
University of Massachusetts Amherst University of Massachusetts Amherst

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst

Doctoral Dissertations Dissertations and Theses

Spring March 2015

Model-Based Guidance for Human-Intensive Processes Model-Based Guidance for Human-Intensive Processes

Stefan Christov
University of Massachusetts - Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2

 Part of the Health Information Technology Commons, Industrial Engineering Commons, and the

Software Engineering Commons

Recommended Citation Recommended Citation
Christov, Stefan, "Model-Based Guidance for Human-Intensive Processes" (2015). Doctoral Dissertations.
295.
https://scholarworks.umass.edu/dissertations_2/295

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1239?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/dissertations_2/295?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F295&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

MODEL-BASED GUIDANCE
FOR HUMAN-INTENSIVE PROCESSES

A Dissertation Presented

by

STEFAN C. CHRISTOV

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2015

Computer Science

c© Copyright by Stefan C. Christov 2015

All Rights Reserved

MODEL-BASED GUIDANCE
FOR HUMAN-INTENSIVE PROCESSES

A Dissertation Presented

by

STEFAN C. CHRISTOV

Approved as to style and content by:

George S. Avrunin, Co-chair

Lori A. Clarke, Co-chair

Leon J. Osterweil, Member

Jenna L. Marquard, Member

Elizabeth A. Henneman, Member

Lori A. Clarke, Chair
Computer Science

To my parents, my brother, and my grandparents.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to Lori Clarke and George Avrunin,

my Ph.D. advisers, for holding me to the highest standards, for their support and

guidance during the years, and for believing that I could reach this point. This

dissertation is as much their achievement as it is mine.

I am thankful to Lee Osterweil for the interesting research discussions and his

thoughtful feedback on this work.

I would like to thank Jenna Marquard and Elizabeth Henneman for their assistance

with the non-computer science aspects of this work and for their help with conducting

human subject studies.

I am grateful to the students of the LASER lab at UMass Amherst for creating

a friendly and an enjoyable work environment, and especially to Heather Conboy for

sharing her expertise on the lab’s code base and for helping me build on that code

base.

I would like to thank Barbara Lerner and Philip Henneman for the opportunities

to hone my research skills via several research collaborations.

I am grateful to the administrative and to the technical support staff at the School

of Computer Science for their friendliness and help with various administrative and

technical issues. I am especially thankful to Leeanne Leclerc for her encouragement,

advice, and assistance throughout my studies at UMass.

I am deeply grateful to my family for raising me in an intellectually stimulating

environment, for encouraging me to pursue my studies, for their patience while I was

working on this dissertation far away from them, and for their endless love.

v

I am thankful to Francesca Colantuoni for making my life happier once she entered

it and for her tremendous support during the final stage of my dissertation. I am

thankful to Sophal Khun for showing me on multiple occasions what it means to truly

care for a friend. I would like to thank Borislava Simidchieva for her help during the

years and for overcoming many obstacles together. I am grateful to all my friends

who were with me in moments of joy and in moments of sadness, with whom I shared

my journey in graduate school, and who contributed to making my time in Amherst

an unforgettable and an exciting experience.

vi

ABSTRACT

MODEL-BASED GUIDANCE
FOR HUMAN-INTENSIVE PROCESSES

FEBRUARY 2015

STEFAN C. CHRISTOV

B.Sc., STATE UNIVERSITY OF NEW YORK, COLLEGE AT BROCKPORT

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor George S. Avrunin and Professor Lori A. Clarke

Human-intensive processes (HIPs), such as medical processes involving coordina-

tion among doctors, nurses, and other medical staff, often play a critical role in society.

We use the word “process” to refer to the coordination of activities to achieve a task

or a goal, where the activities may be performed by humans, devices, or software

systems. We say that a process is “human-intensive” if the contributions of human

process performers have a significant impact on the process outcomes and require

substantial domain expertise and insight. Despite considerable work and progress in

error reduction, human errors are still a major concern for many HIPs. For example,

human errors in medical HIPs constitute a large part of the preventable medical er-

rors estimated to cause the death of between 98,000 and 400,000 people each year in

the U.S.

To address this problem of human errors in HIPs, this thesis investigates two

approaches for online process guidance, i.e., for guiding process performers while a

vii

process is being executed. Both approaches rely on monitoring a process execution

and base the guidance they provide on a detailed formal process model that captures

the recommended ways to perform the corresponding HIP. The first approach, which

we call deviation detection and explanation, automatically detects when an execut-

ing HIP deviates from a set of recommended executions of that HIP, as specified by

the process model. Such deviations could represent errors and, thus, detecting and

reporting deviations as they occur could help catch errors before something bad hap-

pens. The approach also provides information to help explain a detected deviation to

assist process performers with identifying potential errors and with planning recovery

from these errors. The second approach, which we call process state visualization,

proactively guides process performers by showing them information relevant to the

current process execution, such as the activities that need to be performed at each

point of that process execution. The goal of the process state visualization approach

is to reduce the number of human errors.

The success of the online process guidance approaches presented in this work

depends on the correctness and the degree of completeness of the underlying process

model. If the process model is incorrect with respect to some set of requirements or it

is incomplete by not representing all the process executions that domain experts have

agreed should be captured in the model, then the online guidance may be incorrect

or there might not be enough information in the process model to provide guidance

in certain scenarios. Given the complexity of some HIPs, creating a correct and

sufficiently complete process model is challenging. This thesis investigates process

elicitation techniques to help create such process models and discusses an evaluation

of these techniques based on their application to real-world HIPs.

The major contributions of this work can be summarized as follows:

• Compared the relative strengths and weaknesses of several techniques for pro-

cess elicitation and process model validation to help create correct and suffi-

viii

ciently complete process models needed for the proposed online process guidance

approaches.

• Developed an approach for deviation detection and explanation and evaluated

it with realistic process models and synthetic process executions with seeded

errors.

– Recognized delayed deviation detection as a potential obstacle for the ap-

proach and investigated its frequency and consequences.

• Developed an initial approach for visualization of process execution state and

demonstrated it on a medical case study.

ix

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vii

LIST OF TABLES . xv

LIST OF FIGURES . xvi

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND . 7

2.1 Process Improvement Environment . 7

2.1.1 Offline Analyses . 9
2.1.2 Online Analyses . 12
2.1.3 Thesis Focus . 13

2.2 Prerequisites for Online Process Guidance . 14

2.2.1 Precise, Correct, and Sufficiently Complete Process Model 14
2.2.2 Process Execution Monitor . 15

2.3 The Little-JIL Process Modeling Language . 16

2.3.1 The Little-JIL Diagrammatic Representation 17

2.3.1.1 Example Little-JIL Process Model 19

2.3.2 The Little-JIL Narrative Representation . 21

2.3.2.1 Design of Little-JIL Narrator . 24

x

3. PROCESS ELICITATION AND MODELING . 28

3.1 Process Elicitation . 29

3.1.1 Case Study . 30

3.1.1.1 Elicited Process . 30
3.1.1.2 Elicitation Methods . 31
3.1.1.3 Results . 35
3.1.1.4 Discussion . 41
3.1.1.5 Threats to Validity . 43
3.1.1.6 Summary . 44

3.2 Process Modeling . 45

3.2.1 Exception Handling Patterns . 45

3.2.1.1 Selected Patterns . 48
3.2.1.2 Evaluation of Exception Handling Patterns 55

3.2.2 Comparing the Little-JIL Diagrammatic and Narrative
Representations . 60

3.2.2.1 User Study . 61

3.2.3 Overall Experience with Process Modeling . 67

3.2.3.1 Experience with Using Little-JIL . 67
3.2.3.2 Process Model Validation . 70

4. DEVIATION DETECTION AND EXPLANATION 73

4.1 Overview . 73

4.1.1 Example of Applying the Deviation Detection and
Explanation Approach to a Medical Process 78

4.1.2 Issues . 81

4.1.2.1 Delayed Deviation Detection and Potential Harm
Due to Delay . 81

4.1.2.2 Potential Harm When Deviations Are Immediately
Detected . 84

4.1.2.3 Performance of the Deviation Detector 85

4.2 Deviation Detection Framework . 86
4.3 Experimental Evaluation . 88

xi

4.3.1 Experimental Design . 88

4.3.1.1 Process Models . 90
4.3.1.2 Synthetic Sequences with Errors . 92
4.3.1.3 Experiments . 96
4.3.1.4 Potentially Harmful Steps . 96

4.3.2 Results . 97
4.3.3 Discussion . 97

4.3.3.1 Delayed Deviation Detection and Potential Harm
Due to Delay . 99

4.3.3.2 Potential Harm When Deviations Are Immediately
Detected . 101

4.3.3.3 Performance of the Deviation Detector 103

4.3.4 Threats to Validity . 103

4.4 Limitations of the Deviation Detection Approach 104
4.5 Deviation Explanation . 107

4.5.1 Error Localization . 107

4.5.1.1 Legal Sequence Selection . 108
4.5.1.2 Alignment Computation . 111
4.5.1.3 Potential Error Index Identification 112

4.5.2 Evaluation of Error Localization Approach 114

4.5.2.1 Experimental Design . 116
4.5.2.2 Results . 117
4.5.2.3 Discussion . 117
4.5.2.4 Threats to Validity . 118

4.5.3 Limitations of the Error Localization Approach 119

5. VISUALIZATION OF PROCESS EXECUTION STATE 120

5.1 Overview . 120
5.2 The Smart Checklist Metaphor . 124
5.3 The Smart Checklist Prototype . 126

5.3.1 Back-end Implementation . 126
5.3.2 Visualization . 126

5.4 Preliminary Evaluation . 133

xii

6. RELATED WORK . 142

6.1 Process Elicitation and Modeling . 142

6.1.1 Process Elicitation . 142
6.1.2 Process Modeling . 143

6.1.2.1 Exception Handling in HIPs . 143
6.1.2.2 Process Model Representations . 145

6.2 Online Process Guidance for HIPs . 147

6.2.1 Visualization of the Execution State of HIPs 147

6.2.1.1 Trauma Center Process Guidance System 147
6.2.1.2 Visualization of Patient Flow . 149
6.2.1.3 Visualization of Patient Location During

Perioperative Clinical Processes 150

6.2.2 Traditional Checklists and Process Guides 151

6.2.2.1 Checklists . 151
6.2.2.2 Process Guides . 154

6.2.3 Approaches for Dealing with Process Deviation 155

6.2.3.1 Software Process Validation . 155
6.2.3.2 Dealing with Deviations in Software Design

Processes . 156
6.2.3.3 A Framework for Formalizing Inconsistencies and

Deviations in HIPs . 158
6.2.3.4 Conformance between Process Executions and

Process Models . 160
6.2.3.5 Adherence to Medical Guidelines 161

6.2.4 Error Localization . 161

6.2.4.1 Fault Localization . 161
6.2.4.2 Anomaly Detection . 163
6.2.4.3 Plan and Policy Recognition Approaches 164

6.3 Human Errors . 168

6.3.1 “Human Error” by James Reason . 169
6.3.2 The Eindhoven Classification Model . 170
6.3.3 Error Causes vs. Error Manifestations . 171

xiii

7. CONCLUSION AND FUTURE WORK . 172

APPENDICES

A. ARTIFACTS USED IN PROCESS ELICITATION STUDY 179
B. ARTIFACTS USED IN PROCESS REPRESENTATIONS

STUDY . 190
C. LOW-LEVEL PROCESS MODEL REPRESENTATION 210

BIBLIOGRAPHY . 225

xiv

LIST OF TABLES

Table Page

2.1 Example phrasing templates. 25

3.1 Normal flow process steps. 38

3.2 Exceptional situations. 39

3.3 Responses to exceptional situations. 39

xv

LIST OF FIGURES

Figure Page

2.1 Process Improvement Environment. 8

2.2 Little-JIL Step (figure adapted from [29]) . 19

2.3 Little-JIL model of a simplified blood transfusion process. 20

2.4 The narrative corresponding to the Little-JIL process model in
Figure 2.3. 23

2.5 Architecture of the Little-JIL Narrator. 24

3.1 Sample sequence of observed steps . 33

3.2 Sample open-ended scenarios. 34

3.3 Sample process trace. 36

3.4 Number of new events identified using each elicitation method. 36

3.5 Normal flow process steps identified and refuted via each method. 37

3.6 Exceptional situations identified and refuted via each method. 37

3.7 Responses to exceptional situations identified and refuted via each
method. 38

3.8 Structure of the Ordered Alternatives Pattern in Little-JIL. 49

3.9 Using the Ordered and Unordered Alternative Patterns when
Planning a Trip. 50

3.10 The Structure of the Deferred Fixing Pattern in Little-JIL. 52

3.11 Using the Deferred Fixing Pattern to Complete Seat Selection at a
Later Time. 53

xvi

3.12 The Structure of the Compensate Pattern in Little-JIL. 54

3.13 Using the Compensate Pattern to Cancel a Trip. 54

3.14 The number of occurrences of each pattern in the chemotherapy and
ODR process models. 56

3.15 Study results—computer science students. 63

3.16 Study results—nursing students. 63

4.1 Deviation detection and explanation approach. 74

4.2 Simplified blood transfusion process. 79

4.3 An Example Extended Control Flow Graph. 81

4.4 Deviation detection experimental framework. 87

4.5 Applying the deviation detection approach to blood transfusion and
chemotherapy process models. 98

4.6 Example application of the error localization approach given the
sequence of performed steps psu and the process model in
Figure 4.2. 110

4.7 Example application of the error localization approach given the
sequence of performed steps acde and the process model in
Figure 4.3. 111

4.8 Deviation detection and error localization experimental
framework. 114

4.9 Applying the error localization approach to a blood transfusion
process model. 117

5.1 The smart checklist at the beginning of executing the simplified blood
transfusion process. 128

5.2 The smart checklist after the nurse has performed several steps from
the simplified blood transfusion process. 129

5.3 The smart checklist after the nurse has successfully completed the
simplified blood transfusion process. 130

xvii

5.4 The smart checklist at a point of the executions of the simplified
blood transfusion process where the nurse is about to indicate
that problem has arisen. 134

5.5 The smart checklist after the nurse has performed several steps from
the simplified blood transfusion process and is about to indicate
that another problem has arisen. 135

5.6 The smart checklist after the simplified blood transfusion process was
not successfully completed due to problems during the execution
of the process. 136

6.1 Visualization of the process guidance system used during trauma
resuscitation at the Alfred Trauma Center, Melbourne, Victoria,
Australia (2006 – 2008). 148

6.2 Visualization of cardiac patient flow. 150

C.1 The stages of translating a Little-JIL process model into a low-level
process model. 211

C.2 Trace flow graph derived from the Little-JIL model in Figure C.3. 212

C.3 Little-JIL model of a simplified final stage of a chemotherapy
process. 213

C.4 The task automaton constraint for Task 1 of the TFG in
Figure C.2. 215

xviii

CHAPTER 1

INTRODUCTION

Human-intensive processes (HIPs), such as medical processes involving coordi-

nation among doctors, nurses, and other medical staff, often play a critical role in

society. We use the word process to refer to the coordination of activities to achieve a

task or a goal, where the activities may be performed by humans, devices, or software

systems. We say that a process is human-intensive if the contributions of human

process performers have a significant impact on the process outcomes and require

substantial domain expertise and insight. Despite considerable work and progress in

error reduction, human errors are still a major concern for many HIPs. For example,

human errors in medical HIPs constitute a large part of the preventable medical er-

rors estimated to cause the death of 98,000 people each year in the U.S. [82]. More

than a decade after this estimate, a 2009 US National Research Council report [122]

indicates that the problem with errors still persists and that “it is widely recognized

that today’s health care . . . suffers substantially as a result of medical errors”. A

recent study [78] from 2013 reports an even higher estimate of deaths per year in the

U.S., between 210,000 and 400,000, due to medical errors.

To address this problem of human errors in HIPs, this thesis investigates two

approaches for online process guidance, i.e., for guiding process performers while a

process is being executed. Both approaches rely on monitoring a process execution

and base the guidance they provide on a detailed formal process model that captures

the recommended ways to perform the corresponding HIP. The first approach, which

we call deviation detection and explanation, automatically detects when an execut-

1

ing HIP deviates from a set of recommended executions of that HIP, as specified by

the process model. Such deviations could represent errors and, thus, detecting and

reporting deviations as they occur could help catch errors before something bad hap-

pens. The approach also provides information to help explain a detected deviation to

assist process performers with identifying potential errors and with planning recovery

from these errors. The second approach, which we call process state visualization,

proactively guides process performers by showing them information relevant to the

current process execution, such as the activities that need to be performed at each

point of that process execution. The goal of the process state visualization approach

is to reduce the number of human errors.

We use the widely-adopted definition of error : “failure of a planned action to be

completed as intended (i.e., error of execution) or the use of a wrong plan to achieve

an aim (i.e., error of planning)” [82, 111]. The online process guidance approaches

presented in this work focus on planning errors, and in particular on planning errors

that correspond to problems with the sequence of activities performed to achieve

an aim, e.g., omitting an activity that should have been done (error of omission)

or performing an activity that should not have been done (error of commission).

Planning errors that are related to violation of real-time constraints, such as “an

activity should be performed within five minutes after another activity has been

performed”, are outside the scope of this work.

The two online process guidance approaches discussed in this thesis are part of an

overall process improvement environment (PIE). This environment supports offline

analyses for finding defects, inefficiencies, and vulnerabilities in HIPs, and it also

supports online analyses to provide guidance to process performers while a process is

being executed. A key component of the PIE is a detailed and formal process model.

The offline analyses are applied to this model to reason about the corresponding

real-world HIP, to improve the model, and to potentially suggest improvements for

2

the modeled HIP. A carefully analyzed and validated process model that captures

the recommended ways to perform a HIP is then used as the basis for online process

guidance.

The success of the online process guidance approaches presented in this work de-

pends on the correctness and the completeness of the underlying process model. If the

process model is incorrect with respect to some set of requirements or it is incomplete

by not representing all the process executions that domain experts have agreed should

be captured in the model, then the online guidance may be incorrect or there might

not be enough information in the process model to provide guidance in certain scenar-

ios. Given the complexity of some HIPs, creating a correct and sufficiently complete

process model is challenging. This thesis investigates process elicitation techniques

to help create such process models and discusses an evaluation of these techniques

based on their application to real-world HIPs [31,35,93]. We believe the criticality of

certain HIPs, such as medical processes, warrants the time and effort needed to cre-

ate high-quality process models that can in turn be leveraged to support continuous

process improvement [53, 119] via various static analyses (e.g., model checking [37],

fault-tree analysis [128], and failure-mode and effects analysis [121]) and to support

various aspects of online process guidance, such as the approaches discussed in this

work.

There have been considerable efforts to reduce the number and impact of errors

in HIPs. One line of work has focused on improving the design of HIPs to make

them less prone to human errors [14, 50, 93] and then train people to follow the

redesigned processes. Improvements in the design of HIPs include changing the order

of tasks, adding redundancy checks, and reducing the workload and/or working hours

of process performers. Despite such efforts, however, human process performers still

make errors while performing some HIPs, due to various reasons such as cognitive

overload, distraction, and fatigue.

3

To further reduce the occurrence and impact of human errors, approaches have

been investigated for supporting process performers while executing a process by en-

couraging conformance with some specification of the recommend ways to perform a

process (e.g., process aids such as checklists [67, 130, 136] and care sets [92]). Such

process aids, however, tend to specify only the major steps during nominal flow,

omitting important details such as exceptional scenarios and concurrent process exe-

cution [31, 70]. Some of these process aids focus on training, but provide no support

during the actual performance of the process. The ones that could be used while a

process is being performed, such as checklists, in addition to often omitting impor-

tant details, also add to the workload of already heavily-burdened process performers.

The use of checklists, for example, often requires process performers to check what

needs to be done, to remember what activities they completed, and to decide what

the appropriate checklist is to use in a given context.

To remove some of the burdens that process aids, such as checklists, place on

process performers, there have been attempts to create systems that automatically

check the compliance of a process that is being performed with a specification of that

process. For example, Fitzgerald et al. designed and deployed a process guidance

system in a trauma center to guide medical professionals during the first 30 minutes

of trauma resuscitation [57]. This system increased compliance with the underlying

medical algorithms and reduced error rates, but these algorithms did not support

complex process behaviors, such as concurrency and exception handling.

The online process guidance approaches investigated in this thesis are intended to

go beyond these limitations. The approach for process state visualization provides dy-

namic, context-sensitive guidance and can automatically generate a checklist tailored

to the current process execution. The deviation detection and explanation approach

complements the process state visualization approach and could be particularly useful

in situations where providing proactive guidance via the process state visualization

4

approach is not feasible or process performers have elected to not use such proac-

tive guidance. By automatically checking conformance with the recommended ways

to perform a process, the deviation detection and explanation approach reduces the

burden on process performers to themselves ensure this conformance. Because both

the deviation detection and explanation approach and the process state visualization

approach are based on a detailed process model, these approaches can provide online

guidance in a wider range of process execution scenarios than existing approaches

do, including exceptional scenarios and concurrent execution, which is where human

errors often occur [88].

The major contributions of this work can be summarized as follows:

• Compared the relative strengths and weaknesses of several techniques for pro-

cess elicitation to help create correct and sufficiently complete process models

needed for the proposed online process guidance approaches.

• Developed an approach for deviation detection and explanation and evaluated

it with realistic process models and synthetic process executions with seeded

errors.

– Recognized delayed deviation detection as a potential obstacle for the ap-

proach and investigated its frequency and consequences.

• Developed an initial approach for visualization of process execution state and

demonstrated it on a medical case study.

Chapter 2 introduces the overall process improvement environment that includes

the online process guidance approaches investigated in this work and discusses prereq-

uisites for these approaches. Chapter 2 also describes the Little-JIL process modeling

language, which we use in the evaluation of the proposed online guidance approaches.

Chapter 3 presents several process elicitation approaches to help create such process

5

models. It also discusses other approaches for facilitating the modeling of complex

HIPs. Chapter 4 discuses the deviation detection and explanation approach and

Chapter 5 discusses the process state visualization approach. Related work is covered

in Chapter 6. Chapter 7 concludes this thesis and discusses future research directions.

6

CHAPTER 2

BACKGROUND

The proposed online process guidance approaches are part of a larger Process

Improvement Environment (PIE). This chapter provides an overview of the PIE,

discusses which components of the PIE are the focus of this work, and discusses pre-

requisites for our online process guidance approaches. The chapter also describes the

Little-JIL process modeling language, which we use in the evaluation of the proposed

online process guidance approaches.

2.1 Process Improvement Environment

The PIE is shown in Figure 2.1 and described in more detail in [14] and [15]. The

goal of the PIE is to improve HIPs via various offline and online analyses. Offline

analyses are applied to a model (the Process Model in Figure 2.1) of a real-world

process to infer characteristics of that process and suggest improvements for future

executions of that process. Offline analysis use the Process Model and various speci-

fications, such as properties and hazards (discussed in section 2.1.1). Online analyses

are applied while the real-world HIP is being executed to improve an ongoing pro-

cess execution. Online analyses use the Process Model and real-time events captured

during the ongoing process execution.

The offline analyses shown in Figure 2.1 have been implemented and evaluated

[14, 30, 31, 36, 109, 120, 129]. Editors exist for creating scenarios, properties, hazards,

and failure modes, which are inputs to the various offline analyses. An editor for

creating process models in a formal process modeling language [27] and an interpreter

7

Figure 2.1: Process Improvement Environment.

8

to execute such process models also exist as part of the PIE. At the time of writing

this thesis, the online analyses are currently being investigated [15]. There are initial

prototypes of the Deviation Detector [33], of the Deviation Explainer [32], and of the

Process State Visualizer [40]. The rest of the online analysis components are yet to

be implemented.

The key component of the PIE is the Process Model, which is a representation of

a real-world HIP. This model captures detailed information about the corresponding

real-world HIP, such as the activities in the HIP, who performs them and in what or-

der(s), what artifacts are used or produced in the process, what resources are utilized,

what problems might arise while performing the process and how such problems are

handled. Chapter 3 discusses our work on creating such detailed process models and

presents the process modeling notation used in the PIE.

2.1.1 Offline Analyses

As mentioned earlier, offline analysis are applied to the Process Model to infer

characteristics of the real-world process and suggest improvements for future exe-

cutions of the process. Model Checking [37], an analysis approach used to evaluate

hardware and software systems, can be applied to the Process Model to determine

whether all process executions captured by the model satisfy a given set of proper-

ties. These properties are typically requirements for the correct sequencing of process

steps. An example property for a blood transfusion medical process is “The pa-

tient’s identity should be verified before infusing a unit of blood product into that

patient.” Properties are typically expressed as finite-state automata or formulas in

a suitable temporal logic. If the Model Checker finds that a property is violated, a

counterexample—a process execution that demonstrates the violation—is provided.

By examining the counterexamples, analysts can usually determine the cause of the

9

problem, which could be an inaccuracy in the property, an inaccuracy in the process

model, or an actual defect in the modeled real-world process.

Another offline analyses technique part of the PIE is Fault Tree Analysis (FTA)

[128]. FTA is a hazard analysis technique used to systematically identify and evaluate

all possible causes of a given hazard. A hazard in a safety critical system is “a state

or set of conditions of the system that, together with certain other conditions in the

environment, will lead inevitably to an accident” [88]. An example hazard in a blood

transfusion process is “the patient received the wrong blood”.

Given a potential hazard in a process, FTA identifies events (component failures,

human errors, etc.) in the process that could lead to the hazard and produces a

fault tree, which provides a graphical depiction of all possible combinations of those

events. Once a fault tree has been derived, qualitative and quantitative analysis can

be applied to provide information, such as minimal cut sets, where a minimal cut set

is a set of events whose occurrence is sufficient to cause a hazard. This information

can then be used as guidance for reducing or removing vulnerabilities in the process.

Failure Mode and Effects Analysis (FMEA) [121], also referred to as Failure Mode

Effect and Criticality Analysis (FMECA), is another safety analysis technique that

can be applied to the Process Model. FMEA can be used to evaluate the impact of

individual failures on the overall process. A failure mode represents a specific case

in which some part of the process fails to meet its intent or requirements. Given a

process model, potential failure modes are identified first. Then the process model

is explored to determine all possible hazards that could eventually be caused by

each failure mode. Failure modes then can be prioritized by their risks. The risk

of a failure mode can be calculated based on the probability and detectability of

that failure mode as well as the severities of hazards caused by that failure mode. For

failure modes with high priorities, modifications to the process model (and sometimes

10

to the corresponding real-world HIP) are proposed to eliminate such failure modes or

at least reduce their probability of occurring.

In the PIE, the Process Model can also be used to drive Discrete-Event Simula-

tion to reason about efficiency of the modeled process. The Simulator in Figure 2.1

takes as input the Process Model along with scenario specifications, such as different

combinations of resources to be used in the process. The Simulator can then execute

the Process Model and determine which resource mixes optimize certain quantities of

interest. For example, discrete event simulation can be used to study how different

combinations of resources (e.g., the doctors, nurses, and beds available for treating

patients) and allocation strategies affect patient length of stay in a hospital emergency

department [41,109].

The application of the offline analyses described above often results in finding

problems with the Process Model or with the various specifications (scenarios, prop-

erties, hazards, failure models). Using the feedback from the offline analysis (indicated

by the smaller semi-circular arrow going from the Offline Analysis area to the Pro-

cess Model at the bottom of Figure 2.1), the Process Model and the specification are

improved and the analyses are iteratively applied.

Sometimes, the problems discovered by the offline analyses are problems associated

with the real-world HIP represented by the Process Model. In such cases, the analysis

results can be used to find defects in the real-world HIP and suggest process changes

that eliminate these defects, forming the basis for continuous process improvement

[119]. The process changes can be first applied to the Process Model and the offline

analyses can be used again to check whether the proposed changes indeed fix the

identified defects and whether the proposed changes introduce different defects in the

process. After the proposed process changes are determined to be safe on the process

model, they can then be implemented in the real-world HIP.

11

2.1.2 Online Analyses

We envision that a carefully analyzed and validated process model would be used

to drive online analyses while the real-world HIP is being executed to improve an

ongoing process execution. The Retrospector in Figure 2.1 would keep track of process

execution history, provide capabilities for searching this history, and proactively select

information from the history that might be relevant to the current activities of the

process performers. The Prospector would provide possible future process execution

information, such as tasks to be performed, resources to be required, and upcoming

decisions to be made to help process performers plan their work.

The Deviation Detector would monitor an ongoing process execution to determine

if an executing HIP deviates from a set of recommended ways to perform that HIP,

as specified by the Process Model. Such deviations could represent errors and, thus,

detecting and reporting deviations as they occur could help catch errors before harm

is done. In complex and time-sensitive HIPs, simply informing process performers

that deviations have occurred might not be sufficient for identifying errors in a timely

manner and for deciding how to recover from them before harm is done. The Deviation

Explainer would provide information that could be useful for identifying errors, which

in turn can help process performers with planning how to recover from these errors.

The Constraint Evaluator would notify human performers when process execution

has, or will imminently, violate a specified constraint. The Real-Time Analyzer would

keep performers informed of looming deadlines increasing the urgency of warnings as

deadlines approach. The Hazard Analyzer would combine results from the offline

FMEA and FTA with events from an ongoing process execution to warn process

performers of potential risks for hazards.

The online analyzers would interact with performers of HIPs via the Event Inter-

action Manager and the Process State Visualizer. The Event Interaction Manager

would handle the flow of events between the online analysis components and process

12

performers to ensure that the right events and information are delivered to the right

performers and that the right information from the ongoing process is delivered to

the online analyzers. The Event Interaction Manager will communicate directly with

automated process performers and it will funnel events meant for human process per-

formers through the Process State Visualizer, which would be responsible for creating

a visualization of the process execution state. The Event Interaction Manager consists

of two components (not shown in Figure 2.1 to reduce visual clutter)—a mechanism

for capturing events from an executing process and feeding these events to the online

analyzers and mechanisms for capturing events from online analyzers and redirect-

ing them to the appropriate process performers. We call the former mechanism a

Process Execution Monitor and the latter mechanism a Process Performers Notifier.

The online analyzers, which would utilize the process model and information from

the offline analyses, together with the Event Interaction Manager and the Process

State Visualizer would provide online process guidance to human process performers

to assist them with ongoing tasks.

The PIE would also accumulate process execution information, such as sequences

of performed steps on different process executions and problems that have arisen,

and that information could be used to refine offline and online analyses, improve the

process model (represented by the rounded arrow pointing from the online analysis

area to the Process Model at the bottom of Figure 2.1), and the actual modeled

HIP. The ultimate goal of the PIE is to support continuous process improvement as

introduced by Shewhart [119] and effectively applied by Deming [53].

2.1.3 Thesis Focus

This thesis focuses on three of the online analyzers—the Deviation Detector (dis-

cussed in Chapter 4), the Deviation Explainer (also discussed in Chapter 4), and

the Process State Visualizer (discussed in Chapter 5). This thesis also explores tech-

13

niques for eliciting HIPs and for creating corresponding process models (discussed in

Chapter 3), as detailed and accurate process models are essential for the proposed

online guidance approaches.

2.2 Prerequisites for Online Process Guidance

2.2.1 Precise, Correct, and Sufficiently Complete Process Model

A Process Model is essential for the proposed PIE as that model drives both

the offline and the online analyzers. A Process Model used for online guidance is a

representation of the process that captures the recommended ways to perform that

process. Thus, such a process model is the “gold standard” for performing the process

it represents. To be useful for online guidance in complex HIPs a process model needs

to satisfy certain criteria:

• Precision. The process model needs to be precise, i.e., written in a notation

with well-defined semantics, so that the model can unambiguously guide process

performers and the various online analyses could be automatically applied. For

example, the Deviation Detector needs to be able to algorithmically explore

the process model to determine whether an ongoing process execution deviates

from that model.

• Correctness. The process executions captured by the model need to be correct

with respect to a set of requirements identified by domain experts, so that the

model can provide correct guidance to process performers. If the model contains

incorrect executions, then they could result in providing wrong guidance that

could ultimately lead to undesired process outcomes.

• Sufficient completeness. To support an adequate level of online guidance

during an ongoing HIP, a process model needs to be sufficiently complete, i.e.,

it needs to capture all the executions that process stakeholders have agreed the

14

model should capture. The model should adequately capture the complexities of

the HIP it represents, such as the activities that need to be performed, complex

and realistic control flow (e.g., exception handling and concurrency), types of

human and non-human performers, and artifacts that are used or produced.

Such a process model would be more realistic compared to checklists and simple

flow charts, which in turn should allow for guiding process performers in a wider

range of scenarios.

Creating process models that meet these criteria could be challenging, especially

for complex HIPs. We expect process models to be incrementally improved as prob-

lems are found and/or the HIPs they represent change. Section 3.1 discusses some

elicitation techniques for obtaining detailed process information needed to create pro-

cess models that can be used for online process guidance. Section 3.2 describes our

experience with process modeling, including: creating such process models and using

Little-JIL, a semantically rich and formal process modeling language that can sup-

port the kinds of process models needed for online process guidance (section 2.3);

exception handling patterns for facilitating the modeling of exceptional situations

(section 3.2.1); and a study that compares the effectiveness of a diagrammatic and

a textual process representation in terms of their ability to facilitate process under-

standing (section 3.2.2).

2.2.2 Process Execution Monitor

Some of the online analyzers in the PIE rely on a mechanism for monitoring an

executing process and for capturing events of interest. For example, the Deviation

Detector needs to know the sequence of performed activities to determine whether

process performers have deviated from the recommended ways to perform the process,

as specified by the Process Model. As previously discussed, this mechanism, which

15

we call the Process Execution Monitor, is one of the two components of the Event

Interaction Manager in Figure 2.1.

The details of such a mechanism for monitoring an executing process and associ-

ated issues are outside the scope of this work. Recent developments in HIPs should

facilitate monitoring of executing processes. For example, electronic medical records

are being introduced in more medical HIPs and data entries in such records could

be used to infer what activities are being/have been performed. Medical scribes are

increasingly being used in medical HIPs to document the executing process [65] and

thus could capture the activities as they are being performed. Computer vision tech-

niques could also be utilized to recognize process events in a live video stream of

cameras installed in the environment where a process is taking place.

2.3 The Little-JIL Process Modeling Language

To create models that satisfy the criteria discussed in section 2.2.1 we chose the

Little-JIL process modeling language [27], because it has the capabilities to create

such models. Little-JIL’s rich semantics allow creating realistic models of complex

HIPs. Little-JIL supports modeling of process activities, complex control flow (such as

exception handling and concurrency), specification of process performers responsible

for the various activities and of the artifacts used or produced during these activities.

Little-JIL’s semantics are formally defined, allowing for Little-JIL process models

to be automatically interpreted and analyzed by the various online analyzers in the

PIE in Figure 2.1. Little-JIL’s compact visual, diagrammatic representation supports

scalability of process models, allowing us to capture large and complex HIPs. Little-

JIL also has a hyperlinked textual representation, the Little-JIL narrative, that is

automatically kept synchronized with the diagrammatic notation. The availability

of these two representations facilitates communication with domain experts during

process elicitation and validation of the resulting models.

16

A Little-JIL process model consists of three main specifications—a resource spec-

ification, an artifact specification, and a coordination specification. The resource

specification defines the process performers (called agents) and resources (human

and non-human) needed to perform process activities. The artifact specification de-

fines the products of the process activities. The coordination specification brings

these two together by defining which agents, using which resources, perform which

activities on which artifacts at which times. The main building blocks of a Little-JIL

process model are the steps. A step corresponds to an activity performed by a human

or non-human agent. A Little-JIL process model is a hierarchical decomposition of

steps where each step can be decomposed into substeps to an arbitrary level of detail.

We first describe the Little-JIL diagrammatic representation and also introduce

some of Little-JIL’s semantics. Section 2.3.2 describes the Little-JIL narrative repre-

sentation.

2.3.1 The Little-JIL Diagrammatic Representation

Figure 2.2 illustrates the diagrammatic representation of a Little-JIL step. A step

in Little-JIL’s diagrammatic notation is iconically represented by a black bar. Right

above the black bar is the the step name, which is the name of the process activity the

step represents. A step can be decomposed into substeps, Figure 2.2 shows one such

substep (we also refer to the decomposed step as the parent step). The sequencing

badge of a step determines the order in which substeps need to be completed and how

many of them need to be completed, so that the step is considered completed. There

are four sequencing badges in Little-JIL. A sequential badge (represented by an arrow

pointing to the right) means that all substeps need to be completed in left-to-right

order for the step to be considered completed. A parallel badge (represented by an

equal sign) means that all substeps need to be completed, but they can be done in

any order, including in parallel. A try badge (represented by an arrow crossing an

17

X) means that substeps should be tried in left-to-right order until one of them is

successfully completed. At that point, the parent step is considered completed. A

choice badge (represented by a horizontal line segment crossing a circle) means that

any substep can be chosen to be performed. If that substep is successfully completed,

the parent step is considered completed; otherwise one of the remaining substeps can

be chosen to be performed next, until one is successfully completed.

In Little-JIL, it can be specified how many times a step should be performed.

This is done via the cardinality symbol. The plus symbol in Figure 2.2 means that

the Substep should be performed one or more times. Little-JIL allows for specifying

an arbitrary cardinality, including upper and lower bounds.

Steps in Little-JIL can throw exceptions to represent abnormal situations in a

process execution. When a step throws an exception, that exception propagates up

the step tree until a matching exception handler is found. At that point, the exception

handler is executed. For example, if the Substep in Figure 2.2 throws an exception

and the Handlerstep is a matching handler for that exception, the Handlerstep will

be executed next. Exception handlers are regular steps and, thus, they can be further

decomposed to any desired level of detail. Exception handlers are attached to the X

badge on the left side of the parent step bar.

After an exception handler is completed, the continuation badge connecting the

handlers to its parent step determines where in the process model control is returned.

There are four continuation badges in Little-JIL. A continue badge (represented by

an arrow pointing to the right) means that control should return at the step after the

step that threw the exception (what that step is depends on the sequencing badge

of the parent step). A rethrow badge (represented by an arrow pointing upwards)

means that the exception should be re-thrown and matching handlers searched up

the step tree. A restart badge means that the parent step of the one that threw the

18

Figure 2.2: Little-JIL Step (figure adapted from [29])

exception should be restarted. A complete badge means that the parent step of the

one that threw the exception is considered completed.

A Little-JIL step can also have pre- and postrequisites, which are specified via

the pre- and post requisite badges (represented by triangles pointing downwards and

upwards respectively). Prerequisites are conditions that need to be true or other steps

that need to be performed before the step is allowed to start execution. Postrequsites

are conditions that need to be true or other steps that need to be performed after a

step has finished execution.

The circle on top of a step’s black bar represents the step’s interface. The step’s

interface is the place where the agent responsible for executing the step, the resources

utilized by the step, the artifacts produced by the step, and potential exceptions that

can be thrown by the step are specified.

2.3.1.1 Example Little-JIL Process Model

Figure 2.3 shows a Little-JIL process model of a simplified blood transfusion

process. This process is decomposed into six substeps: obtain patient’s blood type,

order blood from blood bank, prepare blood, pick up blood from blood bank, perform

bedside checks, and infuse blood. These six substeps need to be performed in left-to-

19

Figure 2.3: Little-JIL model of a simplified blood transfusion process.

right order, indicated by the sequencing badge (right arrow) of the parent step blood

transfusion process. Some of these six substeps are further decomposed (e.g., obtain

patient’s blood type), whereas others are not, i.e., they are leaf steps (e.g., order blood

from blood bank).

Obtain patient’s blood type is a try step (indicated by the try sequencing badge on

the left part of the step bar), which means that to perform that step, the nurse needs

to first contact the lab for the patient’s blood type, and if the blood type is unknown,

the nurse needs to test the patient’s blood type. The possibility that the blood type

might be unknown is represented by specifying that the step contact lab for patient’s

blood type can throw the exception BloodTypeUnknown. If this exception is thrown,

it is propagated up the step tree and the matching exception handler (attached to

the exception handling badge of the step obtain patient’s blood type) is executed next.

This exception handler is a simple handler, meaning that it just specifies where control

flows after the exception is thrown. It has the continue continuation badge, which

means that the step to be performed next is test patient’s blood type.

20

Once the nurse has obtained the patient’s blood type, the nurse needs to order

the blood from the blood bank. At that point, the blood bank can prepare the

blood1. Once the blood has been prepared, the nurse needs to pick it up and then

perform the bedside checks on the patient. These checks consist of verifying the

patient’s identity and checking the blood product information. The step check blood

product information is a parallel step (indicated by the equal sign step badge), which

represents the fact that its substeps check expiration date and check product info

matches patient info can be performed in any order2. Finally, after the nurse has

performed the bedside checks, the blood can be infused into the patient.

2.3.2 The Little-JIL Narrative Representation

The Little-JIL narrative representation is a textual, hyper-linked, description of

the process model. In addition to a natural-language description of the process model,

this textual representation includes a table of contents and an index of process steps.

The Little-JIL narrative is generated by the Little-JIL Narrator. The Narrator takes

as input a Little-JIL process model, a set of templates of English phrases that cor-

respond to the different semantic features of the process modeling language, and

customization rules, and weaves together the narrative representation.

Figure 2.4 shows the narrative corresponding to part of the Little-JIL model of

the simplified blood transfusion process in Figure 2.3. The narrative consists of two

main parts: a table of contents on the left and the descriptive part on the right.

