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ABSTRACT 

UNDERSTANDING THE TRANSCRIPTIONAL REGULATION OF SECONDARY 

CELL WALL BIOSYNTHESIS IN THE MODEL GRASS Brachypodium distachyon 

 

SEPTEMBER 2014 

 

PUBUDU P HANDAKUMBURA, B.S., UNIVERSITY OF COLOMBO, SRI LANKA 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Samuel P. Hazen 

 

 Secondary cell wall synthesis occurs in specialized cell types following 

completion of cell enlargement. By virtue of mechanical strength provided by a wall 

thickened with cellulose, hemicelluloses, and lignin, these cells can function as water-

conducting vessels and provide structural support. Several transcription factor families 

regulate genes encoding wall synthesis enzymes. Certain NAC and MYB proteins 

directly bind upstream of structural genes and other transcription factors. The most 

detailed model of this regulatory network is established predominantly for a eudicot, 

Arabidopsis thaliana. In grasses, both the patterning and the composition of secondary 

cell walls are distinct from that of eudicots. These differences suggest transcriptional 

regulation is similarly distinct. Putative rice and maize orthologs of several eudicot cell 

wall regulators genetically complement mutants of A. thaliana or result in wall defects 

when constitutively over-expressed; nevertheless, aside from maize ZmMYB31, 

switchgrass PvMYB4, and Brachypodium BdSWN5, function has not been tested in a 

grass. Similar to the seminal work conducted in A. thaliana, gene expression profiling in 
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maize, rice, and other grasses implicates additional genes as regulators. Characterization 

of these genes in a grass species will continue to elucidate the relationship between the 

transcription regulatory networks of eudicots and grasses. In the context of this 

dissertation two cell wall genes responsible for synthesizing cellulose in the secondary 

cell walls were characterized. Several MYBs, a NAC and a bZIP protein was found to 

interact with the cellulose gene promoters. A reverse genetics approach was used to 

functionally characterize two of those regulators, MYB48 and GNRF. MYB48 is the first 

grass specific cell wall regulator found to positively regulate cell wall biosynthesis by 

binding to the cellulose and lignin gene promoters. It regulates above ground biomass in 

B. distachyon. GNRF, on the hand, unlike the characterized NAC proteins, was shown to 

repress cell wall biosynthesis. GNRF is also repressing flowering in B. distachyon, a 

novel regulatory function that has not been associated with the characterized NAC 

proteins to date. Further characterization of GNRF is likely to provide new insights into 

the pleiotropic regulatory roles of this protein. 
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CHAPTER 1 

INTRODUCTION 

 Increasing cost of obtaining finite fossil fuels and the climate changes associated 

with their use has created a global need for alternative and renewable energy sources. 

Biofuels derived from cellulosic biomass are currently being investigated as an 

alternative to meet these growing energy needs. Cellulosic biomass mainly consists of 

plant cell walls, which are a complex mixture of polysaccharides, lignin and proteins; the 

former being the raw material for biofuels production. Non-food perennial grass species 

such as switchgrass and Miscanthus spp. are being developed as next generation energy 

crops. To rapidly improve desirable feedstock properties, we need to first understand the 

nature of the plant cell wall and the genes involved in synthesizing cell wall components. 

Additionally, we need to examine how these genes are regulated to engineer cell walls 

with specific functions. Surprisingly little is known about grass cell wall biosynthesis and 

practically nothing about its regulation. Understanding cell wall biosynthesis and its 

regulation will enable us to modify crops to attain desirable feedstock properties. 

 

1.1 Plant cell walls  

 Plant cell walls are diverse in their polymer composition, which vary among plant 

species as well as cell types within a species. The primary cell wall, consisting mostly of 

cellulose, hemicelluloses, pectin, and proteins demarcates each plant cell. Secondary cell 

walls, composed mostly of cellulose, hemicelluloses, and lignin, are deposited between 

the plasma membrane and primary wall in specialized cell types following cessation of 

cell enlargement. Even though all plant cell walls contain a cell wall matrix made up of 
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cellulose microfibrils, hemicelluloses, and other cell wall polymers, there are significant 

differences in polymer types and their relative abundance between dicots and monocots 

(Vogel, 2008). For instance, relatively high amounts of xyloglucan, pectins, and 

structural proteins are typically present in the primary walls of eudicots, non-

commelinoid monocots, and gymnosperms. The commelinoid monocots like grasses 

contain glucuronoarabinoxylans, small quantities of pectin and structural proteins and 

high levels of hydroxycinnamates (Vogel, 2008). Apart from wall composition, eudicots 

such as Arabidopsis thaliana and monocots such as rice (Oryza sativa L.) exhibit distinct 

morphological characteristics in addition to their namesake double and single cotyledons. 

Pinnate or palmate venation is characteristic of eudicots while monocots possess parallel 

venation. Other morphological and anatomical distinctions exist in their vasculature, 

tissues highly enriched in secondary cell walls. Stem radial thickening in eudicots is 

derived from a specialized cell layer called the cambium that differentiates into the 

phloem and xylem. On the other hand, monocots lack a specialized cambium layer and 

therefore do not undergo secondary growth (Fig. 1.1). The vascular bundles of grasses are 

often well defined by a single layer of bundle sheath cells surrounding the xylem and 

phloem and the organization of the bundles is distinct from eudicots. In A. thaliana, the 

vascular bundles are arranged as a ring along the periphery of the stem in a pattern known 

as eustelic, whereas monocot bundles posses an atactostele arrangement characterized by 

several circles around the periphery of a stem, as in rice and Brachypodium distachyon 

(Fig. 1.1), or scattered throughout the stem as in maize (Zea mays L.; (Kiesselbach, 1949) 

 With distinctions and similarities abound, it is decidedly unclear how the 

transcriptional regulation of secondary cell wall biosynthesis in eudicots and grasses  
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Figure 1.1. Stem cross sections illustrating the different 

cell types and arrangements between dicots and 

monocots. (A) Arabidopsis thaliana (left) and 

Brachypodium distachyon (right) stained with Toluidine 

blue. (B) Vascular bundle anatomy of A. thaliana (left) and 

B. distachyon (right). Ep, Epidermis; Co, Cortex; Ph, 

Phloem; C, Cambium; Xy, Xylem; V, Vessels; T, 

Tracheads; L, Lacuna; Bs, Bundle Sheath; P, Pith. 

Bars=0.1mm.
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relate. Plant cell wall biosynthesis is regulated at different molecular and cellular levels. 

Current evidence supports a complex regulatory network consisting of a handful of 

proteins from only a small portion of over 65 different transcription factor families (Fig. 

1.2). Phylogenetic analysis has identified close homologs of A. thaliana regulators from 

both vascular and non-vascular plants and some of those regulators were capable of 

complementing A. thaliana cell wall mutants (Zhong et al., 2011). These findings suggest 

the evolutionary conservation of the transcriptional regulators in secondary cell wall 

biosynthesis. On the other hand, due to the pronounced differences between eudicot and 

monocot secondary wall composition and anatomy, there are likely unique aspects of the 

regulatory network yet to be resolved. 

 

1.2 Transcriptional regulation in A. thaliana 

 Transcriptional regulation is one of the most important processes controlling plant 

cell wall biosynthesis, mediated by the interaction and interplay of cis-regulatory DNA 

elements and the trans-acting transcription factor proteins. Recent evidence suggests the 

involvement of an AP2 family protein SHINE/WAX INDUCER 1 (SHN) as a global level 

regulator of cell wall biosynthesis (Ambavaram et al., 2011). Constitutive overexpression 

of A. thaliana SHN in rice results in the activation of cellulose and other cell wall-

associated genes and the repression of lignin pathway genes. This protein is also capable 

of activating key NAC and MYB regulators and electrophoretic mobility shift assays 

(EMSA) demonstrate the direct binding of SHN protein to promoters of rice cell wall-

associated transcription factors (Ambavaram et al., 2011). A WRKY family transcription 

factor, WRKY12, acts as a global repressor of secondary wall biosynthesis (Wang et al., 
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2010). Transcripts of this gene are abundant in the cortex and pith cells of A. thaliana that 

lack secondary walls. Loss-of-function wrky12 mutants exhibit increased expression of 

transcription factors associated with secondary wall biosynthesis as well as ectopic 

depositions of lignin, cellulose, and xylan and consequently, an overall increase in plant 

biomass (Wang et al., 2010). In the presence of WRKY12 protein, pith stem cells are 

maintained parenchymatous and the deposition of secondary cell walls is repressed. 

MYB32 similarly acts as a repressor of secondary wall biosynthesis, but in cells where 

this pathway has been activated; thus, it may provide negative feedback (Preston et al., 

2004). Transgenic overexpression of MYB32 resulted in the repression of SECONDARY 

WALL-ASSOCIATED NAC-DOMAIN PROTEIN 1 (SND1), a higher order activator of 

secondary wall biosynthesis (Wang et al., 2010). Interestingly, the SND1 protein directly 

binds the MYB32 promoter to activate gene expression (Wang et al., 2011). A group of 

NAC-domain transcription factors, NAC SECONDARY WALL THICKENING FACTOR 1 

(NST1), NST2, SND1 (also known as NST3), VASCULAR-RELATED NAC-DOMAIN 6 

(VND6), and VND7, collectively known as the secondary wall NACs (SWNs) are 

implicated as positively acting master regulators in a variety of tissues (Fig. 1.2) (Demura 

and Fukuda, 2007; Zhong and Ye, 2007). Among the NACs, SND1 functions as a key 

switch governing the regulation of all secondary wall polymers (Zhong et al., 2006; 

Mitsuda et al., 2007). Overexpression of SND1 leads to ectopic deposition and activation 

of cellulose, hemicellulose, and lignin biosynthesis genes. Conversely, dominant 

repression of SND1 results in the absence of secondary wall development in vascular and 

interfascicular fibers (Zhong et al., 2006; Mitsuda et al., 2007). It also directly activates 

itself and is repressed by MYB transcription factors under the direct influence of MYB46  
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Figure 1.2. Schematic diagrams of the secondary cell wall 

regulatory networks in Arabidopsis thaliana (A) and monocots 

(B). Rectangles represent transcription factors. The oval indicates 

an interacting protein. Arrows and flat lines indicate activation 

and repression of cell wall genes. Solid arrows and bordered 

rectangles signify evidence for direct interactions. Dashed arrows 

indicate no evidence for direct interaction. Orthology between A. 

thaliana and grasses is denoted by color.
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(Wang et al., 2011). The SND1 protein directly binds the cis-regulatory regions of 

MYB46, MYB83, and C3H14 genes to activate their expression (Zhong et al., 2008; Ko et 

al., 2009; McCarthy et al., 2009). It also acts as a direct regulator of F5H, a gene 

encoding a key enzyme involved in lignin biosynthesis (Zhao et al., 2010). Another direct 

target of SND1 is the KNOX type Homeodomain transcription factor, KNAT7, which 

interacts with OVATE FAMILY PROTEIN 4 to repress secondary wall biosynthesis (Li 

et al., 2011). Loss-of-function mutants of knat7 display an increase in cell wall gene 

expression, wall thickening in interfascicular fiber cells, and an increase in lignin content 

(Li et al., 2011). Interestingly, a weak activator of cell wall gene expression, MYB75, 

was found to physically interact with KNAT7 protein to repress cell wall biosynthesis 

(Bhargava et al., 2010). These results imply that wall regulators can play multiple roles 

by interacting with different trans-acting factors in different cell types to provide more 

flexibility and complexity to the regulatory network. 

 The SND1 homologs NST1 and NST2 play a crucial role in the A. thaliana anther 

endothecium (Mitsuda et al., 2005). In this tissue, these proteins are activated by MYB26 

which is essential for anther dehiscence and proper pollen release (Yang et al., 2007). 

Other SWNs, in particular VND6 and VND7, regulate metaxylem and protoxylem 

development and are repressed by the VND-INTERACTING2 NAC protein ((Kubo et al., 

2005; Yamaguchi et al., 2010). The VND proteins VND6 and VND7 driven by SND1 

promoter were capable of complementing the snd1/nst1 mutant phenotype implying their 

conserved functionality (Zhong et al., 2007). VND6 and VND7 are positively regulated by 

ASYMMETRIC LEAVES2-LIKE19 (ASL19) and ASL20 (Soyano et al., 2008). Transgenic 

overexpression of ASL19 and ASL20 induces trans-differentiation of non-vascular tissues 
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into treachery elements and an increased cell wall thickening in mutant lines. They are 

also able to partially recover the dominant negative effect of the VND6 and VND7 

repressor lines (Soyano et al., 2008).The SWNs, SND1, NST1, NST2, VND6, and VND7 

activate a cascade of downstream transcription factors such as SND2, SND3, MYB103, 

MYB85, MYB54, MYB46, MYB69, MYB63, MYB83, and KNAT7 (Zhong et al., 2008; Ko 

et al., 2009; McCarthy et al., 2009). Some of the downstream regulators, SND2, SND3, 

and MYB103 exclusively activate cellulose biosynthesis where as others such as MYB63, 

and MYB58 regulate lignin biosynthesis (Zhong et al., 2008). Even though direct protein–

DNA interactions have been shown for some of the cellulose and lignin specific 

regulators, further characterization of many downstream regulators is needed. 

 Discovery of the trans-acting transcription factors of cell wall biosynthesis 

facilitated the opportunity to identify common cis-elements shared among the master 

regulators. The tracheary-element-regulating cis-element (TERE) is one such 11-bp motif, 

CTT/(C)NAAA/(C)GCNA(T), involved in tissue specific cell wall biosynthesis and 

programmed cell death. First identified in the Zinnia cysteine protease 4 promoter and it 

is present in numerous cell death and xylem differentiation genes such as Cysteine 

protease 1 (XCP1), XCP2, Serine protease 1, and several other genes associated with 

wall function that include xylanases and acetyltransferases (Pyo et al., 2007). More recent 

studies demonstrated the physical interaction between VND6 protein and the TERE 

(Ohashi-Ito et al., 2010). Other SWNs bind a 19-bp imperfect palindromic sequence 

(T/A)NN(C/T)(T/C/G)TNNNNNNNA(A/C)GN(A/C/T)(A/T) referred to as the 

secondary wall NAC binding element (SNBE; (Zhong et al., 2010)). A synthetic 

promoter harboring six copies of the SNBE fused to a GUS reporter revealed specific 
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expression in xylem and interfascicular fibers, phenocopying native MYB46 promoter 

behavior (Zhong et al., 2007). Other direct targets of SND1, including MYB83, MYB103, 

SND3, and KNAT7 also posses the SNBE element (Zhong et al., 2010). A similar cis-

element, TACNTTNNNNATGA, was identified recently in the SND1 promoter and is 

the target of binding that serves as a target of positive feedback from SND1 itself (Wang 

et al., 2011).     

 A series of MYB transcription factor family proteins are also implicated in the 

cell wall regulatory network, a majority of which act downstream of the SWNs. One such 

protein, MYB46, acts subsequent the SWNs (Fig.1.2A). Lignin biosynthesis is 

specifically regulated by MYB63 and MYB58 interacting with the AC/Pal-box promoter 

sequences. This motif was first identified in the promoter of parsley PHENYLALANINE 

AMMONIA-LYASE 1 and subsequently identified as three AC rich elements AC-I 

(ACCTACC), AC-II (ACCAACC), AC-III (ACCTAAC) involved in lignin gene 

regulation (Lois et al., 1989; Hatton et al., 1995; Raes et al., 2003). Binding of MYB 

proteins to the AC elements trans-activates the respective promoters thus, activating the 

genes in a xylem specific manner repressing the expression of the same genes in phloem 

or the cortical cells (Hatton et al., 1995). The consensus sequence of the AC element was 

recently expanded to include four more forms interchanging a T with the C at the last 

position; thus, ACC(T/A)A(A/C)(C/T) (Zhong and Ye, 2012). This 7-bp sequence, the 

secondary wall MYB responsive element (SMRE), is bound by both MYB46 and MYB83 

proteins and is sufficient for the activation of a suite of transcription factor and cell wall 

biosynthetic genes (Zhong and Ye, 2012). The MYB46-responsive cis-element (M46RE) 

is an 8-bp sequence (A/G)(G/T)T(A/T)GGT(A/G) found in the C3H14 promoter, which 
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is a direct target of MYB46 (Kim et al., 2012). Trans-activation assays coupled with 

EMSA reveled M46RE is required and sufficient for the activation of C3H14. The 8-bp 

core sequence was present in nearly 43% of the genes in the A. thaliana genome but was 

enriched in the downstream genes activated by MYB46 along with secondary cell wall 

related structural genes (Kim et al., 2012).  

 Apart from the key SWNs and MYBs, a handfull of downstream MYBs, NACs, 

and transcription factors from other families are involved in this complex cell wall 

regulatory network. A closely related homolog of MYB32, MYB4, functions as a repressor 

of CINNAMATE-4-HYDROXYLASE (C4H; (Jin et al., 2000). Loss-of-function mutants of 

MYB4 exhibited elevated levels of sinapoyl malate, a component in the lignin pathway, 

and an increase in C4H expression. Collectively, these findings suggest a complex and 

hierarchical transcription regulatory network for eudicot cell wall biosynthesis (Fig. 

1.2A). While this dissertation primarily discusses discoveries in A. thaliana, it should be 

noted that a number of regulators have been characterized in other eudicot species such as 

Populus trichocarpa, Eucalyptus gunnii, Nicotiana tabacum, Antirrhinum majus, Pinus 

taeda, Vitis vinifera, and Medicago truncatula. 

 

1.3 Grass cell wall regulators 

 From the time of eudicot and monocot divergence 140–150 million year ago, the 

transcription factor families have disproportionately expanded and the regulatory 

networks have likely diverged; thus, the existing eudicot network model for transcription 

regulation is not wholly generalizable to monocots (Chaw et al., 2004; Shiu et al., 

2005).Conversely, recent functional characterization of grass transcription factors implies 
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great commonality in how a similar network could regulate grass cell wall biosynthesis. 

While many cell wall genes have been characterized in grasses, almost nothing is known 

about the regulation of walls in monocots. The A. thaliana model, which is by far the best 

developed, is admittedly nascent. This stands in stark contrast to the model for grasses 

that consists of only a few genes (Fig. 1.2B). Maize CAFFEIC ACID-O-METHYL 

TRANSFERASE (COMT) is a key lignin pathway gene with an AC-III element 

recognized by R2R3-MYB transcription factors (Vignols et al., 1995; Fornalé et al., 

2010). Group four R2R3-MYB transcription factors are described as repressors and based 

on sequence homology to the known A. thaliana MYB repressors, five maize 

transcription factors, ZmMYB31, ZmMYB42, ZmMYB2, ZmMYB8, and ZmMYB39 

were identified as candidates for direct repression of ZmCOMT (Fornalé et al., 

2006).When overexpressed in A. thaliana, ZmMYB31 and ZmMYB42 resulted in down 

regulation of lignin associated genes and subsequently reduced lignin content (Fornalé et 

al., 2010). Overexpression of ZmMYB42 caused a reduction in leaf size, an adaxial 

curvature indicative of less tertiary vein formation, reduction of the syringyl lignin 

monomers, and dwarfism in A. thaliana (Sonbol et al., 2009).The absence of results in a 

monocot is likely due to the relative recalcitrance of crop species to genetic study; thus, A. 

thaliana serves as an imperfect heterologous system to study grass gene function. The 

maize gene, ZmMYB31 is the first wall specific regulator characterized in a grass 

((Fornalé et al., 2010). Chromatin immunoprecipitation demonstrated the direct 

interaction between ZmMYB31 and ZmCOMT promoter and an AC element similar to 

AC-II was identified as the binding motif. The switchgrass (Panicum virgatum L.) 

protein PvMYB4, an ortholog to A. thaliana MYB4, is another recently characterized 
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repressor of lignin (Shen et al., 2012). Ectopic expression of PvMYB4 in switchgrass 

resulted in a reduction in total lignin and altered lignin monomer ratio (Shen et al., 2012). 

