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ABSTRACT 

CHARACTERIZATION OF CA2+ INFLUX PATHWAY(S) 

DURING MOUSE OOCYTE MATURATION 

SEPTEMBER 2014 

BANYOON CHEON, B.E., SEJONG UNIVERSITY 

M.A., KOREA UNIVERSITY 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by Professor RAFAEL A. FISSORE 

 

Ca2+ signaling induced at fertilization, also known as oscillations, is essential in 

mammalian eggs to initiate early embryonic development. The generation of the oscillations 

relies on optimization of Ca2+ toolkit components during oocyte maturation. In this dissertation, 

we intend to deepen our understanding of how this differentiation of the Ca2+ toolkit, especially 

those components associated with Ca2+ influx, is achieved during maturation, and how it 

contributes to the filling of the ER Ca2+ store during the maturation and fertilization. 

 

We first identified the expression and characterized the function of the components of the 

Store Operated Ca2+ Entry (SOCE) during oocyte maturation. We observed that SOCE underwent 

suppression during maturation concomitant with an increase in [Ca2+] ER content. We 

demonstrated that the suppression of SOCE coincided with the inability of Stim1, the Ca2+ sensor 

in ER, to form puncta near the PM, which prevented interaction with Orai1, the channel on the 

PM. Consistent with a possible role on Ca2+ homeostasis in oocytes, overexpression of Stim1 and 

Orai1 increased basal Ca2+ levels during maturation, especially during the GV stage, but this 

influx was suppressed in MII eggs. These results suggest that Ca2+ uptake during maturation is 
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closely related to the Ca2+ content of the ER. Bypassing this inactivation via expression of mutant 

versions of Stim1 prevented oocytes from resuming meiosis. 

 

The inactivation of SOCE was due in part to changes in Stim1 organization during 

maturation. We found that Stim1 reorganization was occurred largely due to CDK1.  We 

confirmed the effect of phosphorylation by expressing several non-phosphorylated mutants of 

Stim1. These mutants displayed cortical location and puncta, and interact with Orai1, and 

enhanced Ca2+ influx at the MII stage. 

 

Thus, our study also demonstrates that Ca2+ influx and SOCE are actively regulated 

during mouse oocyte maturation by the MII stage, the stage of fertilization. The suppression of 

SOCE relies on phosphorylations on the C-terminal end of Stim1 by CDK1.Therefore our studies 

show that down-regulation of Ca2+ influx is required for oocyte maturation and meiotic 

progression, although it is still unclear how the sperm manages to re-activate Ca2+ influx after 

fertilization, and what channel(s) underlie Ca2+ influx during fertilization. Future studies should 

address how this is accomplished and the channel(s) that mediate it. 
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CHAPTER 1 

INTRODUCTION 

1.1 The Ca2+ signaling toolkit 

Ca2+ signaling controls numerous biological functions of cells such as motility, innate 

immunity, apoptosis, transmission of neuronal signal, transcription, and fertilization [1, 2]. Those 

various effects are initiated by numerous different stimuli of cells including electric, hormonal 

and/or mechanical stimulation, which converge to increase intracellular free Ca2+
, ([Ca2+]i) ; the 

released Ca2+ either directly binds and activates target proteins or indirectly activates target 

proteins by interacting with Ca2+ adaptor proteins  (Fig. 1-1). To be used as an effective signaling 

molecule, cells must tightly regulate the levels of baseline [Ca2+]i resting while at rest or un-

stimulated conditions. To accomplish this, cell compartmentalize Ca2+ such that there are  ~1-2 

mM Ca2+ in the extracellular space ([Ca2+]e), ~ a few hundred µM in the endoplasmic reticulum 

(ER) and between 50 to 100 nM in the cytoplasm [1, 2]. These large Ca2+ gradients across the 

plasma membrane, the cytoplasm and the ER are maintained not only by physical barriers, but 

also by active sequestration/extrusion of Ca2+ from the cytoplasm by molecules such as the 

sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) and the plasma membrane Ca2+ ATPase 

(PMCA), and a Na+/Ca2+ exchanger [1]. These large Ca2+ gradients between compartments are 

associated with constant leaks of Ca2+ into the cytoplasm, which requires the actions of the 

aforementioned system to maintain it at ~100 nM. 

The [Ca2+]i increases caused by most stimuli rely on two main sources of Ca2+;  one 

source is the ER and the other is Ca2+influx across the PM[2, 4]. Ca2+ release from the ER is 

equivalent to that from the sarcoplasmic reticulum (SR) in muscle cells, although it occurs mostly 

through inositol-1, 4, 5-triphosphate receptors (IP3R) instead of ryanodine receptors. IP3Rs-

mediated Ca2+ release is activated by the binding of IP3, which is generated by the hydrolysis of 
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phosphatidylinositol-(4,5)-bisphosphate (PIP2) by phospholipase C (PLC) [2]. Increases in [Ca2+]i 

mediated by Ca2+influx are made possible by Ca2+ entry via Ca2+ channels in the PM that respond 

to different stimuli, including membrane depolarization, extracellular agonists and depletion of 

the ER. Among these channels there are voltage gated Ca2+ channels (VGCCs), transient receptor 

potential (TRP) channels and Store Operated Ca2+ entry channels (SOCE) [1, 3, 5]. Specific 

stimuli open the aforementioned channels by changing the conformation of the protein and/or 

subunits, which favors conductivity. Particular cell types possess a specific complement of these 

channels, which are finely tuned to respond to their physiological functions. Regardless of the 

source, [Ca2+]i
 rises are translated into various cell functions via the activation of downstream 

proteins  [6]. 

Although the general properties of the Ca2+ toolkit required to regulate Ca2+ homeostasis 

is conserved among species and cell types, there are, as already pointed out, specific adaptations 

so that specific signals as well as specific decoding of these signals can be accomplished for 

distinct functions. Cells and/or organisms can accomplish this specificity by displaying proteins 

and enzymes with diverse sensitivities to Ca2+, presence of multiple adaptors, buffering molecules 

and down-stream target proteins as well as by delivering a Ca2+ signal with precise temporal and 

spatial distribution[3]. 

 

1.2 Ca2+ roles during mouse oocyte maturation and fertilization 

A well-known example of Ca2+ signaling is fertilization. Ca2+ release plays a critical role 

during fertilization in all species examined to date [7-10]. [Ca2+]i is known to  increase  from ~100 

nM in eggs of all species, although the duration and pattern of the [Ca2+]i varies radically among 

species [8]. In the mouse, after fusion of the gametes, sperm-induced [Ca2+]i signal lasts for a few 

hours and display a pattern of brief [Ca2+]i rises interspersed among long intervals of basal 

concentrations, which is referred to as [Ca2+]i oscillations (Fig.1-2).  These long-lasting Ca2+ 
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transients trigger the initiation and completion of several cellular functions including the 

resumption and completion of meiosis, release of cortical granules [11], and progression of the 

cell cycle; these events are collectively called “egg activation” [10, 12, 13]. In mammals, the 

oscillations are thought to be initiated by a sperm-specific phospholipase C (PLC), PLC zeta1 (ζ) 

[14]. PLCζ is thought to hydrolyze release from ER [15-17]. While the initial [Ca2+]i responses 

emanates from the ER, Ca2+ influx is required for the persistence of the oscillations, as without 

[Ca2+]e oscillations cease prematurely [18]. Downstream of Ca2+ rises, well-known effectors such 

as calmodulin [19, 20], PKC and Ca2+-CaM-dependent kinase II (CaMKII), especially CaMKIIγ, 

underlie the initiation and completion of most events of egg activation [21, 22]. 

While [Ca2+]i oscillations are required for egg activation, additional studies suggest in 

role in influencing the early steps of embryo development. Moreover, an abnormal pattern of 

oscillations can lead to abnormal development and even cell death [12, 23-25].  Therefore, to 

support the precise temporal-spatial pattern of oscillations required for egg activation and embryo 

development, oocytes optimize the Ca2+ toolkit during maturation. 

 

1.3 Differentiation of Ca2+ signaling machinery during meiotic maturation 

Meiosis is a process during which diploid male or female germ cells reduce their genomic 

content in preparation for fertilization such that fertilization restores the diploid state required for 

successful development.  The female gamete, oocyte and/or egg, is stored in the ovary in follicles 

surrounded by different number of layers of somatic cells, the granulosa cells (Fig. 1-3). After the 

onset of puberty, populations of follicles begin to grow along with oocytes and under the 

influence of a complex hormonal milieu that includes the gonadotropin hormones FSH and LH. 

Some of these follicles reach the ovulatory stage, Graafian follicles, which contain a fully grown 

immature oocyte [26].  This oocyte is arrested in prophase I of meiosis I and possesses a 

distinctive, large size nucleus, from which its name derives, the germinal vesicle stage [27] 
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oocyte. Upon release of LH, which will also induce ovulation, the GV oocyte resumes meiosis 

and initiates the process of maturation. This process can be morphologically determined by 

observing the dissolution of the germinal vesicle ~ 2 hrs after the LH surge, which is commonly 

referred to as GV breakdown (GVBD) and is driven by activation of M-phase kinases, CDK1 and 

Mitogen Activated Protein (MAP) kinase [28, 29]. After GVBD, chromosomes are assembled in 

a metaphase plate that migrates to the cell cortex and this is followed the release of the first polar 

body (PB), which contains half of the homologue chromosome present in the oocyte. Release of 

the PB marks the completion of 1st meiosis, and oocytes then enter the second meiosis where they 

immediately arrest at the metaphase stage of the second meiosis MII [30, 31].  Besides nuclear 

maturation, oocytes also undergo cytoplasmic maturation, including optimization of the Ca2+ tool 

kit (Fig.1-4).  For example, GV oocytes are endowed with low Ca2+ levels in the ER ([Ca2+]ER), 

but by completion of maturation and upon reaching the MII stage,  the content of the [Ca2+]ER has 

increased steadily [32, 33]. The mass of IP3R1 also increases during maturation and its 

distribution undergoes marked changes, attaining cortical accumulation [34-36]. Importantly, 

while many of the molecular mechanisms underlying these changes are known, what remains 

largely unknown are the mechanisms that lead the increase in [Ca2+]ER, including the channels 

that mediate Ca2+ entry from [Ca2+]e. In this vein, it is worth noting that mouse GV oocytes 

display spontaneous oscillations that terminate around the time of GVBD stage, which is when 

the first time when a noticeable increase in [Ca2+]ER is detected [33, 37, 38]. These results suggest 

an association between [Ca2+]ER content and Ca2+ influx, and such an association has been 

reported to underlie Store Operated Ca2+ Entry (SOCE), a widespread Ca2+ entry mechanism 

whereby Ca2+ influx follows the release of [Ca2+]i, generally associated with activation of the 

phosphoinositide pathway and production of IP3 [39, 40]; it is possible that a similar mechanism 

may play a role in oocytes during maturation and in eggs after fertilization. 
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1.4 Calcium influx pathways in mouse oocyte 

