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ABSTRACT 

HOW MUCH DO IN-VEHICLE TASKS WITH SWAPPING, SWITCHING AND 

SPILLOVER EFFECTS INTERFERE WITH DRIVERS’ ABILITY TO DETECT AND 

RESPOND TO THREATS ON THE FORWARD ROADWAY? 

SEPTEMBER, 2014 

SIBY SAMUEL 

B.TECH, NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA, INDIA 

PH. D., UNIVERSITY OF MASSACHUSETTS AMHERST 

DIRECTED BY: - PROF. DONALD L. FISHER 

Distractions have long been associated with crashes. A review of the literature shows drivers 

engaging in secondary tasks to be three times as likely to crash as compared to attentive drivers.  

Although several studies report that excessively long glances away from the forward roadway 

elevate the risk of crashes, little research has been conducted to determine how long a driver 

needs to glance towards the forward roadway in between glances inside the vehicle to perform 

a secondary task in order to detect threats present in or emerging from the forward roadway. 

To determine this, drivers were asked to perform simulated in-vehicle tasks requiring glances 

alternating inside and outside the vehicle.  The glance inside was limited to 2 s. The glance 

outside was varied between 1 and 4 s.  Eighty five participants were evaluated across two 

experiments involving one continuous view and three alternating view (baseline, low load and 

high load) conditions. Drivers in all alternating conditions were found to detect far more hazards 

when the forward roadway duration between two in-vehicle glances was the longest (4 s). The 

decrease in hazard detection at the shorter roadway durations was a combined consequence of 
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the drivers having to devote more resources to their driving (swapping), and having to switch 

their attention between the primary (driving) and secondary (in-vehicle) tasks (switching). There 

was an additional carry over effect of load observed in the alternating high load condition when 

drivers were loaded even while looking at the forward roadway (spillover). There was an effect 

of type of processing (bottom up versus top down) and eccentricity (central versus peripheral). 

The asymptotic estimation of the threshold duration indicated that the drivers’ minimum glance 

duration on the forward roadway be at least 4 seconds when engaged with an in-vehicle task 

that elicits swapping effects and at least 7 seconds when engaged with an in-vehicle task 

eliciting switching effects. 
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EXECUTIVE SUMMARY 

Distractions have long been associated with crashes. A review of the literature shows drivers 

engaging in secondary tasks to be three times as likely to crash as compared to attentive drivers. 

It’s been shown that brief glances away from the forward roadway actually decrease crash risk if 

they are safety related (e.g., checking the side mirrors).  However, glances exceeding a 2 second 

threshold were found to accelerate crash risk by twice as much as compared to control 

conditions. Although several studies have indicated that excessively long glances away from the 

forward roadway are responsible for elevating the risk of crashes, very little research has been 

conducted to determine how long a driver needs to glance towards the forward roadway in 

between glances inside the vehicle to perform a secondary task in order to detect and respond 

to threats present in or emerging from the forward roadway.  

 It is extremely important to obtain this information as we currently do not know how 

long glances directed towards the forward roadway need to be in the midst of a sequence of 

alternating glances inside and outside the vehicle while the driver is performing a parallel, in-

vehicle secondary task in order for the driver to capture all of the critical information. The 

intuition would lie in assuming that very short glances (e.g., glances under 500 ms) are too short 

to capture the existence of potential hazards as the traffic environment constantly changes (i.e., 

is dynamic). However, it is not known just how short is too short.  In my work, I am primarily 

interested in the detection of potential hazards which are not visible (or cued) before the driver 

takes the first glance away from the forward roadway. 

Throughout my dissertation, I intend to answer two general questions that compare the 

performance of drivers when glancing continuously at the forward roadway (continuous 

condition) with drivers that alternate their glances between the forward roadway and the inside 

of the vehicle (alternating condition).   (i) First, what is the minimum time in general that a 
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driver in in the alternating conditions needs to detect a threat as well as a driver in the 

continuous condition and, related to that, how does the minimum time vary as a function of: (a) 

the way in which the initial threat is processed (top down or bottom up), (b) the location of the 

potential threat (fovea or periphery), and the (c)  the level of cognitive load (high or low) 

imposed by the secondary task when the driver is glancing on the forward roadway.  This 

minimum time will be referred to as the threshold duration.  When the cognitive load is low 

(defined here as the drivers being loaded only while performing the in-vehicle task), the primary 

causes of the difference between the alternating and continuous conditions are due to the 

swapping of the view of the forward roadway for a view inside the vehicle and the switching of 

attention from driving to the in-vehicle task.  Experiment 1 has been designed so that I will be 

able differentiate between the separate effects of swapping and switching.  When the cognitive 

load is high (i.e., the drivers are performing aspects of the in-vehicle task even while glancing at 

the forward roadway), the primary cause of this difference comes not only from the swapping of 

views and the switching of attention, but also from the spillover from the secondary task of any 

ongoing demands associated with that task.  Experiment 2 has been designed so that I will be 

able to identify not only the separate effects of swapping and switching, but also so that I can 

identify any additional effects of spillover. (ii) Second, does the hazard anticipation performance 

decline as the duration of the glance on the forward roadway decreases in the alternating 

conditions and, related to that, when the period of time during which the driver glances at the 

forward roadway (the window) is less than the threshold duration, how does the difference in 

the likelihood that drivers in the alternating and continuous condition detect a threat vary as a 

function of the above three factors (a – c).   

When performing a secondary, in-vehicle task a driver cannot see the forward roadway.  

In both Experiments 1 and 2, a secondary, in-vehicle task requiring multiple in-vehicle glances 
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was simulated by alternating between displays on the center screen of the forward roadway (for 

varying lengths of time) and of the search task which contained 15 characters, one or more of 

which were the letter t (always displayed for 2s). The forward roadway on the center screen was 

not visible when the search task was displayed. The driver had to count the number of times the 

letter t appeared in the target display.  In Experiment 1, the driver simply reported this number 

after the presentation of each target display on the center screen (low load).   In Experiment 2, 

the driver had to perform a task while glancing at the forward roadway that was based on the 

number of targets (high load).   

Using this method, the duration of an alternating sequence of glances on the forward 

roadway and away from the forward roadway (towards the target display) could be controlled.  

Four sequences were used: 1 s on the forward roadway and 2 s inside the vehicle (1-2), 2 s on 

the forward roadway and 2 s inside the vehicle (2-2), 3 s on the forward roadway and 2 s inside 

the vehicle (3-2), and 4 s on the forward roadway and 2 s inside the vehicle (4-2).  Each 

sequence (simulated in-vehicle task) began with a glance inside the vehicle (i.e., the forward 

roadway on the center screen replaced by the search task) and then, in alternation, a glance on 

the forward roadway, a second glance inside the vehicle, a second glance on the forward 

roadway, a third glance inside the vehicle, a third glance on the forward roadway, a fourth 

glance inside the vehicle, and then the final glance up.  For example, in the 1-2 sequence, the 

durations of the alternating glances inside and outside the vehicle would be, respectively, 2 

(inside), 1 (outside), 2 (inside), 1 (outside), 2 (inside), 1 (outside), and 2 (inside).  In each drive, 

participants were given a number of pseudo-secondary tasks like this.  The percentage of latent 

hazards recognized was recorded (as indicated by an eye movement in the direction of the 

latent hazard) when the driver was performing the pseudo-secondary tasks. 
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In Experiment 1, drivers were assigned to one of three conditions: continuous (control), 

alternating baseline (alternating completely blank center screen and forward roadway center 

screen), and alternating low load (alternating center screen with display of search tasks and 

forward roadway) conditions.  In the alternating baseline and alternating low load conditions, 

the four alternating sequences described above were used (1-2, 2-2, 3-2, 4-2).  In all three 

conditions, two other factors, type of processing (a) and location of threat (b), were varied.  Task 

switching involves both an interruption (the forward roadway is not visible and is replaced, i.e., 

swapped, with a view inside the vehicle of whatever task is being performed) and a redirection 

of attention (enumerating the number of targets).  By comparing the alternating baseline and 

continuous conditions, one can determine whether a task interruption by itself has a 

detrimental effect on hazard anticipation (this is referred to as an effect of swapping).  By 

comparing the alternating low load and alternating baseline conditions, one can determine 

whether a redirection of attention to a low load task has an effect above and beyond task 

interruption. 

Forty-five participants were evaluated in the Experiment 1 across the continuous, 

alternating baseline and alternating low load conditions. (i) Forward Roadway Duration.  The 

results indicated a strong effect of the duration of the forward glance on drivers’ ability to 

detect latent hazards. Drivers in both alternating conditions were found to detect more hazards 

when the forward roadway duration between two in-vehicle glances was 4 s as compared to 

when the durations of the forward glances were 1 s, 2 s or 3 s.   Because the participants in the 

continuous condition performed better than the participants in the alternating low load 4-2 

condition, the threshold duration had to be estimated.  It was determined that the threshold 

duration was approximated 6 s. (ii) Swapping and Switching.  There was no significant difference 

in the alternating baseline (swapping) and low load conditions (switching), though the 
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percentage of hazards detected in the low load condition was lower than this percentage in the 

baseline condition. Overall accuracy and tasks attempted, as well as accuracy for just those tasks 

attempted, were measured for the alternating low load condition.  The participants were clearly 

performing the target task.  Thus, the load was higher in the low load condition than the 

baseline condition.  This would appear to indicate no effect of switching, but only an effect of 

swapping.  However, the percentage of hazards anticipated on the last glance in a sequence in 

the alternating low load condition when the task was not attempted was much higher than this 

percentage when the task was attempted. This suggests an effect of switching above and 

beyond that of swapping.  The alternating baseline condition was modified slightly to reduce a 

possible confound in Experiment 2 which could have decreased the difference in the alternating 

baseline and low load conditions leading to the failure to find a significant difference in the 

alternating baseline and low load conditions (and therefore a failure to find an effect of 

switching independent of swapping).  (iii) Type of Processing.  There was an effect of type of 

processing, with a larger percentage of the hazards detected in scenarios involving bottom up 

processing (compared to top down). (iv) Eccentricity. There was no significant effect of location 

of threat (central versus peripheral) on the percentage of hazards detected across scenarios.   

(v) Velocity.  Finally, velocity was analyzed as a vehicle measure.  Perhaps drivers in the 

alternating low load condition slowed appreciably and therefore effectively had more time than 

drivers in the alternating baseline or continuous conditions to view the latent hazards. However 

there was no difference in the average velocities among the three conditions either during the 

15 s preceding a hazard or the 5 s preceding a hazard.   

In Experiment 2, the cognitive load while the driver was glancing on the forward 

roadway was varied along with the other factors (i.e., all three factors, a – c, are varied).  Forty 

participants were evaluated in Experiment 2 across the control (C), baseline (B), low load (E) and 



  

xiii 

 

high load (H) experimental conditions. Only 3 alternation sequences were considered for the 

alternating baseline (B), low load (E) and high load (H) experimental scenarios (3/2 was 

omitted). A cognitively demanding secondary task was used in the high load condition which 

required effort while the driver was glancing on the forward roadway to determine if there were 

spillover effects from secondary task performance on drivers’ ability to detect latent hazards. (i) 

Forward Roadway Duration.  The results indicated a strong effect of the duration of the forward 

glance on drivers’ ability to detect latent hazards. Drivers in all three alternating conditions were 

found to detect more hazards when the forward roadway duration between two in-vehicle 

glances was 4 s as compared to when the durations of the forward glances were 1 s or 2 s.  It 

was determined that there was no forward glance duration in the alternating high load which 

would ever produce hazard anticipation performance equal to that observed in the continuous 

condition.    (ii) Swapping, Switching and Spillover.  Significant swapping, switching and spillover 

effects were observed. There were significant differences in the alternating baseline (swapping), 

low load (switching) and high load conditions (spillover). The percentage of hazards detected in 

the alternating high load condition was the lowest (C> B > E > H).  Overall accuracy and tasks 

attempted, as well as accuracy for just those tasks attempted, were measured for the 

alternating low load and high load conditions.  The participants were clearly performing the 

target task.  Thus, the load was higher in the low load condition than the baseline condition and 

similarly the load was higher in the high load than in the low load condition.  This would appear 

to indicate an effect of swapping, switching, and spillover.  Combined swapping and switching 

effects and combined switching and spillover effects were observed. The modification of the 

alternating baseline condition in Experiment 2 to address a potential confound in Experiment 1 

served the purpose and clear and significant differences were obtained for all conditions. (iii) 

Type of Processing.  There was no effect of type of processing, though a larger percentage of the 
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hazards were detected in scenarios involving bottom up processing (compared to top down). 

(iv) Eccentricity.  There was a clear benefit to latent hazard anticipation for centrally located 

threats (e.g., lead vehicle braking) as opposed to peripherally located latent hazards (e.g., 

pedestrian at a crosswalk). (v) Velocity.  Finally, velocity was analyzed as a vehicle measure.  As 

noted above, perhaps drivers in the alternating low load and high load conditions slowed 

appreciably and therefore effectively had more time than drivers in the alternating baseline or 

continuous conditions to view the latent hazards. However there was no difference in the 

average velocities among the four conditions either during the 15 s preceding a hazard or the 5 s 

preceding a hazard ruling out the possibility.   

The results of my experiments indicated that across conditions, the threshold duration is 

shortest in the alternating baseline condition (4 s), longer in the alternating baseline condition (6 

- 7 s), and nonexistent in the alternating high load condition.  More specifically, when the in-

vehicle task requires swapping, a threshold duration of about 4 s is critical. This duration 

increases as the in-vehicle task requires switching (6 – 7 s) and when the in-vehicle task is 

cognitively loaded and requires spillover (loading even when the driver is glancing at the 

forward roadway), the threshold duration is nonexistent indicating that under spillover effects, 

no amount of time can manifest safety. Alternatively, tasks that induce spillover effects should 

not be performed while driving as the persistent effects of load outweigh the benefit of even 

the longest forward roadway glances.  
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CHAPTER 1 

INTRODUCTION 

1.1 The Problem 

The recent past has seen an increase in the research focusing on the impact of driver 

distraction on crash and near crash risk. In a study reported by Klauer et al. (2006), the authors 

attempt to determine the relationship between driver inattention and crash/near-crash risk. 

They concluded that drivers engaging in secondary visually or manually complex tasks had a 

three times higher near crash/crash risk than drivers who were attentive (i.e., not engaged in a 

secondary task). The article states that brief glances away from the forward roadway for the 

purpose of scanning the driving environment using the forward and side view mirrors are safe 

and actually decrease crash/near-crash risk. However, glances in excess of 2 seconds for any 

purpose were seen to increase near-crash/crash risk by at least twice as much as the baseline 

condition. 

 Other studies indicate that excessively long glances away from the forward roadway 

elevate the risk of crashes (Horrey& Wickens, 2007).  However, very little research has been 

conducted to answer the equally important question of how long a driver needs to glance 

towards the forward roadway in order to detect and respond to threats present/emerging in the 

forward roadway.  Why is this question important?  Consider as an example the following 

scenario. Suppose that a driver takes three glances to complete a simple in-vehicle task, tasks 

which do not require the driver to process information gathered during the in-vehicle glance 

when the driver returns his or her gaze to the forward roadway.  None of the driver’s glances 

away from the forward roadway are in excess of 2 seconds (the safe threshold as established by 

Horrey and Wickens, 2007).  However, suppose that the driver only glances at the forward 
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roadway for 500 ms in between glances inside the vehicle while performing the secondary tasks.  

In this case, it will almost always be true that the time the driver has to analyze information in 

the forward roadway is too short to provide enough time to assimilate information from the 

environment required for hazard detection and response (since a great many hazards will 

require two glances, each glance on the order of 300 or more ms) (Underwood et al., 2002).  

 The first question I am asking is how long at a minimum drivers need to glance on the 

forward roadway in order to detect various different types of hazards (Crundall at el., 2012) 

when they are alternating glances on the forward roadway and inside the vehicle performing 

secondary tasks.   The smallest duration at which the hazard detection performance of drivers 

alternating glances between the inside of the vehicle and the forward roadway equals the 

hazard detection performance of drivers continuously glancing on the forward roadway will be 

defined as the threshold duration.  Thus the first question can be restated as follows: what is the 

threshold duration for different types of hazards. It needs to be made clear here that I am 

interested in the detection of potential hazards which are not visible (or cued) before the driver 

takes the first glance away from the forward roadway.  This will be labeled initial hazard 

detection.  One can contrast this with a situation in which a potential hazard was recognized 

before the first glance inside the vehicle, something which will be labeled interrupted hazard 

detection (Borowsky et al., 2013). 

 The threshold duration is likely to vary with a number of factors including the type of 

processing (bottom up or top down), the location of the hazard (central or peripheral), and the 

cognitive load placed on the driver.  The type of processing is important to consider because 

some threats are cued by stimuli which attract attention (bottom up, e.g., brake lights) and 

some are cued by stimuli which require the allocation of attention (e.g., a complex intersection).  
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It is well known that behaviors vary as a function of the type of processing (e.g., Crundall, Van 

Loon & Underwood, 2006).   

 The location of the threat is important because some hazards are located centrally (e.g., 

a lead vehicle braking) and some are located to the side (e.g., a bicyclists approaching quickly 

from a side street).  It is known that location of a stimulus can influence the time to detect the 

stimulus (e.g., Posner, Snyder & Davidson, 1980).  

 Finally, the cognitive load is important to consider because the level of the load varies 

among in-vehicle tasks (Adamczyk & Bailey, 2004).  Presumably it will take longer for the drivers 

in the alternating condition to detect a hazard than it will drivers in the continuous condition for 

any given threat, holding performance constant, both when the load is small (present only when 

the driver is glancing at the in-vehicle) and when the load is high (present both when the driver 

is glancing at the in-vehicle task and when the driver is glancing on the forward roadway), but 

the effect will be larger when the load is high.   When the load is small (or nonexistent) the 

cause of the difference in performance between the alternating and continuous conditions will 

presumably be the result of both the swapping of one scene (the view of the forward roadway) 

with the view of another scene (the in-vehicle task) and the switching of attention between the 

primary task of driving and the secondary in-vehicle task.  These will be referred to, respectively, 

as the swapping effect and the switching effect.  It is known that low load in-vehicle tasks (which 

have both swapping and switching effects) will interfere with hazard anticipation in the case of 

interrupted hazard detection.  In particular, Borowsky et al. (2013) showed that a hazard which 

was cued before a first glance inside a vehicle was less likely to be detected when the driver 

glanced back up on the forward roadway than were the driver to be glancing continuously on 

the roadway (in continuous condition the hazard was obscured by the built and natural 

environment).  In this study the drivers were performing a low load in-vehicle task.  However, it 
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is not known whether swapping and switching effects will be present in the case of initial hazard 

detection.  More importantly, it is not known how long the glance on the forward roadway 

needs to be in order for these effects to dissipate. 

 When the load is high, in addition to the effects of swapping and switching on the 

threshold duration, there will be arguably be an effect of the concurrent cognitive load imposed 

by the secondary task on the threshold duration.  This increment I will refer to this as the 

spillover effect (i.e., the effect of the secondary, in-vehicle task spilling over into the primary 

driving task – specifically initial hazard detection -- even when the driver is glancing at the 

forward roadway).  The spillover effect requires further discussion.  Specifically, consider what 

effect performing a secondary, cognitively demanding in-vehicle task might have on the initial 

hazard detection time when the driver is alternating glances inside the vehicle and on the 

forward roadway.   The existing research suggests that secondary tasks which do not require the 

driver to take his or her eyes off the forward roadway -- such as use of a cell phone -- do 

interfere with both top down processing (Taylor et al., 2012) and bottom up processing (Strayer 

and Johnston, 2001) in the detection of initial hazards.   If the cognitive load imposed on the 

driver by an in-vehicle task while the driver is glancing inside the vehicle also carries over (spills 

over) to the processing of information while the driver is glancing at the forward roadway, one 

would expect that it would take drivers longer to detect an initial hazard when performing a 

cognitively demanding secondary task which has spillover effects than when performing either a 

secondary task with no spillover effects or no secondary task whatsoever.  As above, the equally 

important question is just how long the glance on the forward roadway will need to be in order 

for the effects of swapping, switching and spillover to dissipate.  Given that spillover is ongoing, 

there may be no glance on the forward roadway that is long enough to reduce complete the 

effect that a concurrent load has on hazard anticipation. 
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 The second question I am asking is whether hazard anticipation performance 

deteriorates in the alternating conditions as the duration of the glance on the forward roadway 

decreases and, if so, how the difference between drivers who glance continuously on the 

forward roadway and drivers who alternate glances varies as a function of the above factors 

(type of processing, location, and load) when the time which the hazard is visible is less than the 

threshold duration.  The time that the forward roadway is visible (the time between when the 

driver glances up from the secondary, in-vehicle task to the forward roadway and back down 

into the vehicle) will be defined as the window.  This situation is critical to consider because one 

cannot guarantee that after a driver first glances back up on the forward roadway the window 

will be equal to or greater than the threshold duration.  A potential hazard may only have 

become visible when the driver was glancing down inside the vehicle.  Thus, in order to 

understand the effects of the safety of secondary, in-vehicle tasks it is critical to determine just 

what effect alternating glances have on hazard detection likelihoods with windows smaller than 

the threshold duration. 

1.2 Aims 

 The aim of this dissertation research is to be able to successfully answer the above two 

questions.  To begin, several definitions are needed, some of which have been given previously 

(but are noted here for completeness).  First, define am alternating condition generically as any 

situation in which the driver alternates glances inside the vehicle and outside the vehicle on the 

forward roadway.  We will analyze three alternating conditions: alternating blank screen 

(alternating baseline), alternating low load, and alternating high load.  Second, define a 

continuous condition as the situation in which the driver glances continuously outside the 

vehicle.  There is only one continuous condition. Third, define the threshold duration as the 

minimum time it takes the driver glancing back up on the forward roadway to detect a latent 
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threat with the same likelihood that he or she does when glancing at the forward roadway 

continuously.   Fourth, define the window as the length of time that a latent hazard is visible 

when the driver glances back up on the forward roadway after performing a secondary in-

vehicle task.  Fifth, for a given forward roadway duration, define the swapping effect as the 

difference in the average percentage of hazards detected in the alternating baseline and 

continuous conditions; define the switching effect as difference in the average percentage of the 

hazards detected in the alternating low load and alternating baseline conditions; and define the 

spillover effect as the difference in the average percentage of hazards detected in the 

alternating low and high load conditions. Finally, define the alternation sequence as the 

sequence of durations of the glances on the forward roadway and inside the vehicle.  There are 

four alternation sequences used in the experiment: 1-2 (1 second outside, 2 seconds inside), 2-

2, 3-2 and 4-2. 

 Given the above definitions, I can frame the two questions as follows: (a) what is the 

threshold duration on average in the alternating conditions and how does it vary as a function of 

the type of processing, the location of the threat, and the cognitive load; and (b) does hazard 

anticipation performance decline as the duration of the glance on the forward roadway  in the 

alternating conditions decreases and, if so, how does the difference between the detection 

likelihood of drivers in an alternating and continuous conditions vary as a function of each of the 

above factors when the window is less than the threshold duration.   In Experiment 1, I address 

the two questions when there are no spillover effects from the secondary, in-vehicle task in the 

alternating conditions (i.e., there is no load that carries over from the secondary task).  The only 

effects are due to switching and swapping.  In Experiment 2, I address the two questions when 

there are spillover effects from the secondary, in-vehicle tasks (i.e., cognitive load is present 

from the secondary task while the driver is glancing on the forward roadway). 
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 Experiment 1:  Experiment 1 uses the RTI simulator in the Arbella Insurance Human 

Performance Laboratory which contains three screens, a center screen and a screen on the left 

and the right sides.  With the above definitions in mind, there are two related aims. The first aim 

is to determine the average threshold duration and how this duration varies in the alternating 

conditions as a function of: (a) how the threat is processed (top down or bottom up); (b) where 

the threat is located (fovea or periphery); and (c) the cognitive load placed on the driver.   