The AC element is also implicated as the binding site of PvMYB4, which results in 

repression of lignin pathway genes (Shen et al., 2012). In addition, rice and maize 

orthologs of A. thaliana SWNs and MYB46 were shown to activate secondary wall 

biosynthesis when overexpressed in A. thaliana (Zhong and Ye, 2012). Moreover, 

OsSWNs and ZmSWNs were able to complement and partially rescue the pendant stem 

phenotype of the A. thaliana snd1/nst1 double mutant. Similarly, OsMYB46 and 

ZmMYB46 under the control of AtMYB46 promoter were able to complement the loss of 

helical secondary wall thickening in vessels of A. thaliana myb46/myb83 double mutant. 

In addition, SNBEs were identified in OsMYB46 and ZmMYB46 promoters and were 

bound and activated by the rice and maize SWNs in A. thaliana transient protoplast 

assays (Zhong and Ye, 2012). While studies in a heterologous system have proven 

informative, further functional characterization in a grass species is necessary. Contrary 

to expectations of distinct aspects of monocot cell wall regulation, the existing model is 

populated exclusively by homologs of known A. thaliana genes. 

 Gene expression profiling was critical in identifying many of the candidates that 

formed the foundation of the existing A. thaliana cell wall regulatory network (Oh et al., 

2003; Ehlting et al., 2005; Kubo et al., 2005; Zhao et al., 2005). Similar tools can be 

applied to grasses to identify candidates for functional characterization, especially those 

specific to monocots. Accordingly, a comparison of the transcriptome of maize 

elongating and non-elongating internodes revealed several transcription factors that are 

feasibly involved in cell wall regulation (Bosch et al., 2011). Likewise, the expression of 
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three barley (Hordeum vulgare L.) NACs, HvNAC033, HvNAC034, and HvNAC039, 

were significantly greater in stem tissue where extensive secondary cell wall biosynthesis 

occurs. One of these proteins, HvNAC033, is the closest barley homolog to A. thaliana 

NST1, further supporting the possible role of this protein in grass cell wall regulation 

(Christiansen et al., 2011). Comparison of expression networks across species similarly 

reinforces the notion of shared features across eudicots and monocots and revealed 

potential distinctions. Genes with expression patterns similar to secondary wall 

CELLULOSE SYNTHASE A genes in rice included those most similar to A. thaliana 

MYB63, MYB103, NST1, SND2, and KNAT7 (Ruprecht et al., 2011). Conversely, several 

rice transcription factors were co-expressed with structural genes that do not share 

sequence homology to co-expressed or characterized A. thaliana genes. These include 

MYB and NAC as well as bZip and AP2 family genes (Ruprecht et al., 2011). As with 

ZmMYB42 and PvMYB4, candidates identified using sequence similarity and expression 

profiling require further characterization in the native systems in order to solidify both 

overlap and divergence between eudicot and grass cell wall regulatory networks. 

 

1.4 Brachypodium distachyon: a new model system for grasses  

 The grass family Poaceae is the fourth largest in the plant kingdom with more 

than 10,000 species distributed around the world including many of the most important 

agricultural commodities: maize, rice, wheat and sugarcane (Kellogg, 2001). Species 

currently under investigation as bioenergy crops including grasses like Miscanthus spp. 

and switchgrass, are also part of the Poaceae (Rooney et al., 2007; Schmer et al., 2008). 

Arabidopsis thaliana has served as the most advanced plant model system for over two 
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decades (Somerville and Koornneef, 2002). Although, it is an ideal species for genetic 

analysis of dicots, it is not the best model for monocots due to their fundamental 

differences with dicots (Brkljacic et al., 2011). For instance, dicots have two cotyledons 

and form a taproot whereas monocots only contain a single cotyledon and form lateral 

roots. Other anatomical distinctions exist in their vascular bundles, which are cell types 

particularly relevant to biofuel feedstock accumulation. In general, dicots contain a 

cambium layer within the vascular bundle, in between the phloem and xylem and the 

vascular bundles are arranged in a circle along the periphery of the stem. On the other 

hand, monocots do not have a cambium. They also have xylem and phloem arranged in 

vascular bundles and these bundles can be arranged in several circles around the 

periphery of a stem, as in rice and B. distachyon, or scattered throughout the stem as in 

maize. Due to the significant differences between monocots and dicots, a grass species 

would be the best model system to study traits that will be important for monocots.  

 Rice serves as a model system for monocots. However, unlike many potential 

energy crop species it is not a temperate grass and it lacks small stature and a rapid life 

cycle like A. thaliana. In addition, as a semi-aquatic tropical grass, with specially evolved 

mechanisms for nutrient uptake, its growth conditions can be unnecessarily demanding 

for laboratory research. A smaller, non-food crop like B. distachyon, which is more 

closely related to cereals and temperate grasses (Kellogg, 2001) would be a better model 

to represent temperate grasses.  

 Brachypodium distachyon is a small annual grass native to the Middle East and 

Mediterranean (Garvin et al., 2008). It has a fully sequenced genome (272 Mbp) slightly 

larger than A. thaliana with similar growth requirements and generation time (8- 12 
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weeks) (Initiative, 2010). This grass belongs to the tribe Brachypoieae which only 

contains the genus Brachypodium (Bevan et al., 2010). Currently various laboratories are 

developing B. distachyon resources for forward and reverse genetics approaches. Over 

10,000 T-DNA lines are currently available (http://www.brachytag.org/known-genes.htm, 

http://brachypodium.pw.usda.gov/). An efficient Agrobacterium mediated transformation 

protocol (Vogel et al., 2006; Vogel and Hill, 2008), efficient crossing techniques 

(http://brachypodium.pw.usda.gov/), microarrays and web resources 

(http://www.brachytag.org/, http://www.phytozome.net/, http://www.modelcrop.org/) are 

now available for this new model system. With the aid of these resources, B. distachyon 

is now being studied to understand a variety of grass specific questions. Cell wall 

composition analysis between select dicots and monocots demonstrates a close 

resemblance between B. distachyon non-cellulosic monosaccharides and that of other 

grasses like wheat, barley and Miscanthus spp. (Gomez et al., 2008; Rancour et al., 2012). 

This similarity is important for cell wall research as it provides evidence for the 

suitability of B. distachyon as a model for grass cell wall research. Current studies on B. 

distachyon along with the genetic attributes of this small grass emphasize its suitability as 

a model for biomass crop research. 

 My objective in this dissertation is to uncover the transcriptional regulators of 

grass secondary cell wall biosynthesis. I hypothesize grass secondary cell wall 

biosynthesis is regulated by a complex network of transcription factors. This regulatory 

network will include unique grass proteins, which will define the features specific to 

monocot cell walls. I hypothesize transcription factors highly expressed in specific tissues 

rich in secondary cell walls will have important regulatory roles. I have used a reverse 
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genetics approach to characterize two cell wall genes and two transcription factors 

associated with grass secondary cell wall biosynthesis. Together my findings reveal a 

grass specific transcriptional activator capable of regulating cell walls and feedstock 

attributes and a repressor with pleiotropic regulatory roles linking cell wall biosynthesis 

and flowering. 



 17 

CHAPTER 2 

PERTURBATION OF Brachypodium distachyon CELLULOSE SYNTHASE A4 OR 

7 RESULTS IN ABNORMAL CELL WALLS  

2.1 Introduction 

With continued consumption of fossil fuels, humankind faces a growing challenge of 

finding renewable sources of energy. Although plant derived biomass contains 

appreciable energy, to serve as a fuel for transportation it must be chemically or 

biologically liquefied, a conversion that is the subject of strenuous efforts to make 

economical. Success will presumably require not only advances in chemistry such as 

better catalysts, but also improved plants to serve as feedstock. As an ideal input, grasses 

are receiving considerable attention because certain species grow to great density, are 

perennial, and can require little if any fertilizer or irrigation (Heaton et al., 2008). But 

their very size, longevity, and genome complexity makes these species difficult subjects 

to study and breed.  

For studying grasses, whether as sources for biofuel or for any other grass-specific 

question, an emerging model is Brachypodium distachyon. Of particular note for biofuels 

research, B. distachyon has cell walls that are similar compositionally to that of other 

grasses, like wheat (Tritium aestavum), barley (Hordeum vulgare), and Miscanthus 

(Gomez et al., 2008; Christensen et al., 2010; Guillon et al., 2011). Insofar as the cell 

wall constitutes almost the entirety of the input for converting biomass to biofuel, this 

similarity, along with the genetic attributes of this small grass, emphasize its suitability as 

a model for grass-related, biomass crop research. 
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Within the cell wall, as a target for optimization, cellulose is pre-eminent. Cellulose is 

the most abundant of any single wall component and is made exclusively of glucose, a 

tractable and energy rich molecule. Cellulose comprises long polymers of (1-4) β-linked 

glucose that are synthesized at the plasma membrane and associate laterally into a 

microfibril. Because of the configuration of the glucose residues, hydrogen bonds form at 

great density both within and between chains, a density that gives cellulose an elastic 

modulus rivaling that of steel but makes the structure impervious to degradation whether 

chemical or enzymatic.  

Within the plasma membrane, the structure synthesizing cellulose is called a 

“terminal complex” (Haigler and Brown, 1986; Kimura et al., 1999; Somerville, 2006). 

In land plants and related green algae, the terminal complex as seen in the electron 

microscope comprises six subunits with hexagonal symmetry and is called a “rosette” 

(Doblin et al., 2002). The primary constituents of the rosette are CELLULOSE 

SYNTHASE A (CESA) proteins. These proteins belong to processive glycosyltransferase 

family 2 and are thought to be the catalytic subunits for polymerizing the glucose chain. 

In angiosperms, CESAs usually comprise a small gene family with around ten members 

(Yin et al., 2009; Carroll and Specht, 2011). 

Identification of CESA proteins and characterization of their function has greatly 

benefited from the facile genetics of A. thaliana. From this work, it emerged that certain 

CESA proteins synthesize the primary cell wall whereas others synthesize the secondary 

cell wall (Desprez et al., 2007; Persson et al., 2007). Furthermore, it appeared that a given 

cell must express three distinct CESA proteins to produce cellulose at optimal levels. For 

the secondary cell wall, a screen based on collapsed xylem cells led to the identification 
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of several irregular xylem (irx) lines, three of which, irx5, irx3, and irx1, harbor lesions 

in AtCESA4, 7, and 8, respectively (Taylor et al., 1999; Taylor et al., 2000; Taylor et al., 

2003). Supporting the hypothesis of non-redundancy, these genes are expressed at similar 

levels in similar cell types, and the null mutants have indistinguishable phenotypes, 

including weak stems, collapsed xylem, and thin secondary cell walls that are deficient in 

cellulose. 

Identification of a trio of CESA genes primarily responsible for synthesizing cellulose 

in secondary cell walls has been supported by work in other systems, including grasses. 

First, AtCESA4, 7, and 8 are usually represented in most other angiosperm species by a 

single sequence each, and orthologs are more closely related than homologs (i.e., 

CESA4s of various species resemble each other more closely than do CESA4, 7, and 8 of 

a single species) (Song et al., 2010; Carroll and Specht, 2011; Li et al., 2013). Second, in 

grasses, a mutant of barley, fragile stem 2, with brittle stems and low cellulose content in 

the mature plant was attributed to a lesion in the barley ortholog of AtCESA4 (Burton et 

al., 2010). In addition, “brittle culm” mutants in rice (Oryza sativa) have been mapped to 

the three orthologs of AtCEA4, 7 and 8 and again these mutants have similar phenotypes, 

including modest dwarfism, thinner and weaker culms, and reduced cellulose content 

(Tanaka et al., 2003). However, it is not understood why three distinct proteins are 

needed nor is it known which of the loss-of-function phenotypes result directly from the 

lost protein and which result as a consequence of cumulative effects. 

 Here we describe the CESA gene family in B. distachyon with the aid of gene 

expression profiling and phylogeny. Furthermore a detailed analysis of the candidate 
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secondary CESAs were performed by functionally characterizing mutants generated with 

specific artificial microRNA constructs. 

 

2.2 Materials and Methods 

2.2.1 Plant material and growth 

 Brachypodium distachyon (L.) line Bd 21-3 was used throughout. Seeds were 

imbibed in moist paper towels for seven days at 6˚C, planted on potting mix (#2; Conrad 

Fafard Inc. Agawam, MA), and grown in a growth chamber at 20˚C with 20 h light: 4 h 

dark, at a fluence rate of 220 mol
.
m

-2.
s

-1
 and relative humidity of ~68%. For plate-grown 

plants, seeds were de-hulled and imbibed in water for 2 h with shaking. Then, seeds were 

treated with 70% ethanol for 20 s, rinsed with sterile water, and soaked in 1.3% NaClO 

for 4 min at room temperature while shaking. Seeds were subsequently rinsed three times 

with sterile water and stored in the dark at 4˚C for a minimum of 2 days in a sterile Petri 

dish with filter paper. Seedlings were grown for seven days on 0.5 strength MS medium 

adjusted to a pH of 5.8 with KOH and containing 0.7% agar (Difco “Bacto agar”). 

2.2.2 Identification of CELLULOSE SYNTHASE A genes 

 Complete, translated amino acid sequences of the ten A. thaliana CESA proteins 

and members of the cellulose synthase-like families were used as queries in BLASTP of 

Phytozome v8.0 and NCBI databases to identify homologous B. distachyon CESA genes 

and identified proteins were named according to the A. thaliana counterparts, where 

possible. Multiple sequence alignments were performed using ClustalW program and a 

phylogenetic trees were generated by the neighbor-joining method using MEGA5 

software with 1000 bootstrap permutations (Tamura et al., 2011).  
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2.2.3 Measurements of transcript abundance 

 For microarray analysis, different growth regimes were used for leaves and stems, 

versus roots. For leaves and stems, approximately 30 days following germination and 

growth on soil, total leaf and stem were collected when the inflorescence began to 

emerge from the flag leaf. Leaves were separated from the stems with a curved-tip probe. 

Nodes and internodes from the second leaf junction to the internode below the 

inflorescence were frozen in liquid nitrogen. For roots, seven-day-old whole seedlings 

were flash frozen in liquid nitrogen and then the roots were snapped off into a sterile 

culture tube. For all organs, material was harvested six times during the day (2, 6, 10, 14, 

18, and 22 h circadian time). Three plants were dissected for each time point and in 

triplicate for each tissue type. Samples were stored in liquid nitrogen or at -80˚C until 

RNA extraction. Tissue was ground with mortar and pestle in liquid nitrogen. RNA was 

extracted using a kit (Plant RNaeasy, Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. For hybridization, cDNA probes were synthesized using a kit 

(WT Ambion Santa Clara, CA). 

 The probes were applied to the B. distachyon BradiAR1b520742 whole genome 

tiling array (Affymetrix, Santa Clara, CA). The array contains ~6.5 million unique 25-

mer oligonucleotide features, both the forward and reverse strand sequence. The 

complete genome sequence is tiled with an average of 30 bases between each array 

feature; 1.6 million features correspond to exons and introns and 4.9 million features 

between gene models (Todd Mockler, Donald Danforth Plant Science Center, personal 

communication). Approximately ~95% (~26,670) of the genes have at least five 

corresponding exon array features and from those a summary value was calculated for 
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each gene model Probeset values were calculated using gcRMA (Wu et al., 2004). 

 For obtaining RNA from the transgenics, stems were collected at the same 

developmental stage when the inflorescence was just visible from the flag leaf. First, 

second, and third nodes and internodes of the tallest stem were frozen in liquid nitrogen, 

homogenized, and RNA extracted as described above.  

 For RT-QPCR, on-column DNA digestion was performed using RNase-free 

DNase I (Qiagen). First strand cDNA was synthesized from 1 μg of total RNA using 

Superscript III reverse transcriptase with oligo dT primers (Invitrogen, Grand Island, NY). 

Samples were diluted three-fold with RNase free water (Qiagen) and 1 μL from each 

cDNA sample was used for RT-QPCR to check for genomic DNA contamination using 

GapDH primers. Triplicate quantitative PCR reactions were performed using 20 μL 

reaction volumes with 1 μL of diluted cDNA in each reaction with the QuantiFast SYBR 

Green PCR Kit (Qiagen). The reactions were conducted in an Eppendorf Realplex
2
 

Mastercycler using the following conditions: 95°C for 2 min, followed by 40 cycles of 

95°C for 15 s, 60°C for 15 s and 68˚C for 20 s. As reference genes for normalization, 

BdUBC18 (ubiquitin-conjugating enzyme 18) and Bd5g25870 (Belonging to nuclear 

hormone receptor binding category) were used (Hong et al., 2008). QuantiPrime primer 

design tool was used for qPCR primer design (Arvidsson et al., 2008). 

2.2.4 RNA in situ hybridization 

 RNA in situ hybridization was performed using methods described previously 

(Harding et al., 2002; Kao et al., 2002). Briefly, the 3’ end of BdCESA4 and BdCESA7 

were cloned into the pGEM-T Easy vector and used as the template to generate labeled 

sense and anti-sense ribo probes using a kit (DIG labeling kit, Roche, Indianapolis, IN). 
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Three week old stem sections were frozen at -80˚C and fixed in 4% 

paraformaldehyde/ethanol:acetic acid (3:1) overnight at 4˚C (Harrington et al., 2007). 

Fixed tissue was encased in 4% agarose and sectioned using a Vibratome. Sections were 

removed from agarose using forceps and washed in phosphate-buffered saline (PBS; 33 

mM Na2HPO4, 1.8 mM NaH2PO4 and 140 mM NaCl, pH 7.2) and post-fixed in PBS 

containing 3.7% (v/v) formaldehyde and 2 mg/mL glycine for 20 min at room 

temperature. Sections were washed in PBS and dehydrated in graded ethanol series and 

pre-hybridized for 1 h at 65˚C with hybridization solution comprising 20X SSC (3M 

NaCl, 0.3M Na citrate) containing 20% SDS, 3.7% formamide, and 10 mg/mL yeast 

tRNA made up in DEPC-treated water. Stems were then hybridized with DIG-labeled 

sense and anti-sense probes overnight at 65˚C and washed with a series of SSC and SDS 

containing solutions. Anti-DIG alkaline phosphatase fab fragments (Roche) were used at 

a dilution of 1:1000 and incubated over night at 4˚C. Alkaline phosphatase was detected 

using nitroblue tetrazolium and 5-bromo-4-chloro-3-indoyl-phosphate (Roche) in 0.1 M 

Tris (pH 9.5), 0.1 M NaCl and imaged with a PixeLINK camera attached to a Nikon 

eclipse 200 microscope. 

2.2.5 Artificial microRNA constructs  

 Artificial microRNA sequences were designed on the Web MicroRNA Designer 

platform (http://wmd3.weigelworld.org) based on JGI B. distachyon genome annotation 

version 1.0 (Initiative, 2010). The amiR-CESA4 construct targets 

AAGGGACCCATTCTTAAGCCA with hybridization energy of -37.74 kcal/mol and the 

amiR-CESA7 construct targets ACGCCCACCATTGTCATCATC with hybridization 

energy of -37.37 kcal/mol. Constructs were engineered from the pNW55 plasmid to 
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replace the targeting regions of the native rice microRNA precursor osaMIR528 

(Warthmann et al., 2008). MicroRNA targets were PCR amplified (Table S2) according 

to Warthmann et al. (Warthmann et al., 2008) and cloned into pENTR/D-TOPO 

(Invitrogen). Sequence confirmed clones were recombined with a modified version of the 

destination vector pOL001 (Vogel et al., 2006), pOL001-ubigate-ori1 and transformed 

into Agrobaterium tumefaciens strain AGL1 via electroporation. 

