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ABSTRACT

INFERENCE-BASED FORENSICS FOR EXTRACTING
INFORMATION FROM DIVERSE SOURCES

SEPTEMBER 2014

ROBERT J. WALLS

B.Sc., UNIVERSITY OF TEXAS AT ARLINGTON

M.Sc., UNIVERSITY OF TEXAS AT ARLINGTON

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Brian Neil Levine

Digital forensics is tasked with the examination and extraction of evidence from a

diverse set of devices and information sources. While digital forensics has long been

synonymous with file recovery, this label no longer adequately describes the science’s

role in modern investigations. Spurred by evolving technologies and online crime, law

enforcement is shifting the focus of digital forensics from its traditional role in the final

stages of an investigation to assisting investigators in the earliest phases — often before a

suspect has been identified and a warrant served. Investigators need new forensic techniques

to investigate online crimes, such as child pornography trafficking on peer-to-peer networks

(p2p), and to extract evidence from new information sources, such as mobile phones.

The traditional approach of developing tools tailored specifically to each source is no

longer tenable given the diversity, volume of storage, and introduction rate of new devices
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and network applications. Instead, we propose the adoption of flexible, inference-based

techniques to extract evidence from any format. Such techniques can be readily applied to a

wide variety of different evidence sources without requiring significant manual work on the

investigator’s part. The primary contribution of my dissertation is a set of novel forensic

techniques for extracting information from diverse data sources. We frame the evaluation

using two different, but increasingly important, forensic scenarios: mobile phone triage and

network-based investigations.

Via probabilistic descriptions of typical data structures, and using a classic dynamic

programming algorithm, our phone triage techniques are able to identify user information in

phones across varied models and manufacturers. We also show how to incorporate feedback

from the investigator to improve the usability of extracted information.

For network-based investigations, we quantify and characterize the extent of contraband

trafficking on peer-to-peer networks. We suggest various techniques for prioritizing law

enforcement’s limited resources. We finally investigate techniques that use system logs to

generate and then analyze a finite state model of a protocol’s implementation. The objective

is to infer behavior that an investigator can leverage to further law enforcement objectives.

We evaluate all of our techniques using the real-world legal constraints and restrictions

of investigators.
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CHAPTER 1

INTRODUCTION

1.1 Digital Forensics in Modern Investigations

While digital forensics has long been synonymous with file recovery, this label no

longer adequately describes the science’s role in modern investigations. Spurred by evolving

technologies and online crime, law enforcement is shifting the focus of digital forensics from

its traditional role in the final stages of an investigation to assisting investigators even in the

earliest phases — often before a suspect has been identified and a warrant served. However,

forensic techniques are lagging behind investigation needs. Thousands of people around the

world are arrested each year for trafficking child pornography (CP) online, but most remain

free because investigators do not have the tools or resources necessary to pursue all cases

(see Chapter 5). Further, the continued popularity of mobile devices require investigators to

be able to extract information and evidence from impractically many software platforms

and devices. In the first six months of 2014, over 70 new smart phones were released1. The

traditional approach of developing tools tailored specifically to each device and environment

is no longer sustainable given the challenges presented by new technologies.

Adding to forensics’ woes, the Bureau of Justice Statistics reports that the number of

digital evidence requests at publicly-funded forensics labs increased from around 2,800 in

2002 to an estimated 31,000 in 2009 [21,116].

Driving these changes is, in large part, the diversity of digital information and devices.

Law enforcement must examine a wide variety of data sources ranging from online services,

1Data calculated from http://www.phonearena.com/new-phones/.
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such as email, to personal devices, such as mobile phones and cameras. Many of these

sources store information in formats that must be manually reverse engineered before the

investigator can extract the information — a time-consuming and difficult process. Even

among mobile phones there are thousands of different models with dozens of proprietary

operating systems.

Solving the diversity problem alone is not sufficient, as even a single device can contain

an astounding volume of information, the vast majority of which is often superfluous to

investigators. Personal devices commonly dedicate a significant portion of their storage to

operating system data and other artifacts that are immaterial to a criminal investigation. For

example, the typical feature phone has hundreds of megabytes of storage of which only a

few megabytes are used for user-generated records, such as text messages and address book

entries; this problem is even more pronounced for smart phones. Forensic practitioners must

quickly identify potential areas of interest while ignoring unneeded data.

The investigation environment poses yet another challenge for investigators. Investi-

gations are most successful when the investigator can gather detailed information about a

target. Crimes such as CP trafficking force law enforcement to operate in an environment

with few physical-world analogs. A suspect may reside anywhere in the world, and the

investigator’s only link to the target is a myriad of network protocols and servers.

Finally, forensics cannot be separated from the law. All techniques must operate within,

and be evaluated under, the real constraints and goals of investigations. This task is difficult

to accomplish as jurisprudence often reacts slowly and many issues arise when adapting old

laws to new technologies. While the judicial system has had decades to consider the legal

implications associated with traditional, single-machine forensics, it struggles to handle new

sources of information. Investigators are frequently forced to try and anticipate the potential

legal issues of using novel forensic techniques.
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1.2 Moving Forensics Forward

Given these challenges, forensic practitioners can no longer rely solely on highly spe-

cialized tools built for each potential evidence source. There are simply too many sources,

changing too rapidly. Instead, we argue for the adoption of flexible, inference-based tech-

niques that can be readily applied to a wide variety of different evidence sources without

requiring significant manual work on the investigator’s part. In essence:

The traditional forensics approach of developing tools tailored specifically
to each new digital evidence source, is no longer tenable. Instead, inference-
based techniques offer investigators a scalable means to quickly, accurately,
and soundly extract information from diverse data sources, even if the exact
underlying format is unknown.

We develop and evaluate this idea in the context of two diverse, and increasingly im-

portant, forensic scenarios: mobile phone triage and network-based investigations. Phone

triage is important for quickly extracting details about a suspect’s activities and connections

to assist an ongoing investigation. Network-based investigations are important for investi-

gating online crimes such as child pornography trafficking on p2p networks. Both of these

scenarios embody the challenges described above. Mobile phones, for example, feature a

diverse set of hardware and software platforms that often store information in undocumented

formats. Network-based investigations involve the interaction of complex and largely hidden

processes, some of which are designed to thwart investigation.

The primary contributions of this dissertation are novel forensic techniques that em-

ploy inference-based algorithms to extract information from diverse data sources. This

dissertation focuses on applying these techniques to the scenarios mentioned above: mobile

phone triage and network-based investigations. At a high-level, this dissertation covers the

following topics.

1.3 Grounding Forensics Research in the Legal Context

Unlike many other scientific disciplines, digital forensics has largely advanced through

the efforts of practitioners. Academic researchers are just now beginning to enter the fray;
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however, their contributions are often limited because of their lack of understanding of the

legal context in which law enforcement operates. To provide a strong legal framework for

this dissertation, we use the lessons detailed in Chapter 2 to ground our research in a detailed

and accurate investigator model, thereby, ensuring that each of our proposed techniques is

evaluated under the real-world constraints and restrictions of investigators.

1.4 Extracting Information from Mobile Phones

To address the problems of diversity and unknown data formats in mobile phones, we

describe and evaluate DEC0DE, a system for inference-based triage (Chapter 3). Triage

in this context refers to the process of quickly and accurately acquiring evidence, often

on-scene. This work includes a method of block hash filtering for revealing the most

interesting portions of memory within a large store on a phone — efficiently reducing the

volume of data that needs to be analyzed. To recover information from the remaining data,

DEC0DE employs an efficient and flexible use of probabilistic finite state machines to

create a maximum likelihood parse of the phone’s memory. We provide extensive empirical

evaluation of the system and its ability to perform well on a large variety of phone models.

To address the challenges presented by smart phones, we discuss a post-inference

technique, LIFTR, that incorporates investigator feedback to adaptively filter false positives

(Chapter 4). Our intuition suggests that a practitioner can quickly verify a result as a true or

false positive allowing LIFTR to use the input to more effectively cull the useful results.

1.5 Enhancing Network-based Investigations

Law enforcement has limited resources to investigate and prosecute crimes. Unfor-

tunately, the extent of criminal activity often exceeds police capabilities. In the case of

CP trafficking on p2p networks, hundreds of thousands of peers share contraband, but

U.S. investigators only have the resources to arrest a few thousand suspects each year. In
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Chapter 5, we quantify the extent of the problem on two p2p networks, Gnutella and eMule,

and evaluate different techniques for prioritizing targets.

These results are based on data gathered using tools specifically tailored to each network.

In Chapter 6, we describe how investigators can wield inference-based techniques to investi-

gate different networks and protocols without needing to create a new tool for each. Our

work includes techniques for inferring a model of a protocol’s implementation, analyzing

the model for investigative opportunities, and subsequently generating concrete message

sequences to utilize those opportunities.

1.6 Collaborators

All research activities were conducted under the supervision of Brian Levine. The

preliminary work for Chapter 2 was completed in collaboration with Marc Liberatore, Clay

Shields, and Brian Levine. Chapter 3 contains research done with Erik Learned-Miller

and Brian Levine. Chapter 4 was done in concert with Saksham Varma, and Brian Lynn.

Chapter 5 details collaborative efforts with Ryan Hurley, Swagatika Prusty, Hamed Soroush,

Jeannie Albrecht, Emmanuel Cecchet, Brian Levine, Marc Liberatore, Brian Lynn, and Janis

Wolak. Chapter 6 details efforts in conjunction with Yuriy Brun, Marc Liberatore, and Brian

Levine.
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CHAPTER 2

EFFECTIVE DIGITAL FORENSICS

Many technical mechanisms across computer security for attribution, identification, and

classification are neither sufficient nor necessary for forensically valid digital investigations;

yet they are often claimed as useful or necessary. Similarly, when forensic research is

evaluated using the viewpoints held by computer security venues, the challenges, constraints,

and usefulness of the work is often misjudged. In this chapter, we point out many key aspects

of digital forensics with the goal of ensuring that research seeking to advance the discipline

will have the highest possible adoption rate by practitioners. We enumerate general legal and

practical constraints placed on forensic investigators that set the field apart. We point out

the assumptions, often limited or incorrect, made about forensics in past work, and discuss

how these assumptions limit the impact of contributions.

The lessons detailed in this chapter form the foundation of the investigator models

described in later chapters.

2.1 Principles of Digital Forensics Research

Our observations are based largely on our experience working directly with practition-

ers [89,146] and advancing work [91,122,152] that operates within forensic principles that

we detail within this chapter. At a high level, these principles are as follows.

• Digital forensics is investigator-centric, and unless developed with an understanding

of the restrictions that investigators are under, most novel results cannot and will not

be adopted. For example, prior to the issuance of a warrant, techniques for criminal
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investigators cannot conduct a search in violation of a person’s reasonable expectation

of privacy, and evidence gathered otherwise would be suppressed in court.

• The value of a new technique depends in part on its complexity and therefore it must be

judged against simpler options available to investigators. Similarly, defenses against

investigation should not be evaluated with an assumption that high precision is always

needed. For example, civil investigations are often based on simple subpoena and mere

demonstration of relevance; sophisticated investigative techniques may be needlessly

restrictive or indirect compared to capabilities and information available after subpoena.

• Forensic techniques are most valuable when addressing the most common adversary,

not the strongest; there is no correlation between technical savvy and dangerousness

to society. It is not possible for one savvy criminal to destroy, hide, or obfuscate the

evidence of everyone else. In contrast, security work must consider that one person can

leverage a vulnerability to attack every computer that uses the flawed system.

• Finally, forensic investigations seek to find the person responsible rather than stopping at

a machine or line of code. Consequently, the scope of forensics is often more broad than

that of the traditional security domain. For example, most any policy or law requires

consideration of a person’s intent, something that is often demonstrated indirectly

through an amalgamation of facts and evidence.

Unfortunately, experiences like ours in deploying well-used tools based on novel forensic

research are rare. More typically, computer security research aimed towards forensic

applications has little or no impact — often because the researchers are poorly acquainted

with the real-world problems faced by forensic investigators and the constraints placed on

solving them. Similarly, when forensic research is evaluated using the viewpoints held by

computer security venues, the challenges, constraints, and usefulness of the work can be

misjudged.

Our position is that security venues should publish forensics research, but these works

should be evaluated in the proper context. When selecting reviewers, ensure they can
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examine papers using the goals and principles of digital forensics and not just those of

computer security. The reviewer should question if the authors are actually looking outside

of the computer security problem when claiming an approach is applicable to forensics.

Otherwise, the security community risks encouraging low-impact work while rejecting

worthwhile solutions to forensic problems.

Adding to the confusion, the technical overlap between security and forensics can

falsely color one’s view of the latter. For example, packet attribution techniques proposed

by security researchers can be useful for determining the source IP address for network-

level attacks, but as Clark and Landau [33] point out, such mechanisms are “neither as

useful nor as necessary as it would appear” for investigations that require identification

of a person rather than a machine. We generalize that statement further: many technical

mechanisms across computer security for attribution, identification, and classification are

neither sufficient nor necessary for forensically valid digital investigations. Developing a

security mechanism for, say, remote identification of a device, and claiming it works for

forensics is akin to developing a new cryptographic hash function and claiming it can be

applied to many security problems: the claim is easy to make, but the impact is negligible.

In general, digital forensics is concerned with techniques (1) that support or refute a

hypothesis that explains a person’s violation of law or organizational policy; (2) such that

the investigator is limited by a defined set of procedural restrictions for gathering evidence;

(3) where the value of evidence is defined by a qualitative context and not only quantitative

measure; (4) and where the error rates and procedures of techniques are known and testable.

Researchers have an enormous opportunity for impact by transforming novel research

results into techniques that can be used by investigators. The need is great: the National

Academy of Sciences (NAS) recently published a report calling for a scientific overhaul of

digital forensics [108]. Further, prevalent forensic techniques do not scale and already the

demand for forensic examination is much greater than current capacity [54].
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In Section 2.2 we begin by enumerating general legal and practical constraints placed

on forensic investigators in the context of the U.S. legal system. We then move to briefly

describing the wider scope of investigations forensics examiners face. In Section 2.3, we

review a set of useful lessons for researchers regarding the applicability of techniques to

digital forensics, and highlight recent work in this context. While we focus primarily on

investigations in the context of the U.S. legal system, our conclusions are applicable to most

other forensic contexts.

2.2 Forensic Investigations

In this section, we detail general models for criminal and civil scenarios, and we describe

how investigations are focused on people rather than systems.

In both civil and criminal contexts, digital forensics is concerned with techniques that

address the four points stated in the introduction: (1) hypothesis testing, (2) procedural

constraints, (3) evidentiary value, and (4) error rates. Practice provides another set of

constraints. For example, all methods rely on acquisition of evidence, yet data is commonly

destroyed, lost, stolen, or encrypted. The capacity of investigators to take on new cases

is limited, and selection is based on many external factors1. Even if a case is accepted,

there is often too much data to image, store, and process, and an imperfect triage process is

frequently necessary [54,104]2.

2.2.1 Criminal Investigations

Criminal investigations take place along two phases, a pre-warrant phase, occurring

prior to the issuance of a search warrant, and a post-warrant phase.

1We explore mechanisms for resource allocation in Chapter 5, specifically, with regard to peer selection
when investigating contraband trafficking on p2p networks.

2Chapters 3 and 4 describe our contributions to mobile phone triage: flexible probabilistic techniques for
inferring information.
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2.2.1.1 Pre-warrant phase

In the pre-warrant phase, investigators are limited by U.S. law, stemming largely from

the Fourth Amendment, that dictates what can acquired before a warrant is in place. The

main goal of this phase is to subsequently meet the probable cause standard for obtaining a

magistrate-issued warrant. This standard is is a qualitative measure often defined as meeting

a “fair probability” that further evidence will be found in the location to be searched; see

U.S. v. Sokolow, 490 U.S. 1 (1989). Probable cause does not require that the evidence is

strong enough for conviction, merely that the evidence support a reasonable belief that the

suspect committed a crime. The caveat is that the collected evidence must not violate a

person’s expectation of privacy3. During this phase, publicly-observable criminal activity is

logged, and then specific targets are selected among available suspects. The choice of target

is a balance between dangerousness to society and efficiency of case execution.

2.2.1.2 Post-warrant phase

In the post-warrant phase, investigators are limited only by a court-issued warrant.

Warrants require particularity, which limits the place to be searched; for example, its

unlikely to get a warrant for all apartments in a building, nor does having a warrant for one

allow investigators to enter another. Warrants also require specificity which defines the type

of item to be found. In digital contexts, it’s hard to violate specificity since any computing

device is typically a viable target.

After obtaining a warrant, there are fewer legal restrictions on law enforcement’s tech-

nical approach4. However, in order to obtain a conviction in court, the investigator must

3A person’s expectation of privacy is established using the two-pronged Katz test. The first prong asks
whether the person subjectively demonstrated an expectation of privacy, and the second prong asks if that
expectation is objectively reasonable from the standpoint of society; see Katz v. U.S., 389 U.S. 347 (1967).

4In U.S. v. Comprehensive Drug Testing, 579 F.3d 989 (9th Cir. 2009) (en banc), the Ninth Circuit imposed
ex ante restrictions on warrants related to computer searches; however, recent legal scholarship suggests these
restrictions are “both constitutionally unauthorized and unwise” [79].
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collect a higher standard of evidence. This evidence must help prove beyond a reasonable

doubt that a suspect committed a crime.

Peer review of digital forensics research must include an analysis of the legal justification

required to employ proposed techniques. Techniques that don’t require special privileges are

applicable to the broadest number of settings and therefore are the most desirable. But such

papers should provide the justification that a warrant or other restrictions, such as Kyllo v.

U.S., do not apply; see our discussion of Admissibility below. If post-warrant capabilities are

indeed required, the paper should detail why easier technical solutions aren’t available to

obtain the same results. For example, it’s likely that watermarking the outgoing traffic of a

user requires a wiretap; at that point, the criminal investigator will find it just as easy to get

a warrant to install a covert key-logger or other device on the target’s computer. We return

to this point in Section 2.3.

2.2.1.3 Exceptions to the Fourth Amendment

The law underlying realistic investigative models shifts frequently. For example, courts

have long held that there are exceptions to the Fourth Amendment’s warrant requirement,

but these exceptions are not always clear in the case of digital evidence. One exception

to the warrant requirement is based on consent by a person to proceed without a warrant.

Often the limit of that consent can be unclear, especially when the objects to be searched are

digital devices. Events involving the ACLU and Michigan State Police [62] motivate the

following example.

Imagine a person is stopped by police for a traffic violation. While a recent supreme

court decision holds that the police may not generally, without a warrant, search the contents

of a cell phone5, assume the person gave consent thereby obviating this requirement. Does

this consent allow an officer to open the phone and browse through the contents of the

address book or call log? Does it also extend as far as to allow the officer to use a special

5See Riley v. California 13-132 (2014).
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tool to extract and save all of the phone’s information, including deleted data? The answers

to these questions depend highly on the specific circumstances and the courts are inconsistent

on this issue [80].

Search at the U.S. customs border is another exception to the warrant requirement. In

2011, this directly impacted the security community with several high profile border searches

of Bradley Manning associates [61]; see also U.S. v. Howard Cotterman, 09-10139 (2011).

There are investigators and models that have implicit exceptions to the Fourth Amend-

ment. For example, investigators working under the U.S. national security (FISA) rules may

defer a request for a warrant until after a search, and there are analogous positions in other

countries. Similarly, rogue investigators can elect to not follow any restrictions, risking that

collected evidence is thrown out during trial. We assert that developing new techniques to

function under such models is largely wasted effort due to their limited applicability in a

civil society.

2.2.1.4 Admissibility and Validity

The exclusionary rule, set forth in Weeks v. U.S., 232 U.S. 383 (1914), in concert with

the fruit of the poisonous tree doctrine, set forth in Silverthorne Lumber Co. v. U.S., 251 U.S.

385 (1920), dictates that illegally obtained evidence cannot be used in court, nor can any

evidence further found from this illegal evidence be used. This rule places great pressure on

law enforcement to follow the standards and procedures put forth by the Fourth Amendment

and other legal directives. These rules are intended to ensure that techniques not valid within

the rules will not be commonly used by law enforcement in the U.S.

Further, we note that in the pre-warrant stage, law enforcement must take care in

acquiring evidence from third parties. In addition to the problems of hearsay, even well-

meaning third parties cannot repeatedly gather information for law enforcement. In doing

so, the third party is acting under the color of law, and any evidence they collect is governed

by the same rules as apply to law enforcement, including the need for warrants .
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Another relevant ruling for computer scientists is Kyllo v. U.S. 533 U.S. 27 (2001), where

the court ruled that using a technology that is not in “general public use” to gather evidence

pre-warrant is a violation of a person’s expectation of privacy. This exact phrasing is

important: source code available publicly on a researcher’s web site might not be considered

general public use. With regard to digital forensics, this has sometimes been interpreted

by investigators to mean that tools can only use information provided by normal operation

of the system being investigated. Recent cases have supported this view, including U.S.

v. Borowy, 595 F.3d 1045 (9th Cir. 2010) and U.S. v. Gabel, 2010 WL 3927697, but the

exact extent to which can investigators can exploit a network protocol to gather information

remotely is unsettled law.

In order for a forensic investigator’s testimony to be admissible in court it must follow

the Daubert standard; see Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993).

According to this standard, the investigator’s conclusions must be based on scientifically

valid methodology. This means the methods are peer reviewed, based on testable hypotheses,

have a known error rate, follow an existing set of standards, and are generally accepted

within the scientific community.

2.2.2 Civil Investigations

Civil forensics cases tend to be very different than criminal cases in that the government

is not using state force to prove guilt for a crime. Instead, citizens turn to the courts to

resolve a dispute. Because of this, the methods for gathering evidence are very different than

criminal cases and are often limited by mutual agreement between the litigating parties or

by the cost of the investigation. Processing of the acquired evidence is similar to a criminal

investigation in that examiners are obtaining evidence that supports or refutes a hypothesis

about what users did, saw, or knew in the context of the overall dispute. The Daubert

standards apply as well.
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In the United States the acquisition of evidence is generally governed by the Federal

Rules of Evidence (FRE). Individual states are allowed to develop their own rules of evidence,

but most states use the Universal Rules of Evidence which are based on the FRE [86]. The

Federal Rules of Evidence were amended in 2006 to recognize the importance of electronic

information, and rules were adopted to ensure its availability [130].

Rule 26(a)(1)(A)(ii) [48] requires disclosure of sources of electronically stored evidence

without any request from the other party. This implies a duty to preserve potentially useful

electronic evidence if it likely to be useful in litigation, and the law allows a judge to sanction

parties who fail to do so. Rule 37(f), however, does limit these sanctions if the data was

destroyed as part of normal operation of the system. As a result of these rules and to avoid

having to produce data if sued, many businesses will limit the data collected or the time they

keep it as part of their usual practice.

Rule 26(f) requires parties to meet early on in the litigation process to discuss discov-

ery, including issues surrounding electronic information and the format of production for

data. Parties also discuss how to handle privileged documents, such as attorney-client

communications, as broad delivery of electronic records can include those as well.

The FRE do recognize that the cost of providing electronic discovery can be high.

Parties are therefore only required to produce data that is “reasonably accessible” by

Rule(26)(b)(2)(B). Should the other party object and request further discovery, the court

will consider what is accessible and what is not. The court can grant access to the additional

material but place the costs of production on the objecting party if it chooses.

While this is a brief overview of only some rules of evidence, these provisions lead

to differences from criminal investigations. Many times forensic investigators are not

brought onto the case until after the early discovery meeting has taken place, resulting in an

agreement that doesn’t accurately account for sources of evidence that can be produced nor

for an efficient production format. While it is possible to revisit production, doing so can

be complicated by the need for agreement from all parties; this is difficult in an adversarial
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proceedings. The investigator may also be limited in what they are allowed to report should

they find evidence of additional malfeasance outside the original case. The limitations are

placed to protect privileged material or to help parties reach an agreement on what data

sources can be examined.

Access to equipment is also different than criminal cases. Rather than seizing equipment

immediately, a significant amount of time might lapse between when user activity occurred

and evidence is preserved. This often means that evidence can be harder to recover, as

normal system activity might have caused older information to be removed and overwritten.

Many civil cases involve businesses whose equipment is in regular use and parties are

loathe to provide access as they incur a cost for it being down. This is true even when the

investigator is examining equipment owned by the hiring party, which often happens in cases

of computer misuse, internal fraud, or theft of intellectual property. Finally, investigators

may be limited in the depth of the examination performed simply due to a limited budget for

discovery of electronic materials.

2.2.3 Investigating People as a Goal

Computer security is centrally concerned with the enforcement or defeat of technically

based and clearly delineated computer security policies [15]. Response to computer security

failures is typically designed to identify the cause of the failure, which might provide clues

to the identity of an attacker. However, intrusion response, which is familiar to security

investigators, is but a small subset of digital forensics.

Forensic investigators instead often investigate suspected breaches of organizational

policies or laws not reflected in any computer security policy. Indeed, such rules may

be impossible to implement in a computer system. A user’s intent is often relevant but

impossible to determine directly. For example, a user may be allowed to copy a file for work

use, but not to sell or otherwise release it. Bradley Manning’s alleged theft of documents

falls in this category. No existing security mechanism can directly determine intent, but an
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investigator may be asked to gather evidence about how and why copied files were used.

Similarly, possessing photos of children likely does not violate a security policy, but having

pictures of children being sexually exploited is illegal. Systems that can generalizably

differentiate between the two do not exist. Furthermore, possession requires a demonstration

of knowing intent: unexamined images that are unknowingly and unintentional stored in

a user’s spam folder are not illegal. Howard [69] provides a cogent discussion of indirect

evidence of knowing possession.

Researchers must be aware of the focus on people, not just computers. Systems that

answer questions about user behavior can be beneficial to forensics investigators, even if no

computer security problem is being addressed.

2.2.4 Applicability and Impact

Many proposed forensic techniques are easily thwarted with only limited technical

knowledge, but that doesn’t lessen their practical effectiveness. While security mechanisms

have impact because they can address the worst case, forensic mechanisms have impact

because they can address the common case. For example, the most realistic forensic model

allows for any individual to erase information from storage; in this scenario, why should we

expect new techniques to work at all? Surely criminals will seek to cover their tracks.

For example, investigators commonly identify images of child pornography on p2p

networks by hash value. Criminals could easily change just one bit in shared images to

escape detection; yet millions do not [89] for several reasons. First, they may not think

that they need to make changes to evade investigators, or they may lack the skill to do so.

Second, they may not think they’ll be caught, and percentage-wise that is largely true. Third,

people are interested in sharing content, and in order to do so they give files very descriptive

names including “illegal child pornography”; at that point there is no legal reason to flip a

bit.
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Given that anyone could flip a bit but that millions do not, it is high impact to develop

techniques that succeed in the common, rather than worst case. This fact is anathema to

computer security researchers, even though, analogously, security systems with known flaws

remain useful.

For example, despite power monitoring attacks [46,81,109], most people do not use

tamper-proof hardware. Various forms of the Sybil attack [45] succeed and are used against

Google [6,13], EBay [28], networks [95,117] yet these systems enjoy great success. The Tor

privacy network is architected to provide reasonable performance instead of perfect security

against known attacks [44]. Similarly, the banking industry finds it more effective to allow

“bad guys to take a cut” [17] than attempting to deploy a system where all attackers are

defeated. Further, the TSA admits it cannot defeat all terrorists, and instead simply mitigates

risks [65].

Finally, we note that law enforcement are interested in catching the most dangerous

people. Similarly, civil investigators are interested in catching the people that have caused the

largest damages. In both cases, there is no evidence that such dangerousness is necessarily

correlated with technical savvy. Furthermore, it is not possible for one savvy criminal to

destroy, hide, or obfuscate the evidence of everyone else; in contrast, security work must

consider that one person can leverage a vulnerability to attack every computer that uses the

system.

2.3 Lessons to Learn

In this section, we review past security papers from a forensics viewpoint. Some explic-

itly invoke the concept of forensics; some do so implicitly. We point out the assumptions,

often limited or incorrect, made about forensics in these papers, and discuss how these

assumptions limit the impact of the contributions. Our goal is not to denigrate others’

contributions, but instead to show if and how these contributions fit within the forensic

framework we’ve discussed in previous sections.
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We separate our survey into several broad classes, corresponding to lessons learned

about forensic practice in the previous sections: 1) Investigations are about people and their

activities; 2) Forensic investigators are not all-powerful, and while the legal system can

grant impressive powers, they are constrained in many ways; 3) A proposed system that

depends on access to data across organizational boundaries may fail — as this access is not

often permitted; 4) Proposed systems that expand the view of investigators can be useful,

but simply expanding the amount of data collected by itself generally is not.

2.3.1 Problem Exists Between Keyboard and Chair

Forensics investigations of individual’s computers arise because of user’s actions. In-

vestigators are therefore most interested in people and how they used the system. Security

researchers, however, tend to focus on technical aspects of security system failures. Solu-

tions that add additional information about system events [43,83,115] tend not to benefit

investigators directly. Instead, researchers can have impact by focusing on mechanisms

that support common investigations types, such as theft of intellectual property, violations

of organizational misuse policies, and embezzlement [136]. These are common problems,

and solutions will have high impact. Work in this area needs to consider the types of users

who commit these acts. Most have weak computer skills, so approaches that might be

trivially thwarted when used against security experts can be very effective, as we outline in

Section 2.2.4. To paraphrase a police maxim, it is useful to catch the stupid ones.

2.3.2 Lines in the Sand

There are many clear lines lawful investigators cannot cross. Wiretapping and analogous

inspection of traffic is not permitted without a warrant, nor, presumably are manipulations

of Internet traffic beyond normal participation in protocols. Actively watermarking packets,

by manipulating their contents or timing [53,93,153,154,160] to defeat anonymity systems

crosses this line, and would poison the evidence acquired by a law enforcement. For civil

cases, organizations might choose to use these techniques on their internal networks, but
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are unlikely to provide access, mark traffic, or help recover timing information for external

parties. Further, many such techniques work best to confirm a suspicion, as they require both

manipulation of traffic at a source, and the observation of traffic at a suspected endpoint.