Pursuant to understanding the effect of load is the question of whether in the low load 

condition there are effects just of swapping or of both swapping and switching.   The second aim 

is to determine whether hazard anticipation performance declines as the duration of the glance 

on the forward roadway decreases and, if so, how the difference between the likelihood that 

drivers in the alternating and continuous conditions detect a threat when the window is less 

than the threshold varies as a function of the above factors.  

 The experiment uses a mixed design. Consider first those factors that were varied 

between participants.  Participants either drive scenarios in the continuous glance control 

condition (where the forward roadway is constantly visible), alternating baseline condition 

(where at certain points the center screen alternates between views of the forward roadway 

and a blank, black screen) or the alternating experimental low load condition (where at certain 

points the center screen alternates between views of the forward roadway and the search task). 

The period of time during which the information was visible on the forward roadway was varied 

across participants.  The exact visible forward roadway times were 1 s, 2 s, 3 s and 4 s.  The 

maximum visible time of 4 s was selected so that the likelihood the initial hazard would be 

identified in a single glance was near ceiling (ceiling being defined here as the likelihood that the 

hazard was detected when the roadway is continuously visible).  The invisible time was chosen 

as 2 s based on previous studies indicating 2 s as the threshold for in-vehicle glances before safe 
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driving performance starts decreasing dramatically (Klauer et al., 2006; Horrey & Wickens, 

2007).  So, for example, in a 1 s outside/2 s inside subsequence, the simulated drive would be 

visible for 1 s and not visible for 2 s.  The alternating glance sequence used was always the same 

one for each participant. 

 Consider next those two factors that were varied within participants.  They were 

discussed above and include: the location of the latent threat (central or peripheral) and the 

type of processing (bottom up or top down). 

 When the forward roadway is not visible, in the alternating low load condition the 

participant is asked to complete an in-vehicle task which places no load on the driver during the 

period of time when the task is visible.  Specifically during this condition, the center screen 

alternates between a view of the forward roadway and a view of a visual search display with a 5 

x 3 matrix of 15 random characters of the English alphabet.  Drivers need to search for and 

count the number of times the character ‘t’ appears on the display.  In the alternating baseline 

condition, the center screen alternates between a view of the forward roadway and a black, 

blank display.   

 Eye behavior was tracked throughout, as was driver and vehicle behavior.  Measures 

were made both of how likely a driver is to detect a potential threat under the different threat 

conditions (latent hazard detection) and of the drivers’ response (velocity). 

 The threshold duration was estimated in the alternating conditions. For example, 

suppose in the continuous condition 90% of the drivers detect the threat.  If in the alternating 

low load 4 s/2 s condition 90% of the drivers detect the threat, but in the alternating low load 3 

s/2 s condition only 60% of the drivers detect the threat then, crudely, the threshold duration is 

4 s.  The threshold duration will also be estimated in the alternating baseline condition.  

Suppose that in the alternating baseline 4 s/2 s condition 90% of the drivers detect the threat 
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and in the alternating baseline 3 s/2 s condition 80% of the drivers detect the threat.  The 

switching effect in this case is 20 percentage points at a forward roadway duration of 3 s (80% - -

60%).  The swapping effect if 10 percentage points at a forward roadway duration of 3 s 

(90% - 80%).    

Experiment 2: Experiment 2 also uses the RTI simulator.  This experiment differs from 

the above experiment only in terms of the additional load that the secondary task places on 

participants while the forward roadway is visible.  I chose a variation of the previous task where 

drivers search for and count the number of times ‘t’ appears on the search display.  In the high 

load condition, unlike the low load condition, the drivers continue to count forward by 3 during 

the period of time that the forward roadway is visible until the next such search display is 

presented. A different arrangement of characters in the search display was used each time the 

target display was presented.  The forward roadway appeared for a predetermined length of 

time.  The participant during this interval would need both to complete the secondary task 

(search) as well as continue to compute arithmetically (count forward by 3) thereby exerting a 

load on the verbal working memory.   

 With this in mind, like Experiment 1, there are two aims of Experiment 2.  The first aim is 

to determine how long is the average threshold duration of drivers and how this threshold 

duration varies as a function of: (a) how the threat is processed (top down or bottom up); (b) 

where the threat is located (fovea or periphery); and (c) the load (continuous, alternating 

baseline, alternating low load, alternating high load).  As with Experiment 1, pursuant to 

understanding the effect of load is not only the question of whether in the low load condition 

there are effects just of swapping or of both swapping and switching, but also the question of 

whether in the high load condition there are effects of spillover in addition to those of swapping 

and switching.  The second aim is to determine whether hazard anticipation performance 
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declines as the duration of the glance on the forward roadway decreases and, if so, to identify 

how the difference between the likelihood that drivers in the alternating and continuous 

conditions detect a threat when the window is less than the threshold varies as a function of the 

above three factors.  

 There were four conditions: a continuous glance control condition, an alternating 

baseline condition (the alternation is a black screen with a ‘+’ sign that the drivers need to fixate 

upon), an experimental low load condition where the views of the forward roadway and 

secondary task are alternately displayed as described above and the driver is not cognitively 

loaded when glancing on the forward roadway, and an experimental high load condition where 

the views of the forward roadway and secondary task are alternately displayed as described 

above and the driver is cognitively loaded with the arithmetic task. As in Experiment 1, eye, 

driver and vehicle behaviors were measured and analyzed. 
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CHAPTER 2 

LITERATURE REVIEW 

 Crashes are due to a number of different reasons.  One of these reasons is a failure to 

detect potential hazards.  The primary focus of my dissertation will be on failures to detect 

latent hazards which occur while the driver is looking at the forward roadway that are caused 

both by the alternation of glances inside the vehicle and on the forward roadway in and of itself 

and of the additional cognitive load created by the use of in-vehicle devices.  This additional 

cognitive load exists in those cases where the secondary, in-vehicle task: (a) requires the driver 

to maintain a spatial or visual memory of information gathered inside the vehicle while glancing 

up at the forward roadway or (b) requires the driver to execute actual cognitive operations 

while glancing up at the forward roadway. With the advent of technological improvements in in-

vehicle devices, the levels of in-vehicle distraction have reached a new zenith.  This winds up 

being a safety concern most critically because in-vehicle distractions lead to degradation in 

driving performance when the drivers’ eyes are away from the forward roadway. But it may also 

be the case that in-vehicle technologies take a toll on driver performance even when the driver 

is glancing at the forward roadway due both to task switching and spillover effects.  The 

literature review below covers a range of topics relevant to the distractions caused by in-vehicle 

devices. 

 First, the relation between driver performance and the durations of glances inside the 

vehicle (in-vehicle glance durations) and on the forward roadway (forward-roadway glance of in-

vehicle glance durations) is discussed. This discussion makes it clear that glances too long away 

from the forward roadway are a clear cause of crashes.   Of more relevance, it makes clear that 

as the roadway demands increase, the driver needs to glance for a longer period of time on the 

forward roadway.  However, it does not bear on an answer to the critical question of how 
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cognitive load will influence drivers’ ability to gather information from brief glances on the 

forward roadway.  The research on occlusion may provide insight into swapping effects that 

occur in the alternating baseline condition where a blank screen interruption is initiated within 

the alternation sequence.  

 So, second, I will turn to a review of the literature on change and inattention blindness.  

The discussion of change blindness is of clear relevance to the aims of the dissertation because 

the view out the forward roadway will change every time the driver glances inside and outside 

the cabin of the automobile.  The discussion of inattention blindness is significant because it 

reminds us that drivers focused on one aspect of the scene may not detect another salient, but 

unexpected aspect of the scene which is at the same location.  Put slightly differently, just 

because an individual fixates a given location does not mean that that individual processes all 

relevant information in that location.   Measures in addition to the fixation location are needed 

when it is critical to understand whether information at a particular location is processed. 

Especially relevant here is the extent to which a secondary task influences change and 

inattention blindness outside of the driving task.   

Third, I turn to a discussion of the impact of in-vehicle tasks on driving performance. Texting is a 

model example of such a task.  

Fourth, I discuss the literature about cell phones and their effect on distraction and crashes. The 

impact of cell phones on driver performance by itself is not directly related to the topic at hand 

since the driver is always glancing at the forward roadway (not alternating glances inside and 

outside the cabin of the automobile).  But it can potentially yield insights into the effects that 

the carryover cognitive load of a secondary in-vehicle task might have on driver performance.  

Additionally, I seek to understand the effects of performing in-vehicle tasks that require 

switching and swapping on drivers’ ability to detect latent hazards.  
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Finally, I discuss just how ubiquitous are the various secondary tasks (e.g., texting, talking on a 

cell phone) and what factors influence how likely drivers are to engage in such tasks.  

Understanding more broadly whether this will be a continuing problem is of general importance. 

2.1 Relation Between Duration of Glance Durations On and Off the Forward 

Roadway and Crashes 

2.1.1 Glances off the Forward Roadway  

 For many years, investigators have focused primarily on mean glance durations inside 

the vehicle as a measure of driver distraction.  In a recent study, Horrey and Wickens (2007) 

examined not only the relation between mean glance durations and crashes, but also the 

relation between the tails of a distribution of glance durations and crashes.  In their experiment, 

participants were asked to perform in-vehicle tasks of varying complexities. The experiment had 

11 younger drivers. The driving environment consisted of a single-lane city road with a single 

opposing lane. The road environment included buildings, parked vehicles and ambient traffic. 

Furthermore, there was simulated wind turbulence exerted on the simulator vehicle. 

There were several critical hazard events included in the form of incursion objects. 

These include:  pedestrians, animals, bicyclists or other vehicles. Time-based triggers were used 

to initiate the critical hazards. Drivers were provided with 2.5 seconds to avoid a collision. The 

frequency of the incursions was limited to 6 events over the course of 8 3-minute blocks to 

prevent learning effects or predictive tendencies of the driver.  

Participants had to perform two concurrent tasks: driving and an in-vehicle task over the 

duration of the experiment. The in-vehicle tasks were designed to maintain high levels of 

cognitive load on drivers. Drivers were asked to determine if there were more odd or even digits 

in a 5-digit or an 11-digit string of numbers presented on the display. The purpose was to have 
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two levels of task complexity. The numerical digits were salient and hence, their detectability via 

peripheral vision was almost impossible.  Thus drivers needed to glance inside the cabin of the 

automobile in order to perform the secondary task. The main measure of driving behavior 

collected was the in-vehicle glance duration. Horrey and Wickens define a glance as the amount 

of time that the eye is directed towards a certain area of interest until it moves to a new area.  

Glances can include multiple fixations.  

The authors analyze the data in two ways. One way involves the analysis of the means 

of the distribution while the other analysis involves examination of the tails of the distribution. 

The eye data is filtered by setting a minimum criterion for a glance at 100 milliseconds.  

For the analysis of means, extreme values which fell beyond +/- 2 standard deviations 

were removed.  Four percent of glances were lost in this process. A 2x2 repeated measures 

ANOVA was performed.  One of the factors was wind frequency (low, high) and the other task 

complexity (simple, complex). There were no significant effects of wind or task complexity. This 

finding suggests that the average in-vehicle glance durations did not experience fluctuations due 

to increasing task demands. The mean glance duration was discovered to be well below the 1.6s 

safety threshold described by Wierwille (1993) in his research. Thus from this method of 

analysis, it could be concluded that drivers performing complex in-vehicle tasks weren’t exposed 

to a higher crash risk, at least on the basis of their mean in-vehicle glances. It was also 

determined that participants fixated on the display more frequently during a complex in-vehicle 

task.  This suggests that complex in-vehicle tasks expose drivers to more risks. 

The second analysis technique employed by the authors looked at the tails of the glance 

distributions. Examination of the tails showed that there were more long-duration glances in the 

complex in-vehicle condition. To illustrate this, Horrey and Wickens examined responses to 

critical hazard events. In-vehicle glances exceeding 1.6 s were found to result in an average 
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response time of 2 s. As the glance duration increased, the response times were shown to 

increase as well (r = 0.81, p < .05). The likelihood of getting into a collision also increased (r = 

0.74, p < .05). The likelihood of drivers looking down at the onset of an event was the same 

across conditions. The complex in-vehicle condition resulted in 21% of fixations in excess of 1.6 

s. A repeated measures ANOVA for proportion of glances over 1.6s indicated that there was a 

large difference in the proportion of glances longer than 1.6s in the simple (6%) and complex 

(21%) conditions.  Importantly, they find that some 80% of the crashes on a driving simulator 

were caused by the 21% of the glances that are longer than 1.6 s.  Consistent with this, Summala 

(Nieminen & Summala, 1994) finds that longer than average glances were more relevant from a 

safety view than the average glances. Longer than normal glances are definitely more 

problematic.    

 Based on the results of their experiment (Horrey & Wickens, 2007), Horrey and Wickens 

proposed a revised crash risk model that describes crash risk as a function of the proportion of 

long duration in-vehicle glances.  The earlier crash risk model exclusively looked at the means of 

the glance distributions. The authors emphasize the importance of the tails of the distribution 

by considering the example of two distributions that may have similar means but varying 

robustness with respect to their tails. (The tail of one distribution may indicate 12% glances 

above 1.6s while the tail of the other shows 5% glances longer than 1.6s. In this case the 

identical means of the distribution conveyed no significant information whatsoever but the tails 

indicated a remarkable observation.) 

 The old crash risk model is displayed in Figure 1.  According to this model, visual 

attention could be directed either towards the forward roadway or within the vehicle towards 

an in-vehicle device. Crash risk could hence be defined as a function of the mean glance 

durations and the frequency of driving events. Events were classified as either potential 
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collisions or as control events which required steering inputs.  Control events were defined to 

arise from three sources: road curvature, turbulence and general lane maintenance 

requirements. Three parameters in the model below are moderated by vehicle velocity while 

turbulence is the only exception. Collision events and the two control events, road curvature 

and lane maintenance, both are a function of density of objects and are hence a function of 

vehicle speed.  

 Subsequently, Horrey and Wickens argue that mean glance durations may not be the 

best measure to determine crash risk. This is especially true considering the importance of the 

tail end of a distribution as identified by the authors in their paper. To address the said concern, 

the authors re-evaluated the model and modified it to define crash risk as a function of both the 

characteristics in the local traffic environment as well as the proportion of longer duration 

glances. The modified crash model is indicated in Figure 2. 

 

Figure 1: Old Crash Risk Model 
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Figure 2: Modified Crash Risk Model 

At this point, I would like to describe a study conducted by Klauer et al. (2006) that 

aimed to look at glances off the forward roadway and their direct relation to crash risk. Klauer et 

al. conducted a 100 car naturalistic study to evaluate the impact of driver inattention on 

crash/near-crash risk. The results indicated that drivers engaged in visually or manually complex 

tasks have a three times higher crash/near-crash risk than drivers who aren’t distracted. The 

study identified specific environmental conditions like intersections and areas of high traffic 

density which were more dangerous to drivers engaged in secondary tasks. For every six 

seconds of video data, the authors collected data around the event, five seconds before the 

event and one second after it.  Risk increased significantly if the driver glanced for a total of 

more than two seconds inside the vehicle within the six second window. The authors report that 

short, brief glances away from the forward roadway are safe and contribute towards reducing 

crash/near-crash risk. Their analysis indicated that tasks requiring single short glances elevated 

risk if any minimally. At the same time, glances longer than 2 seconds for any purpose was found 

to increase crash/near-crash risk by at least twice as much as baseline driving (Klauer et al, 

2007).  

 For the purpose of analysis, the authors used two reduced databases: the 100-car study 

event database that includes reduced crashes, near-crashes and incidents; and the baseline 

database. The baseline database was created via stratified sampling of the entire 6.3 Terabyte 

(total digital volume of information sampled) dataset based upon the number of crashes, near-

crashes and incidents each vehicle was involved in followed by random sampling of 20,000 6-sec 

segments from the data. According to the report, a vehicle involved in over 3 percent of all total 

crashes, near-crashes and incidents would also represent 3 percent of the baseline data. The 
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authors performed this stratification to create a control dataset with multiple baseline epochs 

per each crash or near-crash event to allow for more accurate calculation of odds ratios. 

 The study analyses indicated that “high involvement” drivers were significantly younger 

(30 vs. 38), lacked driving experience (13 years vs. 25 years) and reported more moving 

violations (2.2 vs. 1.4) on average than low involvement drivers. Any driver who had an 

involvement in four or more inattention related crashes/near-crashes was labeled as a “high 

involvement driver”. Analyses showed a high correlation of 0.72 between the frequency of a 

driver’s involvement in attention-related crashes and near-crashes. Baseline epochs indicated a 

direct correlation between the frequency of involvement in such distractive activities and the 

associated frequency of crashes and near-crashes.  

2.1.2 Glances on the Forward Roadway 

In a study conducted a while ago by Tsimhoni & Green (1999), the authors attempted to 

determine the visual demand on driving using visual occlusion. Previous research shows the 

relationship between crashes, roadway-based geometries and driver workload. Assessing driver 

workload is key to assessing the abovementioned relationship. Hence, the authors decided to 

use visual occlusion as the primary means of workload measurement. The previous research 

that was conducted didn’t examine the effect of road curvature while driving in a simulator. The 

authors investigated where drivers looked when they drove under visual occlusion. The 

experiment examined several questions, the most important (to our current point of discussion) 

of which is: “when the driver’s vision is intermittently occluded while driving in a simulator, 

where does the driver look when the scene is visible?” 
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Figure 3: The Geometry of the curves (Adapted from Tsimhoni & Green, 1998) 

In the visual occlusion method, drivers pressed a switch to get a half second glimpse of 

the road. The roadway remained occluded rest of the time.  The authors defined visual demand 

as the proportion of time the road was visible. The experiment had 24 participants across three 

age groups (18-24, 35-54, 55+). The participants were asked to drive a simulated single-lane 

road composed of 12 curves of 4 curve radii (582m, 291m, 194m, 146m) and 3 deflection angles 

(20, 45, 90) (Figure 3). The experimental design had two between-subject factors (age and sex) 

and four within-subject factors (curve radius, deflection angle, curve direction and three 

repetitions). The curve order was fixed across participants. Curve directions were randomized 

throughout the road (half of the curves in each direction during each run). The test course 

(Figure 4) for the study was 8.7 km long and took about 7 minutes to drive at a speed of 72.5 

km/h.  

 

Figure 4: Test Course Layout (Adapted from Tsimhoni & Green, 1998) 
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The results reported by the authors indicated that the mean visual demand (visual 

demand was estimated as the mean of all the observations within the first half of the curve) 

didn’t vary considerably as a function of the deflection angle of the curve. As expected by the 

authors, visual demand was found to be higher for sharper curves (curves with shorter radii).  

The paper reports that age wasn’t a significant variable either.  

Additionally, the study yielded useful information as to where participants look (within 

the scene) when their vision is intermittently occluded while driving in a simulator. The results 

report that, in general, participants preferred looking at the imaginary focus of expansion while 

navigating straighter sections of the roadway.  In curved sections, drivers whose vision was not 

occluded were found to fixate on one of the edges of the roadway. The participants continued 

to perform backward sequences (saccade forward, and then several attempts backward) till the 

curve ended. However when their vision was occluded, participants focused on the edges of the 

curved roadway performing forward sequences till the curve ended. The participants were 

found to prefer looking towards the inside the curve for large radius curves.  Contrariwise, 

participants preferred looking towards the outside the curve for sharper curves. The preference 

described above was found to be higher for left curves as compared to right curves.  

2.1.3 Implications for Research 

It is clear that especially long glances off the forward roadway are dangerous (Horrey 

and Wickens, 2007; Klauer et al., 2006).  The most obvious reason that they are dangerous is 

that a situation can develop while the driver’s eyes are off the road that cannot be avoided 

when the driver glances back up on the road. There simply is not enough time. Horrey and 

Wickens’ work with tails of glance distributions showed that longer than average glances were 

more critical and relevant from a safety perspective than average glances.  What is not clear 

immediately is whether especially long glances would have an equally negative effect on initial 
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hazard detection.  If that were the case, then some of the crashes one sees when the glances 

are especially long may be a consequence of an increase in the time it takes to identify a latent 

hazard. 

The research by Tsimhoni and Green is indicative of how visual demand varies as a 

function of road geometry.  As expected, the demand is higher in the tightly radiused curves.  

The implication is that drivers performing a secondary, in-vehicle task would have a more 

difficult time identifying a latent hazard and take longer to identify it when they were 

negotiating tightly radiused curves as opposed to more gently radiused curves. Interestingly, the 

results on glance patterns complement this. Drivers whose vision is not occluded on a curve 

alternate glances between one far downstream and then several more upstream. Drivers whose 

vision is occluded take a continuous sequence of successive downstream glances towards the 

near point of the vehicle. The implication is that drivers who are performing a secondary task 

would behave similarly and therefore would be more likely to fail to identify a latent hazard. 

There is also the important question of how the threshold duration would influence detection 

probabilities as window size varies as a function of cognitive load exerted by a secondary task 

performed in conjunction with the primary task (driving). More specifically, the work on 

occlusion points to the existence of effects persisting from the mere occlusion of the forward 

roadway without the involvement of a secondary task. This is especially useful in my attempt to 

understand swapping effects in my first experiment. Swapping is defined by me as a change in 

the focus of attention. The performance decrements experienced by drivers when navigating an 

alternation sequence with a blank screen occlusion compared to the continuous glance 

condition is similar to that experienced by just replacing the background that one was focusing 

upon. 
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2.2 Change Blindness & Inattention Blindness 

In a task where the driver alternates glances between the forward roadway and the 

cabin of the automobile, objects may appear that were not previously present.  Additionally, if 

the driver’s attention is on a secondary task, the driver may fail to process information upon 

which he or she is fixating.  Any kind of failure to detect an object when looking in the direction 

of the object can be categorized as a kind of visual blindness. Jensen (2011) refers to two types 

of visual blindness: change blindness and inattention blindness. In layman’s terms, these types of 

blindness are classic illustrations of scenarios wherein people fail to detect a simple change or to 

see something right in front of their eyes.  

2.2.1 Change Blindness 

Jensen defines change blindness as the failure to detect any substantial visual change to 

an attended object (Levin & Simons, 1997). Change detection has been used as a task for 

decades. Change detection occurs only when a change draws attention. It fails otherwise. 

Usually when visual changes occur, the variation in luminance is fairly noticeable. Change 

blindness ensues when other luminance changes or visual variations mask the change signals. 

 Jensen et al mention five steps for successful change detection (Jensen et al, 2011): 

• There has to be direct attention to the location where the change is bound to happen; 

• The item that was at the target location before the change has to be memorized; 

• The new feature at the target location has to be memorized following that; 

• Comparison between the two features in memory occurs after this; and 

• A recognition that there is a discrepancy in the two features has to occur and is the final 

step. 

Failures to detect a change (i.e., change blindness) could occur because the pre-change 

representation was never encoded in memory (Beck & Levin, 2003). Or, they could occur 
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because there was difficulty comparing the first encoded object and the newly encoded object 

(Mitrof et al, 2011). Earlier research tried to account for change blindness by conducting 

reading-related studies. Jensen et al. changed the case of words while the participants made a 

saccade between words to see if the case changes affected their ability to comprehend the 

meaning. There were no effects of case changes.  Flicker tasks have also been used to explain 

change blindness. Experimenters alternate an original and changed image back and forth by 

using a brief blank screen. For example, participants reading lines of mixed case text (e.g., ‘The 

fLoRiDa eVeRgLaDeS’ do not notice when all the letters change case (e.g., ‘The FlOrIdA 

EvErGlAdEs’) during an eye movement. Observers indicated no changes at all and did not seem 

to face any disruption while reading. Previous research says that participants require multiple 

alternations of the original and changed images to localize a change. Several studies show that 

changes during eye movements go unnoticed, and are minimally disruptive to reading, word 

naming or picture calling. 

2.2.2 Inattention Blindness 

The term ‘inattention blindness’ originates with the book with the same title (Mack & 

Rock, 1998).  Inattention blindness is defined as a failure to notice an unexpected but fully 

visible item when attention is diverted to other aspects of the display (Jensen et al., 2011). 