1.4.1 Store Operated Ca2+ Entry (SOCE) 

SOCE was first proposed as a means for cells to refill Ca2+ stores after Ca2+ release 

induced by agonist stimulation caused the depletion of [Ca2+]ER [39] (Fig.1-5a). Subsequent 

studies showed that depletion of [Ca2+]ER by other mechanisms such as by inhibitors of SERCA 

such as thapsigargin [41] could also trigger Ca2+ influx, which demonstrated the prevalence of 

this mechanism in somatic cells and its contribution to Ca2+ homeostasis [42-45]. The presence of 

SOCE was first confirmed by electrophysiological means, as its presence elicits unique current 

properties, which was named ICRAC [40, 45-47]. Nevertheless, the molecular identities for ICRAC 

remained unknown for many years, until a few years back when the two major components of 

SOCE, stromal interacting molecule 1 (Stim1), which acts as the ER Ca2+ sensor [5, 48, 49] and 

Orai1, the plasma membrane channel [50, 51], were discovered and characterized (Fig.1-5b,c 

respectively).  Stim1 is a single passing ER resident protein with its N-terminus facing the ER 

lumen and the C-terminus facing the cytoplasm. Thus, whereas the ER luminal part senses ER 

depletion, the C-terminus functions to communicate with Orai1. At resting state, Ca2+ is bound 

within the EF hands present on the N-terminus of Stim1, which maintains the sterile �-motif [52] 

also in the same area of the protein in closed conformation [53]. Upon depletion of the ER store, 

generally associated with opening of IP3Rs, Ca2+ dissociates from the EF hands, which cause the 

SAM domain to change conformation so that it can oligomerize. Mutations that disable one of the 

negatively charged amino acids in the EF hand domain, such as the D76A mutation, cause Stim1 

constantly oligomerized near the PM, which very likely engage Orai1, forming an active SOCE 

complex. Hereafter, these proximal Stim1 oligomers near the PM are referred to as “puncta”, 

whereas the oligomers found deep in the cytoplasm are referred to as “internal patches”. 

Accordingly, it has been proposed that following depletion of [Ca2+]ER, Stim1 oligomerization 

facilitates the migration of the oligomers to posit where the ER meets the PM, which results in the 
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recruiting and gating of Orai1 (Fig.1-5d) [54-56].  The mechanisms that regulate this Stim1 re-

organization are unknown, although it appears to migrate in the ER via free diffusion. 

The C-terminus of Stim1 contains domains related to activation and regulation of SOCE.  

Upon Stim1 oligomerization and puncta formation, C-terminus CRAC activation domain of 

Stim1 that directly interacts with Orai1 activated SOCE[54, 57, 58]. The role of CAD is further 

confirmed by the demonstration that expression of soluble CAD alone causes constitutive Ca2+ 

influx, without store depletion, suggesting that it represents the minimal domain required for 

interaction with Orai1[54].  After the CAD domain, Stim1 contains ~ 200 amino acids among 

which there are ten putative S/P sites, which are site of phosphorylations for M-phase kinases[59, 

60], as well as a site that mediates binding with the microtubule + end binding protein, EB1 [61] 

and a poly lysine tail [54](Fig.1-6). The poly lysine tail is known to interact with negative charges 

in the plasma membrane, especially those provided by the phosphatidylinositol 4, 5-bisphospate 

(PIP2), and the importance of this mechanism is reflected in the finding that depletion of PIP2 

prevents puncta formation [62, 63].  The role of S/P rich sites also appears important, as during 

mitosis in somatic cells and during metaphase stages of meiosis in Xenopus oocytes and/or eggs, 

SOCE is strongly inhibited [60, 64-66]. Research in both of these found that the C-terminus of 

Stim1 is phosphorylated during M-phase stages of the cell cycle, although the functional 

contribution of this modification to the inactivation of Ca2+ entry is contested. Whereas in mitotic 

cells, truncation of Stim1 such that the molecular cannot be phosphorylated or substitution of all 

serine residues next to proline to alanine successfully reverse the inactivation of SOCE and makes 

possible the formation of puncta following depletion of the ER store[59], this is not the case in 

Xenopus eggs[60]. Therefore, this suggests that the role of phosphorylation in the regulation of 

Stim1 may depend on the on the cell type or cell cycle stage. Given that mammalian oocytes are 

arrested at MII stage of meiosis and that Ca2+ influx is required [Ca2+]i to support oscillations, it is 

important to understand how influx is regulated in these cells. 
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1.4.2 SOCE during oocyte maturation 

The activity of SOCE in meiotic cells has only been well characterized in Xenopus. It has 

been shown to be present during the early stages of maturation, the GV stage, but undergoes 

marked inactivation as oocytes reach the GVBD stage [60, 64]. In mammals, Ca2+ influx can be 

triggered in MII eggs by addition of TG [11, 18, 67], although the mechanism(s) and molecules 

underlying this Ca2+ entry remains to be identified. Further, it is unknown whether the TG-

induced influx represents SOCE. Nevertheless, transcripts and protein expression have been 

reported for both molecules in mouse oocytes and eggs as well as in oocytes of other mammalian 

species, although some of the results are inconsistent with data in somatic cells and need 

validation [68-70]. 

The overall aim of this study was to assess how Ca2+ influx/SOCE is regulated during 

oocyte maturation. We first examined if SOCE was present in oocytes and how changes in its 

function during maturation were associated with levels of [Ca2+]ER. We next confirmed the 

molecular expression of its components and established their distribution and regulation using 

cRNAs encoding for Stim1 and Orai1 coupled to a fluorescent protein. We observed that Ca2+ 

influx/SOCE was tightly regulated during maturation and explored the impact of unregulated 

Ca2+ influx during maturation. Lastly, we examined the role of phosphorylation in the regulation 

of Ca2+ influx/SOCE during maturation.   
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Figure 1-1.  Ca2+ signaling toolkits 

This is a schematic of Ca2+ handling machineries in the cell. During Ca2+ response is on, 

two resources contribute to increase [Ca2+]cyt: one is opening IP3R and release Ca2+ from 

ER/SR and/or the other is Ca2+ influx across PM. Depending on spatial and temporal 

needs in the cell,  the signal sustain a certain duration. The bottom scale depicts how long 

Ca2+ signal needs to last to exert certain functions.  Ca2+ level is off through SERCA and 

PMCA that sequester cytoplasmic Ca2+ into ER or pump out to extracellular milieu 

respectively. [2] 
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Figure 1-2.  Ca2+ oscillations after a sperm-egg fusion and subsequent cellular events 

After fertilization, release of sperm specific PLC� into egg degrades 

phosphatidylinositol 4,5 biphosphate (PtdIns(4,5)P2) and produce inositol 1,4,5-

triphosphoate (IP3).  Its binding to IP3R opens the channel and release Ca2+ from ER, a 

main Ca2+ store in the cell. As shown in an inset, in mouse, the oscillations last more than 

few hours, stop around 4hr when it forms a pronuculeus (PN) that contain two nucleuses 

from maternal and paternal genomes. This Ca2+ signal involve in a series of cellular 

events such as activation of calmodulin kinase II (CaMKII),  cortical granule exocytosis, 

translation of maternal mRNA and transition from meiosis and mitosis. adapted from[71].  



   10 
 

 

Figure 1-3. Mammalian oocyte maturation and activation [72] 
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Figure 1-4.  Changes in Ca2+ machinery during maturation. 

An oocyte’s ability to generate sperm-induced long-lasting Ca2+ oscillations develops during 

maturation by achieving several changes, including reorganization of the ER, increase the number 

of IP3R and increase in the content of ER Ca2+ [73] 
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Figure 1-5. Store Operated Ca2+ entry (A) A fall in Ca2+ content within the ER, triggered by 

activation of receptors that stimulate PLC to increase InP3, leads to the opening of store-operated 

Ca2+ release-activated Ca2+ (SOCE) channels in the plasma membrane. These channels are 

selective for Ca2+ and result in a cytoplasmic rise in Ca2+ levels. A fall in Ca2+ concentration 

within the store is sensed by stromal interaction molecule 1 (STIM1), which relays this to 

ORAI1, the pore-forming subunit of the CRAC channel. (B)STIM1 spans the ER membrane 

once. Facing the lumen, and thus being exposed to the Ca2+ content of the store, is an EF hand 

that binds Ca2+, a 'hidden' EF hand that does not bind Ca2+ and the sterile �-motif [52] domain 

that is important in STIM1 oligomerization. Facing the cytoplasm are several predicted functional 

domains, including two coiled-coil domains, an ezrin-radixin-moesin (ERM) domain, and serine 

or proline-rich and lysine-rich segments. The CRAC activation domain [74] is essential for the 

gating of ORAI1. (C) Predicted topology of the plasma membrane protein ORAI1. ORAI1 has 

four transmembrane domains (TM1–TM4), with intracellular amino and carboxyl termini. The 

purple amino acid represents the single point mutation (R91W) that is seen in CRAC channel-

deficient severe combined immunodeficient patients. The red amino acid is glutamate 106.The 

yellow amino acids represent aspartates 112 and 114 and glutamate 190. Mutations of these latter 

amino acids affect selectivity, but they might not line the pore. Hexagonal structures represent 

sugar residues attached to an N-linked glycosylation site (N223). (D) In cells with full Ca2+ 

stores, stromal interaction molecule 1 (STIM1) is homogenously distributed in the endoplasmic 

reticulum (ER) with its EF hand occupied with Ca2+. ORAI1 is dispersed throughout the plasma 

membrane. Upon stimulation with agonists that increase the levels of cytoplasmic inositol-1,4,5-

trisphosphate, the Ca2+ content of the store falls. Ca2+ dissociates from STIM1 and this results in 

STIM1 oligomerization and subsequent migration to ER–plasma membrane junctions. At these 

sites, STIM1 captures diffusing ORAI1 channels. Interaction between the amino and carboxyl 

termini of ORAI1 with the CRAC activating domain on STIM1 leads to CRAC channel 
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opening[56] .
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Figure 1-6. Brief schematic of Stim1 C-terminus and its amino acid sequences 
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CHAPTER 2 
 