Evidence required for this level of suspicion may rise to the level that would lead to a

warrant.

But if an investigator had sufficient evidence for a warrant, a more direct search would

likely be preferable — if not, an electronic bug in the computer’s audio system almost

certainly would. As evidence ultimately supports a court case, recordings of a suspect

or copies of emails would be far more useful than a watermark. Systems that assume

technically sophisticated attacks, such as inference based on clock skew, temperature or

power consumption changes, and acoustic or electromagnetic measurements, or packet

size [8,82,90,106,151] are similarly useless to a criminal investigator, due to Kyllo, and

obsolete after court order or warrant.

On the flip side, many systems are built to withstand cursory investigation, such as disk

encryption systems. It is an unsettled question of law as to whether cryptographic keys are

a more analogous to a physical key, which an individual can be compelled to produce in

both civil and criminal courts, or to testimony, which in the criminal context is protected by

the Fifth Amendment. Failing that, systems focused on key recovery can be forensically

valid [64].

Some systems attempt to sidestep this question by providing users with plausible denia-

bility (for example, Rubberhose and its successor TrueCrypt). These systems may be valid

responses to overly intrusive governments. But they are inappropriate in more common use

cases such as secure corporate record keeping, where allegations of wrongdoing will likely

require court-ordered key revelation or else result in being found in contempt of court.

19



2.3.3 No Keys to the City

Investigators working in different organizations or with different goals may not be willing

or able to collaborate with one another. Sharing of data across institutional boundaries is not

always feasible or even legal. Wide-scale intrusion or anomaly detection, de-anonymization,

or flow attribution systems [26,120,133,135,159] that require a network-wide view or deep

packet inspection are akin to a massive surveillance campaign. Monitoring of this breadth

could never be lawful for law enforcement without a court order — and even then, is likely

too broad in scope. These systems are still useful, outside of the criminal investigation

context: ISPs or private organizations could collect this data and use it internally to improve

security and performance. They cannot collect it at police request, however, as that would

turn these organizations into de facto agents of the law. In many cases, it would also be

unlikely that the information would be willingly shared between organizations in civil cases.

This is particularly true when it might expose the organization to legal jeopardy, such as

showing that it acted as a gateway or stepping stone for attacks.

2.3.4 Don’t Grow the Haystack; But Do Find More Needles

A system that increases the amount of information available to investigators is often a

double-edged sword. The investigator may benefit from additional information, but that

benefit is directly proportional to the information’s quality. For example, Bratus et al. [19]

and Piatek et al. [119] highlight how current practices in DMCA copyright enforcement

focus on broad and highly automated techniques resulting in unacceptably high rates of false

positives. This problem isn’t just limited to p2p investigations. Clark and Landau [33] also

question the utility of packet attribution in forensics. We believe their criticisms extend to

other areas such as de-anonymization. Poor information may lead to tangible costs such as

wasted resources or intangible costs such as emotional distress for the falsely accused.
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2.4 Summary and Conclusions

In this chapter, we discussed the key principles of digital forensics as well as the goals

and constraints of investigators. We use this information to provide a set of useful lessons

for researchers, and as the foundation of the forensic techniques proposed in this thesis.

Computer security researchers have the potential to make significant contributions to

digital forensics; however, they must first understand the forensics context and its differences

with existing security models. Similarly, the onus is on computer security venues to support

these efforts by recruiting knowledgeable reviewers who are familiar with the challenges and

requirements of forensics; otherwise, the security community risks encouraging low-impact

work while rejecting worthwhile solutions to forensic problems.
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CHAPTER 3

MOBILE PHONE TRIAGE

In this chapter, we apply the lessons from Chapter 2 to our first forensic scenario: mobile

phone triage. We present DEC0DE, a system for recovering information from phones

with unknown storage formats, a critical problem for forensic triage. Because phones

have myriad custom hardware and software, we examine only the stored data. Via flexible

descriptions of typical data structures, and using a classic dynamic programming algorithm,

we are able to identify call logs and address book entries in phones across varied models

and manufacturers. We designed DEC0DE by examining the formats of one set of phone

models, and we evaluate its performance on other models. Overall, we are able to obtain

high performance for these unexamined models: an average recall of 97% and precision

of 80% for call logs; and average recall of 93% and precision of 52% for address books.

Moreover, at the expense of recall dropping to 14%, we can increase precision of address

book recovery to 94% by culling results that don’t match between call logs and address

book entries on the same phone.

3.1 Introduction

When criminal investigators search a location and seize computers and other artifacts,

a race begins to locate off-site evidence. Not long after a search warrant is executed,

accomplices will erase evidence; logs at cellular providers, ISPs, and web servers will be

rotated out of existence; and leads will be lost. Moreover, investigators make the most

progress during on-scene interviews of suspects if they are able to ask about on-scene

evidence. Mobile phones are of particular interest to investigators. Address book entries
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and call logs contain valuable information that can be used to construct a timeline, compile

a list of accomplices, or demonstrate intent. Further, phone numbers can provide a link

to a geographical location via billing records. For crimes involving drug trafficking, child

exploitation, and homicide, these leads are critical [107].

The process of quickly acquiring important evidence on-scene in a limited but accurate

fashion is called forensic triage [104]. Unfortunately, digital forensics is a time-consuming

task, and once computers are seized and sent off site, examination results are returned after a

months-long work queue. Getting partial results on-scene ensures certain leads and evidence

are recovered sooner.

Forensic triage is harder for phones than desktop computers. While the Windows/Intel

platform vastly dominates desktops, the mobile phone market is based on more than ten

operating systems and more than ten platform manufacturers making use of an unending

introduction of custom hardware. In 2010, 1.6 billion new phones were sold [103], with

billions of used phones still in use. Smart phones store information from thousands of

applications each with potentially custom data formats. Feature phones, while simpler

devices, are quick to be released and replaced by new models with different storage formats.

Both types of phones are problematic as phone application, OS, and file system specifications

are closely guarded as commercial secrets. Companies do not typically release information

required for correct parsing. We focus on feature phones in this chapter and smart phones in

Chapter 4.

Assuming the phone is not locked by the user, the easiest method of phone triage is to

simply flip through the phone’s interface for interesting information. This time-consuming

process can destroy the integrity of evidence, as there is no guarantee data will not be

modified during the browse. Similarly, backups of the phone may be examined, but neither

backups nor manual browsing will recover deleted data and data otherwise hidden by the

phone’s interface. Hidden data can include metadata, such as timestamps and flags, that can

demonstrate a timeline and user intent, both of which can be critical for the legal process.
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Forensic investigation begins with data acquisition and the parsing of raw data into

information. The challenge of phones and embedded systems is that too often the exact data

format used on the device has never been seen before. Hence, a manual process of reverse

engineering begins — a dead-end for practitioners. Recent research on automated reverse

engineering is largely focused on the instrumentation of the system and executables [22,

41]. While accurate and reasonable for the common Windows/Intel desktop platform,

construction of a new instrumentation system for every phone architecture-OS combination

in use would require significant time for each and an expertise not present in the practitioner

community.

In this chapter, we focus on a data-driven approach to phone triage. We seek to quickly

parse data from the phone without analyzing or instrumenting software. We aim to obtain

high quality results, even for phones that have not been previously encountered by our

system. Our solution, called DEC0DE, leverages success from already examined phones in

the form of a flexible library of probabilistic finite state machines. Our main insight is that

the variety of phone models and data formats can be leveraged for recovering information

from new phones. We make three primary contributions:

• We propose a method of block hash filtering for revealing the most interesting blocks

within a large store on a phone. We compare small blocks of unparsed data from a target

phone to a library of known hashes. Collisions represent blocks that contain content

common to the other phones, and therefore not artifacts specific to the user, e.g., phone

numbers or call log entries. Our methods work in seconds, reducing acquired data by

69% on average, without removing usable information.

• To recover information from the remaining data, we adapt techniques from natural

language processing. We propose an efficient and flexible use of probabilistic finite

state machines (PFSMs) to encode typical data structures. We use the created PFSMs

along with a classic dynamic programming algorithm to find the maximum likelihood

parse of the phone’s memory.
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• We provide an extensive empirical evaluation of our system and its ability to perform

well on a large variety of previously unexamined phone models. We apply our PFSM set

— unmodified — to six other phone models from Nokia, Motorola, and Samsung and

show that our methods are able to recover call logs with 97% recall and 80% precision

and address books with 93% recall and 52% precision for this set of unseen models.

There are a series of commercial products that parse data from phones (e.g., .XRY,

cellebrite, and Paraben). However, these products rely on slow, manual reverse engineering

for each phone model. Moreover, none of these products will attempt to parse data for

previously unseen phone models. Even the collection of all such products does not cover

all phone models currently on the market, and certainly not the set of all models still in

use. In contrast, we design and evaluate a general approach for automatically recovering

information on previously unseen devices, one that leverages information from past success.

3.2 Methodology and Assumptions

Our goal is to enable triage-based data recovery for mobile phones during criminal

investigations. Below, we provide a definition of triage, our problem, and our assumptions.

We focus on feature phones in this chapter and extend our techniques to smart phones in

Chapter 4.

Unlike much related work, our focus is not on incident response, malware analysis,

privilege escalation, protocol analysis, or other topics related to security primitives. We aim

to have an impact on any crime where a phone may be carried by the perpetrator before the

crime, held during the crime, used as part of the crime or to record the crime (e.g., a trophy

photo), or used after the crime.

3.2.1 The triage process

The process of quickly acquiring important evidence in a limited but accurate fashion is

called forensic triage [104]. Our goals are focused on the law enforcement triage process,
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which begins with a search warrant issued upon probable cause, or one of the many lawful

exceptions [76] to the Fourth Amendment (e.g., incidence to arrest)1. Law enforcement

has several objectives when executing a search and performing triage. The first is locating

all devices related to the crime so that no evidence is missed. The second is identifying

devices that are not relevant to the crime so that they can be ignored, as every crime lab has

a months-long backlog for completing forensic analysis. That delay is only exacerbated

by adding unneeded work. The third is interviewing suspects at the crime scene. These

interviews are most effective when evidence found on-scene is presented to the interviewed

person. Similarly, quickly determining leads for further investigation is critical so that

evidence or persons do not disappear. Central to all of these objectives is the ability to

rapidly examine and extract vital information from a variety of devices, including mobile

phones.

Phone triage is not a replacement for gathering information directly from carriers;

however, it can take several weeks to obtain information from a carrier. Moreover, carriers

store only limited information about each phone. While most keep call logs for a year, other

information is ephemeral. Text message content is kept for only about a week by Verizon

and Sprint, and the IP address of a phone is kept for just a few days by AT&T [36]. In

contrast, the same information is often kept by the phone indefinitely and, if deleted, it is

still possibly recoverable using a forensic examination2.

The less time it takes to complete a triage of each device, the more impact our techniques

will have. While some crime scenes involve only a few devices, increasingly crime scenes

involve tens and potentially hundreds of devices. For example, an office can be the center

of operations for a gang, organized crime unit, or para-military cell. Typically little time is

available and, in the case of search warrants, restrictions are often in place on the duration of

time that a location can be occupied by law enforcement. In military scenarios, operations

1See the discussion in Chapter 2 for an introduction to U.S. legal requirements.

2See Section 4.5 for an analysis of residual data on smart phones.
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may involve deciding which, if any, of several persons and devices in a location should be

brought back using the limited space in a vehicle; forensic triage is a common method of

deciding.

3.2.2 Problem definition

Our goal is to enable investigators to extract information quickly (e.g., in 20 minutes

or less) from a phone, regardless of whether that exact phone model has been encountered

before. We limit our results to information that is common to phones — address books

and call logs — but is stored differently by each phone. Triage is not a replacement for

a secondary, in-depth examination; but it does achieve shortened delay with a minimal

reduction in recall and precision. Recall is the fraction of all records of interest that are

recovered from a device; precision is the fraction of recovered records that are correctly

parsed.

3.2.3 Data acquisition

We make the following assumptions in the context of on-site extraction of information

from embedded devices. The technical process of extracting a memory dump from a phone

starts off very differently compared to laptops and desktops. Data on a phone is typically

stored in custom solid state memory. These chips are typically soldered onto a custom

motherboard, and data extraction without burning out the chip requires knowledge of pinouts.

For that reason, several other methods are in common use for extracting data. Broadly, data

can be extracted representing either the logical or physical layout of memory. Often these

representations are referred to as the logical or physical image of a device, respectively.

A logical image is typically easier to obtain and parse; however, it suffers from some

serious limitations. First, it only contains information that is presented by the file system

or other application interfaces. It omits deleted data, metadata about content, and the

physical layout of data in memory (which we use in our parsing). Second, logical-extraction

interfaces typically enforce access rules (e.g., preventing access to a locked phone) and may
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modify data or metadata upon access. Examples of logical extraction include using phone

backup software or directly browsing through a phone using its graphical user interface.

Due to the above deficiencies, our techniques operate directly on the physical image.

A physical image contains the full layout of data stored in a phone’s memory, including

deleted data that has not yet been overwritten; however, parsing raw data presents a signifi-

cant challenge to investigators — one our techniques attempt to address. We discuss the

parsing challenges further in Section 3.3.2.

Physical extraction requires an interface that is below the phone’s OS or applications.

There are a few different ways of acquiring a physical image. For example, some phones are

compatible with flasher boxes [75], while others allow for extraction via a JTAG interface,

or physical removal of the chip. Physical extraction typically takes between a few minutes

and an hour depending on the extraction method, size of storage, and bus bandwidth. When

we evaluate our techniques, we assume the prior ability to acquire the physical image of the

phone.

Numerous companies sell commercial products that acquire data from phones, both

logically and physically. This acquisition process is easier than the recovery of information

from raw data, though still a challenge and not one we address. Of course, we do not expect

our methods to be used on phones for which the format of data is already known. But no

company offers a product that addresses even a large portion of the phone market and no

combination of products covers all possible phones, even among the market of phones still

being sold.

3.2.4 Limitations of our threat model

We assume the owner of the phone has left data in a plaintext, custom format that is

typical of how computers store information. We allow for encryption and even simple

obfuscation, but we do not propose techniques that would defeat either. While this threat

model is weak, it is representative of phone users involved in traditional crimes. Some
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Figure 3.1: An illustration of the DEC0DE’s process. Data acquired from a phone is passed first
through a filtering mechanism based on hash sets of other phones. The remaining data is input to
a multistep inference component, largely based on a set of PFSMs. The output is a set of records
representing information found on the phone. The PFSMs can optionally be updated to improve the
process.

smart-phones encrypt data, most do not; and almost all feature phones do not. Further, it is

not possible for one attacker to encrypt the data of every other phone in existence, and our

techniques work on all phones for which plaintext can be recovered. In other words, while

we allow for any one person to encrypt their data, it does not significantly limit the impact

of our results.

3.3 Design of DEC0DE

In this section, we provide a high-level overview of DEC0DE including its input,

primary components, and output.
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DEC0DE takes the physical image of a mobile phone as input. We can think of the

physical image as a stream of bytes with an unknown structure and no explicit delimiters.

DEC0DE filters and analyzes this byte stream to extract important information, presenting

the output to the investigator. The internal process it uses is composed of two components,

illustrated in Figure 3.1: (i) block hash filtering and (ii) inference.

DEC0DE uses the block hash filter to exclude subsequences of bytes that do not contain

information of interest to investigators. The primary purpose of this filtering is to reduce the

amount of data that needs to be examined and therefore increase the speed of the system.

DEC0DE parses the filtered byte stream to extract information first in the form of

fields and then as records. Fields are the basic unit of information and they include data

types such as phone numbers and timestamps. Records are groups of semantically related

fields that contain evidence of interest to investigators, e.g., address book entries. The

inference component is designed to be both extensible and flexible, allowing an investigator

to iteratively refine rules and improve results when time allows.

3.3.1 Block Hash Filtering

DEC0DE’s block hash filtering component (BHF) is based on the notion that long

identical byte sequences found on different phones are unnecessary for triage. That is, such

sequences are unlikely to contain useful information for investigators. Mobile phones use a

portion of their physical memory to store operating system software and other data that have

limited utility for triage. BHF is designed to remove this cruft and reduce the number of

bytes that needs to be analyzed, thereby increasing the speed of the system.

DEC0DE’s block hash filter logically divides the input byte stream into small subse-

quences of bytes. We refer to each of these subsequences as a block. DEC0DE filters out a

block if its hash value matches a value in a library of hashes computed from other phones.

Blocks may repeat within the same phone, but only the first occurrence of each block

remains after filtering. DEC0DE uses block hashes, rather than a direct byte comparison, to
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Figure 3.2: Block hash filtering takes a stream of n bytes and creates a series of overlapping blocks
of length b. The start of each block differs by d ≤ b bytes. Any collision of the hash of a block with a
block on another phone (or the same phone) is filtered out.

improve system performance; However, BHF may lead to erroneous filtering due to block

collisions. One type of collision arises when blocks with different byte sequences share the

same hash value. Another type of collision occurs when blocks share the same subsequence

even though they actually contain user information. Currently, DEC0DE mitigates the risk

of collisions by using a cryptographic hash function and a sufficiently large block size.

To make the filter more resilient to small perturbations in byte/block alignment, DEC0DE

uses a sliding window technique with overlap between the bytes of consecutive blocks [142].

In other words, the last bytes of a block are the same as the first bytes of the next block.

More formally, DEC0DE logically divides an input stream of n bytes, into blocks of b

bytes with a shift of d ≤ b bytes between the start of successive blocks. The SHA-1 hash

value for each block is computed and compared to the hash library. DEC0DE filters out all

matched blocks. Figure 3.2 illustrates a simple example.
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As we show empirically in Section 3.5, nearly all of the benefit of block hash filtering

can be realized by just using another phone of the same make and model. This result ensures

BHF is scalable as the test phone need not be compared to all phones in an investigator’s

library.

The general idea of our block hash filter is similar to work by a variety of researchers in

a number of domains [55,78,142]. Our primary contribution is the empirical analysis of the

technique in the phone domain. Further discussion of related work is given in Section 3.6.

3.3.2 Inference

After block hash filtering has been performed, what remains is a reduced ad hoc data

source about which we have only minimal information. Our goal is to identify certain types

of structured information, such as phone numbers, names, and other data types embedded in

streams of this data.

Parsing phones is particularly challenging due to the inherent ambiguity of the input

byte stream. Along with the lack of explicit delimiters, there is significant overlap between

the encodings for different data structures. For example, certain sequences of bytes could

be interpreted as both a valid phone number and a valid timestamp. For these reasons,

simple techniques like the unix command strings and regular expressions will be mostly

ineffective.

DEC0DE solves this ambiguity by using standard probabilistic parsing tools and a prob-

abilistic model of encodings that might be seen in the data. DEC0DE obtains the maximum

likelihood parse of the input stream creating a hierarchical description of information on the

phone in the form of fields and records. More concretely, the output of DEC0DE is a set of

call log and address book records. Each record is comprised of fields representing phone

numbers, timestamps, strings, and other structures extracted from the raw stream.
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0042006F0062000B0B01000300000B1972642866600008130207D603070F1A17

Unicode 11-digit phone number Timestamp

Figure 3.3: A simplified example of raw data as stored by a Nokia model phone, labeled with the
correct interpretation. DEC0DE outputs a call log: the Unicode string “Bob”; the phone number (0xB
digits long and null terminated) 1-972-642-8666; and the timestamp 3/7/2006 3:26:23 PM.

3.3.2.1 Fields and Records

Within the block filtered data source, we have no information about where records or

fields begin or end, and we have no explicit delimiters. Figure 3.3 shows simplified example

data that could encode an address book entry in a Nokia phone; DEC0DE would receive

this snippet embedded and undelineated in megabytes of other data. Unlike large objects,

such as jpegs or Word docs, such small artifacts are difficult to isolate and can easily appear

randomly.

To infer information found on phones, DEC0DE uses standard methods for probabilistic

finite state machines (PFSMs), which we describe here. As implied above, we have a lower

level of field state machines that encode raw bytes as phone numbers, timestamps, and other

types. We also have a higher level of record state machines that encode fields as call log

entries and address book entries. For example, a call log record can be flexibly encoded as a

phone number field and timestamp field very near to one another; the encoding might also

include an optional text field.

Each field’s PFSM consists of one or more states, including a set of start states and

a set of end states. Each state has a given probability of transitioning to another state in

the machine. Each state emits a single byte during each state transition of the PFSM. The

emitted byte is governed by a probability distribution over the bytes from 0x00 to 0xFF.

Restricting the set of bytes that can be output by a state is achieved by setting the probability

of those outputs to zero. For example, an ASCII alphabetic state would only assign non-zero

probabilities to the ASCII codes for “a” through “z” and “A” through “Z”. Every PFSM in

DEC0DE’s set is targeted towards a specific data type. If correctly defined, a field’s PFSM
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will only accept a sequence of bytes if that sequence is a valid encoding of the field type.

We constructed the field PFSMs based on past observations (see Section 3.4.1).

Examples of DEC0DE’s specific field types include 10-digit phone numbers, 7-digit

phone numbers, Unicode strings, and ASCII strings. Each specific field is associated with a

generic field type such as text or phone number. Some fields have fixed lengths and others

have arbitrary lengths.

We define records in a similar manner. Records are represented as PFSMs, except that

each state emits a generic field rather than a raw byte.

Given the set of PFSMs representing each field type that we have encoded, we then

aggregate them all into a single Field PFSM. We separately aggregate all record PFSMs

into a single Record PFSM. The aggregation naively creates transitions from every field’s

end state to every other field’s start states with some probability, and we do the same for

compiling records. (We discuss setting these probabilities below.) In the end, we have two

distinct PFSMs that are used as input to our system, along with data from a phone.

3.3.2.2 Finding the maximum likelihood sequence of states

Our basic challenge is that, for a given phone byte stream that is passed to the inference

component of DEC0DE, there will be many possible way to parse the data. That is,

there are many ways the PSFMs could have created the observed data, but some of these

are more likely than others given the state transitions and the output probabilities. To

formalize the problem, let B = b0,b1, ...,bn be the stream of n bytes from the data source.

Let S = s0,s1, ...,sn be a sequence of states which could have generated the output bytes.

Our goal then, is to find

argmax
s0,s1,...,sn

P(s0,s1, ...,sn|b0,b1, ...,bn), (3.1)

i.e., the maximum probability sequence of states given the observed bytes. These states are

chosen from the set encoded in the PFSM given to DEC0DE. The probabilities assigned to
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PFSM’s states, transitions, and emissions affect the specific value that satisfies the above

equation.

In a typical hidden Markov model, one assumes that an output byte is a function only

of the current unknown state, and that given this state, the current output is independent

of all other states and outputs. Using this assumption, and noting that multiplying the

above expression by P(b0, ...,bn) does not change the state sequence which maximizes the

expression, we can write

argmax
s0,...,sn

P(s0, ...,sn|b0, ...,bn)

= argmax
s0,...,sn

P(s0, ...,sn|b0, ...,bn)P(b0, ...,bn)

= argmax
s0,...,sn

P(s0, ...,sn,b0, ...,bn)

= argmax
s0,...,sn

P(s0, ...,sn)P(b0, ...,bn|s0, ...,sn)

= argmax
s0,...,sn

P(s0, ...,sn)
n

∏
i=0

P(bi|si). (3.2)

Naively enumerating all possible state sequences and selecting the best parse is at best

inefficient and at worst intractable. One way around this is to assume that the current state

depends only on the state that came immediately before it, and is independent of other states

further in the past. This is known as a first order Markov model, and allows us to write

argmax
s0,...,sn

P(s0, ...,sn)
n

∏
i=0

P(bi|si)

= argmax
s0,...,sn

P(s0)P(s1|s0)P(s2|s0,s1)

...P(sn|s0,s1, ...,sn−1)
n

∏
i=0

P(bi|si)

= argmax
s0,...,sn

P(s0)
n

∏
i=1

P(si|si−1)
n

∏
i=0

P(bi|si). (3.3)

The Viterbi algorithm is an efficient algorithm for finding the state sequence that maximizes

the above expression. The complexity of the Viterbi algorithm is O(nk2) where n and k are
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the number of bytes and states. For a full explanation of the algorithm, see for example the

texts by Viterbi [149] or Russell and Norvig [131].

3.3.2.3 Fixed length fields and records

Markov models are well suited to data streams with arbitrary length fields. For example,

an arbitrary length text string can be modeled well by a single state that might transition to

itself with probability α, or with probability 1−α to some other state, and hence terminating

the string. Unfortunately, first order Markov models are not well suited to modeling fields

with fixed lengths (like 7-digit phone numbers), since it is impossible to enforce the transition

to a new state after 7 bytes when one is only conditioning state transition on a single past

state. In other words, a first order Markov model cannot “remember” how long it has been

in a particular state.

Since it is critical for us to model certain fixed length fields like dates and phone numbers,

we have two options:

• Add a separate new state for every position in a fixed length field. For example, a 7-digit

phone number would have seven different separate states, rather than a single state.

• Implement an mth order Markov model, where m is equal to the length of the longest

fixed length field we wish to model.

The first option, under a naive implementation, leads to a very large number of states, and

since Viterbi is O(nk2), it leads to impractical run times.

The second option, using an mth order Markov model, keeps the number of states low,

but can also lead to very large run times of O(nkm+1). However, by taking advantage of the

fact that most state transitions in our model only depend upon a single previous state, and

other structure in our problem, we are able to implement Viterbi, even for our fixed length

fields, in time that is close to the implementation for a first order Markov model with a small

number of states. Similar techniques have been used in the language modeling literature to

develop efficient higher-order Markov models [98].
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3.3.2.4 Hierarchical Viterbi

DEC0DE uses Viterbi twice. First, it passes the filtered byte stream to Viterbi with the

Field PFSM as input. The output of the first pass is the most likely sequence of generic

fields associated with the byte stream. That field sequence is then input to Viterbi along

with the Record PFSM for a second pass. We refer to these two phases as field-level and

record-level inference, respectively.

The hierarchical composition of records from fields (which are in turn composed of

bytes) can be captured by a variety of statistical models, including context free grammars.

The main reason we chose to run Viterbi in this hierarchical fashion, rather than integrating

the information about a phone type in something like a context free grammar, was to limit

the explosion of states. In particular, because we have a variety of fixed-length field types,

such as phone numbers, the number of states required to implement a seamless hierarchical

model would grow impractically large. Our resulting inference algorithms would not have

practical run times.

The decomposition of our inference into a field-level stage and a record-level stage

makes the computations practical at a minimal loss in modeling power. The reason that

DEC0DE can operate on phones that are unseen is that record state machines are very

general. For example, we don’t require timestamps to phone numbers to appear in any

specific order for a call log entry. We require only that they are both present.

3.3.2.5 Post-processing

The last stage of our inference process takes the set of records recovered by Viterbi and

passes them through a decision tree classifier to remove potential false positives. We refer to

this step as post-processing. We use a decision tree classifier because it able to take into

account features that can be inefficient to encode in Viterbi. For example, our classifier

considers whether a record was found in isolation in the byte stream, or in close proximity

to other records. In the former case, the record is more likely to be a false positive. Our
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evaluation results (Section 3.5) show that this process results in significant improvements to

precision with a negligible effect on recall.

We use the Weka J48 Decision Tree, an open source implementation of a well-known

classifier (http://www.cs.waikato.ac.nz/ml/weka). In general, a decision tree can be

used to decide whether or not an input is an example of the target class for which it is trained.

The classifier is trained using a set of feature tuples representing both positive and negative

examples. In our case, the decision tree decides whether a given record, output from our

Viterbi stage, is valid. We selected a set of features common to both call log and address

book records: number of days from the average date; frequency of phone numbers with same

area code; number of different forms seen for the same number (e.g., 7-digit and 10-digit);

number of characters in string; number of times the record appears in memory; distance to

closest neighbor record. We do not claim that our choice of features and classifier is optimal;

it merely represents a lower bound for what is possible.

Post-processing does not inhibit the investigator, it is a filter intended to make the

investigator’s work easier. To this end, DEC0DE can make both the pre- and post-processing

results available ensuring that the investigator has as much useful information as possible.

For our evaluation, the positive training examples consisted of true records from a small

set of phones called our development set (described in detail in Section 3.5). To create the

negative training examples, we used a 10 megabyte stream of random data with byte values

selected uniformly at random from 0x00 to 0xFF. We input the random data to DEC0DE’s

Viterbi implementation and used the resulting output records as negative examples. We

found that this provided better results than using negative examples found on real phones.

3.4 Implementation of State Machines

In the previous section, we presented DEC0DE’s design broadly; in this section, we

focus on the core of the inference process: the probabilistic finite state machines (PFSM).
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Generic type Specific type Num.
States

Records

Call logs

Nokia call log 8
composed of text, phone num.,
timestamps
General call log 9
composed of text, phone num.,
timestamps

Address books
General address book 5
composed of phone numbers, text

Fields

Phone number
ASCII 11
Unicode 22
Nokia 10 digit 6

Timestamp
UNIX 4
Samsung 4
Nokia 7

Text ASCII bigram 6
Unicode 7

Number index Nokia number index 1
unstructured unstructured 1

Table 3.1: Examples of types that we have defined in DEC0DE.

DEC0DE’s PFSMs support a number of generic field types such as phone number, call

log type, timestamp, and text as well as the target record types: address book and call log.

Table 3.1 shows some example field types that we have defined and the number of states for

each. In all, DEC0DE uses approximately 40 field-level and 10 record-level PFSMs.

