
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Doctoral Dissertations Dissertations and Theses 

Summer November 2014 

Structural, Electronic and Catalytic Properties of Graphene-Structural, Electronic and Catalytic Properties of Graphene-

supported Platinum Nanoclusters supported Platinum Nanoclusters 

Ioanna Fampiou 
University of Massachusetts - Amherst 

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 

 Part of the Mechanical Engineering Commons, and the Nanoscience and Nanotechnology Commons 

Recommended Citation Recommended Citation 
Fampiou, Ioanna, "Structural, Electronic and Catalytic Properties of Graphene-supported Platinum 
Nanoclusters" (2014). Doctoral Dissertations. 185. 
https://doi.org/10.7275/2jgs-f010 https://scholarworks.umass.edu/dissertations_2/185 

This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized 
administrator of ScholarWorks@UMass Amherst. For more information, please contact 
scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/dissertations_2
https://scholarworks.umass.edu/etds
https://scholarworks.umass.edu/dissertations_2?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.7275/2jgs-f010
https://scholarworks.umass.edu/dissertations_2/185?utm_source=scholarworks.umass.edu%2Fdissertations_2%2F185&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


STRUCTURAL, ELECTRONIC AND CATALYTIC
PROPERTIES OF GRAPHENE–SUPPORTED

PLATINUM NANOCLUSTERS

A Dissertation Presented

by

IOANNA FAMPIOU

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2014

Mechanical Engineering



c© Copyright by Ioanna Fampiou 2014

All Rights Reserved



STRUCTURAL, ELECTRONIC AND CATALYTIC
PROPERTIES OF GRAPHENE–SUPPORTED

PLATINUM NANOCLUSTERS

A Dissertation Presented

by

IOANNA FAMPIOU

Approved as to style and content by:

Ashwin Ramasubramaniam, Chair

Robert W. Hyers, Member

Dimitrios Maroudas, Member

Donald Fisher, Department Head
Mechanical Engineering



To my mother, Eleni and to the memory of my beloved grandparents
for inspiring me to work hard, aim high and follow my dreams.



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis supervisor, Professor

Ashwin Ramasubramaniam for his continuous support and guidance throughout the

course of my graduate studies. He has been an invaluable mentor showing utmost

regard, care, patience, and encouragement. I am also immensely thankful to the

members of my committee, Professor Dimitrios Maroudas and Professor Robert W.

Hyers for their service and their helpful comments and suggestions. My thanks are

also due to Professor T. J. Mountziaris for his support and friendship and for serving

as a mentor during my graduate school years.

I would be remiss if I didn’t also acknowledge the members of our research group,

past and present, Dr. Jin Yang, Corinne Carpenter, Raymond Gasper and Hongbo

Shi, for our fruitful discussions, exchange of ideas and the fun times we spent together

in the lab. Thanks to all the friends I made while in Amherst, for making my stay

enjoyable and pleasant. I strongly hope that our paths cross again in the future.

I would like to express my gratitude to Daniel Fay for bringing happiness and

comfort in my life and for keeping me mostly sane during the completion of my

dissertation.

Last but not least, I am deeply grateful to my family and particular to my mother

Eleni, for always supporting me and encouraging me to follow my dreams. I wouldn’t

have been where I am today without them.

This work was supported by U.S. Department of Energy under Award Number

DE-SC0010610. Computational resources provided by the National Energy Research

Scientific Computing Center, which is supported by the Office of Science of the U.S.

v



Department of Energy under Contract No. DE-AC02-05CH11231 are also acknowl-

edged.

vi



ABSTRACT

STRUCTURAL, ELECTRONIC AND CATALYTIC
PROPERTIES OF GRAPHENE–SUPPORTED

PLATINUM NANOCLUSTERS

SEPTEMBER 2014

IOANNA FAMPIOU

Diploma, NATIONAL TECHNICAL UNIVERSITY OF ATHENS

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ashwin Ramasubramaniam

Carbon materials are predominantly used as catalytic supports due to their high

surface area, excellent electrical conductivity, resistance to corrosion and structural

stability. Graphene, a 2D monolayer of graphite, with its excellent thermal, elec-

tronic and mechanical features, has been considered a promising support material

for next generation metal-graphene nanocatalysts. The main focus of this disserta-

tion is to investigate the properties of such metal-graphene nanocomposites using

computational methods, and to develop a comprehensive understanding of the ex-

perimentally observed enhanced catalytic activity of graphene–supported Platinum

(Pt) clusters. In particular, we seek to understand the role of graphene supports on

the ground-state morphology and the electronic structure of graphene–supported Pt

nanoparticles, which correlate strongly with their catalytic activity. First, through

a series of empirical potential and density functional theory (DFT) calculations, we

determine low-energy isomers of Pt nanoclusters on pristine and defective graphene.
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Our results indicate that point defects in the graphene support enhance the cluster-

support interaction, increasing their stability and significantly alter their electronic

properties. Next, we investigate the support effects on CO and O adsorption on

graphene–supported Pt13 nanoclusters. Defective-graphene-supported Pt13 nanoclus-

ters bind CO and O more weakly than clusters on pristine graphene or unsupported

clusters. Additional ab initio MD calculations on COsaturated Pt13 nanoclusters show

that support defects are crucial in stabilizing Pt13 clusters at high CO-coverages; in

contrast, Pt13 clusters supported on pristine graphene desorb upon CO saturation,

leading to potential catalyst loss. Finally, we examine the support effects on the

CO oxidation reaction on graphene–supported Pt13 nanoclusters. A detailed study

of the CO oxidation kinetics is undertaken in the high CO coverage regime, locating

transition states and minimum energy pathways. The relevant kinetic mechanism is

sampled at various surface sites on clusters bound at support defects and on unsup-

ported clusters. The results of this study show that strong cluster-support interactions

can substantially reduce the reaction barrier for CO oxidation on graphene–supported

clusters compared to unsupported ones. Our studies suggest that defect engineering

of graphene could serve to enhance the catalytic activity of ultra-small Pt clusters,

opening up another dimension for rational design of catalytic materials.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 A Brief History of Surface Catalysis

Chemical catalysis affects our lives in myriad ways. Catalysts provide a means of

changing the rates at which chemical bonds are formed and broken thereby controlling

the yields of chemical reactions to increase the amounts of desirable products while

reducing the amounts of undesirable ones. Catalysis lies at the heart of our quality

of life: reduced emissions of modern cars, the abundance of fresh food at our stores,

and the new pharmaceuticals that improve our health are made possible by chemical

reactions controlled by catalysts.

Catalysis as a scientific discipline originated in the early 19th century. In 1814,

Kirchoff reported that acids aid the hydrolysis of starch to glucose. The oxidation

of hydrogen by air over platinum (Pt) was observed by H. Davy (1817) and E. Davy

(1820). Platinum was also found to aid the oxidation of CO and ethanol (Dobereiner).

[143] Faraday was the first to carry out experiments to explore why Pt facilitates the

oxidation reactions of different molecules. Thus, Faraday was the first scientist to

study catalytic reactions. In 1835, Berzelius was the first to systematically investigate

previous recorded observations and classified them as catalysis. [107] He suggested

the existence of a catalytic force associated with the action of catalysts. Catalyst-

based technologies were introduced in the second half of the 19th century. During this

period it became clear that catalysis was applicable in most chemical processes. This

new perception of catalysis was formulated by Ostwald, who developed the process
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of ammonia oxidation to form nitric oxide, the precursor to nitric acid manufacture

(1902). [7]

During the end of the nineteenth century the growth of academic knowledge trans-

lated into industrial applications. At this point the number of developed catalytic

processes had grown into hundreds and the economic potential of some of these pro-

cesses were highly feasible. Catalysis science was developed (1915–1940) through the

efforts of Langmuir (sticking probability, adsorption isotherm, dissociative adsorption,

role of monolayers), Emmett (surface area and measurements, kinetics of ammonia

synthesis), Taylor (active sites, activated adsorption), Bonhoeffer, Rideal, Roberts,

Polanyi, Farkas (kinetics and molecular mechanisms of ethylene hydrogenation, iso-

tope exchange, intermediate compound theories), and many others. There was also

a general growth in the demand for bulk chemicals and therefore minimization of by-

products, by catalysis, had evident economic advantages. Catalyzed reactions of CO

and hydrogen were utilized to produce methanol in 1923 and higher-molecular-weight

liquid hydrocarbons by 1930. The production of motor fuels became one of the chief

aims of catalysis during the period of 1930–1950. [158]

The discovery of abundant and inexpensive oil in the early 1950s focused the

development of catalytic processes on converting petroleum crude to fuels and chem-

icals. Oil and oil-derived intermediates (ethylene, propylene) became the dominant

feedstocks. Platinum (metal–) and acid (oxide–) catalyzed processes were developed

to convert petroleum to high-octane fuels. The discovery of microporous crystalline

alumina silicates (zeolites) provided more selective and active catalysts for many reac-

tions, including cracking, hydrocracking, alkylation, isomerization, and oligomeriza-

tion. A new generation of more active bimetallic catalysts dispersed on high–surface

area oxides were synthesized. The new catalysts were also more resistant to deacti-

vation. [158]
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The energy crisis in the early 1970s renewed interest in chemicals and fuels, pro-

ducing technologies using feedstocks other than crude oil. Intensive research was

carried out utilizing coal, shale, and natural gas to develop new technologies and

to improve on the activity and selectivity of older catalyst–based processes. Envi-

ronmental catalysis was the first step towards the modern chemical industry where

catalysis is applied to almost every process, including the production of fine chemicals

for pharmaceutical applications to the production of bulk chemicals and exhaust gas

catalysts. [107]

Modern surface science developed during the same period and has been applied

intensively ever since to explore the working of catalysts on the molecular level, to

characterize the active surface, and to aid the development of new catalysts for new

chemical reactions. During the later part of the 20th century, with the development of

nanoscience, nanocatalysis has clearly emerged as a domain to answer the demanding

conditions for catalyst improvement.

Today, we are facing a variety of unprecedented challenges in creating alternative

fuels, reducing harmful by-products in manufacturing, cleaning up the environment

and preventing future pollution, dealing with the causes of global warming, prevent-

ing the release of toxic substances and infectious agents, and creating safe pharma-

ceuticals. Catalysts are needed to meet these challenges and their complexity and

diversity demand a revolution in the way catalysts are designed and used. Therefore,

the application of new methods for synthesizing and characterizing molecular and

material systems is essential. Opportunities to understand and predict how catalysts

work at the atomic scale and the nanoscale are made possible by breakthroughs in

the last decade in computation, measurement techniques, and imaging and by new

developments in catalyst design, synthesis, and evaluation.
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1.2 Fuel Cell Electrocatalysts

The use of fossil fuels, especially coal, oil, and gas, represents a serious environ-

mental threat and might lead to a global energy crisis, including natural resource

exhaustion, pollutant emission, and waste generation. Carbon dioxide emission from

burning fossil fuels is considered a key contributor to climate change and related

environmental problems. Consequently, there is urgent need to increase electricity-

generation efficiency and to develop clean, sustainable, and renewable energy sources.

Fuel cells are an electrochemical energy conversion technology to directly convert the

chemical energy of fuels, such as hydrogen, methanol, ethanol, and natural gas, to

electrical energy. Fuel cells are considered to be the most efficient and least polluting

power-generating technology and are a potential and viable candidate to moderate

the fast increase in power requirements and to minimize the impact of the increased

power consumption on the environment. [133]

A fuel cell, as depicted in Figure 1.1, [116] is an electrochemical cell comprised of

three main components: the anode, cathode, and the electrolyte. Assembly of these

three components is often referred to as membrane–electrode assembly (MEA). Elec-

tric current generation in a fuel cell depends largely on the kinetics of the reaction that

takes place at the anode and the cathode. Generally, hydrogen gas is the preferred

fuel for fuel cells. Hydrogen and oxygen are consumed to produce electricity giving

water as the only byproduct, with no greenhouse gas emission. The main obstacle in

the use of hydrogen as an energy carrier is that hydrogen is not a readily available

fuel. The direct use of liquid fuels in fuel cells is of significant importance due to

potentially higher energy density and higher maximum thermodynamic efficiencies.

Liquid fuels, such as methanol and ethanol, have several advantages with respect to

hydrogen. They are relatively cheap; are easily handled, transported, and stored; and

have a high theoretical energy density. However, apart from the energy density, the

toxicological–ecological hazards of the liquid fuels and the environmental effects of
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the byproducts of the liquid fuel oxidation reactions should also be taken into account

when selecting one particular fuel. Direct liquid fuel cells using methanol, ethanol,

propanol, formic acid, etc., suffer from the additional problem of catalyst poisoning

due to CO formation from the indirect decomposition of liquid fuels. [75] Therefore,

the development of advanced nanocatalysts is imperative to significantly enhance the

electrocatalytic activity and durability of the Pt-based catalysts that are required for

liquid fuel–based fuel cell systems.

Figure 1.1: Schematic representation of a membrane–electrode assembly of a PEMFC.
Platinum particles and carbon agglomerates are colored in black and dark gray, re-
spectively. [116]

Fuel cells can be classified based on the type of fuel used, for example, direct

methanol fuel cells (DMFCs), direct ethanol fuel cells (DEFCs), direct formic acid

fuel cells (DFAFCs), and direct carbon fuel cells (DCFCs). Apart from the type

of fuel used, fuel cells are usually classified according to their working temperature

or to the electrolyte employed. There are, thus, low- and high- temperature fuel

cells. Low-temperature fuel cells include alkaline fuel cells (AFCs), polymer elec-
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trolyte membrane fuel cells (PEMFCs,) direct methanol fuel cells (DMFCs), and

phosphoric acid fuel cells (PAFCs). The high-temperature fuel cells operate at 500◦

C – 1000◦ C. Due to their high operating temperature, they show a higher tolerance

to typical catalyst poisons, such as CO, produce high-quality heat for reforming of

hydrocarbons, and offer the possibility of direct utilization of hydrocarbon fuels. As

for the electrolytes used in fuel cells, they can be solid (polymer or ceramic) or liquid

(aqueous or molten) and must have high ionic conductivity with negligible electronic

conductivity. [75]

After this brief description of the basic concepts of fuel cells, we will now focus

on the materials composing the catalytic layers in the membrane electrode assembly

(MEA), where the electrochemical reactions occur. The structure and composition of

the MEAs have undergone decisive changes during the past 30 years. [160] In early

PEMFCs the catalytic layers were prepared from noble metals and thus contained

very high metal loadings per geometric MEA area. Later, it became apparent that

precious metals in these catalytic layers were not utilized efficiently and the new

generation of PEMFCs emerged, based on carbon-supported precious-metal catalysts

(usually Pt or Pt-based alloy). Platinum catalysts are often the transition metal of

choice, for fuel cell catalysts, due to their high activity and selectivity for a variety of

electrochemical reactions. In the following section, we will focus on carbon materials

as catalytic supports for PEMFCs and DMFCs, from traditional carbon supports to

novel nanostructured forms of carbon.

1.2.1 Carbon Materials as Catalytic Supports

Because of their high conversion efficiency, low pollution, light weight, and high

power density, low-temperature fuel cells have attracted lots of attention. However,

the high catalyst cost is a major barrier to the commercialization due to the require-

ment of platinum-based catalysts for both the anode and cathode. In order to reduce
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the cost, a lot of effort has been focused on reducing the usage of precious metal con-

tent by enhancing the Pt utilization efficiency, creating Pt catalysts with a smaller

size and high electrochemically active surface area.

Nowadays, the popular method to obtain a high active surface area is to deposit

the Pt particles on a porous support. Various carbon materials such as graphite,

carbon black, activated carbon, activated carbon fibers, ordered mesoporous car-

bon, pyrolytic carbon and polymer-derived carbon have been used to prepare carbon-

supported catalysts. [8–10, 26, 37, 42, 48, 81, 162, 165, 174, 198] Carbon presents

some unique characteristics: it is inert in acidic or basic environment, and can been

functionalized by various methods so as to control its surface chemistry. In addition,

carbon is abundant in nature and environmental friendly. The choice of the suitable

support is determined by the chemical reactions with the aspects of high conversion

rate, high selectivity, long-term stability and acceptable cost.

High surface area activated carbon and carbon blacks have been extensively used

as the carbon materials of choice for most carbon supported catalysts, due to their

flexible porous structure, high conductivity, and low cost. [11, 12] However, despite

their high surface area, carbon black based electrocatalyst supports present two main

problems: (i) they induce significant mass transfer limitations due to their dense

structure, leading to a very low Pt utilization [141], and (ii) carbon black is known

to undergo electrochemical oxidation, forming surface functional groups such as OH,

COOH and CO, which further react to give CO2 at the cathode of the fuel cell [78]. As

carbon corrodes, Pt nanoparticles will detach from the carbon black and aggregate

into larger particles resulting in the loss of Pt surface area and in the subsequent

lowering of the performance of fuel cells. [108, 152] Activated carbon is usually

manufactured by high-temperature pyrolysis of various vegetative residues as well

as pitch and polymer substances, followed by activation to create desirable porous

structure of the target materials. The advantage of chemical activation is the more
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uniform pore structure of the target activated carbon materials. Activated carbons

possess high surface areas and micropore volumes, which makes them particularly

attractive catalyst materials. On the other hand, there are several disadvantages

associated with their extensive use, such as narrow microporosity, inconsistent quality

with traces of impurities, and low mechanical and thermal stability, which essentially

lower the performance of the catalyst. [10, 48, 165, 174, 178]

Ordered mesoporous carbons (OMCs) is another carbon material often used as

a catalytic support, since these have controllable pore sizes, high surface areas, and

large pore volumes. [26, 37, 162] It has been found that nanoporous carbons with 3D

ordered pore structures can improve the mass transport of the reactants and prod-

ucts during fuel cell operation.[26, 37] The electrocatalysts that employ such OMC

supports are shown to exhibit promising catalytic activities toward methanol oxida-

tion and superior electrocatalytic mass activity toward oxygen reduction compared

with the same catalyst dispersed on a conventional carbon black support. [26, 37]

Generally, in these studies all OMC-supported metals presented higher metal disper-

sion and higher catalytic activity, both for oxygen reduction and methanol oxidation

than carbon black–supported metals. However, OMCs contain a small oxygen surface

groups, which might be disadvantageous in the long-term use of the catalyst.

Nanostructured forms of carbon, such as carbon nanotubes (CNTs) and carbon

nanofibers (CNFs) have been exploited in the last two decades as alternative support

materials in heterogeneous catalysis. [17, 51, 74, 94, 110, 135] CNTs are nanoscale

cylinders of rolled up graphene sheets with an extensive range of variations, such

as single-walled nanotubes and multi-walled nanotubes. CNFs have lengths on the

order of micrometers while their diameter varies between tens to several hundreds

of nanometers. The mechanical strength and electric properties of CNFs are simi-

lar to that of CNTs while their size and graphitic ordering can be well controlled.

[147] The potential benefits of using these nanostructured forms of carbon as cat-
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alytic supports include higher utilization of active metal due to good mesoporosity

that can improve mass transfer, high purity that can prevent the catalyst from self-

poisoning, corrosion resistance, higher electrical conductivity, mechanical strength

and thermal stability compared to carbon black supports. [97, 99, 177] A large num-

ber of studies have shown that Pt supported on CNTs and CNFs could exhibit better

performance for the electro-oxidation of methanol [59, 69, 110], oxygen reduction

reaction, [24, 82, 119, 182] and higher durability than on traditional carbon parti-

cles. [17, 51, 98, 161] However, there are several challenges to the development of

CNT-/CNF-supported catalysts in terms of fabrication and synthesis, with the most

significant limitation being the particle size control and CO poisoning prevention.

High catalyst loading required for DMFCs is difficult to achieve in CNT– supported

electrocatalysts. Without surface modification, most CNTs have insufficient binding

sites to anchor the precursor metal ions or metal nanoparticles, which usually leads

to poor dispersion and aggregation of metal nanoparticles, especially at high loading

conditions. [184] Less than 30 wt% Pt/MWCNTs catalyst loading can be achieved be-

cause high Pt loading on unfunctionalized CNTs leads to aggregation. [190] Therefore

functionalization of CNTs is essential for practical applications. Another limitation

is that in comparison with carbon black, CNT–supported electrocatalysts commonly

exist in unusual shapes and have bulky specific volumes, making the fabrication into

fuel cell electrodes challenging. As for CNFs, despite their superior thermal stability

and corrosion resistance in the low-temperature fuel cell environment, they have an

inert surface with only a very limited amount of surface defects for the anchorage of

Pt-catalyst nanoparticles, which may assist the particle agglomeration. This effect

can be partially avoided by functionalization of CNFs to create surface functional

groups that Pt nanoparticles can use as anchoring sites. [58, 100]

Before proceeding with describing the advantages of using Pt-graphene nanocom-

posites as electrocatalysts in fuel cells, which is the main focus of this dissertation, we
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could briefly conclude that the use of carbon materials with high surface area, good

electrical conductivity, and suitable porosity as catalyst supports for precious metals

increases due to the development of fuel cells. The high availability and low cost

of carbon, make carbon blacks still the most popular support for fuel cell catalysts.

Among the new nanostructured forms of carbon, CNTs are the most investigated as

catalyst support for low-temperature fuel cells showing considerable advantages com-

pared to traditional carbon blacks. However, commercialization aspects, including

cost and durability of these new materials, have revealed inadequacies that need to

be addressed before fuel-cell technology can gain a significant share of the electrical

power market.

1.3 Platinum–Graphene Nanocomposites for Catalysis

Nanotechnology offers new insights in the development of advanced materials for

alternative energy sources. As described in the previous sections, current research on

materials for catalytic applications focuses on creating more active support surfaces

and achieving lower precious metal content, optimizing the catalytic metal nanopar-

ticles. Tuning the size and the morphology of the cluster and the properties of the

support material is necessary to increase the catalyst efficiency. Since its discovery

by Geim et al. [126] in 2004, graphene has attracted great scientific interest and has

already shown much promise as a catalytic support in low-temperature fuel cells.

1.3.1 Experimental Studies of Pt–graphene Nanocomposites for Catalysis

Graphene, a single-atom thick layer of sp2–bonded carbon atoms in a honeycomb

lattice, due to its unique structure and excellent properties is considered a promising

material for catalytic support in fuel cell electrodes. It offers high conductivity, high

surface area, exceptionally high mechanical strength and one of the fastest available

electron transfer capabilities. [125, 126]
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Significant experimental research has been already performed and has shown that

subnanometer Pt nanoparticles supported on functionalized graphene, graphene syn-

thesized by graphene oxide (GO) and chemically converted graphene (CCG) show

extraordinary properties as electrocatalytic supports in direct methanol fuel cells,

proton exchange membrane fuel cells, and hydrogen fuel cells. [9, 12, 38, 40, 77,

82, 84, 90, 101, 102, 135, 139, 140, 142, 148, 149, 151, 155, 164, 166, 183, 185, 191,

192, 192, 194, 196] Experimental studies attribute the improved performance of Pt-

graphene nanocatalysts to the synergetic effect between the Pt catalyst and the func-

tionalized graphene substrate, leading to a strong interaction between the cluster

and the support. [49, 67, 68, 84, 101, 137, 144, 172, 183] Experiments clearly reveal

that electron damage–induced point defects in graphene are very effective traps for

diffusing atoms and clusters. [144] Such defect-mediated anchoring of Pt nanopar-

ticles is also shown to prevail in experimentally synthesized Pt-graphene compos-

ites, which are typically produced via solution processing of graphene oxide, known

to contain lattice defects (vacancies, holes) and functional groups (carbonyls, epox-

ides, hydroxyls, etc.),[14, 96, 131] which can act as strong anchoring sites for Pt

nanoparticles.[83, 84, 176] The presence of defects and functional groups could there-

fore explain the increased stability of Pt nanoparticles towards sintering in these

composites.

The use of graphene oxide (GO) as catalyst support material has already shown

promising results. [101, 140, 153, 181] Oxygen groups are introduced into the graphene

structure during the preparation of GO, creating defect sites on the surface and at

edge planes. These defect sites act as nucleation centers and anchoring sites for

growth of metal nanoparticles. In comparison with CNTs, graphene nanosheets (GNs)

possess not only similar stable physical properties but also large surface area. In

addition, the production cost of GNS mass scale is cheaper than that of CNTs.[93]

GNSs have been reported to have good dispersion stability and large surface area.
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[138] Oxygen reduction reaction studies on Pt/RGO showed 11% higher maximum

power density in comparison to commercial Pt/C catalyst. [60] Electrochemical data

for methanol oxidation on Pt-Ru/GNS have shown better catalytic activity than

that of Pt-Ru/Vulcan carbon. [20] When compared with standard Pt-carbon black

catalysts, Pt-graphene composites display enhanced catalytic activity and tolerance

to CO poisoning [101, 192] and, additionally, long-term stability toward sintering. [84,

101, 192] These results indicate that graphene nanosheets could be good candidates

as support material for high-loading Pt catalysts in fuel cells.