MATERIALS AND METHODS 

2.1 Collection and preparation of mouse oocytes 

Fully grown GV stage oocytes were collected from the ovaries of 6 to 10 week-old CD-1 

female mice 44-46 hr after injection of 5 IU of pregnant mare serum gonadotropin (PMSG; 

Sigma-Aldrich, St Louis, MO; all chemicals from Sigma unless otherwise indicated), as 

previously described by us [75]. Cumulus intact GVs were recovered into a Hepes-buffered 

Tyrode’s Lactate solution (TL-HEPES) containing 5% fetal calf serum (FCS; Invitrogen, 

Carlsbad, CA) and supplemented with 100 µM 3-isobutyl-1-methylxanthine (IBMX) to block 

spontaneous progression of meiosis. Then collected GV oocytes were stored in the incubator for 

1.5hr to 2hr in IBMX containing Chatot, Ziomek, and Bavister medium [76] at 36.5°C in a 

humidified atmosphere containing 6% CO2 before performing micromanipulation.  Also the 

cumulus cells were removed by passing the oocytes in and out of a fine capillary glass that was 

slightly larger than the size of GV oocyte. Oocytes were matured in vitro for 12-14 hr in IBMX-

free supplemented with 3 mg/ml bovine serum albumin (BSA) or 0.02% polyvinyl alcohol (PVA, 

average molecular weight 30,000–70,000) under paraffin oil.  In vivo matured MII oocytes were 

collected from the oviducts 12-14 hr after administration of 5 IU human chorionic gonadotropin, 

which was injected 46-48 hr after PMSG. All procedures were performed according to research 

animal protocols approved by the University of Massachusetts Institutional Animal Care and Use 

Committee. 

 

2.2 Generation of constructs and mRNA preparation 

Human Stim1-YFP (hStim1-YFP) and human Orai1 (hOrai1) were generously provided 

by Dr. T. Meyer (Stanford University) and Dr. M. Trebak (Albany Medical College), 
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respectively. hStim1-YFP was subcloned into a pcDNA6/Myc-His B vector (Invitrogen) between 

the restrictions sites AgeI and XbaI. The hOrai1 insert was amplified by PCR and ligated to the 

N-terminus of the mRFP-bearing pcDNA6/Myc-His B vector (Dr. D. Alfandari, UMass Amherst) 

between EcoRI and XhoI restriction sites. Constitutively active hStim1, D76A hStim1-YFP, and 

hStim1-482 stop were generated either by substituting D76 to A or introducing the stop codon 

after amino acid 481 using the QuickChange® Site-Directed Mutagenesis Kit  (Stratagene, La 

Jolla, CA), as previously reported [48, 59]. Prior to performing in vitro transcription reactions, the 

sequences of all new constructs and presence of targeted mutations were verified by DNA 

sequencing. Constructs were linearized outside of the coding region with PmeI and in vitro 

transcribed using T7 mMESSAGE mMACHINE Kit (Ambion, Austin, TX). A Poly (A)-tail was 

added to the mRNAs using a Tailing Kit (Ambion). All mRNAs were prepared to final 

concentrations of 1.5 µg/µl, aliquoted and frozen at -80°C until use. 

 

2.3 Microinjection of mRNAs 

Microinjections were performed as described previously by our laboratory [75]. Prior to 

injection, cRNAs were heat-denatured, centrifuged and the top 1.2 µl used to prepare microdrops 

from which glass micropipettes were loaded by aspiration. cRNAs were delivered into oocytes 

using pneumatic pressure (PLI-100 picoinjector, Harvard Apparatus, Holliston, MA).  When 

cRNAs were injected simultaneously, as in the case of hOrai1–mRFP+hStim1-YFP or hOrai1-

mRFP+D76A hStim1-YFP, cRNAs were mixed immediately prior to the injection procedure in 1 

to 3 molar ratios, respectively, to allow similar protein expression, which was estimated by 

comparing fluorescence intensities. When injections were performed in GV oocytes and to allow 

for maximal translation, oocytes were kept in CZB+IBMX for 6 hr, after which IBMX was 

removed to allow the commencement of maturation. Germinal vesicle breakdown (GVBD) and 
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metaphase I (MI) stage oocytes were maturated for 4 and 8 hr, respectively, while MII oocytes 

were matured for 12-14 hr in CZB. 

 
2.4 [Ca2+]i measurements and Ca2+ reagents 

[Ca2+]i monitoring was performed as previously reported in our laboratory [75]. In brief, 

Fura-2 acetoxymethyl ester (Fura-2AM) was loaded by incubating oocytes in a HEPES-buffered 

CZB solution (HCZB) containing 1.25 µM Fura-2AM for 20 min at room temperature (RT). 

Oocytes were then immobilized on glass-bottom dishes (MatTek Corp., Ashland, MA) and placed 

on the stage of an inverted microscope (Nikon). Fura-2 fluorescence was excited with 340 nm and 

380 nm wavelengths every 20 sec and emitted light was collected at wavelengths greater than 510 

nm by a cooled Photometrics SenSys CCD camera (Roper Scientific, Tucson, AZ).  Acquisition 

of fluorescence ratios and rotation of the filter wheel were controlled by the Simple PCI software 

(C-imaging system, Cranberry Township, PA). 

To examine the role of Ca2+ influx on refilling of [Ca2+]ER, IBMX-treated GV oocytes 

were placed either in CZB medium with and without 1.7 mM CaCl2 , allowed to mature for 4hr 

after which oocytes were placed in nominal Ca2+ free-HCZB, and after a  5 min interval [Ca2+]ER 

levels were assessed by adding thapsigargin (TG; Calbiochem, San Diego, CA), an inhibitor of 

the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) pump, that induced Ca2+ leak with 

unknown mechanism. TG induced Ca2+ rises regarded as [Ca2+]ER content that could be estimated 

from the area under the curve of the [Ca2+]i 
 rise using Prizm software (GraphPad Software, La 

Jolla, CA). To estimate SOCE and to assess the effect of [Ca2+]ER on hStim1-YFP distribution, 

oocytes were followed by the method in Bird et al. Prior to adding 10 µM TG, oocytes were 

placed in Ca2+-free HCZB supplemented with 1 mM EGTA. When [Ca2+]i returned to near 

baseline values,~35 min after TG addition, 5 mM CaCl2 was added to the medium and the 

amplitude of the [Ca2+]i  rise caused by the addition was used to estimate SOCE 
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2.5 Western blotting procedures 

To detect endogenous/exogenous Stim1 and Orai1, protein lysates were prepared from 

200/20-45, respectively, GV or MII oocytes.  Oocytes were washed in Dulbecco’s Phosphate 

buffer saline (DPBS) and lysed in 2X sample buffer and stored at -20°C until use. Heat-denatured 

proteins (95°C for 3 min) were separated by 7.5% or 10 % SDS–PAGE and transferred to PVDF 

membranes (Millipore, Bedford, MA). Membranes were blocked with 6% skim milk dissolved in 

PBS+0.1% Tween-20 (PBST) for 2 hr at 4°C. Two different antibodies were used against Stim1, 

one raised to recognize the N-terminus (1:100, BD Biosciences, San Jose, CA) and the other to 

identify the C-terminus end of the molecule (1:500, ProSci Inc., Poway, CA) for which a 

blocking antigenic peptide (AP) was available.  Orai1 was detected using an anti-Orai1 antibody 

(1:300, ProSci Inc.) raised against the C-terminus of the molecule and an AP was also available 

for this antibody. For these experiments, equal volumes of AP (ProSci Inc.) and of the specific 

antibody were incubated for 2hr at 4°C, after which this mixture was used to complete the 

western blotting procedure.  In all samples, an anti-actin antibody was used to detect actin 

reactivity, which was used as a loading control (1:500, Millipore). Blots were incubated overnight 

at 4°C with primary antibodies and goat anti-mouse or –rabbit antibodies conjugated with 

horseradish peroxidase (HRP) were used as secondary antibodies (1:2000, Biorad, Hercules, CA) 

and incubated for 1 hr at RT. The membranes were then exposed to chemiluminescence reagents 

(NEN Life Science Products, Boston, MA) and the signal assessed using a Kodak 440 Image 

Station (Rochester, NY). The same anti-Stim1 antibodies were used to detect exogenously 

expressed hStim1-YFP (n=45), which were also detected using an anti-GFP antibody (1:1000, 

MBL, Woburn, MA). 

Phosphatase treatment was carried out on WT hStim1-YFP expressing GV and MII 

oocytes/eggs. Samples were washed in DPBS and placed in phosphatase buffer (50mM Tris-

HCL, 100mM NaCl, 10mM MgCl2 and 1mM DTT) supplemented with a protease inhibitor 

cocktail (Roche, Indianapolis, IN); control samples were also supplemented with 50 mM β-
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glycerophosphate to inhibit endogenous phosphatases. All samples were lysed by repeated cycles 

of freezing and thawing using liquid nitrogen, and 0.5 U of calf intestine phosphatase (CIP, NEB, 

Ipswich, MA) was added to the indicated groups; all samples were incubated at 37°C for 30 min. 

The reaction was stopped by addition of 2X-sample buffer, after which western blotting was 

performed as described above. 

 

2.6 Plasma membrane staining 

To estimate the proximity of hStim1-YFP puncta to the plasma membrane [77] during the 

different stages of maturation, the PM of oocytes/eggs was stained using 10 µg/ml wheat germ 

agglutinin conjugated with Alexa Fluor® 633 (WGA-Alexa 633, Invitrogen) according to 

manufacturer’s instructions. Prior to staining, the zona pellucida was removed using Tyrode’s 

acidic solution, pH 2.5, to facilitate the diffusion of the stain. Image J free NIH software was used 

to quantify the distances of the hStim1 puncta to the PM in µm, the diameters of hStim1 

aggregates, and to draw the line scan to compare hOrai1 PM distribution. 

 

2.7 Live-imaging of oocytes using confocal microscope 

Oocytes/eggs expressing proteins tagged with fluorescent proteins were collected at 

variable times of maturation and attached to bottom-glass dishes dish while incubated in BSA-

free HCZB medium. Fluorescence was examined using a LSM 510 META confocal microscope 

(Carl Zeiss Microimaging Inc., Jena, Germany) outfitted with a 63x1.4 NA oil immersion lens. 