Most fields emit fixed-length byte sequences. For example, the 10-digit phone number

field is defined as 10 states in which state k (for k 6= 1) can only be reached by state

k−1. The state machine for a 10-digit phone number as found on many Nokia phones is:

Digits 
1,2

Digits 
3,4start endDigits 

5,6
Digits 
7,8

Digits 
9,10Length

1 1 1 1 1 1

As mentioned in the previous section, each state emits a single byte; since Nokia often stores

digits as nibbles, each state in the machine encodes two digits. The emission probability

is governed by both the semantics of the Nokia encoding and real-world constraints. For

example a 10-digit phone number (in the USA) cannot start with a 0 or a 1 and therefore
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the first state in the machine cannot emit bytes 0x00–0x1F, i.e., the emission probability for

each of these bytes is zero.

Some fields, such as an unstructured byte stream have arbitrary length. Such a field is sim-

ply defined by a single state with probability α of transitioning to itself, and probability 1−α

of terminating. In fact, this specific field is special: DEC0DE uses the unstructured field as a

“catch-all” for unknown or unstructured portions of the byte stream. Byte sequences that do

not match a more meaningful field type will always match the unstructured field, which is:

all bytes

α

1-α
all 

bytes
S_1start end

We emphasize that our goal is not to produce a full specification of the format of a

device. While we would certainly be delighted if this were an easy problem to solve, we

note that we can extract significant amounts of useful information from a data source even

when large parts of the format specification are not understood. Hence, rather than solving

the problem of complete format specification, we seek to extract as many records as possible

according to our specification of records. It is also important to note that our field and

record definitions may ignore large amounts of structure in a phone format. Only a minimal

amount of information about a phone’s data organization is needed to define useful fields

and records. We return this point in Section 3.5.4.

3.4.1 Coding State Machines

We created most of the PFSMs used in DEC0DE using a hex editor and manual reverse

engineering on a small subset of phones that we denote as our development set. We limited

the development set to one phone model each from four manufacturers with multiple

instances of each model: the Nokia 3200B, Motorola v551, LG G4015 and Samsung SGH-

T309. We intentionally did not examine any other phone models from these manufacturers
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prior to the evaluation of DEC0DE (Section 3.5) so that we could evaluate the effectiveness

of our state machines on previously unobserved phone models.

We also used DEC0DE itself to help refine and create new state machines, both field

and record level, for the development phones. This process was very similar to how we

imagine an investigator would use DEC0DE during the post-triage examination.

Once we reached high recall for the development set, we fixed the PFSMs and other

components using DEC0DE without modification for the extent of our evaluation regardless

of what model was parsed.

3.4.2 Selecting Transition Probabilities

A sequence of bytes may match multiple different field types. Similarly, a sequence of

fields may match multiple record types. Viterbi accounts for this by choosing the most likely

type. It may appear that a large disadvantage of this approach is that we must manually set

the type probabilities for both fields and records. However, Viterbi is robust to the choice

of probabilities: the numerical values of the field probabilities are not as important as the

probability of one field relative to another.

3.5 DEC0DE Evaluation

We evaluated DEC0DE by focusing on several key questions.

1. How much data does the block hash filtering technique remove from processing?

2. How effectively does our Viterbi-based inference process extract fields and records

from the filtered data?

3. How much does our post-processing stage improve the Viterbi-based results?

4. How well does the inference process work on phones that were unobserved when the

state machines were developed?

41



3.5.1 Experimental Setup

We made use of a number of phones from a variety of manufacturers. The phones

contained some GUI-accessible address book and call log entries, and we entered additional

entries using each phone’s UI. A combination of deleted and GUI-accessible data was

used in our tests; however, most phones contained only data that was deleted and therefore

unavailable from the phone’s interface but recoverable using DEC0DE. The phones we

obtained were limited to those that we could acquire the physical image from memory (i.e.,

all data stored on the phone in its native form). The list of phones is given in Table 3.2. Our

evaluation focuses on feature phones, i.e., phones with less capability than smart phones.

As stated in Section 3.4.1, we performed all development of DEC0DE and its PFSMs

using only the Nokia 3200B, Motorola v551, LG G4015, and Samsung SGH-T309 phones.

We kept the evaluation set of phones separate until ready to evaluate performance. We

acquired the physical image for all phones using Micro Systemation’s commercial tool,

.XRY.

We focus on two types of records: address book entries and call log entries. We chose

these record types because of their ubiquity across different phone models and their relative

importance to investigators during triage. We evaluate the performance of DEC0DE’s

inference engine based on two metrics, recall and precision. Recall is the fraction of all

phone records that DEC0DE correctly identified: the number of true positives over the sum

of false negatives and true positives. If recall is high, then all useful information on a phone

has been found. Precision is the fraction of extracted records that are correctly parsed: the

number of true positives over the sum of false positives and true positives. If precision is

high then the information output by DEC0DE is generally correct.

Often these two metrics represent a trade-off, but our goal is to keep both high. In

law enforcement, the relative importance of the two metrics depends on the context. For

generating leads, recall is more important. For satisfying the probable cause standard

required by a search warrant application, moderate precision is needed. Probable cause has
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Make Model Count MB
PFSM Development Set
Nokia 3200b 4 1.4
Motorola V551 2 32.0
Samsung SGH-T309 2 32.0
LG G4015 2 48.0
Evaluation Set
Motorola V400 2 32.0
Motorola V300 2 32.0
Motorola V600 2 32.0
Motorola V555 2 32.0
Nokia 6170 2 4.9
Samsung SGH-X427M 2 16.0

Table 3.2: The phone models used in this study. The table shows the number we had of each and the
size of local storage.

been defined as “fair probability”3 that the search warrant is justified, and courts do not use a

set quantitative value. For evidence meeting the beyond a reasonable doubt standard needed

for a criminal conviction, very high precision is required, though again no quantitative value

can be cited.

For each of our tested phones, we used .XRY not only to acquire the physical image, but

also to obtain ground truth results that we used to compare against DEC0DE’s results. It

was often the case that DEC0DE obtained results that .XRY did not. And in those cases,

we manually inspected the result and decided whether they were true or false positives

(painstakingly using a hex editor). We made conservative decisions in this regard, but were

able to employ a wealth of common sense rules. For example, if a call entry seemed to be

valid and recent, but was several years from all other entries, we labeled it as a false positive.

Similarly, an address book entry for “A.M.” is most reasonably assumed to be a true positive

while “,!Mb” is most reasonably a false positive; even though both have two letters and

two symbols, the latter does not follow English conventions for punctuation. It would be

impractical to program all such common sense rules and our manual checking is stronger in

3United States v. Sokolow, 490 U.S. 1 (1989)
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that regard. Occasionally, DEC0DE extracts partially correct or noisy records. We mark

each of these records as wrong, unless the only error is a missing area code on the phone

number.

3.5.2 Block Hash Filtering Performance

The goal of BHF is to reduce the amount of data that DEC0DE must parse, reducing

run time, without sacrificing recall. On average, we find that BHF is able to filter out about

69% of the phone’s stored data without any measurable effect on inference recall. The BHF

algorithm has only two parameters: the shift size d and the block size b. Our results show

that the shift size does not greatly affect the algorithm’s performance, but it has a profound

effect on storage requirements. Also, we found that performance varies with block size, but

not as widely as expected.

For each value of b and d that we tested, we kept the corresponding BHF sets in an SQL

table. The database was able to match sets in tens of seconds, so we do not report run time

performance results here. As an example, on a moderately resourceful desktop, DEC0DE

is able to filter a 64 megabyte phone, with b = 1024 and d = 128, in under a minute.

Ideally, we (and investigators) would want our hash library to be comprised entirely of

new phones. If our library contains used phones, there is a negligible chance that the same

common user data (e.g., an address book entry with the same name and number) will appear

on different phones, align perfectly on block boundaries, and be erroneously filtered out.

Regardless, it was impractical for us to find an untouched, new phone model for every phone

we tested. If data was filtered out in this fashion because of our use of pre-owned phones, it

would likely have shown up in the recall values in the next section; since the recall values

are near perfect, we can infer this problem did not occur.

3.5.2.1 Filtering

First, we examined the effect of the block size b on filtering. Figure 3.4 shows the overall

filter percentage of our approach for varying block sizes. In these experiments, we set d = b
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Figure 3.4: The average performance of BHF as block size varies for all phones listed in Table 3.2
(logarithmic x-axis). Error bars represent one standard deviation. In all cases we set d = b (i.e., shift
size is equal to block size), but performance does not vary with d in general.

so that there was never overlap. The line plots the average for all phones. As expected, the

smaller block sizes make more effective filters. However, a small block size results in more

blocks and consequently, greater storage requirements. On average in our tests, 73% of data

is filtered out when b = 256, while only slightly less, 69%, is filtered out when b = 1024.

Second, we examined the affect of the shift amount d on filtering. In our tests, we fixed

b = 1024 and varied d={32, 64, 128, 256, 512, 1024}. However, there is less than a 1%

difference in filtering between d = 32 and d = 1024 for all phones. (No plot is shown.)

Again, the affect of d is on storage requirements, which we discuss below.

Third, we isolated what type of data is filtered out for each phone using fixed block

and shift sizes of b = 1024 and d = 128; we use these values for all other experiments in

this chapter. Figure 3.5 shows the results as stacked bars; the top graph shows filtering as

a percentage of the data acquired from the phone, and the bottom graph shows the same

results in megabytes. For each of the 25 phones, the bottom (blue) bar shows the percentage

of data filtered out because the block was a repeated, constant value (such as a run of zeros).

The middle (black) bar shows the percentage of data that was in common with a different
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Figure 3.5: The amount of data remaining after filtering is shown as solid white bars, as a percentage
(top) and in MB (bottom). On average, 69% of data is successfully filtered out. Black bars show data
filtered out because they match data on another instance of the same model. Blue bars show data
filtered out because it is a single value repeated (e.g., all zeros). Red bars show data filtered out
because it appears on a different model. (b = 1024 bytes, d = 128 bytes)
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instance of the same make and model phone. The top red bar shows the percentage of

data that can be filtered out because it is only found on some phone in the library that is a

different make or model. The data that remains after filtering is shown in the top, white box.

On average, 69% of data is removed by block hash filtering. Generally, the technique

works well. On average, half of the filtered out data was found on another phone of the same

model. These percentage values are in terms of the complete memory, including blocks that

were filled with constants (effectively empty). Therefore, as a percentage of non-empty data,

the percentage of filtered out data is higher. These results suggest that it is often sufficient to

only compare BHF sets of the same model phone. However, in some models less than 3%

of data was found on another instance of the same model. This poor result was the case for

the Samsung SGH-X427M and Motorola V300. Finally, the results shown in the Figure 3.5

(bottom), suggest that the performance of BHF was not correlated with the total storage

space of the phone.

Our results in the next section on inference, in which DEC0DE examines only data

remaining after filtering, demonstrate that filtering does not significantly remove important

information: recall is 93% or higher in all cases.

3.5.2.2 Storage

An important advantage of our approach is that investigators can share the hash sets of

phones, without sharing the data found within each phone. This sharing is very efficient as

the hash sets are small compared to the phones. The number of blocks from each phone that

must be hashed and stored in a library is O((n−b)/d), though only unique copies of each

block need be stored. Given that n >> b, the number of blocks is dependent on n and d

and the affect of b on storage is insignificant. However, since it is required that d ≤ b, the

algorithm’s storage requirements does depend on b’s value in that sense. As an example,

for a 64 megabyte phone, when b = 1024 bytes and d = 128 bytes, the resulting BHF set is

524,281 hash values. At 20-bytes each, the set is 10 megabytes (15% of the phone’s storage).
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Since we need perhaps only one or two examples of any phone model, the cumulative space

needed to store BHF sets for an enormous number of phone models is practical. Since BHF

gains nearly all benefit from comparing phones of the same model, comparison will always

be fast.

In order to be effective, the library needs to be constructed using the same hash function

and block size for all phones; however, the shift amount need not be the same. The storage

requirement of the library is inversely proportional to the shift size and thus is minimized

when d = b. Conversely, BHF removes the most data when d = 1. We can effectively

achieve maximal filtering with minimal storage using d = b for the library and d = 1 for

the test phone. The cost of this approach is more computation and consequently higher run

times. A full analysis is beyond the scope of this chapter.

3.5.3 Inference Performance

To evaluate our inference process, we used DEC0DE to recover call log and address book

entries from a variety of phones. In our results, we distinguish between the performance

of the Viterbi and decision tree portions of inference. Additionally, we make clear the

performance of DEC0DE on phones in our development set versus phones in our evaluation

set. All results in this section assume that input is first processed using BHF.

Figure 3.6 shows the performance of our inference process for call logs; the top results

are before the post-processing step and the bottom after post-processing. The white-space

break in the chart separates the development set of phones (on the left), and the evaluation set

(on the right). We put the most effort toward encoding high quality PFSMs for the Nokia and

Motorola phones. Not surprisingly, the results are best in general for these makes, indicating

that the performance of DEC0DE is dependent on the quality of the PFSMs. However, the

results also show that DEC0DE can perform well even for the previously unseen phones in

the evaluation set. Overall, recall of DEC0DE is near complete at 98% for development

phones and 99% for evaluation phones. Precision is more challenging, and after Viterbi is at
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Figure 3.6: Precision and recall for call logs. (Top) Results after only Viterbi parsing. (Bottom) Results
after post-processing. Left bars are development set; right bars are evaluation set. In all graphs, black
is recall and gray is precision. On average, development phones have recall of 98%, and precision of
69% that increases to 77% after post processing. On average, evaluation phones have recall of 97%,
and precision of 72% that increases to 80% after post processing. The T309 had no call log entries,
which explains in part DEC0DE’s poor performance for the X427M.
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Figure 3.7: Precision and recall for Address Book entries. (Top) Results after only Viterbi parsing.
(Bottom) Results after post-processing. On average, development phones have recall of 99%, and
precision of 56% that increases to 65% after post processing. On average, evaluation phones have
recall of 93%, and precision of 36% that increases to 52% after post processing. N.b, The first Nokia
has no address book entries at all.

69% for development phones and 72% for evaluation phones. It is important to note that no

extra work on DEC0DE was performed to obtain results from the phones in the evaluation

set, which is significant compared to methods that instrument executables or perform other

machine and platform dependent analysis. After post-processing, the precision for the

development and evaluation phones increased to 77% and 80% respectively.

Figure 3.7 shows the performance of our inference process for address book records.

As before, the top results are after filtering but not post-processed while the bottom are

post-processed. Overall, recall of the DEC0DE is again high at 99% for development

phones and 93% for evaluation phones. Precision after Viterbi is 56% for development
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Figure 3.8: Precision and recall for Address Book entries after results are culled that do not match
phone numbers in DEC0DE’s call logs for the same phone. For some phones, all results are culled.
On average, development phones have recall of 16%, and precision of 92% (when results are present).
On average, evaluation phones have recall of 14%, and precision of 94% (when results are present).

phones and 36% for evaluation phones. After post processing by the decision tree, the

precision for all phones increased, by an average of 61% over the Viterbi-only results, a

significant improvement. For development phones, precision increases to 65% on average.

(Note that the development phones are used to train the classifier.) For evaluation phones,

precision increases significantly to 52%.

While performance is not perfect, we could likely improve performance by using a

different set of PFSMs for each different phone manufacturer. In our evaluation, all PFSMs

for all manufactures are evaluated at once. Because our goal is to allow for phone triage, we

don’t reduce the set of state machines for each manufacturer; however, a set of manufacturer-

specific state machines could improve performance at the expense of being a less general

solution.

We also note that when recall is high, it is easier to discover the intersection of informa-

tion found on two independent phones from the same criminal context; that intersection is

likely to be a better lead than most.

51



When necessary, we can prioritize precision over recall. Figure 3.8 shows the results

of culling records for where the phone number in the address book does not also appear in

the call log: precision is increased to 92%, although recall drops to 14%. (We don’t show

the same process for call logs.) This simple step shows how easy it is to isolate results for

investigators that deem precision of results more important than recall. Moreover, the results

that are culled are still available for inspection.

3.5.3.1 Execution time

Inference is the slowest component of DEC0DE. The post processing step takes a few

seconds, but the Viterbi component takes significantly longer. On average, DEC0DE’s

Viterbi processes 12,781 bytes/sec. The smaller phones in our set (Nokias) finish in a few

minutes, while the larger Motorola can completed in about 15 minutes. Since the Viterbi

processing already works with distinct blocks of input produced by the BHF component, we

implemented a parallel version of DEC0DE for our work with smart phones (Chapter 4),

thereby greatly increasing speed.

3.5.4 Limitations

Our evaluation is limited in a number of ways in addition to what was previously

discussed. First, as with any empirical study, our results are dependent on our test cases.

While our set of phones is limited, it contains phones from a variety of makes and models.

In Chapter 4 we test DEC0DE against smart phones and find that it performs poorly,

returning thousands of irrelevant results; we address these problems with LIFTR, a new

post-processing approach based on investigator-feedback. Second, our tests are performed

only on call logs and address book entries. We extended DEC0DE to support SMS text

messages; however, the phone set contained so few text messages that we elide those results.

Our approach also has a number of limitations. First, we don’t address the challenge of

acquiring the physical memory image from phones, which is an input needed for DEC0DE.

Here, we have leveraged existing tools to do so. However, acquisition is an independent
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endeavor and varies considerably with the platform of the phone. Part of our goal is to

show that despite hardware (and software) differences, one approach is feasible across a

spectrum of devices. Second, DEC0DE’s performance is tied strongly to the quality of

the PFSMs. Poorly designed state machines, especially those with few states, can match

any input. We do not offer an evaluation of whether it is hard or time consuming to design

high quality PFSMs or other software engineering aspects of our problem; we report only

our success. Third, a single PFSM has an inherent endianness embedded in it. DEC0DE

does not automatically reorganize state machines to account for data that is the opposite

endianness. Fourth, we have not explicitly demonstrated that phones do indeed change

significantly from model to model or among manufactures. This assertion is suggested by

DEC0DE’s varied performance across models but we offer no overall statistics.

It is also important to note that DEC0DE is an investigative tool and not necessarily an

evidence-gathering tool. Tools for gathering evidence must follow a specific set of legal

guidelines to ensure the admissibility of the collected evidence in court. For example, the

tool or technique must have a known error rate (see Daubert v. Merrell Dow Pharmaceuticals,

509 U.S. 579 (1993)).

Finally, our approach is to gather artifacts that match a description that may be too

vague in some contexts. For example, using our current set of PFSMs DEC0DE ignores

important metadata that is encoded in bit flags that may indicate if a entry is deleted. Such

metadata can be useful in investigations. To capture this information, we would need to first

reverse engineer the metadata format and then create model-specific machines tailored to

that metadata.

3.6 Related Work

Our work is related to a number of works in both reverse engineering and forensics.

We did not compare DEC0DE against these works as each has a significant limitation or

assumption that does not apply well to the criminal investigation of phones.
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Polyglot [23], Tupni [41], and Dispatcher [22] are instrumentation-based approaches to

reverse engineering. Since binary instrumentation is a complex, time-consuming process, it

is poorly suited to mobile phone triage. Moreover, our goal is different from that of Polyglot,

Tupni, and Dispatcher. We seek to extract information from the data rather than reverse

engineer the full specification of the device’s format.

Other previous works have attempted to parse machine data without examining executa-

bles. Discoverer [40] attempts to derive the format of network messages given samples of

data. However, Discoverer is limited to identifying exactly two types of data — “text” and

“binary” — and extending it to additional types is a challenge. Overall, it does not capture

the rich variety of types that DEC0DE can distinguish.

LearnPADS [49,50,158] is another sample-based system. It is designed to automatically

infer the format of ad hoc data, creating a specification of that format in a custom data

description language (called PADS). Since LearnPADS relies on explicit delimiters, it is not

applicable to mobile phones.

Cozzie et al. [39] use Bayesian unsupervised learning to locate data structures in memory,

forming the basis of a virus checker and botnet detector. Unlike DEC0DE, their approach

is not designed to parse the data but rather to determine if there is a match between two

instances of a complex data structure in memory.

In our preliminary work [143], we used the Cocke-Younger-Kasami (CYK) algo-

rithm [68] to parse the records of Nokia phones. While this effort influenced the development

of DEC0DE, it was much more limited in scope and function.

The idea of extracting records from a physical memory image is similar to file carving.

File carving is focused on identifying large chunks of data that follow a known format, e.g.,

jpegs or mp3s. Some file carving techniques match known file headers to file footers [112,

128] when they appear contiguously in the file system. More advanced techniques can

match pieces of images fragmented in the file system relying on domain specific knowledge

about the file format [113]. In contrast, our goal is to identify and parse small sequences of
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bytes into records — all without any knowledge of the file system. Moreover, we seek to

identify information within unknown formats that only loosely resemble the formats we’ve

previously seen.

DEC0DE’s filtering component is similar to number of previous works. Block hashes

have been used by Garfinkel [55] to find content that is of interest on a large drive by

statistically sampling the drive and comparing it to a bloom filter of known documents.

This recent work has much in common with both the rsync algorithm [142], which detects

differences between two data stores using block signatures, as well as the Karp-Rabin

signature-based string search algorithm [78], among others.

3.7 Summary and Conclusions

We have addressed the problem of recovering information from phones with unknown

storage formats using a combination of techniques. At the core of our system DEC0DE,

we leverage a set of probabilistic finite state machines that encode a flexible description

of typical data structures. Using a classic dynamic programming algorithm, we are able

to infer call logs and address book entries. We make use of a number of techniques to

make this approach efficient, processing data in about 15 minutes for a 64-megabyte image

that has been acquired from a phone. First, we filter data that is unlikely to contain useful

information by comparing block hash sets among phones of the same model. Second,

our implementation of Viterbi and the state machines we encoded are efficiently sparse,

collapsing a great deal of information in a few states and transitions. Third, we are able to

improve upon Viterbi’s result with a simple decision tree.

Our evaluation was performed across a variety of phone models from a variety of

manufactures. Overall, we are able to obtain high performance for previously unseen

phones: an average recall of 97% and precision of 80% for call logs; and average recall of

93% and precision of 52% for address books. Moreover, at the expense of recall dropping to
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14%, we can increase precision to 94% by culling results that don’t match between call logs

and address book entries on the same phone.
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CHAPTER 4

EXTENDING TRIAGE TO SMARTPHONES

When forensic triage techniques designed for feature phones, such as DEC0DE, are

applied to smart phones, these recovery techniques return hundreds of thousands of results,

only a few of which are relevant to the investigation. We propose the use of relevance

feedback to address this problem: a small amount of investigator input can efficiently and

accurately rank in order of relevance, the results of a forensic triage tool. We present LIFTR,

a novel system for prioritizing information recovered from Android phones. We evaluate

LIFTR’s ranking algorithm on 13 previously owned Android smart phones and three recovery

engines — DEC0DE, Bulk Extractor, and Strings— using a standard information retrieval

metric, Normalized Discounted Cumulative Gain (NDCG). LIFTR’s initial ranking improves

the NDCG scores of the three engines from 0.0 to an average of 0.73; and with as little as 5

rounds of feedback, the ranking score increases to 0.88. Our results demonstrate the efficacy

of relevance feedback for quickly locating useful information among the large amount of

irrelevant data returned by current recovery techniques. Further, our empirical findings show

that a significant amount of important user information persists for weeks or even months in

the expired space of a phone’s memory. This phenomenon underscores the importance of

using file system agnostic recovery techniques, which are the type of techniques that benefit

most from LIFTR.
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4.1 Introduction

As we discussed in Chapter 3, understanding the limits of what information is recov-

erable from phones is important for both lawful investigations and for individuals seeking

confidentiality when phones are lost or stolen.

Our previous work on triage, DEC0DE, focused on using probabilistic inference on

feature phones (Chapter 3). Others have used deterministic feature search for desktop

systems [12,57]. In this chapter, we show that these existing approaches encounter significant

problems when applied to smart phones. First, smart phones contain a great deal more

information than feature phones. While feature phones are often limited to less than 100

MB of storage space, current smart phones store gigabytes of data. Consequently, locating

important information often means an investigator must sift through an impractical amount

of data.

Second, while the relatively limited number of smart phone operating systems would

seem to make the investigator’s job easier, mobile phones are supported by many different file

systems and growing number of proprietary NAND storage devices with poorly documented

flash translation layers (FTLs). Just as with feature phones, important data frequently lies in

the deleted and expired sections of memory (Section 4.5), and it is often impractical and

time consuming to create a specialized parser for each phone.

Finally, smart phones contain a wider variety of information, much of which is not

relevant to the current investigation. Record definitions for address book entries or call logs

are not sufficient by themselves. The data may be parsed correctly as a phone number, text,

URL, or date, but it is not always content that is relevant to the context of the investigation.

We present the design and evaluation of a novel system, LIFTR, for prioritizing infor-

mation recovered from Android phones. Our system is designed to build upon our work in

Chapter 3 and to complement other existing triage approaches. LIFTR ranks information

according to a combination of scoring and relevance feedback rounds from the investigator.

LIFTR is a general approach that can be used with any data recovery technique that provides
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a string representation and offset of the recovered information. As we show, current tech-

niques can return thousands, and in some cases, millions of unranked results per phone. Our

approach prioritizes information relevant to an investigation, enabling the investigator to

complete the triage process quickly and efficiently.

The primary insight behind LIFTR is that once we can locate a small piece of relevant

information, we can quickly locate more by leveraging the spatial locality of data and

semantic relationships between NAND pages.

LIFTR is especially powerful for recovering information from expired storage or in cases

where the file system cannot be reconstructed — we find that for our set of pre-owned

evaluation phones, upward of half of the NAND pages are expired. Other data on phones

will be easily recoverable because the files are in allocated storage. In these cases, we

expect parsing information is relatively easy (though labor intensive, it does not present a

research challenge). On the other hand, reconstruction of files from expired space presents

a fundamental problem in forensics [56,128]. Fragmentation or loss of critical segments

can prevent recovery of a full file, requiring a specialized parser per application file format,

without guarantees of recovering any information. Systems like DEC0DE and Bulk Ex-

tractor [57] overcome this limitation due to their file system agnostic inference techniques.

However, being generalized recovery engines, they do not consider the semantics behind the

content recovered and hence return large amounts of irrelevant results bearing no connection

to the phone user. LIFTR tries to address these problems using an algorithm for ranking

results from recovery engines in the order of their relevance to the investigation.

We make several contributions.

• We show empirically that previous approaches to forensic triage (DEC0DE and Bulk

Extractor) do not scale to resource-rich smart phones. For one phone, DEC0DE

returned over 6.2 million results, of which only about 12 thousand were relevant.

• We introduce LIFTR, a system that quickly identifies the important information by

ranking inference results using relevance feedback. LIFTR works in concert with
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existing triage techniques to provide a reliable ranking of results. It is especially

powerful when analyzing expired or deleted storage areas.

• We examine LIFTR on 13 pre-owned Android phones from 6 different manufacturers,

using three recovery engines: DEC0DE, Bulk Extractor, and Strings. All of the

phones contained residual data from the previous owners1. The recovery engines

return unranked results, resulting in a ranking score near zero (out of 1.0). LIFTR is

able to rank results initially with an average ranking score of 0.73 when provided with

5 items of information from the investigator (e.g., first or last names, phone numbers

or email addresses). Without such hints, LIFTR can leverage information about the file

system and provide an initial ranking score of 0.43. With just 5 rounds of investigator

feedback, the ranking score increases to 0.88 and 0.73, respectively. Increasing to 20

questions to the investigator, improves the ranking further to 0.91 and 0.79 for the

two approaches.

• We develop techniques to parse and analyze the Yaffs file system. We use these

techniques to characterize the lifetime and expiration of data on pre-owned phones;

we find that data can live on the device for weeks or months after it has been logically

deleted. Further, over half of the NAND pages (56%) contained deleted or expired

data. Our results are consistent with previous work in secure data deletion on flash

memory [124,125,155].

4.2 Problem Definition and Methodology

Our goal is to extract user-centric information from mobile phones that is relevant to an

investigation. Our work in Chapter 3 focused on retrieving all information from a feature

phone’s data store, regardless of its provenance. While this approach is appropriate for

1Our procedures were approved by our Institutional Review Board.
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phones with small amounts of storage and few applications, smart phones store data from

innumerable applications, some of which is significantly more important than others.

Our approach takes the output of these systems as a starting point (we call them recovery

engines), and identifies the content that is most important to an investigation, according to

investigator feedback. Specifically, all information is ranked based on a combination of the

investigator’s relevance feedback, the actual content, and storage system locality information.

We output a ranked list so that the investigator need only examine the most-highly ranked

information among the tens of thousands of results returned by the recovery engines. We

evaluate the success of LIFTR based on relevance of the results returned and the amount of

feedback required from the investigator.

The intuition behind our approach is that (i) an investigator can quickly provide outside

context that is important to the investigation but impractical to encode into a general recovery

engine; and (ii) we can leverage the semantic relationship between fields to locate more

information. For instance, imagine a scenario in which the recovery engine returns the phone

numbers “413-555-1234” and “1-800-555-2266”. While both fields may have been correctly

parsed, the former has an area code local to the investigation while the latter is a toll-free

number. Arguably, the local number is more likely to be relevant to the investigation. Once

identified by the investigator as useful, we have higher confidence in other records containing

the number, e.g., call logs and text messages. Further, if one of those text messages mentions

a name, we may be able to use that name to find additional records, such as emails and chat

logs.

4.2.1 NAND Flash

Our focus is on phones; as such, LIFTR’s design and evaluation is in the context of

NAND-based flash storage. Unlike magnetic disk drives, flash does not overwrite memory

in place. Instead, whenever a file is changed, the modified portion is written to unallocated

storage, leaving the expired data in the flash memory. These expired pages persist for an
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indefinite period of time — potentially days or weeks under normal usage; see Section 4.5.

Recovery engines, such as DEC0DE, take advantage of this deletion latency to recover

information that has been logically removed.

NAND file systems fall into two general categories: log-structured file systems designed

to work with the raw storage (e.g., Yaffs) and block-device file systems that require an

intermediate flash translation layer (FTL). FAT, Ext4, and Samsung’s RFS are three common

block-device file systems found on Android phones.

