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ABSTRACT 

LIGHTWEIGHT, HIGH-TEMPERATURE RADIATOR FOR IN-SPACE NUCLEAR-ELECTRIC POWER AND 
PROPULSION 

SEPTEMBER 2014 

BRIANA N. TOMBOULIAN, B.S., SMITH COLLEGE 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Robert W. Hyers 

 
The desire to explore deep space destinations with high-power and high-speed space+craft 

inspired this work.  Nuclear Electric Propulsion (NEP), shown to provide orders of magnitude higher 

specific impulse and propulsion efficiency over traditional chemical rockets, has been identified as an 

enabling technology for this goal.  One of large obstacle to launching an NEP vehicle is total mass.  

Increasing the specific power (kW/kg) of the heat radiator component is necessary to meet NASA’s mass 

targets.   

This work evaluated a novel lightweight, high-temperature carbon fiber radiator designed to 

meet the mass requirements of future NEP missions.  The research is grouped into three major sections: 

1) a micro-scale radiation study, 2) bench-scale experimental and analytical investigations, and 3) large-

scale radiator system modeling.   

In the first section, a Monte Carlo ray tracing model built to predict the effective emissivity of a 

carbon fiber fin by modeling the radiation scattering among fibers showed that the added surface area 

of the fibers over a flat fin surface increases the effective emissivity of the radiator area by up to 20%.  

The effective emissivity increases as the fiber volume fraction decreases from 1 to about 0.16 due to 

increased scattering among the fibers.  For fiber volume fractions lower than 0.10, the effective 

emissivity decreases rapidly as the effect of radiation transmission becomes significant.   
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In the second section, thermal analyses of the carbon fiber radiator fin predicted that these 

radiators could meet NASA’s performance targets by reducing the areal density to 2.2 kg/m2 or below.  

These models were validated through experimental tests conducted on sub-scale radiator test articles.  

This work elevated the technology readiness level (TRL) of the carbon fiber radiator fin from level 2 to 4.   

In the last section, a radiator system model for an NEP vehicle was built to analyze the 

dependence of radiator mass on selected system parameters.  The model was used to minimize the 

radiator mass for test cases.  The results predicted that carbon fiber fins operated near 600°C reduced 

the radiator mass by a factor of 7 as compared with traditional radiators operating near 100°C.  This 

significant mass-reduction could enable future NEP systems.   
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CHAPTER 1 

1 INTRODUCTION 

1.1 Purpose and Overview 

The needs of NASA’s deep space missions were of special interest to the author since they 

involve both increased energy efficiency and the use of new materials.  A NASA research program in 

these areas provided an opportunity for the author to pursue applications of mechanical engineering to 

the design of advanced technologies.   

One of NASA’s “Grand Challenges” is affordable and abundant power for space travel.  

According to NASA’s 2010 Space Power and Energy Storage Roadmap, nuclear electric power can 

“provide ‘game-changing’ solutions for powering advanced NASA missions” [1].  Nuclear electric 

propulsion (NEP) could enable extended space missions ranging from interplanetary exploration to 

space colonization, but is not yet feasible, in part due to limited efficiency of the current state-of-the-art 

heat rejection technologies.  The waste heat generated during the thermal to electric power conversion 

cycle must be dissipated by thermal radiation to space.  Utilizing a traditional metallic fin radiator for an 

unmanned NEP spacecraft, the radiator alone would amount to around 40% of the total mass of the 

spacecraft [2].  At a price of $10,000 per pound (in 2010 dollars) to launch mass to Lower Earth Orbit 

(LEO), NEP missions will require advanced, low-density radiators [3].   

The work presented here consists of research on several aspects of the design and fabrication of 

a lightweight, high-temperature carbon fiber radiator for space-based nuclear-electric power conversion 

systems.  The goal of this work is to design, fabricate, and test a low-density, high-temperature carbon 

fiber radiator that meets NASA’s areal density target for space-based radiators of 2-4 kg/m2, improving 

on existing metallic and composite radiators with areal densities typically greater than 5 kg/m2.  This 
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goal was achieved by a combination of detailed heat transfer models and radiator test article 

experimentation as shown in Chapters 3-5.   

The important characteristics of an advanced radiator include: low-density, high thermal 

conductivity, high emissivity, high temperature tolerance, and micrometeorite damage tolerance.  As 

the radiator temperature is allowed to increase, the total radiating area required for a given heat load 

decreases.  The combination of lightweight materials with superior thermal properties, and high 

operating temperatures enables significant reductions in radiator mass. 

The main contributions detailed in this work are: 

(1) A detailed model of the radiation within an array of carbon fibers was built and used to 

predict the dependence of effective emissivity on fiber volume fraction.  The model details 

and findings are presented in Chapter 2.   

(2) Chapter 3 discusses proof-of-concept testing of a carbon fiber radiator, including design and 

fabrication of test articles.  The test articles consisted of woven fiber fins with a high-

temperature heat pipe.  Test articles were used in subsequent studies to quantify the fin 

performance.  The main fabrication steps were weaving carbon fiber into a high-quality 

textile, manufacturing sodium heat pipes, and joining the textile and heat pipe with a 

titanium-copper-silver braze. 

(3) The total hemispherical emissivity and longitudinal thermal conductivity of the carbon fiber 

fin were measured.  The emissivity was measured using a room-temperature reflectometer 

and the longitudinal thermal conductivity was measured using a combination of infrared 

imaging and thermal models.  The power radiated from a fin per unit width of heat pipe was 

measured using data collected by infrared images.  A discussion of the methods and 

conclusions is presented in Chapter 4.   
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(4) A parametric study was conducted of the heat rejection from a carbon fiber fin over a range 

of fin thicknesses, lengths and root temperatures using a detailed finite element model.  An 

analytical model was fit to the parametric data, which was used to easily automate radiator 

optimization studies.  The model development is discussed in Chapter 5.   

(5) A thermal resistance model of a space-based heat rejection system was built incorporating 

the analytical fin heat transfer model developed above.  An optimization of the heat 

rejection system mass for a nuclear-electric power system test case with a 700 kW waste 

heat load was conducted in Chapter 5.  The optimal solution for the high-temperature 

carbon fiber heat rejection system yielded an areal density of 2.28 kg/m2, which meets 

NASA’s areal density target, and is significantly lower mass than designs presented in 

previous NASA studies.   

1.2 Background 

Advancing technologies, especially in power generation, propulsion, and communication, have 

enabled increasingly complex space exploration missions.  Travel to the outer planets and interstellar 

space are of interest to the science community and NASA, but are limited by the present-day low-power, 

low-speed propulsion methods and by vehicle and fuel weight.  The latest mission to Mars, the Mars 

Science Lab with the Curiosity rover, took approximately 9 months to reach the planet, while the current 

Jupiter mission Juno will take 5 years to reach its destination [4][5].  If the same propulsion methods 

used in the existing spacecraft were used for interstellar space missions, the travel time would be 

undesirably high.  Voyager 1, which is currently the farthest spacecraft from Earth, has reached the 

Heliosheath (the region between the Termination Shock and Heliopause, see Figure 1.1) after 35 years in 

flight.  It would take Voyager 1 approximately 77,000 years to reach the next closest star, Alpha 
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Centauri.  Developing faster spacecraft is necessary for completing deep-space missions on the human 

time-scale.   

The “Innovative Interstellar Explorer” is a NASA project aimed at breaking out of our solar 

system to reach interstellar space, as shown in Figure 1.1 [6].  The nearest interstellar space is 

approximately 200 AU away, where 1 AU (astronomical unit) is the mean distance from the Earth to Sun 

[7][8].  In order to reach interstellar space within 15 years from launch, velocities of at least 63 km/s 

must be achieved [6], which is not possible with chemical or nuclear thermal propulsion systems.  

Nuclear-electric propulsion (NEP) has been identified as a potential ‘game-changing’ technology for 

achieving the high-speeds necessary for reaching deep-space destinations in reasonable travel times 

[1][9][10].   

 

Figure 1.1: Relative distances (in AU) in our solar system and its surroundings [6]. 

The following sections provide additional background on deep-space travel, nuclear-electric 

propulsion, and heat rejection technologies. 
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1.2.1 Deep Space Missions 

There have been many successful unmanned missions to Mars including Viking Landers 1 and 2 

(1975), Mars Pathfinder (1996), Mars Odyssey (2001), Mars Exploration Rovers Spirit and Opportunity 

(2003), Mars Reconnaissance Orbiter (2005), Phoenix Lander (2007), and the Mars Science Laboratory 

(2012) [4].  With an increasing number of successful Mars probes, NASA is now considering manned 

missions to the planet.  High-speed NEP vehicles could enable manned missions by decreasing the travel 

durations.   

During the past few decades, there have been several successful unmanned missions to remote 

planets within our solar system.  The first unmanned probe to Jupiter, Pioneer 10, reached the planet in 

1973, followed by Pioneer 11 (1973), Voyager 1 and 2 (1977), and Galileo (1989).  Other deep-space 

missions have included: Ulysses (1990) whose mission was to study the north and south poles of the 

sun, but flew by Jupiter to use the planet’s gravitational field to assist its trajectory; Cassini-Huygens 

(1997) is a Saturn orbiter; New Horizons (2006), which is on its way to Pluto and also used Jupiter’s 

gravitational field to assist its trajectory; Juno (2011) is a Jupiter orbiter that is scheduled to reach the 

planet in 2016.  The next-step for unmanned deep-space exploration is to employ advanced propulsion 

systems that can achieve higher vehicle velocities.    

1.2.2 Existing Deep-Space Power and Propulsion  

Deep-space probes are launched out of Earth’s gravitational field and set on a trajectory using 

large chemical rockets.  Any additional propulsion for maneuvering or adding speed in space has 

typically been provided by smaller chemical thrusters.  Once in space, other energy sources can be used 

to provide power for scientific instrumentation (payload) and communication.  To date, only two 

different types of power systems have been used in NASA’s interplanetary probes.  The two types of 

systems are radioisotope thermoelectric generators (RTG), a type of nuclear power, and photovoltaic 
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solar power.  An RTG uses thermal energy generated by natural radioactive decay of radioisotopes like 

plutonium to generate electrical power using a thermoelectric generator, which is essentially a 

thermocouple and discussed in more detail later [11].  Power output from an RTG is governed by the 

amount of radioactive fuel available and its half-life, so it steadily decreases and cannot be controlled 

during operation [6].  During long missions, spacecraft capabilities are reduced as the RTG power level 

drops below the required amount to sustain the entire load [8].  Pairing radioisotope heat sources with 

Stirling engines has been investigated, which provides more power than the static power converters in 

RTG’s but has the same heat source limitations [12].   

The advancement of photovoltaic solar-power technology has enabled its use in the Juno probe, 

the first solar-powered system used on a mission to an outer planet [5].  Even with significant 

improvements, solar power is inherently limited to destinations close to and in view of the sun.  For 

example, the solar intensity at Pluto is more than 900 times less than at Earth [13].  Similar to RTG-

powered spacecraft, photovoltaic solar-powered spacecraft use electrical power for the science payload 

and communication, and not for propulsion.  Neither RTG nor photovoltaic solar power sources are ideal 

for powering efficient propulsion on deep-space missions.    

1.2.3 Nuclear Energy Source for In-Space Propulsion  

Nuclear fuels used in fission reactors provide seven orders of magnitude more energy per mass 

than chemical propellants used in combustion, as shown in Figure 1.2.  For perspective on the energy 

density of nuclear fission versus combustion, the energy obtained by fissioning the amount of uranium 

that could fill a soda-can is about 50 times the energy contained in the Shuttle External Tank, as shown 

in Figure 1.3 [14].  Nuclear fission energy has the highest specific energy density of all of the viable 

energy sources for propulsion [14], and can enable the longest period of continuous high power output 

as shown in Figure 1.4 [11].   
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Figure 1.2: Propulsion Energy Sources [14] 

 

Figure 1.3: External fuel tank for the Space Shuttle [15]. 
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Figure 1.4: Regimes of space power applicability [11] 

A nuclear fission energy source has not yet been used on a deep-space mission, but combining a 

nuclear fission power source with electric propulsion has the potential to provide the high-power and 

high-speed required to reach interstellar space in under 20 years.  Thus, NEP is a leading propulsion 

option for deep-space missions, according to NASA 

From 1967 to 1988, Russia launched at least 37 nuclear fission reactors into Earth’s orbit on 

Kosmos satellites, during a program called RORSAT (Radar Ocean Reconnaissance SATellite) [13].  In 

1969, the US launched their one and only space nuclear reactor on a mission called SNAP-10A.  The 

SNAP-10A vehicle shown in Figure 1.5 was designed to test the safety and viability of flying nuclear 

reactors [13][16].   
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Figure 1.5: NASA’s SNAP-10A spacecraft with a nuclear reactor at the top [16]. 

One of NASA’s current challenges with using nuclear reactors in space is the negative public 

opinion of nuclear energy safety in the U.S. [13][17].  A primary design requirement for U.S. space 

nuclear reactors is safety, meaning that the reactor must stay in a subcritical condition (no self-

sustaining nuclear fission reactions taking place) during launch and during potential accident situations 

[13].  There have been eight reported accidents involving nuclear-powered spacecraft: three U.S. and 

three Russian RTG vehicles, and two Russian vehicles with nuclear fission reactors.  The organizations 

responsible for these incidents claim that the systems met the safety requirements and posed no threat 

to people [13].  Even though safety and public opinion issues have created barriers for using nuclear 

power in the past, continued improved safety and experience with reactors may allow advances in in-

space nuclear technology, critical to the next generation of deep-space probes [17][13]. 

1.2.4 Nuclear Electric Power and Propulsion 

 
Nuclear electric propulsion is the combination of two separate energy conversion processes: 

converting nuclear energy to electricity, and generating thrust (kinetic energy) from electric energy.  

Figure 1.6 provides a schematic of the NEP power subsystem with the thermodynamic power engine in 
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yellow, the nuclear fission reactor (heat source) in red, and radiator (heat sink) in blue.  Waste heat can 

also be directed to any system that requires heating.  Electric power output from the engine is directed 

to electric thrusters and any spacecraft subsystem requiring power.  The thrusters repel a high 

molecular weight propellant from the spacecraft, which imparts a thrust on the vehicle in the opposite 

direction.   

 

Figure 1.6: Schematic of Power Subsystem for NEP [14] 

Advantages of using nuclear-electric propulsion include that it requires little propellant, has 

maximum thrust capability at all locations in space (no dependence on solar proximity or orientation), 

can generate thrust for extended periods (tens of months), and is essentially non-radioactive until it 

leaves the Earth’s orbit [14].  A primary performance target for space nuclear power systems is to 

generate 100 kWe of power with a specific mass no greater than 30 kg/kW [18].  With numerous 

benefits over existing propulsion technologies, NASA has great interest in developing NEP [3][1][9].  

Brief descriptions of the major components in an NEP system are provided below. 

1.2.4.1 Reactor 

In a nuclear reactor, fissile isotopes of plutonium or uranium (typically U233, U235, Pu239 or 

Pu241) split in a fission reaction when hit with a neutron with a certain amount of energy.  When the 

nucleus of a fissile atom is struck by a free neutron, the neutron joins the nucleus, which becomes highly 
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unstable and splits into two fragments called fission products.  These fragments repel each other at 

extremely high velocities and heat is generated from friction as surrounding media slows the fissile 

products.  The friction between the fragments and the fluid creates heat, which increases the local 

temperature in the core.  In addition to heat generated by friction, the fission reaction emits gamma 

rays, additional free neutrons that initiate subsequent reactions, beta particles, and neutrinos.  The 

fragments are usually unstable and will decay to stable end products.  The total energy released from 

one fission reaction is about 200 MeV (3.2 x 10-11 J), and about 80% of that is converted to heat [19]. 

The fuel (fissionable isotopes) and its containment shell together forms a ‘fuel element’.  The 

fuel containment shell is called cladding, which is typically cylindrically-shaped and metal.  Cladding 

prevents the radioactive material from contaminating the reactor coolant.  The reactor core consists of 

many fuel elements arranged in a close-packed hexagonal configuration.  The heat generated by the 

fission reactions is absorbed by a coolant that flows between the fuel elements and carries the heat out 

of the core.  Leaving the reactor core, the coolant flows through a pumped closed loop delivering 

thermal energy to the hot side of the power conversion cycle. Figure 1.7 is a schematic of a reactor core 

showing the fuel element configuration and how the coolant flows around the elements and out 

through a single pipe.   

 

Figure 1.7: Reactor core simulator used at GRC showing the configuration of the fuel elements within 
the core and the coolant outlet [20]. 
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The state of a nuclear reactor is determined by the stability of the chain fission reactions.  A 

reactor is in a critical state when the free neutron production rate by fission reactions equals the rate of 

neutrons lost due to absorption by non-reactive atoms in the core or by leakage out of the reactor.  The 

critical state is the reactor’s steady-state.  The supercritical state is one in which the free neutron 

production rate exceeds the consumption/loss rate.  Finally, the subcritical reactor state occurs when 

the number of free neutrons lost exceeds those produced.  Supercritical states occur during start up 

when ramping up to steady-state, while subcritical occurs during shut down or before start-up.  Reactors 

should be in the subcritical state before and during launch to minimize the risk of releasing harmful 

radiation into the environmental in case of an accident.  The reactor should only be brought to the 

critical state once in orbit or traveling away from Earth.   

Gamma rays and neutrons can leak from the reactor and are hazardous to biological systems 

and electronics, therefore the reactor must be shielded.  Heavy shields are installed between the reactor 

and the rest of the spacecraft to provide protection from the reactor’s harmful byproducts.  For an 

unmanned mission, the shield must provide neutron and gamma attenuation factors of about 106 [21].  

1.2.4.2 Electric Power Generation  

Both static and dynamic power conversion mechanisms have been considered for space nuclear 

power systems.  All of the existing nuclear-powered spacecraft (i.e., Russian radar ocean reconnaissance 

satellites, NASA’s SNAP-10A, Voyagers, New Horizons, etc.) utilized static converters, which generate 

electricity by using a temperature gradient to move charges.  There are two types of static generators: 

thermoelectric and thermionic.  In a thermoelectric generator a voltage is created at the junction 

between two dissimilar materials that drives current flow, similar to thermocouples.  Figure 1.8 gives a 

schematic of a thermoelectric generator, where the dissimilar materials are N- and P-type 
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semiconductors.  N-type semiconductors use electrons as negative charge-carriers and P-type use holes 

as positive charge-carriers, which provide opposite current flows as indicated by the yellow arrows.  

 

Figure 1.8: Schematic of thermoelectric generator [22] 

In a thermionic generator, electron emitting and absorbing surfaces, or electrodes, are 

positioned facing each other and separated by a small gap.  When the electron-emitting surface is 

heated, electrons evaporate and are absorbed by the other surface.  The emitting and absorbing 

surfaces are connected in a loop to recharge the emitting side, see Figure 1.9.  Thermoelectric and 

thermionic generators are termed ‘static’ since there are no moving parts.  Static systems typically 

produce high currents and low voltages, therefore are considered for low-power applications (i.e. not 

for electric propulsion).  Thermoelectric and thermionic systems operate at higher temperatures than 

existing dynamic generators, with cold-side temperatures around 800-900 K [23].  
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Figure 1.9: Schematic of a thermionic generator [24]. 

One disadvantage of passive power converters is lower thermal efficiency compared to dynamic 

converters.  The thermal efficiency of the SNAP-10A thermoelectric power system reached only about 

1.6% [25].  The nuclear-powered Russian spacecraft TOPAZ generated 5 kWe of power with a thermionic 

generator, and achieved a thermal efficiency of around 3% [25].  One of NASA’s better-performing 

thermoelectric generators produced 100 kWe of electric power from 2.3 MWt of thermal power, an 

efficiency of 4.35% [11].  The typical power level achieved in a static system is too low to generate the 

thrust required for high-speed deep-space missions.  For these reasons, much of the current work in 

power conversion technologies is focused on dynamic options.  

Dynamic power conversion systems, or heat engines, convert heat into mechanical work, used 

to generate electricity.  To obey the second law of thermodynamics, a heat engine generating work 

must operate between two temperature reservoirs, one from which it gains heat and one to which it 

rejects heat.  In a closed cycle heat engine, a working fluid undergoes several processes and returns to 

its original state.  The process steps typically include heat addition (expansion generates work), heat 

rejection (condensing or compressing), and a pump (absorbs work to restore fluid pressure).  This 

process produces a net amount of mechanical work that is converted to electricity in an alternator.  

Cycle performance is evaluated on the amount of input energy required to produce a desired 

energy output.  The maximum theoretical cycle efficiency, called the Carnot efficiency, is based on a 
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reversible cycle operating between two temperature reservoirs.  The Carnot efficiency is always less 

than 100% and greater than the real efficiency of a cycle operating between the same two 

temperatures, as given by: 

 00% > ηTh Carnot =
T −T 

T 
> ηTh real =

W   

Q  
                                                          (1-1) 

Where TH and TC are the hot-side and cold-side temperatures of the cycle.  In an NEP system TH and TC 

are the operating temperatures of the reactor and radiator respectively, as shown in Figure 1.10.   

 

Figure 1.10: Schematic of the power subsystem for NEP. 

The two most advanced options for power converters for nuclear-electric systems are the 

Closed Brayton Cycle (CBC) and the Free-Piston Stirling (FPS) cycle [26][27].  There are several other 

lower TRL power conversion options that NASA has evaluated for nuclear-electric space applications  

including the Rankine cycle [20].  The Brayton cycle consists of a compressor and turbine running on the 

same drive shaft, and two heat exchangers for absorbing and rejecting heat, as shown in Figure 1.11.  

The 100 kWe power conversion system (PCS) for the Jupiter Icy Moon Orbiter (JIMO) concept ran on a 

CBC, which has been used for several subsequent studies on nuclear power in space [26][28].  The CBC 

was selected for this application because of its high efficiency and power capabilities [27].  CBC 

converters optimize at efficiencies around 20-25% for cold-side temperatures in the range of 400-600K 

[26].   
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Figure 1.11: Standard Closed Brayton Cycle, after [29] 

The Stirling engine has been considered for several in-space power applications including 

designs for a 40kWe nuclear power system on the surfaces of Moon and Mars [20].  Free-Piston Stirling 

engines consist of a piston and a displacer in parallel as shown in Figure 1.12.  When gas contained at 

the top is heated for a short period the displacer is forced toward the piston, which compresses the gas 

in between and forces the piston down.  When the heat source at the top is turned off, the pressure of 

the gas at the top decreases pulling the displacer back up.  Then the gas in between the piston and 

displacer is cooled for a short period reducing pressure of that gas, which forces the piston back to its 

original position.  The cross section picture shows that electricity is generated as the piston rod moves in 

and out of an electric field each cycle.  Since FPS engines have fewer moving parts than other engines, 

they experience less wear and a potentially longer lifespan.   
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Figure 1.12: Left: Dual-opposed linear alternator FPS engines developed at NASA Glenn Research Center 
[20]; Right: Cross-section of one engine, heat addition on top near the displacer and electrical power 

output from the bottom [30] 

Figure 1.13 provides a comparison of the specific mass (kg/kWe generated) for dynamic and 

static power conversion options over a range of power levels.  This shows that the Brayton engine 

provides the best specific mass for the 100kWe, but Rankine engines provide superior specific mass at 

higher power levels.  The Rankine may be of interest for far-term missions requiring megawatts of 

power.   

 

Figure 1.13: Comparison of power conversion systems over a range of power levels [31]. 
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1.2.4.3 Coolant 

Coolant is the heat transport fluid between the power conversion cycle and both the heat 

source and sink.  Different coolants can be used on the hot and cold sides of the system since they are 

typically separate pumped loops.  A good coolant has high specific heat capacity and thermal 

conductivity, appropriate melting and boiling temperatures so that it remains in the desired phase 

during operation, and has good chemical and radiation compatibility with all interfaces.  A fluid with 

high thermal conductivity (k, W/(m-K)) and specific heat capacity (cp, J/(K-kg)) requires reduced pumping 

power since the fluid can quickly absorb a large amount of heat (due to k) with a small increase in 

temperature (due to cp).   

Common coolants include water, ammonia, and liquid metal (potassium and sodium, or their 

alloys), and sometimes gases such as carbon dioxide and helium.  A very common coolant in systems 

operating above 300 K is the eutectic sodium-potassium mixture called NaK, which is about 78% 

potassium and 22% sodium [20][32], and can be used with nuclear reactors, power conversion systems 

and many other heat transport applications.  As with many liquid coolants, NaK has a high specific heat 

capacity and thermal conductivity, but its primary advantage is liquidity over a wide temperature range, 

with a melting point of 262 K and boiling point of 1058 K [32].  Liquid metal coolants can be driven by 

electromagnetic pumps, a major benefit for space applications because electromagnetic pumps have no 

moving parts and are therefore more reliable than their dynamic counterparts [20].   