The table of contents lists the names of the steps from the process model and uses

1The note under the step prepare blood indicates that the agent for that step is the blood bank.
All other steps in this process model are performed by the nurse. To reduce visual clutter on the
diagram, we elide the agent specification for these steps.

2Different problems could arise while performing the substeps of check blood product (e.g., the
nurse might find that the blood has expired). Thus, the substeps should throw various exceptions
to represent these possible problems. These exceptions and their corresponding handlers are elided
from Figure 2.3 to reduce visual clutter and because they are not essential for this discussion.

21

the same icons used in the diagrammatic representation to represent the step kinds

(sequential, parallel, choice, try step). The parent/child relationship from the Little-

JIL process model tree is captured by the indentation in the table of contents. For

example, the steps at one level of indentation under blood transfusion process, namely

obtain patient’s blood type, order blood from blood bank, prepare blood, and so on, are

the substeps of blood transfusion process. Each step in the table of contents is also a

hyperlink and clicking on it will bring up a more detailed description of that step in

the descriptive part of the narrative.

The descriptive part of the narrative (the right part of Figure 2.4) contains a

section for each step in the process model. This step section consists of several

subsections that present various attributes of the given step, such as name, pre/post

requisites, substep sequencing information, exceptions, and required resources. For

instance, the step section for obtain patient’s blood type contains subsections about

the step’s outputs, the resources needed to perform the step, the step’s substeps and

the order in which they have to be executed. The step section for contact lab for

patient’s blood type contains similar information and also the exception that the step

throws and how that exception is handled.

Unlike the diagrammatic representation of the process model in Figure 2.3 where

familiarity with the notation semantics is assumed, the descriptive part of the narra-

tive representation provides sentences to explain the process. For example, the step

section for obtain patient’s blood type in Figure 2.4 explains what it means for the

step to be a try step, namely that its first substep needs to be tried first, and if it

fails, the second substep should be tried and so on.

The descriptive part of the narrative also uses hyperlinks to facilitate navigation.

When the substep test patient’s blood type (in the step section for obtain patient’s

blood type) is clicked, for example, its step section will be displayed and the user

will see the detailed information associated with that step. Another facility to help

22

Figure 2.4: The narrative corresponding to the Little-JIL process model in Figure 2.3.

with navigation is an alphabetized index of step names (shown in the top right of

Figure 2.4), where each step is represented as a hyperlink that can be clicked to display

the description for that step. The index can be opened at any time by clicking on

Index of step names on the top of the main part of the narrative and closed when

not needed.

The narrative uses the same icons as the diagrammatic representation of the pro-

cess model. Although these icons are not necessary to understand the narrative view,

they might be helpful for users who would like to work with both views at the same

time. They also provide some visual grouping of sentences based on the icon the sen-

tences are associated with. The meaning of the icons can be seen in a legend (shown

to the left of the index of step names in Figure 2.4), which can be opened and closed

the same way as the index of step names.

23

Figure 2.5: Architecture of the Little-JIL Narrator.

2.3.2.1 Design of Little-JIL Narrator

Figure 2.5 shows the high-level architecture of the Narrator. The Little-JIL Pro-

cess Model, the Phrasing Templates, and the Customization Rules are used by the

Narration Weaver to produce the Narrative Content, which contains just the content

and the structure without any formatting of the natural-language document to be

generated. The Formatting Weaver then combines the Narrative Content together

with the Formatting Templates to produce the final Generated Narrative.

2.3.2.1.1 Phrasing Templates. The Phrasing Templates are parameterized, natural-

language phrases that correspond to the different semantic features of the Little-JIL

process language (e.g., what it means for a step to be sequential), where the parame-

ters represent information that is specific to a given process model. Table 2.1 shows

three example phrasing templates. The first phrasing template is used with sequen-

tial process steps to generate a sentence explaining the order of execution of their

substeps. This template was used to generate the sentence in Figure 2.4 explaining

the order in which the substeps of blood transfusion process should be performed.

The second phrasing template in Table 2.1 is used to generate a sentence that

explains what it means for a step to be a try step. For instance, applying this

phrasing template to the step obtain patient’s blood type (in Figure 2.3) results in the

sentence To “obtain patient’s blood type”, the following should be tried, in the listed

24

To [stepName], the following need to be done in the listed order [substepsList].
To [stepName], the following should be tried, in the listed order, until one
succeeds [substepsList].
Successful completion of the [activity] [step name] should yield the
[parameter name].

Table 2.1: Example phrasing templates.

order, until one succeeds: “contact lab for patient’s blood type” or “test patient’s blood

type”. This exact sentence can be seen in the step section for obtain patient’s blood

type in Figure 2.4.

The third phrasing template in Figure 2.1 is used to generate a sentence explaining

what it means for a step to have an output parameter. For instance, applying this

phrasing template to the step obtain patient’s blood type, which outputs the patient’s

blood type and screen, results in the sentence Successful completion of the step “obtain

patient’s blood type” should yield the blood type and screen.

2.3.2.1.2 Customization Rules. The Customization Rules in the Narrator ar-

chitecture in Figure 2.5 represent a set of user preferences to customize the content

and the structure of the generated natural-language narrative. The Narrator supports

the use of synonyms. For example, different words can be used to refer to a process

activity. The parameter [activity] in the third phrasing template in Figure 2.1 is a

placeholder for such a synonym. The word “step” was used in place of [activity] when

this phrasing template was instantiated to describe the output parameter of the step

obtain patient’s blood type in Figure 2.4.

Another kind of customization supported by the Little-JIL Narrator deals with

the ability to hide or show certain kinds of process information. For example, the user

can select to hide or show sentences that present information about the resources in a

process model. Before the narrative shown in Figure 2.4 was generated, the option to

show resources was selected. Thus, resource information, such as the human agents

25

responsible for executing the process steps, is included in the narrative. The user

can choose to hide or show this information or information about other aspects of

the process, such as parameters and exceptions. The Narrator also provides the

flexibility to choose what kinds of process steps to associate certain information with.

For example, the user can choose to show resource information only for leaf steps

but not intermediate steps. This is sometimes useful as intermediate steps in Little-

JIL are often used for coordination purposes, whereas the actual work performed by

agents is modeled by leaf steps.

The Little-JIL Narrator also provides facilities to customize the sentence structure

of the generated narrative. For instance, the user can define when the substeps of

a step should be enumerated as a comma-separated phrase or when they should be

shown as a list.

2.3.2.1.3 Formatting Templates. The Narrative Content artifact produced by

the Narration Weaver (as shown in Figure 2.5) contains the raw content of the gen-

erated narrative, but does not have any formatting information. It is the job of the

Formatting Templates to define the presentation style of the generated narrative.

This design essentially follows the well-established recommendations from the web

application domain to separate content from presentation.

For Figure 2.4, for example, the Formatting Templates were responsible for defin-

ing text font, text color, text size, text style (e.g., bold vs. non-bold), spacing infor-

mation and background color for the table of contents, the main part of the narrative,

the index and the legend. The Formatting Templates were also responsible for asso-

ciating images (e.g, arrow, filled circle, check mark, etc.) with the different sections

of the narrative and for the visualization (indentation and vertical lines that help

keeping track of the hierarchical decomposition) of the table of contents. The set of

Formatting Templates used by the Formatting Weaver in this example resulted in an

HTML-based generated narrative. A different set of Formatting Templates could be

26

used to produce a plain text (not hyperlinked) narrative or a narrative in some other

document format.

The Phrasing Templates, the Customization Rules, and the Narrative Content

artifacts are currently XML documents following a schema we defined. The Narra-

tion Weaver is a Java system. The formatting templates are expressed as XSLT [7]

templates and the Formatting Weaver is therefore an XSLT processor.

27

CHAPTER 3

PROCESS ELICITATION AND MODELING

It is difficult to create process models for online process guidance that satisfy the

requirements discussed in section 2.2.1. One reason for this difficulty is that it is

time-consuming and challenging to elicit accurate and sufficiently complete process

information from process stakeholders. A single stakeholder often does not know

how the entire process works, or should work, necessitating elicitation of the process

from several stakeholders. Different stakeholders, however, often have different under-

standing of the process, use different terminology, and could even provide conflicting

information. Furthermore, for large and complex HIPs, it is often impractical for all

stakeholders to take part in the elicitation. Thus, processes are often elicited from a

subset of all process performers, which makes difficult capturing process nuances that

depend on personal style and preferences.

It is also difficult to formally represent an elicited process, so that the resulting

model is precise enough to support automated online process guidance and yet rich

enough to support process performers in various scenarios and circumstances. Many

process modeling notations lack the semantics to express complex process behavior,

such as exception handling and concurrent execution. Some notations that do have

such semantics have awkward syntax, increasing the probability making an error while

creating the process model. Regardless of what process modeling notation is used,

intricate process details, such as resumption semantics after exception handling or

synchronization in the presence of concurrency, are difficult to capture correctly.

28

To address the process elicitation challenges, we investigated several process elic-

itation methods and evaluated their effectiveness in terms of their ability to reveal

several kinds of important process information. Section 3.1 describes this investiga-

tion. To address some of the challenges in representing elicited process information

via a process model that satisfies the desiderata from section 2.2.1, we took several

steps:

• For our online process guidance approach, we used the Little-JIL process mod-

eling language [27], whose rich semantics allow for capturing complex real-world

processes. Little-JIL’s explicit support of exception handling and concurrency

and its diagrammatic notation facilitated accurately modeling complex process

behaviors.

• We identified common ways in which people handle exceptions in processes and

codified these ways into a catalog of exception handling patterns to facilitate

modeling of exceptional behaviors.

• To facilitate the understanding of process models, we developed a natural lan-

guage process representation that can be automatically generated from a formal

process model. We conducted a user study to compare this natural language

representation with the existing Little-JIL diagrammatic representation.

• We also employed formal analysis techniques to investigate their ability to val-

idate process models.

Our experience with process modeling is described in Section 3.2.

3.1 Process Elicitation

The process elicitation methods we studied fall under the general approach of

task analysis [44, 81]. The goal of task analysis is to describe the manual and men-

tal activities involved in accomplishing a task. We focused on observations of and

29

interviews with process performers, which are common task elicitation methods for

evaluating how performers complete a certain task. In particular, we investigated the

ability of these methods to reveal specific kinds of process information—process steps

that occur on the normal process flow; exceptional situations that might arise during

the performance of a process; and process performers’ responses to such exceptional

situations. The following section describes the case study on which we applied these

methods, the methods themselves, and our observations about these methods.

3.1.1 Case Study

To evaluate the elicitation methods discussed above, we used them to elicit a part

of a critical medical process and then compared them in terms of their ability to elicit

certain process information. The kinds of process information that we focused on

were steps on the normal process flow (i.e., activities that are performed on process

executions when no problems arise), exceptional situations (i.e., problems that might

arise during a process execution), and recognition of and responses to exceptional

situations. We based our decision to elicit these kinds of process information on

frameworks for understanding and eliciting processes from other high-risk domains

[103,133,134,137].

3.1.1.1 Elicited Process

We elicited the chemotherapy treatment plan review process performed by a Prac-

tice Registered Nurse (RN)1 as a critical part of a larger process for outpatient breast

cancer chemotherapy administration at the D’Amour Center for Cancer Care in West-

ern Massachusetts. We chose the RNs’ treatment plan review process because it is

1The term “Practice RN” is specific to the D’Amour Center for Cancer Care. It refers to RNs
responsible for verification of chemotherapy treatment plan and orders and who participate in the
preparation for chemotherapy administration. The RNs who are primarily in charge of the actual
chemotherapy administration are called “Clinic RNs” in this cancer center.

30

a safety-critical process whose complexity makes it an appropriate benchmark for

evaluating different process elicitation methods.

Chemotherapy treatment plans differ by cancer type, the stage or extent of the

disease, the goal of therapy, and a patient’s tolerance for therapy with specific agents.

Therapeutic options may change rapidly as new research findings are released, thus

requiring ongoing diligence and review to ensure that a chemotherapy treatment plan

is appropriate for the patient and is safely executed by the team of care providers

[11,61]. During the treatment plan review process, RNs perform essential coordinating

functions with physicians (to ensure the treatment plan is accurate), schedulers (to

ensure chemotherapy appointments on the treatment plan are scheduled correctly),

and Clinic Registered Nurses (to ensure chemotherapy medications are administered

as directed in the treatment plan). The RNs also use several data sources when

reviewing treatment plans (e.g. clinical notes, electronic medical records (EMRs),

the paper chart, careset2 information, reference books, and online resources).

3.1.1.2 Elicitation Methods

We used five elicitation methods to detail the process by which RNs review treat-

ment plans. We used unstructured interviews, direct observations, and three types

of semi-structured interviews to elicit normal flow steps, exceptional situations, and

RNs’ recognition of and responses to exceptional situations . We obtained protocol

approval from the Cancer Center Clinical Research Review Committee and from the

Institutional Review Boards of the University of Massachusetts and Baystate Medical

Center; we obtained informed consent from all participants.

3.1.1.2.1 Unstructured Interviews. Over the course of six months, we con-

ducted six unstructured interviews with a senior RN experienced in reviewing treat-

2A careset is a standardized treatment (based on best practices) for a given diagnosis.

31

ment plans. These unstructured interviews were open and conversational in nature.

These interviews were iterative in that we elicited information about the treatment

plan review process, created a precise and detailed natural language description of the

process, and then presented that description to the RN for further refinement. In par-

allel, we created a formal and detailed model of the treatment plan review process in

the Little-JIL process modeling language [27] (Little-JIL is presented in section 2.3).

We performed several iterations of the unstructured interviews—guided by the se-

mantic features of Little-JIL3—until the RN expressed satisfaction that the natural

language description of the process accurately represented the treatment plan review

process as performed at the Cancer Center. These unstructured interviews occurred

in parallel with interview sessions with other clinicians involved in the chemotherapy

process, as one of our goals was to create a process model for the full outpatient

breast cancer chemotherapy preparation and administration process.

3.1.1.2.2 Direct Observations. After completing the unstructured interviews

with the senior RN, we observed three other experienced RNs conduct two treatment

plan reviews each. We stopped collecting data after six observations because research

using qualitative data collection approaches suggests that prominent themes tend to

emerge after six data collection points [64]. Additionally, during our observations,

we observed the same normal flow steps and exceptional situations across multiple

sessions—a sign of data saturation. Our goal in conducting these observations was to

improve our understanding of the process captured during the unstructured interviews

by observing the process as it happened in the real world. Because cognitive tasks are

often difficult or impossible to observe, the observed RNs used a think-aloud protocol

[44] to verbally describe their cognitive tasks (such as verifying that information

3Little-JIL’s explicit support for exception handling, for example, prompted us to ask about
information related to exceptional situations that might arise during the performance of the process
and what the response(s) should be. Little-JIL’s semantics are discussed in detail in section 2.3.

32

Figure 3.1: Sample sequence of observed steps

on two artifacts matched) as they completed the process. Two researchers were

present for each observation and, using the audio recordings from the sessions, they

reconciled the differences in the observation notes after all observations were complete.

Figure 3.1 shows a sample sequence of observed steps. Throughout this chapter, we

refer to such a sequence of process steps as a process trace.

3.1.1.2.3 Semi-structured interviews. We conducted three kinds of semi-struc-

tured interviews with each of the three observed RNs. In the semi-structured inter-

views, we asked each RN the same questions in the same order, but asked clarifying

questions as needed. As often occurs in qualitative research, the interview materials

for the semi-structured interviews were guided by the findings from the unstructured

interviews, as these two methods complement one another [24]. We conducted the

semi-structured interviews after the observations to avoid affecting the process by

which the RNs completed their treatment plan reviews. As in the observations, two

researchers were present for each interview and, using the audio recordings from the

33

Figure 3.2: Sample open-ended scenarios.

sessions, they reconciled the differences in the interview notes after all interviews were

completed.

3.1.1.2.3.1 Open-ended prompts. In the first kind of the semi-structured

interviews, we constructed fifteen plausible scenarios from the process model cre-

ated during the unstructured interviews, where each scenario represented one par-

tial process trace. These scenarios were open-ended: we asked the RNs how they

would continue the treatment plan review process given the scenario. Some scenarios

prompted the RNs with only normal flow steps, while others included steps performed

in response to exceptional situations as well. Seven sample scenarios are shown in

Figure 3.2.

3.1.1.2.3.2 Complete process traces. In the second kind of the semi-struc-

tured interviews, we presented each of the RNs with three complete treatment plan

review process traces in free-text form, based on the process model created during the

unstructured interviews. The first process trace represented a normal flow process

execution; the second and third process traces included exceptional situations and

possible responses to those exceptional situations. The third process trace is shown

34

in Figure 3.3. We asked each RN whether each process trace was feasible and, if not,

what steps should be added, removed, or reordered.

3.1.1.2.3.3 Full process model. In the third part of the semi-structured in-

terviews, we presented each RN with a free-text representation of the full process

model created during the unstructured interviews. This full process model included

the normal process flow, all exceptional situations and all possible responses to ex-

ceptional situations defined during the unstructured interviews. We asked each RN

whether the full process model captured the process accurately and, if not, what steps

should be added, removed, or reordered.

The fifteen open-ended prompts, the three complete process traces, and the full

process model used in the semi-structured interviews are included in Appendix A.

3.1.1.3 Results

Figure 3.4 shows the results for all the elicitation methods based on the number of

new normal flow steps, exceptional situations, and responses to exceptional situations

(hereafter referred to as events) that were identified via each method. We elicited

35 unique normal flow process steps, 16 unique exceptional situations, and 31 unique

steps as part of the RNs’ responses to exceptional situations, or 82 total unique events.

We identified 52 of the 82 (63%) events through the unstructured interviews, 22 new

events through the observations (15 solely elicited during the observations), 7 new

events through the semi-structured interviews using open-ended prompts (5 solely

elicited using this method), and 1 new event through the semi-structured interviews

using the full process description.

Figures 3.5, 3.6, and 3.7, show by which method we elicited each event. The

integers on the horizontal axis represent events, where the names of the corresponding

events are provided in Tables 3.1, 3.2, and 3.3 respectively. The elicitation methods

are listed on the vertical axis in Figures 3.5, 3.6, and 3.7, and each pair (event E,

35

Figure 3.3: Sample process trace.

Figure 3.4: Number of new events identified using each elicitation method.

36

Figure 3.5: Normal flow process steps identified and refuted via each method.

Figure 3.6: Exceptional situations identified and refuted via each method.

elicitation method M) is interpreted as the contribution of method M for eliciting

event E. In section 3.1.1.4, we elaborate on how we reconciled differences in the RNs’

responses.

Events shown in black in Figures 3.5, 3.6, and 3.7 signify that the event was

explicitly identified using a specific elicitation method. An event was explicitly iden-

tified if it was mentioned during the unstructured interviews, occurred during the

observations, or was mentioned during the semi-structured interviews.

37

Figure 3.7: Responses to exceptional situations identified and refuted via each method.

Table 3.1: Normal flow process steps.

38

Table 3.2: Exceptional situations.

Table 3.3: Responses to exceptional situations.

39

Events in gray signify that the event was implicitly identified using the elicitation

method. An event was implicitly identified if it was not mentioned during the inter-

views, but was implied via another step that was mentioned during the interviews.

For example, the step “retrieve patient chart from medical records” was not explic-

itly mentioned during the unstructured interviews, but the step “enter height/weight

from patient chart into EMR” implied that the RN retrieved the patient chart from

the patient’s medical record. Some normal flow steps and exceptional situations iden-

tified during the unstructured interviews were used in the questions we asked during

the semi-structured interviews and so were considered to be implicitly identified in

the semi-structured interviews, an exception being when the RN explicitly objected

to the step or situation. During the open-ended prompt interviews, we prompted the

RNs with exceptional situations specifically, so all exceptional situations identified

using this method were implicitly identified.

Events shown with an “X” were refuted using an elicitation method. An event

was refuted if during the semi-structured interviews, at least one RN stated that a

given event elicited during the unstructured interviews is not performed at any time

during the treatment plan review process. For example, the step “confirm labs have

been done” was explicitly identified as a normal flow process step during the unstruc-

tured interviews by the senior RN, but was refuted by some of the RNs during the

semi-structured interviews. In the next section, we discuss instances where the RNs

disagreed with one another and instances where an RN’s responses were inconsistent

across interviews and observations.

Events shown in white were not addressed via the corresponding elicitation method,

meaning that they were not observed or were not mentioned during one of the inter-

views. For example, the exceptional situation “Old orders still in the EMR” was not

addressed during the unstructured interviews but was explicitly identified during the

observations. Having old orders in the EMR is clinically significant as a Clinic Reg-

40

istered Nurse may administer the wrong dose of a given medication or give another

medication instead of or in addition to the intended medication.

3.1.1.4 Discussion

Unstructured interviews with an expert RN were a useful way to glean detailed

knowledge about the structure of the process, providing information about 51 events.

The unstructured interviews were labor-intensive as they included several iterations

with the RN over the course of 6 months. Between the meetings, we had to carefully

examine our meeting notes and recordings to extract all relevant information and to

create a precise model of the treatment plan review process.

The observation and semi-structured interview data showed that even after the

significant amount of time and effort spent during the unstructured interviews, the

resulting elicited process information was still problematic. We discovered that the

process model created from the unstructured interviews omitted certain events and

included events later refuted by the RNs. Observations were a useful way to discover

additional normal flow steps (10), exceptional situations (5), and responses to excep-

tional situations (7). Semi-structured interviews with prompts were a useful means

to find additional normal flow steps that RNs perform (3) as well as steps that RNs

perform in response to exceptional situations (5). Finally, semi-structured interviews

using full process traces and the full process model did not provide information about

new events, but were an essential means for the RNs to refute events defined via other

elicitation methods.

The white spaces in Figures 3.5, 3.6, and 3.7 signify that a specific elicitation

method did not identify a specific event. An elicitation method may not address a

specific event or series of events for a variety of reasons. As the unstructured in-

terviews occurred first, they did not address any events identified for the first time

during the observations and semi-structured interviews. The observations only ad-

41

dressed events that explicitly occurred during the observations; situations that did not

arise could not be observed. The open-ended prompt portion of the semi-structured

interviews focused on sub-sections of the process, so was not designed to cover the

entire process. Similarly, the complete process traces presented to the RNs during

the semi-structured interviews were only a sample of all possible traces. Finally, the

full process model presented to the RNs during the semi-structured interviews, while

exhaustive, did not include additional events elicited via the observations or via the

semi-structured interviews using open-ended prompts and full process traces.

Some of the inconsistencies between the unstructured interviews and the other

methods likely occurred because we initially interviewed only one RN, but we subse-

quently observed and conducted semi-structured interviews with three RNs. A single

RN may conduct the process differently than the other RNs, or may not mention

process events that seem obvious to her. Yet, holding time-intensive interviews with

more than one individual may not yield enough additional information to justify the

extra time requirements for the interviewers and participants.

In a few instances concerning the confirmation or refutation of a particular event,

individual RNs were inconsistent within their individual responses across the observa-

tions and interviews or the RNs disagreed with one another about a particular event.

For instance, step 24 on the normal flow (confirm labs have been done) was refuted by

RN 1 and RN 2, but RN 3 noted that this step is done if the medications are platinum-

based. In step 4 of the responses to exceptional situations (enter height/weight from

the patient chart into the EMR), RN 1 and RN 2 stated that this step either did not

happen or that the original individual who entered the height/weight in the paper

chart—typically the medical assistant—would transcribe the information into the

EMR. In general, we noted a step as refuted if at least one RN refuted the step,

knowing that the refuted steps may require further scrutiny.

42

Based on our findings, it appears to be important to use multiple methods when

understanding how individuals complete a complex process, such as chemotherapy

treatment plan review; each subsequent process elicitation method provided new in-

formation about the process. Observations added 22 new events not discovered via

the unstructured interviews. Semi-structured interviews using open-ended prompts

added 7 new events not discovered via the unstructured interviews or observations,

but did not add new exceptional situations. Semi-structured interviews using the full

process model produced only 1 new event. Finally, the semi-structured interviews

using the full process traces and full process model identified 6 refuted events.

3.1.1.5 Threats to Validity

There are several limitations inherent in this study, which can guide the design

of future studies aiming to identify how best to elicit complex processes. We pur-

posefully ordered our elicitation methods to glean the most new information from

each subsequent elicitation method and to minimize the impact of a given elicitation

method on the results of subsequent elicitation methods. We first conducted unstruc-

tured interviews so as not to prompt the senior RN with any preconceived notions

about the process. With the second group of RNs, we conducted observations fol-

lowed by semi-structured interviews to not influence how the RNs acted during the

observations. Additionally, we developed the semi-structured interview guides solely

from the unstructured interview findings, and these were not updated based on the

observational data or between interviews. We did so to allow the RNs freedom to

refute events without being biased as to what behaviors other RNs exhibited during

the observations. These methods could easily be reordered, or the materials could be

continuously updated based on findings to-date. Each of these changes may produce

different or additional events, or may omit steps discovered using our order.

43

In this study, we focused on the viability of using the proposed elicitation methods

to identify normal flow process steps, exceptional situations, and the identification

of and responses to the exceptional situations. We did not explicitly analyze how

well each elicitation method helped to understand the order in which events happen

during the process. This study addressed one type of worker completing a single type

of process. Additionally, one RN participated in the unstructured interviews, and

three different RNs all completed the observations and semi-structured interviews.

The relative strengths and weaknesses of the elicitation methods may differ when

applied to a different process, depending on whether all RNs participate in all of the

elicitation methods, or different RNs participate in one elicitation method each.

3.1.1.6 Summary

Through this work, we describe our application of five process elicitation methods

to the complex, safety-critical chemotherapy treatment plan review process: unstruc-

tured interviews, observations, and three types of semi-structured interviews. We

also detail our quantitative and qualitative evaluation of the relative strengths and

weaknesses of these elicitation methods. By using the aforementioned five process

elicitation methods, we identified a large number of events (82) involved in the pro-

cess by which RNs review chemotherapy treatment plans. These elicitation methods

allowed us to determine how many and which process components were associated

with the normal process flow (35), which were exceptional situations (16), and which

were identification of and responses to exceptional situations (31). Each of the five

elicitation methods contributed uniquely to our understanding of the process by which

RNs review chemotherapy treatment plans. The research detailed in this section in-

dicates that to create accurate descriptions of complex processes, a combination of

elicitation methods should be used.

44

3.2 Process Modeling

This section describes work related facilitating process modeling and also discusses

our overall experience with creating models of complex HIPs. The section starts

with a discussion of exception handling patterns that we identified and codified to

facilitate the modeling of exceptional situations. Then follows a study that compares

two process model representations—a diagrammatic and a textual representation—in

terms of their ability to facilitate process understanding. The section concludes with

a brief discussion of our experience with creating process models with Little-JIL and

with validating these models.

3.2.1 Exception Handling Patterns

Exceptional situations occur in any but the most trivial HIPs. People or other

resources might be unavailable when they are needed, the activities of process per-

formers might be incorrect or inappropriate, or deadlines might not be met. In each

of these cases, additional action is required beyond the nominal process execution.

We refer to the recognition that a problem has occurred during a process execution

as an exception and to the non-nominal activities that are taken to address such a

problem as exception handling. In some cases, exceptions might not be particularly

unusual or surprising, such as when trying to book a flight the day before a trip and

finding out that there are no seats on a flight or hotel rooms available.

In real-world HIPs, the number and complexity of such exceptional situations is

typically large and the need to assure that they are appropriately handled may be

quite important. Furthermore, exceptional situations are often the source of errors

[88], perhaps due to the complexity of such situations and/or the lack of appropriate

training, as training often focuses mostly on nominal process executions. To enable

the process guidance approaches discussed in this work to reduce the number of

errors or catch errors before harm is done in exceptional situations, a process model

45

needs to specify in detail the recommended exception handling behaviors of real-

world HIPs. Modeling exception handling, however, is difficult. A process modeler

needs to consider the exceptions that might arise and during which activities they

might arise, how these exceptions should be handled, and how the process should

proceed afterwards. Because of the difficulty of modeling exceptional situations, such

situations are often modeled incorrectly or even not modeled at all.

To facilitate the modeling of exceptional situations that could arise in HIPs, we

propose to use a set of exception handling patterns [86]. We believe that exception

handling patterns can improve the writing of models of HIPs the same way object-

oriented design patterns have improved the writing of object-oriented software. Ex-

ception handling patterns can raise the level of abstraction at which process modelers

think about and discuss exceptional situations. If such patterns are appropriately

codified, process modelers can reuse modeling idioms when they recognize that a

HIPs exhibits a certain exception handling pattern, thus avoiding to need to model

the exceptional behavior from first principles, which could be a time-consuming and

error-prone task.

The exception handling patterns we identified are based on significant experience

in modeling HIPs from a variety of domains, including health care [36, 109], labor-

management dispute resolution [38], software development [28], and elections [99,110,

120]. Members of our research team have defined processes in each of these domains,

and some of the processes have been non-trivial in size, consisting of hundreds of

steps. In the course of defining these processes, our team members have recognized

strong similarities among the ways in which the domain experts have described how

they deal with exceptional situations. This led to careful attempts to characterize

and categorize these different approaches to exception handling.

We grouped the exception handling patterns we identified into three high-level

categories:

46

• Trying other alternatives. This category contains patterns for presenting alter-

native means to perform the same activity. Thus, for example, if one hotel has

no vacancies, we will try other hotels, or stay at the home of a friend or relative.

• Inserting behavior. This category contains patterns for inserting additional

activities after an exceptional situation has been recognized and before returning

to the normative process. Thus, for example, if the passenger’s name is wrong

on the itinerary after purchasing a plane ticket, then the passenger may need

to perform the extra work of contacting the airline to fix that problem.

• Canceling behavior. This category contains patterns for aborting the current

processing when the process is not allowed to continue after an exceptional

situation has been recognized. If there is no date and time at which all key

people can be present at a meeting, then the whole trip might be cancelled,

possibly requiring the cancellation of various travel arrangements.

Following the style introduced in the classic book on design patterns for object-

oriented software [60], for each pattern, we provide:

• Name—the name of the pattern

• Intent—what recurring behavior the pattern captures

• Applicability—in what situations the pattern should be used

• Structure—the general structure of the pattern expressed in two different pro-

cess definition formalisms

• Participants—the roles played by different parts of the process that contribute

to the pattern

• Example—an example from a real-world process that exhibits the pattern

47

• Variations—small changes that can be made in the application of a pattern to

get slightly different effects

In the remainder of this section, we present one pattern from each of the above

three categories and use the Little-JIL process modeling language [27] to describe

pattern structure and example usage. The rest of the exception handling patterns

are described in detail in [86], where also examples of each pattern are shown in two

other process modeling notations—UML Activity Diagrams [97] and BPMN [96]—

and Little-JIL, UML Activity Diagrams, and BPMN are compared in terms of their

ability to support the identified exception handling patterns.

After presenting one pattern from each of the three categories, we describe an

evaluation where we studied the occurrence of all the patterns from [86] in two process

models from the healthcare and the online dispute resolution domains.

3.2.1.1 Selected Patterns

3.2.1.1.1 Ordered Alternatives

Pattern Name: Ordered Alternatives

Intent: There are multiple ways to accomplish a task and there is a fixed order

in which the alternatives should be tried. Provision must be made for the possibility

that no alternatives will be successful.

Applicability: This pattern is applicable when there is a preferred order among

the alternatives that should be tried in order to execute a task.

Structure: The Little-JIL diagram in Figure 3.8 depicts the structure of the

Ordered Alternatives pattern. As discussed in section 2.3, processes are represented

in Little-JIL as hierarchical decompositions of steps. Here, we see the step named

Task with three substeps, each defining one way to complete the task. The icon at the

left end of the black step bar of Task indicates that this is a Try step. The semantics

of the Little-JIL Try step match the definition of this pattern quite closely, as the

48

Task

Normative Step Alternative 1 Alternative 2

Exception

throws Exception throws Exception throws Exception

throws NoMoreAlternatives

Figure 3.8: Structure of the Ordered Alternatives Pattern in Little-JIL.

Try step semantics specify that the step’s children represent alternatives that are to

be tried in order from left to right. If an alternative succeeds, the parent step is

completed and no more alternatives are offered. If execution of an alternative throws

an exception, the exception is handled by the handler attached to the Try step by the

rightmost edge. The icon associated with the exception handler indicates that the

Try step should continue with the next alternative. This continues until one of the

alternative substeps succeeds. If none of the substeps succeeds, a special exception,

called NoMoreAlternatives, is thrown. This exception must be handled by an ancestor

of the Try step. Indicating that all alternatives have failed is part of the pattern, but

the handling of that exception must take place in the context in which the pattern is

used rather than as part of the pattern.

Participants: This pattern has three types of participants: the menu, the alter-

natives, and the continuer. The menu is the portion of the process that organizes

the alternatives into an order. The alternatives are the various ways in which the

desired task can be carried out. While the figures show three alternatives, there is

no limit to the number of alternatives that could be used in this pattern. Each alter-

native, except possibly the last, must have the potential to throw an exception that

causes consideration of the next alternative. The continuer is the exception handler

that indicates the process should continue to the next alternative.

49

Make Reservations

Reserve HotelReserve Flight

Reserve Southwest Use Travelocity

throws NoFlightAvailable throws NoFlightAvailable

NoFlightAvailable

Book Conference Hotel Book Other Hotel

throws HotelFull throws HotelFull

HotelFull

Figure 3.9: Using the Ordered and Unordered Alternative Patterns when Planning a Trip.

Sample Code and Usage: Figure 3.9 shows the use of the Ordered Alternatives

pattern in a Litlte-JIL process to plan travel to attend a conference. This pattern

can be seen in the Reserve hotel step. Here, the process requires first trying to get a

reservation at the conference hotel before considering other hotels. If the conference

hotel is full, the HotelFull exception is thrown. This is handled by causing the Book

other hotel step to be attempted next.

Variations: One variation of this pattern uses boolean conditions after an alter-

native is tried, rather than expecting the alternative to throw an exception. If the

condition evaluates to true, it means the alternative has succeeded. If the condition

evaluates to false it means the alternative failed and the process should proceed to

the next alternative. The tradeoff here is essentially the same as we see in procedu-

ral programming when deciding whether a function should return a status value to

indicate whether it has succeeded or it should throw an exception.

If the conditions under which an alternative will succeed are known in advance, the

alternatives are better represented with a construct similar to an if-else construct in a

traditional programming language. This allows the orders to be specified while avoid-

ing the need for exception handling. This is the Exclusive Choice pattern presented

as a control flow pattern by van der Aalst, et al. [125].

50

3.2.1.1.2 Deferred Fixing

Pattern Name: Deferred Fixing

Intent: When an exceptional situation arises during a process execution, action

must be taken to record that situation and to possibly address the situation either

partially or temporarily, because addressing the situation fully is either not immedi-

ately possible or not necessary. Later in the process, an additional action needs to be

taken to complete the recovery from the condition that caused the occurrence of the

exceptional situation.

Applicability: This pattern is useful in preventing the process from coming to

a halt even though the potentially disruptive effects of an unusual, yet predictable,

situation cannot be addressed completely. The pattern is useful in those cases where

addressing the problem definitively is possible only when more time or information

becomes available, where the need for further work to complete the handling of the

exception can be captured in the state of the process, and where temporary mea-

sures can enable the process to proceed to the point where such additional time and

information have become available.

Structure: Figure 3.10 is a Little-JIL depiction of the structure of this pattern. In

Figure 3.10 an exception is thrown during the execution of Substep 1. The exception

is handled by Do temporary fix, an exception handler that makes some expedient

temporary adjustment, records the need for a more complete fix, and then returns to

the nominal process flow, as indicated by the continue handler. However, at some

later stage of the process, an additional step (or collection of steps), represented by the

step Some step, must be executed to either complete the handling of the exceptional

condition or check that the exceptional condition has been already handled. This

check is made by an edge predicate, denoted by the parenthetical condition, prior

to executing Some step. The edge predicate checks the process state to determine if

the fix is required. Note that the dotted line notation is not Little-JIL syntax, but is

51

Process

Parent Some step

Substep 1 Substep 2 Do temporary �x

Exception

throws Exception

(�x.required)?

Figure 3.10: The Structure of the Deferred Fixing Pattern in Little-JIL.

intended just to note that an arbitrary amount of work may occur between when the

temporary fix takes place and the fix is completed.

Participants: There are three participants in the Deferred Fixing pattern: the

detector of the anomaly, the logger/patcher, and the fixer. The anomaly detector

is the portion of the process that recognizes that a problem has arisen and throws

an exception to represent the recognition of that problem. The logger/patcher is

responsible for recording the anomaly and possibly doing a temporary fix. In the

Deferred Fixing pattern, the logger/patcher is the exception handler. The fixer is

the later step that examines the log and completes the handling of the exceptional

situation. Notice that the fixer does not use an exception handling mechanism, yet

is a key participant in resolving the anomaly.

Sample Code and Usage: Figure 3.11 shows an example of the deferred fixing

pattern. Here a traveler has successfully reserved a flight but the website that is used

to select a seat is unavailable. Reserve flight throws the SeatSelectionWebsiteIsDown

exception. This is handled by making a note to select seats later and then continuing

with reserving the hotel and car. At some later point in the process, a test is made

to see if the seats have been selected. If not, the Select plane seats step is executed.

3.2.1.1.3 Compensate

Pattern Name: Compensate

52

Plan a Trip

Select dates and destination Make the reservations

Write note to select seats laterReserve �ight Reserve hotel Reserve car

SeatSelectionWebsiteIsDown

throws SeatSelectionWebsiteIsDown

Select plane seats

(seatsSelected)?

Figure 3.11: Using the Deferred Fixing Pattern to Complete Seat Selection at a Later Time.

Intent: When canceling an activity, it is often necessary to undo work that has

already been completed. This pattern addresses the need to determine what work

must be undone and to then execute the compensating action(s) needed to undo that

work.

Applicability: This pattern is particularly useful in contexts in which it is not

possible to know at the outset that a task will succeed, or the results produced by

the task will prove ultimately to be acceptable. Because of this, the process must

incorporate mechanisms for undoing the part(s) of the task that did complete and/or

replacing the outputs that proved to be unacceptable. In some cases, the state of

the process after compensation may appear the same as if the failed activities never

occurred. Often, however, there will be a record that the activity occurred but the

compensating activity nullifies the effect of the original activity, as when a credit card

credit compensates for a credit card charge.

Structure: Figure 3.12 shows the structure of the Compensate pattern in Little-

JIL. Step 1 and Step 2 can be done in any order, including in parallel. If Step

2 fails but Step 1 completes, an exception handler is used to compensate for the

effects of Step 1. Notice that as part of the exception handling, it needs to explicitly

checked if Step 1 has been completed. This is done because Little-JIL does not have a

53

Process

Step 1 Step 2 Cancel

Compensate step 1

(step1completed)?throws Exception

Exception

Figure 3.12: The Structure of the Compensate Pattern in Little-JIL.

Plan a Trip

Select dates and destination Make the reservations

Cancel tripReserve �ight Reserve hotel Reserve car

Notify traveller

FlightNotAvailable

throws FlightNotAvailable

Cancel hotel

(hotel.reserved)?
Cancel car

(car.reserved)?

Figure 3.13: Using the Compensate Pattern to Cancel a Trip.

compensation construct, unlike BPMN, for example. This makes the Compensation

pattern somewhat awkward to express in Little-JIL.

Participants: The participants in this pattern are the Actor, the Canceler and

the Compensator. The Actor performs some task that the Canceler later wants to

undo. The undo is accomplished by the Compensator, which understands the work

that was completed and how to undo it.

Sample Code and Usage: Figure 3.13 show a variation of the Little-JIL process

of planning a trip. In this example, the reservations can be made in any order. If

we fail to get a flight, we cancel the trip. This will require canceling hotel and car

reservations if they have already been made.

Variations: Compensation can be combined with other patterns. In particular,

any time that an activity fails with an exception, it may be necessary to undo some

54

work that has been completed. Thus, compensation could form part of the exception

handling used in any of the preceding patterns.

Another variation is that it is not always necessary to include in the process

the tests to determine what work needs to be compensated, even in the absence of

a compensation construct like BPMN has. This is the case if the location of the

exception handler is sufficient to determine what work has been completed, as would

be the case if the compensation was in the context of sequential tasks rather than

concurrent tasks.

3.2.1.2 Evaluation of Exception Handling Patterns

To evaluate the catalogue of exception handling patterns, we examined several

existing models of real-world processes. The main question in which we were inter-

ested was how well the exceptional situations encountered in the real world can be

specified by the exception handling patterns from the catalogue. Associated goals

were to determine the relative frequencies of the occurrence of the various patterns in

the models of the real world processes and to gain some intuition about the amount

of effort entailed in representing the handling of exceptions in real-world processes.

Here, we present results obtained from studying Little-JIL models of two processes

from different domains—the medical and the digital government domains.

The chemotherapy process model. The Little-JIL model of a chemotherapy

process was the largest model of a real-world process that we had access to. At the

time this evaluating was performed, the chemotherapy process model consisted of 467

Little-JIL steps, 283 of which were Little-JIL leaf steps. The model captures the pro-

cess of preparation for and administration of outpatient breast cancer chemotherapy.

In a period of approximately a year, computer scientists elicited the process from

medical professionals working at the a cancer center in Western Massachusetts and

created a Little-JIL model of that process. Since many medical errors that lead to

55

Figure 3.14: The number of occurrences of each pattern in the chemotherapy and ODR process
models.

patient safety hazards occur in atypical, exceptional situations, a great deal of effort

was spent in identifying such exceptional situations and specifying them precisely in

Little-JIL. In particular, 207 of all 467 steps (or about 44%) were used to represent

these exceptional situations and their handling in this process model.