Images were taken at the equatorial and cortical regions of oocytes/eggs. 
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2.8 Statistics analysis 

Statistic analyses were performed using Prism software (GraphPad, La Jolla, CA). All 

data are presented as mean± standard error of the mean (S.E.M). Mean data were compared using 

unpaired t-test or ANOVA, as appropriate. Categorical values such as those generated by 

maturation rates were analyzed using the Chi-square test. P values <0.05 were considered 

significant. 
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CHAPTER 3 

Ca2+ INFLUX AND THE STORE-OPERATED Ca2+ ENTRY PATHWAY TO UNDERGO 
REGULATION DURING MOUSE OOCYTE MATURATION 

3.1 Introduction 

Changes in the Ca2+]i represent an important signaling mechanism involved in a wide 

range of cellular events including muscle contraction, secretion, neurotransmission and cell death 

[3]. [Ca2+]i signaling also plays a dominant role during fertilization in all species examined to date 

Swann, Saunders [7], [8-10]. In mammals, the sperm-induced [Ca2+]i signal adopts a pattern of 

brief [Ca2+]i rises interspersed among long intervals of basal concentrations that is referred to as 

[Ca2+]i oscillations. The oscillations are thought to be initiated by a sperm-specific PLC zeta1 (ζ), 

following fusion of the gametes [14]. PLCζ is thought to hydrolyze PIP2 resulting in the 

production of IP3, the ligand for IP3R1, the Ca2+ channel located in the ER, the egg’s’ main Ca2+ 

store [15-17]. Activation of this pathway causes the initial intracellular Ca2+ release, but 

persistence of the oscillations requires Ca2+ influx, as without [Ca2+]e only a few rises occur 

following sperm entry [18]. Notwithstanding the importance of Ca2+ influx, the mechanisms that 

underlie it during mammalian fertilization are presently unknown. 

Fertilization in most vertebrate species happens at the MII, although changes in Ca2+ 

homeostasis that occur prior to this stage during maturation enable eggs to mount [Ca2+]i 

oscillations. Fully grown mammalian oocytes are arrested at the germinal vesicle stage [27] and 

are endowed with Ca2+]ER low in Ca2+ reserves. As maturation ensues following the LH surge, 

[Ca2+]ER increases steadily until the MII stage [32, 33], enhancing IP3R1-mediated Ca2+ release 

and promoting the acquisition of fertilization-like oscillations [34, 35]. The mechanism(s) that 

underlie this increase in [Ca2+]ER and the plasma membrane channels that underpin the Ca2+ influx 
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remain unknown, although insights may be gleaned from the spontaneous [Ca2+]i oscillations 

displayed by GV oocytes [37, 38]. These oscillations require Ca2+ influx and terminate 

approximately as the resumption of meiosis commences [38], which is when with the first 

increase in [Ca2+]ER content is noted [33]. These results both predict an association between 

[Ca2+]ER content and Ca2+ influx, which is reminiscent of the mechanism thought to underlie 

SOCE [39, 42], and active regulation of Ca2+ influx during maturation. 

SOCE was first proposed as a means for cells to refill Ca2+ stores following Ca2+ release 

induced by agonist stimulation [39]. Subsequent studies showed that depletion of [Ca2+]ER caused 

by inhibitors of the SERCA pumps such as thapsigargin [41] also triggered Ca2+ influx, 

demonstrating the prevalence of SOCE in somatic cells [42-45]. Subsequent electrophysiological 

studies revealed unique properties of this current, which was named ICRAC [42, 45-47]. While 

unknown for many years, the molecular effectors of SOCE have now been identified and two 

components, Stim1, which acts as the ER Ca2+ sensor [5, 48, 49] and Orai1, the PM channel that 

mediates Ca2+ influx upon Stim1-induced oligomerization [50, 51], are thought to coordinate Ca2+ 

influx after Ca2+ release. The presence of SOCE has been well characterized during the early 

stages of maturation in Xenopus oocytes [60], and Ca2+ influx has been described in mammalian 

eggs during fertilization and after addition of TG [11, 18, 67], although the mechanism(s) and 

molecules underlying this Ca2+ entry remains to be identified. Consistent with this, detection of 

transcripts for Stim1 and Orai1 has been reported in mammalian oocytes, although the protein 

expression and cellular distribution during maturation requires additional characterization [68-70, 

78]. 

While Ca2+ influx is required for [Ca2+]i oscillations at the GV stage, its contributions to 

the filling of [Ca2+]ER have not been carefully examined. Further, the role of [Ca2+]i changes 

during oocyte maturation remains unclear. For instance, in mouse GV oocytes suppression of 

spontaneous oscillations with the Ca2+ chelator BAPTA-AM did not affect resumption of meiosis, 

although it caused cell cycle arrest at metaphase I (MI) of meiosis [32]. In porcine and bovine 
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oocytes, addition of BAPTA-AM prevented resumption of meiosis and removal of [Ca2+]e 

precluded progression of meiosis beyond the MI stage [79, 80]. Remarkably, in Xenopus oocytes 

where SOCE is inactivated during maturation [65], increased Ca2+ influx by elevation of [Ca2+]e 

and persistent increase in [Ca2+]i delayed resumption of meiosis and caused spindle abnormalities 

[81]. Whether enhanced Ca2+ influx and persistent elevation of basal [Ca2+]i affect the initiation or 

progression of maturation in mammalian oocytes has not been examined. 

In this study in mouse oocytes we investigated whether Ca2+ influx contributes to the 

filling of [Ca2+]ER during maturation and if it is differentially regulated during this process. We 

also researched whether SOCE contributes to this influx as well as the expression of the 

molecular components of SOCE and their regulation during maturation. Lastly, we evaluated the 

impact of persistently elevated [Ca2+]i on resumption and progression of meiosis. 
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3.2 Results 

3.2.1 Spontaneous Ca2+ influx is suppressed during maturation in parallel with the increase 
of ER Ca2+ store. 

To gain insight into the mechanism and molecular effectors that mediate Ca2+ influx in 

mouse oocytes and eggs, we ascertained whether Ca2+ influx across the PM was required for the 

increase in [Ca2+]ER that occurs during the transition from  the GV to the GVBD stage [33]. To 

accomplish this, GV oocytes were allowed to transition to the GVBD stage in the 

presence/absence of extracellular Ca2+ (1.7mM). [Ca2+]ER levels were estimated following 

addition of TG 4 hr after the removal of IBMX. In the presence of extracellular Ca2+, [Ca2+]ER  

increased significantly in GVBD oocytes (Fig. 3-1A, left and right upper panel), although this 

was not the case when maturation was initiated in nominal Ca2+ free medium (Fig.3-1A, right 

lower panel). These results therefore demonstrate that [Ca2+]e is required for [Ca2+]ER increase 

during maturation. 

We next examined whether the Ca2+ entry pathway(s) that mediates Ca2+ influx in GV 

oocytes is also functional in MII eggs, as both of these cellular stages are known to support 

oscillations. We incubated GV oocytes and MII eggs in nominal Ca2+ free media and shortly 

thereafter 2mM and 5mM CaCl2
 were sequentially added while [Ca2+]i responses were monitored. 

While most GV oocytes responded to the addition of CaCl2 by displaying a noticeable [Ca2+]i rise 

and in some cases oscillations (Fig. 3-1B, left panel), MII eggs displayed no such changes (Fig. 3-

1B, middle panel). We next examined whether the Ca2+ entry at the GV stage could be abrogated 

by pretreatment with 50µM 2-APB, a pharmacological agent that has been shown to regulate 

SOCE [82]; addition of 2-APB prevented the increase in [Ca2+]i
 following the addition of either 

concentration of CaCl2
 (Fig. 3-1B, right panel). 

The inhibitory effect of 2-APB and the low [Ca2+]ER  levels in GV oocytes suggested that 

SOCE may be involved, at least in part, in mediating Ca2+ entry in GV oocytes. Accordingly, we 

investigated whether Ca2+ influx at the GV stage could be modified by exposure to TG prior to 
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CaCl2 add-back, a method commonly used to test SOCE in somatic cells [82, 83]. While 3/20 

untreated oocytes showed large and prolonged [Ca2+]i responses following addition of CaCl2, the 

majority of oocytes, 9/20 and 8/20 showed moderate or minor responses, respectively (Fig. 3-1C, 

left). Conversely, TG-exposed oocytes uniformly responded to the addition of CaCl2 with robust 

[Ca2+]i  responses (Fig. 3-1C, right). Altogether, these results show that in Ca2+ entry is 

functionally regulated during mouse oocyte maturation and that SOCE is one of the underlying 

mechanisms of Ca2+ influx at the GV stage. 

 

3.2.2 [Ca2+]ER content and Ca2+ influx undergo distinct regulation during mouse oocyte 
maturation 

The previous findings led us to investigate the function of SOCE throughout oocyte 

maturation using the TG and CaCl2 add-back method. Addition of TG, as expected, caused an 

increase in [Ca2+]i that became gradually higher as maturation progressed (Fig. 3-2A,C; p<0.05), 

which is in agreement with previous reports [18, 33] and suggests increasing [Ca2+]ER contents 

with progression of maturation. In contrast, following CaCl2 addition, Ca2+ influx progressively 

decreased during maturation, with GV and GVBD stage oocytes displaying greater Ca2+ influx 

than MI and MII eggs (Fig. 3-2A,C; p<0.05), demonstrating gradual inactivation of Ca2+ entry 

with progression of maturation. 

The inverse relationship between [Ca2+]ER content and Ca2+ entry during maturation 

indicates the participation of SOCE as one of the mechanisms involved in Ca2+ homeostasis in 

mouse oocytes. Remarkably, our results suggest that SOCE is progressively disabled during 

maturation. To extend these observations, GV stage oocytes were injected with hStim1-YFP 

cRNA, the Ca2+ sensor component of SOCE, and the effects of such injections on [Ca2+]ER and 

Ca2+ influx were examined during different stages of maturation. hStim1 and mStim1 are highly 

homologous sharing ~97% of the amino acids at the whole protein level and 99% of the amino 
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acids in the CRAC activating domain [74], which is the domain that directly interacts with Orai1 

[54]. Therefore, hStim1-YFP overexpression was expected to mimic mStim1 function. 