1.2.4.4 Thrusters 

Thrusters are the devices that repel mass from the spacecraft creating thrust, or reaction forces 

in the direction of travel.  Traditional chemical thrusters repel high-speed combustion products through 

a nozzle.  As indicated previously, generating thrust this way is highly inefficient because the fuel has a 

low energy density.  The benefit of chemical thrusters is that they can provide very high impulse, which 
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is required to escape Earth’s gravity and atmosphere, but is not necessary for in-space travel where 

gravitational and drag forces are very low.  Once in space, continuous, low levels of thrust over time can 

provide large increases in velocity.  While in-space electric thrusters require more time to provide the 

same change in velocity as chemical thrusters, they provide significant fuel and system mass savings.  

Since electric thrusters are far more efficient and lightweight than chemical thrusters, they can be used 

continuously for longer durations while consuming much less propellant, and therefore achieve higher 

speeds.  For these reasons, electric thrusters are desirable for deep-space probes.  

Within the class of electric thrusters, there are three main types: electrostatic, electrothermal 

and electromagnetic.  Table 1.1 provides performance parameters for various thruster types, showing 

that electrostatic (ion and Hall) types operate at high efficiencies and can generate large specific 

impulses compared to chemical and other electric thrusters [33].   

Table 1.1: Typical operating parameters for thrusters with flight heritage [33] 

 

The leading options for electric thrusters are ion and Hall thrusters (both electrostatic).  The US 

and Russia have each used over one hundred electric thrusters in communications satellites, and many 

more in deep-space missions.  Hall thrusters have been used on 48 spacecraft since their first mission on 

a Russian vehicle in 1971 [33].  Japan launched the first ion thruster in 1995 [33], and NASA followed 
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with the Solar Electric Propulsion Technology Applications Readiness (NSTAR) 2.3 kW ion thruster on the 

Deep Space 1 probe launched in 1998, whose primary mission was to test ion propulsion as the primary 

propulsion during an interplanetary mission [34].   

Ion thrusters generate plasma that ionizes the propellant.  The positively-charged ions are 

electrostatically extracted and accelerated to high velocities using high voltage (10kV) electrode grids as 

shown in Figure 1.14 [33].  The NSTAR thruster ejected ions at velocities of 30 km/s (62,900 mph) [35].  

Ion thrusters provide the highest efficiency, up to 80%, of the electrostatic thrusters [33].  Hall thrusters 

use the Hall Effect to generate plasma from which ions are electrostatically accelerated using orthogonal 

electric and magnetic fields, as shown in Figure 1.15 [33].  Ion thrusters have higher efficiency, 

complexity and cost than Hall thrusters, which are tradeoffs that make each a better choice for different 

missions [36].  For missions that require a large change in velocity, ion thrusters are the better choice, 

whereas complexity and cost savings make Hall thrusters the better choice when low or moderate 

velocity changes are needed.  Figure 1.16 shows commercially available ion and Hall thrusters.  The 

preferred propellant for both ion and Hall thrusters is the high atomic weight and inert gas xenon.  For 

an order of magnitude perspective on the propellant consumption rate of an electric thruster, the ion 

thruster on Deep Space 1 mission expended 73.4 kg of xenon over 16,265 hours of operation to achieve 

a velocity change of 4.3km/s (approximately 10,000 mph), and for 2000 of those hours the specific 

impulse was 2200 s and the consumption rate was less than 4 g/hr [37]. 
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Figure 1.14: Schematic of NSTAR ion thruster, validated on the Deep Space 1 mission [35] 

 

 

Figure 1.15: Schematic of a Hall thruster with Xenon propellant [33] 
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Figure 1.16: Commercially available thrusters from Aerojet: 2.3 kW ion thruster (left) and 4.5 kW Hall 
thruster (right) [36] 

Most ongoing research on electric thrusters is conducted at NASA’s Glenn Research Center and 

Jet Propulsion Laboratory, and at Hughes Electron Dynamics [33].  

1.2.4.5 Heat Radiators 

Radiators reject the waste heat from the power generation process.  Chemical propulsion does 

not require the same type of heat rejection system because most of the heat is rejected as hot exhaust.  

As shown in Figure 1.6, the waste heat from the power conversion cycle is absorbed by a heat transport 

loop in a heat exchanger and is ultimately rejected to space by a radiating surface.  Radiating surface 

area is required since there is no other heat transfer mechanism to space; therefore all space-radiator 

designs need exposed and emissive surfaces.  The necessary radiating area is dictated primarily by the 

operating temperature of the cold-side heat transport coolant and the amount of waste heat.   

Throughout the evolution of space heat rejection systems, the major improvements have 

targeted efficiently of heat transport to the radiating surface and are summarized in Figure 1.17.  The 

original deployable radiators, used on the Space Shuttle vehicles, used a fully pumped system of heat 

transport pipes that interfaced with the radiator panels, as shown in Figure 1.17 on the left.  This design 
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required significant pumping power and was vulnerable to failure since the entire system pressure could 

be lost due to the failure of a single pipe.  The following generations of heat transport included a 

primary pumped loop that interfaced with heat pipes in a heat exchanger.  The heat pipes would 

efficiently transport heat along their lengths to the radiating panels.  Heat pipes are designed to 

maintain near-isothermal conditions along their lengths, which aids in high-efficiency heat transfer to 

the radiating fins.  Each heat pipe is independent from the others and from the coolant loop, so the loss 

of one heat pipe results in only a minor loss in system efficiency, which significantly decreases the 

system vulnerability as compared with fully-pumped coolant loops.   

 

Figure 1.17: Summary of the evolution of heat transport systems in space-radiators, from mid-1970s to 
early 1990s [38] 

In addition to the heat transport loop and heat pipes, the other major element of the heat 

rejection system is the radiating fins.  To date, radiating fins have been designed using either metal or 

composite facesheets.  The fin construction should maximize the heat conduction from the surface of 

the heat pipe to the bulk fin material.  Thus, the thermal resistance of any intermediate layers for 

bonding the heat transport system to the panels should be minimized.  Aluminum is the primary metal 

used in radiator panels because of its low density and high thermal conductivity.  One advantage of 
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using metal fins is that metal can be easily shaped to wrap tightly around the heat pipes as shown in 

Figure 1.18-A, which provides good contact area and only needs a thin bonding layer.  Composite panels 

are either polymer or graphite matrix with carbon fiber reinforcement depending on the operating 

temperature, and are generally very stiff.  The standard construction of a composite panel is given in 

Figure 1.18-B, which consists of several bonding layers in between the heat pipe and the panel surface.  

The extra layers are required to securely fasten the flat panel to the round pipe, but add extra thermal 

resistance.  The development and performance of various panel types will be discussed later.   

 

Figure 1.18: Cross sectional views of typical metal (A) and composite (B) radiator panels, after [20] 

1.2.4.6 Heat Pipes 

Heat pipes are closed, two-phase flow devices that can passively transfer large quantities of 

heat between two locations without electrical power.  Figure 1.19 gives a schematic of the basic 

components of a heat pipe.  The pipe is generally hollow except for a wick against the wall and working 

fluid.  Inside a heat pipe, working fluid in the liquid phase adheres to the wick lining the pipe walls, while 

the vapor phase fills the remaining volume of the pipe.  In space, the liquid phase will adhere to the tube 

walls without a physical separator due to surface tension forces.  When heat is added to one end of the 

pipe (evaporator section), liquid absorbs the energy through evaporation.  Relative to the condenser, 

the evaporator end has a lower liquid fraction, which creates a pressure gradient across the length of 

the wick, and capillary forces draw liquid toward the hot end.  The evaporating fluid creates a region of 
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higher pressure vapor, thus driving vapor flow toward the condenser region.  In the condenser region, 

the vapor condenses and refreshes the liquid wick.   

 

Figure 1.19: Schematic of a two-phase heat pipe 

The working fluids selected for heat pipes have high latent heat of vaporization so only a small 

amount of fluid is required to transport a significant amount of heat between ends.  The temperature 

difference between the evaporator and condenser does not have to be large to induce capillary 

pumping, therefore heat pipes are nearly isothermal. The heat pipes developed for lower temperature 

applications around 400 K are typically constructed with titanium pipes and water as the working fluid 

[20].  For higher temperatures near 600C heat pipes must be fabricated with higher melting point 

materials such as Inconel for the pipe and sodium or potassium for the working fluid.   

1.2.4.7 System Integration and Tradeoffs 

Each of the aforementioned components of the power subsystem have been studied and 

optimized independently for various applications, but a successful system will utilize the components in 

an optimal way for the mission depending on specific objectives and constraints.  The trade space 

between spacecraft components with respect to performance, mass, and configuration is complex and 

only several of the relevant trades to heat rejection are listed below.  Specific case studies will be 

presented in following sections. 

 Higher cold-side operating temperatures benefit from the fourth power temperature radiation 

law, such that the radiator area may be reduced. 
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 A heat engine with a lower temperature ratio (TH/TC) allows the cold-side temperature to be 

higher, thus the radiator area is reduced; yet a higher temperature ratio yields higher thermal 

efficiencies:            =   
  

  
  

 Increasing the operating temperature requires more waste heat rejection in order to maintain a 

specific thermal efficiency. 

 Operating at higher temperatures may require advanced materials to withstand the thermal 

load over time (i.e. added development and materials cost and risk). 

 Heat transport loop flow rate tradeoffs: higher flow rate yields lower temperature difference 

between the ends of the radiator (along the evaporator length), but consumes more energy in 

pumping and fluid drag. 

1.2.5 Related Studies  

In this section, related studies and projects are discussed including the first US nuclear reactor in 

space on SNAP-10A, a large nuclear fission feasibility project called SP-100, the ISS deployable heat 

rejection system, the Advanced Radiator Concepts project, the Jupiter Icy Moons Orbiter (JIMO) NEP 

concept, and the on-going Fission Surface Power (FSP) project.  JIMO and FSP are two of the largest 

studies on space nuclear-electric power and contain the most mature designs in the literature.   

1.2.5.1 Systems for Nuclear Auxiliary Power, mission SNAP-10A 

The 10A mission was the SNAP program’s first and only US mission using a nuclear reactor.  The 

nuclear reactor provided heat for a thermoelectric generator that produced 600 W of electric power 

with an efficiency of about 1.4% [25].  The cone-shaped heat rejection system had a pumped heat 

transport loop integrated into radiator panels.  Liquid sodium coolant was used in the power system 

because it melts at 208°F, has good heat transfer properties and can be driven by electromagnetic 
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pumps.  The launch and reactor startup were successful, but SNAP-10A shut down after 45 days in orbit 

due to a failed voltage regulator that shut down the core [16].  SNAP-10A and all of the nuclear reactor-

powered Russian satellites were designed to remain in Earth’s orbit indefinitely because of the hazards 

of reentering radioactive material [11].   

1.2.5.2 International Space Station (ISS) 

The ISS radiators are relevant because they are an established technology.  The radiators on the 

ISS and Space Shuttle are for general thermal management and operate at low-temperatures around 

300-350 K.  The panels consist of a fully-pumped heat transfer distribution system with ammonia 

working fluid, aluminum faceplates and honeycomb fill [20].  These materials are lightweight and readily 

available, but are limited to low-temperature applications.  The panels are deployable to accommodate 

varying heat rejection needs using a scissor mechanism to achieve a maximum radiating surface area of 

85 m2.  The areal mass of the system including the panels, fluid loop and deployment mechanism is 8.8 

kg/m2, which does not meet NASA’s performance targets for interplanetary probes [20][21].  The panels 

alone have an areal density of 2.75 kg/m2.  Figure 1.20 shows the deployed ISS radiators  

 

Figure 1.20: Deployed ISS heat rejection system [20] 
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1.2.5.3 Space Power Program, SP-100 

The SP-100 was a NASA program to study in-space nuclear fission power that ran from 1983 to 

1994.  This program studied power conversion systems including 100 kWe thermoelectric generators, 

Closed Brayton and Free-Piston Stirling cycles, as well as heat pipe radiators, and NaK heat transport 

loops.  The applications considered in SP-100 included deep space probes and power for Martian/lunar 

surface habitation [39].  The program was cancelled in 1994 because nuclear-electric power had not yet 

been incorporated into any specific NASA missions [40].   

Figure 1.21 shows one SP-100 concept with a nuclear reactor, thermoelectric generator, and 

electric propulsion on a spacecraft.  The generator’s cold-side temperature was 800 K, the heat rejection 

load was 2,200 kWt, and the radiator area was 106 m2 [11].  The high cold-side temperature allowed for 

a relatively small radiator (compare with JIMO’s large low-temperature radiator in Figure 1.28).  The 

radiator design utilized carbon fiber reinforced graphite composite fins that had an areal density of 

about 3 kg/m2 [38]. 

 

Figure 1.21: SP-100 power system on a spacecraft [39] 
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Another SP-100 study evaluated power system designs for lunar base applications.  Free-Piston 

Stirling engines were selected because of their high thermal-to electric efficiency, low-risk due to few 

moving parts, and a low temperature ratio (TH/TC) that allows for smaller radiators [39].  Figure 1.22 

gives the results from a trade study on this design.  These results show the system mass sensitivity to 

the net power output and hot-side temperature keeping thermal efficiency constant.  The variance 

between the two curves is due to differences in the radiator mass because operating at higher 

temperatures substantially reduces radiator mass.   

 

Figure 1.22: Power system mass sensitivity to Stirling engine inlet temperature (Thot) [39] 

Within the broadly-scoped SP-100 program, many different systems were considered and while 

no missions resulted directly from the effort, many of the technologies were used in later research.   

1.2.5.4 Advanced Radiator Concepts Project 

The Advanced Radiator Concepts (ARC) was a NASA project closely tied with the SP-100 program 

to develop improved, light-weight heat rejection systems for several power options including Free-

Piston Stirling engines and thermoelectric generators.  During this project many unconventional designs 

were evaluated.  Juhasz, et. al. presented a review of the radiator concepts developed for this project 
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describing over ten vastly different designs utilizing complex dynamic systems and untested mechanisms 

[38].  Several radical radiator designs included the liquid belt, liquid droplet, roll-out fin, rotating film, 

Curie point, and rotating bubble membrane among others [38].  Figure 1.23 through Figure 1.25 below 

show several of these concepts.   

 

Figure 1.23: Roll-out fin expandable radiator panel concept [38] 
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Figure 1.24: Moving belt radiator concept [38] 

 

 

Figure 1.25: Bubble membrane radiator concept [38] 
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One of the more viable designs from the ARC project was the carbon-carbon tube and fin design 

that was used in the SP-100 nuclear thermoelectric vehicle concept [51].  This radiator was designed for 

operational temperatures in the range of 600 to 875 K, consisted of metal heat pipes with potassium 

working fluid that directly interfaced with composite fins as shown in Figure 1.26.  Wrapping the 

composite material around the heat pipe facilitated good heat conduction to the fins and a low areal 

mass of 2.1 kg/m2 [27].   

 

Figure 1.26: Metal heat pipe with a wrapped carbon-carbon fin [41] 

This design was tested and matured to a moderate development stage.  Denham, et. al. 

conducted tests with these carbon-carbon composite fins at 600 and 850 K using various types of carbon 

fiber, heat pipes (stainless steel, titanium, and niobium), and fin attachment methods [41].  The carbon 

fibers had thermal conductivities ranging from 450-850 W/(m-K) during tests at 300 K.  The fins were 

attached to the heat pipes using a braze called Ticusil (a titanium-copper-silver alloy), which melts and 

creates an alloy bond between the two components.  The primary challenge with fin attachment was 

delamination of the composite caused by high stresses generated in cooling the sample from the braze 

metal melt temperature, and resulted from differences in the coefficients of thermal expansion of the 

braze and composite.  The combination of no near-term missions requiring high-temperature radiators 

and fabrication challenges halted further development of the carbon-carbon composite fins.   
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1.2.5.5 Jupiter Icy Moon Orbiter (JIMO) 

The JIMO mission was the first mission concept of the Prometheus Project, the first large-scale 

NEP design effort to enable outer solar system exploration [42].  The Prometheus Project ran from 2003 

to 2005 when its funding was cut in large part due to NASA’s shifting priorities toward manned, near-

Earth missions [42].  The NEP design included a 100 kWe Closed Brayton Cycle and either ion or Hall 

thrusters [26].  A block diagram of the JIMO spacecraft is given in Figure 1.28.  One of the major 

technical limitations of this concept was the size of the heat rejection system, as shown to scale in 

Figure 1.29.   
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Figure 1.27: NEP block diagram [27] 

 

Figure 1.28: Conceptual design for JIMO [42] 

The SP-100 and ISS radiators strongly influenced the JIMO heat rejection system design.  The 

JIMO heat rejection system operated in the range of 400-600 K and consisted of a pumped NaK heat 

transport loop and deployable radiator panels constructed of titanium-water heat pipes and carbon-

carbon composite facesheets bonded to the heat pipe using epoxies.  Epoxy bonding did not have the 

same delamination challenges as the braze joining methods used the high-temperature applications 

[27].  The radiator panel cross-section was similar to that in Figure 1.18-B.  A 25-ft truss supported the 



35 

panels and NaK loop.  The heat transport loop interfaced with the heat pipes in a simple rectangular 

heat exchanger as shown in Figure 1.29 [34].  The total radiator area was 170 m2, and the mass including 

the panels, heat transport loop plumbing and deployment mechanism was 854 kg, or 5 kg/m2.  The mass 

of the scissor deployment mechanism was estimated by taking 30% of the panel mass, which was the 

approximate fraction of the ISS system and assumed to be reasonable for similar applications.  The 

radiator made up approximately 30% of the power conversion system mass [27][42].   

 

Figure 1.29: Heat exchanger between the main heat transport loop (NaK) and the heat pipes embedded 
in the radiator panels [26] 

Higher operating temperatures were not utilized in the JIMO study because of the cost and risk 

associated with developing and using advanced materials such as refractory alloys.  Refractory metals 

are typically highly resistant to heat and wear, with melting temperatures above 2000°C.  Mason et. al. 

estimated a 55% reduction in radiator area by increasing the JIMO hot-side temperature by 300 K [27].  

This mass-saving potential may motivate future development of higher-temperature applications.   
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1.2.5.6 Fission Surface Power (FSP) 

Once JIMO was cancelled, space nuclear fission efforts were focused on surface power 

applications for lunar or Martian outposts.  The FSP project started in 2006 and most ongoing work is 

conducted at NASA’s Glenn Research Center (GRC).  One of the project objectives is to create affordable, 

low-risk designs, which have replaced minimizing mass and maximizing system performance as top 

priorities [20].  Nuclear electric power is recognized as a necessary technology for long-term outposts 

that cannot depend exclusively on solar energy due to long durations shadowed from the sun.  Since 

mass is less of a constraint for surface applications than on spacecraft, some power system components 

are different from JIMO’s including the use of heavier Free-Piston Stirling engines because they have 

fewer moving parts, so they are potentially more reliable than CBC’s [20].  Much of the JIMO radiator 

design, however, was used in the FSP project [26].  The FSP heat rejection system with its motor-driven 

scissor mechanism is shown in Figure 1.30.   

 

Figure 1.30: FSP radiator panels and deployment mechanism [20] 

Radiator development at GRC is focused on advanced heat pipes and composite fin 

construction.  The selected heat rejection design temperature is around 400 K, compatible with current 

low-power nuclear-electric conversion systems [20][43][44].  The radiator fins at GRC consist of an 
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epoxy matrix, carbon fiber composite facesheet bonded to a POCOFoam® (POCO) saddle that is bonded 

to the heat pipe.  Epoxy is used to bond each layer, and the POCO is used to transition between the 

curved geometry of the heat pipe and the flat facesheet and facilitate heat conduction.  POCO is a 

structural graphite foam with aligned graphitic ligaments within the walls and is used because it has a 

relatively high thermal conductivity of 379 W/(m-K) in the ligament orientation [45].  The facesheets are 

coated with a polyurethane paint with an emissivity of 0.89 [45].  Technology demonstration units of 

this radiator concept have been constructed and are currently undergoing tests.  Figure 1.31 shows the 

second generation radiator demonstration unit in position for testing in the GRC Vacuum Facility #6.  

 

Figure 1.31: Second generation Radiator Demonstration Unit (approx. 3 ft by 5 ft) in GRC Vacuum Facility 
#6 [45] 

1.2.5.7 Radiator Studies Summary 

Improving radiator fins has been an ongoing objective for NASA since the 1980’s alongside the 

development of heat transfer loops and heat pipes.  NASA’s design considerations for just the radiator 

include: specific heat rejection performance, reliability, technology readiness, life expectancy, system 

complexity, required area, panel configuration, life cycle cost, and micrometeoroid vulnerability [38].  
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Optimizing radiator designs with all of these criteria, some of which are difficult to quantify, can lead to 

many varied designs depending on the objectives are prioritized.  Yet over time, only several concepts 

have prevailed mostly due to simplicity and low development cost.  The simple and proven ‘fin and tube’ 

radiator design has remained standard with slight changes as improved heat transport mechanisms and 

fin materials have developed.  

As discussed previously, the heat transport mechanism has evolved from a fully pumped single-

phase system to a pumped single-phase main loop with 2-phase heat pipes.  The two basic types of fins 

that have been explored are metal and composite.  Metal fins were used in earlier designs until lighter-

weight composite materials were developed.  Recent fin studies have focused on only composites, all of 

which use high thermal conductivity carbon fiber and various matrix materials including graphite and 

polymers.   

Another main radiator design parameter is the operating temperature.  Many radiator studies 

have investigated lower temperature (500 K or less) applications including the ISS and JIMO.  There are 

no mature design concepts for high-temperature radiators because there have been few possible 

applications until recently.  Notional high-temperature applications include NEP with heat rejection in 

the range of 400-800 K, and Magnetohydrodynamic (MHD) and alkali metal Rankine power conversion 

systems with cold-side temperatures exceeding 1000 K [1].   

No existing high or low-temperature heat rejection system can meet NASA’s areal density target 

of 2-4 kg/m2.  Table 1.2 provides a basic comparison of radiator fin materials that have been considered 

with the addition of bare carbon fiber, which is the focus of this work.   
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Table 1.2: Comparison of Fin Materials  

Fin Material  
Melting Point 

(°C) 
Axial Thermal 

Conductivity (W/m-K) 
Density (kg/m3) 

Aluminum  660 237 2712 

Stainless Steel 1510 15 7500 

Molybdenum  2620 138 10188 

Carbon Fiber Composite 2000* 50-300** 1600-1980** 

Carbon-Polymer Composite <200 50-300** 1600-2000** 

Bare Carbon Fiber >2500 700-900** 1800-2200** 

* Typical Maximum Operating Temperature 
 ** Depends on the construction 

   
Figure 1.32 provides specific heat rejection data from three of the more mature radiator 

designs: JIMO Brayton system, SP-100 thermoelectric vehicle, and the SP-100 surface power Stirling 

system.  Specific heat rejection curves for various fin materials and temperatures are overlaid on the 

plot.  The specific heat rejection curves are shown in only the temperature ranges where that fin 

material can be used.  This demonstrates the superior properties and potential of using bare carbon 

fiber fins.  Figure 1.33 shows the same data on a log-log scale.  A triangle whose hypotenuse has a slope 

of four is overlaid on the plot to show that these lines follow the fourth power temperature dependence 

as given in Equation 1-2 
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Figure 1.32: Specific radiator heat rejection versus radiator temperature for different fin materials 

 

Figure 1.33: Log-log plot of Figure 1.32 showing the fourth power relationship between heat flux and 
surface temperature 
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Developing lightweight, high-temperature radiators is one of the major challenges explicitly 

stated in NASA’s 2010 “Space Power and Energy Storage Roadmap” [7].  A high-temperature, 

lightweight radiator could enable and initiate research in other technology areas that would not be 

possible otherwise.   

1.2.6 Thermal Radiation Overview 

Thermal radiation is the heat transfer mechanism by which energy leaves a system in the form 

of electromagnetic waves.  The heat flux by radiation from a surface is given by Equation 1-2, where q is 

the heat flux (J/s/m2), ε is the total hemispherical emissivity, σ is the Stephan-Boltzmann constant 

(5.67x10-8 W/m2/K4), T is the temperature of the surface (K), and Tenv is the temperature of the 

environment (K).  In space Tenv is approximately 4 K, so that term is often neglected.   

𝑞 = 𝜀𝜎  4   𝑒 𝑣
4                                                                                  (1-2) 

Total hemispherical emissivity is a surface property of a material given by the ratio of the total 

radiated energy in all wavelengths and all directions by a surface at a given temperature,     , to the 

same quantity emitted by an ideal black surface at the same temperature,      .  Equation 1-3 gives 

this relationship in terms of directional spectral emissivity (𝜀          ).  Equation 1-4 gives the total 

hemispherical emissivity in terms of hemispherical spectral emissivity (𝜀      ). 
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Where          is the spectral radiative intensity of a blackbody, which is by definition 

independent of direction,          is the blackbody spectral emissive power,   is the altitude angle, and 

  is the azimuthal angle of the surface element’s hemispherical envelope.  The cosine in Equation 1-3 is 
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derived from the directional dependence of a blackbody’s emissive power.  A blackbody is a diffuse 

emitter, which means that the intensity of radiation is uniform in all directions.  The emissive power, 

however, is not uniform in all directions because the projected area of the emitting surface element 

decreases with     , as given by Lambert’s Cosine Law in Equation 1-5 where            is the 

directional emissive power for a black surface.  Figure 1.34 shows emissive power as a function of the 

altitude angle,  .  The maximum radiative flux occurs normal to the surface, and zero flux occurs 

tangentially since the surface’s projected area goes to zero.   