1.3.2 Computational Studies of Minimum-Energy Structures of Clusters

and Pt–graphene Nanocomposites for Catalysis

Computational modeling and simulations play an increasingly important role in

the field of nanocatalysis. Direct numerical simulations can be very helpful in estab-

lishing quantitative understanding of structure–property–function–performance rela-

tionships that can lead to accelerated discovery of novel nanomaterials. Such com-

putational findings can facilitate our quest to understand the physical and chemical

effects at the nanoscale and can serve as guidelines for designing experiments and

generating experimentally testable hypotheses.

From a computational perspective, the interaction of Pt clusters with graphene

and CNTs has been explored in several recent studies. [2, 19, 22, 30, 32, 33, 41, 80,

81, 83, 105, 106, 117, 128, 129, 145, 170, 176, 179] Briefly, the following features of

Pt-graphene interactions can be gleaned from these studies. First, Pt does not wet

pristine graphene due to relatively high cohesive energy for Pt as compared to the

Pt-C bond energy.[19, 117, 129] Consequently, Pt clusters on graphene are essentially

three-dimensional structures for cluster sizes in excess of about ten atoms. Second, Pt

clusters bind more strongly to defects (vacancies, disclinations, dopants, edges, 5-8-5

reconstructed divacancies)[2, 81, 83, 128, 176, 179] in graphene due to the formation
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of strong Pt-C bonds at the defect, which partially alleviates the disruption of the

graphene sp2 network. The electronic structure of the cluster is modified both due

to bond formation as well as due to strains induced in the cluster. Third, there is

a clear indication of charge transfer from the Pt cluster to the graphene support

accompanied by a shift of the Pt d-band away from the Fermi level, which is greater

in the presence of a support-defect.[30, 105, 128, 179] The binding energy of CO

molecules, for example, is then found to decrease as one goes from an unsupported

particle, to a supported one, to one on a defective support.[128] Similarly, the presence

of vacancies in the graphene substrate has been shown to enhance the stability of Pt13

nanoparticles on the graphene support while weakening the O2 adsorption energy on

the cluster; this effect can alter the catalytic activity of the nanoparticle toward

oxygen reduction.[105, 106] There have also been some recent computational studies

investigating the catalytic performance of metal-graphene or metal-graphene-oxide

supported nanoparticles [80, 95, 103, 105, 114, 159, 167, 169, 197]. For instance, the

presence of a defect at the graphene support was also found to increase the reactivity

of Pt4 clusters and reduce the barrier of catalyzed CO oxidation. [197] Another study

by Li et al.[95] showed high catalytic activity of Fe clusters anchored on graphene

oxide for the CO reaction via the Eley-Rideal mechanism. Song et al. [159] reported

enhanced catalytic activity of graphene-supported Cu clusters towards the catalytic

oxidation of CO, while Lu et al.[114] reported a low activation barrier (∼0.31 eV) for

CO oxidation on graphene-supported Au clusters.

Briefly summarizing, the improved performance of Pt-graphene composite elec-

trodes according to the studies previously reported, may then be attributed to several

factors including: (i) stability towards sintering, which maintains high surface area

over extended periods; (ii) improved electrical conductivity of graphene supports rel-

ative to standard carbon black counterparts; and (iii) fundamental modifications in

the electronic structure of the supported nanoparticle as a result of strong binding to
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support defects. However, the relative importance of these factors and their poten-

tially synergistic interaction is still neither understood nor analyzed in a systematic

way and constitutes the main focus of this dissertation.

1.4 Research Objectives

This thesis is aimed at obtaining a fundamental and quantitative understanding of

the complex phenomena that govern the properties of Pt–graphene nanocomposites as

electrocatalysts in fuel cells. Our computational study follows a synergistic combina-

tion of first-principles Density Functional Theory (DFT) calculations with Empirical–

Potential based classical Molecular Dynamics simulations. Through atomic-scale sim-

ulations of the key thermodynamic and kinetic processes, our modeling predictions

and analyses aim to elucidate the fundamental mechanisms that underlie the exper-

imentally observed enhanced electrocatalytic activity of Pt nanonclusters supported

on graphene and provide insights into optimal catalyst design.

In particular, the goal of this thesis is to provide a systematic investigation of the

structural, electronic and catalytic properties of Pt nanoclusters in relation to the type

substrate point defect. More specifically, the thesis efforts are focused on (i) identi-

fication of the hierarchy of the energetics of binding of Ptn, (n=1, 2, 3, 4, 13) clus-

ters to pristine graphene, vacancies, unreconstructed divacancies, pentagon-octagon-

pentagon (5-8-5) reconstructed divacancies, and haeckelite (555-777) reconstructed

divacancies; (ii) identification of low-energy isomers of graphene-supported Pt clus-

ters, the possible correlation between the structure of a Ptn cluster with the type

of binding defect and the effect of these substrate-induced structural modifications

on the electronic structure of the clusters; (iii) analysis of the effect of the cluster–

substrate interaction on the catalytic activity of graphene-supported Pt nanoclusters

for electrochemical reactions; (iv) analysis of the effect of the clusters’ CO-coverage

on the stability of graphene–supported Pt nanoclusters; and (v) investigation of the
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detailed kinetic mechanisms for CO oxidation on graphene–supported CO–saturated

Pt nanoclusters.

The outcomes of this thesis provide important insights into the observed phenom-

ena in the body of experiments that have been reported in the literature and generate

a series of experimentally testable hypotheses, which can guide future experiments

in the field. The findings reported in this thesis are expected to be of fundamental

importance toward the design of efficient graphene–supported Pt nanocatalysts with

desired and tailored properties.

1.5 Dissertation Outline

The rest of this thesis is directed towards accomplishing the aforementioned re-

search objectives. Accordingly, the remaining of this dissertation is organized as

follows.

In Chapter 2, a systematic computational study of the adsorption energetics,

structural features, and electronic structure of platinum nanoclusters supported on

defective and defect-free graphene is presented. The study is based on a combi-

nation of classical empirical-potential based molecular dynamics and first principles

DFT calculations and aims to identify low-energy isomers of graphene–supported Pt

nanoclusters and analyze the effect of the nanoparticle–substrate interaction on the

electronic properties of the system. The results reported in this chapter have appeared

in the following publication:

• I. Fampiou, A. Ramasubramaniam, Binding of Pt nanoclusters to defects in

graphene: adsorption, morphology, and electronic structure, J. Phys. Chem. C

2012, 116, 6543–6555

In Chapter 3, a detailed study of the energetics of CO adsorption on low-energy

graphene–supported Pt13 nanoclusters is presented and the effect of the cluster–

substrate interaction on the CO tolerance of the system is addressed, via first-principles
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DFT calculations. Since CO poisoning is a key issue in catalysis, the results of this

study are particularly important, indicating the propensity of defective graphene sub-

strates to reduce the binding energy of CO molecules on Pt13 clusters. The findings

of this chapter have appeared in the following publication:

• I. Fampiou, A. Ramasubramaniam, CO adsorption on defective graphene - sup-

ported Pt13 nanoclusters, J. Phys. Chem. C 2013, 117, 19927-19933

In Chapter 4, we systematically investigate, using DFT calculations, the role

of support effects on the kinetics of CO oxidation reaction on fully CO–saturated

graphene–supported Pt13 nanoclusters. CO oxidation is a reaction of practical rele-

vance, as CO poisoning of the catalyst remains a serious problem in the operation

of fuel cells, significantly compromising anode performance even in trace amounts.

The relevant kinetic mechanisms are explored at various surface sites on unsup-

ported Pt13 nanoclusters as well as clusters bound at support point defects (vacan-

cies/divacancies). Our results clearly establish the role of the defective graphene

supports in stabilizing the Pt13 nanoclusters at high CO–coverages, and in substan-

tially reducing the barrier for CO oxidation reaction on supported clusters compared

to unsupported ones.

Chapter 5 summarizes the most important results and concludes this thesis. This

chapter also provides suggestions for future research directions in the field of optimal

design of novel graphene–supported nanocatalysts.

In addition to the main topic of this thesis, presented in Chapters 1–5, this thesis

also resolves certain outstanding issues relevant to the mechanical and electronic

properties of other two-dimensional materials, as discussed in Appendices I-III. The

findings of these studies have appeared in the following publications:

• J. Deng, I. Fampiou, J. Z. Liu, A. Ramasubramaniam, N. V. Medhekar, Edge

stresses of non-stoichiometric edges in two-dimensional crystals, Appl. Phys.

Lett. 2012, 100, 251906
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• C. Carpenter, A. M. Christmann, L. Hu, I. Fampiou, A. R. Muniz, A. Rama-

subramaniam, D. Maroudas, Elastic properties of graphene nanomeshes, Appl.
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CHAPTER 2

BINDING OF PT NANOCLUSTERS TO POINT
DEFECTS IN GRAPHENE: ADSORPTION,

MORPHOLOGY, AND ELECTRONIC STRUCTURE

2.1 Introduction

As discussed in Chapter 1, carbonaceous materials such as activated carbon and

carbon black [12] and nanostructured forms of carbon such as nanotubes (CNT)

[135] and graphite nanofibers,[166] are widely used as catalyst supports due to their

high surface area, excellent electrical conductivity, resistance to corrosion, and struc-

tural stability. Carbon nanotubes, for example, exhibit greater stability and are

better at suppressing catalyst aggregation than traditional carbon black supports.[82]

More recently, a spate of advances in synthesizing graphene-based nanomaterials have

opened up exciting avenues for the development of graphene-supported metal cata-

lysts. [77, 84, 101, 148, 192] Preliminary experiments already indicate much promise

for platinum-graphene nanocomposites as electrocatalysts in direct methanol fuel

cells, [101, 192] proton-exchange membrane fuel cells (for oxygen reduction), [84] and

hydrogen fuel cells. [148] When compared with standard Pt-carbon black catalysts,

Pt-graphene composites display enhanced catalytic activity and tolerance to CO poi-

soning [101, 192] and, additionally, long-term stability toward sintering [84, 101, 192]

with typical stable cluster sizes remaining below 5 nm. Moreover, these experiments

have also demonstrated facile solution-processing methods for preparation of these

catalyst materials. Thus, the overall outlook for Pt-graphene catalysts in transporta-

tion and portable electronics applications appears promising.
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Pristine graphene is an sp2-bonded carbon allotrope and is relatively inert. Metal

clusters are typically weakly adsorbed on graphene and can diffuse fairly easily along

the surface[49, 122] leading to eventual catalyst sintering. Therefore, in spite of its

desirable properties such as excellent electrical conductivity and structural stability,

pristine graphene is an unlikely candidate for a suitable support unless appropriate

strategies can be devised to stabilize and immobilize clusters. Defect-engineering

of graphene is one such possibility with promise; intuition suggests that undercoor-

dinated C atoms should act as traps for metal atoms. Indeed, experiments clearly

reveal that electron damage-induced point defects in graphene are very effective traps

for diffusing atoms and clusters. [144] This was also noted in older work on highly-

oriented pyrolitic graphite (HOPG) surfaces by Zoval et al. [199] who demonstrated

that Pt nanoparticles nucleate preferentially at point defects and step edges on the

graphite basal plane. Such defect-mediated anchoring of Pt nanoparticles is also ex-

pected to prevail in experimentally synthesized Pt-graphene composites, which are

typically produced via solution processing of graphene oxide. Graphene oxide is

known to contain lattice defects (vacancies, holes) and functional groups (carbonyls,

epoxides, hydroxyls, etc.),[14, 96, 131] which can act as strong anchoring sites for Pt

nanoparticles;[83, 84, 176] Other strategies such as boron [1, 80] or nitrogen doping

[80] have also been proposed for enhancing the binding of Pt clusters to graphene.

From a computational perspective, the interaction of Pt clusters with graphene

and carbon nanotubes has been extensively researched. [2, 19, 22, 30, 32, 33, 81, 83,

105, 117, 128, 129, 145, 176, 179]. Briefly, the following features of Pt-graphene

interactions can be gleaned from these studies. First, Pt does not wet pristine

graphene due to relatively high cohesive energy for Pt as compared to the Pt-C bond

energy.[19, 117, 129] Consequently, Pt clusters on graphene are essentially three-

dimensional structures for cluster sizes in excess of about ten atoms. Second, Pt

clusters bind more strongly to defects (vacancies,[179] disclinations,[128] dopants,[2]
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edges,[81, 176] 5-8-5 reconstructed divacancies[83]) in graphene due to the formation

of strong Pt-C bonds at the defect, which partially alleviates the disruption of the

graphene sp2 network. The electronic structure of the cluster is modified both due to

bond formation as well as due to strains induced in the cluster. Third, there is a clear

indication of charge transfer from the Pt cluster to the graphene support accompa-

nied by a shift of the Pt d-band away from the Fermi level, which is greater in the

presence of a support-defect.[30, 105, 128, 179] The binding energy of CO molecules,

for example, is then found to decrease as one goes from an unsupported particle, to

a supported one, to one on a defective support;[128] this provides a plausible expla-

nation for the increased CO tolerance of Pt-graphene nanocomposites. Similarly, the

presence of vacancies in the graphene substrate has been shown to enhance the stabil-

ity of Pt13 nanoparticles on the graphene support while weakening the O2 adsorption

energy on the cluster; this effect can alter the catalytic activity of the nanoparticle

toward oxygen reduction.[105] The presence of a defect at the graphene support was

also found to increase the reactivity of Pt4 clusters and reduce the barrier of catalyzed

CO oxidation. [197]

There are also several studies on the adsorption and electronic properties of clus-

ters of various other metals on graphene. Logsdail and Akola [112] investigated the

adsorption of Au16 nanoclusters on bilayer graphene, with varying numbers of defects

and different cluster orientations, and found that the adsorption energy increases with

the number of the defects, leading to distortion of the initial structure. The cluster

binds to the top layer of graphene creating Au-C bonds of metallic nature. As for

the catalytic activity, those authors found that in the presence of defects, O2 binding

to the Au16 nanocluster was unfavorable in most cases. Lim et al. [104] studied the

structural and electronic properties of graphene-supported Fe13 and Al13 nanopar-

ticles and found strong binding at vacancies, which they attributed to significant

hybridization between the metal cluster with the sp2 dangling bonds of the carbon
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atoms. Recently, Liu et al. [109] investigated the properties of Pd nanoparticles on

defective graphene as oxygen reduction catalysts. They found increased binding en-

ergy of Pd13 nanoclusters at vacancies and hybridization of the dsp states of Pd with

the sp2 dangling bonds of carbon, accompanied by a shift of the d-band center of

the Pd nanoparticles away from the Fermi level. The defective graphene support was

found to reduce the adsorption energies of O, OH and OOH on the Pd13 nanopar-

ticles, which is directly related to electrocatalytic performance in oxygen reduction

reactions.

The purpose of the computational study in this chapter is to provide a systematic

investigation of the structural and electronic properties of Pt clusters in relation to

the type of substrate defect that binds the cluster. Specifically, we are interested here

in the hierarchy of the energetics of binding of Ptn, (n=1, 2, 3, 4, 13) clusters to pris-

tine graphene, vacancies, unreconstructed divacancies, pentagon-octagon-pentagon

(5-8-5) reconstructed divacancies, and haeckelite (555-777) reconstructed divacan-

cies in graphene. The divacancy is of particular interest as it presents the smallest

defect in graphene with non-trivial reconstructions, namely the 5-8-5 and 555-777

reconstructions.[91, 92] Apart from binding energetics of specific cluster geometries,

we are also interested in identifying low-energy isomers of these clusters and the

possible correlation between the structure of a Ptn cluster with the type of binding

defect. These substrate-induced structural modifications are expected to influence

the electronic structure and activity of the cluster. Such low-energy structures have

been identified fairly systematically for small Pt clusters on pristine graphene and at

vacancies;[19, 129] comparisons to existing literature will be presented in Section 2.3.

There are no systematic studies at divacancies and reconstructed divacancies to the

best of our knowledge. At best, there have been investigations of binding of a Pt6

cluster [83] and a Pt27 cluster [176] to a 5-8-5 defect; however, neither study appears

to have undertaken a systematic optimization of the cluster shape beyond structural
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relaxations starting from a specific initial guess. Indeed, this appears to be the preva-

lent situation even in other studies of binding of Pt13 clusters to pristine graphene as

well as to vacancy defects wherein the clusters have typically been assumed to be of

icosahedral (Ih) symmetry prior to relaxation.[30, 32, 128] Okazaki-Maeda et al. [129]

have used a few other initial guesses such as icosahedral, cuboctahedral (Oh), planar,

and layered Pt13 clusters in their study on binding to pristine graphene; while the

bias from initial conditions is still to be expected, their study nevertheless provides

more insight into the classes of low-energy structures that might be expected. Also,

while structural relaxation can certainly induce significant distortions in the cluster

shape, typical relaxation algorithms (steepest descent, conjugate gradient, etc.) are

only guaranteed to find local minima in the vicinity of the initial guess rather than a

global minimum. Furthermore, while there is still some debate about the minimum

energy structures even for unsupported clusters, density functional theory studies

[25, 89, 113, 180] clearly indicate that Pt13 clusters tend to adopt low-symmetry,

open structures rather than high-symmetry compact ones; the latter (Ih, Oh symme-

try) can be about 2 eV higher in energy than their low-symmetry counterparts. Hence,

we suggest that studies of high-symmetry supported clusters—even after structural

relaxation—might not convey meaningful information about the electronic structure

and activity of realistic Pt clusters. To address this issue in more detail, we study

both relaxed high-symmetry supported clusters (on a variety of substrate defects) as

well as low-symmetry ones generated by molecular dynamics (MD) annealing, and

demonstrate that the annealed structures are significantly more stable over the re-

laxed high-symmetry ones. Finally, we also present a detailed electronic structure

analysis of the Pt13 clusters bound at various defects and correlate cluster–substrate

charge transfer as well as cluster d-band shifts with the strength of binding to the

defect.
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The computational methodology employed in this study is described in Section

2.2. Results and discussion on cluster binding energetics, structural analyses, and

electronic structure are presented in Section 2.3. The main conclusions are summa-

rized in Section 2.4.

2.2 Computational Details

We employ a combination of density functional theory (DFT) and empirical po-

tential (EP) simulations at the level of Tersoff-Brenner potentials. EP simulations

allow for extended molecular dynamics (MD) annealing runs and sampling to gener-

ate candidate low-symmetry structures for further DFT studies as described in detail

below. We present the details of the DFT calculations first, followed by the EP

calculations.

DFT calculations are performed in the Vienna Ab Initio simulation package (VASP).

[86]. The projector-augmented wave (PAW) method [18, 88] is used to describe the

core and valence electrons; the PAW potentials are derived from fully relativistic

atomic calculations. The Perdew-Burke-Ernzerhof [132] form of the Generalized-

Gradient Approximation is employed to describe electron exchange and correlation.

All calculations are performed on a 6 × 6 graphene supercell (72 atoms) with peri-

odic boundary conditions; periodic images are separated by 18 Å of vacuum normal

to the sheets to prevent spurious image interactions. A kinetic energy cutoff of 400

eV is used in all simulations and the Brillouin zone is sampled using a 5 x 5 x 1

Γ-centered k-point mesh. Structural relaxations are performed using a conjugate gra-

dient algorithm until forces on all atoms are below 0.01 eV/Å. To accelerate electronic

convergence, a second-order Methfessel-Paxton[121] smearing of the Fermi surface is

employed with a smearing width of 0.05 eV. All calculations are spin-polarized. For

Pt clusters in vacuum, calculations are performed in a large supercell with Γ-point

sampling only.
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EP calculations are performed in the LAMMPS simulation package [136] with a

Tersoff-Brenner style potential for Pt-C developed by Albe et al.[5] The EP calcula-

tions are performed for the same 72-atom graphene sheet that was used in the entire

set of the DFT calculations; the only difference of note is that the graphene super-

cell employed here is constructed at the equilibrium C-C bond length of 1.45 Å for

the Tersoff-Brenner potential as opposed to the DFT value of 1.42 Å. Structural

relaxations, analogous to the DFT studies, are performed with conjugate gradient

minimization and a tolerance of 10−4 eV/Å on the N -dimensional force vector. In

addition to structural relaxation, supported 13-atom Pt clusters on the various de-

fective graphene substrates are also subjected to MD annealing in a canonical (NVT)

ensemble. For these annealing studies, the system is initially thermalized at 1500 K

for 50 ps and gradually cooled to 1 K over another 50 ps. Structural data are then

gathered over 2.5 ps at 1 K.The MD time-step is set to 1 fs. The system is then re-

heated to 1500 K and the annealing process repeated. This entire heat–anneal–gather

procedure is repeated eight times to allow the system to sample the energy landscape

more extensively and to gather reasonable statistics. The lowest energy structures

are then imported into VASP for further structural relaxation and electronic struc-

ture analysis; the lattice vectors and atomic positions must be rescaled in this step

to account for the slight mismatch of the EP (1.45 Å) and DFT (1.42 Å) C-C bond

length. This procedure allows us to generate low-symmetry, low-energy structures at

minimal computational cost, which can then be studied in greater detail with DFT.

Of course, it is entirely possible that the EP potential energy surface is quite different

from the DFT one, which implies that an optimal EP structure might not be close

to optimal in DFT. Also, there is no guarantee that annealing brings us close to a

global minimum. Nevertheless, as we will see later in this chapter, this procedure

is sufficient to identify structures that are favored by several eV over those obtained

from structural relaxation of high-symmetry shapes alone.
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Figure 2.1: DFT-optimized cluster geometries in vacuum for linear and triangular Pt3
clusters; planar and tetrahedral Pt4 clusters; and icosahedral (Ih) and cuboctahedral
(Oh) Pt13 clusters.

As far as Pt clusters are concerned, for high-symmetry structures we consider

the Pt monomer; dimer; linear and triangular Pt trimers; planar and tetrahedral Pt

tetramers; and Ih and Oh Pt13 clusters. The DFT-optimized vacuum structures for

Pt3, Pt4, and Pt13 clusters are displayed in Figure 2.1. For substrates, we consider

pristine (defect-free) graphene as well as defective graphene with a single vacancy,

an unreconstructed divacancy, a 5-8-5 reconstructed divacancy, and a 555-777 recon-

structed divacancy, which are displayed in Figure 2.2.

For both DFT and EP calculations we report the adsorption energy (Ead ) and the

formation energy (Ef ) of the clusters. The adsorption energy Ead of the Ptn cluster

is defined as

Ead = ECm+Ptn − ECm − EPtn , (2.1)
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Figure 2.2: Defect-free and defective graphene substrates employed in this study.
Pentagons, heptagons, and octagons associated with divacancy reconstructions are
indicated in the figure.

where ECm+Ptn , ECm and EPtn are the total energies of the Ptn–graphene system, the

graphene sheet of m carbon atoms, and the Ptn cluster in vacuum. The formation

energy is defined as

Ef = ECm+Ptn −mEC − nEPt , (2.2)

where ECm+Ptn is the total energy of the Ptn–graphene system, and EC and EPt

are the energies of a C atom in graphene and a Pt atom in vacuum, respectively.

As defined, a more negative value of Ead signifies stronger binding of a cluster to

the support. Similarly, a more negative value of Ef signifies greater thermodynamic

stability of the structure with respect to the reference states of its individual con-

stituents. For adsorption energy calculations, the reference energy of the Ptn, (n=1,

2, 3, 4) cluster is taken to be that of its corresponding high-symmetry structure (Fig-

ure 2.1) in vacuum. Supported Pt13 clusters can often display final relaxed shapes
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that are significantly different from their high-symmetry, vacuum structures (in spite

of this being the initial condition for relaxation). For low-symmetry Pt13 clusters

generated by MD annealing on the graphene support, there is no correlation whatso-

ever with the high-symmetry vacuum structures. Therefore, there is some ambiguity

in defining the reference energy of the Pt13 cluster in the adsorption energy calcu-

lation. We adopt the simple strategy of removing the carbon atoms from the fully

relaxed/annealed Pt-graphene structure and relaxing the residual Pt cluster alone

in vacuum. This cluster energy is then chosen as the reference for computing the

adsorption energy; this definition is not unique and other equally valid choices can

be made. The formation energy clearly does not suffer from any such ambiguities.

2.3 Results and discussion

2.3.1 Adsorption of Pt atoms

First, we examine the adsorption of a single Pt-atom on the five different graphene

substrates. In each case, there are several stable adsorption sites (hollow/top/bridge

sites) that can be rendered inequivalent due to substrate reconstructions. For brevity,

we only report adsorption and formation energies along with C-Pt bond length for

minimum energy structures in Table 2.1; corresponding atomic structures (from DFT)

are displayed in Figure 2.3. On pristine graphene, a single Pt atom is adsorbed most

strongly on the bridge site (B site), which is consistent with several previous stud-

ies [19, 22, 30, 35, 129, 175] and it is located at 1.97 Å above the graphene layer.