Expression hStim1-YFP did not affect [Ca2+]ER content throughout maturation (Fig. 3-2B,C-left 

panel), at least as estimated by our approach, but clearly enhanced Ca2+ influx in all stages of 

maturation, especially in GV oocytes (Fig. 3-2B,C-right panel; p<0.05). To demonstrate that the 

enhanced influx was due to interaction of hStim1 with endogenous Orai1, oocytes were injected 

with hStim1-ΔCAD-YFP mRNA, which cannot activate Orai1 [54]; overexpression of hStim1-

ΔCAD-YFP failed to enhance Ca2+ influx at any stage of maturation (Fig. 3-2D). Collectively, the 

data suggest that hStim1-YFP over-expression broadly recapitulates the regulation of [Ca2+]ER 

and Ca2+ influx observed in mouse oocytes, suggesting that  SOCE is operational during mouse 

oocyte maturation, although is seemingly inactivated at the most advanced stages of meiosis. 

 

3.2.3 Stim1 and Orai1 are expressed in mouse oocytes 

We next examined in mouse oocytes/eggs the expression of the two molecular effectors 

of SOCE, Stim1 and Orai1. Two different anti-Stim1 antibodies were used for western blotting 

and both antibodies detected in GV and MII stages a band of ~90kDa (Fig. 3-3A, left and center 

panels), which is the reported MW of Stim1 [84]; the observed reactivity was likely Stim1’s, as 

pre-incubation of the anti-C-terminus antibody with an antigenic peptide specifically obliterated 

recognition of this band (Fig. 3-3A,  right panel). Expression of Orai1 was also detected in mouse 

eggs (Fig. 3-3B, left panel) with an ~MW of 56kDa, which while higher than predicted for the 

native protein, is consistent with the MW of the protein in some mammalian tissues [85]; Orai1 

has been shown to be glycosylated in somatic cells (Gwack, 2007 #2;Prakriya, 2006 #85). Pre-

incubation of the antibody with its antigenic peptide abrogated the reactivity of the 56kDa band 

but not that of a prominent higher, non-specific band (Fig. 3-3B, right panel; asterisk), confirming 

the specificity of the antibody. Further, the same antibody detected expression of hOrai1-mRFP 
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in oocytes and eggs, where it detected several polypeptides ranging in MW from ~52 to 82 kDa, 

likely the reflection of various degrees of glycosylation (Fig. 3-3C). 

To confirm the functional results obtained by injection of hStim1-YFP cRNA, we 

examined the expression of hStim1-YFP in GV and MII oocytes. Both anti-Stim1 antibodies 

recognized a band at ~105kDa, which is consistent with the MW of hStim1 and the added MW of 

YFP (Fig. 3-3D, left and middle panels); an anti-YFP antibody recognized the same bands (Fig. 

3-3D, right panel). Actin was used as loading control, and Western blotting against it revealed 

approximate equal loading of the samples (Fig. 3-3D, middle lower panel). In all cases, hStim1-

YFP migration was retarded in MII eggs than in GV oocytes (Fig. 3-3D), suggesting 

phosphorylation of hStim1-YFP, as reportedly occurs in Xenopus oocytes and in mammalian 

somatic cells [59, 60]. To ascertain whether this was also the case in our system, hStim1-YPF 

cRNAs was injected into GV oocytes and these cells matured to the MII stage, at which time 

lysates were prepared and either left untreated or treated with alkaline phosphatase to induce 

widespread de-phosphorylation. Compared to untreated controls, the AP-treated hStim1-YPF 

displayed a smeared migration, which suggests different degrees of phosphorylation, and higher 

reactivity (Fig. 3-3E), which is possibly due to better antibody recognition, as the antibody’s 

epitope falls within this domain. To confirm this observation we injected hStim1-482stop-YFP 

cRNA, which encodes for a protein that lacks all the C-term M-phase kinase phosphorylation 

sites [59]; hStim1-482stop did not undergo a mobility shift during maturation (Fig. 3-3F). 

Collectively, our data show that the components of SOCE are expressed in mouse oocytes/eggs 

and that during maturation hStim1 undergoes phosphorylation. 

3.2.4 hStim1-YFP and hOrai1-mRFP undergo changes in distribution during oocyte 
maturation 

Such findings led us to examine whether the decline in Ca2+ influx during maturation 

coincided with changes in the cellular distribution of Stim1 and Orai1. To follow their 
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distribution, oocytes were injected with hStim1-YFP or hOrai1-mRFP mRNAs. All oocytes were 

injected at the GV stage and remained at this stage in media supplemented with IBMX for 

variable times so that by 20 hr post injection all stages of maturation could be simultaneously 

examined. hStim1-YFP underwent marked changes in distribution with progression of meiosis. 

For example, at the GV stage, hStim1-YFP displayed a “patched” distribution with these patches 

spread throughout the cell (Fig. 3- 4A). In GVBD oocytes, ~4 hr after removal of IBMX, large 

internal patches were still observed in most oocytes (Fig. 3-4B, upper) but in ~30% of the cells 

the distribution of hStim1 became more diffuse, although some patches remained around the 

spindle area (Fig. 3-4B, lower panel). As maturation progressed, the distribution of hStim1 

became more disperse and acquired a pattern consistent with its ER localization (Fig. 3-4C,D, 

upper panel), although a small number of MI and MII oocytes still showed internal patches of 

smaller size (Fig. 3-4C, D, lower panel); ER distribution was confirmed by injection of ds-Red 

ER cRNA (data not shown). 

The distribution of hOrai1-mRFP also changed during maturation (Fig. 3-4E, F). For 

example, at the GV stage, hOrai1-mRFP was highly enriched at the PM, where it formed a near 

perfect ring around the cell (Fig. 3-4E), while at the MII stage, even though hOrai1-mRFP was 

still present there, its presence was weaker (Fig. 3-4F); this apparent reduction of hOrai1-mRFP 

at the PM was accompanied by increased fluorescence in the subcortical area (Fig. 3-4F; line an 

bar graphs below figures), suggesting recycling of the protein, as already reported in Xenopus 

oocytes [60, 86]. Collectively, these results suggest that the molecular components of SOCE 

undergo cellular redistribution during maturation. 

3.2.5 hStim1 puncta formation and co-localization with hOrai1 decreases during oocyte 
maturation 

Following depletion of [Ca2+]ER, Stim1 undergoes oligomerization and migration to the 

cell cortex nearly reaching the PM where these aggregates, also known as “puncta”, recruit and 
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gate Orai1 [54, 55]. To assess whether the ability of Stim1 to undergo puncta formation and 

migration to the cortex changed during oocyte maturation, hStim1-YFP-expressing GV and MII 

oocytes were treated with TG and hStim1-YFP reorganization was observed by confocal 

microscopy. To estimate the proximity of hStim1-YFP puncta to the PM, a diffusible dye, WGA-

Alexa 633, was used to stain the PM. Following treatment with TG, hStim1 in GV oocytes 

readily formed distinct puncta that aligned along the PM (Fig. 3-5C,E) while this ability was 

severely reduced at the MII stage along with the size of the puncta (Fig. 3- 5D,F); the line graph 

to the right of Fig. 3-5E, F shows the reduced intensity of the puncta in MII eggs. It is worth 

noting that even after TG, hStim1-YFP in MII eggs displayed a reticular organization, which was 

not observed in GV oocytes. 

Research in somatic cells has shown that Stim1 and Orai1 directly interact at the PM [54, 

55]. Using simultaneous expression of hStim1-YFP and hOrai1-mRFP mRNAs and confocal 

microscopy, we examined whether the distribution of these molecules overlapped and if so 

whether this property changed during maturation. Under resting conditions, hStim1 and hOrai1 

showed their expected distributions in GV oocytes and MII eggs (Fig. 3-5G-I, 3-5M-O, 

respectively) and in GV oocytes some overlap between the molecules was noticeable (Fig. 3-

5H,I). Following addition of TG, hStim1 and hOrai1 showed extensive co-localization at the GV 

stage (Fig. 3-5K,L), although this was not evident in MII eggs (Fig. 3-5Q,R). Collectively, the 

data show that the organization of hStim1 and hOrai1 follow distinct but parallel redistribution 

during oocyte maturation that temporally coincides with the decline in Ca2+ influx during this 

process. 

3.2.6 Co-expression of SOCE components enhances TG-induced Ca2+ influx at all stages of 
oocyte maturation. 

The diminished co-localization of hStim1 and hOrai1 in MII eggs following depletion of 

Ca2+ stores led us to examine whether Ca2+ influx was reduced at this stage. We expressed either 
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component of SOCE alone or in combination and compared [Ca2+]i responses in GV and MII 

stages using the TG and CaCl2 add-back method. As shown in Fig. 3-6A, expression of hStim1 

alone enhanced influx in both stages of maturation, but to a greater extent in GV than in MII, 

which is consistent with our previous results. Expression of hOrai1 on the other hand failed to 

modify influx at either stage, whereas hStim1 and hOrai1 co-expression increased Ca2+ influx in 

both stages, although the [Ca2+]i rise was considerably smaller in MII eggs, consistent with the 

reduced co-localization of hStim1 and hOrai1 at this stage. 

 

3.2.7 Expression of SOCE components alters basal Ca2+ homeostasis during oocyte 
maturation 

We next examined whether expression/co-expression of the SOCE components changed 

basal [Ca2+]i levels under natural regular conditions, i.e., without emptying the stores and under 

normal external Ca2+ concentrations, ∼1.7mM CaCl2. In control GV oocytes, basal [Ca2+]i 

remained steady, as the fluorescence ratio of ∼0.1 remained unchanged until the MII stage (Fig. 

3-6B, left panels, upper). Expression of hStim1 increased baseline [Ca2+]i in GV oocytes (P 

<0.05), although by the MII stage basal [Ca2+]i had returned to levels that were indistinguishable 

from those of non-injected controls (Fig. 3-6B, upper right panels, upper). Co-expression of 

hStim1 and hOrai1 dramatically increased basal [Ca2+]i at the GV stage (P <0.05) and although 

basal [Ca2+]i levels were reduced by the MII stage they still remained higher than controls (Fig. 3-

6B, left panels, lower). Together, these results demonstrate that spontaneous Ca2+ influx is 

differentially regulated during mouse oocyte maturation and is greatest at the GV stage, 

consistent with the presence of spontaneous oscillations at this stage [38]. 

To ascertain whether the downturn of Ca2+ influx was likely due to increasing levels of 

[Ca2+]ER, we expressed an EF-hStim1 mutant, D76A-hStim1, which is insensitive to [Ca2+]ER 

levels [48]. Co-expression of D76A-hStim1+hOrai1 increased basal [Ca2+]i in GV oocytes but 



   32 
 

unlike previous treatments, basal [Ca2+]i did not decrease, and effectively increased, as oocytes 

progressed to the MII stage (P <0.05; Fig. 3-6B, right panel, lower). 

