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ABSTRACT 

STUDIES ON THE WRINKLING OF THIN POLYMER FILMS FLOATING ON LIQUID 

SEPTEMBER 2014 

 

KAMİL BUĞRA TOGA, B.S., KOÇ UNIVERSITY 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Thomas P. Russell 

 

This dissertation aims to broaden our understanding on wrinkling instabilities occurring 

on floating polymeric sheets, and tries to establish innovative methods that exploit these patterns 

in studies on material behavior and interfacial phenomena. We will address three major topics in 

this thesis including, i) characterization of the conditions required to buckle an annular disc, ii) 

characterization of wrinkles occurring around a droplet/bubble placed on a membrane that is kept 

taut at the liquid-air interface, and iii) using wrinkling patterns as a probe to understand the 

interfacial behavior and dynamics of ultrathin films. 

The first project in this thesis is about a thin floating elastic disc wrinkled by a droplet 

cast at the center. First, we obtain a three dimensional map of the deformed surface using 

confocal fluorescent microscopy. Then, we study the identical films in an inverted geometry 

where an air bubble is in contact with the film from its underside. In this configuration, a high-

resolution optical profilometer facilitated the topographical analysis, which provided the detailed 

elasto-capillary measures of the problem. Finally, we study the patterns as a function of boundary 

conditions and material properties, where physical properties of the sheet, such as molecular 

confinement and physical aging, also change the size and wavelength of the pattern. 

The wrinkle patterns are also characterized in response to the change in surface tension of 

the bath liquid with the aid of a Langmuir Trough. This experimental set-up also facilitates the 

pattern formation on annular elastic discs, when variable peripheral forces create contraction 
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within the film. Here, planar capillary forces dictate the controlled boundary conditions and probe 

a regime of deformation where the wrinkle length and the wavelength are empirically related. We 

should emphasize that the wrinkling of an annulus does not merely mimic the original droplet 

experiment, also leading to several remarkable discoveries. First, we observe that, in the studied 

thickness regime (<300nm) wrinkles occur earlier (easier) on thicker films and grow larger. We 

also realize that the scaled properties of wrinkles (e.g. the scaled extent and wavelength of 

wrinkles) observed for a range of thicknesses can be superimposed on another by displacing the 

data towards the hypothetical threshold required to wrinkle the zero-thickness sheet. We observe 

another thickness invariant phenomenon when the conditions of fold formation are found similar 

for films of identical annular aspect ratios.  

Finally, we study the time-dependent change in wrinkles forming on viscoelastic 

membranes. The dynamic behaviors of wrinkles are related to the rheological characteristics of 

polymer molecules of linear architecture confined into thicknesses comparable to their melt 

radius of gyration. In this study, we have found that the normalized size of wrinkles could be a 

measure of the stress and strain exerted by a droplet. We also have demonstrated that confinement 

significantly influences the dynamics of PS films. We close this chapter demonstrating that the 

wrinkling dynamics is related to the kinematics of the film under the droplet, and generally 

compares to the stress relaxation experiments performed on bulk samples. 
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CHAPTER 1 

INTRODUCTION 

 

 

Elastic instabilities have been recognized and studied for ages. In 1757, Swiss 

mathematician Leonhard Euler derived a formula that gives the maximum axial load a 

member can carry before buckling. To our knowledge, this is the first formal study on the 

topic. Yet, the failure of a slender object due to buckling has been a general concern for 

mankind throughout the history. For example, we can ascertain design considerations in 

the monuments of the ancient world that aimed to prevent consequences of compression 

and buckling. Anatolians, Persians, Greeks and Romans (and probably many other 

civilizations of the antique) have contributed to the design of numerous types of columns 

that are still used in stone masonry today. 

 

 

Figure 1. 1: A railway line buckled by the shifting ground in Christchurch, New Zealand 

(photograph is available online at: www.telegraph.co.uk). Another example of a buckling 

failure is when railway lines elongate due to thermal expansion and experience 

compression. 



 

2 

Buckling has become a more critical design concern after classical ages. The 

invention of blast furnace boosted the mass manufacturing of steel, which has remained 

as the most widely used structural metal around the globe. The strength of steel has 

allowed for the design of giant structures like skyscrapers, cross-continental railroads and 

large vehicles that consist of slender components like beams, columns, sheets and plates. 

The compromise between the strength, weight and material cost has been the main 

determinant in design; while, theory of buckling determined the reliability limits of the 

structures, especially when the components with reduced dimensionality are prone to 

bending. 

A new incentive on buckling research has been fuelled by the growth of film 

applications. For more than forty years, semiconductor companies have used top-down 

and bottom-up approaches to reduce the sizes of transistors and integrated circuits in 

microelectronic devices. Progressive developments in film processing have led to the 

miniaturization of the devices and created new test beds to observe buckling. Especially 

during the last decade, buckling has stimulated interest among researchers offering 

prospects in robust self-organization of small objects via wrinkling
[1]

, folding
[2]

 and 

crumpling
[3, 4]

. From then onwards, the research on buckling has not been limited to the 

manipulation of macroscopic nature, focusing on mesoscopic applications that extend 

from surface engineering
[5-8]

 to biology
[9, 10]

. 

In this thesis, we discuss pattern formation induced by buckling instabilities. We 

float polymer films of tens of nanometers on a liquid bath and deform the structures by 

capillary forces. This experimental setting enables us to address questions about a broad 

range of topics including two-dimensional buckling, mechanics of thin films, polymer 
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physics and interfacial phenomena. Our research is genuinely focused on understanding 

the behavior of polymer films on the surface of liquids, thus the work presented here, by 

its nature, is related to applications that extend from packaging to industrial coatings. 

 

1.1 Physics of wrinkling 

 

Two-dimensional structures like thin films often form wrinkles when buckled. 

Wrinkles as elastic instabilities tend to recur on a surface with a characteristic wavelength 

and amplitude. Studies 
[9, 10]

 have shown that even a small entity like a living cell can 

wrinkle a soft film at the point of contact where adhesion to the cell wall traces the 

material. Such delicacy typically calls for mechanical support from an underlying 

foundation in applications. In a laminate system, when conditions of buckling are met, 

film deflection is inevitably coupled by the deformation of the foundation. As a result, the 

equilibrium wavelength and amplitude of the buckled features are a compromise between 

bending of the film and the flat state preferred by the underlying layer. This is a typical 

mechanism of wrinkling observed in nature
[11]

, for example, in wrinkling of skin or on 

the surface of drying fruits. There are numerous other wrinkling mechanisms. In some 

circumstances, wrinkling is constrained with inextensibility. In other cases, wrinkles do 

not compose a pure bending state and stretching deformations dominate the instability 

pattern. In this section, we describe fundamentals of wrinkle formation and a variety of 

mechanisms that play a role in wrinkle formation. 

Instabilities are characterized by the symmetry breaking of some uniform state 

into patterned structures
[12]

. To place wrinkling phenomena in a general context, we 
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review the fundamentals of pattern formation driven by instabilities
[12]

.
 
When a system is 

taken away from equilibrium, instability patterns are observed beyond a critical 

threshold. These patterns comprise spatially varying waves that result from competing 

interactions. A characteristic wavelength of the pattern is decided by a compromise 

among dominant energy functions and constitutive equations. As an illustration, the 

formation of waves on large bodies of water can be described; such that, when a mass of 

water is pulled against gravity, the wavelength is selected by a compromise between 

gravitational and inertial terms of energy. Just like the waves on an ocean, wrinkles occur 

on a continuous medium as a result of competing forces acting on a system. 

Wrinkling is understood and modeled as an instability-driven pattern formation. 

In a pioneering wrinkling study
[11]

, a rectangular polyethylene ribbon is uniaxially 

stretched from a planar state by parallel fixtures. Beyond a critical strain, a wavy pattern 

parallel to the tensile forces is induced as shown in Fig. 1.2. 

 

 

Figure 1. 2: Wrinkles on a polyethylene sheet
[11]

 (length ~25 cm, width W~10 cm, and 

thickness t~0.01 cm) under a uniaxial tensile strain of 0.10 
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The uniaxially stretched ribbon has become a test-bed of a general theory of wrinkling 

where stretching competed with bending to assign a wavelength, λ and amplitude, 𝜁 to the 

formed undulations.  

       (1.1) 

The equation (1.1), which is derived from energy arguments and Föppl-von Kármán 

(FvK) equations, describes the scaling of wrinkling wavelength with the trade-off 

between the bending modulus of the sheet, B, and the amount of stretching, T, applied on 

the material. The amplitude of the wrinkles is predicted to scale linearly with λ, where 

ΔW/W is the imposed compressive strain on the ribbon. 

The theory developed for a freestanding stretched film can be generalized to films 

wrinkled on elastic foundations. The analogy comes from the similarity between the 

expression for the stretching energy US ~ ∫ATx(∂xζ)
2
dA and the energy associated with the 

deformation of an elastic foundation UF ~ ∫AKζ
2
dA (where K is foundation stiffness and A 

is the area supported). In both scenarios, the balance between the competing energy terms 

leads to the selection of an intermediate wavelength desired by the pattern. 

                (1.2) 

The same approach has also been applied to a floating polystyrene (PS) sheet that 

is uniaxially compressed by metal blades as presented in Fig. 1.3. In this new setting, the 

bending energy of the sheet favors long wavelengths (large deflection) whereas the 

gravitational energy of the liquid bath favors small amplitudes (refined wavelengths). 

Thus, the wavelength is selected by a compromise between the bending and the 

gravitational energy (Ug~ ρgζ
2
) of the system: 
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                 (1.3) 

 

 

Figure 1. 3: A wrinkled PS sheet
[13]

 floating on the surface of water (density ρ), 

compressed between two razor blades. 

 

In addition to the formalisms established on understanding the selection of a 

wavelength by the deformed materials, we can underline two more significant features 

associated with the elastic instabilities occurring on a 2D structure: 

i) Wrinkles occur orthogonal to compression fields: Illustratively, buckling on the 

polyethylene ribbon was induced by a strong Poisson’s effect, where, the imposed 

contraction can be clearly observed in Fig. 1.2. Similarly, on the PS raft (Fig. 1.3), the 

uniaxial compression generates parallel waves. 

ii) Deformation along wrinkles is bound to the geometrical constraint of inextensibility; 

which suggests that the lateral contraction is completely converted into the out of plane 

deformation by bending. A straightforward evaluation of this assumption is possible via a 

topographical analysis, which has remained as a rather elaborate experimental effort
[5]

. 



 

7 

The inextensibility arguments so far have proved to be a useful criterion to 

understand the pattern formation by a film deforming under a uniform stress field. For 

example, the wavenumber of the gravity wrinkles generated on the floating PS sheets 

were measured in agreement with the inextensibility arguments. The topography of a 

hard skin coated on a soft substrate
[14]

 can also be tuned according to the same 

predictions. In this way, elastic instabilities can be exploited as effective tools to decorate 

and functionalize a broad variety of materials in interesting engineering applications
[15]

. 

On the other hand, the properties of wrinkles generated under complex loading conditions 

are not fully justified by this theory. Likewise, patterns formed under spatially varying 

stress fields
[16, 17]

 have initiated different puzzles on wrinkling.
 
Among open discussions 

regarding elastic instabilities, we will focus on wrinkles induced by a tension gradient
[18]

. 

 

1.2 Wrinkles formed in a tension field 

 

As the literature on elastic instabilities has expanded, alternative wrinkling 

mechanisms have been discovered, such that solvent treatment
[19, 20]

, thermal 

expansion
[21]

 and irradiation
[22]

 of the laminate structures have generated decorative 

surfaces. Despite achieving well-controlled and rich morphology of patterns, the 

conditions leading to buckling have not been precisely quantified in these experiments. 

Therefore, elastic instabilities induced by indirect stimulants have lacked the simplicity 

and exactitude to study the fundamentals of buckling and its relation to material 

properties. To address this issue, we have designed experiments where wrinkles are 

induced by static mechanical loads, particularly by well-defined capillary forces. 
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Exploiting the advantages of controllable boundary conditions, we investigate buckling 

patterns generated on thin polymeric sheets. We also study these patterns from materials 

point of view by playing with the physical properties of the polymer films. 

Mechanically induced wrinkles can be grouped in two categories according to the 

alignment of the applied load with respect to the formed undulations. Compression 

induced wrinkles arise in a one dimensional stress field, parallel to applied compression 

(Fig. 1.3); while, so-called, tension wrinkles (Fig. 1.2) arise orthogonal to the applied 

forces. Overall, every wrinkle aligns itself perpendicular to compressive stress, and 

represents the principle stress lines generated. An analogous behavior is observed on a 

crack tip
 [23-25]

, which propagates orthogonal to the tensile stresses built in an isotropic 

medium. However, in contrast to fracture patterns, wrinkle lines can mark the stress fields 

in delicate structures without changing or failing the materials. This feature puts wrinkles 

into a list of useful nondestructive techniques to investigate the mechanics of materials. 

An axisymmetric tension gradient provides conditions where wrinkles merely 

extend within a characteristic finite region. In practice, this is achieved when a circular 

pre-stretched sheet is loaded by a force at the center. This has so far been an archetypal 

model to study the information-rich tension wrinkles. Vermorel et.al.
 
studied the kinetics 

of wrinkle formation on a circular rubber patch
[26]

 using a steel ball to apply a force at the 

center. Chopin et.al. reported on wrinkling of plastic foils
[27]

 at the delamination front, 

where the sheet is adhered onto a smooth glass surface. Holmes and Crosby studied 

wrinkle-to-fold-transition on floating PS sheets
[28]

 poked at their center. Vella et.al. 

studied the change of topography in the close vicinity of an indented skin
[29]

 pre-stretched 

by variable hydrostatic pressure. On the whole, none of these studies have closely 
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resembled the 2D schematic depicted in Fig. 1.4 by means of the experiment we propose 

in this thesis.  

 

 

Figure 1. 4: [30]
  The classical Lamé configuration where a mismatch between the inner 

and outer stresses produces a compressive region for r < (L + Rin). T and R denote the 

applied line tension and radial extent respectively for the inner and the outer boundaries 

presented. 

 

Research proposed here is based on the static and dynamic behavior of wrinkles 

generated by a centric load on a floating polymeric disc. For example, the pictures shown 

in Fig. 1.5 are taken from PS discs
[16]

 exposed to a tension gradient between the capillary 

forces generated by a water droplet at the center and the surface tension of the subphase 

acting at the edge of the sheet. From the 2D images, length L and number N of wrinkles 

can be easily measured as a function of the material properties. Huang et.al.
[16]

 

successfully characterized the wavelength of these features using inextensibility 

arguments described earlier in this chapter. The analysis was used as a means to 

characterize the thickness and the modulus of the membranes studied. The extent of the 
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wrinkled region was just recently understood by additional experiments
[31]

 and 

calculations
[32]

. The practical simplicity of the drop on a sheet experiment offers 

promising prospects in metrology, and new outlooks in interfacial phenomena. Moreover, 

the statics of the problem contributes to the general understanding on the conditions 

required to induce buckling in 2D structures. In the following section, we discuss on how 

the extent of the wrinkled region can mark the stress distribution on a thin disc exposed to 

a tension gradient. 

 

 

Figure 1. 5:
 [16]

 Floating PS discs are wrinkled by water drops of volume ~ 0.2 μL. As the 

film is made thicker, N decreases and L increases. 

 

1.3 Wrinkle formation and extent 

 

The drop-on-a-sheet experiment has moved along a mature discussion on the 

mechanical state of the annulus presented in Fig. 1.4. The static equilibrium of the flat 

structure was first solved by Lamé
[33]

 and thereafter implemented to several wrinkling 

studies in literature. Géminard et.al. studied the wrinkling of annular Latex membranes
[34]
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by manipulating the loading at the boundaries, where amplitude of wrinkles increased 

with the square root of the force applied at the center (𝜁~Ti 
1/2

). Cerda studied the same 

geometry to understand the mechanics of scars
[35]

 suggesting that the size of the draping 

region around a circular spot inversely scales with the square root of the natural tension 

in the skin (L~To
−1/2

). In both studies, the sizes of the wrinkles demonstrate square-root 

dependences on the magnitude of the loads exerted at the boundaries. These observations 

have suggested that the extent of wrinkles should match with the radial extent, Rc of the 

compressive zone generated at the center of the annulus, which, according to Lamé, must 

also scale with the square root of the boundary forces. The details of Lamé solution can 

be found in Chapter 4. Here, we merely provide the formula representation: 

     (1.4) 

Now we can introduce a relevant dimensionless parameter τ, known as load-

confinement
[30]

. This parameter describes the mismatch between the line tensions exerted 

at the inner and the outer boundaries of the annulus, and provides a measure of the 

compression in the geometry (see Eq. 1.4). 

     (1.5) 

As τ gets larger than 2, Eq. (1.4) gets a finite value and defines compressive stress 

in the azimuthal direction. Hence, τ = 2 can be marked as the threshold required to create 

compression. This trivial analysis has been the basis of post-buckling approach 

suggesting that the wrinkled extent, Rwr, should match with the representation in Eq. 

(1.4).  Nonetheless, it has been demonstrated that this approach is not always valid
[17]

.   
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The discussion in regards to the conditions wherein a thin object buckles under 

compression dates back to 18
th

 century when Swiss mathematician Leonhard Euler 

studied the 1D buckling of columns.  According to the energetics of Euler solution
[36]

, if a 

structure gets slimmer and compliant, the cost of bending (UB~t
3
) becomes smaller in 

comparison to the cost of stretching (Us~t).  Therefore, sufficiently thin films define an 

elastic regime in which a broad range of loads buckle the structure prior to the material 

failure. Hereafter, we call this extreme state as near (buckling) threshold (NT) regime. 