For block-device file systems, reconstructing files (or even identifying expired data)

from the raw bytes requires knowledge of the FTL — often intractable given the proprietary

and diverse nature of these algorithms. Instead, LIFTR assumes as little as possible about

the system that stores the information, so that it is compatible with previously unexamined

operating systems, file systems, and flash translation layers. Even so, LIFTR can take

advantage of file system information when it is available.

4.2.2 Information Types

We are particularly interested in recovering information from the deleted (i.e., expired)

pages in memory. These are the pages that are not accessible through a logical examination

(i.e., via API calls to the phone’s operating system). Because NAND does not overwrite

memory in place, multiple copies of a page with slightly different content may be spread

across the phone. As a result, even if a phone owner deletes an address book entry that

record may still reside on the phone.

Our system works with whatever information is output by recovery engines, as long

as the recovered information includes its location on the storage device. Such information

includes address book entries, call logs, SMS messages, Facebook chats, and data from

smart-phone applications.
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4.2.3 Pre-processing Data

Our system recovers data from the physical image of a phone. Unlike the logical image,

the physical image contains the complete layout of bytes in the phone’s memory, including

deleted data, and is free from any access restrictions that could prevent our system from

using data from certain applications.

We do not address the problem of image extraction, assuming that the phone’s physical

image is already accessible. Also, we assume that the data in the extracted image is

not encrypted; otherwise, the tested recovery engines would not be able to extract any

information.

LIFTR requires that a phone’s data has been pre-processed in three stages.

• First, the phone’s physical image is acquired. Depending upon the model and file

system of the phone at hand, hardware acquisition techniques (e.g., Joint Test Action

Group (JTAG) connections), or software acquisition techniques (e.g., nandump or dd)

can be used [67,147,150].

• Second, portions of the acquired image are filtered out when they are not expected

to have user-centric information and are therefore of no interest to the investigator.

These portions include binaries and resource files from the operating systems and

applications. For example, DEC0DE’s block hash filtering efficiently removes such

data by removing blocks of data that have been observed on other phones, compared

by hash value.

• Third, a recovery engine transforms raw data into information, including names,

phone numbers, email addresses, and text messages. Examples include DEC0DE,

DIMSUM [92], Bulk Extractor [57], and more simply, Strings. We require that

the tool return the corresponding offset in the original phone image and string-based

output. E.g., phone numbers should be normalized to text.

The results are input to LIFTR, which we detail in the next section.
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Figure 4.1: A high-level overview of LIFTR and its two stages: initial ranking, and relevance feedback.
LIFTR takes an unranked list of information parsed by the recovery engine and returns a ranked list of
the most important NAND pages.

It’s important to note that DEC0DE and Bulk Extractor return an unranked, un-

scored list of results. The results are grouped together by type (e.g., all credit cards and

phone numbers), but grouping is also not practical for thousands or millions of results. More-

over, being unaware of the underlying file system layout, they are not designed to treat files

like contacts2.db, that are rich in user data, any differently from others. Consequently,

these engines have no way of prioritizing user-centric results over the rest.

4.3 Design of LIFTR

In this section, we provide a general overview of LIFTR and detail its components. We

evaluate the effectiveness of LIFTR in Section 4.4.

Phone triage tools are often designed to return all data that can be parsed as legitimate

information. This design works well for feature phones, but not for smart phones. As we

show in Section 4.4, DEC0DE can return millions of results for smart phones containing

data from real users, but only hundreds or thousands of results are relevant user data during

triage. Sifting through false positives quickly becomes counterproductive for the investigator.
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LIFTR expects that in a triage process, investigators can only review the top n results.

Accordingly, it ranks information returned by a recovery engine (e.g., DEC0DE or Bulk

Extractor) and asks the investigator to confirm the top-ranked page of results. Based on the

feedback, it re-ranks the list. As more feedback is provided, our results show that accuracy

improves, but of course the amount of feedback must be kept to a minimum. (We explore

the effectiveness of up to 20 responses from a simulated investigator in our evaluations).

LIFTR combines the feedback with information from the file and NAND storage-system,

and statistics about the content itself to re-rank the results.

An overview of LIFTR is illustrated in Figure 4.1. Parsed information is input from a

recovery engine, and combined with information, if any, known to the investigator. Such

a priori information can include a few names or phone numbers. LIFTR’s operation is

comprised of two primary stages.

1. Initial sorting. Prior to asking for any investigator relevance feedback, LIFTR ranks

the input information according to a relevance metric. At this stage, LIFTR also makes

use of any a priori information provided. In general, better initial sorting implies that

less feedback is needed from the investigator.

2. Relevance feedback. After the initial sorting, the investigator is asked to label a

subset of the pages as true or false positives. The results are re-ranked after each

instance of feedback.

We discuss both of these stages in greater detail below.

4.3.1 Page-level granularity

NAND file systems store files in pages. Files are stored across one or more pages, that

are not necessarily contiguous in memory. When a file is deleted, the pages remain but

are expired. Before they are reused by another file, NAND pages are wiped completely.

Therefore, all information on a page belongs to a single file — there is no slack space in a

NAND page.
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Tools such as DEC0DE and Bulk Extractor search for information in units that we refer

to as fields; e.g., a date, a phone number, or a credit card number. Each field is returned

independent of and without its page information. However, we find that it is often more

useful to consider information at a page-level granularity. As such, LIFTR both asks for

feedback and presents results at the page level.

First, a page is the unit of write for the file system and, as such, the page typically

belongs to just one file.

Second, pages are small and contain few fields, reducing the chances that an investigator

will overlook a field and result in a false negative. In our experiments with real phones,

DEC0DE returned on average 24 fields per page, and on average 7 relevant fields per

true positive page; Bulk Extractor returned on average 6 fields per page, and on average 5

relevant fields per true positive page.

Third, in our experiments, we found that when fields from the same page are presented

together to an investigator, they provide context that allows the investigator to determine

more accurately their meaning. For example, a date field in isolation may be hard to evaluate

as a true positive or not; but a surrounding set of phone numbers and strings, or similar dates,

provide a context for deciding the correct feedback.

4.3.2 Initial Ranking

LIFTR’s algorithm for the initial ranking takes as input a set of information fields

discovered by a recovery engine, each tagged with its byte offset in the original image. The

byte offset is used to group the fields by NAND page. Our goal is to rank the phone’s pages

based on how likely they are to contain information relevant to the user and investigation.

To do so, LIFTR assigns an initial quality score to a page p using a normalized weighted

sum of a set of features calculated for each field:

quality0(p) =

|Fp|
∑

i=1

m
∑
j=1

w jai j

|Fp|
(4.1)
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where Fp is the set of fields contained on page p; ai is a vector of m features calculated for

the ith field using one of the features we discuss below, e.g., file system knowledge or a

priori knowledge, and text value; and w is a vector of weights for each of these features, that

sum to 1. LIFTR’s initial ranking of pages is sorted from the highest to lowest quality scores.

For our evaluation, we consider different combinations of three field features, based on

an investigator’s a priori knowledge, limited file system information, and the quality of the

field text, respectively. LIFTR can be easily extended to support additional features.

1. Investigator’s a priori knowledge. In some cases, before forensic analysis begins,

an investigator will have basic external knowledge about the case, the phone owner,

or an accomplice; e.g., a first or last name, email address, or phone number. When

we allow its use in our evaluations, LIFTR sets the value of fields that contain strings

supplied by the investigator with a 1, and 0 otherwise. In our evaluations we allow

only 5 strings as a priori input; see Section 4.4.

2. File system knowledge. In some cases, an investigator will have knowledge about

the OS and how it is designed to store information. For example, in Android phones,

the contacts2.db and mmssms.db files are used for storing call logs, address book

records, and SMS messages. If used, this feature sets the value of fields found in

pages belonging to these two files with a 1, and a 0 otherwise.

3. Text false positives. Smart phones contain a large amount of text, some of which is

user created, but most is detritus such as cached Web pages, application resources,

and high level code or configuration. We use a set of fixed rules to filter out these

often-seen false positives. First, we assign a feature value of 0 to text fields that are

three characters or fewer in length. Second, we look for fields that contain HTML

documents and other bits of code. We give a value of 0 to fields using CamelCase or

words commonly found in code (e.g., SELECT or div). We generated this list ahead

of time using information found on unused, freshly installed Android phones. For
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efficiency, we only calculate this feature value for pages that have a non-zero score

for one of the above two features.

At first blush, it may seem that with the file system feature we are providing the answer

key to LIFTR and no work remains. However, these two files contain a lot of information

that is not easily recoverable by DEC0DE, Bulk Extractor, or Strings, and much of what

is recovered is not useful (e.g., the metadata and portions of the schema). It’s important to

note that we evaluate LIFTR primarily using unallocated pages, under the assumption that

the phone’s information has been deleted and reinstalled (for many of our phones, this was

actually the case). The original files are not easily reconstructed from these pages because

not all pages are present, and it is not always clear if a page belongs to a particular file. We

could have written a specialized SQLite fragment parser for these files, but our goal is to

provide a general technique that makes use of only the fields output by recovery engines

— in turn, those engines also seek to recover information in a way that is independent of

the file type being recovered, without solving the difficult problem of generalizable file

reconstruction. In short, these engines also seek to be generalizable to the largest number of

scenarios. Section 4.5 contains more details on our recovery of unallocated pages.

4.3.3 Relevance Feedback Stage

LIFTR’s initial ranking orders only those pages with a non-zero a priori or file system

score; all other pages will have a zero quality score after initial ranking. During the relevance

feedback stage, LIFTR refines the initial ranking by using investigator feedback.

At a high-level, our algorithm works as follows. LIFTR presents the investigator with

the top-ranked page and asks him to label all of the relevant fields on that page. Using

the positive labels, LIFTR then increases the quality score for all semantically related

pages based on how strongly each relates to the current page. Then, LIFTR updates the

page ranking, and it asks for feedback on the top-ranked page that hasn’t been sent to the
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investigator. This cycle is repeated as many times as the investigator wishes. We discuss the

details of each step below.

In general, the more feedback, the better the final ranking; but we find that the investigator

need only label a few pages to bring about significant improvements in the page order.

Further, the number of fields per page is typically very small with around 24 fields per page

on average for DEC0DE, and only 7 useful fields per relevant page.

The details of the process are as follows.

4.3.3.1 Marking fields

As part of our implementation of LIFTR, we have written a small interface that makes

it easy to quickly label the fields on a page. An investigator marks entire fields as relevant

or not. LIFTR then breaks fields into tokens by splitting on whitespace and punctuation.

(Phone numbers are not split by hyphens or other punctuation.) When the investigator marks

all fields on a page, we say that a round has completed.

In sum, for a given page p, Fp is the set of all fields. We let Kp be the set of all tokens

from all fields on page p. We say a token is relevant if the field it came from was marked

as relevant. We let Tp ⊆ Kp be the subset of all tokens that are relevant on a page p. To

be clear, once a field (and thus its derivative tokens) is marked relevant on any page, it is

relevant for all pages on the phone.

4.3.3.2 Finding semantically related pages

We consider two pages to be semantically related if the pages share a token that has

been previously marked as relevant and is not in a token blacklist (described below). The

intuition here is that once the investigator marks a few tokens as relevant (whether names,

email addresses, or phone numbers), we should evaluate other pages that share this content.

In sum, we let R = {r1, . . . ,ri} be the ordered set of pages that have been marked by the

investigator, where ri is the page marked in the ith round. We let P be the unordered set of
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pages as-yet-unmarked that share at least one token with a field from a page in R , where the

field has been marked as relevant.

4.3.3.3 Blacklisting tokens

LIFTR maintains a blacklist of tokens to exclude when calculating the quality score for

the pages. Tokens are added to the blacklist for one of three reasons: (i) they are found in a

natural language dictionary; (ii) they match a token found on a set of newly installed and

unused Android phones; (iii) they are present in a field not marked as relevant for a page in

R . We let B be the set of blacklisted tokens.

The negative feedback helps to identify tokens that have no connection to the user and

hence are of no interest to the investigator. This becomes important when a positively

marked field string contains irrelevant tokens. For example in the string “I called John Doe

today”, the tokens “John” and “Doe” are highly relevant whereas “I”, “called”, and “today”

provide little information. This approach prevents LIFTR from giving undue credit to pages

bearing semantic relations to such tokens.

4.3.3.4 Calculating the new quality score

When a field is marked by the investigator as relevant on the current page, LIFTR

increases the quality score for the pages in P as follows. For a given p ∈ P , each τ ∈ Tp

contributes a quality score proportional to its Inverse Document Frequency (IDF). The

IDF of a token is a measure of how often a token appears in the set of all pages, and it is

calculated as:

idf(τ) = log
(
|P ∪R |
|Pτ|

)
where Pτ = {q|q ∈ P ∪R ,τ ∈ Kq} (4.2)

Note that Pτ is the set of pages in R and P that contain τ. We use IDF as a means of reducing

the impact of tokens that appear too frequently throughout the phone. It allows us to have

investigators mark whole fields without distinguishing separate tokens, and yet the impact
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of irrelevant tokens present in relevant fields is diminished. For instance, we find that many

frequently occurring irrelevant tokens, that are not in the blacklist B are specific to the phone

at hand and hence no generalized rules can be hard-coded to avoid them. However, owing to

high frequency, they have a low IDF score and would therefore have minimal impact on the

quality scores.

Once a new page p has been marked by the investigator in round i (and moved from P

to R ), all the pages remaining in P are re-scored. The quality score for a page q ∈ P after i

rounds of relevance feedback is the sum of quality score from the previous round and the

IDF scores for each relevant token that q shares with p (ignoring those tokens found in the

blacklist B).

qualityi(q) = qualityi−1(q)+ ∑
τ∈Tq−B

idf(τ) (4.3)

The value of quality0(q) is the initial ranking score for q, as shown in Equation 4.1. Note

that quality0(p) = 0 for pages that did not appear in the bootstrap set. Also, tokens are only

evaluated in the rounds during which they first appear; e.g., if a token “foo” appears in page

r1, then it is ignored if it later appears in r2.

4.3.3.5 Presentation Order

We refer to the order in which LIFTR presents pages to the investigator as the presentation

order. Currently, we present the unlabeled pages with the highest current quality score.

While this approach is not necessarily the most efficient for minimizing the number of

questions that we need to ask the investigator, we find it is an effective heuristic.

4.4 LIFTR Evaluation

In this section, we evaluate LIFTR’s initial ranking and relevance feedback stages.

Broadly, we focus on answering three important questions:

71



DEC0DE Bulk Extractor Strings
Pages True Fields True Pages True Fields True Pages True Fields True

Pages Fields Pages Fields Pages Fields
HTC Desire HD 228,860 1,834 6,247,115 12,275 518 55 5,233 216 189,182 1,629 6,509,666 13,875
Samsung Galaxy Y 175,873 600 4,594,060 2,954 263 0 694 0 139,109 1,526 3,747,699 26,492
Motorola XT701 144,618 207 3,049,543 869 118 0 650 0 120,923 207 2,762,831 984
HTC Evo 4g 78,680 3,178 1,853,638 22,850 2,689 323 21,806 1,250 68,216 2,761 1,774,627 18,243
Samsung Galaxy Y Duos 60,422 3,612 1,530,630 21,399 2,150 1,715 18,550 14,235 51,324 4,093 1,281,450 35,334
HTC Wildfire 55,759 137 1,019,033 837 118 36 1,031 321 46,360 115 1,176,778 872
Samsung Galaxy Mini 53,456 1,390 1,329,715 4,031 1,329 275 5,599 1,139 40,288 434 1,020,422 2,134
Sony Xperia x10 30,063 16 855,464 154 20 4 57 22 22,447 22 958,791 159
Dell XCD35 20,494 221 594,469 1,621 90 24 528 49 16,191 222 539,018 2,268
Dell XCD28 17,932 118 495,099 841 27 6 190 20 13,189 78 433,917 734
HTC Legend 10,238 19 198,873 121 26 0 28 0 7,721 14 194,448 108
Huawei Ideos 8,829 667 170,143 6,799 81 9 1,106 15 7,777 683 202,654 7,022
Huawei 8500 6,305 3 116,524 41 12 0 28 0 5,764 3 135,157 50

Table 4.1: Page and field statistics for the three recovery engines. On average, less than 2% of the
results returned by the recovery engines are relevant; for more than half of the phones this percentage
is below 0.5%.

1. How effective is LIFTR at ranking relevant pages using different recovery engines?

2. How much feedback is required for LIFTR to be effective, and how does that translate

to time required of investigators?

3. What page properties have an effect on relevance feedback?

We discuss each of these questions below.

4.4.1 Evaluation Methodology

LIFTR’s goal is to help focus an investigator’s limited resources by identifying pages that

are most likely to contain information relevant to the investigation. It works in concert with

existing inference approaches to seamlessly increase precision and scale. Once we have iden-

tified the important pages, the investigator can then perform a more thorough examination

and perhaps employ more specialized techniques to extract additional information.

For our experiments we simulated feedback from an investigator, such that a field on

a page is marked relevant if it contains a token also present in the contacts2.db or the

mmssms.db file, e.g., a name, phone number, or email address.
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4.4.1.1 Inference Engines

We tested the effectiveness of LIFTR to improve the results of three different triage

techniques:

1. DEC0DE (Chapter 3), a probabilistic parsing approach that supports many types of

data commonly found on mobile phones.

2. Bulk Extractor [12,57], a regular-expression based approach originally designed for

desktop systems.

3. Strings, a common UNIX utility for identifying strings of printable characters in a

file.

In many ways, DEC0DE and Bulk Extractor represent opposite design philosophies

for recovering data. While DEC0DE is designed to be very flexible and prioritize the

recovery of all information at the expensive of false positives, Bulk Extractor uses strictly

defined regular expressions to limit the amount of irrelevant information, paying the cost of

decreased true positives.

Strings represents a simple baseline approach that makes minimal assumptions about

the structure of the underlying data. LIFTR’s good performance with Strings demonstrates

that the effectiveness of our system does not depend on the underlying engine.

We did not modify Bulk Extractor or Strings before applying them to smart phones,

and made only minor changes to the DEC0DE workflow. DEC0DE typically groups the

inferred fields into records — e.g., nearby text and phone number fields might be grouped

together as an address book entry — and returns a list of these records to the investigator.

We found it necessary to forgo the record step and only consider the field-level results.

Records, as they are defined by DEC0DE, are centered around phone numbers existing in

close proximity to names and other identifying information. However, since Android uses

relational databases for storing data, the name for an address book entry will not necessarily

appear in close proximity to the phone number in memory.
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With careful modification, it is likely that DEC0DE and Bulk Extractor will perform

significantly better than what we observed. For example, we could add additional regular

expressions to Bulk Extractor that are specifically targeted toward Android data. However,

our intention was not to measure the performance of the inference techniques, but instead to

evaluate the effectiveness of LIFTR and demonstrate how it can benefit each of the recovery

engines.

4.4.1.2 Phones

A partnering research group provided us with both the logical and physical images of

13 previously owned phones2. These 13 Android phones, listed in Table 4.1, were from 6

different manufacturers with users that lived in Canada, Hungary, India, Israel, Singapore,

Serbia and the US. Each of these phones contained varying amounts of residual data from

their previous users.

Before applying the recovery engines, we pre-filtered each physical image, to (i) reduce

the amount of data passed to the inference tools, and (ii) when it could be identified, limit

our analysis to the user data partition in the image. For 8 of the 13 phone images, we applied

a filtering technique based on the Yaffs file system; we describe this approach in more detail

in Section 4.5. For the remaining 5 phones phones, we employed the block hashing filtering

approach described in Chapter 3.

Table 4.1 shows the number of pages returned by each of the tested inference techniques.

For DEC0DE and Strings, the number of returned results is typically orders of magnitude

greater than the actual number of relevant results. The percentage is less drastic for Bulk

Extractor, but the number of fields returned by the tool is still often in the hundreds or

thousands.

2We received IRB approval for this process. Phone images provided by Simson Garfinkel at the Naval
Postgraduate School.
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Figure 4.2: The average NDCG score for DEC0DE, Strings and Bulk Extractor. The high initial
score for k = 20 shows that LIFTR’s a priori and file system ranking effectively places relevant pages
early in the list. These top pages bootstrap the feedback process, enabling LIFTR to discover the large
number of remaining pages — evidenced by the steady NDCG increase for k = 1000. LIFTR’s results
are consistent for all three recovery engines.
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Because we did not have direct access to the phones, our evaluations were limited

to the provided images, i.e., we could not manually manipulate the phones. However,

this limitation mimics the restrictions placed on real world investigations, wherein the

investigator must take great care not to modify the phone (beyond the extent necessary to

extract the image).

4.4.1.3 Ground Truth

We collected ground truth from the contacts and SMS databases taken from the logical

image of each of the phones. That is, we used tokens collected from the allocated versions

of the SQLite databases contacts2.db and mmssms.db, respectively.

We considered a field provided by a recovery engine to be relevant if it contained a

token — name, phone number, email address — found in one of the two ground truth

databases. For example, if the allocated version of the contacts2.db file included the

number 212-555-0123, we considered any field from any page containing this number as

relevant. Consequently, relevant fields are not limited to the pages in contacts or SMS

databases. We described the field tokenization process previously in Section 4.3.3.

LIFTR presents results to the investigator at a page-level granularity. We define a relevant

page as any page that contains at least one relevant field — a field with a token pertinent to

the investigation. For our evaluation, field types were either phone numbers, names or email

addresses.

Limiting our ground truth to pages that have tokens belonging to the SMS and contacts

databases gives us a lower bound on the amount of data present on the target phone. While

there are other potential data sources we could draw our ground truth from (e.g., the

geolocation database), grabbing this information would require modification to DEC0DE

and Bulk Extractor. Further, our goal is to test the effectiveness of our feedback approach,

and not that of the recovery engines. In other words, DEC0DE may not correctly infer all of
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the relevant fields on the phone. When evaluating our ranking, we only consider the relevant

fields that each recovery engine was able to identify.

4.4.1.4 Initial Ranking Features

In our experiments, we consider two combinations of the initial-ranking features from

Section 4.3.2: (i) file system knowledge paired with text quality and (ii) a priori information

paired with text quality. For the a priori method we use all of the phones from our set, 13 in

total. For the file system feature, we limit the evaluation to the eight phones with a parsable

Yaffs user data partition. We used a feature weight of 0.6 for file system and a priori, and

0.4 for text quality.

Our set includes nine phones with the Yaffs file system. We wrote a special Yaffs parser

to identify expired pages and label each page with its likely filename; we describe this

process in Section 4.5. One of nine Yaffs phones could not be parsed properly by our

techniques. This is because we were unable to separate the user data partition from the rest

of the physical image. The other four phones used either Ext4 or RFS (a variant of FAT) and

their physical images were acquired below a flash translation layer, making it impossible

for us to label the pages with their suspected file names without knowledge of the FTL’s

mapping algorithms. In the non-Yaffs phones, LIFTR was not aware of the file to which a

page belonged.

For the a priori setting, we select five relevant tokens randomly from the pool of all

relevant/user related tokens like a name, phone number or an email address. The initial

sorting score of pages to which these tokens belong would be increased, causing them to

rise above the rest. The performance of LIFTR using the a priori approach is averaged over

30 trials for each of the 13 phones. In the setting where we use file system knowledge, the

initial sorting scores of pages associated with user-content rich files like contacts and SMS

are stepped-up instead, causing such pages to improve their ranks. Leveraging file system

information, being a deterministic approach, needs to be run only once for each phone.
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We tried a combination of all three ranking features, but found that it does not provide

substantial improvement over the combination of a priori and text quality. We suspect this

lack of improvement is due to our evaluation methodology wherein all simulated a priori

knowledge was on the phone. In a real-world scenario, it is possible that only a subset of the

investigator’s a priori knowledge appears in the recovered fields.

4.4.1.5 Filtering

We filtered the parsable Yaffs images to only include the expired pages; see Section 4.5

for details. For the other phones, we used block hash filtering, which cannot distinguish

between current and expired pages.

4.4.1.6 Normalized Discounted Cumulative Gain

We use normalized discounted cumulative gain (NDCG) [74] to measure the effective-

ness of LIFTR’s sorting. An NDCG score of 1 means an ideal ranking, that is, all of the top

k pages are relevant. An NDCG score of 0 means the worst possible ranking, where none of

the top k pages are relevant. Here, k is a cutoff rank, which depends on the expected number

of relevant results and on how many top-ranked results would the user be willing to sift

through. More formally, the discounted cumulative gain at rank i is calculated as follows.

dcg(i) = v1 +
i

∑
j=2

(
v j

log2 j
) (4.4)

where v j = 1 if the page at rank j is relevant, and 0 otherwise. We obtain the normalized

DCG score by dividing the DCG score by the maximum possible score for some cutoff k.

ndcg(k) =
dcg(k)

1+
k
∑
j=2

(1/ log2 j)
(4.5)
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Order matters for NDCG. For example, given a ranked list A, where only the top half is

relevant, and another ranked list B, where only the bottom half is relevant, then ndcg(A)>

ndcg(B), assuming A and B are the same length.

4.4.2 Impact of Initial Sorting and Relevance Feedback

Figures 4.2a, 4.2b, and 4.2c show the NDCG results for LIFTR using DEC0DE,

Strings, and Bulk Extractor, respectively, averaged over all phones.

4.4.2.1 Initial Scoring

DEC0DE, Bulk Extractor, and Strings all produce unsorted results: their NDCG

scores are near to zero. LIFTR’s initial sorting is significantly better. Using 5 tokens of a

priori information, provides a significant benefit for LIFTR’s initial sorting stage, resulting

in an average NDCG of 0.73 across all three recovery engines for k = 50. The NDCG

for initial sorting is denoted by the “Initial” tick mark on the far left side of x-axes in

Figures 4.2a, 4.2c, and 4.2b. Initial sorting with file system information gives an average

NDCG of 0.43, for k = 50, across the three recovery engines. This discrepancy is due in

part to the number of pages that belong to the contacts and SMS databases that are not

actually relevant. For example, many of these pages contain schema related information and

other database metadata. Giving a higher initial score to contacts and SMS databases has

the effect of also wrongly benefiting such irrelevant pages belonging to these files.

4.4.2.2 Relevance Feedback

The experiments demonstrate that the relevance feedback stage results in a significant

improvement in the NDCG scores with a small amount of feedback. For example, after

labeling just 5 pages, the score for the a priori scenario rises from an initial NDCG value of

0.73 to 0.88, for k = 50; and from 0.48 to 0.71, for k = 1000.

The graphs for DEC0DE and Strings also depict the differences in increases of the

NDCG score when given more feedback, for different cutoff ranks. There is a steeper
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increase for k = 1000 as compared to k = 20 or k = 50. This shows that the initial ranking

algorithm is able to fill up the top few ranks with relevant pages (high NDCG at initial for

k = 20), however the initial sorting incorrectly ranks a significant number of irrelevant pages

over relevant pages at ranks above 50. We see that the relevance feedback quickly corrects

these mistakes (steep increase in NDCG for k = 1000). This demonstrates the importance of

relevance feedback in LIFTR. At the same time, it also establishes the need for having initial

ranking for bootstrapping the feedback stage. A few relevant pages in the early ranks greatly

increases the pace at which LIFTR discovers other good pages, and helps LIFTR ignore the

large pool of bad ones.

4.4.2.3 Variation

Each line in Figures 4.2a, 4.2c, and 4.2b is an average of all phones for the given

experiment. The average of all NDCG scores allows us to aggregate many experiments

into these three figures. There is variation among phones that is hidden by the average

NDCG, but it is not representative of the variation within each phone. Figure 4.3 shows

the per-phone NDCG values for DEC0DE using the a priori approach, for a cutoff of

k = 1000 (i.e., the blue line in the left plot of Figures 4.2a). Error bars show 95% confidence

intervals over 30 trials, each using a randomly selected set of 5 tokens. For ten of the phones,

relevance feedback always improves the NDCG. For three phones, the relevance feedback

approach provides no advantage.

4.4.2.4 Discussion

The average NDCG score for all approaches and settings increases with feedback but

does not reach its maximum value of 1. There are two possible reasons for this limitation.

First, there are certain relevant pages on the phone that are not semantically related to other

relevant pages and so no amount of feedback can guide LIFTR in identifying such pages that

are sitting by themselves. Second, the NDCG score for a cutoff of k is not only affected by

the number of relevant results among the top k, but also the positions at which they appear.
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Figure 4.3: Per-phone average NDCG results for DEC0DE using the a priori approach, for a cutoff
of k = 1000. Error bars show 95% c.i. across 30 trials per point. For most of the phones, relevance
feedback consistently improves the NDCG score.
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Even if LIFTR is able to rank the relevant pages among the top k positions, unless all of

those pages appear before all irrelevant pages, the score will be less than unity.

It is also important to note that the pages recovered during relevance feedback are

not limited to those belonging to contacts and SMS databases. They could include pages

associated with other files that have relevant tokens. For instance, some phones have user

data in the SQLite Write Ahead Log file, which is like a rollback journal used by SQLite for

atomic commits and transaction rollbacks. This shows that simply extracting contacts and

SMS database files would not yield all the relevant data on the phone.

It is also interesting to note that the NDCG plot for Bulk Extractor is not as smooth

as DEC0DE or Strings, due to the fact that only a few phones have have more than 50

pages and fewer have more than a 1000 pages among the inference results after using Bulk

Extractor. Hence, the NDCG values are averaged across fewer phones.

4.4.3 Measuring Investigator Work

The intuition behind LIFTR’s feedback approach is that an investigator can perform

a small amount of manual analysis to greatly improve the overall quality of the returned

results.

For our evaluation, we measure investigator work in terms of the number of pages that

they must manually label. Because a single page may require multiple labels, we differentiate

between (i) the total number of pages that the investigator labels and (ii) the number of

fields that the investigator must label. Recall from Section 4.3.3 that an investigator need

only label the positive fields, as LIFTR will default to marking everything it has shown the

investigator as a false positive. On average, this approach leads to 7 labels per relevant page.