3.2.8 Regulation of Ca2+ influx is required to complete oocyte maturation 

We then examined whether the distinct basal [Ca2+]i profiles generated by expression of 

one or both of the SOCE components had differential effects on the rates of in vitro maturation. 

To accomplish this, control GV oocytes or oocytes injected with the selected cRNAs were 

momentarily maintained at the GV stage to allow for protein translation, after which in vitro 

maturation proceeded for 14-16hr. The majority of control oocytes, ∼80%, resumed meiosis and 

reached the MII stage (Fig. 3-7A), although oocytes expressing hStim1 or hStim1+hOrai1, which 

displayed elevated basal [Ca2+]i at the GV stage, showed reduced rates of maturation with more 

oocytes remaining arrested at the GV stage (p<0.05). Remarkably, oocytes expressing D76A 

hStim1+hOrai1, which displayed persistent elevation of basal [Ca2+]i, failed to consistently 

resume meiosis (Fig. 3- 7A). 

To examine if the excessive Ca2+ influx caused by co-expression of D76A hStim1+ 

hOrai1 was responsible for the GV arrest, we repeated the above experiment but 2.5 hr after 

release from IBMX oocytes were transferred to medium containing 0.4 mM CaCl2. Under normal 

[Ca2+]e, as expected, all control oocytes reached the GVBD stage by 2.5 hr, although only ~25% 

of oocytes expressing D76AhStim1+hOrai1 did (Fig. 3-7B; P <0.05). Subsequently, all D76A-

hStim1+hOrai1 expressing oocytes maintained in normal [Ca2+]e-containing media remained 

arrested at the GV stage, while cohort oocytes transferred to 0.4 mM CaCl2-containing media 

progressively underwent GVBD and by 12 hr ~50% had undergone GVBD (Fig. 3-7C); 

progression of maturation in control oocytes was not affected by 0.4 mM CaCl2 media (Fig. 3-

7C). We then examined whether moving oocytes to 0.4 mM CaCl2 media altered basal [Ca2+]i. As 

shown in Fig. 3-7D and 3-7E, 2 hr after changing media oocytes expressing D76A 

hStim1+hOrai1 displayed a significantly lower basal [Ca2+]i (P <0.05), whereas control oocytes 
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were not affected by the switch. Together, these results suggest that regulation of Ca2+ influx and 

Ca2+ homeostasis play a role during normal progression of meiosis in mouse oocytes.  
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3.3 Discussion 

In this study we examined how [Ca2+]e and Ca2+ influx contribute to [Ca2+]ER content 

during mouse oocyte maturation. We also investigated the presence and function of SOCE and 

the effect of Ca2+ influx misregulation on oocyte maturation. We found that while [Ca2+]ER levels 

increase during maturation, Ca2+ entry declines. We detected expression of Stim1 and Orai1 in 

oocytes and eggs as well as a change in their distribution such that hStim1-YFP and hOrai1-

mRFP only extensively overlapped in GV oocytes after addition of TG. Lastly, expression of 

hStim1+hOrai1 increased basal [Ca2+]i in GV oocytes but not in MII eggs, and persistently 

elevated basal [Ca2+]i compromised oocyte maturation. In total, our studies demonstrate that Ca2+ 

influx is closely regulated during oocyte maturation and that alteration of Ca2+ homeostasis 

undermines the completion of maturation. 

 

3.3.1 [Ca2+]ER, [Ca2+]i influx and SOCE during mouse oocyte maturation 

While [Ca2+]ER levels have been known to increase during mouse oocyte maturation, the 

source of Ca2+ and the Ca2+ influx mechanism(s) underlying this increase have not been 

established. Here we show that [Ca2+]e  is required for the increase in [Ca2+]ER and that as [Ca2+]ER 

increases during maturation, spontaneous or TG-induced Ca2+
 influx decreases; Ca2+ influx is 

lowest at the MII stage, which is when [Ca2+]ER is greatest. This relationship between [Ca2+]ER and 

Ca2+ influx, which is especially evident at the GV and GVBD stages, suggests participation of 

SOCE and is reminiscent of data in Xenopus where SOCE-mediated Ca2+ entry is abruptly 

inactivated at the GVBD stage [64, 65]. Our results, unlike those in Xenopus, show that SOCE is 

only partly inactivated by the GVBD stage and can contribute to the increase in [Ca2+]ER during 

this period. Our results differ from other studies in the mouse showing progressively enhanced 

SOCE activity during maturation [68, 69]. 
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Several additional findings in our study suggest a role for SOCE during mouse oocyte 

maturation. For example, addition of 2-APB, a broad-spectrum of SOCE inhibitor [82, 87], 

abrogated Ca2+ influx in GV oocytes. Moreover, both Stim1 and Orai1 were produced by oocytes 

throughout maturation, and expression of functional hStim1 caused enhanced Ca2+ influx, 

whereas an inactive form, hStim1-ΔCAD-YFP, failed to promote Ca2+ influx. In spite of such 

findings indicating a role of SOCE during oocyte maturation, the progressive inactivation of 

SOCE during maturation raises questions regarding its contribution to Ca2+ influx during 

fertilization. Recent research in mouse eggs suggests a minor role for SOCE during fertilization, 

for while it was functional in MII eggs, abrogating its function by pharmacological and molecular 

means failed to modify sperm-initiated oscillations [88, 89]. Importantly, in porcine oocytes, 

inactivation of SOCE by siRNA against Stim1 and Orai1 inhibited persistent fertilization-

associated oscillations [78, 90]. Altogether, these results suggest that in mammals different Ca2+ 

influx mechanisms regulate [Ca2+]ER during maturation and Ca2+ influx during fertilization and 

future studies should identify these channels and their regulation. 

 

3.3.2 Re-organization of hStim1 and hOrai1 during oocyte maturation 

The inactivation of spontaneous and SOCE-mediated Ca2+ influx led us to examine 

whether changes in the distribution of Stim1 and Orai1 could be undermining Ca2+ influx. Given 

the inconsistent results obtained using immunofluorescence to localize endogenous Stim1 (not 

shown), we used corresponding mRNAs also encoding fluorescent proteins. Marked changes in 

the organization of these proteins commenced around GVBD. For example, in GV oocytes 

internal “patches” and peri-GV accumulation highlighted the widespread distribution of hStim1, 

but after GVBD and for the rest of maturation, hStim1 distribution became diffuse and acquired a 

reticular, ER-like pattern consistent with its localization. Further, addition of TG, which in GV 

oocytes caused hStim1 to diffuse to the cortex and form distinct puncta, hardly changed the 
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distribution of hStim1 in eggs. The distribution of Orai1 also changed, as in GV oocytes it was 

primarily present on the PM but by MII its PM presence was reduced and its signal in the 

ooplasm increased. In agreement with these changes, after addition of TG, hStim1 and hOrai1 

only co-localized on the PM of GV oocytes. Our results are agreement with those in Xenopus 

oocytes where inactivation of SOCE during maturation was associated with inhibition of Stim1 

oligomerization/puncta formation and Orai1 internalization [60, 86]. Nevertheless, our results 

show that hStim1 still retained certain clustering capacity and Orai1 internalization was 

incomplete in MII eggs, as even at this stage expression of hStim1+hOrai1 enhanced SOCE 

activity. Our results also concur with data in somatic cells, where SOCE is downregulated at 

mitosis [59, 91] and this change was associated with reduced ability of Stim1 to form puncta [59]. 

Data from studies in mammalian oocytes also support our findings. For example, following 

depletion of [Ca2+]ER Stim1 displayed some degree of oligomerization in porcine MII eggs [70] 

and in mouse eggs Stim1 showed conspicuous clusters/puncta organization, although without 

emptying of the stores, and Orai1 distribution was mostly concentrated to the PM [68]. 

We did not investigate the mechanisms that regulate Stim1 re-organization in oocytes. 

Nevertheless, Stim1 was originally described as a phosphoprotein [92] and phosphorylation of its 

S/T-P consensus sites by M-phase kinases was demonstrated in somatic cells [59, 92, 93] and in 

Xenopus oocytes [60]. We found that exogenous hStim1 was phosphorylated in MII eggs, as it 

experienced a mobility shift that was reduced by phosphatase treatment. We did not observe 

similar changes in the endogenous protein, although the comparable temporal inactivation of TG-

induced Ca2+ influx between uninjected and hStim1 mRNA-injected oocytes suggest common 

regulatory mechanisms. 
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3.3.3 Ca2+ influx and progression of oocyte maturation 

To gain further insight into the mechanisms underlying the brief presence of [Ca2+]i 

oscillations in GV stage mouse oocytes [37, 38], we expressed, singly or together, hStim1 and 

hOrai1 mRNAs and monitored their effects on basal [Ca2+]i in oocytes and eggs. We found that 

their combined expression markedly and persistently increased basal [Ca2+]i in GV oocytes, 

although by the MII stage, basal [Ca2+]i levels had returned to near normal levels. These results 

suggest close regulation of Ca2+ homeostasis/influx during the early stages of maturation. 

To better understand the role of basal [Ca2+]i and Ca2+ influx on oocyte maturation, we 

co-expressed D76A hStim1+hOrai1 mRNAs, which increased basal [Ca2+]i throughout 

maturation. Under these conditions, progression of maturation was greatly reduced with most 

oocytes remaining at the GV stage. These effects were due to the inability to inactivate Ca2+ 

influx and decrease basal [Ca2+]i, as lowering external [Ca2+]e reduced [Ca2+]i and rescued the 

ability of these oocytes to undergo GVBD.  Similar detrimental effects of elevated basal [Ca2+]i 

were observed in Xenopus oocytes where enhanced Ca2+ influx promoted throughout maturation 

hindered the progression of meiosis [81]. Therefore, it appears that regulation of Ca2+ influx is 

required for normal progression of oocyte maturation in the mouse, although we did not explore 

the functional mechanism(s) positively affected by the progressive inactivation of Ca2+ entry. 