The resulting process model captured 59 exceptional situations specifying precisely

the types of the exceptions, where in the process they occurred, the actions undertaken

to remedy the exceptions and the resumption of nominal flow after handling the

exception. We studied these 59 exceptional situations and tried to determine if and

how they related to the patterns in the catalogue. Figure 3.14 presents the results

of this investigation. Most of the exceptional situations in the chemotherapy process

that were captured by the Little-JIL model seemed to be instances of the patterns in

the catalogue. The two exceptional situations that did not easily match any pattern

in the catalogue actually seemed to combine elements of both the inserting and the

canceling behaviors.

The ODR process model. The second process model that we examined was

a Little-JIL model of an online dispute resolution (ODR) process that was used to

drive a web-based application for dispute resolution. The model captures a dispute

56

resolution process used by the National Mediation Board (NMB) to resolve conflicts

between two different parties. It was elicited from a mediator working for the NMB.

At the time this evaluation was performed, the ODR process model consisted of

209 Little-JIL steps (69 leaf steps), 108 of which (or about 52%) were part of the

exceptional flow.

The ODR Little-JIL process model specified 19 exceptional situations. Figure 3.14

shows how many of them are instances of each of the different exception handling

patterns in the catalogue.

Observations. Almost all of the exception handling situations specified in the

process models we studied (76 out of the 78, or 97.5%) were instances of the patterns

from the catalogue. This was encouraging, suggesting that the identified patterns

cover a significant portion of the exceptional situations that arise in real-world HIPs,

and underscoring the potential value for enunciating a set of patterns that could

be useful in guiding the efforts of people who are attempting to define real-world

processes. We hope that defining these process patterns might cause process definers

to be more aware of the presence of exceptions, and more comfortable in incorporating

them into process models.

The variation in levels of usage of the different patterns was also interesting. We

note that the Immediate Fixing pattern occurred most frequently in these examples,

with 36 uses. This seems to be reasonable as agents are perhaps most inclined to try

to remedy exceptional situations immediately in the real world. We are less certain of

the reasons for the relative scarcity of instances of some of the other patterns. It seems

indeed possible that Unordered Alternatives are less prevalent because people innately

have preconceived preferences among alternatives, but this is not immediately obvious

to us. It is far less obvious why there are so few instances of the Compensation pattern,

as this seems to be a relatively common reaction to exceptional circumstances. Here

we are concerned that the relative scarcity of this pattern in our examples might

57

be due to possible bias in the examples themselves. We note that these examples

were written in Little-JIL, a notation in which compensation is relatively difficult

to specify, suggesting that the facilities of a language might have a noticeable effect

upon the process features that are incorporated into a process model. Furthermore,

in Little-JIL, it is possible to represent the idea of compensation by not explicitly

fleshing out the compensation activities in the Little-JIL step tree, but relying on the

agent(s) responsible for the handling of an exception to perform the corresponding

compensation. If a compensation is expressed this way in a process model, then the

compensate structure in Figure 3.12 will not be observed in the corresponding process

model.

Another interesting observation concerns the nesting of exception handling pat-

terns within each other. We said that an instance of pattern A is nested within

an instance of pattern B, if the instance of A occurs entirely “inside” the exception

handler of the instance of B. 10 of the pattern instances (7 from the chemotherapy

and 3 from the ODR case studies) were nested within other patterns. All the nested

patterns, except one, were instances of the Ordered Alternatives pattern. This seems

to suggest that when people are dealing with an exceptional situation, they often

have a prioritized list of tasks to try to fix the problem.

Threats to validity. The results presented above may have been affected by

unintentional personal bias in two ways. First, the decision about whether a certain

behavior is exceptional or not and consequently whether this behavior was considered

in the evaluation of the patterns, may have been biased. The chemotherapy process

model was created by the author of this thesis and deciding which behaviors were

part of the nominal flow and which behaviors were part of the exceptional flow may

have been influenced by the author’s awareness of the exception handling patterns

work. To attempt to reduce possible bias in categorization of the exceptions in the

chemotherapy process, we also consulted the medical professionals from whom the

58

process was elicited. We asked which behaviors they considered nominal and which

behaviors they considered exceptional. Their responses did confirm our selection and

categorization of the exceptions in that process.

The second process model (the ODR process model) was created by a process

model developer who was unaware of the exception handling patterns when creating

the model. Thus, the frequency and distribution of instances of the process patterns

should not have been influenced by the work on the patterns. This may have affected

the distribution of types of exception patterns that were observed, however.

The second source of bias is associated with classifying the exceptional behaviors

from the process models as instances of the patterns from the catalogue. The precise

structure of the patterns was an extremely useful guide in making these classification

decisions, but on a small number of occasions personal judgment was involved in

deciding which pattern a particular exceptional situation used.

Evaluation of processes in other notations. We made an attempt to examine

process models in UML and BPMN. The process models that we had access to,

however, were focused primarily on nominal flow and lacked thorough specification of

exceptional flow. For example, we looked at the model-based Simulation, Verification

& Testing (SV&T) process repository created as a part of the MODELPLEX project

[4]. The processes were formalized in SPEM2.0 [98] using the EPF Tool [3]. The

SV&T process repository contained 47 process diagrams, some of which were at a

higher level of abstraction and others were lower level decompositions of the higher

level diagrams. There were only a few occasions on which some process behavior

modeled with decision nodes could be thought of as exceptional behavior. There

seemed to be six instances of the Rework, one instance of Reject, and one instance

of Immediate Fixing in the processes in this repository. The process models were,

however, specified at a very high level (to make them general) and omitted detail

that could allow us to claim with certainty that specified behavior is an instance of

59

a given exception handling pattern. We were unable to gain access to any sizable

BPMN process repository for this work. Thus, our evaluation focused on two Little-

JIL process models that specified a significant amount of exceptional behaviors and

at the same time were detailed and precise enough to allow us to categorize these

exceptional behaviors as instances of the presented patterns.

3.2.2 Comparing the Little-JIL Diagrammatic and Narrative Represen-

tations

To develop accurate models of a human-intensive process, it is usually important

that various stakeholders carefully review, evaluate, correct, and propose improve-

ments to these models. Some stakeholders (e.g., domain experts, process performers,

user interface designers, even some programmers), however, might not be experts in

process modeling. Consequently, such stakeholders may not have the skills to un-

derstand the process models except at a relatively superficial level. We have seen

this problem in our own work on modeling medical procedures. Medical professionals

may be able to point out glaring misrepresentations, but are not sufficiently versed in

modeling to fully understand the implications, for example, of complex control flow

such as the handling of exceptional situations and concurrent execution.

To help stakeholders with diverse backgrounds understand complex processes, we

have used two different process representations in our work—the Little-JIL visual,

diagrammatic representation (described in section 2.3.1 and the Little-JIL textual,

narrative representation (described in section 2.3.2). Each of these representations,

however, has its own strengths and weaknesses to facilitate process understanding.

Knowing these strengths and weaknesses could help process modelers what notation

to use when interacting with other process stakeholders, depending on the kinds of

process information to be discussed and the background of the stakeholders who

will participate in such discussions. To explore the strengths and weaknesses of the

60

Little-JIL diagrammatic and narrative representations in terms of facilitating process

understanding, we conducted a user study.

3.2.2.1 User Study

3.2.2.1.1 Study Design. We created two process models and for each we created

the corresponding Little-JIL diagrammatic and narrative representations. The two

process models were of equal complexity, in terms of their size and the language

features they employed. In fact, one model was created by essentially “reshuffling”

the steps in the other one. We used colors for step names (e.g., perform blue) as

opposed to names of real activities (e.g., drive to work) to not bias the results based

on a subject’s experience with a domain. The process model representations are

included in Appendix B.2.

For each process model, we also created a questionnaire consisting of nine ques-

tions testing the understanding of the process. The two questionnaires were of equal

complexity since they were almost identical except for variations in step names. We

also included a final questionnaire with five open-ended questions asking for general

feedback about the two process representations. The questionnaires are shown in

Appendix B.2.

Half of the subjects were presented with the narrative representation of process

model 1 followed by the diagrammatic representation of process model 2; the other

half of the subjects were presented with the diagrammatic representation of process

model 1 followed by the narrative representation of process model 2. We presented

the two process representations in different orders to the two groups of subjects, be-

cause even though the understanding of process model 1 should not have helped with

understanding process model 2, the subjects might have improved their understand-

ing of fundamental process concepts (such as various kinds of control flow, exception

handling and artifact use). The subjects were assigned randomly to one of these two

61

groups. Subjects were provided with a 10-15 minutes training in their first process

model representations (the narrative or the diagrammatic representation). Then, the

subjects were presented with a process model in that representation and with the

questionnaire for that process model. After the subjects answered the questionnaire

(there was no time limit imposed), that subjects were provided with a 10-15 min-

utes training in the other process model representation. Then, the subjects were

presented with the process model for their second process represented in their second

representation and with the questionnaire for that process model. After the subjects

answered the second questionnaire (again, no time limit was imposed), the subjects

were presented with the final questionnaire. Subjects were given laptops and they

viewed the narrative representation in a browser to be able to follow the hyperlinks

in the narrative.

The training materials used in the study are shown in Appendix B.1. During

a training period, the subjects were given an example process model in either the

diagrammatic or the narrative process representation and that representation was

explained to them using the corresponding training script. The training script was

given to the study subjects at the beginning of each training and they were allowed to

keep that script and use it as a reference during the entire study session. The subjects

were allowed and encouraged to ask any questions that they might have during the

training. After the training, the subjects were allowed to ask only about clarifications

on the questionnaires.

We performed the above study with two sets of subjects—computer science stu-

dents and nursing students. We decided to study two different sets to see whether

the subject’s background is related to their ability to understand a process via each

of the two representations. 16 computer science students participated in the study:

6 graduate and 10 undergraduate. 17 undergraduate nursing students participated

in the study. We tried to recruit as many subjects as possible and to keep the two

62

a b

Figure 3.15: Study results—computer science students.

a b

Figure 3.16: Study results—nursing students.

sets of subjects of similar sizes. Students who had experience with the Little-JIL

diagrammatic or narrative representations were not allowed to participate.

3.2.2.1.2 Results and Discussion. On average, computer science students an-

swered correctly a higher number of questions—6.3 vs. 5.5 (out of 84)—when they

were using the diagrams (Figure 3.15a), and this difference is statistically significant

(p = 0.037)5. The same tendency was observed when examining the two groups of

4There were 9 questions in the original questionnaire, but question 4 was excluded from our
analysis because it covered the difficult concept of non-deterministic choice and the training we
provided might not have been sufficient to answer this question. It was answered correctly by only
one person when they were using the narrative.

5A paired t-test was used to determine statistical significance.

63

computer science students separately (Figure 3.15a), where the difference for group

2 was statistically significant (p = 0.047) too. Graduate computer science students

answered more questions correctly than undergraduate computer science students for

both of the notations (on average, graduate students answered 6.5 and 5.8 questions

correctly using the diagrams and the narrative respectively, whereas undergraduates

answered on average 6.2 and 5.3 questions correctly), but, again, the same tendency

was observed—a higher number of questions was answered correctly when the di-

agrams were used (the differences were not statistically significant). These results

might suggest that computer science students are more comfortable with the di-

agrammatic notation, perhaps because of their experience with programming and

familiarity with control flow and data flow constructs.

Nursing students, on the other hand, answered a higher number of questions—

5.47 vs. 4.82 (out of 8)—when they were using the narrative representation (Fig-

ure 3.16a), but this difference is not statistically significant (p = 0.238). The same

tendency was observed when examining the two groups of nursing students separately

(Figure 3.16a), but again the difference was not statistically significant. The nursing

students who saw their first process model in the narrative representation (students in

group 2) answered a higher number of questions on their first model than the nursing

students who saw their first process model in the diagrammatic notation (students in

group 1)—5.75 vs. 4.33—and the statistical significance of that difference (p = 0.0666)

was between the significance levels of p = 0.05 and p = 0.10. This might suggest that

if only one process representation is to be used, then nursing students (or perhaps even

professionals without computer science background, in general) should be presented

with a narrative process representation.

6A paired t-test could not be used in this case, so a t-test that assumes the two samples have
unequal variance had to be used.

64

Figures 3.15b and 3.16b show the break down of correct answers per question for

computer science and nursing students respectively7. Computer science students gave

statistically significantly more correct answers for questions 2 and 7 when using the

diagrammatic representation than when using the narrative representation (p = 0.002

and p = 0.004 respectively). Computer science students gave more correct answers

to question 9 using the narrative representation than when using the diagrammatic

representation (p = 0.083, between the significance levels of p = 0.05 and p = 0.10).

The results for questions 2, 7, and 9 were similar when computer science undergrad-

uate and graduate students were considered separately, but only the difference in

correct answers for question 2 was statistically significant for both undergraduates

and graduates and the difference for question 7 for undergraduates.

Nursing students gave statistically significantly more correct answers to question 7

using the diagrammatic representation (p = 0.009) and statistically significantly more

correct answers to question 8 using the narrative representation (p = 0.014). Nursing

students also gave more correct answers to question 3 using the narrative than when

using the diagrammatic representation (p = 0.083, between the significance levels of

p = 0.05 and p = 0.10).

Question 2 was about prerequisites, 3 about parallel execution and 7 about the

number of times a step can be executed. Questions 8 and 9 were about artifacts. The

above results suggest that the two process representations complement each other

in terms of facilitating the understanding of different kinds of process information

and also that each representation makes different kinds of process information more

accessible to people with different backgrounds.

7Question 4 was excluded from our analysis because it covered the difficult concept of non-
deterministic choice and the training we provided might not have been sufficient to answer this
question. It was answered correctly by only one person when they were using the narrative.

65

10 computer science students (37.5%) found the diagrams easier to understand,

the other 6 preferred the narrative. 8 nursing students found the diagrams easier

to understand, the other 9 preferred the narrative. The answers to the open-ended,

qualitative questions also indicated that the order of step execution and artifacts were

easier to understand with the narrative, whereas the number of times a step needs to

be performed was easier to understand with the diagrams. Several people mentioned

that the narrative was easier to understand at first with little training.

3.2.2.1.3 Threats to validity. The sample size was small and subjects from only

two areas of expertise participated in the study. Thus, the results may not apply to

stakeholders with different backgrounds and education, or even stakeholders with

backgrounds and education similar to the ones of the study subjects.

The quality of the training might have affected the results of the study. For in-

stance, if more time is spent on training, the quality of the training and the resulting

understanding of the corresponding process representation could be improved. Sub-

jects could be given multiple training examples or the subjects could be event be

tested and the test results discussed to reaffirm the understanding of the process

representations and correct any misunderstandings.

On the other hand, during the study, the subjects received focused training about

how each of the two process representations expressed process information that the

subsequent questionnaires asked about. In a real-world situation, the amount of time

between training and a subsequent use of one of the process representations might be

much longer and the training wold most likely be more general.

Due to time constraints on the study sessions, the two process models used were

relatively small (19 steps each). Realistic process models, especially models of com-

plex human-intensive processes, however, could be larger. It is not clear whether the

results obtained in the study will apply to such larger models.

66

3.2.3 Overall Experience with Process Modeling

3.2.3.1 Experience with Using Little-JIL

The well-defined formal semantics of Little-JIL and its diagrammatic and narrative

notations have been useful in our work on eliciting and modeling processes from

several domains, and in particular processes from the highly-complex medical domain.

During process elicitation, Little-JIL’s rich semantic features, such as support for

exception handling and concurrency, encouraged process modelers to ask questions

about corresponding aspects of processes [14]. This helped elucidate process aspects

that are important but are often overlooked during open, unstructured interviews. In

fact, many of the difficulties we encountered in creating accurate process models arose

because initial versions based on open, unstructured interviews were too restrictive

or did not adequately capture all important process behaviors. Initial versions did

not contain adequate description of exception handling as domain experts often focus

on normal process executions during elicitation interviews. Prompted by Little-JIL’s

support for exception handling, process modelers asked questions such as “What do

you do if this check fails?” and “How do you resume the normal execution of the

process (if at all), after you have dealt with the failure of the check?”.

When asked to describe a complex procedure, domain experts often presented a

long list of activities, saying that the activities have to be done in sequence. It was

often the case, however, that sequential ordering was too restrictive and subsequent

questions by process modelers (stimulated by Little-JIL’s support for various activity

orderings) revealed that some subsets of activities can be done in any order, including

in parallel (especially when multiple process performers were involved). In other

cases, domain experts would say that some activities could be done in any order

(including in parallel), but subsequent questions (stimulated by Little-JIL’s support

for synchronization) indicated that there is some partial order between the activities.

67

The need for precision in Little-JIL process models also proved to be helpful dur-

ing process elicitation and modeling. Having to precisely decompose a step into its

substeps, for example, led to identifying problems with existing terminology and clari-

fying this terminology, resulting in better understanding of the process, more accurate

models, and even improvements to the process. In a chemotherapy case study, we

found that terms like“verify”, “confirm”, “check”, “match”, and “consistent” were

used loosely [36]. The same word used at different times or in different contexts often

had different meanings, even when used by the same individual. Since many of the

critical errors that may occur in a process like chemotherapy may arise from neglect-

ing small details (like not checking to see if the patient height or weight measurements

on which the chemotherapy dose is based are sufficiently up-to-date while “verifying”

the doses), we had to develop a precise naming template and a glossary that dis-

ambiguated the use of different terms. This led to not only a better understanding

of the process and more accurate process models, but also the clarified terminology

was rapidly adopted for clinical use and contributed to improved accuracy of staff

communication [93].

The diagrammatic notation of Little-JIL also seemed useful for process elicitation

and modeling. The medical professionals who participated in several medical process

case studies [14] did not have a computer science background and were initially leery

about having to learn a process modeling language. Having a diagrammatic represen-

tation that is relatively easy to understand seemed to help considerably. The ability

of that notation to also provide restricted views of the process model also seemed to

help, since low-level details about the process model, such as the artifacts that needed

to be provided to process steps, could be suppressed until the higher-level views of

the major steps and their decompositions were agreed upon.

Having a natural language representation of the process was also helpful, since it

further lowered the technology hurdle for the medical professionals. The Little-JIL

68

narrative (described in more detail in section 2.3.2) is a hyperlinked natural language

representation of a process and it is automatically generated from a Little-JIL process

model. Unlike manually created natural language representation, which are often

inconsistent and ambiguous, the Little-JIL narrative uses carefully defined natural

language templates to consistently and precisely describe the process information

captured by the formal Little-JIL process model. Even some of the computer scientists

found it useful to read through the narrative to find inconsistencies or to convince

themselves that the model was accurate8. Real processes are large and complex,

however, so both visual and textual representations can quickly become ungainly,

suggesting the need to develop effective process model summarization technologies.

Process elicitation guided by developing in parallel a Little-JIL process model

has had positive impact on the actual elicited processes. The very act of trying to

precisely model a process often led to discovering process defects and to identifying

possible process improvements. Sometimes during elicitation, misunderstandings be-

tween process stakeholders arose. In one situation it was determined that an artifact

that was being created was not being used subsequently. In another situation, a dead-

lock that involved two different medical professionals was discovered while eliciting a

chemotherapy process. A nurse needed to obtain the height and weight of a patient

to be able to verify drug dosages and to subsequently sign the patient’s treatment

plan. There was a hospital rule, however, that an appointment scheduler must wait

for a signed treatment plan before scheduling a visit at which the patient’s height

and weight could be verified. Thus, having both the nurse and the scheduler follow

the rules creates a deadlock situation, which was actually being observed in clinical

practice. To break the deadlock, some nurses were signing an unverified treatment

plan so that the scheduler could schedule a visit at which height and weight could

8We describe a user study that compares the Little-JIL diagrammatic and narrative process
representations in section 3.2.2.

69

be verified. The signing of an unverified and potentially incorrect treatment plan is

dangerous, however, because it may mislead other medical professionals and perhaps

result in the administration of the wrong dosage. The discovery of this deadlock led

to a modification in the actual clinical process.

Little-JIL process models, being rich and precise, have also proved useful for train-

ing purposes. The senior oncology pharmacist who participated in the elicitation of a

chemotherapy process printed the natural language process description corresponding

to a Little-JIL process model and posted it as a training guide and reference for other

pharmacists working in the chemotherapy center [14]. After having participated in

the elicitation and modeling with Little-JIL of a blood transfusion process and becom-

ing more aware of different exceptional situations that might arise and inconsistent

use of terminology, a nursing professor modified the way she taught students how to

perform that process.

3.2.3.2 Process Model Validation

As previously discussed, creating process models could be difficult. To determine

how accurately a model represents what it models, a model is usually validated. Val-

idation, as defined by the U.S. Department of Defense, is “the process of determining

the degree to which a model is an accurate representation of the real-world from the

perspective of the intended uses of the model” [9]. Since in this work models are

used for online process guidance, we adapt this definition of validation to insist that

models be an accurate representation of the the set of process executions as agreed by

domain experts and process designers. We consider model accuracy to consist of two

components—model correctness and model completeness. A model is correct when

all the process executions it captures are correct with respect to a set of requirements.

A model is sufficiently complete when it does not omit any of the process executions

that should be part of that model as agreed by domain experts and process designers.

70

A process model is rarely accurate the first time it is created and it often takes

several iterations discussing the model (or the information it represents, if the domain

experts are not versed in the modeling notation) with domain experts to improve the

accuracy of that model. During such discussions, process modelers, and sometimes

even domain experts, obtain new knowledge about the process, meaning that there

is a fine line between process elicitation and process model validation. Thus, the

process elicitation techniques described in section 3.1 could be used for process model

validation. In fact, as discussed in section 3.1, a process model was created in parallel

while the unstructured interviews were performed to elicit the chemotherapy treat-

ment plan review process. The subsequent elicitation methods, namely structured

interviews and direct observations, revealed inaccuracies in the model and led to

modifications in that model. These inaccuracies correspond to the new process infor-

mation that was obtained via the application of these subsequent elicitation methods

and included omitted steps from the normal process flow specified by the model,

missing exceptional situations and the responses to these situations.

Another technique to validate process models is to apply static analyses ap-

proaches to such models. We have applied model checking [37], fault-tree analysis

[128], and failure mode and effects analysis [121] to several models of HIPs from differ-

ent domains to find defects and vulnerabilities in the modeled HIPs ([14,34,110,120]).

We have observed that before any problems can be found in the real-world HIPs, mul-

tiple inaccuracies in the models of these HIPs are uncovered via these static analysis

approaches. For example, we have found that important steps were missing from the

process models and that control flow among steps in these models was incorrectly

specified, especially control flow related to exceptional situations where various as-

pects need to be considered, such as how is an exception handled, what happens

to other potentially concurrently executing process activities while the exception is

being handled, and how the process resume nominal flow after the exception has

71

been handled. We have found such static analyses approaches to be very useful for

validating process models and we believe they should be used in conjunction with

more traditional model validation approaches such as inspections, observations, and

interviews.

72

CHAPTER 4

DEVIATION DETECTION AND EXPLANATION

4.1 Overview

The deviation detection and explanation approach presented in this chapter is a

component of the process improvement environment discussed in Chapter 2. Fig-

ure 4.1 shows the high-level architecture of the deviation detection and explanation

approach. As a process is being performed, the Process Execution Monitor captures

events associated with the performed steps and incrementally creates the sequence

of performed step events. We use the term step to refer to an activity of interest

performed by humans, software or hardware devices as part of a process. To sim-

plify the discussion, hereafter we shall refer to the sequence of step events associated

with the sequence of actual performed steps as the sequence of performed steps. We

make the simplifying assumption that the sequence of performed steps is accurate,

meaning that the sequence contains all the events in the appropriate order for all

steps of interest that were performed, and there are no “noise” events (events that do

not correspond to a performed step of interest). We briefly discuss several possible

approaches for monitoring an executing process in section 4.4, but the details of these

approaches are outside the scope of this work.

Every time the Deviation Detector receives a step event from the Process Execu-

tion Monitor, it checks whether the corresponding sequence of steps performed so far

is one of the recommended sequences as specified by the Process Model. If it is not, a

deviation is detected, where we define a deviation as a situation where the sequence

of performed steps is not a prefix of one of the recommended sequences as specified

73

Figure 4.1: Deviation detection and explanation approach.

by the Process Model. Upon deviation detection, process performers are warned that

a potential error might have occurred and the Deviation Explainer provides process

performers with information that could be useful for identifying potential errors and

for determining how to recover from such errors.

The deviation detection and explanation approach focuses on planning errors,

where a planning error is the use of a wrong plan to achieve an aim [82]. We use a

standard definition of plan, which is “a sequence of activities”, and adapt it to be a

“sequence of steps”, because in this work we use the term step to represent a process

activity. Process performers can use the wrong sequences of steps to achieve an aim

either because they choose a wrong sequence to achieve that aim or because they

choose a correct sequence, but as they carry out that sequence they perform (or do

not perform) a step, which causes the sequence of performed steps to not be one of

the possible correct sequences for achieving the aim. The deviation detection and

explanation approach targets the latter kind of planning errors. Thus, we assume

that process performers intend to perform a correct sequence of steps to achieve

an aim (we call that sequence the intended sequence of steps) and we restrict the

74

definition of planning error to “performing (or not performing) one or more steps,

which causes the sequence of performed steps to not be a prefix of the intended

sequence of steps”. Hereafter, we will use this meaning of planning error and we will

use the terms planning error and error interchangeably, unless explicitly indicated

otherwise. We also define the term first erroneous step as the first step in the sequence

of performed steps where the sequence of performed steps and the intended sequence

of steps differ from each other. In general, detecting a deviation does not necessarily

mean that process performers have made an error. If an intended sequence of steps

is not captured by a process model, because the process model is incomplete, then

if that sequence is performed, a deviation will be detected, but there would be no

error. In this work, we assume that the process model used for deviation detection

is complete and, thus, when a deviation is detected it means that an error has been

made. In practice, it is difficult to create complete process models, especially models

of complex HIPs, such as medical processes. We believe, however, that process models

could capture a significant portion of the recommended ways to perform a process to

the extent that such models could be useful for the deviation detection approach to

help catch errors before harm is done without at the same time generating too many

false positive deviation warnings due to the incompleteness of the model. Chapter 3

discusses approaches for eliciting processes and creating corresponding models.

It is also interesting to note that making an error during a process execution

does not necessarily mean that a deviation will be detected (immediately, or even

eventually). Even if we assume that the process model is correct (i.e., all the sequences

of steps it captures are recommended sequences to perform a process), it is still

possible for an error to occur without the Deviation Detector being able to detect a

deviation. Section 4.1.2.1 discusses this phenomenon in further detail. In this work,

we assume that the process model used for deviation detection is correct. In practice

it is difficult to create correct process models, but there are approaches for analyzing

75

process models with respect to a set of correctness properties with the goal of finding

and removing defects from the models. Model checking [37] is one such approach and

it is discussed in section 2.1.1.

In the rest of this section, we describe in more detail the components of the

deviation detection and explanation approach shown in Figure 4.1.

Process Model. As discussed in chapter 2.2, in our experience, to support on-

line guidance for complex HIPs, the process model needs to be written in a notation

with rich and well-defined semantics. Specifically, such a notation should provide

support for modeling human choice, exception handling, concurrency, and synchro-

nization. For our work, we have chosen the Little-JIL process modeling language [27],

because it satisfies these requirements (Little-JIL is presented in Chapter 3). Little-

JIL’s compact visual notation and the corresponding automatically-generated precise

natural language representation facilitate communication with domain experts and,

hence, the elicitation and validation of process models. The proposed deviation de-

tection and explanation approach, however, is independent of the process modeling

language; it can be used with any language that has well-defined semantics that are

also sufficiently rich to capture complex real-world processes.

To make the implementation of the deviation detection experimental framework

(described in section 4.2) independent of a particular process modeling language, we

used a low-level process model representation into which various high-level process

modeling languages can be translated. This translation and the resulting low-level

representation are explained in detail in Appendix C.

To keep the discussion at a higher level and to better illustrate some of the issues

related to deviation detection and explanation, in this chapter we chose to use a con-

ceptual, simplified process representation—an extended control flow graph (ECFG).

An ECFG process model consists of nodes and edges. Activity nodes (graphically

illustrated as rounded rectangles) represent steps from the real world process. Each

76

activity node is labeled with the name of the step it represents. There is a directed

edge from activity node A to activity node B, if the process step represented by

node A can immediately precede the process step represented by node B. An edge

can optionally have guards (shown as text in square brackets), which can specify the

conditions under which control can flow over that edge.

Fork and join nodes (graphically illustrated as black bars with the words “fork”

and “join” next to them respectively) are used to represent concurrent execution

and synchronization. The destination nodes of all edges leaving a fork node are the

beginning of node sequences whose corresponding step sequences from the real process

can be performed in parallel with each other. The source nodes of all edges going

to a join node are nodes whose corresponding process steps need to all be performed

before control can flow through the join node.

The nodes and the edges in an ECFG form a weakly connected directed graph.

Nodes that do not have any incoming edges are start nodes (i.e., control can start at

such nodes); nodes that do not have any outgoing edges are final nodes (i.e., control

ends at such nodes).

An ECFG representing a simplified blood transfusion process is shown in Fig-

ure 4.2. In that example, each activity node is also labeled with a single letter for

convenience in the discussion in section 4.5.

Deviation Detector. The Deviation Detector traverses the process model, start-

ing from every start “location” of that model1, to determine whether the sequence

of performed steps so far is a legal sequence of steps through the model. For effi-

ciency, this traversal is done incrementally, breadth-first, maintaining a frontier of

possible locations2 in the process model that could correspond to the last performed

1What “start location” means, depends on the kind of process model used. In the low-level
representation of a Little-JIL model that we use in our implementation, the start location is a node
in a graph.

2Again, what “location” means depends on the particular process model used.

77

step. When this frontier becomes empty, i.e., when there is no sequence of locations

through the process model that corresponds to the sequence of performed steps, a

deviation is detected.

Deviation Explainer. When a deviation is detected, the Deviation Explainer

compares the sequence of performed steps against sequences of steps from the process

model. Given the sequence of performed steps, it uses a similarity measure based on

string comparison techniques to identify sequences of steps from the process model

that are likely to have been intended by the process performers. The differences

between these likely intended sequences and the sequence of performed steps are then

interpreted to obtain information that could be used to explain the detected deviation.

The deviation explanation approach is discussed in more detail in section 4.5.

4.1.1 Example of Applying the Deviation Detection and Explanation Ap-

proach to a Medical Process

Figure 4.2 shows a model of a simplified blood transfusion process in the ECFG

notation. Figure 4.2 focuses on some of the steps performed by the nurse and, to re-

duce clutter, leaves out information that is not relevant to this discussion, such as the

tasks of others (e.g., blood bank, physician) as well as most of the exceptional situa-

tions that could arise (e.g., the patient does not speak the language or is unconscious).

According to this model, to carry out a physician’s order for blood transfusion, the

nurse needs to first contact the laboratory to check whether the patient’s blood type

is known. If the blood type is not known, the nurse needs to obtain a blood specimen

and send it to the blood bank for testing. Once the patient’s blood type is known

and the blood bank has prepared the blood product, the nurse can pick up the blood

from the blood bank.

After picking up the blood and before infusing it into the patient, the nurse needs

to first verify the patient’s identity and then verify the blood product to ensure that

78

Figure 4.2: Simplified blood transfusion process.

the correct blood product will be given to the correct patient. Verifying the patient’s

identity involves asking the patient for identification information, such as name and

date of birth, and making sure that this information matches the patient’s ID band

and the patient chart. Verifying the blood product involves checking its expiration

date and checking that the information on the product (patient name, date of birth,

and blood type) matches the same information on the patient ID band and in the

patient chart.

A common error reported in the medical literature, and one that can cause severe

harm to patients, is not fully following the procedure for verifying the patient’s iden-

tity [70]. A possible instance of this error is omitting the step verify patient’s identity

altogether. Consider the situation where in a busy emergency department patient A

is wearing the incorrect ID band—that of patient B. Perhaps a registration clerk had

to place ID bands on several patients and inadvertently switched the ID bands; or

there was a shift change and due to a miscommunication the new clerk placed the

ID band for patient B on patient A. Suppose that patient B is the one for whom a

blood transfusion was ordered. Since patient A is wearing patient B’s ID band, if the

nurse does not check the identity of patient A prior to infusing the blood, patient A

might receive the blood ordered for patient B. Note that the nurse might still have

successfully performed the blood product checks since they are done against the ID

band and not against the patient’s real identity.

79

Potential harm as a result of this error might be avoided if the nurse is warned

that the process is being performed incorrectly before the infusion is started. One way

to achieve this is by comparing the sequence of steps the nurse has performed against

the process model. A possible sequence of steps when the nurse forgets to verify

the patient’s identity is contact lab for patient’s blood type, pick up blood from blood

bank, check blood product expiration date, check blood product info matches patient

info, infuse blood. As soon as the nurse starts the step check blood product expiration

date, the sequence of steps is no longer a sequence allowed by the model specified in

Figure 4.23. Informing the nurse about such a deviation might help the nurse recover

from the error before harm is done (i.e., infusing blood into the wrong patient).

Depending on the level of expertise of the process performer and the complexity

of the error, just a warning that an error might have been committed might be

sufficient to identify the error and to recover from it. In the example above, it

might be fairly easy for an experienced nurse to determine what went wrong. In

more complicated situations, however, perhaps involving a less experienced process

performer or involving multiple process performers working concurrently and dealing

with exceptional cases, additional information might help determine what the errors

were and how to recover from them.

For instance, a hypothesis about the location(s) in the sequence of performed steps

where the error was committed could be presented. In the current example, the nurse

could be told that an error might have occurred when the third step in the sequence,

check blood product expiration date, was performed. In a more complex situation, the

actual error might have occurred earlier than when it was detected (an example is

3Note that checking the blood product expiration date before verifying the patient’s identity
might not be problematic by itself. The hospital might have designed the process the way it is
shown in Figure 4.2, however, based on experience that when the blood product checks are done
before verifying the patient’s identity, the verification of the patient’s identity is more likely to be
omitted, or for efficiency reasons.

80

Figure 4.3: An Example Extended Control Flow Graph.

discussed in section 4.1.2). Pointing the process performers to that earlier location

in the performed sequence of steps could provide them with the necessary context to

determine what the error is and how to recover from it.

4.1.2 Issues

There are several interesting issues related to the proposed deviation detection

approach. These issues are discussed next.

4.1.2.1 Delayed Deviation Detection and Potential Harm Due to Delay

It is sometimes possible that process performers make an error, but a deviation

cannot be immediately detected. For example, consider the example ECFG process

model in Figure 4.3. The two legal sequences of steps allowed by this process model

are abcdef and acdghf. Suppose that during a particular execution of the process

represented in Figure 4.3, the process performers intend to carry out the sequence

abcdef, but forgot to perform step b. In this situation, the first erroneous step is c since

it was performed after a instead of the omitted b. A deviation cannot be detected,

however, until e is performed (resulting in acde being the sequence of performed

steps), because acd is a legal sequence through the process model. Thus, there is a

deviation detection delay with respect to when an error is committed and we call this

situation delayed deviation detection.

Given that the intent of process performers is often unknown, there are situations,

like the one in the above example, when a deviation detector cannot determine which

branch(es) should be taken at a branch point during a particular process execution.

81

Such situations might arise in real HIPs when, for example, decisions need to be made

based on subjective, and sometimes error-prone, human judgement, perhaps under

uncertainty or in the absence of evidence-based guidelines. In some cases, additional

information could be collected in such situations to determine which branch should be

taken. For example, process performers could be asked to declare their intent at such

branch points. In other situations, however, collecting such additional information

may be impractical and, thus, we assume that there will be branch points at which a

deviation detector will not know which branch should be taken.

Such branch points can cause deviation detection delays. For instance, if at such

a branch point a human makes a commission error consisting of performing steps

from a non-intended branch and then performs the steps from the intended branch,

a deviation detector will not be able to detect the commission error until the human

performs the first step of the intended branch, or possibly until even later, if the two

branches have common steps. Similarly, if a process performer omits a step from the

beginning of the intended branch (as is the situation in the above example based on

the model in Figure 4.3), a delayed deviation detection could also arise.

To understand and characterize the issue of delayed deviation detection, it is useful

to have a way to measure a deviation detection delay. A deviation detection delay

could be measured in terms of real time, e.g., number of seconds between the moment

when the first erroneous step was performed and the moment when a deviation is

detected. As discussed in Chapter 1, however, real-time issues are outside the scope

of the deviation detection and explanation approach and, thus, we decided to not use

this kind of measurement of deviation detection delay. Instead, we are interested in

deviation detection delay in terms of the number of steps between the first erroneous

step in the sequence of performed steps and the step where the deviation is detected.

For instance, in the example based on the model in Figure 4.3 discussed above, the

82

deviation detection delay is 2 steps, given that the first erroneous step in the sequence

of performed steps acde is c, but a deviation is not detected until e is performed.

It is important to note that even though delayed deviation detection can arise in

real process executions, the existence of delayed deviation detection and the delay

itself cannot be determined without knowing the intent of process performers. Under

some assumptions about the errors that can occur during the execution of a process,

for example the number and kind of errors, it might be possible to determine what

the maximum delay might be upon the detection of a deviation. For instance, if

we assume that process performers can make at most one error per execution of the

process modeled in Figure 4.3 and this error is omission of a single step, then upon

detecting a deviation at the end of the sequence of performed steps acde, it can be

determined that the maximum delay is 2 steps. It cannot be determined, however,

whether the deviation detection delay is indeed 2 steps without knowing whether

process performers intended to perform the abcd. . . or the acdg. . . sequence of steps

through the process model.

The issue of delayed deviation detection leads to situations where the deviation

detection approach might not be able to detect deviations before harm is done as a

result of an error. In principle, deviation detection delay can be arbitrarily long (if the

two branches in Figure 4.3 had a longer sequence of identical substeps—in this case

this sequence is cd—the deviation detection delay could be even longer) and serious

harm could potentially occur before the deviation is detected. It is important to study

the issue of delayed deviation detection to understand to what extent it constitutes

an obstacle for the proposed deviation detection approach (e.g., how often delayed

deviation detection arises and what the severity of the consequences from the delay

is) and to also identify strategies for dealing with delayed deviation detection.

Some important research questions related to delayed deviation detection are:

• What are the characteristics of deviation detection delays in complex HIPs?

83

– How often might deviation detection delays occur in complex HIPs?

– How long could such deviation detection delays be?

– How critical/harmful could such deviation detection delays be?

– What are the causes for potential deviation detection delays?

• How can deviation detection delays be reduced or avoided?

– How can a process model be statically analyzed to determine potential

deviation detection delays?

– How can a process be changed to reduce the potential for deviation detec-

tion delays?

– What can be done during an execution of a process to avoid deviation

detection delays?

In this work, we focus on the first set of research questions. The second set is

discussed under future work.

4.1.2.2 Potential Harm When Deviations Are Immediately Detected

Even when deviations are immediately detected as the errors that cause them

are committed, harm could potentially still occur. Such a situation can arise when

an omission error is made before a potentially harmful step. For example, in the

simplified blood transfusion process shown in Figure 4.2, one of the checks that need

to be performed before infusing the blood is to ensure that the blood product has not

expired. The process model allows this check to occur immediately before infusing

the blood. If the nurse forgets to check whether the blood product has expired, the

deviation will be detected when the nurse starts the infusion. Even though there is no

deviation detection delay (based on the above definition of deviation detection delay),

harm could still occur as the patient might receive expired blood. This is an example

84

of a vulnerability in the process model or in the process itself (assuming the model

is accurate) with respect to the proposed deviation detection approach—a deviation

cannot be detected until a potentially harmful step is already started.

Another situation where harm could occur, even if the deviation is immediately

detected, is when the error is a commission of a harmful step (e.g., administer a

drug). In this case, a deviation cannot be detected before the harmful step is started

because the sequence of steps up to that point would be a legal sequence through the

process model.

In this work, we explore the following research questions related to the above issue:

• How often do situations where harm could occur, even when deviations are

immediately detected, arise in some complex HIPs?

• What can be done to reduce or avoid such situations?

4.1.2.3 Performance of the Deviation Detector

It is important that the Deviation Detector does not take too long to compute

whether a deviation has occurred after a new step is added to the sequence of per-

formed steps. Otherwise, if a deviation occurs, the warning about that deviation

might get issued after harm is already done as a result of the deviation.

Models of realistic HIPs and the corresponding search space that the Deviation

Detector needs to explore while traversing a process model could be of significant

size, possibly requiring more information to be stored at runtime than the available

computer memory allows.

We explore the following research questions related to the performance of the

Deviation Detector:

• What is the size and the complexity of HIPs that can be handled by the Devi-

ation Detector?

85

• What are the running time and the space requirements of the Deviation Detector

when applied to some realistic HIPs?

4.2 Deviation Detection Framework

To study the above issues, ideally, we would need (1) a realistic model of a HIP and

(2) a set of step sequences with errors that correspond to erroneous real executions

of the modeled HIP. We were able to create several realistic models of HIPs by using

the process elicitation and modeling techniques discussed in Chapter 3. We were not

able to obtain, however, step sequences that correspond to real process executions

with errors. Obtaining such sequences for HIPs is challenging as some important

process steps, such as cognitive activities (e.g., verifying the patient stated name

matches the name on the patient’s ID band), are difficult to automatically capture

and often require time-consuming, expensive, and potentially error-prone manual

observations of an executing process. Furthermore, obtaining real process executions

that contain errors might increase the number of executions that need to be observed

as it is unethical to encourage process performers to commit errors. The recognition

of potential errors in real process executions could be a challenging task on its own.