Selective attention was studied extensively in earlier research as one possible explanation of the 

occurrence of inattention blindness. Previous studies have shown that attention can be object 

focused instead of space focused and hence it’s likely that even when unattended information 

(Object 1) appears at the same spatial location as attended information (Object 2), participants 

may not notice Object 1 if attention is on Object 2 (Goldstein & Fink, 1981). Table 1 below lists 

the primary differences between change blindness and inattention blindness.  
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Dichotic listening tasks were popular in earlier literature and these tasks were used to 

study selective attention. In dichotic listening tasks, participants are asked to repeat every word 

that is spoken in their attended ear (the attended ear can be the left or right ear) as part of an 

ongoing audio stream (Moray, 1959). While the participants shadow the stream in their 

attended ear, the experimenter presents another stream in the unattended ear. It was noticed 

that participants typically failed to notice the semantic content of the unattended stream even 

when that information is unexpected, distinctive, or semantically meaningful.  

Later studies attempted to determine whether selective attention was confined to the 

auditory modality (Neisser & Becklen, 1975).  To make this determination, Neisser and 

colleagues designed a visual analog of dichotic listening known as the selective looking 

paradigm. The studies were designed to explore the nature of focused visual attention: do 

people focus attention on regions of space or do people focus attention on objects? Neisser et 

al. filmed two separate events and then combined them into a single display using a half-

silvered mirror. In the composite display, all actors and events were partially transparent and 

overlapping, occupying the same locations on screen. As with the dichotic listening task, 

subjects could selectively listen to one video and ignore the other, even though the events 

occupied the same space in this case. As with dichotic listening tasks, subjects often missed a 

random event in the stream they weren’t paying attention to. Further critically, these random 

unexpected events were obvious to those observers not performing a task requiring focused 

attention. 

Table 1: Differences between Change Blindness & Inattention Blindness 

Sl. No. Change Blindness Inattention Blindness 

1. Failure to notice an obvious 

change. 

Failure to note the existence of 

an unexpected item. 



  

25 

 

2. Change Blindness requires two 

displays to induce the 

phenomenon. 

Inattention blindness requires a 

single display of the unattended 

target object. 

3. Inattention can be a cause of 

change blindness but it cannot be 

the only cause. 

Engagement in multiple tasks can 

contribute to inattention 

blindness. 

4. Change blindness tasks can have 

multiple trials as participants are 

maintaining their attention on a 

specific task that is obviously 

present. 

Inattention blindness task trials 

cannot be repeated as a learning 

effect will create ambiguity in 

results. 

5. There is a possibility of 

generalization especially when 

utilizing selective looking tasks 

There is no scope for 

generalizability. 

 

2.2.3 Relation between Change and Inattention Blindness 

Both change blindness and inattention blindness are similar in the sense that the 

observer is blind to the changes occurring in either case. But the difference lies in the fact that 

change blindness usually refers to a failure to notice an obvious change while inattention 

blindness refers to a failure to note the existence of an unexpected item (Levin & Simons, 1997). 

While the cause of inattention blindness is clearly due to inattention, change blindness 

may be the result of inattention with other accompanying factors. Change detection has been 

known to fail even when people focus all their attention on the object being changed. Change 

blindness can also occur when participants fail to clearly recollect the initial object placed in 

memory. In this scenario, when the object changes, participants can’t retrieve the previous 
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object from memory to compare with (Scott-Brown et al, 2000). This could simply mean that 

there was no information stored and therefore nothing with which to make a comparison after 

the change has occurred. Change detection can also fail when participants fail to compare the 

two encoded objects (Mitroff et al, 2004). However Jensen goes on to say that in most 

scenarios, change blindness occurs as a result of a combination of representation and 

comparison failures. We could therefore conclude that inattention blindness could be a special 

case of change blindness in which inattention to an object is a possible reason but not the only 

reason for the occurrence of the phenomenon. 

 Change blindness however cannot be classified as a special case of inattention blindness 

because in inattention blindness the participants fail to note the existence of an unexpected 

item (Levins& Simons, 1997). For change blindness to be classified as inattention blindness, it 

seems necessary that participants fail to note an obvious change. Expectation of an event leads 

people to allocate resources to the object even if it’s not the primary task. This implies that the 

object representations in inattention blindness tasks are truly unexpected (Most et al, 2005). 

Hence, we can safely conclude that change blindness is definitively different form inattention 

blindness. In other words, change blindness is not a form of inattention blindness. 

2.2.4 Implications for Research 

 Clearly, change blindness and inattention blindness could explain – at least in part – why 

alternating glances inside the vehicle and on the forward roadway (the alternating glance 

condition)  could make the initial detection of a latent hazard more difficult than a continuous 

glance on the forward roadway (the continuous glance condition). For both conditions, the 

location and content of the information projected on the retina is changing moment by 

moment.  First, consider the effects of change blindness. The location of successive glances on 

the roadway is probably going to be on different areas of the scenario when the driver is 



  

27 

 

alternating glances.  Thus, the driver will have a vague memory at best of what appeared 

previously at the area of the scenario which is fixated when the driver glances back again on the 

road.  If it is information changing over time that defines an area in a scenario as a latent hazard, 

then the change is very likely to go unnoticed in the alternating condition because different 

areas of the scenario are fixated in successive glances. However, the change could be more 

noticeable in the alternating condition than the continuous if the driver in the alternating 

condition fixates the location of the scenario when the latent hazard is developing. Specifically, 

if the change in the scenario between glances that identified a location as one which could 

contain a latent hazard was relatively dramatic, then the performance of drivers when they 

alternated glances could better than the performance of drivers when they glanced 

continuously at the roadway.  This implies that it will be necessary to consider where the driver 

glanced on the roadway before glancing inside the vehicle in order to predict whether change 

blindness could be the cause of the occasional instance where drivers were actually faster to 

detect a latent hazard. 

 Inattention blindness explains the failure of a person to identify or detect the presence 

of an unexpected item. Engagement in multiple tasks contributes to inattention blindness and in 

my work, I intend to examine how the performance of a secondary task in conjunction with 

driving (multi-tasking) affects an individuals’ ability to detect potential threats especially in the 

alternating glance condition where the forward roadway is periodically interrupted. It could be 

surmised that the performance of two non-related tasks involving different mental processes 

could compound the crash risk associated with multi-tasking. The performance of drivers in the 

alternating condition is likely to be better than that of drivers in the continuous glance condition 

if indeed inattention blindness attributes to quicker saccading and hence, more sensitive to 

changes in the visual environment. Change blindness can additionally explain swapping effects. 
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Swapping effects occur due to a substantial visual change (replacement of the forward roadway 

with a blank screen) to the attended object (for my experiments the forward roadway). 

Swapping effects are different from switching effects in that the latter involves attending to a 

specific secondary task, albeit one that places minimal load on the driver when he attends to the 

forwards roadway.  

2.3 Secondary In-Vehicle Tasks: Texting and Other Tasks 

 The influence of a number of in-vehicle tasks on driving performance has been studied. 

Texting is arguably the task that puts drivers most at risk (Lee, 2007) and therefore is given the 

most attention below.  The influence of other in-vehicle tasks on driving performance has also 

been studied.  However, there has been no real effort to separate out the effects of the 

secondary, in-vehicle task on the information that is processed while the driver is glancing up at 

the forward roadway when that information requires initial hazard detection.  

2.3.1 Texting and Crashes 

 It has been well documented in simulator studies that cell phones have a negative 

impact on a number of different measures of driving performance (Strayer et al., 1999, Reed & 

Robbins, 2008), though the evidence is mixed when one considers the evidence from 

epidemiological studies (McEvoy et al. 2005; Klauer, 2006) and naturalistic studies (Young, 

2012). It is very clear from naturalistic studies that text messaging greatly inflates the risk of 

crashing, by a factor of almost 23 (Klauer, 2006).  The exact reasons why this is the case have 

been examined in the following studies. 

2.3.2 Texting: Effect on Driver Behaviors 

 In 2006, Strayer et al. conducted research to investigate the effects or negative 

impairment associated with conversing on a telephone while driving (Strayer, Drews & Crouch, 
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2006). The study design employed by them had 40 adult participants ranging in age from 22 to 

34 with an average age of 25. The study required the participants to be social drinkers (3 to 5 

alcoholic drinks a week). Of the 40 participants, 78% owned a cell phone and 87% of the cell 

phone owners self-reported phone use while driving. The authors employed a within subject 

design wherein the order of subsequent alcohol and cell phone sessions were counterbalanced 

across participants. The experiment entailed a brake response task where the lead vehicle 

released its brake and accelerated to normal highway speed. Failure to depress the brake would 

result in the participant colliding with the lead vehicle. In the alcohol session, participants drank 

a mixture of orange juice and vodka calculated to achieve a blood alcohol level of 0.08. The cell 

phone condition consisted of three 15-minute counterbalanced conditions: baseline driving, 

driving while conversing on a handheld cell phone, and driving while conversing on a hands-free 

cell phone. The researchers found out that drivers using a cell phone exhibited a delay in their 

response to events in the driving scenario and were identified to be more likely to commit a 

traffic infraction or be involved in an accident. Drivers in the alcohol condition exhibited a more 

aggressive driving style, driving closer to the vehicle immediately in front of them. While alcohol 

impaired drivers had shorter following distances, cell-phone distracted drivers exhibited longer 

reaction durations. Cell phone drivers were also found to be more likely to be involved in 

accidents. Also of note was that the differences in impairments between hand-held and hands 

free drivers were barely significant indicating that the conversations themselves were sufficient 

to cognitively load the individual enough to render him or her impaired in crucial driving 

instances. The authors compared a drunk driver to a person using a cell phone with the goal to 

establish a benchmark for assessing risks related to impairment.  

 The Monash University Accident Research Center (MUARC) conducted a study to 

evaluate the effects of text messaging on the driving performance of young novice drivers 
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(Hosking, Young & Regan, 2009). Researchers at MUARC hypothesized that there would be a 

decrease in mean speed and increased variability in speed when drivers were texting. They also 

predicted increased lane excursions and poor lane positioning. The study involved twenty 

students aged between 18 and 21 years. All participants were chosen to have familiarity with 

the Nokia interface as well as significant familiarity with predictive texting. The study was 

conducted on a driving simulator and the simulation involved an 8 km long dual lane stretch 

with speed limit between 50 to 80 km/hr. There were two experimental drives with the same 8 

test scenarios. The drives were counterbalanced, with 4 scenarios in the first drive serving as a 

control section for subjects when they performed the predictive text sending/receiving task 

while the second drive was balanced to have the subjects perform their predictive entry task on 

the other four scenarios. The results of the study indicated that drivers tended to significantly 

vary their lane positioning when sending or receiving text messages. A chi-square-goodness-of-

fit test indicated a direct correlation between lane excursions and text messaging. Text 

messaging was found to cause drivers to inadvertently traverse across lanes more often. An 

analysis of visual demands by the authors indicated that the duration of drivers’ off-road glances 

were half a second more in the text messaging condition than in the baseline (non-texting) 

condition. Finally, the results also revealed that when drivers were text messaging, the 

variability of their time headway in lead-vehicle following tasks doubled at the least. 

2.3.3 Texting: Effect on Vehicle Behaviors 

 Reed & Robbins (2008) conducted a study that in which the hypothesis was tested that 

performance would be worse while writing a text message than while reading a text message. 

The authors hypothesized that performance of text messaging tasks while driving would affect 

drivers’ ability to react (increased reaction time, slower response times), following (headway) 

distance, lane maintenance metrics (lateral lane positioning) and speed (reduced speed).  The 
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results of this study demonstrated impairment by concurrent text messaging tasks. Reaction 

times, car following ability, lane control, and driver speed were used as measures of driver 

performance. The study recruited 17 participants aged between 17 and 24. All participants were 

regular users of cell phones and the text messaging application. Only alphanumeric keypad users 

were included in the study. Participants drove two identical drives as a part of the study: the 

first while text messaging and the second without any distractions. The reaction times to task 

un-related trigger stimuli were found to be higher when participants were involved in a text 

messaging task.  The authors also noted a general failure to detect hazards by distracted drivers. 

Drivers engaged in the secondary text messaging task were found to detect hazards at a much 

lesser rate than non-distracted drivers. Engaged drivers displayed speed modulation especially 

in attempts to mitigate accident risks. In my work, I intend to determine if extremely brief 

threshold durations are a contributor of hazard detection impairment. Furthermore, the 

alternating glances condition serves to mimic real-time change blindness encountered by 

clueless, careless drivers. The study observed that drivers tended to reduce their speed in text 

messaging conditions. As surmised by the study, the failure to detect hazards, increased 

response times to hazards, and exposure time to that risk have implications for driver safety. 

The authors also suggest the possibility that the drivers were aware of the impairment whilst 

engaged in text messaging tasks and hence chose to reduce their speeds in order to mitigate 

accident risk. This study found that reading messages resulted in a 12.7% increase in lateral 

position variability whilst that for writing a message increased by 91.4% (Reed & Robbins, 2008).   

 In their study, Sexton et al. (2000; 2002) attempted to investigate the effects of 

cannabis on driving. Their attempt was to validate previous studies that showed severe an 

impact on performance of simulated and actual driving and divided attention tasks under the 

influence of alcohol. Previous cannabis studies indicated that task performance involving all 
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psychomotor involvement and continuous attention suffered impairment. The study under 

discussion (Sexton, 2000) was conducted on a driving simulator at TRL and involved experienced 

cannabis and alcohol users of the male gender. There were two cannabis conditions: placebo 

and the low dose cannabis condition and the drivers were expected to carry out laboratory tasks 

and drive the simulator under both conditions. There were two additional alcohol conditions: 

placebo and a dose leading to a Blood Alcohol Concentration of 50mg of alcohol per 100ml of 

blood (This is an alcohol plus cannabis condition in which the alcoholic drink was administered 

before smoking to maximize simultaneous impairment). There were a total of four groups: - 

placebo, alcohol only, cannabis only and alcohol plus cannabis conditions. The results of the 

study showed a reduction in average driving speed and an increase in the minimum time 

headway when participants had an active dose of cannabis, regardless of the alcohol dose. 

Measurements from an adaptive tracking task indicated significant performance deterioration 

as the dose level increased. Sexton et al. concluded that cannabis had a measurably worsening 

effect on psychomotor performance, especially tracking ability. Influenced drivers tried to 

compensate for their impairment by driving more slowly however, they were found to suffer 

from severe lane control issues. Sexton et al. (2000) found that drivers displayed an increase of 

around 35% in lateral position variability with high doses of cannabis whilst Sexton et al. (2002) 

found an approximate 14% increase in SDLP for the cannabis and cannabis + alcohol conditions.  

2.3.4 Other Secondary In-Vehicle Tasks 

 Blanco et al. (2006) comment on the impact of secondary task cognitive processing 

demand on driving performance. Blanco et al. investigated the characteristics of in-vehicle 

information system tasks that could hinder driving performance due to uncertainty build up and 

cognitive capture. While driving, participants were presented with in-vehicle information system 

tasks with various information densities, decision-making elements, presentation formats and 
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presentation modalities (visual or auditory). The study was conducted on the road using an 

instrumented 1995 Oldsmobile Aurora and a 1997 Volvo Heavy Truck with a 48-foot trailer. The 

study involved thirty six truck drivers across both genders. Six different route selection tasks 

were presented to the drivers. There were two groups of drivers: light vehicle drivers and heavy 

vehicle drivers. The results from the study showed that the addition of one or more decision 

making elements to a search task substantially adds to the attention demand related to 

automotive secondary tasks. Another important finding was that even a simple search only task 

presented as a secondary task while driving provided a higher cognitive loads than a 

conventional secondary task like activating a turn signal, adjusting the power mirrors, etc. The 

experiments conducted by Blanco were aimed at investigating the characteristics of in-vehicle 

information systems that could hinder driving performance (Blanco, Biever, Gallagher and 

Dingus, 2006).  

2.3.5 Implications for Research 

It is clear from the above that increasing the cognitive load on drivers by imposing secondary, in-

vehicle tasks has an effect on crashes (e.g., texting, Klauer et al., 2006), driver behaviors (e.g., 

brake response times, Strayer et al., 2006) and vehicle behaviors (e.g., SDLP, Sexton et al., 2002).  

However, only one study actually looked at the effect of secondary, in-vehicle tasks on hazard 

detection (Reed and Robbins, 2008).   

They found that drivers were less likely to detect hazards when performing an in-vehicle 

task. The types of potential hazards evaluated included loops, and car following events. Reaction 

times to task un-related stimuli was observed to be higher when reading or writing a text 

message. Reed and Robbins also reported a failure by drivers to respond to stimuli when 

engaged in concurrent text messaging. The increased stopping distance (12.5 m) would have 

easily made the difference between a crash and an avoidance.  
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In my work, I attempt to understand for what threshold duration, the likelihood of 

detecting a potential hazard remains maximum. It is clear that at non- optimal threshold 

durations involving alternating glances between the forward roadway and the inside of the 

vehicle while engaged in a loaded or non-loaded secondary task (while driving), the likelihood of 

successfully detecting a potential hazard drops exponentially. Furthermore, it is also important 

to understand if when the window is lesser than the threshold duration, load as a result of 

secondary task contributes to a spillover effect on the primary task of driving thereby further 

reducing the likelihood of detecting a potential hazard.  In the alternating glances condition, the 

alternation between the forward roadway and the inside of the vehicle is likely to cause drivers 

to fixate on a visible area pre-task which in turn may lead them to cautiously scan for potential 

unmaterialized hazards. However, in the continuous glance condition, drivers are presented 

with a continuous view of the forward roadway and the intuition here is that successful initial 

hazard detection by the drivers in this group will lead to a higher likelihood of scanning for 

potential hazards (Since change blindness is limited by the continuous non-interrupted 

presentation of the forward roadway.  

2.4 Secondary Forward-Roadway Tasks: Cell Phones and Other Tasks 

 An understanding of the effects of cell phone use on driving performance gives us direct 

knowledge of the effects of cognitive load on driving performance when the driver is glancing 

ahead at the forward roadway.  This knowledge can be used to infer the effects that the load 

imposed by a secondary, in-vehicle task might have on the driver while he or she was glancing 

up at the forward roadway. 
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2.4.1 Cell Phones and Crashes 

 Titchener et al. report driver distraction as the leading cause of traffic crashes 

worldwide. They conducted a survey that indicated 30 percent of crash victims who attended a 

hospital in Perth, Western Australia, identified at least one distracting activity at the time of 

their crash. And cell phones are reported to be a significant contributor to these in vehicle 

distractions (Titchener, White & Kaye, 2009). McEvoy et al. mention that a few epidemiological 

studies have assessed the risk of crashes associated with phone use (McEvoy, Stevenson, 

McCartt, Woodward, Haworth, Palamara & Cercarelli, 2005). They suggest that police crash 

reports have only been vaguely helpful in this regard since the information on the driver’s phone 

use is unreliable. They used a case-crossover design, a variation of a case-control design that is 

appropriate when a brief exposure causes a transient rise in the risk of a rare outcome.  The 

drivers’ phone use at the estimated time of crash was compared to his or her phone use at some 

other time period. The authors found that a person using a cell phone while driving was four 

times more likely to have a crash that would result in hospital attendance. They reported that 

sex or age group didn’t influence the increased likelihood of a crash.    

 Consistent with the findings reported by McEvoy et al. (2009), Redelmeier and Tibshirani 

(1997) studied 699 drivers who had cellular phones and were involved in motor vehicle collisions 

resulting in damages. The study employed an epidemiological method, the case-crossover 

design, to study whether using a cell phone while driving increases the risk of exposure to a 

motor vehicle collision. Each participants’ cell phone calls for the week prior to the collision 

were analyzed via the use of billing records. The authors concluded that the risk of a collision 

when using a cellular phone is four times higher than when the cell phone is not in use. Calls 

placed close to the time of collision were found to be extremely hazardous: the relative risk for 

calls placed within 5 minutes of the collision was 4.8 as compared to only 1.3 for calls placed 
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more than 15 minutes before the collision. The study also found no safety advantages for hands 

free cell phones over hand-held phones. 

Stutts et al. report that one-fourth of vehicle crashes result from a driver being 

inattentive or distracted (Stutts, Reinfurt, Staplin & Rodgman, 2001). The goal of their study was 

to identify the major sources of driver distraction and the relative importance of the distractions 

as potential causes of crashes. The study used data from the Crashworthiness Data System (CDS) 

which is an annual probability sample of approximately 5,000 police-reported crashes involving 

at least one passenger vehicle that has been towed from the crash scene. The two variables 

keyed for the analysis include: (a) the attention status of the driver (attentive, distracted, looked 

but did not see, sleepy, or unknown), and (b) the specific distracting event for each distracted 

driver. The overall data indicated that 48.6 % of the drivers were identified as attentive at the 

time of crash while 8.3% were identified as distracted and 5.4% as “looked but did not see” 

(about 14% of crashes occurred as a result of distraction or non-detection). Young drivers were 

found to be most likely to be involved in distraction-related crashes. There were higher 

proportions of adjusting radio/CD events occurring in nighttime crashes while there were higher 

proportions of moving object, in vehicle events occurring in crashes on non-level grade 

roadways.   

 A recent study by Richard Young (2012) examines the possibility of a relative positive 

bias in epidemiological studies. Young argues that recent epidemiological studies (McEvoy et al., 

2009; Redelmeier and Tibshirani, 1997) have estimated little or no increased risk of automotive 

crashes as a result of driver distraction, whereas earlier case-crossover designs estimated a 

relative risk of about four times. Young attempted to determine if earlier studies had introduced 

a positive bias in relative risk estimates by overestimating driver exposure in the control 

segments. The study design involved tabulating driver exposures in a “control” window and a 
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“case” window across 100 days for 439 instrumented vehicles. Young reported that driving 

exposure for control windows was about one-fourth that of case windows containing at least 

some driving. After further adjustment for imbalance in window populations, Young re-

estimated the relative risk in earlier case-crossover studies, reducing that estimate from 4 to 1. 

Young concluded that earlier case-crossover studies must have likely overestimated the relative 

risk for cell phone conversations while driving by implicitly assuming that driving during a 

control window was full time when it may not have been the case (Young, 2012). 

2.4.2 Cell Phones: Effect on Driver Behaviors 

 Strayer et al. conducted a study in 2001 that reported perceptual impairments 

associated with using cell phones while driving. The study had 64 participants with an average 

age of 21.2. The design had four groups: radio control, book-on-tape control, hand-held cell 

phone, or hands-free cell phone groups. The participants had to perform either a tracking task 

while driving or had to perform a conversation task in addition to the tracking task while driving 

on the simulator. They reported that subjects engaged in cell phone conversations missed twice 

as many simulated traffic signals as otherwise and they had longer reaction times (Strayer, 

Drews, Albert & Johnston, 2001). Reaction time is one of the most important factors that help us 

distinguish a safe driver from an unsafe one. For a task like driving that involves a large cognitive 

workload, it is important for drivers to have fast reaction times to act rapidly in case of possible 

hazard materialization. 

 Consistent with this, Strayer et al. (2003) has conducted research that examines the 

effect of hands free conversations on simulated driving. This particular study had 40 participants 

with an average age of 23.6 and the study was conducted on a driving simulator. The simulated 

route consisted of a 40-mile multilane beltway with on- and off- ramps and two-lane traffic in 

each direction separated by a grassy median. Participants drove the highway in four sections of 
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10 miles each. Half the scenarios were used in the single task condition while the other half 

were used in the dual task condition involving both the driving task and a cell phone task. They 

determined that participants looking at objects in the driving environment were less likely to 

create a durable memory of those objects if they were conversing on a cell phone. In-vehicle 

conversations are said to be less distracting than cell-phone conversations because of easier 

cognitive processing loads (Strayer & Drews, 2007). This is consistent with the research that 

suggests that conversations impair driver’s reactions to vehicles braking in front of them 

(Strayer, Drews & Johnston, 2001). 