We propose a model whereby mouse GV oocytes exhibit a low but persistent Ca2+ influx 

that contributes to the GV’s overall cellular metabolism. Upon resumption of meiosis, Ca2+ influx 

is progressively inactivated to allow for normal progression of meiosis, spindle organization and 

MII arrest. Future studies in mammalian oocytes should elucidate the mechanism(s) responsible 

for the inactivation of Ca2+ influx, and the identity of the channel(s) that mediate Ca2+ entry 

during maturation and fertilization. 
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Figure 3-1. 
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Figure 3-1. [Ca2+]e and Ca2+ influx are required to fill [Ca2+]ER in oocytes. The 

underlying Ca2+ influx mechanism(s) are inactivated during maturation and are sensitive to 2-

APB and TG at the GV stage. (A) The contribution of extracellular Ca2+ to [Ca2+]ER content was 

estimated in GVBD-stage oocytes after culturing GV oocytes for 4 h in media supplemented with 

1.7 mM CaCl2 or without supplementation, nominal Ca2+-free medium. Release of [Ca2+]ER was 

induced by addition of 10 µM TG. All [Ca2+]i responses are shown in the graphs, and the bold 

trace in each graph represents the mean response; bar graphs to the right of each Ca2+ panel 

denote mean ± SEM of [Ca2+]ER content estimated as area under the curve. (B) Spontaneous Ca2+ 

influx was measured in GV oocytes and MII eggs. Oocytes and eggs were placed in Ca2+-free 

conditions, after which 2 and 5 mM CaCl2 were successively added. Given that only GV oocytes 

showed Ca2+ influx, they were pretreated with 50 µM 2-APB for 5 min before addition of CaCl2 

to prevent influx. (C) Ca2+ influx was promoted by addition of CaCl2 into GV oocytes with and 

without prior treatment with TG. GV oocytes were placed in nominal Ca2+-free media or exposed 

to 10 µM TG for 30 min in nominal Ca2+-free medium to deplete [Ca2+]ER, after which 5 mM 

CaCl2 was added. Representative traces are shown, and bold trace represents mean response. 
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Figure 3-2 
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Figure 3-2. [Ca2+]ER content increases, whereas Ca2+ influx induced by TG, SOCE, 

decreases during oocyte maturation. [Ca2+]ER content was estimated from the [Ca2+]i responses 

caused by addition of 10 µM TG in oocytes incubated in Ca2+-free medium, and Ca2+ influx was 

estimated by the [Ca2+]i rise generated by the addition of 5 mM CaCl2 soon after the TG-

induced [Ca2+]i rise had subsided. Representative [Ca2+]i traces are shown for control oocytes 

(A) or for oocytes expressing hStim1-YFP (B). (C) TG- and CaCl2-induced [Ca2+]i changes 

were quantified, and data are presented in bar graphs as mean ± SEM. Control and hStim1-

YFP–expressing oocytes are displayed in open and gray columns, respectively, and the number 

of oocytes evaluated is shown within each bar. *,#Stages significantly different from the GV-

stage values within treatment group. †Significant differences within the same meiotic stage but 

between treatments (p < 0.05). (D) TG-induced [Ca2+]i responses and subsequent Ca2+ influx in 

oocytes and eggs expressing hStim1-ΔCAD-YFP, an Stim1 variant incapable of interacting with 

Orai1.  
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Figure 3-3 
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Figure 3-3. Mouse oocytes express Stim1 and Orai1. (A, B) The expression of Stim1 and 

Orai1 molecules was probed using lysates of GV oocytes (n = 100 and 200, respectively) and MII 

(n = 100 and 200, respectively) eggs and specific antibodies. (A) Left and middle, black arrows 

point to the band corresponding to Stim1. An antigenic peptide was used to confirm the 

specificity of the anti–C-terminus Stim1 antibody. (B) Right, black arrow points to the band that 

represents Orai1. The upper band of ∼68 kDa marked with an asterisk is believed to be 

nonspecific reactivity, as it was not abolished by pretreatment with the antigenic peptide. (C) 

hOrai1-mRFP expression (n = 16 GV oocytes/MII eggs) was analyzed in overexpressing cells 

using the same antibody. (D) Heterologous expression of hStim1-YFP was demonstrated in 

lysates of oocytes/eggs (n = 45) using the anti–N-terminus and anti–C-terminus Stim1 antibodies 

and an anti-GFP antibody. The actin protein was probed as a loading control (bottom, middle). 

(E) To examine the possible phosphorylation of hStim1-YFP in mouse oocytes, lysates of 

hStim1-YFP–expressing MII oocytes (n = 18) were incubated with or without calf intestine 

phosphatase and then immunoblotted with anti-Stim1 antibody [94]. The presence of hStim1 is 

denoted by an arrow, and the bracket denotes the presence of polypeptides of different MWs. (F) 

hStim1–482-stop-YFP–overexpressing GV and MII cells (n = 18) were probed with the anti–N-

terminus Stim1 antibody, and blots are shown.  
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Figure 3-4 
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Figure 3-4.   The distribution and organization of hStim1-YFP and hOrai1-mRFP change during 

oocyte maturation. (A–D) The distribution of hStim1-YFP was examined using confocal 

microscopy from images taken at the equatorial plane of live hStim1-YFP–expressing oocytes. 

The number of oocytes examined at each stage is shown at the bottom of each representative 

image. hStim1-YFP displayed two distinct patterns of organization in all stages of maturation 

except the GV stage; the most representative configurations are shown, along with the proportion 

of oocytes/eggs exhibiting the particular pattern. (E, F) The distribution of hOrai1 was examined 

as in the foregoing in GV and MII oocytes expressing hOrai1-mRFP. Intensity profiles of the line 

scans drawn in oocytes and eggs are shown below E, and a bar graph displaying the relative 

intensity of Orai1 signal between PM and cytoplasm is shown below F. Scale bar, 10 µm.  
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Figure 3-5 
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Figure 3-5.   hStim1 puncta formation and colocalization with hOrai1 decreases during oocyte 

maturation. (A, B) Under control conditions, hStim1-YFP forms internal aggregates in GV 

oocytes, whereas in MII eggs it acquires a more homogenous, ER-like organization. After 

depletion of [Ca2+]ER, hStim1-YFP undergoes “puncta” formation in GV oocytes (C), whereas 

hStim1-YFP distribution is hardly changed in MII oocytes (D). Arrowheads point to hStim1-YPF 

puncta (E, F), and line graphs depicting the fluorescence intensity of these puncta, marked with a 

broken line, are shown to the right of E and F. (E, F) The proximity of the hStim1-YFP 

puncta/aggregates to the PM was estimated by staining the PM with wheat germ agglutinin–

Alexa 664. hStim1-YPF puncta are bigger and more numerous in GV oocytes than in MII eggs. 

(G–R) Confocal images before and after TG treatment of GV oocytes (G–L) and MII eggs (M–R) 

expressing hStim1-YFP+hOrai1-mRFP. The same oocytes/eggs were imaged before and after 

TG. Top, separate fluorescent channels; middle, merged images; bottom, amplified regions of 

these are. hStim1 and hOrai1 display extensive overlap after the addition of TG in GV oocytes 

(K, L), but the overlap is negligible at the MII stage (Q, R). Scale bar, 10 µm.  
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Figure 3-6.    
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Figure 3-6. Overexpression of SOCE components alters Ca2+ homeostasis. (A) Expression of 

hStim1-YFP+hOrai1-mRFP increased Ca2+ influx in both GV and MII cells after TG and CaCl2 

add-back, although the increase was greater and more prolonged in GV oocytes. Expression of 

hStim1-YFP also increased Ca2+ influx in both GV and MII stages but to a lesser extent, whereas 

hOrai1 had no effect. (B) Expression of hStim1 or hStim1+hOrai1 differentially increased basal 

[Ca2+]i during maturation. Baseline [Ca2+]i traces in control (top, left), hStim1-YFP–expressing 

(top, right), hStim1-YFP+hOrai1-mRFP–expressing (bottom, left), and D76A hStim1-YFP+ 

hOrai1-mRFP–expressing (bottom, right) oocytes. Insets in each treatment depict a magnified 

version of the y-axis at the 0.1 mark so that minor differences in basal [Ca2+]i between GV and 

MII stages can be appreciated for some of the treatments  
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Figure 3-7  
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Figure 3-7. Changes in Ca2+ homeostasis affect resumption of meiosis and oocyte maturation. 

(A) Control, sham-injected, and oocytes expressing hStim1-YFP, hStim1-YFP+hOrai1-mRFP, or 

D76A Stim1-YFP+hOrai1-mRFP were in vitro matured and their maturation rates assessed. 

Expression of any mRNAs that increased basal [Ca2+]i even transiently caused a reduction in 

maturation rates, although expression D76A hStim1-YFP+hOrai1-mRFP nearly completely 

prevented resumption of meiosis. Asterisks above bars represent treatments that significantly 

reduced GVBD rates (p < 0.05). (B) The effect of coexpression of D76A hStim1-YFP + hOrai1-

mRFP on meiotic resumption was investigated as depicted in the flow chart (left), and data are 

summarized in the bar graph [94]. Expression of D76A hStim1-YFP+hOrai1-mRFP in GV 

oocytes delayed and mostly prevented GVBD under normal [Ca2+]e (p < 0.05). (C) As before, but 

selected GV-arrested oocytes were transferred to low-[Ca2+]e medium (0.4 mM), which partly 

rescued the arrest caused by expression of D76A hStim1-YFP+hOrai1-mRFP. (D) Ca2+ traces 

depicting the effect of lowering [Ca2+]e on basal [Ca2+]i in control and GV-arrested D76A 

hStim1+hOrai1–expressing oocytes monitored before and 2 h after lowering [Ca2+]e from 1.7 to 

0.4 mM; the bold trace represents the mean of the responses. (E) A bar graph was used to 

summarize in the same group of oocytes the mean ± SEM change in basal [Ca2+]i caused by 

lowering external [Ca2+]e; p < 0.05.  
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CHAPTER 4 

THE ROLE OF PHOSPHORYLATION ON STIM1 DISTRIBUTION AND 
SUBSEQUENT EFFECT IN CALCIUM INFLUX IN MOUSE EGGS 

 

4.1 Introduction 

   The fertilization-induced Ca2+ signal is indispensible for early embryonic development. 

It controls several important functions required for egg such as the exocytosis of cortical 

granules, which is responsible for the block to polyspermy, degradation of cytostatic factors that 

relieves the meiotic arrest of ovulated egg, and is important in driving the egg into interphase and 

promoting the activation of the embryonic genome [31, 71].  Ca2+ release is initiated following 

the delivery into the ooplasm of a sperm specific PLCζ [14], which hydrolyzes a PIP2 present in 

egg membranes to generate IP3 and DAG.  The diffusible IP3 binds its cognate receptor in the ER, 

IP3R1, leading to the opening of the channel and Ca2+ release into the ooplasm [16, 17]. In the 

case of mammalian eggs, Ca2+ rises occur periodically, ~ every 20 min, and are known as Ca2+ 

oscillations.  In mice the oscillations stop around the time of pronuclear formation, but in large 

domestic species including humans, the oscillations last for more than 8 hr [95, 96]. 

