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ABSTRACT

COMBINATORICS OF EQUIVARIANT COHOMOLOGY:

FLAGS AND REGULAR NILPOTENT HESSENBERG VARIETIES

FEBRUARY 2015

ELIZABETH DRELLICH, B.A., GEORGE WASHINGTON UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Julianna Tymoczko

The field of Schubert Calculus deals with computations in the cohomology rings of certain alge-

braic varieties, including flag varieties and Schubert varieties. In the equivariant setting, GKM

theory turns multiplication in the cohomology ring of certain varieties into a combinatorial com-

putation. This dissertation uses combinatorial tools, including Billey’s formula, to do Schubert

calculus computations in several varieties. First we address do computations in the equivariant

cohomology of full and partial flag varieties, the classical spaces in Schubert calculus. We then do

computations in the equivariant cohomology of a family of non-classical spaces: regular nilpotent

Hessenberg varieties. The final chapter gives a complete presentation for the cohomology ring of

the Peterson variety, a type of regular nilpotent Hessenberg variety.
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C H A P T E R 1

INTRODUCTION

Schubert calculus, in the style of Goresky-Kottwitz-MacPherson (GKM), uses combinatorial

tools to understand the equivariant cohomology of certain algebraic varieties. This thesis presents

Schubert-calculus-type calculations with partial flag varieties, regular nilpotent Hessenberg va-

rieties, and Peterson varieties. Partial flag varieties are GKM spaces and thus the traditional

spaces with which to do such calculations. Regular nilpotent Hessenbergs varieties, of which the

Peterson varieties are a subfamily, are not.

In the late 1800’s, Hermann Schubert asked questions about intersections of subspaces: given

four lines in projective 3-space, how many lines intersect all four? If the four lines are in general

position, by which Schubert meant that the four lines are in two intersecting pairs, there will be

two lines which intersect all four. Schubert published his results in 1879 [32], but his calculations

involved case-by-case dimension counts and his questions were ambiguously posed. When Hilbert

proposed his 23 problems in 1900, the fifteenth was to make Schubert’s enumerative geometry

rigorous.

To make these enumerative geometry calculations rigorous, the field of Schubert calculus needed

to pose clearer questions. Instead of asking how many lines intersect a certain number of given

lines, we instead needed to ask about the intersections of algebraic varieties called Schubert va-

rieties and Grassmannians. Then the answers to these questions no longer need tweaks and

modifications to get the correct dimension count.

By the 1970’s, questions of intersections were known to be entirely contained in the questions

of the ring and module structure of the cohomology of the varieties [22]. The cohomology of an
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algebraic variety encodes the intersections of its subspaces so an understanding of the cohomol-

ogy is sufficient to answer questions about the number of points in the intersection of Schubert

varieties. In the cohomology setting instead of intersecting subspaces one multiplies classes. In

modern parlance, to “do Schubert calculus” with a space is to give the structure of its cohomology,

complete with generators for the ring, a basis for it as a module, and rules for multiplying within

the ring.

Since the 1970’s, mathematicians have done Schubert calculus with a range of spaces. Schu-

bert’s original questions are answered by studying Grassmannians [9][23][29][34] and Schubert

varieties [4][5][30]. The field has expanded to include flag varieties which can be treated as a

specific case of Schubert variety, as well as partial flag varieties [10][33] and affine Grassmannians

[25][26][27].

In 1997, Goresky-Kottwitz-MacPherson published a paper describing an approach to equivari-

ant cohomology that is known as GKM theory [15]. Equivariant cohomology uses additional

information from an appropriate group action on the space. For every result in Schubert calculus

using ordinary cohomology there is an analogous statement for equivariant cohomology. Other

cohomology theories are also used. There is work in quantum and quantum equivariant Schubert

calculus as well as work using cobordism and k-theoretic techniques [12].

GKM theory gives a combinatorial structure that provides a module basis for the equivariant

cohomology and ring generators for the ring. It says that all of the information about the equiv-

ariant cohomology happens at the fixed points of the space. Moreover, explicit combinatorial

calculations tell us exactly what occurs at those fixed points. But in order to get these structures

the space and group action need to meet certain criteria, which will be discussed Chapter 2. Such

pairs are called GKM spaces. This thesis uses applicable parts of GKM theory when appropriate,

and reconstructs GKM-style combinatorial structures when the theory does not apply.

This thesis presents results about partial flag varieties and regular nilpotent Hessenberg vari-

eties. Chapter 3 gives a new basis for the cohomology of the flag variety G/B as a product of

the cohomology of G/P and P/B where P is any parabolic subgroup of G. In Chapter 4 we
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give several results about regular nilpotent Hessenberg varieties, including partial results about a

conjectured basis for the equivariant cohomology of regular nilpotent Hessenberg varieties. The

last chapter specializes to a particular regular nilpotent Hessenberg variety, the Peterson variety.

We give, in all Lie types, a module basis and ring generators for the equivariant cohomology of

the Peterson variety, as well as multiplication rules for the ring.
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C H A P T E R 2

TECHNICAL BACKGROUND

The notation conventions presented in this chapter will be used throughout the document.

Certain definitions and theorems used in multiple chapters are also provided here.

2.1 Notation conventions

All root systems and Weyl groups are constructed by fixing a complex reductive linear algebraic

group G, a Borel subgroup B, and a maximal torus T ⊆ B ⊆ G. This choice gives

• a root system Φ

• positive roots Φ+ ⊂ Φ

• simple roots ∆ ⊂ Φ+

• an associated Weyl group W

• associated Lie algebras t ⊆ b ⊆ g

• root spaces gα ⊂ g for each root α ∈ Φ.

We also choose a basis element Eα ∈ gα for each of the root spaces. Some of our constructions

rely on a specific ordering of the roots α1, α2, . . . , α|∆| ∈ ∆. This ordering is expressed in the

Dynkin diagrams of ∆ as shown in Figure 1. For Lie type A we will use the convention that

G = GLn(C), B is the set of upper-triangular matrices in G, and T is the set of diagonal matrices

in G.
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Figure 1: Dynkin diagrams of root systems.
The Dynkin diagrams show the order on the simple reflections. The same order is imposed on
the corresponding simple roots throughout this paper.

s1 s2 s3 sn−2 sn−1 sn
An

s1 s2 s3 sn−2 sn−1 sn
Bn

s1 s2 s3 sn−2 sn−1 sn
Cn

s1 s2 s3 sn−3 sn−2 sn−1

sn

Dn

s1 s2 s3 s4
F4

s1 s2
G2

s1 s3 s4 sn−1 sn

s2

En

We recall standard notation about roots and weight lattices as found in Humpreys’ Introduc-

tion to Lie Algebras and Representation Theroy [17, pp 35-37]. The roots α are the (non-trivial)

weights of the adjoint representation of t. As such they live in the dual t∗. Throughout this thesis

and especially in Chapters 4 and 5, many computations will take place in the ring C[αi : αi ∈ ∆].

This ring is a subring of the Cartan subalgebra C[t∗] which we reference in Chapter 3.

2.2 GKM Theory

Named after Goresky-Kottwitz-MacPherson and their 1997 paper, GKM theory allows us to

study the equivariant cohomology of certain geometric spaces by looking at polynomials associ-

ated to the fixed points of the space [15]. Many others including Braden, Brion, Carrell, Knutson,

Rosu, and Tao, contributed to the development of this theory [15].

In order for GKM theory to apply to a space X and a torus group T acting on that space

the pair must have three properties:

1. X is equivariantly formal with respect to T ,

2. X contains finitely many points, XT , which are fixed by T , and

3. X has finitely many one dimensional orbits under the action of T .
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If a space X satisfies these properties with respect to a group action of torus T , then it is called a

GKM space. In this case GKM theory gives two main properties of the T -equivariant cohomology

of X.

1. The T -equivariant cohomology of X injects into the T -equivariant cohomology of the T -fixed

points of X.

H∗T (X) ↪→
⊕
XT

H∗T (pt)

Moreover a straightforward algebraic calculation describes this injection. Thus we can study

the equivariant cohomology H∗T (X) by looking only at the equivariant cohomology of the

T -fixed points of X.

2. The pair of X and T has an associated GKM graph constructed using the set XT as

vertices and the one-dimensional orbits as edges. Equivariant Schubert classes arising from

this graph give a basis for H∗T (X) as a module over H∗T (pt). A subset of these classes

generate the equivariant cohomology as a ring.

When paired with the maximal torus in the Borel subgroup, all of the spaces classically studied

by Schubert calculus, including Grassmannians, flag varieties, and Schubert varieties, are GKM

spaces. The construction of the GKM graph and the equivariant Schubert classes will be discussed

in depth in Sections 2.2.1 and 2.2.2 respectively.

2.2.1 Construction of GKM Graphs

Let X be a GKM space with respect to the group T acting on X. We build an edge-labeled graph

G such that:

• the vertex set V (G) is the set XT of T -fixed points of X,

• the edge set E(G) is the set of one (complex) dimensional T orbits in X, and

• each edge is labeled by an element of C[t∗] which we will take more care to define.

Each one-dimensional orbit is parameterized by a character of T . As this parameter tends towards

zero or infinity, the orbit approaches a T -fixed point of X. We label the edge between these fixed

points by the weight α ∈ C[t∗] corresponding to that character of T .
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Example 2.1. We construct the GKM graph for the flag variety GL2(C)/B under the action of

T =

t1 0

0 t2

. The set of flags has coset representatives

GL2(C)/B =


a 1

1 0

 : a ∈ C

 ∪

1 0

0 1


 .

The flags fixed by T are

1 0

0 1

 and

0 1

1 0

. Consider a flag that is not fixed by T . For example

t1
t2

 ·
1 1

1 0

 =

t1 t1

t2 0

 =

 t1t2 1

1 0

 .
We associate the weight α1 with the character t1

t2
and the orbit parameterized by this character

is

lim
t1
t2
→0

t1
t2

 ·
1 1

1 0

 =

0 1

1 0

 and lim
t1
t2
→∞

t1
t2

 ·
1 1

1 0

 =

1 0

0 1

 .
Thus the GKM graph contains two fixed points and an edge connecting them. We label that edge

α1 to indicate the parameter along that orbit.0 1

1 0


1 0

0 1

α1

Given a choice of B and coset representatives, the edges of the GKM graph are directed corre-

sponding to the limits as ti
tj

goes to zero and infinity. When the fixed points are permutations,

this direction corresponds to the Bruhat order. The vertex at the zero end of each edge is above

the vertex at the infinity end in the Bruhat order.

The identification of t1
t2

with the simple root α1 uses a formal algebraic isomorphism between

the characters of T which are written as a multiplicative group, and the weights of the adjoint

representation of t which are an additive group. We often conflate characters with weights. We use

the characters of the torus action of T to build GKM graphs but once the graphs are constructed

all computation occur inside the Cartan subalgebra C[t∗].
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Example 2.2. When there are multiple one-dimensional orbits, labeling the edges of the graph

becomes more complicated. The GKM space GL3(C)/B is a larger example that demonstrates

several points.

1. Not all points of GL3(C)/B are in one-dimensional T orbits. For example
t1

t2

t3




1 1 1

1 0 0

0 1 0

 =


t1 t1 t1

t2 0 0

0 t3 0

 =


t1
t2

t1
t3

1

1 0 0

0 1 0


is a two-dimensional orbit.

2. Multiple edges can have the same parameter. As before, the weight α1 is associated with

the character t1
t2

. There are three distinct one-dimensional orbits parameterized by the t1
t2

.

These orbits are: 
t1
t2

1 0

1 0 0

0 0 1

 ,

t1
t2

0 1

1 0 0

0 1 0

 ,


0 t1
t2

1

0 1 0

1 0 0

 .
3. Not all edges have the same parameter. The weight α2 corresponds to the character t2

t3
.

The three one-dimensional orbits parameterized by t2
t3

are:
1 0 0

0 t2
t3

1

0 1 0

 ,


0 1 0

t2
t3

0 1

1 0 0

 ,


0 0 1

t2
t3

1 0

1 0 0

 .

4. The weight associated to the parameter t1
t3

is α1 + α2 and its orbits are:
t1
t3

1 0

0 0 1

1 0 0

 ,


0 t1
t3

1

1 0 0

0 1 0

 ,

t1
t3

0 1

0 1 0

1 0 0

 .

5. The T -fixed points are indexed by a combinatorial object. In the case of GL3(C)/B the

fixed points are flags that can be represented by matrices with one 1 in each row and each

column. These are the permutation matrices, so the fixed points correspond to permutations

on three elements.

We can write the permutations corresponding to the fixed points in terms of the simple reflections

s1 = (1, 2) and s2 = (2, 3). The GKM graph for GL3(C)/B is

8



e

s1

s1s2

s1s2s1

s2s1

s2

Here colors indicate the edge labels: black for α1,blue for α2, and red for α1 + α2.

We frequently draw the GKM graph without writing the fixed points which index the vertices.

In our next construction we will label the vertices of the GKM graph and make a distinction

between the fixed point and the label on the corresponding vertex.

2.2.2 Equivariant Schubert Classes as Generalized Splines

Definition 2.3. Let R be an arbitrary (commutative) ring and G a graph with edges labeled by

ideals I of R. A generalized spline on the edge-labeled graph is a set of labels on the vertices

of G such that

• each vertex v is labeled by an element of R

• if a and b are labels of a pair of vertices connected by an edge with label I ⊆ R then a − b

is in I.

Let X be a GKM space with torus action T and GKM graph G. Choose the ring R = C[α1, ...αn] ∼=

H∗T (pt) and to each edge of G associate the ideal I ⊆ R generated by its label. The set of

generalized splines on the GKM graph G is both a module and a ring over C[α1, . . . , αn]. It is

isomorphic as both a ring and a module to H∗T (X) which is a module over H∗T (pt). It is also

a free module over H∗T (pt) and thus any basis will consist of |XT | elements, each of which is a

generalized spline on the GKM graph G.

Theorem 2.4 (Existence of the Schubert Basis [14]). Let P ⊆ G be a parabolic subgroup. Then

X = G/P is a GKM space with respect to the action of T and a module basis of H∗T (X) can be

given explicitly. There is a specific set of |XT | splines on the GKM graph G called equivariant

Schubert classes that form a basis of H∗T (X). These classes are indexed by the same combinatorial

object as the fixed points.
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A Schubert class is denoted σv where v is a vertex of G.

Example 2.5. Continuing Example 2.2, the T -equivariant Schubert classes of GL3(C/B) are

indexed by the six elements of S3. The edge labels are understood to be those given in Example

2.2.

1

1

1

1

1

1

σe

saffd 0

α1

α1

α1 + α2

α1 + α2

0

σs1

0

0

α1 + α2

α1 + α2

α2

α2

σs2

0

0

α1(α1 + α2)

α1(α1 + α2)

0

0

σs1s2

0

0

0

α2(α1 + α2)

α2(α1 + α2)

0

σs2s1

0

0

0

α1α2(α1 + α2)

0

0

σs1s2s1

The index v of the equivariant Schubert class σv corresponds to the smallest (in Bruhat order)

vertex which has a non-zero label.

The polynomial labeling the vertex w in the equivariant Schubert class σv is called σv(w).

2.2.3 Billey’s formula

We now restrict our focus to flag varieties G/B with the action of maximal torus T . In this case

the T -fixed points correspond to the elements of the Weyl group W and the parameters on the

one-dimensional orbits correspond to positive roots of Φ. If there are m simple roots in Φ then

the GKM graph is an m-regular graph on |W | vertices. Furthermore the Schubert classes are

indexed by elements of W and, as demonstrated in Example 2.5, the index of the Schubert class

is the smallest fixed point in that class with a non-zero label.
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In the case of G/B it is possible to say exactly what each Schubert class is. Billey gave an

explicit combinatorial formula for the polynomial σv(w) at the fixed point w.

Definition 2.6 (Billey’s Formula [4]). Fix a reduced word for w = sb1sb2 · · · sb`(w)
and define

r(i, w) = sb1sb2 · · · sbi−1(αbi). Then

σv(w) =
∑

reduced words
v=sbj1

sbj2
···sbj`(v)

`(v)∏
i=1

r(ji, w)

 . (2.1)

Proposition 2.7 (Billey [4]). Properties of the polynomial σv(w):

• The polynomial σv(w) is homogeneous of degree `(v).

• If v 6≤ w then σv(w) = 0.

• If v ≤ w then σv(w) 6= 0.

• The coefficients of σv(w) are non-negative integers.

• The polynomial σv(w) does not depend on the choice of reduced word for w.

When v and w are words of relatively short length it is simple to calculate σv(w) by hand.

Example 2.8. Let G/B have Weyl group W = A2 and let w = s1s2s1 and v = s1. The word v

is found as a subword of s1s2s1 in the two places s1s2s1 and s1s2s1.

σv(w) = r(1, s1s2s1) + r(3, s1s2s1) = α1 + s1s2(α1) = α1 + α2

Using Billey’s formula the entire basis of Schubert classes for the T -equivariant cohomology of

any flag variety can be computed directly.

2.3 Hessenberg varieties

Hessenberg varieties are a large family of subvarieties of the flag variety G/B. They are defined

by two parameters: a subspace of the Lie algebra and an element of the Lie algebra. For any Lie

algebra g the relevant subspaces can be defined by root spaces.

Definition 2.9. A Hessenberg space H is a subspace of the Lie algebra g which

• contains b and

11



• is closed under the Lie bracket with b.

In type An−1 a Hessenberg space H can be presented as either an n×n matrix or as a Hessenberg

function h : [n]→ [n]. The matrix presentation of H in type A has the properties

• every entry on the diagonal is allowed to be non-zero and

• whenever an entry in H must be non-zero, all entries to the south and west must also be

zero.

A Hessenberg function has the property h(i) ≥ max{i, h(i− 1)} for all i = 1, 2, . . . , n. The value

h(i) is the number of free variables in the ith column of the matrix H.

Example 2.10. There are 5 Hessenberg spaces in GL3(C).
∗ ∗ ∗

0 ∗ ∗

0 0 ∗



∗ ∗ ∗

∗ ∗ ∗

0 0 ∗



∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗



∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗



∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗


H1 H2 H3 H4 H5

h1(i)=i h2(1)=h2(2)=2 h3(1)=1 h4(1)=2 h5(i)=n

h2(3)=3 h3(2)=h3(3)=3 h4(2)=h4(3)=3

The Hessenberg space is one of two parameters which define a Hessenberg variety.