2.2.6 Plant transformation 

 Transformation was carried out according to Vogel et al. (Vogel and Hill, 2008). 

Briefly, seeds were collected from six to seven week old plants and deglumed. Seeds 

were surface sterilized with a 1.3% NaClO solution containing 0.01% Triton-X100 for 4 

min. Embryos were dissected and placed on callus initiation medium under aseptic 

conditions. Calli were propagated for seven weeks with two subsequent subcultures at 

four and six weeks following dissection. Seven-week-old calli were immersed in an A. 

tumefaciens suspension for 5 min and dried on filter paper. Next, they were co-cultivated 

on dry filter paper for three days at 22˚C in the dark. Following co-cultivation, calli were 

moved to selective plates containing 40 mg/L hygromycin and 200 mg/L timentin for 

four weeks in the dark at 28˚C. Following selection, calli were moved to Linsmaier and 

Skoog media for regeneration at 28˚C under constant light and next onto Murashige and 

Skoog media for root establishment under same conditions. Next they were transplanted 

to soil and grown as described above. 

2.2.7 Genomic DNA extraction and genotyping  

 Genomic DNA was extracted from leaves according to Csaikl et al. (Csaikl et al., 

1998) with slight modification. Briefly, leaves were frozen in liquid nitrogen and ground 
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using 3.2 mm diameter stainless steel metal balls (Biospec Products, Bartlesville, OK) in 

a ball mill (Mixer Mill, MM400, Retsch, Newtown, PA). Ground samples were incubated 

in DNA extraction buffer (100 mM NaCl, 50 mM Tris, 25 mM EDTA, 1% SDS, 10 mM 

2-mercaptoethanol) for 10 min at 65°C. Next, they were mixed with 5 M potassium 

acetate and incubated on ice for 20 min and centrifuged for 10 min. DNA was pelleted by 

mixing the supernatant with isopropanol and centrifuging at maximum speed for 10 min 

followed by a 70% ethanol wash. Pelleted DNA was resuspended in 1X TE and the 

integrity of the samples was measured using a spectrophotometer (NanoDrop 1000, 

Themo Scientific, Waltham, MA). Genotyping was carried out by PCR for the 

Hgyromycin locus using the extracted genomic DNA as template with following cycler 

conditions; Initial denaturation at 98˚C for 2 min, flowed by 30 cycles of 98˚C for 30 s, 

59˚C for 30 s, 72˚C for 55 s and a final extension at 72˚C for 7 min. PCR confirmed 

positive transformants were used in subsequent experiments. 

2.2.8 Light microscopy  

 For histochemical analysis, stems were hand sectioned using a razor blade and 

stained with 0.002% Toluidine blue in water for 30 s. Stained sections were mounted 

with water and observed under an Eclipse E200MV R microscope (Nikon) and imaged 

using a PixeLINK 3 MP camera. Images were captured at 4 X magnification and stem 

area was measured by freehand tracing of a perimeter in ImageJ 

(http://rsb.info.nih.gov/ij/). Images captured at 20 X magnification were used for cell wall 

thickness measurements.  

 For polarized-light microscopy, internode segments were fixed in 2% 

glutaraldehyde in 50 mM Na2PO4 buffer (pH 7.2) for a minimum of 2 h at room 
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temperature and then handled and embedded in Spurr’s resin by standard techniques. 

Semi-thin sections (0.5 µm) were cut on an ultra-microtome, mounted in immersion oil, 

and observed through a microscope equipped with the LC-PolScope (CRI Cambridge 

MA) as described previously (Baskin et al., 2004). Briefly, this instrument uses circularly 

polarized light and computer-controlled liquid crystal compensators to obtain four images 

with known compensator settings and from them calculates a fifth image in which the 

intensity of each pixel is proportional to birefringent retardation and a sixth image (not 

used here) in which the intensity of each pixel represents the orientation of the crystal’s 

optical axis within the specimen plane (Oldenbourg and Mei, 1995). Several sections of 

each genotype were observed and the images shown are representative.  

2.2.9 X-ray diffraction profiles and sum-frequency-generation vibration spectroscopy 

  X-ray diffraction and calculation of a crystallinity index were done as described 

by Ruland et al. (Ruland, 1961) with slight modifications. Fully senesced stems were 

ground as described above for genomic DNA extraction. Diffraction was analyzed on an 

X'Pert Pro powder X-ray diffractometer (PANanalytical BV, The Netherlands) operated 

at 45 kV and 45 mA using CuKα radiation at both Kα1 (λ = 1.5406 Å) and Kα2 (λ = 

1.5444 Å). The diffraction profile was acquired from 5 to 50˚ in 0.0167 steps, with 66 s 

per step. The crystallinity index was calculated using the amorphous subtraction method, 

which determines crystallinity by subtracting the amorphous contribution from the 

diffraction profile obtained from xylan (Aldrich) measured in parallel. A scale factor was 

applied to the xylan profile to avoid negative values in the subtracted profiles. For each 

group, eight to twelve individuals were analyzed. Sum-frequency vibration spectroscopy 

was done as previously described (Barnette et al., 2011). Intact first internodes were 
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excised from completely senesced plants, and each group contained four to six 

individuals with ten measurements per stem. The amount of crystalline cellulose was 

estimated by comparing the 2944 cm
-1

 intensity of the sample with that of Avicel, as 

previously described (Barnette et al., 2012).  

2.2.10 Statistical analysis 

 For each measurement, three to twelve independent plants were sampled from 

three or four different T3 families for each transgene. Student's t-tests were performed in 

R (v 2.15.0). Significance was set a P < 0.05. No significant differences were observed 

among the different independent transgenic lines for a given construct and were thus 

pooled. 

 

2.3 Results 

2.3.1 Brachypodium distachyon CESA gene family  

 In B. distachyon, as in A. thaliana and rice, the CESA family comprises ten genes 

(Fig. 2.1). Their genomic sequences range from 3045 to 7601 bp, with 5 to 14 exons that 

form coding regions ranging from 2331 to 3279 bp (776 to 1092 amino acids). Amino 

acid sequence comparisons revealed extensive similarity among the BdCESA proteins, 

with conserved structural features that are characteristic of CESA protein families (Yin et 

al., 2009; Carroll and Specht, 2011). All ten BdCESA proteins contain eight 

transmembrane domains and two hyper-variable regions. With the exception of 

BdCESA10, they have the signature motif of glucosyl transferases, D,D,D,QxxRW, 

which is essential for binding UDP-Glucose. With the exception of BdCESA5 and 10, the 

proteins contain the RING-type zinc finger domain with eight cysteine residues spaced as  
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Figure 2.1. Models of Brachypodium distachyon CESA genes. Exons are 

indicated by boxes and introns by lines. Genes are drawn to scale; the bar in the 

lower left indicates 1 kb. Red arrows indicate regions used for artificial 

microRNA targeting.
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characteristic for CESA proteins. Even though BdCESA10 is categorized as a CESA, it is 

short, and lacks the RING-type zinc finger motif, a portion of the first hyper-variable 

region, and two of the conserved aspartate residues of the QxxRW motif. This is also true 

of OsCESA11 and sorghum (Sorghum bicolor) Sb10g023430, both of which are 

nonetheless considered part of the CESA family (Wang et al., 2010). 

 Based on the amino acid sequence, the ten BdCESA proteins fall into reasonably 

well-established phylogenetic groups (Fig. 2.2). This is clearest for proteins associated 

with the secondary cell wall. Brachypodium distachyon has three sequences that are 

highly similar to those characterized in other species as secondary cell wall CESAs. We 

numbered these genes BdCESA4, BdCESA7, and BdCESA8 based on their apparent 

orthologs in A. thaliana. Note that the published numbering differs for rice. While the 

three secondary CESA clades have a single member in each species, there is no complete 

one-to-one relationship for the CESAs associated with the primary cell wall. For example, 

B. distachyon has a single sequence in the CESA1 clade whereas A. thaliana has two. In 

contrast, B. distachyon has two sequences in the CESA3 clade whereas A. thaliana has 

only one. Interestingly, both B. distachyon and A. thaliana have several members of the 

CESA6 clade but these duplications appear to have formed in each lineage after the 

divergence of the two species. Based on sequence and conserved domains BdCESA10 

seems to be the least similar to other CESA proteins.  However a comprehensive 

phylogenetic analysis of the Cellulose synthase A proteins and Cellulose Synthase like 

proteins of A. thaliana, rice and B. distachyon revealed the distinct similarity of 

BdCESA10 to other CESA proteins (Fig. 2.3). Where possible, we numbered the B. 

distachyon gene after its closest relative in A. thaliana. 
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1
0

0

Brachypodium distachyon
Oryza sativa
Arabidopsis thaliana

Figure 2.2. Phylogenetic analysis of CESA amino acid sequences. Numerical 

values on branches refer to neighbor-joining bootstrap support. Yellow oval denotes 

proteins associated with secondary cell walls. 
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Figure 2.3. Phylogenetic analysis of A. thaliana, B. distachyon and rice CESA 

superfamily amino acid sequences. A consensus phylogeny was constructed with 

the neighbor-joining method with 1000 bootstrap permutations. The CESA clade is 

illustrates as an expanded sub-tree and the CSL clades are illustrated as condensed 

sub-trees.
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 In view of our interest in the secondary cell wall, we examined the B. distachyon 

secondary cell wall sequences at greater depth (Fig. 2.4). In the cysteine rich RING-type 

zinc finger domain, the sequences differ in the spacing between the second and third 

cysteine. BdCESA4 has the canonical 15 amino acids whereas BdCESA7 has a single 

amino acid insertion and BdCESA8 has an eight amino acid deletion. Such spacing 

variations have apparently not been previously reported for A. thaliana secondary CESAs. 

However, the rice secondary CESA homologous to BdCESA8 exhibits the same eight 

amino acid deletion (Tanaka et al., 2003). The RING-type zinc finger domain is the 

distinguishing feature of CESA proteins seen in the first portion of the N-terminus and is 

thought to be involved in CESA protein dimerization (Haigler and Brown, 1986; Kimura 

et al., 1999).  

2.3.2 Brachypodium distachyon secondary cell wall CESA gene expression 

 To analyze CESA gene expression, we profiled transcripts with a whole genome 

tiling array focusing on organs expected to be enriched in secondary cell wall synthesis. 

To obtain RNA, leaves and stems were harvested when the inflorescence emerged from 

the flag leaf, whereas roots were harvested from seven-day-old seedlings. Additionally, to 

minimize changes in transcript abundance due to diurnal and circadian rhythms, RNA 

was pooled from material harvested at six different circadian time points over a 24-hour 

period. In all three organs, BdCESA2 and 10 were expressed at essentially background 

levels and BdCESA5 was slightly greater (Fig. 2.5). The four genes associated with the 

primary wall, BdCESA1, 3, 6, and 9, were expressed at high levels in both root and stem. 

On the other hand, those associated with the secondary wall were expressed at much 

lower levels in roots than stems, having a ratio of expression roughly consistent with  
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Figure 2.4. Alignment of the B. distachyon three secondary cell wall CESA amino acid 

sequences. The overhead blue line shows the RING-type zinc finger motif, with cysteine

residues highlighted in blue. The overhead green lines show the two hypervariable regions. 

Pink highlights the three putatively catalytic aspartate residues and purple highlights the 

QxxRW motif. The overhead yellow line shows the plant-specific region and overhead black 

lines show the eight putative transmembrane domains. 
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Figure 2.5. Relative abundance of CESA transcripts in different organs 

measured with a microarray. Bars plot mean  standard deviation of three 

biological replicates. 
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Table 2.1. The ratios of relative transcripts abundance of the CESAs in 

root (R), leaf (L) and stem (S) tissue.

Gene R/L S/L S/R 

BdCESA1 4.8 5.6 1.2

BdCESA2 0.7 0.8 1.1

BdCESA3 3.8 4.2 1.1

BdCESA4 2.6 12.5 4.8

BdCESA5 1.7 1.4 0.8

BdCESA6 5.5 6.9 1.3

BdCESA7 2.6 11.0 4.3

BdCESA8 2.3 8.6 3.7

BdCESA9 3.4 4.4 1.3

BdCESA10 0.9 0.9 1.0
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secondary cell wall content across the three organ types (Table 2.1).  

2.3.3 Localization of putative secondary cell wall CESA transcripts  

 To localize transcripts, we performed RNA in situ hybridization on stems (Fig. 

2.6). Stems were fixed, sectioned on a Vibratome, and hybridized with labeled sense and 

anti-sense probes. Upon color development, positive hybridization was detected mainly 

in the sections probed with the anti-sense probes. Consistent with a role in secondary cell 

wall synthesis, hybridization for each probe was strong in the vascular bundles and the 

surrounding mechanical cells including the sclerenchyma fibers and the epidermis. 

Hybridization was essentially undetectable in pith parenchyma, which undergoes limited 

cell wall thickening. These results strengthen the assignment of BdCESA4 and BdCESA7 

as secondary cell wall related CESAs.  

2.3.4 Artificial microRNAs targeting BdCESA4 and BdCESA7 

 To examine the function of BdCESA4 and 7, we sought to reduce transcript levels 

by means of artificial microRNAs (amiR). The rice microRNA, osaMIR528, was 

modified to specifically target either BdCESA4 or BdCESA7 (Fig. 2.7 A, B). Each 

modified microRNA is predicted to target only a single gene. The amiR-CESA4 construct 

specifically targets nucleotides 3106 to 3126, which are in the last exon immediately after 

the last transmembrane domain; in contrast, amiR-CESA7 targets nucleotides 3028 to 

3048, which are in the last exon in between the seventh and the eighth transmembrane 

domains (Fig. 2.1). To characterize the efficacy of these constructs, we measured mRNA 

levels in the stem of T3 generation plants. For each construct, three to five individuals 

from families derived from three or four independent transformation events were 

analyzed by reverse transcriptase quantitative PCR (RT-QPCR). Stems were harvested  
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Figure 2.6. BdCESA4 and BdCESA7 are expressed in cells undergoing secondary 

wall deposition in the stem.  Expression of CESA4 (A, B) and CESA7 (D, E) analyzed 

by in situ hybridization at three weeks of development when the inflorescence was just 

emerging from the flag leaf.  Cross sections through the first internode were labeled 

with anti-sense probes, imaged at 10x (A, D) and 40x (B, E); and sense probes, imaged 

at 40x (C, F). xv, xylem vessel; p, phloem; ep, epidermis; Scale bar = 50 µm.
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Figure 2.7. Targeting CESA expression by means of artificial microRNAs. (A, 

B) Schematic of the constructs used. The hairpin model illustrates the 21-mer 

sequence of each microRNAconstruct and red letters indicate the mismatch in 

each hairpin recognized by the DICER complex. LB, left border; Ubi prom, maize 

ubiquitin promoter; Hyg,  hygromycin phosphotransferasegene; NOS, nopeline

synthase terminator; RB, right border. (C, D) Relative levels of transcript 

measured by RT-QPCR. Reference genes are given in methods. Stem tissue was 

collected at the same development stage when inflorescence was just emerging 

from the flag leaf. Three to five individuals from three to four independent 

transgenic lines were analyzed for each construct. The boxes show interquartile

range, the whiskers show the outer quartile edge, and the black line represents the 

median of each distribution. Open circles represent outliers, when present. * 

Denotes significance at the 5% level. 
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when the inflorescence was just emerging from the flag leaf, at developmentally 

equivalent time points. Both of the artificial microRNA constructs significantly reduced 

transcript abundance of the corresponding target (Fig. 2.7C, D). Specifically, BdCESA4 

was reduced 9.5 fold and BdCESA7 was reduced 1.5 fold. Neither transgene detectably 

reduced the level of BdCESA8 and amiR-CESA7 caused no significant decrease in 

BdCESA4; however, amiR-CESA4 modestly decreased the expression of BdCESA7 (Fig. 

2.8).   

2.3.5 BdCESA4 and BdCESA7 knock-down lines and the structure of the stem 

 The BdCESA knock-down lines were modestly but significantly decreased in 

stature and delayed in inflorescence emergence (Fig. 2.9). To investigate anatomical 

changes, we examined first internode morphology of the same plants assayed for mRNA 

levels. Because the transgenic lines were grown at different times, each comparison 

included a wild-type control, and differences between these controls presumably reflect 

differences in growth conditions. Hand-cut transverse stem sections were stained with the 

polychromatic basic dye, toluidine blue, and imaged using a light microscope. Toluidine 

blue differentially stains cell wall polymers— polysaccharides purplish blue and lignified 

cell walls turquoise—allowing cell types to be distinguished. The artificial microRNA 

constructs had little if any effect on the overall shape and arrangement of the vascular 

bundles (Fig. 2.10A). Likewise, there was no significant difference between the 

genotypes in number of vascular bundles in either the inner or the outer ring (data not 

shown). While changes in anatomy were minor or absent, stem diameter appeared to be 

reduced, consistent with the decreased plant height. Measurements of stem area revealed  
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Figure 2.8. Relative expression of selected non-targeted BdCESA genes.

Transcript abundance measured by RT-QPCR. The boxes comprise data 

from three to five individuals from three to four independent transgenic 

lines. Stem tissue was collected at the same development stage when 

inflorescence was just emerging from the flag leaf. Box plots and 

significance are as described for figure 2.7.

A B

C D

Genotype

B
d
C
E
S
A
4
/c
o
n
tr
o
l

wt amiR-CESA7

0
1

0
2
0

3
0

4
0

Genotype

B
d
C
E
S
A
8
/c
o
n
tr
o
l

wt amiR-CESA7

0
1

0
2
0

3
0

4
0



 41 

 

Genotype

P
la

n
t 
h

e
ig

h
t 

(c
m

)

wt amiR-CESA4

0
1

0
2
0

3
0

4
0

*

wt             amiR-CESA4-1      amiR-CESA4-2     amiR-CESA4-3 wt               amiR-CESA7-1       amiR-CESA7-2   amiR-CESA7-3

A B

DC

E F

2
0

2
5

3
0

3
5

4
0

 

F
lo

w
e

ri
n

g
 t
im

e
 (

d
a

y
s
)

* *

Genotype

wt amiR-CESA7

*

Figure 2.9. Whole plant phenotypes. (A, B) Plants at the time of 

wild-type inflorescence emergence. Representative plants of wild-

type and of three independent lines used for each construct. (C, D) 

Days to inflorescence emergence. (E, F) Mature plant height. 

Twenty to thirty individuals from three independent lines were 

analyzed for each construct. Box plots and significance are as 

described for Figure 2.7. 
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a modest reduction, but one that was significant for both amiR-CESA4 and amiRCESA7 

(Fig. 2.10B, C).  

 To examine the effects of the artificial microRNA constructs on cell wall structure, 

we measured cell wall thickness in the toluidine blue-stained sections. For both targets, 

the constructs reduced the thickness of cell walls modestly, but significantly (Fig. 2.10D-

G). The reduction was similar for xylem as well as for interfascicular fibers. This 

observation is consistent with the phenotypes of secondary CESA mutants characterized 

in other grass species (Tanaka et al., 2003; Zhang et al., 2009; Burton et al., 2010). 

2.3.6 Knock-down of BdCESA4 and BdCESA7 and crystalline cellulose content 

 Reduction in stem size along with the thinner cell walls indicated the possibility 

of a change in cell wall structure. Completely senesced and homogenized stem tissue was 

analyzed. First, crystalline cellulose content was assayed by X-ray powder diffraction, 

using the same individuals analyzed for figures 6 and 7, with the two wild-type samples 

pooled. The transgenic genotypes gave diffraction patterns with lower intensities at 

nearly all measured angles, although the effect in amiR-CESA4 was stronger than in 

amiR-CESA7 (Fig. 2.11A). To evaluate cellulose crystallinity, as described in Methods, 

we calculated a crystallinity index by means of the so-called “amorphous subtraction 

method” (Fig. 2.11B). The crystallinity index confirmed the visual impression of the 

diffraction patterns, namely a significant reduction in cellulose crystallinity for amiR-

CESA4. 