            =             =                                          (1-5) 

 

Figure 1.34: The dependence of energy emitted from a diffuse surface on the altitude angle θ, as 
described by Lambert’s Cosine Law [46] 

In Equation 3 the projected area of the emitting surface must be integrated over the entire 

hemispherical envelope, which is the solid angle of the hemisphere.  A differential solid angle is given 

by:   =          .  Figure 1.35 is a schematic of the radiative flux from a surface element through a 

solid angle   .  Hence, the blackbody spectral emission from a surface point over the entire 

hemispherical envelope is given by Equation 1-6. 
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          =           ∫ ∫              
   

   

  

   
=                           (1-6) 

 

Figure 1.35: Energy flux through a solid angle    [47] 

The total emissive power from a given real surface element in the entire hemispherical envelope 

is given Equation 1-7. 

    = ∫ ∫ [∫                      
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                         (1-7) 

In 1900, Max Planck proposed a law that describes the spectral distribution of hemispherical 

emissive power in a vacuum for a blackbody at a given absolute temperature.  Planck’s Law, or “Planck’s 

Spectral Distribution of Emissive Power”, is given in Equation 1-8.  This was based on quantum theory 

and verified experimentally [68].   

        =          =
     

 

   𝑒       −  
                                                 (1-8) 

Where   is Planck’s constant ( =      0      0− 4    ),   is the Boltzmann constant 

( =     0  0   0−      ), and    is the speed of light in a vacuum (  = 0           

 0 4      ).  The wavelength at which the peak emissive power occurs,     , is given by “Wein’s 

Displacement Law” in Equation 1-9.  Figure 1.36 shows emissive power versus wavelength curves for 

different temperatures.  As temperature increases, the peak of the curve moves toward shorter 

wavelengths.   
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=                                                        (1-9) 

 

Figure 1.36: Hemispherical spectral emissive power of a blackbody at several temperatures, given by 
Planck’s Law 

Many engineering materials are idealized to have gray surfaces to simplify radiation calculations.  

Gray surfaces emit spectral radiation at a fixed fraction of the emitted blackbody spectral radiation for a 

given temperature.  Figure 1.37 shows the hemispherical spectral emissive power for a blackbody and a 

gray body with an emissivity of 0.6 at 900 K.   
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Figure 1.37: Hemispherical spectral emissive power versus wavelength for a blackbody and gray body at 
900 K 

In a multi-surface system, radiation exchange between elements will occur if they have a non-

zero projection onto one another.  In a multi-surface system, a full radiosity problem must be solved to 

calculate the net energy flux leaving a surface by emission or reflection.  Radiosity, J, is the rate at which 

radiant energy leaves a surface per unit area.  The radiosity from a diffuse-gray surface, i, surrounded by 

N surfaces is given by Equation 1-10, where H is the incident radiant flux.  The incident radiant flux is 

given by Equation 1-11, where    is the radiosity from another surface and    −  
 is the viewfactor from 

surface i to surface j.  To solve the full radiosity problem, Equation 1-11 must be written for all N surface 

elements in the enclosure and solved simultaneously for the N unknown   ’s. 

  = 𝜀 𝜎  
4     𝜀                                                              (1-10) 

  = ∑      −  

 
 −                                                                  (1-11)  

1.2.7 Thermal Properties  

At steady state, the two most important thermal properties of a radiator fin are the longitudinal 

thermal conductivity and total hemispherical emissivity.   
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1.2.7.1 Thermal Conductivity 

The fin axial thermal conductivity controls how quickly heat can be transferred in the direction 

normal to the heat pipe.  Energy can be transferred through a solid by either phonons or free electrons.  

In metals, free electrons transport heat as they move about the lattice colliding with nuclei, transferring 

thermal energy with each collision.  This is a fast solid-state heat transfer mechanism because electrons 

travel at high velocities.  Materials with high densities of free electrons have correlated thermal and 

electrical conductivities since free electrons act as thermal energy and charge carriers.  This behavior is 

described by the Wiedemann-Franz law that states that for a metal the ratio of thermal to electrical 

conductivity is proportional to the temperature as given in Equation 1-12.   

  =
 

 
                                                                       (1-12) 

Where L is the Lorenz Number (      0−    − ), κ is the thermal conductivity (     − ), 𝜎 is the 

electrical conductivity ( −  −  ), and T is the material’s temperature (K).   

Phonons are high frequency, low amplitude acoustic waves produced by vibrating atoms that 

travel through the solid lattice structure carrying vibrational thermal energy.  Heat conduction in most 

non-metals is dominated by this method of energy transfer due to the low density of free electrons.  

Typically, heat transfer by free electrons is much faster than phonon transfer because high velocity 

electrons carry energy as they move freely in the lattice, whereas phonons propagate by moving the 

whole lattice structure around the vibrating high energy atoms.  Both phonons and free electrons 

experience scattering due to interactions with lattice imperfections.  Phonons are much more sensitive 

to scattering, which is another reason why phonon heat transport is less effective than the free electron 

mechanism.    

Graphite and graphene are considered semimetals or zero-band-gap semiconductors because 

unlike semiconductors, they always have charge carriers (i.e., free electrons and holes) that can conduct, 

but unlike metals they do not have a large amount free electrons.  In most non-metals, heat transfer is 
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dominated by phonon transport, which is typically the slower transport mechanism.  In graphene layers, 

however, phonon transport is extremely fast due to the strong covalent bonds between the planar 

carbon atoms [49].  The stronger the chemical bonding, the faster phonons may travel.  In addition to 

strong bonds, phonon transport is enhanced with fewer defects and grain boundaries that scatter the 

energy.  Diamond is another good example of this phenomenon, with pure diamond exhibiting one of 

the highest known thermal conductivities at room temperature (2200 W/(m-K)) and is an electrical 

insulator.  Again, this is due to the extremely strong covalent bonding in the diamond crystal lattice, not 

due to free electron transport.   

A comparison of the thermal and electrical conductivities of several metals and Mitsubishi 

carbon fibers is shown in Figure 1.38.  This shows that the pitch-based carbon fibers (labeled “Dialead” 

in the Figure), have far superior thermal conductivity over the metals and the PAN-based carbon fibers, 

while having relatively high electrical resistance.   

 

Figure 1.38: Thermal Conductivity and Electrical Resistivity of Select Metals and Carbon Fiber Materials 
[50] 

Conventional methods for measuring thermal conductivity, like the guarded hot plate method 

(ASTM C177 Test Method), are often used for isotropic solids that can be easily sectioned into uniform 
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samples.  This would not be feasible for fibrous materials, as the uncertainty associated with the 

disordered fiber sample would be larger than the precision of test.  Therefore, another method 

specifically designed for fibers is used, the hot-wire method (ASTM C1113 Test Method), which 

measures the thermal conductivity of a single fiber [51].  This method was likely used to generate the 

fiber data in Figure 1.38.  None of the standard methods is easily adaptable to measuring the thermal 

conductivity of loose, bulk fiber material.  The development of a method to address this need is given in 

Chapter 4.   

It should be noted that the stiffness of the carbon fibers is positively correlated with thermal 

conductivity because they are both affected by the fiber microstructure, or degree of graphitization.  As 

the graphene sheets become more aligned along the fiber axis, the fiber becomes stiffer.  This results in 

increased critical bend radius for high thermal conductivity pitch-derived carbon fibers, as compared low 

thermal conductivity PAN-derived fibers.  

1.2.7.2 Emissivity 

All matter at temperatures above absolute zero emits radiation.  Thermal energy causes atoms 

and molecules to move in particular patterns depending on the composition and microstructure of the 

material and amount of energy.  Interacting electrons and protons cause charge-acceleration and 

dipole-oscillations, which generate electromagnetic waves.  Further specifics on the mechanisms of 

producing electromagnetic radiation will not be discussed here.  Besides the electromagnetic wave 

generating mechanisms, the geometry of the surface on a micro-scale also affects the effective surface 

emissivity.  Rougher surfaces provide more surface area on a micro-scale from which to radiate, and 

thus tend to have higher emissivities than polished surfaces.   
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Emissivity measurements of graphite range from about 0.6 to 0.95 depending on the surface 

preparation, so it is expected that the emissivity of carbon fiber is also in that range [48][52][53].  

Chapter 4 describes the emissivity measurement technique used in this work. 

1.3 Organization of this Text 

The following chapters discuss the research conducted on the design, fabrication and testing of 

carbon fiber radiator fins for advanced space power systems.  Chapter 2 presents a micro-scale study of 

geometric effects on the effective emissivity of an array of carbon fibers.  Chapters 3 and 4 present 

results from bench-scale experimental studies of the radiator concept.  Chapter 5 discusses full-scale 

heat rejection system considerations.  Finally, conclusions and future work are presented in Chapters 6 

and 7. 
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CHAPTER 2 

2 PREDICTING THE EFFECTIVE EMISSIVITY OF A CARBON FIBER ARRAY USING A MONTE CARLO RAY 
TRACING MODEL 

2.1 Introduction 

As discussed in Chapter 1, designing innovative radiators is critical to advancing NEP technology 

and future deep space travel.  The purpose of radiating fins is to quickly conduct the power conversion 

engine’s waste heat over a large radiating area with a maximum view factor to space.  Common fin 

materials such as aluminum and carbon fiber composites typically do not meet NASA’s areal density 

goals for deep-space vehicles [10].  Thus, a bare, pitch-based, carbon fiber weave radiator fin is 

proposed because of the fiber’s high thermal conductivity, 800 W/m-K (Mitsubishi product number 

K13D2U), low density, and inherently high emissivity.  Unlike composites, the bare carbon fiber fin 

concept has no matrix.  The matrix material adds a significant mass penalty and thermal resistance along 

the heat transport path to space.  Without the matrix, the free fiber weave radiates directly to space, 

which is a novel heat transfer problem.   

Zhu (2009) has shown experimentally that optically thick yet porous carbon fiber felt is more 

emissive than a smoother deposited carbon surface [52].  This result supports the hypothesis that a 

lower volume fraction medium that is optically thick can provide a higher effective emissivity over flat 

fins due to the added surface area free to radiate to space.  The geometry of the fiber weave (i.e., fiber 

packing density and weave thickness) will influence the effective emissivity of the weave.  Within the 

manufacturing limits, the weave design should maximize the effective emissivity.  Thus, predicting the 

dependencies of the weave design parameters on the effective emissivity is of great value.   

In many radiative heat transfer problems, the objective is to determine the radiative heat flux 

through a certain plane, which requires defining or solving for the emitting surface temperature(s).  In 

this study, radiative properties (e.g., effective emissivity) instead of heat flux are estimated.  By 
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predicting the radiative behavior of an array of carbon fibers, the properties can be used in radiator-fin-

level finite element models where the fins are idealized as flat surfaces.  The effective emissivity of the 

fiber weave accounts for the added fiber surface area exposed to space directly or indirectly through 

scattering so that the extra emissive capacity of the fins is not lost when modeling them as flat surfaces. 

Fibrous media is often characterized as pseudo-continuum, with highly complex integro-

differential radiative heat transfer equations that have only numerical solutions [56][57].  As radiation 

travels through a fibrous medium, scattering occurs as it reflects from fiber surfaces.  Due to scattering 

effects, the radiation intensity at a given point cannot be determined by local properties and their 

derivatives, as with most other transport relations (e.g., Fourier’s law).  Instead, the intensity of all 

surfaces in the domain depend on the intensity at every other surface, which makes problems of 

radiative heat transfer through participating media difficult to solve using standard numerical 

integration methods.   

Solution approximations of radiative heat transfer problems through fibrous media that emit, 

absorb, and scatter radiation have been obtained using Monte Carlo Ray Tracing (MCRT), analytical 

models developed for participating media, or through curve-fitting using empirical data [57].  Analytical 

approaches use electromagnetic theory to describe radiation scattering behavior within specific types of 

participating media including Rayleigh and Mie Scattering theories, which assume spherical particles 

that are generally small compared with the wavelength of the incident radiation.  Since these 

assumptions are not appropriate for the anisotropic, larger-diameter fibers in the current work, and 

since empirical data is unavailable for this material, a MCRT method was selected.   

Monte Carlo Ray Tracing is a numerical method that combines ray optics with stochastic 

methods for generating ray emission locations and directions.  In general, ray tracing methods generate 

“rays” (e.g., single or bundles of photons) from all emitting surfaces or volumes in the model domain 

and follow the rays as they travel through the domain.  A ray may get absorbed by media, reflected out, 
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or transmitted through the domain.  Monte Carlo (MC) numerical methods use stochastic techniques for 

solving problems that are generally too complicated or expensive to solve analytically or by direct 

numerical integration [48].  As with any well-posed stochastic method, the results converge to the 

solution with increasing trials, or rays in this case.  In MCRT simulations, ray emission surface locations 

and select model parameters are chosen randomly with the appropriate probability density functions.  

Monte Carlo techniques are used in this model to generate the random location and direction of 

emitted rays along the source boundary, and random ray reflection directions when rays reflect off fiber 

surfaces.  More specifics are provided later in this Chapter.   

Studies in the literature have used MCRT techniques successfully to predict the effective 

emissivity of cavities and other self-viewing bodies [59] – [66].  Other studies on radiative heat transfer 

through fiber insulation have employed MCRT methods to determine the surface-to-surface view factors 

between the heat source, heat sink and fibers [62][67].  Surface-to-surface view factors are useful for 

solving the full radiosity problem, but since the goal of this work is to predict the effective emissivity of 

the surface plane of the fin from the entire collection of fibers beneath, a slightly different method 

called reverse MCRT is used.  Utilizing the principle of reciprocity in radiative heat transfer, reverse 

MCRT methods can be used to simplify the problem [56][68][69].  The basic principle of reciprocity uses 

the assumption that the effective total absorptivity of an isothermal cavity will be equal to the effective 

total emissivity due to Kirchhoff’s Law.  In the reverse method, rays are emitted from the target surface 

and traced into the domain.  This is especially useful when the emitting surfaces have complex 

geometries, are part of a porous medium, or make up the boundaries of a cavity.  Since the high-

conductivity fibers are heated primarily by axial conduction, it is reasonable to assume they are nearly 

isothermal at a given fin cross-section.  According to Howell (1998), reverse MCRT techniques are 

employed to reduce variance in slow-converging problems [68].  Several applications of this method 

appear in the literature, where the target surface is much smaller or simpler than the emitting 
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surface(s), including effective emissivity predictions of blackbody cavities and scattering packed-beds 

[61][65][66].    

Unique to this work, the effective absorption, reflection, and transmission rates of the fiber 

media are distinguished.  Separating these effects provides insights into how the effective radiative 

properties vary with fiber volume fraction and fiber surface emissivity.  These generalized radiative 

results are independent of temperature and thus can be used to inform the design of fiber media for 

various thermal applications.   

2.2 Reverse Monte Carlo Ray Tracing Model 

The effective emissivity of an array of carbon fibers was estimated using reverse MCRT methods.  

Instead of emitting rays from each fiber, rays were incident upon the fiber array and traced into the 

model domain.  The effective absorptivity, which was taken as equal to the effective emissivity, was 

calculated by taking the ratio of the number of rays absorbed by the array to the total number of 

incident rays.  The model was built and executed in Matlab.   

2.3 Assumptions and Model Development 

The model development and assumptions pertaining to the fiber configuration in the model 

domain, fiber properties, and radiation physics (i.e., scattering behavior) are presented below. 

2.3.1 Model Domain 

The fibers were assumed to be long cylinders with uniform diameters, aligned parallel to one 

another, and dispersed uniformly in a hexagonal array.  Figure 2.1 is a schematic of the model domain, 

which was defined such that the periodic hexagonal array was fully represented.  Symmetry side 

boundaries were set by intersecting two adjacent columns of fibers.  Using symmetry conditions to 

minimize the domain width reduces computational cost.  Reducing the array to a 2-D domain is valid for 
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predicting the effective emissivity because the z-direction component does not affect the penetration 

depth.  The counting planes shown in Figure 2.1 are used track the fraction of active rays versus depth. 

 

Figure 2.1: Model domain for a four-fiber thick array 

Boundary conditions were imposed on the top boundary, bottom boundary, fiber surfaces, and 

symmetry side walls.  The top surface was the boundary from which the diffuse incident radiation was 

introduced to the domain.  Rays that intersected the top boundary after a reflection escaped out of the 

fiber array and were not followed further.  Likewise, rays that intersected the bottom boundary were 

transmitted and not followed further.  When a ray collided with a fiber, the energy was absorbed or 

reflected.  As demonstrated in Figure 2.2, symmetry conditions were valid because a ray ultimately 

collides with a fiber at the same depth within the domain as it would have if it had continued its 

trajectory through the array.    
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Figure 2.2: Schematic of the fiber array showing how rays reflected from symmetry side walls reach a 
fiber at the same depth (yellow ray) within the domain as they would have if the domain contained a 

larger array (red ray) 

The volume fraction of fibers in three-dimensional space is the same as the area fraction in two 

dimensions because the array cross section was assumed to be constant along the axis of the fibers.  The 

maximum fiber packing density is achieved when there is no space between adjacent fibers.  The 

maximum fiber packing density, or volume fraction, is  =
 

 
 √  0  0  .   

2.3.2 Fiber Emissivity and Scattering Behavior 

The fibers were assumed to be opaque, with gray-diffuse surfaces.  Depending on surface 

preparation and purity, the emissivity of graphitic materials is typically in the range of 0.7-0.9.  It has 

been shown experimentally that similar materials (i.e., graphite and carbon-carbon composites), have 

relatively flat spectral responses for a broad range of temperatures [52][70].  The spectral emissivity of a 

sample of the carbon fiber used for this work was measured in Chapter 4.  The emissivity was nearly 

uniform over a wide range of wavelengths.  Thus, the spectral emissivity was assumed to be 

independent of wavelength and temperature, and equal to the total hemispherical emissivity.   
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A dispersed fiber array can be described as porous, participating, or scattering media.  

Participating media may scatter, absorb, and emit radiation; common examples include clouds, smoke 

and, fog.  Optically-thin, dispersed fiber arrays could be categorized as participating media, however, the 

individual fibers are typically larger than the scattering particles in clouds or smoke.  This makes a fiber 

array act less like a continuous medium than common participating media, so some of the characteristic 

behaviors may be described by slightly different models (i.e., Beer’s Law for predicting the absorption 

coefficient).  Densely-packed, optically-thick, fiber arrays are more aptly described as porous media, 

such as a packed bed or solid foam.  When incident radiation penetrates the exterior envelope of a 

porous medium and strikes an interior surface, it may undergo multiple scattering events before getting 

fully absorbed or reflected out of the envelope.  This characteristic, as shown in Section 2.4, increases 

the effective absorptivity, and thus emissivity, of a given fin surface envelope.   

Scattering is the deflection of a photon from its original path by dispersed media by means of 

reflection, refraction, or diffraction.  Scattering is divided into the subcategories independent and 

dependent scattering.  Independent scattering, which assumes no near-field effects, is assumed for this 

study.  Ray tracing uses the laws of geometrical optics, which neglect diffraction and near-field effects.  

It is common practice to assume independent scattering when    > 0   or 0.5, where c is the average 

pore size [72][73][74][75].  However, low porosity media with a small particle size parameter 

( =
  

 
  , where   is particle size parameter and   is the fiber diameter) has been shown to scatter 

dependently [76].  For carbon fibers with diameters in the range of 10-20 μm, dependent scattering of 

large wavelength radiation ( >  0 μm) may occur at high fiber volume fractions, yet in the absence of 

data specific to this condition and the limited ability to address this phenomenon with ray tracing, it is 

neglected here.  Even when packed densely, the fibers are large enough that most of the diffracted 

photons will remain nearly parallel to the original direction [6], thus diffraction is also neglected.  
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Independent scattering without diffraction is increasingly applicable with increasing fiber diameter and 

decreasing average wavelength.   

Since carbon fibers are not polished and have a dull luster, it was assumed that reflections from 

fiber surfaces are diffuse.  There are two common ways to simulate ray reflections and ray attenuation 

in ray tracing models.  Rays consist of either a single photon or a bundle of photons.  In the single-

photon case, when a ray strikes a participating surface the entire energy of the ray is either absorbed or 

reflected.  The probability of a ray absorbing when it strikes a surface is given by the surface total 

absorptivity,     =  , thus the probability of a reflection is   𝑒 =       =     .  For multi-

photon rays, at each fiber interaction the ray intensity is reduced by a fraction, given by the fiber total 

absorptivity, and the remaining energy is reflected.  In general, simulations using multi-photon rays 

should converge faster than single-photon rays.  This study investigates both ray structures.   

The reflection angles are selected randomly with the probability density function characteristic 

of a Lambertian surface.  The probability density function for the zenith angle,  , is derived from 

Lambert’s Cosine Law, and the azimuthal angle,  , is uniform over 2π.  Yang et. al. shows the derivation 

of the zenith and azimuthal angles as functions of uniform random numbers,    and   , with values 

between 0 and 1, given in Equations 2-1 and 2-2 [77]. 

     =    −  √                           (2-1) 

     =                     (2-2) 

To transform this into a 2-D probability density function, the ray direction given in spherical 

coordinates (   ) is converted to polar coordinates (  ) by projecting it onto the x-y plane.  The two 

angles in the spherical domain collapse to one angle in the 2-D domain, as shown in Figure 2.3.  As 

mentioned previously, the z-component of the ray does not affect the ray penetration depth as defined 

here.  Equation 2-3 gives the 2-D probability density function.   
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         = [
   − (

√ −  

√             
)               > 0

     − (
√ −  

√             
)                0

]              (2-3) 

This ray probability density function (PDF) is used to generate the angles of the diffuse incident 

radiation and reflections.  Figure 2.4 demonstrates that the resulting polar angle,   , PDF for the 

incident radiation follows Lambert’s Cosine Law which predicts the maximum emission in the direction 

normal to the surface and zero emission tangent to the surface. 
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Figure 2.3: Angles of hemispherical radiative emission from a boundary element, dA, in 3-D (left), and 
the transformation into 2-D (right) 

 

Figure 2.4: Probability density function for   , demonstrated using 100,000 rays 

2.3.3 Methods Verification and Validation 

Characteristic of Monte Carlo simulations, the results should converge to the solution with 

increasing number of trials.  To validate the diffuse radiation PDF, used for ray emission and reflection, 

as well as the 2-D simplification, the MCRT algorithm was used to solve for the known view factor 

between two infinitely long cylinders with the same diameter, as shown in Figure 2.5.  Equation 2-4 is 
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the known view factor relation for this arrangement.  Figure 2.6 shows that the simulation converges to 

within 2% of the analytical solution in about 50,000 rays.  This confirms that the 2-D simplifications to 

the MCRT model preserve the PDF of directions of rays as given in 3-D.   

  − =   − =
 

 (√  −    n  (
 

 
)− )

       where:    =   
 

  
                (2-4) 
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Figure 2.5: Configuration of two infinitely long cylinders with uniform radii, used for the view factor 
validation 

 

Figure 2.6: Percent error between the analytical and MCRT view factors versus number of trials (rays) in 
the simulation 

 
To verify the number of rays required for solution convergence, convergence at multiple design 

points was tested.  Figure 2.7 is a convergence plot for the effective emissivity for a 0.5 mm thick fiber 

array with a volume fraction of 0.2267 and individual fiber emissivity of 0.8 for multi- and single-photon 
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rays.  After 50,000 multi-photon rays, the effective emissivity converged to approximately 0.883.  The 

single-photon rays converge to 0.883 after approximately 100,000 rays.   

 

Figure 2.7: Convergence of effective emissivity with increasing number of multi-and single-photon rays 
for an array thickness of 0.5 mm, fiber emissivity of 0.8, and 50,000 rays 

To validate the effective emissivity results, these results were compared with other published 

results and tested limiting cases.  Two limiting cases that were evaluated include the maximum volume 

fraction condition and a very sparsely packed fiber array.  As the fiber volume fraction approaches 1, the 

scattering effects diminish and the effective emissivity should tend toward the fiber surface emissivity.  

Conversely, when fibers are spaced very far apart, the array becomes transparent and the effective 

emissivity tends toward zero as very few fiber-ray interactions occur.  Figure 2.8 shows agreement with 

both limits.   



63 

  

Figure 2.8: Effective emissivity versus fiber volume fraction for a 0.5 mm thick fiber array with fiber 
surface emissivity of 0.8, using multi-photon-rays 

Further validation was achieved by demonstrating agreement with Arambakam’s (2011) results 

on transmittance versus fiber volume fraction for opaque, uniformly-spaced scattering fibers [67].  