Definition 2.11. Let X ∈ g be a linear operator and H ⊂ g be a Hessenberg space. The

corresponding Hessenberg variety is defined

Hess(X,H) =
{
gB ∈ G/B : Ad(g−1)X ∈ H

}
. (2.2)

There are many families within the Hessenberg varieties. Specially named Hessenberg varieties

include regular semisimple and regular nilpotent Hessenberg varieties, Springer varieties, and Pe-

terson varieties.

Using the spaces from Example 2.10, the Hessenberg variety Hess(X,H1) is called a Springer

variety. The variety Hess(X,H5) is the full flag variety.

In this dissertation we focus on regular nilpotent Hessenberg varieties, a family for which the

operator X is a regular nilpotent operator. In the last chapter, we will focus on Peterson vari-

eties, a subfamily of regular nilpotent Hessenberg varieties.
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C H A P T E R 3

A PRODUCT DECOMPOSITION OF H∗T (G/B)

Classical Schubert calculus studies the cohomology of flag and partial flag varieties. Let P ⊂ G

be a parabolic subgroup. Then G/P is a partial flag variety. Like the full flag variety G/B when

B is a Borel subgroup, partial flag varieties are GKM spaces under the action of the maximal

torus T . A parabolic subgroup P ⊆ G contains B and gives rise to two new varieties: P/B and

G/P . The second one, G/P , is called a partial flag variety.

Since T acts on the variety P/B as well, we can study the T -equivariant cohomology of all

three of these varieties. By the Kűnneth theorem the three cohomology rings are related:

H∗T (G/B) ∼= H∗T (G/P )⊗H∗T (P/B).

This chapter gives a new proof of this fact via an explicit product of Schubert classes. We define

H∗T (G/P ) and H∗T (P/B) as submodules of H∗T (G/B) and give module bases for them in terms of

Schubert classes. We then give an explicit module isomorphism.

Theorem 3.1. Let P be a parabolic subgroup of G. Then the map

H∗T (G/P )⊗H∗T (P/B) → H∗T (G/B)

p⊗ q 7→ pq

is a bilinear isomorphism.

This is an equivariant version of the Leray-Hirsch theorem. Guillemin-Sabatini-Zara showed

that Leray-Hirsch holds in the equivariant setting for GKM spaces using a construction on the

GKM graphs [16, Theorem 3.5], we will do it explicitly using a different technique which involves

Schubert classes. These techniques which we introduce for the proof of Theorem 3.1, we will later

apply to computations involving Hessenberg varieties. One of these varieties will be discussed in

depth in Section 4.3.4.
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3.1 H∗
T (G/P ) and H∗

T (P/B) as submodules of H∗
T (G/B)

As we have already discussed, the set of Schubert classes {σv : v ∈ W} is a module basis for

H∗T (G/B) over H∗T (pt). Let WP be the subgroup of the Weyl group W generated by the simple

reflections si ∈ P and let WP be the set of minimal coset representatives of W/WP . The group

WP is the Weyl group corresponding to P/B.

Classical GKM theory applies directly to P/B and says that the set {σv|WP
: v ∈ WP } is a

basis of the T -equivariant cohomology of P/B. The submodule of H∗T (G/B) generated by the set

{σv : v ∈WP } is isomorphic to the module H∗T (P/B). Therefore we can think of the equivariant

cohomology of P/B as

H∗T (P/B) ∼= span{σv : v ∈WP } ⊂ H∗T (G/B).

By applying GKM theory to the partial flag variety G/P , the set {σw|WP : w ∈WP } is a module

basis for H∗T (G/P ) [36]. We can consider the corresponding Schubert classes in the larger ring

H∗T (G/B) and think of the equivariant cohomology of G/P as

H∗T (G/P ) ∼= span{σw : w ∈WP } ⊂ H∗T (G/B).

Whereas the presentation for H∗T (P/B) is also a ring isomorphism, this presentation of H∗T (G/P )

is strictly a module isomorphism. These inclusions into H∗T (G/B) are the presentations we use

to prove Theorem 3.1.

3.2 Proof of Theorem 3.1

We prove the main theorem of this chapter by showing that the product of the basis of H∗T (G/P )

and the basis of H∗T (P/B) is a basis for H∗T (G/B). We write this product as

{σwσv : w ∈WP , v ∈WP }.

The class σwσv has polynomial degree `(w)+ `(v) and each word in W can be written uniquely as

wv for some w ∈ WP and v ∈ WP [6]. Thus for any m the collection {σwσv : w ∈ WP , v ∈ WP }

has the same number of classes of polynomial degree m as the standard Schubert class basis

{σv : v ∈ W}. Therefore to prove Theorem 3.1 it suffices to prove that the collection of classes

{σwσv : w ∈WP , v ∈WP } is linearly independent over C[t∗].
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Theorem 3.2. The set of Schubert class products {σwσv : w ∈ WP , v ∈ WP } is a linearly

independent set over C[t∗].

In the this section we will prove Theorem 3.2 by arranging these products in a matrix A with

entries σw(w′v′)σv(w
′v′). The columns of this matrix correspond to pairs (w′, v′) ∈ WP ×WP

and the rows correspond to pairs (w, v) in the same set. In this way the columns of matrix A are

indexed by T -fixed points and the rows correspond to products of Schubert classes σwσv.

We begin by establishing an order on WP ×WP . The elements of both WP and WP are partially

ordered by length; fix a total order on WP (respectively WP ) consistent with this partial order

and extend this lexicographically to all of WP ×WP . For instance all rows and columns corre-

sponding to pairs in (e,WP ) come before any pair in (si,WP ).

For the remainder of this chapter we will consider the matrix A to have rows and columns ordered

as above.

3.2.1 Key lemmas

The proof of Theorem 3.2 is at the end of this section. We begin with two lemmas. The first will

prove that given the above ordering of its rows and columns, the matrix A = (σw(w′v′)σv(w
′v′))

is block upper-triangular. The second lemma will construct a matrix M · wN where M is an

invertible matrix and wN is known to have linearly independent rows and columns. We can then

prove Theorem 3.2 by showing that the diagonal blocks of A are scalar multiples of the matrix

M · wN .

Lemma 3.3. The matrix (σw(w′v′)σv(w
′v′))(w,v),(w′,v′)∈WP×WP

is block upper-triangular.

Proof. Choose w,w′ ∈WP . Consider the blocks of A whose rows are indexed by pairs in (w,WP )

and whose columns are indexed by pairs in (w′,WP ). By construction this is a square |WP |×|WP |

block. Its entries are (σw(w′v′)σv(w
′v′)) where v, v′ range over all of WP . The last letter in every

reduced word for w′ ∈ WP is a simple reflection si 6∈ WP (a fact shown by many, including

Bjorner and Brenti [6]). Thus every reduced word for w ∈ WP inside w′v is in fact in the prefix

w′. The term σw(w′v′) thus equals σw(w′) which is zero unless w ≤ w′. Therefore whenever

`(w) ≥ `(w′) and w 6= w′ the entire block is zero.
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Example 3.4. Consider the varieties G/P and P/B in GL3(C)/B corresponding to WP = 〈s2〉

and WP = {e, s1, s2s1}. Let σWP
denote {σv : v ∈ WP }. Then the blocks of the matrix

(σw(w′v′)σv(w
′v′)) are



eWP s1WP s2s1WP

σeσWP
∗ ∗ ∗

σs1σWP
0 ∗ ∗

σs2s1σWP
0 0 ∗

.
Example 3.5. This example treats pairs w,w′ ∈ WP with the same length. Let WP be the

parabolic subgroup 〈s3〉 ⊂ 〈s1, s2, s3〉 = A3. The elements of WP with length two are s1s2, s2s1,

and s3s2. The blocks of (σw(w′v′)σv(w
′v′)) where w,w′ have length two have the form



s1s2WP s2s1WP s3s2WP

σs1s2σWP
∗ 0 0

σs2s1σWP
0 ∗ 0

σs3s2σWP
0 0 ∗


In the next lemma we show that the rows of the diagonal blocks of the matrix (σw(w′v′)σv(w

′v′))

are linearly independent. It is not immediately obvious that the matrices in this lemma are in

fact the diagonal blocks; that result is part of the content of the main theorem.

Lemma 3.6 (Linear independence of diagonal blocks). Fix w ∈WP . Assume that the elements

of WP are ordered consistently with the partial order on length. Let M be the matrix defined by

Mvu =


σvu−1(w) if u is a suffix of v

0 otherwise.

Define the matrix N by N = (σu(v′))u,v′∈WP
. Consider the algebra isomorphism w : C[t∗]→ C[t∗]

induced from the action tα 7→ tw(α). Denote the image of N under this action of w by wN . Then

the rows of the matrix M · wN are linearly independent over C[t∗].

Note that w does not permute the rows or columns of N .

Proof. If `(u) > `(v) then by construction Mvu = 0. If `(u) = `(v) then Mvu = 0 unless

v = u. Therefore M is an upper-triangular matrix. The entries on the diagonal have the form

Mvv = σe(w) = 1. Since 1 is a unit in C[t∗] the matrix M is invertible.
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Note that N = (σu(v′))u,v′∈WP
is the matrix of Schubert classes in H∗T (P/B). The rows of

N are the Schubert class basis for H∗T (P/B) so the rows and columns of matrix N are linearly

independent. The function w acts on the matrix N by sending each tα to tw(α). This operation

is invertible and so preserves linear independence of the matrix rows. Thus the new matrix wN

also has linearly independent rows.

Since M is invertible over C[t∗] and wN has linearly independent rows over C[t∗] the rows of

the matrix product M · wN are also linearly independent over C[t∗].

3.2.2 Proof of Theorem 3.2

We now show that each of the diagonal blocks of A identified in Lemma 3.3 is a scalar multiple

of the matrix M ·wN defined by Lemma 3.6. This proves that the rows of matrix A are linearly

independent and thus the collection of Schubert class products {σwσv : w ∈ WP , v ∈ WP } is

linearly independent over C[t∗].

Proof. Consider the matrix A = (σw(w′v′)σv(w
′v′))(w,v),(w′,v′)∈WP×WP

with rows and columns

ordered lexicographically subordinate to the length partial order on WP and WP described above.

Partition the matrix A into blocks according to the pairs w,w′ ∈ WP . Lemma 3.3 proved

that the matrix (σw(w′v′)σv(w
′v′)) is block-upper-triangular with this partition. Now consider

the blocks along the diagonal, namely the blocks of the form

(σw(wv′)σv(wv
′))v,v′∈WP

= σw(w) · (σv(wv′))v,v′∈WP

for each w ∈ WP . Billey’s formula guarantees that σw(w) is non-zero so it suffices to consider

the matrix (σv(wv
′))v,v′∈WP

. We will show that

(σv(wv
′))v,v′∈WP

= M · wN

where M and wN are the matrices of Lemma 3.6. Multiplying matrices gives M · wN =
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 Mvu



u ranges over WP

v
r
a
n
g
e
s

o
v
e
r
W
P

 w(σu(v′))



v′ ranges over WP

u
r
a
n
g
e
s

o
v
e
r
W
P

=


∑

u∈WP

Mvu · w(σu(v′))



v′ ranges over WP

v
r
a
n
g
e
s

o
v
e
r
W
P

Next we show that for any v, v′ ∈ WP the polynomial σv(wv
′) can be decomposed as the sum∑

u∈WP

Mvu ·w(σu(v′)) . To do this, consider Billey’s formula for σv(wv
′) and group terms according

to which part of v is a subword of w and which part is a subword of v′. More precisely:

σv(wv
′) =

∑
u a suffix

of v

part of v found in w︷ ︸︸ ︷
σvu−1(w) · wσu(v′)︸ ︷︷ ︸

part of v found in v′

By construction of M we have

∑
u∈WP

Mvu · w(σu(v′)) =
∑

u a suffix
of v

σvu−1(w) · wσu(v′) = σv(wv
′).

Therefore the matrix (σv(wv
′))v,v′∈WP

is equal to M · wN as desired.

By Lemmas 3.3 and 3.6 the rows of matrix A are linearly independent over C[t∗]. Thus the

Schubert class products {σwσv : w ∈WP , v ∈WP } are linearly independent over C[t∗].

As discussed at the beginning of Section 3.2 the map WP ×WP → W given by (w, v) 7→ wv

is a bijection. The degree of the homogeneous class σwσv is by definition `(w) + `(v) so the

homogeneous classes {σwσv : w ∈ WP , v ∈ WP } form a linearly-independent set in H∗T (G/B)

of the same degrees as the equivariant Schubert classes. Thus the collection of Schubert class

products {σwσv : w ∈ WP , v ∈ WP } form a basis for H∗T (G/B). This completes the proof of

Theorem 3.1.
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3.3 The Composite Basis for H∗
T (G/B)

The basis for H∗T (G/B) given by Theorem 3.1 is not the classical Schubert basis. For example

when G = GL3(C) there are two classes that differ between this basis and the Schubert basis.

Example 3.7. This example uses H∗T (GL3/B) to demonstrate that the basis {σwσv} is not equal

to the Schubert basis. We continue the example WP = 〈s2〉 and WP = {e, s1, s2s1}. Four of the

classes {σwσv : w ∈WP and v ∈WP } are also Schubert classes:

1

1

1

1

1

1

σeσe = σe

0

0

α1 + α2

α1 + α2

α2

α2

σeσs2 = σs2

0

α1

α1

α1 + α2

α1 + α2

0

σs1σe = σs1

0

0

0

α2(α1 + α2)

α2(α1 + α2)

0

σs2s1σe = σs2s1

The remaining two classes are not Schubert classes.

0

0

α1(α1 + α2)

(α1 + α2)2

α2(α1 + α2)

0

σs1σs2

6=

0

0

α1(α1 + α2)

α1(α1 + α2)

0

0

σs1s2

0

0

α1α(α1 + α2)0

α2(α1 + α2)2

(α2)2(α1 + α2)

0

σs2s1σs2

6=

0

0

α1α(α1 + α2)0

α1α2(α1 + α2)

0

0

σs2s1s2

The class σs1σs2 is equal to σs1s2 + σs2s1 and the class σs2s1σs1 is equal to σs1s2s1 + α2σs2s1 .

If neither u nor v is the identity then σuσv will generally not be a Schubert class.
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C H A P T E R 4

REGULAR NILPOTENT HESSENBERG VARIETIES

Regular nilpotent Hessenberg varieties are a family of Hessenberg varieties that have been studied

in depth by Harada-Tymoczko [19], Brion-Carrell [7] and Peterson [unpublished]. These varieties

inherit a significant amount of structure from the flag variety and have interesting internal sym-

metries.

Definition 4.1. A regular nilpotent Hessenberg variety is a Hessenberg variety where the

operator X is a regular nilpotent operator in g. Explicitly regular nilpotent Hessenberg varieties

have the form Hess(N,H) where

N =
∑
α∈∆

Eα. (4.1)

In Lie type An−1 the Jordan normal form of the operator N is the n×n matrix with ones on the

upper diagonal and zeros in all other entries.

Since we are fixing one parameter of the Hessenberg variety, each Hessenberg space corresponds

to exactly one regular nilpotent Hessenberg variety.

Example 4.2. There are 5 Hessenberg spaces in GL3(C) corresponding to the 5 type-A2 regular

nilpotent Hessenberg varieties.


∗ ∗ ∗

0 ∗ ∗

0 0 ∗



∗ ∗ ∗

∗ ∗ ∗

0 0 ∗



∗ ∗ ∗

0 ∗ ∗

0 ∗ ∗



∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗



∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗


H1 H2 H3 H4 H5

The variety Hess(N,H1) is the regular nilpotent Springer variety, Hess(N,H4) is the type-A2

Peterson variety, and Hess(N,H5) = GL3(C)/B is the flag variety.
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In this chapter we work exclusively in type A, although in the last chapter we will discuss the

Peterson variety in all Lie types. In type A it is convenient to describe Hess(N,H) in terms of

flags. Recall that the regular nilpotent Hessenberg variety corresponding to a Hessenberg function

h is

Hess(N,H) = {V• = V1 ( V2 ( · · · ( Vn = Cn : NVi ∈ Vh(i)}. (4.2)

We will also fix a basis for Cn to simplify computations. Given a regular nilpotent operator N ,

there a basis with respect to which N is a single Jordan block corresponding to the 0 eigenvalue.

We fix this to be our standard basis for the rest of this chapter. This will make some of the proofs

in this chapter simpler by letting us use matrix notation to discuss vectors and flags explicitly.

4.1 Isomorphic Varieties

Given the set of regular nilpotent Hessenberg varieties, a natural first question is whether there are

families of related varieties within the set. In Example 4.2 there is a clear relationship between the

Hessenberg spaces H2 and H3 since flipping one of these spaces along the antidiagonal produces

the other space. Not just the Hessenberg spaces are related; the associated Hessenberg varieties

are isomorphic.

Theorem 4.3. Let H ⊂ GLn(C) be a Hessenberg space and let TH be the Hessenberg space

obtained by flipping along the antidiagonal. Then

Hess(N,H) ∼= Hess(N, TH).

Proof. Let w0 be the longest word in Sn. The permutation matrix corresponding to w0 has ones

on the antidiagonal and all other entries are zero. Any n× n matrix M can be flipped along its

antidiagonal by taking its transpose and conjugating by the longest word:

TM = w0M
Tw0. (4.3)

This operation can be done on subspaces of n× n matrices as well. The space TH = w0H
Tw0 is

a Hessenberg space whenever H is a Hessenberg space. To show that Hess(N,H) is isomorphic

to Hess(N, TH) we give the following map:

φ : G/B → G/B

gB 7→ w0(gT )−1w0B
(4.4)
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To see this map is well-defined, suppose, g1 = g2b for some b ∈ B. Then

φ(g1B) = w0(gT1 )−1w0B = w0((g2b)
T )−1w0B = w0(gT2 )−1(bT )−1w0B.