  Second, we evaluated the amount of crystalline cellulose by sum-frequency-

generation (SFG) vibration spectroscopy (Barnette et al., 2011). In this method, the 

sample is irradiated simultaneously by visible laser pulses at 532 nm and by infrared laser  
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Figure 2.10. Stem anatomy. (A) Toluidine blue-stained transverse sections. (B, C) Stem 

area. Cell wall thickness of (D, E) metaxylem and (F, G) interfascicular fibers. First 

internode was collected  and analyzed at inflorescence immergence from 

developmentally equivalent plants. Three to five individuals from three independent 

lines were analyzed. Box plots and significance are as described for figure 2.7.  
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Figure 2.11. Spectroscopic analysis of cellulose crystallinity. (A) X-ray 

powder diffraction profiles. (B) Crystallinity index derived from the diffraction 

profiles using the amorphous cellulose subtraction method. (C) Sum-frequency-

generation vibration spectra. (D) Cellulose crystallinity derived from the spectra 

based on comparison to Avicel. Eight to twelve individuals from three 

independent lines were analyzed for each transgene. Box plots and significance 

are as described for figure 2.7.
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pulses with a tunable frequency. Among reflected and scattered lights, there are photons 

whose frequency is the sum of two input laser frequencies, which can be filtered and 

recorded separately. Due to the symmetry requirements, this frequency summation can be 

caused by crystalline cellulose but not by amorphous non-crystalline cell wall 

components (Barnette et al., 2011). For this analysis, lines were grown at the same time. 

In the spectra, there are three prominent peaks indicative of crystalline cellulose I: 

namely 2850 cm
-1

 ascribed to symmetric CH2 stretching, 2944 cm
-1

 ascribed to 

asymmetric CH2 stretching, and 3320 cm
-1

 ascribed to the intra-chain hydrogen-bonded 

hydroxyl stretch (Fig. 2.8C) (Barnette et al., 2011; Barnette et al., 2012). Taking Avicel, a 

model cellulose Iβ with a high crystallinity, as a standard, the intensity at 2944 cm
-1

 can 

be used to estimate the crystalline cellulose amount by means of the previously 

determined calibration curve (Barnette et al., 2012). The comparison of the intensities 

recorded at 2944 cm
-1

 indicated that the Avicel-equivalent crystalline cellulose content 

tended to be reduced in amiR-CESA7and was significantly reduced in amiR-CESA4 (Fig. 

2.11D). These results are comparable to those from X-ray diffraction.  

 To examine cellulose crystallinity on a cellular scale, we used polarized-light 

microscopy on plants grown at one time and used also for the sum frequency generation 

spectroscopy. As described in Materials and Methods, our microscope is based on 

circularly polarized light, allowing contrast to be independent of crystal orientation 

within the plane perpendicular to the microscope’s optical axis, and generating images in 

which intensity is proportional to birefringent retardance (Fig. 2.12). As expected for the 

ubiquitous presence of cellulose, all cell walls of the wild-type had retardance, with 

epidermis, metaxylem, and cells of the vascular sheath being particularly strong (Fig.  
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Figure 2.12. Polarized-light micrographs of stem internode transverse 

cross-sections. Representative images of (A, B) wild type; (C, D) amiR-

CESA4; (E, F) amiR-CESA7. Left hand panels are observed through a 4x lens 

and a gray scale value of 255 indicates a retardance value of 5 nm; Right 

hand panels are observed through a 20x lens and a gray scale value of 255 

indicates a retardance value of 13 nm. Bars = 50 µm (E) and 100 µm (F). 
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Table 2.2. List of oligonucleotides used in this study. 

Oligo name Sequence (5’- 3’) 

  used for amiRNA construct development 

G-4368 CTG CAA GGC GAT TAA GTT GGG TAA C 

G-4369 GCG GAT AAC AAT TTC ACA CAG GAA ACA G 

Bd28350_I-miR-s1  AGTGGCTTAAGAATGGGTCGCATCAGGAGATTCAGTTTGA  

Bd28350_II-miR-a1  TGATGCGACCCATTCTTAAGCCACTGCTGCTGCTACAGCC  

Bd28350_III-miR*s1  CTATGCGTCCCTTTCTTAAGCCATTCCTGCTGCTAGGCTG  

Bd28350_IV-miR*a1  AATGGCTTAAGAAAGGGACGCATAGAGAGGCAAAAGTGAA  

Bd30540_I-miR-s2  AGTATGATGACAATGGTCGGCGTCAGGAGATTCAGTTTGA  

Bd30540_II-miR-a2  TGACGCCGACCATTGTCATCATA CTGCTGCTGCTACAGCC  

Bd30540_III-miR*s2  CT ACGCCCACCTTTGTCATCATATTCCTGCTGCTAGGCTG  

Bd30540_IV-miR*a2  AATATGATGACAAAGGTGGGCGTAGAGAGGCAAAAGTGAA  

  used for qRT-PCR 

 qPCRBdCESA4_F GCGTTTCGCATACACCAACACC 

qPCRBdCESA4_R ACTCGCTAGGTTGTTCAGTGTGG 

qPCRBdCESA7_F GCGATTCGCCTACATCAACACC 

qPCRBdCESA7_R GGCTGGCAAATGTGCTAATCGG 

Bd5g25870qPCR_F TCAGCAGGGTGCTAATTCAGTTC 

Bd5g25870qPCR_R CGACAGAGTTTAGCGGTCTTAGC 

BdUBC18_F  TCACCCGCAATGACTGTAAG 

BdUBC18_R ACCACCATCTGGTCTCCTTC 

BdGAPDH_F   ATGGGCAAGATTAAGATCGGAATCAACGG  

BdGAPDH_R  AGTGGTGCAGCTAGCATTTGAGACAAT  

  used for genotyping 

 Hyg_F AGAATCTCGTGCTTTCAGCTTCGA 

Hyg_R TCAAGACCAATGCGGAGCATATAC 

  used for in situ probe development 

CESA4_probe_aF CAA GGG GCT CAT GGG AAG GCA 

CESA4_probe_aR GAA GCA GCC GAA TGC AGT AAC AA 

CESA7_probe_aF GCG CCT GAA GAA TTC TGA AGA TTG  

CESA7_probe_aR GCC TGT ATT CTT GAG GTT TGG TG 
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2.12A, B). In contrast, cell walls in the stem of amiR-CESA4 had weak retardance (Fig. 

2.12C, D). Although retardance would tend to decrease along with cell wall thickness, the 

decrease in retardance was much larger than that of cell wall thickness. Likewise, 

compared to the wild-type, cell walls of amiR-CESA7 had less retardance (Fig. 2.12E, F). 

However, for this genotype the decrease was modest and within the range that might be 

attributable to the thinner cell walls. These results, taken together with those from 

diffraction and spectroscopy, confirm that the reduced expression of BdCESA4 reduced 

the amount of crystalline cellulose present in the secondary cell wall. 

 

2.4 Discussion 

For B. distachyon, this is apparently the first study detailing the CESA gene 

family and functionally characterizing BdCESAs involved in secondary cell wall 

synthesis. Members of the CESA family are best characterized in A. thaliana, where they 

are assigned a role for cellulose synthesis in either primary or secondary cell wall. Other 

vascular plants have a similar gene family structure (Carroll and Specht, 2011). The B. 

distachyon CESA gene family includes the uncharacterized grass-specific CESA clade 

(BdCESA10), which has been identified in all grass genomes sequenced to date, and all 

the other previously described clades (Paterson et al., 2009; Wang et al., 2010; Carroll 

and Specht, 2011).  

Using amino acid sequences, the ten BdCESA genes were categorized into two 

groups: primary and secondary. Each of the three secondary CESA clades contains a 

single A. thaliana protein and a single rice protein, which have all been functionally 

characterized (Taylor et al., 1999; Taylor et al., 2000; Tanaka et al., 2003). Fittingly, a 
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single BdCESA protein was present in each of these clades, suggesting they have not 

expanded since the time of eudicot and monocot divergence 140-150 million years ago 

(Chaw et al., 2004). This differs for the primary CESAs, which have differentially 

expanded between eudicots and monocots. There are different numbers of proteins in the 

CESA1 and CESA3 clades in A. thaliana, B. distachyon, and rice, and the CESA6 clade 

has diverged into separate eudicot and monocot clades, referred to as CESA6A and 

CESA6B, respectively (Carroll and Specht, 2011). Among the three secondary B. 

distachyon CESAs, BdCESA8 was the most divergent, as was that clade member 

(OsCESA4) in rice (Tanaka et al., 2003). Moreover, BdCESA8 and OsCESA4 both lack 

eight amino acids in the first RING type zinc finger motif. However, A. thaliana CESA8 

neither lacks those eight amino acids nor is notably divergent. 

Confirming the deduction from phylogeny, expression of the secondary BdCESAs 

was generally enriched in stems, which are abundant in secondary cell walls, and 

transcripts were specifically abundant in stem vascular tissue and the surrounding 

mechanical tissue including sub-epidermal cell layers, tissues that all make secondary cell 

walls. This is consistent with the tissue-specific patterns of secondary CESA expression 

observed in rice, maize, A. thaliana, and barley (Taylor et al., 2003; Appenzeller et al., 

2004; Burton et al., 2004; Wang et al., 2010). Interestingly, in developing stems of barley, 

HvCESA8 expression was two-fold greater than that of HvCESA4 (Burton et al., 2004), 

which was also observed here for BdCESA8 and BdCESA4. Taken together, we conclude 

that BdCESA4, 7, and 8 encode cellulose synthase catalytic subunits for the secondary 

cell wall.   
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 To our knowledge, this is the first report of artificial microRNA-mediated gene 

silencing in B. distachyon. We characterized the loss-of-function lines generated for 

BdCESA4 or BdCESA7 for changes in morphology and cellulose crystallinity. While 

these lines had a small but significant delay in inflorescence emergence and a reduction 

in stature, whole plant morphology was similar to wild-type plants. Similarly, delayed 

flowering and reduced stature was observed in the A. thaliana irx3 mutant and in rice 

brittle culm mutants (Turner and Somerville, 1997; Zhang et al., 2009). Sections of the 

stem revealed that the knock-down lines had a small but significant reduction in stem 

internode transverse cross-sectional area, a reduction that resembles that observed in rice 

brittle culm mutants and barley fragile stem 2 (Kokubo et al., 1991; Tanaka et al., 2003).  

 The loss-of-function lines for BdCESA4 and 7 had cell walls in xylem and 

sclerenchyma that were modestly but significantly thinner than wild-type. Thinner cell 

walls are expected from a defect in secondary cell wall cellulose synthesis, and have been 

observed consistently in secondary cell wall cesa mutants (Tanaka et al., 2003; Zhang et 

al., 2009; Burton et al., 2010). In A. thaliana, the defining phenotype of secondary CESA 

mutants is irregular or collapsed xylem (Taylor et al., 1999; Taylor et al., 2000). However, 

xylem contours appeared to be regular here, as they do in the secondary CESA mutants of 

rice (Tanaka et al., 2003). These differences probably reflect distinctions between 

eudicots and monocots in xylem tension or cell wall composition rather than differences 

in protein function (Vogel, 2008; Handakumbura and Hazen, 2012). 

Cellulose is a linear glucan polymer made of β (1-4) linked glucose molecules. 

Thirty-six such glucan chains are predicted to form a cellulose microfibril (Taylor, 2008). 

Hydrogen bonding between microfibrils crystallizes multiple cellulose chains together 
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providing the physical properties necessary to maintain rigid plant cell walls. 

Crystallinity also allows cellulose to be readily quantified. We took advantage of 

spectroscopic techniques (X-ray diffraction and sum frequency generation) and 

polarized-light microscopy to assess the status of cellulose in the loss-of-function lines.  

For the amiR-CESA7 mutants there was no significant decrease in crystallinity 

seen spectroscopically and the small decrease in birefringent retardance might reflect the 

thinner cell walls. Given that BdCESA7 expression was reduced by less than a factor of 

two, a generally wild-type cellulose status is perhaps not unexpected. In contrast, the 

amiR-CESA4 mutants had substantially decreased retardance and significantly decreased 

crystallinity from both diffraction and spectroscopic methods. The most parsimonious 

explanation for these data is that the cell walls of this line simply contained less cellulose 

than those of the wild-type. A nuanced explanation is that the cellulose synthesized in 

this line contained more defects, such as amorphous regions, or comprised microfibrils 

with fewer than the usual number (e.g., 36) of glucose chains. These alternatives are 

difficult to distinguish. Be that as it may, the significant decrease in crystalline cellulose 

amount or quality in this line matches the nearly 10-fold reduction in BdCESA4 

expression. This result implies that the function of BdCESA4 is at least partially non-

redundant and it is noteworthy that the expression of neither BdCESA7 nor 8 was 

elevated in an attempt at compensation.  

   Interestingly, even though the two lines differed in the strength of the knock-

down and in the consequent loss of cellulose, the morphological defects in the plants 

were similar and modest. This implies that small decreases in CESA activity are 

sufficient to impact the plant, possibly through a feedback system analogous to the one A. 
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thaliana invoking THESEUS (Hématy et al., 2007), but that progressively larger changes 

to the plant need not follow from larger decreases in CESA activity. In this connection, it 

will be interesting to observe the phenotype of a complete loss of function mutant for 

BdCESA4.  
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CHAPTER 3 

BdMYB48 IS A GRASS SPECIFIC POSITIVE REGULATOR OF SECONDARY 

CELL WALL SYNTHESIS AND BIOFUEL FEEDSTOCK ATTRIBUTES IN 

Brachypodium distachyon 

3.1 Introduction 

 The transcriptional network that governs the regulation of secondary cell wall 

biosynthesis in eudicots consists of several MYB family transcription factors (Zhong et 

al., 2010; Hussey et al., 2013; Schuetz et al., 2013).   MYB transcription factor proteins 

are present in all eukaryotes and are generally encoded by large gene families (Rosinski 

and Atchley, 1998; Lipsick 1996; Wilkins et al., 2009). For example, Arabidopsis 

thaliana and rice (Oryza sativa) have an estimated 197 and 155 MYBs, respectively 

(Katiyaret al. 2012). In addition to overall sequence similarity, the family is categorized 

based on the number and type of DNA-binding domains in each protein. They vary from 

one to four amino acid sequence repeats and are named based on the number of repeats 

contained within each DNA-binding domain. Majority of plant MYB proteins, the R2R3-

MYB group, harbor two repeats and are extensively described for A. thaliana, rice and 

maize (Stracke et al., 2001; Du et al., 2012; Prouse and Campbell, 2012). The MYB 

proteins that are known to regulate cell wall regulatory network include 

AtMYB46/83/58/63/85/20/52/54/69/103/4/32 and 75. Among these AtMYB46 and 

AtMYB83 are thought of as master regulators capable of activating downstream 

transcription factors and cell wall genes. Over-expression of AtMYB46/83 resulted in 

thicker secondary cell walls in the xylem vessels while dominant repression resulted in 

thinner walls (Zhong et al., 2007). Some of these proteins specifically regulate the 
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biosynthesis of a single component of the cell wall. For instance AtMYB58/63 directly 

binds the promoters of lignin genes and activates lignin biosynthesis. Dominant 

repression of these two proteins results in reduction of secondary wall thickening and 

lignin content. As a result these plants exhibit a pendent stem phenotype. On the other 

hand, over-expression leads to up regulation of the expression of lignin pathway genes 

and ectopic deposition of lignin in cells that are normally not lignified. However, over-

expression of AtMYB58/63 does not result in thicker secondary cell walls (Zhou et al., 

2009). Several other MYBs including AtMYB4/20/32/52/54/69/85/103 are abundant in 

stem tissue and facilitate cell wall gene expression and regulate the overall secondary cell 

wall biosynthesis process. Similar to AtMYB58/63, AtMYB85 is also shown to activate 

the lignin pathway genes. Dominant repression of AtMYB85 resulted in a significant 

reduction in secondary wall thickness of interfascicular and xylary fibers and over-

expression leads to ectopic deposition of secondary cell walls in the epidermis and cortex 

of the stems (Zhong et al., 2008). Dominant repression of MYB103/52/54/69 also 

reduces secondary wall thickening in interfascicular and xylary fiber cells however, none 

of them had a significant impact on the vessels (Zhong et al., 2008). Moreover all these 

MYB proteins, MYB46/83/58/63/85/52/54 and 103 act as activators of cell wall 

regulation.  

 On the other hand MYB4/32 and 75 act as repressors of cell wall biosynthesis. 

MYB75 loss-of-function mutants possess thicker secondary cell walls in interfascicular 

and xylary fibers. In addition knocking out MYB75 up regulates a set of lignin pathway 

genes and affects the lignin content in these plants (Bhargava et al. 2010). These genes 

are activated by AtMYB46/83, which also directly bind the promoters of downstream cell 
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wall genes. Those that have been well characterized for DNA-binding affinity have been 

shown to interact with a cis-regulatory AC-element in the promoters of cell wall genes to 

facilitate transcription. The three variants of the AC element AC-I (ACCTACC), AC-II 

(ACCAACC), AC-III (ACCTAAC) are present in promoters of many lignin pathway 

genes and are thought to regulate lignin biosynthesis (Lois et al., 1989; Hatton et al., 

1995; Raes et al., 2003).The AC element was further described to have four more 

variations by interchanging the T with a C at the last base position, 

ACC(T/A)A(A/C)(C/T) and named the secondary wall MYB responsive element 

(SMRE) or the MYB46 responsive cis-element (M46RE). This element was over 

represented in genes that were up regulated by over-expression of MYB46 under an 

inducible promoter. Among these, the representation was particularly high for the 

cellulose synthase genes, cellulose synthase like genes and lignin genes associated with 

MYB46 regulated secondary cell wall biosynthesis (Kim et al., 2012).  

 Unlike A. thaliana and poplar, the current transcriptional regulatory network for 

grass secondary cell wall biosynthesis is sparse (Handakumbura and Hazen, 2012). To 

date, the function of only a few MYB transcription factors have been demonstrated in a 

grass species. ZmMYB31 and PvMYB4 are two MYB repressors characterized in maize 

and switchgrass respectively. They are both shown to repress the lignin genes by binding 

to the AC elements found in the promoters of these genes and to subsequently regulate 

cell wall biosynthesis (Fornale et al., 2010; Shen et al., 2012). Rice (Oryza sativa) and 

maize (Zea mays) orthologs of AtMYB46/83 are the only MYB activators characterized 

to date. These proteins were capable of activating the entire secondary cell wall 

biosynthetic pathway when over-expressed in A. thaliana (McCarthy et al., 2009; Zhong 

http://www.frontiersin.org/Journal/10.3389/fpls.2012.00074/full#B17
http://www.frontiersin.org/Journal/10.3389/fpls.2012.00074/full#B10
http://www.frontiersin.org/Journal/10.3389/fpls.2012.00074/full#B10
http://www.frontiersin.org/Journal/10.3389/fpls.2012.00074/full#B25
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et al., 2011). However, no activators have been shown to directly activate the cell wall 

genes in grasses. Here we describe a member of a grass specific clade that directly 

activates cell wall genes and regulates cell wall biosynthesis. We identified BdMYB48 as 

a candidate gene for the positive regulation of secondary cell wall biosynthesis based on 

expression profiling and phylogeny. Here we demonstrate the function of a novel grass 

specific MYB regulator, BdMYB48 in the model monocot Brachypodium distachyon.  