 A recent paper by Transport Canada (2002) discusses the cognitive demands of cell 

phones and the impact of that demand on driver performance. The authors suggest that though 

the introduction of hands-free operation for cell phone devices is intended to reduce the 

distraction due to manual operation of cell phones, in the first place the distraction may not 

have resulted from manual manipulations but may have been due to the cognitive demands of 

cell phones. The authors performed a study that investigated the effects of cognitive distraction 

on driver behavior while the drivers were carrying out tasks that varied in cognitive demand. 

The study had 21 participants aged 21 to 34 with an average age of 26.5.  The experiment was 

on-road in nature and participants drove a 1999 Toyota Camry. The test route was a 4 km 

stretch of a busy 4-lane city road on which the driver drove north and south for a combined 8 

km. Each participant completed three runs: easy task condition (e.g., easy addition), difficult 

task condition (e.g., difficult addition) or no additional task. The results of the experiment and 

further analysis revealed that the drivers made fewer saccades, spent more time looking 

centrally and spent less time looking to the right periphery under conditions of increased 

cognitive load. The authors identified a larger number of hard braking incidents and changes in 

inspection patterns of the forward view when drivers performed the more demanding tasks. The 
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study recommended that a better understanding of driver-device interaction methods could 

result in improved designs that minimize the amount of distraction (Harbluk and Noy, Transport 

Canada 2002). 

 Although some few studies show that some aspects of driving are unaffected by a 

secondary task (Brookhuis et al., 1991; Engstrom et al., 2005), a recent meta-analysis study 

suggested definite costs are associated with cell phone use while driving (Horrey & Wickens, 

2006). Horrey and Wickens reported significant deterioration in driving performance in the 

presence of secondary tasks. Conversational tasks in general have greater costs than 

information-processing tasks (a typical information processing task would involve the use of 

multiple mediums to interact, understand and respond to the data at hand; text messaging is an 

excellent example of an information processing task. Texting involves reading a message (visual, 

cognitive), comprehending the message (cognitive) and composing a message (motor, visual, 

cognitive) and very often these subsequences are performed in a semi-parallel manner) when 

those costs are measured in terms of their impact on driving performance (Horrey & Wickens, 

2006). This may be attributed to the “greater engagement” associated with actual 

conversations. Although information processing tasks involve perceptual resources and working 

memory, they do not share the same degree of engagement. Importantly, information 

processing tasks have a detrimental impact on driving performance but with smaller costs. Text 

messaging could be defined as an information processing task (Horrey & Wickens, 2006). 

 Consistent with the above, Matthews at al. tried to determine the effect of different 

types of cell phones on total subjective workload. The types of cell phones examined include 

hand held, hands free with an external speaker and personal hands free. The total subjective 

workload was measured using NASA-task load index (TLX) and the modified rhyme test (MRT). 

The experimenters concluded that the physical demand wasn’t a high contributor to the 
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workload and they determined that the personal hands free cell phone would interfere the least 

with cognitive demands of driving.  

2.4.3 Cell Phones: Effect on Vehicle Behaviors  

 The dangers of phone use while driving are the distractions induced by taking the 

driver’s attention away from the driving task and the road ahead. The driver is expected to 

monitor and control the vehicles’ lateral and longitudinal position along a safe path. Obvious 

side-effects/consequences of internal distractions like cell phones include poor lane positioning 

and greater speed variability. (Brookhuis et al., 1991; Burns et al.2002). 

 Just et al. report a decrease in brain activation associated with driving when listening to 

someone speak (Just, Keller & Cynkar, 2008). The study that they conducted used functional 

magnetic resonance imaging (MRI) to investigate the impact of concurrent auditory language 

comprehension on the brain activity associated with a simulated driving task. Participants were 

asked to steer a vehicle along a curved road while listening to spoken sentences that they 

judged as true or false.  The dual-task condition caused a significant deterioration in driving 

accuracy which presumably was due to the processing of auditory sentences. The study 

identified language comprehension performed concurrently with driving draws mental 

resources away from driving and produces deterioration in driving performance.  

 It has long been regarded important to maintain attention to the forward roadway. Lack 

of attention has been determined to contribute heavily to crashes (Just et al., 2008). There are 

several sources that indicate distraction to be a severe problem for novice drivers. These 

sources include police crash reports, naturalistic studies, field experiments, simulator studies 

and studies of older drivers (Chan et al., 2009). Researchers have also examined the effects of 

cell phone distractions on younger and older drivers. Their findings reported reaction times 18 

percent slower, following distances 12 percent greater and speed recovery (following braking) 
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17 percent longer (Just et al., 2008). Cell phone induced effects were reported to be similar for 

younger and older adults (Strayer & Drews, 2004). Similar conclusions may be drawn for a text 

messaging perspective too. 

2.4.4 Other Forward Roadway Secondary Tasks 

 Recarte et al. performed experiments to study the effects of mental workload on 

detection and discrimination capacities. Mental workload was manipulated by having the 

participants perform several mental tasks while driving. The performance criteria were set by 

using a simultaneous visual-detection and discrimination test. The study involved 12 participants 

and the results of the study showed that mental tasks induced visual-detection impairment and 

produced spatial gaze concentration. Ocular behavior analysis showed that this impairment was 

due to late detection and poor identification. The results also indicated that increased workload 

resulting from mental tasks produced endogenous distraction, thereby affecting the capacity to 

process visual stimuli. Further, performance of mental tasks was found to prevent application of 

top –down processes as exhibited by a driver involved in a collision who said, for example, “I 

didn’t expect it,” “I looked but failed to see, “ or “I saw it too late.” Their results reflected 

incremented pupil size, indicating additional mental effort and spatial gaze concentration 

(Recarte and Nunes, 2003). 

2.4.5 The Role of Experience 

 There is recent research that talks about eliminating the impairment induced (due to 

cell phones) by practice (Shinar, Tractinsky & Compton, 2005; Cooper & Strayer, 2008). Shinar 

and colleagues found out that 96 minutes of simulator-based practice spread over 5 days was 

sufficient to eliminate driving impairment from cell phone use in a group of relatively 

experienced drivers.  Shinar et al. observed dual task learning on the mean and standard 

deviations of lane position, steering angle, and speed. Additionally there was evidence of 
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learning being greatest when driving was coupled with a math task rather than naturalistic 

conversation.  

At the same time Cooper and Strayer (2008) conducted a study that examined the effect 

of practice on concurrent driving and phone conversations. Their study involved 60 participants. 

The average age was 24.8 years. The experiment was conducted on a driving simulator and 

involved four unique scenarios, two each from a city database and highway database. The 

scenarios differed in terms of direction of travel, location of braking events, and vehicle model. 

The results indicated that drivers conversing on a cell phone responded more slowly to lead 

vehicle braking. Repeated scenario exposure during the practice phase of the experiment did 

not result in significant improvement in performance for drivers using a cell phone. Overall, the 

study findings were consistent with the findings of the skill acquisition literature (The concurrent 

performance of two unpredictable, attention-demanding tasks will exhibit persistent 

impairment, As stated by Kramer et al., 1995).   

2.4.6 Implications for Research 

The review and discussion of studies in the section above provide an understanding of 

how cognitive load exerted by secondary cell-phone task affects driver and vehicle behavior 

when the driver looks up at the forward roadway, after having glanced within the vehicle to 

perform an in-vehicle secondary task (or a unit of such a task). Titchener et al., 2009 and 

McEvoy et al., 2009 used case –crossover designs to report that cellphone usage increased 

risk of exposure to a motor vehicle collision. Stutts et al., 2001 reported that one-fourth of 

vehicle crashes resulted from a driver being inattentive. Recently, Young, 2012 examined 

the possibility of a positive bias in epidemiological studies and argued that recent studies 

may have estimated little or no increased risk of automobile crashes as a result for driver 

distraction. 
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Studies by Strayer (2001, 2003) and Harbluk (2002) highlighted the effect of cell phones 

on driver behaviors. Reaction times were found to be slower and a high number of hard 

braking events indicated the negative influence of cell phones on driver behaviors critical to 

safety. Conversational tasks and information-processing tasks were found to have a 

detrimental impact on driving performance due to high “engagement” associated with such 

tasks. 

The impact of cell phones and associated cognitive load on vehicle behaviors was 

reported by Brookhuis (1991), Burns (2002), Just (2008) and Strayer (2004). The obvious 

consequences included poor lane positioning and greater speed variability. Slower reaction 

times, closer following distances and slower braking recovery all indicate the de-

marginalized impact of secondary tasks such as cell phones when performed concurrently 

with driving. In my work, I attempt to investigate the spillover effects of such secondary 

tasks (both loaded and non-loaded) on the primary task while the driver attempts to 

alternate his glances between the forward roadway and the inside of the vehicle. The effects 

of task switching compounds the detrimental effect.   

Recarte, 2003 specifically tried to determine the effects of mental workload on 

detection capacity and found that mental tasks induced visual-detection impairment and 

produced spatial gaze concentration. Late detection and poor hazard identification was 

confirmed via the use of eye tracking. I intend to do the same in my research so as to 

distinguish between the effects of cognitive load and cognitive spillover resulting from 

secondary tasks. Shinar (2005) and Cooper (2008) both discuss the elimination of 

impairment via practice. Shinar reports success at practice while Coopers’ results were 

found to align with that proposed by Kramer in 1995 (The concurrent performance of two 

unpredictable, attention-demanding tasks will exhibit persistent impairment). This 
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inconsistency in findings might be due to the difference in the average experience of the 

population investigated (seems like Shinar used more experienced drivers while Cooper 

used less experienced drivers. Further, the tasks used differed significantly. While Shinar 

used math tasks, Cooper used a cell phone task and it could be argued that cell phones as a 

secondary task can never be mastered while tasks that involve learning could exhibit some 

form of practice or learning effects thereby indicating a false trend observed in post-training 

performance.  

2.5 Secondary Driving Tasks: Prevalence and Engagement 

Secondary tasks have become so prevalent in society that it takes more than simple 

outreach and education to get drivers to understand the true risk of multitasking.  The existing 

literature talks about the prevailing attitudes regarding multitasking and public opinion 

regarding the same. Although, engagement in a secondary task is almost always voluntary, it is 

not necessarily a conscious decision.  This makes it all that much harder to regulate.  

2.5.1 Texting Prevalence 

  Over 7 billion text messages are sent each day throughout the world (The GSM 

Association, 2007).  In 2010, the Pew Research Center conducted a project that, 

interestingly, concluded that adults were just as likely as teens to have text messaged while 

driving and were substantially more likely to have talked on the phone while driving (Pew 

Research Center, 2010). As reported by Pew Research Center, forty-nine percent of adults and 

teens said that they have been passengers in a car when the driver was sending or reading text 

messages on their cell phone. The Pew research Center also determined that over 47% of all 

texting adults admitted to having sent or read a text message while driving. This compares to 
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one in three texting teens who said they had “texted while driving”, in a September 2009 survey 

(Pew Research Center, 2010).  

 In 2009, the AAA Foundation for Safety conducted a nationally representative telephone 

survey that found over two out of every three drivers admit to talking on cell phones while 

driving in the past month, and over one in five admitted to reading or sending text messages 

while driving. Rates of self-reported text messaging while driving were found to be highest 

amongst teenage drivers.  Data from the National Highway Traffic Safety Administration 

(NHTSA)’s observational studies report that 6% of drivers were talking on handheld cell phones, 

an estimated additional 5% were talking on hands-free cell-phones, and 1% were ”visibly 

manipulating hand-held devices” at any given daylight moment in 2008 (AAA Foundation for 

Traffic Safety Survey). 

2.5.2 Cell Phone Prevalence 

 Lamble, Rajalin and Summala, (2002) reviewed road-user surveys on the use of cell 

phones on the road in Finland where the mobile phone ownership rate is the highest in the 

world (70% in 2000). The proportion of drivers that chose to use a cell phone while driving rose 

from 56% in 1998 to 68% in 1999, while the proportion of drivers experiencing dangerous 

situations rose from 44% to 50%. Over 48% of the interviewees believed that the government 

should ban the use of hand-held mobile phones while driving, and another 27% believed that all 

types of mobile phone use should be banned while driving. Those drivers who used their phones 

regularly were more likely to want some form of restriction than those who had lower usage. 

Three in four cell-owning adults said they had talked on a cell phone while driving while just 

over half the teens reported talking on a cell phone while driving (Pew Research Center, 2010) 



  

46 

 

2.5.3 Secondary Task Engagement 

 Factors influencing intentions to use a cell phone while driving are many. Walsh et al. 

conducted a study where they examined the factors associated with “dialing and driving”, as 

they termed it (Walsh, White, Hyde & Watson, 2008). Their intention was to examine the 

efficacy of the Theory of Planned Behavior (TPB) in predicting intentions to use cell phones while 

driving amongst peers and other cohorts of drivers. 

 Nemme et al. employed the TPB in examining peoples’ driving behavior. According to 

this model, behavior is determined by the individual’s attitude, subjective norm, and perceived 

behavioral control. Attitude refers to the drivers’ evaluation of performing the behavior (a 

secondary, in-vehicle task in the current situation; e.g. the driver’s evaluation of whether it is OK 

to text at a particular point in space and time on the road because there is little or no chance of 

risk); subjective norm refers to the social pressure to perform the behavior; and perceived 

behavioral control indicates the level of difficulty perceived by the driver in performing or not 

performing the behavior. The primary aim of their study was to examine the utility of TPB in 

predicting both the intention to and the subsequent act of text messaging while driving amongst 

Australian drivers. Their findings were consistent with their hypothesis (Nemme & White, 2010). 

 Drews et al (2009) suggest human factors improvements in cell phone interfaces as a 

possible reason for the popularity of text messaging. Drews says that the emergence of simpler 

and potentially more convenient methods of text entry like the “text on nine keys” (T9) 

predictive text entry system may have contributed towards popularizing text messaging. T9 uses 

a built-in dictionary to predict an entry according to the most likely phrase for the current entry 

based on earlier inputs. The T9 entry system has proved to be far more convenient than the old 

alphanumeric mode that uses the same number of keys but warrants multiple key-presses to 

ensure expected input.  
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2.5.4 Implications for Research 

 Studies conducted by Pew Research Center, 2010 and AAA Foundation for Safety, 2009 

conducted representative surveys to identify texting prevalence amongst the driving population. 

Pew Research Center reported that adults were just as likely as teens to text while driving. 

While, AAA Foundation reported teens as the population most actively involved in text 

messaging while driving. The difference in conclusions could be attributed to the fact that data 

collected was self-reported and hence, the results may include the judgment of the individual 

(he/she willfully admitting to text messaging while driving). Self-reported variables always have 

a larger room for standard error and deviation.  

 Summala (2002) reported that regular high volume users of cellphones were likely to 

want stricter regulations and enforcements curbing phone use, as opposed to lower usage 

individuals. This potentially implies that regular users of cell phones (while driving) are well 

aware of the risks associated with multitasking but prefer some form of enforcement to boost 

prevalent user mentalities. Nemme (2010) attempted to predict intentions to use cell phones 

while driving (amongst teens and older drivers) using the Theory of Planned Behavior. The 

model describes behavior as determined by individuals’ attitude (a secondary task), subjective 

norm (social pressure to perform a behavior) and perceived behavioral control (level of task 

difficulty as perceived by the driver). The results reported were consistent with intuition that 

individuals were willing to engage in a task, either under peer pressure or perceived social 

norms, especially if the perceived task difficulty is low). In my dissertation, as I attempt to 

understand glance patterns as a factor of cognitive load, it is equally important to understand 

basic underlying social perceptions and associated norms of accepted behavior. It is 

counterintuitive to assume that drivers in the continuous glance condition are likely to allocate 

more resources to hazard detection to mitigate the effect of the distraction from the secondary 
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task since, prevalent user mentalities suggest that the biggest culprits of distracted driving are 

often the ones who are aware of the risks and knowingly choose to seek risk in a less than ideal 

dynamic traffic environment. However, in the alternating glance condition drivers are more 

likely to suffer from the spillover effects of the secondary task both as a result of task switching 

and as a compounded effect of multi-tasking.  
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CHAPTER 3 

EXPERIMENT 1 

There are two goals of Experiment 1, each related to understanding how glances away 

from the forward roadway interfere with hazard anticipation.  To begin, consider the various 

definitions that have been given above (the definitions are broadened to include terms used in 

both Experiments 1 and 2).  They will be needed below and are redefined in Table 2 for the 

reader’s convenience.   

Table 2: Terminology 

Sl. No. Terminology Definition 

1. Threshold 

Duration 

The minimum length of time in an alternating sequence of glances inside 

and outside the vehicle a latent hazard needs to be visible after a driver 

returns his or her gaze from inside the vehicle to the forward roadway in 

order for the driver to identify the hazard with the same likelihood that 

the driver would were he or she to be looking continuously at the 

roadway. (Note that for the alternating high load condition in Experiment 

2 there may be no threshold duration.) 

2. Window The duration of the glance on the forward roadway in an alternating 

sequence of glances inside and outside the vehicle. The threshold duration 

is then equivalent to the minimum duration of the window at which the 

driver can identify a hazard with the same likelihood as he or she does 

when glancing continuously at the roadway 

3. Alternating 

Condition 

Any situation in which the driver alternates glances between the forward 

roadway and an in-vehicle task.  These include both the alternating 

baseline and alternating low load conditions in Experiment 1 and the 

alternating baseline, low load, and high load conditions in Experiment 2. 
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4. Continuous 

Condition 

The situation in which the driver glances continuously on the forward 

roadway. 

5. Swapping Effect The effect of replacing a view of the forward roadway with a blank center 

screen on hazard anticipation. 

5. Switching Effect The effect of switching attention from driving to a secondary task on 

hazard anticipation above and beyond whatever effect swapping has. 

6. Spillover Effect The existence of an effect on a driver’s ability to detect hazards when 

glancing at the forward roadway that is generated by a load placed on the 

driver by an in-vehicle secondary task not only during the period of time 

the driver is glancing inside the vehicle, but also during the period of time 

that the driver glances back up at the forward roadway. 

  

 With these definitions in mind, there are two related aims for Experiment 1.  To repeat, 

the first aim is to determine the average threshold duration in the alternating conditions and 

how the threshold duration varies in the alternating conditions as a function of factors which 

influence the likelihood that a threat will be detected, including:   (a) how the threat is 

processed (top down or bottom up); (b) where the threat is located (fovea or periphery); and (c) 

the load (continuous, alternating baseline, alternating low load).  The second aim is to 

determine whether hazard anticipation performance decreases as the duration on the forward 

roadway decreases in the alternating conditions and, if so, how the difference between the 

likelihood that the threat is detected in the alternating and continuous conditions when the 

window is less than the threshold duration varies as a function of the above factors. 
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3.1 Method 

Drivers in this experiment perform a secondary in-vehicle task as they navigate through 

various sections of a virtual world involving two-lane and four-lane roads in a suburban 

environment.  

Participants were divided into three groups.  Drivers in the alternating baseline 

condition were alternately shown at various points in a driver a blank center screen (for 2 s) and 

the forward roadway (for 1, 2, 3 or 4 s).  Drivers in the alternating low load condition were 

alternately shown at various points in a drive a target center screen (for 2 s) and the forward 

roadway (for 1, 2, 3 or 4 s).  They were asked to complete a task which places a load on the 

driver only when the driver is glancing inside the vehicle.  Spillover effects were designed to be 

nonexistent or minimal, i.e., no aspect of the secondary task should require processing during 

the period of time the driver is glancing on the forward roadway.  Only switching and swapping 

(alternating low load) or just swapping (alternating baseline) effects should be present. Drivers 

in the continuous (control) condition were asked to navigate the virtual world without being 

shown a blank center screen at any point in the drive.   

3.1.1 Participants 

 In this experiment, the driving performance of younger drivers was evaluated on the 

driving simulator.  A total of forty five younger drivers (between the ages of 18 – 20) with an 

average age of 19.3 (SD = 0.831) and average driving experience of 2.3 years (SD = 0.492) were 

recruited as participants for the study from the University of Massachusetts Amherst and 

surrounding areas.  

3.1.2 Secondary Task 

 The secondary task for this experiment was chosen with the criterion that when the 

forward roadway is visible, it (the secondary task) must place no load on the driver during the 
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period of time in which the road is visible. The secondary task used for this experiment is listed 

in Table 3 below.  

Table 3: Secondary Task for Experiment 1 

Task 

The center simulator screen displays a 5x3 search matrix of 15 random characters (alphanumeric and special, 

e.g., “*”), where the driver was required to count and report verbally the number of times the character ‘t’ 

appeared on each occurrence of the search display (See Figures 5&6). 

 The task was chosen keeping in mind that the experimenter had to be able to control 

the time that the driver was looking at the center-screen task so that the different combinations 

of in-vehicle and forward roadway glance times could be maintained.  Note that the different 

combinations of forward roadway and in-vehicle glance durations (1-2, 2-2, 3-2, 4-2) while the 

driver is performing the secondary task were controlled by the simulation software.   

 

Figure 5: Secondary Visual Search Task: Alternating Low Load Condition ('t' present) 
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Figure 6: Secondary Visual Search Task: Alternating Low Load Condition ('t' absent) 

 The alternating baseline center screen interruption is depicted in Figure 7 below. 

 

Figure 7: Black Screen Interruption for Alternating Baseline condition 

3.1.3 Scenarios Used for Evaluation: Four Combinations 

 The scenarios were designed to determine how the type of processing (top down or 

bottom up) and the location of the threat (central or peripheral) would affect the threshold 

duration and, when the window is less than the threshold duration, how these factors would 

affect the likelihood that an individual detects a threat. There are thus four combinations: 
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central/top down, central/bottom up, peripheral/top down, and peripheral/bottom up.  There 

were a total of 8 scenarios, two each for the four combinations.  The scenarios have been 

arbitrarily labeled and the scheme used is indicated in the table below (Table 4).  They will be 

discussed in more detail after making some general remarks. 

Table 4: Type of Processing and Location of Threat: Labeling of  

Eight Scenarios (A, B, C, D, E, F, G, and H) 

Location of Threat / 

Type of Processing 

Top-Down Bottom-Up 

Peripheral • Four Way Uncontrolled 

Intersection [B] 

• Looking across a Curve – 

No Movement Cues [E] 

• Truck parked on the right 

side of a Crosswalk [D] 

• Looking across a Curve – 

Movement Cues[H] 

Central • Mullins Center [C] 

• Truck Left Turn [G] 

• Lead Vehicle Braking – 

Brake Lights [A] 

• Work zone [F] 

 Each scenario is unique in design, logic, and road geometry and traffic density. The 

scenarios are situated either in a suburban environment or in a semi-city setting. The average 

speed limit is 30 mph.  For each scenario, I indicate where the secondary task will be initiated 

with respect to the potential threat.  For the top-down tasks, the secondary in-vehicle tasks are 

initiated 12 s before the location of the potential threat (assuming that driver is maintaining the 

speed limit).  This is far enough ahead so that all drivers start with some, but not a great deal of 

information, about the upcoming potential threat. For bottom-up tasks, the question of when to 

initiate the secondary, in-vehicle tasks required a more concentrated attention to detail.  The 

bottom-up tasks are characterized by sudden onsets, for example the sudden onset of motion or 

of brake lights.  I am interested in learning how drivers in the alternating condition process 
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information on the forward roadway when they are gazing on the forward roadway, not inside 

the vehicle.  Thus, it was critical to ensure that the secondary task was not initiated at a point in 

time when the driver needed to glance on the forward roadway in order to anticipate a hazard.  

The particulars of when to initiate the bottom-up task will vary with the scenario, as described 

below.  Most importantly, the timing was such that for the 1/2, the hazard appears on the 

forward roadway during the relevant glance upwards for 1s, for the 2/2 the hazard appears 

during the relevant glance up for 2 s and so on. 

 Finally, it should be noted how the threshold duration is defined for the different 

dependent variables.  When eye behavior (glance location) is the dependent measure of threat 

detection, the threshold duration is defined for an in-vehicle glance of a given length as the 

glance duration on the forward roadway in which the likelihood of detecting the threat in the 

alternating condition (baseline or low load) is equal to what it is in the continuous condition.  