The term (bT )−1 is in B and Bw0 = w0B, (both are the set matrices in GLn(C) with zeros below

the antidiagonal). So φ(g1B) = w0(gT2 )−1w0B = φ(g2B) and the map φ is well-defined.

Since we are in type A, gB is in Hess(N,H) if and only if g−1Ng ∈ H. Observing that the

matrix w0Nw0 = NT we take the transpose and conjugate by w0 to get that

w0(g−1Ng)Tw0 ∈ w0H
Tw0 = TH. (4.5)

As a composition of continuous bijections, namely transpose, inverse, and conjugation by the

longest word, the map φ is a continuous bijection from G/B to itself. In fact φ is its own inverse:

φ2(gB) = φ(w0(gT )−1w0B) = w0((w0(gT )−1w0)T )−1w0 = (((gT )−1)T )−1B = gB. (4.6)

Thus φ is an isomorphism between Hess(N,H) and Hess(N, TH).

While in some cases TH = H, this map groups many regular nilpotent Hessenberg varieties into

isomorphic pairs.

4.2 Decomposable Regular Nilpotent Hessenberg Varieties

To study the structure of regular nilpotent Hessenbergs more closely, we want to look at the

most basic unit of these varieties. Recall that any type A Hessenberg space can be given by a

Hessenberg function h : [n]→ [n] where h(i) is greater than or equal to both i and h(i− 1).

Definition 4.4. A type-A regular nilpotent Hessenberg variety is called decomposable if for

some i < n the Hessenberg function h(i) = i. If h(i) > i for all i < n then the corresponding

variety is called indecomposable.

Theorem 4.5. Every type-A regular nilpotent Hessenberg variety is the product of indecomposable

regular nilpotent Hessenberg varieties.

Proof. Let h : [n]→ [n] be a Hessenberg function with h(j) = j for some j < n and let Hess(N,H)

be the corresponding regular nilpotent Hessenberg variety. We define two new type-A Lie algebras
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and root systems by letting G1 = GLj(C) and G2 = GLn−j(C) and g1, g2 be their respective Lie

algebras. For each, we define a Hessenberg function:

h1 : [j] → [j] and h2 : [n− j] → [n− j]

i 7→ h(i) i 7→ h(i+ j)− j
(4.7)

These determine two regular nilpotent Hessenberg varieties Hess(N1, H1) and Hess(N2, H2) where

N1 = N |g1
and N2 = N |g2

are regular nilpotent operators in g1 and g2 respectively. We will show

that

Hess(N,H) ∼= Hess(N1, H1)×Hess(N2, H2). (4.8)

Define a map from

Hess(N1, H1)×Hess(N2, H2) → Hess(N,H)

(V
(1)
• , V

(2)
• ) 7→ V

(1)
• ⊕ V (2)

•

(4.9)

If V
(1)
• and V

(2)
• are flags in the two smaller Hessenberg varieties, then V• is the flag in Hess(N,H)

where

Vi =


V

(1)
i if i ≤ j

V
(1)
j ⊕ V (2)

i−j if i > j

(4.10)

In matrix notation V• =

V (1)
• ∗

0 V
(2)
•

.

To see that V• ∈ Hess(N,H) we observe that

NVi = N1V
(1)
i ⊂ V (1)

h1(i) = Vh(i) if i ≤ j

NVi ⊆ V
(1)
j ⊕N2V

(2)
i−j ⊂ V

(2)
j ⊕ V (2)

h2(i−j) = Vh(i) if i > j.
(4.11)

As a direct sum of linear operators, this map is injective. It remains to be shown that every flag

V• in Hess(N,H) has this form.

Let V• = V1 ( V2 ( · · · ( Vn = Cn be a flag in Hess(N,H). Let v ∈ Vj be a vector. Without

loss of generality say that v = (v1, v2, . . . , vp, 0, . . . , 0) where vp is the last non-zero entry. By the

definition of Hess(N,H) the vector Nv is also in Vj as are all the vectors Nkv for k a non-negative

integer.
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Since vp is non-zero, the vectors Nkv are non-zero when k is less than p. The collection of

vectors {Nkv : k = 0, 1, . . . , p − 1} is a linearly independent set in the space Vj . We know Vj

has dimension j by definition of the flag. Therefore p is less than or equal to j. This means any

vector v in Vj must be in the span of the first j basis elements. We conclude that Vj is equal to

the span of the first j basis elements and that the matrix form of V• looks like

V• =

V (a)
• ∗

0 V
(b)
•

 . (4.12)

Here we define the two smaller flags to be V
(a)
i = Vi and V

(b)
i = Vi+j/Vj . By the definition of h1

the flag V
(a)
• is in Hess(N1, H1). For V

(b)
• we have that N2V

(b)
i = N2(Vi+j/Vj) which is equal to

(NVi+j)/Vj as a subspace of Cn−j . Similarly V
(b)
h2(i) is equal to Vh(i+j)/Vj as a subspace of Cn−j .

Therefore for any V• ∈ Hess(N,H)

NVi+j ⊂ Vh(i+j) ⇐⇒ (NVi+j)/Vj ⊂ Vh(i+j)/Vj ⇐⇒ N2V
(b)
i ⊂ V (b)

h2(i). (4.13)

Thus every flag V• in Hess(N,H) is the product of a flag in Hess(N1, H1) and a flag in Hess(N2, H2).

This process of decomposing the regular nilpotent Hessenberg variety into the product of smaller

varieties can be repeated until each Hessenberg function preserves only the largest element of its

domain.

While Theorem 4.5 is only stated in Lie type A, the corresponding constructions for other Lie types

are similar given the appropriate definition for decomposable and indecomposable. Specifically,

a regular nilpotent Hessenberg variety would be called decomposable if for some negative simple

root α the root subspace gα is not in the Hessenberg space H. Each omitted negative simple

root α in a decomposable Hessenberg variety gives rise to two smaller Lie algebras, g1 and g2,

corresponding to the connected components of the Dynkin diagram with α removed.

4.3 Equivariant Cohomology of Hess(N,H)

Hessenberg varieties are generally not GKM spaces. However they are subvarieties of the flag vari-

ety. Under the action of both the maximal torus (which doesn’t preserve Hessenberg varieties) and

a smaller one-dimensional subtorus (which does) the flag variety is a GKM space. Given that they

24



are contained in one of the classical GKM spaces, it is natural to ask what parts of GKM theory

can be applied to Hessenberg varieties. Is there enough residual structure to do Schubert calculus?

Harada-Reiner-Tymoczko conjectured that the flag variety structures that remain in the regu-

lar nilpotent Hessenberg varieties, including a restricted torus action, are powerful enough to

determine the module structure of the equivariant cohomology.

4.3.1 A 1-dimensional Torus Action

The first question is whether the maximal torus T acts on a regular nilpotent Hessenberg

variety Hess(N,H) ⊂ Flags. Unfortunately it does not. But Kostant gave a one-dimensional

subtorus S ⊆ T that does preserve regular nilpotent Hessneberg varieties [24].

In type A, the torus S ⊆ T has form:

S =



t 0 · · · 0 0

0 t2 · · · 0 0

...
...

. . .
...

...

0 0 · · · tn−1 0

0 0 · · · 0 tn


⊆



t1 0 · · · 0 0

0 t2 · · · 0 0

...
...

. . .
...

...

0 0 · · · tn−1 0

0 0 · · · 0 tn


= T.

This circle action was given by Kostant and used by Harada-Tymoczko, among others, to study

Hessenberg varieties. We can also define S in general Lie type.

Definition 4.6. [19, Lemma 5.1] The characters α1, . . . αn ∈ t∗ are a maximal Z-linearly inde-

pendent set. Let φ : T → (C∗)n be the isomorphism of linear algebraic groups t 7→ (α1(t), α2(t), ..., αn(t)).

Then define a one-dimensional torus S by

S = φ−1({(c, c, . . . , c) : c ∈ C∗}).

The one-dimensional torus S is isomorphic to C∗ and H∗S (pt) is isomorphic to C[t].

Proposition 4.7. [19, Lemma 5.1] The torus S acts on the regular nilpotent Hessenberg variety.

Any point in Hess(N,H) fixed by T will also be fixed by S . In fact these are the only points in
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the regular nilpotent Hessenberg variety fixed by S :

(Hess(N,H))S = Hess(N,H) ∩ (G/B)T .

These fixed points are the flags V• ∈ Hess(N,H) which have matrix representations with exactly

one 1 in each row and column - namely the permutation matrices in GLn(C). Accordingly the

S -fixed points of Hess(N,H) can be indexed by elements of Sn the same way that the T -fixed

points of Flags are. Unlike with the flag variety, the torus-fixed points of Hess(N,H) do not

necessarily form a group.

Commutative diagram

If Hess(N,H) were a GKM space under the action of S then GKM theory would tell us that study-

ing the S -equivariant cohomology at the fixed points is sufficient to understand the S -equivariant

cohomology of the whole variety. We already know that regular nilpotent Hessenbergs are not

GKM spaces, but nonetheless all of the information about the equivariant cohomology is con-

tained in the equivariant cohomology of the fixed points.

Harada-Tymoczko gave this commutative diagram [19]:

H∗T (G/B) −→ H∗S (G/B) −→ H∗S (Hess(N,H))

↪−→
↪−→ −→

⊕
(G/B)T

H∗T (pt) −→
⊕

(G/B)S
H∗S (pt) −→

⊕
(Hess(N,H))S

H∗S (pt)

(4.14)

It is conjectured that the map from H∗S (G/B) to H∗S (Hess(N,H)) is surjective. This would be a

consequence of Conjecture 4.12 in the next section. If that map is surjective, then in the same way

that H∗T (G/B) can be studied by looking at the cohomology of the T -fixed points, we need only

look at the equivariant cohomology of the S -fixed points of Hess(N,H) in order to understand

its equivariant cohomology.

Billey’s formula and Hessenberg Schubert classes

The best way to look at the equivariant cohomology at the fixed points is to look at the ex-

plicit polynomials associated with those fixed points. Billey’s formula does this for T -equivariant
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Schubert classes. We will take one of those classes and build a Hessenberg Schubert class out of it.

Let σv be an equivariant Schubert class in
⊕

(G/B)T
H∗T (pt). We represent σv as a GKM graph

with vertices labeled by polynomials. Each vertex corresponds to a T -fixed point of G/B and the

polynomial labeling the vertex w is denoted σv(w), Billey’s formula give σv(w) explicitly. The

first step is to find the image of the Schubert class in
⊕

(G/B)S
H∗S (pt). This is done by the ring

homomorphism

π1 : C[α1, α2, . . . , αn−1] → C[t]

αi 7→ t for all i
(4.15)

This homomorphism brings the T -equivariant Schubert classes to S -equivariant Schubert classes.

The Hessenberg Schubert classes are obtained by forgetting the vertices corresponding to points

that are not contained in the Hessenberg variety.

Definition 4.8. The Hessenberg Schubert class
H

σv is a collection of polynomials (
H

σv(w))w∈(Hess(N,H))S

where the polynomials are defined by

H

σv(w) = π1(σv(w)).

It is the image of σv in
⊕

(Hess(N,H))S
H∗S (pt).

Example 4.9. Let h : [3] → [3] be the Hessenberg Schubert function defined by h(1) = 2 and

h(2) = h(3) = 3. The Schubert class σs1 is mapped to the Hessenberg Schubert class
H

σs1 as follows:

⊕
(G/B)T

H∗T (pt)
⊕

(G/B)S
H∗S (pt)

⊕
(Hess(N,H))S

H∗S (pt)

σs1 H

σs1

0

α1 + α2

0

α1 + α2

α1

α1

0

2t

0

2t

t

t

0

0

2t

t
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4.3.2 A conjectured basis for H∗S (Hess(N,H))

While the Hessenberg Schubert classes are nice to have, the amazing property of the equivari-

ant Schubert classes is that they form a module basis of the T -equivariant cohomology of the flag

variety over H∗T (pt). Counting the number of Hessenberg Schubert classes and comparing to the

number of polynomials associated with each, we see that we have far too many for the Hessenberg

Schubert classes to be linearly independent, and thus do not have a basis.

If a basis of Hessenberg Schubert classes exists, then we could start to do explicit computations in

the S -equivariant cohomology of regular nilpotent Hessenberg varieties. Harada-Reiner-Tymoczko

conjectured a construction for such a basis in type A.

Definition 4.10. We say a word v ∈W is in H if the permutation matrix of v is in H. For any

Hessenberg space H we define VH = {v ∈W : v ∈ H}.

Example 4.11. Consider the Hessenberg function h(1) = 2, h(2) = h(3) = 3. The word s1s2 in

A2 has matrix


0 0 1

1 0 0

0 1 0

. This matrix is contained in H so we say s1s2 ∈ H.

Conjecture 4.12 (Harada-Reiner-Tymoczko). Let H ⊂ GLn(C) be a Hessenberg space and

Hess(N,H) be the corresponding type-A regular nilpotent Hessenberg variety. The set of Hessen-

berg Schubert classes {Hσv : v ∈ VH} forms a basis of H∗S (Hess(N,H)) as a module over H∗S (pt).

There are several things to note about this conjecture that make it seem likely. First this con-

struction will always give the correct number of basis elements. There are
n∏
i=1

(h(i)− i+ 1) points

of Hess(N,H) that are fixed by S . There are similarly
n∏
i=1

(h(i)− i+ 1) words v that fit into H.

Second, this construction gives a set of classes with degrees that correspond to the Betti numbers

for Hess(N,H) [19, Lemma 5.3]. Since the set {Hσv : v ∈ VH} has degrees corresponding to the

Betti numbers, showing that the set is linearly independent over C[t] ∼= H∗S (pt) is sufficient to

prove the conjecture.
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4.3.3 Towards a proof of the conjecture

This conjecture has been proven in certain cases, though in general it remains open. The conjec-

ture is trivially true for the regular nilpotent Springer variety, and has been successfully proven

for the type A Peterson [19] and modified Peterson varieties [2]. It has also been confirmed by

computers for small cases up to n = 5. It is also true for the full flag variety, which is itself a

regular nilpotent Hessenberg variety.

Proposition 4.13. For any regular nilpotent Hessenberg variety, Conjecture 4.12 is true if and

only if it holds for each of the indecomposable components Hess(Ni, Hi) of Hess(N,H).

Proof. Without loss of generality assume that h(j) = j for some j < n. Then each permutation

v ∈ VH has matrix form

v1 0

0 v2

 where v1 is a permutation on the first j columns and v2 is a

permutation on the last n−j columns. We know from the construction from the proof of Theorem

4.5 these words v1 and v2 correspond to flags in Hess(N1, H1) and Hess(N2, H2) respectively. The

flag v1 is contained in H ∩ g1 and thus v1 ∈ VH1
. Similarly the word v2 is in the set H ∩ g2 and

thus in VH2
. For any pair v1, v2 in VH1

and VH2
respectively the word v1v2 is in VH and any

v ∈ VH can be expressed as such a product. Therefore VH = VH1 × VH2 .

To determine the linear independence of the set {Hσv : v ∈ VH} it is convenient to look at them as

the columns of a matrix. Let AH be the matrix with columns indexed by classes v ∈ VH and rows

indexed by fixed points w ∈ (Hess(N,H))S . The entries of AH are the polynomials
H

σv(w) ∈ C[t].

Proving the linear independence of the columns of matrix AH is sufficient to prove Conjecture

4.12 for Hess(N,H).

We consider the entry
H

σv(w) in the matrix AH . The word v can be written as v1v2 and the

word w as w1w2 where w1 is an S -fixed point in Hess(N1, H1) and w2 is an S -fixed point

in Hess(N2, H2). Our entry can be rewritten as
H

σv1v2(w1w2). As words in the simple reflec-

tions, none of v1, v2, w1, w2 contain the reflection sj . Moreover v1, w1 ∈ 〈s1, . . . , sj−1〉 and

v2, w2 ∈ 〈sj+1, . . . , sn−1〉. Abusing notation to use w1(
H

σv2(w2)) for the image of the class

w1(σv2(w2)) under the map π1 that sends σv(w) to
H

σv(w) we have

H

σv1v2(w1w2) =
H

σv1(w1)w1(
H

σv2(w2)) =
H

σv1(w1)
H

σv2(w2). (4.16)
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The matrix AH now has columns indexed by v1v2 ∈ VH1
× VH2

and rows indexed by words

w1w2 ∈ (Hess(N1, H1))S × (Hess(N2, H2))S .

Looking at AH1
as the matrix with columns indexed by v1 ∈ VH1

and rows indexed by per-

mutations w1 ∈ (Hess(N1, H1))S and similarly for AH2
we see that AH = AH1

⊗ AH2
, Thus the

matrix AH is linearly independent over C[t] if and only if each of the matrices on the right-hand-

side are linearly independent.

Since Conjecture 4.12 is true for a regular nilpotent Hessenberg variety if and only if it is true

for each of its indecomposable components, we can construct Hessenberg varieties for which the

conjecture holds, and also can restrict our investigation of the conjecture to indecomposable

regular nilpotent Hessenbergs.

4.3.4 The case h(1) = 3, h(i) = n for i > 1

Bayegan and Harada proved that Conjecture 4.12 holds when the Hessenberg function h has a

specific form. Their modified Peterson variety has h(1) = 3 and h(i) = i + 1 for 1 < i < n

and h(n) = n. Following their model of investigating a specific Hessenberg space rather than all

spaces simultaneously, we discuss the Hessenberg function h(1) = 3 and h(i) = n for all i > 1.

We denote the corresponding Hessenberg space H3 for convenience.

Example 4.14. The type-A4 space H3 has form

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗


By examining the properties of the matrix AH3

and exploiting Billey’s formula we will reduce

the question of whether AH3
is a linearly independent matrix to the question of whether a much

smaller matrix is linearly independent. This is done in several steps:

1. Explicitly determining the classes VH3 and the fixed points WH3 = (Hess(N,H3))S and

expressing them as the disjoint union of three sets.
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2. Using row reduction and properties of Billey’s formula to reduce the problem of linear

independence to showing the linear independence of a smaller matrix β.