Arambakam evaluated the effects of microstructural parameters (i.e., fiber diameter, emissivity and 

volume fraction) on the transmittance of incident radiation through a fiber array using a similar MCRT 

method for the purpose of predicting the temperature gradient across a slice of fibrous insulation.  

There were a few differences in the model construction and material properties, including that the 

fibers were arranged in a rectangular configuration, not close-packed, and the fibers reflected radiation 

specularly instead of diffusely.  Figure 2.9 shows graphical results from Arambakam for the 

transmittance versus depth for various volume fractions and fiber emissivities.  Figure 2.9 shows results 

from this model at two fiber absorptivities.  These show good agreement for high fiber absorptivities.  

For high absorptivities, the differences in reflection behavior are less pronounced because fewer fiber 

interactions are required for total ray absorption. For low fiber absorptivities around 0.1 the results 

differed by a factor of approximately 2, which demonstrates how the significance of reflection angles 

increases with the average number of fiber interactions.  
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Figure 2.9: Influence of fiber absorptivity and volume fraction on energy transmittance from 
Arambakam [67] (left) and this work (right) for a 12-fiber-thick array   

After the work of Arambakam [67], open questions remained about the effects of fiber volume 

fraction, fiber emissivity, array thickness, and ray type on the array’s effective emissivity.  These points 

are addressed in the new work presented below.   

2.4 Results and Discussion 

There are several ways to present the model results including visualized ray paths, the effective 

emissivity dependence on fiber volume fraction and fiber emissivity, and the intensity attenuation 

dependence on depth.  Ray path plots provide a quick verification that the model is functioning 

properly.  This demonstrates how each ray has a unique path due to the random path parameters.  

Figure 2.10 shows the ray path results for 5 single-photon rays in a model with a fiber volume fraction of 

0.2.  Various rays demonstrate the diffuse reflection off of fibers, specular reflection off of symmetry 

boundaries, and ray absorption at fiber surfaces.   
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Figure 2.10: Five single-photon ray paths in a simulation with a fiber volume fraction of 0.2 and an array 
thickness of 0.195 mm 

To determine the dependence of the array’s effective emissivity on the fiber volume fraction 

and fiber surface emissivity, a 0.5 mm thick array was used with different fiber densities and a sufficient 

number of rays were used to achieve solution convergence.  The array fiber volume fraction ranges from 

0.0011 to 0.9069, which contain 2 and 38 fibers respectively in the domain.  The 0.9069 volume fraction 

was obtained when the fibers touch, thus was the maximum achievable volume fraction.  Figure 2.11 

gives the results of the total fraction of incident energy absorbed (i.e., effective emissivity), transmitted, 

and reflected versus fiber volume fraction for a fiber surface emissivity of 0.8, an array thickness of 0.5 

mm, and 50,000 multi-photon rays per simulation.   
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Figure 2.11: Fraction of total incident energy absorbed, reflected and transmitted versus fiber volume 
fraction for an array thickness of 0.5 mm, 50,000 multi-photon rays, and a fiber emissivity of 0.8 

As shown in Figure 2.11, for very small volume fractions of less than about 0.01, the rate of 

transmission was dominant since the array was optically thin.  As the fiber density increased, the 

transmittance decreased dramatically while the reflectivity increased slowly because more incident rays 

reflected out of the domain from the top rows of fiber.  The transmittance dropped below 0.10 and 0.01 

for volume fractions above about 0.05 and 0.15 respectively.  Volume fractions above 0.15 for this 0.5 

mm array were considered optically thick.  The maximum effective emissivity occurred at a fiber volume 

fraction of about 0.16, which is due to a rapid increase in optical thickness as the area of the projected 

fibers onto the incident ray entrance plane approaches 100% of the plane.  For optically thick arrays, the 

effective emissivity of the array was greater than the fiber surface emissivity due to multiple scattering 

events allowing for greater total emission to space.  The range of volume fractions that yield optically 

thin conditions can be reduced by thickening the array, however thicker arrays will not significantly 
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affect the results for volume fractions above 0.15.  As the array thickness decreases, the maximum 

effective emissivity will occur at higher volume fractions that optimally balance transmission and 

reflection, as the 0.16 volume fraction does for the 0.5 mm thick array.   

Mitsubishi K13D2U carbon fiber tows are approximately 2 mm wide and 0.5 mm thick and 

contain 2000, 11 μm diameter fibers, which yields a volume fraction of about 0.19.  Since the fiber 

volume fraction of the as-received fiber tows is very close to the predicted optimum volume fraction, 

the Mitsubishi fiber tows have a near-optimal packing density for maximizing the effective emissivity.   

Figure 2.12 shows the transmittance and effective emissivity as functions of fiber volume 

fraction and number of fiber rows (i.e., array thickness).  Transmittance decreased monotonically with 

both volume fraction and fiber rows as the number of fibers a ray may encounter decreases.  Effective 

emissivity increased monotonically with number of fiber rows, but varied non-monotonically with fiber 

volume fraction.   

 

Figure 2.12: Surface plots of transmittance (left) and effective emissivity (right) versus fiber volume 
fraction and the number of fiber rows for simulations with fiber emissivity of 0.8 

To understand why the peak of the effective emissivity curve falls near a fiber volume fraction of 

0.16, a validation exercise was conducted using normal, collimated incident radiation.  By removing the 

variability in the angle of incidence, a set fraction of the incident rays will be directly transmitted for 
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each volume fraction.  As Figure 2.13 demonstrates, a definite peak in absorptivity occured at exactly 

the volume fraction (0.2267) associated with the critical fiber spacing where the fibers start overlapping 

as viewed from above.  This volume fraction optimizes the balance between minimizing transmittance, 

achieved by higher volume fractions, and minimizing total reflectance, achieved by lower volume 

fractions.   

 

Figure 2.13: Fiber volume fraction versus total fraction of absorbed, reflected or transmitted energy for 
a 0.5 mm thick fiber mat, and fiber emissivity of 0.8 

In terms of incident radiation normal to the array, having a zero degree angle of incidence, every 

other angle of incidence will have a unique critical spacing value for fiber overlap that allows for direct 

transmission.  In other words, normal incident radiation has a single critical fiber spacing value, while 

diffuse radiation does not.  Thus, for diffuse incident radiation the effective emissivity curve has a less 

defined peak because of the averaging effect of the critical spacing value over all incident angles.   
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Next, the effects of fiber surface emissivity are discussed.  The total fraction of energy absorbed 

increased with fiber surface emissivity since each time a ray collided with a fiber, more of its energy was 

absorbed.  This was demonstrated by the results shown in Figure 2.14, which gives the effective 

emissivity versus fiber volume fraction for fiber surface emissivities of 0.6, 0.7, 0.8, and 0.9 for a 0.5 mm 

thick array, and 50,000 multi-photon rays per simulation.   

 

Figure 2.14: Effective emissivity versus fiber volume fraction for fiber surface emissivities of 0.6, 0.7, 0.8, 
and 0.9 for a 0.5 mm thick array, and 50,000 multi-photon rays per simulation. 

The effective emissivity was greater than the fiber surface emissivity for volume fractions above 

about 0.05.  The maximum effective emissivity was generally greater than the fiber emissivity by slightly 

less than half of the difference between one and the fiber emissivity, as shown in Figure 2.15.  At 

volume fractions higher than about 0.16, where the maximum occurs, the effective emissivity curves 

decreased again approaching the fiber surface emissivity.  The curves diverged slightly as reflectivity 

effects became increasingly significant.  Figure 2.16 gives the reflectivity versus fiber volume fraction for 
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the same set of simulations, which shows that the lower the fiber emissivity, the greater the slope of the 

reflectivity curve.  For lower fiber emissivities, more energy was reflected after each fiber interaction, 

which makes the reflectivity more sensitive to volume fraction for the upper range of volume fractions.  

For optically thick arrays, the added benefit of internal scattering, permitted by smaller volume 

fractions, was more significant for lower fiber emissivities.   This was because direct reflection out of the 

array after one fiber hit resulted in a significant loss of energy; however if the ray had hit two or more 

fibers as it scattered in the array, most of the energy would have been absorbed.  In the upper limit of 

fiber surface emissivity of 1.0 (i.e., reflectivity=0), the peak of the effective emissivity curve, at the value 

of 1.0, occurred at the volume fraction at which transmission is zero and remains at 1.0 for all greater 

volume fractions.  Finally, Figure 2.17 shows that the transmittance versus volume fraction was nearly 

identical for all fiber emissivities since most of the transmitted rays were due to direct transmission (i.e., 

geometrical factors) versus transmission due to reflection from a fiber.   

 

Figure 2.15: Maximum fiber array effective emissivity versus fiber surface emissivity for an array 
thickness of 0.5 mm 
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Figure 2.16: Effective reflectivity versus fiber volume fraction for fiber surface emissivities of 0.6, 0.7, 
0.8, and 0.9 
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Figure 2.17: Effective transmittance versus fiber volume fraction for fiber surface emissivities of 0.6, 0.7, 
0.8, and 0.9 

Next, results from different ray types are presented.  As long as the solution converges, the 

effect of ray type is negligible.  Figure 2.18 gives results for simulations with single- and multi-photon 

rays for an array thickness of 0.5 mm and fiber emissivity of 0.8.  As before, 50,000 rays were used for 

the multi-photon rays, but 100,000 single-photon rays were used since single-photon ray simulations 

converge slower.  The percent error between the absorptivity values from the two ray types was less 

than 0.05% for all volume fractions.  Therefore, these ray types can be used interchangeably.   
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Figure 2.18: A comparison of absorptivity, transmittance, and reflectivity versus fiber volume fraction for 
single-photon and multi-photon rays, for a fiber emissivity of 0.8 

One benefit of single-photon rays is that they allow for simple attenuation monitoring.  The 

attenuation versus array depth can be determined by recording the depth at which each absorbed 

photon is absorbed.  Figure 2.19 shows the percent of incident energy absorbed versus array depth for a 

wide range of fiber volume fractions.  The stepped nature of these curves is due to the fact that 

radiation was absorbed only at depths containing fibers.  It was clear at the lower volume fractions how 

many fibers were in the array by counting the steps in the attenuation curve.  As the fiber density 

increases, the steps became less pronounced.  For optically thick arrays, the attenuation curve reached 

100% before the bottom boundary of the array. 
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Figure 2.19: Percent of incident energy absorbed versus depth into array for a range of fiber volume 
fractions (array thickness=0.5 mm, fiber emissivity=0.8, 100,000 rays) 

2.5 Conclusions 

This study confirmed that as long as a carbon fiber weave is optically thick, the porosity in the 

weave improves the effective emissivity.  The significance of fiber volume fraction increased with 

decreasing fiber surface emissivity.  The effective emissivity was greater than the fiber surface emissivity 

for volume fractions above about 0.05.  The maximum effective emissivity was generally greater than 

the fiber emissivity by slightly less than half of the difference between one and the fiber emissivity.  

Volume fractions above the point at which the maximum effective emissivity occurs, 0.16 for 0.5 mm 

thick arrays, the effective emissivity tended toward the fiber surface emissivity.  However, even at the 

maximum fiber packing density the effective emissivity was greater than the fiber emissivity.   
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CHAPTER 3 

3 DESIGN AND FABRICATION OF HIGH THERMAL CONDUCTIVITY CARBON FIBER RADIATOR TEST 
ARTICLES 

3.1 Introduction 

This chapter describes the work done to design and build novel carbon-fiber-heat-pipe radiator 

test articles, which are used to test the feasibility of the proposed concept.  The test article design 

involves identifying a sub-scale section of the radiator that sufficiently represents the important 

characteristics of a full-scale radiator.  Since the ultimate goal of this project is to develop a radiator that 

meets NASA’s areal density targets, the test articles are designed with that goal in mind by optimizing 

the dimensions to maximize specific power (kW/kg).  Test article fabrication involved much 

experimental work on developing best practices for building the carbon fiber fin and attaching the fin to 

a heat pipe.  Protocols and recommendations were developed for these fabrication steps.   

This chapter consists of four main sections.  The first section describes the basic design of the 

test article.  The following three sections detail the more focused design and fabrication work on the fin, 

fin and heat pipe joint, and heat pipe.   

3.2 Test Article Design 

The test articles were designed to be as small as possible while demonstrating the key physics of 

the system.  Based on previous studies [20][26][27][28], a full-scale radiator for NEP will require 

hundreds of parallel heat pipes with fin material spanning the distance between pipes as shown 

schematically in Figure 3.1.  To capture the primary building units of the radiator, the test article was 

designed to include a small section of a heat pipe with a fin that is half of the distance between heat 

pipes in length, with the following considerations.  It was estimated that a 3-inch-long heat pipe section 

with a fin would be sufficient to eliminate significant thermal edge effects in the fin.  Using half of a fin 

uses the natural symmetry boundary to reduce redundancy and will not affect the heat rejection 
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performance.  There is no heat flux at the symmetry line in the full-scale model.  The only heat flux from 

the free edge of the test article (i.e., the cut ends of the fibers) is by radiation, which is negligible since 

the radiating surface area is extremely small relative to that of the front side of the fin.  Lastly, since the 

radiator panels in the full-scale system are expected to be entirely co-planar, fins will have a view factor 

to space approaching unity.  This can be approximated by testing the articles in a black, isothermal 

vacuum chamber, ideally with a liquid nitrogen cold wall that can maintain the chamber wall 

temperature as low as to 77 K.   

 

Figure 3.1: Schematic of full-scale radiator section 

The first test article design consisted of a 3-inch-long simulated heat pipe and a carbon fiber 

mat, as shown in Figure 3.2.  The initial fin thickness and length were selected by running a parameter 

sweep in the numerical model described below over the two dimensions and finding the combination 

that maximized the specific heat rejection (W/kg) of the heat pipe and fin assembly.  Matlab was used to 

execute the parameter sweep, calling the finite element software Comsol Multiphysics (Comsol) to 

calculate the specific heat rejection for each parameter set.   
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Figure 3.2: Schematic of radiator fin test article 

The heat rejection was calculated using a 2 dimensional heat transfer model of the fin cross-

section shown in Figure 3.3 with the governing equation and boundary conditions given in 3-1 through 

3-5.  The heat pipe temperature at the fin root,   , is assumed to be 600°C, which is a reasonable target 

heat rejection temperature of the high-power NEP systems.  This model neglects variations in the z-

direction (along the heat pipe) as the heat pipe is assumed to be isothermal.  Radiation between the 

heat pipe and fin was considered negligible in this model for simplicity.  Using more sophisticated 

models in Chapter 5 showed that adding the heat pipe radiation changes the power rejected by no more 

than 10%.  Even with these simplifications, the problem cannot be solved analytically.  Comsol was used 

to solve for the fin surface temperature profile.  The total radiated power per unit length of heat pipe 

was determined by integrating Equation 3-5 over the fin surface, as given in Equation 3-6.  In these 

equations,    and    are the fin length and thickness as shown in Figure 3-3, and     is the length of the 

heat pipe normal to the page.  When modeling a carbon fiber fin with a finite percentage of void space, 

   is taken as the effective thickness when the fiber volume fraction is 1.   
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Figure 3.3: 2-D fin heat transfer problem solved in Comsol 
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Dividing the power rejected by the total mass of the fin and heat pipe gives the specific heat 

rejection (W/kg).  The assumed heat pipe for this calculation was a 0.75-inch diameter Inconel shell with 

sodium working fluid.  The results from the fin parametric study are given in Figure 3.4.  The maximum 

specific heat rejection occurs near the point   =   cm,    = 0   mm.  The radiator test articles were 

built with these approximate dimensions. 
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Figure 3.4: Specific heat rejection for various fin lengths and thicknesses given a 600°C heat pipe, fiber 
emissivity of 0.85, and fiber thermal conductivity of 800 W/m-K 

Figure 3.5 shows the trends of optimum fin thickness and length versus heat pipe temperature.  

This may be of interest during the design of a full-scale heat rejection system, since the heat pipes would 

not all operate at the same temperature.  For example, the coolant temperature decreases as it 

dissipates energy to the radiator, so the heat pipes near the radiator inlet would be much hotter than 

those near the outlet.  As part of a system-level design study, the heat pipe spacing could be varied with 

the decrease in coolant temperature to minimize the radiator mass.  For such a design, the trends 

shown in Figure 3.5 are useful.  Figure 3.6 shows the heat rejection per unit length of heat pipe versus 

heat pipe temperature for fins of the optimal dimensions given in Figure 3.5.   
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Figure 3.5: Carbon fiber fin length and thickness dimensions that maximize specific heat rejection of the 
fin and heat pipe versus heat pipe temperature.  Length decreases with temperature because fin 

radiation is dominated by the hottest section.  Thickness increases because the radiative flux in each 
differential area of fin is greater with temperature, thus more heat must be supplied by conduction. 

 

Figure 3.6: Heat rejected per unit length of heat pipe for fins with the optimal dimensions shown in 
Figure 3.5 versus heat pipe temperature.  This trend shows a power law relationship slightly less than T4 

because the fins are not isothermal and the fin dimensions vary with temperature. 

After establishing the target test article dimensions, experimental fabrication studies were 

conducted.   
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3.3 Fabrication of Carbon Fiber Fins  

With a target test article design, fabrication work commenced.  The first step was to develop 

protocols for forming the carbon fiber fin.  The pitch carbon fiber used here was manufactured by 

Mitsubishi, product Dialead K13D2U.  This product has the highest thermal conductivity of all the carbon 

fiber products currently available from Mitsubishi or any other carbon fiber manufacturer.  Higher-

conductivity fibers have been fabricated for research applications but were not available in bulk for 

purchase at the time of this work [78].  Table 3.1 gives the material data provided by Mitsubishi.   

Table 3.1: Dialead K13D2U Product Typical Properties 

Number of Fibers per Tow 2,000 

Fiber Diameter 11 μm 

Carbon Content >99% 

Sizing Amount (Epoxy) 2% 

Thermal Conductivity 800 W/m·K 

Electrical Resistivity 1.5 x 10-6 ohm·m 

Density 2.21 g/cm3 

Tensile Strength 3.7 GPa 

Tensile Modulus 935 GPa 

Ultimate Elongation 0.40% 

"Yield" (linear density) 3.65 mg/cm 

 

At this time, there is no commercially available textile made from the Dialead K13D2U fibers, so 

fiber handling and weaving methods were developed.  The as-received fiber comes as a spool of 

continuous fiber tows.  This section describes the evolution of the carbon fiber fin from initial attempts 

at constructing fins from bundles of unwoven fibers to successfully commissioning an industrial textile 

company to produce a textile suitable for this application. 

At the start of this research, it was unclear whether or not the fibers could be woven, so the first 

test article, TA-A, was made with unwoven fibers by Trudy Allen and Mike SanSoucie of NASA MSFC.  
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Due to the high fiber modulus, the fiber tows were hard to handle and form into flat mats.  The resulting 

attempt is shown in Figure 3.7.  There were two major issues with using unwoven fiber tows: 1) the tows 

were not held in place prior to brazing, so keeping the tows well-organized was infeasible, and 2) with 

the highly non-uniform and curved fin surface, recording the surface temperature using IR imaging was 

impractical.  As described in Chapter 4, the ability to record the temperature profile along the fin length 

was a key capability in order to estimate the thermal conductivity and quantify the fin heat rejection.  

For these reasons it was decided that weaving the fiber tows was important to the design.   

 

Figure 3.7: Test article A with an unwoven carbon fiber fin 

Five main objectives were identified for the fiber weaving method: 1) achieve a high density of 

tows in the longitudinal fin direction (i.e., normal to the heat pipe), 2) use a minimum number of cross 

tows (i.e., parallel to the heat pipe) while keeping the longitudinal fibers in order, 3) ability to control the 



83 

thickness of the weave, 4) ability to produce a uniform weave, and 5) demonstrate or propose how the 

weave could be mass-produced.  Through several iterations, all of these objectives were met. 

Two weaving methods were developed using a table-top hand loom built with hair combs, 

cardboard, and knitting needles.  Two combs were arranged with the teeth pointing upward and carbon 

fiber tows were threaded between the combs and taped at each end to hold them in tension.  In the 

textile industry, these tows held in the loom frame are called warp tows.  This was the starting point for 

both methods.  Without advanced weaving tools available, this inexpensive loom design was used for 

experimentation and demonstration purposes.   

The intent of this first method was to make a fin with many parallel fiber tows in a flat sheet so 

that they could be more easily transferred to the heat pipe.  Woof tows were sparsely woven through 

the warp tows for the sole purpose of keeping the warp fibers organized.  Smooth knitting needles 

helped guide the delicate weaving process.  Figure 3.8 shows test article B, TA-B, made using the first 

weaving method where the warp fibers are normal to the heat pipe axis.  This was a great improvement 

over the unwoven fin because the fibers were easier to handle and the weave was nearly flat, however 

it did not meet objectives 1, 3 and 4.  The biggest issue was that the comb teeth limited the packing 

density of the warp fibers.  Undesirable voids between the longitudinal tows can be seen in Figure 3.8.   
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Figure 3.8: Test article B with a fiber fin generated using the first weaving method 

Driven by the packing density limitations of the comb-tooth spacing, the second weaving 

method was developed.  In this method, the intent was for the woof tow orientation to be aligned with 

the longitudinal fin direction instead of the cross direction.  Since a high tow density is desired in the 

longitudinal fin direction, changing the orientation of the weave facilitated that goal.  Nothing limits the 

packing density of the woof fibers except the ability to compress the tows in the loom.  By using the 

woof tows in the longitudinal fin direction, the packing density of the woof tows could be maximized 

while keeping the density of the warp fibers as low as possible.  A high-temperature ceramic adhesive 

called Ceramabond 865 was used in small amounts to hold the fibers in place near the fin tip.  Figure 3.9 

shows TA-C, which was made with a sample of the weave generated using the second method, and 

proved to be a vast improvement over TA-B.  Figure 3.10 shows the hand loom.   
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Figure 3.9: Test article C with a fiber fin generated using the second weaving method 

 

Figure 3.10: Hand loom used to weave carbon fiber fin test articles; second weaving method in use 

The uniformity and longitudinal tow density, objectives 1 and 4, were vastly improved by the 

second weaving method.  Objective 2, achieving a low density of cross tows, was met by both methods 

since spacing apart either the warp or woof tows was straightforward.  Objective 3, the ability to control 
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the thickness, was still limited by the nature of a single-layer weave pattern.  The target nominal 

thickness of 0.3 mm could not be achieved in one layer of weave.  Stacking multiple layers of the weave 

would be required to achieve the desired thickness.  To further improve the weave, a more advanced 

loom and weaving method was necessary.   

Objective 5 was met by consulting a textile manufacturing company.  A survey of textile 

manufacturers was conducted to assess the feasibility of creating a textile using the K13D2U material.  A 

company called Textile Engineering and Manufacturing Inc. (TEAM) was contacted because they had 

experience weaving Mitsubishi’s lower conductivity K13C2U pitch carbon fiber and had a loom that 

could weave thick 3-dimensional textiles.  Without having direct experience with K13D2U fiber, TEAM 

predicted that they could fabricate a textile and meet the five objectives.   

With financial support from MSFC, TEAM was commissioned to research and develop a weaving 

method to prove that the K13D2U fibers could be woven into a dense, thick mat on a mass-scale.  To 

achieve a thickness of 0.3 mm, TEAM designed a 3-dimensional weave with 3 layers of pitch fiber tows 

as shown schematically in Figure 3.11.  TEAM was asked to use K13D2U pitch carbon fiber supplied by 

MSFC as the woof fibers, as was done in the second hand-weaving method, and to use low modulus PAN 

carbon fibers as the warp fibers to increase the textile flexibility and likelihood of success for this first 

attempt.  Since PAN fibers have a much lower modulus than pitch, using them in the warp direction was 

expected to provide the greatest chance of weaving without warp tow breakage.  As discussed in 

Section 1.2.4, increasing crystallinity of the graphene layers in the carbon fibers increases the modulus, 

thermal conductivity and critical bend radius, and decreases the fracture resistance.   
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Figure 3.11: Cross section detail of the TEAM textile.  Blue lines representing PAN tows and numbers 
representing pitch tows (courtesy of Steve Clarke at TEAM) 

TEAM manufactured the textile in April, 2014, and was so successful that they delivered over 

twice the promised quantity.  The end product had 50 pitch tows per inch and 20 PAN tows per inch.  

TEAM reported that they were able to automate the process, proving the feasibility of mass-producing 

the textile.  Confirming this ability was a crucial benchmark in the development of the carbon fiber 

radiator concept since most space power systems will require on the order of hundreds of square 

meters of fin surface area.  Figures 3.12-3.14 show several images of the TEAM textile.  
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Figure 3.12: Carbon fiber textile manufactured by TEAM, showing the weave pattern 

 

Figure 3.13: Carbon fiber textile manufactured by TEAM showing that a long, continuous sheet of the 
material can be produced 
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Figure 3.14: Carbon fiber textile manufactured by TEAM showing the cross section and the transverse 
PAN fibers 

This textile was the most advanced fin material studied in this work.  Future work on the weave 

design should involve replacing the PAN warp tows with K13C2U pitch tows.  Now that TEAM has 

experience with the K13D2U fiber, they are confident that this same weave pattern could be achieved 

using K13C2U fiber in the warp direction.   