When vehicle behaviors are the dependent variable, the threshold duration will be defined for 

an in-vehicle glance of a given length as the glance duration on the forward roadway in which 

the measure of vehicle behavior in the alternating condition is the same as the measure of 

behavior in the continuous condition.  For example, assume that in the continuous condition the 

driver brakes on average 500 ms after a lead vehicle brakes.  And assume that in the alternating 

low load condition the driver brakes on average 700 ms after the lead vehicle brakes in the 

2 s/2 s condition, 600 ms after the lead vehicle brakes in the 3 s/2 s condition, and 500 ms after 

the lead vehicle brakes in the 4 s/2 s condition.  Then 4 s would be set to the threshold duration 

in the alternating low load condition. 

• Lead Vehicle Braking – Brake Lights [A]: Central/Bottom-Up – The basic design of this 

scenario involves a lead vehicle which is programmed to decelerate from 30 mph for 2 

seconds (Figure 8).   The brake lights are activated throughout the deceleration.  The 
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lead vehicle accelerates after braking. The lead vehicle is programmed to maintain a 

headway of 30 m from the subject vehicle. This scenario involves bottom up processing 

(a sudden onset of a bright stimulus attracts attention) and the potential threat is 

located in the foveal region.  The lead vehicle starts braking 100 ms after the driver 

looks up from the in-vehicle task the first, second or third time.  It is assumed that the 

threat is detected if the driver takes his or her foot off the accelerator and, possibly, 

brakes. The threat only materializes when the driver looks up on the forward roadway. 

 

 

 

 

 

 

 

 

 

 

Figure 8.  Lead Vehicle Braking (A). 

• Four Way Uncontrolled Intersection [B]: Peripheral/Top-Down – This scenario involves a 

suburban environment and a typical four way intersection with no stop sign compliance 

or traffic signal regulations (Figure 9). The driver needs to be cautious about cross traffic 

and other potential hazards especially due to line of sight obstructions on the left and 

right hand sides of the road (e.g., horizontal or vertical curvature) thereby necessitating 

secondary looks to either side after entering the intersection. This scenario involves top-
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down processing and the threat requires peripheral scanning.  The in-vehicle task starts 

14 s before the driver enters the intersection.  Thus, all drivers start with the same 

information about the forward roadway before they begin the in-vehicle task.  It is 

assumed that the driver detects the potential threat if he or she looks to the cross roads 

before and after entering the intersection.  Only if a driver made all four glances (to the 

left and right before and right after entering the intersection) was the driver scored as 

anticipating the hazard. 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Four Way Uncontrolled Intersection (B). 

• Mullins Center Scenario [C]: Central/Top-Down – This scenario is representative of the 

traffic pattern at the Mullins Center situated on Commonwealth Ave. in Amherst, MA. 

There is a mid-block crosswalk in the middle of the four lane two-way road (two travel 

lanes in each direction). The driver needs to scan for potential pedestrians or bicyclists 

crossing from either sides which are visible (Figure 10). There is also a need for the 

driver to realize the risk posed by a truck driver stopped in the left travel lane (our driver 
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is travelling in the right travel lane) for a pedestrian proceeding to cross, thereby 

obscuring the potential line of sight for the participant driver. The Mullins Center 

scenario is an example of a scenario which requires top down processing with a foveal 

threat.  The in-vehicle task was started 14 s before the driver reaches the crosswalk.  It 

is assumed that the driver detects the threat if he or she looks to the right in front of the 

stopped vehicle before traveling over the crosswalk. 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Mullins Center Scenario (C). 

• Truck parked on the right side of a crosswalk [D]:  Peripheral/Bottom-Up – This scenario 

involves a truck stopped in the travel lane on the right hand side of a midblock 

crosswalk (Figure 11). The scenario begins on a four lane road and as the driver 

approaches the midblock crosswalk (100 feet down), two pedestrians start walking 

towards the crosswalk on the right hand side (one pedestrian walking north – in the 

same direction the participant driver is traveling -- from 15 feet south of the crosswalk 

with the second pedestrian moving simultaneously in a lateral direction 15 feet west of 



  

59 

 

the crosswalk).  They both reach edge of the crosswalk on the right hand side as the 

driver approaches the midblock crosswalk. There is also a pedestrian standing on the 

left hand side of the crosswalk who starts moving towards the crosswalk after the driver 

has navigated the first alternation in the alternating conditions. There is no actual 

materialization of the crossing event. This scenario involves bottom up processing (the 

quick and odd movement of the pedestrians in the periphery should attract the 

participant driver’s attention) and the potential threat requires peripheral detection to 

successfully identify the hazard (looking to the right in front of the truck was the 

measure of hazard anticipation). This in-vehicle task is more difficult to time in this 

bottom up scenario because one wants the information on the forward roadway to be 

equally available to participants in all conditions and one wants the movement of the 

pedestrian to start 100 ms or so after the driver glances up from the forward roadway.  
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Figure 11.  Truck Parked in front of Crosswalk (D). 

• Looking across a Curve – No Movement Cues [E]: Peripheral/Top-Down – Participants 

drive along a right winding curve with a mid-block crosswalk emerging about 50 feet 

after the curve straightens out. There is a truck parked horizontally on the edge of the 

curb on the right extremity of the crosswalk while an agricultural tractor obscures the 

potential presence of a pedestrian at the left extremity of the crosswalk (Figure 12). This 

scenario involves top down processing as attention has to be allocated to the 

extremities of the crosswalk for potential peripheral latent hazards. The secondary task 

was initiated 10 s before the apex of the curve is reached and 16 s before the crosswalk 

is reached.  The question here is what the minimum threshold needs to be on the 

forward roadway for the driver to glance towards the edges of the crosswalk with the 

same likelihood in the alternating conditions as he or she does in the continuous 

condition.   
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Figure 12.  Looking Across a Curve – No Movement Cues (E).  (Crosswalk located just upstream 

of brown truck on right at end of curve.) 

• Work zone [F]: Central/Bottom-Up – In this particular scenario, the driver begins driving 

on the rightmost lane on a four lane road with two travel lanes in either direction but 

has to switch to the left lane because of a work zone in the right lane (the cue for which 

is provided by a work zone ahead sign). As the scenario progresses, there is a jeep 

parked with emergency flashers stopped in the left lane (Figure 13). The flashers 

indicate that there may be something happening ahead in the left lane (there is in fact a 

second work zone in the left lane that is cued by the motion of the brake lights of the 

stopped jeep). This scenario is processed bottom up with the potential threat emerging 

from the foveal region.  The secondary task will be initiated at a time when the driver is 

glancing on the forward roadway 14 s prior to the emergence of the latent hazard, 

which is the potential existence of a pedestrian at the midblock crosswalk in front of the 

jeep and the second work zone. All drivers see the visual motion of braking lights prior 
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to the first in-vehicle center screen interruption.  The question here is with respect to a 

potential threat that is cued from the bottom up. The dependent variables are the 

average velocity of drivers while navigating this scenario in addition to the eye measure 

examining drivers’ ability to detect a latent hazard as a function of the alternation, load, 

and the type of processing and location of threat. 

 

 

 

 

 

 

 

 

 

 

Figure 13.  Work Zone (F).  (Midblock crosswalk ahead of second work zone just in front of 

jeep.) 

• Truck Left Turn [G]: Central/Top-Down – This particular scenario unwinds on a four lane 

road, with two travel lanes in each direction. As the scenario progresses, the driver is 

forced to move into the left lane (just as the scenario begins, the driver turns right onto 

a four-lane road with a truck parked in the wrong direction on the edge of the rightmost 

lane) to turn left at a four way intersection (Figure 13). Additionally, there is a truck 

waiting across the intersection in the opposing left travel lane waiting to turn left at the 

intersection in front of the participant driver. It is imperative that the driver scan for 
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potential cars emerging from the lane adjacent to opposing truck that may decide to 

continue straight or turn right thereby posing a risk to our driver intending to turn left. 

This scenario is a typical example of one requiring top down processing with the threat 

emerging from the foveal area.  The secondary task was initiated 12 s before the driver 

entered the intersection.  The dependent variable is whether the driver glances towards 

possible turning cars in the opposing lane across the intersection. 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Truck Left Turn (G) 

• Looking across a Curve -- Movement Cues [H]:  Peripheral/Bottom-Up – In this scenario, 

the participants drive along a right winding curve. As the scenario progresses, a mid-

block crosswalk with a 2-way stop sign and guard rails at the crosswalk extremities for 

pedestrian safety is visible about 60 feet after the curve straightens out (Figure 15). 

There is dense vegetation (bushes) at the extremities of the crosswalk. As the driver 

approaches the apex of the curve, a pedestrian starts moving towards the crosswalk 

from the right side. Drivers in all conditions see the initial movement of the pedestrian 

Left Turn Here 
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at the same point in time. The final destination point of the pedestrian is behind a short 

bush located in front of the stop sign.  This scenario involves bottom up processing as 

attention is attracted by motion on the extremities of the crosswalk for potential 

peripheral latent hazards. The secondary task was initiated 12 s before the apex of the 

curve is reached and 16 s before the crosswalk is reached.  The question here is what 

the minimum threshold needs to be on the forward roadway for the driver to notice the 

stop sign at the crosswalk with the same likelihood in the alternating condition as he or 

she does in the continuous condition. The dependent variable is whether the driver 

glances at the pedestrian stopped behind the bush (or at the bush itself thereby 

indicating driver has noticed the movement of the pedestrian). 

 

 

 

 

 

 

 

 

 

Figure 15.  Looking Across Curve – Movement Cues (H). 

 Turn instructions were provided on the center screen for all scenarios.  

 3.1.3.1 Control, Alternating Baseline and Alternating Low Load Scenarios 

 The control scenarios differ from experimental scenarios in the sense that the forward 

roadway is continuously visible in these scenarios while the feedback from the forward roadway 
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is visually interrupted in the alternating scenarios according to the window size used. The 

interruption is initiated in advance of the scenario and continues past the scenario, the exact 

initiation time depending on the scenario. In those control scenarios where the potential hazard 

is not visible, a determination of how frequently the group of drivers are able to recognize a 

hazard is made. A predetermined launch zone and target zone are defined for every scenario 

and the scoring rubric is designed to assign a binary value of hit or miss (0 or 1) to each fixation 

recorded towards potential target zones throughout scenarios. 

 The alternating baseline scenarios replace the center screen with a blank screen (Figure 

7). The alternating low load scenarios replace the center screen with a target screen in which a 

target is either present (Figure 5) or absent (Figure 6).  The secondary task for the alternating 

low load scenarios involves a visual search task where participants had to count and then report 

the number of times the target character (‘t’) appears on a visual search display on the center 

screen. During the specified interruption window (alternating baseline or alternating low load), 

the center screen is blacked out to mimic how drivers obtain hardly any information from the 

forward roadway when engaged in a distracting in vehicle secondary task in concurrence with 

driving.  

 The intuition here was that one would observe switching effects if there was a 

difference between the hazard anticipation performances of the alternating low load and 

alternating baseline conditions at the shorter forward roadway  glance durations (at the longer 

forward roadway durations there may well be no switching effects).  Similarly, one should 

observe swapping effects if there is a difference between the hazard anticipation performance 

of the alternating baseline and continuous conditions at the shorter forward roadway glance 

durations.   
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3.1.4 Experimental Design 

 The drives developed for evaluation were designed using a relatively new method of 

mini-scenarios. All three drives - control (Drive 1), alternative baseline (Drive 2) and alternating 

low load (Drive 3) drives - required for this experiment consisted of 8 scenarios each (the actual 

scenarios in each drive were described in detail above). During the alternating low load drive, 

the driver was asked to perform a secondary task.  The driver’s view of the forward roadway 

that was displayed on the screens outside the window of the cabin of the simulator was 

alternated, as a function of the window durations, with a view of the secondary task.  When the 

view of the forward roadway was displayed, the secondary task was not visible.  Conversely, 

when the view of the secondary task was displayed, the view of the forward roadway was not 

visible.  The alternation baseline drives involved a similar switching between views of a black 

screen and the forward roadway.   However there was no secondary task.  

3.1.4.1 Alternating Sequences 

 Based on prior research I used a sequence of visible (1, 2, 3, 4 s in which the forward 

roadway was visible) and not visible (2 s in which the forward roadway was not visible) times to 

identify the threshold durations. Prior research suggests that the majority of drivers’ glances 

inside the vehicle are 3 s or less (Chan et al., 2011).  Since glances greater than 2 s inside the 

vehicle are considered unsafe, it made sense to consider displaying the secondary task for 2 s 

(making the forward roadway always disappear for 2 s). The distribution of glance durations on 

the forward roadway when a driver is performing a secondary task is not known. However, 

experience suggests that these glances are typically less than 5 s.  Thus, it made sense to display 

the forward roadway for 1, 2, 3 and 4 s.  The time when the secondary task was displayed and 

the forward roadway was not visible will be referred to as the invisible time. The time when the 

roadway was displayed and the secondary task was not visible will be referred to as the visible 
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time. An alternating sequence is defined as an alternation of unchanging durations of invisible 

displays and unchanging durations of visible displays of the forward roadway. Each sequence 

began and ended with an invisible display (i.e., a display of a blank screen or the secondary 

task). This leads to the following four sequences of invisible and visible times: 

• Sequence A - Invisible time (2 sec) & Visible time (1 sec) 

• Sequence B - Invisible time (2 sec) & Visible time (2 sec) 

• Sequence C - Invisible time (2 sec) & Visible time (3 sec) 

• Sequence D - Invisible time (2 sec) & Visible time (4 sec) 

 It still needs to be said how long the sequence will be presented.  An alternating 

sequence begins when the secondary task is first displayed and ends when the secondary task is 

last displayed (five displays of the secondary task and four displays of the forward roadway for 

the 1/2 alternation (14 s total); four displays of the secondary task and three displays of the 

forward roadway for the 2/2 alternation (14 s total); three displays of the secondary task and 

two displays of the forward roadway for the 3/2 alternation (12 s total); and three displays of 

the secondary task and two displays of the forward roadway for the 4/2 alternation (14 s total).  

The intention was to ensure that the overall interruption duration be as similar as possible 

across alternation sequences. The secondary tasks were designed to be completed in a total of 

10 s. As noted above, the number of times the interruptions occur vary as a function of the 

window size. And as noted above, a 1/2 alternation has a task duration of 14 seconds as does 

the 2/2 and 4/2 alternations while the 3/2 sequence has a task duration of 12 s. 

 The study employs a mixed design (factors are varied both between and within 

subjects). The type of processing and location of threat are within subject factors while the 

alternation sequence and type of load (continuous, alternating baseline, and alternating low 

load) are between subject factors.  Specifically, every participant receives either the control 
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drive (drive 1), one of the four alternating baseline drives (drives 2a, 2b, 2c, 2d) or one of the 

four alternating low load drives (the four experimental drive 3a, 3b, 3c and 3d) where each drive 

consists of eight scenarios (the eight scenarios in each drive are described above; see Figure 8 - 

Figure 15).  The participant navigates only a single drive in order to minimize both learning 

effects as well as simulator sickness resulting from prolonged exposure.  

3.1.4.2 Counterbalancing Control Drive, Baseline Drive and Experimental Drive Sequences 

Across Participants 

 The eight mini scenarios in each drive each take about 2 minutes on average to 

navigate. Participants were randomly allocated to one of the nine treatment conditions: the 

continuous condition (drive 1), the alternating baseline condition (drive 2a, 2b, 2c, or 2d, where 

the four versions represent the four alternating sequences) or the alternating low load condition 

(drive 3a, 3b, 3c, or 3d, where again the four versions represent the four alternation sequences, 

namely, 1/2, 2/2, 3/2 and 4/2). Specifically, the assignments for the first 18 participants are 

given in Table 5: 
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Table 5: Drive Counterbalancing 

Participant Drive Sequence Participant Drive Sequence 

1. 1 10. 2d 

2. 2a 11. 2a 

3. 3b 12. 2c 

4. 2b 13. 3c 

5. 3c 14. 2a 

6. 2c 15. 2b 

7. 3a 16. 1 

8. 3d 17. 3a 

9. 2d 18. 3d 

  

 The scenarios in each of the drives were counterbalanced as well across drives.  Within 

drives, however, the same order was used across participants (Table 6).      

Table 6: Counterbalancing of Scenarios (A, B, C, D, E, F, G, H)  

across Drives (1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d) 
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Participant No. First Drive  

1 1 (A, B, C, D, E, F, G, H) 

2 2a (C, D, E, F, G, H, A, B) 

3 3b (C, D, E, F, G, H, A, B) 

4 2b (B, G, H, E, A, F, C, D) 

5 3c (B, G, H, E, A, F , C, D) 

6 2c (A, B, C, D, E, F, G, H) 

7 3a (F, C, D, B, G, H, E, A) 

8 3b (F, C, D, B, G, H, E, A) 

9 2d (C, D, E, F, G, H, A, B) 

  

3.1.4.3 Counterbalancing Combinations of Threat Factors within and Across Participants 

 Finally, note that it is important to counterbalance the combination of the types of 

processing and the location of the threat. The table below shows how the combinations are 

counterbalanced for the first subject for the two seed sequences –A, B, C, D, E, F, G, H and  F, C, 

D, B, G, H, E, A.  Note that scenarios with bottom up processing never occur adjacent to each 

other in the seed sequences, though occasionally they will occur together in the other 

sequences generated from the seed (Table 7). 
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Table 7: Counterbalancing Across Scenario Sequence Type of Processing and Location of 

Threat 

Scenario Sequence Combination Scenario Sequence Combination 

A Central/Bottom Up F Central/Bottom Up 

B Peripheral/Top Down C Central/Top Down 

C Central/Top Down D Peripheral/Bottom Up 

D Peripheral/Bottom Up B Peripheral/Top Down 

E Peripheral/Top Down G Central/Top Down 

F Central/Bottom Up H Peripheral/Bottom Up 

G Central/Top Down E Peripheral/Top Down 

H Peripheral/Bottom Up A Central/Bottom Up 

 

3.1.5 Apparatus 

3.1.5.1 Driving Simulator  

 The driving simulator setup consists of a fully equipped 1995 Saturn sedan placed in 

front of three screens subtending 135 degrees horizontally. The virtual environment is projected 

on each screen at a resolution of 1024 x 768 pixels and at a frequency of 60Hz (Figure 16).  The 

images themselves are updated 60 times a second using a network of four advanced RTI 

simulator servers which parallel process the images projected to each of the three screens using 

high end, multimedia video chips. The participant sits in the car and operates the controls, just 

like he or she would in a normal car. These controls move him or her through the virtual world 

according to his or her inputs to the car. The audio is controlled by a separate system which 

consists of two mid/high frequency speakers located on the left and right sides of the car and 

two sub woofers located under the hood of the car. This system provides realistic wind, road 

and other vehicle noises with appropriate direction, intensity and Doppler Shift. 
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Figure 16: Driving Simulator (RTI) 

3.1.5.2 Eye Tracker 

 A portable lightweight eye tracker (Mobile Eye developed by ASL) was used to collect 

the eye-movement data for each driver (Figure 17). It consists of a pair of goggles that contain 

miniaturized optics – a camera for viewing the eye, another for viewing the scene ahead, an 

ultraviolet light source, and a small reflective spectacle to allow the eye camera to record an 

image of the eye without being directly in front of the participant’s eye. The images from these 

cameras are interleaved and recorded on a remote system, thus ensuring no loss of resolution. 

The interleaved video can then be transferred to a PC where the images are separated and 

processed. The eye movement data is converted into a crosshair, representing the driver’s point 

of gaze, which is superimposed upon the scene recorded during the drive. This provides a record 

of the driver’s point of gaze on the driving scene while in the simulator. The remote recording 

system is battery powered and is capable of recording up to 90 minutes of eye and scene 

information at 60 Hz in a single trial.  
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Figure 17: ASL Mobile Eye Tracker 

3.1.6 Procedure 

 Participants were given a brief overview of the study at the onset following which they 

were asked to read an Informed Consent form and provide written consent to participate in the 

experiment as per the Institutional Review Board norms. Participants were then provided a 

Demographic questionnaire that collects participants’ driving history and some demographic 

information like age, sex, and race following which the participants were fitted with an eye 

tracker which was calibrated within the simulator. After calibration, participants were given a 

practice drive to familiarize them with the driving simulator. The practice drive included no 

hazard anticipation scenarios so that participants did not become sensitized to them. This drive 

is intended to familiarize the participants with the new world of simulated driving. Subsequent 

instructions were provided to participants at the onset of each experimental drive sequence.  

3.1.7 Dependent Variables 

 The Arbella Insurance HPL (Human Performance Laboratory, University of 

Massachusetts Amherst) Advanced Driving Simulator is extremely flexible in its ability to provide 

both frequently measured and less frequently measured types of data to the researchers using 
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it.  Typical vehicle behaviors collected include throttle position, velocity, lane position, and 

braking for the participant’s vehicle (ownship). The eye tracking equipment was used to collect 

eye behaviors including fixation and glance data from participants. Glance duration is a variable 

measured via the use of the eye tracker. Glance durations on the forward roadway and within 

the vehicle are collected over the course of the 8 scenarios. Fixation locations are scored 0 or 1 

to determine participants’ ability to detect or anticipate potential hazards when faced with 

interruption sequences in the experimental drives.  

3.1.8 Statistical Analyses 

3.1.8.1 Threshold Duration 

 The threshold duration was defined above as that duration of the forward view of the 

roadway where the dependent measure of threat detection (e.g., probability that a threat is 

detected) in the alternating low load condition is equal to or greater than the same measure in 

the continuous condition.  One can actually get a finer grained analysis of the threshold duration 

as follows. 

 An example can make clear what needs to be done.  Consider scenario A 

(central/bottom up) and its conceptual equivalent, scenario F (central/bottom up also).  There 

are four low load alternating sequences: 1/2, 2/2, 3/2, and 4/2.  Five drivers will be exposed to 

each sequence.  The average will be computed across the two exemplars (A and F in this case) of 

each scenario. Thus, there will be 10 data points (5 subjects times two scenarios) for each 

alternating sequence. The probability of the threat being detected will then be computed from 

the eye movements.  Suppose one observed at each of the four alternating sequences the 

following probabilities: 0.30, 0.50, 0.60, and 0.60. Label these o1, ..., o4.  And suppose one found 

that in the continuous drive the threat for scenarios A and F was anticipated with probability 

0.60.  Then the threshold duration is somewhere between 2 s and 3 s.   
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 Let Δ equal the observed threat detection probability in the continuous condition.  Then 

the following function has an asymptote of Δ and a minimum of 0: 

 ( )1
t

e
λ−∆ × −   

It is simple enough to find a value of λ, λ', which minimizes the sum of the squared deviations 

between the four predicted measurements and the four observed measurements: 

 ( ) }{ 24

1
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The threshold duration will be then be selected as that time t, t’, for which it is the case that the 

predicted probability of detecting the threat in the alternating condition is equal to 95% of the 

observed probability in the continuous condition. 

 ( )}{ 0, 0.99 1
t

t t e
λ′−′ = > ×∆=∆ −   

3.1.8.2 Swapping and Switching Effect 

 As discussed above, the swapping effect for a given window will be set equal to the 

difference in the average hazard anticipation performance of the alternating baseline and 

continuous conditions.  The switching effect for a given window will be defined as the difference 

in the average hazard anticipation performance of the alternating low load and alternating 

baseline conditions.   As noted, above, it is expected that the swapping and switching effects will 

get smaller as the window approaches the threshold duration because the participant, by 

definition has more time to glance on the forward roadway. 
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3.2 Results & Analyses 

3.2.1 Latent Hazard Anticipation 

In order to analyze whether drivers successfully anticipated latent hazards, I decided to 

determine whether or not a participant had glanced towards the target zone while in the launch 

zone. A target zone was defined as the area where a potential hazard might appear, and the 

launch zone was defined as the area wherein the participant should glance at the hazard. 