AH3 =



Z s1Z s2s1Z

Z F 0 0

Y ∗ ∗ ∗

Y s2 ∗ ∗ ∗

 −→


Z s1Z̃ ∪ s2s1Z̃ s1Z̃s2 ∪ s2s1Z̃s2

Z F 0 0

Y ∗ β γ

Y s2 ∗ β Qβ + γ



−→



Z s1Z̃ ∪ s2s1Z̃ s1Z̃s2 ∪ s2s1Z̃s2

Z F 0 0

Y ∗ β γ

Y s2 ∗ 0 Qβ


3. Showing that β is a block-upper-triangular matrix.

β =



βn−1 ∗ · · · ∗ ∗

0 βn−2 · · · ∗ ∗
...

. . .
...

0 0 · · · β3 ∗

0 0 · · · 0 β2


4. Showing that each block βj on the diagonal of β is block-upper-triangular where b and f

are linearly independent blocks.

βj =


β̃j ∗ ∗

0 b ∗

0 0 f


These steps will reduce the problem of whether the 3(n − 1)! × 3(n − 1)! matrix AH3

is linearly

independent to a question of whether the much smaller matrix β̃j is linearly independent.

Step 1: Fixed Points and Classes

Lemma 4.15. The Schubert classes VH3 are:

VH3
= Z ∪ s1Z ∪ s2s1Z

where Z = 〈s2, s3, . . . , sn−1〉
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Proof. The element v ∈ An−1 is in VH3
if and only if v(1) ∈ {1, 2, 3}. We can partition VH3

into

three sets Vi = {v ∈ An−1 : v(1) = i} for i = 1, 2, 3. For each i the set |Vi| has (n− 1)! elements.

The set V1 is all of the permutations that fix 1, so V1 = 〈s2, . . . , sn−1〉 = Z. If v ∈ V1 = Z then

s1v ∈ V2 since s1v(1) = s1(1) = 2. Therefore s1Z ⊂ V2 and because |V2| = |s1Z| = |Z| = (n− 1)!

we have s1Z = V2. Similarly if v ∈ V2 then s2v ∈ V3 since s2v(1) = s2(2) = 3. Therefore

s2V2 = s2s1Z ⊂ V3 and since |s2s1Z| = |Z| = (n− 1)! we have s2s1Z = V3.

Lemma 4.16. The S-fixed points of Hess(N,H3) are:

WH3
= Z ∪ Y ∪ Y s2

where Y = {sisi−1 · · · s1sisi−1 · · · s2y : i ∈ {1, 2, . . . , n− 1}, y ∈ 〈s3, s4, . . . , sn−1〉} and Z = 〈s2, . . . , sn−1〉

as above.

We will use the following notational conventions in the proof. Let E(i,j) be the n× n matrix

with all entries equaling zero except for the entry in row i, column j. The regular nilpotent matrix

can be written as N =
n−1∑
i=1

E(i,i+1).

Any permutation ω ∈ Sn can be written uniquely as, from left to right, a string of consecutive

simple reflections descending to s1 followed by a string of consecutive simple reflections descending

to s2 and so on [6]. Each word ω corresponds to a unique set of integers {k1, k2, . . . , kn} where

i− 1 ≤ ki ≤ n. We allow ki = i− 1 in order to signify that the string descending to si is empty.

Example 4.17. These words are written in descending string form. They are marked with a

vertical line where a descending string ends. Note that for ω2 the string descending to s2 is empty.

ω1 = s4s3s2s1|s2|s4s3|s4 ω2 = s3s2s1||s3

Proof of Lemma 4.16. We partition WH3 into three parts. Let W1 be the set of w ∈ WH3 where

w−1Nw has all zeros in the first column. Let W2 be the set of w ∈ WH3
where w−1Nw has a 1

in the second row of the first column. Lastly let W3 be the set of w ∈ WH3
where w−1Nw has

a 1 in the third row of the first column. By the definition of Hess(N,H3) if w is a permutation

matrix in the variety then these are the only three options for the first column of w−1Nw.
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First we observe that there are (n− 1)! elements in the set Wi for each i. If the first column has

all zeros, then there are n− 1 places for a 1 to occur in the second column, since it cannot be on

the diagonal. Then there are n − 2 places for a one to occur in the next column and so on. If

there is a 1 in the third row of the first column, then there can be a 1 in n−2 places in the second

column, as it cannot occur in rows 2 or 3. Thus there are n−1 possibilities for the second column

(it could have no 1s), and similarly n− 2 for the third, etc. Thus both W1 and W3 have (n− 1)!

elements. Finally there are the same number of fixed points as there are classes corresponding to

any type-A Hessenberg space, and Lemma 4.15 gives us 3(n − 1)! classes. Hence W2 must also

contain (n− 1)! elements.

If w ∈ Z then w−1Nw has no non-zero entries in the first column. So Z is contained in W1

and since they are the same size, the two sets are equal.

With our notational conventions we can defineW2 explicitly. Let xi = sisi−1 · · · s2s1sisi−1 · · · s3s2.

Then x−1
i E(i,i+1)xi = E(2,1). If y ∈ 〈s3, s4, . . . , sn−1〉 then y−1E(2,1)y = E(2,1). So

(xiy)−1E(i,i+1)(xiy) = y−1x−1
i E(i,i+1)xiy = y−1E(2,1)y = E(2,1)

Thus xiy ∈W2 and so Y = {xiy} ⊂W2. By writing the permutation xiy as reflections descending

to s1 then reflections descending to s2 and so on, we see that xiy = xjy
′ if and only if i = j and

y = y′. So

|Y | = (number of xi)(number of y) = (n− 1)(n− 2)! = (n− 1)! = |W2|

and hence Y = W2. Lastly, since s2E(2,1)s2 = E(3,1), we can mulitply Y on the right by s2 to

obtain a set of permutations contained in W3. Furthermore |Y s2| = |Y | = (n− 1)! = |W3| so we

have that Y s2 = W3.

Step 2: Row Reduction using Billey’s Formula

Using these explicit descriptions of classes and fixed points, we present the matrix AH3 as follows:

AH3
=



Z s1Z s2s1Z

Z F 0 0

Y ∗ ∗ ∗

Y s2 ∗ ∗ ∗
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Here F is the full set of S -equivariant Schubert classes on the full flag variety GLn−1(C)/B

with fixed points indexed by the elements of Z = 〈s2, . . . , sn−1〉. Its columns are a basis for the

equivariant cohomology of that flag variety and therefore linearly independent. Thus showing the

linear independence of AH has been reduced to showing the linear independence of the bottom

right 2× 2 block above. We rearrange the columns of that block one more time to get


s1Z s2s1Z

Y ∗ ∗

Y s2 ∗ ∗

 =


s1Z̃ ∪ s2s1Z̃ s1Z̃s2 ∪ s2s1Z̃s2

Y ∗ ∗

Y s2 ∗ ∗


where Z̃ = {z ∈ Z : s2 /∈ DR(z)}. Since Z̃ is one of the two cosets of Z/ 〈s2〉, we have that

|Z̃| = 1
2 (n− 1)!. Therefore this rearrangement still leaves the matrix with four (n− 1)!× (n− 1)!

blocks, each represented above by an asterisk.

A well known identity for Billey’s formula is:

σv(w) =

 σv(ws) if s /∈ DR(v)

σv(ws)− σvs(w) · v(αs) if s ∈ DR(v)

Noting that s2 is not in the right descent set of v for all v ∈ s1Z̃ ∪ s2s1Z̃ and is in the right

descent set of v all v ∈ s1Z̃s2∪s2s1Z̃s2 the blocks in this last matrix can be related to each other

by


s1Z̃ ∪ s2s1Z̃ s1Z̃s2 ∪ s2s1Z̃s2

Y β γ

Y s2 β γ +Qβ

.
Here Q is a diagonal matrix with the root −y(α2) as the entry in row y ∈ Y . This matrix row

reduces to


s1Z̃ ∪ s2s1Z̃ s1Z̃s2 ∪ s2s1Z̃s2

Y β γ

Y s2 0 Qβ

.
Since Q is a diagonal matrix with all eigenvalues non-zero, it has no effect on whether Qβ is

linearly independent. Therefore proving the linear independence of AH3
now reduces to proving

the linear independence of the block β.
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Step 3: β is a Block Diagonal

To discuss the matrix β in more detail, we need an explicit description for the sets indexing its

rows and columns.

Lemma 4.18. Let z be an element of Z = 〈s2, s3, . . . , sn−1〉 with descending string form

z = sk2sk2−1 · · · s3s2sk3sk3−1 · · · s3sk4sk4−1 · · · s4 · · · sn−1

If k2 < k3 then s2 is not in the right descent set of z and z is in Z̃. If k2 is greater than or equal

to k3 then s2 is in the right descent set of z so z 6∈ Z̃.

Proof. Let z = sk2sk2−1 · · · s3s2sk3sk3−1 · · · s3sk4sk4−1 · · · s4 · · · sn−1. Because s2 commutes with

si for i > 3, we have that s2 ∈ DR(z) if and only if s2 ∈ DR(sk2sk2−1 · · · s3s2sk3sk3−1 · · · s3). If

k2 = k3 = k then

sk2sk2−1 · · · s3s2sk3sk3−1 · · · s3

= sksk−1sksk−2sk−1sk−3sk−2 · · · s4s2s3

= sk−1sksk−2sk−1sk−3sk−2 · · · s3s4s2s3s2.

If k2 > k3 = k then

sk2sk2−1 · · · sk3+1sk3sk3−1 · · · s3s2sk3sk3−1 · · · s3

= sk2sk2−1 · · · sk+1sksk−1sksk−2sk−1sk−3sk−2 · · · s4s2s3

= sk2sk2−1 · · · sk+1sk−1sksk−2sk−1sk−3sk−2 · · · s3s4s2s3s2.

Since 1 ≤ k2 ≤ n − 1 and 2 ≤ k3 ≤ n − 1 the number of pairs (k2, k3) such that k2 ≥ k3 can be

counted by noticing that if k2 = m then there are m− 1 possible values of k3. So the number of

such pairs is:

n−1∑
m=1

(m− 1) =

n−1∑
m=1

m−
n−1∑
m=1

1 =
(n− 1)(n)

2
− (n− 1) =

1

2
(n2 − n− 2n+ 2) =

1

2
(n− 1)(n− 2)

which is exactly half of the total number of possible pairs (k2, k3) such that 1 ≤ k2 ≤ n− 1 and

2 ≤ k3 ≤ n− 1. As exactly half of the elements z ∈ Z have s2 /∈ DR(z) the set of z with k2 ≥ k3

are exactly these elements. The remaining elements z ∈ Z have both k2 < k3 and s2 ∈ DR(z).

Because every permutation in Z̃ can be expressed in descending string form with k2 < k3 the

permutations indexing the columns of the matrix β can be partitioned based on the first three
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descending strings. For a ∈ {1, 2} and 1 ≤ b < c ≤ n define the following words:

λa =


s1 if a = 1

s2s1 if a = 2

µb =


e if b = 1

s2 if b = 2

sb · · · s2 if b > 2

νc =


e if c = 2

s3 if c = 3

sc · · · s3 if c > 3

Using this notation we define these sets into which the columns are partitioned:

A(a, b, c) = {λaµbνcω : ω ∈ 〈s4, . . . , sn−1〉}.

In addition to partitioning the columns of β we want to impose a partial order on the sets A(a, b, c).

We will say that A(a1, b1, c1) < A(a2, b2, c2) if c1 < c2. The columns of β are ordered from largest

to smallest.

A similar method will partition and order the rows of β so that the matrix can be written

as square blocks. The permutations indexing the rows of β look like xiy where the term xi is

sisi−1 · · · s1sisi−1 · · · s2 and y ∈ 〈s3, . . . , sn−1〉. By expanding out the first descending string of

each y we get that the rows are indexed by

Y = {sisi−1 · · · s1sisi−1 · · · s2sl3sl3−1 · · · s3sl4sl4−1 · · · s4 · · · sn−1}.

Recall from Example 4.17 that xi = si · · · s1si · · · s2. For any 1 ≤ i ≤ n− 1 and 2 ≤ l ≤ n− 1 the

set B(i, l) is defined by

B(i, l) = {xislsl−1 · · · s3ω : ω ∈ 〈s4, . . . , sn−1〉}.

The set B(i1, l1) is less than B(i2, l2) if max(i1, l1) < max(i2, l2) and the rows of matrix β are

given in decreasing order with respect to this partial order.
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Lemma 4.19. For any i, l, b, c in the set {1, 2, . . . , n − 1} with b < c and a ∈ {1, 2} the sets

A(a, b, c) and B(i, l) each have (n− 3)! elements.

Proof. Consider z ∈ A(a, b, c). The descending string form of z is

z = sas1sbsb−1 · · · s2scsc−1 · · · s3ω

for some ω in 〈s4, . . . , sn−1〉 and there are (n− 3)! possible ω. Similarly if z ∈ B(i, l) then

z = xislsl−1 · · · s3ω

where again there are (n− 3)! possible words for ω to be.

As a result of this, there are exactly (n − 1)(n − 2) sets of each form A(a, b, c) and B(i, l). We

can even group these sets together, collecting all of the sets of equal rank in the poset together

by letting A(j) = {A(a, b, c) : c = j} and B(j) = {B(i, l) : max(i, l) = j} .

Lemma 4.20. For each j, the order of A(j) is equal to the order of B(j).

Proof. Fix j ∈ {2, 3, . . . , n−1}. If A(a, b, c) ∈ A(j) then c = j, 1 ≤ b < j and a ∈ {1, 2}. So there

are 2(j − 1) sets A(a, b, c) in A(j). If B(i, l) is in B(j) then max(i, l) = j. If i = j then there are

j − 1 possible values for l. If l = j then there are j possibilities for i, one of which has already

been counted. So |A(j)| = |B(j)| = 2(j − 1).

Example 4.21. Let n = 3. Then the matrix β has rows and columns ordered as follows:



A(2, 2, 3) A(2, 1, 3) A(1, 2, 3) A(1, 1, 3) A(2, 1, 2) A(1, 1, 2)

B(3, 3)

B(2, 3)

B(3, 2)

B(1, 3)

B(2, 2)

B(1, 2)



B(3)

B(2)

A(3) A(2)

β3

∗

∗

β2

where β2 and β3 are square matrices.

The lower left asterisk in the above example is in fact equal to zero.
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Lemma 4.22. If j1 < j2 then all entries in the block of β with rows in B(j1) and columns in

A(j2) are zero. This means that

β =



βn−1 ∗ · · · ∗ ∗

0 βn−2 · · · ∗ ∗
...

. . .
...

0 0 · · · β3 ∗

0 0 · · · 0 β2


and the linear independence of β depends only on the linear independence of the blocks βj on the

diagonal.

Proof. Let j1 < j2 and consider an arbitrary entry in the block B(j1)×A(j2). Recalling that the

row corresponds to an S fixed point w of the Hessenberg variety and the column to a Hessenberg

Schubert class σv that entry is
H

σv(w). The term
H

σv(w) is zero unless v ≤ w. We will show that

for any v ∈ A(j2) and w ∈ (B(j1), v is not a subword of w. Since v ∈ A(a, b, j2) it has descending

string form

v =

prefix︷ ︸︸ ︷
sas1sbsb−1 · · · s2sj2sj2−1 · · · s3 ωv

for some ωv which has no s1, s2, or s3 reflections in it. The fixed point w is in B(i, l) for some

pair i and l where j1 ≥ i and l. So the descending string form of w looks like

w =

prefix︷ ︸︸ ︷
si · · · s1si · · · s2sl · · · s3 ωw

for an ωw with no s1, s2, or s3 reflections. The sj2 in the prefix of v cannot commute past the s3

at the end of the prefix. So if v is a subword of w then that sj2 must be a subword of the prefix

of w. But both i and l are less than j2 so there is no sj2 in the prefix of w. Therefore v 6≤ w and

by Billey’s formula σv(w) = 0 and thus
H

σv(w) = 0.

Step 4: Block Diagonality of βj

Each block βj is a (2(j − 1)(n − 3)!) × (2(j − 1)(n − 3)!) square matrix, which while still quite

large is a significant improvement over the matrix we started with. Our original matrix AH3 was

3(n− 1)! by 3(n− 1)! so especially for small j, this is quite an improvement. While these are still

partial results, at this point we would ideally induct on j. While that step remains open, we can

go one step farther toward showing that each βj is linearly independent.
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First we will identify the last two blocks of rows and columns of the matrix. These are the

rows and columns that have a specific prefix preceding a word ω from Ω = 〈s4, . . . , sn−1〉.



remainder of A(j) {s2s1ω} {s1ω}

β̃j

{s2s1s2ω} a b c

{s1ω} d e f



re
m

a
in

d
er

of
B

(j
)

All entries in the blocks labeled with a, d, and e are zero. Each entry can be computed using

Billey’s formula. Consider an entry in the block a. It has form
H

σv(s2s1s2ω) where v is in the

remainder of A(j) not in the last two blocks. If v did not contain a reflection s3 it would have

been in one of those right-most columns. But since the fixed point s2s1s2ω does not contain s3

the polynomial σv(s2s1s2ω) is zero. Thus
H

σv(s2s1s2ω) is also zero.

Similarly for any v in the remainder of A(j) the polynomial
H

σv(s1ω) is also zero. Thus both

block a and block d are zero. As for block e, these entries have form
H

σv(w) where v has an s2

and w does not.

The block f has entries that look like
H

σs1ω1
(s1ω2) for some ω1, ω2 ∈ Ω. Since there is exactly one

way to find s1 in s1ω2 the polynomial σs1ω1(s1ω2) = σs1(s1) · s1(σω1(ω2)). Thus the whole block

f is
H

σs1(s1) = t multiplied by the image in one variable of the matrix (s1(σω1
(ω2))) where ω1 and

ω2 range over Ω. But since (σω1
(ω2)) will be a polynomial in α4, . . . , αn−1 the permutation s1

does not affect it. So the block f is t(
H

σω1
(ω2) which is t times the matrix of Hessenberg Schubert

classes associated with the full flag variety in n−3 dimensions. Thus the columns of f are linearly

independent.