3.4 Fin and Heat Pipe Joint 

The second step was to select a fin attachment method and to develop a protocol for this 

process.  Various attachment methods were explored for how best to secure carbon fiber fins to heat 

pipes.   

3.4.1 Joint Design 

The major considerations are summarized in Table 3.2.  The attachment method must secure 

the fin to the pipe and promote efficient heat transfer.  The attachment method must be able to 

function at the target operating temperature of 600°C, which disqualifies most polymeric materials 
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typically used as adhesives in lower-temperature radiators Error! Reference source not found.[26][27].  

Lastly, chemical compatibility is important to avoid reactions that could degrade the thermal or 

structural properties of the component over long-duration missions. 

Table 3.2: Carbon Fiber Fin-Heat Pipe Attachment Considerations 

1.) Ability to keep fin securely attached to heat pipe during all phases of the mission (i.e., launch, 
deployment and operation) 

2.) Low thermal resistance between heat pipe and fibers 

3.) Withstand an operating temperature of 600°C 

4.) Chemically compatible with heat pipe shell and carbon fiber 

 

Dry mechanical joints, such as tying or clamping the fin to the pipe, are typically simple to 

assemble but the thermal resistance would be relatively high due to void spaces and smaller contact 

areas at the interfaces.  Liquid chemical attachment methods, such as brazing or ceramic adhesives, can 

fill the voids between the fibers and pipe, providing a direct path for heat conduction.  Chemical 

methods are typically more complex than mechanical since there is a usually a phase change and 

chemical interactions between the bonding agent and two substrates.  Due to the promise of increased 

contact area, chemical joining options were evaluated. 

Operation at high temperatures limits the chemical bonding agents to ceramic and metallic 

materials.  Ceramic adhesives can be applied directly to the fin and heat pipe as a paste and then cured 

at elevated temperatures, typically near 200°F.  With the aid of auxiliary tie wires to secure the fibers 

before curing, the ease of application is a benefit of the adhesive.  The disadvantages of ceramic 

adhesives include very low thermal conductivity (<1 W/m-K for most Aremco products), and wettability 

issues with the metal heat pipe and fibers.  Since ceramic pastes do not wet to carbon fibers, the edges 

of the hardened ceramic are sharp.  This introduces stress concentrations, which cause the fibers to 
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break easily at that boundary.  Ceramic adhesive options were rejected because the disadvantages 

appeared more significant than those found with the simple mechanical clamp. 

Of the metallic bonding methods (i.e., solder, welding, brazing), brazing is the most suitable for 

this application.  Solder joints melt below 600°C, and typical welding processes are not suitable because 

the fibers would have to be welded in between a filler metal and the heat pipe shell, which would 

damage the fibers and is likely infeasible.  Brazing is essentially a high-temperature solder where a filler 

material is added in between the substrates and melted to form the chemical bond.  This liquid-phase 

process can be used for ceramic-metal joining since the molten filler metal can diffuse into both 

substrates and fill the voids between surfaces.  The thermal expansion coefficient mismatch between 

most ceramics and metals can be a significant issue for using this type of bond in an application with 

thermal cycling.  This mismatch can cause cracks and delamination of the ceramic.  A heat pipe radiator 

study at NASA Glenn Research Center (GRC) showed that brazing a sheet of carbon-carbon composite to 

an Inconel heat pipe was very difficult and delamination challenges were not overcome [41].  Brazing 

small-scale fibers to a metal substrate, however, does not present the same thermal expansion issue 

because strain relief occurs at each fiber. 

While brazing is one of the most complex joining methods, there are several significant 

advantages.  First, since the filler melts and fills the voids between substrates, a direct heat conduction 

path forms with highly conductive metallic material.  In that same study on brazing a carbon-carbon 

composite conducted at NASA GRC, the thermal resistance of the braze joint was negligible where 

delamination did not occur [80].  The other major benefit of brazing over a ceramic adhesive is that a 

braze filler can be selected that bonds very well with both carbon fiber and any potential heat pipe shell 

material.  Based on the advantages of brazing over other chemical and mechanical bonding methods, 

brazing was selected for this work.   
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3.4.2 Evaluation and Selection of Brazing Material 

There are several classes of brazing filler metals appropriate for various combinations of 

substrate materials and operating temperatures.  The class of filler metals used to join ceramics and 

metals is called “active braze alloys.”  These contain titanium, the active component, that wets 

especially well to carbon-based ceramics [80][81][82].  When the filler melts, the titanium tends to 

diffuse to the ceramic surface forming an interfacial layer.  Adding titanium to a silver or copper braze 

alloy has been shown to improve the wettability with graphite by reducing the wetting angle from 

around 140° to nearly 0° through the formation of carbides [80].  Table 3.3 lists the active braze alloys 

commercially available from Wesgo Metals.   

Active braze alloys are often used for brazing refractory metals including stainless steel and 

nickel-based alloys, since active brazes can wet to surface oxides.  Compatibility with nickel alloys and 

other refractory metals is important to this work since the heat pipe shell will likely be Inconel (Nickel-

Chromium-Molybdenum).  While any of these filler alloys should work with carbon fiber, Ticusil was 

selected for this project because it is available as a foil, which is easy to handle, and it has a moderate 

mole fraction of titanium.  A certain amount of titanium is required to wet to all carbon surfaces, but 

since titanium has a much lower thermal conductivity than silver and copper, excess titanium is not 

desirable.  Ticusil, having only 4.5 % titanium, offered a balance between the two competing factors and 

was a good candidate for this work.  In addition, Ticusil is the most commonly used active braze alloy for 

ceramic-to-metal joints [82], so it was a low-risk option. 
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Table 3.3: Wesgo Metals Active Braze Alloys [83] 

Name  
Nominal 

Composition % Liquidus (C°) Solidus (C°) 
Thermal Conductivity 

(W/m-K) 
Form 

Availability 

Tini-67 Ti -67.0                   
Ni-33.0 

980 942 Not Available Paste 

Ticuni Ti-70                       
Ni-15                     
Cu-15 

960 910 Not Available Paste 

Ticuni-60 Ti-60                       
Ni-25                     
Cu-15 

940 890 Not Available Paste 

Silver-ABA Ag-92.75               
Cu-5                         
Al-1                                 

Ti-1.25 

912 860 344 Paste 

Ticusil Ag-68.8                 
Cu-26.7                   
Ti-4.5 

900 780 219 Foil, Paste 

Cusil-ABA Ag-63                         
Cu-35.25                      
Ti-1.75 

815 780 180 Wire, Foil, Paste 

3.4.2.1 Brazing Procedure 

The basic brazing steps are summarized as follows: 

(1) Assemble component to be brazed: insert filler foil/paste between substrates and 

compress the joint. 

(2) Insert assembly into furnace and remove the oxygen by evacuating the volume or 

purging with inert gas, typically argon. 

(3) Heat assembly to just above the liquidus temperature of the filler metal and hold there 

until it melts completely.  Some manufactures provide a heating profile as a guideline, 

but the hold durations vary depending on the heat capacity of the assembly.  Ideally, all 

joining surfaces are isothermal when the filler melts so that the hotter surfaces do not 

deplete the active component from the bulk of the filler metal, thus reducing the 

wettability of the filler with the cooler surfaces [84].  Experimentation is required to 
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determine a suitable heating profile for a specific joint. For joints where the filler 

material is visible, a furnace viewport can be used to observe the melt, helping to 

determine when the process is complete. 

(4) Cool the sample.  Joints between two dissimilar materials sometimes require a 

controlled cool-down to help relieve the stresses caused by thermal expansion 

differences.  Fortunately when brazing carbon fibers, thermal strains do not build up 

across the joint because each fiber acts independently, allowing only negligible strains 

to accumulate at the fiber surfaces.  Thus, natural cooling is permitted when brazing 

fibers. 

(5) Remove sample when the furnace cools below 100°C. 

To prepare the sample for brazing, the fiber weave was layered between rectangular pieces of 

Ticusil foil, 2 cm by 5 cm, and then secured to the heat pipe using a temperature resistant metal wire 

(e.g., Constantan or stainless steel).  The wire kept the three layers tightly compressed to help the filler 

wick into the weave and bond with the pipe.  Figure 3.15 shows the pre-braze assembly.   
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Figure 3.15: Pre-braze assembly for two articles: carbon fiber weave and Ticusil foil wired to a 3-inch 
Inconel tube 

Ideally, the brazing process should be conducted in a large vacuum furnace.  Since this was not 

available for this work, brazing trials were conducted in a bell jar vacuum chamber at MSFC, shown in 

Figure 3.16.  The chamber had a 6-inch viewport so the braze melt can be monitored visually.  The 

chamber could be evacuated to 10-7 torr and has no built-in heater elements.  Two styles of heaters 

were designed for the various test articles.  For test articles fabricated earlier in the study that had 

Inconel tubes in place of heat pipes, a cylindrical heater was fabricated with electrical resistance wire 

coiled around an alumina core.  The test articles were then slid onto the heater and heated radially from 

the underlying heater wires.  After a few trials, an IR lamp was added to provide extra heat to the 

external foil surfaces during brazing.  Figure 3.17 shows the heater core, IR lamp, and supporting 

structure for the simulated heat pipe test articles.   
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Figure 3.16: Bell jar vacuum chamber at MSFC used for brazing and testing 

 

Figure 3.17: Heater assembly used for brazing (left):  heater coil that supports and heats the sample, and 
an IR lamp above for added heat.  With mounted sample (right). 
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For the test articles with working heat pipes, the heater consisted of a 2.5-inch, 300 W 

Thermcraft clamshell resistance heater that clamped onto the hot end of the heat pipe.  Alumina 

housing was used to insulate the heater.  The IR lamp was used for these samples too.  Figure 3.18 

shows the heat pipe heater assembly.   

 

Figure 3.18: Heat pipe heater assembly with a test article (left), detail of clamshell heater and alumina 
housing (right) 

Once the test article was assembled and mounted on the heater, the assembly was placed into 

the chamber and the chamber was evacuated.  The test article was heated directly to 900-950°C and 

held until the top layer of braze melted.  Once the foil melted completely, the heater was turned off and 

the system cooled naturally.   

3.4.3 Brazing Results 

Brazing trials were conducted on five test articles.  The first three test articles consisted of 

Inconel tubes and hand-woven fins.  Test article B had a fin woven using the first weaving method and 

TA-C and TA-D had fins woven with the second method.  Test article E consisted of a heat pipe and a 

weave using the second method and TA-F had a heat pipe with a TEAM textile fin.  The braze joints of 

TA-B, C and D are shown in Figure 3.19.  Of the three, TA-B had the most successful braze.  The sample 

was heated to nearly 950°C and the Ticusil foil completed melting within five minutes of the melt 
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initiation.  When heating TA-C and D, more power was required to reach 950°C, which caused several 

heater coils to fail due to current overload.  This increase in power was attributed to the denser fins that 

radiated much more power away from the braze joint.  While this bodes well for the heat dissipating 

abilities of the fibers, it proved detrimental to the brazing process.  After the less-successful braze melt 

with TA-C, several modifications were added to the heater assembly, attempting to increase the power 

supplied to the braze joint.  The IR lamp was added above the sample, and a stainless steel reflector was 

added around the fin to reduce the direct radiation from the fin to the chamber walls, shown in Figure 

3.20.  
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Figure 3.19: Braze joints on test articles B, C and D (top to bottom) 
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Figure 3.20: Stainless steel reflector added to the heating assembly for brazing 

The heater modifications helped, but melting the top foil layer on TA-D required an extended 

hold of about 20 minutes over 900°C, and was still not as complete as TA-B.  In vacuum, the longer it 

takes for the entire foil to melt, the more material volatizes.  Condensed silver was detected on the 

chamber walls after long braze trials.  Thus, improvements should be made to decrease the melt time.  

Improvements in a non-furnace vacuum chamber include minimizing radiative heat losses by adding 

reflective shields or insulation around the sample, and adding more external heaters.  This series of tests 

demonstrated that the thicker the fin, the more important it is to use a proper brazing furnace so that 

the sample melts uniformly and quickly.   

None of the heat pipe test articles achieved a successful melt of the top foil.  As with the heater 

coil used in the simulated heat pipes, several of the clamshell heaters failed during braze attempts.  

While the foil on TA-E did demonstrate signs of softening and melt initiated at several points under the 

tie-wires, thorough melting could not be achieved, see Figure 3.21.  Since the textile was thicker than 

the hand-woven fins, it was clear that brazing TA-F would be even more challenging.  Thus, only a 

narrow fin was used and another block of insulating alumina was added to the free end of the heat pipe.  
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Again, softening of the top foil layer was observed while the bottom layer melted completely, see Figure 

3.22.   

 

Figure 3.21: Test article E consisting of a heat pipe with a hand-woven fin 

 

Figure 3.22: Test article F consisting of a heat pipe with a textile fin 

There was no way to add more power to the samples given the geometric constraints of the 

chamber and standard clamshell heaters.  Additionally, with the large clamshell heater assembly, the 
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chamber itself overheated before the braze melted because the heater block radiated excessive heat to 

the walls.  Even with a cooling tube wrapped around the outside of the chamber, the wall temperature 

exceeding 150°C.  The bell jar has a rubber gasket that should not be exposed to temperatures above 

150°C.  For these reasons, complete braze melting was not achieved. 

Inert gas brazing is another alternative to the vacuum furnace with several advantages, including 

heat transfer by conduction that would promote uniform heating, and minimal filler vaporization due to 

the gas pressure.  Argon, dry hydrogen, and helium are suitable for active braze alloys, however nitrogen 

and hydrogen should not be used for this application because nitrogen reacts with titanium to form a 

nitride, and hydrogen can combine with graphite [84].  A small study was conducted at UMass to test 

the feasibility of brazing carbon fibers to a stainless steel substrate using Ticusil in a pressurized argon 

atmosphere.  Qualitative results indicated that the environment had no negative effects on the braze 

joint or fibers.  No vaporized silver was observed on the walls of the brazing chamber, confirming that 

the pressurized environment inhibits filler metal vaporization.   

Several attempts were made to build a sealed furnace large enough to fit a test article that 

could be pressurized with argon gas for brazing, but none were successful.  Thus, the vacuum chamber 

remained the only option for this work.   

3.4.3.1 Braze Joint Thermal Resistance 

The order of magnitude of the thermal resistance of the braze joint relative to the fin was 

estimated in two ways: 1) modeling the thermal resistance of each layer in the joint, and 2) measuring 

the temperature drop between the Inconel tube and the top layer of the brazed fiber during a test.  First 

the thermal resistance was modeled using estimated thermal conductivity and thickness values for the 

titanium carbide and copper-silver layers.  The thermal conductivity of titanium carbide is about 5.64 

W/m-K at room temperatrue and 30.93 W/m-K at 1000°C [85].  Silver and copper have thermal 
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conductivities near 400 W/m-K in their pure forms, however as an alloy, the Ag-Cu thermal conductivity 

tends to be reduced due to electron and phonon scattering in the lattice structure.  The thermal 

conductivity of Ticusil, given in Table 3.3, is 219 W/m-K, which is assumed to be slightly lower than that 

of an Ag-Cu alloy due to the small percentage of Ti.  For this calculation the thermal conductivities of the 

Cu-Ag and TiC layers are assumed to be 250 W/m-K and 20 W/m-K respectively.  The thicknesses of the 

layers are assumed to be 101.6 μm for the Ag-Cu (the thickness of 2 foil layers), and 0.3 μm for the TiC 

(from the SEM examination).  For a joint area of 2 by 5 cm and 100 W of power delivered to the joint 

during test article operation, the temperature drop across the joint is less than 50 milli-Kelvin, which is 

insignificant compared with the thermal resistances of the Inconel tube wall or the fin.   

The second evaluation of the thermal resistance of the braze joint involved measuring the 

temperature difference between thermocouples placed on the Inconel pipe and on the exterior of the 

brazed fibers during a test.  Figure 3.23 shows the test article with the two reference thermocouples, 

placed close together to minimize heat pipe temperature variations.  A temperature difference of about 

20 K was measured between the two thermocouples at an operating temperature of 600 K.  Similar 

measurements were made using a heat pipe test article.  This difference could be explained by the low 

transverse thermal conductivity of the fibers and the less than optimum penetration of the melted braze 

into the fiber weave.  This temperature drop should represent an upper bound.  It is expected that the 

thermal resistance of the joint can be reduced with more advanced brazing techniques.  The 

temperature drop along the fibers is on the order of several hundred degrees, and since the 

temperature drop across the braze is on the order of 20 K, a detailed property measurement of the joint 

was not justified for this work. 
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Figure 3.23: IR image of test article B with thermocouples 1 and 2 

3.4.3.2 SEM and Thermodynamic Analysis 

A Ticusil-brazed carbon fiber sample was analyzed using scanning electron microscopy (SEM) 

and energy dispersive spectroscopy (EDS) to determine the composition and microstructure of the 

interphase layer near the fibers and the bulk of the braze.  The results of the analysis show a clear layer 

of titanium carbide roughly 0.3 μm thick around the perimeter of each fiber as shown in Figure 3.24.  

Figures 3.25 through 3.27 are the EDS results from the locations indicated on Figure 3.24.  In the 

temperature range of 920-1050°C the Gibbs free energy change for the reaction Ti+CTiC is –(174 to 

169) kJ/mol so the formation of Ti-C is thermodynamically favorable [80].  This carbide layer is expected 

to serve as a diffusion barrier to titanium, preventing further carbide formation, but only a life test at 

the operating temperature could establish this definitively.  Figure 3.28 is the phase diagram for 

titanium and carbon showing that at most compositions titanium will react with carbon to form a 

carbide.  Figures 3.29 and 3.30 are the copper-carbon and silver-carbon phase diagrams showing that 

those metals do not react with carbon, explaining why titanium is necessary for the braze to adhere to 

carbon fiber.  These phase diagrams were generated at NASA GRC using FactSage.   
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The silver and copper components of the braze remained as a two-phase bulk material 

surrounding the fibers.  Figure 3.31 is the binary alloy phase diagram for silver-copper, showing that at 

the mole fractions present in Ticusil, two phases are expected to form.  Figure 3.32 shows an SEM image 

of the end of a Ticusil-brazed carbon fiber tow and Figure 3.33 shows the EDS results of the location 

indicated as “EDS-A” in Figure 3.32, confirming again that most of the titanium migrates to the carbon 

surface during the braze process leaving no detectable concentration at the braze surface.   

 

Figure 3.24: SEM image of a Ticusil-brazed carbon fiber sample 
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Figure 3.25: EDS results from EDS location B in Figure 3.24 showing the pure carbon composition of the 
fiber 

 

Figure 3.26: EDS results from EDS location C in Figure 3.24 showing the titanium and carbon composition 
of the layer around the fiber 
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Figure 3.27: EDS results from EDS location D in Figure 3.24 showing the high silver content in that phase 
of the bulk braze material 
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Figure 3.28: Titanium-carbon phase diagram 

 

Figure 3.29: Copper-carbon phase diagram 
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Figure 3.30: Silver-carbon phase diagram 

 

Figure 3.31: Silver-copper phase diagram 
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Figure 3.32: SEM image of the end of a Ticusil-brazed carbon fiber tow and the location of EDS-A 

 

Figure 3.33: EDS results from the location in Figure 3.32 indicated as EDS-A showing large concentrations 
of copper and silver 
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3.5 Heat Pipes 

The heat pipe is the last major component of the test article assembly.  For the first generation 

test articles, heat pipes were not available, so simulated heat pipes were built using 1-inch diameter 

Inconel tubes mounted on the aforementioned 3-inch heater core.  The heater was a Kanthol K1 

resistance heating wire coiled around an alumina core.  As shown in Figure 3.34, the core structure was 

wider at the supported end.  More heat conducted to, and radiated from, this exposed alumina than 

from the opposite side of the support, which caused an asymmetry along the Inconel tube shown in the 

IR image and accompanying temperature profile, Figure 3.35. 

 

Figure 3.34: Electrical resistance heater used to heat the Inconel pipe test articles 
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Figure 3.35: Top: IR image (in°C) of a bare Inconel tube on the heater with four thermocouples.  The 
emissivity was set to that of the Inconel tube, ε=0.16. Bottom: Temperature profile along tube 

corresponding with the IR image.  Noise in the profile is due to surface reflections and variation in 
emissivity due to surface preparation. 

After test articles B, C and D were fabricated using Inconel tubes, the next step in increasing the 

fidelity of the test articles was to use real heat pipes.  Custom, small-order sodium heat pipes are 

available from two heat pipe manufacturers, Thermacore and Advanced Cooling Technologies, but the 

estimates ranged from $6,000-$9,000 per pipe which was out of range for the project budget.  James 

Sanzi, a heat pipe expert at NASA GRC, was able to fabricate custom pipes for this work and fabricated 

three sodium heat pipes.  The shell material was Inconel 600 with a wall thickness of 0.062-inches.  The 

interior was lined with stainless steel mesh wick and filled 5% by volume with high purity sodium 

working fluid.  The pipes are approximately 6-inches long with an outer diameter of 0.75-inches, and 

designed to allow for a 3-inch evaporator and a 3-inch condenser onto which the fin could be brazed.  

Figure 3.36 shows a finished heat pipe. 
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Figure 3.36: Six-inch long sodium heat pipe fabricated at NASA GRC 

As previously described, the heat pipe evaporator was heated by a clamshell heater.  Heat pipe 

initiation occurs at about 500°C, when the sodium melts fully and the vapor pressure is sufficient for 

significant heat transfer.  The upper limit on the heat pipe operating temperature is around 1200°C, 

when the wick dries out as too much of the sodium enters the vapor phase.  Unlike the simulated heat 

pipes, the real heat pipes were isothermal along the condenser to within a degree at steady state.  

Figure 3.37 is an image of a heat pipe operating at steady state.  Figure 3.38 is an IR image of the same 

working heat pipe and a temperature profile along the pipe axis.  Reflections from the pipe account for 

most of the variation in the temperature profile.  The two thermocouples in the image were reading 

within a degree of each other at 571°C, verifying that it functioned as designed.  The ability of heat pipes 

to transfer heat over long distances efficiently and passively makes them very desirable for space 

applications.   
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Figure 3.37: Image of a sodium heat pipe operating at 571°C 

 

Figure 3.38: Top: IR image (in°C) of sodium heat pipe with two thermocouples reading 571°C.  The 
emissivity was set to that of the pipe, ε=0.19. Bottom: Temperature profile along pipe corresponding 

with the IR image.  Noise in the profile is due to the thermocouple wire, surface reflections and variation 
in emissivity due to surface preparation. 
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3.6 Conclusion 

In summary, the work described in this chapter increased the technology readiness level (TRL) of 

the concept from a 2, basic understanding of the principles of the technology, to a 4, component 

validation in the laboratory environment.  To accomplish this, the fin, attachment method and heat pipe 

were all designed and tested.  Mass-production of a high quality, high thermal conductivity K13D2U 

fiber textile was proven to be feasible.  Brazing with Ticusil was selected as the joining method since it is 

chemically compatible with carbon fibers and a variety of heat pipe materials, provides a good thermal 

conduction path between the fibers and pipe, and is suitable for extended use at 600°C.  Methods and 

recommendations for how to effectively braze the fin to the pipe were presented.  This work 

demonstrated that higher-fidelity fin-heat pipe test articles could be fabricated.   

This concludes the discussion on test article design fabrication.  In the next chapter, properties 

and performance of the test articles are evaluated.   
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CHAPTER 4 

4 NON-CONTACT THERMAL PROPERTY MEASUREMENT AND HEAT REJECTION PERFORMANCE 
TESTS 

4.1 Introduction 

A principal goal of this work is to demonstrate and quantify the heat rejection capabilities of a 

carbon-fiber-heat-pipe radiator.  Models predict that carbon fiber fins should out-perform carbon-

carbon composite fins in terms of specific power (kW/kg), however this assertion has never been tested.  

Experiments were designed to measure the power rejection of the carbon fiber fins using infrared 

imaging.  Measurements of the power rejection from the fin are used to calculate the specific power 

rejection, a metric for comparing the carbon fiber with other high-temperature fin materials.  

Additionally, literature on the thermal conductivity of pitch carbon fibers at elevated temperatures in 

bulk form is very limited, so experimental results were employed to estimate the thermal conductivity of 

the carbon fiber fins.  The thermal conductivity estimate adds fidelity and predictive capabilities of the 

fin models.  The methods of measuring the fin surface temperature and thermal properties are 

presented here.   

4.2 Non-Contact Temperature Measurement 

Non-contact temperature measurements of the fins during tests were acquired using a FLIR 

infrared (IR) camera (Model A655 sc) and the accompanying data processing software called ExaminIR.  