By interviewing domain experts and surveying domain literature, we identified

several plausible errors that could occur in HIPs and roughly where in a process

execution such errors might occur. We used this set of errors in our evaluation of

the deviation detection approach, but we did not deem this set to be comprehensive

enough by itself to serve as the basis for this evaluation.

To overcome the above obstacles in obtaining realistic process executions with

errors, we created a deviation detection experimental framework (shown in Figure 4.4)

that supports the generation of synthetic sequences of steps based on the model of a

HIP and the seeding of errors in such generated sequences. The characteristics of the

generated sequences and the number and kinds of seeded errors can be controlled,

86

Figure 4.4: Deviation detection experimental framework.

so that the previously discussed deviation detection issues can be studied in various

circumstances.

In this framework, a Sequence Generator takes as input the Process Model and

a set of Sequence Specifications and then produces a sequence of steps from the

Process Model that satisfies the given Sequence Specifications. The Process Model is

a low-level process model translated from a Little-JIL process model. The translation

procedure and the low-level model are described in Appendix C.

The Sequence Specifications are used to control the characteristics of a generated

sequence and include the minimum/maximum length of that sequence, whether the

sequence should be generated by a random walk through the process model or by a

non-random walk favoring or avoiding certain steps. For example, if the goal is to

study deviation detection issues on the nominal flow of a given process, it can be

specified that a sequence corresponding to a process execution with no exceptions

should be generated.

A synthetically generated sequence corresponds to a legal process execution. We

will refer to such a sequence as a legal sequence. To obtain a sequence that corresponds

to a process execution with error(s), a legal sequence is processed by the Error Seeder.

87

The Error Seeder also takes as input Error Seeding Specifications, which are used to

control the kinds and number of errors that get seeded into the given legal sequence.

Examples of the kinds of errors that could be seeded are omission of a step, commission

of a step, or omission of several steps that pertain to a given subprocess.

A sequence with seeded errors (also referred to as a mutant) represents a process

execution with errors. The Deviation Detector takes a sequence of steps as input

and determines whether that sequence is a legal sequence. The Deviation Detector

can also be instrumented to collect various Deviation Detection Statistics, such as

whether there was a deviation detection delay, how long that delay was, and how

much time it took to detect the deviation.

In this experimental framework, a generated legal sequence can be considered to be

an intended process execution, a mutated sequence can be considered to be a sequence

of performed steps, a mutation can be considered to be an error, and the index of the

(first) mutation can be considered to be the index of the first erroneous step. These

interpretations allow us to experimentally evaluate the deviation detection approach

with respect to the issues described in section 4.1.2, and in particular with respect

to delayed deviation detection where the delay can only be measured if the intended

sequence of steps is known.

4.3 Experimental Evaluation

In this section we describe how we utilized the deviation detection framework to

experimentally study the deviation detection issues discussed in section 4.1.2.

4.3.1 Experimental Design

To perform an initial evaluation of the proposed deviation detection approach, we

used the experimental framework to apply the approach to models of chemotherapy

and blood transfusion processes elicited from and validated by domain experts in-

88

volved in these processes [14,31,34,70]. We generated various sequences of steps from

these models and then mutated these sequences to represent process executions with

errors. The kinds of mutations we used are described below.

Our evaluation method is somewhat related to mutation testing [52] and fuzz

testing [94]. Mutation testing is a common software engineering technique where

a computer program is systematically mutated (usually by making a predefined set

of simple changes to the source code) to evaluate software test suites and software

testing and analysis approaches. All mutated versions of a program are executed with

the inputs from a test suite and the smaller the number of mutated versions that pass

the test suite, the higher quality the test suite is considered to be. This reasoning

can be extended to assess the quality of software testing approaches for assisting with

the creation of test suites.

Fuzz testing is a form of random testing for evaluating the robustness of a pro-

gram. Inputs for a program are usually randomly generated and can include values

outside the program’s set of legal inputs. The goal is to find inputs that can “break”

the program, e.g., cause the program to crash or halt, and then determine the vul-

nerabilities in the program code that are responsible for the breaking of the program

given the randomly generated inputs.

Our evaluation method is similar to mutation testing in that we apply a predefined

set of mutations. Unlike mutation testing, however, we do not mutate the process

model (which is the analog of a computer program), but we mutate sequences of

steps from that model (which are the analog of computer program execution traces).

Furthermore, we do not evaluate the collection of inputs to a program (which is what

a test suite is), but we evaluate the deviation detection approach that takes as input

a program (the process model) and an execution of that program (the sequence of

performed steps).

89

If we consider the Deviation Detector (which implements the proposed deviation

detection approach) and not the process model to be the analog of a computer pro-

gram and the sequence of performed steps and the process model to be the analog of

input/test data for that program, then our evaluation method shares some similarities

with fuzz testing—we “stress-test” the Deviation Detector by giving it as inputs a

large number of synthetically generated sequences of steps to evaluate the Deviation

Detector (and the approach it implements). We are interested, for example, in find-

ing sequences of steps that represent process executions with errors, such that the

Deviation Detector cannot detect a deviation at the index of the sequence where the

error is seeded. We are then interested in finding vulnerabilities in the process model

(but not the deviation detector, which is the analog of the program in this case) that

cause such delayed deviation detections.

The following sections describe in more detail the artifacts we used in the exper-

imental evaluation—the process models and the generated synthetic sequences with

errors—and the experiments we performed.

4.3.1.1 Process Models

We used two realistic models of a chemotherapy and a blood transfusion processes

to evaluate the deviation detection approach. The chemotherapy process model was

elicited from medical professionals participating in a chemotherapy ordering and ad-

ministration process in a regional cancer center in Western Massachusetts. The elic-

itation took place over the course of a year and multiple interviews with domain

experts were conducted until the domain experts expressed satisfaction with the ac-

curacy and the completeness of the process model4. For additional validation of

4The process model was created in Little-JIL. Some domain experts, who felt comfortable with the
notation, reviewed pasts of the Little-JIL model in addition to the corresponding natural language
description of that model; others preferred to review only the natural language description.

90

the process model, some domain experts were also observed while performing some

activities from the process.

The blood transfusion process model was part of a benchmark for studying the

applicability of software engineering techniques to improving medical processes [34].

We developed that benchmark with a nursing faculty member working on patient

safety [70]. This elicitation also took place over a year and multiple interviews with

the nursing faculty member were performed until she expressed satisfaction with the

accuracy and the completeness of the process model.

The two selected process models are of significant size and complexity. At the time

of writing this dissertation, the chemotherapy process model covers multiple phases of

the chemotherapy process, including diagnosing the patient and ordering chemother-

apy; thorough review of the treatment plan and medication orders by a medical

assistant, a nurse, and a pharmacist; conducting an informational/teaching session

with the patient and obtaining informed consent form; preparing chemotherapy drugs,

performed by a pharmacist and pharmacy technicians; assessing the patient and ad-

ministering the drugs, performed by a clinical nurse. The chemotherapy Little-JIL

process model includes 283 steps performed by human process performers and spec-

ifies 59 exception handling situations5. The corresponding low-level representation

(discussed in Appendix C) has 2,358 nodes and 701,887 edges.

The blood transfusion process model is based on a standard blood transfusion

checklist from the medical literature [130] and includes additional information about

problems that might arise during the process and their handling. This model covers

the process activities starting from receiving a physician order for transfusion to dis-

charging the patient. It specifies multiple phases of the process, including verifying

5An exception handling situation usually involves multiple steps to deal with the exception. A
step (e.g., assess patient), can occur both on a nominal process execution and on an execution where
an exceptional situation arises (e.g., patient develops an allergic reaction). Furthermore, a step can
also be part of different exception handling situations.

91

that the patient blood type and screen are available (and if they are not, performing

the subprocess of obtaining and labeling a blood specimen); ordering and obtaining

a blood product from the blood bank; performing various verifications on the patient

and on the blood product before starting the transfusion; monitoring the patient dur-

ing the infusion and appropriately reacting if a transfusion reaction is suspected. The

blood transfusion Little-JIL process model includes 102 steps (including 63 exception

handling situations) and the corresponding low-level representation has 97,237 nodes

and 242,442,845 edges. Even though the blood transfusion model has fewer steps

than the model of the chemotherapy process, the exception handling behavior in the

blood transfusion process is more complex, requiring a large number of nodes and

edges in the low-level representation to express this behavior.

4.3.1.2 Synthetic Sequences with Errors

To evaluate the deviation detection approach, we applied it to synthetic sequences

of steps containing typical planning errors. Although there is a disagreement in

the human error literature about a standardized taxonomy of human errors [71, 82],

two error kinds appear in the intersection of most of the proposed planning error

taxonomies [77, 78, 82]—omission and commission errors. An omission error occurs

when a step(s) that should be performed is not performed; a commission (planning)

error occurs when the wrong step(s) is performed.

In our initial evaluation of the deviation detection approach, we focused on several

kinds of planning errors that involve a single step and on the error of omission of a

single subprocess. This decision was based on blood transfusion errors identified in the

medical literature [70] and on conversations with blood transfusion and chemotherapy

domain experts.

4.3.1.2.1 Single-Step Errors. From each of the two process models, we gener-

ated two kinds of legal sequences of steps—sequences that represented randomly se-

92

lected process executions and sequences that represented nominal process executions,

i.e., executions where no exceptions occur. We generated 50 different sequences of

each kind for a total of 100 legal sequences per process model. There were no com-

mon sequences between the 50 sequences that represented randomly selected process

executions and the 50 sequences that represented nominal process executions—the se-

quences that represented randomly selected process executions all contained at least

one exceptional situation, due to the high number of exceptional situations in both

process models. All generated sequences represented full process executions. We con-

sider a process execution to be full if after the last step in that execution, the process

model does not allow any additional steps be performed. Statistics about the lengths

of the generated sequences are shown in Figure 4.5.

The number 50 for generated sequences of each kind was arbitrary, but consid-

ered to be large enough based on an exploratory analysis we performed before the

experimental evaluation. In this analysis, we generated sequences from the process

models, seeded errors in them, applied the Deviation Detector to these sequences

with seeded errors, and analyzed the results. We were observing whether there was a

deviation detection delay, and if there was, we noted the length of the delay, whether

harm could occur as a result of the delay, and the causes for that delay. We were

also observing how situations could arise where harm could potentially occur even

when there is no deviation detection delay and what the performance of the devia-

tion detector was in terms of execution time and memory used. After having applied

the deviation detector to about 30-40 sequences with seeded errors from each process

model, we stopped obtaining any new findings as part of the above observations—a

sign of data saturation. Thus, for the experimental evaluation of the deviation detec-

tion approach, we decided to generate 50 different sequences of each kind (described

above) for each model. After systematic mutations, each set of 50 sequences resulted

in a much larger set of sequences with seeded errors—between 1000 and almost 8000

93

sequences in a set—which is a much larger number of sequences with seeded errors

than the 30-40 after which we reached data saturation in our exploratory analysis.

For the experimental evaluation of the deviation detection approach, three dif-

ferent single-step mutations—deletion, insertion, and substitution of a step—were

applied to each generated sequence to represent three different kinds of single-step

errors—an error of omission, commission, and substitution respectively. Each muta-

tion kind was applied at each index of a sequence to represent situations where errors

occur at different points of a process execution. Thus, for each of the two sets of 50

randomly selected sequences from the two process models, we created three sets of

mutated sequences (mutants), one set for each mutation kind, resulting in one set of

deletion mutants, one set of insertion mutants, and one set of substitution mutants.

Similarly, for each of the two sets of 50 sequences that represented nominal process

flow through the two process models, we created three corresponding sets of deletion,

insertion, and substitution mutants. These mutations resulted in six sets of mutants

for each process model and the number of mutants in each of these sets in shown in

Figure 4.5 in the columns labeled “Experiment 1” through “Experiment 6”.

A deletion mutant was created by deleting a step from a sequence. A step from

every sequence index (except the last index) was deleted from each of the original

sequences. A deletion of the last step in a sequence was not performed because that

would leave the sequence a legal process execution. An insertion mutant was created

by inserting a step, chosen uniformly and at random from all process steps, into a

sequence. A step was inserted between every two steps (including before the first

step, but not after the last step) in each of the original sequences. If the inserted

step was the same as the subsequent step in the sequence, this would always result in

a delayed deviation detection; so, in these cases another step instead was randomly

chosen for insertion. A substitution mutant was created by substituting a step in a

sequence with a different step chosen uniformly and at random from all process steps.

94

A substitution mutation was done at every index of each of the original sequences.

For all three mutation kinds, mutants that remained legal sequences were discarded.

4.3.1.2.2 Subprocess Errors. In addition to studying the Deviation Detection

approach on sequences that represent process executions with single-step errors, we

were also interested in studying the approach on sequences that represent process

executions with more complex errors. One such kind of errors reported in the litera-

ture [70] and identified in discussions with domain experts is the omission of an entire

subprocess.

We identified 5 blood transfusion and 5 chemotherapy subprocesses deemed most

likely to be omitted, based on common blood transfusion and chemotherapy errors re-

ported in the medical literature and on our interaction with domain experts involved

in these processes. The selected blood transfusion subprocesses were: (1) ensure

correct patient is present (performed by a nurse before notifying the blood bank to

prepare the blood to prevent the possibility the blood product to expire because the

patient is not available for transfusion or the wrong patient is in the room); (2) verify

patient ID band and (3) verify blood product information (part of the bedside checks

performed by the nurse before beginning the infusion); (4) assess patient and (5) eval-

uate patient clinically (part of the clinical evaluation prior to the infusion, performed

again by the nurse). The selected chemotherapy subprocesses were: (1) record height

and weight (performed during patient registration by a clerk); (2) confirm all neces-

sary information is present (part of the consultation and assessment, performed by an

oncologist before creating the treatment plan and chemotherapy orders); (3) confirm

pretesting has been done and (4) confirm existence and not staleness of height/weight

data (part of the treatment plan and orders verifications performed by a Practice

Registered Nurse (RN)); (5) obtain patient informed consent (performed by a Nurse

Practitioner or a Clinic Nurse prior to chemotherapy administration).

95

For each identified subprocess, we generated 50 different sequences (allowing ex-

ceptions) from the corresponding process model, such that these sequences contained

the steps from the subprocess. We then mutated each generated sequence by deleting

all steps pertaining to the specific subprocess selected to be omitted. Thus, we created

250 mutants for each of the two process models. We call these mutants subprocess

omission mutants.

4.3.1.3 Experiments

Using the deviation detection framework, the deviation detection approach was

applied to each mutant and various statistics were collected. We performed seven ex-

periments with the mutants from each process model. In experiments 1 through 3, we

applied the deviation detection approach to the deletion, insertion, and substitution

mutants generated from the 50 random sequences. In experiments 4 through 6, we

applied the approach to the deletion, insertion, and substitution mutants generated

from the 50 nominal flow sequences. In experiment 7, we applied the approach to the

subprocess omission mutants.

4.3.1.4 Potentially Harmful Steps

To address the question of whether/how often harm might occur due to delayed

deviation detection, we identified a set of potentially harmful steps from the blood

transfusion and chemotherapy processes. These are steps, such that if an error has

occurred prior to their performance, performing them could potentially result in im-

mediate harm. One such step from the blood transfusion process is begin infusion of

blood product. If, for example, the nurse has forgotten to verify the patient’s identity

prior to infusing the blood or forgotten to verify that the blood product matches

the one listed in the blood transfusion order, the nurse can potentially infuse the

wrong blood into the patient. An example of a potentially harmful step from the

chemotherapy process is administer chemotherapy drug.

96

The set of potentially harmful steps for the blood transfusion process we used in

this analysis is: {begin infusion of blood product, administer pre-transfusion medica-

tions, administer medications (during the transfusion), draw blood specimen}. The set

of potentially harmful steps for the chemotherapy processes is: {administer chemother-

apy drug, administer chemotherapy pre-medications, administer emergency medica-

tions, start IV, draw blood specimen}. The steps draw blood specimen and start IV

are not as dangerous as the other ones in the two sets above, but could still cause

significant inconvenience to the patient, if performed when they should not be per-

formed.

Having identified the sets of potentially harmful steps for the blood transfusion

and chemotherapy processes, we then inspected the mutated sequences described

above to determine whether a potentially harmful step occurs between the mutation

index and the index of deviation detection. For sequences for which this was the case,

we manually analyzed whether the error (the mutation) could affect the potentially

harmful step. If harm could occur as a result of the error, we counted the mutated

sequence as one for which deviation detection delay could be potentially harmful.

4.3.2 Results

Figure 4.5 shows the results of applying the deviation detection approach to the

blood transfusion and chemotherapy processes. The definition of deviation detection

delay from section 4.1.2 is used, where the first erroneous step is the step at the

mutation index (the index in a sequence of steps where the mutation was done for

single-step errors or the index of the first mutation for subprocess errors).

4.3.3 Discussion

In this section, we discuss the results from the experimental evaluation with re-

spect to the deviation detection issues presented in section 4.1.2.

97

Figure 4.5: Applying the deviation detection approach to blood transfusion and chemotherapy
process models.

98

4.3.3.1 Delayed Deviation Detection and Potential Harm Due to Delay

Delayed deviation detection occurred infrequently—in less than 1% of the mutants

from all experiments. We analyzed each mutated sequence with deviation detection

delay by tracing that sequence through the corresponding process model to deter-

mine the reasons for the delay. There were three main reasons: exception handling,

optional steps, and shuffled steps. All of these three process structures were a source

of branching similar to the one in Figure 4.3 that could potentially cause a deviation

detection delay. For example, consider exception handling. Suppose a process can be

performed by executing step sequence abcd, when there are no exceptional situations.

If an exceptional situation arises while performing b, however, then the sequence of

steps xyz should be performed to address this situation before continuing with steps

c and d, resulting in sequence abxyzcd. If the legal sequence abcd is mutated by in-

serting step x after step b, the deviation cannot be detected until step c is performed

(which is one step after the mutation index) because abx is a prefix of a legal sequence.

Optional steps caused deviation detection delay in an analogous way.

The third reason for deviation detection delays was shuffled steps. Shuffled steps

are steps that should be done sequentially but are allowed to occur in any order.

Sequences of steps that are generated from a process model and that contain shuffled

steps have subsequences, which we call shuffle subsequences, such that the steps in

these subsequences are allowed to occur in any order. For example, suppose that

a process is performed by doing step a, followed by steps b, c, and d in any order,

and then step e. There are six allowable sequences of steps to execute that process,

corresponding to the six permutations of steps b, c, and d. One such allowable

sequence is abcde. The subsequence bcd is a shuffle subsequence6. If the step sequence

6A shuffle subsequence does not have to be a contiguous subsequence of the sequence of performed
steps. For example, if other steps can be performed in parallel with the shuffled steps, these other
steps might be interleaved with the shuffled steps in the sequence of performed steps. For instance,

99

abcde is mutated by deleting step b, a deviation will not get detected until step e is

performed because acd is a prefix of a legal sequence. This results in a deviation

detection delay of 2, given that in our experimental evaluation we consider abcde

to be the intended sequence, acde the sequence of performed steps, and c the first

erroneous step in the sequence of performed steps.

Shuffled steps are different from other branch points in a process where there are

more than one steps to perform next, because any of the shuffled steps is acceptable

to be performed next during an execution of the process on which the shuffled steps

need to be performed. In other branching situations when shuffled steps are not

involved, for example when one branch is nominal flow and the other exceptional

flow, one branch needs to be performed on certain process executions and the other

branch needs to be performed on other process executions, but a deviation detector

might not be able to determine which branch should be performed on the particular

execution that is being monitored7.

Given that shuffled steps are common in the processes we studied (e.g., a nurse

needs to perform several checks, but the order in which these checks are performed

does not matter), we decided that deviation detection delays due to shuffled steps

should be measured in a special way; otherwise the results related to delayed de-

viation detection would be distorted. If a mutation deletes a step from a shuffle

subsequence, we measure the delay as the number of steps between last step in the

shuffle subsequence and the step where a deviation is detected. If a mutation inserts

or substitutes into a shuffle subsequence a step that is one of the steps in that shuffle

subsequence, we measure the delay as the number of steps between the last occur-

rence of the inserted step in the shuffle subsequence and the step where a deviation is

if a and b are shuffled steps and x can occur in parallel with a and b, the sequence of performed
steps might be axb, where ab is a shuffle subsequence.

7Section 4.1.2.1 discusses how this might happen.

100

detected. The results in Figure 4.5 reflect this modified way of measuring deviation

detection delay when a mutation was performed in a shuffle subsequence.

In our analysis of the experimental results, we defined templates that could au-

tomatically recognize situations where a mutation was performed in a shuffle subse-

quence. Shuffled steps were explicitly annotated in the process models from which

sequences of steps were generated and, thus, we knew which steps in a mutant corre-

spond to a shuffle subsequence.

For the mutants where there was a deviation detection delay, the length of that

delay was small—at most 2.31 steps after the mutation index on average and in most

cases close to 1. In critical processes, such as medical procedures, however, even a

delay of 1 could be harmful, if some potentially dangerous step, such as administer

chemotherapy medications, is performed before detecting the deviation. In the per-

formed experiments, however, there were no cases where the delay could result in

harm (fourth row from the bottom in both tables in Figure 4.5).

4.3.3.2 Potential Harm When Deviations Are Immediately Detected

We found some mutated sequences for which the deviation is detected at the index

of mutation, i.e., the deviation is immediately detected, but harm could potentially

still be done (third row from the bottom in both tables in Figure 4.5). In experiments

2, 3, 5, and 6 for the blood transfusion and chemotherapy processes, this was due to

mutating a sequence by inserting or substituting in a harmful step.

In experiments 1, 4, and 7 for the blood transfusion and chemotherapy processes,

the cases where potential harm could occur even when the deviation is immediately

detected were due to omitting a step or a subprocess that can immediately precede a

harmful step and can affect that harmful step. For example, in the blood transfusion

process model, the subprocess of verifying the blood product immediately precedes

the step begin infusion of blood product. Thus, if steps from this subprocess (such as

101

ensure that blood product has not expired) are omitted, or the subprocess is omitted

altogether, the deviation cannot be detected until the step begin infusion of blood

product is started. For the blood transfusion process, the 50 cases in experiment 7

(the experiment where subprocess omission errors were seeded) of mutants in which

harm could occur even when the deviation is immediately detected are due to omitting

the subprocess verify blood product information. In the chemotherapy process model,

we encountered similar structure, where the step confirm that the patient ID band

matches the drug label can immediately precede the step administer chemotherapy

drug.

Such structures represent real process vulnerabilities as there is little opportunity

for process performers to realize that an error is made before they start a potentially

harmful step. A possible strategy to deal with such process vulnerabilities is to

introduce a non-harmful step before the potentially harmful one. This could be a step

that requires verifying that all the preconditions for starting the potentially harmful

step are met. In fact, such steps are already in place in some medical procedures, such

as surgeries where the different surgical teams are required to stop at certain points

of the procedure and confirm that every team has performed the necessary steps and

is aware of the relevant information before proceeding further. The presence of such

verification steps would allow the proposed deviation detection approach to detect

deviations when such verification steps are performed and before potentially harmful

steps are started.

Current process vulnerability analysis approaches, such as FTA and FMEA, do not

take into account the vulnerabilities discussed above. It would be interesting, however,

to explore how such approaches could be extended to identify such vulnerabilities

and potentially even automate the identification. For example, if domain experts list

potentially harmful steps in a process and the dependencies of these steps on other

steps that affect the harmful steps, then a process model could be algorithmically

102

explored to discover situations where a step that affects a potentially harmful step

can immediately precede or occur “shortly before” (for a domain-specific definition

of “shortly-before”) that harmful step.

4.3.3.3 Performance of the Deviation Detector

The experiments were performed on a MacBook laptop with 2.4 GHz Intel Core

2 Duo processor. The deviation detection experimental framework is implemented in

Java and the experiments were run with maximum heap size of 2.5 GB.

The running time results are shown in the last two rows of the tables in Figure 4.5.

For the blood transfusion process, it took less than 6 seconds to determine whether a

sequence of about 21.5 steps, on average, is a legal sequence; for the mutated sequences

where exceptions were disallowed (these were longer sequences), it took around 13

seconds to determine whether a sequence of about 70.5 steps, on average, is a legal

sequence. This amounts to less than a third of a second per step in a sequence.

The running time of the deviation detector was similarly low for the chemotherapy

process. Given that humans usually take more than a third of a second to perform a

process activity, the running time results indicate that the deviation detector could

detect deviations in real time and before harm is done as a result of a deviation for

non-trivial processes of size and complexity similar to the ones we studied.

4.3.4 Threats to Validity

There are several threats to the validity of the obtained experimental results.

The experimental evaluation was synthetic—we did not monitor a real executing

process and did not apply the deviation detection approach to real executions of

such a process. Despite our best efforts to create realistic process models using the

process elicitation and modeling methods described in Chapter 3, it is likely that the

models used in the experimental evaluation still contain some inaccuracies or miss

some information potentially relevant to deviation detection. This would mean that

103

some of the synthetically generated sequences might be inaccurate representations of

real process executions.

The experimental evaluation was based on only two models from a single domain.

Even though these models were relatively large and complex in terms of covering

a large set of process executions (including exceptional executions and concurrency

within a single process execution), the results would change if the size and complexity

of the models increases or if other models from the same domain or from different

domains are used.

We “stress tested” the deviation detection approach by applying various kinds of

mutations at every index of the synthetically generated sequences to represent various

errors at various points of a process execution. The applied mutations, however, do

not all correspond to realistic errors. For example, to create an insertion mutant

we selected uniformly at random a step from all process steps and inserted it at a

given index of a synthetically generated sequence. In some cases, however, such an

insertion might not correspond to a realistic error (e.g., inserting the step order blood

from blood bank in a part of the process where the blood transfusion has already been

started and no additional transfusions have been ordered).

We mutated the generated sequences by performing single-step deletions, inser-

tions, and substitutions and deletions of a subprocesses to represent errors of omission,

commission, substitutions of a single step and omission of an entire subprocess. Other

kinds of errors, however, can also occur during the execution of HIPs and we did not

study the deviation detection approach in the presence of such errors.

4.4 Limitations of the Deviation Detection Approach

Even though the preliminary investigation of the proposed deviation detection

approach is promising, there are several research challenges that need to be tackled

before the approach can be applied in practice. The deviation detection approach

104

relies on receiving an accurate sequence of performed steps of interest from the Pro-

cess Execution Monitor. Capturing accurately and in a timely manner what human

process performers do, however, is difficult. We expect the introduction of more

electronic devices in processes would facilitate process execution monitoring. For ex-

ample, in a medical process, starting to receive infusion data from an infusion pump

could be automatically interpreted as having started the step begin infusion of blood

product ; similarly, when patient height and weight data appear in an electronic med-

ical record, this could be an indication that the step measure height and weight has

been performed.

While the use of electronic devices in processes increases the opportunities for

monitoring process executions, events from electronic devices could be misinterpreted.

Furthermore, electronic devices cannot capture certain steps in processes, such as

cognitive steps (e.g., a doctor making sure the patient information on two pieces of

paper matches). A promising approach to capturing process steps more accurately

than electronic devices and capturing steps that electronic devices cannot capture is

the use of human scribes, which seems to be increasing in popularity [65] in medical

processes.

Even in processes where human scribes are used, capturing the performance of

cognitive steps remains a significant challenge. For example, suppose a human scribe

is observing a nurse performing the simplified blood transfusion process depicted in

Figure 4.2. To perform the step check blood product expiration date the nurse might

look at the expiration date and time on the label of the blood product container

and then reason whether the current time is before or after the expiration time (the

nurse might obtain the current time by checking a watch, a wall clock, the clock on a

computer screen, or perhaps rely on memory of a recent time check). A human scribe

observing the nurse perform this step might notice that the nurse looked at the label

on the blood product and at the patient orders, but would not be able to discern

105

exactly what information the nurse looked at and what kind of mental processing the

nurse did with this information. Thus, the scribe might not be able to determine that

the nurse checked the blood product expiration date. Such cognitive steps could be

critical for the successful completion of a process and for ensuring that no harm is

caused and, thus, often need to be included in models used for deviation detection

and their performance needs to be captured as a process is being executed.

Several approaches for capturing such cognitive steps could be used. One is to

have a device, instead of a human, perform such a step. For example, in some medical

processes, certain verifications, such as checking that the blood has not expired or

making sure that the patient information on the ID band matches the patient infor-

mation on the drug label, are done by bar code scanners. Such scanners can send an

event once the scan has been performed. Another approach is to have process per-

formers use a think-aloud protocol, i.e., announce out loud, when performing critical

cognitive steps. A human scribe or a voice recognition system can then hear such

an announcement and then issue a corresponding event to the deviation detection

system.

The success of the proposed deviation detection approach depends on the accu-

racy and the completeness of the process model as well. If the process model captures

incorrect sequences of steps or misses sequences of steps that human performers are

allowed to perform, then the deviation detection approach may suffer from false pos-

itives and false negatives. Given the complexity of processes, creating a high-quality

process model is challenging. As discussed in Chapter 3, we have been investigating

techniques for eliciting and validating process models and applied them successfully to

several real-world processes [31,35,93]. We believe the criticality of certain processes,

such as medical processes, warrants the time and effort needed to create high-quality

process models that can in turn be leveraged to support continuous process improve-

ment via various static analyses (e.g., model checking [37], fault-tree analysis [128],

106

and failure-mode and effets analysis [121]) and to support deviation detection and

other aspects of online process guidance (e.g., smart checklist [15]).

4.5 Deviation Explanation

Detecting a deviation and issuing a warning to process performers that an error

might have occurred could be useful to prevent harm resulting from an error. Upon

receiving such a warning, process performers can try to recover from the potential

error before performing potentially harmful activities that they would have otherwise

performed, if a deviation had not been detected. As discussed in section 4.1.1, how-

ever, depending on the level of expertise of the process performers and the complexity

of the error and of the process, just a warning that an error might have been occurred

might be insufficient to identify an error and recover from it. This section discusses

approaches for providing additional information upon deviation detection to assist

process performers with error identification and recovery. Being able to provide such

assistance is particularly important in time-critical processes, where harm could be

done if process performers do not recover from an error within a short period of time

after the existence of an error has been recognized.

4.5.1 Error Localization

One kind of information that could be useful for error identification upon deviation

detection is where in the sequence of performed steps an error occurred, i.e., at what

index(es) in the sequence of performed steps a step(s) was performed that causes

the sequence of performed steps to differ from the intended sequence. We call such

indexes potential error indexes (PEIs). As previously discussed, the intent of process

performers is often unknown and, thus, determining PEIs usually cannot be done

with certainty. In this section, we discuss a preliminary approach, which we call error

localization, for identifying and ranking PEIs.

107

The error localization approach consists of three phases: legal sequence selection,

alignment computation, and PEI identification. The legal sequence selection phase

selects a set of legal sequences from the process model that are likely candidates

for the sequence of steps the process performers had planned to carry out, i.e., the

intended sequence of steps. Intuitively, the more similar a legal sequence is to the

sequence of performed steps, the more likely it is that that legal sequence is the

intended sequence. The notion of similarity between two sequences is essential to the

proposed error localization approach. We use the edit distance [118] (described in

more detail in section 4.5.1.1) between two sequences as a measure of similarity.

The differences between the sequence of performed steps and the selected legal

sequences could suggest potential errors. To identify such differences, the align-

ment computation phase finds alignments (defined in section 4.5.1.2) between the

sequence of performed steps and each of the selected legal sequences. These align-

ments minimize the edit distance between the sequence of performed steps and each

legal sequence.

Finally, the PEI identification phase interprets the differences between the se-

quence of performed steps and each of the selected legal sequences to hypothesize

PEIs. Each PEI is based on a pair (sequence of performed steps, legal sequence) and

is ranked according to the edit distances between the sequence of performed steps

and the legal sequence in that pair.

4.5.1.1 Legal Sequence Selection

After a deviation has been detected, i.e., the sequence of performed steps has

been detected to not be a legal sequence through the process model, the first phase

of the error localization, namely legal sequence selection, starts. This phase involves

choosing a subset of all the legal sequences specified by the process model. The

comparison of the legal sequences from this subset to the sequence of performed steps

108

will then be used to hypothesize PEIs. For a simple process model, like the one in

Figure 4.2, it is feasible to obtain all possible legal sequences and compare them to

the sequence of performed steps. A more realistic process model, however, can specify

a very large, or even infinite, number of legal sequences and comparing all of them

to the sequence of performed steps may be infeasible. Thus, criteria for selecting a

subset of legal sequences are needed.

Based on the intuition given earlier, we expect that legal sequences that are more

similar to the sequence of performed steps will be more useful for obtaining infor-

mation about errors. We use the edit distance between two sequences [118] as the

measure of similarity, where the edit distance is a function of the costs of the opera-

tions (often called edit operations) needed to transform one sequence into the other.

Other measures of similarity could be chosen for the purposes of legal sequence selec-

tion, but how this choice is made requires further investigation.

Computing edit distance is expensive (the worst case complexity of the algorithms

is usually quadratic in the length of the two sequences [118]) and computing the

edit distance between the sequence of performed steps and a large number of legal

sequences could certainly be infeasible. There are techniques, however, for computing

the edit distance incrementally and discarding a large number of sequences before

they need to be compared in full length to the sequence of performed steps. One such

technique is to keep track of legal sequences similar to the sequence of performed steps

during the breadth-first exploration of the process model that is performed during

deviation detection (this technique is used in [42] for process model validation). In

addition to legal sequences that match the sequence of performed steps so far (i.e.,

legal sequences that are exactly the same as the sequence of performed steps), other

legal sequences that are within some edit distance of the sequence of performed steps

can also be kept under consideration.

109

(a) Distances between the sequence of
performed steps psu and selected pro-
cess legal sequences.

(b) Alignments between the
sequence of performed steps
(2nd column) and the closest
legal sequences (1st column).

Figure 4.6: Example application of the error localization approach given the sequence of performed
steps psu and the process model in Figure 4.2.

There are different kinds of edit distances, depending on the kinds of edit opera-

tions allowed. Edit operations could be used to encode different kinds of errors (e.g.,

deletion of a single step vs. deletion of multiple steps could encode omission of a single

step vs. omission of an entire subprocess respectively). Different edit operation costs

could be used to represent domain knowledge about errors, such as the likelihood or

the severity of an error.

Figure 4.6(a) shows the edit distances between the sequence of performed steps

psu and the legal sequences from the model in Figure 4.2 within edit distance of 2.

In this example, for simplicity, only the edit operations of deletion, insertion, and

substitution of a single step all with the same cost of 1 are used to compute the

edit distance. In particular, the Levenshtein edit distance [87] is used to measure of

similarity between the sequence of performed steps and the legal sequences from the

process model. The Levenshtein distance is the minimum sum of the costs of the edit

operations (where the edit operations are deletion, insertion, and substitution of a

single step) needed to transform one sequence into another.

Deciding what set of edit operations and what associated costs to use depends on

factors such as the availability of domain knowledge (e.g., common errors and their

110

(a) Distances between the sequence of
performed steps acde and some legal
sequences.

(b) Alignments between the
sequence of performed steps
(2nd column) and the closest
legal sequences (1st column).

Figure 4.7: Example application of the error localization approach given the sequence of performed
steps acde and the process model in Figure 4.3.

frequency) and the richness of the information in the process model. For instance,

if it is known that process performers omit subprocess A as frequently as they omit

the single step x and the process model contains information (such as hierarchical

decomposition) to determine what steps are part of subprocess A, then deletion of

the single step x and deletion of all the substeps of A could be used as edit oper-

ations. Furthermore, these edit operations could be given equal cost since the two

corresponding errors are known to be equally likely. Empirical evaluation could also

be used to choose the set of edit operations and associated costs, but how to make

this choice is certainly an issue that requires further research.

4.5.1.2 Alignment Computation

Once a set of legal sequences is selected, each legal sequence in that set is compared

to the sequence of performed steps to examine how that legal sequence differs from

the sequence of performed steps. This is done by computing alignments between each

selected legal sequence and the sequence of performed steps. An alignment of two

sequences is a list of ordered pairs (a, b) such that (i) a is an element of the first

sequence or is the “blank” element “–”, (ii) b is an element of the second sequence or

is “–”, (iii) the pair (–, –) does not appear in the list, and (iv) the order of the non-

111

blank elements in the first and second slots of the pairs in the list is the same as the

order of elements in the first and second sequences, respectively. Figure 4.6(b) shows

some alignments. An alignment indicates how one sequence could be transformed

into the other, where the blank elements indicate that elements were inserted in one

sequence or deleted from the other at the corresponding places.

Optimal alignment(s) (i.e., the alignment(s) that minimize the edit distance be-

tween two sequences) are computed by sequence comparison techniques for computing

edit distances [118]. There could be more than one alignment between the same two

sequences depending on the choice of edit operations and their associated costs. In

fact, there could be more than one optimal alignment between two sequences for a

fixed set of edit operations and costs. As mentioned earlier, this choice of edit op-

erations and associated costs depends on various factors, such as domain knowledge,

and approaches to make this choice require further research.

4.5.1.3 Potential Error Index Identification

Once alignments are computed, they can be used to obtain information about

PEIs. The intuition behind using alignments to obtain PEIs is that non-matching

alignment pairs (such as the shaded pairs in Figure 4.6(b)) may represent locations

where an error has been committed.

For example, based on the three alignments in Figure 4.6(b), it could be hypothe-

sized that the nurse adhered to the recommended ways to perform the process while

performing the first two steps, p and s, but not after that. Thus, 3 could be a PEI as

the nurse might have committed an error by performing the third step. This seems

to be a reasonable hypothesis in this example as the nurse performed u (check blood

product expiration date) when the nurse should have performed t (verify patient’s

identity) instead, which would have kept the sequence of performed steps a legal

sequence.

112

An alignment can have more than one non-matching alignment pair and, thus,

more than one PEI could be identified based on these pairs. A strategy that we

currently use is to select a single PEI per alignment. This PEI is based on the first non-

matching alignment pair. One reason for this strategy is the assumption that if the

first non-matching alignment pair represents the first erroneous step, then subsequent

non-matching alignment pairs might be less informative about possible errors. This is

because after the error, the process performers might not have “returned to” the legal

sequence in the alignment under consideration, assuming this was the legal sequence

they were following before the deviation. Thus, comparing the suffixes of the sequence

of performed steps and the legal sequence after the first non-matching alignment pair

might not reveal useful error information. Deciding how PEIs should be identified

from an alignment is subject to further research.

Given that the set of selected legal sequences could be large (especially for a

realistic process model and a realistic sequence of performed steps), that there could

be multiple alignments between each selected legal sequence and the sequence of

performed steps, and that there could be multiple PEIs per alignment, the number

of PEIs could be large. Providing all PEIs to process performers upon deviation

detection, however, could be overwhelming rather than useful. Thus, a strategy may

be needed to rank the possible PEIs in terms of usefulness for error localization.

The ranking strategy currently used in the error localization approach is based on

the edit distance between the sequence of performed steps and each of the selected

legal sequences. A PEI is ranked according to the minimum edit distance to a legal

sequence with an alignment suggesting that PEI. Using this PEI ranking strategy

and the strategy discussed above for identifying a PEI from an alignment, 3 would

be the single top-ranked PEI in the sequence of performed steps psu in the example

in Figure 4.6.

113

Figure 4.8: Deviation detection and error localization experimental framework.

In general, there could be multiple top-ranked PEIs, however. For example, in

Figure 4.7 the alignments based on aligning the sequence of performed steps acde

to the closest legal sequences suggest two PEIs—2 and 4. Some research questions

related to PEI identification are how often there are multiple equally top-ranked

PEIs and how many PEIs there are in such cases in realistic process models and

sequences of performed steps. These questions are also related to the issue of delayed

deviation detection since multiple highly-ranked PEIs seem to arise in situations where

the deviation is detected with delay (as is the case in Figure 4.7). A preliminary

investigation of these questions is discussed in the next section.

4.5.2 Evaluation of Error Localization Approach

To evaluate the error localization approach, we used the experimental framework

described in section 4.2 and extended it by adding the Error Localizer component,

which implements the three error localization phases described above. The extended

framework is shown in Figure 4.8.

The Error Localizer takes as input a Process Model and a sequence of steps that

the Deviation Detector has determined to not be a legal sequence through the Process

114

Model. The Error Localizer outputs a ranked list of potential error indices (PEIs) for

the given sequence of steps and can also be instrumented to collect error localization

statistics, such as percentage of sequences with multiple PEIs and average number of

PEIs per sequence.

The current implementation of the Error Localizer uses a brute-force approach to

accomplish the Legal Sequence Selection phase—the Error Localizer simply obtains

all legal sequences up to a certain length. This brute-force approach does not scale for

process models containing a large number of sequences and this limitation is discussed

in section 4.5.2.4. As mentioned in section 4.5.1.1, however, there exist approaches for

incrementally computing the edit distance between the growing sequence of performed

steps and legal sequences from the process model, discarding legal sequences whose

edit distance to the sequence of performed steps exceeds a threshold. Utilizing such

an approach during the Legal Sequence Selection phase is an interesting direction for

future research.

To compute alignments between the sequence of performed steps and the set of le-

gal sequences obtained during the Legal Sequence Selection phase, the Error Localizer

uses a standard dynamic programming algorithm ([118], page 23) to compute the

edit distance between two sequences, which also computes the optimal alignments

associated with the optimal edit distance. The current implementation of the Er-

ror Localizer uses the Levenshtein edit distance [87], where different weights for the

deletion, insertion, and substitution edit operations can be set.