If we assume that it takes an investigator 5 seconds marking a label, then it would take him

around 35 seconds per page, and around 11 minutes to complete 20 pages. As our results

for the three recovery engines suggest, 20 pages is sufficient for most phones to achieve an

NDCG of at least 0.8.

82



●●●

●

●●
●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●●
●
●

●

●●

●

●

●

●
●

●

●●●
●

●

●●

●

●

●

●

●
●●●

●

●●

●
●

●

●

●●●

●

●
●●
●

●
●

●●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●
●
●

●
●

●

●

●

●●

●
●

●

●●
●

●

●

●

●

●

●

●

●●

●●●●

●

●●

●

●

●

●
●
●

●

●●

●●

●

●

●●

●

●●

●

●●●●●

●

●●●●●

●

●

●●

● ●

●

●

●

●

●●

● ●●
●●
●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●●

●●●●●●●

●

●●

●

●●●●●

●

●●●●●

●

●●

●

●●●

●●●

●

●

●●

●

●●

●

●●●●●●

●

●●●

●●●●●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●●
●

●

●

●●

●
●
●
●

●

●

●●●●●

●

●
●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●
●

●

●

●●

●
●

●

●
●●

●●

●

●

●

●

●

●●
●
●

●

●●●
●●
●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●

●●●●
●
●

●

●

●
●

●
●

●●

●

●
●
●●●

●

●●
●
●

●
●

●

●●

●●

0%

25%

50%

75%

100%

Dell
 X

CD28

Dell
 X

CD35

HTC D
es

ire
 H

D

HTC E
vo

 4
g

HTC L
eg

en
d

HTC W
ild

fir
e

Hua
wei 

85
00

Hua
wei 

Id
eo

s

M
ot

or
ola

 X
T70

1

Sam
su

ng
 G

ala
xy

 M
ini

Sam
su

ng
 G

ala
xy

 Y

Sam
su

ng
 G

ala
xy

 Y
 D

uo
s

Son
y X

pe
ria

 x1
0

R
el

ev
an

t f
ie

ld
s 

pe
r 

pa
ge

 (
gi

ve
n 

at
 le

as
t o

ne
)

Figure 4.4: The percentage of relevant fields averaged across all relevant pages. The majority of
fields returned by the recovery engines — even for relevant pages — are false positives.

We examined another approach where the investigator marked whole pages as relevant or

not, rather than the individual fields on each page. This alternate approach did not perform

as well. Figure 4.4 shows why: among pages with at least one relevant field, typically less

than half of the fields on the page are relevant.

4.4.4 Strongly Related Pages

Our technique is most effective when the investigator provides positive labels to pages

that are semantically well connected to other pages, owing to the co-occurrence of relevant

tokens among them.

In order for relevance feedback to be effective within i pages of feedback, the initial

sorting must include a relevant page in the top i result pages. We find that it is more effective

to bring up true positive pages than it is to penalize false positive ones. This is largely
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because irrelevant pages greatly outnumber relevant ones; 20 pages of feedback are not

sufficient for identifying most of the irrelevant pages or tokens.

4.5 Residual Data in Android

In this section, we detail our techniques for parsing and analyzing the Yaffs file system.

We use these techniques with LIFTR to more effectively filter the physical images, and to

provide the file labels for initial sorting.

We also show that significant amounts of data, including user information, persists in the

expired segments of the phone’s memory for periods as long as weeks or months. Further,

this expired data makes up more than half of the NAND pages for some phones. Since this

data cannot typically be recovered by parsers that aim at reconstructing the file system, file

system agnostic inference techniques used by recovery engines like DEC0DE and Bulk

Extractor are a potential solution to the problem. The sheer amount of irrelevant results

returned by these engines, however, highlights the importance of using LIFTR for quickly

locating information with evidentiary utility, from these results.

NAND flash does not overwrite data in place. Instead, when an object is modified, the

data is written to a new page, leaving the expired chunk in storage. These expired pages

persist for an indefinite period of time. This residual data offers interesting opportunities for

forensic triage, as the old pages contain deleted data and can potentially be used to track the

changes over time. Our results are consistent with previous work in secure data deletion on

flash memory [124,125,155].

4.5.1 Yaffs Overview

Yaffs, common on Android phones prior to Gingerbread, is a log-structured file system

designed to work with NAND storage. The file system treats everything as an object or

piece of an object. Each Yaffs object is stored as a sequence of chunks. Typically, a chunk

is equivalent to a NAND page. Yaffs uses header chunks, to store object metadata such as
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the object type, timestamps, and permissions, and data chunks to store the actual bytes of a

file. Non-file objects such as directories and hard-links, are made up of just a single (header)

chunk. In Yaffs, chunks are the unit of write and blocks are the unit of erasure. Blocks are

made up of contiguous chunks in memory, often 64 chunks to a block.

Chunks may be in one of three states: erased, expired, or current. A chunk is considered

erased if it resides on an erased block, that is, the block is devoid of any data and contains

all 0xFF values. In contrast, expired chunks contain once-valid data that has been replaced

by a more recent chunk. These chunks either belong to deleted objects or are old pieces of

current objects. Both erased and expired chunks are ignored by the file system.

Finally, current chunks contain the most recent version of each object chunk. Yaffs

keeps track of all of the current chunks and uses them to reconstruct all objects in the file

system.

When a file is modified, one or more chunks transition from the current state to expired.

Eventually, through a garbage collection process, Yaffs will reclaim storage space by erasing

an entire block of expired chunks. Recall that the unit of erasure in NAND is a block.

However, it is common for expired and current chunks to reside on the same block.

Upon phone startup, Yaffs scans through all of the chunks to reconstruct the file system

state. In order to determine which chunks are current and which are expired, Yaffs uses

the out-of-bounds area (OOB) — a small region of memory adjacent to each page — to

store file system metadata. This metadata includes the block sequence number which is

assigned when a block is picked for writing. Because Yaffs always fills the current block

before moving to the next block (in absence of power loss or shutdown), the block sequence

number, and the order of chunks within the block, represents a temporal ordering: the

higher the sequence number, the more recently the block was written. Note that blocks with

consecutive sequence numbers may not be physically adjacent in memory.
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Figure 4.5: Fraction of each chunk type for the user data partition. On the pre-owned phones, over
half (56%) of all storage belongs to expired memory chunks.

4.5.2 Breakdown of Chunk Composition

A significant portion of the phones consists of residual data, with 56% on average for

the set of pre-owned phones. Figure 4.5 shows the fraction of different chunk types for a

set of Android phones. As we discussed above, Yaffs chunks are either headers or data and

are always in one of three states: erased, expired, or current. This gives us the 5 chunk

categories shown in Figure 4.5.

The phone set includes 8 of the pre-owned phones from Section 4.4 (those with a

parseable Yaffs user data partition), in addition to 9 unused phones loaded with synthetic

data3. We limit our analysis to the user data partition of each phone.

On average across both the unused and pre-owned phones, roughly 26% of the chunks

are current, with 27% erased and the remaining 47% expired data. Pre-owned phones have a

3We obtained the 9 phones with synthetic data from Via Forensics: https://viaforensics.com/.
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greater fraction of current chunks than the unused phones: an average of 31% versus 20%,

respectively. And pre-owned phones have fewer erased chunks than unused phones: an

average of 12% versus 43%, respectively. The difference in erased chunks is due to the

garbage collection process. Garbage collection is expensive and typically only erases blocks

as needed.

By definition, each object may only have one current header chunk and, if it is a file

object, one or more current data chunks. On average across the used phones, current

headers make up only 5% of the chunks whereas current data chunks make up roughly 26%.

Interestingly, the ratio of header to data chunks is significantly higher in the expired data.

For the pre-owned phones, expired headers make up 30% and expired data chunks make up

27%. Anytime an object is modified, whether it be the object’s metadata or actual contents,

Yaffs will write a new header chunk. In this way, expired headers track changes to an object

over time.

Much of the storage space is dedicated to SQLite databases and associated files. The

majority of the expired chunks belong to deleted objects, typically SQLite temporary files

such as the journal files used for rollbacks.

4.5.3 Filtering Images Using Yaffs

Recovery engines such as Bulk Extractor or DEC0DE are designed to be able to recover

information from deleted (i.e., expired) portions of an image. With information from Yaffs

metadata, we can more effectively filter the phone image to focus on the expired chunks.

We implemented a parser to identify the unique set of expired data chunks, and for the 8

pre-owned phones, we were able to reduce the size of the images by an average of 76%

for our experiments in Section 4.4. Note that expired header chunks contain only outdated

metadata, rather than the type of information the inference engines and investigators target.

Because the header data and allocated chunks are interleaved with expired data, a technique
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that is blind to the file system, such as block hash filtering would not be able single out the

expired chunks.

4.5.4 Block Churn

Our analysis of the 8 pre-owned phones showed that blocks remain in memory for weeks

or months after originally written. Any expired chunks in those blocks are accessible via

DEC0DE or other recovery engines. We describe our findings and the process for estimating

block age below.

The block sequence numbers provide a temporal ordering of blocks in the file system;

the block with the highest sequence number was written most recently while lowest number

block is the oldest. However, the sequence numbers do not directly tell us the exact write

time of a block.

More precisely, a block’s write period is a time range between when the first and last

chunks were written to the block. The block write period is useful for (i) providing a bound

on when expired chunks were valid and (ii) as a means for estimating the rate at which

blocks are written.

Header chunks contain object timestamps. If a block contains a header, we can use that

header to help estimate the block’s write period. If a block does not contain a header, we

can use the time estimates for adjacent blocks (by sequence number).

At a high level, we employ the following algorithm to estimate the write period for each

block. First, for each block we record the object timestamps stored in any header chunks that

are present on the block. Header chunks are written anytime an object is created or modified,

and contain three timestamps: atime, mtime, and ctime. Unlike the Unix equivalents,

atime does store last access time by default. Typically, atime stores the creation time of the

object. The write time for the header chunk is then the greater of either the ctime or mtime,

ignoring the effects of caching which appear to be negligible in practice. The block’s write

time is bounded by the oldest and most recent header write times.

88



0

400

800

1,200

0 20 40 60
Age of Block (Days)

N
um

be
r 

of
 B

lo
ck

s

Dell XCD28

Dell XCD35

HTC Evo 4g

HTC Legend

HTC Wildfire

Huawei 8500

Huawei Ideos

Sony Experia x10
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When a block does not contain any header chunks, we have to estimate the write period

using adjacent blocks. For example, consider blocks b1, b2, b3 with sequence numbers

1, 2, and 3 respectively. Assuming, we already have write period estimates for b1 and b3

(calculated using the header chunks). The sequence numbers give us the write order for the

three blocks. In other words, b2 must have been written after b1 but before b3. Therefore,

the write period of b2 must be between the last write of b1 and the first write of b3.

In practice, we observe that some header chunks used seemingly inconsistent timestamps,

e.g., some headers stored a modification time that was before the object’s creation time.

This is due in part to garbage collection, as we discuss further below. To avoid this issue,

we only use timestamps from newly created objects. Focusing solely on new objects does

not represent a limitation as phones frequently create new and temporary files. We can find
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newly created objects by looking for expired headers such that the header is the oldest chunk

found for an object and the number of bytes listed in the OOB field is zero.

Figure 4.6 shows the block ages for the pre-owned phones. We calculated the block age

relative to the age of the most recent block of each phone. For the HTC Evo 4g 37% of the

blocks were over 60 days old. Across all phones, half of all blocks were older than 14 days,

and a quarter were older than 34 days.

4.5.5 Garbage Collection

Yaffs periodically copies current chunks to new blocks, freeing the original block for

deletion. These chunks are copied exactly, so any moved header chunks will retain their old

timestamps. Consequently, chunks moved due to garbage collection may appear to be newer

than they actually are. For example, imagine the most extreme case in which a data chunk is

written early in the phone’s life, but always remains current because the file it belongs to

never changes. Over time that chunk will be moved to new blocks as the result of garbage

collection with each subsequent block having a higher sequence number. In other words,

there may be a significant difference between when a chunk was written to a given block

and when the chunk was originally written.

Because blocks sequence numbers are always incremented, we can estimate the rate of

block deletion and garbage collection by looking at the missing sequence numbers in the

image.

4.5.6 Inferring Yaffs Parameters

Before we can analyze the Yaff image, we have to infer the important Yaffs parameters

that may be different for each phone. For each phone image we need to infer the block size,

chunk size, OOB size, and OOB tag offset. Knowing the OOB tag offset enables us to parse

the Yaffs metadata store in the OOB, e.g., the block sequence number and object identifier.

This OOB offset is not directly controlled by Yaffs. We can quickly determine this offset

by comparing the OOBs for different headers of the same file object. For the same object,
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the object identifier should remain consistent across different header chunks. This approach

relies on file objects that are unlikely to have been deleted, e.g., the contacts database.

To estimate the Yaffs parameters, we scan the image for header chunks belonging to

a file known to be on the image. For example, the contacts2.db file is present on most

Android phones. We repeat the scan assuming a variety of different parameter values. The

most likely parameters are those that produce the most valid file headers. In practice, all of

the phones we examined used a chunk size of 2048 bytes, an OOB of 64 bytes, and a block

size of 64 pages; however, we saw at least three different OOB offset values.

4.6 Related Work

In addition to DEC0DE and Bulk Extractor, LIFTR is related to prior work in acquiring

physical images from mobile phones [123,147,150] and Android file system analysis [47,

137].

Park et al. [114] propose a technique for clustering and recovering fragmented SQLite

records of the same file residing in expired pages, without parsing or recreating the underly-

ing file system. LIFTR could be used to augment their technique.

Beebe et al. [7] implement an unsupervised learning algorithm for clustering results from

simple text search queries on raw data, using self-organizing neural networks. In contrast,

LIFTR is a supervised approach, and would complement their mechanisms.

Foster [51] proposes a file system independent technique, sector hashing, for identifying

if a target file was ever present on a storage device. The work does not target user-generated

information.

Marturana et al. [100,101] use machine learning models to determine if copyright-

infringing data or child abuse materials are present on a mobile device. Such models are

more difficult to train in a general setting, where the investigator is interested in user-specific

details which typically lack distinctive features.
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4.7 Summary and Conclusions

We proposed the use of relevance feedback to quickly pinpoint information relevant to

an investigation. Our system, LIFTR, addresses a major issue limiting current forensic triage

techniques: only a small fraction of the information returned by recovery engines is relevant

to an investigation.

When applied to smart phones, the recovery engines returned hundreds of thousands

of results, most of which were irrelevant. LIFTR overcomes this limitation by finding

those pages that are most likely to contain useful information, getting feedback from

the investigator, and using that information to rank the results. Further, we show how a

small amount of background information about a suspect can greatly improve LIFTR’s

performance.

Our evaluation was performed using Android phones from a variety of makes and models.

We tested LIFTR with three different recovery engines, each differing significantly from the

others in its inference approach. Our results demonstrate that feedback on as few 20 NAND

pages is more than sufficient to identify the top 100 most relevant pages out of the hundreds

of thousands of false positives returned by the recovery engine.
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CHAPTER 5

CP TRAFFICKING ON P2P NETWORKS

In Chapters 3 and 4 we discussed the first of two important forensic scenarios: mobile

phone triage. In this chapter, and in Chapter 6, we focus our attention on another: network-

based investigations.

Law enforcement has limited resources to investigate and prosecute crimes. Unfortu-

nately, the extent of criminal activity often exceeds police capabilities. Such is the case with

contraband trafficking on peer-to-peer networks.

5.1 Introduction

Peer-to-peer (p2p) networks are the most popular mechanism for the criminal acquisition

and distribution of child sexual exploitation imagery, commonly known as child pornography

(CP)1. Investigating CP trafficking online is critical to law enforcement because it is the only

effective proactive2 method of finding persons, known as contact offenders, who directly

and physically abuse children. A previous study found that 16% of investigations of CP

possession ended with discovering contact offenders [157]. These investigations have two

primary goals: to stop the distribution of CP; and to catch child molesters and help children

that are being victimized, often by family members.

Numerous studies of p2p networks have explored the availability, performance, and

traffic characteristics of file sharing. Unfortunately, no study of copyrighted movies or

1These are not “sexting” crimes by late teens: 21% of CP possessors have images depicting sexual violence
to children such as bondage, rape, and torture; 28% have images of children younger than 3 years old [157].

2This method is proactive in that law enforcement is not waiting for someone, a third-party or the victim
(if old enough to speak), to come forward and report the abuse.
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music provides any assistance to law enforcement seeking to arrest CP perpetrators, discover

sexually abused children, or inhibit the trade of images of exploitation. These past works

are neither performed within nor evaluated under the constraints and goals of criminal

investigations. The study we present in this chapter is based on methodology sufficient for

court scrutiny3, makes specific recommendations for law enforcement strategy, and provides

an empirical characterization suitable for goals ranging from informing sentencing hearings

to setting national enforcement priorities.

The fundamental problem faced daily by CP investigators is triage4. Over a one year

period, we observed over 1.8 million distinct peers on the eMule p2p network and over

700,000 peers on Gnutella, from over 100 countries, sharing hundreds of thousands of files

verified as CP. We observed that the majority of CP files are shared by a relatively small

set of aggressive users, but a smaller set of files are shared so redundantly that their daily

availability is guaranteed. While most CP files are only available for a short amount of

time (only about 30% are available for more than 10 days of the year), there are at least

tens of thousands of unique CP files available on p2p networks for download each day.

These quantities cannot be addressed by investigators in an ad hoc fashion. In other words,

investigators need clear and effective strategies for prioritizing their limited resources.

Accordingly, we examine (i) methods of target selection designed to reduce content

availability (an NP-hard problem); and (ii) an empirical justification for focusing on sub-

groups of peers that are the most aggressive, in terms of their duration and scope of activity,

volume of shared content, or attempts to escape attribution. Our key contributions are as

follows.

• We propose and evaluate three strategies for prioritizing law enforcement resources

in investigating CP trafficking. We conclude that removing peers with the largest

3The data in this study formed the basis of 2,227 search warrant affidavits.

4See Chapters 3 and 4 for a discussion of triage in the context of mobile phones.

94



contributions (a weighted measure of days of uptime and files made available) is most

effective, but with Pareto-like diminishing returns.

• We examine subgroups of aggressive peers, such as peers seen using the Tor anonymity

system, peers on multiple p2p networks, and four other subgroups. We find that all

appear to be more active in their trafficking, having more CP files and more uptime than

the average peer sharing CP. These aggressive subgroups deserve priority in investigation

over millions of other potential targets.

• We find that offenders using Tor use it inconsistently. Over 60% of linkable user

sessions send traffic from non-Tor IPs at least once after first using Tor, thus removing

its protection; over 90% of sessions observed on three or more days fail likewise. This

result not only speaks broadly to the failure of Tor in practice; it shows that, fortunately,

investigators need not employ complicated, theoretical attacks on Tor users that share

CP.

• We examine our dataset for evidence of users purposely aliasing as multiple peers on the

network to hide their actions. We find little evidence, on a day-to-day basis, to suggest

that users are changing their application-level identifiers but keeping their libraries.

Our findings are based on a partnership with over 2,000 U.S. law enforcement officers

nationwide to collect data on CP trafficking. To enable our study, our group built several

tools for conducting forensically valid investigation of these crimes. All investigators

completed multi-day trainings on the tools, and collected evidence with the expectation

that a court would examine the data. These tools are now in daily use in all U.S. states

and several other countries. As a result, thousands of persons, many of whom had directly

abused children, have been arrested for these crimes.

5.2 Criminal Investigation

The highest impact research in criminal forensics works within, and is evaluated under,

the constraints and goals of investigations. In this chapter, we follow that principle, rather
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than presenting a set of isolated, exploratory characterizations of users. See Section 2.2 for

a review of the U.S. legal constraints on criminal investigation.

Arrests in these criminal cases are typically not based on the network-acquired evidence.

They are based on the fruits of the search and the person identified as possessing the

contraband materials. There is no notion of a false positive of a person during a search; only

that the search itself was barren of evidence. Investigators and warrant-issuing judges prefer

to minimize as much as possible the number of such ineffectual searches, but they are not

impermissible.

Because of pre-warrant restrictions, there is nothing in our data collection methodology

that is secret or hidden. We have no special agreement with law enforcement, other than

their identification, by hash value, of known files of interest. We log and analyze only what

is available to any member of the public and research community.

Finally, we note that our work follows a forensics model and not the traditional security

attacker model. Our techniques can be applied very successfully even though there exist

many ways to defeat them. But as we show, many people do not attempt to hide. We

identified over 1.8 million eMule GUIDs (globally unique identifiers), with many sharing

multiple CP files. Each such shared file matches a list of known CP, identified by a

cryptographic hash. Not one of the 1.8 million took the time to change a single bit of the

file and thus the hash. Why? We can only speculate, but changing the file hash serves little

purpose when the file names already contain sexually explicit terms, intentionally named for

easy discovery by other peers.

5.3 Forensic Measurement

This study is based upon the analysis of a large number of observations of CP files on

p2p networks, and the behavior of the peers that share them. In this section, we describe the
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Network Date Range Files GUIDs Records
Gnutella (FOI only) 10/1/2010 – 9/18/2011 139,604 775,941 870,134,671
Gnutella Browse 6/1/2009 – 9/18/2011 87,506,518 570,206 434,849,112
eMule (FOI only) 10/1/2010 – 9/18/2011 29,458 1,895,804 133,925,130
IRC (no file data) 6/2/2011 – 9/18/2011 N/A N/A 7,272,739
Ares (no file data) 5/31/2011 – 9/18/2011 N/A N/A 17,706,744

Table 5.1: All datasets are observations of CP activity only, but IRC and Ares data do not contain
information about files or GUIDs. Except when otherwise stated, a record corresponds to a law
enforcement observation and contains date, time, IP address, application-level identifier, geographic
location as determined by an IP geolocation database, and a file hash.

sources of these datasets and provide salient details relevant to our analysis. In Section 5.7,

we identify sources of bias in the data and potential limitations of our study.

Most previous studies of p2p networks have taken place over just several days [72,73],

several weeks [84], or a few months [63,102,121,139]; our study is comprised of thousands

of observations per day for a full year. This duration is especially critical in the context of

criminal investigations; scientific studies of crime are often submitted as supporting facts

during trial and sentencing.

Our focus is on files of interest (FOI), which include CP images, as well as stories,

child erotica, and other collections that are strongly associated with this crime. We logged

only content with hash values matching, by cryptographic hash, a list put together by law

enforcement by visual inspection.

5.3.1 Background

This chapter is based on data collected with the help of national and international law

enforcement. Starting in January 2009, our group began deploying a set of forensic tools to

investigators in the U.S. and internationally for online investigation of p2p CP trafficking.

Prior to our collaborative efforts, the standard method for online CP investigation was to

make isolated cases: leads were not shared among agencies or officers, other than by phone

or email. Officers leveraged their own experience to prioritize suspects.
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5.3.2 Tools

The suite of tools built by our group, called RoundUp [91], has enabled seamless sharing

of public view observations of online CP and associated activities on various filesharing

networks. The shared data, collected in order to make these cases, provide each investigator

with a longitudinal view of CP offenders and provide a method of triage for selecting targets

for further investigation; and of course, the data enable this study. Because over 2,000

investigators have been trained on our tool to date, and because it is in use by hundreds of

investigators daily, the aggregate set of observations we have used for this study is incredibly

detailed. The tools are still in use, and currently, law enforcement execute approximately

150 search warrants nationwide per month based on data collected using our tools. We do

not, however, present search warrant or arrest data in this study5.

5.3.3 Datasets

Our datasets, summarized in Table 5.1, include law enforcement observations from

Gnutella and eMule p2p networks. The Gnutella and eMule datasets span a one-year period

from October 1, 2010 to September 18, 2011. Each record in these datasets corresponds to a

law enforcement observation of a particular peer making available one or more FOI, and

minimally contains date, time, IP address, application-level identifier, geographic location

as determined by an IP geolocation database, and a file hash.

Most file sharing protocols include an application-level identifier unique to an installation

of the application. In both Gnutella and eMule, these identifiers are persistent across users’

sessions, and are referred to as GUIDs (globally unique identifiers). Peers on these networks

are uniquely identified by their GUID, and we use peer and GUID interchangeably to

identify unique running instances of the corresponding p2p software.

All FOI are uniquely identified using hash values; law enforcement manually classify

files as FOI from a variety of sources, such as post-arrest forensic analyses. An enormous

5Our study’s procedures were approved by our Institutional Review Boards.
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number of such FOI are shared on Gnutella and eMule. Respectively, there are 139,604 and

29,458 known FOI shared by 775,941 and 1,895,804 GUIDs. Our tool searched only for

FOI in a list containing about 384,000 entries; this list was updated several times over the

course of this study. It is a small sample: the National Center for Missing and Exploited

Children reports reviewing more than 60 million child pornography images and videos6.

As such, our work presents only a lower bound on the amount of activity present in these

networks.

In a limited fashion, we use two other datasets. Our IRC dataset, based on a more recent

tool that we developed, covers a four-month period from June to September 2011. The IRC

dataset is a log of IP addresses that were involved in public activity related to the sexual

exploitation of children in public chatrooms; no file observations are in this dataset. We

also use a dataset of CP-related activity on the Ares p2p network7 collected using a tool we

did not write, but collected by the same law enforcement officers responsible for all data in

this chapter. The Ares dataset contains only IP addresses and has no information about files

shared, but addresses were only logged for peers that shared known FOI.

5.3.4 Other Details

Gnutella allows a peer to be browsed and thus investigators can enumerate all files shared

by peers. Our Gnutella Browse dataset consists entirely of peer browses and includes all

files a peer is sharing, not just FOI. Some Gnutella peers cannot be browsed; we collected

only FOI data from these peers. eMule does not permit browses. Regardless, each of these

datasets includes only peers that share one or more FOI; peers without FOI were not logged.

We draw a distinction between a time-limited view of a peer’s shared files and the set

of all files with which a given peer was ever observed. We define a GUID’s library to be

the set of files that were observed being shared by that GUID on a given day. A GUID’s

6See http://www.missingkids.com/missingkids/servlet/NewsEventServlet?&PageId=4604.

7http://aresgalaxy.sourceforge.net/
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corpus is the set of all files shared by that GUID over the entire duration of the study. In

both cases, we typically only include FOI, but we make it clear when a corpus or library

includes non-FOI observed as the result of a browse.

5.4 Availability and Resilience

In investigating the trafficking of CP on p2p networks, the goal of law enforcement is to

prioritize criminals whose arrest will have the greatest impact. But the strategy to achieve

this goal depends upon the impact desired: finding contact offenders who go otherwise

unreported, finding those who create new CP, and decreasing the availability of FOI on the

network are all priorities. In this section, we focus on strategies for reducing the availability

of FOI.

Effective CP removal strategies are especially important as a means to prioritize law

enforcement’s limited resources and time. After online evidence is collected, days or weeks

of off-line processes are required in each case until an arrest is made. Additional resources

are required to go to trial. It is infeasible for investigators to arrest all users sharing CP and

remove all FOI. Investigators need a triage strategy for deciding upon which small fraction

of online leads to act.

An enormous set of perpetrators are active every day around the world. Even with

unlimited resources, U.S. law enforcement can only partially impact file availability. Our

results, discussed below, suggest the need for a coordinated international effort.

5.4.1 FOI Redundancy and Availability

Before we further discuss the implications of removing files, we characterize the redun-

dancy and availability of FOI on Gnutella and eMule.

5.4.1.1 File Redundancy Across GUIDs

Many FOI on Gnutella and eMule are not widely redundant among GUIDs within the

same network. Figure 5.1 shows the relative redundancy of FOI, which is the number
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Figure 5.1: Redundancy of FOI (files of interest) among multiple GUIDs as a CDF. Some files are
seen on both networks, but the distribution of these observations is different. The “Common on
Gnutella” line shows the CDF of these common files as seen on Gnutella, and similarly for the
“Common on eMule” line.

of GUIDs that possess and make available each file. The distribution is presented as a

cumulative distribution function (CDF), which shows on the y-axis the fraction of FOI that

are shared by at most x GUIDs. For example, 90% of files on Gnutella were shared by at

most 20 GUIDs; 99% of files were shared by at most 1,167 GUIDs; and 99.9% of files were

shared by at most 9,129 GUIDs.

Figure 5.1 also shows the relative redundancy for the subset of FOI appearing on both

networks. The set of files common to both networks is significantly more redundantly

shared on each network than the set of all files on each network. There is a high degree

of FOI overlap among the two networks: 26,136 of the FOI on the eMule network (nearly

89%) were also seen on the Gnutella network, and 97% of Gnutella GUIDs were observed

with at least one file that can be found on the eMule network. The overall low redundancy

of most files suggests the strategy of prioritizing the investigation of users who possess a
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Figure 5.2: CDF showing the days available per FOI (during 353 days for Gnutella and 329 days for
eMule). As in Figure 5.1, the “Common on Gnutella” line shows the CDF of files common to both
networks as seen on Gnutella, and similarly for the “Common on eMule” line. The “Common on Both”
line shows these common files available on either network on any given day.

large amount of less redundant FOI in order to remove it from the network and prevent its

proliferation. An easily intuited proxy for this measure is to target GUIDs who possess large

corpora. Since most FOI are relatively less redundant, the GUIDs with the largest libraries

likely have the most FOI with low redundancy.

5.4.1.2 File Availability Across Days

We say a file is available on a given day if at least one peer is sharing that file on that

day. This approach is simple in that it does not take into account bandwidth and reachability

considerations, which are difficult to measure globally. We do not expect this definition to

limit the applicability of our results, as the assumption of high bandwidth and reachability is

conservative from the perspective of law enforcement.
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Figure 5.2 plots the availability of FOI as a CDF on a semi-log scale. Gnutella files

tend to have lower availability than eMule, with 80% of files available for more than one

day; about 30% are available for more than 10 days; and about 5% of files are available

for more than 100 days. Generally, files that are available for a single day are unique to a

specific GUID; files that tend to have longer availability are possessed by many GUIDs, not

all of whom are online on a given day. Again we see that the files that are common to both

networks are more available than is typical on each individual network: about 30% of these

common files are available for more than 100 days. We have also calculated that on a daily

basis, an average of 9,712 distinct files are available, with a peak of 32,020 files during our

study.