The camera senses infrared radiation in the range of 7.5-14 μm and thus must be used in combination 

with a vacuum chamber window transmitting those wavelengths.  A zinc selenide vacuum window with 

an anti-reflection coating was employed, which transmits around 98% of the radiation in the camera’s 

sensitive waveband as shown in Figure 4.1  The transmission decreases slightly between 12 and 14 μm, 

however this is considered insignificant since tests were conducted at elevated temperatures where the 

majority of thermal radiation is emitted at shorter wavelengths.  A standard quartz glass window 
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absorbs a large fraction of the infrared radiation, so the camera requires this specialized window.  The 

camera and zinc selenide window mounted on the vacuum test chamber are shown in Figure 4.2.   

 

Figure 4.1: Zinc selenide window transmission curve (5 mm thick with AR coating) [86] 
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Figure 4.2: FLIR IR camera aimed at the zinc selenide window on the vacuum test chamber 

The IR camera has an array of sensors (i.e., pixels) that measure the intensity of the radiation.  

At each pixel the single intensity is an integrated value over all of the wavelengths in the camera’s range.  

The IR camera is similar to a typical digital camera except for it senses radiation in the infrared band 

instead of red, green and blue.  The ExaminIR software uses the intensity at each pixel and combined 

with the camera’s settings (i.e., focal length, user-supplied effective spectral emissivity, window 

transmission, reflected temperature), calculates a single temperature per pixel.  To measure accurate 

temperatures, appropriate emissivity and window transmission values must be defined in ExaminIR.  

The algorithm cannot correct for unwanted reflections, so if the viewed object is not a diffuse reflector, 

care must be taken to minimize reflections in the enclosure (this is the case for viewing the bare heat 

pipe and the braze surface).  Fortunately, the carbon fiber weave is a diffuse surface, so as long as the 

emissivity of the weave surface is known, the temperature measured by the IR camera can be 

considered accurate.  The temperatures in the entire field of view can be exported for further analysis. 
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4.3 Emissivity Measurement 

The literature contains scarce information on the emissivity of bulk carbon fiber, mostly because 

using carbon fiber as a radiative component is quite rare.  The emissivity of a sample of the carbon fiber 

weave was measured at the NASA Glenn Research Center with the help of Dr. Don Jaworske using a 

Surface Optics Corporation reflectometer, model SOC-400T.  This device uses an FTIR Michelson-type 

interferometer to measure the spectral reflectance of an opaque material over the wave band 2-25 μm 

[71].  The room-temperature sample is illuminated with near-normal beams and the reflected energy is 

detected hemispherically.   The spectral reflectance response gives the spectral absorptivity since the 

reflected and absorbed energy sum to unity (i.e.,     =    when    = 0).  The spectral emissivity is 

obtained through Kirchoff’s Law (i.e.,   = 𝜀  at thermal equilibrium).  The total hemispherical 

emissivity is then calculated at any desired temperature using Equation 4-1 assuming the spectral 

emissivity is temperature independent, a typical assumption up to about 1200°C.   

     =
∫                 

 

 

   
                                                                  ( 4-1) 

Figure 4.3 gives the results from the reflectance versus wavelength measurement for a sample 

of the carbon fiber weave as well as gold and black calibration standards that are nearly perfect 

reflectors and absorbers respectively in this waveband.  The spectral reflectivity profile of the carbon 

fiber weave increases slightly with wavelength from about 0.15 at 2.5 μm to 0.35 at 25 μm.  While these 

results indicate that the carbon fiber weave is not perfectly gray, the majority of thermal radiation 

emitted from hot surfaces (>300°C) is below 10 μm, so the rise in reflectivity with higher wavelengths 

has little effect on the integrated total hemispherical emissivity values.   
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Figure 4.3: Reflectance versus wavelength for a black standard, a gold standard, and a carbon fiber 
weave sample measured at NASA GRC using a SOC-400T reflectometer 

Using the spectral reflectance data and Equation 4-1, the total hemispherical emissivity versus 

temperature was calculated; Figure 4.4 shows the results.  The emissivity increases with temperature 

because the peak in the blackbody curve moves to lower wavelengths with temperature and the 

spectral emissivity of the fibers is higher at lower wavelengths.  The total hemispherical emissivity 

ranges from about 0.74 at room temperature to 0.78 at 900 K to nearly 0.8 at 1300 K, within the normal 

range for graphitic materials. 
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Figure 4.4: Calculated total hemispherical emissivity versus surface temperature for the carbon fiber 
weave sample 

A well-designed radiator fin should exhibit a temperature variation no more than 300 K along 

the fiber axis, so a fin whose surface temperature ranges from 600 to 900 K would expect to experience 

a change in the total hemispherical emissivity of less than 2%.  This justifies assuming no temperature 

dependence of emissivity for this work.   

With a good estimate of the total hemispherical emissivity of the fiber weave, temperature data 

from the IR images can be used with confidence.  Fin surface temperature data can be used to 

determine the specific heat rejection and axial thermal conductivity of the fin. 

4.4 Indirect Measurement of the Fin Axial Thermal Conductivity  

Axial thermal conductivity is the second thermal property important to the fin design.  It has 

been shown that the thermal conductivity of lower-modulus pitch carbon fibers (Amoco P-100) has a 

maximum near 300 K and decreases slowly with higher temperatures as a result of Umklapp phonon 

scattering [87][88].  Umklapp scattering is a process by which thermal conductivity is reduced in 
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crystalline materials when phonons interact with surfaces or lattice defects.  Pradere et. al. showed that 

the thermal conductivity of P-100 fibers decreases from about 190 to 170 W/m-K as the temperature 

increases from about 750 to 1500 K [88].  The thermal conductivity of higher-modulus pitch fibers at 

high temperatures is not available in the literature, but it is likely that Umklapp scattering will also cause 

the thermal conductivity to decrease slightly with temperature.  Thus, it is expected that the thermal 

conductivity of the K13D2U fibers used in this work will be slightly lower than 800 W/m-K at elevated 

temperatures.   

Much of the literature on carbon fiber thermal conductivity provides measurements using a 

single fiber.  One study that measured the bulk thermal conductivity of pitch carbon fibers at room 

temperature found that the conductivity was consistently lower than that of the single fiber 

measurements [41].  Since bulk carbon fiber contains void space, measuring the bulk conductivity was 

found to be quite challenging.  The standard guarded plate method for measuring thermal conductivity 

that steadily heats one end of a sample and measures the change in temperature across the sample is 

difficult with fibers without solid, flat surfaces.  That is why single fiber measurements are often 

preferred.  While the manufacturer states that the single-fiber axial thermal conductivity at room 

temperature is 800 W/m-K, estimating this property using the fiber weave at higher temperatures was 

of interest.  

4.4.1 Method 

The method developed here to estimate the fin axial thermal conductivity combines IR surface 

temperature data and finite element models.  First, a fin test article is tested at about 600°C and IR data 

are collected.  Next, fin surface temperature data extracted from the image is compared with results 

generated by a fin finite element model (as described in Section 3.2) where axial thermal conductivity is 
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the only free model parameter.  A Matlab optimization code is used to find the thermal conductivity 

value in the model that minimizes the error between the IR data and the thermal model.   

The model assumes temperature-independent thermal properties, zero void fraction in the fiber 

weave, and simple radiation boundary conditions.  For this first order property estimation, assuming 

temperature independent properties is consistent with available data.  The fin temperature varies from 

about 900K to 600K, which could have a slight impact on thermal conductivity as demonstrated by 

Parede, who showed less than a 5% change in thermal conductivity between 600 and 900 K [88].  The 

surface emissivity is assumed to be 0.78±0.01 based on the emissivity measurements from NASA GRC 

presented in Section 4.3.  The effective fin thickness (i.e., the thickness of a dense, flat sheet of the same 

mass, with no void space between fibers) was determined to be 0.1374±0.0034 mm.  This was 

determined by measuring the width of fiber tows in the weave and calculating the effective thickness 

using the known tow density and linear density (kg/m-tow).   

The radiation boundary conditions are the collection of parameters with the greatest 

uncertainty.  These boundary conditions include the temperatures and emissivities of the heat pipe, 

heater support structure, chamber walls and windows.  The model includes radiation heat transfer 

between the heat pipe and fin.  Because of the large ratio of areas, the rest of the enclosure is idealized 

as a black, isothermal enclosure.  The heat pipe temperature was measured during the tests using a 

thermocouple, and the emissivity is taken as 0.15, typical of unoxidized nickel at elevated temperatures.  

The environmental temperature was based on several measurements of the chamber wall.   

The optimization code was written in Matlab and is run in Comsol LiveLink with Matlab.  The 

code uses the Matlab function fminunc, which is a gradient-based search algorithm for unconstrained 

optimization problems.  Using a user-defined initial value for the axial thermal conductivity (kx), the 

function searches for the value of kx that minimizes the mean squared error (MSE) between the IR and 
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model-generated data sets.  Within the optimization program, the following steps are performed to 

calculate the MSE value: 

(1) Read the IR temperature data from an excel file  

(2) Call the Comsol model file and send it the current kx value.   

(3) Run the Comsol model 

(4) Return model results in an array of the fin surface temperature at every point along the 

fin 

(5) Fit the model results to a fourth-order polynomial (R2 =1.00) to get a continuous 

T_model(x) function 

(6) Evaluate T_model(x) at every x-point in the real data set. 

(7) Calculate MSE between the model set and the real data set:                                        

   =
 

 
∑      𝑒              

   , where n is the number of IR data points.   

The function iterates kx until the change in the function value between successive iterations is 

less than 10-10.  The optimization code was verified by plotting the MSE versus kx, as shown in Figure 4.5.  

This confirms that the MSE dependence on kx is monotonic and that the algorithm found the true 

minimum.   
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Figure 4.5: Mean square error versus fin axial thermal conductivity for the optimization case using test 
article E, showing monotonic behavior 

4.4.2 Results 

The first step in this analysis was to collect IR data from a test of one of the test articles.  Test 

article E (TA-E) was employed because the fiber weave is highly uniform, which reduces the uncertainty 

in the effective thickness.  Figure 4.6 shows the IR image from the performance test of TA-E.  The green 

box shows the region from which temperature data was extracted.  The temperatures were averaged 

across the width of the region to capture the average trends.  The profile of average temperatures was 

used in the optimization.   
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Figure 4.6: IR image of TA-E during a performance test. Temperature given in degrees K.  The black line 
indicates the location from which the temperature profile was extracted for the thermal conductivity 

optimization analysis. 

The result of the optimization was a thermal conductivity value of 702.5 W/m-K.  Figure 4.7 

shows the temperature profiles from the IR data and corresponding thermal model for an emissivity of 

0.78 and effective thickness of 0.137 mm.  The optimum thermal model matches the IR data very well, 

with an R2 value of 0.996.  The majority of variation in the IR temperature data is attributed to the finite 

thermal resistance between the longitudinal and cross tows.  The uncertainty of      with respect to 

thickness is ±2.5% (±19 W/m-K).  The uncertainty of      with respect to emissivity is approximately 

±1.3% (±10 W/m-K).  The uncertainty of the result with regard to the radiation boundary conditions 

cannot be readily quantified for this experiment due to the complexity of the surfaces and temperature 

profiles in view of the fin.  Based on models with extreme radiative boundary conditions (i.e., a set of 

high heat pipe temperature, emissivity and environmental temperature and a set of low heat pipe 
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temperature, emissivity and environmental temperature) the uncertainty of      with respect to 

radiative boundary conditions is likely ±15%.   

Since kx was assumed to be constant, part of the uncertainty may be due to the variability in the 

property instead of true uncertainty.  Using thermal conductivity at room temperature specified by the 

manufacturer and the predicted value at the average temperature of the fin, 600 K, the uncertainty of 

temperature dependence of thermal conductivity was estimated to be ±2%.  This uncertainty is on the 

order of the uncertainty with respect to thickness and emissivity, and much less than the radiative 

boundary conditions, so it was reasonable to assume a constant value.   

 

Figure 4.7: TA-E fin surface temperature data extracted from the IR image (red) and the surface 
temperature from the model with the optimum kx (blue) 

The same analysis was conducted on TA-F, which has an effective thickness of 0.32 mm.  The IR 

image in Figure 4.8 shows the region from which the temperature data was collected.  As before, the 
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profile.  The      was 495 W/m-K and Figure 4.9 shows the temperature profiles from the IR data and 

corresponding thermal model.   

There are several reasons why this value is lower than that of TA-E.  The textile has PAN fibers as 

the cross tows.  As shown in Figure 4.10, the temperature of the PAN fibers is much less than that of the 

adjacent pitch fibers (about 50°C on average), since the PAN fiber thermal conductivity is on the order of 

10 W/m-K.  In addition to affecting the net surface temperature of the fin, the high density of PAN cross 

tows reduces the through-thickness thermal conductivity.  Since the textile consists of three layers of 

pitch fibers through the thickness, the assumption that the fin has a zero void fraction is much less 

accurate for this configuration than for the fins with one layer.  This is because each tow has a much 

larger fiber volume fraction than the net fiber volume fraction of a multi-layer weave.  As mentioned in 

Chapter 3, TA-F had a narrower fin due to brazing challenges.  Edge effects may have had a significant 

effect on the result since the numerous cross tows were conducting heat way from the centerline and 

the width of the fin was probably not greater than the thermal boundary layer.  Lastly, the textile was 

handled more than the hand-woven samples, which could have caused more micro-cracks in the fibers, 

thereby decreasing the thermal conductivity.  For all these reasons, a more rigorous test is necessary to 

verify the thermal conductivity of the textile.   
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Figure 4.8: IR image of TA-F showing the area from which temperature data (in K) was collected 
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Figure 4.9: TA-F fin surface temperature data extracted from the IR image (red) and the surface 
temperature from the model with the optimum kx (blue) 
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Figure 4.10: A single temperature profile from TA-F showing the steep temperature dips due to the low 
thermal conductivity PAN fibers in the cross direction of the textile weave 

This result leads to several hypotheses about the ideal fin weave.  The multiple layers in the 

textile were added to achieve the 0.32 mm thickness, which was predicted early in the study to 
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very flexible and had the highest likelihood of success.  Now that successful weaving has been achieved 

using PAN cross fibers, it is suggested that future weaves use a lower conductivity pitch fiber, like 

Mitsubishi K13C2U, as the cross tows.  TEAM Inc. has confirmed the viability of using K13C2U cross tows, 

which may strike a more desirable balance between thermal conductivity and stiffness than either PAN 

fibers or K13D2U pitch fibers. 

Precise measurements of the fin thermal conductivity will be of interest later in the 

development of this technology so that models can be used reliably for predicting radiative capabilities.  

To obtain more exact thermal conductivity measurements, more constrained experiments are required.  

Improvements on this method include creating better radiation boundary conditions from the heat pipe 

and environment by shielding the fin with a constant temperature cold wall except for a narrow opening 

for viewing.  In addition, the assumptions related to effective thickness should be evaluated to 

determine the accuracy of idealizing the fin this way, especially for multi-layer weaves. 

It should be noted that the transverse thermal conductivity of the weave is not known precisely, 

but the design is not expected to be sensitive to that property because the fin’s length to thickness ratio 

is very high.  For a fin that is 8 cm long, 0.3 mm thick, with a total hemispherical emissivity of 0.8, and an 

axial thermal conductivity of 800 W/m-K, the difference in the fin tip temperature when the transverse 

thermal conductivity is varied between 0.1 and 100 W/m-K is less than a degree Kelvin.  This result 

verifies that the fin approximation (i.e., thermal gradients through the thickness are negligible compared 

to the axial dimension) is valid and that measuring the transverse thermal conductivity is not justified for 

this work.   

4.5 Specific Heat Rejection  

The specific heat rejection of the carbon fiber fins is one of the most important metrics from a 

systems engineering standpoint.  When properly qualified, this metric is a simple way to compare 
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various fin materials.  The specific power rejection for a fin is unique to the heat pipe temperature, fin 

thickness, length, and material.  The power rejected by a given fin can be estimated through the Stefan-

Boltzmann radiation law using fin surface temperature data.  The heat flux from a differential area on 

the fin surface is given by Equation 4-2.  When the surface temperature profile along the fin length is 

known, the total power radiated from a given fin width (  ) is found by integrating the heat flux over 

the fin surface, Equation 4-3.  Two methods of calculating the fin power rejection from a temperature 

profile include: 1) analytical integration using a polynomial line-fit of the surface temperature data, and 

2) numerical integration using the raw temperature data points extracted from the IR image.  When 

working with the fin model, Comsol has a numerical integrator that will evaluate the power rejected per 

unit width of fin.  These three methods yield nearly identical results.   

  = 𝜀𝜎  4      
4                                                   (4-2) 

 = 𝜀𝜎  ∫   4      
4   

    
   

                                             (4-3) 

To estimate the power rejected from a carbon fiber fin by numerically integrating temperature 

data, TA-D was tested at about 600°C and fin surface temperatures were collected using the IR camera.  

Surface temperature data was extracted from the IR image using the fiber emissivity of 0.78.  Each pixel 

in the IR image contains a single temperature value, so the pixel size was converted to actual size so that 

the power radiated by each pixel could be calculated.  The total power radiated by the fin was 

determined by summing the power rejected by all the pixels in the image.   

Figure 4.6 shows an IR image of TA-E and the region from which temperature data was 

extracted.  The center section of the fin was used since the edges were significantly cooler.  This section 

was 4.9 mm wide and 8.55 cm long.  The total power rejected from this region was 2.4 W.  This 

translates to approximately 493 W/m/side heat rejected per meter of heat pipe per side of fin, which 

agrees to within 1% of the Comsol model, which predicts 497 W/m/side.  Heat rejection of 493 
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W/m/side corresponds to a fin specific power of about 38.1 kW/kg.  This accounts for the fin only.  To 

compare fin materials, the heat pipe temperature and fin dimensions must be equivalent.  Figure 4.11 

compares the specific heat rejection of the carbon fiber fins with copper, molybdenum and a carbon-

carbon (C-C) composite fins at several temperatures to demonstrate the advantage of using the highly-

conductive, lightweight fibers.  Copper is not a viable option for the higher temperatures since it melts 

at 1084°C, but was added for comparison because it is one of the most highly conductive metals.  

Molybdenum was added because it is a viable metal for operation at 600°C, and C-C composite was 

added because it is the most closely related material to bare carbon fiber that has ever been evaluated 

for space radiator fins.   

The carbon fiber properties estimated in the previous sections were used to generate a thermal 

model in Comsol.  Likewise, a Comsol model was generated for copper, molybdenum, and C-C 

composite.  Standard temperature-dependent thermal conductivity values were used for the metals.  

The thermal conductivity values for C-C composites were based on measurements by Denham et. al. 

using unidirectional C-C panels designed for spacecraft radiators [41].  The thermal conductivity 

variation with temperature for each material used for this analysis is given in Table 4.1.  Space radiators 

are typically coated with high-emissivity paint, so an emissivity of 0.8 is assumed for the copper, 

molybdenum and C-C fins.  Comsol was used to evaluate the total power rejected for each material and 

temperature.   

Table 4.1: Thermal Conductivity (W/m-K) for various fin materials at three elevated temperatures 

 Root Temp. 400 °C 600 °C 800 °C Source 

Copper 375 361 347 [89] 

Molybdenum 128 123 118 [90] 

C-C 400 350 300 [38] 

Carbon Fiber 715 680 645 extrap. from Section 4.4.2 
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The carbon fiber fins provide an increasing advantage over molybdenum from about 5.6 to 9.6 

times more rejected power per mass as the heat pipe temperature increases from 400 to 800°C.  

Similarly, the carbon fiber fin rejects from 5.0 to 5.2 times as much power per mass from 400 to 800°C 

as the copper fin.  Lastly, carbon fiber fin rejects from 1.2 to 1.4 times as much power per mass from 400 

to 800°C as the C-C fin.  Compared to the metals, the carbon fiber’s low density and high thermal 

conductivity result in unmatched specific power capabilities.  Since the density of C-C is very close to 

that of the carbon fibers, the primary penalty to specific power of C-C fins is attributed to the lower 

thermal conductivity.  Strictly from a thermal perspective, the C-C fin performs moderately compared 

with the carbon fiber fin, however, there are other design attributes that make C-C difficult to use 

including the brazing issues described in Section 3.4.   

 

Figure 4.11: Comparison of specific heat rejection for carbon fiber, C-C, copper and molybdenum fins 
with the dimensions as noted 

As research on lightweight materials continues, fibers and composites with higher thermal 

conductivity will likely be available in the future, further increasing the specific heat rejection potential.  
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For example, carbon fibers exceeding 1200 W/m-K have been fabricated [78], but were not available for 

this study.   

4.6 Conclusions 

The total hemispherical emissivity of the Mitsubishi K13D2U fiber weave was determined from 

measurements of the spectral reflectivity.  The room temperature measurement of total hemispherical 

emissivity was 0.74±0.01.  Using the spectral data, the emissivity at 600°C was found to be 0.78±0.01.  

The combination of fin models and experimental fin temperature data enabled a non-contact method of 

measuring the axial thermal conductivity of fiber bundles.  This novel method overcomes limitations for 

fiber bundles that limited prior work to single fibers.  The thermal conductivity of the hand-woven fiber 

mat was found to be 707±100 W/m-K for a fin with an average temperature of 600 K.  In Section 4.5, the 

thermal conductivity was extrapolated to higher temperatures for predicting the specific power using 

the fin model.  The radiated power calculated by the fin model was then compared with the calculated 

radiated power from the experiment and the results agreed to within 1%.  Finally, the validated fin 

models showed that even with a thermal conductivity of about 700 W/m-K, carbon fiber fins have much 

better performance than competing materials and that the advantage increases with temperature.  

Further developments in higher-conductivity fibers should lead to even greater heat rejection 

capabilities.  

  



137 

CHAPTER 5 

5 HEAT REJECTION SYSTEM MODELING AND OPTIMIZATION 

5.1 Introduction 

The previous chapters focused on details of the fin and fabrication methods, but it is the 

performance of the radiator as part of a spacecraft heat rejection subsystem that determines the 

viability of the carbon-fiber-fin.  This study investigates effects of the radiator design on the heat 

rejection subsystem (HRS) mass and efficiency.  A thermal resistance model of the HRS with sodium heat 

pipes and carbon fiber fins was built to predict the required radiator size for various subsystem 

conditions.  The thermal resistance model is a completely analytical model of the HRS, which can be 

used to predict optimum design points for various HRS objectives.  An optimization study was conducted 

to find the minimum HRS mass design for a 300 kWe, high-temperature power conversion system test 

case.   

5.2 Analytical Formulation of the Radiation from a Fin 

Since the radiator fin heat transfer problem can be solved only by numerical methods, having an 

analytical approximation of the fin heat rejection is very useful for automating radiator design analyses.  

A closed form approximation of the radiator-fin-efficiency was developed by Henry V. Chang to calculate 

the power radiated from a finned heat pipe radiator valid for certain operating conditions [91].  Chang’s 

formulation is a generalized equation for fin efficiency with the following free parameters:  fin thickness 

(at the root and tip if thickness varies), length, thermal conductivity, surface emissivity, root 

temperature (i.e., heat pipe temperature), and environmental temperature.  Chang’s formulation has 

been useful for low-temperature heat radiators operating near 100°C [45], but Chang’s model generates 

large errors at temperatures above 600 K.  To demonstrate the need for a high-temperature extension 

of Chang’s model, Chang’s predictions are compared with results from a finite element model of a heat 
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pipe radiator for a range of fin-root temperatures and fin lengths.  The finite element model was 

generated in Comsol Multiphysics, which solved for the temperature profile through the fin and 

determined the heat radiated by integrating the Stefan-Boltzmann equation over the fin surface.  Figure 

5.1 shows contour plots of the heat rejected from a heat pipe radiator versus fin-root temperature and 

fin length generated by Chang’s model and by the Comsol model.  The line in the upper right corner of 

the plot showing Chang’s approximation is a boundary above which Chang does not define the 

approximation.  This comparison shows that the error between the Chang model and the detailed finite 

element model solution is quite large, thus a new model is proposed.   

 

Figure 5.1: Contour plots of radiated power per unit length of heat pipe (W/m heat pipe) versus fin 
length and root temperature (for a 0.3 mm thick fin) as predicted by the Chang model (left) and by 

Comsol (right) using fin material that has a thermal conductivity of 800 W/m-K and emissivity of 0.78 

A new analytical model for the heat radiated from a heat pipe with carbon fiber fins was 

generated.  The model predicts the radiated power per unit length of heat pipe for various fin effective 

thicknesses, fin lengths, and fin-root temperatures (i.e. heat pipe condenser temperature).  The 

effective thickness is the net thickness of the carbon fiber fin assuming 100% fiber volume fraction.  The 
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heat pipe emissivity is set to 0.15 and the fin emissivity and thermal conductivity are set to 0.78 and 800 

W/m-K respectively.  These properties are specific to the carbon fiber used in this study; however, this 

analysis can be quickly duplicated for other fin and pipe materials.   