Once alignments between the sequence of performed steps and the set of selected

legal sequences are computed, PEIs are identified and ranked as described in sec-

tion 4.5.1.3.

115

4.5.2.1 Experimental Design

To perform an initial evaluation of the proposed error localization approach, we

applied it to the model of the blood transfusion process used for the evaluation of

the deviation detection approach and described in section 4.3.1.1. We replaced each

of the verify patient’s identity and specimen labeling subprocesses by a single step

to make the model smaller. We did that because the current implementation of the

Legal Sequence Selection phase of the error localization approach is brute force, i.e.,

it finds all sequences of steps through the model up to certain length. Removing the

above two subprocesses reduced the size and the complexity of the model, allowing

for longer sequences of steps to be obtained in a reasonable amount of time during

the Legal Sequence Selection phase.

The resulting model was still of significant size and complexity. It contained

144 Little-JIL steps (53 leaf steps) and it specified 18 exception handling situations.

All legal sequences consisting of up to 15 leaf steps (a total of 164 such sequences)

were generated8. These generated legal sequences were then mutated to represent

sequences of performed steps where the process performers have made an error. We

applied the same single-step mutations—deletion, insertion, and substitution of a

single step at (almost) every position of every legal sequence—as in the evaluation of

the deviation detector. These mutations are described in detail in section 4.3.1.2.1.

For all three mutation kinds, mutated legal sequences (mutants) that remained legal

sequences through the process model were discarded. Mutating the generated legal

sequences resulted in more than 1,700 mutants for each mutation kind (Figure 4.9).

8Only leaf steps were included in generated sequences, because in Little-JIL, the leaf steps are
the ones that agents perform and are thus most likely the steps to be recorded. Non-leaf steps
are primarily used to provide abstraction and specify control flow among leaf steps in a Little-JIL
process model. The length of the generated sequences could increase by up to 9 steps if non-leaf
Little-JIL steps are counted, depending on the depth of the subprocesses in which the leaf steps in
a given sequence are located.

116

Figure 4.9: Applying the error localization approach to a blood transfusion process model.

The error localization approach was applied to each mutant and statistics related

to PEI identification were collected. To compute PEIs, all legal sequences from the

process model up to 17 steps long were selected to be compared against the mutants.

The Levenshtein distance was used as a sequence similarity measure. The edit oper-

ations were deletion, insertion, and substitution of a single step with equal cost of 1.

The PEIs for each mutant were based on the alignments between that mutant and

the legal sequences that have minimum distance to it. For each such alignment, a

single PEI was produced based on the first non-matching alignment pair.

4.5.2.2 Results

Figure 4.9 shows the results of applying the error localization approach to the

blood transfusion process.

4.5.2.3 Discussion

For most of the insertion and deletion mutants (more than 97.5%), a single top-

ranked PEI was identified. For almost 75% of the deletion mutants a single top-ranked

PEI was identified. The percentage for deletion mutants is lower, again, mostly due

to mutations in shuffle subsequences. For all three kinds of mutants with a single

top-ranked PEI, that PEI was the same as the mutation index. These results mean

that in most cases the error localization approach was able to accurately identify the

location of the error in the sequence of performed steps. Furthermore, in these cases

117

there were no spurious top-ranked PEIs that could distract process performers in

diagnosing the error. In the cases when there were more than one top-ranked PEIs,

the number of PEIs was small—maximum 3 and less than 2.1 on average—and the

mutation index was always among the top-ranked PEIs.

4.5.2.4 Threats to Validity

The threats to the validity of the evaluation of the deviation detection approach,

discussed in section 4.3.4, also apply to the evaluation of the error localization ap-

proach, given that the experimental design was essentially the same. The fact that

only a single process model was used to evaluate the error localization approach is a

further threat.

As previously discussed, the Legal Sequence Selection phase was implemented by

finding all legal sequences of steps up to a certain length. In particular, all legal

sequences of up to 17 steps were found9. Given that the longest generated mutant

was 16 steps long (the longest generated sequence was 15 steps long and the single-

step mutations can increase the size of a sequence by at most one step), the original

sequence from which a mutant was created was always among the set of legal se-

lected sequences. This inevitably affected favorably the error localization results in

Figure 4.9. In a real-world situation, however, where large and complex HIPs are in-

volved and process executions could be much longer than 16 steps, an error localizer

would not have the luxury to compare the sequence of performed steps against a set

of legal sequences that is guaranteed to contain the intended sequence of steps, which

would diminish the accuracy of the error localization results.

Since the mutations applied to the generated sequences of steps were known, we

knew what corresponding edit operations to use for computing edit distances utilized

9As mentioned in section 4.5.2.1, the generated sequences contained only Little-JIL leaf steps,
because in Little-JIL leaf steps correspond to the activities done by process performers.

118

in the error localization approach. When the error localization approach is applied to

a real executing process, however, the errors that could occur might not be known in

advance and, thus, selected edit operations might not be as useful as in our evaluation

for accurately identifying PEIs.

4.5.3 Limitations of the Error Localization Approach

The limitations of the deviation detection approach discussed in section 4.4 are also

limitations of the error localization approach—the error localization approach needs

to receive from the Process Execution Monitor an accurate sequence of performed

steps of interest and the success of the approach also depends on the accuracy and

the completeness of the process model.

The error localization approach is highly dependent on the selection of edit op-

erations and their costs, which are used in the computation of edit distance. If the

selected edit operations do not accurately represent the kinds of errors that might oc-

cur during a process execution and/or the costs of these edit operations do not reflect

characteristics of process errors, such as frequency and severity, then the top-ranked

PEIs computed by the error localization approach might not represent the locations

in the sequence of performed steps where errors have occurred. Thus, it is important

that domain knowledge about process errors is available when the error localization

approach is applied to a real executing processes. Ways to obtain information about

process errors include discussions with domain experts, surveying literature on com-

mon errors in the domain, process vulnerability analysis approaches such as fault-tree

analysis [128] and failure mode and effects analysis [121], and mining process execu-

tion logs. The deployment of a deviation detection and explanation system could

contribute to obtaining higher quality process execution logs than currently existing

ones as the Process Execution Monitor would need to collect various events of interest

to support deviation detection and explanation.

119

CHAPTER 5

VISUALIZATION OF PROCESS EXECUTION STATE

5.1 Overview

Providing information about the state of a system is a widely used practice to

assist humans who operate within complex systems. For example, consider the system

consisting of vehicles operated by human drivers on a given road. A typical vehicle

has means to provide the driver with various kinds of information about the state of

different components of the system for the sake of the safety of everyone on the road

and for efficiency. The various indicators on the dashboard (e.g., fuel level indicator,

oil level indicator, tire pressure indicator, engine temperature indicator) provide the

driver with information related to the state of the vehicle to help the driver make

decisions whether it is safe to continue to operate the vehicle and if not, what the

potential problems are, so that the driver can plan how to address these problems. The

speedometer provides the driver with information to help decide whether the driver

is complying with a regulation established within the system, namely the speed limit.

The mirrors provide the driver with information about the state of other components

of the system, namely the position of other vehicles, to assist the driver with planning

maneuvers on the road. The seat-belt signs and audio warnings provide the driver

with information related to the safety of the humans in the vehicle. GPS units, which

are widely used nowadays, provide driving directions information that could help the

driver plan road maneuvers ahead of time and could also be very helpful for navigating

in areas new for the driver, including detours that the driver needs to take in case

some exceptional condition arises, such as temporary road closures.

120

We believe that such an approach for providing information about the state of

a system could be particularly useful for performers of HIPs, especially given the

criticality of some HIPs (e.g., medical processes) and their increasing complexity.

Such an approach could help reduce the number of errors in HIPs and improve their

efficiency. For example, consider the HIP of treating a patient in a hospital. This

HIP involves the patient and could involve various medical professionals, such as

physicians, nurses, and medical assistants, various kinds of medical equipment, such

as X-ray machine and lab equipment, and various information systems such as an

electronic medical record system, a scheduling system, and a computerized order

entry system. Information about the execution state of that HIP could be useful to

the medical professionals carrying it out. For instance, a list of activities that medical

professionals need to perform can reduce the number of omission errors committed by

these medical professionals. Information about the progress of activities that others

are performing and who is performing them could help each medical professional

determine the overall progress of the process, improve team communication, and

facilitate planning. Information about deadlines, such as that the blood product needs

to be administered within certain period of time after it has been prepared by the

blood bank, could reduce errors related to timing constraint violations. Information

about process execution history, such as who performed which activity using what

resources and at what time, could help process performers understand exceptional

conditions and choices that might affect future decision. Process execution history

information could also be helpful for identifying errors, identifying the root causes of

errors, and planning error recovery. Information about resource availability, such as

the availability of an X-ray machine, could help with scheduling, thus improving the

efficiency of the HIP.

Providing information about the state of an executing HIP to process perform-

ers, however, is challenging. It is difficult to decide what information about process

121

execution state would be useful to process performers at different points of a process

execution, to design effective process state visualizations, and to determine the state

of an executing HIP.

Deciding what process execution state information to show process per-

formers. The execution state of a HIP has multiple components. These include the

state of process activities (e.g., performed, currently being performed, pending), the

state of the resources utilized in the process (including who is responsible for which

process activities), the state of the artifacts that have been produced in the course

of the process execution, problems that have arisen and the status of the handling

of these problems. The execution state of a HIP can also have domain-specific

components, such as the physiological condition of a patient who is part of a medical

HIP.

Deciding what information pertaining to a process execution state component and

what combination of these components would be useful to show process performers is

challenging. The decision might need to depend on multiple factors, such as charac-

teristics of individual process performers (e.g., role and level of expertise), the current

process execution state itself (e.g., if a problem arises, then different kinds of infor-

mation might need to be shown compared to when the process execution is nominal),

and the domain. Furthermore, in some circumstances it might be useful to show

information about not only the current process execution state, but also information

about past or even possible future process execution states.

Designing visualizations of process execution state. Besides deciding what

process execution state information to show process performers, it is also important

to consider how this information could be effectively presented to process performers.

There are multiple ways, for example, to visualize process activities and their rela-

tionships, to make salient pending deadlines or problems that arise during a process

122

executions, and to display information related to process resources. The design of

effective process execution state visualizations needs to involve the use of human fac-

tors approaches, user studies to empirically evaluate alternative visualizations, and

consideration of visual metaphors with which process performers in a given domain

are already comfortable.

Determining process execution state. To show information about the state of

an executing HIP, that state needs to be first determined. To keep track of the

changing state of a HIP as that HIP is being executed, a process execution monitor,

like the one used in the Deviation Detection and Explanation approach (Chapter 4), is

needed. This process execution monitor needs to be able to capture process execution

events. The human element of HIPs, however, poses difficulties for capturing such

events. For example, determining when certain process activities have been performed

could be very difficult, because certain process activities performed by humans are

difficult to observe. Cognitive steps, discussed in section 4.4, are an example of such

activities.

In addition to capturing process execution events, a representation of process exe-

cution state is needed so that this representation can serve as the basis for selectively

providing process execution state information to process performers. This represen-

tation needs to be rich enough to capture the various aspects of process execution

state discussed above. In particular, this representation needs to be able to capture

process activities (past, current, and possibly even upcoming), information about ar-

tifacts created or resources utilized during the execution of the process, as well as

information about problems that might have arisen and how they have been handled.

Appropriately updating the state of such a representation based on the events re-

ceived from a process execution monitor and keeping the state of that representation

“in sync” with the state of the unfolding process is also an important challenge.

123

5.2 The Smart Checklist Metaphor

To address the problem of human errors in HIPs discussed in Chapter 1, we

are investigating an approach that uses a smart checklist metaphor for visualizing

process execution state. This approach is based on the observation that checklists have

been long used to successfully support human process performers of HIPs in certain

domains, such as aviation and space. Checklists have also been recently introduced

in HIPs from other domains where human errors can have critical consequences,

such as medical processes [22, 67], but these checklists are known to have important

limitations [68,132].

The smart checklist approach aims to address these limitations. A smart checklist,

like a traditional checklist, focuses on the process activities. To guide process per-

formers during a process execution, the smart checklist shows activities that process

performers need to do, activities that have already been performed, and potentially

activities that might need to be performed in the future. Unlike traditional checklists,

however, which tend to be static and to specify only the major steps during normal

flow, omitting important details such as exceptional scenarios and concurrent process

execution [31, 70], the smart checklist is dynamic, context-sensitive, and it provides

guidance on a larger set of process scenarios. This is achieved by basing the smart

checklist on a detailed process model and relying on a mechanism for capturing a rich

set of process execution events as a process is being executed. In addition to showing

process activities, the smart checklist provides capabilities for accessing other kinds

of process execution state information, such as the resources needed to perform activ-

ities, the artifacts produced by activities, problems that have arisen while performing

activities and how such problems should be or have been handled.

The smart checklist approach is part of the process improvement environment dis-

cussed in Chapter 2 and shown in Figure 2.1. The Interpreter takes as input a Process

Model and feeds the Process State Visualizer with the next step(s) that need to be

124

performed based on the current execution state of the Process Model. A step in this

context encapsulates not only the name of an activity, but also other associated infor-

mation, such as resources needed to perform that activity and problems (exceptions)

that might arise while performing that activity. Given this information, the Process

State Visualizer issues the appropriate updates to the corresponding visual elements

of the Process State Visualization (represented by the visuals to the immediate left

of the stick figures in Figure 2.1).

As process performers are executing the process, they interact with the Process

State Visualization. There could be different instances of that visualization. Some

instances could be tailored to individual process performers and each such instance

would be used only by the corresponding individual. Other instances could be used by

multiple process performers and could show information related to the activities done

by all these performers. Process performers could use the Process State Visualization

to see what steps need to be done and access other process execution state information.

Process performers could also indicate that a step has been successfully completed or

that problems have arisen while performing the step and what these problems are.

The Event Interaction Manager captures the input of process performers and then

sends the appropriate events to the Interpreter to inform the interpreter how the

process execution has advanced (e.g., done steps, or problems that have arisen). The

Interpreter then consults the Process Model and, given the current execution state

of the Process Model and the newly received information, the Interpreter determines

what steps need to be done next or whether the process has been completed. The

Interpreter then feeds the Process State Visualizer with the next step(s) that need to

be performed and starts the cycle described above again.

The Process State Visualizer could query the Retrospector to obtain and then

visualize information about the process execution history, such as performed activi-

ties, time when they were performed, problems that have arisen and how they have

125

been handled, and resources that have been used while performing process activities.

Similarly, the Process State Visualizer could query the Prospector to obtain infor-

mation about the potential future of the current process execution, such as possible

upcoming activities and resources that might be needed.

The next section presents an initial prototype of the smart checklist approach and

section 5.4 discusses a preliminary evaluation of that approach with respect to the

above issues.

5.3 The Smart Checklist Prototype

5.3.1 Back-end Implementation

The smart checklist prototype is implemented within the Little-JIL process execu-

tion environment [27]. In this environment, the Little-JIL interpreter takes as input a

Little-JIL process model and based on that model assigns work to process performers

(called agents in Little-JIL terminology). A work item is encapsulated in a Little-JIL

step, which contains the name of the activity to be performed, but also additional

information such as any resources needed to perform that activity, artifacts that the

activity needs to produce, and problems (called exceptions in Little-JIL terminology)

that might arise while the agent is performing the activity and that the agent can

report to the Little-JIL interpreter. A step is assigned to an agent by placing that

step on the agent’s agenda. The Agenda Management System (AMS) is the interface

between agents and the Little-JIL interpreter, defining the communication protocol

between them. The AMS is the instantiation of the Event Interaction Manager in the

prototype implementation of the smart checklist approach.

5.3.2 Visualization

As a first step towards designing, implementing, and evaluating the smart checklist

approach, we concentrated on a visualization for a single process performer. This

126

visualization focuses on the activities that are assigned to that process performer. As

previously discussed, however, the smart checklist is intended to support other kinds

of visualizations, such as ones that could be used by multiple process performers

at the same time and that contain process execution state information relevant to

multiple process performers. Such visualizations are left for future work.

Figure 5.1 shows the smart checklist GUI automatically generated from the Little-

JIL process model of the simplified blood transfusion process shown in Figure 2.3

and discussed in Chapter 1. This GUI is from the perspective of the nurse who

is about to start performing the blood transfusion process and has not performed

any steps yet. The visualization in Figure 5.1 consists of three main parts—the

domain-specific top panel, the process header panel, and the bottom checklist panel.

For this particular example from the medical domain, the domain-specific top panel

contains the personal information of the patient who is receiving the transfusion as

well as patient physiological data. The process header panel contains the name of

the process (“blood transfusion process”), the status of the process (in this example,

“in progress”), and a notes button that the process performer can use to enter notes

about the current process execution.

Below the process header panel is the checklist panel. The checklist panel shows

process steps that need to be (or have been) performed. To provide context to process

performers, the checklist panel also shows the hierarchical decomposition of process

steps. A concrete step (corresponding to a leaf Little-JIL step1) is shown as a solid

rectangle. Subprocesses (corresponding to non-leaf Little-JIL steps), which contain

concrete steps and can also contain other subprocesses, are shown as transparent

rounded rectangles enclosing the contained concrete steps and subprocesses. The

1As discussed in Chapter 4, in Little-JIL, the leaf steps are the ones that agents perform. Non-
leaf steps are used primarily to provide abstraction and specify control flow among leaf steps in a
Little-JIL process model.

127

Figure 5.1: The smart checklist at the beginning of executing the simplified blood transfusion
process.

first concrete step that the nurse needs to perform according to the smart checklist in

Figure 5.1 is contact lab for patient’s blood type. This step is part of the subprocess

obtain patient’s blood type, which in turn is part of the overall blood transfusion process.

Each concrete step has several buttons that the process performer can use to

interact with the smart checklist. The rounded button with the checkmark can be

clicked to indicate that a step has been successfully completed. Steps during whose

performance a problem can arise have a rounded button with an “X” on it (this

button is explained later in this discussion). The rounded-rectangular note button

(the right-most button on the rectangle corresponding to the step contact lab for

patient’s blood type in Figure 5.1) can be clicked to bring up a text editor that allows

process performers to write notes related to the performance of the current step.

Figure 5.2 shows the smart checklist for the simplified blood transfusion process

after the nurse has already performed several steps. Once a step has been performed,

the buttons on the right are replaced with a status indicator symbol and a time stamp.

The status indicator symbol could be a checkmark, indicating that a step has been

128

Figure 5.2: The smart checklist after the nurse has performed several steps from the simplified
blood transfusion process.

129

Figure 5.3: The smart checklist after the nurse has successfully completed the simplified blood
transfusion process.

130

successfully completed, or a red “X”, indicating that problems arose while performing

the step. The time stamp indicates the time when the step was successfully completed

or the time when the problems arose. For example, in Figure 5.2, the steps contact

lab for patient’s blood type, order blood from blood bank, pick up blood from blood

bank, and verify patient’s identity have all been successfully completed and, thus,

their buttons on the right have been replaced by the status indicator for successful

completion, the checkmark, and a time stamp next to that checkmark. The height

of the rectangle corresponding to steps that have already been completed is also

decreased to save vertical space. Once a step has been performed, its corresponding

solid rectangle changes background color to distinguish performed from currently

active steps. Currently active steps are shown in green, whereas grey background

indicates that a step has already been performed2.

Figure 5.2 illustrates two more visualizations part of the smart checklist—support

for shuffled steps and artifacts. The steps check expiration date and check product info

match patient info are shuffled steps, meaning that the nurse needs to perform both of

them, one after the other, but they can be performed in any order. The smart checklist

visualizes this shuffle concept by showing all shuffled steps as currently available to

perform (indicated by their corresponding green rectangles with rounded buttons on

the right) and by showing the text “Perform all of the following in any order” on the

subprocess that encloses the shuffled steps.

The briefcase icon on some of the steps in Figure 5.2 represents resources that are

needed to perform the step. For example, clicking on the briefcase icon on the step

check product info match patient info, brings up a list of resources needed for that

step—in this case there is only one resource on the list, namely the blood product.

2The colors may not be easily distinguishable if the figures are printed in black and white, but
the substitution of the buttons on the right of the step rectangle with a status indicator and a time
stamp are visual cues that unambiguously distinguish currently active from already performed steps.

131

Figure 5.3 shows the smart checklist after the nurse has successfully completed

the blood transfusion process. All steps in the checklist panel that had buttons on

the right now have a status indicator and a time stamp instead. Also, the background

color of all steps is now grey. Furthermore, the process status in the process header

also changes—it now says “Successfully completed” and it shows a status indicator

icon (a checkmark) and a time stamp for the overall process completion time.

Figures 5.4, 5.5, and 5.6 show a scenario where problems arise while the nurse is

performing the blood transfusion process. Figure 5.4 shows the smart checklist at the

same stage of the process as Figure 5.1, but this time when the nurse contacts the lab

for the patient’s blood type, the patient’s blood type is unavailable. The nurse can

bring up a list of potential problems that could arise during the performance of a step

by clicking the rounded button with the “X”. In the example in Figure 5.4, this list

contains only a single problem—“patient blood type unavailable”—but, in general,

there could be more problems, depending on how many exceptions are specified in

the corresponding step in the process model.

Once the nurse indicates that the “patient blood type unavailable” problem has

arisen, the smart checklist dynamically updates the next steps that need to be per-

formed. Figure 5.5 shows the smart checklist for the scenario when this problem

has arisen and the nurse has subsequently performed several other steps. Note that

unlike the scenario in Figure 5.2 where the next step to perform after contact lab for

patient’s blood type is order blood from blood bank, in the scenario in Figure 5.5 the

nurse needs to perform the test patient’s blood type subprocess. This subprocess con-

sists of two substeps—obtain blood specimen from patient and send blood specimen to

lab for testing—and needs to be performed to handle the problem that the patient’s

blood type is unavailable. After the nurse tests the patient’s blood type, the process

execution goes back to normal process flow with the step order blood from blood bank

to be performed next.

132

In the scenario shown in Figure 5.5, another problem arises, this time while

the nurse checks that the information on the blood product matches the patient

information—this information does not match and the nurse indicates that product

check has failed. The smart checklist then suggests that the blood transfusion process

should be terminated as there is the risk of giving wrong blood to the patient. In the

snapshot of the smart checklist in Figure 5.6, there are no more active steps, the pro-

cess status message in the process header panel has updated to “Failed to complete

because of problems”, and the process status indicator icon next to that message is

now an “X”. In this simplified example, the process model we wrote assumes that

the process terminates after a problem arises during the subprocess of checking the

blood product. A more realistic process model, however, would specify behavior for

handling problems that arise during the blood product check. If this is the case, the

smart checklist would provide guidance to the nurse based on this specified behavior

in the process model.

5.4 Preliminary Evaluation

We have performed a preliminary evaluation of the smart checklist approach and,

in particular, of the single-agent smart checklist visualization. In the process of

building the smart checklist prototype, several informal presentations of the smart

checklist were given to a medical doctor, a nursing professor, an industrial engineer-

ing professor, and several computer science professors and students (both graduate

and undergraduate), to seek their comments and update the prototype accordingly.

The initial prototype was formally demonstrated to a panel of medical experts (four

medical doctors and a registered nurse (RN)), who would be potential users of such

a smart checklist, and they were asked for feedback.

The example process used during the panel meeting was the subprocess of set-

ting up an infusion pump for patient-controlled analgesia (PCA), usually performed

133

Figure 5.4: The smart checklist at a point of the executions of the simplified blood transfusion
process where the nurse is about to indicate that problem has arisen.

134

Figure 5.5: The smart checklist after the nurse has performed several steps from the simplified
blood transfusion process and is about to indicate that another problem has arisen.

135

Figure 5.6: The smart checklist after the simplified blood transfusion process was not successfully
completed due to problems during the execution of the process.

136

by a nurse as part of an overall infusion therapy process. The subprocess of setting

up the infusion pump includes activities such as obtaining the pump, assessing pa-

tient infusion-related hazards, physically preparing the pump, and performing various

safety checks before the infusion can be started. This process was captured in the

Little-JIL process modeling language [27] (Little-JIL is described in detail in sec-

tion 2.3) and the resulting process consisted of 37 Little-JIL steps, 24 of which were

leaf steps.

A smart checklist was automatically generated from the Little-JIL model of the

subprocess of setting up the infusion pump. Several process scenarios, including

scenarios where problems arose (such as there are patient infusion-related hazards and

extra work needs to be done to assess whether it is safe to perform the infusion) were

shown to the panel of domain experts. The RN in the panel had extensive experience

with performing the process of setting up the infusion pump and the medical doctors

had experience with ordering such infusions and overseeing their execution. The

domain experts in the panel were encouraged to provide open feedback on the smart

checklist and our research group had also prepared a detailed list of questions related

to the issues discussed in section 5.1.

The smart checklist was well received at the panel meeting as well as at the infor-

mal demonstrations. The domain experts recognized the potential of the approach

to reduce errors, improve process documentation, and serve as a training aid. In the

rest of this section, we discuss the smart checklist approach with respect to the issues

presented in section 5.1 and based on the feedback obtained during the preliminary

evaluation.

Deciding what process execution state information to show process per-

formers. The domain experts confirmed that it would be useful to show past process

activities in addition to the activities that need to be currently performed. They

137

thought that being able to access the process execution history would be particularly

helpful during hand-offs.

Some of the domain experts suggested that the smart checklist should support

different modes, depending on the level of expertise of the process performers who

use it. For example, a smart checklist for novice process performers can provide more

detail than a smart checklist for expert process performers. The domain experts

pointed out, however, that a detailed list of possible problems that might arise during

the performance of a step would be useful even for expert process performers.

As previously discussed, the smart checklist GUI in the current implementation

of the prototype is from the perspective of a single process performer. The domain

experts confirmed our expectations that in some situations it would be useful to access

the tasks of other performers as well to get a better sense of the overall execution state

of the process. Furthermore, it might be useful if the smart checklist supports ways

for communication between different process performers that are working together

as a team, even suggesting integration of the smart checklist with existing hospital

communication systems.

Designing visualizations of process execution state. Domain experts found

the step hierarchy useful as a way to visualize the structure of the process. Some

of them mentioned that the hierarchy would be particularly useful when browsing

through the process execution history as this history could be potentially long, but

the hierarchy may not be necessary for the currently active steps, as usually there

will be a small number of such steps. In fact, some of the domain experts proposed

providing an even stronger distinction between current and past process steps—for

instance, by placing them on different tabs as opposed to having them in the same

scrollable hierarchical list.

The icons used in the smart checklist prototype were controversial. Some domain

experts found them intuitive, whereas others did not. For instance, the RN who

138

participated in the panel meeting mentioned that the green checkmarks and red “X”s

were similar to the ones that appear on the interface of a pump that this RN had used.

Some of the physicians, however, found the checkmark and the “X” icons confusing—

one physician, for example, pointed out that it is not clear whether a red “X” means

that a step was not performed or that the step was performed, but unsuccessfully.

There will not be a single set of icons that will be intuitive for all users and, thus,

training will be required regardless of which set of icons is selected. The iconography

used on the smart checklist GUI, however, requires further research.

The current smart checklist prototype supports several customizations, including

user-selected colors for representing the different states of process steps and deciding

which intermediate Little-JIL steps to hide from the step hierarchy shown in the smart

checklist GUI. The domain experts found the support for customization useful, but

pointed out that decisions about what should be customizable and by whom should be

made very carefully. For example, not every process performer should be allowed to

change the colors of process step states, because this might be confusing to another

process performer taking over after a handoff. Different hospitals, however, might

want to use different colors, perhaps based on the user interfaces of other systems

deployed in a particular hospital. Thus, customizing the colors of steps on the smart

checklist should be allowed to an administrator responsible for deploying the system

in a given hospital.

Determining process execution state. Our focus for the initial smart check-

list prototype and its evaluation was on the first two issues described above, namely

deciding what information related to process execution state to show and how to

visualize this information. To determine the state of an executing process, the cur-

rent prototype of the smart checklist makes the simplifying assumption that process

performers would provide all process execution events of interest by interacting with

the smart checklist GUI. For example, for every successfully completed step, process

139

performers need to indicate that the step has been successfully completed by clicking

the green button with checkmark. Reporting all process execution events, however,

would add to the workload of already busy process performers. Thus, in future re-

search we plan to investigate ways to automatically recognize some process execution

events. For example, if a nurse starts an infusion pump, that pump could directly

send an event to the smart checklist that the step perform infusion has been started.

To automate the capturing of some process execution events, the smart checklist ap-

proach would benefit from a mechanism for monitoring a process execution like the

one required for the deviation detection and explanation approach and discussed in

section 4.4.

An interesting issue related to keeping track of process execution state is support

for undo. Both at the demonstration to the panel of domain experts and at other

informal demonstrations of the smart checklist prototype, it has been requested that

the smart checklist allows process performers to roll back the smart checklist by

indicating that an event that has been reported to have happened has not actually

happened. For example, if process performers have indicated via the smart checklist

GUI by mistake that they have performed a step, they should be able to indicate that,

in fact, this step has not been performed. There are important concerns that need to

be considered, however, when providing support for undo. Unlike a word processor,

where any editing action, such as typing or deleting a character, can be easily undone

and redone, in the domain of HIPs it is not clear what it means for a step to be undone.

For example, if a medication has been administered to a patient, that medication

cannot easily be “unadministered” to the patient. Even if a step is not performed

in reality, supporting undo might still need to be done with extra care, because the

sheer indication that a step has been performed might have side effects and influence

the process execution. For instance, suppose a nurse indicates by mistake that the

step “administer medication” has been performed, but the medication was never

140

given. The nurse would then want to undo the step “administer medication”, but

if indicating that this step has been done triggered the smart checklist system to

show other process performers that they can start new activities, and some of these

activities are actually started, undo becomes problematic. Thus, the support for undo

in the context of HIPs is a challenging issue that requires further investigation.

Another interesting issue related to determining the state of an executing process

is determining possible future executions. Knowing what steps are coming up ahead

of time can help process performers better plan their work. It is difficult, however,

to predict how a process execution will unfold and, thus, some strategies are needed

to determine which of the possible future executions should be shown to process

performers. Furthermore, there seems to be a controversy between domain experts

of whether showing information about potential future process executions would be

helpful. Some of the domain experts with whom we interacted, for example, suggested

that it might be useful to be able to see on the smart checklist GUI what steps in the

process are left to be done, whereas others were skeptical of how accurately future

executions can be predicted. This issue about determining and showing possible

future executions also requires further research.

141

CHAPTER 6

RELATED WORK

This chapter starts with an overview of related work on process elicitation and

modeling. It then continues with a discussion of existing approaches for online process

guidance, including recent work on visualization of process execution state and work

on traditional checklists and process guides. Existing approaches for dealing with

process deviation are presented next, followed by a discussion of approaches related to

error localization. The chapter concludes with an overview of work on characterizing

and classifying human errors.

6.1 Process Elicitation and Modeling

6.1.1 Process Elicitation

Eliciting information about complex HIPs is important for reasoning about them

and for potentially improving them. Methods to facilitate such elicitation have been

proposed. For example, Woods and Hollnagel discuss detailed observations of activi-

ties of process performers in context as a key method of discovering patterns of work

in what they call “joint cognitive systems” [133]. In an investigation of approaches

towards measuring macrocognition (where macrocognition is a set of cognitive pro-

cesses that occur across multiple individuals involved in a complex task), [103] outlines

several techniques for observing macrocognition processes. These techniques include

presenting humans with scripted scenarios and asking them to solve a problem or

make a decision within the presented scenarios; gradually presenting new data and

asking humans to look for connections and patterns; or asking humans to prepare a

142

plan for accomplishing a task. Graesser and Murray report that a question-answering

methodology was able to provide rich information on human-computer interaction

tasks, such as logging into a computer and creating and modifying a text file [63].

This methodology was a form of semi-structured interviews as several rules were used

to determine what questions to ask in what situations.

The process elicitation techniques that we studied in this work (section 3.1) build

on the techniques described above for eliciting information about complex socio-

technical systems. We focused, however, on three particular kinds of information—

nominal steps, exceptional situations, and responses to exceptional situations—that

need to be included in process models that can drive the proposed online process

guidance approaches. We then compared qualitatively and quantitatively the process

elicitation techniques we studied in terms of their ability to elicit these particular

kinds of information.

6.1.2 Process Modeling

In this section, we discuss other work related to the process modeling aspects

we investigated in this thesis, namely the modeling of exception handling in HIPs

and the use of different process model representations to facilitate process model

understanding.

6.1.2.1 Exception Handling in HIPs

Exceptional situations arise frequently during the execution of HIPs. Thus, many

process and workflow languages include constructs to allow for the definition of ex-

ception handlers (for example, Little-JIL [27], WIDE [26], OPERA [66], GAT [95]).

While researchers continue to study how best to provide exception handling mech-

anisms within process languages, exception handling has become more mainstream

with its inclusion in languages like WS-BPEL [10, 46] and products like IBM’s Web-

Sphere [58].

143

The need to identify exception handling patterns in processes has also been rec-

ognized. Russell, van der Aalst, and ter Hofstede [116] discuss exception handling

patterns in workflows. They approach exception handling patterns by identifying four

dimensions associated with exception handling mechanisms: the nature of the excep-

tion, if and how the work item that encounters the exception continues, whether other

work items are cancelled as a result of the exception, and whether there is any roll-

back or compensation performed. Based on this analysis, they suggest that these four

dimensions be used to derive a universe of exception handling patterns. They suggest

essentially that each of the different combinations of the possible choices from each

of these four dimensions be considered to be an exception handling pattern, without

regard to whether these combinations are commonly used in practice and without

providing a description of the workflow problems that the pattern might be suitable

for addressing. Thus, it is still left to the workflow designer to understand the mech-

anisms at their most basic level. Identifying those combinations may be useful as a

benchmark to determine the exception handling capabilities of a process language.

On the other hand, these combinations do little to aid process designers in identifying

and reusing existing high-level solutions since no general higher-level purpose for a

particular combination is provided to guide the designer in choosing a pattern to use.

The combinations that Russell et al. identify also lack names that might suggest their

usefulness. Instead, they name the patterns with acronyms derived from the choices

made out of each of the four dimensions. For example, they identify 30 patterns

associated with expired deadlines alone, two of which are called OCO-CWC-NIL and

ORO-CWC-NIL. Our approach differs from the approach of Russell at al. in that it is

driven by recognition of patterns that we have identified through our work in defining

processes in multiple domains. We thus approach the identification of patterns in

a top-down manner, analyzing uses of exception handling to generalize and extract

144

patterns that we believe to be useful beyond the specific processes in which we have

found them.

6.1.2.2 Process Model Representations

The importance of describing processes to various stakeholders, perhaps from

different backgrounds, is well-established. In some early efforts to accomplish this,

organizations created paper-based process guides or manuals that describe, largely

in natural language, the process of interest. It has been observed, however, that

such paper-based descriptions are difficult to navigate (due to their inherently linear

structure and significant size), are time-consuming to develop, are hard to keep in

sync with the evolving process (or its formal description), and are nearly impossible

to customize. Thus, such paper-based descriptions are not very effective and rarely

created or used [80].

To alleviate some of the disadvantages of paper-based process descriptions, orga-

nizations have resorted to electronic process guides (EPGs), which usually contain

hyperlinks that facilitate navigation. Using hyperlinks addresses to some extent the

navigation problems with paper-based process descriptions. Manually creating and

maintaining EPGs remains a large problem. For example, [20] reports that during

the maintenance of a V-Modell guide, “when changing the glossary structure to tool-

tip style, some 2000 links had to be updated.” As a result, some tools have been

proposed to automatically generate EPGs, such as Adonis [1], ARIS [2], Eclipse Pro-

cess Framework (EPF) Composer [69], and Spearmint [19]. Such tools use a process

model as input to a generator that automatically creates a hyperlinked EPG based

on that process model. The process model is usually captured in some notation that

supports constructs such as activities and their hierarchical decomposition, artifacts

and resources, roles, and the relationships between these constructs (e.g., which role

is responsible for which activity, what resources are needed to perform an activity,

145

and what artifacts are produced by an activity). Process engineers can then associate

detailed natural-language descriptions with each such component of a process model.

Once a process model is in place, an EPG generator can use that model to create

a hyperlinked document describing the process. EPF Composer and Spearmint, for

instance, create a document that has a section showing the decomposition of the

process activities (as a summary view of the process) and another section with a

detailed natural-language description of the selected activity/artifact/role. These

sections, however, contain little indication of the order, or the flow of control among

the process activities. The section that provides a summary view of the process, for

example, shows the hierarchical decomposition of the process activities, but not the

order in which they need to be executed. The detailed, natural-language description

of the selected activity may contain some information about control flow, but this

information is included in a non-systematic way as it is up to the person who writes

the description to decide how much control flow information to include.

Another concern with the process descriptions generated by the tools mentioned

above is related to the lack of semantic richness of the process notations used to create

the process models that are in turn the basis for the generation of EPGs. Such process

notations often lack support for complex exception handling behavior, concurrency

and synchronization mechanisms, or even mechanisms for simpler constructs such as

looping. For example, [106] reports that the EPF Composer was not able to represent

parts of a software development process because EPF Composer could not adequately

model the looping at the activity level.

The Little-JIL narrative and visual representations described in section 3.2 contain

information about resources, artifacts and agents, similar to the EPGs generated by

the tools discussed above, but also include a detailed description of the control flow.

This is due to the fact that the Little-JIL language provides complex control flow

constructs, such as support for exceptional behavior, concurrency, synchronization,

146

and recursion. The Little-JIL narrative and visual representations are automatically

generated from the process model, eliminating the issues related to manual creation

and maintenance mentioned above.

6.2 Online Process Guidance for HIPs

In this section, we discuss existing approaches for providing online process guid-

ance. We first discuss several approaches for providing guidance by visualizing the

state of executing HIPs. Then, we discuss several approaches for what we call passive

guidance, which are approaches where there is limited or no automated support and

process performers are responsible for making sure they adhere to a process specifi-

cation.

6.2.1 Visualization of the Execution State of HIPs

6.2.1.1 Trauma Center Process Guidance System

Fitzgerald et al. have designed and deployed a process guidance system in a trauma

center to guide medical professionals during the first 30 minutes of trauma resuscita-

tion [57]. Trauma resuscitation medical algorithms have been modeled what Fitzger-

ald et al. call “branch tree logic” (no reference to that logic is provided in [57], but it

seems that this logic is similar to a decision tree representation). The process guid-

ance system has been used by a team of 6-7 medical professionals with an emergency

physician as a team leader and a senior trauma nurse acting as a scribe to document

the resuscitation. The visualization of the process guidance system (Figure 6.1) has

been displayed on a 40-inch LCD monitor. The process guidance elements were a set

of action prompts (rectangular buttons, around 3-4 on the screen at a time). The

screen also contained patient data such as name and DOB, readings of patient phys-

iological conditions (heart rate, blood pressure, etc.), the patient diagnosis(es), and

the drugs and treatments given to the patient.

147

Figure 6.1: Visualization of the process guidance system used during trauma resuscitation at the
Alfred Trauma Center, Melbourne, Victoria, Australia (2006 – 2008).

Using statistical hypothesis testing, Fitzgerald et al. demonstrate that the intro-

duction of process guidance improves adherence to medical guidelines/algorithms.

The reduction in morbidity and mortality was not significant, except one aspect of

morbidity—morbidity from shock management. The process guidance system also

provides the ability for semi-automated documentation of process executions. The

scribe nurse inputs the activities performed by the medical team via a touch screen

using standardized activity names and the systems strings together the sequences of

activities that correspond to process executions. The sequences of activities accumu-

lated over time could be analyzed to support continuous process improvement [119].

The process guidance system described by Fitzgerald et al. supports relatively

simple control flow. It does not seem to support more complex concurrent process

execution, for example. It also focuses on the nominal flow, with little support for

handling exceptional scenarios outside the scope of the encoded medical algorithms.

Examples of such exceptional scenarios are cases when the patient has been misiden-

148

tified or when the required type of medical professional is unavailable (e.g., a doctor)

and he/she needs to be substituted by a different type of medical professional (e.g.,

a nurse).

6.2.1.2 Visualization of Patient Flow

Baffoe et al. [17] describe an approach for inferring process execution state based

on a process model and events generated by what they call “business process manage-

ment (BPM) technology” (e.g., patient registration systems, computerized physician

order entry systems, scheduling systems) and real time location systems (RTLSs).

The process model is essentially a finite-state machine, where transitions are trig-

gered when a set of events are reported by the BPM technology and/or RTLSs. By

correlating such events with the transitions in the process model, the state of an

executing process can be tracked as events are recorded.

A prototype of the approach was implemented for a medical process. In particular,

the flow of cardiac patients through the Emergency Department and the Cardiac

Care Unit was modeled and a case study was conducted with a community hospital

in Ontario, Canada. The prototype measured service and wait times and compared

them against target times for the hospital. A visualization was developed for the

duration of each stage of the care process for a given patient. Color coding was used

to distinguish between stages whose measured duration is within an acceptable range

(green), stages whose measured duration is approaching the target limit (yellow),

and stages whose measured duration has exceeded the target limit (red). Figure 6.2

shows an example of this visualization. A similar visualization is also generated for

aggregate statistics, such as average time for a given process stage for all patients.