Similarly the entries of b look like
H

σs2s1ω1
(s2s1s2ω2) =

H

σs2s1(s2s1s2) · H

σω1
(ω2). Again we have a

single polynomial, in this case
H

σs2s1(s2s1s2) = 2t2, multiplied by the matrix AH for a full flag
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variety. Thus b is also a linearly independent matrix.

This work has reduced the problem of whether Conjecture 4.12 is true for the Hessenberg va-

riety Hess(N,H3) to a much smaller case with a clear direction for an inductive step. While

these results are still partial, there is some promise that the matrix multiplication techniques

from Chapter 3 will be the right tool to solve this particular problem.
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C H A P T E R 5

PETERSON VARIETIES

Peterson varieties are the best understood subfamily of the regular nilpotent Hessenberg va-

rieties. This chapter will do “Schubert calculus” in the equivariant cohomology rings of Peterson

varieties. Peterson varieties were introduced by D. Peterson in the 1990s when he used them

to construct the small quantum cohomology of partial flag varieties. Since then Kostant used

Peterson varieties to describe the quantum cohomology of flag manifolds [24]; Rietsch described

the totally non-negative part of type A Peterson varieties in 2006 using mirror symmetry con-

structions [31]; Insko-Yong explicitly described the singular locus of type A Peterson varieties and

intersected them with Schubert varieties [21].

Using work by Harada-Tymoczko [19] and Precup [28], we construct a basis for the S -equivariant

cohomology of Peterson varieties in all Lie types. This construction gives a basis of Peterson

Schubert classes. Classical Schubert calculus asks how to multiply Schubert classes; we ask how

to multiply Peterson Schubert classes. We give a Monk’s formula for multiplying a ring generator

and a module generator, and a Giambelli’s formula for expressing any Peterson Schubert class in

terms of the ring generators.

In typeA the equivariant cohomology of the Peterson variety was understood by Harada-Tymoczko

who gave a basis and a Monk’s rule for the equivariant cohomology ring [18]. A type A Giambelli’s

formula was given by Bayegan-Harada [1]. This chapter extends those results to all Lie types.

For any Lie type the Peterson subspace in g is

HPet = b⊕
⊕
α∈−∆

gα.

41



The regular nilpotent operator N ∈ g is

N =
∑
α∈∆

Eα.

Definition 5.1. The Peterson variety Pet is a subvariety of the flag variety defined by

Pet = {gB ∈ G/B : Ad(g−1)(N) ∈ HPet}.

The Peterson variety is the Hessenberg variety Hess(N,HPet).

Peterson varieties are irreducible and not smooth [21].

Harada and Tymoczko gave the S -fixed points of Pet explicitly. Let K ⊆ ∆ be a subset of

the simple roots. Define WK ⊆W as the parabolic subgroup generated by K and let wK be the

longest element of WK .

Proposition 5.2. [19, Proposition 5.8] An element w ∈ W is an S-fixed point of Pet if and

only if w = wK for some set K ⊆ ∆.

Although Pet has a torus action and torus-fixed points indexed by Weyl group elements, it is not

a GKM space. We now start building the GKM-like structures for the Peterson variety.

5.1 Peterson Schubert classes as a basis of H∗
S (Pet)

There is a well known projection from H∗T (G/B) to H∗S (Pet). It is not obvious what the image

should be, but we show that this map is surjective in Theorem 5.3. Then we identify a specific

subset of Schubert classes whose images under this map form a basis of H∗S (Pet). This builds on

the work of Harada-Tymoczko [19]. The following commutative diagram is key to our argument.

H∗T (G/B) ↪−→
⊕

(G/B)T
H∗T (pt)

↓ ↓ π1

H∗S (G/B) ↪−→
⊕

(G/B)S
H∗S (pt)

↓ ↓ π2

H∗S (Pet) ↪−→
⊕

(Pet)S
H∗S (pt)

(5.1)

A priori H∗T (G/B) is a module over C[αi:αi ∈ ∆]. We will use both π1 and π2 to indicate both

the full maps and their restriction to a single class. Restricting to the cohomology of a single
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point, the map π1 : H∗T (pt)→ H∗S (pt) is the ring homomorphism which takes simple roots αi ∈ ∆

to the variable t. Again restricting to the cohomology of a single point, the map π2 forgets the

components of the class corresponding to T -fixed points of G/B that are not in the Peterson

variety.

5.1.1 Peterson Schubert classes

The image of a Schubert class σv ∈ H∗T (G/B) in H∗S (Pet) is denoted pv and called a Peterson

Schubert class. The class pv has one polynomial for each S -fixed point of Pet so a Peterson

Schubert class can be thought of as a 2|∆|-tuple of polynomials in C[t]. Below is an example in

type A2.



σs1

1 0

s1 α1

s2 0

s1s2 α1

s2s1 α1 + α2

s1s2s1 α1 + α2



π1

7−→



0

t

0

t

2t

2t



π2

7−→



ps1

0

t

0

2t


.

Theorem 5.3. The “poset pinball” machinery given by Harada-Tymoczko [19, Theorem 5.4]

holds for Peterson varieties of all Lie types. Specifically the map H∗T (G/B)→ H∗S (Pet) is injec-

tive.

The result of this theorem is that we can use the maps π1 and π2 to study H∗S (Pet).

Proof. Precup proved that Pet is paved by complex affines for any Lie type [28, Theorem 5.4].

In the same paper Precup showed that the compact cohomology of the Peterson variety is only

supported in even dimensions [28, Lemma 2.7]. Because the Peterson variety is compact this

implies its regular cohomology vanishes in odd degree. So Pet is equivariantly formal [35]. These

results show that Harada-Tymoczko’s Lemma 5.3 extends to all Lie types and the remainder of

their proof of Theorem 5.4 is type-independent [19, Theorem 5.4].
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5.1.2 A basis of Peterson Schubert classes

The S -fixed points of Pet are indexed by subsets K ⊆ ∆ so we want to index the Peterson

Schubert classes by K ⊆ ∆.

Definition 5.4. A subset of simple roots K ⊆ ∆ is called connected if the induced Dynkin

diagram of K is a connected subgraph of the Dynkin diagram of ∆.

Any subset K ⊆ ∆ can be written as K = K1×· · ·×Km where each Ki is a maximally connected

subset. Each connected subset corresponds to its own Lie type.

Definition 5.5. Let K ⊆ ∆ be a connected subset. We define vK ∈WK to be

vK =

|K|∏
RootK(i)=1

si

where RootK(i) is the index of the corresponding root in a root system of the same Lie type as

K, ordered as in Figure 1. If K = K1 × · · · × Km and each Ki is maximally connected then

vK = vK1vK2 · · · vKm .

When ∆ is not of typeD or E this definition gives vK = sa1sa2 · · · sam whereK = {αa1 , αa2 , . . . αam}

and a1 < a2 < · · · am. This is the definition given in type A by Harada-Tymoczko [18]. Example

5.6 illustrates how Definition 5.5 differs from the type A definition.

Example 5.6. Let ∆ = {α1, α2, α3, α4, α5, α6} be a the set of simple roots of a type E6 root

system and let K = ∆ \ {α6}. The subset K ⊆ ∆ represented by a marked set of vertices in the

Dynkin diagram and compared to the Dynkin diagram for D5. The word vK is s1s3s4s5s2.

s1 s3 s4 s5 s6

s2

E6 s1 s2 s3 s4

s5

D5

Note that vK is a Coxeter element of WK . Because of the labeling imposed on the simple roots

in Figure 1, each subset K of simple roots corresponds to exactly one word vK .

Lemma 5.7. For any set of simple roots ∆ and any subsets J,K ⊆ ∆ the Peterson Schubert

class satisfies pvJ (wK) = 0 unless J ⊆ K.

Proof. Suppose J 6⊆ K and that αj ∈ J \K. Then sj ≤ vJ and sj 6≤ wK in the Bruhat order.

For σvJ (wK) to be non-zero there must be some subword of wK that is equal to vJ and therefore
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vJ ≤ wK . But sj ≤ vJ implies that sj ≤ wK which is a contradiction. Thus σvJ (wK) = 0 by

Proposition 2.7 and by construction pvJ (wK) = 0.

Lemma 5.8. For any set of simple roots ∆ and any subset K ⊆ ∆

pvK (wK) 6= 0.

Proof. Since vK ∈ WK we must have vK ≤ wK . By Proposition 2.7 the polynomial σvK (wK) ∈

C[∆] is not equal to zero. We have defined pvK (wK) to be π1(σvK (wK)). Since σvK (wK) has

positive integer coefficients by the same proposition, its image in C[t] must also have positive

integer coefficients.

Theorem 5.9. The Peterson Schubert classes {pvK : K ⊆ ∆} are a basis of H∗S (Pet).

Proof. This is a version of Harada-Tymoczko’s Theorem 5.9 [19]. With Precup’s work we now ex-

tend the proof to all Peterson varieties. Impose a partial order on the sets {K ⊆ ∆} by inclusion.

Use that partial order to order the classes {pvK} and the S -fixed points wK ∈ Pet. Lemma 5.7

implies that the collection {pvK} is lower-triangular and Lemma 5.8 implies that the collection

has full rank. Thus {pvK} is a linearly independent set.

By the properties of Billey’s formula, the polynomial degree of pvK is |K| and its cohomology

degree is 2|K|. As there are
(
n
|K|
)

subsets of ∆ with size |K|, there are exactly
(
n
|K|
)

Peterson

Schubert varieties with cohomology degree 2|K|. Precup’s paving by affines reveals that the

dimensions of the corresponding pavings are also
(
n
|K|
)

[28, Corollary 4.13]. As a linearly inde-

pendent set with the right number of elements of each degree, the set {pvK} is a module basis of

H∗S (Pet) [18, Proposition A.1].

Example 5.10. Below we give the Peterson Schubert classes which form a basis of the S -

equivariant cohomology of Pet in Lie type C3. The classes and fixed points are indexed by

the subsets K ⊆ ∆.
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K pv∅ pv{α1}
pv{α2}

pv{α1}
pv{α1,α2}

pv{α1,α3}
pv{α2,α3}

pv{α1,α2,α3}

∅

{α1}

{α2}

{α3}

{α1, α2}

{α1, α3}

{α2, α3}

{α1, α2, α3}



1

1

1

1

1

1

1

1





0

t

0

0

2t

t

0

5t





0

0

t

0

2t

0

3t

8t





0

0

0

t

0

t

4t

9t





0

0

0

0

2t2

0

0

20t2





0

0

0

0

0

t2

0

45t2





0

0

0

0

0

0

6t2

36t2





0

0

0

0

0

0

0

60t3



5.2 Monk’s Formula

Now that we have a basis for H∗S (Pet) in terms of Peterson Schubert classes, we can examine

the structure of H∗S (Pet) through its multiplication rules. First we determine a minimal set of

Peterson Schubert classes that generate the ring H∗S (Pet).

Lemma 5.11. The Peterson Schubert classes psi generate the ring H∗S (Pet) as an algebra over

H∗S (pt).

Proof. It is well known that the Schubert classes σsi generate H∗T (G/B). Fulton gives a complete

proof for type A [11, Section 10.2]. A consequence of Theorem 5.9 is that the map

φ : H∗T (G/B)→ H∗S (Pet)

is a surjective ring homomorphism. Thus the image {psi} of the generators {σsi} of H∗T (G/B) is

a generating set for H∗S (Pet).

Monk’s rule is an explicit formula for multiplying an arbitrary module generator class pvK by

a ring generator class psi . For the Peterson variety, a Monk’s formula gives a set of constants

cJi,K ∈ H∗S (pt) such that

psipvK =
∑
J⊆∆

cJi,K · pvJ . (5.2)

The Peterson Schubert classes {pvK : K ⊆ ∆} are a module basis for H∗S (Pet) and the product

of psi and pvK is also in that module. Thus a unique set of constants {cJi,K} solve this equation.

Because H∗S (pt) = C[t] these structure constants are complex polynomials in t.
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Monk’s rule requires that we sum over all Peterson Schubert classes, but we simplify the for-

mula significantly. First we eliminate many subsets J ⊆ ∆ by showing that cJi,K = 0.

Lemma 5.12. If |J | > |K|+ 1 then cJi,K = 0.

Proof. The polynomial degree of pv ∈ C[t] is the length of a reduced word for v. Therefore the

Peterson Schubert class pvK has degree |K| and the polynomial degree of psipvK is |K|+ 1. The

polynomial degrees on the right- and left-hand sides of Equation (5.2) must be equal. Take only

the parts of each side of Equation (5.2) that have degree higher than |K| + 1. Hence it follows

that

0 =
∑
J⊆∆

|J|>|K|+1

cJi,K · pvJ .

The Peterson Schubert classes pvJ are linearly independent by Theorem 5.9. Therefore whenever

|J | > |K|+ 1 the coefficient cJi,K is zero.

We can further refine Equation (5.2) by removing another set of subsets J ⊆ ∆ from the equation.

Lemma 5.13. The constant cJi,K = 0 unless K ⊆ J .

Proof. Suppose that L is the smallest counter example, i.e., L ⊆ ∆ does not contain K and for

all H ( L the coefficient cHi,K = 0. Evaluate Monk’s formula at the S -fixed point wL to get

psi(wL) · pvK (wL) =
∑
J⊆∆

|J|≤|K|+1

cJi,K · pvJ (wL).

The word vK 6≤ wL by hypothesis so the left-hand side is 0. If J 6⊆ L then pvJ (wL) = 0 and thus

0 =
∑

J⊆L⊆∆
|J|≤|K|+1

cJi,K · pvJ (wL).

By construction if J ( L then cJi,K = 0 so we are left with

0 = cLi,K · pvL(wL).

By Lemma 5.8 the evaluation pvL(wL) 6= 0. Since H∗S (pt) = C[t] is an integral domain we conclude

that cLi,K = 0.

Having determined coefficients that are always zero, we can give Monk’s formula for Peterson

varieties. Our coefficients are complex polynomials in t. We say such a polynomial is non-negative

and rational if it is contained in Q≥0[t].
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Theorem 5.14 (Monk’s formula for Peterson varieties). The Peterson Schubert classes satisfy

psi · pvK = psi(wK) · pvK +
∑

J such that
K⊆J⊆∆
|J|=|K|+1

cJi,K · pvJ

where the coefficients cJi,K are non-negative rational numbers given by

cJi,K = (psi(wJ)− psi(wK)) · pvK (wJ)

pvJ (wJ)
.

We need one more lemma in order to prove Monk’s rule.

Lemma 5.15. Consider the map π1 : H∗T (G/B) → H∗S (G/B) from Equation (5.1). Let v, w be

elements of the Weyl group. The image under π1 of the evaluation σv(w) of a Schubert class σv

at the fixed point w is the monomial c · tm where c is a non-negative integer and m is the length

of v.

Proof. By the properties of Billey’s formula given in Proposition 2.7, the polynomial σv(w) is

homogeneous of degree `(v) with non-negative integer coefficients. Its image π1(σv(w)) is ct`(v)

where c is the sum of the integer coefficients of σv(w).

Now we prove Theorem 5.14.

Proof. By Lemma 5.12 the general Monk’s formula in Equation (5.2) simplifies to

psi · pvK =
∑

|J|≤|K|+1

cJi,K · pvJ

and Lemma 5.13 further refines the equation to

psi · pvK = cKi,K · pvK +
∑

K(J⊆∆
|J|=|K|+1

cJi,K · pvJ . (5.3)

If we evaluate both sides of Equation (5.3) at the S -fixed point wK and use the fact that pvJ (wK) =

0 whenever J is not a subset of K, we obtain

psi(wK) · pvK (wK) = cKi,K · pvK (wK).

The polynomial pvK (wK) is non-zero by Lemma 5.8. Since C[t] is an integral domain we may di-

vide both sides by pvK (wK). This leaves cKi,K = psi(wK). By Lemma 5.15 the polynomial psi(wK)

is a degree-one monomial with an integer coefficient.
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Next fix a subset L ⊆ ∆ such that K ( L and let |L| = |K| + 1. Evaluating at the S -fixed

point wL gives

psi(wL) · pvK (wL) = psi(wK) · pvK (wL) +
∑

J such that
K(J⊆∆
|J|=|K|+1

cJi,K · pvJ (wL).

But pvJ (wL) = 0 unless J ⊆ L by the properties of Billey’s formula so in fact

psi(wL) · pvK (wL) = psi(wK) · pvK (wL) + cLi,K · pvL(wL).

Solving for cLi,K gives

cLi,K = (psi(wL)− psi(wK)) · pvK (wL)

pvL(wL)
. (5.4)

If the term (psi(wL)− psi(wK)) = 0 then the constant cLi,K is clearly non-negative and rational.

Suppose that (psi(wL)− psi(wK)) 6= 0. By Lemma 5.15 the term (psi(wL)− psi(wK)) has degree

one. By the same lemma
pvK (wL)

pvL (wL) has degree |K| − |L| = |K| − (|K| + 1) = −1. It remains to

show that cLi,K is non-negative.

It suffices to show that (psi(wL) − psi(wK)) is non-negative because
pvK (wL)

pvL (wL) will always be

non-negative. The word wL can be written as wK · w̃ for some reduced word w̃ ∈ WL [6]. Let

sb1sb2 · · · sbm be a reduced word for wK and sbm+1
sbm+2

· · · sbn be a reduced word for w̃. The

length `(si) = 1 for each i so Billey’s formula says

σsi(wK · w̃) =
∑

sbj=si

r(j, wL)

=
∑

sbj=si
j≤m

r(j, wL) +
∑

sbj=si
j>m

r(j, wL)

= σsi(wK) +
∑

sbj=si
j>m

r(j, wL).

Since π1 is a ring homomorphism from C[∆] to C[t], we obtain

psi(wJ)− psi(wK) = π1 (σsi(wJ)− σsi(wK)) = π1

 ∑
sbj=si
j>m

r(j, wJ)

 .
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By the properties of Billey’s formula each term r(j, wL) is a positive root in Φ. Therefore its

image π1(r(j, wJ)) is ct for some positive integer c. The t will be canceled by
pvK (wL)

pvL (wL) which has

degree −1. Thus (psi(wL)− psi(wK)) is non-negative and so is the coefficient cJi,K .

The coefficient cLi,K given in the previous theorem is a priori a rational number. Frequently, but

not always, cLi,K will be an integer.