Briefly, NT wrinkles justify the post buckling approach. 

The buckling threshold of a film was further investigated by Davidovitch et.al., 

who developed a comprehensive model of wrinkling
[30]

 using the annular geometry 

presented in Fig. 1.4. The theory has proposed a new regime, where wrinkles alter the 

asymptotic state of the sheet via collapsing the compressive stresses responsible for the 

formation of wrinkles. Since the stress distribution is altered in this far from threshold 

(FT) regime, the wrinkle pattern changes. The new extent of wrinkles can be calculated 

from the minimization of the elastic energy derived from stretching. 

      (1.6) 

In order to distinguish the regimes where NT or FT wrinkles occur, two 

dimensionless parameters were defined. τ is already described above as a parameter that 

defines the extent of compressive zone on the model. Bendability, ϵ
–1

, on the other hand, 

describes the relative compliance of a film with respect to the magnitude of the applied 

tension. 

      (1.7) 
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Together with load-confinement, bendability describes a theoretical phase diagram (Fig. 

1.6) that suggests a recipe to generate distinct wrinkling patterns. In this graph, the 

threshold confinement for buckling has also been shown with a black solid line which 

decays as a function of increasing bendability (decreasing thickness). 

 

 

Figure 1. 6: Proposed phase diagram
[30]

 of wrinkling in the Lamé geometry. Radial 

wrinkles emerge for ϵ, τ > τc(ϵ), where the threshold curve τc(ϵ) computed marked with a 

black solid line. The NT analysis is valid below the blue dashed line. After a cross-over 

region (purple), the sheet is under FT conditions (red). 

 

 In our experiments, we will test the arguments based on the formation and extent 

of wrinkles in axisymmetric geometries. We will address and answer some of the 

questions discussed in the introduction. We will finish this thesis providing new puzzles 

on wrinkling of thin films. 
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1.4 Thesis organization 

 

In the next chapter, I start describing the protocol of coating a smooth polymer 

film on a flat substrate. Then, I explain how a circular disc is etched and floated on water. 

The chapter follows on a detailed discussion about the practical methods of generating 

axisymmetric wrinkles on floating polymeric discs. The chapter finishes with a 

discussion on the characterization techniques used in measuring the thickness and 

topography of the specimens. 

In Chapter 3, I discuss wrinkling of a floating circular film induced by a water 

droplet or air bubble brought into contact with the film. I carry on the discussion initiated 

by Hunag et.al.
[16]

 via presenting the three-dimensional details of the problem. The 

experimental results are compared with a new FT theory
[32]

 developed for the drop-on-a-

sheet experiment. We also present the details around the contact line using image 

processing and topographical techniques. Finally, the inception of wrinkles is presented 

using the results generated with an ultrafast camera. 

In Chapter 4, I present the results on wrinkling of an annulus. The discussion 

starts with image analysis and data reduction, and continues with how the extent and 

wavelength of wrinkles are measured as a function of capillary forces effective at the 

boundaries of the annulus. The chapter continues with a discussion on the relevant 

theoretical models and how these models can be modified for an annulus that comprises a 

large hole in the middle. At the end of the chapter, I report on a secondary instability 

observed as fold formation in high-compression regime. 
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In Chapter 5, I investigate the time-dependent response of wrinkles around a 

droplet sitting on a viscoelastic film. I compare the pattern dynamics with bulk relaxation 

and the change in the height of the bulge formed under the droplet. I also study the 

wrinkle patterns on aged films and films made out of large-molecular-weight polymers. 

In Chapter 6, I present the conclusion of this dissertation. 
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CHAPTER 2 

EXPERIMENTAL TECHNIQUES 

 

 

This chapter describes the details of sample preparation, measurement techniques and 

apparatus used in this research. 

 

2.1 Spin-Coating 

 

Film coating practices extend from very simple methods, like solvent-casting of 

wall-paints, to more sophisticated techniques like Langmuir-Blodgett deposition of 

monolayers onto glass surfaces. Widely preferred methods like powder and spray coating 

can facilitate application of thick layers of polymers onto a broad variety of objects 

regardless of the surface properties of the coated material and the coated piece. In 

contrast, spin-coating
[37, 38]

 is a preferred method for the application of a uniform thin 

film on a flat surface, where an excess amount of polymer solution is placed on a 

substrate and the substrate is rotated at a high angular velocity. In this work, sub-micron-

thick polymeric coatings are prepared on smooth substrates by a commercially available 

spin-coater from Specialty Coating Systems Inc. (Model: SCS G3P-8). 

One should keep several aspects of spin-coating technique in mind before using 

spin-coated films in an experiment. Despite offering a practical convenience in 

preparation of smooth layers with controllable thicknesses, spin-coated films are far 

removed from equilibrium and may show anomalous thickness changes upon heating 
[39]

 

and unexpected dewetting properties
[40]

. Several studies have shown that spin coated 
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surfaces possess a significant amount of residual stress
[41]

, due to the rapid evaporation of 

the solvent and due to radial orientation of the polymer chains
[42-44]

. As a consequence, 

for example, spin-coated block copolymer films require additional treatment to attain a 

self-assembled morphology
[45]

 dictated by the equilibrium conditions. 

In the experiments used in this thesis work, freshly spin-coated glassy films of 

linear atactic polystyrene (PS) with narrow molecular weight distributions, are wrinkled. 

The molecular weights of the polymers are well above critical entanglement molecular 

weight (Mc ~ 34 kg/mol
[46]

) of the linear coil. Prior to the application of the polymer, 

substrates are cleaned on the spin-coater by rotating an excess amount of acetone at 2000 

rpm. Then, an excess amount of polymer solution is placed on a clean microscope slide 

or silicon wafer, which is rotated at a speed between 1000 and 3000 rpm. As the solvent 

evaporates, the resultant thickness of the coating is dictated by the concentration of the 

solution and the rotation speed. The thickness and the quality of the film are also 

dependent on the vapor pressure of the solvent. In general, we use solutions of PS with 

number average molecular weight Mn = 91 kg/mol, and weight average molecular weight 

Mw = 95 kg/mol (Polymer Source Inc., product ID: P3615-S) dissolved in toluene 

(Anhydrous 99.8%, Fisher Scientific) with weight concentrations varying between 0.8% 

to 4.0%. No filtration is applied. We use Premium brand frosted (3 in x 1 in) microscope 

slides (Fisher Scientific, Catalog number 12-544-1) and bare silicon wafers from 

International Wafer Service for preparing spin-coated films. Once the substrate is coated, 

no further processing or annealing is applied. In order to avoid any significant aging 

effect, the films are used in measurements within the same hour of preparation. (Aging 

effects will be discussed in Chapter 5.) 
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2.2 Floating polymeric films 

 

The majority of experiments on thin-film buckling have studied sheets supported 

on elastic foundations. Handling thin films with a substrate, while industrially preferable, 

has some disadvantages. The influence of a semi-infinite substrate on the resultant pattern 

creates conceptual complications. The adhesion between laminate layers may generate 

non-uniform pinning and domains of localized shear. The out-of-plane deformation of the 

underlying material is usually over-assumed. A thin film floating on a liquid surface 

offers an alternative means of studying the related phenomena where the boundary 

conditions and properties of the liquid are homogenous and can be controlled. A floating 

elastic disc represents a system under pure in-plane tension. The magnitude of the force 

applied by the liquid at the perimeter of the film is known and can be controlled. 

Moreover, the static response of the underlying liquid is simpler than any other soft 

substance. Consequently, the overall homogeneity provides an ideal geometry in which 

the wrinkling of thin films can be studied. 

Floating an etched disc of polymer on water surface relies on a simple protocol. 

Circles are drawn on the spin-coated films while the polymer is still adhered to the glass 

slides. Depending on the dimension of the etched circle we use two different cutting tools 

and methods. To produce a cut with a diameter larger than ~5 mm, the shape of the 

specimen is scribed on the substrate with a carbide-tip pencil guided along a template. To 

cut smaller circles, an aluminum die with a cylindrical bore is placed on to the film 

surface. A small carbide rod with a sharpened edge on the tip is inserted tightly into the 

die until the burr delicately touches the film.  Rotating the round piece produces a clean 
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circular cut on the surface. The slide is then slowly submerged in a dish of water, where 

the liquid phase gradually penetrates into the polymer-glass interface slowly removing 

the cut portion of film from the substrate. Next, if needed, we can transfer the film to 

another experimental set-up or liquid upon retrieving it with a smooth piece of glass slide 

or ceramic surface. This method has proven to be successful in transferring films as thin 

as 30 nm on to a shallow trough filled with water. 

  

 

Figure 2. 1: Cutting tools. Left: A carbide bit with a sharp corner inserted in an 

aluminum die with a cylindrical bore. The diameter of the bit in exhibition is 1.5 mm. 

Right: A glass slide (1 x 3 in
2
) marked with concentric circles is on the left hand side of 

the larger image. A drawing pattern (at the right hand side of the figure) purchased from a 

stationery store can be used for drawing concentric circles on the glass. At the center, 

there are two sharp-tip carbide pencils from Tool Specialty Co. (Fisher catalog number: 

13378) generally used for dicing Silicon wafers. In this study, we scribe the films with 

carbide utensils. 
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Scheme 2. 2: A schematic of steps taken in preparation and wrinkling of freely floating 

polymer sheets in Russell and Menon research groups. 

 

The aluminum die is used for preparing annular films. Generating a floating 

annulus requires a two-step-cutting of concentric circles. Initially, the drawing pattern is 

placed on the coated surface. Then, the aluminum die is placed symmetrically on top of 

the flat plastic pattern. In this position, the hard metal does not touch and damage the 

polymeric coating. The small inner circle is cut first and the die is removed. Second, the 

outer circle is scribed by the wafer-cutter completing the procedure. In the final step, 

tailored films are floated onto water and the inner disc is gently removed by tweezers.  

The die-cutter has proven to be a reliable tool to float small PS discs
[17]

 with 

smooth edges. Nevertheless, we have checked the quality of the described procedure by 
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applying an alternative approach on the production, where films are patterned by the 

carbide pencils both at the inner and the outer perimeter of the concentric circles. Overall, 

the patterns look similar and the final results have not differed (See Chapter 4). 

Circularity of the cuts remained almost perfect; Centers of the circles deviated from each 

other by a relative offset of ~8-24 μm per 1 mm film radius; and the smoothness of the 

cut has exhibited similar qualities to the eye under microscope magnification. 

 

2.3 Measurement of thickness 

 

Thickness has a crucial role in determining the physical properties of a film
[47-49]

. 

As a film gets thinner and constrained to a thickness comparable to characteristic 

molecular length scales, unusual material behavior can be observed. For instance, glass 

transition temperature of a polymeric sheet decreases as the material is confined into a 

thickness comparable to its radius of gyration
[50-53]

. In addition to the role of confinement, 

mechanical properties can be directly affected by thickness, such that, the bending 

modulus of a sheet, B, has a strong dependence on thickness
[54]

, 

      (2.1) 

where E is the Young’s modulus and υ is the Poisson’s ratio of the material. According to 

the equation (2.1), one order of magnitude reduction in the film thickness results in three 

orders of magnitude decrease in flexural stiffness. Consequently, accurate measurement 

of thickness is a vital concern in wrinkling studies. 
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 We measured thickness of films adhered to substrates using several optical and 

topographical techniques, such as interferometry, x-ray reflectivity (XRR), optical 

profilometry (OP) and atomic force microscopy (AFM). Among these techniques XRR 

and AFM are absolute measures of film thickness, whereas interferometry and OP rely on 

reflectance analysis and mathematical modeling of the reflected light, and more 

importantly, these optical methods assume that the film is isotropic. 

XRR and AFM are slow methods requiring instrumental calibration, extensive 

alignment of the sample and long scan intervals. OP and interferometry are rapid 

methods, requiring minimal practical effort while capable of retrieving a single scan in 

several seconds. 

The amount of area scanned per a single run also differs for each technique. 

Interferometer measures reflectance from a ~1 mm wide spot of a light beam. The field of 

view scanned by the OP (Zygo NewView™ 7300) with a 10x objective is limited to a 1.0 

x 1.5 mm
2
 rectangular window. A single AFM (Veeco Metrology Group, Dimension 

3100) scan is limited to a 200 μm x 200 μm square. Height of the XRR beam projected at 

the angle of incidence is about 22 mm and width of the beam coming out of a 1/32
o
 

divergence slit is 9 mm. 

Topographical techniques like AFM and OP can be used to measure the thickness 

by scratching the sample and measuring the step height. A typical sample preparation 

protocol (such as the one shown in Fig. 2.2) leaves behind a questionably smooth 

polymeric layer suitable for a step-height thickness measurement. The corresponding 

micrographs are presented in Fig. 2.3. 
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Figure 2. 3: Step-height measurements performed by OP (left hand side) and AFM (right 

hand side) on a ~75 nm thick PS film coated on a glass slide. Local thickness values are 

generated from distinct profile analyses executed by device software. One gets a rough 

estimate of thickness at the edge of a scribed film, where plastic deformation and creases 

may affect the retrieved results. 

 

Due to reliability, repeatability and practical convenience, routine thickness 

measurements in this study are performed with an interferometer (Filmetrics, F20-UV 

Thin Film Analyzer). In this set-up, a broad spectrum (200-1100 nm) of radiation is 

generated by a Hammatsu Inc. light source, transferred through a fiber-optic cable, and 

reflected perpendicularly from the flat sample surface. The intensity of the light reflected 

from the interfaces depends on the wavelength of the incident beam, refractive indices of 

the materials and the film thickness. Reflectance can be either in-phase (added to each 

other) or out-of-phase (subtracted from each other) or some value in between. To 

determine the thickness, the measured signal is compared with the spectrum computed 
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from the known optical constants and an estimated value of film thickness. The final 

result is retrieved by minimizing the difference between the measured and the computed 

spectrum. The goodness of the fit is also reported by the software. In Fig. 2.4, we show a 

typical report window generated by the software. Please note that Fig. 2.3 and Fig. 2.4 are 

generated from specimens fabricated with the same protocol. 

In order to get reliable data via interferometry, the substrate beneath the film 

needs to demonstrate specular reflectivity. For that reason, films should stand on 

reference materials with well-defined optical properties, such as crystalline silicon. We 

bring smooth PS films into contact with bare silicon surface in two ways. In the first 

method, we catch the readily floating specimens with a diced and cleaned Si wafer. After 

drying the film under N2(g), the thickness is measured with interferometer. In the second 

method, a film is directly applied on a bare Si substrate, using the same preparation 

conditions as on the glass substrate. The thickness of the floating specimen is estimated 

from the measurement performed on Si. This is acceptable as long as the thickness of a 

spin-coated glassy polymer remain constant due to relaxation on water. If the change in 

planar dimensions of a floating film is smaller than the resolution of an optical 

microscope, this assumption holds. In a typical glassy polymer coating, the magnitudes of 

the fabrication-related residual stress is on the order of 10
7 

Pa (σ0~10 MPa
[41-44, 55]

), while 

the in-plane stiffness is much larger than the relaxing forces (E~3 GPa >> σ0). 

 

Table 2. 1: Thickness of PS films (in nanometers) determined by interferometer. Each 

data is measured at a different spot on the surface. Standard deviation of the data is a 

combined measure of the instrumental error and the roughness of the sample. 

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 AVG S.DEV. 

76.2 76.5 76.4 76.0 77.2 76.4 74.9 74.7 74.0 74.5 74.6 74.4 75.5 1.0 
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As a result of small strains (~10
–3

), relaxation upon floating creates negligible 

change in coated thickness. In fact, we do not observe any change in size of the floating 

films under optical microscope. 

 

 

Figure 2. 4: Reflectance from a 75.5 nm thick PS film coated on a bare Si chip. The blue 

line is the measured spectrum and the red line is the best fit computed from an estimated 

thickness value and generic material properties. 
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Figure 2. 5: XRR curves for two different PS films coated on glass slides using identical 

recipes. The thicknesses are determined as 75.9 and 76.2 nm, which is in agreement with 

the values measured by interferometry i.e. <t> = 75.5 ± 1.0 nm, from the Table 2.1. 

 

We have validated the interferometry results by performing XRR analyses on 

identical samples. XRR can be used on any flat substrates and coatings, as long as there is 

contrast between the electron densities of the film and the substrate. One very attractive 

feature of XRR is that the refractive index for x-rays is only slightly (one part in 10
4
) less 

than unity. Consequently, the measurements are not sensitive to any orientation in the 

sample, unlike optical techniques where slight variation in the refractive index due to 

orientation can measure errors. In a PANalytical X’Pert X-Ray diffractometer set-up, 
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coated glass slides are placed horizontally at the center of a goniometer. Above the 

critical angle, the incident x-ray beam (wavelength λx ~ 0.154 nm) is reflected from the 

film surface and polymer-glass interface causing constructive and destructive 

interferences of the reflected x-rays. This gives rise to Kiessig fringes
[56]

 when plotted 

against the grazing incident angle of the beam. The period of the fringes is inversely 

related to the film thickness, t = 2π/Δq, where q is the scattering vector. The scattering 

vector is defined by q = (4π/λx) sinφ where 2φ is the scattering angle. The thickness 

values measured with XRR (Fig. 2.5) agree with interferometry analysis performed on 

the same batch of samples (Table 2.1). 