5.4.2 Law Enforcement Strategy

Our law enforcement model is as follows. Investigators have a global, historical view of

GUIDs and their corpora, including known FOI and other files. Investigators look to reduce

FOI availability, by arresting the users that correspond to peers and removing their corpora

from the network. Investigators aim to remove files from the network completely.

Content can be removed from these networks only by arresting users and taking their

shared libraries offline, as the protocols and implementations inhibit falsifying or polluting

content (using hash values). Our goal is to find out which peers should be removed such

that we minimize the number of files that are available at least one day.

In Section 5.8 we show that this problem is NP-Hard. Here, we evaluate four greedy

heuristics aimed at reducing the availability of CP by removing peers. Our evaluation

consists of removing subsets of peers from the data and examining the effect on availability.

Specifically, we examine the following heuristics: (i) removing peers that were observed

most often, i.e., largest number of days observed; (ii) removing peers with the largest corpus

size; (iii) removing peers with the largest contribution to availability (as defined below); and

(iv) removing peers selected randomly, as a baseline. For an arbitrary file on an arbitrary
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Figure 5.3: The remaining fraction of FOI available at least one day given a percentage of GUIDs
removed according to different heuristics: random, number of days observed, corpus size, and
contribution to file availability on Gnutella and eMule. We removed the top 0.01, 0.1, 1, and 10 percent
of GUIDs according to each heuristic. In Gnutella, the Corpus and Contribution heuristics achieve
equal results when 0.113% of GUIDs are removed. Also shown is the impact of removing 100% of
peers with 10 or fewer FOI, and 100% of peers in the U.S.

day, n peers possess that file. We say that each peer provides a file-contribution of 1
n th of

that file. A peer’s contribution to file availability is the sum of the file-contributions of the

files in their corpus over the duration of the study.

An alternative measure of availability is daily redundancy, the number of peers that

share a file on a specific day. The algorithm to optimally reduce the maximum redundancy

over all files shared is simple: remove the peers with the largest corpus size first. It is unclear

that minimizing redundancy, unless it is to zero (equivalent to unavailability), is useful or

effective. To evaluate the effect of reducing redundancy to a small value, we would require

reachability, bandwidth, and propagation models of the underlying p2p overlays. Thus, we

do not consider daily redundancy further.
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5.4.2.1 Comparison of the Efficiency of Heuristics

Figure 5.3 compares the effectiveness of each of the above heuristics. Interestingly,

removing the peers that were seen the most often has almost no effect on the availability of

FOI. Removing peers by either contribution or corpus size is most effective; these measures

are correlated, so their similarity in performance is unsurprising.

The vast majority of files are shared only by a relatively small set of prolific GUIDs.

Consider Gnutella (similar trends hold for eMule): If we remove the top 0.01% of 775,941

GUIDs as determined by corpus size, only 59% of the known FOI remain available in the

network. In other words, 41% of the unique files on the network are made available by a

group of only about 80 GUIDs. The top 0.01% have 3,242 distinct FOI on average, with

the top peer possessing about 25,000 FOI. Most of these files, however, are only available

for a relatively short amount of time; as Figure 5.2 shows, only 28% are available for more

than 10 days during our study. Some of this is due to the relatively low number of days

these high-contributing GUIDs were observed; this also explains the failure of the observed

days heuristic. These prolific GUIDs have a worldwide presence. Removing them requires

tremendous multi-national cooperation as we discuss below.

5.4.2.2 Impact of Geography on Availability

Our data are mostly based on the efforts of U.S. law enforcement, and the files they are

looking for are arguably tuned to U.S. perpetrators. As law enforcement agents are limited by

jurisdiction, the locational diversity of these users provides a resistance to the straightforward

approach of prioritizing them. Only a small majority of top Gnutella GUIDs (by corpus

size)—57 out of 100—are located in the U.S. The rightmost bar (“All U.S.”) in Figure 5.3

shows the reduction in availability if we restrict our removal to U.S. GUIDs (that is, GUIDs

with an IP located in the U.S.) only. Note that we remove all such GUIDS in our analysis, a

clearly infeasible approach in practice. Just 30% of files are unavailable (internationally)

after removing all GUIDs in the U.S.; removing just the top 0.01% internationally (a group
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Figure 5.4: CDF showing the corpus size per GUID, for various measurement types. The black line
(“Gnutella Browse GUIDs”) show the corpus size distribution for all files seen at GUIDs whose libraries
were browsed, and the corresponding green line shows the distribution of FOIs within those browses.
The other two lines show all FOI observed in any manner. (n.b., eMule does not allow browses.) Most
GUIDs have very few files in their corpus.

of about 80 GUIDs) has a similar effect, suggesting the utility of a coordinated international

approach.

Within the U.S., the problem is similarly large in scope. The top 5% of GUIDs in the

U.S. comprises a set of 14,410 GUIDs, each with a corpus of at least 40 known FOI. Due to

the weeks of manual effort required for each arrest, the limited resources in the U.S. allow

for 3,100 arrests per year for both offline and online offenses [146].

5.4.2.3 Impact of Low-Sharing GUIDs on Availability

A large portion of GUIDs have comparatively few files. As shown in Figure 5.4, about

82% have 10 or fewer FOI. There are several reasons peers may appear to have few files.

They may have files that are CP, but are not yet known to be FOI. They may be downloading
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FOI and not subsequently sharing them. They may have downloaded the files incidental to

other activities. Finally, they may simply be sharing a smaller library. We expected removal

of such low-sharing users to impact file availability significantly, since very many peers

possess few files. Contrary to our expectations, removal of these GUIDs sharing few files has

essentially no effect on file availability, as shown in the second-rightmost bar in Figure 5.3

(“≤ 10 FOI”). This result provides further evidence that file availability depends primarily

on those GUIDs with the largest corpora, though it does not consider the contribution to

redundancy that these low-sharing GUIDs provide.

5.5 Comparing Aggressive Peers

In Section 5.4, we show that strategies for removing content from the entire ecosystem

must target offenders from all countries. In the absence of a unified effort—and no such

collaboration exists—investigators need a triage strategy. In this section, we characterize

triage metrics for local investigators. Ideally, investigators would target the most dangerous

offenders: those that are personally, physically abusing children. Unfortunately, such

information is typically not available until months or years after arrest [18,145].

In lieu of that ideal, local investigators can target peers that are the most aggressive

offenders: peers that exhibit greater evidence of intent [80] beyond the average case, which

is an important practical legal concern. This includes peers such as those that are online

for the longest duration and share the largest number of FOI. Similarly, investigators may

target offenders that are conduits between p2p network communities (e.g., by sharing on

both eMule and Gnutella), or offenders that seek to escape detection and justice by using

Tor or network relays.

We quantify the activity of six subgroups of aggressive peers sharing FOI. We character-

ize the contribution of each subgroup to the duration of CP availability and the amount of CP

content. The subgroups are: (i) the top 10% of GUIDs sharing the largest corpora; (ii) the

top 10% of GUIDs seen sharing FOI the most number of days; (iii) the top 10% of GUIDs
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Identifier Network
Gnutella eMule

All GUIDs 775,941 1,895,804
Multi-Network GUIDS 84,925 (11%) 147,904 (7.8%)
Tor GUIDs 3,666 (0.47%) 16,290 (0.86%)
Tor GUIDs (> 2 days) 2,592 (0.33%) 11,998 (0.63%)
Relayed GUIDs 76,478 (9.9%) 78,223 (4.1%)
Top 10% Observed 84,235 (11%) 190,797 (10%)
Top 10% By Corpus 77,782 (10%) 189,951 (10%)
Top 10% By Contr. 77,595 (10%) 189,581 (10%)

Table 5.2: Sizes of each GUID subgroup. Definitions of each subgroup appear in this section.

ranked by the contribution metric defined in Section 5.4.2; (iv) the set of GUIDs sharing

FOI on at least two p2p networks (linked by IP address); (v) GUIDs that use a known Tor

exit node; (vi) GUIDs sharing FOI that use an IP address that we infer to be a non-Tor relay.

Our results show that all of these subgroups are more active than a group that consists of

all peers that we observed. The exception is the subgroup of GUIDs using non-Tor relays, as

we explain below. The differences of each subgroup to the set of all GUIDs are significant

(p < 0.001).

Below we provide characteristics of each subgroup, and details of the behavior of each.

For example, we show that GUIDs using Tor to share FOI use Tor irregularly, and therefore

their true IP addresses are easily identifiable.

5.5.1 Peer Subgroups

The size of each subgroup is shown in Table 5.2. The size of the top 10% by corpus and

observed days subgroups are slightly larger than 10%. This variability is due to ties in the

ranked lists of GUIDs. We include all such GUIDs to avoid arbitrary tie-breaking.

5.5.1.1 Top 10% Groupings

Users can actively participate in p2p networks in two primary ways: by contributing

a large number of files or a large amount of time. For example, one peer may share 100

files for a single day, and another may share a single file for 100 days. In the first case, the
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Network IP Addresses
Total Private Tor

Gnutella 3,025,530 32,195 7,357
eMule 5,643,350 1,256 21,025
Ares 1,714,894 225 1,799
IRC 88,658 245 746

Table 5.3: Number of IP addresses per network observed sharing FOI. In the case of IRC, the IP
addresses correspond to clients observed in public chat rooms related to child sexual exploitation.
The Tor column refers to the number of distinct public IPs where Tor-using GUIDs were seen, including
but not limited to known Tor exit nodes.

Networks IP Addresses Intersection
A B %A A∩B %B

Gnutella ∩
eMule 6.8% 199,824 3.1%
IRC 0.1% 3,562 4.1%
Ares 1.0% 30,596 1.8%

eMule ∩ IRC 0.1% 4,654 5.3%
Ares 0.9% 56,921 3.3%

IRC ∩ Ares 2.1% 1,813 0.1%
Intersection of all 308

Table 5.4: Overlap of IP addresses across multiple networks, excluding Tor IPs and private IPs. A
small but significant set of IPs were seen across multiple networks, indicating particularly active users.

content is large but other peers have only a limited time to take advantage. In the second

case, the content is small but other peers will find it easier to gain access to the content. It

is vital for investigators to address both types of activity; the contribution metric balances

these two concerns.

For these reasons, we create three subgroups corresponding to the 10% of GUIDs with

the largest corpora of files (F ), the 10% with the most days observed online (D), and the

top 10% of GUIDs when ranked by the contribution metric (C ). There is substantial but

not overwhelming overlap among these subgroups. The overlap in Gnutella, as defined

by Jaccard’s index, J(A,B) = |A∩B|
|A∪B| , is J(C ,F ) = 0.51 and J(C ,D) = 0.28; the eMule

subgroups overlap similarly.
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5.5.1.2 Multi-Network Peers

Law enforcement are interested in users that are active on multiple p2p networks. Such

users are more aggressive in terms of assisting in the distribution and availability of content

to two communities, possibly acting as a bridge. We identify the set of GUIDs in Gnutella

that are active in another network by finding all IP addresses in our Gnutella dataset that

also appear in any of our eMule, Ares, or IRC datasets, and correspondingly in eMule for

those that appear in any of the Gnutella, Ares, or IRC datasets. We refer to GUIDs in these

sets as multi-network GUIDs.

The total number of IPs addresses, private IPs8, and IPs used by GUIDs that also used

known Tor exit nodes that we observed for each of these networks is shown in Table 5.3.

Generally, private IPs are the result of sub-optimally or misconfigured end-user applications,

as opposed to indicating privacy awareness. In contrast, Tor use indicates privacy-aware

users. Table 5.4 shows the size of each pairwise network overlap. For all such intersections,

we first remove private IPs and Tor exit nodes (as listed in the Tor consensus files9). Of all

network pairs, the Gnutella-eMule overlap is the largest.

The union of all three intersections comprises our 84,925 GUID multi-network subgroup

for Gnutella. We perform a similar calculation for eMule, resulting in 147,904 GUIDs.

5.5.1.3 Peers that Use Tor

Peers that use Tor are of interest to law enforcement because they are actively masking

their identities, thwarting investigations of this crime. Tor does not filter application-level

data: GUIDs are passed through to investigators, and thus appear in our dataset as well. We

define a GUID as a Tor GUID if it was ever observed as having an IP address listed as a Tor

exit node in the Tor consensus for the date of the observation. When a Tor GUID’s IP is a

8Private IP addresses are those which are non-routable on the public Internet, self-assigned, or otherwise
invalid, as defined by RFC 5735.

9Consensus files contain the list of IPs addresses acting as exit nodes on a daily basis; see https:
//metrics.torproject.org/data.html
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Figure 5.5: CDF of Tor usage per GUID for eMule. GUIDs do not use Tor consistently after first being
observed at a Tor IP. Under 40% of Tor GUIDs consistently used Tor after first being observed using it.
When considering only Tor GUIDs seen on >2 days (which comprise about 70% of all Tor GUIDs),
the rate falls to below 10%. The Gnutella data show similar characteristics.

known Tor exit node we say that the GUID is using Tor. As Table 5.2 shows, this set is not

large on either network: 3,666 GUIDs for Gnutella and 16,290 GUIDs for eMule.

It is striking that the vast majority of Tor GUIDs do not use Tor consistently, which

makes it possible to detect their true IP address. In Figure 5.5, we show the CDFs of overall

Tor usage. In both networks, only about a quarter of the Tor GUIDs used Tor every time

they were observed. More significantly, for these GUIDS, under 40% consistently use Tor

after their first use of Tor.

When we examine these 40% of nodes that used Tor consistently, we found that most

were observed on the Gnutella and eMule networks for only one or two days. Therefore,

we recomputed the distribution of Tor usage for the subset of Tor GUIDs observed three or

more days, which is over 70% of all Tor GUIDs. We again also computed the CDFs of Tor

usage after first using Tor. The resulting CDFs are the upper lines in Figure 5.5. In sum,

111



over 90% of GUIDs using Tor for more than two days on eMule and Gnutella are easily

linked back to a non-Tor IP address, one that is most likely their real location.

This irregular use could be due to ignorance of how Tor works, careless configuration,

or frustration with the lower throughput of Tor. It is well known that Tor’s design does

not offer technical protection to p2p users because it does not hide identifying application-

level data [99]. In contrast, we provide the first empirical evidence that Tor users do not

use the software consistently, even those with a strong reason to so. Regardless of the

quality of Tor’s security, this evidence strongly suggests that its usability (its interface, its

effects upon perceived speed, or some other factor) is lacking. We conclude that the use

of Tor, as observed in practice, poses only a small hurdle to investigators. Reports by the

Tor developers that “Journalists use Tor to communicate more safely with whistleblowers

and dissidents”10 should give one pause, as there is no evidence that those groups are

significantly more or less tech-savvy than the users we study.

5.5.1.4 Peers that Use Suspected Relays

The final subgroup we identify is a set of peers that are using IPs that we suspect are

relays (other than Tor exit nodes). To create this subgroup, we first collected the set of

non-Tor IP addresses used by GUIDs that also used a Tor exit node. We discard the IPs that

hosted fewer than four GUIDs (267,035 in the case of Gnutella, and 1,671,419 for eMule),

and we nominate the remaining IPs as potential relays. Finally, we create the subgroup of

relayed GUIDs as the set of GUIDs seen using the potential relays. We cannot validate these

GUIDs as having definitely used relays; for example, it may be the potential relays are IP

addresses that get reassigned frequently. However, we consider their use of these shared IPs

sufficient to define them as a distinct set.

10Quoted from https://www.torproject.org/about/overview.html.en
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Figure 5.6: Characterizations, as CDFs, of per-GUID corpora and days observed for eMule and
Gnutella. The aggressive subgroups, sans relayed, appear to be more active in their trafficking, having
more FOI and uptime than the average peer sharing FOI.

5.5.2 A Comparison of Peer Behavior

There are substantive and statistically significant differences among the subgroups in

terms of per-GUID corpora and number of days observed. These differences can be seen

in Figure 5.6 and are summarized in Table 5.5. In particular, the subgroups generally

have a larger corpus size and more days observed online than the set of all GUIDs. The

three top-10% subgroups show this effect most strongly, but the Tor subgroup and multi-

network subgroups show similar effects. Notably, these latter two subgroups are selected

independently of corpus size and days online. This result confirms a hypothesis that tech-

savvy groups, whether through Tor or multi-network use, are more active.

113



The set of GUIDs in the top 10% contribution subgroup represent a combination of the

other aggressiveness metrics. This result can be viewed by comparing CDFs in the figure, or

by comparing means in the table. For example, the top 10% contribution subgroup’s mean

corpus size is higher than the top 10% observed, and its mean number of days observed

is higher than the top 10% corpus subgroup. The contribution metric could easily be

parameterized to weight observations more heavily, though we do not show such results

here.

The relayed subgroup in general has larger number of FOI than the all group, and appears

online more days on average than the all group in eMule. However, the relayed subgroup

shows fewer days observed online than the all group in the Gnutella network. This result

suggests that either this subgroup, as we’ve defined it, is not particularly active, or that our

process for identifying non-Tor relays is faulty. It may also be that the peers in the relayed

subgroup are more successful at aliasing themselves as different GUIDs that appear on

the network fewer number of days each. In the following section, we examine the general

problem of user aliasing in this data set.

5.6 Analysis of User Aliasing

The relationship between p2p network GUIDs and real users is not one-to-one in our

dataset. In fact, it is possible for a single user to correspond to multiple, distinct GUIDs. We

refer to this phenomenon as user aliasing, and for some users it is intentional. In this section,

we examine observable user aliasing, and we also attempt to quantify its effects upon the

analyses in the previous sections. In sum, we find that GUIDs that share at least three FOI

any given day generally have distinct libraries. In Gnutella, we can compare all files shared

by a GUID, and in that case users sharing a library of at least two files are generally distinct

on a given day. We also find little evidence to suggest users are changing their GUIDs and

then continuing to share the same library or a portion of it later that day. Parallel results
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GUID Group Mean Value (99% CI)
Corpus Size Days Obs.

G
nu

te
lla

All 10.9 (10.7, 11.1) 5.2 ( 5.2, 5.2)
Tor 43.9 (39.0, 49.6) 23.4 (21.8, 25.1)
Relayed 18.9 (18.3, 19.5) 4.8 ( 4.7, 4.9)
Multi-Network 25.9 (24.9, 27.0) 10.8 (10.6, 11.0)
Top 10% Obs. 41.8 (40.7, 43.0) 28.7 (28.5, 29.0)
Top 10% Corp. 75.9 (74.3, 77.7) 16.2 (16.0, 16.5)
Top 10% Contr. 69.1 (67.6, 70.9) 19.5 (19.3, 19.8)

eM
ul

e
All 4.3 ( 4.3, 4.4) 4.1 ( 4.1, 4.1)
Tor 21.2 (19.9, 22.5) 17.4 (16.9, 18.0)
Relayed 9.2 ( 8.9, 9.6) 5.5 ( 5.4, 5.6)
Multi-Network 10.8 (10.6, 11.0) 9.5 ( 9.4, 9.7)
Top 10% Obs. 23.5 (23.2, 23.8) 22.3 (22.2, 22.4)
Top 10% Corp. 27.8 (27.4, 28.5) 18.7 (18.6, 18.8)
Top 10% Contr. 25.8 (25.4, 26.5) 19.0 (18.9, 19.1)

Table 5.5: The expected value and 99% confidence interval of each characteristic for each subgroup
of GUIDs. Each subgroup’s mean differs from the mean of the “All” group. Each such difference is
statistically significant (p < 0.001), as determined by a computational permutation test (R = 10,000).
Confidence intervals are computed by bootstrap (R = 10,000).

generally held for eMule, though without the ability to browse eMule user libraries, we are

less certain of that result.

The true user aliasing rate in our data is unknowable to us. However, the reasons for

deliberate aliasing can be enumerated: (i) if a user has two computers (or multiple accounts

on a single computer), each with an installation of Gnutella, he will control two unique

GUIDs; and (ii) a user may reinstall or upgrade their p2p client on a single computer or

otherwise modify their GUID over time. We have no way of detecting the first case from

only network data; however, the second case can be detected if the user does not alter what

files they are sharing, as the file library acts as a kind of signature for the user. It is this latter

case that we evaluate in the remainder of this section.

Most users, as identified by GUIDs, are seen with very small libraries of a single file or

two. This fact is illustrated in Figure 5.4 in Section 5.4 (and in a week-by-week breakdown

in Figure 5.16). We posit that such small libraries are not particularly differentiable. By
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Figure 5.7: Fraction of Gnutella GUIDs with unique libraries on specific days, where uniqueness is
defined as libraries that completely match. When considering libraries of at least two FOI, approxi-
mately 95% are unique. Similar results hold for eMule. When considering full (browsed) libraries, over
93% are unique.

excluding them, we can determine a lower bound on the user aliasing of type (ii) that may

be occurring.

We computed day-to-day similarities between Gnutella libraries to determine a lower

bound on user aliasing, or alternatively, an upper bound on the number of unique libraries

present in the dataset. Generally, we found most libraries to be distinct.

Figure 5.7 shows a comparison of Gnutella GUID libraries, plotting the fraction of

GUIDs with libraries that are a unique collection of files. In the upper portion of the figure,

a comparison is made of just the files of interest at each GUID; the lower portion compares

all files in the library of each GUID (from a Gnutella browse request). GUIDs that have tens

of files or more are easy to distinguish from others.

Figure 5.7 shows that in general, GUIDs with a single file are easily aliased with other

GUIDs with the same single file: only about 58% of GUIDs have unique libraries on a given
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Figure 5.8: Fraction of Gnutella GUIDs with a unique library, where uniqueness is defined as there
being no other library with a similarity greater than n. The similarity of two libraries is defined their
Jaccard index, J(A,B) = |A∩B|

|A∪B| . On most days, 90% of libraries have no more than half their files in
common.

day of our dataset. Among the 40% of Gnutella GUIDs that have two or more FOI, over

95% have unique libraries. Among the 25% of GUIDs with three or more FOI, over 99%

have distinct libraries.

Fewer aliases are present when comparisons can be made of the complete libraries, as

is possible with Gnutella browse information, by including all files, not just FOI. This is

illustrated in the lower portion of Figure 5.7. Note that GUIDs with a single FOI typically

possess more than one file, and thus they are more likely to be unique. Typically, GUIDs

seen with two or more files in their library had a unique library about 95% of the time;

GUIDs with three or more files were unique over 99% of the time.

The above data suggest that we can treat GUIDs as uniquely distinguishable when their

libraries contain at least two FOI or when we consider all files that they share. The analysis

also suggests that users are rarely if ever changing their GUID and appearing on the same
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day with the same library. They would appear as aliases if so, and if this was common, the

fraction of unique libraries would be lower.

Based on a similar analysis, we also make the claim that there is no compelling evidence

that many users are changing GUIDs appearing on the network that day and preserving only

most of their shared libraries. Figure 5.8 quantifies the uniqueness of partial and complete

libraries using the Jaccard index: J(A,B) = |A∩B|
|A∪B| . In the upper portion of Figure 5.8, we see

that for GUIDs with at least three FOI, approximately 90% of libraries have no more than

half their files in common on most days of our study. In the lower portion of Figure 5.8, we

compare all files in each GUID’s library, not just FOI. Here we see on most days, 85% of

libraries have no more than 30% of their files in common.

A limitation of our calculations above is that we compare GUIDs only within a day’s time.

We haven’t computed all-pairs, all-times equivalence or similarity among GUID libraries

across multiple days because the computation is too lengthy to handle in a reasonable

timescale for our dataset.

5.7 Measurement Limitations

The limitations of our study prevent us from providing more than conservative lower

bounds on the observable activity of CP perpetrators. First, our set of known FOI is likely

biased towards files and filenames shared by traffickers in the U.S. Traffickers in other

countries are likely underestimated by our study. Second, all of our records would ideally be

associated with a browse, in other words, a complete listing of the peer’s current files. eMule

does not support browse functionality at all, and investigators do not browse all Gnutella

peers on all days. For example, a peer may be identified as having file A on day 1 and day 3,

but that file is not seen on day 2 because the appropriate keyword or hash search was not

run. As a result, we may be underestimating the amount of CP content possessed by each

peer as well as the number of days they are online. Third, peers that are online more often
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are also more likely to be found using a search. We might be underestimating the number of

peers that are rarely online and have few files.

On the other hand, one user might have one or more installations of the p2p client

software, with each installation showing up as a different GUID. Hence, the number of

GUIDs in these networks serves as a rough upper bound on the number of users (for the

FOI we knew about).

We also note that before, during, and after the collection of the datasets we analyze, law

enforcement were and are active in investigating and arresting CP traffickers. We do not

know which peers were removed from the network, and we do not take these removals into

account in our analyses. The specific metrics we report on do not rely on linking arrested

users to a search warrant and the outcome of a subsequent trial.

5.8 Proof Sketch of NP-Hardness

We define the PEER REMOVAL problem as follows. Given a set of peers and the set of

files they shared over D days, remove at most r peers such that the number of files available

for at least one day is minimized. In other words, we minimize ∑i fi, where fi = 1 if a file i

is available from at least one peer during at least one day of the D days, and 0 otherwise.

We show that PEER REMOVAL is NP-hard by reducing the MINIMUM k-COVERAGE

problem to it. The goal of this NP-hard problem [148] is to select k sets from a collection of

n sets such that the cardinality of their union is the minimum.

Given any instance of the MINIMUM k-COVERAGE, we construct an instance of PEER

REMOVAL in LSPACE as follows. Let each of the n sets represent a peer with each element

of the set representing a file owned by him. Removing r = n− k peers such that availability

is minimized would be the same as selecting k peers such that the cardinality of the union of

their corpora is minimized.
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Figure 5.9: CDF of the fraction of GUIDs versus number of files of interest. Multi-city GUIDs do not
share significantly more FOI than the set of all GUIDs, and much fewer than Tor GUIDs. “All GUIDs”
and “Tor GUIDs” data is repeated from Figure 5.6c.

5.9 Mobility

Each IP address in our dataset is linked to a city-level geographic location using results

from a commercial service. We examined whether GUIDs that appeared in multiple cities

are characteristically different from other GUIDs within a given network. The results in this

section show that, unlike the peer groups analyzed in Section 5.5, multi-city peers do not

stand out in terms of days online or library size.

GUIDs can appear in multiple cities for several reasons. First, the user may move to

different geographic locations. Second, the user may use a remote host to which he has

have access, or he may use a relay. We can’t distinguish these two cases other than for IP

addresses that we know or believe to be relays. Therefore, our set of multi-city GUIDs does

not include GUIDs that we observed using Tor or a potential relay (see Section 5.5.1.4).
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Using this definition, multi-city GUIDs account for 81,496 GUIDs in the Gnutella network.

(We elide an analysis of eMule in this section.)

Figure 5.9 shows the number of FOI held by multi-city GUIDs. For comparison, the

same values for all GUIDs and for Tor GUIDs in Gnutella are repeated from Figure 5.6c.

The data shows that multi-city GUIDs tend to have same fraction of FOI in their corpus

when compared to all GUIDs in the network.

We also attempted to find interesting subsets of multi-city GUIDs that were repeatedly in

different cities. First, we coarsely computed the geographic diameter of the cities associated

with each multi-city GUID. The diameter is the geographic length of the diagonal of a

rectangle that covers all cities that a multi-city GUID was seen at. Specifically, we used the

haversine formula to compute distance. The red line in Figure 5.10 shows a CDF of the

distance covered by multi-city GUIDs. We can filter the entire group by, for each GUID,

ignoring IPs in cities that were visited fewer than n times. Figure 5.10 illustrates that limiting

a GUID to a subset of its cities yields no interesting subgroups.

Finally, we characterized multi-city GUIDs by the time spent in their home city, defined

the as the city a GUID was observed in most. We found that 42,761 multi-city GUIDs (52%)

are seen in their home city more than 50% of the time. Do GUIDs that are more nomadic

contribute larger libraries to the network? We have no evidence to support such a claim, as

shown in Figure 5.11. In that figure, the multi-city GUIDs are ordered by the fraction of

time spent in their home city and then bucketed in 10% increments. Each bucket contains

roughly 8,000 unique GUIDs and represents the number of files of interest in each multi-city

GUID’s corpus. The range of all boxes is between three and ten files, showing that no subset

of multi-city GUIDs appear to contribute more significantly to the network.

In sum, most users stay relatively close to their home city, and the particularly multi-city

GUIDs are no more aggressive than their single-city counterparts.
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Figure 5.10: CDF of GUIDs versus the distance covered in miles. Each line reduces the valid
locations of a GUID by only considering locations where a GUID returned to a city more than n times.
Limiting by valid cities produces no differences in behavior.

5.10 Churn

In this subsection, we evaluate the level of user churn in our data. Past works on

characterization of churn [32,63,127,139] reveal the highly dynamic nature of peer par-

ticipation in p2p systems. However, there is noticeable difference in specific conclusions

they reach, mainly due to the challenging nature of gathering unbiased data about peer

participation [139]. To our knowledge, none of the previous studies evaluate data longer

than a few weeks’ duration. Nor have they evaluated churn of CP traffickers. Consequently,

we find our analysis of churn insightful in spite of the limitations discussed in Section 5.3.

In sum, we find in our dataset that while there is high churn, there are also many GUIDs

which are consistently active in the network. We elide the analysis of churn in eMule.