This result is in good agreement with the reported values from B loński et al.[19] and

Okazaki-Maeda et al.[129]. At a vacancy, the Pt atom essentially binds as a substi-

tutional that is displaced by 1.12 Å out of the graphene plane due to the greater

length of C-Pt bond as compared to a C-C bond. At an unreconstructed divacancy,

the Pt atom occupies a “cross” configuration and is again slightly displaced out of

the graphene plane by 0.31 Å. These observations are in agreement with DFT cal-
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culations by Krasheninnikov et al.[85] Also, as noted by those authors, our DFT

results also confirm that the Pt atom is bound less strongly to the divacancy due to

weaker interactions with the ligand bonds. This is not reflected in the EP calculation

though, which predicts that the Pt atom binds more strongly to the divacancy rather

than the vacancy. 1 The 5-8-5 and 555-777 defects bind the Pt atom more weakly

than the unreconstructed divacancy but more strongly than pristine graphene. In-

terestingly, both the unreconstructed divacancy and 5-8-5 structures in Figure 2.3

produce identical adsorption configurations after the DFT calculation even though

the initial configurations of the graphene sheet are different (unreconstructed vs. re-

constructed). The Pt atom thus appears to break the 5-8-5 reconstruction. This is

not observed for the 555-777 substrate case, which is known to be a lower energy

(more stable) reconstruction than the 5-8-5 defect [91, 92] and is therefore less prone

to unreconstructing. Finally, an examination of the formation energies shows that

with the exception of the pristine sheet, the defective sheets with adsorbed Pt atoms

are all thermodynamically less stable with respect to their constituents. This is a

reflection of the high defect formation energy in each case, which is not adequately

compensated by formation of bonds with the single Pt atom.

2.3.2 Adsorption of Pt dimers

Next, we consider adsorption of the Pt2 cluster (dimer) on defect-free and defective

graphene substrates. We report adsorption and formation energies only for the lowest

energy structures in Table 2.2 and their corresponding atomic structures (from DFT)

in Figure 2.4. For pristine graphene, we find that the most stable configuration is a

vertically oriented dimer bound at a bridge site. The Pt-Pt (DFT) bond length for the

adsorbed dimer is elongated to 2.38 Å as compared to the gas phase bond length of

1This discrepancy from the EP calculation persists even in tests on much larger graphene sheets
(1500 atoms) suggesting deficiencies in the potential itself; size-effects can be conclusively ruled out.
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Table 2.1: Optimal adsorption energies, formation energies, C-Pt bond lengths
(dC−Pt), and Pt-Pt bond lengths (dPt−Pt) for single Pt atom on pristine graphene, sin-
gle vacancy, unreconstructed divacancy, 5-8-5 reconstructed divacancy, and 555-777
reconstructed divacancy. EP values are in parentheses.

Substrate Ead (eV) Ef (eV) dC−Pt (Å)

pristine -1.57 (-1.99) -1.57 (-1.99) 2.10 (2.06)
vacancy -7.45 (-6.68) 0.54 (-1.37) 1.94 (1.98)

divacancy -6.97 (-8.60) 0.71 (-1.51) 1.98 (2.01)
5-8-5 -6.12 (-6.94) 0.71 (-1.51) 1.99 (2.01)

555-777 -2.38 (-2.27) 4.71 (2.28) 2.06 (2.07)

Figure 2.3: Low-energy DFT configurations for adsorption of a Pt atom on graphene.
Cyan and gold spheres represent C and Pt atoms, respectively.

2.33 Å. These results are in agreement with the study by B loński and Hafner; [19] the

horizontal adsorption configuration (Pt atoms bound at diametrically opposite near-

on-top sites of the hexagon), which is predicted to be the lowest energy structure by
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Okazaki-Maeda et al.,[129] is actually adsorbed less weakly by 0.36 eV as compared

to the vertical dimer.

For adsorption at a vacancy or divacancy, one Pt atom is consistently bound at

an on-top site (slightly displaced) whereas the second Pt atom occupies a position

similar to that occupied by a single Pt atom bound at the defect (substitutional/cross

configuration displaced out of the graphene plane; see Section 2.3.1). The dimer

is bound more strongly to the single vacancy rather than to the unreconstructed

divacancy, as was the case for Pt1. Similarly the 5-8-5 and 555-777 defects bind the

dimer more strongly than pristine graphene but less strongly than either the vacancy

or the divacancy. For the 5-8-5 case, we observe as in the case of the single Pt atom

that the dimer breaks the reconstruction; the Pt atoms are situated at bridge sites of

atoms shared by the pentagon and octagon. Clearly, this is a local minimum en route

to the dimer–divacancy configuration. The empirical potential once again reverses the

relative ordering of adsorption energies at the vacancy and divacancy in comparison

with DFT. For adsorption at the 555-777 defect, the most stable configuration is

similar to the one we found for the pristine graphene case and consists of a vertically

oriented dimer bound at the bridge site between the pentagon and heptagon of the

555-777 defect. It is interesting to note that in the cases that there are no dangling

bonds (pristine and 555-777 substrate) the most stable adsorption configuration is the

upright dimer while for the other three substrates the dimer binds to the substrate in

a manner that passivates the dangling C bonds. Thermodynamically, all structures

with the exception of the 555-777 case are stable with respect to their individual

components.

2.3.3 Adsorption of Pt trimers

The Pt3 cluster (trimer) has two non-equivalent structures, namely the linear

and the triangular configuration as shown in Figure 2.1. We considered adsorption
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Table 2.2: Optimal adsorption energies, formation energies, C-Pt bond lengths
(dC−Pt), and Pt-Pt bond lengths (dPt−Pt) for Pt dimers on pristine graphene, sin-
gle vacancy, unreconstructed divacancy, 5-8-5 reconstructed divacancy, and 555-777
reconstructed divacancy. EP values are in parentheses.

Substrate Ead (eV) Ef (eV) dC−Pt (Å) dPt−Pt (Å)

pristine -0.78 (-1.94) -4.58 (-5.62) 2.25 (2.07) 2.38 (2.39)
vacancy -7.26 (-6.93) -3.07 (-5.30) 1.96, 2.01(1.96, 1.97) 2.53 (2.63)

divacancy -6.40 (-8.66) -2.52 (-5.25) 1.97, 2.04 (1.96, 2.01) 2.56 (2.72)
5-8-5 -4.14 (-7.34) -1.11 (-5.58) 1.92, 2.00 (1.94) 2.51 (2.62)

555-777 -2.43 (-2.21) 0.86 (-1.35) 2.07 (2.07) 2.33 (2.39)

of these two structures both parallel and perpendicular to the graphene substrates.

Adsorption and formation energies for the most stable structures as well as average Pt-

C and Pt-Pt bond lengths are reported in Table 2.3 and their corresponding atomic

structures (from DFT) displayed in Figure 2.5. In none of the cases is the linear

trimer chain energetically preferred. For pristine graphene, we find that the triangular

configuration with two Pt atoms bound to the substrate is the most stable one in

agreement with other studies. [19, 129] The basal Pt atoms are bound to the substrate

at positions intermediate between on-top and bridge sites in agreement with B loński

and Hafner; [19] and in disagreement with Okazaki-Maeda et al.,[129] which seems to

favor bridge sites. At a vacancy, one atom at the vertex of the triangle is bound at the

site of the missing C atom with an out-of-plane displacement as before; the second Pt

atom occupies a bridge site; the third Pt atom is directly bonded only to the Pt atoms.

At a divacancy, two Pt atoms of the cluster passivate the dangling C bonds; the third

Pt atom is bound only to the other Pt atoms. The 5-8-5 defect reconstruction is

broken by the Pt trimer. The cluster is now an inverted triangle with one atom

bound at a cross configuration while the other two Pt atoms occupy on-top sites.

This configuration is higher in energy than the trimer–divacancy configuration and

represents a local minimum en route to the latter structure. At the 555-777 defect,
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Figure 2.4: Low-energy DFT configurations for Pt dimers on graphene. Cyan and
gold spheres represent C and Pt atoms, respectively.

the cluster is bound most strongly to the central C atom at only one vertex with a

Pt-C bond length equal to 2.04 Å and adopts a tilted configuration with respect to

the basal plane. As before, the empirical potential reverses the energetic ordering of

binding at the vacancy and divacancy.1 Finally, all structures are thermodynamically

stable with respect to their individual components.
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Table 2.3: Optimal adsorption energies, formation energies, average C-Pt bond
lengths (〈d〉C−Pt), and average Pt-Pt bond lengths (〈d〉Pt−Pt) for Pt trimers on pristine
graphene, single vacancy, unreconstructed divacancy, 5-8-5 reconstructed divacancy,
and 555-777 reconstructed divacancy. EP values are in parentheses.

Substrate Ead (eV) Ef (eV) 〈d〉C−Pt (Å) 〈d〉Pt−Pt (Å)

pristine -1.35 (-2.54) -8.64 (-10.06) 2.22 (2.06) 2.49 (2.61)
vacancy -7.61 (-6.52) -6.91 (-8.73) 1.96 (2.02) 2.54 (2.59)

divacancy -6.33 (-7.95) -5.94 (-8.38) 1.96 ( 2.01) 2.48 (2.64)
5-8-5 -5.54 (-7.50 ) -6.00 (-9.59) 2.05 (1.99) 2.57 (2.73)

555-777 -5.15 (-2.05) -5.34 (-5.02) 2.04 (2.07) 2.50 (2.50)

Figure 2.5: Low-energy DFT configurations for Pt trimers on graphene. Cyan and
gold spheres represent C and Pt atoms, respectively.
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2.3.4 Adsorption of Pt tetramers

For the Pt tetramer (Pt4), we examined the planar and tetrahedral pyramidal

structures as shown in Figure 2.1. Adsorption and formation energies and the aver-

age C-Pt and Pt-Pt bond lengths for the most stable structures are reported in Table

2.4 and their corresponding atomic structures (from DFT) displayed in Figure 2.6.

Although the planar structure is energetically preferred in the gas phase (in agreement

with B loński and Hafner [19]) by 13 meV/atom, the tetrahedral geometry is found to

be most strongly adsorbed on pristine graphene (in agreement with Okazaki-Maeda

et al.,[129]). The same situation prevails at a vacancy, where the cluster binds as

an inverted tetrahedron with one vertex occupying the same position as the missing

C atom, albeit with an out-of-plane displacement as in the previous cases. When

adsorbed at the divacancy as well as the 5-8-5 reconstruction, the cluster is more like

a buckled rhombus with one vertex occupying a cross configuration and two other

atoms occupying on-top sites. Note that the divacancy and 5-8-5 structures in Figure

2.6 are simply rotated by approximately 90◦ with respect to each other. The 5-8-5

reconstruction is once again broken by the cluster although this time the system does

not seem to fall into a local minimum en route to the tetramer–divacancy configura-

tion. At the 555-777 defect, the cluster resembles a buckled rhombus although the

buckling is less severe than the divacancy and 5-8-5 cases. The tetramer is bound

at only one vertex to the centermost C atom of the 555-777 reconstruction. Once

again, the empirical potential reverses the energetic ordering of binding at the va-

cancy and divacancy. All structures are thermodynamically stable with respect to

their individual components.

The Pt tetramer is particularly interesting as it presents the smallest cluster size

for which there is a non-trivial interplay between cluster morphology and substrate

structure. In contrast, the monomer and dimer are relatively trivial cases; the trimer

always prefers triangular morphologies over linear ones. The Pt4 cluster is remarkable
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in that the adsorbed morphologies are clearly derived from two distinct gas-phase iso-

mers, namely, a planar rhombus and a tetrahedron, the preferred morphology being

a function of substrate binding site. These site-dependent morphological preferences

could play an important role in determining the catalytic activity of such small clus-

ters.

Table 2.4: Optimal adsorption energies, formation energies, average C-Pt bond
lengths (〈d〉C−Pt), and average Pt-Pt bond lengths (〈d〉Pt−Pt) for Pt tetramers on
pristine graphene, single vacancy, unreconstructed divacancy, 5-8-5 reconstructed di-
vacancy, and 555-777 reconstructed divacancy. EP values are in parentheses.

Substrate Ead (eV) Ef (eV) 〈d〉C−Pt (Å) 〈d〉Pt−Pt (Å)

pristine -1.13 (-1.63) -12.07 (-13.12) 2.14 (2.07) 2.60 (2.62)
vacancy -7.27 (-5.51) -10.22 (-11.69 ) 1.97 (1.99) 2.61(2.59)

divacancy -7.06 ( -9.26) -10.37 (-13.80) 2.03 (1.99) 2.53 (2.58)
5-8-5 -6.01 (-7.4) -10.17 (-13.59) 2.01( 2.04) 2.49 (2.52)

555-777 -5.33 (-3.35) -9.23 (-10.43) 2.04 (2.10) 2.47 (2.50)

2.3.5 Adsorption of Pt13 clusters

Finally, we consider the case of a Pt13 cluster, which represents the smallest magic

cluster according to the geometric shell model.[15, 157] Among its high-symmetry

shapes are the icosahedron (Ih) and the cuboctahedron (Oh). These compact shapes

are not global minima though, as has been shown by several authors; [25, 89, 113, 180]

instead, there exist several low-symmetry, open structures that are more energetically

preferred. The task of systematically finding low energy isomers is already a com-

putationally tedious one for unsupported clusters, let alone supported ones. Rather

than attempting to comprehensively catalog low-energy supported clusters, we will

simply examine a few structures obtained here from MD annealing and contrast these

with local minima obtained for adsorption of high-symmetry structures.

First, Ih and Oh clusters were introduced in the vicinity of the graphene sheet

and the total energy minimized using a conjugate gradient algorithm so as to find a
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Figure 2.6: Low-energy DFT configurations for Pt tetramers on graphene. Cyan and
gold spheres represent C and Pt atoms, respectively.

local minimum. Planar clusters were already shown by Okazaki-Maeda et al. [129]

to be energetically unfavorable and are not considered here. (Test calculations were

essentially in agreement with that work.) The clusters were introduced at different

orientations with respect to the sheet (e.g., with a triangular or square face parallel to

the sheet, a vertex closest to the sheet, etc.). The lowest energy structures that were

obtained from energy minimization with DFT are displayed in Figure 2.7; adsorption

and formation energies are reported in Table 2.5. As seen from these data, the Pt

clusters bind most strongly to the unreconstructed divacancy followed by the 5-8-

5 defect. The latter once again unreconstructs upon cluster adsorption. We note

that for these two cases, the initial structure of the cluster was icosahedral, but
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the relaxed structure bears little resemblance to an icosahedron (see Figure 2.7),

unlike the relaxed structures on other substrates where there is some resemblance to

the starting structure (Ih or Oh as appropriate). Thus, even structural relaxation

to a local minimum in the presence of certain substrate defects can induce severe

morphological changes in the cluster. We also note that the DFT and EP data

are now in qualitative agreement with respect to the relative ordering of adsorption

energies. This gives us some confidence in using EP calculations as a preliminary step

to generate low-energy candidates for additional investigation with DFT.

Table 2.5: Optimal adsorption energies, formation energies and average Pt-Pt bond
lengths (〈d〉Pt−Pt) for Pt13 clusters on pristine graphene, single vacancy, unrecon-
structed divacancy, 5-8-5 reconstructed divacancy, and 555-777 reconstructed diva-
cancy. Results are reported both for structural relaxation of high-symmetry clusters
as well as annealed and relaxed clusters. EP results are in parentheses; for Anneal-
ing+Relaxation, the EP energies and bond lengths are averaged over eight different
low energy structures.

Relaxation alone Annealing + Relaxation

Substrate Ead (eV) Ef (eV) 〈d〉Pt−Pt (Å) Ead (eV) Ef (eV) 〈d〉Pt−Pt (Å)

pristine 0.25 (-3.11) -49.18 (-54.67) 2.59 (2.61) -0.84 (-3.72) -49.96 (-55.20) 2.57 (2.53)
vacancy -4.67 (-5.86) -44.64 (-52.48) 2.58 (2.56) -7.29 (-7.84) -48.32 (-55.14) 2.56 (2.56)

divacancy -6.59 (-9.58) -48.50 (-54.89) 2.59 (2.58) -7.28 (-10.20) -49.07 (-55.67) 2.57 (2.59)
5-8-5 -6.28 (-7.33) -49.03 (-54.30) 2.55 (2.56) -6.56 (-8.09) -49.31 (-55.36) 2.55 (2.54)

555-777 -2.07 (-4.66) -44.40 (-50.93) 2.58 (2.59) -2.79 (-5.85) -45.20 (-53.15) 2.55 (2.55)

Thereafter, we took the relaxed clusters and subjected them to a MD annealing

schedule as described in Section 2.2. Some of the morphologies of the clusters obtained

from this procedure are displayed in Figure 2.8; the adsorption and formation energies

after annealing and relaxation are displayed in Table 2.5. There are other near-

degenerate structures that are not displayed here but are accounted for in constructing

the plot of the adsorption energy versus the average Pt-Pt bond length in Figure

2.9 (discussed further below). It is immediately apparent that the clusters bear no

resemblance to their high-symmetry Ih or Oh counterparts. Instead, these are low-
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Figure 2.7: Low-energy configurations obtained by DFT structural relaxation of Pt13
clusters on graphene. Cyan and gold spheres represent C and Pt atoms, respectively.

symmetry, open shapes that are more strongly adsorbed (by several eV in some

cases) and are thermodynamically more stable than the structures obtained from

relaxation alone. The vacancy and the unreconstructed divacancy are seen to be

the strongest binding defects, differing by only 0.01 eV in their binding energies.

Interestingly, for both the vacancy and divacancy, the cluster has one vertex atom

in a near-substitutional or cross configuration, respectively. The rest of the cluster

is supported on this basal atom leaving a large number of under-coordinated Pt
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Figure 2.8: Selected low-energy configurations obtained by DFT structural relaxation
of EP-based MD annealing of Pt13 clusters on graphene. Cyan and gold spheres
represent C and Pt atoms, respectively.

atoms. For the other cases, in contrast, there are more Pt-C bonds, consequently,

with fewer undercoordinated Pt atoms. The number of undercoordinated surface

atoms is directly related to the number of active surface sites for catalytic reactions.

Thus, these results establish one possible effect at the morphological level of the
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Figure 2.9: (a) Adsorption energy (Ead) versus average bond length (〈d〉Pt−Pt) from
DFT relaxation of the lowest-energy Pt13 clusters on graphene supports obtained
after EP-based MD annealing. Vertical dotted lines indicate the average bond lengths
for bulk Pt and for unsupported clusters (annealed clusters removed from graphene
substrate and relaxed). (b) Ead versus 〈d〉Pt−Pt obtained after averaging over eight
different low energy structures obtained with the EP-based MD annealing schedule.
(Error bars are much too small to be visible on this scale and are omitted.) The
corresponding data are in Table 2.5.

substrate defect on potential catalytic activity of the cluster, namely, controlling the

extent of undercoordination of Pt atoms.

To quantify the morphological changes in the low-symmetry clusters, we display

in Figure 2.9 the adsorption energy versus the average Pt-Pt bond length of the Pt13

clusters adsorbed on the five different graphene substrates. The average bond lengths

for bulk Pt and the unsupported clusters are also indicated in the figure; the smaller

average bond length in the latter case is to be expected due to the significant degree

of undercoordination of Pt atoms in these small clusters as compared to bulk Pt.

The DFT data [Figure 2.9 (a)] are from relaxation of the lowest energy structures

obtained from the initial EP-based MD annealing step; the EP data [Figure 2.9 (b)]

are obtained by averaging2 over eight different low-energy configurations sampled

2The energies ECm+Ptn and EPtn should be replaced by their averages in Eqs. 1 and 2.
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over the course of the annealing schedule. We see from Figure 2.9 that the supported

clusters all have slightly larger average bond lengths than the unsupported ones.

We attribute this to the formation of Pt-C bonds, which decreases the degree of

undercoordination of at least a few Pt atoms. We do not have sufficient statistics from

DFT calculations to make a conclusive connection between the average Pt-Pt bond

length and the binding energy as a function of substrate defect although it would seem

from the data that larger binding energies (more negative Ef ) correlate with larger

average Pt-Pt bond lengths. The EP data, which are obtained by averaging over a few

different low-energy configurations, do seem to offer a more conclusive corroboration

of this trend. In related work on adsorption of Pt100 clusters on edges of carbon

platelets, Sanz-Navarro et al.[145] have shown that the Pt clusters tend to lose their

initial partial fcc-like structure upon adsorption; this is accompanied by an increase

in the average bond length of the adsorbed cluster by 1.4% over that of a free cluster.

Previous DFT calculations of CO oxidation on Pt(111) surfaces have demonstrated

the profound influence of lattice strain on reaction enthalpies and kinetics, with the

potential to even change the rate-limiting step in the reaction network.[54] We expect

that such effects could also be operative here, with the substrate defect (rather than

a macroscopic externally applied strain field) influencing the extent of strain in the

cluster bonds.

2.3.6 Electronic Structure of adsorbed Pt13 clusters

In this section, we turn our attention to the electronic structure of the previously

described graphene-supported Pt clusters. The electronic structure of smaller Ptn

(n=1,2,3,4) clusters has been studied in detail previously [30, 33, 85, 172, 179] and

is not revisited here. The electronic structure of Pt13 clusters, on the other hand,

has only been considered in situations where the clusters have been relaxed from

high-symmetry initial structures [32, 80, 105]; a detailed comparison with annealed
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clusters is therefore warranted. In the following, we present a detailed electronic

structure analysis based on the projected density of states (PDOS), d-band shifts,

and charge transfer for adsorbed clusters subjected to relaxation alone as well as a

combination of annealing and relaxation.

First, we consider the case of graphene-supported Pt13 clusters, which were ob-

tained by relaxation from initial high-symmetry shapes (Figure 2.7). The total density

of states (DOS) was projected on to the p orbitals of C atoms and d orbitals of Pt

atoms at the support–cluster interface that are involved in bond formation. The

summed p and d DOS for these C and Pt atoms are displayed in Figures 2.10(b) and

(c), respectively. To facilitate an understanding of how the p and d states are modi-

fied upon cluster adsorption, the p and d DOS from the same atoms in the unbound

state of graphene-cluster are displayed in Figures 2.10(a) and (d), respectively. By

comparing Figures 2.10(c) and (d) for the various cases, it is immediately apparent

that the Pt d-band undergoes significant broadening upon cluster adsorption; the oc-

cupied d states, which were confined to an energy range of 4 eV below the Fermi level

are now clearly visible up to about 7 eV below the Fermi level. At the same time, the

sharp peaks in the vicinity of the Fermi level in Figure 2.10(a), arising from dangling

C bonds at various point defects, disappear upon adsorption of the Pt cluster as seen

in Figure 2.10(b) accompanied by an overall broadening of the p DOS; for the pristine

support, where there are no dangling bonds to begin with, there is merely an overall

broadening of occupied C p-states upon cluster adsorption. These observations are

a clear sign of bond formation between the Pt cluster and the support. This is fur-

ther supported by the charge density difference plots in Figure 2.10(e), which show

significant redistribution of charge in the vicinity of the support-cluster interface.

A more quantitative analysis of the charge transfer to the support as well as the

shifts in the cluster d-band is also possible. To quantify the total charge transfer,

a Bader analysis [13, 70] was performed on the final structure (cluster + support).
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Figure 2.10: Projected density of states (PDOS) plots for clusters subjected to re-
laxation alone: (a) free graphene, (b) graphene after Pt13 adsorption, (c) adsorbed
Pt13 cluster, (d) free Pt13 cluster. (e) Charge-density difference plot. Isosurfaces are
at 0.027 e/Å3); yellow (blue) color represents charge accumulation (depletion). The
charge lost by Pt atoms bound to the substrate is indicated.
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This procedure partitions the total charge density between atoms; by summing up

the final charge density on the Pt13 cluster and the support atoms and comparing

with the initial number of electrons in the cluster and support, we consistently find

an appreciable net charge transfer from the Pt13 cluster to the graphene support

(defective or otherwise). As seen from these charge-transfer data displayed in Table

2.6 as well as Figure 2.12(c), the stronger the binding of the cluster to the support

the greater the charge transferred to the support. The shifts in the Pt d-band upon

adsorption are quantified by determining the position of the d-band center in the

adsorbed cluster. The filled d states of all Pt atoms in the cluster were used in

this procedure. As seen from the data in Table 2.6 and Figure 2.12(a), the d-band

centers undergo an appreciable downward shift, relative to their average position

in the unsupported clusters, upon binding to the support. Once again, there is a

positive correlation between the strength of binding and the downward shift of the

d-band center. For the clusters with strongest binding (at a divacancy and 5-8-5

defect), the d-band center is shifted even further below that of the Pt(111) surface.

Table 2.6: d-band centers (εd) of adsorbed Pt13 clusters (relative to Fermi level) on
various defective and defect-free graphene supports and charge transfer (∆q) from
the Pt13 cluster to the support (electron charge taken to be negative).