The prototype of the patient flow visualization approach focused on the nominal

process flow and it appears that the underlying process model captured a single

process execution. It will be interesting to evaluate the ability of this approach

149

Figure 6.2: Visualization of cardiac patient flow.

to support process performers on more complex flow, such as when non-nominal

situations arise or when concurrent execution is involved. The process model used in

the evaluation case study is also very high-level. It will be interesting to investigate

how the approach could support process performers when tasks at lower level of

granularity are taken into account.

We believe the patient flow visualization approach nicely complements the smart

checklist approach to process execution state visualization presented in section 5.2.

The two approaches focus on different kinds of process information—the former on the

patient flow and the latter on the activities of various process performers—and if used

together, they could improve the overall situational awareness of process performers.

6.2.1.3 Visualization of Patient Location During Perioperative Clinical

Processes

PERICLES [6] was a research initiative between 2009 and 2011 whose main ob-

jective was to facilitate clinicians’ process awareness. A surgical procedure is modeled

150

using the YAWL process modeling language [8] and a tag is attached to a patient,

so that an ultrasound-based realtime locating system can determine in which room

a patient is. The patient location information or information manually entered by

process performers is used to determine which steps from the process model are be-

ing performed. As a result, a visualization is created that shows the location of the

patient in the hospital. Resource information captured in the process model is used

to assist operating room coordinators with resource assignments [100].

According to [5], PERICLES has been implemented in the central operating fa-

cility of a German partner hospital. We were not able to find published studies that

report the results of this implementation. Based on the project’s description ([5, 6])

and the publications resulting from this project ([84, 100, 101]) it appears that the

process model that was used in PERICLES was relatively small and simple—it con-

tained about a dozen steps and did not capture exceptional situations.

6.2.2 Traditional Checklists and Process Guides

In the above approaches for visualization of process execution state, the informa-

tion provided to process performers is to some extent dynamically updated depend-

ing on how the current process execution unfolds. Traditional checklists and process

guides, on the other hand, are static in the sense that information about potentially

several complete process executions is provided and it is up to process performers to

decide what information applies to the current process execution and to keep track

of the progress of that execution.

6.2.2.1 Checklists

Checklists have been widely used for real time-process guidance. Examples of such

checklists include the Procedure Checklist for Administering Blood Transfusion [130]

included in a standard nursing reference [131], the Surgical Safety Checklist advocated

by the World Health Organization (WHO) and used during surgery worldwide [136],

151

and the Pilot’s Abbreviated Flight Crew Checklist for OV-10A aircrafts used in the

Vietnam war [124]. Checklists have been effective in reducing the number of errors

in aviation and are now “universally employed in commercial and military aviation

and space flight” [23]. Checklists have also proven beneficial in improving safety and

efficiency in other industries, such as product manufacturing [67].

Recently, healthcare has started the adoption of checklists as well. Various studies

have reported the success of checklists in different domains of medicine. The use of a

checklist by a nurse for obtaining medication history during the initial patient assess-

ment has been linked to the reduction of patient medication histories that contain

medication discrepancies [123]. The implementation of a Quality Rounds Check-

list in an ICU has been linked to the decrease in the number of pneumonias [54].

In another ICU study, a checklist was used to ensure adherence to standard pro-

cedures (such as hand-washing and removing unnecessary catheters) and the rate of

catheter-related infections decreased after the medical professionals started to use the

checklist [108]. [51] reports improvement in patient outcomes after a comprehensive

surgical checklist was introduced in six hospitals. This checklist included not only

information about what needs to be done in the operating room, but also information

related to pre- and post-surgery tasks.

The role of checklist in healthcare and their direct impact on reduction of errors,

however, have been more controversial than in other industries. Birkmeyer [22] ac-

knowledges that checklists have been linked to reduction in errors in healthcare but

also points out limitations of some of the studies in terms of controlling for con-

founding factors (such as concurrent implementation of outcomes measurement and

feedback and Hawthorne effect [85]), and lack of correlation between level of compli-

ance with checklists and extent of improvement in outcomes. In addition, Birkmeyer

raises a concern about the lack of studies supporting the durability of improvements

linked to checklists. He argues that “It is . . . conceivable that the benefits of surgical

152

checklists could wane over time as they lose their novelty and become a perfunctory

component of care.”

Hales et al. [67] point out that despite reported positive outcomes, checklists are

not routinely used in the clinical setting. [67] suggests that some of the factors for

checklist adoption resistance in healthcare include operational barriers, such as the

difficulty to standardize certain medical processes, as well as cultural barriers. Hales

et al. write that “. . . there is often an assumption that the use of memory aids is an

admission of weakness or lack of medical skill or knowledge, which can contribute to

negative attitudes toward the implementation of these types of resources. Further-

more, clinicians often view standardization, or the use of standardized tools such as

checklists, as a limitation to their clinical judgment and autonomous decision mak-

ing.” We believe the detailed and semantically rich process model used in our proposed

approach for process state visualization could capture the different acceptable varia-

tions of performing a medical process, and thus the resulting smart checklist would be

more flexible in terms of supporting clinical judgment and autonomous decision mak-

ing than traditional checklists. Furthermore, clinicians may opt to not use a smart

checklist and rely only on guidance provided by the deviation detection and explana-

tion approach, which does not require medical professionals to explicitly use memory

aids and interferes only when a deviation from the acceptable ways to perform the

process is detected.

Traditional checklists are also often incomplete and tend to focus on the normative

workflow, omitting important details about exceptional scenarios [31]. Checklists

could also contain ambiguities. For example, the tasks specified in the Surgical Safety

Checklist by the WHO [136] are often high-level and ambiguous. The accompanying

implementation manual [135] provides a more detailed natural language description

of each task on the checklist, but there are still some ambiguities. For example, at

one point the manual says that “the coordinator verbally confirms patient identity”

153

but it does not specify how exactly that should be done—e.g., how many patient

identifiers (and which) should be used. There has been evidence that even simple

processes such as verifying patient identity are error-prone [72, 74] and leaving their

specification ambiguous in process guides could lead to undesired process outcomes.

Another deficiency of checklists is that they primarily help with avoiding errors

of omission [23]. However, other kinds of errors, such as commission errors, occur in

HIPs [59,71,73,111].

Our approaches for online process guidance can help address some of the lim-

itations of checklist discussed above. The process models we use are written in a

rich language, which could enable the inclusion of complex execution behaviors, in-

cluding normative flow, exceptional flow and concurrent execution. Thus, a smart

checklist generated from such a process model can support process performers on a

larger variety of scenarios that traditional checklists do. A smart checklist is also

context-sensitive and dynamically updated, thus, making relevant information salient

and removing information that is not relevant to the current process execution. The

use of a formal process model can also address the ambiguity problem from which

some checklists suffer.

6.2.2.2 Process Guides

The process guides and manuals described in section 6.1.2.2 can also be used

to assist process performers while a process is being executed, but they suffer from

the limitations also described in section 6.1.2.2—the paper-based process guides are

difficult to navigate, whereas the electronic ones are often incomplete as they tend to

not represent complex control flow information well, or not at all. For complex HIPs,

such as medical processes, precise activity ordering or control flow information can be

very important. Medical guidelines, for instance, can define strict constraints on the

order of performing certain activities. Also, medical processes exhibit a high degree

154

of concurrency (as different medical professionals can work on the same process in

parallel) and non-deterministic choices made by agents at runtime. Thus, a process

guide that does not provide in a systematic way sufficient amount of control flow

information might not be able to provide the level of guidance to process performers

necessary to reduce control-flow related errors (e.g., the performance of activities out

of order and simultaneous performance of activities that should not be performed at

the same time).

6.2.3 Approaches for Dealing with Process Deviation

This section discusses formal approaches that have been used to deal with process

deviation. Most of these approaches have not been directly used for process guidance

(except for the approach to deal with deviation in software design processes), but the

techniques they utilize could potentially be useful. In fact, our approach for error

localization shares commonalities with Cook and Wolf’s approach for validation of

software process models [42].

6.2.3.1 Software Process Validation

Cook and Wolf studied techniques for measuring the discrepancies between process

models and process executions [42]. In particular, they investigated how to measure

the difference between an a sequence of performed steps and a sequence of steps from

a process model, and given a sequence of performed steps, how to find the “closest”

sequence of steps from the process model.

The problem of comparing two sequences of steps is cast as a string comparison

problem and a standard dynamic programming algorithm [83] is used to compute

the difference between two strings in terms of insertion and deletion edit operations.

Two validation metrics for sequence difference are defined based on the number of

insertion and deletions needed to transform one sequence into another. These metrics

contain tuning parameters that can be adjusted based on properties of the process

155

and of the domain. In Cook and Wolf’s study, the values of the tuning parameters

are set based on what has been observed to work in their case studies, but a rigorous

and systematic approach to determine these values is not discussed.

The problem of finding the process model sequence that is “closest” to a se-

quence of performed steps is cast as a search problem. The model is assumed to be

a finite-state machine. A state in the search space is then determined by a triple—a

model state, an index in the sequence of performed steps and an operation (dele-

tion/insertion/match) that led to the current state in the search space. A varia-

tion of best-first search [117] is used to estimate the closest process model sequence.

Heuristics are used to estimate the solution cost and to prune the search space.

6.2.3.2 Dealing with Deviations in Software Design Processes

Da Silva et al. have been studying the problem of dealing with deviations in soft-

ware design processes [47–49]. Their general approach is based on defining deviation

rules in terms of logical formulas and checking in real time whether a process exe-

cution sequence satisfies these logical formulas. The deviation rules are expressed in

LTL in [49], in Praxis (a language defined by the authors) in [48] and as Prolog rules

in [47].

In [47], a risk level and a cause for a deviation can be specified in the deviation

rules. The risk level is an estimate of the risk of not achieving the process outcomes

given that the deviation occurs. The cause for a deviation is an activity that led to

the deviation. For example, suppose that in a given process, activity a should precede

activity b. A deviation rule (which is a logical formula) can be written saying that

activity b occurs before activity a has occurred and that the cause for this deviation is

activity b. Such a deviation rule will be checked at runtime as a sequence of activities

is performed and if at one point this rule is satisfied, a deviation will be reported and

its cause will be determined as activity b.

156

Once a deviation has been detected, [47] proposes an approach for identifying

sequences of corrective actions to address the deviation. This is achieved by specifying

another set of rules (called generator functions), where each rule specifies a sequence

of actions that need to be taken once a specific deviation caused by a specific activity

occurs. There could be multiple sequences of actions (called correction plans) for

a given (set of) deviation(s) and these correction plans are ranked by risk level of

the deviations they fix—a correction plan that leaves the least number of high-risk

deviations unfixed is considered the best one.

Instead of proposing correction plans once a deviation has been detected, in [49]

the idea of tolerance is used. There are two kinds of logical rules—deviation rules,

based on the constraints coming from the process model, and tolerance rules, which

are relaxations of the deviation rules based on some predefined tolerance levels for

the violation of a given deviation rule. Both the deviation and tolerance rules are

checked at runtime. Two separate reports are produced at each step — a deviation

report shows the deviation rules (i.e. original process constraints) that are violated;

the tolerance report shows the tolerance rules that are violated. These reports are

shown to the process performer who can decide to address the deviations listed in the

reports or to ignore them and continue with the process execution.

In the general approach presented by Da Silva et al., only deviations for which cor-

responding deviation rules have been created statically (before executing the process)

can be detected at runtime. In [47] and [48] creating these rules could be error-prone

and time-consuming, especially for larger and more realistic process models, since

most of the work needs to be done manually. Also, only “expected” deviations could

be detected since deviations for which there are no deviation rules defined cannot

be detected. These problems are addressed in [49], where the deviation rules are

automatically created from a process model.

157

The strategy for identifying the cause for a deviation presented in [47] seems

limited since the cause for a given deviation is hardcoded into the corresponding

deviation rule. This approach will not be able to handle the issue of delayed deviation

detection (described in section 4.1.2.1), where there could be several plausible, and

perhaps equally likely, causes for the deviation. In general, da Silva et al. assume that

the intent of process performers is always known—if a process model has multiple

branches, at runtime it is always known which branch the process performers intend

to execute. This way, it can be unambiguously determined what deviation rule is

violated and consequently what the deviation and its causes are. In the approach

presented in this thesis, we assume that the intent of process performers is not known,

thus, there could be multiple plausible explanations for a detected deviation.

The correction plans that are generated upon detection of a deviation in [47]

are based on rules defined prior to process execution. This is similar to specifying

exception handling in process languages with rich semantics. The process guidance

approach presented in this thesis uses process models specified in a language with

rich semantics and it is assumed that any exception handling information is already

part of the process model. A deviating sequence represents a behavior not described

by the process model and therefore there is no static hardcoded knowledge about

how this behavior should be addressed. Upon deviation detection, we aim to provide

process performers with information to help them decide how to recover from the

potential errors based domain knowledge and expertise.

6.2.3.3 A Framework for Formalizing Inconsistencies and Deviations in

HIPs

Cugola et al. [45] present a framework for formalizing the notions of deviations and

inconsistencies between a HIP (e.g., a software development process) and a process

model-based automated system that supports the execution of the corresponding

158

HIP (e.g., a process-based integrated development environment). To accomplish this

formalization, the HIP and its process-based support system (PBSS1) are represented

as state machines (possibly with infinite number of states). In addition there are two

relations, Rs and and Rt, that relate states and transitions respectively from the

HIP state machine and the PBSS state machine. These state machines and relations

comprise an environment.

A deviation is a concept related to transitions and an inconsistency is a concept

related to states. An environment deviation occurs when a transition in the PBSS

state machine does not correctly reflect a transition in the HIP state machine. For

instance, a design document is created, but the PBSS is not updated with that

information. Environment deviations can lead to environment inconsistencies. An

environment inconsistency occurs when the HIP and its PBSS become inconsistent,

i.e., the state of the PSS does not correspond to the state of the HCS as described

by Rs. For example, the HIP is in a state where a design document exists, but the

PBSS is in a state where a design document does not exist.

Cugola et al. also define domain deviations and inconsistencies. A domain devia-

tion is an event that deviates from the expected behavior of the HIP. An example of

a domain deviation is a developer writing the source code before writing its design,

assuming that there is a process rule saying that design should be written before

code. Unlike environment deviations, domain deviations can occur even when when

no PBSS is used, but some domain rule or policy is violated. Domain deviations can

lead to domain inconsistencies. An example of a domain inconsistency is a situation

where the source code does not have a corresponding design file.

While the presented framework formalizes the notions of deviation and inconsis-

tency, there are difficulties in utilizing it to provide online process guidance. To detect

1The names and the abbreviations are ours. Cugola et al. call the HIP a Human Centered System
and the PBSS a Process Support System.

159

deviations, the state machines that model the HIP and the PBSS must exist. The

model of the HIP must capture all possible executions, including deviating/erroneous

executions, so that these deviations can be detected when comparing the transitions

of the HIP state machine to the transitions of the PBSS state machine. Having such a

HIP state machine that captures all possible executions is impractical and we believe

that the approach of using just one execution event sequence to represent what is

happening in the HIP is more feasible.

6.2.3.4 Conformance between Process Executions and Process Models

Similar to Cook and Wolf [42], Rozinat and van der Aalst [113–115] have studied

methods for quantifying the conformance between a process model and executions of

the modeled process. In particular, they focus on the problem of comparing a process

model to an execution log (a collection of observed process executions). Like Cook

and Wolf, they are interested in measuring fitness (“Does the observed process com-

ply with the control flow specified by the process model?”) but also appropriateness

(“Does the model describe the observed process in a suitable way?”).

Rozinat and van der Aalst use a Petri net [104, 105] process model and compare

it to an execution log. Each execution sequence in the log is “replayed” in the Petri

net and things like number of consumed tokens, number of produced tokens, and

average number of enabled transitions during the replay of the event log are counted.

In addition, the authors define precedes and follows between two activities in the

Petri net and in the event log. These relations and the counts mentioned above as

well as the total number of places and transition in the Petri net and the part of

them that correspond to events from the log are then used to compute fitness and

appropriateness.

In [115], Rozinat and van der Aalst are interested in comparing a process model

to multiple and complete process executions. They use aggregate information, such

160

as average number of enabled transitions, to compute conformance metrics. On the

contrary, our deviation detection approach operates on a single and partial process

execution, which gets compared to a process model as it grows.

6.2.3.5 Adherence to Medical Guidelines

In the medical domain, Advani et al. [12] have investigated methods for determin-

ing adherence of clinicians to medical guidelines by examining information in medical

charts. Guidelines are represented as a hierarchical decomposition of intentions (e.g.,

a high-level intention of a hypertension guideline could be “Manage Hypertension”

and a leaf-level intention could be “prescribing a particular drug”). The patient record

is examined to determine whether the leaf-node intentions have been satisfied. The

information from the leaf nodes is then propagated up the hierarchy to determine to

what extent the high-level intentions have been satisfied.

Advani et al.’s approach is based on examining the patient chart “after the fact”,

i.e., after process execution to determine conformance with medical guidelines. Also

the representation of guidelines they use doesn’t seem to support ordering and more

complex control flow. Thus, their approach does not seem applicable to checking in

real time, as a process is being executed, the kind of adherence to process models

we are interested in—detecting deviations and providing information to help explain

these deviations.

6.2.4 Error Localization

This section describes approaches that are related to the the error localization

approach described in section 4.5.1.

6.2.4.1 Fault Localization

The task of locating faults in programs (commonly referred to as fault localization)

shares commonalities with the task of identifying possible indexes in a sequence of

161

performed steps where an error might have occurred. In the usual fault localization

setting, a program is being tested prior to deployment or executed after being de-

ployed. Some of the program executions fail, which indicates that there is a fault in

the program. The exact location of the fault, however, is not known and locating this

fault could be difficult and time-consuming. Thus, recent research has investigated

techniques for automatically identifying program statements that are most likely to

be faulty.

There have been various approaches to automated fault localization (e.g., [13,39,

79, 102, 112]). The Tarantula approach [79] uses information about the number of

times a given program statement is executed in passing and failing test cases. A

simple formula is then used to compute the “suspiciousness” of a given statement to

be faulty. Set union, described in [112], computes a “suspicious” initial set of program

statements by removing the union of all statements executed by all passed test cases

from the set of statements executed by a single failed test case. The nearest neighbor

approach [112] arbitrarily chooses any single failed test case and then finds the passed

test case that has most similar coverage to the coverage of the failed test case. Then,

the set of statements executed by the passed test case is removed from the set of

statements executed by the failed test case and the remainder becomes set of most

“suspicious” statements. In many fault localization approaches, the “suspiciousness”

score is used to rank program statements hoping to save the programmer time and

effort in locating the fault.

There are two main differences between the work on fault localization and the

proposed approach for error localization. Fault localization aims to identify possible

faulty locations (statements) in a program given a set of “good” (passing) and a set

of “bad” (failing) program executions (test runs). In the proposed error localization

approach, we aim to identify possible indexes in a process execution where an error

might have occurred, assuming that the program (i.e., the process model) is correct.

162

Fault localization also assumes that a computer program is always executed correctly

by the hardware, and thus, a failing program execution must be due to a fault in the

software. The second difference is that in the fault localization case, we are given

multiple “good” and “bad” program executions to identify the faults, whereas in

the online process guidance case, we are given a prefix of a single execution. Thus,

fault localization techniques do not seem to be directly applicable to the problem of

identifying possible indexes in a sequence of performed steps where an error might

have occurred. Some fault localization work could be useful, however, in incorporating

historical information about deviating executions into a strategy for identifying in

real time possible indexes in a sequence of performed steps where errors might have

occurred.

6.2.4.2 Anomaly Detection

Some work from the area of anomaly detection is relevant to the proposed error

localization approach. Given a failing program execution (e.g., an execution that has

not passed a test case), the goal of anomaly detection is to identify likely anomalous

events (in the failing program executions) that caused the observed failure. Unlike

fault localization, which aims to directly locate a fault in a program, anomaly de-

tection aims to identify events in a program execution that led to the failure of that

execution. Knowing such events can then help locate the fault in a program.

Some anomaly detection techniques synthesize a behavioral model of the program

from correct program executions and then compare a failing program execution with

that model to identify likely anomalies that caused the failure. One such technique

[90] takes as input a failing program execution and a finite-state automaton (FSA)

synthesized from correct executions. It then uses the kBehavior algorithm [91] to

augment the FSA model so that it accepts the failing execution. The subsequences of

163

the program execution that correspond to the FSA augmentations are then considered

to be the anomalies and are presented to the developers for inspection.

Just the anomalous events by themselves, however, are often not very useful as

they “do not capture the structure and the rationale of the differences between the

correct and the failing executions” [16]. The AVA technique [16] performs an auto-

mated interpretation of anomalies to provide developers with a higher-level anomaly

information. For instance, if an expected event is missing from an earlier part of an

execution but appears later on, then AVA could automatically interpret these two

anomalies as one higher-level anomaly, namely that the event was postponed.

One difference between the approach for anomaly detection discussed above and

the error localization approach we propose is that the anomaly detection approach

identifies one set of possible anomalies per program execution. The kBehavior algo-

rithm greedily augments the FSA to make it accept the failing program execution

and, thus, produces one set of anomalies. The error localization approach we propose

can identify several likely error indexes in a sequence of performed steps that could

correspond to different, mutually exclusive errors. It might be interesting to explore

the question whether the kBehavior algorithm can be extended so that it produces

several likely sets of anomalies and apply it to the problem of identifying likely expla-

nations for a deviation. Also, some of the techniques that AVA uses to infer high-level

anomaly patterns might be useful in identifying possible human errors and not just

error indexes based on a sequence of edit operations that transform a process model

sequence into a deviating sequence.

6.2.4.3 Plan and Policy Recognition Approaches

The artificial intelligence community has studied approaches for the tasks of plan

and policy recognition. These tasks are related to the task of identifying the most

likely intended sequences of steps from a process model, given a sequence of steps that

164

process performers have executed. Identifying the most likely intended sequence of

steps is a component of the approach for error localization discussed in section 4.5.1.

6.2.4.3.1 Policy Recognition Using Markov Models. Bui et al. [25] explore

an approach for policy recognition based on an Abstract Hidden Markov Model, a

formalism that they define. The goal is to infer agent’s policies at different levels

of abstraction based on a sequence of states that an agent visits. The approach has

been applied to recognizing human behavior (e.g., the person is using a computer vs.

the person is passing by the computer (low-level policy), person intends to exit the

building through the north exit (high-level policy)) based on a sequence of locations

of the person, as recorded by video cameras.

Luhr et al. [89] use Hierarchical Hidden Markov Models (HHMMs) [56] to learn

and recognize human activity. They apply their approach in the context of eldercare

aiming to identify behaviors such as eating dinner, watching television, and cooking.

An HHMM is learned for each high-level activity (e.g., cooking) based on sequences

of observations, where an observation is a person’s location in the room at a given

time. The HHMMs are then used to classify new sequences.

While the approaches proposed by Bui et al. and Luhr et al. seem promising for

recognizing the intended policy/plan of process performers, they do not support the

notion of error in the sense that they consider all recorded sequences of events (or

states of process performers) to be error free. A sequence of events/states is considered

to be more likely to follow one policy/plan than another, but no sequence can be a

deviating sequence where process performers have deviated from the recommended

ways to perform the process due to errors. Thus, it would be difficult to reason about

human errors using the above approaches.

6.2.4.3.2 Plan Recognition Using Bayes Nets. Work in the domain of intel-

ligent tutoring systems has also addressed similar problems. Gertner et al. [62] tackle

165

the problem of deciding what the tutoring system should say when a student needs

help solving a problem. To achieve that, an attempt is made to estimate the student’s

knowledge and the solution path the student is pursuing. The model used to do the

estimation is a Bayes net that consists of different kinds of nodes to represent infor-

mation such as the facts that the student knows, the student’s goals, rules that the

student can apply to solve a problem, and so on. When a student’s action is observed

(e.g., the student computes some quantity needed for the problem solution), the value

of the corresponding nodes in the Bayes net (e.g., the student knows fact A) is set.

Nodes, whose values are not known are assigned a probability that represents the

confidence that the student has performed the task associated with the node. When

a student asks for help, the Bayes net is used to infer what part of the problem the

student is currently working on and what the student should do next.

Similar to the approaches discussed above, Gertner et al.’s approach focuses on

recognizing the intended execution sequence. Gertner et al. go one step further by

proposing a hint about how to perform the supposed next activity when a student

gets stuck and asks for help. No sequence of recorded actions of the process performer,

however, is considered a deviation from the recommended ways to perform the process

and no error identification is supported.

Gertner et al. also seem to assume that given an observation, the corresponding

node in the Bayes net model can be uniquely identified. In the situations we propose

to address with our deviation detection and explanation approach, an observed ac-

tion can correspond to different nodes in a flow graph, as the example described in

section 4.1.2.1 illustrates.

6.2.4.3.3 Plan Recognition Using DFAs and a Bayesian Classifier. Phua

et al. [107] present a process guidance approach to assist dementia patients in smart

homes. Information about the patient’s activities is collected by a variety of sensors,

such as video cameras, RFID sensors, and pressure sensors. Activity recognition

166

techniques are applied on the sensor data to deliver in real time an activity sequence

to a plan recognition system.

A plan is defined as a sequence of activities to achieve a goal. Example activities

are moving chair, sitting, eating food, standing, walking. Example plans are prepare

food, consume food, and prepare utensils. The authors point out that plan definitions

are subjective in terms of aspects such as breadth (type of constituent activities) and

depth (granularity of constituent activities).

The main goal of Phua et al.’s approach is Erroneous Plan Recognition (EPR)—

recognizing erroneous plans (subsequences of the sequence of recorded activities) in

real time (as a dementia patient is performing activities of daily living) and sending

timely audio and visual prompts to the patient (and potentially the caregiver) to cor-

rect the erroneous execution of a plan. To achieve this goal, they propose a 2-stage

EPR system. The first stage is matching subsequences of the full activity sequence

against a set of whitelist and a set of blacklist deterministic finite-state automata

(DFAs). The whitelist and blacklist DFAs represent behaviors that correspond to

correct and incorrect plan executions respectively. If the subsequence under consider-

ation matches2 a blacklist DFA, then the EPR system will issue an error warning3. If

the subsequence under consideration does not match neither a whitelist nor a blacklist

DFA, then the sequence is passed to a trained machine learning classifier which gives a

probability of the subsequence being an erroneous plan execution. If this probability

is higher than a pre-specified threshold, a general error warning is issued4.

The EPR system is constructed via a training process. A plan library is populated

with a set of plans which are manually labeled as correct or erroneous. The plans

can be created by domain experts or machine learned from recorded patient behavior.

2The authors do not provide details what exactly matches means in this context.

3No details are provided about the kind of warning that is issued.

4Again, no details are provided about the kind of warning that is issued.

167

The whitelist and blacklist DFAs discussed above are constructed from these plans.

The plans are also used to train the classifier.

6.3 Human Errors

This section presents an overview of work on human errors. Taking into account

the theoretical underpinnings of human errors is important for the proposed deviation

detection and error localization approaches as their main goals are to catch errors

before harm is done and provide information to help identify potential errors. The

potential error indexes identified by the error localization approach are based on the

edit operations that transform sequences from the process model into the sequence

of performed steps. Taking into account the kinds of human errors identified by

human error researchers could be useful with the selection of edit operations and cost

function, so that the selected edit operations provide more realistic representation of

the real-world errors.

For instance, knowing that omitting an activity or doing an extra activity are com-

monly made errors can justify the selection of deletion and insertion edit operations.

In addition, recognizing that sometimes due to inattention people do a sequence of

routine activities on autopilot in situations when they are actually not supposed to

do this sequence of activities could justify using an edit operation that inserts an

entire sequence of steps into a sequence from the process model. Also, the cost of

such an edit operation could be set to be lower than the sum of the costs of individual

insert operations that accomplish the same transformation. This way, such an edit

operation will be favored by a sequence comparison algorithm, which would increase

the probability that potential error indexes corresponding to the corresponding error

interpretation will be ranked higher.

168

6.3.1 “Human Error” by James Reason

The work of James Reason [111] has been one of the most influential treatments of

human error and is heavily used in the IOM report “To Err Is Human” [82] mentioned

earlier to formalize the discussion of errors in healthcare. Reason classifies human

errors based on a model of human cognition. According to that model, humans

operate cognitively at three different levels—skill-based, rule-based and knowledge-

based level—and each level has a corresponding category of errors. Humans work at

the skill-based level when they perform routine actions in a familiar environment. A

lot of the actions at this level are done subconsciously (since they’ve been done many

times before) and only from time to time attention is needed to perform a check to

decide which subconscious path of actions should be taken. Errors that occur at this

level are called SLIPS and LAPSES and they are usually due to either inattention

(a check is not done properly) or “overattention” (“when the human consciously

interrogates the progress of an action sequence when control is best left to automatic

pilot”).

Humans enter the rule-based level of cognition when a problem is detected at the

skill-based level. At that level, the human process performer considers the current

state of the process execution (situation) and tries to find a memorized rule that

says ”IF (situation) THEN (actions)”. Errors that occur at this level are called RB

MISTAKES. RB mistakes are usually due to either a “misapplication of good rules

or application of bad rules”.

Humans enter the knowledge-based level of cognition when NO appropriate rule

for the current situation is found at the rule-based level. Working at this level requires

most attention (not auto pilot) since no prior knowledge (rule) about how the address

the problem is available and the human needs to perform more complex analysis of

the current situation and decide on future actions. Errors at this level are called

KB MISTAKES. KB mistakes occur for various reasons—selectivity (giving attention

169

to the wrong features of a problem), mental workspace limitations (finite resources

of the conscious workspace), availability heuristic, confirmation bias, overconfidence,

etc.

6.3.2 The Eindhoven Classification Model

Another influential work on classifying errors has been the Eindhoven classifi-

cation model [126]. It was originally designed to categorize errors in the chemical

industry, but has been subsequently used in other industries. For example, it has

been customized for use in healthcare [127] and used in the context of event reporting

systems [18,21].

The Eindhoven model builds on Reason’s error classification by incorporating or-

ganizational and technical factors in addition to individual human errors made during

process execution. Errors are divided into two main categories—latent errors and ac-

tive (human) errors. Latent errors are technical and organizational errors and result

from administrative decisions that affect technical issues, organizational policy, or

allocation of resources [71]. Active errors are human errors made by individuals dur-

ing process execution. The sub-classification of active errors follows closely Reason’s

categories—skill-based, rule-based and knowledge-based errors.

Even though the Eindhoven error classification model extends the model presented

by Reason with additional error categories, there has been evidence that it is not

effective in categorizing errors in complex HIPs such as healthcare processes [71]. In

addition, both Reason’s error classification and the Eindhoven model focus on the

cognitive aspect of errors, on what is happening in the human’s mind that led to the

error. For instance, an example of a skilled-based error in Reason’s error classification

scheme is failing to perform a mental check that the right course of action is taken

for the given circumstances; the Eindhoven model has an error category described as

“the inability of an individual to apply existing knowledge to a novel situation.”

170

This cognitive specification of human errors makes it different to operationalize

the error categorization for the purposes of deviation detection and error localization

because such cognitive errors cannot be observed or detected by an automated system.

What seems to be needed is a categorization based on the manifestation of errors that

can be observed during process execution, rather than based on the cognitive causes

of errors. In Reason’s terms, an error classification at the behavioral level rather than

the conceptual level is what seems to be needed.

6.3.3 Error Causes vs. Error Manifestations

Hollnagel recognizes this problem [77] and points out the lack of an operational

taxonomy of human errors. He distinguishes between error cause and error manifes-

tation and introduces the terms error genotype and error phenotype to refer to these

two aspects of human errors respectively. He then proposes a set of error phenotypes

and discusses their use in a system for on-line detection of errors in a process domain.

This system, called RESQ [75,76], is based on plan recognition. As actions of process

performers are recorded in real time, they are matched against a plan library and

the plan that is most likely to be currently under execution is identified. Actions

that do not conform to this most likely plan are considered erroneous and an attempt

to determine the kind of error that occurred is made by using a knowledge base of

phenotypes. The error kinds that the RESQ system could potentially diagnose are

intrusion (when the action does not belong to any plan in the plan library or is not

expected in the current plan), repeated action, omitted step, a sequence of omitted

steps, goal-not-as-specified (the goal of the erroneous actions does not match the goal

specified by the process performer), goal-not-as-preferred (the erroneous action does

not contribute to the goal recommended by the system).

171

CHAPTER 7

CONCLUSION AND FUTURE WORK

Human-intensive processes (HIPs) are critical for our societal infrastructure. Un-

fortunately, most, if not all, important HIPs, such as medical processes, suffer from

human errors, leading to compromised quality of the services or of the products de-

livered by these processes. In medical processes, for example, human errors result in

serious harm, including disabling injuries and even death.

Considerable efforts have been made to reduce the number and impact of human

errors in HIPs. One approach has been to improve the design of HIPs and to train

process performers to follow the resulting improved processes. Despite such efforts,

however, there is evidence that human process performers still make errors while

performing some important HIPs, due to various reasons such as cognitive overload,

distraction, and fatigue.

To address this problem, this thesis investigates two approaches for providing

guidance to human process performers while a process is being performed. The first

approach, deviation detection and explanation, detects when process performers devi-

ate from the recommended ways to perform a process. Such deviations could reflect

errors and, thus, notifying process performers about detected deviations could make

them aware of potential errors before harm is done. The approach also provides pro-

cess performers with information to help them identify potential errors, which in turn

could facilitate planning recovery from such errors. Such help could be particularly

useful in complex and time-critical HIPs. The second approach, process state visual-

ization, proactively guides process performers by showing them information relevant

172

to the current process execution. The goal of this approach is to reduce the number

of errors.

Both of these approaches base the online guidance they provide on a detailed

formal model of the recommended ways to perform the process. Creating such mod-

els is challenging and this thesis also investigates process elicitation techniques to

help create such models. We studied several techniques for eliciting a process from

domain experts—unstructured interviews, three kinds of structured interviews, and

observations—in the context of a process for treatment plan review, part of an overall

chemotherapy preparation and administration process. We found that using combi-

nation of elicitation techniques leads to obtaining richer process information than

using any technique alone and we also compared the relative strengths and weak-

nesses of these techniques in terms of eliciting different kinds of process information,

such as activities on the nominal process flow, exceptional situations, and responses

to exceptional situations. We also conducted a small user study to compare two pro-

cess modeling notations, a diagrammatic notation and a natural language notation,

in terms of their ability to facilitate process understanding. For study subjects with

technical background, using the diagrammatic notation was associated with better

process understanding than using the narrative notation.

We identified important issues related to the deviation detection and explanation

approach and developed an experimental framework to evaluate the approach with

respect to these issues. Models of two medical processes—a blood transfusion process

and a chemotherapy preparation and administration process—and synthetic process

executions with seeded errors were used for the evaluation. We found that in the

performed experiments deviations were detected with delay infrequently, the delays

were short and not harmful. We also found some cases where harm could occur even if

a deviation is immediately detected, recognized these cases as process vulnerabilities,

and proposed ways to deal with some of these vulnerabilities. We focused on one kind

173

of deviation explanation, namely error localization. The preliminary experimental

evaluation of the proposed error localization approach indicates that this approach can

successfully identify error locations under some assumptions about potential errors

that could occur in a process.

We implemented an initial prototype of the approach for visualization of process

execution state and demonstrated the approach on several case studies from the med-

ical domain. In one of these case studies—patient controlled analgesia—the approach

was evaluated by a panel of medical experts. The feedback was positive and several

interesting research directions were identified (discussed below).

In the rest of this chapter, we describe some future research directions.

Process elicitation and modeling. We compared several process elicitation tech-

niques—unstructured interviews, structured interviews, and observations—in terms

of their ability to elicit certain kinds of process information. These kinds of infor-

mation were steps on the nominal process flow, exceptional situations, and responses

to exceptional situations. It would be interesting to compare the above elicitation

techniques in terms of eliciting other kinds of process information, such as the order

between steps and how artifacts are used in a process. A particularly interesting

future research direction would be to investigate techniques for eliciting information

about process errors, such as the kinds of errors that are of concern in a particular

domain, in what part(s) of the process they typically occur, and what the likelihood

of such errors is. Such information could be utilized to determine potential deviation

detection delays, to fine tune the error localization approach, and to inform the design

of process execution state visualizations.

In our evaluation of the process elicitation techniques, we applied them in a specific

order. The results might change if these techniques are applied in a different order

and subsequent studies are needed to explore the effect of the order.

174

Deviation detection. In this work, we studied the issues related to deviation

detection and explanation empirically. It would be interesting, however, to explore

some of these issues analytically. For instance, it will be useful to develop analytical

approaches for determining an upper bound on possible deviation detection delays

given a process model and assumptions about the errors that might occur during

a process execution. Such approaches could reveal how vulnerable a process is to

delayed deviation detection, how harmful these vulnerabilities might be, and how a

process can be modified to reduce such vulnerabilities. We have begun investigating

such approaches, but their feasibility seems to be a major challenge due to the very

large number of situations that need to be explored to determine what the deviation

detection delay would be when different kinds of errors occur that could involve

potentially any step in a process.

Deviation explanation. There are several aspects of the error localization ap-

proach described in this work that need further research. For large and complex

process models, criteria for selecting legal sequences to compare to the sequence of

performed steps are needed, because such models can contain a large, or even po-

tentially infinite, number of legal sequences and, thus, choosing a subset of all legal

sequences would be required to keep the approach feasible. As previously discussed,

one possible technique to deal with this issue is to incrementally compare prefixes

of legal sequences to a prefix of the sequence of performed steps and discard legal

sequences whose edit distance to a prefix of the sequence of performed steps is above

a certain threshold. Such technique is based on the assumption that there will be

a small number of distinct legal sequence prefixes up to a certain length, which is

usually the case as many processes have a relatively small number of initial steps.

The proposed error localization approach is highly sensitive to the measure of

similarity between two sequences and deciding what measure of similarity to use under

what circumstances requires further research. We used the edit distance between two

175

sequences as the measure of similarity, where the edit distance is a function of the

costs of the edit operations needed to transform one sequence into the other. The

choice of edit operations and their costs also significantly affects the accuracy of the

error localization approach and, thus, further research into how to make this choice

is needed. One possible strategy is to base the edit operations on typical errors that

might occur during the performance of a process and to base the edit operation costs

on characteristics of these errors, such as error frequency and severity.

While the information that the error localization approach provides could help

process performers identify potential errors and plan recovery actions, richer deviation

explanations could be even more useful. For example, a ranked list of hypotheses

about actual potential errors, such as step X was omitted or subprocess Y was omitted,

in addition to a ranked list of possible indexes in the sequence of performed steps

where an error might have occurred, could further facilitate recovery from potential

errors.

Classification of human errors. Most of the existing classification schemes for

human errors focus on the cognitive aspect of errors, but such aspects cannot be ob-

served while a process is being performed. There has been some work on categorizing

errors based on their manifestation during a process execution, but further research is

needed to identify error classification schemes, such that the different error kinds cap-

tured by such schemes are observable during process execution, cover important errors

that could occur in a given process, and, if detected by an online guidance system,

informing process performers about such errors could prevent potential harm. Con-

structing such error classification schemes would have direct impact on the deviation

detection and explanation approaches—it could facilitate the analytic determination

of bounds of deviation detection delays by potentially decreasing the number of pos-

sible error situations that need to be considered, and it would direct the selection of

edit operations and associated costs used for error localization.

176

Process model optimizations. A search through a process model is performed

for the purposes of both deviation detection and deviation explanation. For large and

complex HIPs, the search space could be large, negatively affecting the performance

of deviation detection and deviation explanation. In this work, we performed some

optimizations to reduce the size of the low-level model that is translated from a Little-

JIL process model and some optimizations to specifically reduce the size of the search

space determined by this low-level model. Further optimizations might be needed to

apply the deviation detection and explanation approach to models of larger and more

complex HIPs than the ones used in this work. Such optimizations would also be

useful for the offline analysis part of the process improvement environment.

Visualization of process execution state. The current prototype for visualiza-

tion of process execution state supports visualization from the perspective of a single

agent, but domain experts who saw that prototype indicated that it might be useful

to have a view with information about the overall process, such as different activities

that have been or are currently being performed by different process performers. Such

a view might improve the overall understanding of an executing process as well as fa-

cilitate team communication. Supporting different process state visualization modes,

for example based on the expertise of a process performer, is also an interesting future

research direction to explore.

The design of the user interface for visualization of process execution state also

needs further improvement and evaluation. For instance, some domain experts ex-

pressed concerns about ambiguity of some of the iconography in the current prototype

and also expressed preference for stronger distinction between the visualization of cur-

rent process execution state and the visualization of process execution history. It is

very unlikely that a single set of visualizations will appeal to all performers of a given

process and, thus, the user interface needs to be carefully designed, by using human

factors approaches and performing user studies.

177

Determining how a process might unfold and visualizing information related to

possible future process execution states could be useful to process performers to plan

their work. Supporting such visualization would require developing approaches for

exploring the process model that drives the visualization and determining most likely

future process executions based on the current process execution.

An interesting issue to explore is the issue of undo—sometimes process performers

might need to roll back the process state visualization because an event has mistakenly

been reported to have happened (e.g., a process performer marked the wrong step as

completed). Supporting undo for systems that visualize the state of human-intensive

processes and also guide process performers, however, is not trivial, because reporting

by mistake that a process event has occurred might influence the process execution, in

some cases rendering the action of mistakenly reporting that process event irreversible.