 

2.4 Wrinkle generation 

 

Before discussing the details of imaging and pattern characterization, we 

summarize how wrinkles are generated on circular floating sheets. Formation of wrinkles 

in an axisymmetric tension field has been accomplished by two practical approaches: 

1) Droplet on a floating sheet: Tension gradient within the film is created by the out-of-

plane forces exerted by a water droplet (or an air bubble) at the center, and the in-plane 

liquid tension keeping the film taut at the perimeter. 

The droplets (and bubbles) are delivered onto the surface using a 10μL-capacity 

blunt-tip-micro-syringe (Hamilton, Catalog Number: 80383). A drop of controlled 

volume (0.1-2.0 μL) is released from the syringe, and softly brought in contact with the 

film. Occasionally, another pendant drop with a measured volume (0.3-0.5 μL) is ejected 

from the syringe and then added on top of the one already sitting on the film. However, in 
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general, a new droplet is deposited in order to study the effect of the droplet size on the 

wrinkle pattern. 

2) Wrinkling of an annular floating sheet: Tension gradient is created by planar line 

tension exerted at the boundaries by differentiable surface energy of water. The details of 

this technique will be discussed in the following section. 

2.4.1 Langmuir Trough 

 

Annular floating discs are wrinkled by depressing the liquid tension outside the 

film while keeping the inner boundary unaffected. To decrease the liquid tension in a 

controlled manner, a Langmuir trough (Kibron Inc. MicroTroughXS) is used to control 

the areal density of an insoluble surfactant monolayer. The trough, as shown in Fig. 2.6, 

has an uncompressed rectangular area of 5.9x18.8 mm
2
 which is bounded by a Teflon 

casing and barriers. Prior to each run, components of the trough (base, casing and two 

barriers) are washed with ethanol, and then with de-ionized water. After mounting the 

cleaned and dried set-up on a long-working-distance microscope, the trough base (a 

rectangular piece of glass bounded by stripes of Teflon) is filled with acidic water (~10
−4

 

M HCl solutions). The depth of water is kept lower than approximately 1 cm. The 

annular films can be transferred onto the trough by catching and carrying them with the 

surface of a clean glass slide. In order to ensure the purity of water, the bath is cleaned for 

one last time by vacuuming liquid from the surface and simultaneously replenishing 

acidic water with a squeeze-bottle. 
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Figure 2. 6: (A) and (B) A PS film wrinkled on a Kibron brand Langmuir trough. The 

outer diameter of the annular disc is ~2.3 cm. (C) For imaging purposes, a transparent 

trough base was built using a rectangular piece of glass, Teflon film (to define the 

boundaries) and adhesive Epoxy resin. 

 

The surface tension is changed by the use of surfactants. The surfactant molecules 

are located at the surface of water with the polar heads located at the water and the alkyl 

tails located at the air. By varying the surface area with the movable barriers, the surface 

coverage can be adjusted. The pressure of the surface active molecules is given by Π = 

γlv,0 – γlv where γlv is the surface tension of the covered surface, and γlv,0 is the surface 

tension of the pure bath substance. The measurement of Π as a function of the areal 

density of surfactant probes the physical properties and the state of the molecule at the 

interface. For instance, the compression isotherm of an ordinary molecule demonstrates 

three characteristic density states which differ in their properties
 [57]

. At low areal density 

regime, the molecules are randomly dispersed on the surface, like gas molecules. As the 
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surface is compressed, the molecules maintain another disordered state where small 

changes in the area lead to large changes in the pressure. Further reduction of the area 

causes the molecules to pack densely on the surface and form a crystalline-like 

monolayer. Perfluorododecanoic acid surfactant exhibits a typical compression isotherm 

as demonstrated in Fig. 2.7. 

Quantitative measurements on the surface pressure were made using a Wilhelmy 

plate. In this apparatus, the surface tension exerts a force on a metal rod that is partially 

immersed in the liquid. The force is generally measured by connecting the rod by a fine 

wire to an analytical balance, and the displacement translates into a weight or a force. In 

our studies, a small diameter (0.51 mm) platinum rod is used for this purpose. The 

downward force exerted onto the metal results from the product of the liquid tension and 

the contact perimeter. The resolution of the measurements is 0.1 mN/m. Before each run, 

the instrument is calibrated with clean water reference, where γlv,0 = 72.8 mN/m. The rate 

of compression is automated by a controller and implemented by a servo motor. The rate 

can be programmed between 1 and 200 mm/min. In the experiments, slow compression 

rates (4-16 mm/min) are implemented to assure quasistatic response of the surfactant. 

The micrographs are taken upon maintaining a stable desired value of surface tension. 

2.4.2 The surfactant 

 

Solutions (3.4 to 6.2 mg/mL) of perfluorododecanoic acid (Oakwood Products 

Inc. CAS:307-55-1) in chloroform-methanol (4:1 volume ratio) co-solvent were prepared. 

Droplets of the solution are placed on the surface of the water in the Langmuir trough. 

The chloroform and methanol evaporate, leaving the surfactant that subsequently spread 

across the water surface. The spreading is controlled when each drop (~1-2 μL) is 
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allowed to evaporate before the next is poured to a distant spot on the surface. 

Perfluorododecanoic acid is made of a 12-Carbon fluorinated tail attached to a carboxylic 

polar head. Polar head provides an affinity to the water surface while fluorinated chain 

located at the air surface maintains extreme hydrophobicity. During the barrier 

compression, perfluorododecanoic acid molecules do not migrate or diffuse inside the 

annulus. This has been tested and verified by measuring the surface tension locally at the 

center of the annulus. Due to the weak dispersion forces of the fluorinated tail, the 

monolayer is capable of depressing the surface tension of water to γlv ~ 9 mN/m before 

collapsing the form of crystalline monolayer. 

 

Figure 2. 7: Monomolecular characterization of 9 μL perfluorododecanoic acid dispersed 

from a 6.2 mg/mL solution on acidic water (pH~3.5). The experiment is performed at 

20.5
o
C with a monotonic compression rate of 80 mm/min. The monolayer can 

significantly decrease the liquid tension before forming micelles in the subphase. 
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2.5 Imaging 

 

The wrinkling patterns are observed in transmission using an Olympus Model SZ 

40 stereo microscope. This model provides a long working distance and low 

magnification (less than 4X) which allows the observation of millimetric-sized wrinkle 

patterns generated on a large area. A microscope base illuminates the samples from 

beneath, thus the floating film refracts the incident light. The angle of incidence is 

adjusted by a rotatable mirror, which adjusts and enhances the contrast of undulations. 

The images are acquired with an Olympus Camedia C-770 Zoom digital camera that is 

mounted onto one of the eyepieces as shown in Fig. 2.8. Providing low magnification, the 

microscope does not need a stage micrometer for calibration; instead, a transparent ruler 

floated on the bath surface sufficiently facilitates as a fine scale. We measured the 

maximum resolution of the set-up as ~3 μm/pixel. 

The wrinkle length, L, is determined both manually by finding the tip of the 

wrinkle in an image, as well as by an algorithm in which we measure the standard 

deviation in intensity in concentric circles around the droplet and find the radius at which 

this quantity drops to the level of the background noise. The wrinkle number N is 

determined by a manual count, as well as by taking the intensity in a thin annulus 

centered at r~0.5L, and determining the dominant Fourier component in this profile. This 

protocol will be further discussed in detail in section 3.7. 
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Figure 2. 8: The stereo microscope – digital camera system used for 2D observation of 

the patterns. 

 

A Leica DCSSP2 fluorescent laser scanning confocal microscope was used to 

obtain 3D images. For these studies, the PS films were fluorescently labeled with a water-

insoluble dye, Nile Red (TCI America, CAS:7385-67-3). Nile Red was dissolved in 

Toluene with a concentration of ~10 mg/20 mL. Approximately 500 μL of this solution 

was added into 10−20 mL vials of material that contain 1−3 weight % PS/Toluene 

solutions. Commercially available acupuncture needles were anchored around the 

perimeter of the film to trap the fluorescent film and minimize motional blurring during 

the scan. The field of view of the FCM objective was 1.5 mm x 1.5 mm, and the in-plane 

lateral resolution was 0.1 mm. Vertical scan steps were made with a resolution of 0.6 μm. 
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A Zygo Interferometric microscope (Zygo NewView™ 7300) is used to obtain 

optical profilometry images of the bubble surface. For the greater stability needed here, 

we used a bath of glycerol rather than water. The field of view is 1.0 mm x 1.5 mm with a 

0.1 mm in-plane resolution, and a vertical resolution of 1 nm. The vertical scan was done 

over a range of 40 mm. Each vertical slice takes 2 seconds to acquire. The volume of the 

bubble was constant during the scan. 

The technique is based on white-light interferometry that is facilitated for high-

precision surface structure analysis
[58, 59]

. The object is scanned by a detector in a 

direction perpendicular to the object surface. Interferograms are generated for each point 

that can be resolved with the white light in the field of view. The intensity data is 

transformed into the spatial frequency domain, and the surface height for each point is 

obtained with an analysis of the complex phase. Finally, three-dimensional image is 

constructed from the height data as a function of the planar coordinates 
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CHAPTER 3 

A DROPLET WRINKLING A FLOATING SHEET 

 

 

In this chapter, we study the wrinkling of circular PS sheets floating on water and 

glycerol. Wrinkling is induced by water droplets and air bubbles brought in contact with 

the films at the center. 

 

3.1 Summary 

 

The radial wrinkle pattern generated by a liquid drop on a floating elastic sheet 

has stimulated a number of advances in the understanding of wrinkle patterns in ultrathin 

sheets. A puzzle associated with the spatial extent of this simple, highly symmetric 

pattern has only recently been resolved, but several other basic aspects of the pattern 

remain unexplained. In this chapter, we report a detailed experimental characterization of 

the wrinkle pattern generated on elastic PS sheets floating on a fluid, due to the capillary 

stresses of drops placed on the sheets. The previous study
[16]

 on this simple, symmetric, 

well characterized setting showed that the traditional post-buckling approach is 

inadequate to characterize the wrinkle patterns. This stimulated a number of conceptual 

advances
[30, 60]

 in the understanding of elastic instabilities on ultrathin sheets. Our new 

experimental observations pose some fresh puzzles and enable a quantitative, calibration-

free use of this setup for the metrology of ultrathin films. 

The experiment has been first reported by Huang et.al. who studied the extent and 

wavenumber of the pattern via 2-dimensional images
[16]

. In this thesis, we report a full 3-
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dimensional topographical characterization of this problem, and of its counterpart, a 

bubble beneath a sheet. In addition to measurements of the wrinkle amplitude, these 

studies reveal the elastic deformation and the resulting wrinkle pattern beneath the drop. 

We also show that the rather flat boundary condition at the contact line of the drop is 

achieved by a cascade of wrinkles on both sides of the boundary. We also report studies 

by high-speed video imaging of the propagation of the wrinkle pattern, with the 

unexpected result that the wavenumber is established early in the development of the 

pattern, before it has reached its full spatial extent. 

 

3.2 Background 

 

Placing a droplet of water on an elastic film floating on water generates a wrinkle 

pattern of finite extent as shown in the image in Fig. 3.1. The film is stretched radially at 

its outer edge by the air–water surface tension. As the sketch in Fig. 3.1 shows, the 

droplet applies a Laplace pressure normal to the sheet, and a line tension at the contact 

line of the drop. If the resultant in-plane radial tension at the contact line is sufficiently 

larger than the outside tension, then the film is pulled radially toward the contact line and 

the resultant build-up of material can induce buckling in the azimuthal direction. 

This radially symmetric wrinkle pattern can be characterized by the length, L, and 

number, N, of the wrinkles formed. Huang et al.
[16]

 studied the dependence of N and L as 

a function of the film thickness, t, and the droplet size, a. The number of wrinkles, was 

successfully described by scaling arguments adapted from Ref: [11] as N ~ (γlva
2
/B)

1/4
, 
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where the bending modulus, B = Et
3
/12(1-υ

2
), is determined by the thickness t, the 

Young's modulus E, and the Poisson ratio υ, and γlv is the air–water surface tension. 

 

 

Figure 3. 1: Optical micrographs of (A) a droplet (of radius a = 0.74 mm) and (B) a 

bubble (a = 0.79 mm) wrinkling a floating sheet of polystyrene (thickness t = 80 nm). The 

schematic diagrams show the capillary forces at the contact line, and the Laplace pressure 

PY acting on the sheet. We also label the contact angle θ, and the angle ϕ above or below 

the horizontal due to the deformation of the sheet under the drop or bubble. The diameter 

of the sheet is 23 mm, much greater than the field of view. 

 

To understand the length of wrinkles, Huang et al. employed an analysis for an 

annulus placed under differential tension. This calculation, attributed to Lamé
[33]

 

proceeds by computing the radial and azimuthal stresses σrr and σθθ in the unbuckled state 

of the film with the boundary conditions specified by the radial film, respectively. When 
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Ti/To > 2, the azimuthal stress becomes compressive within some radius, which is then 

identified as the extent of the wrinkled zone. The length of the wrinkles is then L ~ a f(τ) 

when the ratio of the tensions exceeds the threshold value. However, the experiments 

indicate that the wrinkle length is dependent not only on the radius a, but also the 

thickness of the sheet, consistent with a scaling of the form L ~ a t
1/2

. To recover 

dimensional consistency, the scaling L ~ a (Et/γlv)
1/2

 was used and achieved a satisfactory 

empirical description of the data. 

Taken together, these equations for N and L lead to a simple metrology that yields 

the Young's modulus, E, and the thickness t in terms of the measured quantities. To 

provide a more solid footing for the scaling for L, Vella et al.
[60]

 performed a full 

postbuckling calculation for the Lamé geometry, including a microscopic calculation for 

the radial stress at the contact line based on a balance of the stresses in the sheet with the 

liquid–vapor surface tension at the contact line. This calculation did produce thickness-

dependence to L, but which has a different functional form than experimentally observed, 

and under-predicts the observed length of wrinkles. The failure of this analysis for the 

size L of the buckled region indicated a fundamental weakness in our understanding of 

the buckling of ultrathin films. 

A fundamentally different issue was raised by Davidovitch et al.
[30]

 in their study 

of an annular region under differential tension. They suggest that for thin enough sheets, 

the traditional post-buckling, near-threshold (NT) approach is questionable. They 

introduce a new dimensionless number called the “bendability”, which, in contrast to the 

purely geometric aspect ratio t/X (where X is the relevant in-plane dimension) also 

incorporates the mechanical properties of the sheet. When the bendability ϵ
−1

 = X
2
γlv/B is 
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large enough, they point out that the stress state of a sheet even slightly beyond the 

buckling threshold is profoundly affected by the presence of wrinkles and is not properly 

described by considering perturbations to the unbuckled state. Rather, they propose that 

the correct treatment of the wrinkled state involves a perturbation about the so-called 

membrane limit of a sheet with zero bending-resistance. This calculation framework 

builds upon the intuitive basis of tension-field theory
[61]

. Bending rigidity is introduced as 

a correction to this basic far-from-threshold (FT) picture. The FT framework has also 

been tested experimentally in a different geometry
[17]

. 

Recently, a full FT analysis of the drop-on-sheet geometry has shown reasonable 

agreement with the measured length, L, as a function of the experimental control 

parameters
[32]

. However, there is much richness that remains to be explored and 

understood in this very simple experimental setting. As an obvious matter, the next-order 

calculation for a small but finite bending modulus that yields the number of wrinkles, N, 

has yet to be done. There is also currently no calculation for the wrinkle profile in this 

geometry, though a numerical solution
[62]

 has been computed for the annulus geometry 

which predicts a sharply defined wrinkle tip in the zero-thickness limit, with an additional 

boundary layer for finite thickness. In order to fully experimentally characterize the 

wrinkled phase, we present in this article 3-dimensional characterizations of the elastic 

deformation both outside the contact line and under the drop, both of which were missing 

in the original experiments of Huang et.al. In particular, we present a detailed 

characterization of the boundary conditions for the wrinkle at the contact line. We find 

that the flat boundary condition at the contact line of the drop is achieved by a cascade of 

wrinkle refinement on both sides of the boundary. Finally, the inception and evolution of 
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the wrinkle pattern are studied in the early times following the application of the capillary 

stresses to the sheet. 

 

3.3 Experimental details 

 

As shown in Fig. 3.1A a wrinkle pattern is generated by first floating a thin 

polystyrene (PS) sheet on the surface of a fluid, and then placing a drop in the center of 

the film with a blunt-tip micropipette. The diameter of the sheet is always bigger than the 

size L of the wrinkle pattern, so that the wrinkle pattern is unaffected by edge effects. The 

drop radii range from a 0.1 to 1 mm. In this range of drop radii, no plastic deformation of 

the sheet is observed. In Fig. 3.1B we demonstrate an alternative way of creating a 

wrinkle pattern governed by a balance of the same physical forces. Here, we release an 

air bubble within the fluid bath under the sheet. The bubble attaches to the sheet and 

shortly thereafter attains the equilibrium shape shown in the sketch in Fig. 3.1B. We are 

able to observe the effect of varying bubble radius due to diffusion of the gas through the 

PS sheet, forced by Laplace pressure. This process is very slow, so that mechanical 

equilibrium may be assumed at all times. The bubble-under-sheet protocol may be a 

useful tool in situations where it is not easy to deliver a drop to the top surface, for 

instance, if the sheet is sandwiched at the interface between two fluids or if the upper 

fluid is inaccessible. For the purposes of this study, the advantage of the bubble-under-

sheet geometry is that it exposes the region in the interior of the contact line to direct 

visual inspection and bright-field microscopy. 
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Large-aspect-ratio sheets were prepared from dilute solutions of linear PS 

(Polymer Source, Atactic, Mn 91k, Mw 95k) in toluene spin coated onto clean microscope 

slides. In experiments with a gas bubble, we sometimes used higher molecular weight 

linear PS (Polymer Source, Atactic, Mn 520k, Mw 876k) to suppress gas permeability The 

thickness of the PS sheets were varied between 30 and 300 nm. Circles of diameter 23 

mm were scribed on the PS film. These were floated onto the surface of a pool of 

deionized water by inserting the scribed edges of the film into the water. The aspect ratio 

or von Kármán number of the sheet is extremely high, ranging from a/t = 10
3
 to 10

5
. The 

bendability of the sheet under the applied tension is also extremely large, with ϵ
−1

 ranging 

from 2 x 10
2
 to 3 x 10

6
. For the experiments reported here, the fluid in the drop is 

deionized water. The fluid in the bath is either glycerol or water. 