εd (eV) ∆q (e)
Relaxation alone Annealing+Relaxation Relaxation alone Annealing+Relaxation

Pristine -2.30 -2.34 -0.18 -0.08
Vacancy -2.36 -2.53 -0.35 -0.48

Divacancy -2.54 -2.49 -0.71 -0.81
5-8-5 -2.60 -2.58 -0.79 -0.72

555-777 -2.36 -2.51 -0.29 -0.30

A similar electronic structure analysis was performed for the clusters that were

first subjected to MD annealing followed by DFT structural relaxation (Figure 2.8).

Partial density of states plots as well as charge density difference plots for this case

are displayed in Figure 2.11; the overall features qualitatively follow the discussion
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above. There is a broadening of the Pt d- and C p-bands, disappearance of sharp

localized states near the Fermi level, and significant redistribution of charge at the

cluster–support interface. There is, once again, transfer of electrons from the Pt13

cluster to the support and a downshift of the Pt d-band center upon adsorption. The

extent of charge transfer and downshift of the d-band are positively correlated with

the binding energy of the cluster [Table 2.6; Figures 2.12(b), (d)]. For all the cases

of binding to defective supports, the d-band center is seen to shift below that of a

Pt(111) surface.

The case of binding to the vacancy defect is particularly interesting. We recall

that the Pt13 cluster has an adsorption energy of −4.67 eV when relaxed from a

high-symmetry structure, which is significantly higher (weaker binding) than the ad-

sorption energy of −7.29 eV found after the annealing procedure (Table 2.5): the lat-

ter structure being more strongly adsorbed, the d-band center is noticeably lowered

(by 0.17 eV) relative to the former. Similarly, the annealed and relaxed structure

transfers an additional 0.13 electrons to the support relative to the relaxed high-

symmetry structure. This example underscores the need to search more extensively

for low-symmetry, low-energy isomers of supported clusters when trying to make com-

putational predictions of their catalytic activity. We also note that these observations

of charge transfer from the Pt cluster to the graphene support accompanied by a shift

of the Pt d-band away from the Fermi level in the presence of a vacancy are consistent

with previous reports.[30, 105, 128, 179]

The data for binding to divacancies and divancy reconstructions reported here

essentially complete the picture of binding of small Pt clusters to point defects in

graphene. Overall, from the positions of the d-band centers in Table 2.6 and Fig-

ure 2.12, we conclude that point defects in graphene lower the d-band center of Pt13

clusters below that of a Pt(111) surface (and significantly below that of unsupported

clusters). This lowering of the d-band center is expected to decrease the binding
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energy of CO molecules, among others, which provides a plausible explanation for

experimental observations of increased CO-tolerance [101, 192] exhibited by reduced

graphene oxide-Pt nanocomposites. Actual calculations of CO binding to these sup-

ported clusters are the main focus of Chapter 3.

2.4 Conclusions

In this chapter, we investigated the binding energetics and morphology of low-

energy structures of Pt nanoclusters on defect-free and defective graphene substrates,

using a combination of DFT and bond-order potential simulations. The primary

conclusions of our study are as follows:

1. Point defects and their reconstructions in graphene act as strong binding traps

for Pt clusters. Over the range of cluster sizes studied here, these defects bind

Pt clusters more strongly than pristine graphene by several eV. Unreconstructed

defects tend to be the strongest binding traps, although reconstructed defects

can also serve as fairly strong traps. These observations provide a plausible

explanation for the long-term stability toward sintering observed in Pt–graphene

composites;[84, 101, 192] the graphene support in these composites is derived

from graphene oxide, which is prone to defects.[14, 96, 131] Furthermore, the

existence of defects in the graphene support could also provide an explanation

for the greater stability towards sintering observed in Pt–graphene composites

relative to Pt–carbon nanotube composites.[101] Thus, inducing pre-existing

point defects in graphene supports could provide a facile route for synthesizing

robust carbon-supported Pt nanocatalysts.

2. By employing a combination of empirical potential-based simulated annealing

and DFT calculations, we have unambiguously shown that supported Pt clus-

ters are neither high-symmetry structures nor are they readily derived from
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Figure 2.11: Projected density of states (PDOS) plots for annealed and relaxed clus-
ters: (a) free graphene, (b) graphene after Pt13 adsorption, (c) adsorbed Pt13 cluster,
(d) free Pt13 cluster. (e) Charge-density difference plot. Isosurfaces are at 0.034
e/Å3); yellow (blue) color represents charge accumulation (depletion). The charge
lost by Pt atoms bound to the substrate is indicated.
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Figure 2.12: Position of d-band center (εd,Pt) relative to the Fermi level for supported
Pt13 clusters subjected to (a) relaxation alone, and (b) annealing followed by re-
laxation. Horizontal dotted lines indicate the d-band center of the Pt(111) surface
(εd,Pt(111)) and the average d-band center of the various free Pt13 clusters (〈εd,Pt13〉)
considered here. Charge transfer from (c) relaxed, and (d) annealed and relaxed Pt13
clusters to the substrate. (The electron charge is taken to be negative here.) The
dashed lines in all figures are merely a guide to the eye.

high-symmetry structures, as is often the assumption made in computational

modeling. Instead, small clusters tend to adopt more open, low-symmetry mor-

phologies similar to those observed in previous DFT studies of annealing of

clusters in vacuum.[25, 89, 113, 180] Even though clusters that are nominally

of high-symmetry in their initial state can undergo severe structural distortion

upon relaxation and binding to a defect in the graphene support, their an-

nealed, low-symmetry counterparts are consistently lower in energy, sometimes

by several eV. These observations suggest that future investigations should first

focus on determining at least a few candidate low-energy structures before ad-

dressing issues related to the catalytic activity of clusters. Without this initial

step, the structures being sampled could simply be ones that are stuck in higher

metastable minima, which could in turn corrupt further inferences related to

binding energetics of molecules and energy barriers for reactions on the cluster.
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3. The formation of strong bonds with the carbon substrate potentially influences

the strain in a cluster: within the limited statistics available here, the average

Pt-Pt bond length appears to increase with stronger binding to the substrate.

We expect that this effect is of greater relevance for the small clusters considered

here and this additional strain (or strain relief with respect to the bulk) in the

bonds could affect the activity of the cluster. More comprehensive studies over

several different cluster sizes are needed to make this connection clearer.

4. Electronic structure studies reveal a clear tendency for charge transfer from Pt

clusters to the graphene substrate. Within the limited statistics available here,

it would appear that there is a positive correlation between the strength of

binding to the defect and the extent of charge transferred. Similarly, stronger

binding of the cluster to the substrate appears to lead to a greater downshift of

the cluster d-band center; in several instances, the cluster d-band center shifts

further below that of a Pt(111) surface. This result suggests a decrease in

the binding energy of CO to Pt clusters bound at point defects, which could

offer a plausible explanation for reports [101, 192] of enhanced CO-tolerance

of reduced graphene oxide-supported Pt nanoclusters. While this downshift

in the d-band center might be desirable from the point of inhibiting catalyst

poisoning, it should be noted that decreased binding of other molecular species

might adversely impact the ability of the Pt clusters to catalyze reactions, which

requires further investigation.
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CHAPTER 3

CO ADSORPTION ON DEFECTIVE
GRAPHENE–SUPPORTED PT13 NANOCLUSTERS

3.1 Introduction

Graphene-supported transition-metal nanoparticles have attracted considerable

interest as electrocatalysts in direct methanol fuel cells, proton exchange membrane

fuel cells, and hydrogen fuel cells.[12, 77, 82, 84, 101, 135, 140, 148, 166, 192] For ex-

ample, recent experiments in methanol fuel cells indicate that electrodes composed of

Pt nanoclusters dispersed on chemically-converted graphene exhibit a lower tendency

for sintering, accompanied by high catalytic activity and tolerance to CO poisoning,

rivaling that of state-of-the-art Pt-Ru electrocatalysts.[84, 101, 146, 191, 192] Of these

studies, several have also shown that defects in graphene supports play a key role in

stabilizing the catalyst nanoclusters against sintering by providing strong anchoring

sites.[83, 84, 176] This has been corroborated by computational studies that report

a strong energetic preference for binding of Pt clusters at defect sites in graphene

relative to a pristine graphene sheet [2, 45, 81, 83, 128, 176, 179] First-principles cal-

culations also suggest that support defects can appreciably alter the morphology and

electronic structure of clusters—most notably, causing a downshift of the Pt d-band

center [30, 45, 105, 128, 179]—thereby improving their CO tolerance. The improved

performance of Pt-graphene composite electrodes may then be attributed to several

factors including: (a) stability towards sintering, which maintains high surface area

over extended periods; (b) improved electrical conductivity of graphene supports rel-

ative to standard carbon black counterparts; and (c) fundamental modifications in
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the electronic structure of the supported nanoparticle as a result of strong binding

to support defects. The relative importance of these factors and their potentially

synergistic interaction is still not fully understood and remains a matter of current

interest.

The purpose of this chapter is to systematically explore the interaction between

various graphene point defects and Pt nanoclusters, and to quantify the effect of

these interactions on the energetics of CO binding to the supported cluster. In the

following, we focus on Pt13 nanoclusters and investigate, via first-principles density

functional theory (DFT), the adsorption energetics of CO on free clusters as well as

on clusters supported on pristine and defective graphene supports. The Pt13 clusters

employed in our studies are optimized low-energy clusters with open, low-symmetry

morphologies, that were derived via the annealing and quenching method reported in

our previous study,[45] as described in Chapter 2. These clusters are thermodynam-

ically more stable than the high-symmetry icosahedral or octahedral Pt13 clusters.

To account for the inherent statistical variability in the local environment of adsorp-

tion sites (symmetry-inequivalent on-top, hollow, and bridge sites) encountered by a

CO molecule on a low-symmetry Pt13 cluster, we randomly sample the CO binding

energy at several distinct sites (ranging from 9 to 14 sites) per cluster–defect com-

bination. Our studies show that Pt13 clusters supported on defective graphene bind

CO more weakly than their unsupported counterparts, the strength of CO binding

being inversely correlated with the strength of cluster–support binding. While CO

binding on defect-supported clusters is still stronger than on an ideal Pt(111) surface,

a more realistic comparison with binding at undercoordinated sites, such as vacancies

or step edges on Pt surfaces, results in nearly comparable binding energies. Overall,

our results clearly indicate the propensity of defective graphene substrates to reduce

the binding energy of CO molecules on Pt13 clusters, which could be an important
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mechanism through which graphene-supported Pt nanoclusters exhibit increased CO

tolerance in experiments.

This chapter is structured as follows. In Section 3.2 we present computational

details of our DFT calculations. Results and discussion on CO adsorption energetics

are presented in Section 3.3. Concluding remarks are provided in Section 3.4.

3.2 Computational Details

All calculations were performed with the plane-wave DFT method as implemented

in the Vienna Ab Initio simulation package (VASP). [86, 87] The projector-augmented

wave (PAW) method [18, 88] was used to describe the core and valence electrons. The

Perdew-Burke-Ernzerhof [132] form of the Generalized-Gradient Approximation was

employed to describe electron exchange and correlation. All calculations were per-

formed on a 6 × 6 graphene supercell with periodic boundary conditions; periodic

images were separated by vacuum in excess of 15 Å normal to the sheets to prevent

spurious image interactions. A kinetic energy cutoff of 400 eV was used in all struc-

tural relaxation simulations of CO adsorption and the Brillouin zone was sampled

using a 5 x 5 x 1 Γ-centered k-point mesh. Reference calculations for Pt(111) were

performed on a four-layer, 4× 4 slab with periodic boundary conditions in the plane

of the surface. Atoms in the bottommost layer were fixed at their bulk positions

while the top three layers were relaxed in all calculations. A kinetic energy cutoff of

400 eV was used in these slab calculations with a Γ-centered 7 x 7 x 1 k-point mesh

for Brillouin-zone sampling. In all cases (slab and cluster), structural relaxations

were performed using a conjugate gradient algorithm until forces on all atoms were

below 0.01 eV/Å. To accelerate electronic convergence, a second-order Methfessel-

Paxton[121] smearing of the Fermi surface was employed with a smearing width of

0.05 eV. All calculations were performed with spin-polarization.
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For supported-cluster studies, we employed the lowest-energy structures of graphene

supported Pt13 clusters derived via the annealing and quenching method as described

in Chapter 2.[45] These structures also have lower energy, lower symmetry, and a

more open morphology than the icosahedral or octahedral clusters that have com-

monly been used in DFT studies. To compare and contrast CO binding on supported

versus free clusters, the low energy clusters were also removed from the graphene

supports and employed in studies of CO adsorption (with full structural relaxation).

This procedure allows us to directly address the effect of the support on CO binding.

Throughout this chapter, we employ the adsorption energy (Ead) of CO on graphene-

supported as well as free Pt13 clusters as a metric for the strength of binding between

CO and Pt, which is defined as

Ead =


ECm+Pt13+CO − ECm+Pt13 − ECO, supported clusters

EPt13+CO − EPt13 − ECO, free clusters

(3.1)

where ECm+Pt13+CO, ECm+Pt13 , EPt13+CO, and ECO are the total energies of the

graphene–Pt13–CO system, the graphene–Pt13 system, the CO–Pt13 system and the

CO molecule as obtained from DFT calculations. As defined here, more negative

values of Ead signify stronger binding.

3.3 Results and Discussion

3.3.1 CO adsorption on free and graphene–supported Pt13 clusters

First, we examine the adsorption of a single CO molecule on free and graphene–

supported low energy Pt13 clusters. On a planar surface such as Pt(111), it is rela-

tively straightforward to identify via symmetry arguments a minimal set of binding

sites (on-top, bridge, hollow sites) for CO adsorption studies. While similar on-

top/bridge/hollow binding sites can be identified on a Pt13 cluster such as the one

displayed in Figure 3.1, reduced (or complete lack of) symmetry renders each of these
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sites unique; it is not feasible to sample each and every such site with DFT. To render

this problem tractable while still accounting meaningfully for the inherent statisti-

cal variability in the nature of binding sites, we randomly sample between 9 to 14

different adsorption sites on every cluster. To further account for the influence of sup-

port defects on CO–Pt13 interactions, we sample over clusters supported on pristine

graphene as well as on defective graphene containing a single vacancy, an unrecon-

structed divacancy, and a 555-777 divacancy reconstruction. Figure 3.1 shows some

of the sampled CO adsorption sites for the case of a low-energy Pt13 cluster supported

on graphene with single vacancy. Similar sampling procedures were followed for the

other cases.

Figure 3.1: Sampled CO adsorption sites on a low-energy Pt13 cluster supported at
a single vacancy in graphene. Cyan, gold, and red spheres represent C, Pt, and O
atoms, respectively.

In Table 3.1, we report the average CO adsorption energy on graphene-supported

and free Pt13 clusters, calculated according to Eq. 3.1. Statistical errors are estimated

using a 95% confidence interval of the Student’s t-distribution, which is appropriate

for small-sample statistics. The average C-O bond lengths (dC−O) for the adsorbed
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Table 3.1: Average adsorption energy and bond lengths (dC−O) for CO molecules
adsorbed on low-symmetry Pt13 clusters supported on pristine and defective (single
vacancy, unreconstructed divacancy, 555-777 reconstructed divacancy) graphene, as
well as on free Pt13 clusters. CO adsorption energies on Pt(111) at an on-top (T)
site, a vacancy site (V) and a vacancy line (V-line) are reported for comparison. For
reference, the C-O bond length in an isolated molecule is calculated to be 1.17 Å.

Graphene substrate Ead (eV) dC−O (Å)

pristine -2.54 ± 0.19 1.18 ± 0.01
vacancy -2.33 ± 0.11 1.18 ± 0.01

divacancy -2.02 ± 0.18 1.18 ± 0.01
555-777 -2.24 ± 0.17 1.19 ± 0.01

free clusters -2.79 ± 0.30 1.17 ± 0.01
Pt(111)(T) -1.66 1.16
Pt(111)(V) -2.21 1.18

Pt(111)(V-line) -2.27 1.19

CO molecule are also reported here along with their statistical errors. Among the

different CO adsorption sites studied on the Pt13 clusters, we found on average that

CO tends to bind more strongly to on-top sites of the clusters whereas adsorption

is generally weaker on hollow sites of the clusters. We do not find any obvious

correlation between the binding energy of CO to the cluster relative to the distance

of the binding site from the graphene substrate (i.e., towards the bottom or top of

the cluster). The fully relaxed atomic structures for one selected case each of CO

adsorption on supported clusters and free clusters are displayed in Figure 3.2.

The CO adsorption energy results reported in Table 3.1 indicate that the presence

of a point defect in the graphene substrate weakens the interaction of the CO molecule

with the Pt13 clusters. In particular, for the three different defective graphene sup-

ports (single vacancy, unreconstructed divacancy and 555-777 divacancy reconstruc-

tion), the CO adsorption energy on the Pt13 cluster is lower by 0.21 eV, 0.52 eV, and

0.30 eV, respectively, compared to the average adsorption energy on Pt13 clusters sup-

ported on defect-free pristine graphene; the difference in binding energies relative to

unsupported Pt13 clusters is even larger (0.46 eV, 0.77 eV, and 0.55 eV, respectively).
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Figure 3.2: Side and top view of selected low energy DFT configurations for adsorption
of a CO molecule on graphene-supported Pt13 clusters. Cyan, gold and red spheres
represent C, Pt and O atoms, respectively.

Previous reports,[30, 45, 105, 128, 179] have correlated the presence of a point defect

on the graphene support with stronger binding of the metal cluster. Here, another

key role of the the point defect in the graphene substrates is revealed: CO adsorp-

tion is less favorable on Pt13 clusters supported at defective graphene substrates as

compared to isolated Pt13 clusters. This result is particularly significant because it

suggests that defect engineering of graphene substrates could improve the CO toler-

ance of extremely small Pt clusters. Examining the average C-O bond lengths (dC−O)

for the adsorbed CO molecule (Table 3.1), we notice that the C-O bond (1.17 Å for an

isolated molecule) is slightly elongated by 0.01-0.02 Å for graphene-supported clusters

relative to the unsupported ones.

The obvious question that needs to be addressed is how CO adsorption on Pt13

clusters compares with that on macroscopic Pt surfaces. We studied the adsorp-

tion of a single CO molecule at the experimentally preferred on-top (T) site of the

Pt(111) surface1 and computed an adsorption energy of -1.66 eV (Table 3.1); the CO

1The on-top site of the Pt(111) surface is the favored CO-adsorption site in reality, whereas DFT
prefers adsorption at an FCC hollow site.[4, 34, 61, 62, 73, 127, 134] The DFT binding energy at
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Figure 3.3: Side and top view of DFT configurations for adsorption of a CO molecule
on Pt(111) surface slabs. Cyan, gold and red spheres represent C, Pt and O atoms,
respectively.

molecule is thus more weakly bound to an ideal Pt(111) surface than to any Pt13

cluster (supported or otherwise). A more realistic estimate for a Pt electrode should,

at the very least, account for the presence of surface defects (vacancies/adatoms/step-

edges/kinks) as well as other crystalline orientations. To ascertain, at least approx-

imately, the energetics of binding at undercoordinated sites, we also examined CO

binding to a single vacancy and to a vacancy line (which is a rough approximation of

a step-edge) on Pt(111) and computed adsorption energies of -2.21 eV and -2.27 eV,

respectively. Binding to these surface defects is then energetically comparable to that

on defective graphene-supported Pt13 clusters (Table 3.1). While detailed studies of

CO adsorption on other crystalline facets is beyond the scope of this study, we note

the FCC hollow (1.80 eV) though is quite close to the experimental binding energy at the on-top
site (1.68±0.12 eV [189])
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for comparison some relevant studies from the literature. DFT studies report that CO

binds more strongly to step-edges on Pt(211) surfaces as compared to terrace sites of

both the Pt(211) as well as the flat Pt(111) surface,[31, 79] with adsorption energies

in the range of -1.95 eV to -2.49 eV. Orita and Inada[130] found that CO binds pref-

erentially at a step-edge on the Pt(211) surface with an adsorption energy of -2.41

eV, and at the step-edge of an unreconstructed Pt(311) surface with an adsorption

energy of -2.43 eV. Yamagishi et al. [188] reported that CO binds at a step-edge on a

Pt(410) surface with an adsoprtion energy of -2.49 eV and at a step-edge on a Pt(110)

surface with adsorption energy of -2.36 eV. These studies, in conjunction with the

two cases of a defective Pt(111) surface considered here, indicate that a CO molecule,

on average, is adsorbed at least as strongly to undercoordinated Pt surface sites as

to defective graphene-supported Pt13 clusters. Unsupported Pt13 clusters, however,

bind CO more strongly than in any of the above cases. Thus, our results suggest

that defective graphene supports can indeed play a role in mitigating CO poisoning

of sub-nanometer Pt clusters.

3.3.2 Electronic structure of CO bound on graphene-supported and free

Pt13 clusters

Next, we analyze the electronic structure of the graphene–Pt13 cluster–CO systems

for the four different types of graphene supports as well as the free Pt13 cluster–

CO systems. In the previous chapter, we showed a clear correlation between the

position of the d-band center of the bound cluster and the nature of the support

point defect. Specifically, stronger binding of the cluster to the defect (which is

directly related to the number of dangling bonds at the defect) is accompanied by

increased charge transfer from the cluster to the substrate and a shift of the cluster

d-band center away from the Fermi level. In Figure 3.4, we correlate this d-band

shift—which is effectively a surrogate for the type of binding defect—to the average
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CO adsorption energy. As seen from this figure, the position of the cluster d-band

center is well correlated with the CO adsorption energy: the further away the d-band

center is from the Fermi level, the weaker is the CO adsorption energy.[57, 63–65]

This could provide a credible explanation for experimental observations of increased

CO tolerance [84, 101, 146, 191, 192] exhibited by Pt nanoparticles on chemically-

converted graphene or graphene oxide supports, which are inherently defective unlike

exfoliated graphene.
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Figure 3.4: CO adsorption energy (Ead) as a function of d-band center (εd) relative to
the Fermi energy for supported Pt13 clusters, free Pt13 clusters, and Pt(111) surface. A
downshift of the cluster d-band center with respect to the Fermi level (more negative
εd) is directly correlated with weaker adsorption of CO on the cluster. Error bars
indicate 95% confidence intervals obtained from sampling over multiple adsorption
sites on the cluster.

For all the cases of CO adsorption on graphene-supported and free Pt13 clusters, a

Bader analysis [13, 70] was performed, partitioning the total charge density between

atoms, which then allowed us to quantify the total charge transfer between the cluster,

CO molecule, and graphene support. The average charge transfer, ∆q, between

these constituents is reported in Table 3.2. We consistently find an appreciable net

charge transfer from the Pt13 cluster to both the graphene support as well as the
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CO molecule. There is also significant redistribution of charge within the cluster and

CO molecule, as well as in the immediate vicinity of the cluster within the graphene

sheet, as seen clearly in the charge-density difference plots for select cases (Figure 3.5).

The yellow and blue regions in these plots indicate the areas of charge accumulation

and depletion, respectively. The adsorption of the CO molecule itself induces fairly

localized charge redistribution in the immediate vicinity of the adsorption site as

seen from the case of CO adsorption on the free cluster. The amount of charge

transferred from the Pt cluster to CO (∼ 0.25e−; ∼ 0.12e− to C and ∼ 0.13e− to O)

is also essentially independent of the cluster interaction with graphene. The charge

transferred from the Pt cluster to graphene is, however, quite sensitive to nature of

the support. A cluster adsorbed on pristine graphene transfers some charge to the

support (∼ 0.1e−), but this is relatively small as compared to the charge transfer from

a cluster to a defective substrate (∼ 0.2− 0.8 eV). It is this substantial depletion of

charge from the cluster to the defective support that leads to a downshift of the Fermi

energy,[45] which in turn leads to weaker CO binding to the cluster as was alluded to

in Chapter 2.

Table 3.2: Average charge transfer [∆q (e−)] from the Pt13 cluster to CO and pris-
tine graphene, single vacancy, unreconstructed divacancy and 555-777 reconstructed
divacancy based on Bader analysis. (Positive/negative numbers indicate accumula-
tion/depletion of electrons.)

∆q (e−)
substrate cluster CO

pristine 0.09 ± 0.02 -0.35 ± 0.04 0.25 ± 0.03
vacancy 0.44 ± 0.01 -0.70 ± 0.02 0.26 ± 0.02

divacancy 0.76 ± 0.02 -1.01 ± 0.04 0.25 ± 0.03
555-777 0.26 ± 0.03 -0.52 ± 0.03 0.26 ± 0.03

free clusters – -0.24 ± 0.03 0.24 ± 0.03
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Figure 3.5: Charge-density difference plots for the selected DFT configurations of
Figure 3.2. Isosurfaces are at 0.054 e/Å3; yellow(blue) color represents charge accu-
mulation(depletion).