Impact of the proposed process guidance approaches. The ultimate goal

of the deviation detection and explanation approach is to catch human errors before

harm is done; the goal of the process state visualization approach is to prevent human

errors. Thus, studies need to be performed to evaluate the effect of these approaches

on human errors in HIPs. Ideally, these approaches would be deployed in real HIPs

and error rates will be compared between cases when the online guidance approaches

are used and cases when they are not. Before these approaches can be deployed in

critical HIPs, such as a medical process, however, pilot studies in a simulated setting

would need to be performed.

178

APPENDIX A

ARTIFACTS USED IN PROCESS ELICITATION STUDY

A.1 Open-ended Prompts

1. A triage MA leaves a treatment plan and orders for a patient in your tray. You

confirm that pretesting has been done. What do you do next?

2. A triage MA leaves a treatment plan and orders for a patient in your tray. You

confirm that pretesting has been done, confirm existence and not staleness of

height/weight data in CIS, confirm treatment plan is created from a careset.

What else, if anything, do you do before signing the treatment plan?

3. What steps do you take to verify the doses?

4. A triage MA leaves a treatment plan and orders for a patient in your tray. You

notice that labs have not been done for the patient. The chemo drugs for this

patient are not platinum-based. How do you proceed?

5. A triage MA leaves a treatment plan and orders for a patient in your tray. You

notice that labs have not been done for the patient. The chemo drugs for this

patient are platinum- based. How do you proceed?

6. A triage MA leaves a treatment plan and orders for a patient in your tray. You

notice that a scan has not been done for the patient. How do you proceed?

7. When you go to check that a patients height and weight have been entered in

the CIS, you notice they are missing. How do you proceed?

179

8. When you go to check that a patients height and weight have been entered in

the CIS, you notice they were taken in another building. How do you proceed?

9. When you go to check that a patients height and weight have been entered in

the CIS, you notice a patients height and weight measurements are stale. How

do you proceed?

10. You receive new height and weight measurements for a patient. There is a 6%

change in the dose based on these new values. How do you proceed?

11. While reviewing a patients treatment plan, you notice that the treatment plan

was not created from a careset. How do you proceed?

12. While reviewing a patients treatment plan, you notice that orders are missing

for the patient. How do you proceed?

13. While reviewing a patients treatment plan and orders, you notice the orders

were entered by a Fellow. How do you proceed?

14. While verifying doses for a patient, you notice that the height and weight in the

treatment plan doesnt match the height and weight in the CIS or in the patient

chart. How do you proceed?

15. While verifying doses for a patient, you calculate the BSA for the patient and

notice the calculated dose is greater than the dose in the orders. How do you

proceed?

A.2 Complete Process Traces

A.2.1 Trace 1

1. You pick up treatment plan and orders that Triage MA has left.

2. You confirm that labs have been done.

180

3. You confirm that the scans have been done.

4. You confirm existence of patient height/weight data in CIS.

5. You confirm that height/weight are not stale (i.e more than 2 weeks old).

6. You confirm that the treatment plan is created from a careset.

7. You confirm existence of chemo orders for the patient.

8. You confirm that the orders have been entered by an Attending.

9. You verify the doses:

(a) You confirm that height/weight on treatment plan, in CIS, and in the

patient chart all match.

(b) You calculate BSA using height/weight from CIS.

(c) You calculate doses using the BSA just calculated and the information

form the treatment plan.

(d) Confirm calculated doses match the ones on the chemo orders.

(e) Confirm dose base on treatment plan is consistent with doses on orders.

10. Check sticky notes to make sure that everything is completed and it turns out

that the labs have been done.

11. You sign the treatment plan.

12. You leave the treatment plan in Triage MAs tray.

A.2.2 Trace 2

1. You pick up treatment plan and orders that Triage MA has left

2. You confirm that labs have been done.

181

3. You confirm that the scans have been done.

4. You confirm existence of patient height/weight data in CIS.

5. You confirm that height/weight are not stale (i.e more than 2 weeks old). You

find that height/weight are stale.

6. You tell Clinic MA to schedule an appointment with patient to measure height/weight.

You put a sticky note on treatment plan that height/weight need to be remea-

sured. You stop here and wait until height/weight are remeasured.

. . .

7. You get up-to-date height/weight

8. You confirm that the treatment plan is created from a careset. You confirm

existence of chemo orders for the patient.

9. You verify the doses:

(a) You confirm that height/weight on treatment plan, in CIS, and in the

patient chart all match.

(b) You take BSA from the patient record on CIS.

(c) You calculate doses using the BSA and the information form the treatment

plan.

(d) Confirm calculated doses match the ones on the chemo orders. You sign

the treatment plan.

10. You leave the treatment plan in Triage MAs tray.

A.2.3 Trace 3

1. You pick up the treatment plan and the orders that the Triage MA has left.

182

2. You confirm that labs have been done.

3. You discover that a lab result is missing and the drugs are not platinum based.

4. You tell an MA to draw the labs next time the patient comes.

5. You find out that the patient does not have a scheduled appointment and you

tell the MA to schedule one.

6. You put a sticky note on the treatment plan to check for the labs before signing

the plan.

7. You confirm that the scans have been done.

8. You confirm the existence of patient height/weight data in the CIS.

9. You confirm that the patients height/weight are not stale (i.e more than 2 weeks

old).

10. You confirm that the treatment plan is created from a careset.

11. You confirm the existence of chemo orders for the patient but you find out that

they are missing.

12. You call the MD to enter the orders in the system.

13. You put a sticky note on the treatment plan to check for the orders.

14. You stop your work on the treatment plan for this patient and wait until the

MD enters the orders.

. . .

15. (in 2 days) You find out that the MD has entered the orders for that patient.

16. You confirm that the orders have been entered by an Attending. 18. You verify

the doses:

183

(a) You confirm that the height/weight on treatment plan, in CIS, and in the

patient chart all match.

(b) You calculate the patients BSA using height/weight from CIS.

(c) You calculate doses using the BSA just calculated and the information

from the treatment plan.

(d) You confirm that the calculated doses match the ones on the chemo orders.

(e) You confirm that the dose base on treatment plan is consistent with the

doses on orders.

17. You check all sticky notes to make sure that everything is completed and you

confirm that the labs have been done.

18. You sign the treatment plan.

19. You leave the treatment plan in Triage MAs tray.

A.3 Complete Process Model (Textual Description)

1. Pick up treatment plan and the orders.

2. Confirm labs have been done

(a) If labs haven’t been done and the chemo drugs are not platinum-based

i. Tell MA to draw labs next time when patient comes. (keep tr. plan)

ii. If the patient does not have a scheduled appointment, either the MA

or the Practice RN schedules an appointment.

iii. Put a sticky note on the treatment plan to check for the labs before

signing it.

iv. Continue to 3 (if not done yet)

(b) If labs haven’t been done and some of the chemo drugs is platinum-based

184

i. Tell MA to draw labs next time when patient comes.

ii. If the patient does not have a scheduled appointment, either the MA

or the Practice RN schedules an appointment.

iii. Stop here and wait for the labs before continuing with the rest of the

steps.

3. Confirm scans have been done

(a) If some of the scans haven’t been done

i. Obtain signed scans order from MD

ii. Give scans order to an MA (outtake MA, downstairs)

iii. MA schedules a separate appointment for the scans.

iv. Put a sticky note on treatment plan to check for scans before signing

v. Continue to 4

4. Confirm existence of patient’s height/weight data in CIS

(a) If patient height/weight are not entered in CIS but they have been mea-

sured in the building

i. Enter in CIS height/weight from patient chart

ii. Continue to 5

(b) If the patient’s height/weight haven’t been measured in the building

i. Option 1

• Schedule an appointment before teaching so that the patient’s

height/weight will get measured (whoever can reach the patient

will schedule it either Triage MA or Practice RN)

• Continue to 6

ii. Option 2

185

• Indicate height/weight need to be measured during teaching (the

patient gets scheduled for teaching (but not chemo) and his/her

height/weight get measured then.)

• Put a sticky note on treatment plan to ensure height/weight re-

measured before signing

• Continue to 6

5. Confirm height/weight are not stale.

(a) If height/weight are stale

i. Tell clinic MA to schedule an appointment with patient.

ii. Put a sticky note on the treatment plan that height/weight need to

be remeasured

iii. Wait for height/weight to be remeasured

6. Confirm that treatment plan is created from careset.

(a) If treatment plan is not from a careset

i. Check if the doctor gave a reference to the primary literature in the

treatment plan.

ii. If there is no reference

• (Optionally) look on Google or Pubmed for reference.

• If there is no reference on Google or PubMed

– (Optionally) call the Pharmacy and then MD.

– Continue to 7.

• Continue to 7.

7. Confirm existence of chemotherapy orders for that patient in CIS.

(a) If there are no orders

186

i. Call MD to enter the orders in the system

ii. Put a sticky note to check for orders

iii. Wait until orders are entered

8. If the orders are entered by a Fellow MD, confirm existence of an MD-to-RN

order in CIS saying that the Attending MD has approved the Fellow MD’s

orders.

(a) If there is no MD-to-RN order

i. E-mail both attending and fellow MDs.

ii. Put a sticky note on the treatment plan to ensure that MD-to-RN

order is entered before signing.

iii. Continue to 9.

9. Verify doses (make sure they are correct for the patient’s height/weight)

(a) Confirm height/weight on treatment plan, in CIS, and in the patient chart

all match

i. If they don’t match

• Contact MD and ask how to continue from that point on.

• Option 1

– Physician enters an order expressing awareness of the difference

in height/weight

– Continue to 9b

• Option 2

– Physician enters new orders with dose change

– Put a sticky note to check for orders

– Wait until a new order is entered

187

– Continue to 9

(b) Calculate BSA using height/weight from CIS.

(c) Calculate doses using the BSA just calculated and the information from

the treatment plan.

(d) Confirm calculated doses match the ones on the chemo orders.

i. If there is more than 5% discrepancy

• Contact MD to resolve the discrepancy.

• Option 1

– MD says he/she will enter an MD-to-RN order that the current

dose is OK

– Continue to 9e

• Option 2

– MD enters new orders with dose change

– Put a sticky note to check for orders

– Wait for the new orders

– Continue to 9d

(e) Confirm dose base on treatment plan is consistent with doses on orders.

i. If the dose base is not consistent

• Contact MD to resolve the mismatch.

• Option 1

– MD enters new order with correct dose base.

– Wait until new order is entered

– Continue to 9e

• Option 2

– MD decides to keep the dose on the order

188

– MD re-enters the treatment plan and the process starts over.

10. Check sticky notes and make sure that everything is done

(a) If something is still not done

i. Continue to 10.

11. Sign treatment plan. (All the pretesting needs to be completed at this point,

all issues with height and weight need to be resolved, and doses on the orders

need to be verified.)

12. Leave treatment plan in Triage MA’s tray.

189

APPENDIX B

ARTIFACTS USED IN PROCESS REPRESENTATIONS
STUDY

B.1 Training Materials

B.1.1 Process Model—Diagram

190

B.1.2 Process Model—Diagram, Training script

Training script for the diagrammatic notation

In the Little-JIL diagrammatic notation, a process is described as a hierarchical
decomposition of steps. A step represents an activity, or a unit of work that needs to be
performed as a part of a process. Higher-level steps are decomposed into lower-level
steps, which could be further decomposed to an arbitrary level of detail. A step is
diagrammatically represented as a black bar (illustrate with an example).

A step can be started and later completed. When a higher-level step is started, it cannot be
completed until all or some of its substeps (depending on the step’s sequencing badge,
explained next) are started and then completed themselves.

The badge on the left side of the step bar (called sequencing badge) specifies the order in
which the substeps need to be performed. An arrow means that the substeps need to be
performed in left-to-right sequential order and all substeps need to be completed before
the parent step can be completed. (Illustrate with an example: start parent, start substep
1, complete substep 1, start substep 2, complete substep 2, complete parent).

An equal sign means that the substeps can be performed in any order, including
simultaneously, and all substeps need to be completed before the parent step can be
completed. (Example: start parent, start substep 1, start substep 2, complete substep 1,
start substep 3, etc).

A circle with a horizontal line across means that one of the substeps need to be chosen to
complete the parent step. If the chosen substep fails to complete successfully, then one of
the remaining substeps can be chosen and this process can repeat until one of the substeps
completes successfully. (Example: …)

Steps can have prerequisites. A prerequisite is usually another step that needs to be
completed before the step with the prerequisite can start. A prerequisite is represented
diagrammatically with a filled triangle to the left of the step name and an annotation
above that triangle explains what the prerequisite is. (Example)

Steps can also have cardinality, where the cardinality of a step specifies how many times
the step should be/can be done. The cardinality is shown as a symbol associated with the
edge between the step and its parent. A “*” means that the step can be done 0 or more
times; “+” means that the step can be done 1 or more times; “?” means that the step is
optional, i.e. that it can be done 0 or 1 times. The default cardinality is 1, i.e., the step
needs to be done exactly once. (Example)

Steps can use and produce artifacts (also referred to as “parameters”). Artifacts represent
objects that are required to perform some real-world activity or are produced as a result
of performing a real-world activity. There are several kinds of artifacts: in-artifacts
(represented by an arrow pointing to the left, example) are input parameters to the step

191

passed from the parent step and are required before the step can start. Out-artifacts
(represented by an arrow pointing to the right, example) are output parameters of a step
and are passed from the step to its parent when the step completes. In-out artifacts
(represented by a bi-directional arrow, example) are both input and output parameters of a
step. In-out artifacts are required before the step can start, can be modified during step
execution, and are then passed to the parent step when the step completes.

Steps can throw exceptions. Exceptions represent the occurrence of unusual or abnormal
circumstances during process execution that might need to be dealt with outside of the
normal flow of the process. If a step throws an exception, this is specified in the
annotation associated with the step (example). Once an exception is thrown, it needs to be
dealt with by an exception handler. The exception is propagated up the step tree until a
matching exception handler is found (example). Exception handlers are connected to a
red X on the right side of a step bar. An exception handler could be another regular step
that needs to be performed in response to the exception, and once a matching exception
handler is found, it is executed in response to the exception.

Once an exception handler completes, the process can resume normal execution. Where
the process starts from is determined by the continuation action associated with the
handler. If the continuation action is “restart”(illustrated by a “restart” annotation on the
edge that connects the exception handler to a parent step), then the parent step of the
exception handler is restarted once that exception handler completes. If the continuation
action is “complete” (illustrated by a “complete” annotation on the edge that connects the
exception handler to a parent step), then the parent step of the exception handler is
completed.

192

B.1.3 Process Model—Narrative

Table Of Contents
perform yellow

perform cyan
perform blue

perform maroon
perform white

handle exception P

perform orange
perform grey
perform black

perform purple
perform red
perform brown
perform pink

handle exception Q

TABLE OF CONTENTS FOR PERFORM YELLOW

1 of 1

193

Legend Index of step names

Perform Yellow
 To "perform yellow", perform cyan and then perform purple (This step is optional.) .

Perform Cyan
 To "perform cyan", one of the following should be chosen to perform: perform blue or perform orange.

Perform Blue
 To "perform blue", perform maroon and then perform white.

Perform Maroon
E If Exception P Occurs, then handle exception P and then restart "perform blue".

Perform White
Handle Exception P
Perform Orange

 To "perform orange", the following need to be done in any order (including simultaneously), perform
grey and perform black.

Perform Grey

 The artifact a is required to "perform grey".

 Successful completion of the step "perform grey" should yield the artifact c.

 The artrifact b is required to "perform grey" and may be modified during this step.

Perform Black
 Successful completion of the step "perform black" should yield the artifact a and artifact b.

Perform Purple
 To "perform purple", perform red, then perform brown (This step must be done at least once.) , and

finally perform pink (This step is optional.) .

Perform Red
 Before beginning to "perform red", the step "perform violet" must be completed successfully.

PERFORM YELLOW

1 of 2

194

E If Exception Q Occurs, then handle exception Q and then complete "perform purple".

Perform Brown
Perform Pink
Handle Exception Q

PERFORM YELLOW

2 of 2

195

B.1.4 Process Model—Narrative, Training script

Training script for the narrative notation

In the Little-JIL narrative notation, a process is described as a hierarchical decomposition
of steps. A step represents an activity, or a unit of work that needs to be performed as a
part of a process. Higher-level steps are decomposed into lower-level steps, which could
be further decomposed to an arbitrary level of detail. The step decomposition is shown in
the table of contents of the narrative (illustrate with an example). The highest-level step
is listed on top. Its substeps are listed underneath, slightly indented to the right and are at
the same level of indentation (example). The substeps of the substeps are listed in a
similar way using indentation (example). Each step shown in the Table of Contents has a
dedicated section on the right-hand side containing more detailed information about that
step. (example)

A step can be started and later completed. When a higher-level step is started, it cannot be
completed until all or some of its substeps (depending on the step’s sequencing
requirements, explained next) are started and then completed themselves. The order in
which substeps need to be done is described on the right side of the narrative in the
section describing the parent step (this section can be reached by clicking on the parent
step in the Table of Contents) (example).

Each step section starts with the name of the step in large-size, bold font (example). The
substeps and the order in which they need to be started and completed are described by a
sentence. There are several options for the order in which substeps need to be performed
before the parent step can be completed.

One option is that the substeps need to be started and completed in a sequential order and
the parent step can be completed only when all of its substeps are completed. In this case,
the sentence looks like this (example). In this case, the order of execution is (Illustrate
with an example: start parent, start substep 1, complete substep 1, start substep 2,
complete substep 2, complete parent). The arrow pointing to the right at the start of the
sentence is an iconic representation that all the substeps need to be completed in the listed
sequential order and this arrow is also shown in the table of contents.

Another option for the order of substep execution is that the substeps can be performed in
any order, including simultaneously, and all substeps need to be completed before the
parent step can be completed. (Example: start parent, start substep 1, start substep 2,
complete substep 1, start substep 3, etc). A sentence describing this situation looks like
this (example). The equal sign represents this situation.

Another option for the way substeps need to be executed is that one of the substeps needs
to be chosen to complete the parent step. If the chosen substep fails to complete
successfully, then one of the remaining substeps can be chosen and this process can
repeat until one of the substeps completes successfully. (example). A sentence describing
this situation looks like this (example). The circle with a horizontal line across represents
this situation.

196

Clicking on the step names in the substep section would take you to the detailed
description of the corresponding step.

In addition to having a sentence describing the order in which substeps need to be
performed, each step section has a sentence (at the end) describing what needs to be done
next after the step itself is completed. For example, the sentence at the end of the section
corresponding to the step “perform yellow” indicates that after successful completion of
that step, the entire process is considered completed. This is consistent with the Table of
Contents, where we can see that “perform yellow” is the top-level step.

Similarly, looking at the end of the section for the step “perform white”, a sentence
indicates that after “perform white” is completed, its parent, “perform blue” is completed.
We can then click on “perform blue” and look at the sentence at the end of its section to
determine what needs to be done after “perform blue” is completed. In this case, the step
“perform orange” needs to be done next.

A step section can contain other information related to a step. A step can have a
prerequisite. A prerequisite is usually another step that needs to be completed before the
step with the prerequisite can start. A prerequisite is represented diagrammatically with a
filled triangle to the left of the step name and is expressed with a sentence like this.
(example)

Steps can also have cardinality, where the cardinality of a step specifies how many times
the step should be/can be done. The number of times a step should be done is listed in the
substep section of the parent step. For instance (example). The default number of times a
step should be done is exactly once. A step can be done 0 or more times; 1 or more times
(i.e. at least once); a step can be optional, i.e. that it can be done 0 or 1 times.

Steps can use and produce artifacts (also referred to as “parameters”). Artifacts represent
objects that are required to perform some real-world activity or are produced as a result
of performing a real-world activity. There are several kinds of artifacts: in-artifacts are
input parameters to the step passed from the parent step and are required before the step
can start. In-artifacts are described with a sentence like (example) and are represented by
an arrow pointing down. Out-artifacts are output parameters of a step and are passed from
the step to its parent when the step completes. Out-artifacts are represented by a sentence
like (example) and an arrow pointing up. In-out artifacts are both input and output
parameters of a step. In-out artifacts are required before the step can start, can be
modified during step execution, and are then passed to the parent step when the step
completes. In-out artifacts are described by a sentence like (example) and are represented
by a bi-directional arrow.

Steps can throw exceptions. Exceptions represent the occurrence of unusual or abnormal
circumstances during process execution that might need to be dealt with outside of the
normal flow of the process. If a step throws an exception, this is specified by a sentence
like (example) and the big red “E” denotes the section dedicated to exceptions. Once an
exception is thrown, it needs to be dealt with by an exception handler. An exception

197

handler could be another regular step that needs to be performed in response to the
exception (example).

Once an exception handler completes, the process can resume normal execution. The
sentence associated with the exception that a step throws specifies how the process
should continue after the exception has been handled. For example, this sentence may
specify that certain step is completed (example). In that case, we can click on the step that
is completed, and then look towards the end of its section to see what needs to be done
next. Alternatively, the table of contents can be examined to determine the parent of the
completed step, click on that parent step and see what its description says about the step
that needs to be started after the completed step. (example).

In another case, the sentence associated with the exception might specify that a certain
step needs to be restarted after the exception has been handled. (example).

198

B.2 Materials on which the study subjects were evaluated

B.2.1 Process Model 1—Diagram

199

B.2.2 Process Model 1—Narrative

Table Of Contents
perform blue

perform yellow
perform pink
perform brown
perform white

perform red
perform violet
perform black
perform cyan

handle X

handle Y

perform green
perform azure
perform beige

perform orange
perform bronze
perform ruby
perform purple

TABLE OF CONTENTS FOR PERFORM BLUE

1 of 1

200

Legend Index of step names

Perform Blue
 To "perform blue", the following need to be done in the listed order

perform yellow
perform red

This step must be done at least once.
perform green
perform orange

Perform Yellow
 To "perform yellow", perform pink, then perform brown, and finally perform white.

Perform Pink
 Successful completion of the step "perform pink" should yield the artifact 2 and artifact 1.

Perform Brown
 Before beginning to "perform brown", the step "perform turquoise" must be completed successfully.

 Successful completion of the step "perform brown" should yield the artifact 3.

Perform White

 The artifact 3 is required to "perform white".

 Successful completion of the step "perform white" should yield the artifact 4.

 The artifact 2 and artifact 1 are required to "perform white" and may be modified during this step.

Perform Red
 To "perform red", perform violet, then perform black, and finally perform cyan.

Perform Violet
E If Exception X Occurs, then handle X and then continue with the next step.

Perform Black
E If Exception Y Occurs, then handle Y and then restart "perform red".

Perform Cyan

PERFORM BLUE

1 of 2

201

Handle X
Handle Y
Perform Green

 To "perform green", one of the following should be chosen to perform: perform azure or perform
beige.

Perform Azure
Perform Beige
Perform Orange

 To "perform orange", the following need to be done in any order (including simultaneously), perform
bronze, perform ruby and perform purple.

Perform Bronze
Perform Ruby
Perform Purple

PERFORM BLUE

2 of 2

202

B.2.3 Process Model 1—Questions

Participant ID: _________

Questions for process definition 1

Answer the first six questions using the following steps (these are the lowest-level steps in the process
description and are listed in alphabetical order here):

• perform azure
• perform beige
• perform black
• perform bronze
• perform brown
• perform cyan
• perform pink
• perform purple
• perform ruby
• perform turquoise
• perform violet
• perform white

For some of the answers, you might need to provide a sequence, or several sequences, of steps. List the
steps in a sequence on the same line, separating consecutive steps by commas. If an answer consists of
more than one sequence, write “#” at the end of every sequence and list different sequences on separate
lines. For instance, if there are two possible sequences, list them in the following way:

perform violet, perform cyan, perform beige #
perform violet, perform beige, perform violet, perform bronze #

1. What step will be completed first? (Remember to answer questions 1-6 using only steps from the

bulleted list above).

2. What are the possible sequences of the next 3 completed steps (i.e., sequences of the second, third
and fourth completed steps in the process)?

3. Suppose the step “perform orange” has been started. What are the possible sequences of the next
3 completed steps?

4. Suppose the step “perform green” has been started. What are the possible sequences of the next 2

started steps?

5. Suppose that after the step “perform violet” has been started, the exception X occurs and that this
exception is handled by completing step “handle X”. What step should be started next?

6. Suppose after the step “perform black” has been started, the exception Y occurs and that this
exception is handled by completing step “handle Y”. What step should be started next?

7. How many times should the step “perform yellow” be completed? How many times should the

step “perform red” be completed?

8. What artifacts are required to start step “perform white”?

9. What artifacts are required to start step “perform brown”?

203

B.2.4 Process Model 2—Diagram

204

B.2.5 Process Model 2—Narrative

Table Of Contents
perform maroon

perform khaki
perform indigo
perform grey
perform gold

handle X

handle Y

perform magenta
perform ecru
perform denim

perform ivory
perform aqua
perform rose
perform platinum

perform scarlet
perform teal
perform auburn
perform cobalt

TABLE OF CONTENTS FOR PERFORM MAROON

1 of 1

205

Legend Index of step names

Perform Maroon
 To "perform maroon", the following need to be done in the listed order

perform khaki
This step must be done at least once.

perform magenta
perform ivory
perform scarlet

Perform Khaki
 To "perform khaki", perform indigo, then perform grey, and finally perform gold.

Perform Indigo
Perform Grey
E If Exception X Occurs, then handle X and then continue with the next step.

Perform Gold
E If Exception Y Occurs, then handle Y and then restart "perform khaki".

Handle X
Handle Y
Perform Magenta

 To "perform magenta", one of the following should be chosen to perform: perform ecru or perform
denim.

Perform Ecru
Perform Denim
Perform Ivory

 To "perform ivory", perform aqua, then perform rose, and finally perform platinum.

Perform Aqua
 Successful completion of the step "perform aqua" should yield the artifact 1.

Perform Rose

PERFORM MAROON

1 of 2

206

 Before beginning to "perform rose", the step "perform vanilla" must be completed successfully.

 The artifact 1 is required to "perform rose".

 Successful completion of the step "perform rose" should yield the artifact 2 and artifact 3.

Perform Platinum

 The artifact 3 is required to "perform platinum".

 Successful completion of the step "perform platinum" should yield the artifact 4.

 The artifact 2 and artifact 1 are required to "perform platinum" and may be modified during this step.

Perform Scarlet
 To "perform scarlet", the following need to be done in any order (including simultaneously), perform

teal, perform auburn and perform cobalt.

Perform Teal
Perform Auburn
Perform Cobalt

PERFORM MAROON

2 of 2

207

B.2.6 Process Model 2—Questions

Participant ID: _________

Questions for process definition 2

Answer the first six questions using the following steps (these are the lowest-level steps in the process
description and are listed in alphabetical order here):

• perform aqua
• perform auburn
• perform cobalt
• perform denim
• perform ecru
• perform gold
• perform grey
• perform indigo
• perform platinum
• perform rose
• perform teal
• perform vanilla

For some of the answers, you might need to provide a sequence, or several sequences, of steps. List the
steps in a sequence on the same line, separating consecutive steps by commas. If an answer consists of
more than one sequence, write “#” at the end of every sequence and list different sequences on separate
lines. For instance, if there are two possible sequences, list them in the following way:

perform teal, perform gold, perform auburn #
perform teal, perform auburn, perform teal, perform grey #

1. What step will be completed first? (Remember to answer questions 1-6 using only steps from the

bulleted list above).

2. Suppose that step “perform ivory” has been started. What are the possible sequences of the next 3
completed steps?

3. Suppose the step “perform scarlet” has been started. What are the possible sequences of the next

3 completed steps?

4. Suppose the step “perform magenta” has been started. What are the possible sequences of the
next 2 started steps?

5. Suppose that after the step “perform grey” has been started, the exception X occurs and that this

exception is handled by completing step “handle X”. What step should be started next?

6. Suppose after the step “perform gold” has been started, the exception Y occurs and that this
exception is handled by completing step “handle Y”. What step should be started next?

7. How many times should the step “perform scarlet” be completed? How many times should the

step “perform ivory” be completed?

8. What artifacts are required to start step “perform platinum”?

9. What artifacts are required to start step “perform aqua”?

208

B.2.7 Final Questions

Participant ID: _________

1. Which notation was easier to understand, the diagrams or the narrative presentation?

2. What information (e.g., the order of performing steps, the number of times a step needs to be
performed, the artifacts used and produced by a step, what to do in exceptional situations, and/or
something else that you would like to point out) was easier to understand with the
narrative presentation?

3. What information was easier to understand with the diagrams?

4. Do you have any other comments about the notations?

5. How much computer programming experience do you have? (E.g., none, some number of
programming courses, worked as a programmer, programming as a hobby).

6. What is your major?

209

APPENDIX C

LOW-LEVEL PROCESS MODEL REPRESENTATION

To make the implementation of the deviation detection experimental framework

independent of a particular process modeling language, we used a low-level process

model representation into which various high-level process modeling languages can

be translated. For our experimental evaluation, we used the Little-JIL translation

toolset [29] to translate Little-JIL models into this low-level representation. The

process model translation is performed in two stages (Figure C.1). In the first stage,

the Little-JIL Translator translates a Little-JIL process model into an intermediate

process model written in the Bandera Intermediate Representation (BIR) [43]. In the

second stage, the BIR Translator translates the intermediate process model into a

low-level process model written into a low-level representation (trace flow graph and

constraints [55]). The details of the process model translation are outside the scope

of this work and are described in [29]. In this chapter, we provide an overview and

selected details of the low-level representation to give a sense of the models that the

deviation detection experimental framework is currently utilizing, to illustrate some of

the issues we encountered, and explain some of the optimizations we implemented to

address these issues. We also discuss the correspondence between this representation

and the abstract ECFG notation used for discussion purposes in Chapter 4.

C.1 Trace flow graph and constraints

The low-level process model consists of a trace flow graph (TFG) and a set of

constraints [55]. A trace flow graph is a collection of control flow graphs (CFGs),

210

Figure C.1: The stages of translating a Little-JIL process model into a low-level process model.

where each CFG is called a task and it represents a subprocess or an activity that

could potentially be concurrently executed with other subprocesses and/or activities.

Figure C.2 shows a TFG derived from the Little-JIL model of a simplified final stage

of a chemotherapy process shown in Figure C.3. Each TFG has a main task, which is

the CFG where control starts. The main task can fork additional tasks to represent

concurrent execution. In the example TFG in Figure C.2, there are two additional

tasks, TASK 1 and TASK 2, which represent the Little-JIL substeps from Figure C.3

prepare chemo drugs and administer pre-meds. These steps can be executed in any

order with each other—after the clinic nurse orders the chemo drugs from pharmacy,

the clinic nurse can administer the pre-medications to the patient while the pharmacy

is preparing the chemo drugs.

A TFG is a single-entry single-exit graph, meaning that there is a single start node,

at which control starts, and a single end node, at which control ends. Each TFG node

has a unique identifier, shown in Figure C.3 as an integer next to the corresponding

node. For TFGs derived from Little-JIL process models, nodes correspond to different

aspects of the execution of the Little-JIL process model. For example, some nodes

correspond to starting of a Little-JIL step, some correspond to completing of a Little-

JIL step, some correspond to forking a task, etc. Nodes are labeled with events

based on this correspondence. For instance, node 2 in Figure C.2 corresponds to

starting the root step perform final stages of chemo process in Figure C.3 and it is

labelled accordingly; node 7 represents the forking of the task 2, which is the task that

211

Figure C.2: Trace flow graph derived from the Little-JIL model in Figure C.3.

represents the step administer pre-meds, which can be done in parallel with the step

prepare chemo drugs1. The set of node labels in a TFG forms the TFG’s alphabet.

There is an edge from node A to node B if the process event (such as starting

of a step) that node A represents can immediately precede the process event node B

represents. There are two kinds of edges in a TFG: an intra-task edge (shown as solid

arrows) connects nodes within a single task; may immediately precede edge (MIP)

1To keep the TFG in Figure C.2 relatively small and simple, we elided TFG nodes that correspond
to the posting of a Little-JIL step on the agenda of the agent responsible for that step (posting a
step represents assigning that step to an agent).

212

Figure C.3: Little-JIL model of a simplified final stage of a chemotherapy process.

(shown as a dashed line) connects nodes in different tasks. MIP edges represent

possible interleavings between nodes in different tasks. A sequence of nodes (a path)

from the start node represents a process execution.

A TFG, like most CFG-based models that preserve all possible process executions

but abstract away some information (e.g., variable values) for the sake of compactness

of the model, is an over-approximation of the executions specified in the high-level

model it is translated from (in our case, the Little-JIL process model). This means

that a TFG might allow paths from the start node that correspond to sequences of

steps not allowed by the original high-level model.

To improve the precision of a TFG and eliminate such infeasible paths, the TFG

is augmented with a set of constraints. A constraint is used to selectively add back

information that was abstracted away from the TFG during the translation of the

original high-level model, without making the size of the low-level model (i.e., the TFG

and the constraints) prohibitively large. For example, constraints are used to ensure

that the control flow within a single task is properly followed as the introduction of

MIP edges could allow certain paths to skip a node that should not be skipped or

allow a node to be traversed multiple times, when it should not be. Such constraints

213

are called task automata. Constraints are also used to represent other concurrency

semantics, such as a task in the TFG cannot start before it has been forked from its

parent task, and to represent boolean variables that capture the information whether

an exception has been thrown during a process execution.

Constraints are expressed as finite state machines (FSMs) whose alphabets consist

of TFG node identifiers. Figure C.4 shows the task automaton corresponding to Task

1 from the TFG in Figure C.2. The alphabet of that task automaton are the identifiers

of all nodes in Task 1 in the TFG, and the identifiers of the start and the end nodes.

The initial sate of that automaton (state 0) is marked with an arrow without a source

node. Transitions on labels from the alphabet of the task automaton that are not

shown go to the violation state by default. As a path from the start node of the TFG

is being followed (representing a process execution in progress), the task automaton

in Figure C.2 is updated based on the visited nodes. Suppose that during a given

TFG traversal, the following path of TFG nodes is taken: 0, 1, 2, 3, 4, 5, 6, 15, 19, 17.

Once node 1 in the TFG has been visited, the task automaton transitions from state

0 to state 1. When nodes 1, 2, 3, 4, 5, and 6 are visited, the task automaton stays in

state 1 as these node identifiers are not in the alphabet of the task automaton and

do not affect it. After node 15 of the TFG is visited, the constraint transitions to

state 2 and stays in that state after node 19 is visited. When node 17 is visited, the

constraint enters the violation state. This means that the path through the TFG is

not feasible, which is indeed the case, as node 17 from Task 1 was visited before its

predecessor, node 16, was visited—this violates the control flow of Task 1.

If any of the constraint FSMs associated with a TFG enters its violation state

(i.e., a non-accepting state all of whose outgoing transitions are self-loops) during a

traversal of the TFG, the path is considered infeasible. Only paths from the start

node of the TFG that do not violate any constraints are considered feasible.

214

Figure C.4: The task automaton constraint for Task 1 of the TFG in Figure C.2.

215

C.1.1 Trace Flow Graph Traversal

Several of the components of the deviation detection experimental framework

(Figure 4.4) presented in section 4.2 rely on a traversal of a trace flow graph derived

from a high-level process model. To generate a sequence of steps, the Sequence

Generator performs a walk from the start node of the TFG, using the Sequence

Specifications to decide what node to visit at each step of the walk and when to stop

the walk. During that walk, the Sequence Generator updates the constraint FSMs

accompanying the TFG and ensures that none of the constraints is violated as the

walk advances. Thus, the Sequence Generator performs a walk through the space

determined by the cross product of the set of TFG nodes and the set of states of each

constraint. We refer to this space as node-tuple space, where each position of a tuple

is occupied by a state of a constraint FSM.

During the TFG traversal, the Sequence Generator keeps track of the labels of

the visited nodes. The generated sequence is the sequence of labels of the visited

nodes where only relevant labels are kept. Relevant labels are provided as part of

the Sequence Specifications. Any subset of the TFG node labels can be chosen to

be the relevant labels; relevant labels are usually determined by what process exe-

cution events are of interest and/or are captured by the Process Execution Monitor.

For example, suppose that the process execution events of interest from the process

modeled by the Little-JIL diagram in Figure C.3 are the starting of the leaf steps2.

This would result in the following set of relevant labels of nodes from the TFG in

Figure C.2: {order chemo drugs from pharmacy STARTED, prepare chemo drugs

STARTED, administer pre-meds STARTED, administer chemo drugs STARTED}.

Suppose the Sequence Generator visits the following nodes on a TFG traversal: 0, 1,

2In Little-JIL, the leaf steps are the ones that agents perform and are thus most likely the steps
to be captured by the Process Execution Monitor. Non-leaf steps are used primarily to provide
abstraction and to specify control flow among leaf steps in a Little-JIL process model.

216

2, 3, 4, 5, 6, 7, 15, 16, 17, 18, 19, 20, 21, 22, 8, 9, 10, 11, 12, 13, 14, 23. This would

result in a sequence of 24 labels (corresponding to the above sequence of nodes), but

since only the labels of nodes 3, 16, 20, and 11 are relevant, the final generated se-

quence will be: order chemo drugs from pharmacy STARTED, prepare chemo drugs

STARTED, administer pre-meds STARTED, administer chemo drugs STARTED. To

keep the discussion at a higher level, in Chapter 4 the low-level process representation

(i.e., the TFG and constraints) is not introduced and we refer to such a sequence of

labels as a sequence of steps.

The Deviation Detector also relies on a traversal of the TFG (more precisely, a

traversal of node-tuple space). The Deviation Detector takes as input a sequence of la-

bels, the set of relevant labels, and the low-level process model (TFG and constraints),

and then determines whether the given sequence is a legal sequence through the given

model. To accomplish that, the Deviation Detector performs a guided breadth-first

exploration of the node-tuple space determined by the TFG and the constraints. The

deviation detector begins with the node-tuple consisting of the TFG’s start node and

the tuple containing the initial states of all constraint FSMs. The deviation detector

then follows all paths from the start node-tuple, discarding paths that violate some

of the constraints or paths whose sequence of labels (i.e., the sequence of labels of the

nodes on the path) is not the same as the given sequence of labels3. If all paths are

discarded before the Deviation Detector finds a path whose sequence of labels is the

same as the given sequence of labels, a deviation is detected.

For efficiency, the Deviation Detector explores node-tuple space incrementally—

beginning from the TFG start node, the Deviation Detector first tries to find paths

to nodes whose label is the same as the first label in the given sequence of labels.

If it finds paths to such nodes, the Deviation Detector places these nodes (and their

3Similar to the Sequence Generator, the deviation detector ignores node labels that are not
relevant during the breadth-first traversal.

217

corresponding tuples) on a frontier4 (we refer to such node-tuples, i.e., node-tuples

where the node’s label is relevant, as relevant node tuples and to the node itself as a

relevant node). Then, starting from the nodes on the frontier, the Deviation Detector

looks for paths to other relevant nodes with a label that is the same as the second

label in the given sequence of labels, and places such nodes on the frontier. The

Deviation Detection continues this exploration until it either reaches the end of the

given sequence of labels (in this case, the sequence of labels is a legal sequence through

the TFG) or until the frontier is empty before the end of the given sequence of labels

is reached, meaning that the given sequence of labels is not a legal sequence through

the TFG, and therefore a deviation is detected.

C.2 Issues and Optimizations

This section presents some of the issues associated with using the low-level process

model representation and some optimization we performed to tackle these issues.

C.2.1 Construction of Low-level Process Model

We ran into several issues related to the construction of the low-level process

model. As previously discussed, important real-world HIPs, such as medical processes,

often encompass complex behaviors, such as concurrent execution and the handling of

various exceptional situations. To adequately represent real-world HIPs and thus be

useful for process guidance, models of HIPs need to capture such complex behaviors.

This results in large and intricate process models. For example, the Little-JIL model

of a blood transfusion process we used in our studies contained 220 Little-JIL steps

(including 102 leaf steps) and captured 63 exception handling situations.

4A TFG node can have multiple corresponding tuples, because there could be different paths
through the TFG leading to the same node, where each path changes the states of the constraints
differently.

218

The corresponding low-level process models are even larger as a high-level con-

struct, such as a Little-JIL step, is translated into multiple low-level constructs, such

as TFG nodes and edges and states and transitions of FSM constraints associated

with the TFG. For instance, the very simple Little-JIL process model in Figure C.3,

which has 6 steps, is translated into a TFG with more than 24 nodes and close to

100 edges5. When a high-level process model is larger and more complex (e..g, it

contains exception handling, other more complex control flow (such as Little-JIL try

and choice steps), and artifacts), than the one in Figure C.3, then the explosion of

the size of the low-level model with respect to the size of the high-level model from

which it was derived is more severe. This could result in low-level process models

that are too large for their construction to be practical. For example, when we tried

to construct the low-level process models corresponding to the Little-JIL models of

the blood transfusion and chemotherapy processes we studied, the translation did

not finish in more than several days and eventually the Java Virtual Machine (the

translation is implemented in Java) ran out of heap memory.

In previous work on applying model checking to low-level process models derived

from high-level Little-JIL models [29], the explosion of the size of the low-level process

model was tackled by not constructing parts of the model that are not relevant to

the property of interest. Since in this work the properties of interest contained a

small number of events (usually fewer than 5) that correspond to a small number of

steps in the Little-JIL process model, most of the steps in the process model were not

relevant to the property of interest resulting in a significant reduction of the size of

the low-level process model.

For the purposes for deviation detection, however, most of the steps in the process

model are relevant, because process performers could potentially perform any of the

5As previously discussed, not all nodes and edges of the TFG in Figure C.2 are shown to reduce
visual clutter.