The study on fabrication of test articles in Chapter 3 indicated that using two thinner, parallel 

fins instead of a single, thicker fin may be more efficient due to low through-thickness thermal 

conductivity and increased thermal contact with the heat pipe.  For this reason, the radiator design 

assumed for this model was a heat pipe with two parallel fins attached to the pipe as shown in Figure 

5.2.  The model accounts for internal radiation heat transfer among the heat pipe and both fins, and 

external radiation to space.  Numerical solutions of the problem were obtained using Comsol for fin-root 

temperatures, fin thicknesses and fin lengths ranging from 200-800°C, 0.1-1 mm, and 2-12 cm 

respectively.  These limits proved to bound the optimum design space sufficiently for high-temperature 

radiator applications.  A 3-dimensional, fourth-order polynomial was fit to the heat rejection data by 

running a multivariate linear regression in Matlab.  This polynomial model is referred to as 

              , where    is the fin length,    is the effective fin thickness, and    is the fin-root 

temperature.  Equation 5-1 gives the condensed form of this 34-term polynomial.  The error between 

     and the detailed model data for all cases was below 6% and the average error magnitude was less 

than 1%, where root temperature was in the range of 400-800°C, fin length was in the range of 3-12 cm, 

and fin thickness was in the range of 0.2-1 mm.  The R2 value of      and the data was 0.9999 for that 

design space.  The error increases significantly when the fin length is below 0.03 m and when the root 

temperature is below 300°C.  Chang’s formulation was generalized to include variations in thermal 

conductivity and emissivity, which was accomplished by lumping parameters.  While lumping 

parameters simplified the final form of Chang’s approximation, it resulted in significant errors in some 

regions of the design space.  Higher accuracy could be achieved with      by limiting the design space 

and using a fourth order polynomial instead of lumping parameters.  Since the uncertainties in the 



140 

carbon fiber thermal conductivity and emissivity measurements were relatively low, those properties 

were not taken to be free parameters in the approximation developed here, but the approximation 

could be extended in future work to include the fin’s thermal conductivity and emissivity (i.e., 

                𝜀 ). 

 

Figure 5.2: Heat pipe with the two parallel fin configuration used in thermal models accounting for 
radiation heat transfer between surfaces and the symmetry boundary on the right 

 

    (        ) = ∑ ∑ ∑ ∑               
 
   

 
   

 
   

 
                                        (5-1) 

where    =     =      =     4 =    

Figure 5.3 shows a contour plot of a slice of             for a thickness of 0.3 mm showing the 

locations of the data points from the parameter sweep.  Figure 5.1 shows contour plots of      and the 

percent error of     .  The error plot shows that the error is greatest at lowest temperatures for the 

shortest fins but remains below 10% for the entire region shown.   
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Figure 5.3: Contour slice of             (W/m length of heat pipe) for an effective fin thickness of 0.3 

mm showing the data points (*) from the parameter sweep 
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Figure 5.4: Contour plots of the fourth order polynomial fit of             for a fin thickness of 0.3 mm 

(top), and the percent error between the fit and the Comsol model results of      (bottom) 
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Several curves of radiated power versus fin length and root temperature are given in Figures 

5.5-5.7 for different fin thicknesses.  Radiated power increases asymptotically to a maximum with fin 

length.  Figures 5.8-5.9 show that the slope of          decreases significantly by   =10 cm.  Fins are 

not typically longer than 10 cm, because the fin efficiency decreases rapidly with additional length.   

 

Figure 5.5: Radiated power per meter of heat pipe versus fin length at various root temperatures for a 
fin thickness of 0.1 mm.  The curve for 800°C shows the limitation of      for the smallest thicknesses.   

 

0

500

1000

1500

2000

2500

3000

0 0.05 0.1 0.15

R
ad

ia
te

d
 P

o
w

e
r 

p
e

r 
M

e
te

r 
H

e
at

 P
ip

e
 

(W
/m

) 

Fin Length (m) 

T=400 °C

T=600 °C

T=800 °C

poly 400 °C

poly 600 °C

poly 800 °C



144 

 

Figure 5.6: Radiated power per meter of heat pipe versus fin length at various root temperatures for a 
fin thickness of 0.5 mm 

 

 

Figure 5.7: Radiated power per meter of heat pipe versus fin length at various root temperatures for a 
fin thickness of 1 mm 
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strongly depends on the conductive thermal resistance of the fin, which is inversely proportional to 

thermal conductivity and thickness.  The conductive thermal resistance for short fins is lower than for 

long fins, so the surface temperature of short fins remains closer to the root temperature.  This explains 

the increased influence of thickness on radiated power with fin length as shown in Figure 5.8.  As with 

fin length, there is a point at which adding thickness results in diminishing additional radiated power.  

The optimum thickness lies near the point at which the slope of power with thickness starts declining 

noticeably, typically around 0.3 mm.   

 

Figure 5.8: Radiated power per meter of heat pipe versus fin length at various fin thicknesses (mm) for 
the root temperature of 600°C 

 

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.05 0.1 0.15

R
ad

ia
te

d
 P

o
w

e
r 

p
e

r 
M

e
te

r 
H

e
at

 P
ip

e
 

(W
/m

) 

Fin Length (m) 

t=1

t=0.8

t=0.6

t=0.4

t=0.2



146 

 

Figure 5.9: Radiated power per meter of heat pipe versus fin thickness at various fin lengths (m) for the 
root temperature of 600°C 

The two-fin configuration maximizes the total power rejected to space for a given total fin 

thickness due to the radiation heat transfer between heat pipe and fins.  For a lower limit on fin heat 

rejection for a given fin thickness, assuming no radiation from the heat pipe, a single fin with a purely 

conductive heat source at the fin root was considered.  A 3-dimensional fourth order polynomial for the 

power radiated per meter of heat pipe for this configuration is provided in the Appendix.  The percent 

difference in the total radiated power between these two configurations was less than 10% for all cases 

studied here (i.e., T1: 200-800°C,   :  0.03-0.12 m, and   : 0.1-1 mm).  This demonstrates that the trends 

observed in      are not highly sensitive to the configuration of the fin, thus these findings can be used 

to approximate the fin performance for any of three basic fin configurations: the double fin with a heat 

pipe (as was used for     ), the single fin with no heat pipe, and the single fin with a heat pipe.  

Lastly, the fin efficiency was also evaluated for this design space since it is another common way 

to characterize fin performance.  Fin efficiency is typically defined as the fraction of heat radiated by the 

fin under consideration to the heat radiated from an ideal fin (i.e., isothermal at the fin-root 
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that was used in the development of     .  Figure 5.10 shows contour plots of fin efficiency at three 

different fin root temperatures.  As the fin length increases, the fin efficiency decreases because the fin 

is less isothermal.  The fin efficiency increases with fin thickness because the conductive thermal 

resistance is reduced, which increases the heat flux along the fin and thus surface temperature at 

distances further from the root.  With increasing root temperatures, the fin efficiency decreases because 

a larger temperature gradient is required to supply the increased radiation, so the fin surface near the 

root is much hotter than the fin tip.  A 3-dimensional fourth order polynomial for fin efficiency is also 

provided in Appendix Table A.3.   

 

Figure 5.10: Carbon fiber fin efficiency versus fin thickness and length for fins with: thermal conductivity 
of 800 W/m-K, emissivity of 0.78, and root temperatures as noted 
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The analytical formulation of the carbon-fiber fin described in this section can be easily 

incorporated into larger heat rejection subsystem models, as demonstrated in the following sections.   

5.3 Thermal Resistance Modeling of Heat Transfer Devices 

A thermal resistance model is analogous to an electrical resistance model, where current is 

replaced with heat flux.  This is a cost-effective way to predict the thermal performance of a system 

when the heat transport path can be reasonably modeled by a collection of series or parallel flow paths.  

This method is especially useful in early design stages of a thermal component where high-fidelity finite 

element simulations are not yet feasible or affordable.  In the case of the HRS, the heat transport from 

the coolant to each heat pipe can be modeled by a series of convective or conductive thermal 

resistances and then a set of parallel paths of conductive and radiative thermal resistances from the fin 

root to the fin surfaces.  

Figure 5.11 shows the basic components of an NEP-HRS including the coolant pipe, coolant 

pump, coolant accumulator, hot-end heat exchanger and cold-end radiator.  Figure 5.12 shows a single 

radiator-heat-pipe section with the coolant pipe, heat pipe annulus evaporator, heat pipe condenser 

and radiating fins.  The heat pipe annulus evaporator concept was developed by Advanced Cooling 

Technologies presented in Ref. [79].  Figure 5.13 shows the thermal resistances from the coolant to the 

fin surfaces.  Equations for conductive, convective and radiative thermal resistances are given in Table 

5.1.  The radiation heat transfer coefficient,   , given in the table is valid when the surface temperature 

is much greater than the environmental temperature, which is applicable for most spacecraft 

applications where the environmental temperature is near absolute zero.  This heat transfer coefficient 

depends on only the fin surface emissivity and temperature.  For fins with large surface temperature 

gradients, the error in    can be reduced by averaging the surface temperatures or subdividing the fin 

into small isothermal elements.  Chapter 4 demonstrated that the drop in surface temperature along an 



149 

8 cm carbon fiber fin was approximately 300°C when the root temperature was near 600°C.  To avoid 

complications associated with estimating   , the heat transfer in the fin was modeled using the 

analytical fin heat rejection formulation,     , developed in Section 5.2.   

 

Figure 5.11: Schematic of HRS showing the hot-end heat exchanger, the coolant pump, coolant pipe and 
radiator 
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Figure 5.12: Schematic of the interface between the coolant and radiator, showing a single heat pipe 
and radiating fins 

 

 

Figure 5.13: Thermal resistance diagram of the heat transport path from the coolant to the fin surfaces 
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Table 5.1: Equations of Thermal Resistances for Conduction, Convection and Radiation 

 

The details of the HRS thermal resistance model are described below.   

5.3.1 Heat Rejection Subsystem Model 

The components of the HRS included in this subsystem model were the coolant pipe, coolant 

fluid, coolant pump, heat pipes, radiating fins, and structural radiator frame.  The hot-end heat 

exchanger and coolant accumulator were not included in the HRS system boundary since they interact 

with the power converter and that is not in the scope for this project. 

The thermal resistance model calculates the mass of the HRS for the specified design point.  The 

model determines how many radiator sections, as shown in Figure 5.12, are required to reject the 

specified amount of waste heat. Radiator sections are added one by one until all of the waste heat has 

been rejected, and then the total mass is calculated. 
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In the following sections, the symbols D, R, A, L, t,   , u,  ̇,  ̇,   ,   ,  ,  , T, and Q represent 

diameter, thermal resistance (or radius where specified), area, length, thickness, hydraulic diameter, 

velocity, mass flow rate, volumetric flow rate, dynamic viscosity, heat capacity, thermal conductivity, 

density, temperature, and heat flux respectively.  The subscripts CP, C, P, HPE, HPC, HPCW, f, B, and Fr 

correspond to the coolant pipe, coolant, pump, heat pipe evaporator, heat pipe condenser, heat pipe 

condenser wall, fins, braze, and radiator support frame respectively  

5.3.1.1 HRS Thermal Resistance Model 

To calculate the heat rejected from each radiator-heat-pipe section, the thermal resistance from 

the coolant to the fin root is calculated. From the fin root,      was used to calculate the simultaneous 

heat conduction through and radiation from the fin. The heat transfer from the coolant to the fin root is 

assumed to be a series of one-dimensional conduction and convection steps, as shown in the thermal 

resistance diagram in Figure 5.13.  Equation 5-2 describes the series thermal resistance model up to the 

fin root. 

  =                 𝑊   𝐵                                     (5-2) 

Where:   

   is the convective thermal resistance between coolant and heat pipe evaporator.  Note that the 

Nusselt Number correlation given in Equation 5-7 is for turbulent liquid metal flow in a pipe with 

constant wall heat flux [92].  This was the closest Nusselt Number approximation to this problem. 

  =
 

    
                                                                             (5-3) 

  =                                                                                (5-4) 

  =
     

  
                                                                                 (5-5) 
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  =                                                                                   (5-6) 

  =      0 0                                                          (5-7) 

  =
    

  
                                                                              (5-8) 

  =
     

  
                                                                          (5-9) 

  =
 ̇

     
                                                                        (5-10) 

   =
    

 

4
                                                                             (5-11) 

    is the conductive thermal resistance of the cylindrical coolant pipe wall: 

   =
    ln (

    
    

)

                
                                                             (5-12) 

Where      and      are the inner and outer radii of the coolant pipe respectively.   

    is the convective thermal resistance of heat pipe working fluid.  Heat pipes are designed to operate 

isothermally, so this resistance is assumed to be negligible.   

   =
 

             
                                                                 (5-13) 

    𝑊 is the conductive thermal resistance of the cylindrical heat pipe condenser wall: 

   =
     ln (

     
     

)

                 
                                                              (5-14) 

Where       and       are the inner and outer radii of the heat pipe condenser respectively.   

 𝐵 is the conductive thermal resistance of the braze layer.  It is assumed that the braze joint covers half 

of the heat pipe diameter. 

 𝐵 =
  

              
                                                                 (5-15) 

Equation 5-16 is the steady state heat flow into the fin root, where T1 is unknown.   
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   =
  −  

  
                                                                           (5-16) 

To solve for T1, and thus    , Equation 1-18 must be balanced by the heat rejected by the fins 

using Equation 5-17, which accounts for the length of the heat pipe condenser and both fins that are 

attached to the heat pipe. The fin-root temperature T1 is determined by using a root-finding solver to 

find the temperature that satisfies    =         .  Having solved for T1, the total heat rejected from 

the current heat pipe was calculated using Equation 5-17 

         =            (        )                                           (5-17) 

Once the amount of heat rejected from that heat pipe was determined, the coolant 

temperature and quantity of remaining waste heat was updated. The temperature of the coolant 

decreases as heat is rejected with each successive heat pipe, as given in Equations 5-18 and 5-19 where 

the superscript i is for the current heat pipe. With the updated coolant temperature (Equation 5-19), 

radiator-heat-pipe sections were added in a loop until the current value of the remaining waste heat 

was less than 100 W. 

∆  
 =

𝑄       

 ̇  
                                                                  (5-18) 

  
   =   

  ∆  
                                                               (5-19) 

 𝑤   𝑒
   =  𝑤   𝑒

          
                                                  (5-20) 

Once the heat rejection loop was complete, the pressure drop through the coolant pipe is 

calculated using the Darcy–Weisbach Relation (Equation 5-21).  The Darcy friction factor,  , was 

calculated using the Swamee-Jain approximation for a full-flowing circular pipe.  The required pumping 

power was calculated using Equation 5-22 and was used later as a constraint in the mass optimization 

analysis. 

∆ =
         

 

    
                                                                     (5-21) 

  =     ̇∆                                                                       (5-22) 
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The final step in the HRS model was to calculate the total subsystem mass. The masses of the 

coolant, coolant pipe, heat pipes, and carbon fiber fins are all calculated directly using the dimensions 

and densities of the materials. A structural frame with a mass of 30% of the radiator mass was also 

added. The pump mass was estimated using the relationship given in Equation 5-23, which is based on 

experimental data of liquid metal electromagnetic induction pumps [55].   

   ∆   ̇ =           0−  ∆   ̇    0                              (5-23) 

5.3.1.2 Thermal Resistance Model Validation 

Validating the physics of the thermal resistance model could be accomplished by comparisons 

with experimental data or with a finite element simulation of the entire HRS. Neither experimental nor 

finite element simulation data was available. A high-fidelity HRS finite element model can be built, but 

was out of scope for this work. John Siamidis at NASA Glenn Research Center has built finite element 

models for low-temperature NEP-HRS’s [26][28], so future work could involve collaboration with his 

group to validate the thermal resistance model developed here. 

In the absence of system data, limiting cases can be tested to ensure the thermal resistance 

model produces the expected trends. For a given system, increasing the coolant flow rate should 

decrease the coolant temperature drop along the radiator, the number of heat pipes, and the total 

radiator area, while increasing the coolant pressure drop. Figure 5.14 shows these trends for a system 

with coolant pipe diameter of 4 cm and a fin length and thickness of 8 cm and 0.3 mm respectively. The 

pressure drop increases with approximately the square of coolant flow rate as expected from Equation 

5-22. Also, the coolant temperature drop across the radiator tends to zero with increasing flow rates. 

This is because the coolant heat flux is higher with increased flow rates while the total waste heat 

dissipated by the radiator remains constant, as given by Equation 5-24. 

 𝑤   𝑒 =   ̇     ∆                                                             (5-24) 
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At the extreme of near-infinite coolant flow rate, the coolant would be isothermal, which would 

maximize the radiator surface temperature, achieving high fin efficiencies. High flow rates are not 

desirable from a system perspective due to tradeoffs with pumping power and mass. Above a coolant 

flow rate of about 4.6 kg/s, the pumping power consumes more than 5% of the electric power produced 

by the engine, which is undesirable from an efficiency standpoint. As the magnitude of the slope of the 

coolant temperature drop starts decreasing near   ̇ =1.5 kg/s, so does the magnitude of the slope of the 

number of heat pipes and radiator area. For a given amount of rejected heat, when the coolant 

temperature drop is smaller, the total number of heat pipes is smaller because more of the radiator is 

hotter, increasing the efficiency of the fin radiation. 

 

  

Figure 5.14: Coolant temperature and pressure drops, number of required heat pipes, and total radiator 
area (projected area, which is half of the total radiating surface) versus coolant mass flow rate for the 

specified HRS 

Figure 5.15 shows the HRS mass versus fin length for a system with a coolant flow rate of 1.5 

kg/s, coolant pipe diameter of 4 cm and fin thickness of 0.3 mm. As expected, there is a minimum near 8 

cm. The pump mass stays constant and coolant outlet temperature remain nearly constant as expected 

from Equation 5-24. The number of heat pipes decreases with increasing fin length because more heat 
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gets rejected per heat pipe. Even though the number of heat pipes decreases, the radiator length (i.e., 

length of coolant pipe interfacing with the heat pipes) increases steadily. The mass of the coolant, 

coolant pipe, heat pipe evaporators and fins increase with radiator length. So as the fin length increases, 

there is a tradeoff between fewer heat pipes and greater heat transport mass that balances near a fin 

length of 6 cm. 

 

Figure 5.15: HRS mass and coolant outlet temperature versus fin length for the specified HRS 

5.3.2 HRS Mass Optimization 

Various HRS performance measures can be optimized using the thermal resistance subsystem 

model described above, including mass, area, and total radiator fin efficiency. The completion of the 

thermal resistance model was one function evaluation in the optimization study. The goal of this 

optimization study was to minimize the HRS mass objective function, given in Equation 5-25. 

Four constraints were imposed on the design: 1) the pumping power may not exceed 5% of the 

total electric power generated by the power conversion system, Equation 5-26; 2) the total length of the 

radiator must be less than 100 m, Equation 5-27; 3) the coolant outlet temperature must not be less 

than 300 K below the coolant inlet temperature, Equation 5-28; and 4) the coolant pressure drop must 
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be below 400 kPa due to the limitations of the coolant pump, Equation 5-29. The coolant pumping 

power was limited because the pump is powered by the electric power generated by the conversion 

system itself, so there must be a significant net power output from the conversion system to power the 

electric thrusters. The radiator length was limited due to spacecraft vehicle size and construction 

constraints. The coolant pump, which was assumed to be an Annular Linear Induction Pump (ALIP), can 

generate NaK mass flow rates in the range of 1-1.5 kg/s at pressures below 400 kPa [91]. The ALIP pump 

was designed for NASA during the JIMO project for the purpose of pumping NaK coolant in an NEP HRS 

[91]. 

      ̅  ̅ =                          𝐵                           (5-25) 

    ̅  ̅ =
    ̅  ̅ 

    
 0 0  0                                                        (5-26) 

    ̅  ̅ =      ̅  ̅   00  0                                                     (5-27) 

    ̅  ̅ =      𝑒   ̅       𝑒   ̅  ̅    00  0                                           (5-28) 

 4  ̅  ̅ = ∆          ̅  ̅   00  0                                                  (5-29) 

Where      is the total HRS mass,    is the mass of the component i,    is a constraint,  ̅ is the set of 

design variables,  ̅ is the set of HRS parameters,    is the power consumed by the pump,   𝑒 is the 

power generated by the conversion cycle,     is the length of the radiator-coolant heat exchanger, 

    𝑒  and      𝑒  are the coolant temperatures at the radiator inlet and outlet respectively, and 

∆         is the coolant pressure drop through the radiator-coolant heat exchanger. 

Many subsystem parameters can be selected as design variables; however, four were selected 

for this HRS optimization study.  The design variables ( ̅) included: coolant mass flow rate ( ̇ ), coolant 

pipe diameter (   ), fin length (  ), and fin thickness (  ).  The design variables and their respective 

bounds are listed in Table 5.2.  The coolant flow rate is limited by the capacity of the current state-of-
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the-art liquid metal pumps.  Limits on the coolant transport pipe diameter are set based on typical HRS 

coolant pipe dimensions, which are also compatible with the ALIP pump. The fin length and thickness 

limits are set based on what is expected to be reasonable based on the fin geometry optimization 

conducted in Chapter 3.  The input parameters ( ̅) are geometric and operational parameters that are 

set for each test case.  These parameters are given in Table 5.3.  Typical values for these parameters 

were collected from the literature [26]. 

The coolant pipe and heat pipe were assumed to be stainless steel because it can be used at 900 

K and is less dense than refractory metals.  The annulus heat pipe evaporator had a radius 1.5 cm 

greater than the coolant pipe to provide space for the wick material, which was based on the Advanced 

Cooling Technologies design [79].  The heat pipe condenser was assumed to be 0.1905 cm (0.75 inch) in 

diameter and was filled 5% by volume with sodium working fluid.  The wall thicknesses for the coolant 

pipe, heat pipe evaporator and condenser were assumed to be 0.5 mm. 

Table 5.2. Design Variables and their Bounds 

Design Variables ( ̅) Bounds 

    ̇  (kg/s) 1-1.5 

      (cm) 2-5 

      (cm) 3-12 

 4    (mm) 0.1-1 
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Table 5.3. Fixed Input Parameters ( ̅) 

Material Properties (coolant, pipe, heat pipe, braze, fin) 

Density ( )  

Thermal Conductivity (k) (typ. values) 

Heat Capacity (coolant only) (  )  

Viscosity (coolant only) ( )  

Operational 

Power Conversion Cycle Efficiency ( )  

Power Generated by Cycle (  𝑒 ) *depends on 
test case Waste Heat ( 𝑤   𝑒) 

Coolant Max Temperature (    𝑒 )  

ALIP Coolant Pump Efficiency (  ) 0.15 

Geometric 

Circular Coolant Pipe   

Coolant Pipe Wall Thickness ( 𝑤) 0.5 mm 

HP Annulus Evaporator Diameter (    )    +3 cm 

HP Condenser Diameter (   ) 2 cm 

HP Condenser Length (    ) 2 m 

HP Wall Thickness ( 𝑤) 0.5 mm 

HRS Configuration: heat pipes aligned parallel to 
each other, radiating fins view only space 

 

5.3.2.1 Optimization Methods 

Two optimization software packages, Matlab and ModelCenter, were used to solve this 

constrained HRS mass minimization problem. Matlab’s optimization toolbox offers several algorithms 

including a global search genetic algorithm tool, ga, and several gradient-based tools. In general, genetic 

algorithms are used for global searches because they use heuristic sampling methods that make them 

much less vulnerable to local minima as compared with gradient-based methods. The basic steps of a 

genetic algorithm optimization tool are described in the Matlab documentation and include: picking an 

initial population of points across the design space, evaluating the objective and constraint functions, 

“mutating” the points to test how the objective function changes with the design variables, generating a 

new generation with more of the population placed in regions with promising objective values, and 

iterating that process until the population converges on the solution [54]. 
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In theory, genetic algorithm tools should converge to the global minimum, but in practice it is 

possible for the solution to converge to a local minimum if the design space sampling or mutation 

methods are not robust enough for the complexity or instability of the problem.  This is why genetic 

algorithm solvers do not guarantee finding the global optimum, even though they can typically find a 

near-optimal solution.  From near-optimal points, it may be possible to use a gradient-based solver to 

search locally and find an improved solution.  Running a genetic algorithm tool several times with 

different start points is a good way to validate that the optimum solution was found. 

In addition to the Matlab ga tool, the Phoenix Integration software called ModelCenter was 

used.  ModelCenter has 35 optimization tools that can be used for a wide variety of problems.  The tool 

that ModelCenter suggested for solving this constrained optimization was called Design Explorer, which 

uses surrogate models.  A surrogate model is an analytical approximation of the actual objective 

function obtained by fitting a curve to data sampled from the design space.  The basic steps in the 

Design Explorer tool in ModelCenter include sampling the design space, generating a surrogate model, 

optimizing the surrogate model, calculating the actual function value at the optimal point, and then 

iteratively refining the surrogate model until the optimal point over multiple iterations converges.  In 

addition to Design Explorer, ModelCenter has numerous genetic algorithm tools that are suitable for 

solving this problem. Among the tools described here, a near-optimal point was found and validated. 