3.4 Conclusions

In conclusion, DFT calculations were employed to investigate the adsorption of

CO on Pt13 clusters supported on defect-free and defective graphene substrates, as

well as unsupported clusters. Pt13 clusters were found to bind strongly to defects in

graphene and correspondingly bind CO molecules more weakly as compared to clus-

ters supported on pristine graphene. In all cases, graphene-supported Pt13 clusters

were found to bind CO more weakly than unsupported Pt13 clusters. These observa-

tions were explained in terms of the downshift of the d-band center position of the

clusters upon binding to defects: stronger binding leads to greater charge transfer from

the cluster to the substrate accompanied by a greater downshift of the d-band cen-

ter. Consequently, the probe CO molecule binds more weakly to the cluster. While

an ideal Pt(111) surface was found to bind CO more weakly than any of the Pt13

clusters studied here (supported or unsupported), binding to defects to the Pt(111)

and other low-index surfaces is of comparable magnitude to that on supported Pt13

clusters. Overall, our study suggests that defect-engineered graphene can not only

serve as robust support that strongly binds and stabilizes clusters against sintering,

but might also allow for optimizing catalytic properties through tuning of cluster–

substrate interactions. Additional investigations of CO oxidation kinetics to verify
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that such cluster–substrate interactions can also substantially influence the removal

of CO, are the main focus of Chapter 4.
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CHAPTER 4

THE INFLUENCE OF SUPPORT EFFECTS ON CO
OXIDATION KINETICS ON CO–SATURATED

GRAPHENE–SUPPORTED PT13 NANOCLUSTERS

4.1 Introduction

Platinum(Pt) catalysts are widely used as anode materials in fuel cells due to

their high activity and selectivity for a variety of electrochemical reactions. Exper-

imental observations demonstrate that sub-nanometer Pt nanoparticles supported

on graphene exhibit increased stability, uniform dispersion, tolerance to CO poison-

ing and exceptionally high activity for oxidation reactions, making them attractive

candidates as electrocatalysts in direct methanol fuel cells, proton exchange mem-

brane fuel cells, and hydrogen fuel cells.[9, 38, 40, 68, 84, 90, 101, 102, 139, 140, 142,

148, 149, 151, 155, 164, 183, 185, 191, 192, 194, 196] More specifically, experimental

studies attribute the improved performance of Pt-graphene nanocatalysts to the syn-

ergetic effect between the Pt catalyst and the graphene substrate, mainly due to the

presence of defects and functional groups in the graphene substrate that are formed

during the fabrication process, leading to a strong interaction between the cluster

and the support.[49, 67, 68, 84, 101, 137, 144, 168, 183] Computational studies also

report a strong binding of Pt clusters at defect sites in graphene relative to pristine

graphene, leading to a significant modification of the morphology and the electronic

structure of the clusters and having an immediate effect on their catalytic activity.

[41, 45, 46, 80, 105, 106, 128, 170, 197]

CO oxidation is a reaction of practical relevance as CO poisoning of the catalyst

remains a serious problem in the operation of fuel cells, significantly compromising
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anode performance even in trace amounts.[16, 29, 36, 66, 154, 173, 195] Therefore,

CO oxidation on platinum has been studied extensively both experimentally and

computationally.[3, 4, 6, 21, 27, 39, 43, 44, 47, 50, 52, 53, 72, 76, 111, 115, 120, 123,

156, 163, 186, 187, 189] Most of the previous Pt–CO oxidation studies have focused

on different types of Pt surface models (i.e., Pt(111), Pt(110), steps and kinks in Pt

surfaces) as well as on Pt nanoclusters. However, graphene–Pt nanoparticle systems

are still relatively unexplored in this regard. Although a large number of experi-

mental studies have shown the increased tolerance to CO poisoning for graphene–Pt

nanoparticle systems,[9, 38, 68, 84, 101, 102, 139, 148, 149, 164, 183, 191, 192] only a

few studies have addressed CO oxidation.[90, 191, 192, 194] Therefore, fundamental

issues, such as the preferred kinetic mechanisms of CO-oxidation, and support and

coverage effects on the reaction energetics still remain unclear and are topics of cur-

rent interest. Only a few recent computational studies have focused on CO oxidation

on graphene or graphene oxide–supported Pt catalysts.[167, 169, 171] Among these

studies, Tang et al. [169] investigated the catalytic CO oxidation at a single Pt atom

on pristine and single vacancy graphene substrates. In their study Tang et al. [169]

first investigated a Langmuir–Hinshelwood (L–H) type mechanism for the CO oxida-

tion reaction (CO* + O2* → O–O*–C–O → CO2 + O*) and they calculated energy

barriers of 1.03 eV for oxygen activation on a Pt atom bound at a pristine graphene

substrate and 0.58 eV for the single vacancy support, respectively. For the single

vacancy substrate they also investigated a second step, where the preadsorbed O*

from the previous L–H step reacted with a CO molecule, via an Elay–Rideal (E–R)

type mechanism (O* + CO → CO2). The activation energy for this second step was

calculated to be 0.59 eV. An E–R type mechanism was also investigated for the CO

oxidation reaction at a Pt atom supported on pristine graphene, with preadsorbed

O2* reacting with a CO molecule in the gas phase. The reaction proceeded with the

formation of a stable carbonate–like intermediate, CO3*, (CO* + O2* → CO3* →
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CO2 + O*), which endothermically dissociated into CO2 + O* with a barrier of 0.77

eV. Tang et al. [169] thus concluded that the L–H mechanism is the preferred first

step of the reaction, followed by an E–R second step. The Pt atom supported on a

single vacancy showed higher catalytic activity compared to the Pt-pristine graphene

system by approximately 0.5 eV.

Although the aforementioned studies provide a basis for the kinetics of CO ox-

idation on graphene–Pt–nanoparticle systems, at low temperatures, CO oxidation

occurs at near saturation CO coverages, making conclusions from previously reported

model experimental and theoretical studies at low–coverages difficult to extend to cat-

alytic reactions on actual systems.[118] Near–saturation adsorbate coverages weaken

cluster-adsorbate bonds, thereby significantly influencing the binding energies of ad-

sorbed spices and their reactivity in cluster–catalyzed reactions. Recently Allian

et al., [6] investigated the kinetics of CO oxidation on CO–saturated Pt(111) sur-

faces and CO–saturated cuboctahedral Pt201 nanoclusters. The authors suggested

that CO oxidation on such clusters nearly saturated with CO, occurs via a CO*–

assisted O2 activation on vacant sites within CO monolayers, without either the in-

volvement of adsorbed O2* precursors or O2 dissociation, and it is favored over the

L–H mechanism.[6] To the best of our knowledge, there haven’t been any previous

reports on CO oxidation catalysis on small graphene–supported Pt nanoclusters at

nearly saturated CO coverages, conditions typical of their practical usage.

The goal of this chapter is to provide a systematic investigation of support ef-

fects on the kinetics of CO oxidation reaction on fully CO–saturated, low–energy,

Pt13 nanoclusters supported on graphene, via first-principles density functional the-

ory (DFT). Specifically, we study in detail the kinetic mechanism for CO oxidation

proposed by Allian et al., [6] at various surface sites on unsupported Pt13 nanoclus-

ters as well as clusters bound at support point defects (vacancies/divacancies). Our

studies show that the relevant kinetic mechanism for CO oxidation on these clusters
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proceeds via a CO*-assisted activation of the O2 molecule, resulting in the forma-

tion of an O*–O–C*–O transition state that decomposes into CO2 and a chemisorbed

O* species. Our results clearly establish the role of the defective graphene supports

in substantially reducing the barrier for CO oxidation reaction. At the same time,

we also find that support defects are crucial in stabilizing the Pt13 clusters at high

CO-coverages; in contrast, Pt13 clusters supported on defect-free graphene tend to

desorb upon CO saturation leading to catalyst loss. Defective graphene–supported

Pt13 clusters are therefore able to serve as efficient catalysts for the CO oxidation

reaction with significantly lower energy barriers than unsupported clusters.

The remainder of this chapter is organized as follows. In Section 4.2 we present

computational details of our DFT calculations. Results and discussion are presented

in Section 4.3 and concluding remarks are provided in Section 4.4.

4.2 Computational Details

All calculations were carried out using the plane-wave DFT method as imple-

mented in the Vienna Ab Initio simulation package (VASP). [86] The projector-

augmented wave (PAW) method [18, 88] was used to describe the core and valence

electrons. The Perdew-Burke-Ernzerhof [132] form of the Generalized-Gradient Ap-

proximation was employed to describe electron exchange and correlation. All calcula-

tions were performed on a 6×6 graphene supercell with periodic boundary conditions;

periodic images were separated by vacuum in excess of 18 Å normal to the sheets to

prevent spurious image interactions. A kinetic energy cutoff of 400 eV was used in all

structural relaxation simulations of O adsorption and a 5 x 5 x 1 Γ-centered k-point

mesh was used to sample the Brillouin zone. Structural relaxations were performed

using a conjugate gradient algorithm until forces on all atoms were below 0.01 eV/Å.

To accelerate electronic convergence, a second-order Methfessel-Paxton[121] smearing
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of the Fermi surface was employed with a smearing width of 0.05 eV. All calculations

were spin-polarized.

For supported-cluster studies, we employed the lowest-energy structures of Pt13

clusters supported on graphene derived via the annealing and quenching method

discussed in Chapter 2. To compare CO and O adsorption on supported versus

free clusters, the low energy clusters were removed from the graphene supports and

subjected to full structural relaxation. The adsorption energy of CO or O (Ead,X ;

X=CO, O) on graphene–supported and free Pt13 nanoclusters is defined as

Ead,X =


ECm+Pt13+X − ECm+Pt13 − EX , supported clusters

EPt13+X − EPt13 − EX , free clusters

(4.1)

where ECm+Pt13+X , ECm+Pt13 , EPt13+X are the total energies of the graphene–Pt13–X

(X=CO,O) system, the graphene–Pt13 system, the Pt13–X system and EX represents

the energy of the CO molecule or half the energy of the O2 molecule in vacuum,

as appropriate. As defined here, more negative adsorption energies signify stronger

binding.

CO–saturated Pt13 clusters are then constructed, by binding 13 CO molecules

to each cluster to achieve a 1:1 CO to Pt atom coverage. The systems were subse-

quently subjected to ab initio NVT molecular dynamics annealing simulations over

0.6 picoseconds at 1500K followed by quenching to 1K over 0.6 picoseconds, to ensure

that the clusters are structurally stable. The quenched structures were then sub-

jected to structural optimization until forces on all atoms were below 0.02 eV/Å. For

unsupported Pt13 clusters the same procedure was followed in vacuum. To quantify

the strength of binding of CO–saturated clusters to pristine and defective graphene

supports, the adsorption energy of the cluster on the support (Ead,cluster) was calcu-

lated,

Ead,cluster = ECm+Pt13+13CO − ECm − EPt13+13CO (4.2)
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where ECm+Pt13+13CO is the total energy of the graphene–Pt13+13-CO system after

the annealing–relaxation procedure, and ECm , EPt13+13CO are the energies of the

graphene substrate and the Pt13+13-CO system, respectively, obtained from DFT

calculations after separating the cluster from the graphene support and subjecting

them to structural relaxation. The effect of CO coverage on the CO adsorption energy

was quantified by calculating the adsorption energy per CO molecule, defined as

Ead/CO =


1
13

(ECm+Pt13+13CO − ECm+Pt13 − 13ECO), supported clusters

1
13

(EPt13+13CO − EPt13 − 13ECO), free clusters

(4.3)

where ECm+Pt13+13CO, ECm+Pt13 , and ECO are the total energies of the graphene–

Pt13+13-CO system, the cluster–substrate relaxed structure before CO saturation,

and the CO molecule in vacuum, respectively.

Subsequent to adsorption studies, the Climbing-Image Nudged-Elastic-Band (CINEB)

method [71] was applied to locate transition states and minimum–energy pathways

for the CO oxidation reaction on graphene–supported and free CO–saturated Pt13

clusters. All Pt atoms were allowed to relax, while the C atoms on the graphene

support were kept fixed during the CINEB calculations. Due to the computational

cost of these calculations, we employed a 3 x 3 x 1 Γ-centered k-point mesh, a 300

eV kinetic energy cutoff, and a force tolerance of 0.03 eV/Å for the relaxation of the

initial and final states and the CINEB calculations. Selected tests reveal that these

slightly less stringent criteria lead to changes of the order of 10 meV in the reaction

barrier, which is within the accuracy of the calculation. Transition states were verified

by calculating the Hessian matrix and identifying a single imaginary frequency.

68



4.3 Results and Discussion

4.3.1 Support effects on CO and O adsorption on graphene–supported

Pt13 clusters

First, we examine the support effects on CO and O adsorption, the two species

directly involved in the CO oxidation reaction. The CO adsorption was discussed

in detail in Chapter 3, [46] and some of the results are reproduced here for the

purposes of the discussion. O adsorption at graphene–supported and free Pt13 clusters

is investigated via random sampling over several distinct binding sites. The details of

the sampling procedure are similar to the CO adsorption sampling that was described

in Chapter 3, Section 3.2. The average CO and O adsorption energy on graphene-

supported and free Pt13 clusters, calculated according to Eq. 4.1, are reported in

Table 4.1. Statistical errors are estimated using a 95% confidence interval of the

Student’s t-distribution, which is appropriate for small-sample statistics. The fully

relaxed atomic structures for one selected case each of O adsorption on graphene-

supported and free Pt13 clusters are displayed in Figure 4.1.

Table 4.1: Average adsorption energy for CO (from Ref. [46]) and O molecules
adsorbed on low-symmetry Pt13 clusters supported on pristine and defective (single
vacancy, unreconstructed divacancy) graphene, as well as on free Pt13 clusters. The
position of d-band center (Ed−band) for the Pt13 clusters is reported in the last column.

Graphene substrate Ead,CO (eV) Ead,O (eV) Ed−band (eV)

pristine -2.54± 0.19 -1.66 ± 0.38 -2.34
vacancy -2.33 ± 0.11 -1.48 ± 0.19 -2.53

divacancy -2.02 ± 0.18 -1.42 ± 0.41 -2.54
free clusters -2.79 ± 0.30 -1.76 ± 0.26 -2.18

The adsorption energy results in Table 4.1 indicate that the presence of a point

defect in the graphene support weakens the interaction of CO and O atom with the

supported Pt13 clusters. In particular, for the two defective graphene supports (single

vacancy (SV) and divacancy (DV)) the CO adsorption energy on the Pt13 cluster is
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Figure 4.1: Side and top view of selected low energy DFT configurations for adsorption
of an O atom on graphene-supported Pt13 clusters. Cyan, gold and red spheres
represent C, Pt and O atoms, respectively.

lower by 0.21 eV and 0.52 eV, respectively, compared to the average adsorption energy

on Pt13 clusters supported on defect-free pristine graphene; the difference in binding

energies relative to unsupported Pt13 clusters is even larger (0.46 eV, and 0.77 eV,

respectively). Similarly, the O adsorption energy on the Pt13 cluster supported on

a SV and a DV is lower by 0.18 eV, and 0.24 eV, respectively, compared to pristine

graphene and by 0.28 eV, and 0.34 eV relative to unsupported Pt13 clusters. The

variability in the local atomic coordination of the low–energy Pt13 clusters results in

variations in binding energy of ∼ 0.1 − 0.2 eV for CO, and ∼ 0.2 − 0.4 eV for O

adsorption, an order of magnitude smaller than the binding energy. The remaining

differences in O binding energies can then be attributed to the strong cluster–support

interactions.

As discussed in Chapter 2, there exists a clear correlation between the position of

the d-band center of the bound cluster and the nature of the support point defect.[45]
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Specifically, stronger binding of the cluster to the defect (which is directly related

to the number of dangling bonds at the defect) is accompanied by increased charge

transfer from the cluster to the substrate and a shift of the cluster d-band center away

from the Fermi level. In Figure 4.2, we correlate the d-band shift—which is effectively

a metric of the cluster’s tendency to form bonds with other adsorbates[124]—with the

average CO and O adsorption energies. As seen from this figure, the position of the

cluster d-band center is well correlated with both CO and O adsorption energies

on graphene–supported Pt13 clusters: for defective substrates, the stronger cluster–

support interaction compared to pristine graphene, leads to a downshift of the d-band

center position which in turn weakens the CO and O adsorption on the cluster.
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Figure 4.2: CO (top) and O (bottom) adsorption energy (Ead) as a function of d-
band center (εd) relative to the Fermi energy for supported Pt13 clusters, free Pt13
clusters, and Pt(111) surface. Error bars indicate 95% confidence intervals obtained
from sampling over multiple adsorption sites on the clusters. CO adsorption energy
results are adapted from Ref. [46].

Results from Bader analysis[13, 70] for O adsorption on graphene-supported and

free Pt13 clusters are reported in Table 4.2 . Similarly to CO adsorption discussed in

Chapter 3, there is an appreciable net charge transfer from the Pt13 cluster to both

the graphene support and the O atom after O adsorption. The amount of charge
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transferred from the Pt cluster to O (∼ 0.74e−) is found to be independent of the

cluster interaction with graphene. The charge transferred from the Pt cluster to

the support is, however, sensitive to the nature of the support; a cluster adsorbed

on pristine graphene transfers only ∼ 0.06e−, compared to the significantly greater

charge transfer from the cluster to a defective support (∼ 0.44−0.73e−). As discussed

in Chapter 2, it is this substantial depletion of charge from the cluster to the defective

support that leads to a downshift of the d-band center relative to the Fermi level,[45,

46] which in turn results in weaker CO and O binding to the cluster.

Table 4.2: Average charge transfer [∆q (e−)] from the Pt13 cluster to O and pristine
graphene, single vacancy, and unreconstructed divacancy based on Bader analysis.
(Positive/negative numbers indicate accumulation/depletion of electrons.)

∆q (e−)
substrate cluster O

pristine 0.06 ± 0.03 -0.81 ± 0.03 0.74 ± 0.02
vacancy 0.44 ± 0.03 -1.19 ± 0.04 0.76 ± 0.02

divacancy 0.73 ± 0.04 -1.47 ± 0.06 0.74 ± 0.02
free clusters – -0.74 ± 0.01 0.74 ± 0.01

4.3.2 Effect of CO-saturation on the stability of graphene–supported Pt13

clusters

The CO and O adsorption energy results reported in Table 4.1 revealed that CO

binding to Pt13 nanoclusters is substantially stronger (∼ 0.7 − 0.8 eV) than O ad-

sorption, both for graphene–supported and free Pt nanoclusters. Consequently, under

normal operating conditions the Pt cluster is likely to be fully saturated by CO and

subsequent reactions, including CO oxidation, will take place on CO-covered clusters.

In this section, moving beyond the single CO molecule adsorption studies discussed in

Chapter 3, we seek to investigate the support effects on the stability of CO–saturated

Pt13 clusters on pristine and defective graphene. Ab initio molecular dynamics an-
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nealing and quenching simulations were performed for this purpose, as described in

Section 4.2. The adsorption energy of the CO–saturated Pt13 clusters (Ead,cluster)

at each graphene substrate was calculated according to Equation 4.2 and a Bader

analysis [13, 70] was performed, partitioning the total charge density between atoms,

allowing to quantify the total charge transfer between the cluster, CO adsorbates,

and the graphene support. The results are reported in Table 4.3. The fully relaxed

atomic structures and the charge density difference plots for the graphene–supported

and free CO–saturated Pt13 clusters are shown in Figure 4.3.

Table 4.3: Adsorption energy of the CO–saturated Pt13 clusters to the different
graphene substrates is reported in the first column. Average charge transfer [∆q (e−)]
from the CO–saturated Pt13 cluster to the CO molecule and pristine graphene, single
vacancy, and unreconstructed divacancy substrates based on Bader analysis. (Posi-
tive/negative numbers indicate accumulation/depletion of electrons.)

∆q (e−)
Ead,cluster (eV) substrate cluster CO

pristine -0.28 -0.35 -2.13 2.48
vacancy -11.16 -0.23 -2.38 2.60

divacancy -12.21 0.58 -3.05 2.48
free clusters – -2.23 ± 0.13 2.23 ± 0.13

The adsorption energy of CO–saturated Pt13 clusters in Table 4.3 and the relaxed

atomic structures in Figure 4.3 reveal a very interesting outcome: for the case of

a CO–saturated Pt13 cluster supported on pristine graphene that was subjected to

the high temperature annealing–quenching and relaxation procedure, CO is found to

intercalate between the cluster and the support and cause complete desorption of the

cluster, potentially leading to catalyst loss. There is only a very weak interaction of

the cluster with the pristine graphene support (Ead = -0.28 eV) and the cluster is

located 5.3 Å away from the support. Such cluster desorption does not occur when the

Pt13 cluster is bound to a defective–graphene support; instead there is strong binding

of the CO–saturated Pt13 cluster at a vacancy (Ead = -11.16 eV) and a divacancy (Ead
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Figure 4.3: Fully relaxed atomic structures and charge-density difference plots for
graphene–supported ( a, b and, c) and free (d) CO–saturated Pt13 clusters. Isosur-
faces are at 0.081 e/Å3; yellow(blue) color represents charge accumulation(depletion).
Cyan, gold and red spheres represent C, Pt and O atoms, respectively.

= -12.21 eV) in graphene. This observation further emphasizes the role of support

defects in stabilizing catalyst clusters, even at CO saturation coverages, preventing

sintering and/or catalyst loss.

From a different perspective, CO coverage is also expected to significantly influ-

ence the binding energies of the adsorbed species (CO molecules in this case). The

adsorption energy per CO molecule (Ead/CO) results for graphene–supported and free

CO–saturated Pt13 clusters, calculated using Equation 4.3, are reported in Table 4.4.

The single CO adsorption energy results from Chapter 3 (also reported in Table 4.1)

are added here for direct comparison along with CO adsorption energy results on a

Pt(111) surface.

Results from prior theoretical work on CO adsorption on Pt surfaces[6, 150] and

large Pt clusters[6, 39] at different CO coverages essentially show that the adsorption

energy decreases with increasing CO coverage, which is in agreement with our find-

ings. More specifically, the study of Allian et al. [6] on a cuboctahedral Pt201 cluster,
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Table 4.4: Adsorption energy per CO molecule on graphene–supported and free
CO–saturated Pt13 clusters is reported in the first column. Single CO adsorption
energy[46] on graphene–supported and free Pt13 clusters is reported in the second
column. Results for CO adsorption at a Pt(111) surface are also included for com-
parison.

Graphene substrate Ead/CO (eV) EadCO
(eV)

vacancy -1.98 -2.33 ± 0.11
divacancy -1.89 -2.02 ± 0.18

free clusters -2.33 -2.79 ± 0.30
Pt(111) -1.05 -1.80 (fcc), -1.66 (atop)

showed that the single CO adsorption energy (0 ML coverage) varies between -1.25

eV (on (111) terraces) and -1.79 eV (at corner sites) whereas at full CO–saturation,

the adsorption energy per CO molecule decreases to -0.82 eV (on (111) terraces) and

-1.49 eV (at corner sites). Large clusters such as the cuboctahedral Pt201 cluster, can

be viewed as a combination of single crystal surfaces with high-coordinated adsorp-

tion sites (i.e., (111) and (100) terraces) and low-coordinated adsorption sites (i.e.,

steps and kinks). However, flat facets do not exist in ultra-small clusters, such as

Pt13; direct comparison is at best meaningful with low-coordination sites on the Pt201

cluster. In this regard, first, the prediction of stronger CO adsorption at atomic steps

and kinks on Pt201 clusters compared to flat terraces is consistent with our obser-

vations, finding stronger CO adsorption on free Pt13 clusters compared to a single

crystal Pt(111) surface. This was also pointed out in Chapter 3 for the case of sin-

gle CO adsorption and it is now confirmed for higher CO coverages also. Second,

both for free and graphene–supported Pt13 clusters the strength of CO adsorption

weakens with increasing CO coverage, in agreement with prior computational stud-

ies. [6, 150] Compared with the single CO adsorption energy (EadCO
), the adsorption

energy per CO molecule at CO–saturated Pt13 clusters is significantly lower (by, on

average, 0.35, 0.13 and 0.46 eV for a vacancy substrate, a divacancy substrate and
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unsupported clusters, respectively). These differences reflect strong repulsive inter-

actions between the adsorbed CO molecules on CO–saturated Pt13 clusters. Same

behavior was observed on unsaturated and fully–CO–saturated Pt201 clusters.[6] Fi-

nally, further decrease of the CO adsorption on graphene–supported Pt13 clusters

versus unsupported ones (both for a single CO and at full CO–coverage) can be at-

tributed to the strong electronic interaction between the cluster and the point defects

in graphene.[45, 46] Thus, weaker CO – cluster interaction for graphene–supported

clusters at saturated CO coverages possibly suggests facile CO removal via CO oxi-

dation on defective–graphene–supported Pt nanoclusters, which we consider next.

4.3.3 CO oxidation on defective-graphene supported and free CO–saturated

Pt13 clusters

As shown in Section 4.3.2, CO–saturated Pt13 clusters bound at point defects in

graphene are expected to remain strongly adsorbed to the support at full CO satura-

tion. The significant defect-induced changes of the electronic structure of graphene–

supported Pt13 clusters,[45, 46] are expected to have strong effects on the catalytic

activity of these nanoclusters for the CO oxidation reaction. Therefore, the purpose

of this section is to study in detail the kinetics of CO oxidation reaction with O2

at CO–saturated Pt13 clusters supported at a single vacancy (SV) and a divacancy

(DV) in graphene. The catalytic activity of graphene–supported clusters is then com-

pared to the catalytic activity of CO–saturated free Pt13 clusters for the CO oxidation

reaction.