Therefore, the dependent variable (number of hazards anticipated) was binomially distributed 

(1 -- a participant glanced at the target zone while in the launch zone; 0 -- the participant did not 

glance at the target zone while in the launch zone). The launch zone and target zone areas for 

each scenario were based on the zones in other studies using the same scenarios (e.g., Chan, 

Pradhan, Pollatsek, Knodler, & Fisher, 2010; Pradhan A. , Pollatsek, Knodler, & Fisher, 2009).  

The observed proportions for the percentage of hazards detected across the various 

treatments are represented in Figure 18.  As predicted, drivers in the continuous condition 

anticipated the largest percentage of hazards (83%) while drivers in the 1/2 alternation 

sequence performed worst in terms of latent hazard detection, both in the alternating baseline 

and in the alternating low load conditions (43% and 35% respectively). The 4/2 alternation 

sequence elicited a much higher proportion of glances critical to hazard anticipation in both 

alternating baseline and low load conditions (75% and 68% respectively). The observed 

percentage of hazards detected followed predictions and decreased as the glance time on the 

forward roadway was decreased (the percentage of hazard detected decreased as the forward 

roadway glance decreased from 4 s to 1 s). Overall, drivers in the continuous condition 

anticipated 83% of the hazards, those in the alternating baseline condition anticipated 60% of 

the hazards, and those in the alternating low load condition anticipated 54% of the hazards.  In 
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summary, there appears to be an effect of both the duration of the glance on the forward 

roadway in hazard anticipation and the type of load. 

 

Figure 18: Percentage of Hazards Detected 

In order to analyze the latent hazard anticipation skills across the different alternating 

conditions in the first experiment, I utilized a logistic regression model within the framework of 

Generalized Estimating Equations (GEE). The model included the participants as a random effect, 

two between subjects factors -- (a) Type of Load: Baseline or Low Load and (b) Alternation 

Sequence: 1/2, 2/2, 3/2, 4/2 -- and the three within subjects factors -- (c) Location of threat: 

Peripheral or Central; (d) Type of Processing: Bottom Up or Top Down, and (e) Scenarios (8 

unique scenarios described in Section 3.1.3). All second and third order interactions were also 

included. Using a backward elimination procedure to winnow the models, the final model 

included highly significant main effects for Type of Processing [Wald Χ1
2
=8.977; p=0.003] and 

Alternation Sequence [Wald Χ1
2
=23.780; p=0.000].  There was no significant effect for Type of 

Load [Wald Χ1
2
=1.465; p=0.226] or any of the other remaining factors or second and third order 
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interactions. The estimated marginal means averaged across the alternating baseline and 

alternating low load conditions are presented in Figure 19. 

 

Figure 19: Estimated Marginal Means (Alternating Baseline and Low Load Conditions) 

 As predicted, performance in the 4/2 sequence is better than the performance in 

the 1/2 condition (almost twice as good).  In order to further understand whether latent 

hazard detection performance was significantly different across the alternation sequences, 

a post hoc pairwise comparison using a Bonferroni correction (p = 0.001) on the estimated 

means was performed. The difference in performance between the 1/2 and 4/2 alternating 

sequences was found to be highly significant (p < .01). As expected, the drivers in the 4/2 

alternating sequence were much more likely to glance towards a potential latent hazard as 

compared to drivers in the 1/2 alternation sequence. 

3.2.1.1 Type of Processing 

The type of processing involved in the scenarios was either top down (TD, those 

scenarios where attention needs to be allocated to a potential target zone to acquire 

information) or bottom up (BU, those scenarios where the processing of information is a 
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function of attraction by motion or sudden visual onset). As hypothesized and described 

above, there was a significant main effect of Type of Processing.  Specifically, the latent 

hazard detection performance of the drivers in the scenarios with bottom up processing is 

better than their performance in those scenarios with top down condition (four scenarios 

each), approaching near perfect performance when the view is continuous. The difference is 

35 percentage points (see Figure 20).   

 

Figure 20: Percentage Hazards Detected (BU vs. TD) 

Drivers across all conditions detect more hazards when the processing involves 

bottom up  automatic attraction of attention as opposed to top down processing involving 

effortful allocation of attention and this particular result is most striking in alternating 

conditions at the longest forward roadway glance durations (95% for BU vs. 70% for TD in 

control condition; 85% for BU vs 65% for TD in alternating baseline 4/2 condition; 81% for 

BU vs 57% for TD in the alternating low load 4/2 condition).  Note that in the alternating 

baseline and low load conditions the top down and bottom up detection rates are identical 
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(although there was no interaction).  This suggests that at the shortest glances upwards 

detection of anything is new is at floor.   

3.2.1.2 Location of Threat 

 Contrary to the relevant hypothesis, as noted above there were no significant effects 

found for Location of Threat. The observed proportion of hazards detected as a function of the 

Location of the Threat (Peripheral or Central) is plotted in Figure 21. 

 

Figure 21: Percentage of Hazards Detected (Peripheral vs. Central) 

3.2.1.3 Swapping and Switching Effects 

The use of a visual search task as an alternating low load cognitive task elicited average 

hazard detection rates worse than the alternating baseline condition, however the difference 

overall between the two conditions was not statistically significant.  But the overall analysis is 

not necessarily the only one.  Swapping and switching effects may exist at shorter durations that 

do not exist at longer durations because participants reach asymptotic performance at the 

longer forward roadway durations.  Thus, a series of pairwise comparisons were carried out and 

listed below (Table 8). 
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Table 8.  Analysis of Swapping and Switching Effects.  (One-tailed t-test) 

Comparison t(8) p  Comparison t(8) p  Comparison t(8) p 

C vs B1 5.519 0.001 C vs E1 6.938 0.000 B1 VS E1 0.915 0.193 

C vs B2 6.261 0.000 C vs E2 3.536 0.004 B2 VS E2 0.224 0.414 

C vs B3 1.265 0.121 C vs E3 4.427 0.001 B3 VS E3 0.973 0.179 

C vs B4 0.688 0.256 C vs E4 2.829 0.011 B4 VS E4 0.000 0.500 

 

 There is clear evidence of a swapping effect for alternating baseline sequences 1-2 (B1) 

and 2-2 (B2) (a Bonferroni correction of α = 0.0133 was used for multiple comparisons yielding p 

= 0.1).  There is also clear evidence of a combined swapping and switching effect for all 

alternating low load sequences (E1 – E4).  However, the differences between the alternating low 

load and baseline conditions are too small to find evidence of a statistically significant 

difference. 

 There are several reasons that the difference between the alternating baseline and low 

load conditions might be attenuated, raising the performance of participants in the alternating 

low load condition and lowering the performance of those in the alternating baseline condition.  

For example, factors that could increase the performance of participants in the alternating low 

load condition include, especially, the number of tasks attempted and the accuracy of those 

tasks that are attempted.  If participants were not attempting the tasks or were doing so only 

half-heartedly, it would not be the case that the alternating low load condition would be placing 

the load upon participants for which it was designed.  Thus performance would be above what 

was expected.  Similarly, several factors could decrease the performance of participants in the 

alternating baseline condition that need to be considered. These include especially drivers who 

glance away from the center blank screen.  If they did such, then they would not be focused on 
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the forward roadway when the latent hazard appeared.   Thus, their performance would be 

depressed. If both sets of factors were operating (increases in performance in the alternating 

low load condition and decreases in performance in the alternating baseline condition), this 

would have the net effect of decreasing any difference between the two conditions, thereby 

making it more difficult to analyze the switching effect.  The existence of these moderating 

effects is explored below. 

3.2.2 Secondary Task Accuracy and Tasks Attempted 

The task accuracy and number of tasks completed was computed only for the 

alternating low-load condition.  Task accuracy is defined as the proportion of search tasks across 

all scenarios that drivers correctly completed while driving. This was indicated by a correct 

numeric response to a target display.  Task accuracy is displayed by itself in Figure 22.  The 

percentage of tasks attempted identifies the percentage of secondary tasks that the drivers 

attempted while driving.  This was indicated by a verbal response to a target display, correct or 

incorrect.  The percentage of tasks completed is displayed along with task accuracy in Figure 23 

in order to get a sense of how closely they track one another.  

 

Figure 22: Percentage Task Accuracy (Alternating Low Load Condition) 
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As noted above, it was important to analyze the effects of task accuracy and number of 

tasks attempted on hazard anticipation in order to understand if the participants were actually 

performing the secondary task in the alternating low load condition. From the data displayed in 

Figure 22 and Figure 23 it would appear that the performance in the low load conditions in 

alternating sequences 1-2 and 2-2 may be artificially increased because the drivers are 

attempting fewer tasks and are less accurate overall.   

 

Figure 23: Percentage Tasks Attempted vs. Task Accuracy 
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(a) Scenarios (8 unique scenarios described in Section 3.1.3), (b) Alternation Sequence: 1/2, 2/2, 

3/2, 4/2, (c) Location of threat: Peripheral or Central, and (d) Type of Processing: Bottom Up or 

Top Down.  All second and third order interactions were also included.  The final model included 

a significant main effect for Alternation Sequence [Wald Χ1
2
=582.011; p=0.000] and a significant 

effect of the covariate, Tasks Attempted [Wald Χ1
2
=72.640; p=0.000] (see Figure 23 for 

percentage of tasks attempted vs. task accuracy). In addition there was one highly significant 

second order interaction between Alternation Sequence and Tasks Attempted [Wald 

Χ1
2
=188.813; p=0.000]. Figure 24 illustrates the latent hazard detection probabilities of drivers 

as a function their task attempts.  

 

Figure 24: Latent Hazard Detection Likelihood across the various alternation sequences as a 

function of Task Attempted 
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conditions.  Second, task accuracy is above chance (chance performance for the alternating low 

load condition in the first experiment was 1/7), indicating that not only were participants paying 

attention, but they were able to pay enough attention to get the task accurate most of the time.  

Together, these findings indicate the participants were loaded cognitively by the secondary task.  

Third, there was a significant effect of the number of tasks attempted on the hazard anticipation 

scores.  And fourth, as Figure 24 makes clear, there is a strong relation between hazard 

anticipation performance and attempts at a task, especially in the 4-2 condition.  Together, 

these latter two facts suggests that participants’ performance was higher than it would have 

been had they attempted every task.   In summary, the secondary task did load participants, but 

not by as much as it might have if they had attempted every task.  

3.2.3 Vehicle Measures (Velocity) 

Velocity was the primary vehicle measure analyzed. It was analyzed in order to 

determine whether drivers in the continuous condition were traveling faster than drivers in 

either or both of the alternating conditions.  If such were the case, then the performance of 

drivers in the alternating conditions could be artifactually inflated because they had more time 

to scan for a latent hazard. 

The velocity was collected for a 15 second period prior to the potential latent hazard for 

all subjects across all scenarios. The velocity was also collected for the immediate 5 seconds 

preceding the hazard. The average velocity was then computed for both periods.  Decreases in 

velocity would be an indicator of drivers trying to mitigate the load placed on them by 

secondary tasks and the alternation sequence. There was no clear pattern for average velocity 

as a function of the alternation sequence. The average velocities across the continuous and 

alternation conditions for the 15 s preceding the hazard and 5 s preceding the hazard are 

plotted, respectively, in Figure 25 and Figure 26.  
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Figure 25: Average Velocity (< 15 s) 

 

Figure 26: Average Velocity (< 5 s) 
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0.566).  The analysis for average velocity (5 s) also revealed no significance for treatment (F (2) = 

0.630, P = 0.538).  The average velocities and standard deviations for the 3 treatments are in 

Table 9 and Table 10 below.  

Table 9.  Average Velocity Across Conditions. (5 s before hazard) 

Average Velocity (5 s) 

  Mean SD 

C 16.744 2.67 

B 18.312 3.55 

E 18.19 1.92 

 

Table 10.  Average Velocity Across Conditions. (15 s before hazard) 

Average Velocity (15 s) 

  Mean SD 

C 18.22 3.48 

B 19.01 3.19 

E 19.68 2.43 

 

 Separate analyses were run for sequence in both the alternating baseline and 

alternating low load conditions.  A Univariate ANOVA was performed on the individual 

alternating baseline and alternating low load conditions to test for effects of sequence on 

velocity. Again, there was no significant effect for sequence in either the alternating baseline or 

the alternating low load conditions. 
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3.2.4 Estimation of Threshold Duration 

Finally, an estimate was made for the low load alternating condition of the threshold 

duration.  The threshold duration is defined as the amount of time in the alternating low load 

condition that the forward roadway would need to be displayed between glances inside the 

vehicle in order for the percentage of hazards detected to be equal to 95% of the hazard 

detection rate in the continuous condition (78.85%).  There were four low load conditions.  Let p 

(t) be the proportion of hazards detected when the window of time is equal to t, t = 1 – 4. A 

least squares estimate of λ was found such that it minimizes the sum of squared deviation: 

 ( )( ){ }24

1
minimize ( ) 0.95 0.83 1 .

t

t
p t e

λ−
=

− × −∑   

Table 11: Observed (Alternating Low Load) and Predicted Accuracy as a Function of Window 

Duration. (The value .789* is the asymptotic value that is 95% of the continuous condition). 

time Lambda = 0.7 

 Observed Predicted 

1 0.44 0.397 

2 0.48 0.594 

3 0.73 0.692 

4 0.75 0.741 

5 0.765 

6 0.777 

7 0.789* 0.783 

 

The estimate (starting with λ = 0.1 and moving up in units of 0.1) of λ that minimized the sum of 

squared deviations, say λ*, was 0.7. The observations and predictions are presented in Error! 

Reference source not found.Table 11 above. 
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3.3 Discussion 

My first experiment reveals several unique findings. The results on hazard anticipation 

showed that drivers in the continuous condition anticipated the largest percentage of hazards 

while drivers in the 1/2 alternation sequence anticipated the lowest percentage of hazards in 

both the alternating baseline and the low load conditions. The results indicate the importance of 

the forward roadway duration in an alternation sequence. There definitely exists a benefit to 

glancing at the forward roadway for a duration greater than the preceding in-vehicle glance 

especially when the preceding in-vehicle glance is at least 2 s. The percentage of hazards 

detected by drivers dropped by almost half in the 1/2 alternation sequence as opposed to the 

4/2 sequence. Clearly when distracted (manipulated via an alternation sequence), drivers are 

not able to obtain sufficient critical information from the forward roadway for latent hazard 

anticipation, especially when the forward roadway glance is less than 2 s.  

The findings of my experiment could prove to be a critical contribution towards 

complementing and completing NHTSA's Distracted Driving Guidelines (NHTSA, 2012). The 

proposed guidelines recommend the design of in-vehicle devices such that: tasks should be 

completed by the driver with a mean in-vehicle glance duration of 2 sec or less; 85% of glance 

durations away from the forward roadway should be 2 seconds or less; and the cumulative time 

spent glancing away from the forward roadway should be 12 seconds or less.  

What the guidelines lack is a component specifying how long at minimum drivers need to 

glance at the forward roadway when engaged in an in-vehicle task.  My research address this 

question. The criticality of the forward roadway glance cannot be overstated simply because of 

the constantly changing dynamics on the open road. When extrapolated to the real world, my 

findings would indicate that the importance of significantly long forward roadway durations is 
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amplified even further considering that the latent hazard anticipation required on the road is 

often more complex. 

Practically, my findings could provide initial estimates of the framework for adding to the 

NHTSA guidelines similar information about the forward roadway duration.  The numbers are 

apt to change, but the format should not vary greatly for the duration of forward roadway 

glances.  For example, one might have the following as guidelines after suitable research had 

been completed: 

• Drivers mean glance duration on the forward roadway must be at least 6 seconds 

(asymptotically estimated) when engaged with an in-vehicle task (similar to the 

alternating low load condition leading to switching effects); 

• At least 85% of the forward roadway glances must be 6 seconds or more; 

• And, the cumulative time spent glancing at the forward roadway should be at least 3 

(visible to invisible time ratio in the alternation sequence) times the time spent 

glancing away from the forward roadway. 

3.3.1 Type of Processing and Location of Threat 

Upon taking a closer look, an effect of the type of processing on hazard perception 

was observed. As hypothesized, I observed a greater benefit to bottom up processing 

compared to top down processing. When the type of processing involves allocation of 

attention to a potential target zone, drivers performing a secondary task detect a much 

lower proportion of latent hazards as opposed to when the processing involved is bottom 

up. Even the performance of a simple, low load secondary task leads to performance 

decrements impacting safety and negatively impacts hazard detection which is explained by 

swapping and switching effects in the subsequent paragraphs. As predicted, drivers’ 



  

91 

 

performance in the bottom up condition is better than their performance in the top down 

condition, approaching near perfect performance when the view is continuous.  The 

difference is 35 percentage points in this condition. In both of the alternating conditions, 

the effect of the bottom up cues are attenuated on average and especially at the shorter 

durations. This points to the critical importance of taking long glances on the forward 

roadway because the effect of even the most obvious of bottom up cues is considerably 

lessened. It is critical to note the impact of longer forward roadway glances in aiding hazard 

detection as a function of the type of processing. 

The results did not indicate a benefit to centrally located threats as opposed to 

peripherally located threats and thus the null hypothesis could not be rejected. It becomes 

clear why this is the case when one looks at the continuous condition.  There the peripheral 

threats were detected more frequently (95%) by some considerable margin than the central 

threats (70%).   Thus, one would not expect centrally located threats to be detected better 

than peripherally located threats in the two alternating conditions.  In fact, in 5 of the 8 

alternating conditions, the detection of the peripheral threat was at least as good as the 

detection of the central threat.  In retrospect, different types of bottom up cues were used 

as central (sudden onset of brake lights) and peripheral (sudden onset of motion) stimuli.  

Thus, the type of stimulus associated with the sudden onset was confounded with the 

location of the stimulus.  Regardless, it is important to note that shorter forward roadway 

durations within an alternation sequence lead to the detection of a lower percentage of 

hazards across both types of threats. This result further underlines the importance and 

criticality of the duration of the forward roadway glance within an alternation sequence.  
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3.3.2 Swapping and Switching Effects 

The use of a visual search task led to performance decrements in latent hazard 

detection in the alternating low load condition compared to the alternating baseline condition. 

The simple effect of swapping the center screen lead to performance decrements in drivers in 

the alternating baseline condition compared to the continuous condition. The former is 

explained by the switching effect which is the difference in latent hazard detection likelihoods 

between the alternating low load and baseline conditions while the latter is explained by the 

swapping effect which is the difference in latent hazard detection between alternating baseline 

and continuous conditions. There is clear evidence of a swapping effect for alternating baseline 

sequences 1-2 (B1) and 2-2 (B2) with shorter forward roadway durations (1 s and 2 s) in the 

alternation sequence. This is a critical result as it further strengthens the criticality of the 

forward roadway duration in an alternation sequence.  There is also clear evidence of a 

combined swapping and switching effect for all alternating sequences (E1 – E4).  However, the 

differences between the alternating and baseline conditions are too small to find evidence of a 

statistically significant difference. However, it may be the case that the difference between the 

alternating baseline and low load conditions may have been attenuated on average leading to 

better performance of participants in the alternating low load condition and worse performance 

of those in the alternating baseline condition.  This motivated the evaluation of percentage of 

tasks attempted and task accuracy.  

The eye tracker data from some participants in the alternating baseline condition in 

Experiment 1 indicated that while the black, center screen was presented there was a tendency 

to glance towards the side. This may have occurred as the alternating baseline condition task 

lacked an element that compelled drivers to fixate their glance on the center screen. Non 

fixation on the center screen even by a few participants could potentially diminish the observed 
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effects if the participants were not fixating on the center screen when the latent hazard 

appeared on this screen. This is an issue that can be corrected and is addressed in the next 

experiment by presenting a fixation cross on the black, center screen in the alternating baseline 

condition to restrict participant drivers’ tendency to glance at the side screens when in an 

alternation sequence. 

There was a significant effect of the number of tasks attempted on the hazard 

anticipation scores. The results suggest that the size of the benefit for non-task performance 

would be minimal for the 4/2 alternation sequence while the benefits would be maximal 

when the sequence is 1/2.  This follows because the percentage of tasks attempted is 

smaller in the 1/2 sequence than it is in the 4/2 sequence (Figure 23).  Thus, there may well 

have been an effect of switching had participants completed more tasks in the 1/2 

sequence.  As it was, their performance in the 1/2 sequence could have been artificially 

inflated because they were not attempting all tasks.  

The results of evaluating task accuracy as a function of the alternation sequence 

indicate that drivers are more likely to detect latent hazards when provided with longer 

forward roadway durations.  However, this was largely because they attempted more tasks, 

not because, given they attempted a task, they were more accurate (Figure 23).  Upon 

careful examination of the data, it was interesting to note that for the 12% of tasks that 

were un-attempted, the proportion of hazards detected in such instances was significantly 

higher across all the four alternation sequences thereby showing a clear benefit to non-

performance of any kind of secondary task (Figure 24). This suggests that performance was 

also artificially inflated in the 4/2 sequence as well as the 1/2 sequence. 
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However, it is clear that participants were attempting the secondary task and most 

often getting it right.  Specifically, participants were attempting the great majority of tasks in all 

sequences and task accuracy was above chance (chance was defined as 1/7), indicating that not 

only were participants paying attention, but they were able to pay enough attention to get the 

task accurate most of the time. These findings indicate that the participants were loaded by the 

secondary task.     

At this point, it would be safe to state that there exists clear combined swapping effects 

and switching effects (since it is evident that drivers are attempting tasks and not ignoring the 

secondary task thereby boosting hazard detection rates). However, it is not possible to 

determine whether the combined effects are due just to swapping or to both swapping and 

switching.  As one would expect, both effects are predominant when the forward roadway 

glances are either 1 s or 2 s within an alternation sequence. It would appear that the simple 

requirement to maintain the lane position and velocity (swapping) elicits worse hazard 

detection rates by itself.  This is consistent with similar findings reported by Borowsky et al. 

(2014).  Requiring a driver then to perform a task when the forward roadway is not visible does 

add extra load, but the decrement in performance compared to that observed when just a blank 

screen is present does not prove significant.  A slight elevation in the performance in the 

alternating low load condition may explain this failure to find differences since the number of 

tasks attempted was smaller in the alternating low load condition when the forward roadway 

was visible for the shortest periods of time, exactly where one would expect the greatest 

switching effects to occur.   

3.3.3 Velocity 

Examination and analyses of velocity data yielded some valuable conclusions. The 

velocity was collected for a 15 second period prior to the potential latent hazard for all subjects 
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across all scenarios. The velocity was also collected for the immediate 5 seconds preceding the 

hazard. It was analyzed in order to determine whether drivers in the continuous condition were 

traveling faster than drivers in either or both of the alternating conditions.  If such were the 

case, then the performance of drivers in the alternating conditions could be artifactually inflated 

because they had more time to scan for a latent hazard. However, the average velocities did not 

differ across conditions. Drivers across all conditions drove at an average velocity (during the 

task duration) not exceeding 21 mph thereby eliminating a potential confound that could have 

existed if it was observed that drivers in the different treatments had different velocities (that 

vary greatly). 

 The velocities were also analyzed within each of the two alternating conditions as a 

function of the alternation sequences. If it was observed that say, the 1/2 sequence had an 

average velocity much faster than the 4/2 sequence, then it would be hard to determine if it was 

the slowing of the vehicle in the 4/2 sequence leading to better hazard detection or if it was the 

length of time the forward roadway is visible that is leading to better hazard detection.  In fact, 

there was no change in velocity across alternation sequences in either of the two alternating 

conditions. This further strengthens the two key findings, a positive effect of longer forward 

roadway glances within an alternation sequence on hazard anticipation and the presence of 

swapping and switching effects proving detrimental to latent hazard anticipation when drivers 

are merely subjected to a change in the focus of attention (swapping) or diversion of attention 

using a visual search task (switching).  