 

3.4 Wrinkle length and wavenumber in two geometries 

 

We begin by discussing the equivalence between the drop-on-sheet and bubble-

under-sheet geometries more quantitatively. As can be seen in Fig. 3.1, in both 

geometries, the radial tension applied to the free edge of the sheet is γlv. The sheet also 

experiences an out-of-plane force at the contact line, again due to the surface tension γlv. 

Both bubble and drop apply a uniform Laplace pressure on the sheet. In the case where 

the fluid is water and sheet is PS, a contact angle of 88–90
o
 is measured

[16]
, with no 

observable contact angle hysteresis so that the drop or bubble is a hemisphere. In either 

case, the Laplace pressure is PY = 2 γlv /a. However, in our experiments, the drop is small 
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enough that the weight of the drop is much smaller than the capillary force, PYa
2
 >> ρga

3
. 

We can thus expect identical external stresses on the sheet. 

In Fig. 3.2 we show data for the length, L, and number, N, of the wrinkles 

obtained in these two geometries. At each value of film thickness, t, data are taken at 

several values of drop and bubble radius a. As in Ref. [16] we find that L is linearly 

proportional to a, so we plot the scaled length of the wrinkles, L/a, against the thickness, 

t, of the sheet. As shown in Fig. 3.2A the data are experimentally indistinguishable in 

these two geometries. The data for both are consistent with the previous finding of L/a ~ 

(Y/γlv)
1/2

 where the stretching modulus Y = Et. The square-root dependence on thickness 

is indicated by the fit-line. For a given thickness, we find the number of wrinkles, N is 

proportional to a
1/2

 and therefore in Fig 3.2B we show N/(a)
1/2

 versus thickness t. This 

choice of ordinate allows us to collapse several values of a in a single data point. The 

number of wrinkles, N, is also found to be similar in the two geometries. The solid line is 

fit to a t
3/4

 dependence on thickness, once again consistent with our previous finding that 

N ~ (γlva
2
/B)

1/4
 ~ a

1/2 
t
−3/4

. 

We recall that in the original work
[16]

, Huang et.al. followed a scaling argument 

that produced a correct description of these data for the wrinkle number, while the 

wrinkle length was a puzzle. The situation has now been reversed, in that a new FT 

calculation has been shown to be consistent with these data for the size of the wrinkle 

pattern
[32]

, whereas theory has yet to converge with experiment on the wavenumber of the 

wrinkle pattern. In what follows, we outline observations that we trust will stimulate a 

resolution of this new puzzle. 
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Figure 3. 2: (A) The length L and (B) the number N of wrinkles are scaled by the radius 

a of the contact line, and plotted against film thickness t. Error bars correspond to the 

standard deviation of data collected for several values of a. In (A), the blue solid line (L/a 

= 0.205 t
0.55

) is a best fit to a power law (as in Ref. [16]), while the dotted line shows the 

functional form Rwr/a ~ t
1/3

 (as in Ref. [32]), where Rwr = L + a. The number of wrinkles 

scales with the square root of a and as B
−1/4

 (N/a
1/2 

= 2310 t
−3/4

). 

 

3.5 Geometry inside the contact line 

 

At its free edge, the sheet is tugged at with a radial line tension γo. However, the 

radial tension σrr at the contact line is a more complex issue. As sketched in Fig. 3.3B, the 

sheet deforms into a spherical cap under the drop or bubble. The sheet is then subject to 

out-of-plane forces near the contact line whose magnitudes are known, but whose 
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directions are affected by the elastic deformation of the sheet. In this section, we 

determine experimentally the 3D geometry of the sheet near the contact line in order to 

fully specify the external forces acting on the sheet. 

 

 

Figure 3. 3: Confocal microscopy was used to characterize the topography of sheets 

deformed by droplets. (A) A perspective image is shown for a film (t = 209 nm) wrinkled 

by a droplet with a = 0.5 mm. The scale bar shows the in-plane scale; the out-of-plane 

axis is exaggerated. (B) Force balance at the contact line. (C) A vertical plane through a 

diameter demonstrates the bulge under a droplet (a = 0.56 mm, t = 33 nm). The vertical 

axis is exaggerated and not to scale. The horizontal dashed line represents the bath level. 

The vertical dashed line goes through the center, where the bulge height, h, is 36.6 mm. 

 

We emphasize that the geometry of the drop near the contact line cannot be 

inferred from the usual Young–Laplace formula for force balance between the horizontal 
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components of γlv, γsv, and γls since this approach is predicated on the idea that any 

resultant vertical force component is balanced by the underlying solid substrate. 

However, the sheet deforms in response to the vertical component of the force, altering 

the geometry. This deviation from the Young-Laplace contact angle θY also occurs in a 

different regime where the substrate is low-modulus and can stretch in response to 

capillary forces
[63-66]

. A correct description of the contact angle requires a self-consistent 

calculation of the radial stress inside and outside the contact line, as well as the capillary 

forces. 

To measure the shape of the sheet under the drop, we labeled the sheet with 

fluorescent dye and imaged it with confocal microscopy. In Fig. 3.3A, we show the 

reconstructed image of the deformed sheet. The bulge under the drop is evident. In Fig. 

3.3C, we show a single vertical slice through a diameter of the drop. The height of the 

bulge, h, and the angle ϕ below the horizontal at the contact were measured for a number 

of sheets of different thickness, and for drops of different radii. Similar measurements of 

the 3D topography of the bubble geometry were also made (see Chapter 5). Since the 

bulge was at the upper exposed surface in this case, we were able to study the geometry 

by white-light interferometry, which is a faster and more precise technique. In Fig. 3.4A 

we show data for the height of the bulge, h, as a function of drop radius, a, for four 

different thicknesses. The dependence on a is linear, leading us to show in Fig. 3.4B, h/a 

against thickness. We show in Fig. 3.4B the angle below the horizontal, ϕ, as a function 

of thickness. The angle ϕ was not observed to depend upon the drop radius. These two 

dimensionless descriptors of the bulge-shape both scale with thickness as t
−0.38

. This trend 

is similar to the predicted behavior
[32]

, ϕ ~ t
−1/3

.While we were not able to independently 
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measure the angle θ shown in Fig. 3.3B, our data for the angle ϕ agrees with calculations, 

as shown in Ref. [32]. They further find that the deviation of the actual contact angle θ + 

ϕ from the Young–Laplace angle, θY, is given by 2ϕ. With this understanding, it is also 

possible to compute θ from these data, thus leading to a full determination of all the 

forces labeled in Fig. 3.3B. The theoretical analysis of the radial force balance that 

determines the connection between geometry and stress is detailed in Ref. [32]. In the 

following section, we will briefly discuss the outcomes of this theoretical analysis. 

 

 

Figure 3. 4: (A) The height h of the bulge under the droplet scales linearly with the 

radius of the contact line, a. The bulge height is large in thinner films. (B) Bulge height h 

and the angle ϕ at the contact line decrease with film thickness. The solid lines show best-

fit power laws with an exponent 0.38. 
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3.6 Modeling the problem in FT regime 

 

In this section, we would like to overview the theoretical arguments developed on 

the drop-on-a-sheet experiment. The framework of ideas presented here were established 

by a long list of scientists whose names can be found in reference [32]. Theoretical 

calculations were mostly done by Dr. Robert Schroll and Prof. Benny Davidovitch. The 

information in the external literature is paraphrased here in order to support some 

empirical scaling arguments discussed in this thesis. 

Schroll et.al. in Ref: [32] hypothesized a high bendability regime ͠γ, ϵ << 1, ( ͠γ = 

γlv/Y) where our films are subject to negligible amount of compression before and after 

buckling. As a consequence, the elastic stresses in the sheets were determined merely by 

stretching and exhibited insignificant dependence on the bending modulus. As Fig. 3.3 

suggests, the two sides of the contact line are connected through boundary conditions 

based on continuity of the radial displacements u(r), i.e. ur
+ 

=
 
ur

−
 and the radial force 

balance: 

    (3.1) 

where σrr
−
, ur

−
 and σrr

+
, ur

+
 are respectively the radial stresses and displacements at the 

inner and the outer sides of the contact line, evaluated at r = a. 

In their solution, Schroll et.al. studied the configurations of the films in the inner 

and the outer regions separately, where both regions resembles previously solved 

problems. The inner region, modeled as an elastic disc subject to Young-Laplace pressure 

and a radial tension at its perimeter, mimics the sheet-on-drop problem
[17]

. The outer 

region, modeled as an elastic annulus under differential tension, imitates the Lamé 
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problem
[30]

. The FvK equations generated solutions for the stress field, whose profiles are 

presented in Fig. 3.5. 

 

 

Figure 3. 5:
 [32]

 The stresses σrr (blue), σθθ (red) beneath the drop (left) and outside the 

contact line (right) for representative post-threshold values of the confinements: α = 100,  

τ = 5. Solid curves are the compression-free (FT) limit. Dashed curves are the 

axisymmetric (NT) limit. (The graph is copied from Ref: [32]) 

 

Two scaling results were found for the studied mechanical regime. When the 

stretching modulus was greater than the surface tension, Schroll et.al. expected the sheet 

to approach its initial state with θ → θY and ϕ → 0. Moreover, the radial force balance 

representation in Eq. (3.1) was further simplified to the following equality, σrr
+ 

≈
 
σrr

−
. 

The continuity of ur then provided the relation, α ~ log(τ), (where α is the measure of 

axial contraction under the droplet) allowing Schroll et.al. to generate the key scaling 

argument after assuming α ~ constant: 

    (3.7) 
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Eq. (3.7) shows that the stress near the center is not altered by the outer tension, 

merely depending on the mechanics of the sheet beneath the droplet. The scaling law for 

the extent of wrinkles was also found in the FT regime, RFT ~ γlv
2/3

Y
1/3

/γo ~ t
1/3

. The root-

cubical exponent differed from the empirical one proposed in the original reference
[16]

. 

Another outcome of Eq. (3.7), which was generated from the vertical force balance at the 

contact line, was the scaling of the bulge angle, ϕ ~ γ͠
−1/3

. This relationship is measured 

approximately in Fig. 3.4 of this thesis. 

In Fig. 3.6, Schroll et.al. compared the theoretical findings with the experimental 

observations. The wrinkle length detection from experimental images will be described in 

the following section. Please note that this computational method is merely used in Fig. 

3.6 and Fig. 3.11 while the rest of the measurements presented in this thesis are 

performed by inspection (a more subjective, but more accurate method to extract L from 

images that will be discussed in the next section). 

Fig. 3.6A and 3.6B demonstrated a similar trend between data and prediction. In 

Fig. 3.6D, Schroll et.al. compared the predicted profile of the blister under the droplet to 

the experimental data that was previously presented in Fig. 3.3C. The curved shape was 

similar, but the amplitude was overestimated. This numerical deviation is also related to 

the discrepancy observed in Fig. 3.6C. Overall, this theory has contributed to the 

literature as an important reference to understand the elasto-capillary effect of a liquid 

droplet resting on a compliant structure. In Chapter 5, we will also benefit from the 

scaling laws derived in this reference, as we try to understand the relationship between 

the bulge height and the extent of wrinkles. Now, we would like to skip to the next 

section where we will evaluate different approaches on the wrinkle length measurement. 
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Figure 3. 6: Comparison between observed and predicted parameters (Copied from Ref: 

[32]). At the top, predictions shown for the FT (solid lines) and NT (dashed lines) 

theories, and the wrinkle radius (normalized by a) plotted against (A) variable ͠γ (data 

obtained by keeping γlv and γo fixed, and varying t from 31 to 233 nm
[16]

). The dotted line 

has a slope −1/3. (B) 50 nm (red) and 152 nm (blue), and γo is varied using a 

concentration of surfactant (perfluorododecanoic acid) in the aqueous bath. Vertical error 

bars result from taking the standard deviation of several wrinkles. The measurement of 
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the wrinkle length is done by software. (C) A log-log plot of the angle ϕ. Dashed line 

(guide to the eye) has a slope 1/3. Data points: solid circles are taken from confocal 

fluorescence microscopy measurement of the sheet’s profile under the drop. Both bath 

and drop are water. The open circles are from a different, but comparable configuration 

(where bath is glycerol.) (D) The measured profile beneath the drop, obtained by 

confocal microscopy
[31]

, and the predicted profile (blue curve). 

 

3.7 Analysis of the two-dimensional images 

 

In all graphs presented in this thesis, we determine the wrinkle lengths from 

bright-field images of the top view of the droplets (Fig. 3.1). We precisely quantify the 

value of wrinkle length by the inspection method. Since the reliability check of the 

theoretical results in Ref: [32] depended on a quantitative comparison, we applied a 

numerical analysis to characterize the length of wrinkles. In the supplemental extras of 

the original manuscript, Schroll et.al. emphasize that ‘the numerical value of the 

measured wrinkle length depends on the choice of parameters used in the analysis’. 

Initially, we would like to discuss on the details of this automated technique: 

The image is initially converted to a high-contrast 8-bit grayscale image using 

Image J. The diameter and the center of the droplets are also detected with the same 

software (with a 99.9% precision). With a Matlab routine, we compute the azimuthal 

profiles of the intensity Ir (ϑ) along circles of radius r centered on the droplet. The radial 

intensity profiles comprise low-frequency variations due to illumination, as wells as 

higher frequency undulations corresponding to wrinkles. In order to subtract the 
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background noise, we perform a high pass filter to the profiles. We calculate the standard 

deviation δ (r) in signal and attain a numerical value that can be defined as the optical 

amplitude of wrinkles at position r. The range r of analysis is varied from 1.1a out to a 

maximum radius that is unwrinkled. Fig. 3.7 shows δ graphed against r/a for several 

wrinkle patterns formed on 94 nm membranes. 

 

 

Figure 3. 7:
 
(Copied from Ref: [32]) The standard deviation δ (r) of the azimuthal 

intensity profile for 14 images of wrinkle patterns of 94 nm-thick sheets. The dots show 

the raw data; the solid lines show the smoothed data used for the analysis. The three 

horizontal lines mark the 15%, 18%, and 21% thresholds. The red curve corresponds to 

the image in the inset, on which are marked the lengths identified by these three 

thresholds. 
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To quantify the wrinkle length, we either find the radius r at which δ (r) drops 

below a threshold fraction of its maximum value (as performed in Ref. [32]); or 

alternatively, we can detect the radius r at which several consecutive δ (r) values remains 

above the average noise-level . The noise level in each image varies by position due to 

the fact that the angle of incident light varies with the position of the floating film within 

the field of observation. Schroll et.al. tested three choices of threshold (15%, 18%, 21% 

in Fig. 3.7) chosen so that the noise level was rather accurately approximated. For all the 

data in Ref. [32], 18% threshold was used, which has led to slightly shorter estimates than 

the actual value of wrinkle length measured by the optical profilometer. 

The standard deviation of the azimuthal intensity δ (r) generally demonstrates 

three characteristic region outside the contact line. The region closest to contact line is 

characterized with a rapid change in the optical amplitude of wrinkles. After reaching a 

peak point, δ (r) gradually decays to a plateau related to the background noise level. The 

overall decay in optical amplitude is determined by two factors. First, the number of 

wrinkles remains constant along the expanded circles centered around the droplets. 

Hence, the wavelength of wrinkles increases linearly with the radial distance from the 

center (N = λ/2πr). As the pitch length of each wrinkle increases, we may expect a 

general decay in the contrast of the light refracted by the ultrathin sheet floating on water. 

The actual amplitude of wrinkles also decays as a function of r (Fig. 3.8) which drives the 

decay in the optical amplitude even faster. 

A rapid rise of the optical amplitude is observed only in the close vicinity of the 

droplet, where δ (r) traces the actual wrinkle profile (measured by OP). A close 

agreement in two parameters appears until the actual amplitude of wrinkles reaches its 



 

54 

peak value. We will exploit this similarity in the following section when the details of the 

contact line are studied. Now, we would like to pay attention to the other end of this 

profile, where the automated method relies on the length detection. We find that, despite 

offering an utterly objective approach, the noise in background makes it difficult to detect 

the actual length measurable by the profilometer. In contrast, an ordinary inspection 

performed by ImageJ agrees quite well with the true values with a ~99% precision. As a 

result, we rely on measurements performed with ImageJ by inspection. Manual method 

provides the closest agreement with the topographical analysis especially when the tip of 

wrinkles appearing on the upper left hand corner is considered for the measurement. 

 

 

Figure 3. 8: Normalized amplitude of wrinkles, ζ (r), (solid lines) compared with the 

normalized standard deviation profile of the azimuthal intensity, δ (r). The data are from a 

111 nm thick PS film floating on glycerol bath and wrinkled by a 0.6 mm wide bubble. 