Interestingly, there is a plethora of mechanisms described as most favorable in

previous theoretical studies for the CO oxidation reaction with a single CO and O2

molecule on metal–graphene systems.[95, 103, 114, 159, 193, 197] CO oxidation on

defective–graphene–supported Au8 and Pt4 clusters was studied by Zhou et al.[197]

via a L–H-type mechanism, with O2 activation energies in the range of 0.1-0.2 eV.
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Yuan et al.[193] found that CO oxidation on graphene–supported Pd–Au bimetallic

clusters, proceeds via a two step mechanism (CO* + O2* → O*–O–C*–O → CO2

+ O*) that again involves the formation of a four-center metastable intermediate

(O*–O–C*–O) with energy barriers of approximately 0.2 eV. Similar reaction mech-

anisms were found for CO oxidation on Au-embedded graphene[114] with an energy

barrier of 0.31 eV and Cu-embedded graphene[159] with an activation energy of 0.25

eV. A different reaction path was identified on a theoretical study on Fe-embedded

graphene[103] that showed the E–R mechanism to be the prevalent one, with a CO

in the gas phase reacting with activated O2* ( CO + O2* → CO3* → CO3* + CO

→ 2CO2) and the formation of a carbonate-like intermediate, CO3* with an activa-

tion energy of 0.58 eV. A similar E–R-type mechanism was identified as the most

preffered reaction pathway for CO oxidation on Fe-anchored graphene oxide.[95] Fi-

nally, theoretical studies on CO oxidation at single Pt atom supported on defective

graphene[170] and oxidized graphene[167] found that the reaction proceeds via a L–

H-type mechanism (CO* + O2* → O*–O–C*–O → CO2 + O*) as a first step, with

energy barriers equal to 0.58 eV and 0.76 eV for defective graphene and oxidized

graphene, respectively.

The theoretical studies discussed above are suggestive of the possible CO oxidation

mechanisms encountered on metal–graphene systems. However, these refer to CO

oxidation studies with a single CO and O2 molecule. In our case, the most relevant

kinetic mechanism that is found to prevail for CO–saturated clusters, is proposed by

Allian et al., [6] in which CO oxidation is expected to proceed via a CO*-assisted

activation of the O2 molecule. As described in Section 4.2, the CINEB method was

employed to study the kinetics of CO oxidation reaction on graphene–supported and

free CO–saturated clusters. In all cases, the initial state (IS) involves the presence

of an O2 molecule in the vicinity of the CO–saturated Pt13 cluster. Due to the

variability in coordination of Pt atoms in the low–energy Pt13 clusters, there are
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several inequivalent sites for an O2 molecule in the vicinity of the CO–saturated

Pt13 cluster. Therefore we sampled several initial configurations for each graphene–

supported and free CO–saturated Pt13 cluster. The final state (FS) corresponds to

the formation of a CO2 molecule in the gas phase and an oxygen chemisorbed on the

cluster, O*.

First we discuss one case of the CO oxidation reaction at a CO–saturated Pt13

cluster supported at a single vacancy (SV) in graphene. The activation energy (Ea)

is reported in Table 4.5 (SV - Case (a)). The corresponding atomic structure and the

energy profile along the reaction coordinates are shown in Figure 4.4. The preferred

reaction mechanism proceeds via the CO*– assisted O2 activation in the vicinity of

the CO–saturated Pt13 cluster. The O2 activation is the rate limiting step, with an

activation energy equal to 0.33 eV and the reaction follows a two-step scheme (CO*

+ O2* → O*–O–C*–O → CO2 + O*) with the formation of a O*–O–C*–O complex

which subsequently decomposes to CO2 and an adsorbed O* species. The mechanism

observed in the case of the CO–saturated Pt13 cluster supported at a single vacancy

in graphene resembles the kinetic mechanism proposed by Allian et al [6] for CO ox-

idation at an unsupported cuboctahedral Pt201 cluster: neither the involvement of

adsorbed O2* precursors nor O2 dissociation are necessary; there is direct reaction of

O2 with pre-existing adsorbed CO* on the CO–saturated Pt13 cluster. The same re-

action path was observed in separate sampled cases of CO oxidation at CO–saturated

Pt13 clusters supported at a single vacancy, and the activation energy as calculated

from the transition state calculations, was found in the range of 0.3–0.6 eV in all

cases.

For completion, we discuss a different reaction mechanism that was also identified

among the sampled cases of CO oxidation at CO–saturated Pt13 clusters supported

at a single vacancy. The activation energy (Ea) for this case is reported in Table 4.5

(SV - Case (b)). The corresponding atomic structure and the energy profile along
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Table 4.5: Activation energies (Ea) for the CO oxidation reaction on CO–saturated
Pt13 clusters.

Graphene substrate Ea (eV)

SV - Case (a) 0.33
SV - Case (b) 0.67

DV 0.43
Free cluster 1.97

Figure 4.4: Minimum energy pathway and atomic structures for the CO oxidation
reaction on a CO–saturated Pt13 cluster supported at a SV (Case (a)). Cyan, gold
and red spheres represent C, Pt and O atoms, respectively. Pink spheres denote the
O2 molecule that participates in the reaction.
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the reaction coordinates are shown in Figure 4.5. In this particular case the reaction

proceeds via the formation of carbonate–like stable intermediate state, CO3*. This

mechanism is analogous to the mechanism observed in the study of CO oxidation at

Fe-embedded graphene[103], Fe-anchored graphene oxide,[95] and a single Pt atom

supported on pristine graphene,[170] with the distinction that the O2 molecule in our

case is activated with the assistance of pre-adsorbed CO*, instead of gas phase CO

reacting with pre-adsorbed and activated O2*, as in these prior reported studies.[95,

103, 170] Thus, the kinetic mechanism (CO* + O2* → CO3* → CO2 + O*) involves

the endothermic dissociation of the stable CO3* intermediate into CO2 and adsorbed

O*. The energy barrier for the initial O2 activation step was found equal to 0.67 eV,

which is on the upper limit of the barriers calculated in the previously reported cases

(0.3–0.6 eV) for CO oxidation at CO–saturated Pt13 clusters supported at a single

vacancy in graphene. In addition, the requirement for overcoming a second energy

barrier before dissociation to CO2 and O* implies that this reaction mechanism is

unlikely to be the preferred pathway for CO oxidation reaction at CO–saturated Pt13

clusters supported at a single vacancy.

Next, we discuss the preferred mechanism for CO oxidation at a CO–saturated

Pt13 cluster supported at a divacancy (DV) in graphene. The activation energy (Ea)

is reported in Table 4.5 (DV). The corresponding atomic structures along with the

energy profile along the reaction coordinates are shown in Figure 4.6. In the case

examined here, the reaction proceeds in a similar manner with the CO oxidation

at a CO–saturated Pt13 cluster supported at a single vacancy in graphene; the rate

limiting step involves the CO*– assisted O2 activation with an energy barrier equal

to 0.43 eV, followed by formation of a O*–O–C*–O complex that exothermically

dissociates to chemisorbed O* and CO2. The other sampled cases for CO oxidation

at CO–saturated Pt13 clusters supported at a divacancy (DV) in graphene adopt the
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Figure 4.5: Minimum energy pathway and atomic structures for the CO oxidation
reaction on a CO–saturated Pt13 cluster supported at a SV (Case (b)). Cyan, gold
and red spheres represent C, Pt and O atoms, respectively. Pink spheres denote the
O2 molecule that participates in the reaction.

81



same reaction steps and the activation energies were calculated in the range of 0.4–0.6

eV in all cases.

Figure 4.6: Minimum energy pathway and atomic structures for the CO oxidation
reaction on a CO–saturated Pt13 cluster supported at a DV. Cyan, gold and red
spheres represent C, Pt and O atoms, respectively. Pink spheres denote the O2

molecule that participates in the reaction.

As a last part of this discussion, we focus on the CO oxidation on free CO–

saturated Pt13 clusters. The activation energy (Ea) for the sampled case shown in

Figure 4.7, is reported in Table 4.5. The observed mechanism for CO oxidation at

unsupported CO–saturated Pt13 clusters again involves the CO*– assisted O2 acti-

vation and formation of a O*–O–C*–O complex that dissociates to chemisorbed O*

and CO2. However, the reaction in this case requires significantly higher activa-

tion energies (∼ 1.12 − 1.97 eV) compared to CO–saturated Pt13 clusters bound at

point defects in graphene. The results for unsupported CO–saturated Pt13 clusters

can be qualitatively compared to the study of Allian et al. [6] on Pt201 clusters.

The low-energy Pt13 clusters employed in our study are structurally different from
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cuboctahedral Pt201 clusters in that the latter contain a representative distribution

of well-defined (111) and (100) terrace, corner and edge sites. However, our results

for CO oxidation at unsupported CO–saturated Pt13 clusters are in overall agreement

with their reported activation energies at edge (1.36 eV) and corner (1.48 eV) sites

of Pt201 clusters.

Figure 4.7: Minimum energy pathway and atomic structures for the CO oxidation
reaction on an unsupported CO–saturated Pt13 cluster. Cyan, gold and red spheres
represent C, Pt and O atoms, respectively. Pink spheres denote the O2 molecule that
participates in the reaction.

To summarize, in this section we identified the preferred reaction pathway for

CO oxidation at defective–graphene–supported and free CO–saturated Pt13 clusters.

Our simulations showed that O2 activation occurs via CO*–assisted steps, without

the requirement for adsorption or O2 dissociation. The reaction proceeds with the

formation of a O*–O–C*–O complex that exothermically dissociates to CO2 and

chemisorbed O* species. CO oxidation on unsupported CO–saturated Pt13 clusters

requires significantly higher activation energies (∼ 1.12− 1.97 eV) compared to CO–
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saturated Pt13 clusters bound at point defects in graphene (∼ 0.3 − 0.6 eV). The

outcome of these studies validates our initial expectation for the substrate effect on

the catalytic activity of graphene-supported clusters: the strong interaction of CO–

saturated Pt13 clusters with point defects in graphene and the modification of their

electronic structure, greatly enhances their catalytic activity towards CO oxidation,

at high CO coverage. Low–energy defective–graphene–supported CO–saturated Pt13

nanoclusters are identified as effective catalysts for CO reduction with significantly

lower activation energies than unsupported clusters.

4.4 Conclusions

In conclusion, DFT calculations were employed to investigate the support effects

on the catalytic CO–oxidation at CO–saturated graphene–supported Pt13 clusters.

Defective graphene is found to enhance the stability of CO–saturated Pt13 clusters,

preventing sintering and potential catalyst loss. The relevant kinetic mechanism for

CO oxidation reaction with O2 at CO–saturated graphene–supported Pt13 clusters

was studied in detail: the rate limiting step involves the CO*– assisted O2 activa-

tion, followed by formation of O*–O–C*–O reactive intermediates that decompose to

chemisorbed oxygen and CO2. The strong interaction of Pt13 clusters with point de-

fects in graphene lowers the required activation energy for the CO oxidation reaction

by more than 0.5 eV compared to unsupported clusters. Overall, our study suggests

that defect-engineered graphene can not only serve as robust catalytic support that

strongly binds and stabilizes clusters against sintering, but also allows for tuning of

catalytic properties through cluster-substrate interactions.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND FUTURE WORK

5.1 Summary

The aim of this thesis was to obtain a fundamental and quantitative understanding

of the complex phenomena that dominate the properties of Pt–graphene nanocom-

posites as electrocatalysts in fuel cells. Through a synergistic combination of com-

putational techniques, we analyzed in detail the support effects on the structural,

electronic and catalytic properties of Pt nanoclusters bound at various point defects

in graphene. The most significant findings and the key contributions from this thesis

are discussed in this chapter.

First, we investigated the binding energetics and the morphology of low-energy

isomers of small Ptn, (n=1,2,3,4,13), clusters on defect-free and defective graphene

substrates. The results of our study showed that point defects in graphene act

as strong anchoring sites for Pt nanoclusters. Additionally, low–energy isomers of

graphene-supported Pt nanoclusters were identified via Molecular Dynamics anneal-

ing and structural relaxation. Supported Pt clusters were shown to adopt open,

low-symmetry morphologies, as a result of support-induced morphological distortions

after adsorption. Besides, the electronic structure analysis revealed a clear tendency

for significant charge transfer from the Pt cluster to the graphene support upon ad-

sorption. The strong electronic interaction between the Pt cluster and the point defect

in graphene resulted in a downshift of the cluster d-band center position relative to

the Fermi level, which is expected to further affect the catalytic activity of the cluster.
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Next, the support effect on the CO and O adsorption on Pt13 clusters supported

on defect-free and defective graphene substrates was investigated via detailed DFT

calculations. Pt13 clusters that bind strongly to defects in graphene, were shown to

subsequently bind CO and O more weakly as compared to clusters supported on pris-

tine graphene or unsupported clusters. As a result, defective-graphene supported Pt

clusters are expected to show increased tolerance to CO poisoning. These observations

were explained in terms of the downshift of the cluster d-band center position with

respect to the Fermi level, upon binding to defects: stronger binding leads to greater

charge transfer from the cluster to the substrate accompanied by a greater downshift

of the d-band center, which in turn weakens the CO and O adsorption. Compar-

ison between CO and O adsorption results, indicated that CO adsorption prevails.

Consequently, the effect of CO-saturation on the stability of graphene-supported Pt

clusters was also considered and our results essentially showed that support defects

are crucial in stabilizing the Pt13 clusters at high CO-coverages, preventing potential

catalyst loss.

In the last part of our study, we addressed the support effects on the kinetics

of CO oxidation on CO–saturated graphene–supported Pt13 clusters. Detailed DFT

calculations were performed and the preferred reaction pathway for CO oxidation

at defective–graphene–supported and free Pt13 clusters in the CO saturation regime

was identified. Our simulations showed that the rate limiting step involves CO*–

assisted O2 activation, without the involvement of adsorbed O2* precursors or O2

dissociation, followed by the formation of O*–O–C*–O reactive intermediates that

decompose to chemisorbed oxygen and CO2. The reaction kinetics results clearly

showed that defective graphene reduces the activation energy for the CO oxidation

by more than 0.5 eV compared to unsupported clusters. Consequently, Pt13 clusters

supported on defective graphene are found to show greatly enhanced catalytic activity

towards CO oxidation, in the high CO coverage regime.
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In summary, the findings presented in this thesis provide important insights into

the role of graphene as a catalytic support for Pt nanoparticles. Our study established

that defect-engineered graphene can serve as robust catalyst support that strongly

binds and stabilizes Pt clusters against sintering, and also allows for optimizing cat-

alytic properties through tuning of cluster–support interactions.

5.2 Conclusions

The urgent demand for new energy technologies has greatly exceeded the capa-

bilities of existing materials and chemical processes. Computational modeling plays

an essential role in simulating and accurately predicting the performance of advanced

materials that are critical elements for progress in advanced energy systems. In this

thesis, computational modeling of Pt-graphene nanocomposites provides useful in-

sights into the structural, electronic and catalytic properties of these materials. More

specifically, the main contributions of this thesis are summarized below:

• The presence of point defects in graphene supports greatly enhances the binding

of Pt13 nanoclusters at the site of the defect. The strong interaction of Pt13

nanoclusters with defects in graphene can therefore inhibit cluster sintering

and prevent catalytic active surface area loss.

• There are support-induced effects on the morphology of graphene–supported

Pt13 nanoclusters as a result of adsorption at point defect sites in graphene.

Determination of optimal cluster structure in our studies reveals information

about the electronic structure and catalytic activity of realistic Pt clusters.

• There are support-induced effects on the electronic structure of graphene–supported

Pt13 nanoclusters after adsorption; the strong binding of the cluster at the de-

fect site, the formation of strong Pt-C bonds, and charge redistribution at the

cluster-support interface are accompanied by a significant downshift of the clus-
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ter d-band center position relevant to the Fermi level. The correlation of the

cluster d-band center position with the average CO and O adsorption energies on

graphene-supported Pt nanolcusters, could explain the experimentally observed

increased tolerance to poisoning for Pt nanoclusters on graphene supports.

• The relevant kinetic mechanism for CO oxidation on graphene–supported Pt13

nanoclusters in the high CO coverage regime was identified and detailed tran-

sition state calculations were performed. CO reduction on defective-graphene–

supported Pt13 nanoclusters requires significantly lower activation energy than

unsupported Pt13 nanoclusters, indicating that there are support-induced ef-

fects on the catalytic activity of graphene–supported Pt13 nanoclusters for the

CO oxidation reaction.

In conclusion, the results of the computational studies presented in this thesis

explain the effect of defective–graphene supports on various properties of graphene–

supported subnanometer size Pt nanoclusters. Through systematic cluster optimiza-

tion, electronic structure analyses and transition state calculations, we are able to

explain the experimentally observed increased stability and catalytic activity of Pt

nanoclusters on graphene. We expect that the results of our studies will guide the

design of efficient graphene–supported Pt nanocatalysts with desired and tailored

properties.

5.3 Future Directions

Graphene-based nanomaterials show great promise as electrocatalysts in fuel cells.

However, the area of graphene-supported catalysis is still premature, albeit rapidly

developing. Additional studies are necessary to establish a better understanding

of the properties of graphene nanocomposites in catalysis, that will allow for their

extensive use in commercial applications. In this Section we discuss some proposed

future directions.
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• Computational Studies of CO oxidation on Pt nanoclusters supported

on Graphene Oxide

As part of this dissertation we have explored the preferred kinetic mechanism

for CO oxidation on small CO-saturated Pt nanoclusters supported on defective

graphene. One interesting suggestion for future work is to extend our studies on

graphene oxide supports. The role of functional groups is already highlighted in

experiments, showing promise for graphene-oxide - based metal nanoparticles

as electrocatalysts.[28, 84, 101, 153] Therefore, we would like to investigate in

detail the effect of functional groups that are present in graphene oxide on the

stability and catalytic activity of supported Pt nanoparticles for electrochemical

reactions such as CO oxidation. The elementary steps of this study will account

for small Pt nanoparticles and explore the support-induced effects in the mor-

phology and electronic properties of the clusters. Subsequently, the study will

proceed with a detailed investigation of the kinetic mechanism for CO oxidation

on graphene-oxide supported Pt nanoclusters. Effects induced by CO and/or

O coverage and the presence of functional groups will be also characterized.

• Computational Studies of Methanol Decomposition on Graphene-

supported Pt nanoclusters

Similar to CO oxidation, computational studies of methanol decomposition have

focused mainly on Pt surfaces, assuming vapor-phase chemistry[55, 56] or an

aqueous solution.[23] Our results on CO oxidation kinetics on small graphene-

supported Pt nanoparticles could provide a useful guidance for other electro-

chemical reactions, that are encountered in a fuel cell environmnent. In particu-

lar, investigating in detail the kinetics of methanol decomposition on graphene-

supported Pt nanoclusters, is of great interest and direct relevance to the de-

velopment of superior electrocatalysts for DMFCs. As a first step, the study
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will focus on identifying the interplay between the energetics and kinetics of

methanol decomposition with the morphology and electronic structure of the

supported nanoparticle. Methanol decomposition involves several intermedi-

ate steps and the kinetics of all the individual steps need to be investigated.

Therefore, combined with the distinct morphology of nanoparticles compared to

single crystal surfaces, the level of complexity in the system is expected to rise

significantly. Thereafter, the study should be extended to an aqueous solution

environment, to account for additional effects due to the presence of ionic liq-

uids. Completion of these studies could provide a detailed understanding of the

support effects in the catalytic activity of supported nanoparticles for complex

electrochemical reactions.

Undoubtedly, there are endless possibilities when it comes to new materials that

could be explored for applications in catalysis. Although platinum and other noble

metals are the materials of choice for several electrocatalytic reactions, the use of

noble metals imposes limitations due to their high cost. Therefore, finding alter-

natives to noble metal nanoparticles as catalytic materials is of utmost importance.

Investigating graphene-based hybrid materials with lower precious metal content and

potentially improved catalytic activity, is another direction for future work.
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The elastic properties of edges are among the most fundamental properties of finite

two-dimensional (2D) crystals. Using a combination of the first-principles density functional

theory calculations and a continuum elasticity model, we present an efficient technique to

determine the edge stresses of non-stoichiometric orientations in multicomponent 2D crystals.

Using BN and MoS2 as prototypical examples of 2D binary monolayers with threefold in-plane

symmetry, we unambiguously compute unique edge stresses of commonly observed

non-stoichiometric edges. Our results show that the edge stresses for these structurally distinct

orientations can differ significantly from the average values that have been typically reported to

date. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729940]

The recent experimental realization of atomically thin

two-dimensional (2D) monolayers of graphene,1 boron

nitride,2,3 and transition metal dichalogenides4,5 has sparked

extensive interest in characterizing the unique properties of

these materials as well as their crystalline defects. In particu-

lar, edges in 2D monolayers display physical, chemical, and

electronic properties that are distinct from the pristine

monolayers.6–8 The bonding environment for atoms at free

edges differs significantly from the bonding environment in

the bulk of the monolayer. Consequently, the edges of 2D

monolayers are typically in a state of tensile or compressive

stress whose magnitude intimately depends upon the atomic

structure of the edge. Recent experiments9–11 and theoretical

calculations12–15 have shown that edge stresses can lead to a

spontaneous structural instability in the monolayer in the

form of rippling and warping, which can potentially influ-

ence the electronic and chemical properties of the edges and

their vicinity. It is therefore critical that the mechanical and

electronic properties of thermodynamically stable edge ori-

entations are accurately characterized.

For a 2D monolayer, the edge stress for a particular

edge orientation h is generally obtained by constructing a

model nanoribbon terminated with two parallel edges ori-

ented along h and hþ 180�.12,13,15 When an in-plane strain e
is applied along the direction of the free edges of a nanorib-

bon of length L and width W, the potential energy of the

nanoribbon up to the quadratic order in strain is given by

Uðe;WÞ ¼ U0 þ
1

2
ELWe2 þ ðs1 þ s2ÞLeþ 1

2
ðEe1 þ Ee2ÞLe2;

(1)

where U0 is the potential energy at zero strain, E is the bulk

2D elastic modulus of the monolayer, and s1(2) and Ee1(2)

denote the edge stress and edge elastic modulus of edge 1(2),

respectively. The change in potential energy as a function of

applied strain can be accurately calculated by first-principles

methods to obtain various edge properties via fitting to Eq.

(1). It is clear that this strategy can be employed to unambig-

uously determine edge properties when the two edges at h
and hþ 180� are structurally identical (e.g., graphene with

zigzag or armchair edges12–16). However, for multi-

component 2D materials such as BN or transition metal

dichalcogenides such as MoS2 with threefold in-plane sym-

metry, the parallel edges with orientations h and hþ 180�

are, in general, non-stoichiometric and structurally distinct
from each other. The stoichiometric BN zigzag nanoribbon

with boron-terminated ð�1010Þ and nitrogen-terminated

ð10�10Þ zigzag edges provides a representative example. The

electronic states at B and N edges differ significantly; there-

fore, the edge stresses can also be expected to differ substan-

tially. In such situations, Eq. (1) only yields average values

of edge stresses/moduli for orientations h and hþ 180� rather

than their distinct edge properties.17 As a result of this limi-

tation, only average values of edge stresses for zigzag edges

of BN and SiC monolayers have been reported in the

literature,18–20 while the unique value of the edge stress for

each distinct orientation remains unknown.

In this letter, we propose an effective technique using a

combination of first principles calculations and a continuum

elasticity model to unambiguously determine edge stresses for

non-stoichiometric edge orientations in multi-component 2D

monolayers. Taking zigzag edges of BN as a prototypical sys-

tem, we have determined the individual edge stresses of B-

and N-terminated edges. A comparison with the average edge

stress of zigzag BN nanoribbon demonstrates the accuracy of

our approach. Finally, we implement the approach developed

here to determine edge stresses of commonly observed non-

stoichiometric edges of monolayer MoS2. Our results suggest

that the edge stresses of individual non-stoichiometric orienta-

tions can be significantly different from the average values

typically computed using a nanoribbon model.
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The key for unambiguous determination of the edge

elastic properties of non-stoichiometric edges lies in con-

structing a model that only includes edges with the specific

orientation of interest. For 2D monolayers with a threefold

in-plane symmetry, such a model can be realized by a

triangular-shaped flake (a triangular “quantum dot”) or a pla-

nar sheet with a triangular hole terminated with identical

edges. While either the triangular flake or hole can be used

to determine surface energies,21 the model with a triangular

hole offers a unique advantage for determining edge stresses

and edge moduli. In the model with a triangular hole, homo-

geneous strains can be conveniently applied while simultane-

ously allowing for complete atomic relaxation of the free

edges. Therefore, we choose planar sheets containing trian-

gular holes with different edge terminations as our model to

determine edge elastic properties of non-stoichiometric

edges. Figure 1 schematically illustrates one such periodic

supercell of a BN monolayer with zigzag B and N edges.