5.3.3 Optimization Method Verification and Validation 

The optimization verification was demonstrated by showing convergence of the objective 

function and constraints using the Design Explorer tool, as shown in Figure 5.16.  A basic validation of 

the optimal solution was achieved by using multiple optimization tools and start points, and 

demonstrating that they each found very similar solutions.  This validation is shown in the results 

section. 
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Figure 5.16: Convergence plot for a ModelCenter Design Explorer optimization simulation 

 

5.3.4 Test Case Selection 

Lee Mason, branch chief of the Thermal Energy Conversion Branch at the NASA Glenn Research 

Center, reports that NASA’s Project Prometheus [31][58] helped to identify test cases that are aligned 

with NASA’s interests.  Table 5.4 shows power conversion systems that could be considered for different 

mission timeframes, assuming that increasing power will be desired with time. A mid-term 300 kWe 

potassium-Rankine (k-R) system was selected for the test case because it operates at high temperatures 

and scales very well at high power levels. These attributes make the k-R system an exciting candidate for 

incorporating a high-temperature heat rejection system.   
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Table 5.4. Candidate Power Systems for Various Mission Timeframes 

Mission 
Timeframe 

Candidate Power Systems for 
different Power Classes 

Reject Temp 
(K) 

TRL 

  Up to 100 kWe   
 

2
0

2
0

's
 SiGe TE (SP-100) 800 6-9 

CBC 1200K (JIMO) 450 5-6 

K-Rankine 1500K 900 2-3 
  50 to 500 kWe   

 

2
0

3
0

's
 CBC 1200K (JIMO) 450 5-6 

K-Rankine 1500K 900 2-3 

MHD 600 1-2 

  2 to 10 MWe   
 

2
0

4
0

's
 CBC 1200K (JIMO) 450 5-6 

K-Rankine 1500K 900 2-3 

MHD 600 1-2 

 

5.3.5 Test Case Results 

In total, nine optimization simulations were run: five to find the minimum HRS mass of the test 

case, and four investigating other conditions.  The five mass optimization simulations were run using 

various optimization tools and start points.  Table 5.5 summarizes the results. 

All five simulations found approximately the same solution, which validates that the true global 

solution is near these points.  Simulations 1-3 used Design Explorer with different start points. The 

ModelCenter genetic algorithm tool called Darwin was used for Simulation 4, and Matlab ga was used 

for Simulation 5.  Design Explorer required no more than 3 hours to converge for every simulation, while 

the two genetic algorithm tools required over ten times the computational time.  This demonstrates the 

advantage of surrogate models over genetic algorithms.  Due to the efficiency with which Design 

Explorer found near-optimal points, it was selected as the primary tool. 

Simulation 4 found the most-optimal point for the coolant mass flow rate of 1.50 kg/s, coolant 

pipe diameter of 2.7 cm, fin length of 6.6 cm (i.e., heat pipe spacing of 13.2 cm), and fin effective 
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thickness of 0.395 mm.  This resulted in a HRS mass of 224.49 kg, a total radiator area (twice the 

radiator footprint) of 77.66 m2, and a radiator efficiency of 30.28%. Radiator efficiency is the ratio of 

waste heat load to the power that could be radiated from the area of the radiator if it were isothermal 

at the maximum coolant temperature.  Figure 5.17 shows a contour plot of the HRS mass versus x3 and 

x4 where x1 and x2 are held constant at the optimal values of 1.5 kg/s and 0.027 m respectively.  

Visualizing the HRS mass response surface helps to confirm that that the location of the optimal solution 

was identified by Simulation 4.  The complex shape of the contours shows why global search algorithms 

are required to find the true minimum.  The area within the minimum contour indicates that there is a 

set of suitable solutions that yield near-optimal designs. 
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Table 5.5: Summary of Optimization Results for Simulations 1-5 

Simulation Number 1 2 3 4 5 

Optimization Tool Design Exp. Design Exp. Design Exp. Darwin Matlab ga 

Power Generated [kWe] 300 300 300 300 300 

Waste Heat Load [kWt] 700 700 700 700 700 

Objective min Mass min Mass min Mass min Mass min Mass 

Simulation Time [hr] 1.1 1.85 1.6 >50 >80 

Number of Iterations Req'd 156 241 206 >5,000 >10,000 

Initial Conditions 
     Mass flow rate [kg/s] 1.25 1 1.5 1.5 N/A 

Coolant Pipe Diameter [m] 0.04 0.02 0.05 0.03 N/A 

Fin Length [m] 0.08 0.04 0.12 0.07 N/A 

Fin Thickness [mm] 0.3 0.3 1 0.4 N/A 

Optimal Solution 
     Mass flow rate [kg/s] 1.479 1.500 1.500 1.450 1.500 

Coolant Pipe Diameter [m] 0.027 0.027 0.027 0.027 0.027 

Fin Length [m] 0.074 0.070 0.069 0.066 0.063 

Fin Thickness [mm] 0.447 0.406 0.372 0.395 0.395 

HRS Total Mass [kg] 226.90 225.08 225.68 224.49 226.60 

Constraint Values 
     % pump/generated power 1.78 1.72 1.65 1.77 1.51 

Radiator Length [m] 10.38 10.23 10.38 9.96 9.76 

ΔT [K] 241.13 237.64 237.57 237.70 237.80 

ΔP [kPa] 202.38 193.54 185.22 198.79 169.82 

Other HRS Results 
     Radiator Efficiency [%] 29.06 29.47 29.05 30.28 30.91 

Number of Heat Pipes 140 146 150 152 156 

Radiator Area [m2] 41.51 40.93 41.52 39.83 39.02 

Radiating Surface Area [m2]* 83.02 81.85 83.04 79.66 78.04 

Radiator Areal Density [kg/m2] 1.94 1.95 1.91 2.01 2.07 

HRS Areal Density [kg/m2] 2.73 2.75 2.72 2.82 2.90 

HRS Specific Power [kWt/kg] 3.09 3.11 3.10 3.12 3.09 

Effective Rad Temperature [K] 660.79 663.13 660.75 667.64 671.08 

* Twice the radiator footprint   
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Figure 5.17: Contour plot of HRS Mass versus x3 and x4, where x1 and x2 are held constant at the optimal 
values of 1.5 kg/s and 0.027 m respectively, showing the optimal design solution for the 300 kWe power 

system test case 

The HRS areal density, which is the ratio of HRS mass to radiating surface area, was 2.28 kg/m2, 

while the radiator areal density, which accounted for the heat pipes, fins and radiator support structure, 

was 2.01 kg/m2.  This meets NASA’s HRS areal density target of 2-4 kg/m2.  Figure 5.18 is a pie chart 

showing the distribution of component masses for the optimum design (Simulation 4).  The heat pipe 

condensers were the single most-massive component in the HRS, followed by the frame and coolant 

pump.  Future studies may be directed toward in exploring ways to reduce the heat pipe condenser 

mass, by either decreasing the diameter or using less-dense materials. 
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Figure 5.18: The mass distribution of the HRS components in the minimum mass design for the 300 kWe, 
potassium-Rankine power conversion cycle test case 

For most simulations, the optimum coolant mass flow rate, x1, was a boundary solution while 

the others design variables had interior point solutions. At the optimum, none of the constraints were 

active. Since the optimum solution included the upper limit on x1, the ALIP pump was the biggest 

limiting factor. Future development of the ALIP pumps may allow for increased capacity.  To test how 

advanced pumps could affect the predicted minimum mass HRS design, the limits on x1 and x2 were 

widened and the results are given in Table 5.6, Simulation 6. In this case, the minimum mass was not 

limited by any constraint or design variable boundary, so this was the fully unconstrained minimum 

mass solution.  The HRS minimum mass for this case was 194.7 kg, which was about 30 kg less than the 

original case. 

Simulation 7 was run to find the design point that maximized the radiator efficiency. The 

optimum point, as given in Table 5.6, Simulation 7, resulted in a radiator efficiency of 40.1%, which was 

10% higher than the minimum mass solution.  This design point had a total HRS mass of 324.0 kg and, as 

expected, was constrained by pumping power and the upper bound on coolant flow rate.  Maximum 

radiator efficiency occurs when the radiator surface is hottest, so high coolant flow rates are needed.  
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Total HRS Mass: 224.5 kg
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The total radiator efficiency can be increased by using higher conductivity fins and lowering the thermal 

resistances even further. 

Simulation 8 gives the optimum solution for minimizing HRS mass for a 100 kWe power 

conversion system with 30% efficiency, with the same constraints and design variable limits as 

Simulations 1-5.  The mass was 80.42 kg, approximately one third the mass of the 300 kWe system, but 

the solution had a higher radiator efficiency due to the smaller coolant temperature drop.  Simulation 9 

was built with similar conditions as a study described in Ref. [26], except that the coolant inlet 

temperature used here was 900 K as compared with 556 K in the study.  This was evaluated to 

demonstrate the significant mass savings achieved just by increasing the reject temperature.  Since the 

lower-temperature study applied slightly different assumptions than this study, an order of magnitude 

comparison was made.  To reject 364 kWt, the HRS in the previous study was predicted to be 854 kg 

with a total radiating area of 170 m2, and an HRS areal density of 5 kg/m2.  Simulation 9 shows that a 

high-temperature carbon fiber radiator can achieve the same heat rejection with a 113 kg HRS that has a 

radiating area of 34.8 m2, and an areal density of 3.25 kg/m2. 
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Table 5.6: Summary of Optimization Results for Simulations 6-9 

Simulation Number 6 7 8 9 

Optimization Tool Design Exp. Design Exp. Design Exp. Design Exp. 

Power Generated [kWe] 300 300 100 100 

Waste Heat Load [kWt] 700 700 233.3 364 

Objective min Mass max η_rad min Mass min Mass 

Simulation Time [hr] 2.4 1.3 0.9 0.55 

Number of Iterations Req'd 261 77 359 126 

Initial Conditions 
    Mass flow rate [kg/s] 2 1.5 1.25 1.28 

Coolant Pipe Diameter [m] 0.04 0.03 0.04 0.023 

Fin Length [m] 0.08 0.07 0.08 0.06 

Fin Thickness [mm] 0.4 0.4 0.3 0.4 

Optimal Solution 
    Mass flow rate [kg/s] 4.636 1.500 1.356 1.280 

Coolant Pipe Diameter [m] 0.045 0.021 0.020 0.023 

Fin Length [m] 0.052 0.034 0.054 0.070 

Fin Thickness [mm] 0.492 0.947 0.467 0.420 

HRS Total Mass [kg] 194.66 324.03 80.42 113.15 

Constraint Values 
    % pump/generated power 1.74 4.95 3.99 3.61 

Radiator Length [m] 5.84 7.52 2.16 4.36 

ΔT [K] 76.90 237.77 87.64 144.78 

ΔP [kPa] 63.08 556.31 165.28 158.58 

Other HRS Results         

Radiator Efficiency [%] 51.63 40.11 46.62 36.00 

Number of Heat Pipes 112 222 40 62 

Radiator Area [m2] 23.36 30.07 8.63 17.42 

Radiating Surface Area [m2]* 46.73 60.15 17.25 34.85 

Radiator Areal Density [kg/m2] 2.53 3.90 2.34 1.94 

HRS Areal Density [kg/m2] 4.17 5.39 4.66 3.25 

Specific Power [kWt/kg] 3.60 2.16 2.90 3.22 

Effective Rad Temperature [K] 762.90 716.23 743.67 697.15 

* Twice the radiator footprint     
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5.3.6 Conclusions 

A new model of the heat radiated from a fin was generated for our fin at high temperatures 

since the Chang model was not valid at our conditions. This model was accurate to within 6% for the 

following conditions: fin-root temperatures in the range of 400-800°C, fin lengths in the range of 3-12 

cm, and fin thicknesses in the range of 0.2-1 mm. A thermal resistance model of the HRS was built to 

predict the HRS mass and other performance measures for a given set of HRS test cases. This model was 

used in an optimization code that was built to minimize the total subsystem mass. A test case was 

selected for the optimization code that uses four HRS design variables. The four design variables were 

coolant mass flow rate, coolant pipe diameter, radiator fin length and thickness. For the test case of a 

300kWe potassium-Rankine power converter with a conversion efficiency of 30% and a cold-end 

temperature of 900 K, the minimum mass HRS was determined to be 224.5 kg. The values of the design 

variables at the optimum solution were: coolant mass flow rate of 1.499, coolant pipe diameter of 2.7 

cm, fin length of 6.6 cm and fin effective thickness of 0.395 mm. The total radiator area was 77.66 m2, 

and the HRS areal density was 2.28 kg/m2, which meets NASA’s HRS areal density goal. This solution was 

limited by the coolant flow rate, and by the capacity of the ALIP pumps. If higher capacity pumps are 

developed, this mass could be reduced further. The mass of the HRS was dominated by the heat pipe 

condensers. Future work should include validating the thermal resistances using experimental or finite 

element data, designing a frame and deployment mechanism to replace the assumption of 30% of the 

radiator mass, and investigating ways to reduce the heat pipe mass.    
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CHAPTER 6 

6 CONCLUSIONS 

The four studies presented in this work collectively demonstrate that a carbon fiber heat 

radiator offers many benefits over traditional metallic and composite radiators.  This research elevated 

the technology readiness level of the carbon fiber fin from 2 to 4.  Studying various aspects of the fin 

concept has provided a thorough understanding of the important design considerations.   

A micro-scale model of radiative heat transfer was used to explore the thermal radiation from 

an array of fibers.  This model and its results were presented in Chapter 2.  Calculations show that: 

(1) The dependence of the effective emissivity of a carbon fiber fin, that is the total hemispherical 

emissivity of the projected fin surface area, on fiber volume fraction was investigated using a 

Monte Carlo Ray Tracing model.  It was determined that the maximum effective emissivity 

occurs at the smallest fiber volume fraction that is still optically thick, which occurs between 15-

20% for a 0.5 mm thick array of uniformly packed fibers.  As the fiber volume fraction decreases, 

scattering among the fibers increases the amount of radiation that escapes to space as 

compared to a flat fin surface, thereby increasing the effective emissivity of the fin.  

(2) This increase is quite significant since, for example, fibers with a surface emissivity of 0.7 will 

have an effective emissivity of 0.83 when packed in an array with about 13% fiber volume 

fraction.  

(3) The fiber volume fraction of the 2,000 count fiber tows supplied by Mitsubishi is about 12%, 

which is close to the ideal packing density for maximizing effective emissivity as predicted by the 

MCRT model.  

The design and fabrication of test articles was presented in Chapter 3.  The experiments showed 

that: 
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(1) In this proof-of-concept stage, a preliminary fin design was developed based on maximizing 

specific heat rejection using assumed thermal properties of the fin and heat pipe.  

(2)  Protocols were developed for weaving the carbon fiber tows and for joining the fiber fin with 

the heat pipe using a titanium-copper-silver braze foil.   

(3) By collaborating with a textile manufacturer, it was proven that the high conductivity carbon 

fibers can be woven using automated, mass-production looms.  This shows that production of 

the fin material can be readily scaled up.   

(4) The brazing method was successful for thin fiber fins, but a proper brazing facility is required for 

consistent brazing with thick fins due to the limitations of the heating element in the test setup 

available for this work.   

(5) The carbon fiber fin technology readiness level was increased from 2 to 4, which required 

validation of the fin in the environment.   

Measurements of material properties of carbon fibers and fin performance were presented in 

Chapter 4.  The findings included: 

(1) A measurement of the spectral emissivity showed only a slight dependence on wavelength, 

which means that the fibers are nearly gray bodies.  The emissivity at room temperature 

was 0.74, and the emissivity at 600°C was predicted to be about 0.78.   

(2) The measured emissivity was used to extract temperature data from IR images of the fins 

during operation.  By comparing thermal models of the fin with surface temperature profiles 

extracted from IR images, the thermal conductivity of the bulk carbon fiber was determined 

to be 707±100W/m-K.  With estimates of the bulk carbon fiber emissivity and thermal 

conductivity, models using these property values were used to predict the fin performance 

over a broader range of fin configurations.   
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A system-level study of the applicability of the carbon-fiber radiators was presented in Chapter 

5.  The investigation demonstrated that: 

(1) An analytical approximation of the dependence of the heat radiated from a fin on fin length, 

thickness, and root temperature could be fit by a fourth order polynomial with an R2 value of 

0.9999.  This analytical approximation of the radiated power could then be incorporated into a 

larger, system-level model of the heat rejection subsystem used to design the radiator based on 

subsystem requirements.   

(2) A thermal resistance model of a heat rejection system appropriate for a high-temperature, high-

power nuclear-electric powered vehicle was built.  Given the heat load and power conversion 

system coolant temperature, this model predicts many heat rejection subsystem parameters 

including total mass, area, radiator fin efficiency, and coolant pumping power. 

(3) A constrained optimization was run to find the minimum mass heat rejection subsystem design 

for a test case using the thermal resistance model.  The selected test case was a 300 kWe, 

potassium-Rankine power conversion system generating 700 kWt of waste heat.   

(4) The optimal design point had a coolant flow rate of 1.5 kg/s, coolant pipe diameter of 2.7 cm, fin 

length of 6.6 cm, and fin thickness of 3.95 mm, which resulted in an HRS mass of 224.5 kg.  The 

fin length was slightly shorter than when the mass was optimized in Chapter 3 because there 

were other mass tradeoffs when considering all of the subsystem components.  In the fully 

unconstrained problem, the optimal solution had a coolant flow rate of 4.6 kg/s, coolant pipe 

diameter of 4.5 cm, fin length of 5.2 cm, and fin thickness of 4.9 mm, and resulted in an HRS 

mass of 194.6 kg.  This unconstrained design point could be feasible with advanced liquid metal 

pumps. 

(5)  The area required to reject 100 kW was compared with published results from a low-

temperature heat rejection subsystem for a nuclear-electric power conversion system.  For the 



174 

high-temperature carbon fiber radiator, 17 m2 was required compared to the 170 m2 radiator 

sized for the low-temperature system.   

(6) This lightweight, high-temperature radiator may be the key to enabling nuclear-electric power 

for space applications where maximizing efficiency is vital to mission feasibility.   
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CHAPTER 7 

7 FUTURE WORK 

If NASA chooses to use an electric power generator for power or propulsion, lightweight radiator designs 

will continue to be of significant interest.  Some of the areas for future work identified in Chapters 2-5 

include: 

Chapter 2:  

(1) Experimental validation of the prediction that the effective emissivity increases with decreasing 

fiber volume fraction as long as the fiber medium is optically thick.  This geometric effect could 

be tested using fibers made from material with a very-well characterized emissivity, such as an 

oxidized metal.   

(2) The model could also be run with randomly-packed fibers to see how the packing arrangement 

affects the effective emissivity’s dependence on fiber volume fraction.  This model would 

require a three-dimensional domain filled with fibers at random orientations.  Studies on fiber 

insulation using random fiber orientations was conducted by Raghu Arambakam, similar to 

[57][67].  These references can provide guidance on generating three-dimensional domains of 

randomly oriented fibers.     

Chapter 3: 

(1) One major issue encountered during the brazing trials with brazing the test articles in the 

brazing chamber at MSFC was non-uniform heating.  This was in large part due to the heater 

design and the limited power that could be supplied to the samples.  Future work could involve 

developing a brazing protocol using a proper brazing furnace (an inert gas furnace using argon 

and large enough for the sample).  Developing a heating protocol is an iterative process that 

involves selecting heating rates, heat soaks, and appropriate temperatures to melt the braze 

uniformly.  Each brazing application requires a heating protocol specific to the type and size of 



176 

the furnace and sample.  For example, increased sample heat capacity requires longer-duration 

heat soaks. 

(2) Fabricate test articles with longer sections of heat pipe to demonstrate functionality on a larger 

scale.  Fight hardware heat pipes may be anywhere from 2-10 m long, so laboratory testing of 

larger test articles should employ at least 2 m long heat pipes.   

(3) Commission TEAM Inc., or another textile manufacturer, to weave a sample using K13C2U as the 

cross tows. 

(4) Evaluate options for coating the fins if they will be used in atomic oxygen or if a higher emissivity 

is desired.  An ideal coating would protect the fibers from atomic oxygen, increase the effective 

emissivity of the fin, and not add a significant amount of mass.  Options may include chemical 

vapor deposited ceramics.   

(5) Set criteria about the joint strength based on launch and mission loads.  Analyze the strength of 

the braze joint and modify accordingly.  This could involve using a different quantity of braze, or 

using a combination or foil and paste (to help fill the fiber voids), using a different amount of tie 

wires, or adding load-absorbing frames around the panels.   

Chapter 4: 

(1) Design cleaner tests for measuring the longitudinal and through-thickness thermal conductivity, 

and radiated power.  This could involve fabricating a test chamber with cooled walls that can 

approximate an isothermal enclosure, as well as using test articles with longer heat pipes so that 

thermal edge effects from the ends of the heat pipe are reduced. 

(2) Investigate whether the PAN cross tows have a significant effect on the power rejected by the 

fin for a given density of longitudinal pitch tows.  This can be done by testing textiles with PAN 

and pitch fiber cross tows and comparing the radiated power from the fin, or by measuring the 

through-thickness thermal conductivity of the two textiles.   
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(3) Explore in more detail the dependence of thermal conductivity on temperature for the bulk 

carbon fibers in the range of 300-800°C.  Repeat tests similar to those described in this work for 

more samples and at multiple temperatures.   Alternatively, direct measurement techniques, 

such as the guarded hot plate method, can be used to estimate the bulk property.   

(4) To demonstrate the versatility of the carbon fiber fin, a low-temperature test article can be 

fabricated and tested using a titanium-water heat pipe and an epoxy joint.  It is predicted that 

the maximum thermal conductivity of pitch carbon fibers is near 300 K, so there may be lower 

temperature heat rejection systems that could benefit from this type of fin.   

Chapter 5: 

(1) Validation of the thermal resistance model using a fully-coupled finite element model of the 

heat rejection system.  These finite element models are often built in Comsol Multiphysics or 

Thermal Desktop, as these packages offer extensive built-in thermal equations.   

(2)  Create a more general analytical formulation for the power rejected by a radiator fin that 

includes thermal conductivity and emissivity as free parameters (similar to Chang’s), suitable for 

high-temperature fins.   

(3) As the test case results demonstrated, the heat pipe condensers make up about 33 % of the HRS 

mass.  This result indicates an opportunity to reduce system mass by modifying the heat pipe 

materials or geometry.   

(4) Explore other applications that require lightweight heat transfer devices that could be enabled 

or improved by using high thermal conductivity carbon fiber instead of traditional materials.   

(5) When a space-based power conversion system is adopted by a mission and approaches design 

phases, the thermal resistance model of the heat rejection subsystem could be used to help 

evaluate fin material and configuration using the specifics of the application. 
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(6) Evaluate deployment mechanisms to identify ways to take advantage of the flexibility of carbon 

fiber radiators to save even more mass versus standard rigid radiator panels.  An alternative to 

the panel design could involve rolling the radiator in its stowed configuration.   
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APPENDIX 

POLYNOMIAL COEFFICIENTS FOR THE FIN PERFORMANCE MODELS DEVELOPED IN CHAPTER 5 

 

Table A.1: Polynomial coefficients for the 3-D, 4th order polynomial fit of the radiated power data, 

    (        )=(W/m heat pipe), from a heat pipe with two parallel fins, where δ=L/0.12, L is fin length 

(m), ϕ=TH/0.001, TH is the total thickness of two fins (m), θ=T/1073.15, and T is root temperature (K). 

First Order 
Terms 

Coefficients 
Second 
Order 
Terms 

Coefficients 
Third Order 

Terms 
Coefficients 

Fourth 
Order 
Terms 

Coefficients 

1 -356.1 δϕ 720.19 δ
 3
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 4
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Table A.2: Polynomial coefficients for the 3-D, 4th order polynomial fit of the radiated power, 

    (        )=(W/m heat pipe), data from a single fin with no heat pipe, where =L/0.12, L is fin length 

(m), ϕ=TH/0.001, TH is the total thickness of the fin (m), θ=T/1073.15, and T is root temperature (K). 

First Order 
Terms 

Coefficients 
Second 
Order 
Terms 

Coefficients 
Third 
Order 
Terms 

Coefficients 
Fourth 
Order 
Terms 

Coefficients 

1 13717.14 δϕ 9483.53 δ
3
 -9275.64 δ

4
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Table A.3: Polynomial coefficients for the 3-D, 4th order polynomial fit of the fin efficiency data, 

    (        )=(W/m heat pipe), from a heat pipe with two parallel fins, where =L/0.12, L is fin length 

(m), ϕ=TH/0.001, TH is the total thickness of two fins (m), θ=T/1073.15, and T is root temperature (K). 

First Order 
Terms 

Coefficients 
Second 
Order 
Terms 

Coefficients 
Third Order 

Terms 
Coefficients 

Fourth 
Order 
Terms 

Coefficients 

1 0.820672 δϕ 1.777401 δ
3
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4
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