219

executions allowed by the process model. Thus, applying the above optimization

did not result in a significant reduction of the size of the low-level process models

needed for deviation detection. We applied a similar optimization, called alphabet

refinement, where we specified certain TFG node labels from the TFG alphabet as

irrelevant (e.g., labels that represent the posting of a Little-JIL step or labels that

represent some action on an artifact) and removed nodes with such labels from the

TFG. This did not result in a significant reduction of the size of the low-level process

model, however, as many nodes with irrelevant labels need to be kept in the TFG to

conserve paths that represent feasible process executions.

Given that to support deviation detection it is necessary to keep most of the low-

level process model, we tackle the problem of feasibly constructing the low-level model

by not explicitly constructing parts of that model and storing them only implicitly.

In particular, we identified two parts of the model that are expensive to compute and

too large to store—MIP edges and certain task automata constraints.

MIP edges represent possible interleavings between nodes in tasks that can happen

in parallel. Thus, there could be a large number of MIP edges between parallel tasks

and the number of MIP edges could potentially be quadratic in the number of nodes

in these tasks. We modified the translation from Little-JIL to TFG to not explicitly

compute and store MIP edges. Instead, the deviation detection experimental frame-

work provides a routine to compute MIP edges at run-time and on-demand. The

Sequence Generator and the Deviation Detector use that routine when they traverse

the TFG.

Task automata constraints, as previously described, accompany a TFG to ensure

that the control flow within a single task is not violated during a traversal of the TFG.

TFGs derived from large and realistic process models can have large tasks, which in

turn can have very large corresponding task automata. In fact, when creating the

low-level models for the blood transfusion and chemotherapy processes, we ran into

220

a similar problem as with the MIP edges—some task automata were too expensive

to compute and also eventually caused the translator to run out of heap memory.

To tackle this problem, we modified the translation from Little-JIL to the low-level

process model to not explicitly compute and store all transitions in a task automaton.

Instead, we associated rules with each task automaton that the deviation detection

framework uses at run-time to compute task automata transitions on demand.

Before we applied the optimizations for implicit MIP edges and task automata

transitions, we were not able to construct the low-level models for the Little-JIL

models of the blood transfusion and chemotherapy processes. After these optimiza-

tions, we could construct the low-level models in less than 20 minutes each (for the

construction of the low-level model we used a MacBook laptop with 2.4 GHz Intel

Core 2 Duo processor, running Java with 2.5 GB maximum heap size). The low-level

models for the blood transfusion and chemotherapy processes were 328 MB and 19

MB respectively.

C.2.2 Traversal of Low-level Process Model

The optimizations discussed above help with the construction of the low-level

process model by making parts of it implicit and not constructing these parts. These

optimizations, however, do not reduce the size of the model at runtime (i.e., while the

model is being traversed), resulting in a large search space that needs to be explored.

The size of that search space becomes a serious problem for the Deviation Detector,

which, beginning from the TFG’s start node, needs to keep track of all paths whose

sequence of relevant labels6 is the same as the given sequence of labels. As discussed

in section C.1.1, the Deviation Detector traverses the node-tuple space incrementally,

6A path (i.e., a sequence of nodes) through the TFG has a corresponding sequence of labels,
which are the labels of the nodes on the path. If we delete from that sequence all the labels that
are not relevant (as previously discussed, the relevant labels are given as input to the Deviation
Detector), we are left with what we call the relevant sequence of labels of the path.

221

beginning from the TFG start node-tuple, first finding all relevant node-tuples whose

node label is the same as the first label in the given sequence of labels, then from

these node-tuples finding all node-tuples whose node label is the same as the second

label in the given sequence, and so on. This exploration of node-tuple space could

be quite expensive, however, as there could be multiple paths between two relevant

nodes in the TFG and there could be multiple nodes with the same label, resulting

in a large number of paths.

There could be multiple TFG nodes with the same label, because the same step

could occur in different parts of a process and it will have different corresponding TFG

nodes to represent it. There could be multiple paths between two relevant nodes, be-

cause one could potentially be reachable from the other on a different sequence of

irrelevant nodes in between. For example, consider the TFG in Figure C.2 and the

set of relevant labels we used in the discussion before: {order chemo drugs from phar-

macy STARTED, prepare chemo drugs STARTED, administer pre-meds STARTED,

administer chemo drugs STARTED}. To reach relevant node 16 from relevant node

3, for example, at least three different paths can be taken: 2, 3, 4, 5, 6, 15, 16; 2, 3,

4, 5, 6, 7, 19, 15, 16; and 2, 3, 4, 5, 6, 7, 19, 20, 15, 16. Each of these paths would

also result in a different node-tuple that would need to be placed on the frontier that

the Deviation Detector is maintaining and each such node-tuple would need to be

explored.

To reduce the number of paths between two relevant nodes that the Deviation

Detector needs to explore, we take advantage of domain knowledge. In particular,

we identify situations in processes (if such situations exist) where two or more sub-

processes can happen in any order with each other, but not in parallel, meaning that

steps in different subprocesses cannot be interleaved (we call such subprocesses shuf-

fled subprocesses). In such situations, we add additional constraints to the low-level

process model to eliminate paths that interleave steps of different shuffled subpro-

222

cesses. For example, such constraints can be added for the low-level model of the

simplified blood transfusion process in Figure 4.2 where check blood product expira-

tion date and check blood product info matches patient info can happen in any order

with each other, but not in parallel. Such constraints cannot be added to the low-

level model of the simplified chemotherapy process in Figure C.3, however, because

prepare chemo drugs and administer pre-meds can happen in any order, including in

parallel.

Another optimization we performed is related to speeding up the finding of relevant

nodes from a given node in the TFG. As the TFG is traversed, every time a successor

node is obtained, it needs to be checked that all TFG constraints are not violated.

Given that the number of constraints for the low-level model of realistic high-level

process models could be large, this check could be expensive. Furthermore, this check

is performed many times during the traversal of a TFG. To speed this check up, we

precomputed which constraints are affected when visiting a TFG node. Given that

most TFG nodes affect only a small number of constraints, this optimization resulted

in a significant speed-up of the check of whether any TFG constraint is violated upon

visiting a node.

C.3 Correspondence between TFG with constraints and ECFG

The ECFG process model representation used in Chapter 4 is a simplified repre-

sentation that is introduced to keep the discussion in that chapter at a high level.

The ECFG representation is less expressive than the Little-JIL representation and

the Little-JIL’s corresponding low-level representation—the TFG with constraints.

In this section, we discuss the correspondence of the ECFG representation to the

TFG with constraints representation.

The ECFG nodes are a subset of the TFG nodes. In particular, the ECFG nodes

are the nodes of interest, the relevant nodes, from the TFG. These nodes of interest

223

consist of nodes that correspond to events captured by the Process Execution Monitor

(e.g., starting of a process step) and nodes that represent the forking and joining of

concurrent tasks. TFG nodes that represent forking and joining of tasks correspond

to fork and join nodes in the ECFG, respectively.

There is an edge from node A to node B in the ECFG if A and B are in the

same CFG (task) in the TFG and there is a path from node A to node B that does

not violate any of the TFG constraints (i.e., there is a feasible path from A to B).

MIP edges from the TFG are not explicitly represented in the ECFG; the possible

interleavings of nodes from different CFGs in the TFG is captured by the fork/join

semantics of the ECFG.

Unlike the TFG, the ECFG does not have any accompanying constraints. Thus,

any path from a start node of the ECFG is considered feasible.

224

BIBLIOGRAPHY

[1] “Adonis,” www.boc-group.com/at.

[2] “ARIS,” www.ids-scheer.de.

[3] “Eclipse Process Framework (EPF),” www.eclipse.org/epf.

[4] “Modelplex, IST European Project contract IST-3408,” http://www.
modelplex-ist.org.

[5] “PERICLES–GECKO,” http://www.gecko.de/referenzen/forschung.html.

[6] “Project PERICLES,” http://www.perikles.org/index.html.

[7] “XSL transformations (XSLT) version 2.0,” www.w3.org/TR/xslt20.

[8] “YAWL: Yet another workflow language,” http://www.yawlfoundation.org/.

[9] “DoD modeling and simulation management,” Department of Defense Directive
5000.59, p. 7, 2007.

[10] “Web services business process execution language version 2.0,” http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, April 2007.

[11] “Chemotherapy administration safety standards,” American Society of Clinical
Oncology, 2009.

[12] A. Advani and Y. Musen, “Medical quality assessment by scoring adherence
to guideline intentions,” in Proceedings of the AMIA Annual Symposium, 2001,
pp. 2–6.

[13] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization using
execution slices and dataflow tests,” in Proceedings of the Sixth International
Symposium on Software Reliability Engineering., 1995, pp. 143–151.

[14] G. S. Avrunin, L. A. Clarke, L. J. Osterweil, S. C. Christov, B. Chen, E. A.
Henneman, P. L. Henneman, L. Cassells, and W. Mertens, “Experience mod-
eling and analyzing medical processes: UMass/Baystate medical safety project
overview,” in Proceedings of the 1st ACM International Health Informatics Sym-
posium, 2010, pp. 316–325.

225

www.boc-group.com/at
www.ids-scheer.de
www.eclipse.org/epf
http://www.modelplex-ist.org
http://www.modelplex-ist.org
http://www.gecko.de/referenzen/forschung.html
http://www.perikles.org/index.html
www.w3.org/TR/xslt20
http://www.yawlfoundation.org/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[15] G. S. Avrunin, L. A. Clarke, L. J. Osterweil, J. M. Goldman, and T. Rausch,
“Smart checklists for human-intensive medical systems,” in 42nd International
Conference on Dependable Systems and Networks, Workshop on Open, Re-
silient, Human-aware, Cyber-physical Systems, IEEE/IFIP, 2012, pp. 1–6.

[16] A. Babenko, L. Mariani, and F. Pastore, “AVA: automated interpretation of
dynamically detected anomalies,” in ISSTA ’09: Proceedings of the Eighteenth
International Symposium on Software Testing and Analysis, 2009, pp. 237–248.

[17] S. Baffoe, A. Baarah, and L. Peyton, “Inferring state for real-time monitoring of
care processes,” in Proceedings of the 5th International Workshop on Software
Engineering in Health Care (SEHC), May 2013, pp. 57–63.

[18] J. B. Battles, H. S. Kaplan, T. W. Van der Schaaf, and C. E. Shea, “The at-
tributes of medical event-reporting systems: experience with a prototype medi-
cal event-reporting system for transfusion medicine,” Archives of Pathology and
Laboratory Medicine, vol. 122, no. 3, pp. 231–238, 1998.

[19] U. Becker-Kornstaedt, D. Hamann, R. Kempkens, P. Rösch, M. Verlage,
R. Webby, and J. Zettel, “Support for the process engineer: the Spearmint
approach to software process definition and process guidance,” in Proceedings
of the 11th International Conference on Advanced Information Systems Engi-
neering, 1999, pp. 119–133.

[20] U. Becker-Kornstaedt and M. Verlage, “The V-modell guide: experience with a
web-based approach for process support,” in Proceedings of Software Technology
and Engineering Practice (STEP), 1999, pp. 161–168.

[21] C. Billings, “Some hopes and concerns regarding medical event-reporting sys-
tems: lessons from the NASA aviation safety reporting system,” Archives of
Pathology and Laboratory Medicine, vol. 122, no. 3, pp. 214–215, 1998.

[22] J. D. Birkmeyer, “Strategies for improving surgical quality—checklists and be-
yond,” New England Journal of Medicine, vol. 363, pp. 1963–11 965, 2010.

[23] D. Boorman, “Today’s electronic checklists reduce likelihood of crew errors
and help prevent mishaps,” International Civil Aviation Organization Journal,
vol. 56, no. 1, pp. 17–36, 2001.

[24] A. Bryman, “Integrating quantitative and qualitative research: how is it done?”
Qualitative Research, vol. 6, no. 1, pp. 97–113, 2006.

[25] H. H. Bui, S. Venkatesh, and G. West, “Policy recognition in the abstract
hidden Markov model,” Journal of Artificial Intelligence Research, vol. 17, pp.
451–499, 2002.

[26] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, “Specification and implemen-
taiton of exceptions in workflow management systems,” ACM Transactions on
Database Systems, 1999.

226

[27] A. G. Cass, B. S. Lerner, J. Stanley M. Sutton, E. K. McCall, A. Wise, and L. J.
Osterweil, “Little-JIL/Juliette: a process definition language and interpreter,”
in ICSE ’00: Proceedings of the 22nd International Conference on Software
Engineering, 2000, pp. 754–757.

[28] A. G. Cass and L. J. Osterweil, “Process support to help novices design software
faster and better,” in ASE ’05: Proceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, 2005, pp. 295–299.

[29] B. Chen, “Improving processes using static analysis techniques,” Ph.D. disser-
tation, University of Massachusetts Amherst, 2011.

[30] B. Chen, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, “Automatic fault tree
derivation from Little-JIL process definitions.” in Software Process Workshop
(SPW 2006) and Process Simulation Workshop (PROSIM 2006), ser. LNCS,
vol. 3966, 2006, pp. 150–158.

[31] B. Chen, G. S. Avrunin, E. A. Henneman, L. A. Clarke, L. J. Osterweil, and
P. L. Henneman, “Analyzing medical processes,” in ICSE ’08: Proceedings of
the 30th International Conference on Software Engineering, 2008, pp. 623–632.

[32] S. C. Christov, G. S. Avrunin, and L. A. Clarke, “Considerations for online
deviation detection in medical processes,” in Proceedings of the 5th International
Workshop on Software Engineering in Health Care (SEHC), 2013, pp. 50–56.

[33] S. C. Christov, G. S. Avrunin, and L. A. Clarke, “Online deviation detection
for medical processes,” in American Medical Informatics Association Annual
Symposium (AMIA), 2014.

[34] S. C. Christov, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, and E. A. Henne-
man, “A benchmark for evaluating software engineering techniques for improv-
ing medical processes,” in Proceedings of the 2010 ICSE Workshop on Software
Engineering in Health Care, 2010, pp. 50–56.

[35] S. C. Christov, B. Chen, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, D. Brown,
L. Cassells, and W. C. Mertens, “Formally defining medical processes,” Methods
of Information in Medicine. Special Topic on Model-Based Design of Trustwor-
thy Health Information Systems, vol. 47, no. 5, pp. 392–398, 2008.

[36] S. C. Christov, B. Chen, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, D. Brown,
L. Cassells, and W. C. Mertens, “Rigorously defining and analyzing medical
processes: an experience report,” Models in Software Engineering: Workshops
and Symposia at MoDELS 2007, Reports and Revised Selected Papers, pp. 118–
131, 2008.

[37] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,
2000.

227

[38] L. A. Clarke, A. Gaitenby, D. Gyllstrom, E. Katsh, M. Marzilli, L. J. Osterweil,
N. K. Sondheimer, L. Wing, A. Wise, and D. Rainey, “A process-driven tool
to support online dispute resolution,” in Proceedings of the 2006 International
Conference on Digital Government Research, 2006, pp. 356–357.

[39] H. Cleve and A. Zeller, “Locating causes of program failures,” in Proceedings of
the 27th international conference on software engineering, 2005, pp. 342–351.

[40] H. M. Conboy, J. K. Maron, S. C. Christov, G. S. Avrunin, L. A. Clarke,
L. J. Osterweil, and M. A. Zenati, “Process modelling of aortic cannulation in
cardiac surgery: toward a smart checklist to mitigate the risk of stroke,” in
5th Workshop on Modeling and Monitoring of Computer Assisted Interventions
(M2CAI), 2014.

[41] L. G. Connelly and A. Bair, “Discrete event simulation of emergency de-
partment activity: a platform for system-level operations research,” Academic
Emergency Medicine, vol. 11, no. 11, pp. 1177–1185, 2004.

[42] J. E. Cook and A. L. Wolf, “Software process validation: quantitatively measur-
ing the correspondence of a process to a model,” ACM Transactions on Software
Engineering and Methodology, vol. 8, pp. 147–176, 1999.

[43] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and
H. Zheng, “Bandera: extracting finite-state models from Java source code,”
in Proceedings of the 22nd International Conference on Software Engineering,
2000, pp. 439–448.

[44] B. Crandall, G. A. Klein, and R. R. Hoffman, Working minds: a practitioner’s
guide to cognitive task analysis. MIT Press, 2006.

[45] G. Cugola, E. D. Nitto, A. Fuggetta, and C. Ghezzi, “A framework for formal-
izing inconsistencies and deviations in human-centered systems,” ACM Trans-
actions on Software Engineering and Methodology, vol. 5, no. 3, pp. 191–230,
1996.

[46] F. Curbera, R. Khalaf, F. Leymann, and S. Weerawarana, “Exception handling
in the BPEL4WS language,” in Conference on Business Process Management,
2003.

[47] M. A. A. da Silva, R. Bendraou, J. Robin, and X. Blanc, “Flexible deviation
handling during software process enactment,” in Enterprise Distributed Object
Computing Conference Workshops (EDOCW), 2011, pp. 34 –41.

[48] M. A. A. da Silva, R. Bendraou, X. Blanc, and M.-P. Gervais, “Early deviation
detection in modeling activities of MDE processes,” in Proceedings of the 13th
International Conference on Model Driven Engineering Languages and Systems:
Part II, 2010, pp. 303–317.

228

[49] M. A. A. da Silva, X. Blanc, and R. Bendraou, “Deviation management during
process execution.” in ASE 2011: 26th IEEE/ACM International Conference
On Automated Software Engineering, 2011, pp. 528–531.

[50] C. Damas, B. Lambeau, F. Roucoux, and A. van Lamsweerde, “Analyzing criti-
cal process models through behavior model synthesis,” in ICSE ’09: Proceedings
of the 2009 IEEE 31st International Conference on Software Engineering, 2009,
pp. 441–451.

[51] E. N. de Vries, H. A. Prins, R. Crolla, A. J. den Outer, G. van Andel, S. van
Helden, W. S. Schlack, M. A. van Putten, D. J. Gouma, M. G. Dijkgraaf, S. M.
Smorenburg, and M. A. Boermeester, “Effect of a comprehensive surgical safety
system on patient outcomes,” New England Journal of Medicine, vol. 363, pp.
1928–1937, 2010.

[52] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:
help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

[53] W. E. Deming, Out of the Crisis. Cambridge: MIT Press, 1982.

[54] J. Dubose, P. G. Teixeira, K. Inaba, L. Lam, P. Talving, B. Putty, D. Plu-
rad, D. J. Green, D. Demetriades, and H. Gelzberg, “Measurable outcomes of
quality improvement using a daily quality rounds checklist: one-year analysis
in a trauma intensive care unit with sustained ventilator-associated pneumonia
reduction,” Journal of Trauma, vol. 69, no. 4, pp. 855–60, 2010.

[55] M. B. Dwyer, L. A. Clarke, J. M. Cobleigh, and G. Naumovich, “Flow analysis
for verifying properties of concurrent software systems,” ACM Transactions on
Software Engineering and Methodology, vol. 13, no. 4, pp. 359–430, 2004.

[56] S. Fine, Y. Singer, and N. Tishby, “The hierarchical hidden Markov model:
analysis and applications,” Machine Learning, vol. 32, no. 1, pp. 41–62, 1998.

[57] M. Fitzgerald, P. Cameron, C. Mackenzie, N. Farrow, P. Scicluna, R. Gocen-
tas, A. Bystrzycki, G. Lee, G. O’Reilly, N. Andrianopoulos, L. Dziukas, D. J.
Cooper, A. Silvers, A. Mori, A. Murray, S. Smith, Y. Xiao, D. Stub, F. T.
McDermott, and J. V. Rosenfeld, “Trauma resuscitation errors and computer-
assisted decision support,” Archives of Surgery, vol. 146, no. 2, pp. 218–225,
2011.

[58] P. Fong and J. Brent, “Exception handling in WebSphere Process Server and
WebSphere Enterprise Service Bus,” http://www.ibm.com/developerworks/
websphere/library/techar-ticles/0705 fong/0705 fong.htm.

[59] J. Fordyce, F. S. J. Blank, P. Pekow, H. A. Smithline, G. Ritter, S. Gehlbach,
E. Benjamin, and P. L. Henneman, “Errors in a busy emergency department,”
Annals of Emergency Medicine, vol. 42, no. 3, pp. 324–333, 09 2003.

229

http://www.ibm.com/developerworks/websphere/library/techar-ticles/0705_fong/0705_fong.htm
http://www.ibm.com/developerworks/websphere/library/techar-ticles/0705_fong/0705_fong.htm

[60] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pattenrs: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[61] T. K. Gandhi, S. B. Bartel, L. N. Shulman, D. Verrier, E. Burdick, A. Cleary,
J. M. Rothschild, L. L. Leape, and D. W. Bates, “Medication safety in the
ambulatory chemotherapy setting,” Cancer, vol. 104, no. 11, pp. 2477–2483,
2005.

[62] A. S. Gertner, C. Conati, and K. VanLehn, “Procedural help in Andes: gener-
ating hints using a Bayesian networ student model,” in Proceedings of the Fif-
teenth National Conference on Artificial Intelligence/Innovative Applications of
Artificial Intelligence. American Association for Artificial Intelligence, 1998,
pp. 106–111.

[63] A. C. Graesser and K. Murray, “A question-answering methodology for explor-
ing user’s acquisition and knowledge of a computer environment,” Cognition,
Computing, and Cooperation, pp. 237–267, 1990.

[64] G. Guest, A. Bunce, and L. Johnson, “How many interviews are enough?: an
experiment with data saturation and variability,” Field Methods, vol. 18, no. 1,
pp. 59–82, 2006.

[65] K. Hafner, “A busy doctor’s right hand, ever ready to type,” The New York
Times, January 12 2014.

[66] C. Hagen and G. Alonso, “Exception handling in workflow management sys-
tems,” IEEE Transactions on Software Engineering, vol. 26, no. 10, pp. 943–
958, 2000.

[67] B. M. Hales and P. J. Pronovost, “The checklist: a tool for error management
and performance improvement,” Journal of Critical Care, vol. 21, pp. 231–235,
2006.

[68] L. A. Hassell, A. V. Parwani, L. Weiss, M. A. Jones, and J. Y, “Challenges and
opportunities in the adoption of College of American Pathologists checklists in
electronic format: perspectives and experience of reporting pathology protocols
project (RPP2) participant laboratories.” Archives of Pathology and Laboratory
Medicine, vol. 134, no. 8, pp. 1152–1159, 2010.

[69] P. Haumer, “Increasing development knowledge with EPFC,” Eclipse Review,
pp. 26–33, 2006.

[70] E. A. Henneman, G. S. Avrunin, L. A. Clarke, L. J. Osterweil, C. Andrzejewski
Jr., K. Merrigan, R. Cobleigh, K. Frederick, E. Katz-Bassett, and P. L. Hen-
neman, “Increasing patient safety and efficiency in transfusion therapy using
formal process definitions,” Transfusion Medicine Review, vol. 21, no. 1, pp.
49–57, 2007.

230

[71] E. A. Henneman, F. S. Blank, S. Gattasso, K. Williamson, and P. L. Henneman,
“Testing a classification model for emergency department errors,” Journal of
Advanced Nursing, vol. 55, no. 1, pp. 90–99, 2006.

[72] P. L. Henneman, D. L. Fisher, E. A. Henneman, T. A. Pham, Y. Y. Mei,
R. Talati, B. H. Nathanson, and J. Roche, “Providers do not verify patient
identity during computer order entry,” Academic Emergency Medicine, vol. 15,
no. 7, pp. 641–648, 2008.

[73] P. L. Henneman, F. S. J. Blank, H. A. Smithline, H. Li, J. S. Santoro,
J. Schmidt, E. Benjamin, and E. A. Henneman, “Voluntarily reported emer-
gency department errors,” Journal of Patient Safety, vol. 1, no. 3, 2005.

[74] P. L. Henneman, D. L. Fisher, E. A. Henneman, T. A. Pham, M. M. Campbell,
and B. H. Nathanson, “Patient identification errors are common in clinical
simulation,” Annals of Emergency Medicine, vol. 55, no. 6, pp. 503–509, 2009.

[75] E. Hollnagel, “Plan recognition in modeling of users,” in Accident Sequence
Modeling: Human Actions, System Response, Intelligent Decision Support,
G. Apostolakis, P. Kafka, and G. Mancini, Eds. Elsevier Science Publish-
ers Ltd., 1988.

[76] E. Hollnagel, “The design of fault tolerant systems: prevention is better than
cure,” Reliability Engineering and System Safety, vol. 36, no. 3, pp. 231–237,
1992.

[77] E. Hollnagel, “The phenotype of erroneous actions,” International Journal of
Man-Machine Studies, vol. 39, pp. 1–32, July 1993.

[78] J. T. James, “A new, evidence-based estimate of patient harms associated with
hospital care,” Journal of Patient Safety, vol. 9, no. 3, pp. 122–128, 2013.

[79] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test information
to assist fault localization,” in ICSE ’02: Proceedings of the 24th International
Conference on Software Engineering. ACM, 2002, pp. 467–477.

[80] M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, and M. Verlage, “Pro-
cess guides: effective guidance for process participants,” in Proeceedings of the
International Conference on the Software Process, 1998, pp. 11–25.

[81] B. Kirwan and L. K. Ainsworth, A Guide To Task Analysis: The Task Analysis
Working Group. Taylor & Francis, 1992.

[82] L. T. Kohn, J. M. Corrigan, and M. S. Donaldson, Eds., To Err Is Human:
Building a Safer Health System. National Academies Press, 1999.

[83] J. B. Kruskal, “An overview of sequence comparison: time warps, string edits,
and macromolecules,” SIAM Review, vol. 25, no. 2, pp. 201–237, 1983.

231

[84] R. Kühn, A. Dittmar, and P. Forbrig, “Alternative representations of workflow
control-flow patterns using HOPS,” in Perspectives in Business Informatics
Research. Springer Berlin Heidelberg, 2010, vol. 64, pp. 115–129.

[85] H. A. Landsberger, Hawthorne revisited. Cornell University, 1958.

[86] B. S. Lerner, S. C. Christov, L. J. Osterweil, R. Bendraou, U. Kannengiesser,
and A. Wise, “Exception handling patterns for process modeling,” IEEE Trans-
actions on Software Engineering, vol. 36, no. 2, pp. 162–183, 2010.

[87] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and
reversals,” Doklady Akademii Nauk SSSR, vol. 163, no. 4, pp. 845–848, 1965.

[88] N. Leveson, Safeware: System Safety and Computers. Addison-Wesley, 1995.

[89] S. Lühr, H. H. Bui, S. Venkatesh, and G. A. W. West, “Recognition of human
activity through hierarchical stochastic learning,” in Proceedings of the First
IEEE International Conference on Pervasive Computing and Communications.
IEEE Computer Society, 2003, pp. 416–422.

[90] L. Mariani and F. Pastore, “Automated identification of failure causes in system
logs,” in Proceedings of the 2008 19th International Symposium on Software
Reliability Engineering. IEEE Computer Society, 2008, pp. 117–126.

[91] L. Mariani and M. Pezzè, “Dynamic detection of COTS component incompat-
ibility,” IEEE Software, vol. 24, no. 5, pp. 76–85, 2007.

[92] W. C. Mertens, D. E. Brown, R. Parisi, L. J. Cassells, D. Naglieri-Prescod, and
D. J. Higby, “Detection, classification, and correction of defective chemotherapy
orders through nursing and pharmacy oversight,” Journal of Patient Safety,
vol. 4, no. 3, pp. 195–200, 2008.

[93] W. C. Mertens, S. C. Christov, G. S. Avrunin, L. A. Clarke, L. J. Osterweil,
L. J. Cassells, and J. Marquard, “Using process elicitation and validation to
understand and improve chemotherapy ordering and delivery,” The Joint Com-
mission Journal on Quality and Patient Safety, vol. 38, no. 11, pp. 497– 505,
2012.

[94] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
unix utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

[95] S. Nepal, A. Fekete, P. Greenfield, J. Jang, D. Kuo, and T. Shi, “A service-
oriented workflow language for robust interacting applications,” in On the Move
to Meaningful Internet Systems 2005: CoopIS, DOA, and ODBASE, ser. Lec-
ture Notes in Computer Science, no. 3760. Springer, 2005, pp. 40–58.

[96] OMG, “Business process modeling notation (BPMN), version 2.0.1,” http://
www.omg.org/spec/BPMN/2.0.1/.

232

http://www.omg.org/spec/BPMN/2.0.1/
http://www.omg.org/spec/BPMN/2.0.1/

[97] OMG, “Unified modeling language (UML), version 2.4.1,” http://www.omg.
org/spec/UML/2.4.1/.

[98] OMG, “Software process engineering meta-model, version 2.0,”
http://www.omg.org/spec/SPEM/2.0/, 2008.

[99] L. J. Osterweil, C. M. Schweik, N. K. Sondheimer, and C. W. Thomas, “Analyz-
ing processes for e-government development: the emergence of process modeling
languages,” Journal of E-Government, vol. 1, no. 4, pp. 63–89, 2004.

[100] C. Ouyang, M. T. Wynn, J.-C. Kuhr, M. J. Adams, T. Becker, A. H. ter
Hofstede, and C. J. Fidge, “Workflow support for scheduling in surgical care
processes,” in The 19th European Conference on Information Systems : ICT
and Sustainable Service Development (ECIS 2011), 2011.

[101] C. Ouyang, M. T. Wynn, C. Fidge, A. H. ter Hofstede, and J.-C. Kuhr, “Mod-
elling complex resource requirements in business process management systems,”
in 21st Australasian Conference on Information Systems : Defining and Estab-
lishing a High Impact Discipline (ACIS 2010), M. Rosemann, P. Green, and
F. Rohde, Eds. ACIS, 2010.

[102] H. Pan and E. H. Spafford, “Heuristics for automatic localization of software
faults,” Purdue University, Tech. Rep. SERC-TR-116-P, 1992.

[103] E. S. Patterson and J. E. Miller, Macrocognition Metrics and Scenarios: Design
and Evaluation for Real-World Teams. Ashgate Publishing, 2010.

[104] J. L. Peterson, Petri Net Theory and the Modeling of Systems. Prentice Hall,
1981.

[105] C. A. Petri, “Communication with automata,” Ph.D. dissertation, University
of Darmstadt, 1962.

[106] M. Phongpaibul, S. Koolmanojwong, A. Lam, and B. Boehm, “Comparative
experiences with electronic process guide generator tools,” in Proceedings of the
International Conference on Software Process, 2007, pp. 61–72.

[107] C. Phua, V.-F. Foo, J. Biswas, A. Tolstikov, A.-P.-W. Aung, J. Maniyeri,
W. Huang, M.-H. That, D. Xu, and A.-W. Chu, “2-layer erroneous-plan recogni-
tion for dementia patients in smart homes,” in 11th International Conference on
e-Health Networking, Applications and Services, 2009. Healthcom 2009, 2009,
pp. 21 –28.

[108] P. Pronovost, D. Needham, S. Berenholtz, D. Sinopoli, H. Chu, S. Cosgrove,
B. Sexton, R. Hyzy, R. Welsh, G. Roth, J. Bander, J. Kepros, and C. Goeschel,
“An intervention to decrease catheter-related bloodstream infections in the
ICU,” New England Journal of Medicine, vol. 355, no. 26, pp. 2725–2732, 2006.

233

http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/UML/2.4.1/

[109] M. S. Raunak, L. J. Osterweil, A. Wise, L. A. Clarke, and P. L. Henne-
man, “Simulating patient flow through an emergency department using process-
driven discrete event simulation,” in SEHC ’09: Proceedings of the 2009 ICSE
Workshop on Software Engineering in Health Care. IEEE Computer Society,
2009, pp. 73–83.

[110] M. S. Raunak, B. Chen, A. Elssamadisy, L. A. Clarke, and L. J. Osterweil, “Def-
inition and analysis of election processes,” Software Process Workshop (SPW
2006) and 2006 Process Simulation Workshop (PROSIM 2006), vol. 3966, pp.
178–185, 2006.

[111] J. Reason, Human Error. Cambridge University Press, 1990.

[112] M. Renieris and S. P. Reiss, “Fault localization with nearest neighbor queries,”
in 18th International Conference on Automated Software Engineering, 2003, pp.
30–39.

[113] A. Rozinat, “Conformance testing: measuring the alignment between event logs
and process models,” Eindhoven University of Technology, Tech. Rep., 2005.

[114] A. Rozinat, “Conformance testing: measuring the fit and appropriateness of
event logs and process models,” in BPM 2005 Workshops (Workshop on Busi-
ness Process Intelligence). Springer-Verlag, 2006, pp. 163–176.

[115] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of processes
based on monitoring real behavior,” Information Systems, vol. 33, no. 1, pp.
64–95, 2008.

[116] N. Russell, W. van der Aalst, and A. ter Hofstede, “Exception handling patterns
in process-aware information systems.” BPMCenter.org, BPM Center Report
BPM-06-04, 2006.

[117] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 2nd ed.
Prentice Hall, 2003.

[118] D. Sankoff and J. Kruskal, Time warps, string edits, and macromolecules: the
theory and practice of sequence comparison. Addison-Wesley, 1983.

[119] W. A. Shewhart, Economic control of quality of manufactured product. D. Van
Nostrand Company, Inc, 1931.

[120] B. I. Simidchieva, M. S. Marzilli, L. A. Clarke, and L. J. Osterweil, “Specifying
and verifying requirements for election processes,” in Proceedings of the 2008 In-
ternational Conference on Digital Government Research. Digital Government
Society of North America, 2008, pp. 63–72.

[121] D. H. Stamatis, Failure Mode and Effect Analysis: FMEA from Theory to Ex-
ecution. American Society for Quality, 1995.

234

[122] W. W. Stead and H. S. Lin, Eds., Computational Technology for Effective Health
Care: Immediate Steps and Strategic Directions. National Academies Press,
2009.

[123] E. G. Tessier, E. A. Henneman, B. Nathanson, K. Plotkin, and M. Heelon,
“Pharmacy-nursing intervention to improve accuracy and completeness of med-
ication histories,” American Journal of Health-System Pharmacy, vol. 15, pp.
607–611, 2010.

[124] US Air Force, “Pilots’ abbreviated flight crew checklist, OV-10A aircraft,”
United States Air Force Series, 1969.

[125] W. van der Aalst, A. ter Hofstede, B. Keipuszewski, and A. P. Barros, “Work-
flow patterns,” Distributed and Parallel Databases, vol. 14, no. 3, pp. 5–51, July
2003.

[126] T. W. van der Schaaf, “Near miss reporting in the chemical process industry: an
overview,” Microelectronics and Reliability, vol. 35, no. 9-10, pp. 1233 – 1243,
1995.

[127] W. van Vuuren, C. Shea, and T. van der Schaaf, “The development of an inci-
dent analysis tool for the medical field,” Eindhoven University of Technology,
Tech. Rep., 1997.

[128] W. Vesely, F. Goldberg, N. Roberts, and D. Haasl, Fault Tree Handbook
(NUREG-0492). U.S. Nuclear Regulatory Commission, Washington, D.C.,
January 1981.

[129] D. Wang, J. Pan, G. S. Avrunin, L. A. Clarke, and B. Chen, “An automatic
failure mode and effect analysis technique for processes defined in the Little-
JIL process definition language,” in Proceedings of the International Conference
on Software Engineering and Knowledge Engineering (SEKE 2010), 2010, pp.
765–770.

[130] J. M. Wilkinson and K. V. Leuven, “Procedure checklist for administer-
ing a blood transfusion,” http://davisplus.fadavis.com/wilkinson/Procedure
Checklists/PC Ch36-01.doc.

[131] J. M. Wilkinson and K. Van Leuven, Fundamentals of Nursing. F. A. Davis
Company, 2007.

[132] B. D. Winters, A. P. Gurses, H. Lehmann, J. B. S. ton, C. Rampersad, and
P. J. Pronovos, “Clinical review: checklists–translating evidence into practice.”
Critical Care, vol. 13, no. 6, p. 210, 2009.

[133] D. D. Woods and E. Hollnagel, Joint Cognitive Systems: Patterns in Cognitive
Systems Engineering. Taylor & Francis, 2006.

235

http://davisplus.fadavis.com/wilkinson/Procedure_Checklists/PC_Ch36-01.doc
http://davisplus.fadavis.com/wilkinson/Procedure_Checklists/PC_Ch36-01.doc

[134] D. D. Woods, E. M. Roth, and K. B. Bennett, “Explorations in joint human-
machine cognitive systems,” in Cognition, Computing, and Cooperation, S. P.
Robertson, W. W. Zachary, and J. B. Black, Eds. Ablex Publishing Corp.,
1990, pp. 123–158.

[135] World Health Organization, “Implementation manual surgical safety
checklist,” http://www.who.int/patientsafety/safesurgery/tools resources/
SSSL Manual finalJun08.pdf.

[136] World Health Organization, “Surgical safety checklist,” http://www.who.
int/patientsafety/safesurgery/tools resources/SSSL Checklist finalJun08.pdf,
2008.

[137] W. W. Zachary and S. P. Robertson, “Introduction to cognition, computation,
and cooperation,” in Cognition, Computing, and Cooperation, S. P. Robertson,
W. W. Zachary, and J. B. Black, Eds. Ablex Publishing Corp., 1990, pp. 1–19.

236

http://www.who.int/patientsafety/safesurgery/tools_resources/ SSSL_Manual_finalJun08.pdf
http://www.who.int/patientsafety/safesurgery/tools_resources/ SSSL_Manual_finalJun08.pdf
http://www.who.int/patientsafety/safesurgery/tools_resources/ SSSL_Checklist_finalJun08.pdf
http://www.who.int/patientsafety/safesurgery/tools_resources/ SSSL_Checklist_finalJun08.pdf

	Model-Based Guidance for Human-Intensive Processes
	Recommended Citation

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Process Improvement Environment
	Offline Analyses
	Online Analyses
	Thesis Focus

	Prerequisites for Online Process Guidance
	Precise, Correct, and Sufficiently Complete Process Model
	Process Execution Monitor

	The Little-JIL Process Modeling Language
	The Little-JIL Diagrammatic Representation
	Example Little-JIL Process Model

	The Little-JIL Narrative Representation
	Design of Little-JIL Narrator

	Process Elicitation and Modeling
	Process Elicitation
	Case Study
	Elicited Process
	Elicitation Methods
	Results
	Discussion
	Threats to Validity
	Summary

	Process Modeling
	Exception Handling Patterns
	Selected Patterns
	Evaluation of Exception Handling Patterns

	Comparing the Little-JIL Diagrammatic and Narrative Representations
	User Study

	Overall Experience with Process Modeling
	Experience with Using Little-JIL
	Process Model Validation

	Deviation Detection and Explanation
	Overview
	Example of Applying the Deviation Detection and Explanation Approach to a Medical Process
	Issues
	Delayed Deviation Detection and Potential Harm Due to Delay
	Potential Harm When Deviations Are Immediately Detected
	Performance of the Deviation Detector

	Deviation Detection Framework
	Experimental Evaluation
	Experimental Design
	Process Models
	Synthetic Sequences with Errors
	Experiments
	Potentially Harmful Steps

	Results
	Discussion
	Delayed Deviation Detection and Potential Harm Due to Delay
	Potential Harm When Deviations Are Immediately Detected
	Performance of the Deviation Detector

	Threats to Validity

	Limitations of the Deviation Detection Approach
	Deviation Explanation
	Error Localization
	Legal Sequence Selection
	Alignment Computation
	Potential Error Index Identification

	Evaluation of Error Localization Approach
	Experimental Design
	Results
	Discussion
	Threats to Validity

	Limitations of the Error Localization Approach

	Visualization of process execution state
	Overview
	The Smart Checklist Metaphor
	The Smart Checklist Prototype
	Back-end Implementation
	Visualization

	Preliminary Evaluation

	Related work
	Process Elicitation and Modeling
	Process Elicitation
	Process Modeling
	Exception Handling in HIPs
	Process Model Representations

	Online Process Guidance for HIPs
	Visualization of the Execution State of HIPs
	Trauma Center Process Guidance System
	Visualization of Patient Flow
	Visualization of Patient Location During Perioperative Clinical Processes

	Traditional Checklists and Process Guides
	Checklists
	Process Guides

	Approaches for Dealing with Process Deviation
	Software Process Validation
	Dealing with Deviations in Software Design Processes
	A Framework for Formalizing Inconsistencies and Deviations in HIPs
	Conformance between Process Executions and Process Models
	Adherence to Medical Guidelines

	Error Localization
	Fault Localization
	Anomaly Detection
	Plan and Policy Recognition Approaches

	Human Errors
	``Human Error" by James Reason
	The Eindhoven Classification Model
	Error Causes vs. Error Manifestations

	Conclusion and Future Work
	Artifacts used in process elicitation study
	Open-ended Prompts
	Complete Process Traces
	Trace 1
	Trace 2
	Trace 3

	Complete Process Model (Textual Description)

	Artifacts used in process representations study
	Training Materials
	Process Model—Diagram
	Process Model—Diagram, Training script
	Process Model—Narrative
	Process Model—Narrative, Training script

	Materials on which the study subjects were evaluated
	Process Model 1—Diagram
	Process Model 1—Narrative
	Process Model 1—Questions
	Process Model 2—Diagram
	Process Model 2—Narrative
	Process Model 2—Questions
	Final Questions

	Low-level Process Model Representation
	Trace flow graph and constraints
	Trace Flow Graph Traversal

	Issues and Optimizations
	Construction of Low-level Process Model
	Traversal of Low-level Process Model

	Correspondence between TFG with constraints and ECFG

	Bibliography