 

3.2 Materials and Methods 

3.2.1 Phylogenetic analysis 

 Amino acid sequences of A. thaliana and rice MYBs were downloaded from the 

PlnTFDB plant transcription factor database (Perez-Rodriguez et al., 2010) and B. 

distachyon MYB sequences Bradi4g06317 (BdMYB1), Bradi2g47590 (BdMYB48), 

Bradi2g17980 (BdMYB31), Bradi2g40620 (BdMYB44), Bradi2g11080 (BdMYB27), 

Bradi2g36730 (BdMYB41), Bradi5g21970 (BdMYB108), Bradi1g20250 (BdMYB4), 

Bradi1g61400 (BdMYB18), Bradi5g20130 (BdMYB104), Bradi3g52260 (BdMYB75)  

were downloaded from phytozome (http://www.phytozome.net/). DNA-binding domains 

were extracted from the above amino acid sequences and two separate neighbor-joining 

phylogenies were constructed with 1000 bootstrap permutations using MEGA 5.0 one 

with the full-length protein and one with the DNA-binding domains alone.  

3.2.2 Yeast one-hybrid assay 

          Yeast one-hybrid screens were conducted as previously reported (Pruneda-Paz et 

al., 2009). Two synthetic promoters were generated for the AC-like element (ACCAAC) 

and the mutated AC-like element (TTTAAC) by fusing four copies of the sequence in 
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tandem. A spacer sequence of tttagatatcataa was included at the 3’end of the synthetic 

promoters. Sequence confirmed clones were recombined with pLacZi plasmid 

(Clonetech) containing the LacZ reporter gene and stably integrated into the YM4271 

yeast strain. BdMYB48 was fused in frame with GAL4 activation domain in pDEST22 

destination vector.  

3.2.3 Plant material and growth conditions 

 Brachypodium distachyon (L.) line Bd21-3 was used as the genetic background. 

Wild type, control, and mutant seeds were imbibed on moist paper towels for seven days 

at 4˚C and planted in potting mix (#2; Conrad Fafard Inc. Agawam, MA). Plants were 

grown at control conditions in a growth chamber at 20˚C in 20h: 4h light: dark cycles at a 

fluence rate of 220 mol
.
m

-2.
s

-1
 and relative humidity of ~68%.  

3.2.4 Plasmid construction and plant transformation 

 The full-length coding region of BdMYB48 (Bradi2g47590) was PCR amplified 

from Bd21-3 stem cDNA to include the stop codon using Phusion high-fidelity DNA 

polymerase (New England bio labs) and cloned into pENTR/D-TOPO vector (Invitrogen). 

Sequence confirmed plasmid was recombined with pOL001 ubigate ori1 destination 

vector (modified from pOL001, described in (Vogel et al., 2006) to generate the MYB48 

gain-of-function construct (MYB48-OE). A 39 nucleotide dominant repressor (CRES) 

sequence was synthesized using overlapping oligonucleotides with attB2 and attB5 

flanking sites and cloned into pDONR 221 P5-P2. Full-length coding region of BdMYB48 

without the stop codon (MYB48NS) was cloned into pDONR 221 P1-P5r. CRES and 

MYB48NS entry clones were recombined with pOL001 ubigate ori1 destination vector to 

generate the MYB48 dominant repressor construct (MYB48-DR). All constructs were 
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transformed into Agrobaterium tumefaciens strain AGL1 via electroporation for calli 

transformations. Brachypodium distachyon calli transformations were carried out with 

minor modifications as previously described (Handakumbura et al., 2013). Primary 

transgenic were PCR confirmed for the hygromycin resistance gene and propagated for 

three subsequent generations and the resulting T4 progeny were PCR confirmed for 

presence of the hygromycin phosphotransferase II gene using a kit (Thermo scientific 

Phire plant direct PCR kit) according to manufacturer’s specifications. PCR confirmed 

transgenics were used for subsequent experiments. 

3.2.5 Measurements of transcript abundance and localization 

 Total RNA was extracted using a kit (Plant RNaeasy, Qiagen, Valencia, CA) 

according to the manufacturer’s instructions. First, second, and third nodes and 

internodes of the tallest stem were frozen in liquid nitrogen from developmentally 

comparable individuals at inflorescence immergence, stage 51 on the BBCH-scale for 

cereals (Lancashire et al. 1991). On-column DNA digestions were performed using 

RNase-free DNase I (Qiagen). First strand cDNA was synthesized using oligo dT primers 

(Invitrogen) and QRT-PCR reactions were performed in triplicate as previously described 

(Handakumbura et al., 2013). Values were normalized against two housekeeping genes, 

BdUBC18 (ubiquitin-conjugating enzyme 18) and BdGapDH (Hong et al., 2008). Primers 

were designed using QuantiPrime primer design tool (Arvidsson et al., 2008).  

RNA in situ hybridization was performed as previously described (Handakumbura et al., 

2013) using stem cross sections of the first internode of the tallest stem at flowering stage.  
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3.2.6 Microscopy 

 First internode of the tallest stem at complete senescence was used for 

histochemical analysis. Hand-cut stem cross sections were stained with phloroglucinol-

HCl and observed under an Eclipse E200MV R microscope (Nikon) and imaged using a 

PixeLINK 3 MP camera. Images captured at 4X magnification were used for area 

measurements by freehand tracing of a perimeter in ImageJ (http://rsb.info.nih.gov/ij/). 

First internode of the tallest stem of mutant and vector control plants were excised when 

the inflorescence was first visible from the flag leaf and fixed in 2% glutaraldehyde in 

50mM phosphate buffer at room temperature for two hours. Next samples were post-

fixed in phosphate buffered Osmium tetraoxide under same conditions. Samples were 

rinsed thrice with water and dehydrated in a graded ethanol series. Fixed tissue was 

infiltrated with 30%, 50%, 70% and 100% spurr’s resin for an hour each. Samples were 

infiltrated overnight in 100% resin, embedded in fresh resin and allowed to solidify in an 

oven. Embedded samples were sectioned using an ultra-cut microtome; post-fixed with 

uranyl acetate and lead citrate, and observed with an electron microscope.  

3.2.7 Acetyl bromide soluble lignin measurements 

 Acetyl bromide soluble lignin (ABSL) content was measured as previously 

described (Foster et al., 2010). Briefly, 1.5 mg of senesced ground stem tissue was 

incubated with 100 μl of freshly made acetyl bromide solution (25% v/v acetyl bromide 

in glacial acetic acid)  at 50 ˚C for 2 h  followed by an additional hour of incubation with 

vortexing every 15 min. Next, samples were cooled on ice to room temperature, and 

mixed with 400 μl of 2 M sodium hydroxide and 70 μl of freshly prepared 0.5 M hydrox-

ylamine hydrochloride and 1.43 ml glacial acetic acid was added to the samples to make 
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the total volume up to 2 ml. 200 μl of each sample was pipetted into a UV-specific 96-

well plate and read in a plate reader at 280 nm. Six to sixteen individuals from three 

events were analyzed for each transgene and ABSL% was calculated as previously 

described (Foster et al., 2010). 

3.2.8 Cell wall digestibility measurements 

 Fully senesced stems were washed with 70% ethanol at 70 ˚C for 1 h to remove 

soluble cell wall material and  air dried overnight. Next they were ground using a ball 

mill and weighed into individual wells in 20 mg duplicated and fermented with 

Clostridium phytophementans as previously described (Lee et al., 2012; Lee et al., 2012). 

Nine individuals from three independent events were analyzed in duplicate for each 

transgene.  

3.2.9 Chromatin immunoprecipitation  

 About 2 g of whole stems tissue was harvested from three week old plants and 

treated for 15 min under vacuum with cross-linking buffer (10 mM Tris, pH 8.0, 1 mM 

EDTA, 250 mM sucrose, 1 mM PMSF and 1% formaldehyde). Cross-linking was 

quenched using 125 mM glycine, pH 8.0, under vacuum for 5 min, followed by three 

washing steps in double-distilled water. Next the tissue was rapidly frozen in liquid 

nitrogen, ground to a fine power using a mortar and pestle and stored at -80 ˚C. 

Chromatin was extracted using a kit (Zymo-spin) according to the manufacturer 

specification. Cross-linked samples were washed with the provided Nuclei prep buffer, 

resuspended  in chromatin shearing buffer and sonicated on ice for four cycles  using 

40% amptitude.100 μl of the sheared chromatin was incubated with the anti-GFP 

antibody overnight at 4˚C. Samples were recovered using ZymoMag Protein A beads, 
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washed thrice with the chromatin wash buffers and eluted using the chromatin elusion 

buffer. Eluted DNA was treated with 5M NaCl at 75 ˚C for 5 min and incubated with 

Proteinase K at 65 ˚C for 30 min, ChIP DNA was purified using  the provided columns 

and eluted using 8 μl of elution buffer. Triplicate QRT-PCR reactions were performed for 

three biological replicates using Quantifast SYBR Green PCR Kit (QIAGEN), with 2 ng 

of DNA with the following cycler conditions: 2 min at 95 ˚C, followed by 40 cycles of 

15 s at 95 ˚C, 20s at 55 ˚C and 20 s at 68 ˚C. Results were normalized to the input DNA, 

using the following equation:100 × 2
(Ct input-3.32--Ct ChIP)

 

3.2.10 Statistical analysis 

 For each measurement three different T4 families were analyzed for each 

transgene. Student's t-tests were performed in R v2.15.0. Significance was set a P < 0.05. 

 

3.3 Results 

3.3.1 BdMYB48 is highly expressed in stem and is localized to the interfascicular 

fibers 

 Regulators of secondary cell wall biosynthesis are commonly highly expressed in 

tissues abundant in secondary cell walls and the genes they activate mimic their 

expression behavior. To investigate BdMYB48 transcript abundance in leaf, stem and root, 

a B. distachyon microarray data set was utilized (Handakumbura et al., 2013). BdMYB48 

transcript abundance in stems was approximately six and three-fold greater relative to 

leaf and root, respectively (Fig. 3.1A). Grass stems are substantially enriched for 

secondary cell walls (Matos et al., 2013) and account for a larger proportion of above  

ground plant biomass. However, not all cell types in the stem undergo secondary wall 
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development. To confirm that BdMYB48 gene expression is associated with those cells 

undergoing secondary wall thickening, RNA in situ hybridization was carried out on stem 

cross sections at six weeks post germination (Fig. 3.1B). BdMYB48 transcripts were 

localized to cell types with thickened secondary walls at this stage of development. They 

were mainly localized to the epidermis, sclerenchyma fibers and xylem cells in both 

small and large vascular bundles. No hybridization was detected in the parenchyma cells 

and phloem fibers.  Hybridization with control BdMYB48 sense probe showed no labeling 

as expected. 

3.3.2 BdMYB48 belongs to a grass specific MYB clade 

 MYB proteins are involved in a variety of processes including growth and 

development, cell wall thickening, cell cycle regulation and defense responses. Some of 

the A. thaliana MYB proteins such as AtMYB46 and AtMYB83 directly regulate cell 

wall biosynthesis (Zhong et al., 2008). Amino acid sequence comparison revealed 

extensive similarity between BdMYB48 and the large R2R3-MYB family of A. thaliana 

and rice proteins, which have two repeats of the MYB DNA-binding domain (Stracke et 

al., 2001). To determine the protein similarity between BdMYB48 and the functionally 

characterized MYBs, a phylogeny was constructed between the MYB protein sequences 

from A. thaliana, B. distachyon and rice (Fig. 3.1C). An outgroup of phylogenetically 

distinct MYB proteins was also included. Additionally, a separate phylogeny was 

constructed using the DNA-binding domains alone (Fig. 3.2). These two phylogenies 

revealed a similar relationship. However, the phylogeny created with the full-length 

proteins (Fig. 1C) had greater bootstrap support. The closest ortholog to the well-

characterized A. thaliana MYBs, AtMYB46 and AtMYB83 is a gene described by 
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Valdivia et al. (2103)(Valdivia et al., 2013) as BdMYB1. The BdMYB48 clade includes 

 

Figure 3.2. The DNA-binding domain of BdMYB48 does not have an 

Arabidopsis ortholog. Phylogenetic relationship of the DNA-binding domains 

of a sub set of MYB proteins from Arabidopsis thaliana (red), Brachypodium 

distachyon (black), and rice (blue). DNA-binding domains were extracted from 

the MYB proteins analyzed in Fig. 3.1C and a neighbor-joining phylogeny was 

constructed using MEGA 5 with 1000 bootstrap permutations. Numbers on 

each branch indicates the bootstrap support. Branches indicated in gray were 

used as an out-group. 
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BdMYB31 and BdMYB44, each with a corresponding rice protein, but none from A. 

thaliana. This group is distinct from AtMYB46 and AtMYB83 by overall amino acid 

sequence similarity and a neighboring group that includes the A. thaliana wall associated 

regulators AtMYB86 and AtMYB50. Therefore, BdMYB48 may have a cell wall 

biosynthesis regulatory role unique to grasses. 

3.3.3 Gain-of-function and dominant repression of BdMYB48 results in reciprocal 

whole plant phenotypes  

 To investigate the function of BdMYB48, gain-of-function lines were developed 

by over-expressing the full-length coding region under the maize ubiquitin promoter 

(MYB48-OE). Similarly, dominant repressor lines were generated by over-expressing the 

full-length coding region fused to a 39 base pair dominant repressor sequence (MYB48-

DR). Multiple independent events were generated and tested for each transgene. In 

general, the BdMYB48 gain-of-function and dominant repressor plants exhibited 

reciprocal phenotypes. Two weeks after germination, both lines had similar stature, but 

phenotypically diverged when stem internodes began to elongate (Fig. 3.3A). When the 

inflorescence emerged from the flag leaf, MYB48-OE lines were slightly taller than the  

control lines and the dominant repressor lines were significantly shorter. These 

phenotypes persisted throughout development until plants completely senesced (Fig. 

3.3B). Inflorescence emergence was significantly delayed by about 5 days in both lines 

compared to the controls (Fig. 3.3C). Moreover, they differed significantly in above 

ground biomass. At complete senescence, above ground biomass yield was significantly 

greater for MYB48-OE plants and reduced for MYB48-DR plants (Fig. 3.3D). While there 

was no significant difference in plant height between control and MYB48-OE lines,  
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biomass (D), plant height (E), and stem cross section area of the first internode (F) 

at complete senescence. Twelve to sixteen individuals from three independent 

events were analyzed for each trait. * p < 0.05. 
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MYB48-DR lines were dramatically shorter (Fig. 3.3E). Leaf, stem node and internode 

count were unchanged; however, the internodes were not fully elongated in MYB48-DR 

plants. Possible explanations for a short internode include fewer cells, shorter cells, or 

both.  

 To test these possibilities we next examined propidium iodide treated longitudinal 

sections of the first internode using confocal microscopy. An equivalent number of long 

cells were observed among the three lines, but the MYB48-DR long cells were not as 

elongated (Fig. 3.4). In addition, the transverse stem cross section area differed among 

the three lines at senescence. Relative to control, MYB48-OE plants had a larger stem 

cross section area and MYB48-DR plants had a significantly smaller area (Fig. 3.3F). This 

observation may account for some of the differences observed in above ground biomass.  

3.3.4 BdMYB48 regulates secondary cell wall lignification and biofuel conversion 

efficiency 

 To further investigate the function of BdMYB48, stem cross sections were 

analyzed using bright field light microscopy for changes in vascular patterning and 

composition. Vascular bundle shape and arrangement appeared similar in all three 

transgenic lines; however, a striking difference was observed in the cells between the 

vascular bundles when stained with a lignin-indicator dye, phloroglucinol-HCl (Fig. 

3.5A-C). The interfascicular fiber region of MYB48-OE sections were bright red and the 

MYB48-DR sections were yellow relative to the control sections indicating the presence 

of very little lignin. However, the color intensity of the vascular bundles was similar 

among the three transgenic lines. The striking change in histochemical staining led us to 

investigate the lignin content in these lines. Fully senesced pulverized stem tissue was  
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Figure 3.4. MYB48-DR plants are dwarf due to non-elongated stem cells. 

Longitudinal stem sections illustrating the cell length of control (A), M48-

OE (B), and M48-DR (C). Confocal images of propidium iodide stained 

longitudinal stem sections of the first internode of flowering stems. Scale bar 

= 50 µm. Stem epidermal cell length (D), and stem internode epidermal cell 

count (E) of the first internode of flowering stems.
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assayed for acetyl bromide soluble lignin (ABSL) content. There was a slight increase in 

lignin content in MYB48-OE stems and a significant decrease in MYB48-DR stems (Fig. 

3.5D). Considering lignin content is generally inversely correlated with bioconversion 

efficiency phenotypes, we measured ethanol yield after culturing senesced stems with 

Clostridium phytofermentans. As expected, a decrease in ethanol yield was observed for 

MYB48-OE lines and conversely a significant increase for MYB48-DR lines (Fig. 3.5E). 

3.3.5 BdMYB48 is an activator of secondary cell wall biosynthesis and a regulator of 

cell wall thickening 

 The interfascicular fiber walls were examined in greater detail using transmission 

electron microscopy due to the striking changes observed in lignin staining and overall 

stem area. The first internode of the tallest stem when the inflorescence had just emerged 

from the flag leaf was fixed and sectioned using an ultra-cut microtome (Fig. 3.6). In 

comparison to the cell wall thickness of the control samples, MYB48-OE walls were 

thicker and MYB48-DR walls noticeably thinner. These results suggest that changes in 

secondary wall thickness may account for the overall differences observed in stem area 

and the above ground biomass (Fig. 3.4 D-F). Based on these results it is evident that 

BdMYB48 plays an important role in activating secondary wall thickening.  

3.3.6 BdMYB48 regulates cellulose and lignin associated gene expression 

 To investigate the transcriptional function of BdMYB48, I measured gene 

expression in BdMYB48 transgenic mutants. The tallest stem from developmentally 

equivalent plants was collected and flash frozen when the inflorescence was just visible 

from the flag leaf. Quantitative real time PCR (QRT-PCR) was utilized to examine 

transcript abundance of the transgenes and cell wall genes. Presence of the MYB48-OE  
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Figure 3.6. BdMYB48 is an activator of interfascicular fibers 

secondary cell wall thickening. Representative transmission 

electron micrographs illustrating the cell wall thickness of cells in 

the interfascicular fiber region of the first internode of inflorescence 

stems of control (A,D), M48-OE (B,E) and M48-DR (C,F). D-F are 

5X magnified images of A-C. Black and white lines indicate the 

thickness of secondary and primary walls, respectively. Scale bars 

=5 µm (A-C) and 1 µm (D-F). 
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transgene resulted in a slight increase in the abundance of the BdMYB48 transcript and 

the MYB48-DR transgene resulted in a significant increase in the total BdMYB48 

transcript (Fig. 3.7A). Three cellulose genes, two lignin genes and one hemicellulose 

gene were analyzed using QRT-PCR. Among the three CELLULOSE SYNTHASE A 

genes, BdCESA4 and 7 were significantly up regulated in MYB48-OE plants. All three 

CESA genes were significantly down regulated in MYB48-DR plants (Fig. 3.7B). A 

similar expression pattern was observed for the lignin gene, BdCOMT4, a significant up 

regulation in MYB48-OE plants and a significant down regulation in MYB48-DR plants. 

The second lignin gene BdCAD1 exhibited no significant change in the transcript level in 

MYB48-OE plants however it was significantly down regulated in MYB48-DR plants (Fig. 