Inset is cropped from a bright field image of the actual wrinkled region. 
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3.8 The contact line 

 

In drop-on-a-sheet experiment, there is an additional complexity at the contact 

line due to the presence of the wrinkles. As is clear from all the images shown in this 

dissertation, the wrinkles extend all the way to the contact line. Had the contact line been 

a free boundary, as in the annular Lamé geometry, then the wrinkle amplitude would 

have been greatest at the inner boundary. In the geometry we consider here, the contact 

line is not a free boundary and it is natural to ask whether and how the wrinkles terminate 

at the contact line. In Fig. 3.9A, we show a bright-field micrograph of the pattern near the 

contact line of a bubble. This image reveals two remarkable features: 

1) There are wrinkles inside the contact line as well. 

2) The wrinkles both inside and outside the contact line undergo a cascade to 

higher wavenumber close to the contact line. 

The first of these features may be seen to occur in a drop as well, as shown in the 

confocal fluorescence micrograph in Fig. 3.9B, and the second of these features is shown 

in a bright-field close-up of the wrinkle near the drop (Fig. 3.9C). 

The existence of wrinkles within the drop is not surprising: as studied in Ref. [17], 

a flat sheet constrained to live on a curved drop will experience compression at its edges, 

leading to wrinkles invading the sheet from the free edge. An experimental study of this 

geometry provided the first detailed validation of a FT analysis for the scaling laws for 

the length of the wrinkles as a function of the stretching modulus, size of sheet, applied 

tension and imposed curvature. However, the major difference between those wrinkles 

and the wrinkles in Fig. 3.9 is that the tips of both the inside and outside wrinkles 
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terminate at the same contact line, which is not a free boundary. This requirement on both 

inside and outside wrinkle patterns leads to the cascade that is shown in Fig. 3.9. 

 

 

 

Figure 3. 9: Wavelength refinement near the contact line. (A) An optical micrograph of 

the sheet near a contact line of a bubble (a = 0.95 mm) under a PS film (Mw = 876k; t = 80 

nm). (B) A confocal image of the contact line drop (a = 0.70 mm) under a PS film (Mw = 

91k; t = 33 nm). (C) A bright-field image of the contact line drop (a = 0.82 mm) under a 

PS film (Mw = 91k; t = 93 nm). 

 

To minimize wrinkle amplitude at the contact line, the wavenumber has to 

increase in order to preserve length in the azimuthal direction. A similar cascade 

phenomenon can be observed either when the edge is clamped flat (as happens at the top 

of a curtain
[67]

), or when there is an energetic cost at the edge of a pattern
[13]

. When there 

is tension in the wrinkle direction, such a wrinkle cascade typically proceeds smoothly, 



 

57 

by the addition of new fourier modes
[68]

. It is also evident that the inside and outside 

wrinkle patterns are in registry with each other. 

 

 

Figure 3. 10: The wrinkle wavenumber increases as the contact line is approached from 

either side. The data are taken in the bubble-under-sheet geometry with PS films (Mw = 

520k). The size of the cascading region outside the drop is labeled Δ. 

 

In Fig. 3.10 we show the refinement of the pattern by plotting the number of 

wrinkles as a function of distance from the contact line, for two thicknesses and for two 

drop radii. The wrinkle cascade has a different characteristic length inside and outside the 

contact line. Inside the bubble, the wrinkle pattern does not develop a bulk value, with the 

wavenumber cascading down rapidly to zero. The wrinkle pattern extends considerably 
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further outside the contact line; over a lengthscale that we label Δ, the wrinkle number 

N(r) reaches the steady value N of the wavenumber. This lengthscale is a scale shorter 

than the length of wrinkles L. 

The data in Fig. 3.10 suggest that the bubble radius has a stronger influence on the 

size Δ of the cascading region than does the thickness. In order to better quantify the 

dependence on these variables, we measure Δ for varying bubble radii, and for sheets of 

varying thickness. We obtain Δ from the analysis of the intensity of the bright-field image 

of the wrinkle pattern. As described in the previous section, after filtering the image to 

remove low-frequency variations in intensity, we measure the standard deviation of 

intensity variation in the azimuthal direction, δ, as a function of the radial distance from 

the contact line, r. δ (r), has a peak at a value of r that marks the end of the cascading 

undulations; this measure is shown by the solid triangles in Fig. 3.10 to coincide with the 

location where N (r) becomes independent of r. 

The size of the cascade region was found to be proportional to the bubble radius. 

We therefore plot the scaled variable Δ/a in Fig. 3.11, against t, the thickness of the sheet. 

The solid line shows a power-law fit ~t
1/6

. With this weak dependence, the data are 

perhaps even compatible with the penetration length of the cascade (Δ/a) being 

independent of thickness (∆≈(γlv/ρg)
1/2

 was previously observed in the raft experiment; or 

controversially, one may empirically suggest that Δ should scale with (σrr
+
)
1/2

, where σrr
+
, 

instead of γlv, is the tension effective on the smoothening frontier (σrr
+
, ~ t

1/3
). 
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Figure 3. 11: The size of the cascading region Δ outside a droplet scales linearly with a. 

The dependence of Δ on t is weak with an empirical exponent, 1/6. Inset: radial height 

profile of three neighboring wrinkles formed by a droplet (a = 0.56 mm) on PS sheet (t = 

77 nm). 
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3.9 Wrinkle profile 

 

Within the precision of the confocal microscopy measurement, the contact line 

lies in a horizontal plane. A cut along an external wrinkle reveals a height profile ζ (r) 

that rises rapidly from the contact line in the cascade region i.e. for r < Δ, as shown in the 

inset to Fig. 3.11. After a single-mode pattern emerges, the amplitude slowly dies away 

with increasing radius as shown in the image in Fig. 3.12A. The wrinkle has a definite 

terminus, showing that the length L is well-defined. The length L determined from bright-

field images coincides with that determined from 3D imaging. In Fig. 3.12A, we show 

the wrinkle profile ζ (r) multiplied by wrinkle number N for three sheet thicknesses, each 

at two drop radii. Within the variability of the experiment, we obtain a collapse of the 

wrinkle profile when plotted against the radial coordinate normalized by the wrinkle 

length r/L. A comparison of this shape would be a test of any theoretical development 

that goes beyond a correct scaling of the variables. The wrinkle profile has been 

computed in Ref. [62] for the annulus geometry but not for a drop on a sheet. 
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Figure 3. 12: (A) Profile of wrinkles along radial direction for PS (91k) sheets floating 

on a glycerol bath. The wrinkles are generated by bubbles and the data are obtained from 

3D images acquired with an optical profilometer. (B) 176 nm thick PS (91k) film 

wrinkled by a = 0.29 mm bubble. (C) 176 nm thick PS (91k) film wrinkled by a = 0.34 

mm bubble. 
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3.10 Development of the wrinkle pattern 

 

In the previous sections, we have discussed the attributes of the wrinkle pattern at 

mechanical equilibrium. Here we discuss the time-dependent development of the 

wrinkles immediately following the application of the capillary forces, as followed by 

high-speed video imaging. For these measurements, we employ the bubble-under-sheet 

protocol. Following the release of the bubble in fluid, buoyancy drives it to the bottom 

surface of the sheet. After a latency period of a few milliseconds, the spherical bubble 

bursts and the contact line spreads, rapidly attaining its steady-state diameter. 

The bursting of the bubble sets a sharp onset-time for the Laplace pressure and the 

line tension indicated in Fig. 3.3B. Thereafter, we see an elastic wave rippling outwards 

from the center at a high speed, and the wrinkle pattern developing in its wake on a 

slower time-scale than the wavefront. The time-dependence of the development of the 

length and number of the wrinkles is shown in Fig. 3.13. 

The steady-state diameter of the contact line is achieved with the first two 

milliseconds. As can be seen, the asymptotic values of N and L are established within 

tens of milliseconds. The surprising aspect of these data is that the final wavenumber is 

established much earlier in the development of the pattern than is the final length of the 

wrinkles. This is rather surprising, since the basic idea of the FT theory that so 

successfully describes the spatial extent of the wrinkle pattern, is that the tension in the 

radial direction is the dominant energetic component in the pattern. To the first 

approximation (i.e. the leading order of approximation in an expansion in ϵ), the bending 

energy involved in forming the wrinkles is insignificant. Higher order terms in ϵ 
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determine the wavenumber. It is therefore counterintuitive that the wavenumber, which is 

determined by a subtler contribution to the energy, establishes itself before the length of 

the wrinkle and the overall tensional stress state are fully determined. 

 

 

Figure 3. 13: Time dependence of the growth of the wrinkle pattern following the 

bursting of a bubble underneath a 62 nm PS sheet. N and L are obtained from bright-field 

images taken with a high-speed camera. 

 

3.11 Conclusion 

 

The experimental protocol of placing a drop on a floating sheet, or its new 

counterpart, the bubble under the sheet, have already led to important new developments 

in our understanding of the wrinkling instability in ultrathin sheets. The results we 
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present here raise new questions. We have characterized the 3D wrinkle profile but still 

lack a description of it. We do not understand the effect of the wrinkle cascade on either 

side of contact line. The wrinkle pattern on the inside and the outside of the contact line 

appear to be in registry with each other. This indicates that azimuthal variations in stress 

are communicated across the contact line. At a more elementary level, FT theoretical 

predictions for the wave number are still lacking. In the FT scenario, many wavelengths 

are unstable to buckling. Which of these are selected will depend on these subtler issues 

of matching interior and exterior wrinkle patterns at the contact line. These questions will 

need to be addressed to achieve a quantitative understanding of the wrinkle pattern, 

which will enable the use of this experimental setting as a metrology for the mechanical 

properties of thin films, or as a probe of surface energies. However, some of our 

observations challenge even the qualitative understanding of the mechanics of the 

wrinkle pattern. Why is it that in the development of the wrinkle pattern, the wrinkle 

wavenumber is established well before the wrinkle length? We speculate that the 

underlying explanation for both these observations lies in the fact that the wrinkle tip is 

always close to the buckling threshold. Thus, it may be that the near-threshold energetic 

considerations determine the selection of wave number in the incipient pattern. The 

length of wrinkles could be subsequently determined by the stress field over the entire 

sheet, which may be relatively indifferent to the bending energy. 
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CHAPTER 4 

WRINKLING OF AN ANNULUS 

 

 

In this chapter, we study the wrinkling of annular PS sheets floating on water. 

Wrinkling is induced when the surface tension of water outside the annulus is decreased 

to a threshold value by gradually increasing the areal density of an insoluble surfactant 

dispersed around the film. 

 

4.1 Background 

 

Since the study on the stretched rectangular film
[11]

 (Fig. 1.2), patterns forming in 

a tension field
[61]

 have become an ideal platform to study buckling of elastic sheets. 

Symmetrically loaded slender discs have attracted considerable attention in this field. 

Formation of axisymmetric patterns can be classified into two categories with respect to 

the spatial complexity involved in circular geometries. In the first group, wrinkles occur 

on a freestanding or supported flat layer 
[16, 31, 34, 35]

. The experiments carried out on a flat 

configuration have mostly aimed to test the Lamé theory regardless of the imperfections 

affecting the planar boundaries. In the second group
[17, 26-29]

, the wrinkles occur on a 

surface that poses a finite curvature, like the patterns forming on a membrane resting at 

the top of a droplet
[17]

. In this recent study, King et.al. have demonstrated the 

experimental verification of an uncommon buckling regime, wherein highly bendable 

sheets possibly relax the compressive stress that forms the patterns. This trend is named 

as buckling occurring in the far-from-threshold (FT) regime. 
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The discussion on buckling of extremely bendable sheets in a tension field has 

moved along with the drop-on-a-sheet experiment
[16, 31]

. As studied in the previous 

chapter, the droplet experiment consists of a curved and a flat domain that are bound 

together with a wrinkled contact line. The dual behavior of the sheet under and out of the 

droplet creates some challenges when establishing a simple formalism based on the 

experimental observables. Nevertheless, the practical simplicity in generation and 

characterization of these highly symmetric patterns promises new discoveries in surface 

science and materials research. With such motivation, we would like to present a new 

experiment here that addresses some open questions in wrinkling. Specifically, we would 

like to discuss the distinguishable role of simple boundary conditions on wrinkle 

properties. The discrete effects of bending and stretching on the extent of wrinkles are 

also covered in this chapter. 

Our new study is based on the axisymmetric wrinkling of ultrathin polymeric 

sheets on an artless flat setting. Using differential capillary forces, we control the line 

tension around a floating annular PS disc while supporting the delicate structure on the 

smooth surface of a stagnant liquid. Our set-up offers several advantages over preceding 

efforts
[16, 31, 34, 35]

 that have aimed to impose a controllable tension gradient within a thin 

elastic membrane. We use a purely two-dimensional geometry relying on the flatness of a 

trough filled with water. The radial tension exerted at the inner boundary of the film is 

the surface tension of pure water. The outer boundary is exposed to a lesser force as an 

insoluble surfactant is gradually compressed around the floating disc. The formation of 

wrinkles
[30]

, as described in the earlier chapters, relies on the induction of compressive 

tangential stress due to the rising mismatch between the magnitudes of peripheral forces.  
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We perform the experiments on a Langmuir trough in order to observe the 

inception and growth of the patterns in a controlled manner. This is a planar platform that 

allows us to play with the areal density of the surfactant molecules. The depression in the 

surface tension, known as the surfactant pressure, Π, is simultaneously recorded as 

images of the films are taken from the top. We examine the development of wrinkle 

patterns as a function of load-confinement, τ, and bendability, ϵ
−1

, which can be 

introduced as the two dimensionless parameters governing the deformation. Bendability 

is the ratio of the applied load to the bending modulus of the sheet; while, load-

confinement describes a dimensionless measure of compression that is induced in the 

gradient of the applied tension. Overall, this experiment allows us to isolate the influence 

of bendability on the extent of wrinkles, while studying the role of load-confinement on 

the wavelength of the patterns. 

 

4.2 Experimental details 

 

The details on the experimental set-up and sample preparation are described in 

Chapter 2. Here we present some specific details regarding the experimental protocol and 

the specimens. The experiments are actuated on Kibron Inc. MicroTroughXS that 

compresses an insoluble surfactant monolayer outside the annular discs (Fig 4.1). 

Perfluorododecanoic acid is used as a suitable molecular agent that can form a dispersed 

monolayer around submicron-thick polystyrene discs. The thicknesses of the sheets used 

vary between 53 and 276 nm, while the outer diameters are tailored by 15 or 23 mm wide 

circular patterns. An important geometric parameter can be described as the annular 



 

68 

aspect ratio, which defines the ratio of the outer to the inner diameter (b/a = Ri/Ro). We 

symbolize Ri as a and Ro as b (see Fig. 1.4) in order to be consistent with the 

abbreviations used in the preceding literature 
[16, 30-32, 60]

. The annular aspect ratios studied 

here are arbitrarily chosen as 3.47 and 5.43. We analyze two additional designs (b/a = 

2.70, 10.23) when folding is studied at high compression. 

 

 

Figure 4. 1: With the aid of a Langmuir trough, we compress a surfactant monolayer (see 

the molecular structure at upper left corner) around the annulus to initiate wrinkles. As 

the pattern grows with compression, the extent and wavelength of wrinkles can be 

monitored as a function of the surfactant pressure, Π. 

 

The surfactant pressure, Π, is varied between 6−10 mN/m and 44−63 mN/m 

during the compressions. The initial value of Π is arbitrarily set by the deposition, while 

the highest value of Π considered for analysis is determined by the state of wrinkles. 
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When any wrinkle in the system reaches the size of the sheet (Rwr ~ b) we cease 

analyzing the extent and wavelength of the growing pattern. Strain concentration and 

folding is observed only after all of the wrinkles reach the system-size and the 

compression proceeds. Unless the circular shape is dramatically distorted, the folds and 

wrinkles can be recovered by initializing the positions of the barriers. If a new 

compression protocol is applied on the relaxed (and cleaned) specimen, the new wrinkles 

do not necessarily initiate and grow at their original locations. During the routine 

protocol, the surfactant does not migrate or diffuse into the inner circle. This has been 

verified with several independent compression tests measuring the surface tension at the 

center of the circle. The imaging is accomplished using the same optical system 

facilitating the drop-on-a-sheet experiment reported in Ref. [31]. 

 

4.3 Data reduction 

 

Extent, Rwr, and wavelength, λ, of wrinkles are significant observables that 

comprise information regarding the mechanical state of the film. Our set-up allows us to 

measure these parameters as a function of the compressed monolayer pressure, Π. In Fig. 

4.2, we present a sequence of images taken from a 151 nm thick PS film wrinkled under 

axisymmetric capillary tension. The images are first converted to 8-bit gray scale and 

conditioned with ImageJ to increase the contrast. In each image, the coordinates of the 

center of the inner hole, (xc, yc) and its diameter, 2a, are measured in pixels with ~99.9% 

precision. The tip of each wrinkle is carefully marked by inspection and the wrinkle 
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coordinates (xwr, ywr) are determined. The extent of each single wrinkle from the center of 

the annulus is calculated using Eq. (4.1). 

 

    (4.1) 

 

 

Figure 4. 2: Representative steps in wrinkle initiation and growth. The geometric 

parameters of the problem are demonstrated on the micrographs. In the lower left image, 

we mark the tip of each wrinkle populating the pattern with a star-shaped marker. 
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We calculate the separation angle between neighboring wrinkles by referring to 

the coordinates at the tip of the wrinkles and the center. The average angle of separation 

between wrinkles, 2π/N, can be calculated by dividing the sum of measured angles to the 

population of wrinkles. 