3.3.4 Summary 

To summarize, the results of my Experiment 1 are consistent with the hypothesis that 

longer forward roadway glances within an alternating sequence have a larger benefit to latent 

hazard detection. Specifically, when driving with the views of the forward roadway alternated 
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with the center screen task, drivers are much more likely to better detect hazards when they 

allocate more time on the forward roadway (4 s as opposed to 1 s, 2 s, 3 s). There is a benefit to 

longer forward roadway glances when the type of processing is bottom up compared to top 

down. The average velocity data rules out several potential alternative explanations of why 

there might be differences in the continuous and alternating conditions and why there might be 

differences within the alternating conditions.  There is the presence of separate swapping and 

combined swapping and switching effects.  When not attempting tasks, drivers anticipate a 

larger proportion of the hazards.  However, the drivers were definitely paying attention to the 

alternating low load secondary task, ruling out one potential explanation of why separate 

effects of switching were not observed. The asymptotic estimation of the threshold duration 

predicted 7 seconds as the minimum duration required for an informative forward roadway 

glance when involved in an alternation sequence under switching effects (alternating low load 

condition) and 4 seconds when subjected to swapping effects (alternating baseline condition).  

The type of alternation sequence had a clear effect where the longest forward roadway 

duration – 4/2 - within an alternation sequence elicited the highest percentage of hazards 

detected.  Additionally I observe clear swapping effects, and significant combined effects of both 

swapping and switching. The difference between the likelihood that the threat is detected in the 

alternating and continuous conditions when the window is less than the threshold duration 

varies as a function of the type of processing and the alternation sequence. Additionally, the 

threshold duration was estimated in the alternating conditions. For the alternating baseline 

condition, the threshold duration was estimated at about 4 s. What this means is that under 

swapping effects, the optimal threshold duration is closer to 4 s. And this duration increases as a 

function of the load. It appears that 7 s would be the safest minimum forward roadway duration 
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threshold to elicit safe driver behavior when the drivers perform an in-vehicle task that requires 

switching in the alternating low load condition.  

In my second experiment, I address the presence of potential spillover effects by using a 

secondary task which cognitively loads the participant not only during the glance inside the 

vehicle but also during the glance on the forward roadway (alternating high load condition).  

Thus, in Experiment 2 there are four conditions, the continuous condition and three alternating 

conditions: baseline, low load, and high load.  I also investigate the above factors across the 

additional high load condition in Experiment 2. The alternating baseline condition in the next 

experiment will be tweaked to ensure that drivers fixate on the center screen.   
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CHAPTER 4 

EXPERIMENT 2 

Experiment 2 also uses the RTI simulator. This experiment differs from the first 

experiment in two important respects.   First, the secondary task given to participants while the 

forward roadway is not visible includes an alternating high load and as well as alternating low 

load condition.  The alternating high load condition is included in order to investigate the effects 

of spillover in addition to those of swapping and switching.  The details of this condition are 

discussed more thoroughly below.  Second, the alternating baseline condition now requires 

drivers to fixate on the center screen.  The eye tracker data from some participants in the 

alternating baseline condition indicated that while the black screen was presented they would 

occasionally glance to the side.  With the fixation cross present on the black screen in 

Experiment 2, they can no longer look to the side screens.  If drivers were looking at the side 

screens in Experiment 1 during the alternating baseline condition, they may not have been 

focused centrally when the hazard to be anticipated appeared.    This could have artificially 

decreased performance in the baseline condition. 

Similar to the first experiment, the second experiment has two aims as well. The first 

aim is to identify how the threshold duration varies in the alternating conditions as a function 

of: (a) how the threat is processed (top down or bottom up); (b) where the threat is located 

(fovea or periphery); and (c) the type of load (alternating baseline, low load, high load).   The 

second aim is to determine how the difference between the likelihood that the threat is 

detected in the alternating and continuous conditions when the window is less than the 

threshold duration varies as a function of the above factors.  
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4.1 Method 

Drivers in this study performed a secondary in-vehicle task as they navigated through 

various sections of the roadway involving two-lane and four-lane roads in a suburban 

environment. The scenarios in the various sections of roadway incorporated latent hazards. 

There are four experimental groups of drivers in Experiment 2: A continuous (control) group as 

in Experiment 1, an alternating baseline group (as in Experiment 1 but with a fixation task), an 

alternating low load group (as in Experiment 1 performing a secondary task which loads the 

driver only while glancing at the secondary task), and an alternating high load group (a group 

engaging in secondary task which loads the driver both while glancing at the secondary  task and 

while glancing at the forward roadway). Specifically, drivers in the alternating high load 

condition will be asked to complete a secondary task which places a load on the driver during 

the period of time both when the task is visible and when the forward roadway is visible.  

4.1.1 Participants 

In this experiment, the driving performance of younger drivers was evaluated on the 

driving simulator. A total of 40 younger drivers (between the ages of 18 – 21) with an average 

age of 20.1 (SD = 0.819) and average driving experience of 2.8 years (SD = 0.351) were recruited 

as paid participants for the study from the University of Massachusetts Amherst and 

surrounding areas.  

4.1.2 Secondary Task 

There are two secondary tasks for this experiment.   The first low load secondary task 

was chosen with the criterion that when the forward roadway is not visible, it (the task) places 

no load on the driver during the period of time in which the task is visible. Effects of switching 

and swapping are possible, making the threshold duration in the alternating low load condition 

longer than it is in the continuous condition.  But there should be no effects of load while the 
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driver is glancing at the forward roadway.  It is identical to the alternating low load task in 

Experiment 1. 

The second, high load secondary task, as noted above, places a load on the driver while 

he or she is performing the primary task.  There are several tasks which could serve in this 

regard.  I have chosen a cognitive arithmetic task that adds to the load of the secondary task 

chosen in Experiment 1 thereby providing me with a baseline for task comparison. As with the 

low load task, drivers in the high load task have to search the number of times the letter ‘t’ 

appears on the visual search display and report the count (e.g. 0,1,2,3,4,5,6) (Figure 27).  

However, after the number of targets has been reported the driver needs to count forward by 3 

until the next visual search display appears For example, if the target count is 3, then the 

participant would verbally count aloud 3, 6, 9,…. until the next search display appears where the 

count may be a 2 leading to a verbal count of 2, 5, 8, 11… and so on. In this task, participants are 

loaded even when they look at the forward roadway since they need to mentally compute 

arithmetic sums. Addition is a fairly difficult cognitive process especially when combined with 

the primary visual task of driving.  
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Figure 27: Example of Secondary Loaded Task 

 The alternating baseline condition in Experiment 2 was slightly modified from 

Experiment 1 in terms of the interruption. As discussed above, it was determined that it was 

necessary to control for where the participants would glance during the interruption and hence, 

the decision was taken to utilize a target fixation task on the black screen as an interruption 

(depicted in Figure 28 and Figure 29 below).  Recall that in Experiment 1, it was observed that 

drivers had a choice to look at the periphery on either side of the center screen which was 

blanked out and thereby making it hard to control sufficiently for what drivers observed across 

treatment conditions. Therefore, I utilized a fixation task where I asked my participants to fixate 

on a ‘+’ sign that appears on the black screen during the periodic alternations. The location of 

the ‘+’ target was changed every time to ensure that drivers had some reason to glance at the 

blank screen. 



  

102 

 

 

Figure 28: Fixation Task 

 

Figure 29: Another example of the fixation task with the target at a different location. 

4.1.3 Scenarios used for Evaluation: Four Combinations 

 The scenarios used in Experiment 2 were identical to those used in Experiment 1.  

Briefly, they were designed to determine under different loading conditions how the type of 

processing (top down or bottom up) and the location of the threat (central or peripheral) affect 

the threshold duration and, when the window is less than the threshold duration, how these 
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factors affect the likelihood that an individual detects a threat.  There are thus four 

combinations: central/top down, central/bottom up, peripheral/top down, and 

peripheral/bottom up.  As with Experiment 1, there were a total of 8 scenarios, two each for the 

four combinations. 

4.1.3.1 Control and Alternating Baseline, Low Load and High Load Conditions 

 The same scenarios are seen across all four conditions.  The continuous (control) 

condition differs from alternating conditions in the sense that the forward roadway is 

continuously visible in the control scenarios while the feedback from the forward roadway is 

visually interrupted in the alternating scenarios according to the window size used. In the 

alternating baseline, low load and high load conditions, the first interruption is initiated in 

advance of the scenario and the last interruption can occur after the latent hazard has been 

passed, the exact initiation time depending on the scenario.  

 The alternating baseline scenarios differ from the alternating loaded scenarios in the 

nature of secondary task used. The interruptions are initiated just like in the alternating loaded 

scenarios according to the various window sizes.  

 The secondary “in-vehicle” task for the loaded scenarios involves a visual search task 

where the participant is asked to count the number of times the letter ‘t’ appears on a visual 

search display on the center screen while the baseline secondary task mimics an automated 

fixation task. During the specified interruption window, the center screen is blacked out to 

determine the psychomotor load associated with maintaining the lane position and speed when 

no information is available from the forward roadway (the situation when drivers are engaged in 

a distracting in vehicle secondary task in concurrence with driving).  

 There are two alternating loaded conditions: one with a secondary task where the load 

occurs only during the glances at the in-vehicle portion of the task and a second with a 
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secondary task which loads the driver both while glancing at the in-vehicle portion of the task 

and while glancing on the forward roadway.   

 It was hypothesized drivers in the alternating high load condition would anticipate 

hazards less well than drivers in the alternating low load condition because the former condition 

includes effects of spillover, switching and swapping while the latter includes effects only of 

switching and swapping.  And, as in Experiment 1, it was hypothesized that drivers in the 

alternating low load condition would anticipate hazards less well than drivers in the alternating 

baseline condition because the former condition includes effects of switching and swapping 

while the latter condition includes effects only of swapping.  The differences between the 

alternating baseline and alternating low load conditions may now be significant, assuming that 

performance is the alternating baseline condition was artificially depressed in Experiment 1. 

4.1.4 Experimental Design 

The experimental design was largely the same as in Experiment 1 except for an 

additional condition involving an experimental high load condition where the secondary task 

utilized invokes cognitive load on the driver and the loading occurs even when the driver is 

gazing at the forward roadway and not only when performing a center screen task.  

4.1.4.1 Alternating Condition 

 In the alternating condition, the combinations of times that the in-vehicle task is 

displayed (always 2 s) and times that the forward roadway is displayed (1 s, 2 s, and 4 s) were 

the same as in Experiment 1, except that the 3 s forward roadway duration was not used for 

Experiment 2.  This was done because hazard anticipation performance seemed not much 

different between the 3 and 4 s glances at the forward roadway and the threshold duration 

could be computed from three points almost as easily as it could from four. 
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4.1.4.2 Overall Design 

 The study employs a mixed design (factors are varied both between and within 

subjects). Every participant receives either the control drive (drive 1), one of the three 

alternating baseline drives (drives 2a, 2b, 2d; the numbering is described above in Experiment 

1), one of the three alternating low load drives (the experimental drives 3a, 3b and 3d) or one of 

the three alternating high load drives (drives 4a, 4b, 4d) where each drive consists of eight 

scenarios (the eight scenarios in each drive are described above).  The participant sees only a 

single drive in order to minimize both learning effects as well as simulator sickness resulting 

from prolonged exposure. The drives vary from each other in terms of type of alternation 

sequence and type of load. The type of processing and location of the threat are within subject 

factors while the alternation sequence and type of load (continuous, baseline, low load, high 

load) are between subject factors. 

4.1.3.2 Counterbalancing Conditions and Drive Sequences across Participants 

 The eight mini scenarios in each drive are each about 2 minutes on average.   Thus each 

drive took about 16 minutes.   The 40 participants were pseudo randomly assigned to one of the 

ten conditions (Table 12; example assignment for first 20 participants): 

Table 12: Counterbalancing Conditions (Drives) Across Participants.  (First 20 participants) 

Subject Drive  

1 1 

2 2a 

3               2b 

4 2d 

5 3a 

6 3b 
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7 3d 

8 4a 

9 4b 

10 4d 

11 1 

12 2a 

13 2b 

14 2d 

15 3a 

16 3b 

17 3d 

18 4a 

19 4b 

20 4d 

 

4.1.3.4 Counterbalancing Order of Scenarios across Participants 

 The order of scenarios (A – H) in each of the drives was counterbalanced across 

conditions (drives) and, within conditions, across participants (Table 13) in order to minimize 

order effects.    

Table 13: Counterbalancing of Scenarios (A, B, C, D, E, F, G, H) across Drives (1, 2a, 2b, 2d, 3a, 

3b, 3d, 4a, 4b, 4d) 



  

107 

 

Participant No. First Drive  

1 1 (A, B, C, D, E, F, G, H) 

2 3a (C, D, B, G, H, E, A, F ) 

3 2b (C, D, E, F, G, H, A, B) 

4 2d (B, G, H, E, A, F, C, D) 

5 3b (E, F, G, H, A, B, C, D) 

6 2a (H, E, A, F, C, D, B, G) 

7 4b (G, H, A, B, C, D, E, F) 

8 4d (A, F, C, D, B, G, H, E) 

9 4a (C, D, B, G, H, E, A, F ) 

10 3d (E, F, G, H, A, B, C, D) 

 

4.1.3.5 Counterbalancing Combinations of Threat Factors within and Across Participants 

 Finally, note that within drivers it is important to counterbalance the combination of 

types of processing and location of the threat (Table 14).  
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Table 14: Counterbalancing Across Scenario Sequence Type of Processing and Location of 

Threat 

Scenario Sequence Combination Scenario Sequence Combination 

A Central/Bottom Up F Central/Bottom Up 

B Peripheral/Top Down C Central/Top Down 

C Central/Top Down D Peripheral/Bottom Up 

D Peripheral/Bottom Up B Peripheral/Top Down 

E Peripheral/Top Down G Central/Top Down 

F Central/Bottom Up H Peripheral/Bottom Up 

G Central/Top Down E Peripheral/Top Down 

H Peripheral/Bottom Up A Central/Bottom Up 

 

4.1.5 Apparatus 

4.1.5.1 Driving Simulator  

 The driving simulator was described in Section 3.1.5.1. 

4.1.5.2 Eye Tracker 

 The eye tracker was described in Section 3.1.5.2. 

4.1.6 Procedure 

 The procedure for Experiment 2 is the same as that in Experiment 1.   

4.1.7 Dependent Variables 

 The dependent variable for Experiment 2 are the same as in Experiment 1. See Section 

3.1.7.  
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4.1.8 Statistical Analyses 

4.1.8.1 Threshold Duration 

 The threshold duration was described in Section 3.1.8.1.   

4.1.8.2 Effect of Swapping, Switching and Spillover 

 As discussed above, the swapping effect at each window size will be set equal to the 

difference in the average hazard anticipation performance of the alternating baseline and 

continuous conditions.  The switching effect will be defined as the difference in the average 

hazard anticipation performance of the alternating low load and alternating baseline conditions 

at a given window size.  And the spillover effect will be defined as the difference in the average 

hazard anticipation performance of the alternating high load and the alternating low load 

conditions at a given window size. 

4.2 Results & Analyses 

4.2.1 Latent Hazard Anticipation 

In order to analyze whether drivers successfully anticipated latent hazards, similar to 

Experiment 1, I decided to determine whether or not a participant had glanced towards the 

target zone while in the launch zone. A target zone was defined as the area where a potential 

hazard might appear, and the launch zone was defined as the area wherein the participant 

should glance at the hazard. Therefore, the dependent variable (number of hazards anticipated) 

was binomially distributed (1 -- a participant glanced at the target zone while in the launch zone; 

0 -- the participant did not glance at the target zone while in the launch zone).  

The observed proportions for the percentage of hazards detected across the various 

treatments are represented in Figure 30.  As predicted, drivers in the continuous condition 

anticipated the largest percentage of hazards (81.3%) while drivers in the 1/2 alternation 



  

110 

 

sequence performed worst in terms of latent hazard anticipation, in all three alternating 

conditions, baseline, low load  and high load conditions (69%, 63% and 44% respectively). The 

4/2 alternation sequence elicited a much higher proportion of glances critical to hazard 

anticipation, in all three alternating conditions, baseline, low load  and high load conditions 

(81%, 72% and 66% respectively). The observed percentage of hazards detected followed 

predictions and decreased as the glance time on the forward roadway decreased (the 

percentage of hazards detected decreased as the forward roadway glance decreased from 4 s to 

1 s). Overall, drivers in the continuous condition anticipated 81.3% of the hazards, those in the 

alternating baseline condition anticipated 68% of the hazards, while those in the alternating low 

load and high load conditions anticipated 60% and 49% of the hazards.   

 

Figure 30: Percentage of Hazards Anticipated 

In order to analyze the latent hazard anticipation skills across the different alternating 

conditions in the second experiment, I utilized a logistic regression model within the framework 

of Generalized Estimating Equations (GEE). The model included the participants as a random 

effect, two between subjects factors -- (a) Type of Load: Baseline, Low Load or High Load and (b) 

Alternation Sequence: 1/2, 2/2, 4/2 -- and the three within subjects main effects -- (c) Location 
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of threat: Peripheral or Central; (d) Type of Processing: Bottom Up or Top Down, and 

(e) Scenarios (8 unique scenarios described in Section 3.1.3). All second and third order 

interactions were also included. Using a backwards elimination procedure, the final model 

included highly significant main effects for Location of Threat [Wald Χ1
2
=4.300; p=0.038], Type of 

Load [Wald Χ1
2
=7.410; p=0.025] and Alternation Sequence [Wald Χ1

2
=12.207; p=0.002].  There 

was no significant effect for Type of Processing. The estimated marginal means averaged across 

the alternating baseline and alternating low load conditions are presented in Figure 31. 

 

Figure 31: Estimated Marginal Means (Alternating Baseline, Low Load and High Load 

Conditions) 

 In order to further understand whether latent hazard detection performance was 

significantly different across the alternation sequences, a post hoc pairwise comparison 

using a Bonferroni correction (p = 0.001) on the estimated means was performed. The 

difference in performance between the 1/2 and 4/2 alternating sequences was found to be 

highly significant (p < .01). As expected, the drivers in the 4/2 alternating sequence were 

much more likely to glance towards a potential latent hazard as compared to drivers in the 

1/2 alternation sequence. 
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 The results obtained in Experiment 2 further reinforce the existence of benefits to 

glancing at the forward roadway for a duration greater than the preceding in-vehicle glance 

especially when the preceding in-vehicle glance is at least 2 s. At this point, it is important to 

look at what role the other factors may have played in the participants’ ability to detect 

potential latent hazards. 

4.2.1.1 Type of Processing 

There was no significant effect for Type of Processing. There appears to be an 

increase in the percentage point difference between TD and BU processing in each of the 

three different loading conditions as the duration of the glance on the forward roadway 

decreases. However, the analyses (logistic regression within the GEE framework) did not 

indicate any interaction between alternation sequence and the type of processing.  In order 

to determine whether the failure to find an effect of Type of Processing in Experiment 1 on 

hazard anticipation was a function of the inclusion of the alternating high load condition, 

the model was run with only the alternating baseline and low load conditions in Experiment 

1.  The final model included highly significant main effects for Type of Processing [Wald 

Χ1
2
=6.245; p=0.015].  Thus, it does appear that the effect of the Type of Processing in both 

Experiments 1 and 2 for the same alternating conditions was observed.  Why the effect might 

not be observed when the alternating high load condition is included is discussed later. 
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Figure 32: Percentage Hazards Detected (BU vs. TD) 

4.2.1.2 Location of Threat 

 As noted above, the final model analyzed using logistic regression within the GEE 

framework included highly significant main effects for Location of Threat [Wald Χ1
2
=4.300; 

p=0.038]. The observed proportion of hazards detected as a function of the Location of the 

Threat (Peripheral or Central) is plotted in Figure 33. There was a clear benefit to latent hazard 

anticipation for centrally located threats (e.g., lead vehicle braking) as opposed to peripheral 

latent hazard (e.g., pedestrian at a crosswalk). The observed results matched my predictions. 

Across all conditions, there was a benefit for centrally located threats and this is specifically 

interesting when noting that even when examining across conditions, as the forward roadway 

durations within an alternating sequence increase, the benefit to centrally located threats still 

exists. This suggests that peripheral detection is bad to begin with and suffers even more when 

allocating brief glances at the forward roadway when distracted. 
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Figure 33: Percentage of Hazards Detected (Peripheral vs. Central) 

The estimated marginal means for peripheral and central threats are presented in Figure 34 

 

Figure 34: Estimated Marginal Means (Location of Threat) 
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Model utilizing Least Square Difference for post hoc analysis. A statistically significant difference 

was obtained for the continuous condition (M = 0.813, SE = 0.161) compared to the alternating 

baseline condition (M = 0.68, SD = 0.135), M = 0.135, 95% CI [0.047, 0.318], F (3) = 5.331, p = 

0.014, a difference indicating the existence of swapping effects.   

A statistically significant difference was obtained for the alternating baseline condition 

[B (M = 0.68, SD = 0.135) compared to the alternating low load condition (M = 0.60, SD = 0.175), 

M = 0.073, 95% CI [0.057, 0.203], F (3) = 5.331, p=0.026, a difference indicating the existence of 

switching effects.  

A statistically significant difference was obtained for the alternating low load condition 

(M = 0.60, SD = 0.175) compared to the alternating high load condition (M = 0.49, SD = 0.155), M 

= 0.155, 95% CI [0.015, 0.244], F (3) = 5.331, p = 0.018, a difference indicating the existence of 

spillover effects. 

Further, a statistically significant difference was obtained for the alternating baseline 

condition (M = 0.68, SD = 0.135) compared to the alternating high load condition (M = 0.49, SD = 

0.155), M = 0.188, 95% CI [0.058, 0.317], F (3) = 5.331, p=0.006, a difference indicating the 

existence of combined switching and spillover effects. Additionally, a significant difference was 

obtained for the continuous condition (M = 0.813, SE = 0.161) compared to the alternating low 

load condition (M = 0.60, SD = 0.175), M = 0.208, 95% CI [0.024, 0.391], F (3) = 5.331, p = 0.027, 

a difference indicating the clear existence of combined swapping and switching effects as well. 

In summary, the use of an arithmetic cognitive task as an alternating high load cognitive 

task elicited average hazard detection rates worse than the alternating low load condition, and 

the difference between the two conditions was statistically significant, indicating the existence 

of spillover effects. The use of a visual search task as an alternating low load non cognitive task 

elicited average hazard detection rates worse than the alternating baseline condition and the 
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difference overall between the two conditions was significant, indicating the existence of 

switching effects. There was a significant effect of swapping effect observed between the 

continuous and alternating baseline conditions. In short, there exists evidence for all three 

effects, namely, swapping, switching and spillover. The analysis further indicates combined 

effects of swapping and switching and switching and spillover as well. 

4.2.2 Secondary Task Accuracy and Tasks Attempted 

 The task accuracy and number of tasks completed was computed only for the 

alternating low-load and high load conditions.  As in Experiment 1, task accuracy is defined as 

the proportion of search tasks across all scenarios during the last in-vehicle glance that drivers 

correctly completed while driving. This was indicated by a correct numeric response to a target 

display.  Task accuracy is displayed by itself in Figure 35.  The percentage of tasks attempted 

identifies the percentage of secondary tasks that the drivers attempted while driving.  This was 

indicated by a verbal response to a target display, correct or incorrect.   

 

Figure 35: Task Accuracy 
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were actually attending to the secondary task in the alternating low load and high load 

conditions;  (b) to understand if the participants were actually performing the secondary task as 

often in the alternating low load condition as they were in the alternating high load condition; 

and (c) to understand if the participants were performing the task as often in the long forward 

glance sequences as they were in the short forward glance sequences.  From the data displayed 

in Figure 35 and Figure 36, it is clear that participants’ performance on the secondary task is well 

above chance (14.3%) in both alternating conditions, so the secondary task is requiring some of 

the participants’ attention, as intended. It would appear that participants in the alternating low 

load condition are attempting slightly more tasks than participants in the alternating high load 

condition; thus, if anything, performance in the high load condition would have been even 

worse than it was had more secondary tasks been attempted.  Finally, if anything participants in 

the long forward glance sequences are performing more tasks than in the short forward glance 

sequences; thus performance in the short forward glance sequences would have been even 

more depressed had they attempted the same number of tasks in the short forward glance 

sequences as they attempted in the long forward glance sequences. 