In classical Schubert calculus the structure constants are generally non-negative integers. Fre-

quently they are in bijection with dimensions of irreducible representations. However, struc-

ture constants for the Peterson variety are not necessarily integers. For example in type D5 let

K = {α1, α2, α3, α4} and J = ∆. Then

cJ5,K =
5

2
.

Conjecture 5.16. We conjecture that in this basis, non-integral structure constants only occur

in Lie types D and E.

5.3 Giambelli’s Formula

Giambelli’s formula tells us how to express an arbitrary module-basis element in terms of the

ring generators. For the basis of H∗T (Flags) consisting of Schubert classes it looks like

σλ = det(σλi+j−i)1≤i,j≤r

where σλ is the Schubert class corresponding to the partition λ = (λ1, λ2, . . . , λr) [11]. While easy

to write down, this formula is hard to compute for a given Schubert class. Giambelli’s formula

for Peterson varieties simplifies to a single product.

Lemma 5.17. For a Peterson Schubert class pvK there is a constant C satisfying

C · pvK =
∏
αi∈K

psi . (5.5)

Proof. If |K| = m let K = {αa1 , αa2 , · · ·αam}. Define a sequence of nested subsets ∅ = K0 (

K1 ( K2 ( · · · ( Km = K by

Ki = {αa1 , αa2 , · · ·αai}.
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From Equation (5.3)

psai+1
· pvKi = c

Ki+1

ai+1,Ki
· pvKi +

∑
Ki(J⊆∆
|J|=|Ki|+1

cJai+1,Ki · pvJ .

Theorem 5.14 says c
Ki+1

ai+1,Ki
= psai+1

(wKi). Because αai+1 6∈ Ki the coefficient psai+1
(wKi) = 0

. If αai+1
6∈ J the term psai+1

(wJ) = 0. Thus if J 6= Ki+1 the coefficient cJai+1,Ki
= 0. Now

Equation (5.3) reduces to

psai+1
· pvKi = c

Ki+1

ai+1,Ki
· pvK+1

.

Solving for pvK+1
gives

psai+1
· pvKi

c
Ki+1

ai+1,Ki

= pvKi+1
.

By induction on i we see

pvK =

|K|∏
i=1

psai

|K|∏
i=1

cKiai,Ki−1

.

This gives that

C =

|K|∏
i=1

c
Ki+1

ai+1,Ki
.

Knowing that Giambelli’s formula is a single product rather than a determinental formula, we

want to give the constant C explicitly. To find this C we consider the simplest non-trivial Peterson

Schubert classes, those that are connected.

Definition 5.18. In Definition 5.4 a subset of simple roots K ⊆ ∆ was called connected if the

induced Dynkin diagram of K is a connected subgraph of the Dynkin diagram of ∆. The class pvK

is called connected whenever K is connected.

Every Peterson Schubert class can be expressed in terms of connected classes.

Theorem 5.19. If J,K ⊂ ∆ are each connected subsets such that J ∪K is disconnected then

pvJ∪K = pvJ · pvK . (5.6)

Proof. We show that equality holds when Equation (5.6) is evaluated at any S -fixed point wL.

If L does not contain J ∪K we can suppose without loss of generality that J 6⊆ L. Then both

pvJ∪K (wL) and pvJ (wL) are zero.

51



Dynkin diagram of K ⊆ ∆ Lie type pvK
s1 s2 s3 s4 s5 K ∼= A1 ×B3 ⊂ B5 ps1s3s4s5 = ps1 · ps3s4s5

s1 s2 s3 s4 s5 s6

s7

K ∼= A2 ×D4 ⊂ D7 ps1s2s4s5s6s7 = ps1s2 · ps4s5s6s7

s1 s2 s3

s4

K ∼= A1 ×A1 ×A1 ⊂ D4 ps1s3s4 = ps1 · ps3 · ps4

Figure 2: Connected root subsystems and connected Peterson Schubert classes.
The subsystem K ⊆ ∆ is drawn as a marked set of vertices in the Dynkin diagram. The associated
Peterson Schubert class is given at right.

Now suppose J ∪ K ⊆ L. Even though J ∪ K is disconnected, L may be connected or dis-

connected. Fix a reduced word for wL

w̃L = sa1sa2 · · · sa`(wL)

and let b ≺ w̃L mean that b is a subword of w̃L. The indexing set of the subword b is the set

I(b) ⊆ {1, 2, . . . `(wL)} such that

b = saj1 saj2 · · · saj|I(b)| for j1 < j2 < · · · < j|I(b)| with each jk ∈ I(b).

The subwords of w̃L are in bijection with the subsets of {1, 2, . . . `(wL)}. Given two subwords

b1, b2 ≺ w̃L we define their union b1 ∪ b2 to be the subword

b1 ∪ b2 = saj1 saj2 · · · saj|I(b1)∪I(b2)|

for j1 < j2 < · · · < j|I(b1)∪I(b2)| with each jk ∈ I(b1) ∪ I(b2). Let bJ , bK ≺ w̃L be reduced words

for vJ and vK respectively. Since J and K are disconnected I(bJ) ∩ I(bK) = ∅ and vJ commutes

entirely with vK [6]. Thus bJ ∪ bK is a reduced word for vJ · vK = vJ∪K .

Conversely let b ≺ w̃L be a reduced word for vJ∪K . We can partition I(b) into

I(b)J = {jk ∈ I(b) : αajk ∈ J} and I(b)K = {jk ∈ I(b) : αajk ∈ K}.

Since vJ ≤ vJ∪K and b is a reduced word for vJ∪K , some reduced word for vJ must be a subword

of b. Let bJ ≺ b be that subword. Since no reflections associated with K are in bJ , I(bJ) ⊆ I(b)J .

52



A parallel argument shows that there is some subword bK ≺ b equal to vK and that I(bK) ⊆ I(b)K .

By our previous argument bJ ∪ bK is a reduced word for vJ ·vK = vJ∪K . So `(bJ ∪ bK) = `(vJ∪K)

which equals `(b). Thus I(bJ) = I(b)J and I(bK) = I(b)K and b = bJ ∪ bK .

A subword b ≺ w̃L is a reduced word for vJ∪K if and only if b = bJ ∪bK for subwords bJ , bK ≺ w̃L

reduced words for vJ and vK . Billey’s formula in Equation (2.1) is a sum over such subwords.

We use it to rewrite the left- and right-hand sides of Equation (5.6). The left-hand side becomes:

pvJ∪K (wL) =
∑
b≺w̃L
b=vJ∪K

|I(b)|=|J∪K|

 ∏
j∈I(b)

r(j, w̃L)

 . (5.7)

Similarly the right-hand side becomes pvJ (wL) · pvK (wL) =
∑
b≺w̃L
b=vJ

|I(b)|=|J|

 ∏
j∈I(b)

r(j, w̃L)


 ·


∑
b≺w̃L
b=vK

|I(b)|=|K|

 ∏
j∈I(b)

r(j, w̃L)


 . (5.8)

Both Equations (5.7) and (5.8) expand out to the expression

∑
bJ≺w̃L
bJ=vJ

|I(bJ )|=|J|

∑
bK≺w̃L
bK=vK

|I(bK)|=|K|

 ∏
j∈I(bJ )

r(j, w̃L)

 ·
 ∏
j∈I(bK)

r(j, w̃L)

 .

Any subset K ⊂ ∆ gives rise to a Peterson Schubert class that is the product of connected

Peterson Schubert classes. Understanding the connected Peterson Schubert classes thus gives

full information on all Peterson Schubert classes. The next theorem gives Giambelli’s formula

explicitly for connected Peterson Schubert classes.

Theorem 5.20. If K ⊆ ∆ is a connected root subsystem of type An, Bn, Cn, F4, or G2 then

|K|! · pvK =
∏
αi∈K

psi .

If K is a connected root subsystem of type Dn then

|K|!
2
· pvK =

∏
αi∈K

psi .
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If K is a connected root subsystem of type En then

|K|!
3
· pvK =

∏
αi∈K

psi .

Our proof of this theorem is combinatorial and treats each Lie type as its own case. The uniformity

across Lie types suggests that a uniform proof exists. Such a proof might shed light on the topology

of these varieties. In fact, the theorem can be stated in an even more uniform manner.

Theorem 5.21. If K ⊆ ∆ is a connected root subsystem of any Lie type and |R(vK)| is the

number of reduced words for vK then

|K|!
|R(vK)|

· pvK =
∏
αi∈K

psi .

Proof. Given Theorem 5.20 it is sufficient to show that |R(vK)| = 1 if K is type A,B,C, F, or

G, that |R(vK)| = 2 for type D and that |R(vK)| = 3 for type E. Given one reduced word any

other reduced word can be obtained by a series of braid moves and commutations [6]. If K is

type A,B,C, F, or G then si and si+1 do not commute for any i. Therefore s1s2 · · · sn−1sn is the

only reduced word for vK .

If K is of type D then si and si+1 commute if and only if i = n − 1. Also sn−2 and sn do not

commute. The only two reduced words for vK are s1s2 · · · sn−2sn−1sn and s1s2 · · · sn−2snsn−1 so

|R(vK)| = 2.

If K is type En then we start with the word vK = s1s2s3s4 · · · sn with the labels given as in

Figure 1. The reflection s2 commutes with s1 and s3 but not s4. The reflection s3 does not

commute with s1. When i > 2, si and si+1 do not commute. Thus vK has exactly 3 reduced

words: s1s2s3s4 · · · sn and s1s3s2s4 · · · sn and s2s1s3s4 · · · sn.

We can now give Giambelli’s formula explicitly for all Peterson Schubert classes.

Corollary 5.22. If K ⊆ ∆ and K = K1×K2× · · ·Kj where each K` is a connected root system

then

CK · pvK =
∏
i∈K

psi (5.9)

where CK =
j∏
`=1

|K`|!
|R(vK` )|

.
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Proof. The corollary follows immediately from Theorems 5.19 and 5.21.

5.4 Modified Excited Young Diagrams

To compute the constant term of Giambelli’s formula we must evaluate the Peterson Schubert

class pv at fixed points. These are related both to the work by Woo -Yong [37], and the work by

Ikeda-Naruse [20]. For the remainder of this paper, K will be a connected root system identified

by Lie type.

Since we only evaluate at fixed points wK where K ⊆ ∆ is a connected root system, the first step

is to write wK explicitly as a skew diagram λwK . The ith column from the left represents the

simple reflection si. Reading left-to-right and top-to-bottom gives a reduced word for wK . Figure

3 gives several examples.

The goal is to compute pv(wK). To start we use Equations (2.1) and (5.1) to rewrite it as

π(σv(wK)) = π

 ∑
reduced words

v=sbj1
sbj2
···sbj`(v)

(
`(v)∏
i=1

r(ji, wK)

)

=
∑

reduced words
v=sbj1

sbj2
···sbj`(v)

(
`(v)∏
i=1

π(r(ji, wK))

)
.

In order to do this we label the ith box of λwK with 1
t · π1(r(i, wK)). The term π1(r(i, wK)) is a

degree-one monomial in C[t] whose coefficient is the height of the root r(i, wK). Thus the labels

are positive integers. Call this labeled shape λp(wK). We give an example in type B3:

λwK λp(wK)

s3

s2 s3

s1 s2 s3

s1 s2

s1

1
3 2

4 5 3
1 2
1

.

A v-excitation µ of λwK is any collection of `(v) boxes in the labeled diagram such that the labels

of the boxes of λwK when read left-to-right and top-to-bottom give a reduced word for v. For
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wA4
= s1s2s3s4s1s2s3s1s2s1 wBC4

= s4s3s4s2s3s4s1s2s3s4s1s2s3s1s2s1

s1 s2 s3 s4

s1 s2 s3

s1 s2

s1

s4

s3 s4

s2 s3 s4

s1 s2 s3 s4

s1 s2 s3

s1 s2

s1

wD5 = s4s3s5s2s3s4s1s2s3s5s1s2s3s4s1s2s3s1s2s1

s4

s3 s5

s2 s3 s4

s1 s2 s3 s5

s1 s2 s3 s4

s1 s2 s3

s1 s2

s1

Figure 3: Skew diagrams of wK . We use the reduced words for wK given by Sage.

example if K is type B3 there are three s1s2-excitations of λwK :

s3

s2 s3

s1 s2 s3

s1 s2

s1

s3

s2 s3

s1 s2 s3

s1 s2

s1

s3

s2 s3

s1 s2 s3

s1 s2

s1

If µ is a v-excitation of λwK then Mp(µ) is the product of the entries in the boxes of λp(wK) filled

by µ.

s3

s2 s3

s1 s2 s3

s1 s2

s1

1
3 2

4 5 3
1 2
1

For this s1s2-excitation µ of wB3 the coefficient is Mp(µ) = (4)(5) = 20. Now pv(wK) can be

computed by this diagramatic construction:

pv(wK) =
∑

µ a v-excitation
of wK

Mp(µ) · t`(v). (5.10)

5.5 Proof of the Giambelli’s formula

Theorems 5.20 and 5.21 gave two versions of the main theorem of this paper. Having used

Theorem 5.20 to prove Theorem 5.21, we now prove Theorem 5.20 case by case according to Lie

type. This section first gives a proof for type A which will be used in subsequent sections for the
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proofs of the other classical types. Last we prove the theorem for the exceptional Lie types. This

involves computer-generated proofs for the E series and explicit calculations for types F4 and G2.

5.5.1 Type A

An :
s1 s2 s3 sn−2 sn−1 sn

While Giambelli’s formula for type A was fully addressed by Bayegan-Harada [1], we give a proof

using our excited Young diagrams. The diagrams λwK and λp(wK) are

λwK =
s1 s2 s3 . . . sn−2sn−1 sn

s1 s2 s3 . . . sn−2sn−1

s1 s2 s3 . . . sn−2
...

...
... . .

.

s1 s2 s3

s1 s2

s1

λp(wK) =
1 2 3 . . . n−2 n−1 n

1 2 3 . . . n−2 n−1

1 2 3 . . . n−2

...
...

... . .
.

1 2 3

1 2

1

Proof. Lemma 5.17 showed C · pvK =
∏

1≤i≤n
psi . Evaluating this equation at the fixed point wK

gives

C · pvK (wK) =
∏

1≤i≤n

psi(wK). (5.11)

There is only one filling wK with vK = s1s2 · · · sn, specifically

µ = s1 s2 s3 . . . sn−2sn−1 sn

s1 s2 s3 . . . sn−2sn−1

s1 s2 s3 . . . sn−2
...

...
... . .

.

s1 s2 s3

s1 s2

s1

Thus pvK (wK) = M(µ) · tn = n! · tn. We must also evaluate psi(wK) for each si ∈ K. From

λp(wK) each si-excitation µ of wK has M(µ) = i. From the diagram, there are n − i + 1 such

excitations. So

psi(wK) =
∑

µ a si-excitation
of wK

M(µ) · t`(si) = (n− i+ 1)i · t.
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Solving Equation (5.11) for C we obtain

C · n! · tn =
∏

1≤i≤n

[(n− i+ 1)i · t] =
∏

1≤i≤n

(n− i+ 1) ·
∏

1≤i≤n

(i · t) = (n!)2 · tn

which gives C = n! = |K|! as desired.

The type A result greatly simplifies the proof for the other classical Lie types.

Lemma 5.23. Let K be a root system of type Bn, Cn, or Dn. Then J = K \ {sn} is a root

subsystem of type An−1 and

cKn,J · (n− 1)! · pvK =
∏
si∈K

psi (5.12)

where cKn,J = psn(wK) · pvJ (wK)

pvK (wK) .

Proof. By the proof of Giambelli’s formula for type A and Theorem 5.14 respectively,

(n− 1)! · pvJ =
∏
si∈J

psi and psn · pvJ = cKn,J · pvK . (5.13)

Combining these gives Equation (5.12). By Theorem 5.14

cKn,J = (psn(wK)− psn(wJ)) · pvJ (wK)

pvK (wK)
.

By construction the root αn is not in J so psn(wJ) = 0 giving the desired result.

Now we will prove Giambelli’s formula for the other classical Lie types.

5.5.2 Type B

s1 s2 s3 sn−2 sn−1 sn
Bn:

Proposition 5.24. Theorem 5.20 holds when K is a type B root system.

Proof. Let K be a type Bn root system and J ⊂ K = K \ {sn}. By Lemma 5.23 showing that

cKn,J = n is sufficient to prove Giambelli’s formula for type B.
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If K is of type Bn the diagram of the reduced word for wK is given below. Each row is la-

beled by the word of reflections in that row. For example x2 = s2s3 · · · sn−1sn.

λwK =

xn sn

xn−1 sn−1 sn

xn−2 sn−2sn−1 sn
... . .

. ...
...

...

x3 s3 · · · sn−2sn−1 sn

x2 s2 s3 · · · sn−2sn−1 sn

x1 s1 s2 s3 · · · sn−2sn−1 sn

yn−1 s1 s2 s3 · · · sn−2sn−1

yn−2 s1 s2 s3 · · · sn−2
...

...
...

... . .
.

y3 s1 s2 s3

y2 s1 s2

y1 s1

To compute cKn,J we need to compute pv(wK) where v is sn, s1s2 · · · sn−1, and s1s2 · · · sn. All of

the v-excitations of wK for these words are contained in the shaded area of the λwK above. So we

only need the entries of λp(wK) in those shaded boxes. Start with the box labeled sn in row xj of

the diagram. The reflections that come after do not act on the root, so we look at xnxn−1 · · ·xj

and calculate the root as it moves through the diagram. A bullet, •, marks the location of the

root in the diagram at each step. The initial root is below the first diagram and we follow how it
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changes.

sn

sn−1 sn

. .
. ...

...

sj+1 · · · sn−1 sn

sj sj+1 · · · sn−1 •

→ sn

sn−1 sn

. .
. ...

...

sj+1 · · · sn−1 sn

• · · ·

αn
sjsj+1···sn−1(αn)

=αj+αj+1+···+αn−1+αn

↙

sn

sn−1 sn

. .
. ...

...

sj+1 · · · sn−1 •
· · ·

→ sn

sn−1 sn

. .
. ...