 

4.4 Results and discussion 

4.4.1 Extent of wrinkles 

 

The most prominent feature of wrinkles occurring on an annulus is that they are 

not highly symmetric patterns like wrinkles induced by a droplet. The population of 

wrinkles initiated at the annulus is always less than the number of sites available for a 

perfectly symmetric pattern with identical wavelength of wrinkles. High symmetry is 

only attained as the wrinkles extend to the periphery and the gradual nucleation of new 

wrinkles is complete. For illustration, we exhibit a mature, symmetric pattern (Rwr = b 

condition) at the lower right micrograph of Fig. 4.2. 

In Fig. 4.3, we analyze the change in the distribution of the wrinkle extent for the 

151 nm thick PS film. The histograms indicate that the average extents of wrinkles 

represent the characteristic trend within error.  Since the distribution is broad, one might 

prefer plotting the average length (data points in Fig. 4.4) with the single standard 

deviation (error bars in Fig. 4.4) in the data. In all graphs, the growth of the pattern is 

kept being analyzed until the extent of any wrinkle reaches the size of the system.   

Different sets of data show that wrinkles grow longer with decreasing peripheral 

surface tension. The overall trend qualitatively agrees with the preceding formalisms 

established for the length of wrinkles that should initiate and grow with the depression of 
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the exterior tension. What we have found new is that the distribution of the wrinkle extent 

broadens with the growth of the pattern.  

 

 

Figure 4. 3: Distribution of wrinkle extent on a 151 nm this PS sheet. The red lines 

presents the average value of the extent of wrinkle calculated from all wrinkles generated 

at the reported pressure. 
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Figure 4. 4: The average extent of wrinkles plotted with error bars being the standard 

deviation. The data belongs to the 151 nm thick PS sheet (a = 3.175 mm, b/a = 3.47), 

which is also the subject for Fig. 4.2 and 4.3. 

 

4.4.2 Modeling the annulus 

 

In this section, we present the models developed to understand the stress 

distribution in the flat and the wrinkled state of the annulus. 

 

4.4.2.1 Lamé solution 

 

In the 19
th

 century, Gabriel Lamé studied the static equilibrium of a thick-walled 

cylinder that is loaded by hydrostatic pressure. The unwrinkled state of the annulus can 
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be solved using this historical derivation, as both problems are geometrically identical 

(Fig. 1.4). We will present a detailed solution here as an alternative to another solution 

found in Ref. [33]. First, let us consider an infinitesimal element (Fig. 4.5) located at 

some radius r and defined by an angular portion dθ, and a radial increment dr. Due to the 

axial symmetry, the stress functions merely depend on r while the shear stress on the 

element is zero. Therefore, the radial force equilibrium can be simply written: 

   (4.2) 

 

 

Figure 4. 5: An infinitesimal element in equilibrium under axially symmetric tension 

gradient is the basis for the model. The material is displaced only in the radial direction. 

 

When second order terms are ignored, Eq. (4.2) can be rearranged into Eq. (4.3) in the 

absence of body forces. 

     (4.3) 

In order to determine a relationship between the stresses and the boundary forces, we 

consider the Hookean constitutive equations and the strain functions. 
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Initially, we identify that there is only radial displacement in the element. 

Therefore, the points marked with letters p, q, m and n in Fig. 4.5 displace to their new 

positions p`, q`, n` and m` respectively. As a result, the radial strain can be written as the 

ratio of the net displacement, dur, to the original length, dr. 

       (4.4) 

In hoop direction, the line pq has a length rdθ and line p`q` has length (r+ur)dθ. With this 

knowledge in mind, the tangential strain can also be written: 

   (4.5) 

Hooke’s law defines the linear elastic relation between the stress and the strain functions, 

where E is the elastic modulus and ν is the Poisson’s ratio of the material: 

    (4.6a) 

    (4.6b) 

Solving Eq. (4.6) for stresses, and substituting strain functions with respect to Eq. (4.4) 

and (4.5), we find the following equations: 

    (4.7a) 

    (4.7b) 

Now, stress functions are represented by a single variable, ur, i.e. the radial 

displacement. We can further solve Eq. (4.3) using Eq. (4.7a) and (4.7b), leading us to the 

following differential equation: 

     (4.8) 
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The Eq. (4.8) has a simple solution, ur = C1r + C2/r which can be implemented into the 

stress functions at Eq. (4.7) and the following boundary conditions, σrr (r = Ri) = Ti and σrr 

(r = Ro) = To. As a result, the following formulas on the stress distribution can be found: 

  (4.9a) 

  (4.9b) 

 

In this form, Lamé solution portrays the stress distribution in a disc that is 

symmetric around the central axis. The out-of-plane component of the stress is neglected 

due to the reduced dimensionality. This solution should apply to the unwrinkled state of 

the sheet floating on water.  

We find that the radial stress remains positive everywhere for Ti, To > 0, while the 

hoop stress becomes compressive only if there is a large mismatch between the boundary 

forces, i.e. Ti/To > 2. According to the post-buckling approach, the compressive region 

formed in a sufficiently flat thin layer induces a wrinkled region (in, so-called, Near 

Threshold regime). As a result, wrinkles occurring at the center mark the region of the 

negative hoop stress; where, the radius of the wrinkled region attains the following form: 

     (4.10) 

For a line tension exerted along a small centric hole (Ri << Ro), the equation (4.10) 

reduces to a more simple representation, (4.11). 

     (4.11) 
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4.4.2.2 FT solution 

 

Now, we would like to describe the other buckling regime where thin films are 

wrinkled by forces much larger than the critical loads required to induce buckling. In this 

regime, compressive stress is presumed to vanish along wrinkles modifying the stress 

distribution on the sheet. According to Davidovitch et.al.
 [30]

, two characteristic regions 

exist in the film. In the wrinkled region (Ri < r < RFT), the hoop stress is collapsed (σθθ → 

0), therefore, the force balance in Eq. (4.3) acquires a new form: 

     (4.12) 

From equation (4.6), the corresponding strain functions can be trivially derived using 

Hooke’s law and the Eq. (4.12), 

     (4.13a)  

          (4.13b) 

 

The sheet surface is free of singularities; therefore, conditions of continuity hold 

when the stress functions are written. Outside the wrinkled region (RFT < r < Ro), stress is 

distributed in agreement with the classical Lamé form, where Ri → RFT and Ti → TL = 

TiRi/RFT. In order to find the size of the wrinkled region, Davidovitch et.al. computed the 

elastic energy UE = 1/2∫AdA(εrr σrr + εθθ σθθ) of the modified stress field over the whole 

area of the film
[30]

. Minimizing the mechanical energy U, (U = UE − W; W: the input work 

W ~ ToRo + TiRi), they calculated the radius of the wrinkled region (for Ri << Ro), 

     (4.14) 
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Now, we would like to find an expression for the extent of FT wrinkles occurring on a 

membrane with a high annular aspect ratio, (Ri/Ro ≤ 1). Solving the hoop stress (Eq. 

(4.9b)) at the tip of the wrinkles (at r = Rwr), we find the following polynomial relation, 

    (4.15) 

where Twr can be introduced as the magnitude of tension at the tip of the wrinkle and 

simply calculated as Twr = TiRi/Rwr using Eq. (4.12). The real root of the polynomial 

function (TiRi)Rwr
2

 − (2ToRo
2
)Rwr + (TiRiRo

2
) = 0 provides a representation for RFT as 

Ro/Ri→1. Consequently, the extent of wrinkles in FT regime can be formulated, where 

the annotation RFT is substituted for Rwr: 

   (4.16) 

 

4.4.2.3 Wrinkling thresholds 

 

After deriving the equations of the extent of wrinkles, we can work on some 

algebra that solves the threshold condition required to initiate wrinkling. From the 

definition of the critical load, one can assume that Rwr/Ri takes the value, 1 as load-

confinement τ reaches its critical value at τc. Therefore, we can rearrange the equation 

(4.10) into the following form (as τ→τc,NT; RNT→Ri): 

   (4.17) 

Following some algebraic steps, one can easily work with Eq. (4.17) to introduce a 

critical value for load-confinement: 
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    (4.18) 

Eq. (4.18) shows that τc,NT converges to 2 as the annular aspect ratio b/a (Ri=a, Ro=b) 

goes to infinity, which is formally identical to the learning from Eq. (4.11). 

 We can apply the same derivation to Eq. (4.15) to calculate the critical load-

confinement required to initiate wrinkles in the FT regime. We start with the following 

treatment, τ→τc,FT; RFT→Ri: 

  (4.19) 

When solved for τc,FT, Eq. (4.19) intriguingly leads us to the same result derived for the 

NT buckling regime: 

    (4.20) 

 

Overall, we found that the buckling threshold of an annulus depends merely on 

the annular aspect-ratio when bendability is neglected. In both regimes, the critical τ 

required to induce wrinkling must be a numerical value between 1 and 2. One should also 

keep in mind that these solutions ignore the bendability of the sheets and do not represent 

the whole picture. As a result, neither Eq. (4.18) τc,NT, nor Eq. (4.20) τc,FT depends on 

thickness. Similarly, Eq. (4.10) and (4.16) do not predict any thickness dependence for 

the extent of wrinkles, where the wrinkle length is merely dictated by the geometry and 

the boundary conditions. 
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4.4.3 Data analysis 

 

In this section, we will compare the length data with the predictions discussed in 

the previous section. The data was taken from PS sheets of high bendability 

(ϵ
−1

~10
5
−10

6
) and moderate annular aspect ratios (b/a~3.47, 5.43). Thicknesses of the 

samples ranged between 53 and 276 nm, probing a fairly broad regime of bendability 

while causing small out-of-plane deformations. Extreme thinness, thanks to maintaining 

small amplitude of wrinkles, prevents significant distressing of the pattern via subphase 

deformation. We can support this notion referring to the droplet experiment
[31]

 where the 

amplitude of wrinkles occurring on identical films scales linearly with the wavelength of 

the pattern (see Fig. 3.12). We know that a free standing sample
[11]

, unbound from the 

gravitational effects of a supporting layer, is also expected to exhibit a linear dependence. 

The experimental values of the wrinkle length do not trivially agree with any 

available model, as they systematically vary with the film thickness. We postulate that, 

unlike the droplet experiments, the thickness dependence observed here is liberated from 

the loading conditions imposed onto the material. Therefore, the results are expected to 

reveal the anonymous role of the buckling threshold on the properties of the pattern. As 

shown in Fig. 4.6, wrinkles start to appear earlier and grow larger on the films with 

higher thicknesses. This behavior is rather puzzling as the general formalism on buckling 

fails to justify the unusual trend that thicker films are more easily wrinkled. Nevertheless, 

as the thickness gets even smaller, the discrepancies between the models and the 

observations disappear. The close agreement verifies the applicability of the FT theory on 

the films of extreme bendability, where the bending energy, indeed, has a minor role in 

determining the extent of wrinkles. 
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Figure 4. 6: Extents of wrinkles normalized and plotted against the surfactant pressure. 

The experimental results generally fall above the theoretical predictions that ignore the 

effect of bending. 

 

An interesting physical phenomenon occurs when the data in Fig. 4.6 is displaced 

in horizontal, i.e. along the pressure axis. We present six sets of data belonging to two 

different annular aspect ratios and five different thicknesses; yet, each individual set of 

data can be superimposed on a single theoretical curve (see Fig. 4.7) computed for 

negligible bendability in the system. We also know that the growth of wrinkles should 

follow a trend predicted by the FT model; just like identical films forming highly 

symmetric FT patterns on the curved surface of a tiny droplet. In this preceding study of 

so-called sheet-on-a-drop experiment
[17]

 wrinkling patterns were discovered to exhibit FT 

characteristics, while the mechanism of deformation in that study lacked the sensitivity of 

detecting a thickness dependence on the extent of wrinkles. 
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Figure 4. 7: The data presented in Fig.4.6 is shifted along abscissa and collapsed on the 

curves predicted for FT scaling. 

 

When our experiment is compared with the identical sheets resting on a droplet, 

the wrinkle length grows rapidly on an annulus with a linear dependence on the boundary 

forces (L ~ τ). In contrast, in the preceding work, the length of wrinkles scales slower with 

the analogous parameter (L ~ α
1/5

). This discrepancy might have created a challenge in 

perceiving a solid conclusion on the thickness dependence. In addition, sheet-on-a-drop 

experiment probes a regime of higher bendability, where the thickness of sheets might 

already have a diminished effect on the extent of wrinkles. Therefore, the role of 

thickness on the threshold was not isolated in the former study and remained as a new 

discovery to be revealed here. 

Our results might include some imperfections associated with sample preparation 

and measurements. In Fig. 4.7, the data points falling below (Rwr/a <) 1.10 seem to remain 

off the general trend traced by the theoretical calculation. The deviation could be related 
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to the micro-burrs generated during the sample preparation. Hereafter, we will merely 

present the data for values remaining above the Rwr = 1.10a confidence level. We also 

include the error bars in Fig. 4.8 when presenting the variance in the final representation 

of the data. Despite possible experimental error, the FT trend is characterized again for 

the extent of wrinkles, even more explicitly in the regime of large compressions. 

 

 

Figure 4. 8: The normalized extent of wrinkles presented with the standard deviation 

bars. Red-scale data is retrieved from b/a ~ 3.47 aspect-ratio sheets, while gray-scale data 

belongs to the set with b/a ~ 5.43 aspect-ratio. 

 

We propose multiple techniques to compute the wrinkling threshold from the 

experimental data. The accuracy and relevance of each method will remain as an open 

theoretical discussion. We first start with the most trivial approach studying the raw data 

(i.e. Rwr vs. Π) plotted in Fig. 4.6, and quantifying the points at abscissa where wrinkles 

are initiated. Accurate detection of τc depends on an unbiased numerical computation of 
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the Πc values. Our solution is based on displacing the data along abscissa and minimizing 

the difference between the experimental and the theoretical ordinate values. Using the 

least squares fitting algorithm, the proper shift factor, hence the actual Πc, can be 

computed for minimized square of the error. 

On the other hand, the same algorithm can be applied on the raw data presented in 

an alternative format (i.e. Rwr vs. τ), which requires the modification of the reference 

curve for superposition (Eq. (4.16)). The shift values, again, can be solved using the least 

square fitting algorithm. The outcome of the both approaches is summarized in Figure 

4.9. Overall, a similar dependence of τc on bendability is detected, while, the magnitude 

of computed values slightly differ (Fig. 4.10 and 4.11). We also observe that the data 

belonging to the thickest film (276 nm) remains off the trend traced by the theoretical 

Rwr(b/a, τ) curve plotted in Fig. 4.11.  

 

Figure 4. 9: Wrinkling threshold (normalized with theoretical value calculated for ϵ=0) 

values are computed by superimposing the raw data in (top) Rwr(b/a, τ) and (bottom) 

Rwr(b/a, Π) representations. Both sets scale linearly with ϵ
1/4

.  
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Figure 4. 10: Experimental values (when b/a=5.43) are superimposed on the theoretical 

curves using the least squares algorithm. Left hand (Rwr(b/a, Π)) and right hand Rwr(b/a, 

τ) sides are the distinct representations of the identical raw data. 
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Figure 4. 11: Experimental values (when b/a=3.47) are superimposed on the theoretical 

curves using the least squares algorithm. Left hand (Rwr(b/a, Π)) and right hand Rwr(b/a, 

τ) sides are the distinct representations of the identical raw data. 
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Lastly, we fit the data to a new functional form that replaces the geometric 

parameter (b/a) in the main equation. We substitute the annular aspect-ratio term from 

Eq. (4.19) with the τc,FT representation found in Eq. (4.20). Hence, the extent of wrinkles 

can be written as a function of load confinement and its critical correspondent:  

   (4.21) 

This equation ideally would allow us to compute τc using a single fit parameter, and offer 

an opportunity to evaluate the prior technique without superimposition. However, we 

have found that the application of this alternative method is limited, as we could only fit 

the first four sets of the data (53-115 nm; τc > 1.80) successfully using a single fit 

parameter. 

When the thicker samples (151 and 276 nm; τc < 1.70) are analyzed, a single fit 

parameter (smaller than 1.74) creates imaginary values at the ordinate. Therefore, in the 

numerical analysis, we again have to displace the data along, τ-axis, in order to perform a 

reasonable fit that minimizes the error. In Fig. 4.12, we report the critical values of the τ 

as the summation of the two independent parameters computed from the least square 

error procedure. In Table 4.1, we compare the τc values computed from the original 

superposition and the single parameter fitting analyses, where the values from two 

independent procedures coincidentally agree with each other. 

 

Table 4. 1: τc values computed from fitting curves on Rwr/a vs. Π and Rwr/a vs. τ data. 

t [nm] 53 80 80 115 151 276 

τc from Rwr/a vs. Π 1.99 1.83 1.88 1.79 1.70 1.49 

τc from Rwr/a vs. τ 1.96 1.79 1.84 1.80 1.65 1.41 
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Figure 4. 12: Normalized wrinkle extent plotted against load-confinement allows us to 

compute τc for each set of data presented in Fig. 4.6 and 4.7. Symbols are experimental 

data points. Solid lines are the numerical fits calculated with Eq. (4.21) and superimposed 

on to the actual data by the subtracted values. 