When compared with the strained nanoribbon (Eq. (1)),

the biaxially strained periodic supercell shown in Fig. 1 has

three additional contributions to the total energy: (1) the

strain dependence of the excess energy of the corners, (2)

the elastic interaction energy due to the relaxation of the

strain field near the edges and corners, and (3) the energy

of elastic interaction between periodic images of the trian-

gular hole. The total potential energy as a function of equi-

biaxial strain e is

Uðe;Acell; LÞ ¼ U0 þ UBðe;Acell; LÞ þ 3ðsLþ E
0

CÞe

þ 3

2
ðEeLþ E

00

CÞe2; (2)

where U0 is the potential energy at zero strain, Acell is the

area of the periodic cell, L is the edge length of the equilat-

eral triangular hole, s is the edge stress, and Ee is the edge

elastic modulus. The term UB denotes the contribution from

the elastic energy of the 2D bulk material and can be written

as UBðe;Acell; LÞ ¼ MðAcell �
ffiffiffi

3
p

L2=4Þe2 þ Uintðe;Acell; LÞ,
where M¼E/(1� �) is the biaxial modulus of the mono-

layer, � is Poisson’s ratio, and Uint accounts for the elastic

energy of interaction between defects. It should be noted that

the energy UB is independent of the atomic structure of the

edge and depends only on the applied strain, geometrical pa-

rameters, and elastic properties of bulk 2D monolayer. Con-

sequently, UB can be calculated exactly for any configuration

using a continuum elasticity model. The corners of the hole,

being regions of stress concentration, are particularly suscep-

tible to bond stretching and bond-angle distortions. These

effects are not captured by the classical linear elastic terms

in UB and so we explicitly account for these higher-order

effects by expanding the corner energy EC to second order in

strain. Once the total potential energy is obtained as a func-

tion of e and L, the edge elastic properties can be readily

computed via fitting to Eq. (2).
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FIG. 1. (a) Schematic of monolayer BN

with triangular holes with zigzag ð10�10Þ
N-edges (left) and ð�1010Þ B-edges

(right). The dotted lines denote a 13� 13

BN periodic supercell. (b) Variation of

potential energy of the supercell with

equibiaxial strain e. The change in poten-

tial energy for a pristine BN monolayer

BN (dashed lines) is also shown for com-

parison. (c) Localization of spin density

at the N- and B-edges; yellow isosurfa-

ces are plotted at a spin density of

0.005 e�/Bohr3.
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First, we apply this method to compute edge stresses for

the zigzag ð�1010Þ B-edge and ð10�10Þ N-edge of monolayer

BN (Fig. 1). Our total energy calculations were performed

using spin-polarized density functional theory (DFT) as

implemented in the software package VASP.22 Electron

exchange and correlation were described using the

generalized-gradient approximation of the Perdew-Burke-Ern-

zerhof form23 and projector-augmented wave potentials were

used to treat core and valence electrons.24,25 In all cases, we

employed a plane-wave kinetic energy cutoff of 400 eV. As

shown in Fig. 1(a), two periodic 13� 13 BN supercells con-

taining triangular holes with B- and N-terminated zigzag

edges were constructed at the optimized lattice parameter of

a¼ 2.513 Å. In each case, a small in-plane biaxial strain e was

uniformly applied and all ionic positions were optimized until

the Hellmann-Feynman forces were less than 0.01 eV/Å. For a

particular hole size L and strain e, the energy term UB was

then computed using a finite element model with 2D bulk

elastic modulus E¼ 19.86 eV/Å2 and Poisson’s ratio �¼ 0.17

which were obtained from DFT calculations on a pristine

monolayer BN. Our computed values for both the lattice pa-

rameter and the elastic properties of monolayer BN are in

close agreement with experiments3 and earlier DFT stud-

ies.18,19 Finally, the edge stress s was then extracted by fitting

Eq. (2) to the variation of U–UB versus hole size L.

Fig. 1(b) shows the variation in total energy as a func-

tion of applied strain for three different hole sizes. From

thermodynamics, it follows that the potential energy of an in-

finite 2D monolayer at 0 K must have a minimum at zero

strain. In contrast, as Fig. 1(b) shows, the potential energy

displays a minimum at compressive strains of approximately

�0.5% and �0.8% for sheets containing holes with zigzag

B- and N-edges, respectively. A careful examination of Eq.

(2) suggests that the magnitude and sign of the residual strain

depends not only on the structure of the edge (equivalently

the edge stress s), but also on elastic interactions between

holes (“defects”) as well as the strain dependence of the cor-

ner energy. This is in distinct contrast to nanoribbons where

the residual strain depends only on the structures of the edges

and their effective elastic moduli. Table I shows the

extracted values of the edge stresses for zigzag B- and N-

edges obtained via fitting to Eq. (2). It is clear that the edge

stresses for both the edges are compressive. The large com-

pressive stress for ð10�10Þ N-edge (�0.99 eV/Å) results from

a distortion of BN hexagons near the free edges such that B-

N bonds at the N-edge are shorter by �2% than the bonds in

the interior domain. The BN hexagons with ð�1010Þ B-edges

distort to a smaller extent (bonds are shorter by �1% than in

the interior) than those at N-edges resulting in a lower edge

stress for the B-edge. However, due to a large difference

between the edge stresses of these distinct terminations, the

average edge stress of �0.6 eV/Å is sufficiently different

from that of either edge and does not accurately reflect the

deformation of the BN lattice near the individual zigzag

edges. Furthermore, it is interesting to note that the average

value of edge stress for BN zigzag edges (�0.6 eV/Å) shown

in Fig. 1 is close to the edge stress for the stoichiometric

low-energy armchair edge orientation (�0.55 eV/Å18). In

Fig. 1(c), we also present the spatial distribution of the spin

density localized at the B- and N-edges. With a net magnetic

moment of �1 lB per edge B or N atom, the magnitude for

ferromagnetic ordering is identical for both B- and N-edges.

To verify the accuracy of the method presented above

for computing edge stresses for individual ð�1010Þ B-edges

and ð10�10Þ N-edges, we have also computed the average

edge stress directly from a simulation of a zigzag BN nano-

ribbon (Fig. 2). The average edge energy is given by

c ¼ ðU � NBNEBNÞ=2L, where U is the total energy at zero

strain, NBN the number of BN pairs, and EBN is the potential

energy per BN pair in a pristine BN monolayer. Our calcu-

lated average edge energy of 1.21 eV/Å agrees well with ear-

lier reported results.18,20 Fig. 2(a) also shows the distribution

of spin density localized near the free edges. The nanoribbon

is in a ferromagnetic state and the spin population analysis

assigns a net magnetic moment of �1 lB per edge atom for

both B- and N-edges. Therefore, both B and N atoms at the

free edges in the triangular hole model (Fig. 1) and the nano-

ribbon model (Fig. 2) are in identical electronic and mag-

netic states, thus facilitating a meaningful comparison

between the elastic properties obtained by the two

approaches. For the nanoribbon model, a uniform strain e
was applied along the length of the ribbon, and the total

energy was calculated using spin-polarized DFT. Fig. 2(b)

shows the variation of the potential energy for different rib-

bon widths. It is clear that for all nanoribbon widths, the

edge stress is compressive. By fitting to Eq. (1), the average

edge stress for zigzag B- and N-edges was obtained as

�0.52 6 0.018 eV/Å. From the values listed in Table I, we

see that the average edge stress for the BN zigzag nanorib-

bon (�0.52 eV/Å) agrees reasonably well with the average

value of the edge stresses of individual edges obtained via

the triangular hole model (�0.60 eV/Å). Finally, we have

also computed the edge stress for the stoichiometric armchair

BN edge using both a triangular hole model and a

TABLE I. Edge stress s for the N-terminated and B-terminated zigzag bo-

ron nitride edges obtained from the triangular hole model (Figure 1).

Edge stress s (eV/Å)

N-terminated zigzag edge B-terminated zigzag edge

�0.99 6 0.006 �0.22 6 0.005
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FIG. 2. (a) Schematic of a BN nanoribbon with zigzag N- and B-edges. The

dashed lines indicate the periodic supercell. The localization of the spin den-

sity at the edges is also shown; yellow isosurfaces indicate spin density of

0.005 e�/Bohr3. (b) Variation of the potential energy of the BN nanoribbon

with uniaxial strain e for three different widths W.
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nanoribbon model. We find that the edge stress obtained

using the triangular hole model (�0.39 eV/Å) agrees well

with the value obtained independently from the nanoribbon

model (�0.41 eV/Å), thus providing a self-consistent check

supporting the accuracy of our approach.

A recent DFT study has pointed out the existence of a va-

riety of non-equivalent magnetic configurations in bare zigzag

BN nanoribbons.26 These configurations include ferromag-

netic ordering at both B- and N-edges (the case considered

here), and antiferromagnetic ordering at the B-edge with fer-

romagnetic ordering at N-edge, among others. The energy dif-

ferences of all magnetic configurations were reported to be

within 7 meV/atom, thus suggesting that all configurations are

thermally accessible at room temperature.26 Using DFT simu-

lations based on basis sets, Jun et al. reported an average ten-

sile edge stress of 0.32 eV/Å for nonmagnetic zigzag BN

nanoribbons.18,27 In another DFT study, Huang et al. reported

an average tensile edge stress of 0.64 eV/Å for a zigzag nano-

ribbon with ferromagnetic N-edge and antiferromagnetic B-

edge.20 In contrast to these studies, we find that the edge stress

is compressive for both B- and N-terminated zigzag edges

with ferromagnetic ordering being preferred. As shown in

Figs. 1 and 2, the magnetic states at B- and N-edges for both

triangular holes and nanoribbons are identical and yield a con-

sistent sign and magnitude of edge stress. Thus, it is evident

that both the magnitude and sign of the edge stress—and the

resulting structural instabilities—crucially depend upon mag-

netic ordering at the edge.

Having verified the accuracy of our approach for deter-

mining edge stresses for individual non-stoichiometric edges

in BN, we next focus our attention on commonly observed

edges in MoS2 monolayers.6,28–30 So far, the edge elastic

properties of single-layer MoS2 have not yet been reported

in the literature. In particular, we will investigate two

non-stoichiometric high-symmetry edges: the ð�1010Þ sulfur

edge (S edge) and the ð10�10Þ molybdenum edge (Mo edge).

The ð10�10Þ Mo edge exposes a row of Mo atoms that are

coordinated with only four S atoms rather than six as in the

bulk. The bare ð10�10ÞMo edge with unsaturated bonds is en-

ergetically unstable and is usually not observed. It has been

shown that the clean ð10�10Þ Mo edge can be saturated with

extra S atoms in two ways: with an S-dimer termination con-

sisting of an additional row of dimerized S atoms or the S-

monomer termination with half the number of S atoms

reconstructed in-plane with a 2� 1 periodicity (Fig. 3).28–30

For the pristine MoS2 monolayer, we obtained an opti-

mized lattice parameter a¼ 3.19 Å, elastic modulus

E¼ 7.434 eV/Å2, and Poisson’s ratio �¼ 0.25. The optimized

lattice parameter is in good agreement with earlier reported

values.30–32 As in the case of BN zigzag edges, the edge

stresses for individual non-stoichiometric edges can be obtained

in a straightforward manner by constructing periodic MoS2

supercells with a triangular hole terminated with various edges

of interest. However, as we explain next, the equivalence

between the computation of edge elastic properties of the nano-

ribbon and the triangular hole offers a more convenient way of

determining the edge stresses for all the edges of interest here

with a minimal number of expensive DFT calculations. In this

approach, the edge stress for the ð�1010Þ S edge is first obtained

via the triangular hole method. Then, a nanoribbon terminated

with one ð�1010Þ S edge and either a ð10�10Þ Mo edge with S-

monomer or S-dimer termination is constructed to obtain the

average edge stress of the ð�1010Þ S edge and the ð10�10Þ Mo

edge with S-monomers/dimers. The nanoribbon calculation is

computationally much cheaper than the hole in a large 2D

sheet. Knowing the edge stress for one edge from the hole cal-

culation, the edge stress for the remaining edge is readily

obtained from the nanoribbon average value.
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FIG. 3. (a) Variation of the potential energy with equibiaxial strain e for monolayer MoS2 containing a triangular hole with ð�1010Þ S edges. The change in

potential energy for a pristine MoS2 monolayer (dashed lines) is also shown for comparison. (b) and (c) Variation of the potential energy of the non-

stoichiometric MoS2 nanoribbon with uniaxial strain e for three different ribbon widths W. In (b), the nanoribbon is terminated with ð�1010Þ S edge (top) and

ð10�10Þ Mo edge with S-monomers (bottom). In (c), the nanoribbon is terminated with ð�1010Þ S edge (top) and ð10�10Þ Mo edge with S-dimers (bottom). In all

cases, the dotted lines in the atomic models indicate the periodic supercell.
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Among the three edges of interest, the ð�1010Þ S edge

offers an ideal choice for the triangular hole computation as

the edge S atoms are in near perfect registry with the bulk

lattice, resulting in very small deformation of Mo-S bonds

along the edge as well as at the corner. Figure 3(a) shows a

periodic MoS2 supercell with a triangular hole with ð�1010Þ S

edges as well as the variation of the potential energy with the

biaxial strain e for three different hole sizes. From Eq. (2),

the edge stress for the ð�1010Þ S edge is obtained to be

0.25 eV/Å. Figures 3(b) and 3(c) show the atomic model as

well as the variation of the potential energy with uniaxial

strain for nanoribbons with ð�1010Þ S edge and S monomer/

dimer-terminated ð10�10Þ Mo edges. The average edge

stresses for the nanoribbon models in Figs. 3(b) and 3(c) are

1.30 eV/Å and 0.45 eV/Å, respectively. The edge stresses for

the individual edges are listed in Table II. For all three edges,

we find that the edge stress is tensile. It is also evident that

the magnitude of the edge stress is directly related to the de-

formation of Mo-S bonds at the edge—the ð10�10Þ Mo edge

with S-monomer reconstruction has a relatively large edge

stress of 2.35 eV/Å. The large tensile edge stress for the

ð10�10Þ Mo edge with S-monomers is comparable to gra-

phene armchair edges reconstructed with pentagon and hep-

tagon pairs (2.44 eV/Å).16 It is known that compressive edge

stresses can lead to spontaneous twisting or warping of

edges,12,14,33 which decays with distance away from the

edge. On the other hand, edges with tensile edge stresses can

lead to large-scale curling of the 2D sheet.34 Based on our

computations, MoS2 monolayers are likely to display the lat-

ter behavior, especially with exposed S-monomer terminated

ð10�10Þ Mo edges. For the sake of completeness, using the

nanoribbon model, we have also computed the edge stress

for stoichiometric armchair ð11�20Þ MoS2 edge (listed in Ta-

ble II), which is nearly the same as the zigzag S-edge.

In conclusion, we have presented a facile approach for

accurately and unambiguously determining the edge elastic

properties for non-stoichiometric edges of 2D monolayers

using a combination of DFT and continuum elasticity mod-

els. Based on this approach, we have computed the edge

stresses for ð10�10Þ and ð�1010Þ zigzag edges of hexagonal

BN and MoS2 monolayers. Our results show that the edge

stresses for individual non-stoichiometric edges can differ

significantly from the average values typically reported in

the literature. The approach presented here is quite general

and can be employed to determine edge stresses for non-

stoichiometric edges of several other 2D or quasi-2D com-

pound monolayers, e.g., transition metal oxides (MoO3,

WO3, V2O5) and transition metal dichalcogenides (WS2,

MoSe2, MoTe2). Furthermore, with elementary modifica-

tions to the shape of the hole and Eq. (2), our approach can

also be extended to crystal lattices with any general in-plane

symmetry, where edges with orientation h and hþ180� are

non-identical.
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We study the elastic response of graphene nanomeshes based on molecular-statics and

molecular-dynamics simulations of uniaxial tensile deformation tests. Elastic properties are

determined as a function of the nanomesh architecture, namely, the lattice arrangement of the

pores, pore morphology, material density (q), and pore edge passivation, and scaling laws for the

density dependence of the elastic modulus M, M(q), are established. We find that, for circular

unpassivated pores, M scales with the square of q. Deviations from quadratic scaling are most

strongly influenced by pore morphology and, to a lesser extent, by pore edge passivation and

temperature. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4871304]

Graphene nanomeshes (GNMs) are graphene nanostruc-

tures consisting of a periodic arrangement of nano-scale holes

or pores in the graphene lattice with neck widths less than

10 nm, mimicking dense arrays of ordered nanoribbons, which

can open a band gap in graphene’s electronic band structure

making it semiconducting.1 Such GNMs are typically pre-

pared using block copolymer lithography and have been used

in the fabrication of field-effect transistors with exceptional

functionality.1 Theoretical studies have explored the relation-

ship between GNM structure and electronic properties,2–4

including the opening of a band gap in the electronic band

structure and the dependence of this gap on the GNM porosity

and pore lattice symmetry.5–7 Establishing rigorous structure-

property-function relationships in such patterned graphene

nanostructures is of utmost importance for their optimal

design toward enabling a broad range of technological

applications.

GNMs also constitute a class of two-dimensional (2D)

ordered porous materials, which, together with other gra-

phene materials such as crumpled graphene and graphene

foam, have attracted a lot of interest due to their potential for

applications stemming from their high intrinsic surface area

in conjunction with the inherent remarkable electronic, ther-

mal, and mechanical properties of graphene.8 Increasing po-

rosity decreases the porous material’s density potentially

causing dramatic deterioration of its mechanical properties,

which emphasizes the importance of elastic modulus-density

relations for materials design purposes. In natural porous or

cellular materials, such as bone, the elastic modulus M scales

with the square of the density q, M�q2. However, nano-

structured materials, such as ordered nanoporous silicas9 fab-

ricated to function as low-dielectric-constant insulators in

microelectronic devices,10 are less sensitive to porosity,

exhibiting modulus-density scaling relations that are not as

steep as those of natural cellular solids, with scaling expo-

nents p< 2.9,11 The influence on the mechanical properties

of graphene of point defects, such as vacancies and

Stone-Wales defects12 as well as high vacancy concentra-

tions due to irradiation,13 have been studied using

atomic-scale simulations. Nevertheless, in spite of their fun-

damental and technological importance, the mechanical

properties of GNMs and their dependence on the GNM ar-

chitectural parameters have not been studied systematically.

The purpose of this Letter is to establish relations for the

elastic properties of GNMs as a function of the various pa-

rameters that fully define the nanomesh architecture, as well

as of thermal and loading conditions. Toward this end, we

conduct a systematic and comprehensive study of the elastic

response of GNMs to uniaxial tensile straining based on at-

omistic simulations according to reliable many-body intera-

tomic potentials. We derive scaling laws for the dependence

of the GNM’s elastic modulus on its density for various

nanomesh architectures characterized by different pore lat-

tice arrangements and pore sizes and determine the effects of

pore morphology, pore edge passivation, and temperature on

such modulus-density relations.

We constructed GNMs by introducing circular or ellipti-

cal pores in regular periodic arrangements (pore lattices) in

single-layer graphene, as depicted in Fig. 1. Hexagonal

(HEX), square (SQR), and honeycomb (HON) pore lattices

were examined in this study. The center-to-center distance

between neighboring pores was fixed at 24 C-C bond

lengths. Both circular and elliptical pore morphologies were

considered; elliptical pores were examined to study anisot-

ropy effects for different loading directions. In GNMs with

circular pores, the pore size was controlled by setting the

pore radius. In GNMs with elliptical pores of semi-major

and semi-minor (principal) axes a and b, respectively, the

pore size was controlled by setting b and the aspect ratio

f� a/b. Controlling both the pore size and the pore center-to-

center distance effectively controls the GNM density, q, and

the GNM neck size (width), w. For all the GNM structures

and morphologies examined, both unpassivated (dangling C

bonds) and passivated (hydrogenated) pore edges were

considered.

a)Author to whom correspondence should be addressed. Electronic mail:
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The generated GNMs were subjected to mechanical test-

ing, namely, uniaxial tensile straining at constant tempera-

ture, which was simulated by employing molecular-statics

(MS) and molecular-dynamics (MD) simulations, i.e., at

T¼ 0 K and at non-zero temperatures, respectively. Both MS

and MD simulations were performed using the LAMMPS

software package.14 In the simulations, interatomic interac-

tions in GNMs were described according to the Adaptive

Interatomic Reactive Empirical Bond-Order (AIREBO)

potential.15 In the MS simulations, strain increments of

0.01% were applied along the zigzag (henceforth denoted as

x) and armchair (henceforth denoted as y) directions of the

graphene lattice up to a maximum strain of 0.5% with full

atomic relaxation performed at each strain level. It should be

mentioned that for GNMs with elliptical pore morphologies,

the major and minor axes of the pores are directed along y
and x, respectively. These MS computations were carried out

throughout the range of GNM architectural parameters (pore

lattice, pore size, pore aspect ratio f, and pore passivation).

At each point in parameter space, the GNM elastic modulus,

M, was determined by a quadratic fit to the computed data

for the potential energy, E, as a function of strain, e,
E¼Me2/2, for each loading direction. MD simulations were

used to compute M as a function of the GNM architectural

parameters at non-zero temperatures; results at T¼ 300 K are

reported here. The initial configurations for the MD simula-

tions were GNMs fully relaxed at 0 K according to

conjugate-gradient energy minimization with respect to the

atomic coordinates; these configurations were then relaxed at

T¼ 300 K and zero pressure employing the Berendsen ther-

mostat and barostat.16 Subsequently, each configuration was

strained along either the x- or the y-direction up to a strain

level of 1% using a time step of 0.5 fs and a strain rate of

1� 10�4 ps�1. As in the MS simulations, the supercell edge

length in the directions normal to the applied strain was kept

constant during the MD simulations. The modulus M was

obtained from the slope of the resulting stress-strain curve in

the low-strain limit, with atomic-level stresses computed

according to the Virial theorem. Various supercell sizes were

used for the MD simulations to confirm that the results are

converged with respect to the supercell size.

Figure 2 shows the results of our MS simulations for the

dependence of the elastic modulus M on the density q for

GNMs with unpassivated pores under uniaxial straining. The

results are given in a log-log plot, where M is plotted as a

function of q/q0 with q0 being the normal density of perfect,

pristine single-layer graphene. The various computed data

sets shown in Fig. 2 are organized according to the pore mor-

phology, given by f, and the straining direction, x or y. For

each data set, the corresponding straight line in the log-log

plot represents the optimal fit to the data. The excellent fits

imply that the modulus-density relations of the GNMs obey

the scaling law M/M0¼ (q/q0)p, with M0 being the modulus

of pristine graphene along the relevant direction of straining.

For circular pores, f¼ 1, the elastic response of the GNM is

isotropic, Mx¼My¼M, where the subscripts indicate the

principal directions of straining, and the corresponding two

data sets (open diamonds and �-marks) practically overlap.

However, for elliptical pores, f> 1, the elastic response of

the GNM is anisotropic and the corresponding moduli (open

squares and crosses for straining along x and y, respectively,

at f¼ 3/2 and open circles and stars for straining along x and

y, respectively, at f¼ 2) obey distinct scaling laws, Mx �
ðq=q0Þpx and My � ðq=q0Þpy , with scaling exponents px 6¼ py.

The results from the detailed statistical analysis of the

data are listed in Table I focusing on the scaling exponents

px and py for all pore morphologies, f, examined. The results

of Table I also distinguish among the various pore lattice

arrangements and indicate that the M(q) relations (scaling

laws) have a very weak (if any) dependence on the pore lat-

tice structure. This also is evident from the results of Fig. 2,

where a distinction among data sets with respect to the pore

lattice arrangement in the GNMs has not been made. The

extremely weak effect of the GNM’s pore lattice structure on

its M(q) relation also is highlighted in the inset in Fig. 2 for

straining along x at f¼ 3/2; the three data sets in the inset for

GNMs with hexagonal, square, and honeycomb pore lattices

and the corresponding straight lines from the fitting of these

data sets practically overlap, confirming that the scaling

exponent in the M(q) relation is practically (within statistical

FIG. 1. Schematic representation of GNM architectures with (a) hydrogen-

ated circular pores arranged in a hexagonal lattice and (b) unpassivated ellip-

tical pores arranged in a square lattice in single-layer graphene. The red box

denotes the nanomesh supercell.

FIG. 2. Data for the dependence of the elastic modulus M on the scaled den-

sity q/q0 derived from MS simulations of uniaxial tensile straining tests on

GNMs with unpassivated pores. Data sets are organized according to the

pore morphology, expressed by the pore aspect ratio f, and the straining

direction (x or y). Open diamonds, squares, and circles represent the elastic

response of GNMs consisting of pores with f¼ 1, 3/2, and 2, respectively, to

straining along x, with �-marks, crosses, and stars representing the elastic

response of GNMs consisting of pores with f¼ 1, 3/2, and 2, respectively, to

straining along y. The inset in the plot depicts the effect of the pore morphol-

ogy on the M(q/q0) dependence for straining along x of GNMs consisting of

pores with f¼ 3/2: open diamonds, circles, and squares represent the elastic

response of GNMs with pores arranged in hexagonal, honeycomb, and

square lattices, respectively. For each data set, the corresponding straight

line in the log-log plot represents the optimal fit to the data based on nonlin-

ear regression.
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error) independent of the GNM’s pore lattice arrangement.