Figure 5.12 quantifies the uptime and downtime of GUIDs with respect to consecutive

days seen in the data. This graph shows that most GUIDs (> 68%), when seen, are not
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Figure 5.11: A box plot showing the number of files that multi-city GUIDs are ever seen with. The
groups are created by ordering the multi-city GUIDs by the fraction of time spent within their home city
and then bucketing by 10% increments so that each box contains the same number of GUIDs. Each
box represents the semi-interquartile range, with the middle line showing the median; underlying data
is displayed as jittered semi-transparent points. No group is strikingly different from any other group.

seen on consecutive days, and that most GUIDs (> 51%) are not observed for five or more

consecutive days. This data implies that most GUIDs are only intermittently observed;

however, at any given time, a significant fraction of GUIDs’ uptimes are longer than a single

day. Stutzbach et al. [139] also observe that while a randomly selected active peer is likely

to have a long uptime, a randomly selected session is more likely to be short in the Gnutella

network. Their analysis, however, is more granular yet covering a much shorter period.

Figure 5.13 shows the correlation of the number of consecutive days that a GUID is

observed to the median number of consecutive days remaining for that GUID. The shaded

area represents the semi-interquartile range. The results show that the number of consecutive

days observed is a good predictor of future uptime. Previous studies [139] also show that
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Figure 5.12: CDF of consecutive days of up- and down-time for GUIDs, as well as per-day CDF
of days remaining in each GUID’s consecutive days seen. Downtimes are only counted when they
occurred between the first and last day a GUID was observed. > 68% of GUIDs are not seen on
consecutive days, and more than > 51% of GUIDs are not observed for 5 or more days at a time.

while exhibiting high variance, uptime is on average a good indicator of the remaining

uptime.

Figure 5.14 shows the correlation of session uptime to the median uptime of the next

session, where sessions are defined as consecutive days where a GUID was seen. The shaded

area represents the semi-interquartile range. The correlation is weak, indicating that session

lengths are likely independent. This result is in contrast to what is reported by Stutzbach

and Rejaie [139]. We attribute this difference mainly to the different file preferences of the

users and longer observation period in our dataset.
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5.11 Other Visualizations

In this subsection, we show several characterizations that expand upon figures in the

main text.

We evaluate the correlation between the corpus size of a GUID and the number of shared

files of interest in Figure 5.15. In summary, the growth in total number of files (FOI and

non-FOI) is weakly correlated with growth in the number of FOI; the fact that many peers

possess one FOI weakens the correlation accordingly.

Figure 5.16 shows the library sizes of Gnutella GUIDs over time, rather than cumulatively

(as in Figure 5.4). Figure 5.16(b) shows complete libraries, rather than only known FOI

as in Figure 5.16(a). While we have fewer data points for complete libraries than for only

known FOI, the data we do have indicate that complete libraries tend to be much larger on

average, though with greater variability.

5.12 Related Work

Ecosystems & Underground Economies. Our work is similar in theme to a body of

work exploring economic characteristics of network-based ecosystems [24,52,77,87,105].

For example, the irregular use of Tor by the peers in our dataset might be explained by

recent work showing that users abandon privacy for short-term benefits [1].

Content Availability in P2P Systems. A large body of related work on p2p systems

investigates availability, performance, and issues related to the use of incentives [27,31,

63,97,102,111,118,161]. Unlike our work, these studies mostly focus on understanding

and analyzing the unique properties of p2p networks and their users’ behavior, and do not

specifically target CP or separate aggressive subgroups.

CP Trafficking in P2P Systems. Prior studies of CP-related trafficking on the Internet

have a limited scope. They are mostly indicative of the alarming presence of contraband

rather than comprehensively quantifying how the files are being shared [72,84,121,129]. All
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previous work focused on CP (rather than copyright violations) is based on only CP-related

search terms rather than verified content [72,73,84,132,138].

The exception is our own prior work [91], where we analyze CP-related activity on

Gnutella during a five-month period with no overlap with the study in this chapter. In

that work, we show that the correspondence between IP addresses and application-level

identifiers is not one-to-one, and then propose proactive methods of differentiating the end

hosts. In contrast, our focus in this work is on reducing availability and characterizing peer

behavior.

5.13 Summary and Conclusions

The criminal trafficking of CP on p2p networks is widespread, with no easy answers for

law enforcement looking to curtail it. The diversity in peers’ location, the redundancy of

their libraries, and the many p2p networks, coupled with limited law enforcement resources,

dictate triage as a strategy. Specifically, investigators should carefully choose peers to

investigate and remove from p2p networks.

We have shown that although naive approaches to triage are ineffective and optimal

approaches are NP-Hard, tractable heuristics yield reasonable and useful results. Further,

the use of these heuristics are complemented by our discovery of aggressive subgroups

of CP traffickers, where such groups correspond to aspects of the heuristics we identified.

Prioritizing enforcement in these groups is both effective and easily understandable by LE

and policymakers alike.

Further, we have found no significant evidence of users attempting to hide by altering

their visible file libraries: peers’ libraries are largely unique, strongly implying a unique user

behind each such library. Some users do use Tor, but surprisingly, most do so inconsistently,

making the investigation of such users straightforward.
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It is an open question as to whether network-observable behaviors, such as interest in

particular types of imagery, correlate with off-line behaviors of interest to LE, such as child

molestation. We leave the exploration of this interesting question to future work.
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Figure 5.13: Correlation of consecutive days observed at a given point to the median number of
consecutive days remaining for each GUID. The shaded area represents the semi-interquartile range.
Consecutive days observed are a good predictor of future uptime.
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Figure 5.14: Correlation of session uptime to the median uptime of the next session, where sessions
are defined as consecutive days where a GUID was seen. The shaded area represents the semi-
interquartile range. The correlation is weak, indicating that session lengths are likely independent.
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CHAPTER 6

AUTOMATED PROTOCOL EXPLORATION

Developing tools for network-based investigations, such as those described in Chapter 5,

require a signification investment of knowledge, resources, and time. The tools have to be

tailored to each individual network protocol, and sometimes, to each software implementa-

tion. In addition to the initial development cost, the tools may require constant maintenance

to support protocol changes or extensions.

In this chapter, we take the first step toward automated development of tools for online

investigations. Our work focuses on using inference-based techniques to explore the behavior

of protocol implementations and search for bugs and other behaviors that an investigator (or

tool) can exploit.

Unlike the techniques we presented in the previous chapter, exploiting protocols may

not fit into the standard pre-warrant investigator model. As such, we frame this chapter from

both a forensics and a software engineering perspective. Our techniques are applicable to

both fields, as they can used by software developers to enhance the security and reliability

of their products.

6.1 Introduction

Despite significant effort and resources spent on ensuring software quality, software

systems often ship with bugs and security vulnerabilities. These vulnerabilities enable

cybercrime, which in 2010 cost $114 billion globally [141] and has affected one-third of U.S.

households [37]. Investigators can leverage these same bugs to enhance their investigations;

for instance, by de-anonymizing suspects using anonymity protocols such as Tor. However,
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finding violations against a software specification is time-consuming and difficult. On

average it takes developers 28 days to resolve a security bug [140], and new bugs are

reported faster than developers can handle them [3]. Addressing bugs is also expensive: a

recent study estimates that $312 billion is spent globally per year on debugging [20].

Testing and discovering differences between a protocol specification and its imple-

mentations is especially hard in networked software for several reasons. First, networked

communication among many peers introduces an inherent nondeterminism, and error states

are difficult to reproduce. Second, it is uncommon for different implementations to correctly

or consistently account for behavior that is undefined or unspecified in a specification.

In this chapter, we describe and evaluate APE, a system for automated testing and

detection of specification violations in networked software. Such violations can result

in unexpected behavior, incompatibility, bugs, and vulnerabilities. APE can be used in

four ways: (1) to automatically find specification violations in implementations, (2) to

automatically verify that a patch fixes a violation and that there are no related versions of the

same problem, (3) to automatically apply known exploits to a multitude of implementations

of a protocol and tweak the exploits to work on new implementations, which is particularly

useful when updates only partially fix a vulnerability, and (4) to automatically generate

behaviorally distinct, new tests. As a result, APE helps find specification violations, adapt

existing exploits, and test implementations against existing exploits.

APE consists of three stages. In the first stage, APE uses a form of network-based fuzz

testing to observe and explore a target system’s behavior, and infer a precise state-based

model of that behavior. This exploration is iterative: APE infers a model based on some

observed executions, identifies unexplored behavior, stimulates the system to execute that

behavior, and iteratively refines the model using the new observations. Accordingly, this

exploration can either start from scratch, or from partial models of behavior of similar

systems, such as other implementations or earlier versions of the target implementation.

This allows APE to both discover new exploits and to tweak existing ones to work on a new
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implementation. In the second stage, APE uses the model and a user-specified description

of a specification violation — such as “download a file without contributing any uploaded

data” — to propose a set of candidate exploits for the target system. Finally, in the third

stage, APE verifies that the candidate exploits, or other exploits encoded directly by the user,

are effective on a multitude of implementations. Given the large size of the search space of

possible behavior and that not all vulnerabilities can be discovered efficiently, we find that a

combination of automated discovery and human-driven exploit selection and specification is

most effective.

Our contributions are as follows:

• APE, an approach for automatically discovering specification violations in networked

software systems and for reproducibly creating exploitations of these violations

(Section 6.3). APE works on compiled binaries and does not require access to the

target system’s source code. Instead, the user needs to provide executable methods

for sending and receiving network messages, and a description that identifies when a

specification has been violated.

• An alternate use of APE enables (1) easily applying a known, or an APE-discovered

exploit to a multitude of implementations, and (2) tweaking exploits to discover

related but distinct exploits (Section 6.3.4). This use of APE allows the developer not

only to verify that a vulnerability has been patched, but also that there is no easy way

to circumvent the patch to re-expose the vulnerability.

• An automated method of generating tests that are behaviorally different from an

existing test suite (Section 6.3.5).

• An analysis of APE’s payload modification technique applied to two versions of

OpenSSL (Section 6.4). APE discovered and reproduced the Heartbleed vulnerability

in one version, and verified that the vulnerability was patched in the other. Further,

aided by some manual inspection of the behavioral model, APE discovered two

additional specification violations in both versions of OpenSSL.
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• An evaluation of the APE prototype that tests three popular implementations of

BitTorrent: µTorrent, Transmission, and Azureus (Section 6.5). APE discovered five

bugs and unexpected behaviors that can lead to crashes and violations of BitTorrent’s

tit-for-tat fairness mechanism.

• An analysis of the prototype’s efficiency in practice, and an exploration of the con-

vergence properties of the inferred behavioral models and the effects of several

exploration strategies (Section 6.6).

Prior work on automated behavior exploration, test generation, and bug discovery, e.g.,

ProCrawl [134], has enabled automatically exploring behavior in a guided manner. Our

work complements and builds on this prior research by targeting networked systems, and

allowing modifying messages (as opposed to focusing exclusively on method call sequences),

increasing both the search space and types of specification violations APE can discover.

6.2 Motivating Example

APE’s goal is to locate and exploit specification violations in networked software.

To illustrate how our proposed system works, we first develop a running example using

the TRACKER protocol. TRACKER is a simple client-server protocol we designed and

implemented to keep track of clients connected to a server.

The TRACKER protocol specification. Clients identify themselves to the TRACKER

server using a hello message, at which point, the server verifies the client has permission to

join the network. Whenever a client requests an update of the current set of clients, the server

responds with a list of all clients that have connected since the previous update. Clients

request and receive this information using clients request and clients response mes-

sages, respectively. Clients leave the network by sending a goodbye message. The protocol

dictates that the server announces a client as new only once per session; a session begins

with a hello and ends with a goodbye message. The server limits the number of sessions

134



-goodbye

TERMINAL

INITIAL

Model 1

+clients_response

-goodbye

-clients_request

TERMINAL

INITIAL

Model 2

TERMINAL

INITIAL

Model 0
-goodbye

Destination:
N/A

Trace 0
-clients_request
+clients_response
-goodbye

Destination:
N/A

Trace 1
-hello
-clients_request
+clients_response
-hello

Destination: 
clients_response

Trace 2

+clients_response

+clients_response

-goodbye

-hello

-hello

-clients_request

-clients_request

TERMINAL

INITIAL

Model 3

+clients_response

-goodbye

-hello

-hello

-clients_request

TERMINAL

INITIAL

Model 4

+clients_response

-goodbye

-hello-clients_request

TERMINAL

INITIAL

Model 5
-hello
-clients_request
+clients_response
-goodbye

Destination: 
clients_response

Trace 3
-clients_request
+clients_response
-clients_request
+clients_response

Destination: 
clients_response

Trace 4

Figure 6.1: APE uses models of its target’s (here TRACKER) behavior to guide exploration and
generate traces of new executions. For example, using Model 3, APE explores an execution that
generates Trace 3, which APE then uses (together with Traces 0, 1, and 2) to build Model 4. Messages
to the target are prefixed with -, and messages from the target are prefixed with +.

per client to one per day. This means that a client should at most be announced in a

clients response message once per day.

Example TRACKER implementation. Consider the following code, part of our Python

TRACKER server implementation.

1 def h a n d l e m e s s a g e ( IP , message ) :
2 i f message == ” h e l l o ” and \
3 s e l f . i s a u t h o r i z e d ( IP ) :
4 s e l f . c o n n e c t e d p e e r s . append ( IP )
5 s e l f . n e w p e e r s . append ( IP )
6 e l i f message == ” c l i e n t s r e q u e s t ” :
7 s e l f . h a n d l e c l i e n t s r e q u e s t ( IP )
8 e l i f message == ” goodbye ” :
9 s e l f . c o n n e c t e d p e e r s . remove ( IP )

The handle message(...) method is responsible for determining the server’s response

to client’s messages. This method contains two bugs that allow a client to violate the intended
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operation of the protocol. First, lines 6–7 fail to check if the client is authorized before

processing the clients request message, allowing a malicious client to receive new peer

information without authenticating. Second, a non-new client can trick the server into

thinking it is a new peer and cause the server to erroneously broadcast the peer’s presence

with the next clients response message. This happens because the server fails to check

if the client has already connected when it handles the hello message in lines 2–5, and

appends the IP to the list of new peers in line 5. We focus on the first bug.

Automatic analysis of TRACKER. APE can discover these specification violations

automatically with knowledge of only the allowed messages and without access to the

source code. Here, we give a high-level overview of how APE does so.

We refer to the implementation in which APE is attempting to discover bugs as the

target. APE discovers specification violations through automated interaction with the target

by observing how the target reacts to different messages and using these observation to learn

and explore the target’s behavior.

APE has three stages of operation, described here in the context of TRACKER: explo-

ration, candidate violation discovery, and violation verification. The descriptions in this

section are at a high, intuition-building level, while Section 6.3 describes the details.

During its self-guided exploration stage, APE tries to learn and refine a model of the

behavior of the target. To do so, APE stimulates the target by sending it sequences of

messages and observing its behavior. APE systematically chooses which messages to send,

and how to alter the messages, by using a model of what it already knows about the allowed

behavior, and perturbing previously attempted executions. This results in a form of fuzz

testing1. Whenever an execution completes, APE restarts the client and begins a new

execution with a different sequence of messages. APE logs all messages that are sent and

received during the executions, and uses this log to refine the model of known behavior.

1Fuzz testing refers to a general class of techniques wherein the tester, or fuzzer, employs invalid or random
inputs in an attempt to trigger a bug.
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APE uses Synoptic [11], an existing model-inference tool to infer a finite state machine

(FSM) model that describes the target’s behavior. While APE could instead use other model-

inference algorithms [9,10,38,42,58,94,96,110,126,134,156], our experience showed that

Synoptic model’s enforcement of temporal invariants observed during execution leads to

sufficiently precise models for APE’s purposes. Each path through the FSM model represents

an execution, in terms of the sequence of messages sent and received by APE. An important

property of Synoptic-inferred models is that they are predictive: The models include all

observed executions and predicted executions, as-of-yet unobserved, but likely to be possible

because they satisfy key temporal properties mined from the observed executions. This

allows APE to better guide exploration along previously unobserved but likely meaningful

paths. Additionally, APE probabilistically mutates these paths to create more diversity in

the exploration. APE refines its model of the target’s behavior by iteratively executing

potentially mutated paths, collecting execution traces, and inferring models based on the

observed executions. This model-based exploration is better targeted and more efficient than

the alternative fuzz testing approach of sending random sequences of network messages and

observing the target’s behavior.

APE can both discover specification violations and generate variations of known exploits

to work on new implementations. To find new exploits, APE starts its guided exploration

with an empty FSM model. To tweak existing exploits, APE starts with an FSM model of

behavior that includes those exploits, and guides the exploration along those exploits. In all

cases, the user must provide a set of vulnerability characteristics that the implementation is

expected to follow.

Figure 6.1 illustrates five iterations of the exploration process for discovering exploits

from scratch. Model 0 shows the starting FSM model, which encodes no behavior, just

two connected states labeled INITIAL and TERMINAL. The first round of exploration gen-

erates a single trace (Trace 0): sending a goodbye message (in the traces, sending is

denoted by a -, and receiving by a +) generates no response. APE improves its under-
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standing of TRACKER by using Synoptic to infer Model 1 from Trace 0. Next, using

Model 1, APE picks a path (sending a goodbye) and permutes it slightly to generate a

new Trace 1: Sending a clients request ahead of the goodbye message results in re-

ceiving a clients response message. Inferring an FSM model from the two observed

traces together results in Model 2. Repeating this process further refines the model of

TRACKER’s behavior. Note that Model 5 includes not only observed behavior, but also

predicted behavior, such as the trace: 〈-client request, +client response, -hello,

-client request, +client response, -goodbye〉. These predicted paths allow APE to

explore the target’s behavior more efficiently than by guessing randomly or through exhaus-

tive testing.

As APE explores and models its interactions with the target, it employs its second

stage, candidate violation discovery, to analyze the model for potential specification vio-

lations. In the description of TRACKER, one vulnerability characteristic provided by the

user is that clients response should always be preceded by hello. A user may be in-

terested in finding paths that do not satisfy this property, evincing a violation. Model 5 in

Figure 6.1 includes one such path: 〈INITIAL, -clients request, +clients response〉.

APE searches through the graph to find all such loop-free paths.

Whenever APE finds candidate violation paths, its third stage attempts to execute the

candidates against the target implementation. As some paths are predicted, rather than

observed, this verification step ensures the candidates are real. APE can report verified

violation exploits to the user, and generate an implementation of the tester that follows that

path of execution to exploit the violation.

If APE is given a test suite from which to generate the initial traces and model, it will

explore the target’s behavior to first generate and then verify new executions untested by the

test suite.
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Figure 6.2: A high-level overview of APE and its three stages: exploration, analysis, and verification.

6.3 APE System Design

This section provides the details of APE’s operation using the TRACKER example from

Section 6.2.

As illustrated in Figure 6.2, APE’s goal is to find specification violations in a software

system that implements a given protocol. APE has three required and one optional inputs:

(1) a binary of the target software system implementation; (2) a description of the messages

the system may send as part of its protocol; (3) a set of descriptions for identifying candidate

violations; and (4) optionally, a set of descriptions for modifying legal messages. APE does

not require access to the target system source code. APE operates in three phases. First,

APE explores the behavior of the target system. Second, APE analyzes the model to find

likely system executions that fit the violation descriptions. Third, APE follows the model to

attempt to execute each of the violations, verifying that they are real.

We begin by precisely specifying the inputs to APE (Section 6.3.1). We then describe

each of APE’s three phases of operation in detail (Sections 6.3.2–6.3.4), demonstrating
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each step on the TRACKER protocol. Finally, we describe how APE can generate tests

(Section 6.3.5).

6.3.1 APE Inputs

APE requires three inputs: (1) a binary of the target system; (2) a description of the legal

messages; and (3) a characteristic of the specification violation. Optionally, APE accepts a

fourth input: (4) a description of the ways in which the legal messages can be modified.

Target implementation binary. APE requires access to a binary of the target system

and the ability to start and stop its execution. For TRACKER, this means the command to

start and to kill the TRACKER server process.

Message definitions. APE also requires a description of the messages that can be sent

to and received from the target. The description of the messages must be sufficient for

APE to recognize incoming messages from the target, and to send outgoing messages to

the target. In our implementation, the description consists of several executable methods:

for each message that can be sent, a method that sends the message; for each message that

can be received, a method that parses the received messages and returns the event type; and

optionally, one method for each receivable message that will be called when that message

type is received.

For TRACKER, the message description consists of five methods shown in Fig-

ure 6.3: three for sending the different message types; one for handling the received

clients response event; and one for translating the received payloads into event types.

For TRACKER, this last method is trivial because we can only receive a single type of mes-

sage, clients response. To test a more complicated system, such as BitTorrent (described

in Section 6.5), a more complex set of methods may be required. Our BitTorrent executable

message description is structured similarly to the description for TRACKER, but includes the

logic and state necessary to minimally participate in the BitTorrent protocol.
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c l a s s T e s t e r P r o t o c o l ( E x p l o r e P r o t o c o l ) :
def s e n d h e l l o ( s e l f ) :

s e l f . t r a n s p o r t . w r i t e (
s t r u c t . pack ( ’ ! I ’ , 5 ) + ’ h e l l o ’ )

def s e n d c l i e n t s r e q u e s t ( s e l f ) :
s e l f . t r a n s p o r t . w r i t e (

s t r u c t . pack ( ’ ! I ’ , 15) +
’ c l i e n t s r e q u e s t ’ )

def send goodbye ( s e l f ) :
s e l f . t r a n s p o r t . w r i t e (

s t r u c t . pack ( ’ ! I ’ , 7 ) + ’ goodbye ’ )

def h a n d l e c l i e n t s r e s p o n s e ( s e l f , d a t a ) :
pass

def g e t m e s s a g e t y p e ( s e l f , message ) :
#Use t o d e t e r m i n e message t y p e

Figure 6.3: A TRACKER message types description written in Python. It has three methods for send-
able messages, one method for a receivable message, and one method to parse received messages
into their event types. The struct.pack is a standard python function, and transport.write is
provided by the Twisted [144] networking framework.

Specification violation characteristic. As a final required input, APE needs a way

to recognize when executions exploit a specification violation. APE uses the violations

description to identify which paths in the model have the potential to exploit the violation.

We present violation descriptions more fully when discussing candidate violation discovery

in Section 6.3.3.

Message modifications. Optionally, APE accepts a description of how messages may

be modified. Without such a description, APE can discover specification violations by

altering the order of legal network messages. With this optional input, APE can also

discover violations by altering the content (often called payload) of the messages. In our

implementation, this input consists of several executable methods: for each sent message

that can be modified that describes how to generate such messages.

We wrote methods that generate varied message content by specifying the fields of the

message, which fields can be modified, and how the fields can be modified. For example,
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Section 6.4 describes our OpenSSL heartbeat [66] message generator. The payload field

is a random-sized series of random bits. And the payload length field is chosen uniformly

at randomly to be either the size of the payload field, a random integer larger than the size of

the payload field, or a random integer smaller than the size of the payload field. Specifying a

finite number of values from which each field can be selected randomly is another approach

that could be implemented.

6.3.2 Exploration

The goal of the exploration stage is to interact with the target implementation and learn

how it responds to sequences of messages. The product of this stage is an FSM model

of the implementation’s behavior. The FSM has a state for each message that can be sent

or received, and two special INITIAL and TERMINAL states; the paths from INITIAL to

TERMINAL represent potential executions.

The exploration stage executes the target implementation under varying conditions, and

collects traces of the network messages sent and received during execution. APE then uses

a model-inference technique to automatically infer an FSM from those execution traces.

The FSM model is a generalization of the observed system behavior; it includes paths that

represent all the observed behavior, but it also includes more paths that the model-inference

algorithm deemed similar enough to be likely possible (although unobserved) executions.

One way to generate traces is to randomly stimulate target implementation behavior by

sending random sequences of messages, and observing how the implementation responds.

However, this unguided search through the space of behavior is inefficient. For example, if

a system requires a handshake before any interesting interaction can begin, most randomly

chosen sequences will not contribute meaningfully to behavior exploration as they will not

begin with the handshake.

To mitigate these problems, APE uses guided exploration (explained in Section 6.3.2.3).

It starts with known behavior and perturbs it slightly to increase the chances that attempted

142



executions are successful. The goal is to add meaningful information to its knowledge of the

target’s behavior with each generated trace. However, when APE starts with no knowledge

about the behavior, it is forced to use random exploration (explained next) until it learns a

little behavior and can switch to guided exploration.

6.3.2.1 Random exploration

The base case for APE is to have no knowledge of a target implementation’s behavior.

This case is represented by a model with only two states, INITIAL and TERMINAL, as shown

in Model 0 of Figure 6.1. In this case, there is no known behavior to perturb, so APE

commences random exploration.

During random exploration, APE does not attempt to follow any particular path or reach

any destination, but instead sends messages that have not been previously sent from the

current model state. To determine its current location in the model, APE examines the last k

received messages. APE finds all instances of this sequence of messages as a path in the

model; the set of states each of which is a last state in at least one of these paths (labeled

with the most recently received event) is the set of possible current states. It then chooses a

message uniformly at random from the set of messages not yet sent from the set of current

possible states. If that set of messages is empty, APE selects a message uniformly at random

from among all messages. If APE fails to find any such paths, and thus any candidate

states, it repeats the process using a value of k−1. If there are no valid candidate states for

k = 1 then APE selects a message to send uniformly at random from among all messages.

In practice, we found that k = 5 provided an adequate balance between performance and

accuracy.

Example. As explained above, the two-state initial model for TRACKER does not have

any received message events, so APE starts Trace 1 by sending a single random message, in

this example, a goodbye message. Not surprisingly, the TRACKER server does not reply to

the goodbye message and the trace terminates after a timeout (Trace 0 in Figure 6.1). APE
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then uses Synoptic (see Section 6.3.2.2) to infer Model 1 from Trace 0. Model 1 contains

just a single path from INITIAL to TERMINAL via -goodbye.

Model 1 still does not have any valid destination events, so it once again APE enters

random exploration mode. This time, it sends a clients request message, waits (using a

timeout) for a possible response, receives a clients response message, and then sends a

goodbye message (Trace 1). APE now uses Synoptic to infer Model 2 from Traces 0 and 1.

Now that the model has a valid destination event, receiving a clients response, it will

use guided exploration. We next describe model inference, and then guided exploration.

6.3.2.2 FSM Model Inference

APE uses the observed execution traces to infer a predictive FSM model. There are

many existing techniques for such model inference [9–11,38,42,58,94,96,110,126,134,156],

and it is not the focus of this work to improve on them. Instead, APE uses Synoptic because

of its precise predictive properties and previous use for manual software debugging [11].

Other model-inference techniques would likely also support APE well, perhaps presenting

certain trade-offs in exploration efficiency and effectiveness.

Synoptic infers a model by mining a set of temporal properties present in the observed

execution, such as hello always eventually followed by goodbye. Synoptic then builds a

concise model of the observed traces, and uses model checking and counterexample-guided

abstraction refinement (CEGAR) [34] to eliminate predicted paths that do not satisfy the

mined temporal properties. The end result is a precise and concise model that includes all

observed executions and predicts unobserved executions deemed likely because they satisfy

the mined temporal properties.

Representing unmodified messages in models is straightforward: each message is

represented by its name. However, incorporating messages modified via the user-specified

message modification methods is more complex as the modifications of the same message

type can either be treated as identical or distinct. APE allows for two ways to incorporate
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messages with modified payloads into the model: (1) APE can create a unique name for

each modified message instance (e.g., modified hello messages may be named hello 1,

hello 5, and hello 16). This approach’s main drawback is that Synoptic’s predictive

power is reduced because it sees similar (but slightly different) messages as completely

different, which can affect the efficiency of APE’s exploration. However, the primary benefit

of this approach is that once APE finds a candidate violation in a model (see Section 6.3.3),

the model contains sufficient information to verify it (see Section 6.3.4). (2) APE can

abstract all modified messages with a single message name (e.g., hello modified). This

approach enables Synoptic’s predictive power, but requires, once a candidate violation path

is identified, retracing the execution traces to identify which executions led to this path, and

how to recreate the executions’ modified messages. While APE supports both approaches,

the evaluation in Section 6.4 will follow the former.

Throughout exploration, APE periodically updates its FSM model using all of the

traces collected up to that point. The frequency of the model updating is configurable; for

exposition, for the TRACKER example, APE updates the model after every execution trace.

6.3.2.3 Guided exploration

APE’s guided exploration starts with an FSM model of its interactions with the target’s

behavior. Guided exploration explores along the paths already in the model, but introduces

deviations from those paths to discover new behavior. Because Synoptic’s models are

predictive — they include likely possible but unobserved behavior — both paths in the

model and deviations from those paths can produce evidence of new, unobserved behavior.

Choosing a destination. To guide its exploration, APE first selects a destination event,

uniformly at random, from among all message types that appear as received messages

in the model. In other words, APE’s goal is to coerce the target into responding with a

specific message. APE does not choose its destination from among send message types
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because sending a message to the target implementation can be achieved simply by sending

it, without exercising much of the target’s behavior.

For TRACKER, clients response is the only receivable message, and thus it is the

only possible destination. However, more complex target implementations are able to send

more message types, and present more exploration destination possibilities.

To avoid falling into local minima, with a low probability, APE forgoes guided explo-

ration and enters random exploration mode. This probability is inversely proportional to the

number of distinct event labels in the current model.

Choosing a path. After choosing a destination, APE randomly picks one of the

paths from INITIAL to one of the states that represent the selected received mes-

sage type. For example, in Model 3 in Figure 6.1, there are two possible paths

to states labeled with +clients response: (1) -clients request and (2) -hello,

-clients request. APE’s guided exploration’s goal is to guide the target to the desti-

nation state by inducing an execution along the chosen path (possibly with some deviations).