 

Overall, regardless of the fitting method, we find the experimental trend rather 

puzzling. According to Fig. 4.9, thicker films are again demonstrated to be wrinkled more 

easily, which is in contradiction with the fundamentals of buckling. The empirical scaling 

τc ~ ϵ
1/4

 computed from data is in agreement with the exponent proposed by Davidovitch 

et.al., however, the phase diagram presented in Fig. 1.6 indicates a decay of τc with 

decreasing film thickness. We hope that our findings will initiate an interesting scientific 

debate in future, as we do not have a clear understanding on this unusual behavior. Now, 

we would like to investigate the boundary conditions in order to clear any possible doubts 

on the proposed mechanism of deformation. 
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4.4.4 Verification of boundary conditions 

 

In wrinkling of an annulus, we have assumed that the boundary conditions are 

trivial and maintain practical elegance. We have experimentally verified that the surface 

tension, γi at the center of the annulus remains unchanged during routine compressions. 

We also have assumed that the liquid tension pulling the contact-lines exerts 

axisymmetric planar forces on the material. Therefore, in our analyses we equate the 

tension, To acting at the outer boundary to the differentiable surface tension, γo imposed 

by the liquid and the surfactant. In order to verify this approach, a new measurement on 

identical films was performed, merely changing the means of loading at the center. 

In order to understand how a floating sheet is kept taut on a liquid, a familiar 

experiment is revisited. A PS disc is floated on the Langmuir trough and a droplet is 

placed at its center. The tension exerted by the droplet depends on the thickness of the 

membrane and surface tension of the cast droplet
[32]

. The size of the droplet does not alter 

the centric force exerted on a membrane of particular thickness, as long as droplet 

volume is kept small as in our experiments. Therefore, casting variable sizes of water 

droplets causes a constant magnitude of line tension (σrr
– 

~ Ti) in the material. 

In this well-studied platform, we compress perfluorododecanoic acid monolayer 

around the wrinkled sheet and observe the enlargement of the patterns (Fig. 4.14) using 

the optical set-up presented in Fig. 2.8.  We measure the extent of wrinkles when the 

surfactant pressure equilibrates at a desired value. Each droplet is kept on the film for less 

than 2 minutes, before they are wiped away and renewed by a fresh droplet. 
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Figure 4. 13: A wrinkle pattern around a droplet expands upon depressing the surface 

tension outside the film. The images belong to a 50 nm PS sheet wrinkled by the identical 

droplet. 

 

The lengths of wrinkles are measured by inspection (wrinkles longest to the eye 

on the upper left corner are taken as reference during the image analysis). We plot the 

results against the reciprocal of the bath surface tension, γo
−1

 (Fig. 4.15). The extent of 

wrinkles increases linearly with decreasing bath surface tension. In FT regime, this 

observation verifies that To is indeed equal to the surface tension of the bath liquid (see 

eq. 4.14). In addition, the data indicates that the solid surface energies do not play a 

significant role in keeping the film taut at the interface. This is not a crude assumption if 

one considers negligible change in the area of a floating solid, in comparison to the large 

displacements engaged with the fluidity of the bath molecules. Consequently, the Gibbs 

free energy, G, of spreading (∂G = Σγn∂An, where subscript n symbolizes each phases) is 

dominated by the large energy term associated with liquid phase in the system (i.e. 

γliquid∂Aliquid >> γsolid∂Asolid). 
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Figure 4. 14: Extent of wrinkles increases as a function of the decreasing bath surface 

tension γo. The trend is linear and indicative of FT regime. (inset) Behavior of σrr
–
 

calculated from the slopes of the fitted lines also agrees with FT predictions (σrr
–
~ t

1/3
). 

 

4.4.5 Wrinkle wavelength 

 

While length of wrinkles has been extensively studied, the behavior of wrinkle 

wavelength in FT regime remains relatively unclear. In the first published study on the 

drop-on-a-sheet experiment some successful empirical arguments on the number of 

wrinkles were developed. So far, these arguments have remained as the major guideline 

to predict the wavelength of the patterns forming under an axisymmetric tension gradient. 

In this section, we show that, in FT regime, the wrinkle wavelength is not only dictated 

by the properties of the sheet, but also by the boundary conditions. 

We characterize the wrinkle wavelength, λ, on an annulus by measuring the 

average separation angle, <λ>/r, between neighboring undulations. The details of the 
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measurement methods were discussed in an earlier section. The number of wrinkles, N, 

around a symmetric pattern is related to the angle of separation by the following simple 

relation, λ /r = 2π/N. In this thesis, we have preferred plotting the data in separation angle 

format as in Fig. 4.16. 

 

Figure 4. 15: Average angle of separation between wrinkles as a function of surfactant 

pressure. Red and grey scale data differs in design. 

 

The data initially looks scattered, but can be scaled to reduce the effect of 

thickness and the size of the inner circle on the wavelength of wrinkles. We would like to 

implement a scaling relationship presented in Ref. [16] to the annular geometry studied 

here. First, FvK equation is considered in order to establish the force balance in the 

normal direction: 

   (4.22) 
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Since σθθ << 1 in the FT regime the second term can be ignored, and the equation can be 

evaluated for the boundary, where wrinkles are initiated, r = a (σrr
– 

→ γlv). Now we can 

relate the number of wrinkles to the observable parameters of the problem: BN
4
/a

4
 ~ 

γlv/a
2
. Rearranging this relation, we can capture the combined dependence of λ/r on a and 

t by the following relation, λ/r ~ a
–1/2

t
3/4

. 

 

 

Figure 4. 16: Data presented in Fig. 4.16 is scaled with the arguments developed for the 

uniaxially stretched rectangle
[11]

. According to this scaling, the wavelength, λ, of wrinkles 

is compromised between bending and stretching. 

 

When compared to other possible scenarios (e.g. gravity wrinkles, NT scaling etc.), FT 

scaling provides the best agreement with our data, justifying a general trend up to a 

certain level.  
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It is also noticeable that the average wavelength of the pattern has a considerable 

dependence on the surfactant pressure. One can, again, observe that the data may collapse 

on a single curve if shifted along the Π-axis. As a matter of fact, an attempt to 

superimpose the data by applying the original shift factors used for the extents of 

wrinkles results into a reasonable collapse of the data (Fig. 4.18) on a hypothetically 

linear function.  

 

 

Figure 4. 17: In order to collapse the scaled data presented in Fig. 4.17, a shift is applied 

along the Π-axis. The shift values are taken from the Rwr analysis. 

 

When the wavelength data is rearranged, we choose to be committed to the set of shift 

values generated from the extent data in Rwr vs. Π format; as these scalars provided the 

smallest R-square value when linearly fitted against ϵ
1/4 

(see Fig. 4.9). 
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To sum, the wrinkle wavelength generally depends on the geometry and the 

properties of the annulus.  However, scaling relationships do not solely explain the 

general behavior. For example, the wrinkle wavelength increases with increasing load-

confinement (i.e. N = N(τ)); and the state of wrinkles is significantly influenced by the 

magnitude of the load, τ in reference to the threshold, τc of the system. With respect to 

this observation, we could speculate that two major observables, L and N are related to 

each other through two dimensionless parameters, i.e. bendability and load-confinement; 

and their scaled values vary in reference to τc. 

 

4.4.6 Secondary instability: Fold initiation 

  

Now, we would like to focus on a different phenomenon related to the extent of 

wrinkles. When all wrinkles in an annulus reach the size of the system, the axial 

symmetry is attained. Further compression of this highly symmetric state leads to an 

interesting observation under bright field microscope. First, the contrast of the incident 

light refracted from the undulations homogenously enhances. This is an indicator of the 

growth of the wrinkle amplitude over the whole domain of the pattern. When τ reaches a 

critical value, the deformation starts to be localized at several domains on the surface 

(e.g. Π > 45.2 mN/m in Fig. 4.19). These domains can be characterized by singularities in 

the color-contrast that can be easily spotted by naked eye or the two-dimensional 

micrographs. For illustration, in Fig. 4.19, we present the steps leading to fold initiation 

on a 151 nm thick PS annulus. 
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Figure 4. 18:  Localization of deformation occurs after wrinkles reach the size of the 

system. The initiation of a fold on a 151 nm thick PS annulus was detected at Π = 47.5 

mN/m. 

 

The number of localizations per sample varies between 1 and 3. This number does 

not show any particular dependence on thickness. The stress concentration triggers a new 

symmetry break in the form of a fold that is initiated in any of these localizations. A fold 

can be reversed by decompressing the surfactant monolayer around the annulus. We also 

report on the critical load-confinement values required to initiate folds, measured on the 

sheets of a range of thickness and aspect-ratios (Fig.4.20).  
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Figure 4. 19: Critical load-confinement detected when the folds are initiated. Folding 

condition highly depends on the aspect-ratio of the sheets. 

 

The results show that the critical compression required to initiate a fold has a 

strong dependence on the film geometry, specifically on the annular aspect ratios.  The 

thickness, on the other hand, has a minor effect on the onset of folding. We can 

confidently conclude that, before it is possible to induce a fold, all wrinkles must extend 

to the size of the system, and this mechanism is geometrically more difficult for the 

sheets of higher sizes of the system. 

 

 

4.5 Conclusion 

 

 An annulus offers a purely two-dimensional setting for wrinkle formation. Thin 

PS annuli floating on water are imposed to axisymmetric tension gradients with the aid of 
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an insoluble surfactant. In this experiment, wrinkling is induced on sheets of varying 

annular aspect ratios and thicknesses. We study the observable properties like the 

wavelength and the extent of wrinkles via analyzing two dimensional bright field images. 

The extent of wrinkles converges to FT predictions for thinner films. On the thicker 

films, wrinkles are induced earlier and they grow to larger extents during routine 

compressions. This indicates that, in the studied thickness regime, thicker structures 

buckle more easily. We have not yet understood the root-cause of this unusual behavior 

which fundamentally contradicts the general formalism of buckling.  

The thickness effect is experimentally isolated from the other geometric 

constraints, where wrinkle length also depends on the design of the annulus. Empirical 

arguments successfully cover the individual roles played by geometry, threshold and 

boundary conditions. The analysis on the wrinkle wavelength also suggests that the 

properties of wrinkles are governed by the well-studied scaling arguments; and moreover, 

wrinkles observed on varying thicknesses demonstrate identical states in reference to the 

boundary conditions they are initiated. This universal equivalence implies that the 

buckling behavior at one thickness can be related to that at another by a change in the 

critical load confinement (or surfactant pressure). We also have discovered that the scaled 

wrinkle lengths (and wavelengths) at two different thicknesses can be superimposed 

exactly by a horizontal displacement Δτ (or ΔΠ), which can be defined as a physical shift 

factor. The shift factor enables us to trivially quantify the threshold conditions. 

We have closed this chapter presenting a secondary instability observed on the 

specimens, which occurs in the form of folding. We have found that the annular aspect-

ratio of the film has a strong influence on fold initiation over a broad range of thickness. 
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CHAPTER 5 

RELAXATION OF WRINKLES 

 

 

In this chapter, we study the relaxation of wrinkling patterns formed around 

droplets. The viscoelastic character is introduced to the sheets by reducing the glass 

transition temperature (Tg) of PS compounded with a plasticizer. 

Please note that in this chapter we have made a few changes in symbolic 

abbreviations such that, unlike former chapters t stands for time and δ is thickness; T 

symbolizes temperature and τ symbolizes the relaxation time. 

 

5.1 Background 

 

Polymeric films are inexpensive and easy to process; hence, they are used in 

numerous engineering applications such as electronics, packaging, protective coatings, 

energy harvesting, and optical barriers. There has been many studies in the literature 

showing that the properties measured
[69]

 on bulk material does not explain the physical 

behavior observed in polymeric coatings or thin layers
[70]

. Especially dynamics of 

polymers become anomalous in the glass transition regime, when the macromolecules are 

confined
[47-49, 51, 71]

 into thicknesses comparable to their unperturbed radius of gyration 

(Rg). Since glassy state comprises highly metastable vitrified molecules
[39, 44, 72]

, the 

relaxation of observables does not necessarily imitate the bulk behavior either. This may 

cause challenges in predicting the physical state and the longevity of the substance. 
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The anomaly in film dynamics have also been attributed to the energetic 

interactions between the polymer and neighboring layers
[52, 53, 73]

. On a typical coating, 

the free surface has been thought to be the major contributor of the enhanced mobility of 

the chains closer to the surface, which might lead to faster dynamics (reduced Tg) 

observed in the material. This hypothesis has been evaluated on different material 

systems via modification of the polymers or the surfaces
[74-80]

. Overall, strength of the 

interaction between the surface and the polymer determines the deviated nature of the 

trend observed in glass transition as a function of the varying thickness
[81, 82]

. 

A range of techniques provide useful information on dynamics of thin polymeric 

layers. The most common one is the measurement of thickness δ as a function of the film 

temperature (T)
[51, 73, 77]

. In this method, Tg is defined as the point where the slope of the 

δ-T curve alters. Thickness measurement ideally reflects the density change in the 

material provided that the lateral dimensions remain constant, or change similarly as the 

thickness. There have been alternative volumetric measurements analyzing the areal 

shrinkage of a film freely floating on an annealed bath liquid
[78-80]

. In this approach, slow 

rate extensional viscosity is calculated in reference to the constant spreading coefficient 

contracting the material. (Revisiting Section 4.4.4: On a softened polymeric layer floating 

on a liquid, spreading coefficient can be written as S = γlv – (γsv + γsl), since all the areal 

terms in Gibbs free energy of the system are equal to each other, Alv ≈ Asv = Asl). 

Characterization of the film dynamics is not limited with the volumetric 

measurements. Irradiative methods like X-ray reflectivity
[74, 75, 77]

, fluorescent dye 

detection
[76]

, Brillouin light scattering
[52, 53]

 also investigate the motion and dynamic state 

of the film and the interfaces. Moreover, the slow rate extensional viscosity of a 



 

101 

dewetting layer can be quantified with respect to the rate of a defect (a.k.a. hole) 

expansion 
[72, 83, 84]

. This method is relatively time consuming since the nucleation and 

propagation of the microscopic holes are usually inspected by atomic force microscope. 

Another alternative method that can probe the same property, known as bubble inflation 

technique
[81, 82, 85, 86]

, also requires elaborate sample preparation and instrumentation. 

In this chapter we introduce a simple and robust technique to measure the slow 

strain rate viscoelastic characteristics of thin polymeric layers. The measurement relies on 

in-situ inspection of dynamic wrinkling patterns generated on floating ultrathin (δ< 300 

nm) polymeric specimens. Formation and characterization of wrinkles are practically 

simple. The films are solvent cast on smooth substrates, floated on water, transferred to a 

liquid bath of preference, and wrinkled by placing a ~1 µL droplet (bubble) at the center. 

The dynamic behavior of the pattern can be monitored and recorded by a 

stereomicroscope-camera system. The relaxation of wrinkle length is related to the stress 

and strain relaxation that occurs under the droplet. Overall, this technique is capable of 

studying the slow rheological response of a variety of polymers at a variety of interfaces 

and under controllable physical conditions. 

 

5.2 Experimental details 

5.2.1 Thin film protocols 

 

In order to understand the basics of the problem, we focus our initial efforts on the 

materials that were previously used in the original droplet experiment 
[16, 31]

. We prepare 

blends of atactic polystyrene (Polymer Source, Mn=99kg/mol, PDI=1.06; Mn=885kg/mol, 

PDI=1.08; Mn=6,000kg/mol, PDI=1.22) with a common plasticizer (Dioctyl Phthalate 
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from Sigma Aldrich ≥99.5%).  We name each sample by the molecular weight of PS and 

the mass ratio of the plasticizer (DOP) per every 100 grams of the polymer. A variety of 

plasticizer compositions are prepared (30:100, 32:100 and 34:100) in order to depress the 

glass transition of the film close to the room temperature. 

DOP and PS are mixed in Toluene for preparing the film-casting solution. We 

label the solvent content of a sample in reference to the total mass of PS added into the 

vial. If a solution is labeled as “30:100 DOP:PS with 1.6% PS/solution”, then the 

following mass ratios of the ingredients must be expected: 100 unit solvent, 1.60 unit PS 

and 0.48 (1.60x30/100) unit DOP. We specify this information in order to clarify some 

details for the future experimentalist who plans to repeat our measurements. 

Pertaining the details of the mixing protocol, we recommend pouring an aimed 

amount of plasticizer into a vial that already contains a known quantity of the polymer. 

Due to its high intrinsic viscosity, it is more precise to transfer desirable amounts of DOP 

after blending with a Toluene/THF co-solvent (80/20 mass ratios). We also recommend 

using DOP solution only when it is still fresh, as THF and toluene may evaporate during 

long intervals of storage in the vial. Deviations in the known concentration of DOP 

solution can create an uncertainty on the quantity transferred into the polymer-plasticizer 

mixture. This could be a significant source of error if not practiced suggestively. 

We avoid filtering the solutions prior to spin-casting on clean microscope slides. 

The freshly coated glass slide is scribed by a sharp tip utensil; and a disc is floated on 

water. The freely floating disc is easily caught with a small (2” wide) petri dish (made out 

of PS) where experiments are carried out at room temperature. In our measurements, the 

bath (supplied from in-house RO water system) temperature is consistently measured as 
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20
o
C by a thermometer. This value is close to the T measured for air conditioned ambient 

lab environment, 19–21
 o

C. We also check that the low-power halogen microscope lamp 

(a potential source of heat) is isolated from the stage and the sample, and does not create 

thermal noise during the measurements. The humidity of air in the lab demonstrates a 

large variation day by day, probably depending on the outside conditions. The relative 

humidity values are reported within 30–60% range during the experiments. 

The aging of specimens immediately starts after coating and continues until the 

floating and the wrinkling experiment, which approximately takes 10 minutes in total. 