...

• · · ·
· · ·

sn(αj+αj+1+···+αn−1+αn)
=αj+αj+1+···+αn−1+αn

αj+αj+1+···+αn−1+αn

By the time the bullet gets to the position in the lower left, the root is αj + · · ·αn which is

invariant under all simple reflections except sj and sj−1. Neither of those reflections act on the

bullet as it continues through the diagram. Thus the label on the box sn in row xj of λp(wK) is

n− j + 1.

We can start the bullet in any box of the diagram. Suppose that the hth simple reflection of

wk is the ith box in row yn−1. Then r(h, wK) will be

xn · · ·x1s1s2 · · · si−1si−1(αi) = xn · · ·x1

(
i∑

m=1

αm

)
=

i∑
m=1

αn−m.

Thus the entry in the corresponding box of λp(wK) = 1
tπ

(
i∑

m=1
αn−m

)
= i.

Another bullet-pushing argument shows that

xnxn−1 · · ·x2(α1) = α1 + α2 + · · ·+ αn−1 + 2αn.

If 1 < i < n then xnxn−1 · · ·x2(αi) = αn−i+1. Let the hth simple reflection of wK to be the ith

box of row x1 for some i 6= n. The root r(h, wK) is

xnxn−1 · · ·x2s1s2 · · · si−1(αi) = xnxn−1 · · ·x2

(
i∑

m=1
αm

)
= α1 + α2 + · · ·+ αn−1 + 2αn +

i∑
m=2

αn−m+1.
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Thus the entry in the corresponding box of λp(wK) is n+ i. Now we can label the relevant boxes

of λp(wK):

λp(wK) =

xn 1

xn−1 2

xn−2 3
... . .

. ...
...

...

x3 · · · n−2

x2 · · · n−1

x1 n+1 n+2 n+3 · · · 2n−22n−1 n

yn−1 1 2 3 · · · n−2 n−1

With this labeling established, we can see that psn(wK) = n(n+1)
2 t. We also observe that there

is only one vK-excitation of wK since vK contains, in order, the reflections s1 through sn which

appear in that order in row x1 and in no other subword of wK . So

pvK (wK) = (n+ 1)(n+ 2) · · · (2n− 2)(2n− 1)n · tn =
(2n− 1)!

(n− 1)!
tn.

The last piece is to calculate pvJ (wK). All subwords of wK that are reduced words for vJ are

entirely contained within the x1yn−1 subword of wK . We look at the excited Young diagrams in

just those two rows of λp(wK). A vJ -excitation µ of these two rows is determined by how many

boxes it takes from row x1. The excitation µ that uses i boxes from row x1 looks like:

n+1 n+2 n+3 · · · n+in+i+1 · · · 2n−22n−1 n

1 2 3 · · · i i+1 · · · n−2 n−1

This vJ -excitation contributes coefficient M(µ) = (n+i)!
n·i! to pvJ (wK). Since 0 ≤ i ≤ n− 1,

pvJ (wK) =

n−1∑
i=0

(n+ i)!

n · i!
tn−1.

Putting all of the pieces together we have

cKn,J =
psn (wK)·pvJ (wK)

pvK (wK)

=
n(n+1)

2 t
(2n−1)!
(n−1)!

tn
·
n−1∑
i=0

(n+i)!
n·i! t

n−1

= (n+1)!
2n·(2n−1)! ·

n−1∑
i=0

(n+i)!
i! .

By a combinatorial identity for the sum, this can be rewritten as

cKn,J =
(n+ 1)!

2n · (2n− 1)!
· n · (2n)!

(n+ 1)!
= n.
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5.5.3 Type C

s1 s2 s3 sn−2 sn−1 sn
Cn:

Proposition 5.25. Theorem 5.20 holds when K is a type C root system.

Proof. This proof mirrors the proof in type B. Let K be a type Cn root system and define J ⊂ K

to be J = K \ {sn}. By Lemma 5.23 showing that cKn,J = n is sufficient to prove Giambelli’s

formula for type C.

The longest word wK is the same for type Cn as for type Bn, in fact the only changes from

type B are the box labels of λp(wK). First we find the label for the box corresponding to reflection

sn in row xj .

sn

sn−1 sn

. .
. ...

...

sj+1 · · · sn−1 sn

sj sj+1 · · · sn−1 •

→ sn

sn−1 sn

. .
. ...

...

sj+1 · · · sn−1 sn

• · · ·

αn 2αj + 2αj+1 + · · ·+ 2αn−1 + αn

The root 2αj + 2αj+1 + · · · + 2αn−1 + αn is invariant under all reflections except sj and sj−1

which will not act on the root. Thus the label in λp(wK) is 2(n− j) + 1. Adding up all the labels

of these boxes gives that

psn(wK) =

n∑
j=1

(2j − 1) · t = n2 · t.

To compute pvJ (wK) and pvK (wK) we need to compute the λp(wK) diagram labels of rows yn−1

and x1. If the hth box is box i 6= n of row x1 then

r(h, wK) = xnxn−1 · · ·x2s1s2 · · · si−1(αi) = xnxn−1 · · ·x2

(
i∑

m=1

αm

)
.

By moving a root through the diagram, xnxn−1 · · ·x2(α1) = α1 + α2 + · · ·+ αn and if 1 < i < n
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then xnxn−1 · · ·x2(αi) gets pushed through the diagram as follows:

sn

sn−i+1 sn−1 sn

↘ . .
. .

.

.
.
.
.

xn−i+1 sn−i+1 ··· sn−1 sn

↘ .
.
.

.

.

.
.
.
.

.

.

.

s2 ··· ··· sn−1 sn

• ··· ···

→ sn

sn−i+1 sn−1 sn

↘ . .
. .

.

.
.
.
.

··· sn−1 •
. .
. .

.

.
.
.
.

.

.

.
.
.
.

··· ···

··· ···

αi αn−1 + αn

Since we are working in type C the reflection sn−1 sends αn to 2αn−1 + αn so the next row of

the diagram acts like this:

sn

sn−i+1 sn−1 sn

↘ . .
. .

.

.
.
.
.

··· •
. .
. .

.

.
.
.
.

.

.

.
.
.
.

··· ···

··· ···

→ sn

sn−1 sn

. .
. .

.

.
.
.
.

• ···

. .
. .

.

.
.
.
.

.

.

.
.
.
.

··· ···

··· ···

αn−2 + αn−1 + αn αn−i+1 + · · ·+ αn

Row xn−i+2 eliminateds everything except αn−i+1 which is preserved for the rest of the diagram.

So

r(h, wK) = xnxn−1 · · ·x2

(
i∑

m=1

αm

)
=

n∑
m=1

αm +

i∑
m=2

αn−m+1

and the entry in λp(wK) is n + i − 1. Like in type B, xnxn−1 · · ·x2x1(αi) = αn−i for i 6= n. We

can fill in the entries of rows x1 and yn−1 of λp(wK) as follows:

x1 n n+1 n+2 · · · n+i−1 n+i · · · 2n−2 2n−1 n

yn−1 1 2 3 · · · i i+1 · · · n−2 n−1

A vJ -excitation of wK is marked in light gray. Summing over the number of boxes of µ that are

in row x1 as in the previous section gives

pvJ (wK) =

n−1∑
i=0

(n+ i− 1)!

i!
tn−1 =

(2n− 1)!

n!
tn−1.

We also see that there is only one vK-excitation of wK so pvK (wK) = (2n−1)!
(n−1)! t

n.

Putting all the pieces together we obtain

cKn,J = psn(wK)
pvJ (wK)

pvK (wK)
= n2

(2n−1)!
n!

(2n−1)!
(n−1)!

=
n2

n
= n.
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5.5.4 Type D

s1 s2 s3 sn−3 sn−2 sn−1

sn

Dn

Proposition 5.26. Theorem 5.20 holds when K is a connected type D root system.

Proof. Let K be a connected type Dn root system and J ⊂ K = K \ {sn}. By Lemma 5.23 it

suffices to show that cKn,J = n
2 . If K is a root system of type Dn then the shape of λwK depends

on whether n is even or odd. Figure 4 gives the two diagrams for type Dn. In each of these

shapes, there is only one vK-excitation of wK . This subword occurs in the rows x1 and yn−1 and

looks like:

x1 s1 s2 s3 · · · sn−3sn−2 sn

yn−1 s1 s2 s3 · · · sn−3sn−2sn−1

.

The vJ -excitations of wK are in the same two rows and there are n − 1 such excitations. Each

excitation µ looks like:

x1 s1 s2 s3 · · · si si+1 · · · sn−3sn−2 sn

yn−1 s1 s2 s3 · · · si si+1 · · · sn−3sn−2sn−1

.

We need to find the labels of these boxes in λp(wK) in order to compute pvK (wK) and pvJ (wK).

Denote by x the word obtained from the first n− 1 rows of wK , i.e . x = xn−1xn−2 · · ·x2x1. We

compute x(αi) for i < n.

First we examine the action of x on αi for 1 < i ≤ n − 2. Suppose that i < n − 2. Then

we take the action of x row by row to get to the root αn−2. The first reflection in x1 to not

preserve αi is si+1 which sends it to αi + αi+1. The next reflection, si then brings the root to

αi+1 which the rest of the reflections in x1 preserve. Similarly x2(αi+1) = αi+2 if i+ 1 < n− 2.

This pattern continues until

xn−i−2xn−i−3 · · ·x1(αi) = αn−2
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Figure 4: The diagrams of λwK for K a type Dn root system.

n is odd n is even

xn−1 sn−1

xn−2 sn−2 sn

xn−3 sn−3 sn−2 sn−1

... . .
. ...

...
...

x3 s3 · · · sn−3 sn−2 sn

x2 s2 s3 · · · sn−3 sn−2 sn−1

x1 s1 s2 s3 · · · sn−3 sn−2 sn

yn−1 s1 s2 s3 · · · sn−3 sn−2 sn−1

yn−2 s1 s2 s3 · · · sn−3 sn−2

yn−3 s1 s2 s3 · · · sn−3

...
...

...
... . .

.

y3 s1 s2 s3

y2 s1 s2

y1 s1

xn−1 sn

xn−2 sn−2 sn−1

xn−3 sn−3 sn−2 sn

...
...

...
...

...

... . .
. ...

...
...

...

x3 s3 · · · sn−3 sn−2 sn

x2 s2 s3 · · · sn−3 sn−2 sn−1

x1 s1 s2 s3 · · · sn−3 sn−2 sn

yn−1 s1 s2 s3 · · · sn−3 sn−2 sn−1

yn−2 s1 s2 s3 · · · sn−3 sn−2

yn−3 s1 s2 s3 · · · sn−3

...
...

...
... . .

.

y3 s1 s2 s3

y2 s1 s2

y1 s1

The action of the next three rows, xn−i−1, xn−i, and xn−i+1 depend on whether n− i is even or

odd. If n− i is odd then the next three rows have form

xn−i+1 sn−i+1 · · · sn−3 sn−2 sn

xn−i sn−i sn−i+1 · · · sn−3 sn−2 sn−1

xn−i−1 sn−i−1 sn−i sn−i+1 · · · sn−3 sn−2 sn

The actions of these rows are:

xn−i−1(αn−2) = αn−1

xn−i(αn−1) = αn−i + · · ·+ αn−2 + αn−1

xn−i+1(αn−i + · · ·+ αn−2 + αn−1) = αn−i

If instead n− i is even the next three rows look like

xn−i−1 sn−i+1 · · · sn−3 sn−2 sn−1

xn−i sn−i sn−i+1 · · · sn−3 sn−2 sn

xn−i−1 sn−i−1 sn−i sn−i+1 · · · sn−3 sn−2 sn−1
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and act by:

xn−i−1(αn−2) = αn

xn−i(αn−1) = αn−i + · · ·+ αn−2 + αn

xn−i+1(αn−i + · · ·+ αn−2 + αn) = αn−i.

Whether n− i is odd or even, the root αn−i is invariant under the action of sj for j > n− i+ 1

so x(αi) = αn−i for all i greater than 1 and less than n− 2.

If we start with the root α1 then xn−3xn−4 · · ·x1(α1) = αn−2. The rest of the computation

is

xn−1xn−2(αn−2) =


sn−1sn−2sn(αn−2) = αn if n is odd

snsn−2sn−1(αn−2) = αn−1 if n is even.

Next we address x(αn−1). Going row by row,

x1(αn−1) = α1 + α2 + · · ·+ αn−2 + αn−1 and

x2(α1 + α2 + · · ·+ +αn−2 + αn−1) = α1

which is invariant under sj for j > 2. Thus x(αn−1) = α1.

The result of these computations is that for i < n the word x takes each root αi to a root

αj and therefor π1(x(αi)) = t for all i < n. Since the label in the ith box of row yn−1 is the height

of the root xs1s2 · · · si−1(αi) = x(α1 + · · ·+ αi) that box in λp(wK) is labeled i.

We also want to find the root corresponding to the ith box of row x1. A non-reduced way to

write the word preceding that box in wK is xsnsn−2sn−3 · · · si+1si and the corresponding root is

xsnsn−2sn−3 · · · si+1si(αi) = x(−αi − αi+1 − · · · − αn−2 − αn)

= −x(αi + αi+1 + · · ·+ αn−2)− x(αn).

We compute the action of x on the root αn:

x1(αn) = −(α1 + α2 + · · ·+ αn−2 + αn)

sn−1(−(α1 + α2 + · · ·+ αn−2 + αn)) = −(α1 + α2 + · · ·+ αn−2 + αn−1 + αn)
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sn−2(−(α1 + α2 + · · ·+ αn−2 + αn−1 + αn)) = −(α1 + α2 + · · ·+ 2αn−2 + αn−1 + αn)

Each subsequent reflection places the coefficient 2 in front of another simple root until

x2x1(αn) = −(α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn).

This root is invariant under the action of si for i > 2 and thus

x(αn) = −(α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn)

Thus the root associated with the ith box of row x1 is xsnsn−2sn−3 · · · si+1(αi) =

−x(αi + αi+1 + · · ·αn−2) + α1 + 2α2 + · · ·+ 2αn−2 + αn−1 + αn.

which has height in the root poset 2n− 3 − (n − i− 1) = n + i − 2. We can now label the rows

x1 and yn−1 in the diagram λp(wK).

x1 n−1 n n+1 · · · 2n−5 2n−4 2n−3

yn−1 1 2 3 · · · n−3 n−2 n−1

.

This means that pvK (wK) = (2n−3)!
(n−2)! (n−1)tn. Furthermore when µ is a vJ -excitation with i boxes

in the top row we see a contribution to pvJ (wK) of M(µ) = (n− 1) (n+i−2)!
i! . Therefore

pvJ (wK) =

[
n−2∑
i=0

(n− 1)
(n+ i− 2)!

i!

]
tn−1 =

(2n− 3)!

(n− 2)!
tn−1.

The constant cKn,J is

psn(wK)
pvJ (wK)

wvK (wK)
= psn(wK)

(2n−3)!
(n−2)! t

n−1

(2n−3)!
(n−2)! (n− 1)tn

= psn(wK)
1

(n− 1)t
. (5.14)

The polynomial psn(wK) is computed in the even and odd cases. In both cases, if m is less than

n− 1 and there is a box corresponding to sn in row xm, then

xn−1xn−2xn−3 · · ·xm+1smsm+1 · · · sn−3sn−2(αn)

= xn−1xn−2xn−3 · · ·xm+1(αm + αm+1 + · · ·αn−3 + αn−2 + αn)

= xn−1xn−2xn−3 · · ·xm+2(αm + 2αm+1 + · · ·+ 2αn−3 + 2αn−2 + αn−1 + αn).

The root αm + 2αm+1 + · · ·+ 2αn−3 + 2αn−2 + αn−1 + αn is invariant under the action of si for

i > m+ 1. Thus the root corresponding to that box is

αm + 2αm+1 + · · ·+ 2αn−3 + 2αn−2 + αn−1 + αn
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and the entry in λp(wK) is 2(n−m)− 1.

If n is odd then row xn−1 does not contain the reflection sn and

psn(wK) =

 ∑
1≤m≤n−1
m odd

2(n−m)− 1

 · t
=

n
2−1∑
l=1

2n− 4l − 1

 · t
=
n2 − n

2
· t.

If n is even then the row xn−1 contains only the reflection sn and that box corresponds to the

root αn. Since π(αn) = t we have

psn(wK) =

1 +
∑

1≤m≤n−3
m odd

2(n−m)− 1

 · t
=

1 +

n
2−1∑
l=1

2n− 2(2l − 1)− 1

 · t
=

1 +

n
2−1∑
l=1

2n− 4l + 1

 · t
=

[
1 + (

n

2
− 1)(2n+ 1)− 4

(n2 − 1)(n2 )

2

]
· t

=
n2 − n

2
· t

Thus for any n > 3 regardless of parity, Equation (5.14) becomes

cKn,J =
n2 − n

2
t · 1

(n− 1)t
=
n

2
.

5.5.5 Type E

s1 s3 s4 sn−1 sn

s2

En:
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Proposition 5.27. Theorem 5.20 holds when K is a type E root system.

Proof. The Giambelli formula for the Peterson varieties in the exceptional types was calculated

using Sage code. While the calculations for types F4 and G2 can easily be reproduced by hand,

the E series computations heavily relied on computers. As such the type E computations will

be given with the accompanying code to reproduce the results. Unlike for the infinite series Lie

types, if K is a root system of type En, the word wK does not give rise to a nice diagram. Instead

we present that information as a table in Figure 5.

The first list LwK gives the ordered simple reflections sji such that wK = sj1sj2 · · · sj` is the

reduced word for wK given by the algebraic combinatorics platform Sage. The second list Lp(wK)

is created using a Sage program. For each simple reflection sji of wK we record 1
t · π(r(i, wK)).

The code for this program is available at http://arxiv.org/abs/1311.2678.

The only reduced words of vK are

vK = s1s2s3s4 · · · sn = s2s1s3s4 · · · sn = s1s3s2s4 · · · sn.

Python code can find all sublists of LwK that are equal to one of the three corresponding lists.