Sending messages. An execution consists of a sequence of a sets of sent events and

received events. For example, in Trace 2, APE sends hello and clients request mes-

sages, receives a clients response, and sends a hello. Using a path, APE identifies

the first set of messages it needs to send to follow that path. For each message in that

set, APE may perturb the message with a small probability. APE may randomly skip the

message entirely. If the message is not skipped, then APE may substitute a different message,

chosen uniformly at randomly from the set of all possible send messages. In practice, for

the systems and models we have used, we find that a probability of 1/11 works well for

both skipping and substitution. Once APE chooses and sends the message, it waits up to

0.5 seconds for the target’s response. If there is no unexpected response, APE moves on to

the next set of send messages in the path, following the same perturbation procedure until it

has traversed the entire path and received the destination message. APE then switches to

random exploration mode to finish the current execution and generate a new trace.
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Determining a location in the model. APE may not always receive the expected set of

messages on the path it is following. This outcome can happen because APE perturbed the

path, or because the path was predicted inaccurately by Synoptic. Whenever APE receives an

unexpected message, it attempts to reconcile that message with the current model. To do this,

APE tries to determine its current state in the model using the last k received messages, just

as it did in its random exploration mode (recall Section 6.3.2.1). If that process cannot find

a suitable state, APE switches into random exploration mode to finish the current execution

and generate a new trace.

Example. Since Model 3 contains received events, APE picks clients response as the

destination event for the new execution (Trace 3). It selects the -hello, -clients request,

+clients response path and sends the first two messages, by chance, without perturbing

them. APE receives the expected +clients response and APE switches to random explo-

ration mode, choosing to send a -hello message. The target then closes the connection.

APE then uses Synoptic to infer Model 4 from Traces 0–3.

6.3.2.4 Exploration with message modifications

If APE is given the optional description of how message content may be modified,

APE uses a two-phase approach to exploration. First, it uses standard guided exploration

(Section 6.3.2.3), without modifying any messages, to build an initial model of the target

system’s behavior. Next, it switches to the message-modifying phase: every time it sends

a message of a particular type, it uses the message modification method to generate a new

message of that type and send it. (Note that the message modification method may choose,

at times, to generate an unmodified message.)

6.3.3 Candidate Violation Discovery

After a user-specified number of trace generation and model refinement iterations, APE

takes the current model and searches for specification violations. APE uses the violation

characteristic (recall Section 6.3.1) to identify candidate violations.
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Specification violation characteristic. A violation characteristic is a function whose

input is an FSM model and output is a set of paths through the model. The intent is for the

paths expose a violation. For example, for TRACKER, this characteristic could be a function

that returns all paths that allow a peer to receive new peer information without authenticating,

which exposes the first bug in our TRACKER implementation (recall Section 6.2). However,

to simplify the use of APE, we allow for a highly simplified definition of the violation

characteristic: The user needs only to describe two conditions, (1) an ordered sequence of

states that must present in the path, not necessarily contiguously, and (2) a set of states that

must not be on the path. For example, for TRACKER, the characteristic specifies that the

violation-exposing path contains INITIAL and clients response, but does not contain

hello.

Enumerating candidate paths. Given a model and a set of candidate violation charac-

teristics, APE programmatically finds candidate paths using a straightforward graph search

algorithm. The current APE implementation removes the set of states that must never occur

on a candidate path from the model, along with all edges to or from those states. Then, APE

uses depth-first search to find all (loop-free) paths between sequential pairs of states that

must occur in the violation-exposing path. Finally, APE combines the paths between the

sequential pairs of states to produce complete candidate violation-exposing paths.

For example, for TRACKER, APE uses Model 5 from Figure 6.1 to first, remove the

-hello state and adjacent edges from the model, and second, find the only loop-free path

that contains INITIAL and a -clients response.

6.3.4 Specification Violation Verification

APE uses the target system binary to verify the candidate violation-exposing paths.

It follows the path to interact with the binary, much in the same way as it does during

exploration (recall Section 6.3.2), except without perturbing the path.
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For example, in Section 6.3.3, APE identified INITIAL, -clients request,

+clients response as a candidate violation-exposing path, so it will start TRACKER,

send a clients request message, and then wait to receive the clients response mes-

sage. In this example, the buggy TRACKER server will respond with clients response,

verifying the violation. In this case, APE reports the success as a discovered violation.

Because Synoptic can make mistakes, not all candidate paths can be verified. APE tries

multiple times to verify the path, in case of nondeterminism. If after verification, APE

fails to produce at least one verified violation-exposing path, it returns to the exploration

stage, stimulating and learning about more of the target system’s behavior before attempting

again to find violations. Since the executions observed during the verification stage are

particularly relevant to the violations, APE includes them in the traces uses to infer the

behavioral models.

Note that while APE uses violation verification to test automatically discovered candidate

violations, it can just as well test other candidates. For example, it could test a violation

that was present in an earlier version of an implementation, or in other implementations of

the same protocol. By using exploration, APE can start with a specification violation from

another version or implementation, and explore if the target implementation is vulnerable to

variants of those violations.

Limitations. Synoptic does not support negative examples when building the model,

although some recent model-inference research suggests how it could [9]. With such support,

APE could explicitly eliminate candidate violations verified as impossible from the models

to further improve the model’s precision.

As APE executes, it may find violations. However, it is not guaranteed to do so; for

example, some target system implementations may not have specification violations of the

kind described by the violation characteristic. In this case, the more APE explores without

finding a violation, the higher the user’s confidence that the system does not have violations

of this particular type.
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6.3.5 Test Generation

While generating candidate violations, APE explores the target implementation’s behav-

ior and discovers new, previously unobserved executions. This can be used to automatically

generate white-box tests — tests based on the implementation, as opposed to a specification

or requirements — in two different ways.

Greenfield test generation. Using APE as in Section 6.3.2, to explore the behavior

of the target system and infer a behavioral model of its legal executions, can lead to test

generation. All paths in a model are either observed or likely predicted executions of

the system. Further, every distinct path represents somewhat distinct behavior: the more

two paths are different, the more different are the two executions those paths represent.

Generating paths on the model from INITIAL to TERMINAL, (e.g., via a random walk starting

from INITIAL) generates potential tests that can then be verified similarly to the way APE

verifies violations in Section 6.3.4.

Augmenting an existing test suite. If a system already has a test suite, APE can execute

those tests, record the traces of those executions, use Synoptic to generate a model of those

traces, and use that model as a starting point for exploration (Section 6.3.2). Exploration will

produce new executions and APE can check if those executions are accepted by the model

built from the existing test executions, or if they represent new, previously untested behavior.

That is, whenever a newly discovered execution is not in the language of the original model

(because it requires additional transitions or states), this execution represents behavior, or

combination of behavior that was not covered by the test suite, and is thus worth considering

adding to the test suite. Again, newly discovered executions can be verified similarly to the

way APE verifies violations in Section 6.3.4.

6.4 Using APE to Analyze OpenSSL

In this section, we detail the application of APE to OpenSSL’s implementation of the

TLS Heartbeat Extension Protocol. We configured APE to generate OpenSSL messages with
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Figure 6.4: The layout of a TLS heartbeat message.

varying content, and we found that it was effective in detecting a known buffer-overflow

vulnerability. In doing so, APE also identified two deviations from the protocol specification.

We have reported all these bugs to the respective projects’ developers.

6.4.1 The Heartbleed Bug

Researchers recently disclosed a bug in OpenSSL’s implementation of the heartbeat

extension protocol for TLS that allows an attacker unauthorized access to private keys [66].

The heartbeat extension protocol2 provides a mechanism for clients to maintain a connection

to the server by sending a heartbeat message, requesting a response that echoes the heartbeat.

The so-called heartbleed bug allows an attacker to specify a small payload but request a

larger payload to be echoed back. The vulnerable OpenSSL servers, without checking the

bound condition, then respond with internal, private memory state.

Applied to two versions of OpenSSL, APE was reliably and reproducibly able to discover

the heartbleed vulnerability in one version, and verify the vulnerability was patched in the

other version. Further, aided by some manual inspection of the behavioral model, APE

discovered two additional specification violations in both versions of OpenSSL.

2The heartbeat extension protocol is defined in RFC 6520, https://tools.ietf.org/html/rfc6520.
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6.4.2 Testing the Heartbeat Protocol

We applied APE to the TLS heartbeat protocol in two different Ubuntu 12.04 servers

running Apache with OpenSSL. One server was vulnerable to the heartbleed bug, and the

other server was patched against the bug. APE used the the payload modification option

described in Section 6.3.1 to test these implementations.

Figure 6.4 shows the layout of a heartbeat request message. The heartbeat protocol is

layered on top of the TLS record protocol. The record header (the TLS protocol refers to

messages as records) consists of three fields making up 5 bytes: record type, protocol

version, and record length. A record type of 0x15 denotes a heartbeat message.

The record length is a 2-byte integer specifying the length of the remaining fields of

the heartbeat message: heartbeat type, payload length, an arbitrary payload, and

padding. The padding is random data intended to be ignored by the server.

As described in Section 6.3.1, we configured APE to modify four of these fields: re-

cord length, payload length, payload, and padding. The payload and padding fields

are each a randomly sized series of random bits. The payload length field is uniformly

randomly chosen to be either the size of the payload field, a random integer larger than the

size of the payload field, or a random integer smaller than the size of the payload field.

Similarly, the record length field is uniformly at randomly chosen to either be the size of

the entire record, a random integer larger than that size, or a random integer smaller than

that size.

As described in Section 6.3.2.4, APE first uses exploration to create a basic model of

operation for the heartbeat protocol without modifying the messages. Figure 6.5 shows

the model of the TLS heartbeat message behavior that is the result of this exploration. For

clarity, the displayed model abstracts away multiple TLS messages used for the initial

handshake into the -hello message. After exploring this initial model, APE uses the

message modification method to modify the -heartbeat message, again, as described in
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Figure 6.5: A model inferred by APE using guided exploration without message modification. After
inferring this model, APE then explored the effects of modifying the heartbeat message.

Section 6.3.2.4. APE generated a total of 100 traces per server, with message modification,

only inferring a single model after generating all the executions.

When exploring the vulnerable target server implementation, 22 of the 100 traces

included a heartbeat received from the server. Because we used the APE option to represent

each modified sent message, each of these 22 traces is represented as a distinct path in the

model. Of these 22 paths, 8 included a heartbeat message that triggered the heartbleed

vulnerability; i.e., our violation characteristic was a heartbeat response included more bytes

than sum of the payload and padding of the original message.

For our patched target server, only 8 of the 100 paths lead to heartbeat events, and all

of those correspond to valid heartbeat messages. In other words, the patched server, as

expected, did not appear vulnerable to the heartbleed bug.

APE-assisted, manual specification violation discovery. APE was able to automati-

cally discover the heartbleed vulnerability in the vulnerable server when asked to look for

executions that return more data than in made available in the original heartbeat message.

Further, it aided the manual discovery of two other specification violations.

We manually examined the final model APE inferred of the two servers and found two

specification violations that all occurred in both servers. First, both servers failed to respond

to properly formed heartbeat messages with payloads smaller than 4,073 bytes. The protocol

specification imposes no such restriction. Second, while the protocol specifies that the

server must be silently discard the heartbeat message if the total length of the message is
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greater than 214 bytes, APE observed multiple instances of both servers responding to such

messages.

6.5 Analyzing BitTorrent

In this section, we describe the application of APE to several implementations of the

BitTorrent protocol. We chose BitTorrent because of its popularity, and because the protocol

is implemented by many clients, which allows us to evaluate APE’s effectiveness in testing

different implementations of the same protocol. APE found one bug and two unexpected

uses of the specification [16] in three popular BitTorrent clients: µTorrent, Azureus, and

Transmission. Further, manual exploration of the APE-discovered bug led us to discover two

more bugs, one that causes the client to crash, and one that artificially inflates the client’s

upload rate.

6.5.1 The BitTorrent Protocol

BitTorrent is a peer-to-peer file sharing protocol. To share files, a peer creates a small

metadata torrent file that contains information on finding other peers, file size, and a list of

hashes of parts of the file for integrity checking. Peers’ BitTorrent clients, after discovering

each other via trackers that maintain a list of peers’ IPs, share files by requesting pieces of

the file, and responding to others’ requests. Each piece’s integrity can be verified using the

torrent’s hashes. The piece request messages contain information of about the index, offset,

and length of the requested pieces. Pieces are usually downloaded in chunks of 16KB, so it

may take multiple request messages to download a single piece.

Reciprocation is a very important aspect of the BitTorrent protocol. While implementa-

tion are free to use whatever algorithm to promote reciprocation, in general, a client is more

likely to trade with peers that the client deems to be contributing. As such, peers can send a

choke message to other peers whom they choose not to communicate with, and may send an

unchoke message to resume communication. To enable new peers, who do not yet have any
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data to share, to download data, BitTorrent clients will periodically send unchoke messages

to random peers in a process called optimistic unchoking. This allows new peers to send

several piece requests and begin downloading pieces even without prior reciprocation.

6.5.2 Applying APE to BitTorrent Clients

We tested three popular BitTorrent clients running on Ubuntu 12.04: µTorrent, Azureus,

and Transmission3. We did not modify these target clients in any way. We did wrap each

with a simple script to clean up after each execution of the client; this step was necessary

to ensure that target client did not carry over any state from a previous execution, such as

downloaded pieces or peer lists.

To create BitTorrent message definitions for APE to use, we modified an existing open

source implementation, AutonomoTorrent [4], adding logging, additional message types

(bitfield all, bitfield some, and bitfield none messages, described below), and

hooks for APE to use to send BitTorrent’s nine message types [16]. We chose Autonomo-

Torrent, instead of developing message-sending methods from scratch, to take advantage

of its code for tasks such as getting peer lists from the tracker, checking piece hash values,

and file IO. We observe that APE users may often choose to reuse existing protocol client

implementations to ease the task of writing methods that send protocol messages. Further,

we note that we were able to use this single message-sending method implementation for all

three BitTorrent targets, and could use it to test any other BitTorrent client.

During normal operation, peers use the bitfield message to advertise which pieces

they have already downloaded. For APE, we found it useful to split the bitfield into three

different message types to indicate if the peer is advertising all, some, or none of the pieces

of the file. BitTorrent peers will display different behavior depending on the bitfield value.

For example, if APE advertises itself as having all the pieces by sending a bitfield all

message, then the other peers will never unchoke it.

3Azureus 4.3.0.6-5, Transmission 2.51-0-ubuntu-1.3, and uTorrent Server v3.0 build 27079
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During exploration, we configured APE to start the target implementation with half of

the torrent already downloaded. This allowed APE to both download and share pieces. We

used a custom torrent file and private tracker to ensure that each exploration run consisted of

only two peers: the APE tester and the target.

We did not use APE’s optional message modification capability for BitTorrent.

6.5.3 Avoiding Reciprocation

We were interested in searching for specification violations in BitTorrent clients that

allow a peer to avoid reciprocation, downloading data without uploading. We thus encoded

a violation characteristic to check for the peer downloading pieces without uploading.

APE discovered and verified around 100 execution paths across the three implementations

that satisfied this characteristic, meaning it discovered multiple ways of violating this

specification. We manually examined all these paths to categorize the distinct strategies for

avoiding reciprocation, although many could quickly be categorized as very similar. As

an example, one strategy exploited control messages to alter the peer’s behavior. We now

enumerate these three strategies:

1. The choke/unchoke cycle. During normal operation, if the client receives and ignores

a request message from a peer, that peer sends a choke message and no longer responds

to messages from the client. However, APE discovered a bug that allows a peer to ignore

requests without repercussions. Whenever receiving a request message, if the client

responds by sending a choke, followed immediately by an unchoke message, (in lieu of

the requested piece), the peer sends a new request and continues responding to the client’s

requests. We refer to this as the choke/unchoke cycle. All three tested implementations

exhibit this vulnerability.

The next two strategies do not explicitly violate the specification, but result in an

unexpected ability to avoid reciprocation.
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2. The new guy on the block. The client can pretend to be new to the network by

sending a bitfield none messages, even when it actually has data [95]. This falsehood

causes other peers to share data without expecting to receive any data in return. Further, APE

discovered that to remain a freeloading client, it must never send a have message claiming

to have the data other peers need.

3. The parrot. An extension of the above strategy is for the client to report in the

bitfield message only those pieces that the other peers already have.

After APE identified the choke/unchoke cycle, we used APE to apply the exploit of this

violation — sending one choke and one unchoke message in response to each received

request message — to each of the three target BitTorrent implementations. For all three

implementations, this exploit caused a drastic increase in both the total number of requests

(thousands per minute), and the number of distinct requests. In other words, other peers

often they requested different pieces. This could be used, for example, to selectively respond

to peers only to specific piece requests. Over a five minute timespan, Azureus, µTorrent,

and Transmission sent 172, 593, and 420 distinct piece requests, respectively. Without

sending choke and unchoke messages, those numbers dropped to 4, 5, and 15 distinct piece

requests, respectively.

This exploration led us to uncover two other related bugs in the µTorrent implementation.

First, when running in resource-constrained environments (a virtual machine with less

than 512MB of RAM), µTorrent would periodically crash when receiving many choke and

unchoke messages. Second, µTorrent appeared to include the choke and unchoke messages

when calculating the peer’s download rate, evidenced by the µTorrent’s UI. Neither of these

bugs were discovered directly by APE, but APE’s discovering led directly to manually

finding these bugs.
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6.6 Evaluation of APE Performance

To find vulnerabilities in target implementations, APE must explore the very large state

space of the target’s possible behavior. This section evaluates APE’s efficiency in exploring

that behavior to find vulnerabilities.

Our evaluation focuses on the TRACKER server. While TRACKER is small, its size limits

the randomness of the search process and allows us to reliably measure how quickly APE

finds vulnerabilities. We ran 30 trials of APE discovering vulnerabilities in TRACKER. Each

trial consisted of 100 iterations; each iteration used guided exploration to generate one new

trace, and then inferred a new Synoptic model of the target’s behavior using all observed

traces. We use these trials to answer three research questions.

RQ1: How quickly does APE find vulnerabilities in TRACKER?

Recall that the buggy TRACKER server from Section 6.2 has two vulnerabilities. First,

an attacker can elicit a +clients response by sending a -clients request even without

previously sending a -hello. Second, an attacker can cause the server to erroneously

announce its presence multiple times by sending multiple -hello messages. To answer

RQ1, we examined each of the 3,000 models, generated over the 30 trials, to find at which

point in the exploration process, the model encoded each of the two vulnerabilities.

The first vulnerability is simple for APE to find since it only needs to generate a model

with a path that starts with -clients request. In our experiments, each of the 30 trials

found this vulnerability within the first three exploration traces. In 10 of the trials, the very

first trace revealed the vulnerability. This result is consistent with the random exploration

procedure, which dominates APE’s guided exploration when the model is empty or very

small. The procedure picks, at random, a message to send from the three sendable, previously

unsent messages. One third of the time (10/30) APE picks the -clients request messages,

and in all instances, after three tries, APE has tried all three messages.

The second vulnerability, causing the target to erroneously send multiple

+clients response messages, is harder to find. In our experiments, APE found, and
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verified this vulnerability in each of the trials after exploring at most six traces. In some

cases, the guided exploration generated a trace with multiple +clients response messages.

In other cases, model inference predicted that such behavior is allowed.

Running APE on TRACKER took no longer than a few minutes on average to discover

both vulnerabilities.

RQ2: How quickly does guided exploration learn most of the target’s behav-

ior?

Critical to APE’s success is being able to explore its target’s behavior quickly. While it

likely takes a long time to explore the behavior exhaustively, APE’s guided exploration is

able to explore most of the behavior after relatively few iterations of trace generation and

model inference. Using model size (the sum of the number of states and transitions) as an

estimate of the measure of how much of the target’s behavior has been explored, Figure 6.6

shows that the mean amount of behavior APE has not learnt diminishes exponentially with

time. This finding is not obvious as it implies that (1) the TRACKER server implementation’s

behavior measure is bounded, and (2) APE can learn it quickly. Other exploration strategies

could learn slowly, forcing more time to be spent in the guided exploration stage, and

resulting in poor scaling to larger targets. Note that a threat to validity of this result is that it

is possible that some behavior cannot be discovered by APE, so the claim that APE discovers

the behavior quickly only applies to that behavior that APE can discover.

RQ3: How does the predictability of the model change as APE explores the

target’s behavior?

The models APE infers from observed executions are predictive, in that they describe

both the observed behavior and likely unobserved behavior that satisfies a set of observed

executions’ temporal properties [11]. The model inference can be inaccurate if the temporal

properties that hold for the observed executions do not accurately describe the target system.

Thus, for the predictive ability of the model to be accurate, guided exploration must quickly

eliminate spurious temporal properties that are observed only because of lack of diversity of

the observed traces.
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Figure 6.6: The size of the model (the sum of the number of states and transitions) approximates
the amount of the target’s behavior learnt by APE. APE’s guided exploration learns the behavior and
approaches the limit quickly.

Figure 6.7 shows that the mean number of mined temporal properties after each trace

diminishes quickly. This means that after relatively few iterations of trace generation and

model inference, the model’s predictive ability is accurate.

An astute reader will notice that in the first iterations, the number of temporal properties

increases, whereas it decreases monotonically afterwards. This phenomenon is due to

Synoptic’s property filtering; the inference ignores properties between messages it has never

observed co-occur in a trace. At first, new traces increase the number of messages that

have been observed co-occurring, increasing false (and valid) temporal properties. Further

exploration eliminates the false properties.

While sets of observed executions with poor diversity often satisfy many temporal

properties, systems typically have few true temporal properties [11]. For TRACKER, the final

inferred models satisfied only a single temporal property: -clients request is always

followed by +clients response.
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Figure 6.7: The accuracy of the model’s predictive ability depends on the guided exploration’s ability
to diversify observed executions and eliminate false temporal properties. APE accomplishes this and
quickly eliminates temporal properties that are artifacts of small sets of explored executions.

6.7 Related Work

The closest research to APE are ProCrawl [134], a system for inferring behavioral

models of web applications, and MACE [29], a system for vulnerability detection. ProCrawl

also explores a system’s behavior, and like APE, it guides the exploration based on model-

inference. However, unlike APE, ProCrawl does not target networked systems and does not

allow modifying messages. Instead, it focuses on method call sequences, and exploring

orders of those sequences to explore unexplored behavior and generate tests. Meanwhile

MACE uses symbolic and concrete execution, guided by model inference, to discover

vulnerabilities. MACE’s use of symbolic and concrete executions to explore a program’s

state space is complementary to APE’s dynamic approach. Related prior work [35,60,71]

had relied on user-specified descriptions of an input abstraction function, whereas MACE

does not, but still requires an output abstraction function for the output. These are similar to

APE’s message definitions.
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Related research on model inference is complementary to our work, and APE can directly

benefit from improvements in model inference. APE uses predictive model inference to

abstract the observed executions into a concise and predictive model. In general, inferring

the most concise model from observed examples is NP-complete [2,34,59], and most model-

inference algorithms approximate a solution [9–11,14,25,38,42,58,88,94,96,126]. APE

uses Synoptic [11], which relies on mining temporal properties to abstract the observed

executions and balance running time against the conciseness of the final model. Synoptic

is nondeterministic, which adds to the nondeterminism already inherent in APE, although

deterministic, temporal-property-based model inference [9] could be used instead.

While, in practice, we found Synoptic to work quite well, APE can benefit directly

from improvements to the model-inference algorithms. Further, other model-inference

algorithms may produce more precise models in particular domains. For example, Li et

al. [88] introduce a temporal-property-based inference specific to reactive systems, although

they do not directly produce the kind of FSM model APE needs. Other approaches that do

produce FSM-based models can be directly substituted for Synoptic. Among these are the

kTails [14], the GK-Tails [96], and the RPNI [25] algorithms.

APE’s payload modification is similar to protocol fuzz testing [5,60,71], but APE guides

exploration, instead of randomly searching through the state space. APE also aims to

automate more of the exploration than, e.g., SNOOZE [5] and Gorbunov et al. [60].

Protocol reverse engineering [22,23,40] automates inferring message format, which

can be used to automate APE even further. Prospex [35] combines reverse engineering

message format and fuzz testing and can generate test inputs, but unlike APE, is not aimed

at automatically discovering specification violations.

Cho et al. [30] propose a method for inferring complete protocol state machines with

respect to some given subset of the input alphabet. Note, that enumerating the entire input

alphabet from experiments alone is currently an unsolved problem. They adapt L∗, an

active inference approach, to operate in online environment. They check the resulting
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model using random sampling. Cho et al. also demonstrate how the inferred model can be

analyzed to find weaknesses or derive other interesting properties of the implementation.

For example, they compare the FSMs for two different bot C&C servers and find that

they both communicate to the same SMTP server making this a weak common link. They

accomplish this by associating messages with the server IP address and projecting one FSM

onto the alphabet of the other. Like other inference techniques, their work assumes alphabet

abstraction functions and resettability.

Gatling [85] finds performance attacks in large scale distributed networks. Like APE,

Gatling simulates behavior on the network with peers, although using multiple peers is APE’s

future feature at this time. While Gatling allows changing message fields and dropping

messages, APE is more general in its message modifications. Meanwhile some systems

focus on proving specific protocol properties, such as authentication and authorization

properties [70]. By contrast, APE is more general and can discover any specification

violation that can be described by a violation characteristic method.

6.8 Summary and Conclusions

We have presented APE, a technique for automatically discovering and verifying specifi-

cation violations in networked software. APE explores the very large space of behavior by

dynamically inferring precise models of behavior, stimulating unobserved behavior likely to

lead to violations, and iterating by refining the behavior models with the new, stimulated

behavior. In evaluating APE, we verify the known Heartbleed bug in OpenSSL, and find

seven other specification violations or unexpected behaviors in OpenSSL and three popular

BitTorrent clients. Our prototype implementation, and its evaluation show great promise

for using model inference, together with fuzz testing, to automatically find bugs, verify bug

patches, identify related exploits of known bugs, and augment and generate test suites.
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CHAPTER 7

SUMMARY

Motivated by the emerging trends in digital forensics of scale, diversity, and online

environments, we developed inference-based techniques for extracting information from a

diverse set of evidence sources. We evaluated our work using a U.S. legal foundation and in

the context of two common investigative scenarios: mobile phone triage and network-based

investigations.

For phone triage, we show that probabilistic parsing is effective for extracting records

from a variety of phone models, including those that were not previously examined. Our

primary insight is that while specific encodings and formats are different between phones,

the underlying semantic structure is often preserved. In other words, a call log record is

typically a name, number, and time stamp stored in close proximity. Further, we employed

a hash-based filtering approach to quickly reduce the amount of raw data that needs to be

examined.

When applied to smart phones, we find that our triage techniques are useful, but not

sufficient for handling the thousands of inferred results. To address this issue, we designed a

technique for ranking results using a small amount of investigator feedback. We find that by

leveraging a few manually labeled true positives, we can create a strong ranking of the most

relevant results.

Our phone techniques do not make any assumptions about the operating or file system,

allowing them to be applied directly to new models and, potentially, other embedded devices.

For network-based investigations we first quantified and characterized the extent of

CP trafficking on p2p networks. We have shown that the majority of files are shared
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by a relatively small portion of the population, but these peers are spread across many

different countries making it infeasible to arrest them all. We also find that the anonymous

communication platform, Tor, does not pose a significant problem for investigators in

practice — most peers seen on Tor were later observed connecting from a non-Tor, and

presumably trackable, IP address.

Finally, we took the first step toward the automated development of tools for investigating

network protocols. Our work focused on efficiently exploring the behavior of protocol

implementations to search for bugs and other behaviors that investigators can exploit to

further an investigation.

Collectively, these projects all share the common theme of forensic triage: quickly

collecting information from diverse sources to (i) generate leads, (ii) prioritize resources,

and (iii) generally assist investigators in the early stages of an investigation.
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[74] Järvelin, Kalervo, and Kekäläinen, Jaana. Cumulated gain-based evaluation of ir
techniques. ACM Transactions on Information Systems (TOIS) 20, 4 (2002), 422–446.

[75] Jonkers, Kevin. The forensic use of mobile phone flasher boxes. Digital Investigation
6, 3–4 (May 2010), 168–178.

[76] Judish, Nathan, et al. Searching and Seizing Computers and Obtaining Electronic
Evidence in Criminal Investigations. US Dept. of Justice, 2009.

171



[77] Kanich, Chris, Weavery, Nicholas, McCoy, Damon, Halvorson, Tristan, Kreibichy,
Christian, Levchenko, Kirill, Paxson, Vern, Voelker, Geoffrey, and Savage, Stefan.
Show me the money: characterizing spam-advertised revenue. In Proc. USENIX
Security (Aug 2011).

[78] Karp, Richard, and Rabin, Michael. Efficient randomized pattern-matching algo-
rithms. IBM J. Res. Dev. 31, 2 (March 1987), 249–260.

[79] Kerr, Orin. Ex ante regulation of computer search and seizure. Virginia Law Review
96, 6 (October 2010), 1241–1293.

[80] Kerr, Orin S.˙Computer Crime Law, 2nd ed. West (Thomson Reuters), October 2009.

[81] Kocher, P., Jaffe, J., and Jun, B. Differential Power Analysis: Leaking Secrets. In
Proc. CRYPTO (1999), pp. 388–397.

[82] Kohno, Tadayoshi, Broido, Andre, and Claffy, Kimberly C. Remote physical device
fingerprinting. IEEE Trans. Dependable Sec. Comput. 2, 2 (2005), 93–108.

[83] Krishnan, Srinivas, Snow, Kevin Z., and Monrose, Fabian. Trail of Bytes: Efficient
Support for Forensic Analysis. In Proc. ACM CCS (Oct. 2010), pp. 50–60.

[84] Latapy, M., Magnien, C., and Fournier, R. Quantifying paedophile queries in a large
p2p system. In Prof. IEEE INFOCOM (April 2011), pp. 401–405.

[85] Lee, H., Seibert, J., Killian, C., and Nita-Rotaru, C. Gatling: Automatic attack
discovery in large-scale distributed systems. In Network & Distributed System
Security Symposium. NDSS 2012. (2012), USENIX.

[86] Legal Information Institute. Uniform commercial code locator. http://www.law.
cornell.edu/uniform/evidence.html, March 2003.

[87] Levchenko, Kirill, Pitsillidis, Andreas, Chachra, Neha, Enright, Brandon, Félegyházi,
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