFIED ADULTS 

 

Figure E.1: M1 or I1 enamel-lead microspatial distribution graphs (log scale) for NYABG non-
modified adults. Surface enamel peaks are indicated by a red arrow. 
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