3.7B). The transcript levels of the hemicellulose gene BdGT47-1 was moderately 

increased in the MYB48-OE plants and significantly decreased in MYB48-DR plants. As 

demonstrated above, BdMYB48 influences the expression of cellulose, hemicellulose and 

lignin gene expression. Changes in BdCESA4/7/8, BdGT47-1, BdCOMT4 and BdCAD1 

transcript levels along with the changes observed in cell wall thickness and composition 

implies that BdMYB48 activates the transcription of secondary cell wall biosynthetic 

genes. It is reasonable to predict there will be transcriptional changes associated will 

other cell wall genes that are functional in a similar capacity in cellulose and lignin 

biosynthesis. We next searched the cis-regulatory regions of BdCESA4/7/8, BdCOMT4 

and BdCAD1 for known regulatory elements. A sequence similar to the AC-ll element 

(Hatton et al., 1995) (ACCAAC) is upstream of the lignin genes BdCAD1 and BdCOMT4 

and the cellulose genes BdCESA4/7/8 (Fig. 3.8). A heterologous system was used to test 

for an affinity between this common motif and BdMYB48 protein. Four adjacent copies  

http://www.frontiersin.org/Journal/10.3389/fpls.2012.00074/full#B10
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 of the identified AC-II were fused to the LacZ reporter gene and stably integrated into 

the yeast genome. A similar strain was developed using a mutated motif (TTTAAC) as a 

negative control. BdMYB48 preferentially activated the promoter containing the AC-II 

element, but not the mutated version (Fig. 3.7C).  

3.3.7 BdMYB48 directly interacts with secondary cell wall biosynthetic genes in vivo  

 Altogether these results support the notion that BdMYB48 directly activates 

cellulose and lignin gene expression by direct interaction with their cis-regulatory regions. 

To investigate these interactions in vivo, transgenic lines were generated with a GFP 

tagged BdMYB48 (MYB48-GFP-OE). These lines were used for chromatin 

immunoprecipitation along with control plants (GFP-OE). Immunoprecipitated 

chromatin was used as template for QRT-PCR to assay for enrichment of specific cell 

wall gene cis-regulatory regions. The results revealed a BdMYB48 specific enrichment of 

BdCESA4, BdCESA8, and BdCAD1 promoter fragments (Fig. 3.7D). Moreover, all the 

enriched fragments contained an AC-like element (Fig 3.8). This provides evidence for 

direct binding of BdMYB48 to cell wall gene promoters.  

 

3.4 Discussion 

 I focused on the MYB family of transcription factors and identified BdMYB48 as 

a potential candidate for cell wall regulation based on its expression profile. BdMYB48 

transcript was abundant in stem, mirroring the expression profile of characterized A. 

thaliana cell wall regulators involved in promoting secondary cell wall thickening 

(Zhong et al., 2007; McCarthy et al., 2009). BdMYB48 transcript was mainly localized in 

the interfascicular fibers, xylem and somewhat to the epidermis. BdMYB48 protein 
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shares close homology to AtMYB46/83, which are mainly expressed in xylem fibers 

(Zhong et al., 2007; McCarthy et al., 2009), but another protein, BdMYB1 is their closest 

ortholog. All the characterized MYB proteins are localized to the xylem and fibers and 

none have been reported with interfascicular fiber specific localization. Interestingly 

BdMYB48 has a strong localization pattern in the interfascicular fiber cells. The 

difference observed in tissue specific localization among BdMYB48 and AtMYB46/83 

could be attributed to the aforementioned phylogenetic separation. 

 BdMYB48 over-expression and dominant repression transgenes were used for in 

planta functional characterization. The timing of inflorescence emergence was the only 

trait that exhibited a similar and significant effect. The whole plant phenotypes were 

dramatically different; MYB48-OE resulted in a larger plant with greater biomass. This 

has not been reported for the over-expression of A. thaliana MYB46/83/58 or 63 (Zhong 

et al., 2007; McCarthy et al., 2009; Zhou et al., 2009). The increase in above ground 

biomass appears to be in part the product of larger stems with thicker secondary cell 

walls. Thicker secondary cell walls were also observed in A. thaliana MYB46/83 over-

expressers (Zhong et al., 2007; McCarthy et al., 2009). On the other hand, MYB48-DR 

resulted in severely dwarf plants with significantly diminished above ground biomass. 

Dwarfism of MYB48-DR was mainly attributed to the internodes cell length but not the 

cell count. MYB48-DR stem cells were significantly shorter compared to the control stem 

cells resulting in a significantly dwarf plant. These plants also had significantly smaller 

stems with thinner interfascicular fiber cell walls. AtMYB46/83 dominant repressors 

were also shown to have significantly thinner secondary cell walls in vessels and fibers. 

As a result these plants demonstrated a pendant phenotype (Zhong et al., 2007; McCarthy 
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et al., 2009). However unlike BdMYB48, dominant repression of AtMYB46/83 did not 

cause dwarfism. The difference seen between BdMYB48 and AtMYB46/83 plant height 

phenotypes under dominant repression could be the result of a functional difference 

between these MYB proteins.  

 Another striking observation was the difference in lignification in stem cross 

sections.  Senesced plants were used for histo-chemical analysis and lignin composition 

analysis. Over-expression of BdMYB48 resulted in a moderate increase in the lignin 

content in whole stems and dominant repression resulted in a significant decrease. Based 

on phloroglucinol-HCl staining it is evident that BdMYB48 has a profound impact on the 

interfascicular fiber cell wall lignification. BdMYB48 transcripts were also localized to 

the same cell types in stem cross sections mainly to the interfascicular fibers and 

somewhat to the xylem and epidermis. Transcript localization and histo-chemical 

analysis of stems further supports an important role for MYB48 in interfascicular fiber 

cell wall regulation. Reciprocal lignification patterns have been observed in histo-

chemical studies performed on AtMYB46/83 stem sections, where over expression of the 

genes resulted in ectopic lignification in parenchymatous cells and dominant repression 

results in the absence of secondary cell wall lignification (Zhong et al., 2007; McCarthy 

et al., 2009). Even though we observed reciprocal phenotypes for total stem lignin, the 

prominent effect of BdMYB48 dominant repression on interfascicular fiber cells is a 

unique observation. As expected, over expression of BdMYB48 upregulated secondary 

cell wall biosynthesis genes. Moreover, dominant repression resulted in a significant 

down regulation of the same cell wall genes. These findings argue that BdMYB48 is an 

activator of secondary cell wall biosynthesis.  
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 Some MYB proteins are known to interact with AC-like elements and either 

activate or repress the transcription of downstream targets (Lois et al., 1989; Hatton et al., 

1995; Raes et al., 2003, Zhong and Ye, 2012, Kim et al., 2013). Next I investigated the 

promoters of genes involved in secondary cell wall biosynthesis for over represented cis-

regulatory elements. As suspected BdCESA4/7/8, BdCAD1 and BdCOMT4 genes all 

harbor AC-like elements in their promoter regions. In yeast, BdMYB48 preferentially 

bound the AC rich element relative to a mutated version. Therefore, it is plausible that 

BdMYB48 activates the downstream secondary cell wall genes via a protein-DNA 

interaction facilitated through above AC elements found in their promoter regions. This 

was further supported by the enrichment of cell wall gene promoters such as CESA4, 

CESA8 and CAD1 in BdMYB48 immuno precipitated chromatin. This provides in planta 

evidence for a direct interaction between BdMYB48 protein and the cell wall gene 

promoters. AtMYB46 has also been shown to interact with the AtCESA4/7/8 promoters 

in planta (kim et al., 2013). Therefore, based on the in silico predictions, synthetic AC 

element analysis and chromatin immunoprecipitation it is evident BdMYB48 is a direct 

activator of secondary cell wall biosynthesis in B. distachyon.  

 As might be expected for plants with a significant reduction in total lignin, a 

moderate increase in ethanol yield was observed following incubation of pulverized 

MYB48-DR stems with Clostridium phytofermentans. On the other hand MYB48-OE 

resulted in larger plants with a greater above ground bioamass but not more recalcitrant 

making BdMYB48 an obvious candidate for energy crop improvement. In conclusion we 

have demonstrated that BdMYB48 is a grass specific activator capable of regulating 

secondary cell wall biosynthesis. To our knowledge this is the first grass specific 
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activator characterized in a grass species. This protein has a greater impact on the 

interfascicular fiber cell walls which is ideal in manipulating energy crops without 

causing drastic effects to the vascular system.  
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Table 3.1. List of primers used in this study 

 
Primer Name Sequence 

attB1MYB48_F ACAAGTTTGTACAAAAAAGCAGGCTCTATGGGGCGGCACGCGGGCACT 

attB2MYB48_R ACCACTTTGTACAAGAAAGCTGGGTATCAAAAGTACTCGAGGTTGAAG 

attB5rMYB48_NSR ACAACTTTTGTATACAAAGTTGTAAAGTACTCGAGGTTGAAGTC 

attB5CRES_F ggggACAACTTTGTATACAAAAGTTGCTGTTGATCTTGATCTTGAATTGAGATTGGGT 

attB2CRES_R ggggACCACTTTGTACAAGAAAGCTGGGTATCAAGCAAAACCCAATCT 

attB5GFP_F ggggACAACTTTGTATACAAAAGTTGCTATG GTG AGC AAG GGC GAG GAG 

attB2GFP_R ggggACCACTTTGTACAAGAAAGCTGGGTATCA CTT GTA CAG CTC GTC CAT GCC 

attB1GFP_F ggggACAAGTTTGTACAAAAAAGCAGGCTCTATGGTGAGCAAGGGCGAGG 

qPCRGT47-1_F AATATAGCGCGCTGCATGTCCTC 

qPCRGT47-1_R AATATAGCGCGCTGCATGTCCTC 

qPCRMYB48CDS_F AGGAAACAGGTGGTCGCAGATTG 

qPCRMYB48CDS_R GCTTCTTCTTGAGGCAGCTGTTCC 

qPCRUBC18_F GGAGGCACCTCAGGTCATTT 

qPCRUBC18_R ATAGCGGTCATTGTCTTGCG 

qPCRGAPDH_F TTGCTCTCCAGAGCGATGAC 

qPCRGAPDH_R CTCCACGACATAATCGGCAC 

qPCRCAD1_F AGGATAGAATGGGCAGCATCGC 

qPCRCAD1_R ATCTTCAGGGCCTGTCTTCCTGAG 

qPCRCOMT4_F TGGAGAGCTGGTACTACCTGAAG 

qPCRCOMT4_R CGACATCCCGTATGCCTTGTTG 

qPCRCESA4_F GCGTTTCGCATACACCAACACC 

qPCRCESA4_R ACTCGCTAGGTTGTTCAGTGTGG 

qPCRCESA7_F GCGATTCGCCTACATCAACACC 

qPCRCESA7_R GGCTGGCAAATGTGCTAATCGG 

qPCRCESA8_F CAAAGCACAAGTTCCGCCTGTG 

qPCRCESA8_R TGGCTCGTATGCATCTGTCAAATC 

qUBC18p_F        AAGGCTTGAACATGACAGCA 

qUBC18p_R ATGAAATGGGCACCTGAAAA 

qCESA4p-1_F TGCAAAAGGCCTCAGCTAAT 

qCESA4p-1_R TGGTGGCATACAAAACCTCA 

qCESA4p-2_F CTTCACGCTCACTCACCATC 

qCESA4p-2_R CGGAAGACCAAGAATGAAGC 

qCESA8p-2_F CTTGCTCTCACCGTCCTGA 

qCESA8p-2_R GGTTTCGAAGCGAAGGTGAC 

qCADp-1_F TTCCTATTGCAAGTACATCATGC 

qCADp-1_R TATCGTGTGCTGCCCATCTA 

qCADp-3_F AAACTGTTTGAAAATCAAATCTGC 

qCADp-3_R GGAAGTTGTCGTGGGATCAG 

qCOMTp-2_F        TCGAGAAATAATGGTTCAGACG 

qCOMTp-2_R        AGATATACTTGTTGTCGCGAAG 

Hpt_F AGAATCTCGTGCTTTCAGCTTCGA 

Hpt_R TCAAGACCAATGCGGAGCATATAC 

Myb48_probe_aF  GCATGGCGCATTTTGACTTCAACC 

Myb48_probe_aR CTA CAC AAT GTT CAC ATT CCT ATA CC 



 81 

CHAPTER 4 

GRASS NAC REPRESSOR OF FLOWERING SUPPRESSES FLORAL 

TRANSITION AND SECONDARY WALL SYNTHESIS IN Brachypodium 

distachyon 

4.1 Introduction 

 The large NAC (NAM, ATAF1/2, and CUC2) transcription factor family is 

comprised of plant-specific proteins. Several are well characterized with respect to the 

regulation of secondary cell wall biosynthesis and are thought of as key regulators in this 

process. SECONDARY WALL ASSOCIATED NAC DOMAIN PROTEIN1 (SND1; also 

known as NST3) is a fiber specific Arabidopsis thaliana secondary cell wall regulator. 

SND1 is the most extensively characterized among these NAC proteins that activate the 

expression of cellulose and lignin genes. Over-expression of SND1 results in ectopic 

deposition of secondary cell walls in parenchymatous cells. Conversely, dominant 

repression results in a significant reduction in secondary cell wall deposition in fibers 

(Zhong et al., 2006). NAC SECONDARY WALL THICKENING PROMOTING FACTOR1 

and 2 (NST1/2) regulate secondary cell wall deposition in A. thaliana anther endothecium 

(Mitsuda et al., 2005).  NST1 and SND1 are thought to play redundant regulatory roles 

and the double mutant causes a drastic reduction in the expression of secondary cell wall 

genes and a significant reduction in cellulose, xylan and lignin biosynthesis (Mitsuda et 

al., 2007; Zhong et al., 2007). VASCULAR RELATED NAC DOMAIN6 and 7 (VND6/7) 

specifically expressed in protoxylem and metaxylem are required for vessel development 

in A. thaliana roots (Kubo et al., 2005; Demura and Fukuda, 2007). Moreover, over-

expression of VND6/7 results in ectopic vessel development and dominant repression 
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results in the loss of protoxylem and metaxylem development (Kubo et al., 2005). 

Collectively these five NAC proteins are considered master regulators capable of 

activating the entire secondary cell wall biosynthesis process by interacting and 

activating downstream transcription factors including SND2, SND3, MYB46, MYB54, 

MYB42, MYB103, MYB85, MYB52, MYB69 and KNAT7 (Zhong et al., 2007; Zhong et al., 

2008).  

 To date, very little functional characterization has been done for the two wall 

biosynthesis associated NAC transcription factors SND2 and SND3. These two proteins 

are distantly related to the previously described proteins when considering DNA-binding 

and transcriptional activation domain sequences (Hu et al., 2010; Wang et al., 2011). 

Even though SND1, SND2, and SND3 share the same identifier, SND1 is closely related 

to NST1 and NST2 and distantly related to SND2 and SND3. In a recent study NAC 

protein from 19 plant species were analyzed to understand the evolutionary relationship 

among NST, SND and VND sub groups. In this comparison, SND2 orthologs were found 

in both dicot and monocot species. However, SND3 was only found within dicot species 

suggesting it is a dicot specific regulator (Yao et al., 2012). Both SND2 and SND3 are 

highly expressed in A. thaliana stems mirroring a similar expression profile of many 

characterized cell wall regulators (Yao et al., 2012). Over-expression of SND2 increases 

the secondary wall thickness in interfascicular and xylary fibers in A. thaliana (Zhong et 

al., 2008). Conversely, dominant repression results in a drastic reduction of secondary 

wall thickness in fibers. Moreover, SND2 has been shown to regulate cellulose, 

hemicellulose, and lignin biosynthesis genes (Hussey et al., 2011). SND2 orthologous 

proteins have also been characterized in poplar. Over-expression of the SND2 ortholog 
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PopNAC154 in poplar reduced plant height; however, unlike in A. thaliana, over-

expression had no effect on secondary cell wall thickness (Grant et al., 2010). On the 

other hand, dominant repression of the  SND2 ortholog (PtSND2) resulted in a significant 

reduction of secondary cell wall thickness in xylary fibers (Wang et al., 2013). These 

diverging results between A. thaliana and poplar suggest differing regulatory functions 

by the various SND2 orthologs in different plant species. This contrasts with SND1, 

where the rice and maize counterparts were able to complement the snd1/nst1 double 

mutant and cause similar over-expression phenotypes in A. thaliana (Zhong et al., 2011; 

Yoshida et al., 2013).  

 Secondary cell walls, by weight, represent the majority of biomass in stem tissue. 

While grasses can produce abundant stem before flowering, A. thaliana grows as a 

rosette of leaves and only elongates stem following floral induction. The transition from 

vegetative to reproductive growth is an important phenomenon that is achieved through 

the integration of developmental and environmental cues such as day length and 

temperature. The molecular mechanisms of flowering have been well characterized in the 

model dicot A. thaliana. The mobile signal responsible for this transition is florigen, 

which is encoded by FLOWERING LOCUS T (FT). It moves from leaves to the shoot 

apical meristem to activate meristem identity genes, including APETALA1 (AP1), 

CAULIFLOWER (CAL) and FRUITFUL (FUL), to transition the shoot apical meristem 

into a flower bud (Fig. 4.1) (Ream et al., 2014). FT is expressed following exposure to 

cold through epigenetic repression of repressors of flowering: FLOWERING LOCUS C 

(FLC) and SHORT VEGETATIVE PHASE (SVP) (Michaels and Amasino, 1999; 

Alexandre and Hennig, 2008; Gu et al., 2010). Long day photoperiod can also induce  
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Figure 4.1. A simplified model for flowering in Arabidopsis thaliana.

FLOWERING LOCUS T (FT) is activated by temperature, photoperiod, clock, 

hormones and aging. FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE 

PHASE (SVP) are the main repressors of FT. FLC is activated by FRIGIDA (FRI) 

and is repressed by the autonomous pathway and cold. When the timing is suitable 

for flowering FT protein moves through the phloem to the stem and interacts with 

FD. FT-FD complex is responsible for activating the floral integrator gene 

SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) and the floral 

meristem identity genes APETALA 1 (AP1), CAULIFLOWER (CAL), FRUITFUL 

(FUL) and LEAFY (LFY) which results in the vegetative to reproductive transition.
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flowering through CONSTANS induction of FT expression (Imaizumi and Kay, 2006). 

Once activated, the mobile signal can complex with the bZIP transcription factor FD to 

form an FT-FD complex in the stem (Jaeger and Wigge, 2007). This complex is 

responsible for initiating the transcription of meristem identity genes.  

 Many of these same components have been identified as having a role in the 

control of flowering in grasses. Similar to A. thaliana, FT (also known as 

VERNALIZATION3 in barley and wheat) is the main floral integrator of developmental 

and environmental cues and turning on floral meristem identity genes including VRN1 

(Greenup et al., 2010; Wu et al., 2013; Lv et al., 2014; Ream et al., 2014). In temperate 

cereals, FT expression is induced under long days and VRN2 is repressed in response to 

vernalization (Greenup et al., 2010). VRN1 is the cereal AP1 ortholog, but contrary to A. 

thaliana AP1, VRN1 is expressed in both leaves and in the floral meristem (Trevaskis et 

al.; Alonso-Peral et al., 2011). VRN1 is activated by low temperatures and as a result 

represses VRN2 during winter allowing flowering in spring (Greenup et al., 2009). 

PHOTOPERIOD1-H1 (PPD-H)1 is another component responsible for activating FT 

under reduced levels of VRN2. Once activated, FT protein binds FLOWERING LOCUS 

D LIKE2 (FDL2), the FD ortholog found in cereals and initiates VRN1 transcription in 

the meristem (Li and Dubcovsky, 2008) triggering the transition to flowering (Fig. 4.2). 