When the sample is kept aging (on glass substrate) in lab conditions for an additional 

hour after coating, the measured viscoelastic response of the specimens does not change 

within error. We also have not observed a significant (rapid) change in the film thickness 

on water, unless the sample is left to relax freely for multiple hours. Free relaxation at 

room temperature (for the set of samples presented here) is slow enough to be neglected. 

The dynamic response of the material is generally scattered, which requires an 

experimenter to run several trials (3–7 unique runs) on each category of samples. 

 

5.2.2 Bulk protocols 

 

In order to understand the plasticizing effect of DOP on PS, we run several tests 

on solvent-cast bulk samples. Due to the limited amount of lab grade low-dispersity PS, 

we use commercial grade PS pellets. GPC analysis on pellets dissolved in THF shows 

that both number and weight averaged molecular weights are above the critical 

entanglement molecular weight of the polymer
[46]

 (Mn=95kg/mol, Mw=240kg/mol, 

PDI=2.53). Since majority of the bulk properties (except viscosity) remain constant 



 

104 

beyond the critical entanglement, we can cast thick films from this material that can 

demonstrate typical bulk behavior. 

Before casting thicker films, we blend the material with a protocol identical to the 

one described in the previous section. This time we scale up the volume and switch to a 

larger container that can fit 20 gram PS and ~100 gram solvent. The solutions are mixed 

with a magnetic stirrer overnight. No filtering is applied. We place ¼ inch thick, 6 cm tall 

and 4 cm wide Teflon pieces on a flat metal container to cover all the area on the metal. 

After ensuring that the surface is flat, we pour the solution up to the brim of the container 

(Fig. 5.1 (2)). The cast solution is kept in the hood for two or three days until the solvent 

dries out from the sample. Dried film can be easily peeled off from the Teflon surface 

(Fig. 5.1 (3-4)). We use this film to cut small rectangular samples for Dynamic 

Mechanical Analysis (DMA) characterization (Fig. 5.1 (5-6)). 

We perform bulk stress relaxation experiments with a DMA Q800 model 

Dynamic Mechanic Analyzer from TA Instruments. Typical specimens are 3 cm tall and 

0.6 cm wide rectangles; their thicknesses vary between 85 and 170 µm. Cutting a perfect 

rectangle is crucial because the sample stands on its short edge during the alignment. 

After clamping the film, we get rid of any slack in the material by releasing the free end 

of the mount holding the sample (Fig. 5.1 (7)). One can monitor from the DMA software 

that sample starts to creep slowly over the weight of the freed component. We stop the 

creep by locking the position of the mount, which is followed by immediate inception of 

the experiment. The temperature controlled chamber quickly closes and a step strain of 

0.3% is uniaxially applied on the sample. The temperature of the chamber is maintained 

at 20
o
C while the relaxation of the stress is monitored and recorded. 



 

105 

We also measure the bulk Tg using a DSC 2910 Dynamic Scanning Calorimeter 

from TA Instruments. Samples are cast from identical solutions into aluminum pans 

purchased from TA Instruments (T 120430 Hermetic Lid). Upon drying the cast solution, 

~5 milligrams of PS:DOP composite is coated on the walls of the pan. Several 

independent measurements are performed at 10 
o
C/min rate. The glass transition is 

searched on the heating trace, as the set-up has better control on heating than cooling. 

 

 

Figure 5. 1: Steps taken in DMA Characterization: From (1) solution preparation to (7) 

the actual testing of the rectangular samples. 

 

5.3 Results and Discussion 

5.3.1 Bulk rheology 

 

In Fig. 5.2 we summarize the results of the DSC analysis. Since Tg is a colligative 

property, we do not expect the outcome of this analysis to vary for samples of another 

degree of polymerization (as long as the polymers remain in the entanglement regime). 

Hence, the results can be considered as a general recipe to understand the plasticizing 

effect of DOP on bulk (linear atactic) material. The measured values do not necessarily 

represent the actual values for the film, but we may anticipate that our routine 



 

106 

experiments at room temperature investigate the material behavior in the interesting glass 

transition regime. 

 

 

 

Figure 5. 2: Bulk Tg measured for variable content of DOP blended with 100 gram of PS. 

The results are averages from the DSC traces measured at 10 
o
C/min rate of heating. Inset 

shows the chemical structure of the plasticizer. 

 

 The DMA results presented in Fig. 5.3 are coherent with the DSC analysis; such 

that, as molecules experience the glass transition, a slight change in temperature causes 

large variations in physical properties. The rheology of the bulk samples, here, 

demonstrates that 1 or 2 
o
C change in Tg creates significant difference in the room T 

dynamics. This effect is pronounced more clearly when the data is fit to a KWW type
[87, 

88]
 stretch exponential function, i.e. σ/σ0=exp(–(t/τ)

β
), where β is defined as the stretch 
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exponent. We observe a systematic (two to four folds) increment in the relaxation times 

as plasticizer content decreases. More specifically, small reduction in Tg prominently (by 

several folds) accelerates the stress relaxation. 

 

 

 

Figure 5. 3: Stress relaxation curves of the solvent cast samples in bulk. A small change 

in DOP content results into an evident change in the relaxation behavior. In this graph, 

three general intervals of relaxation are observed which can be labeled as inception 

(1<t<40 sec), intermediate (~50<t<400 sec) and final (t>1000 sec) periods. 

 

5.3.2 Wrinkle relaxation 

 

In this section, we provide some experimental evidences that ascertain interesting 

correlations between the wrinkle relaxation and the film rheology. In this study, we 

merely focus on the wrinkle length as it provides an indirect measure of the stress and 
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strain generated under the droplet
[32, 60]

. There are two major excuses that justify our 

reluctance on an elaborate in-situ number (wavelength) analysis. First, wrinkle 

wavelength experiences discrete changes in time, while the length relaxes continuously in 

the experiment (L might only slow down very briefly when wavelength of the pattern is 

rearranged during relaxations). Second, we do not have a simple expression that 

establishes an analytical relationship between the wavelength of wrinkles and the 

kinematics of the material. 

In our systematic studies, we first pay attention to the relaxation of wrinkles as a 

function of the plasticizer content. In order to address this effect, we study the pattern 

dynamics on 116 nm thick PS99k (2Rg~12 nm) films with DOP compositions identical to 

the bulk specimens. Fig.5.4 demonstrates that dynamics of wrinkles are quite sensitive to 

the small changes in the amount of plasticizer present in the film. However, we still 

observe large error bars that may indicate a large variance in the data due to the fast 

dependence of parameters on T in the glass transition regime probed by the experiment. 

We also find that the stretch exponents retrieved from wrinkle relaxation agrees 

decently with the fit parameters measured for the bulk relaxation (See Table 5.1 at the 

end of this chapter for a complete list of measured parameters). We make a 

comprehensive comparison studying the three relaxation modes observed in the bulk and 

the thin film. We classify each interval as inception, intermediate and final, with respect 

to the order of occurrence. Only first two of the three modes are fully captured by the 

wrinkling experiments. Unfortunately, we cease measuring the wrinkle length after 400 

seconds due to the fact that, in several occasions, the water droplets start to shrink rapidly 

beyond the intermediate interval. Those data are not included in this thesis.  
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Figure 5. 4: Relaxation of wrinkles on identical samples (PS99k, 116 nm) with varying 

DOP content. Decay in the length is observed faster with increasing plasticizer. The solid 

lines are the best fit to the portion of the data in the intermediate interval. 

 

Figure 5. 5: Data from Fig. 5.4. is re-plotted in log-scale. This version enables us to 

distinguish the relaxation modes during the inception (0<t<15 sec) and the intermediate 

(18<t<400 sec) intervals. 
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Please check the figure above providing the log-scale version of the data presented in 

Fig.5.4. The so-called inception and intermediate intervals can be more clearly 

distinguished in log-scale. 

In order to understand the role of thickness on wrinkle relaxation, we have studied 

30:100 PS99k samples spun to a range of thicknesses. As we try to evaluate the sole 

influence of thickness on the relaxation, we need to primarily capture the confinement 

(δ/2Rg) effect on the dynamics. The data presented in Fig. 5.6. belongs to a regime of 

moderate molecular confinement, as δ/2Rg varies between mediocre values, 5.8 and 25. 

We cannot provide a solid conclusion whether the variation in dynamics is related to the 

factors such as a deviation in free volume, a possibly emphasized role of interfacial 

interactions, or macromolecular confinement. Nevertheless, Fig. 5.6 demonstrates a slight 

dependence of the dynamics on the thickness. 

 

Figure 5. 6: The role of thickness on 30:100 PS99k films. We observe a slight change in 

relaxation dynamics due to a large change in thickness. 
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Molecular weight is a useful control parameter that can arrest the role of 

molecular confinement on relaxation. To address this hypothesis, we perform the 

relaxation experiments on 116 nm films (30:100 blends) spun from different molecular 

weight polymers. The materials used in this experiment, PS99k, PS885k and PS6000k, 

offer a broad range of melt radius of gyrations, 6, 18 and 47 nm respectively. Such 

variation at Rg corresponds to a broad spectrum of confinement, quantified by respective 

δ/2Rg values, 10, 3, and ~1. The Fig. 5.7 below presents the relaxation of wrinkles 

observed on these samples of varying molecular weights. We observe a reasonably strong 

influence of confinement on the relaxation. 

 

 

Figure 5. 7: Relaxation on 116 nm 30:100 plasticized film is faster when molecular 

weight of PS is increased. Solid lines are again best fit to the intermediate relaxation 

interval. 
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Data presented in Fig. 5.7 demonstrates a significant contradiction with some 

well-established empirical arguments. Here, we observe a faster relaxation on a 

significantly higher molecular weight PS film, which contradicts with the Mark-Houwink 

exponents universally formalized for the polymer flow. More specifically, bulk viscosity, 

η, without any exceptions, must scale strongly with the size of the entangled polymers of 

linear architecture, η ~ Mn
3.4

. Our data shows an opposite trend where relaxation is 

observed faster at higher molecular weight polymers. To summarize the results discussed 

so far, we have prepared a matrix of the stretch exponents and relaxation times extracted 

from individual measurements: 

 

Table 5. 1: Fit values are tabulated for all experiments. Subscript 1, 2 and 3 represent 

inception, intermediate and final relaxation intervals respectively. The stretch exponent is 

approximately 0.5 during inception, 0.3 in the intermediate and, 0.2 in the final phase. 

Inception in the bulk takes at least twice as long time as in the thin film samples. 

Mn 

[kg/mol] PDI DOP:PS 

δ 

[nm] β1 

τ1 

[sec] β2 

τ2 

[sec] β3 

τ3 

[sec] 

99 1.06 30:100 69 0.58 109 0.30 664 

N/A 
99 1.06 30:100 86 0.65 120 0.30 757 

99 1.06 30:100 116 0.50 167 0.29 851 

99 1.06 30:100 299 0.60 188 0.31 1029 

99 1.06 30:100 116 0.50 167 0.29 851 

N/A 99 1.06 32:100 116 0.55 58 0.31 179 

99 1.06 34:100 116 0.53 45 0.38 77 

99 1.06 30:100 116 0.50 167 0.29 851 

N/A 885 1.08 30:100 116 0.49 161 0.32 502 

6000 1.22 30:100 116 0.46 156 0.44 181 

95 2.54 30:100 bulk 0.54 126 0.31 324 0.19 194 

95 2.54 32:100 bulk 0.58 93 0.31 118 0.20 95 

95 2.54 34:100 bulk 0.58 64 0.32 76 0.20 73 
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5.3.3 Relaxation under the droplet 

 

In this section, we would like to present an in-situ topographical measurement of 

a blister bulging above an air bubble, which is in static contact with a lightly plasticized 

PS film floating on glycerol. Optical profilometry is preferred in this task due to its high 

resolution and short (~1-2 sec) scan intervals. In Fig. 5.8, a mutual trend is traced by the 

scaled bulge height and length of wrinkles as a function of the time of relaxation. This 

behavior has been expected since the studies on elastic PS films
[31, 32]

 have shown that the 

wrinkle length linearly scales with the height of the bulge forming under the droplets 

(L~h). In another experiment, we have verified this topographical change when the water 

droplets are wiped off after the relaxation. One finds that the blister remains slacked and 

permanently deformed where the droplet is located. Overall, the relaxation of wrinkles 

turns out to be a fundamental result of the kinematic change under the droplet.  

In the lightly plasticized film, we also investigate the consequences of wrinkle 

relaxation in the close vicinity of the droplet (bubbles), where the radial stress is expected 

to be the highest. After the wrinkle relaxes to approximately 60% of its original length, 

we collect the specimen with a smooth glass slide, and re-float it on water.  We ensure 

that the residual glycerol is cleaned off from the underlying surface by re-transferring the 

film to several other clean baths of water. Eventually, we catch the film with a clean 

Silicon wafer and dry it under Nitrogen. We measure the thickness around the footprint 

of the bubble (droplet) with the interferometer and find a minor reduction (~1%) from the 

initial thickness within error. In this measurement, we demonstrate that the change in film 

thickness is insignificant in comparison to the dramatic change in the blister height and 

the length of wrinkles. 
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Figure 5. 8: 228 nm lightly plasticized PS film on a glycerol bath. Scaled wrinkle length 

traces the same trend as the scaled bulge height, h/h0 under the bubble (droplet). This 

evidence proves that the wrinkle relaxation is related to the capillary mechanics under the 

droplet. 

 

5.4 Conclusion and future work 

 

Our new platform can measure the small rate viscoelastic response of ultrathin 

polymeric sheets freed from the constraints of a pinning substrate layer. This simple 

method offers a tremendous potential to probe the dynamics of very thin sheets as a 

function of surface interactions and confinement. In future, this platform can be used in 

viscoelastic testing of polymers of different structure and architecture, while imposing the 

films to different chemistries and surface tensions at the interfaces. 
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So far, in order to simplify our analysis, we have kept working with water as the 

probe liquid (both using as the bath and the droplet), which, disadvantageously, offer a 

relatively low boiling point and high vapor pressure. However, water has an almost 

neutral affinity between air and PS, and vast amount of our knowledge accumulated on 

elastocapillary wrinkling has been on our work with water. For future studies, we 

recommend ionic liquids
[89]

 being useful candidates to facilitate free annealing of the 

polymeric materials
[77]

 and wrinkle relaxation. Despite being hygroscopic, the properties 

of an ionic liquid can be kept unchanged after quenching the liquid with sufficient uptake 

of water. Using this simple approach, one can standardize a simple protocol for relaxation 

measurements in the ambient or controlled environments. 

We would also like to add a list of duties that can support some of the ideas and 

questions raised in this chapter. First, in order to understand the role of confinement, one 

should study how wrinkle dynamics change after viscoelastic films freely relax (age) on 

water. This experiment should address questions regarding the orientation of the film. 

One could also study other non-linear phenomenon such as aging of polymers using 

identical films controllably stored (e.g. at T<Tg) on solid substrates prior to relaxation.  

Our effort on aging is limited to some studies (Fig. 5.9 and 5.10) on non-plasticized 

glassy PS aged in ambient conditions for a year. 

In order to understand and quantify the chain orientation in solvent processed 

films, a waveguide
[90-94]

 could facilitate in-plane and out-of-plane birefringence 

measurements. One could relate the relaxed and unrelaxed chain orientation in the film to 

a variety of viscoelastic measurements available, including the wrinkle relaxations and 

free relaxation on a liquid. 
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Figure 5. 9: Comparing the wrinkle lengths measured on aged (1 year in ambient T) and 

fresh PS520k. 

 

 

Figure 5. 10: Comparing the wrinkle number measured on aged (1 year in ambient T) 

and fresh PS520k. 
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Finally, a comprehensive bubble inflation model
[55, 81, 82, 85, 86, 95-99]

 should be 

implemented to this new platform, so that one can use simple formalisms to interpret and 

translate the extent of wrinkles as the strain and stress under the droplet. The current 

models used in the literature assume a biaxial stress in every point around the droplet, 

which is merely valid for the very center of the blister. 
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CHAPTER 6 

CONCLUSIONS 

 

 

In this dissertation, we study the axisymmetric wrinkling of ultrathin polymer 

sheets floating on water. Supported by a liquid bath, the films are kept flat and taut on the 

surface by capillary forces. The wrinkles are generally induced by imposing a tension 

gradient from the center. In the first experiment, we place a droplet (or bubble) at the 

center of the film and characterize the wrinkle pattern around the droplet. We use three 

dimensional imaging techniques to study the topography of the problem. Overall, the 

elasto-capillary effect of a liquid droplet on a highly deformable floating layer is 

understood better. With our results, the droplet experiment is closer to being a wrinkling 

based mechanical and interfacial characterization technique applicable to soft materials. 

In another experiment, we facilitate wrinkling by inducing a tension gradient 

between the two peripheral boundaries of an annulus. This is achieved by compressing a 

surfactant monolayer outside the floating material. In this relatively simpler geometry, we 

study the role of bendability on the extent of wrinkles. We measure the wrinkling 

threshold, which is found to demonstrate unusual thickness dependence. We confirm that 

the wrinkling patterns obey the scaling laws that accurately predict the character of the 

deformation; however, the scaled properties of wrinkling are highly influenced by the 

relative differences between the conditions dictated by the boundaries and the buckling 

threshold of the system. This conclusion is supported by our analyses performed on both 

the wavelength and the length of wrinkles. Our set-up also shows that fold initiation on 

axisymmetric wrinkles is mostly dictated by the geometric constraints in studied regime.
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