These sublists are the vK-excitations µ of wK . For each excitation µ, M(µ) is the product of the

entries in Lp(wK) in the same positions as those in the sublist µ. We then sum over all such µ to

get

pvK (wK) =

 ∑
µ a vK -excitation of LwK

M(µ)

 · tn.
We also evaluate psi(wK) by summing all of the entries in Lp(wK) corresponding to entries which
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Figure 5: The lists LwK and Lp(wK) for K = E6, E7, and E8. The bold simple reflection in LwE7

and LwE8
is the last occurrence of the reflections s7 and s8 respectively.

LwE6
= s1, s3, s4, s5, s6, s2, s4, s5, s3, s4, s1, s3, s2, s4, s5, s6, s2, s4,

s5, s3, s4, s1, s3, s2, s4, s5, s3, s4, s1, s3, s2, s4, s1, s3, s2, s1

Lp(wE6
) = 1, 2, 3, 4, 5, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 1, 2,

3, 3, 4, 4, 5, 5, 6, 7, 1, 2, 2, 3, 3, 4, 1, 2, 1, 1

.

LwE7
= s7, s6, s5, s4, s3, s2, s4, s5, s6, s7, s1, s3, s4, s5, s6, s2, s4,

s5, s3, s4, s1, s3, s2, s4, s5, s6, s7, s1, s3, s4, s5, s6, s2, s4,
s5, s3, s4, s1, s3, s2, s4, s5, s6, s2, s4, s5, s3, s4, s1, s3, s2,
s4, s5, s3, s4, s1, s3, s2, s4, s1, s3, s2, s1

Lp(wE7
) = 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 6, 7, 8, 9, 10, 9, 10,

11, 11, 12, 12, 13, 13, 14, 15, 16, 17, 1, 2, 3, 4, 5, 4, 5,
6, 6, 7, 7, 8, 8, 9, 10, 11, 1, 2, 3, 3, 4, 4, 5, 5,
6, 7, 1, 2, 2, 3, 3, 4, 1, 2, 1, 1

LwE8
= s8, s7, s6, s5, s4, s3, s2, s4, s5, s6, s7, s1, s3, s4, s5, s6, s2,

s4, s5, s3, s4, s1, s3, s2, s4, s5, s6, s7, s8, s7, s6, s5, s4, s3,
s2, s4, s5, s6, s7, s1, s3, s4, s5, s6, s2, s4, s5, s3, s4, s1, s3,
s2, s4, s5, s6, s7, s8, s7, s6, s5, s4, s3, s2, s4, s5, s6, s7, s1,
s3, s4, s5, s6, s2, s4, s5, s3, s4, s1, s3, s2, s4, s5, s6, s7, s1,
s3, s4, s5, s6, s2, s4, s5, s3, s4, s1, s3, s2, s4, s5, s6, s2, s4,
s5, s3, s4, s1, s3, s2, s4, s5, s3, s4, s1, s3, s2, s4, s1, s3, s2,
s1

Lp(wE8
) = 1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 10, 7, 8, 9, 10, 11, 10,

11, 12, 12, 13, 13, 14, 14, 15, 16, 17, 18, 29, 11, 12, 13, 14, 15,
15, 16, 17, 18, 19, 16, 17, 18, 19, 20, 19, 20, 21, 21, 22, 22, 23,
23, 24, 25, 26, 27, 28, 1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 6,
7, 8, 9, 10, 9, 10, 11, 11, 12, 12, 13, 13, 14, 15, 16, 17, 1,
2, 3, 4, 5, 4, 5, 6, 6, 7, 7, 8, 8, 9, 10, 11, 1, 2,
3, 3, 4, 4, 5, 5, 6, 7, 1, 2, 2, 3, 3, 4, 1, 2, 1,
1
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are si in LwK . This gives the following data for the E series:

Type E6 Type E7 Type E8

pvK (wK) 887040t6 661620960t7 11179629901440t8

ps1(wK) 16t 34t 92t

ps2(wK) 22t 49t 136t

ps3(wK) 30t 66t 182t

ps4(wK) 42t 96t 270t

ps5(wK) 30t 75t 220t

ps6(wK) 16t 52t 168t

ps7(wK) 27t 114t

ps8(wK) 172t

This table along with Lemma 5.17 gives us that the E series Peterson varieties have the following

Giambelli’s formula.

E6 : C · pvK (wK) =
∏

1≤i≤6

psi(wK) where C = 240 = 6!
3

E7 : C · pvK (wK) =
∏

1≤i≤7

psi(wK) where C = 680 = 7!
3

E8 : C · pvK (wK) =
∏

1≤i≤8

psi(wK) where C = 13440 = 8!
3

5.5.6 Type F4

s1 s2 s3 s4
F4:

Proposition 5.28. Theorem 5.20 holds when K is a type F4 root system.

Proof. If K is a root system of type F4 then J = K \ {s4} is a root subsystem of type B3 and

therefore

cK4,J · pK = ps4pvJ =
1

3!

4∏
i=1

pi.

Evaluating at wK = s4s3s2s3s1s2s3s4s3s2s3s1s2s3s4s3s2s3s1s2s3s1s2s1 gives

pK(wK) = 18480t4 = 24 · 3 · 5 · 7 · 11 · t4

p1(wK) = 22t p2(wK) = 42t

p3(wK) = 30t p4(wK) = 16t
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Since

cK4,J · pK(wK) =
1

3!

4∏
i=1

pi(wK),

we can solve for cK4,J to see that cK4,J = 4. Thus 4! · pK = (|K|)! · pK =
4∏
i=1

pi.

5.5.7 Type G2

s1 s2
G2:

Proposition 5.29. Theorem 5.20 holds when K is a type G2 root system.

Proof. Since in type G2 the ring H∗S (PetG2
) has only four Peterson Schubert classes, we give the

basis explicitly evaluated at e, s1, s2, and s1s2s1s2s1s2:

p∅ p{1} p{2} p{1,2}

1

1

1

1





0

t

0

6t





0

0

t

10t





0

0

0

30t2


From this basis it is clear that 2 · pK =

∏
i∈K

psi and of course |K|! = 2.
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A P P E N D I X A

NOTATION

G a complex reductive linear algebraic group

B a Borel subgroup

T a maximal torus

Φ a root system

Φ+ positive roots in Φ

∆ positive simple roots in Φ

αi a simple root in ∆

W a Weyl group

si a simple reflection in W associated to αi

w0 the longest word in W

t, b, g Lie algebras associated to T,B,G respectively

g the root space in g associated to the root α ∈ Φ

Eα a basis element in gα

t∗ the dual of t

C[t∗] a Cartan subalgebra

XT or (X)T the T -fixed points of X

H∗T (X) the T -equivariant cohomology of X

σv the (equivariant) Schubert class associated to the word v ∈W

σv(w) the localization of σv at the T -fixed point wB ∈ G/B

r(i, w) the root associated with ith letter of w
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H a Hessenberg space in g

h a Hessenberg function h : [n]→ [n]

Hess(X,H) the Hessenberg variety associated to Hessenberg space H and op-

erator X ∈ g

P a parabolic subgroup of G

WP the parabolic subgroup of W , also the Weyl group of P/B

WP the minimal coset representatives of W/WP

N a regular nilpotent operator in g

TM the matrix obtained by flipping matrix M along its antidiagonal

Flags the flag variety G/B

S a one dimensional subtorus of T

V• a flag in G/B

π1 a ring homomorphism from C[α1, ..., αn] to C[t] induced by αi 7→ t

for all i

H

σv the Hessenberg Schubert class associated with w

H

σv(w) the Hessenberg Schubert class
H

σ localized at w

VH the set of v ∈W such that the permutation matrix of v is contained

in H

WH the set of S -fixed points in Hess(N,H)

AH the matrix with entries
H

σv(w)

H3 the type-An−1 Hessenberg space defined by h(1) = 3 and h(i) = n

for i > 1

Z the subgroup 〈s2, s3, . . . , sn−1 ⊂ Sn

Y the subset {sisi−1 · · · s1si−1si−2 · · · s2y : 1 ≤ i ≤ n − 1 and y ∈

〈s3, . . . , sn−1〉}

DR(z) the right descent set of z

Z̃ the coset {z ∈ Z : s2 6∈ DR(z)}

β the block of of AH3
with rows indexed by Y and columns indexed

by s1Z̃ ∪ s2s1Z̃

βj the jth diagonal block of β
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HPet the Peterson Hessenberg space

Pet the Peterson variety

wK the longest word of a parabolic subgroup WK ⊂W

pv the Peterson Schubert class associated to the word v ∈W

w̃ a fixed reduced word for w ∈W

vK a specific Coxeter element of WK defined in Definition 5.5

|R(v)| the number of reduced words for v ∈W

λwK the skew diagram representing the word wK ∈W

λp(wK) the skew digram with each box containing the height of the corre-

sponding positive root

µ a v-excitation in λwK for a fixed word v ∈W

Mp(µ) the product of the entries in λp(wK) corresponding the the excita-

tion µ
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A P P E N D I X B

CODE FOR COMPUTING GIAMBELLI’S FORMULA FOR

TYPE E PETERSON VARIETIES

This work was done in Sage 5.2.

First we define a function root finder that will return the root r(i, w) for a fixed reduced word w.

def T(i,z):

return alpha[int(z.reduced word()[int(i-1)])]

def p(i,z):

list=[]

for j in Sequence([0..int(i-2)]):

list.append(z.reduced word()[int(j)])

return W.from reduced word(list)

def root finder(m,n):

a=m.reduced word();

q=n

for i in Sequence[0..int(m.length()-1)]:

q=q.simple reflection(a[int(m.length()-i-1)]);

return q;

def r(i,w):

if i<=w.length():

return root finder(p(i,w),T(i,w))

else:
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return 1

These functions can be used in any Lie type. To calculate the lists LwK and Lp(wK) we must

specify which Lie type we want to work in. The code for calculating in type E8 is given first with

annotations, followed by the similar code for types E7 and E6.

B.1 Type E8

First we need to define the objects we will need for the computation. n=8

W=WeylGroup([’E’,n],prefix="s")

R=RootSystem([’E’,n]);

S=R.root space();

B=S.basis();

space=R.root lattice();

alpha=space.simple roots();

Q=R.root poset()

[s1,s2,s3,s4,s5,s6,s7,s8]=W.simple reflections()

w=W.long element()

Now that we have defined the root poset on the positive roots Φ+ a simple function will give

the value of 1
tπ(α) for any positive root α.

def height(m):

return Q.rank(m)+1;

The lists LwK and Lp(wK) are obtained using this code:

worde8=w.reduced word()

listpwk=[]

for i in Sequence[1..w.length()]:

listpwk.append(height(r(i,w)))

print worde8, listpwk
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The list worde8 is LwE8
and the list listpwk is Lp(wE8

). For each simple reflection s1, s2, . . . , s8

the evaluation of psi(wE8) is calculated using this code. Here we have used i = 3, but this must

be run eight times, setting i equal to one through eight.

i=3

q=0

for j in Sequence(0..(len(worde8)-1)):

if worde8[j]==i:

q=q+listpwk[j];

q

The final value is q= 1
t psi(wE8

). The last component of Giambelli’s formula is evaluating

pvK (wK). This code finds all sublists of worde8 that are reduced words for vK . Since vK must end

in s8 and it last occurs in the 57th spot in the list, we only need sublists of the first 57 terms. The

CPU time was slightly over 10000 minutes for this step of the calculation. The same calculation

can be done with fewer lines of code, but a longer run time.

X=Set([0..56])

Y=X.subsets(8)

Z=[]

for q in Y:

if worde8[sorted(q)[7]]==8:

if worde8[sorted(q)[6]]==7:

if worde8[sorted(q)[5]]==6:

if worde8[sorted(q)[4]]==5:

if worde8[sorted(q)[3]]==4:

if worde8[sorted(q)[2]]==3:

if worde8[sorted(q)[1]]==2:

if worde8[sorted(q)[0]]==1:

Z.append(q)
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for q in Y:

if worde8[sorted(q)[7]]==8:

if worde8[sorted(q)[6]]==7:

if worde8[sorted(q)[5]]==6:

if worde8[sorted(q)[4]]==5:

if worde8[sorted(q)[3]]==4:

if worde8[sorted(q)[2]]==2:

if worde8[sorted(q)[1]]==3:

if worde8[sorted(q)[0]]==1:

Z.append(q)

for q in Y:

if worde8[sorted(q)[7]]==8:

if worde8[sorted(q)[6]]==7:

if worde8[sorted(q)[5]]==6:

if worde8[sorted(q)[4]]==5:

if worde8[sorted(q)[3]]==4:

if worde8[sorted(q)[2]]==3:

if worde8[sorted(q)[1]]==1:

if worde8[sorted(q)[0]]==2:

Z.append(q)

Now the list Z contains all subwords of wK that are reduced words for vK and we can sum

over them as follows:

q=0

for j in Sequence(0..(len(Z)-1)):

a=1

for k in Sequence(0..7):

a=a*k
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q=q+a

q

This value q is equal to 1
t8 pvK (wK).

B.2 Type E7

The basic setup:

n=7

W=WeylGroup([’E’,n],prefix="s")

R=RootSystem([’E’,n]);

S=R.root space();

B=S.basis();

space=R.root lattice();

alpha=space.simple roots();

Q=R.root poset()

[s1,s2,s3,s4,s5,s6,s7]=W.simple reflections()

w=W.long element()

def height(m):

return Q.rank(m)+1;

The lists LwK and Lp(wK) are obtained using this code:

worde7=w.reduced word()

listpwk=[]

for i in Sequence[1..w.length()]:

listpwk.append(height(r(i,w)))

print worde7, listpwk

The list worde7 is LwE7
and the list listpwk is Lp(wE7

). For each simple reflection s1, s2, . . . , s7
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the evaluation of psi(wE7
) is calculated using this code. Here we have used i = 3, but this must

be run seven times, setting i equal to one through seven.

i=3

q=0

for j in Sequence(0..(len(worde7)-1)):

if worde7[j]==i:

q=q+listpwk[j];

q

The final value is q= 1
t psi(wE7). The last component of Giambelli’s formula is evaluating

pvK (wK). This code finds all sublists of worde8 that are reduced words for vK . Since vK must

end in s7 which last appears in the 27th spot in the list, we only need sublists of the first 27 terms.

X=Set([0..26])

Y=X.subsets(7)

Z=[]

for q in Y:

if worde7[sorted(q)[6]]==7:

if worde7[sorted(q)[5]]==6:

if worde7[sorted(q)[4]]==5:

if worde7[sorted(q)[3]]==4:

if worde7[sorted(q)[2]]==3:

if worde7[sorted(q)[1]]==2:

if worde7[sorted(q)[0]]==1:

Z.append(q)

for q in Y:

if worde7[sorted(q)[6]]==7:

if worde7[sorted(q)[5]]==6:

if worde7[sorted(q)[4]]==5:

if worde7[sorted(q)[3]]==4:
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if worde7[sorted(q)[2]]==2:

if worde7[sorted(q)[1]]==3:

if worde7[sorted(q)[0]]==1:

Z.append(q)

for q in Y:

if worde7[sorted(q)[6]]==7:

if worde7[sorted(q)[5]]==6:

if worde7[sorted(q)[4]]==5:

if worde7[sorted(q)[3]]==4:

if worde7[sorted(q)[2]]==3:

if worde7[sorted(q)[1]]==1:

if worde7[sorted(q)[0]]==2:

Z.append(q)

Now the list Z contains all subwords of wK that are reduced words for vK and we can sum

over them as follows:

q=0

for j in Sequence(0..(len(Z)-1)):

a=1

for k in Sequence(0..6):

a=a*k

q=q+a

q

This value q is equal to 1
t7 pvK (wK).

B.3 Type E6

Basic setup:

n=6
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W=WeylGroup([’E’,n],prefix="s")

R=RootSystem([’E’,n]);

S=R.root space();

B=S.basis();

space=R.root lattice();

alpha=space.simple roots();

Q=R.root poset()

[s1,s2,s3,s4,s5,s6]=W.simple reflections()

w=W.long element()

def height(m):

return Q.rank(m)+1;

The lists LwK and Lp(wK) are obtained using this code:

worde6=w.reduced word()

listpwk=[]

for i in Sequence[1..w.length()]:

listpwk.append(height(r(i,w)))

print worde6, listpwk

The list worde6 is LwE6
and the list listpwk is Lp(wE6

). For each simple reflection s1, s2, . . . , s6

the evaluation of psi(wE6
) is calculated using this code. Here we have used i = 3, but this must

be run six times, setting i equal to one through six.

i=3

q=0

for j in Sequence(0..(len(worde6)-1)):

if worde6[j]==i:

q=q+listpwk[j];
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q

The final value is q= 1
t psi(wE6). The last component of Giambelli’s formula is evaluating

pvK (wK). This code finds all sublists of worde8 that are reduced words for vK . Since vK must

end in s7 and the last occurrence is in the 16th spot in the list, we only need sublists of the first

16 terms.

X=Set([0..15])

Y=X.subsets(6)

Z=[]

for q in Y:

if worde6[sorted(q)[5]]==6:

if worde6[sorted(q)[4]]==5:

if worde6[sorted(q)[3]]==4:

if worde6[sorted(q)[2]]==3:

if worde6[sorted(q)[1]]==2:

if worde6[sorted(q)[0]]==1:

Z.append(q)

for q in Y:

if worde6[sorted(q)[5]]==6:

if worde6[sorted(q)[4]]==5:

if worde6[sorted(q)[3]]==4:

if worde6[sorted(q)[2]]==2:

if worde6[sorted(q)[1]]==3:

if worde6[sorted(q)[0]]==1:

Z.append(q)

for q in Y:

if worde6[sorted(q)[5]]==6:

if worde6[sorted(q)[4]]==5:

if worde6[sorted(q)[3]]==4:
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if worde6[sorted(q)[2]]==3:

if worde6[sorted(q)[1]]==1:

if worde6[sorted(q)[0]]==2:

Z.append(q)

Now the list Z contains all subwords of wK that are reduced words for vK and we can sum

over them as follows:

q=0

for j in Sequence(0..(len(Z)-1)):

a=1

for k in Sequence(0..5):

a=a*k

q=q+a

q

This value q is equal to 1
t6 pvK (wK).
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