Regardless of the similarities and distinctions for the signal transduction pathways that 

govern floral induction between A. thaliana and grasses, we expect fundamental 

differences in how that regulation relates to stem formation. Here we describe the 

function of a NAC transcription factor, GRASS NAC REPRESSOR OF FLOWERING 

(GNRF), using over-expression and loss-of-function mutant lines. 
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floral meristem identity gene VRN1.
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4.2 Material and Methods 

4.2.1 Phylogenetic analysis 

 Amino acid sequences of A. thaliana NAC proteins SND2 and SND3 and the 

orthologous proteins from O. sativa, Z. maize, P. trichocarpa and Sorghum biocolor were 

downloaded from plant transcription factor data base (PlnTFDB; http://plntfdb.bio.uni-

potsdam.de/v3.0). B. distachyon NAC sequences were downloaded from phytozome 

(http://www.phytozome.net/). A neighbor-joining phylogeny was constructed with 1000 

bootstrap permutations using MEGA 5.0. An outgroup including A. thaliana NST1, 

NST2 and SND1 were also included in this analysis.  

4.2.2 GNRF-OE plasmid construction 

 Full-length coding region of Bradi2g46197 (GNRF) was PCR amplified using 

Bd21-3 cDNA with the stop codon using Phusion high-fidelity DNA polymerase (New 

England Bio Labs) and cloned into pENTR/D-TOPO vector (Invitrogen). Sequence-

confirmed entry clone was recombined with pOL001 ubigate ori1 destination vector 

(modified from pOL001, described in (Vogel et al., 2006) to generate the GNRF gain-of-

function construct (GNRF-OE).  Above construct was transformed into Agrobacterium 

tumefaciens strain AGL1 via electroporation for B. distachyon calli transformations.  

4.2.3 Plant material, growth conditions and calli transformation 

 Brachypodium distachyon (L.) line Bd21-3 was used as the genetic background. 

Seeds were imbibed a week and planted as previously described by Handakumbura et al., 

2013. Brachypodium distachyon calli transformation was carried out as described by 

(Vogel and Hill, 2008) with minor modifications described in Handakumbura et al., 2013. 

Once shoots and roots were established primary transgenics were transplanted to soil. 
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Primary transgenic were PCR confirmed by the amplification of the hygromycin 

resistance gene and were propagated for two subsequent generations to obtain T3 

individuals. 

4.2.4 gnrf-1 mutant allele isolation 

 A homozygous gnrf-1 mutant allele was isolated from the TILLING (Targeting 

Induced Local Lesions in Genomes) mutant population generated at INRA-Versailles by 

restriction enzyme digestions. Leaf genomic DNA was isolated from each individual 

using the method described by Handakumbura et al., 2013. A 614 bp fragment spanning 

the region with the mutations was PCR amplified using Taq DNA polymerase and the 

purified amplicons were digested with BaeGI at 37 °C.  The digestion results in two 

fragments of 141 bp and 473 bp for the wild-type allele and a single undigested fragment 

for the mutant allele.  

4.2.5 Genotyping and phenotyping 

 Genomic DNA was extracted from T3 generation GNRF-OE plants and M2 

generation gnrf-1 plants as previously described (Handakumbura et al., 2013).  GNRF-

OE plants were PCR confirmed for the hygromycin selectable marker gene and were 

used in subsequent experiments.  Flowering was induced in about five percent of the 

GNRF-OE plants with excessive fertilizer treatment with a N-P-K 10:30:20 fertilizer. 

Homozygous gnrf-1 mutants were confirmed by restriction enzyme digestion as 

described previously. Phenotypic data such as flowering time, plant height, above ground 

biomass at senescence were manually recorded.  

4.2.6 RNA extraction and QRT-PCR   
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 Total RNA was extracted from the first, second, and third internodes of the tallest 

stem at BBCH stage 5 and from the fourth leaf from the base of the tallest stem at BBCH 

stage 4.5 (Hong et al.) (Plant RNaeasy, Qiagen, Valencia, CA) as previously described by 

Handakumbura et al., 2013. First strand cDNA was synthesized from 1 μg of DNase 

(Qiagen) treated total RNA using Superscript III reverse transcriptase with oligo dT 

primers (Invitrogen, Grand Island, NY). Triplicate quantitative PCR reactions were 

performed as described in Chapter 3. BdUBC18 (ubiquitin-conjugating enzyme 18) and 

GapDH  were used as reference genes for normalization (Hong et al., 2008). QuantiPrime 

primer design tool was used for qPCR primer design (Arvidsson et al., 2008).  

4.2.7 Microarray analysis 

 For the microarray analysis, three stem samples at BBCH stage 5 (Hong et al., 

2011) were pooled for each biological replicate and hybridized in triplicate for each line. 

RNA was extracted using a kit (Plant RNaeasy, Qiagen, Valencia, CA) as described 

above. Samples were hybridized to a B. distachyon BradiAR1b520742 whole genome 

tiling array (Affymetrix, Santa Clara, CA). Based on the hybridization signals a 

significantly differentially expressed gene list was generated using a modified t-test 

(Tusher et al., 2001). 

4.2.8 Histo-chemical analysis of stem lignification 

 Histo-chemical assays were performed on the first internode of tallest stem at 

complete maturity. Hand cut sections were stained with phloroglucinol-HCl as described 

in Chapter 3 for total lignin. Stained sections were observed under an Eclipse E200MV R 

microscope (Nikon) and imaged using a PixeLINK 3 MP camera.  

4.2.9 Acetyl bromide soluble lignin measurement 
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 Fully senesced pulverized stem tissue was used for acetyl bromide soluble lignin 

(ABSL) measurements as previously described (Foster et al., 2010) and briefly specified 

in Chapter 3. Three to six individuals were analyzed in triplicate for each line. 

4.3 Results 

4.3.1 Bradi2g46197 transcript is abundant in stem tissue 

 The secondary cell wall regulators characterized to date exhibit the signature 

expression profile of being highly expressed in tissues abundant in secondary cell walls 

relative to other tissues. To investigate Bradi2g46197 transcript abundance in leaf, stem, 

and root, a B. distachyon microarray data set was utilized (Handakumbura et al., 2013). 

Bradi2g46197 transcript abundance was approximately nine and three-fold greater in 

stem, relative to leaf and root, respectively (Fig. 4.3A). Grass stems are substantially 

enriched for secondary cell walls (Matos et al., 2013). Therefore, based on annotation and 

expression analysis, Bradi2g46197 is a potential candidate regulator of grass secondary 

cell wall biosynthesis.  

4.3.2 Bradi2g46197 is the closest ortholog to SND2 

 Bradi2g46197 belongs to the plant specific NAC transcription factor family that is 

involved in a variety of processes. Some of the A. thaliana NAC proteins such as NST1/2, 

SND1/2/3 are specifically involved in the regulation of cell wall biosynthesis. To 

determine the protein similarity between Bradi2g46197 and the functionally 

characterized NACs, a phylogeny was constructed between the NAC protein sequences 

from A. thaliana, B. distachyon, O. sativa, Z. maize, P. trichocarpa and Sorghum bicolor 

using the MEGA 5.0 software. NST1, NST2 and SND1 were used as an out-group in 

order to better understand the relationship of Bradi2g46197 to the other dicot and  
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monocot NAC orthologs (Fig. 4.3B). Based on protein similarity, Bradi2g46197 is a 

grass ortholog to both SND2 and SND3. Both dicots included in this analysis, A. thaliana 

and poplar, have two orthologous proteins in this clade while the grasses have only one. 

4.3.3 Over-expression of Bradi2g46197 results in persistent vegetative growth 

 To investigate the function of Bradi2g46197, gain-of-function lines were 

developed by over-expressing the full-length coding region under the maize Ubiqutin 

promoter. Multiple independent events were generated for this construct and at least three 

events were used in the subsequent experiments. A homozygous line with a 

nonsynonymous point mutation that modifies the fiftieth amino acid from a proline (P) to 

a leucine (L) was isolated from a TILLING (Targeting Induced Local Lesions in 

Genomes, (Dalmais et al., 2013) population to investigate the loss-of-function 

phenotypes. The aforementioned point mutation lies within the DNA binding domain in 

the N-terminus and predicted to alter protein function. Surprisingly, over-expression 

construct harboring transgenics remained vegetative until senescence (Fig. 4.4). These 

plants exhibited a branched and bushy phenotype and did not transition from vegetative 

to reproductive growth. We therefore named the Bradi2g46197 locus GRASS NAC 

REPRESSOR OF FLOWERING (GNRF). From here on, the gain-of-function mutant will 

be referred to as GNRF-OE and the loss-of-function mutant gnrf-1. Unlike GNRF-OE 

plants, which did not flower and were considerably shorter than control plants, gnrf-1 

plants flowered significantly earlier than the control plants by approximately 1.5 d  (Fig. 

4.5A) and were similar to control plants in stature (Fig. 4.5B). Moreover, the above 

ground biomass was significantly greater for GNRF-OE plants where as no significant 

difference was observed between gnrf-1 plants and the controls (Fig. 4.5C).  
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above ground biomass at complete senescence. Fifteen to twenty one individuals were 

analyzed for each line. * p< 0.05. 
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4.3.4GNRF is a repressor of genes associated with cell wall, transport, and flowering 

 Considering the dramatic pleiotropic effects of the gain-of-function lines, a 

microarray experiment was performed using RNA from pooled stems from control,  

GNRF-OE and gnrf-1 plants in order to isolate the potential effected pathways. Samples 

were hybridized to the B. distachyon BradiAR1b520742 whole genome tiling arrays and 

differentially expressed genes were identified using a modified t-test. No significant 

differences in gene expression were detected between control and gnrf-1. Some rather 

dramatic changes were observed within the GNRF-OE plants. While only 23 genes were 

up-regulated by GNRF over-expression, 372 genes were significantly down-regulated. 

One of the largest categories of repressed genes was transporters of numerous substrates: 

amino acids, ammonium, arsenite, carboxylate, lipids, peptides, potassium, silicon, 

sucrose, and sulfate (Table 4.1). Polysaccharide synthesis genes, lignin and lignin related 

genes, and lipid transfer genes were also abundant among the repressed genes. The most 

striking observation was the >50 fold repression of two floral meristem identity 

associated genes VRN1/FUL1/MADS33 (Bradi1g08340) and FUL2/MADS10 

(Bradi1g59250). These two genes are the two closest orthologs to A. thaliana AP1 and 

FUL. Apart from the above two genes, several other MADS-box, bHLH, WRKY, HB, 

NAC and MYB transcription factors were repressed in GNRF-OE stems. Another 

interesting observation is the 3-fold reduction of BdMYB48 (Bradi2g47590). As I have 

previously described (Chapter 3) BdMYB48 is a direct activator of secondary cell wall 

biosynthesis genes. The repression of the cellulose genes CESA4, CESA7, and COMT4, 

4CL1, 4CL3, CCoAMT lignin genes in the GNRF-OE stems could be an indirect effect 

due to the repression of BdMYB48. As a result of the repression of many cellulose and 
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hemicellulose synthesis genes, GNRF-OE stems should show a significant reduction in 

the polysaccharide composition. Apart from lignin genes, many laccasses and 

peroxidases were also repressed in these mutants. These genes are necessary for the 

polymerization of lignin monomers and their subsequent polymerization within the cell 

wall (Boerjan et al., 2003). Moreover, several copper ion transporter genes were 

repressed. Copper ions act as a catalyst in the lignin polymerization process (Boerjan et 

al., 2003). Down regulation of many lignin and lignin associated genes along with the 

necessary catalysts should result in a significant reduction in cell wall lignification in 

GNRF-OE mutants.  

4.3.5 GNRF represses meristem identity genes and floral integrators 

 Considering that GNRF-OE plants lacked the ability to transition from vegetative 

to reproductive growth, and many flowering associated genes were repressed as measured 

by microarray, flowering pathway genes were further investigated by QRT-PCR. I 

initially sought to validate the microarray results by analyzing the expression of FUL1, 

FUL2 and CENTRORADIALIS-LIKE1 HOMOLOGOUS TO TFL1 (RCN2) (Fig. 4.6).  

The primary stem was collected and flash frozen from developmentally equivalent plants 

at BBCH stage 5 (Hong et al., 2011) when the inflorescence had just begun to emerge 

from the flag leaf sheath. Eight to ten plants were individually analyzed for transcript 

abundance. In agreement with the microarray data, FUL1, FUL2 and RCN2 were 

significantly down-regulated in GNRF-OE stems. The same genes were modestly, but not 

significantly up-regulated in the gnrf-1 stems.  

 Next we investigated relative transcript abundance of the mobile flowering signal. 

FLOWERING LOCUST, or florigen, is an activator of flowering and one of the terminal  
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genes in this pathway (Higgins et al., 2010). The protein functions as a mobile signal that 

moves from the leaf to the shoot apex to initiate flowering. Accordingly, leaf tissue was  

used to investigate the relative abundance of FT transcripts. As might be expected, BdFT 

was undetectable in GNRF-OE leaves and significantly up-regulated in gnrf-1 leaves (Fig. 

4.7A).  In order to better understand this dynamic, I  investigated several putative 

upstream repressors of FT. FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE 

PHASE (SVP) act as immediate repressors of FT in A. thaliana and served as initial 

candidates in B. distachyon (Ruelens et al., 2013). While SVP expression was not altered 

in GNRF-OE (data not shown), expression of other FLC-like genes was altered (Fig. 

4.7B-D). BdMADS37, BdODDSOC1 and BdODDSOC2 are B. distachyon orthologs of A. 

thaliana FLC and are collectively referred to as the FLC-like genes. BdMADS37 was 

down-regulated in GNRF-OE leaves and BbODDSOC1 and BdODDSOC2 were 

significantly up-regulated in GNRF-OE leaves. The expression of BdMADS37, 

BDODDSOC, and BdODDSOC2 were at similar levels to controls in gnrf-1 leaves. 

4.3.6 GNRF regulates genes associated with cellulose, xylan and lignin biosynthesis 

in stem tissue 

 Since NACs play a key regulatory role in secondary cell wall biosynthesis, I 

measured the gene expression of several cell wall genes in GNRF-OE and gnrf-1 plants to 

investigate the transcriptional function of GNRF. Quantitative real time PCR was utilized 

to examine transcript abundance of the transgenes and candidate cell wall genes using the 

same cDNA samples used for detecting flowering pathway genes. As expected, GNRF 

was significantly up-regulated in GNRF-OE stems (Fig. 4.8). Three genes involved in 

cellulose biosynthesis namely BdCESA4/7/8 and two genes associated with lignin   
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Figure 4.7. Relative expression of flowering pathway genes in leaves. (A) FT, (B) 

MADS37, (C) ODDSOC1, (D) ODDSOC2. Fourth leaf from the base of the tallest stem 

was collected from developmentally equivalent plants when the inflorescence was first 

visible from the flag leaf. Seven to nine individuals were analyzed in triplicate using 

QRT-PCR and normalized against two housekeeping genes. * p< 0.05



 100 

 

 

 

 

 

 

 

 

 

 

 

 

*

0

0.2

0.4

0.6

0.8

control GNRF-OE

R
e

la
ti

ve
 e

xp
re

ss
io

n
 

o
f G

N
R

F
Figure 4.8. Transcript abundance of 

GNRF in control and GNRF-OE stems. 

Relative expression of GNRF was 

measured in the stem tissue of the tallest 

stem when the inflorescence was just 

visible from the flag leaf of the control 

plants. Ten individuals were analyzed in 

triplicate using QRT-PCR and normalized 

against two housekeeping genes. * p< 

0.05. 



 101 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

BdCESA4 BdCESA7 BdCESA8 BdCAD1 BdCOMT4 BdGT47-1

R
e

la
ti

ve
 e

xp
re

ss
io

n

Cell wall genes

control

gnrf-1

GNRF-OE

*

*

*

*

**

*

*

*

*

Figure 4.9. Target cell wall gene expression in stems. Relative expression 

of secondary cell wall genes in control, gnrf-1 and GNRF-OE stems. Tallest 

stem was collected from developmentally equivalent plants when the 

inflorescence was first visible from the flag leaf. Eight to ten individuals 

were analyzed in triplicate using QRT-PCR and normalized against two 

housekeeping genes. * p< 0.05. 
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biosynthesis namely, BdCAD1 and BdCOMT4 and a gene with a predicted role in xylan 

biosynthesis BdGT47-1 were analyzed for changes in transcript abundance (Fig. 4.9). All  

five cellulose and lignin genes were significantly down-regulated in GNRF-OE stems. 

The same genes were also found to be repressed in the microarray data set (Table 4.1). 

Conversely, the expression of BdCESA4/7, BdCAD1, and BdCOMT4 was significantly 

up-regulated in gnrf-1stems. While the putative xylan gene, BdGT47-1, was significantly 

up-regulated in the gnrf-1lines, no change was observed in GNRF-OE lines. Overall, 

these data suggest that GNRF is a repressor of cellulose and lignin gene expression. 

4.3.7 GNRF influences cell wall composition  

 In order to correlate gene expression with levels of cellulose and lignin, 

histochemical assays were preformed on stem tissue. First internodes of fully senesced 

stems were sectioned and stained with phloroglucinol-HCl to investigate possible 

changes in lignin content. While no visible changes in staining intensities were observed 

between control and gnrf-1 stem cross sections, GNRF-OE sclerenchyma fibers and 

vascular bundles exhibited a lighter shade of orange (Fig. 4.10A). Since phloroglucinol-

HCl stains O-4-linked coniferyl and sinapyl aldehydes in lignified tissue in a 

concentration indicative manner, the lighter staining pattern observed in GNRF-OE is 

likely due to a decrease in total lignin. Fully senesced pulverized tissue was used to 

measure the acetyl bromide soluble lignin (ABSL) content to further investigate the 

function of GNRF on cell wall composition and lignification (Fig. 4.10B).  As expected 

based on the phloroglucinol-HCL staining, the GNRF-OE stem was significantly reduced 

in ABSL content compared to the controls whereas no significant change was observed 

between the gnrf-1 and control samples. As many lignin and lignin related genes were  
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repressed in the GNRF-OE stems I  expected to observe a reduction in lignin composition 

which is further demonstrated by the significant reduction in ABSL.  

 

4.4 Discussion 

 Several NAC transcription factors have been shown to play crucial roles in 

secondary cell wall biosynthesis and overall plant growth and development. The B. 

distachyon NAC family is estimated to comprise 99 NAC proteins among which only one 

has been functionally characterized to date (International Brachypodium Initiative, 2010; 

Valdivia et al., 2013). GNRF was selected for functional characterization as it is highly 

expressed in stems mirroring an expression profile similar to that of characterized 

secondary cell wall regulators such as NST1, SND1 and SND2 (Mitsuda et al., 2005; 

Zhong et al., 2007). Moreover it is co-regulated with cell wall biosynthesis genes.  

 An over-expression construct was used to develop gain-of-function mutants with 

constitutive over-expression of GNRF. Simultaneously, a homozygous mutant allele 

harboring a nonsynonymous point mutation was isolated from a TILLING mutant 

collection to investigate the gnrf-1 loss-of-function phenotypes. Surprisingly, over-

expression mutants demonstrated a persistent vegetative phenotype. GNRF-OE plants 

failed to flower and could not transition into the reproductive stage. Conversely the gnrf-

1 mutants flowered significantly earlier than control plants. However apart from our 

observations, there are no known reports associating SND2 orthologs with flowering or 

floral transition. Over-expression of SND2 in A. thaliana had no adverse effects on 

flowering (Zhong et al., 2008). Additionally, no change in flowering time was observed 

with PtSND2 over-expression mutants (Wang et al., 2013). These observations warranted 
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further investigation of the flowering pathway in B. distachyon. I  first confirmed the 

over-expression of the GNRF trasngene and as expected GNRF transcripts were 

significantly up-regulated in both leaf and stem tissue in the GNRF-OE plants. FT is the 

key signal in the vegetative to reproductive transition, during which FT accumulates in A. 

thaliana leaves prior to flowering (Gu et al., 2010; Wu et al., 2013; Lv et al., 2014). In 

order to investigate the influence of GNRF on FT we analyzed FT expression in mutant 

leaves. As expected FT was not detectable in GNRF-OE leaves whereas it was 

significantly up-regulated in gnrf-1 leaves, in agreement with the flowering time 

phenotypes observed for these mutants. Unavailability of the mobile signal FT in GNRF-

OE leaves is a possible cause for the persistant vegetative phenotype. Recently, FT was 

also shown to bind phospholipids to accelerate flowering (Nakamura et al., 2014). 