Finally, we mention that the scaling exponents reported in

Table I are statistical outcomes based on optimal fitting of

the data according to nonlinear regression, as opposed to lin-

ear regression of the logarithms of the data, logM vs. logq.

In any case, the differences for px and py between the

reported values and those derived from linear regression are

systematic but very minor (within 5% of the reported scaling

exponents).

Our results for GNMs with circular unpassivated pores,

Fig. 2 and Table I, indicate that within statistical error, at

f¼ 1, px¼ py� 2, i.e., M�q2. This result is consistent with

the elastic response of other cellular materials,17–20 including

graphene elastomers.18 Interestingly, we also find that at

moderate to high densities (q=q0> 0.5) the M(q) scaling for

circular pores is nearly optimal, closely following the

Hashin-Shtrikman upper bound M/M0� (q=q0)=[3� 2

(q=q0)].21,22 However, the M(q) relation for GNMs with

f> 1 deviates strongly from this classical cellular response.

Specifically, we find (Fig. 2 and Table I) that, within statisti-

cal errors less than 10% of the scaling exponent, at f¼ 3/2,

px� 3, and py� 5/3; and at f¼ 2, px� 4, and py� 3/2.

Generalizing these scaling laws gives px� 2f and

py� (fþ 1)/f, i.e., Mx� q2f and My�q(fþ1)/f for the aniso-

tropic elastic response of GNMs with unpassivated pores of

elliptical morphology with aspect ratio f. Detailed theoretical

analysis to fundamentally derive the above scaling laws is

beyond the scope of the present study and will be pursued in

a forthcoming publication. We only mention that as the value

of f increases, effects of stress concentration at the tips of the

elongated pores introduce additional complexity to the scal-

ing analysis.

The effects of pore edge passivation on the M(q) rela-

tions of GNMs are examined in Fig. 3, which shows results

of MS simulations for the elastic response of GNMs with H-

passivated pores in terms of modulus-density relations. The

results are presented and organized in exactly the same man-

ner as those for GNMs with unpassivated pores in Fig. 2. It

is evident from the results of Fig. 3 that the elastic response

in this class of GNMs also obeys the scaling laws Mx � qpx

and My � qpy , and the outcomes of the detailed statistical

TABLE I. Values of scaling exponents px and py calculated from statistical analysis (nonlinear regression) of the computed data for the GNM elastic modulus

dependence on density based on MS simulations and MD simulations at T¼ 300 K of uniaxial straining of GNMs along x and y, respectively. Results are pre-

sented from data analysis for different elliptical pore morphologies, expressed by the aspect ratio f, pore edge passivation, and various pore lattice arrange-

ments, namely, HEX, SQR, and HON, as well as from analysis of all the data for the various pore lattice arrangements combined (ALL). N denotes the number

of points in each data set analyzed.

N px py N px py N px py

Unpassivated pores,

f¼ 1, T¼ 0 K

Unpassivated pores,

f¼ 3/2, T¼ 0 K

Unpassivated pores,

f¼ 2, T¼ 0 K

ALL 45 2.04 6 0.13 2.11 6 0.13 50 3.07 6 0.21 1.63 6 0.13 43 3.84 6 0.28 1.42 6 0.14

HEX 23 2.08 6 0.12 2.12 6 0.12 18 3.05 6 0.21 1.60 6 0.17 17 3.82 6 0.33 1.44 6 0.17

HON 10 2.07 6 0.19 2.16 6 0.11 19 3.14 6 0.17 1.64 6 0.13 16 3.96 6 0.33 1.40 6 0.28

SQR 12 1.95 6 0.27 2.04 6 0.23 13 2.93 6 0.32 1.65 6 0.21 10 4.23 6 0.53 1.66 6 0.26

H-passivated pores,

f¼ 1, T¼ 0 K

H-passivated pores,

f¼ 3/2, T¼ 0 K

H-passivated pores,

f¼ 2, T¼ 0 K

ALL 41 1.78 6 0.11 1.86 6 0.11 50 2.71 6 0.21 1.45 6 0.13 43 3.39 6 0.27 1.27 6 0.14

HEX 22 1.78 6 0.06 1.81 6 0.04 18 2.60 6 0.19 1.29 6 0.14 17 3.44 6 0.27 1.23 6 0.16

HON 9 2.06 6 0.09 2.13 6 0.11 19 2.91 6 0.20 1.57 6 0.13 16 3.70 6 0.33 1.37 6 0.27

SQR 10 1.82 6 0.26 1.90 6 0.19 13 2.55 6 0.28 1.65 6 0.14 10 3.52 6 0.41 1.25 6 0.42

Unpassivated pores,

f¼ 1, T¼ 300 K

Unpassivated pores,

f¼ 2, T¼ 300 K

HEX 8 2.40 6 0.14 2.42 6 0.12 12 3.71 6 0.41 1.71 6 0.16

FIG. 3. Data for the dependence of the elastic modulus M on the scaled den-

sity q/q0 derived from MS simulations of uniaxial tensile straining tests on

GNMs with H-passivated pores. Data sets are organized according to the

pore morphology, expressed by the pore aspect ratio f, and the straining

direction (x or y). Open diamonds, squares, and circles represent the elastic

response of GNMs consisting of pores with f¼ 1, 3/2, and 2, respectively, to

straining along x, with �-marks, crosses, and stars representing the elastic

response of GNMs consisting of pores with f¼ 1, 3/2, and 2, respectively, to

straining along y. For each data set, the corresponding straight line in the

log-log plot represents the optimal fit to the data based on nonlinear regres-

sion. The inset in the plot depicts the effect of the pore edge passivation on

the M(q/q0) dependence for straining along x and y of GNMs consisting of

circular pores, f¼ 1: open circles and crosses represent the elastic response

of GNMs with unpassivated pores to straining along x and y, respectively,

with open diamonds and �-marks representing the elastic response of

GNMs with H-passivated pore edges to straining along x and y, respectively.

Solid and dashed straight lines in the log-log plot represent optimal fits

based on nonlinear regression to the data associated with straining along x
and y, respectively.
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analysis of the computed data also are included in Table I.

Moreover, the results of Fig. 3 and Table I show that the

effect of pore lattice arrangement on the M(q) relations

remains very weak in spite of the pore passivation.

Comparing the results of Fig. 3 with those of Fig. 2 shows

that Mx and My increase as a result of H passivation with

respect to the corresponding elastic moduli of GNMs with

unpassivated pore edges. This elastic modulus strengthening

due to H passivation is shown most clearly in the inset in

Fig. 3, where the data sets for GNMs with passivated and

unpassivated circular pore edges are compared directly. This

modulus strengthening due to pore edge passivation also is

seen clearly through the lowering of the corresponding scal-

ing exponents with respect to those for GNMs with unpassi-

vated pores. In the isotropic case, f¼ 1, px� py� 1.8< 2,

which is the scaling exponent for GNMs with circular unpas-

sivated pores. This lowering of the scaling exponent below 2

indicates that, as a result of GNM pore passivation, the elas-

tic moduli become less sensitive to porosity than those of

classical cellular materials. In the anisotropic cases exam-

ined, at f¼ 3/2, px� 2.7< 3, and py� 1.45< 5/3; and at

f¼ 2, px� 3.4< 4, and py� 1.3< 3/2. In general, pore edge

passivation strengthens the GNMs’ elastic moduli and makes

them less sensitive to porosity compared to those of GNMs

with unpassivated pores.

Finally, the effects of temperature on the M(q) relations

of GNMs with f¼ 1 and f¼ 2 are examined in Fig. 4, which

shows results of MD simulations for the elastic response of

GNMs with unpassivated pores at T¼ 300 K. It is evident

from the results of Fig. 4 that at non-zero temperature, the

elastic response of GNMs continues to obey the scaling laws

Mx � qpx and My � qpy , and the outcomes of the statistical

analysis of the smaller data sets in this case for the scaling

exponents also are listed in Table I. As expected, raising the

temperature softens the elastic moduli. At f¼ 1, for circular

pores, the elastic response of the GNMs is isotropic (overlap-

ping data sets in Fig. 4) with Mx¼My within the statistical

error and px¼ py� 2.4> 2, which indicates an increased sen-

sitivity to porosity compared to that of classical cellular

materials. For elliptical pores of f¼ 2, the elastic response of

the GNMs remains anisotropic with px� 3.7< 4 and

py� 1.7> 3/2, i.e., the scaling exponent px and py decreases

and increases, respectively, with respect to their values in the

static reference state (T¼ 0). Using the scaling exponent dif-

ference px � py as a metric of the anisotropy in the GNM

elastic response, it is evident that this elastic anisotropy

weakens with increasing temperature.

In summary, we conducted a systematic study of the elas-

tic response of graphene nanomeshes to uniaxial straining

along the zigzag (x) and armchair (y) directions and deter-

mined the dependence of the nanomesh’s elastic modulus M
on the nanomesh density q, pore lattice structure, pore mor-

phology, and pore edge passivation. We found that, for given

density and pore morphology, the elastic moduli are practi-

cally independent of pore lattice arrangement and established

M(q) relations that obey the scaling laws Mx � qpx and

My � qpy . At zero temperature, for circular unpassivated

pores, the elastic response is isotropic, Mx¼My, with

px¼ py¼ 2. For elliptical pores with aspect ratio f> 1, the

elastic response of the nanomeshes becomes anisotropic,

Mx<My, with scaling exponents px� 2f and py� (fþ 1)/f.
Passivating the nanomesh pore edges with H atoms strength-

ens their elastic moduli and lowers their sensitivity to porosity

through lowering of the scaling exponents. With increasing

temperature, the elastic moduli of nanomeshes with circular

pores soften and become more sensitive to porosity and the

anisotropic elastic response of nanomeshes with elliptical

pores of f> 1 becomes more isotropic. Our results for the

M(q) relations emphasize the strong dependence of the

GNMs’ elastic moduli on the GNMs’ neck sizes and highlight

the role of pore edge passivation and the need for neck size

control to guarantee the structural integrity of the nanomeshes.

Our findings also provide experimentally testable hypotheses

for the mechanical behavior of GNMs, as an important class

of patterned nanoporous 2D functional materials.
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Monolayer transition-metal dichalcogenides (TMDCs) display valley-selective circular dichroism
due to the presence of time-reversal symmetry and the absence of inversion symmetry, making them
promising candidates for valleytronics. In contrast, in bilayer TMDCs both symmetries are present and
these desirable valley-selective properties are lost. Here, by using density-functional tight-binding
electronic structure simulations and revised periodic boundary conditions, we show that bending of
bilayer MoS2 sheets breaks band degeneracies and localizes states on separate layers due to bending-
induced strain gradients across the sheets. We propose a strategy for employing bending deformations in
bilayer TMDCs as a simple yet effective means of dynamically and reversibly tuning their band gaps
while simultaneously tuning valley-selective physics.

DOI: 10.1103/PhysRevLett.112.186802 PACS numbers: 73.22.-f

Transition-metal dichalcogenides (TMDCs)—notably,
the Group-VI dichalcogenides—have been the subject of
much recent interest for nanoscale electronics and photon-
ics [1–5]. Single- and few-layerMX2 (M ¼ Mo,W; X ¼ S,
Se, Te) compounds, unlike graphene, display appreciable
electronic band gaps [4–7], making them promising
candidates for nanoscale digital electronics [8,9]. Upon
thinning multilayer sheets to monolayer thickness, TMDCs
undergo an indirect-to-direct gap transition leading to
strong and stable photoluminescence, which is attractive
for optoelectronic applications [4,6,7,10]. In addition,
recent experiments and simulations have shown that the
electronic and optical properties of few-layer TMDCs can
be controllably modified by external fields [11,12] and
mechanical strains [13–18]. The combination of chemical
composition, dimensionality, and external perturbations
thus provides a rich space of parameters for designing
optimized TMDC nanostructures for device applications.
TMDCs also allow for more complex manipulation of

their electronic properties. The band edges of monolayer
Group-VI TMDCs lie at the corners of their hexagonal
Brillouin zones, conventionally called K and K0 points, or
valleys. Since the monolayer lacks inversion symmetry,
the K and K0 valleys are related only by time-reversal
symmetry, which, in conjunction with spin-orbit splitting of
the band edges, associates a distinct magnetic moment with
each valley [19]. This property enables selective excitation
of each valley by circularly polarized light, as demonstrated
on MoS2 [20–22] and WSe2 [23] monolayers. In contrast,
bilayer TMDCs lose this valley-selective circular dichroism
because of the presence of both inversion and time-reversal
symmetries. As these symmetries are retained under homo-
geneous mechanical strains, such strains cannot be used

to break the valley degeneracy. This is unfortunate since
strain has been shown to alter the band gap by as much
as ∼120 meV=% strain in bilayer MoS2 [14]. Finding a
way to break valley degeneracy in strained bilayers would
be desirable, as it would enable reversible and simultaneous
control over the optical band gap and valley-selective
phenomena.
Fortunately, there are options for breaking inversion

symmetry in bilayer TMDCs. The first trick is to apply a
perpendicular electric field; this enables external control
over the valley magnetic moment [24,25], while giving
the charge carriers an additional degree of freedom, a
pseudospin, corresponding to separate layers in the sheet
[25–27]. While calculations suggest that the external field
can also tune the band gap [11], experimental realization
might be difficult as the required fields are rather large.
Mechanical strains, however, need only be modest to induce
appreciable band-gap tuning. Hence, in this Letter we
introduce a second trick, breaking the symmetry by inho-
mogeneous strains due to uniform bending. From elemen-
tary Euler-Bernoulli kinematics, bending imposes a linear
variation in strain normal to the layers [28]. Should interlayer
coupling be absent, each layer would then be an independent
monolayer whose band gap would correlate directly with
the strain in that layer. In this ideal picture, the K and K0
valleys of each layer could be independently excited with
photons of specific energy and helicity.
Could this idealized scenario be realized in layered

materials such as MoS2 with weak but certainly nonzero
interlayer coupling? We address this question in detail via
density-functional tight-binding simulations that employ
revised periodic boundary conditions to model the presence
of curvature in bilayer MoS2. We show that curvature can
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induce complete decoupling of layers around KðL0Þ and
K0ðLÞ points, meaning that bands localize on separate
layers and their energy shifts are governed by layer-specific
strains. Each bent layer then effectively behaves as an
independent monolayer, suggesting that distinct valleys in
distinct layers could indeed be excited independently.
These results suggest that curvature could provide a simple
yet effective strategy for simultaneous control over band
gaps and valley polarizations in few-layer TMDCs.
To model the electronic structure, we used the density-

functional tight-binding (DFTB) method with an estab-
lished set of Mo and S parameters [29,30]. The electronic
structures of TMDCs are known to be computationally
challenging due to their prominent spin-orbit and quasi-
particle features [10,31], and thus they are difficult to
model even with density-functional theory (DFT).
However, it has been shown that the movement of band
edges upon strain follows the same electromechanical
trends, regardless of the level of theory, be it DFT or
beyond [32]. Most important, these very same electro-
mechanical trends are also reproduced by DFTB [30,33],
and validated against DFT even for transport properties
[34]. Therefore, DFTB suffices well for the purpose of our
work, which is not dependent on high accuracy of numbers
but on correct electromechanical trends. For completeness,
however, we further validated the method by comparing it
explicitly to DFT results for the strain-dependence of
the true gap (indirect) and direct gap (at K and K0) for
bilayer MoS2 under equibiaxial strain (see Supplemental
Material [35]).
Efficient simulation of the bending deformations them-

selves was enabled by revised periodic boundary condi-
tions [36–39]. Conventionally, a flat sheet would be
simulated by the minimal unit cell spanned by vectors
a1 and a2 (in the xy plane), where jâ1 × â2j ¼ sinðπ=3Þ and
lattice constant a ¼ jaij ¼ 3.16 Å. Here, instead of creat-
ing periodic images by the usual translations along a1 and
a2, rotations were also used. First, cylindrical deformation
was modeled by taking one translation (by a1) and one
rototranslation (translation by a1 cosðπ=3Þ followed by
rotation of an angle α ¼ a sinðπ=3Þ=R around â1, where
R is the radius of curvature). Second, spherical deformation
was modeled by taking two distinct rotations with respect
to axes b̂1 and b̂2 by an angle α ¼ a=R, where b̂i × ẑ ¼ âi
[40]. Apart from the symmetry operations, the simulations
proceeded as for conventional periodic slabs. We note that
in the limit of small curvature, a is small compared to R and
the unit cell properties can thus be viewed as local
properties. We therefore emphasize that a notion about
an overall geometrical structure such as “cylinder” or
“sphere” is irrelevant [41]. The deformations are illustrated
in Fig. 1.
The curvature is quantified by the dimensionless param-

eter Θ ¼ H=ð2RÞ, where H ¼ 6.2 Å is the distance
between Mo-Mo planes in the bilayer. This parameter is

convenient because it equals the average tensile strain in
the outer layer (εout ¼ Θ) and the average compressive
strain in the inner layer (εin ¼ −Θ), independent of sheet
thickness [42]. Finally, for each enforced Θ, the structures
were optimized using 10 × 10 κ points and a maximum
force criterion of 0.01 eV=Å [40].
Let us first consider the effect of bending on the electronic

structure of bilayer MoS2. The first central result of this work
is that bending not only alters the band gap but also breaks
the band degeneracy as a result of broken layer symmetry
[Fig. 2]. This is in sharp contrast to the homogeneous
in-plane strains which, as noted earlier, can only change the
band gap but cannot break the layer degeneracy [Fig. 2 (top
row)]. The bending-induced changes can be understood
by considering the orbital composition of the bands. States
at the valence band (VB) maximum at Γ are dominated
by Mo dz2 and S pz orbitals while those at the conduction
band (CB) minimum at K=K0 are mostly comprised of
Mo dz2 with some mixing of S px and py [11,43,44].
Stacking of MoS2 layers confines the diffuse, out-of-plane
Mo dz2 and S pz states and increases their energy, causing
the direct-to-indirect gap transition from monolayer to
multilayer MoS2 [45]. It is precisely theseMo dz2-dominated
regions near the Γ point of the VB and KðL0Þ=K0ðLÞ points
of the CB that yield the greatest sensitivity to strain-induced
lifting of degeneracy upon bending (Fig. 2). On the other
hand, due to primary composition of in-plane Mo dx2−y2 and
Mo dxy orbitals together with a small mixture of S px and py
orbitals [11,43,44], the VB maxima at KðL0Þ=K0ðLÞ are
more resilient against bending. Moreover, the effect of
bending for given Θ is larger for spherical bending than
for cylindrical bending, in agreement with analogous effects
seen in equibiaxial versus uniaxial in-plane strains in
monolayer MoS2 [16,46].
In addition to orbital composition, it is instructive to

investigate the spatial natures of the states. As the second

FIG. 1 (color online). Schematic of bilayer MoS2 (purple
sheets) on a flexible substrate with (a) cylindrical and (b)
spherical curvature, as induced by applied moments Mb. Insets
show the corresponding Brillouin zones and high-symmetry
points in reciprocal space. K and L0, and K0 and L valleys are
equivalent, differing by a reciprocal lattice vector.
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central result we find that, although initially states are
delocalized across both layers, upon bending most of them
localize on separate layers (Fig. 2 middle and bottom rows).
The localization is particularly pronounced near the CB
edge at KðL0Þ=K0ðLÞ where also the strain-induced energy
splittings are significant. Note that localization can still
be observed near the VB edge at KðL0Þ=K0ðLÞ regardless
of negligible energy splitting. This means that it is now
possible to define layer-specific direct band gaps [at
KðL0Þ=K0ðLÞ] and layer-specific indirect band gaps
(between the VB at Γ and CB at KðL0Þ=K0ðLÞ), both of
which systematically decrease and increase with tensile and
compressive layer-specific strains. The computed layer-
specific direct gaps at KðL0Þ=K0ðLÞ are displayed in Fig. 3;
as seen, the gaps in each layer are in close quantitative
agreement with the DFTB direct gap at the K=K0 point of a
monolayer under in-plane, equibiaxial strain. Thus, these
results reveal that bending not only alters the fundamental
band gap of the bilayer but also decouples the layers at the

KðL0Þ=K0ðLÞ valleys and consequently allows for tuning of
the gaps of each layer simultaneously.
Based on the observed robustness of bending-induced

decoupling, we now propose a strategy to control valley
polarization in bent bilayer MoS2 (Fig. 4). For monolayer
MoS2, it is well known that optical transitions at the K and
K0 valleys are governed by the selection rule Δmj ¼ �1
and, as the rule is valid over a wide region of the
surrounding reciprocal space, it also carries over to the
band-edge (spin-orbit split) A and B excitons [21,22].
While in a monolayer spin and valley are coupled, in a
bilayer they are decoupled due to inversion symmetry, and
excitation by circularly polarized light can only control the
net spin but not the valley population [21]. This lack of
control will persist in bilayers under in-plane equibiaxial
strain, where only the overall band gap changes [Figs. 4(a)
and 4(b)]; this band-gap change is manifested experimen-
tally as a shift in the absorption and photoluminescence
peaks [13,14]. However, now that bending breaks inversion
symmetry and decouples the layers, could valley-selective
physics be realized in these decoupled monolayers? The
answer depends on spin-orbit (SO) splitting of the band
edges, which is absent in our implementation of DFTB. It is
nevertheless possible to advance general arguments to
address this issue by using previous works. First, for
monolayer MoS2, strain-induced changes in SO splitting
of the VB edge at K=K0 have been shown to be more than
an order of magnitude smaller than changes in the band
gaps [47]. Our own DFT studies corroborate this finding for
both strained monolayers and bilayers (see Supplemental
Material [35]). Second, previous DFT calculations by one
of us [11] have shown electronic decoupling of layers in
bilayer MoS2 under an external electric field, with similar
inversion-symmetry breaking. An examination of the SO
splitting of the VB edge shows that with decreasing

FIG. 2 (color online). Effect of stretching and bending on
bilayer MoS2 band structure. Flat bilayer under equibiaxial
strains ε (top row), bilayer under cylindrical bending (middle
row), and bilayer under spherical bending (bottom row) at values
ofΘ indicated at bottom. Bands are colored by the degree of wave
function localization to outer or inner layers, as obtained from
Mulliken population analysis.

FIG. 3 (color online). Calculated layer-specific direct band gaps
(filled symbols) at KðL0Þ=K0ðLÞ as a function of equibiaxial
strain within each layer of bilayer MoS2 subjected to spherical
bending. The outer and inner layers experience equibiaxial tensile
and compressive strains of magnitude ϵ ¼ �Θ, respectively, as
noted in the text. The dashed line is the DFTB direct gap at K=K0
of monolayer MoS2 under equibiaxial strain (no curvature).
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interlayer coupling (i.e., increasing electric field), the SO
splitting of the VB edge for each layer at K=K0 approaches
that of a monolayer (see Supplemental Material [35]). We
therefore infer, albeit indirectly, that SO splitting of the VB
edge at KðL0Þ=K0ðLÞ will likely persist under the combi-
nation of in-plane strains and layer decoupling as induced
by bending, leading to the reappearance of valley polari-
zation in each layer. Unlike the case of symmetry breaking
by external electric fields where the states from each layer
are nearly rigidly translated in opposite directions [11], the
band edges of each layer in the bent bilayers move towards
or away from each other depending upon the layer-specific
strain. Thus, it should further be possible to address a
specific layer and a specific valley by selecting both the
helicity and the energy of the photon [Fig. 4(c)]. In practice,
larger curvatures should induce larger energy differences
between layer-specific transitions, thus allowing for the
absorption peaks of circularly polarized light to become
more pronounced and differentiable. Our proposal is
complementary to the approach of Castellanos-Gomez et al.
[48] where interlayer coupling in folded MoS2 was reduced
by stacking disorder that includes regions of orientational
twist between adjacent MoS2 layers. These twisted regions
were shown to exhibit enhanced photoluminescence in
conjunction with both neutral and charged excitons,
characteristic of monolayer MoS2 [49].
In summary, we have shown that bending-induced strain

gradients can induce complete decoupling of layers around
KðL0Þ and K0ðLÞ valleys in bilayer MoS2, thus rendering

individual sheets as electronically independent monolayers
at these valleys with properties governed by layer-specific
strains. We propose that this phenomenon could allow
for selective pumping of individual K and K0 valleys of
specific layers by selecting the helicity and energy of the
exciting laser. Because the electronic structures and electro-
mechanics are similar across the entire family of Group-VI
TMDCs, we expect our results and proposals on MoS2 to
be broadly applicable and realizable in other Mo and W
dichalcogenides.
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