 

Figure 36: Percentage Tasks Attempted vs. Task Accuracy 
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In order to get a better handle on the relation between hazard anticipation on the one 

hand and tasks attempted and task accuracy on the other, I analyzed the effects of secondary 

task accuracy (observed proportions represented in Figure 35) and proportion of tasks 

attempted (Figure 36) on hazard anticipation across the alternating low load and high load 

sequences. I utilized a logistic regression model within the framework of Generalized Estimating 

Equations (GEE) with the percentage of hazards detected as the dependent variable. The model 

included the participants as a random effect. Secondary task accuracy and percentage of 

secondary tasks attempted were included as covariates in the model. Finally, the analysis model 

included the following factors: (a) Scenarios (8 unique scenarios described in Section 3.1.3), (b) 

Alternation Sequence: 1/2, 2/2, 4/2, (c) Location of threat: Peripheral or Central, and (d) Type of 

Processing: Bottom Up or Top Down.  All second and third order interactions were also included.  

The final model included a significant main effect for Alternation Sequence [Wald Χ1
2
=9.468; 

p=0.009] and a significant effect of the covariate, percentage of tasks attempted [Wald 

Χ1
2
=4.320; p=0.038] (see Figure 36 for percentage of tasks attempted vs. task accuracy). In 

addition there were two highly significant second order interactions between Location of Threat 

and Tasks Attempted [Wald Χ1
2
=4.459; p=0.035] and Location of Threat and Task Accuracy 

[Wald Χ1
2
=4.712; p=0.030]. Figure 37 illustrates the latent hazard detection probabilities of 

drivers as a function of the tasks attempted.  
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Figure 37: Latent Hazard Detection Likelihood across the various alternation sequences as a 

function of Tasks Attempted and Unattempted 

 There are three things of significance to note.  First, the number of tasks attempted was 

very high.  Specifically, drivers attempted 82% of tasks across all the alternation sequences while 

only 18% of tasks were left un-attempted.  This suggests that participants were trying to 

perform the task and that, indeed, they were paying attention in the alternating low load and 

high load conditions.  In addition, task accuracy is above chance (14.3%), indicating that not only 

were participants paying attention, but they were able to pay enough attention to get the task 

accurate most of the time. An analysis was performed to identify if task accuracy was 

significantly above chance. A Univariate ANOVA indicated that the chance probability lies 

outside the lower and upper bounds of the 95% confidence interval and hence the obtained task 

accuracy is above chance.  Together, these findings indicate the participants were loaded 

cognitively by the secondary task both in the alternating low load condition indicating switching 

effects and in the alternating high load condition indicating spillover effects.  Second, as noted 

above more tasks were attempted in the alternating low load condition than in the alternating 

high load condition.  I ran a Univariate ANOVA within General Linear Models to test the 
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hypothesis that number of tasks attempted in the high load condition is not greater than the 

number of tasks attempted in the alternating low load condition. The analysis revealed a 

significant effect for load (F (1) = 5.674, p = 0.026).  This confirms that drivers in the alternating 

low load condition attempted significantly more tasks than drivers in the high load condition. 

Therefore, the fact that participants are performing better in the alternating low load condition 

cannot be because they are attempting fewer tasks.  Third, there was a statistically significant 

increase in the number of tasks attempted as the duration of the forward glance increased. A 

Univariate ANOVA revealed a significant effect for alternation sequence (F (2) = 5.981, P = 0.024) 

indicating that as the duration of the forward glance in a sequence increased, participants 

attempted more tasks. This means that the participants are not doing worse in the shorter 

forward glance alternation sequences because they are attempting fewer tasks. 

4.2.3 Vehicle Measures (Velocity) 

As in Experiment 1, velocity was the primary vehicle measure analyzed. It was analyzed 

in order to determine whether drivers in the continuous condition were traveling faster than 

drivers in one or more of the alternating conditions.  If such were the case, then the 

performance of drivers in the alternating conditions could be artifactually inflated because they 

had more time to scan for a latent hazard. The velocity was collected for a 15 second period 

prior to the potential latent hazard for all subjects across all scenarios. The velocity was also 

collected for the immediate 5 seconds preceding the hazard. The average velocity was then 

computed for both periods.  Velocity would be an indicator of how drivers respond to the 

secondary tasks and the alternation sequence. There was no clear pattern for average velocity 

as a function of the alternation sequence. The average velocities across the conditions 15 s and 

for 5 s preceding the hazard are plotted in Figure 38 and Figure 39. 
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Figure 38: Average Velocity (< 15 s) 

   

 

Figure 39: Average Velocity (< 5 s) 

The average velocities were in the range of 21 – 22 mph. An analysis which compares 

the average velocity across the continuous and two alternating conditions was undertaken in 

order to determine whether drivers in the alternating conditions travel more slowly, a finding 

which could increase their performance compared to the control condition.   I ran a Univariate 

ANOVA within General Linear Models to determine whether differences in average velocities (15 
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s and 5 s) were significant across conditions. The analysis for average velocity 15 s before the 

hazard revealed no significant effect for treatment (F (3) = 0.835, p = 0.483).  The analysis for 

average velocity 5 s before the hazard also revealed no significance for treatment (F (3) = 1.405, 

p = 0.257).  The average velocities and standard deviations for the 4 treatments are in Table 9 

and Table 10 below.  

Table 15: Average Velocity Across Conditions. (5 s before hazard) 

Average Velocity (5 s) 

  Mean SD 

C 21.353 1.90 

B 20.290 1.75 

E 20.44 3.00 

H 22.007 2.06 

 

Table 16: Average Velocity Across Conditions. (15 s before hazard) 

Average Velocity (15 s) 

  Mean SD 

C 20.400 4.27 

B 19.429 2.79 

E 19.956 2.77 

H 21.178 2.26 

 

 The analysis which compares the average velocity across the continuous and three 

alternating conditions was undertaken in order to determine whether drivers in the alternating 
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conditions travel more slowly, a finding which would increase their performance compared to 

the control condition. Separate analyses were run for alternation sequence in both the 

alternating baseline and alternating low load conditions.  A Univariate ANOVA was performed 

on the individual alternating baseline, alternating low load and alternating high load conditions 

to test for effects of alternation sequence. Again, there was no significant effect for sequence in 

either the alternating baseline, alternating low load or alternating high load conditions. The 

analysis for average velocity 15 s before the hazard revealed no significant effect for alternation 

sequence, (F (3, 38) = 1.557, p = 0.257). The analysis for average velocity 5 s before the hazard 

also revealed no significance for alternation sequence (F (3, 38) = 1.783, p = 0.168).  

4.2.4 Estimation of Threshold Duration 

The data obtained was fitted using Excel Solver.  I fitted a two parameter (λ, Δ) logistic 

function with the formula. To decide if the predicted data is close to the actual values a function 

was required to measure how good the fit was. I utilized the Least Square Difference approach 

and calculated the difference between the predictions and actual values and then squared it. 

The sum of these squares tend to 0 when the predictions are an exact match to the actual 

values and get larger as the predictions are further away.  

Following the initiation of the solver, the objective was set to the sum of squares value 

approaching minimum, as we want this value to be as small as possible. The 2 parameter values 

were selected to permit the solver to adjust these values to minimize the sum of squares as per 

our requirement. These optimized values were then used to obtain the predicted threshold 

durations across the various conditions setting the performance in the continuous condition as a 

baseline. The value of ‘t’ obtained asymptotically provides me with the threshold duration 

required for participants to achieve/attain a level of performance in the alternating conditions 

approaching that in the continuous condition (81%). The threshold durations for each 
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alternating condition was expected to be influenced by the type of load (alternating baseline, 

low load and high load). This helps me understand how larger effects (both in magnitude and 

nature) require longer threshold durations to attain levels of performance observed in the 

continuous condition.   

An estimate was made for the baseline, low load and high load alternating conditions of 

the threshold duration.  The threshold duration is defined as the amount of time in the 

alternating low load condition that the forward roadway would need to be displayed between 

glances inside the vehicle in order for the percentage of hazards detected to be equal to 95% of 

the hazard detection rate in the continuous condition (78.85%).  There were four low load 

conditions.  Let p (t) be the proportion of hazards detected when the window of time is equal to 

t, t = 1 – 4. A least squares estimate of λ was found such that it minimizes the sum of squared 

deviation: 

 ( )( ){ }24

1
minimize ( ) 0.95 0.83 1 .

t

t
p t e

λ−
=

− × −∑   

The estimate (starting with λ = 0.1 and moving up in units of 0.1) of λ that minimized the sum of 

squared deviations, say λ*, was 0.7.  

The asymptotic estimation indicated that when swapping effects are present 

(alternating baseline condition), the threshold duration for the forward roadway glance is at 

least 4 s. When the in-vehicle task performed elicits switching effects (alternating low load 

condition), the threshold duration of the forward roadway glance increases to 5 s. Engagement 

in in-vehicle tasks leading to spillover effects (alternating high load condition) requires at least 6 

s. The threshold durations were not separately estimated for type of processing and location of 

threat as opposite effects were observed in both experiments for these factors. The same 

method would be employed to obtain those durations. 
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4.3 Discussion 

The results from my second experiment are partly consistent with the findings of my 

first experiment, revealing effects on alternation sequence and load, in addition to revealing 

spillover effects.  Most importantly, the results on hazard anticipation showed that drivers in the 

continuous condition anticipated the largest percentage of hazards while drivers in the 1/2 

alternation sequence anticipated the lowest percentage of hazards across all three conditions, 

alternating baseline, alternating low load and alternating high load conditions. The results 

hammer home the importance of the forward roadway duration in an alternation sequence.  

In Experiment 2, I evaluated drivers across the same conditions I utilized in Experiment 1 

in addition to using an additional alternating high load condition with a cognitively loaded visual 

search task. The secondary task in the alternating high load condition not only loads the driver 

during the center screen interruption but also when he/she is glancing at the forward roadway. 

There are several interesting points of note here similar to Experiment 1.  

First, there definitely exists a benefit to glancing at the forward roadway for a duration 

greater than the preceding in-vehicle glance especially when the preceding in-vehicle glance is 

at least 2 s. The 4/2 alternation sequence elicited a much higher proportion of glances critical to 

hazard anticipation, in all three alternating conditions, baseline, low load  and high load 

conditions (81%, 72% and 66% respectively).   The percentage of hazards detected by drivers 

dropped by 25 percent in the 1/2 alternation sequence (across all alternation conditions) as 

opposed to the 4/2 sequence.  

Second, in addition to an effect of the forward roadway glance duration, there is also an 

effect of the type of load. Drivers detected a larger percentage of the hazards in the continuous 

condition (81.3%) than in the alternating high load condition (44%). The percentage of hazards 

detected consistently decreased across the treatment conditions (69% for the alternating 
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baseline and 63% for the alternating low load condition). The observed differences in hazard 

detection suggest that there are separate swapping and switching effects as well as strong 

spillover effects. Consider first the effect of swapping.  In the second experiment, I tweaked the 

center screen alternation display for the alternating baseline condition by adding a ‘+’ symbol 

upon which drivers had to fixate. This was done to ensure that drivers weren’t electing to ignore 

the center blank screen and, instead, attend to the driving by glancing away from the center 

screen which was blanked towards the side screens which contained a view of the forward 

roadway. The results of my experiment confirmed that there were visible swapping effects when 

drivers no longer had forward roadway cues to maintain lane position and velocity.  Next, 

consider the issue of separate effects for switching.  The use of a visual search task led to 

performance decrements in latent hazard detection in the alternating low load condition 

compared to the alternating baseline condition. This is explained by the switching effect which it 

is hypothesized is due to the fact that attention must be switched from the driving task to the 

secondary search task, thereby decreasing the capacity available to maintain information on the 

forward roadway in short term memory.. There is also clear evidence of a combined swapping 

and switching effect for all alternating low load sequences (E1 – E4).  Finally, the use of a 

cognitively loaded search task leads to a decrement in hazard detection performance for drivers 

in the alternating high load condition. The difference in latent hazard detection between the 

alternating high load and alternating low load conditions may be explained by the spillover 

effect. There was a clear evidence for combined switching and spillover effects for all alternating 

high load sequences (H1 – H4).  

Third, when including all three alternating conditions in the model, there was no effect 

of type of processing, contrary to Experiment 1.  However, upon taking a closer look, an effect 

on the type of processing was observed when just the alternating baseline and low load 
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conditions were included in the model (consistent with Experiment 1). As predicted, drivers’ 

performance in the bottom up condition is better than their performance in the top down 

condition, approaching near perfect performance when the view is continuous.  The difference 

is 10 percentage points. The difference in the hazard anticipation performance of the 

participants on the bottom up and top down scenarios in the alternating high load condition is 

also in the right direction.  In summary, in all three of the alternating conditions, the effect of 

the bottom up cues is attenuated on average as the duration of the view of the forward 

roadway decreases (Figure 34). This points to the critical importance of taking long glances on 

the forward roadway because the effect of even the most obvious of bottom up cues is 

considerably lessened at the shorter forward roadway durations. 

Fourth, experiment two showed a significant effect for location of threat while 

experiment 1 did not. This difference may be attributed to the lighting factor. In Experiment 

1, the lack of functional dashboard lights may have influenced participants’ latent hazard 

detection performance across location of threat. While, in experiment 2, the presence of 

functional dashboard lights may have aided participants’ ability to detect threats (explaining 

why performance across centrally located threats is better than performance across 

peripherally located threats). Lighting is a key factor towards being able to detect latent 

hazards and hence is a plausible enough reason for a reversal in performance across 

experiments.  

Fifth, the question arose as to whether the participants could be performing better 

in the alternating low load condition than the alternating high load condition because they 

were performing fewer tasks in the alternating low load condition.  In fact, the participants’ 

average number of tasks attempted was larger in the low load condition than it was in the 

high load condition.   
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Sixth, the results on secondary task accuracy indicate that drivers were less accurate 

when spillover effects were present (alternating high load condition) than when just 

switching effects (alternating low load condition). This pattern was consistent with the 

percentage of tasks attempted on the last in-vehicle glance (center screen interruption). I 

find it interesting that as the magnitude of the load increases, the secondary task accuracy 

suffers in addition to latent hazard detection. It appears that when the load is constant as it 

is in the alternating high load condition, there is not only a cost to the primary task, but also 

a cost to the secondary task.  

Seventh, what is also significant is that the task accuracy and percentage of tasks 

attempted decrease as the forward roadway duration within an alternation sequence 

decreases. These patterns are consistent across both experiments.  This means that the 

measure of tasks attempted is a good measure of effort.  Such would not have been the 

case had accuracy and the number of tasks attempted not been correlated.  It also implies 

that participants are not performing better in the 1/2 condition than the 4/2 condition 

because they are simply completing fewer tasks in the 1/2 condition – quite the opposite. 

Finally, the velocity was analyzed in order to determine whether drivers in the continuous 

condition were traveling faster than drivers in the three alternating conditions. Examination and 

analyses of velocity data yielded some valuable conclusions. The velocity was collected for a 15 

second period prior to the potential latent hazard for all subjects across all scenarios. The 

velocity was also collected for the immediate 5 seconds preceding the hazard. It was analyzed in 

order to determine whether drivers in the continuous condition were traveling faster than 

drivers in either or both of the alternating conditions.  If such were the case, then the 

performance of drivers in the alternating conditions could be artifactually inflated because they 
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had more time to scan for a latent hazard. The average velocities were in the range of 21 – 22 

mph. There were no significant differences in the average velocities across treatment 

conditions. Drivers across all conditions drove at an average velocity (during the task duration) 

not exceeding 21 mph thereby eliminating a potential confound.  

To summarize, the results of Experiment 2 are consistent with the hypothesis that longer 

forward roadway glances within an alternating sequence have a larger benefit to latent hazard 

detection, at least for the hazard anticipation scenarios that were analyzed. Specifically, when 

driving with the views of the forward roadway alternated with the center screen task, drivers 

are much more likely to better detect hazards when they allocate more time on the forward 

roadway (4 s as opposed to 1 s, 2 s). There is a benefit to centrally located threats as compared 

to peripherally located threats across the alternation conditions, (however as explained above, 

opposite effects were observed in Experiment 1). Drivers anticipate a higher proportion of 

hazards when the type of processing is bottom up (attraction by motion, e.g., lead vehicle 

braking) as opposed to top down (allocation of attention, e.g.; 4 way uncontrolled intersection). 

When attempting tasks, drivers anticipate a much fewer proportion of the hazards in 

Experiment 1. However, the opposite was observed in Experiment 2. This may have resulted 

from drivers being loaded while looking at the forward roadway following an in-vehicle glance in 

the alternating high load condition in which case it would stand to reason that a subsequent 

task attempt was not necessary for a decrement in drivers’ latent hazard detection ability. The 

analysis of data indicates a strong presence of all three effects, namely, swapping, switching and 

spillover. There is evidence for separate as well as combined effects.  

 Last but not the least, the results of my experiments suggest a threshold duration of 

about 4 s for in-vehicle tasks with swapping, 6 – 7 s for in-vehicle tasks that only require 

switching and most importantly indicate that for in-vehicle tasks that require spillover, the 
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threshold duration is 6 s (see Section 4.2.4). What this implies is that a driver requires at least 4 

seconds for in-vehicle tasks with just swapping and 5 s for tasks with switching.  The threshold 

duration is highest for tasks with spillover since the spillover effect always lowers performance 

even when the driver is glancing at the forward roadway.  That is, there is insufficient time for 

secondary, in-vehicle tasks with spillover to obtain sufficient information from the forward 

roadway critical to safe behavior when engaged in a sequence of alternating glances between 

the inside of the vehicle and the forward roadway, where the in vehicle glance is no longer than 

2 s. 
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CHAPTER 5 

SUMMARY  

5.1 Summary 

To summarize, there were two aims to the experiment.   To repeat, the first aim was to 

determine the size of the threshold duration and how the threshold duration varies in the 

alternating conditions as a function of factors which influence the likelihood that a threat will be 

detected, including:   (a) how the threat is processed (top down or bottom up); (b) where the 

threat is located (fovea or periphery); and (c) the load (continuous, alternating baseline, 

alternating low load).  The second aim was to determine whether the likelihood of detecting a 

threat decreases as the duration of the glance on the forward roadway decreases and, if so, how 

the difference between the likelihood that the threat is detected in the alternating and 

continuous conditions when the window is less than the threshold duration varies as a function 

of the above factors.  The first experiment addressed these two aims when the driver was 

performing an in-vehicle task which placed a load on the driver during the glance down but not 

during the glance up (the alternating low load condition).  The second experiment addressed 

these two aims when the driver was performing an in-vehicle task which placed a load on the 

driver both during the glance down and during the glance up (the alternating high load 

condition). 

 The following general conclusions follow from Experiments 1 and 2 as described above.  

Briefly:  

• Across conditions, the threshold duration is shortest in the alternating baseline 

condition (4 s), longer in the alternating baseline condition (6 - 7 s), and nonexistent in 

the alternating high load condition.   
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• The threshold duration is higher across all alternating conditions when the threat is 

processed top down.  This duration does not appear to be affected by whether the 

threat is located centrally or peripherally. 

• Across all alternating conditions, the shorter the forward roadway duration the less 

likely is the participant to anticipate a hazard. 

• At forward glance durations less than threshold, there are separate effects of swapping, 

switching and spillover.  

• At forward roadway durations near threshold there are effects of the type of processing; 

however these effects disappear when the glances on the forward roadway are 

especially short. 

• At all forward roadway durations analyzed there are no effects of the location of the 

threat. 

• Finally, potential alternative explanations of the results such as participants attempting 

fewer tasks in the alternating low load condition than they do in the alternating high 

load condition, attempting fewer tasks at the shorter forward roadway durations than 

they do the longer forward roadway durations, or traveling slower in the alternating 

conditions than they do in the continuous condition could be ruled out. 

5.2 Limitations & Future Work 

My research successfully addressed several questions. At this point, I would like to note 

several limitations of my study, all of which may be addressed via future research and 

subsequent experiments. 

• Only a small set of the total set of hazard anticipation scenarios was used, limiting 

generality to other scenarios. 
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• No measurement was made of hazard mitigation, yet ultimately it is the ability of drivers 

to mitigate crashes that is important. 

• Relevant to the above point, no measure was made of the effect of the alternation 

sequence on the likelihood of a crash. 

• The experiment was performed in a driving simulator.  The results do not necessarily 

generalize to the open road. 

• The alternation sequences could not be selected by the participants.  Drivers may be 

much savvier in the real world and glance forward for longer durations when necessary.  

They were given no chance to increase or decrease the duration of their glances either 

down or up during the experiments. 

• There was no test of whether the load in the low load task actually carried over into the 

forward glance.  In fact, the driver did have to report the number of target t’s, so there 

was some carry over.    

• As a next step, it would be interesting to see how actual in-vehicle tasks (tuning the 

radio, searching for a street on the GPS, searching for changes in the glove box) map on 

to the various effects (swapping, switching and spillover) I simulate via my pseudo-

secondary tasks in both experiments. The advantage of pseudo-secondary tasks was the 

control afforded to the experimenter in determining precisely the in-vehicle and 

forward roadway glance durations in the different alternation sequences and identifying 

the various threshold durations. Given that the safe threshold durations have now been 

estimated, it becomes much simpler to utilize in-vehicle tasks to see the performance of 

these in-vehicle tasks exceeds the estimated threshold durations.  
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5.3 Implications for Practice 

The findings from the above experiments may have an impact on framing of additional 

policies directed towards addressing motor vehicle casualties due to driver distraction. These 

findings could prove critical towards complementing and completing NHTSA's Distracted 

Driving Guidelines (NHTSA, 2012). The proposed guidelines recommend the design of in-

vehicle devices such that tasks be completed by the driving with: a mean in-vehicle glance 

duration of 2 sec or less; 85% of eye duration away from the forward roadway being 2 

seconds or less; and a cumulative time spent glancing away from the forward roadway of 12 

seconds or less. What the guidelines lack is a component specifying how long at minimum 

drivers need to glance at the forward roadway when engaged in an in-vehicle task? My 

findings would provide a framework for a similar set of guidelines for the duration of the 

glances on the forward roadway.  As an example, the set of guidelines for forward roadway 

durations might read like the following: 

• Drivers mean glance duration on the forward roadway must be at least 4 seconds 

when engaged with an in-vehicle task requiring swapping (similar to alternating 

baseline condition) and at least 7 seconds (asymptotically estimated) when 

engaged with an in-vehicle task requiring switching (similar to the alternating low 

load condition leading to switching effects). There is no estimable threshold 

duration when engaged in an in-vehicle task requiring cognitive spillover (similar 

to the alternating high load condition).  

• At least 85% of the forward roadway glances must be 4 seconds or more. 
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• And, the cumulative time spent glancing at the forward roadway should be at least 3 

(visible to invisible time ratio in the alternation sequence) times the time spent 

glancing away from the forward roadway. 

These findings are useful and would provide a tighter framework for in-vehicle device 

manufacturers and policy makers in general.  
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CHAPTER 6 

SUPPORT 

Portions of this research were supported by a grant from the Department of Transportation 

University Transportation Center Tier 1 Program to Ohio State (PI, Umit Ozguner) and by a grant 

from Arbella Insurance to Donald Fisher. 
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APPENDIX: SCENARIO PERSPECTIVE VIEWS 

Truck Left Turn [G] 

 

 

Mullins Center [C] 
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Work zone [F] 

 

Truck parked on the right side of a crosswalk [D] 
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Four Way Uncontrolled Intersection [B] 

 

Looking across a curve _ Bottom Up [H] 
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Looking across a curve _ TD [E] 

 

Lead Vehicle Braking – Brake Lights [A] 
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