Another possibility is the repression of numerous lipid transporter genes, which in turn 

influence the availability of these phospholipids thus delaying the flowering process. 

 However the direct cause of the persistent vegetative growth of GNRF-OE is most 

likely due to the >50 fold reduction of two MADS box transcription factors, FUL1 and 

FUL2.  VRN1 is the closest ortholog to A. thaliana meristem identity gene AP1 in 

temperate cereals and is responsible for transitioning the meristem into a flower bud. 

Moreover FUL is another meristem identity gene homologous to AP1 (Ream et al., 2014). 

Even though BdMADS33/FUL1 and MADS10/FUL2 have not been functionally 

characterized, they are the closest orthologous proteins to AP1 and FUL, respectively, 

and therefore most likely regulate floral meristem identity in B. distchyon. It is interesting 

to note that similar to the GNRF-OE phenotype, mutations in A. thaliana FUL gene along 

with mutations in AP1/CAL genes result in non-flowering leafy phenotypes (Ferrandiz et 
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al., 2000). This provides strong support for the function of FUL1 and FUL2 as floral 

identity genes in B. distachyon. AtAP1 is negatively regulated by the meristem identity 

gene TERMINAL FLOWER and the organ identity gene AGAMOUS. It is also regulated 

by the floral homeotic gene PISTILLATA and its interacting partner APETALA3 

(Sundström et al., 2006). However, to date there is no indication of any involvement of a 

NAC transcription factor in the regulation of these redundant floral homeotic genes, 

AP1/CAL/FUL. Furthermore, there are no known NAC transcription factors associated 

with dicot or monocot flowering pathways (Higgins et al., 2010). GNRF is the first NAC 

protein to be associated with the flowering pathway in B. distachyon. The architecture of 

flowering pathways in B. distachyon and A. thaliana are similar in some aspects, for 

instance vegetative to reproductive transition is signaled by leaf localized FT expression 

(Corbesier et al.; Wu et al., 2013; Lv et al., 2014). In both species, activation of 

orthologous floral meristem identity genes results in flowering. Interestingly, the 

vernalization responses between these two species are significantly different. 

 GNRF is the closest ortholog to SND2. Very little is known about the function of 

SND2 in any plant system. To date it has only been shown to activate cell wall 

biosynthesis in A. thaliana and poplar (Zhong et al., 2008; Grant et al., 2010; Wang et al., 

2013). Based on the protein similarity and the expression profile, GNRF likely has a 

similar function to SND2. In support of that, we have shown that GNRF is a regulator of 

cellulose, lignin and hemicellulose genes. Over-expression of GNRF resulted in a 

significant reduction of these genes in the GNRF-OE stems. Therefore, unlike SND2, 

GNRF appears to act as a repressor of cell wall biosynthesis. However, analysis of GNRF 

sequence revealed no apparent repression domains. Based on the microarray results, a 
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handful of lignin genes, peroxidases, lacasses and copper ion transporters were repressed 

by GNRF. Since these components are essential for polymerization of lignin monomers, 

cell wall lignification should be effected in the GNRF-OE mutants. Complementing the 

expression analysis, histo-chemical analysis revealed a qualitative reduction in stem 

lignin in the GNRF-OE stems.  This observation was further validated by the significantly 

lower levels of acetyl bromide soluble lignin content measured in GNRF-OE stems.  

 Based on the expression profiling and cell wall composition analysis it is evident 

that GNRF is involved in cell wall regulation. Unlike other classical cell wall regulators, 

GNRF has profound pleiotropic effects. Based on transcription profiling, GNRF is 

associated with cell wall, floral transition and transporters of numerous substrates. 

However using microarray expression analysis, direct and indirect regulation via GNRF 

over-expression is hard to decipher. Many different genes may be directly regulated by 

GNRF, including FUL1 and FUL2. Further experiments will be required to determine 

whether these genes are under direct regulation by GNRF as well as if these genes share 

common GNRF binding sites. 
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Table 4.1. Genes repressed by GNRF in GNRF-OE stems 

Gene name Gene description Fold change 

   

Transcription factors     

Bradi1g08340 MADS33/VRN1/FUL1 53.8 
Bradi1g59250 MADS10/FUL2 51.3 
Bradi1g08326 MADS1 33.6 
Bradi2g00280 WRKY47 7.7 
Bradi3g26690 BEL-like Homeobox 7.0 
Bradi1g48520 MADS7 6.1 
Bradi1g69890 MADS11 5.7 
Bradi1g26720 SBP family 4.6 
Bradi1g57607 KNOX6 Homeobox  4.5 
Bradi3g56290 bZip family 4.7 
Bradi5g10640 NAC family, XND1-like 3.6 
Bradi1g63690 MYB-like family 3.7 
Bradi1g51960 MYB15 4.5 
Bradi2g48690 MADS19 4.3 
Bradi3g21480 Homeobox family 3.8 
Bradi4g27720 bZIP70 4.4 
Bradi3g34567 WRKY13 2.5 
Bradi2g05700 NAC28 2.9 
Bradi2g47590 MYB48/SWAM1 3.0 
Bradi3g51800 MADS28 2.8 
Bradi5g11270 MADS36 2.7 
Bradi1g12690 KNOX4 Homeobox  3.0 
Bradi1g10047 KNOX2 Homeobox  3.2 
Bradi2g09720 C2C2-Dof family 3.4 
Bradi1g73710 C2C2-Dof family 2.6 
Bradi1g12780 bHLH family 3.4 
Bradi1g71990 bHLH family 3.2 
Bradi3g15440 bHLH family 2.7 
Bradi3g16515 MYB59/LHY 2.9 
Bradi3g03407 ARF family 3.1 
Bradi4g33370 WRKY60 2.2 
Bradi2g59110 SBP family 2.3 
Bradi5g22920 bHLH family 2.2 
Bradi2g23530 BEL-like Homeobox 2.3 
Bradi5g17640 AP2 family 2.2 
Cell wall polysaccharide synthesis   

Bradi2g60557 Glycosylhydrolase, GH17, β-1,3-glucanase 1 12.4 

Bradi2g34650 Fasciclin-like arabinogalactan protein 8.1 
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Bradi1g64560 Glycosyltransferase, GT34 family, 

xylosyltransferase 

7.6 

Bradi2g08310 Glycosyltransferase, GT1 family, UDP-glucosyl 

transferase 

7.1 

Bradi1g12290 Glycosyltransferase, GT47 family 6.8 

Bradi4g13697 Glycosyltransferase, GT37 family 

fucosyltransferase 1 

6.2 

Bradi2g61230 Glycosyltransferase, GT61 family 5.5 

Bradi1g25117 Cellulose synthase-like F 3.8 

Bradi1g33827 Glycosylhydrolase, GH6, xyloglucan 

endotransglycosylase 6 

4.9 

Bradi1g21990 Glycosyltransferase, GT75 family 4.8 

Bradi1g12710 Glycosyl hydrolase, GH10 family 4.8 

Bradi2g00220 Fasciclin-like arabinoogalactan protein 4.6 

Bradi1g22030 COBRA 4.5 

Bradi3g04080 Glycosylhydrolase, GH9 family glycosyl 

hydrolase 9B8 

4.0 

Bradi5g04120 Glycoside hydrolase, α-Expansin 3.9 

Bradi2g53580 Glycoside hydrolase, α-Expansin 3.8 

Bradi4g33490 Fasciclin-like arabinoogalactan protein 3.8 

Bradi4g29640 Glycosylhydrolase, GH9 family 3.8 

Bradi4g21240 Pfam:04669 Polysaccharide biosynthesis 3.7 

Bradi2g02320 Glycosylhydrolase, GH10 family 3.7 

Bradi2g59410 Glycosyltransferase, GT47 family 3.6 

Bradi1g59880 COBRA-like 3.6 

Bradi3g33130 Glycoside hydrolase, β-Expansin 3.6 

Bradi3g28350 Glycosyltransferase, GT2 family, CESA4 3.0 

Bradi4g30540 Glycosyltransferase, GT2 family, CESA7 2.8 

Bradi3g33140 Glycosylhydrolase, β-Expansin 2.7 

Bradi3g19087 Glycosyltransferase, GT2 family, CSLC 2.6 

Bradi4g28260 Glycosyltransferase, GT77 family, Extensin 2.5 

Bradi1g10347 Glycosylhydrolase, GH17 family 2.3 

Lignin synthesis   

Bradi2g23370 Laccase 12.6 

Bradi1g66720 Laccase 12.3 

Bradi3g58560 Copper ion binding 11.6 

Bradi1g27910 Peroxidase 11.3 

Bradi2g09690 Peroxidase 6.9 

Bradi2g20840 Peroxidase 5.9 

Bradi1g27920 Peroxidase 5.3 

Bradi3g30590 Ferulic acid 5-hydroxylase 1 (FAH1) 5.1 

Bradi2g54680 Laccase 4.7 

Bradi4g44810 Laccase 4.3 
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Bradi3g38540 Copper ion binding 4.5 

Bradi1g24880 Laccase 4.3 

Bradi4g11850 Laccase 4.3 

Bradi4g28920 Copper transporter protein ATOX1-related 4.3 

Bradi1g43680 Peroxidase 4.0 

Bradi1g38297 Peroxidase 3.2 

Bradi3g05750 4-coumarate--CoA ligase 3 (4CL3) 3.1 

Bradi1g32870 Peroxidase 3.1 

Bradi1g45790 Copper ion binding protein 2.9 

Bradi1g68900 Peroxidase 2.9 

Bradi3g39420 Caffeoyl CoA 3-O-methyltransferase 

(CCoAOMT) 

2.8 

Bradi3g16530 Caffeic acid O-methyltransferase (COMT4) 2.8 

Bradi1g31320 4-coumarate--CoA ligase 1 (4CL1) 2.4 

Bradi3g09240 Copper binding protein 2.3 

Lipid transfer   

Bradi2g17550 Lipid transfer protein 8.5 

Bradi2g17530 Lipid transfer protein 7.8 

Bradi2g30490 Lipid transfer protein 3.8 

Bradi1g19470 Lipid transfer protein 6.1 

Bradi2g54970 Lipid transfer protein 4.9 

Bradi2g32950 Lipid transfer protein 4.7 

Bradi2g17540 Lipid transfer protein 4.4 

Bradi5g17930 Lipid transfer protein 4.2 

Transport   

Bradi3g39800 Dicarboxylate transporter 7.8 

Bradi1g78100 Arsenite transport 6.5 

Bradi1g45190 Amino acid transporter 6.3 

Bradi3g05570 Potassium ion transporter 6.2 

Bradi1g03500 Proton-dependent oligopeptide transporter 5.3 

Bradi3g48950 Ammonium transporter 5.0 

Bradi4g21790 Proton-dependent oligopeptide transporter 5.0 

Bradi3g37850 Potassium ion transporter 4.7 

Bradi1g21800 Sugar transporter 4.6 

Bradi3g51280 Major facilitator superfamily 3.7 

Bradi3g28920 UDP-glucuronic acid transporter 3.6 

Bradi2g07830 Aquaporin transporter 3.6 

Bradi1g69770 Aluminum activated citrate transporter 3.4 

Bradi1g34140 ATPase-like zinc transporter 3.3 

Bradi5g17990 ATP dependent copper transporter 3.2 

Bradi1g25937 EamA-like transporter 3.1 

Bradi4g28000 Sugar transporter 2.7 

Bradi3g16130 ABC transporter 2.7 
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Bradi1g73170 Sucrose transporter 2.7 

Bradi1g17830 Potassium transporter 2.6 

Bradi3g39077 Oligopeptide transporter 2.6 

Bradi4g34510 PINFORMED-Like auxin efflux carrier 2.5 

Bradi2g24910 Amino acid transporter 2.5 

Bradi3g32390 Tetracycline transporter 2.5 

Bradi2g34560 ZIP Zinc transporter 2.5 

Bradi5g24170 Sulfate transporter 2.4 

Bradi3g51250 Mechanosensitive ion channel 2.4 

Bradi1g59830 Amino acid transporter 2.3 

Bradi1g34210 Cation transmembrane transporter 2.3 

Bradi4g08130 ABC transporter 2.1 
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Table 4.2 Primers used in this study 

Primer Name Sequence  

attB1NAC38_F ggggACAAGTTTGTACAAAAAAGCAGGCTCTATGAC

ATGGTGCAATAGCTTC 

attB2NAC38_R ggggACCACTTTGTACAAGAAAGCTGGGTATCAGGG

GCCAAAGCCTGTCCC 

qPCRNAC38CDS_F CAAGAAGCAGCAGCAACAGCAAC 

qPCRNAC38CDS_R CGCAGCCTGCAACTGTTCATAC 

qPCRUBC18_F TCACCCGCAATGACTGTAAG 

qPCRUBC18_R ACCACCATCTGGTCTCCTTC 

qPCRGAPDH_F TCACCCGCAATGACTGTAAG 

qPCRGAPDH_R ACCACCATCTGGTCTCCTTC 

qPCRCAD1_F AGGATAGAATGGGCAGCATCGC 

qPCRCAD1_R ATCTTCAGGGCCTGTCTTCCTGAG 

qPCRCOMT4_F TGGAGAGCTGGTACTACCTGAAG 

qPCRCOMT4_R CGACATCCCGTATGCCTTGTTG 

qPCRCESA4_F GCGTTTCGCATACACCAACACC 

qPCRCESA4_R ACTCGCTAGGTTGTTCAGTGTGG 

qPCRCESA7_F GCGATTCGCCTACATCAACACC 

qPCRCESA7_R GGCTGGCAAATGTGCTAATCGG 

qPCRCESA8_F CAAAGCACAAGTTCCGCCTGTG 

qPCRCESA8_R TGGCTCGTATGCATCTGTCAAATC 

qPCRGT47-1_F AGGGTGGTTACTATGCAAGAGGTG 

qPCRGT47-1_R AATATAGCGCGCTGCATGTCCTC 

qBd2g59187_F 

(ODDSOC2) 

AAATCCAAGATATTGGCAAAACG 

qBd2g59187_R CCTTAGGCTCACTGGAGTTCTCA 

qBd2g59120_F 

(ODDSOC1) 

CCGGCAAGCTCTACGAGTACTC 

qBd2g59120_R GCTCCCGCAAATTGCTGAT 

qBd3g41297_F 

(MADS37) 

CAATCTGAGGATGAAGGTGTCACA 

qBd3g41297_R GCTTGACAAGTTGTTCGCTTTCT 

qBd1g72150_F (SVP) AACTCAAGGCTGAAGGAGCAAC 

qBd1g72150_R AATCAGCGGCAACCTGCATC  

qBd1g48830_F (FT) AACCAACCTGAGGGTGAGCTTC 

qBd1g48830_R AGCATCTGGGTCTACCATCACGAG 

qBd1g08340_F (FUL1) TTCGCCACCGACTCATGTATGG 

qBd1g08340_R TCTGCATAGGAGTAGCGCTCATAG 

qBd1g59250_F (FUL2) AAACTGAAGGCCAAGATTGAGACG 

qBd1g59250_R    ATCCTCTCCCATGAGGTGCTTG 

qBd3g44860_F (RCN2) TTGGGAGGGAGATGGTGAGCTATG 

qBd3g44860_R   TGAACCTGTGGATGCCGATGTTTG 

Hpt_F AGAATCTCGTGCTTTCAGCTTCGA 

Hpt_R TCAAGACCAATGCGGAGCATATAC 



 113 

461_N1F2 ACATGGTGCAATAGCTTCAACGACG 

461_N1R2 CCAGTCCTAATCGATCCGGGATC 

461_N2F2 CACGACGTTGTAAAACGACCGGCAGCGGCCAAGAA

GC 

461_N2R2 GGATAACAATTTCACACAGGGGCCGACGCAATGCA

AGCGC 
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CHAPTER 5 

CONCLUSIONS 

 Transcriptional regulation of grass secondary cell wall biosynthesis is poorly 

understood. To date only two MYB transcription factors and one NAC transcription 

factor associated with cell walls have been characterized in a grass species. Extensive 

research conducted on the model eudicot A. thaliana has revealed a complex yet still 

evolving cell wall regulatory network. However due to the fundamental differences 

between dicots and grasses the grass cell wall regulatory network may possess unique 

regulators. My research objective was to uncover grass transcriptional regulators 

responsible for the regulation of secondary cell wall biosynthesis. 

 I established B. distachyon as a working model system in the Hazen laboratory for 

genetic manipulations. I used a reverse genetics approach to functionally characterize two 

CELLULOSE SYNTHASE A genes responsible for synthesizing cellulose in the secondary 

cell wall. Artificial microRNA mediated down regulation of BdCESA4 or BdCESA7 

caused cell wall defects and a reduction in crystalline cellulose in these mutants. Next, 

using a yeast one-hybrid approach, I identified a number of candidate cell wall regulators 

interacting with these CESA gene promoters. Based on gene expression profiles and 

protein homology I selected BdMYB48 and GNRF for functional characterization.  

According to phylogenetic analysis it was evident that BdMYB48 is part of a grass 

specific group within the MYB family. I generated gain-of-function and dominant 

repressor lines for BdMYB48. Based on the reciprocal phenotypes observed for plant 

height, above ground biomass, cell wall thickness and relative expression of cell wall 

genes it was clear that BdMYB48 is a direct activator of secondary cell wall biosynthesis. 
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More importantly BdMYB48 is capable of regulating biomass accumulation in the model 

grass B. distachyon. This work led to the functional characterization of the first grass 

specific transcriptional activator. 

 The second candidate, GNRF, is a NAC transcription factor abundantly expressed 

in stems. Gain-of-function mutants were generated for GNRF and a homozygous mutant 

allele was isolated from a TILLING population to investigate the loss-of-function 

phenotypes. Using these mutant lines I was able to demonstrate GNRF was capable of 

regulating cellulose and lignin gene expression. However, its function was distinct from 

the characterized orthologous proteins as GNRF was a repressor of cell wall biosynthesis. 

Surprisingly, unlike any other characterized cell wall regulator GNRF had a strong 

flowering phenotype. This led me to investigate the flowering pathway in these mutants. 

A microarray experiment revealed GNRF represses floral integrators and floral meristem 

identity genes and as a likely result the gain-of-function lines remained vegetative. 

Accordingly GNRF was also found to be a repressor of transporter functions. Further 

characterization of this pleiotropic regulator is needed to confirm its direct targets. In 

summary, I identified a grass specific transcriptional activator and a pleiotropic 

transcriptional repressor responsible for regulating cell wall biosynthesis in the model 

grass B. distachyon (Fig. 5.1). These findings will contribute to the current understanding 

of the grass cell wall regulation.  
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Figure 5.1 A model for the regulatory roles of MYB48 and GNRF. 

MYB48 activates cellulose, hemicellulose, and lignin genes to regulate 

cell wall biosynthesis. GNRF represses cellulose, hemicellulose, and 

lignin genes, floral integrator genes such as FRUITFUL1 and 2

(FUL1/2), other transcription factors , lipid transfer and transporters 

affecting cell wall biosynthesis, flowering and other developmental 

processes. Solid arrows illustrate direct interactions, dashed lines 

illustrate direct or indirect interactions.
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