In mammalian females, follicles are continuously selected for development and growth 

based on a combination of hormonal stimulation. Upon reaching the graafian stage, which 

contains fully grown oocytes, these oocytes responds to the LH surge that triggers ovulation and 

the resumption of meiosis, as these oocytes are arrested at the prophase sate of the first meiotic 

division, also known as the GV stage. Resumption of meiosis as well as it progression to the MII 

stage is triggered by activation of the maturation promoting factor, which is composed by the 

kinase CDK1 and its regulatory subunit, cyclinB1, and the subsequent activation of the mitogen 

activation protein kinase (MAPK) [28, 29]. During maturation, GV stage oocytes, which possess 

a large nucleus, undergo GVBD, and progress through the MI stage, where they release the 1st 
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polar body, after which they become arrested for a second time but this time at a metaphase stage 

of the second meiotic division; release of this arrest is accomplished by the [Ca2+]i oscillations 

induced fertilization [10, 31, 71].Along with nuclear maturation, oocytes also undergo 

cytoplasmic optimization during maturation, and one of the mechanisms that become finely tuned 

during this process is the Ca2+ signaling machinery. For example, the sensitivity of IP3R1, i.e., the 

capacity to release Ca2+ in response to IP3 stimulation, is greatly increased during this period [34, 

97]. Similarly, the Ca2+ content of the ER, the main Ca2+ store in eggs, increases steadily during 

maturation [32, 33] and the ER also undergoes re-organization and forms prominent cortical 

clusters [98]. Only following the completion of these adaptation, the Ca2+ machinery of the egg is 

set to deploy the complex [Ca2+]i oscillations initiated by the sperm. Importantly, one aspect of 

the Ca2+ toolkit that has not been thoroughly investigated in oocytes is how Ca2+ enters oocytes 

during maturation to increase the content of the Ca2+ stores, or in eggs, to support the persistence 

of the oscillations.  Our recent study investigated whether different Ca2+ influx rates were present 

during maturation of mouse oocytes [99].  We found that consistent with the low Ca2+ content of 

the ER at the GV stage, at this stage Ca2+ influx was the greatest, whereas the opposite was true in 

MII eggs. This association between the Ca2+ content of the internal stores and Ca2+ entry brought 

to mind the store-operated Ca2+ entry (SOCE) mechanisms that is thought to be active in many 

cell types.  In addition, the protracted inactivation of SOCE during maturation, suggested active 

regulation of it in mouse oocytes [99]. 

SOCE is a ubiquitous Ca2+ influx mechanism present in most cell types that is involved in 

restoring the Ca2+ content of the ER after Ca2+ has been released from it following agonist 

stimulation [4, 39, 100, 101]. Two main molecular components are thought to be responsible for 

SOCE; one that acts as a sensor of the level of concentration of Ca2+ in the ER, Stim1[48, 49], 

and the counterpart Ca2+ channel in the plasma membrane Orai1 [51].  Stim1 is an ER resident 

protein with and its N-terminus facing the ER lumen. This domain contains motifs for sensing the 

level of Ca2+ in the ER, EF-hand, and another one that mediates subunit oligomerization 
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following depletion of the Ca2+ store. The C-terminus part of Stim1 projects into cytoplasm and 

encompasses several domains, including the domain that interacts and gates Orai1, which is 

known as CRAC activation domain. Other domains of the cytoplasmic region of Stim1 are the 

S/P rich domain, which contains multiple phosphorylation motifs and the binding site for the 

microtubule-plus-end-tracking protein EB1, which makes possible the association with 

microtubules [61, 102]. Lastly, the poly lysine rich tail (polyK tail) located at very end of the C-

terminus makes possible the redistribution of Stim1 to cortical area near the PM [54]. 

SOCE is activated by depletion of Ca2+ from the ER store. This loss of Ca2+ causes a 

conformational change that makes possible intermolecular oligomerization of Stim1. 

Oligomerization favors translocation of Stim1 to ER-PM junctions, where the ER comes in close 

apposition to the PM, hence facilitating the interaction of it Orai1. The interaction between Stim1 

and Orai1 is direct and is mediated by the CAD domain [54].  The interaction, which causes 

oligomerization of Orai1, causes Ca2+ influx [54].The Ca2+ influx is then inactivated by several 

mechanisms, the molecular details of which remain to be worked out [57, 103, 104]. Inactivation 

of SOCE also occurs in some cases even before Ca2+ influx occurs, as it is observed in somatic 

cells in mitosis [59, 91] and eggs at the metaphase stage of the second meiosis I [60, 64, 65].This 

inactivation has been linked to phosphorylation by M-phase kinases in the S/P-rich domain 

during meiosis and mitosis [59]. Nevertheless, the precise molecular changes induced by 

phosphorylation that inactivate SOCE remain to be fully elucidated and may be cell-type specific. 

For example, in Xenopus eggs and following Ca2+ store depletion, non-phosphorylated Stim1 

mutants were unable to form puncta[60], which is required to activate Orai1, whereas in somatic 

cells, similar mutants rescued puncta formation[59]. Thus, those studies differed in the 

interpretation of the role of phosphorylation on SOCE inactivation during M-phases of the cell 

cycle.  Given that we have shown that Stim1 becomes phosphorylated in mouse oocytes during 

maturation, and that SOCE is downregulated during the same period of time[99], an aim of this 

study was to elucidate the kinases involved in Stim1 phosphorylation and its temporal occurrence 
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during maturation. Another aim was to examine the role of Stim1 phosphorylation on Stim1 

organization and distribution as well as the impact on Ca2+ entry in mouse eggs.  
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4.2 Results 

4.2.1 Stim1 is differentially phosphorylated by M-Phase Kinases during mouse oocyte 
maturation. 

TG-induced SOCE activity is progressively inactivated during oocyte maturation ([11, 

18, 33] and a similar regulation occurred  in oocytes expressing hStim1-YFP cRNA [99]. It was 

observed that during maturation hStim1 undergoes redistribution that causes reduced localization 

near the plasma membrane and decreased puncta formation, which are required to engage its 

channel partner, Orai1 [99]. We confirmed those findings by demonstrating that hStim1 is 

distinctively rearranged during meiotic maturation, as whereas hStim1-YFP forms large internal 

patches at the GV stage, (Fig.4-1A), it shows a reticular distribution at the MII stage similar to 

that of the ER (Fig. 4-1B). Further, treatment with TG and depletion of ER Ca2+ induced hStim1-

YPF puncta formation in GV oocytes but not in MII eggs (Fig. 4-1 C, D, respectively). This 

reduced presence of Stim1 near the PM is thought to underlie the decreased function of SOCE in 

MII mouse eggs. 

Inactivation of SOCE has been observed during mitosis in somatic cells and during the 

late stages of meiosis in Xenopus eggs[59, 86] . The molecular mechanism(s) responsible for 

SOCE inactivation remains to be fully elucidated in these systems, although phosphorylation of 

Stim1 has been observed both in somatic cells and Xenopus eggs [59, 86]. Stim1 phosphorylation 

has been also detected in mouse eggs, although only after hStim1 expression and without 

determination of the responsible kinase(s). Thus, we investigated whether it could be attributed to 

one of the two M-phase kinases, CDK1 and MAPK, which are mostly responsible for driving 

oocyte maturation (Fig. 4-1E).  Phosphorylation has been shown to cause a shift in the 

electrophoretic mobility of Stim1, which is erased by treatment with an alkaline phosphatase [99], 

and therefore we used this approach to assume phosphorylation of the protein.  In addition, we 

used the Phos-tag acrylamide method, as its positive charged metals in gel matrix greatly delay 

the migration of phosphorylated proteins compared to their counterparts [105, 106]. We first 
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confirmed that the expressed hStim1-YFP protein was phosphorylated during maturation, which 

was evidenced by the delayed migration of the protein at the MII stage. Importantly, the 

phosphorylation of hStim1-YFP is cell cycle dependent, as following egg activation, hStim1-YPF 

regained normal motility suggesting loss of phosphorylation following MII exit (Fig. 4-1F). We 

next compared the degree of mobility shift of hStim1-YFP using the Phos-tag system, which as it 

is greatly retarded the migration of thehStim1-YFP in MII eggs (Fig. 4-1G), confirming our 

previous results. We used this amplifying approach to evaluate endogenous Stim1 

phosphorylation, as in a previous study we have failed to note a shift in mobility using 

conventional acrylamide [99]. Using Phos-tag we observed that mStim1 was phosphorylated 

during maturation (Fig.S1).  These results suggest that mStim1 undergoes the same regulation as 

hStim1-YFP does, and thus hStim1-YFP can be used to assess the role of phosphorylation on 

mStim1 distribution and function. 

To that end, we first examined the kinase(s) responsible for hStim1-YFP 

phosphorylation.  To accomplish this, GV-arrested oocytes expressing hStim1-YFP were allowed 

to mature for 4 hr, GVBD, 8 hr, MI, or 14 hr, MII. After those times, oocytes/eggs were treated 

for 2 hr with U0126, a MAPK pathway inhibitor, Roscovitine, a CDK1 inhibitor, or their 

combination, prior to preparation of lysates. Western blotting of these lysates and evaluation of 

the mobility pattern of hStim1-YFP revealed that it experienced significant phosphorylation by 

the GVBD stage and this phosphorylation seemed to remain unchanged until the MII stage. Of 

the two inhibitors, U-0126 seemed to have only a mild reversal of the phosphorylation, whereas 

Roscovitine seemingly fully reversed hStim1-YFP phosphorylation, with the exception of the MII 

stage, which is possibly due to inactivation of the phosphatase responsible for the 

dephosphorylation of M-phase kinase targets[107, 108].  In sum, our results suggest that CDK1 is 

the most important kinase of phosphorylations of hStim1-YFP in mouse oocytes and eggs. 
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4.2.2 Phosphorylation of hStim1-YFP affects its distribution and ability to interact with 
hOrai1-mRFP in mouse eggs. 

Given the increase in Ca2+ ER content that accompanies oocyte maturation, the 

redistribution of hStim1-YFP during maturation could also be due, at least in part, to the 

increased levels of luminal Ca2+, which can be sensed by hStim1’s EF hand[109-111]. To rule 

this out, we examined the distribution of a hStim1 variant that is largely insensitive to changes in 

luminal Ca2+ and constitutively localized near plasma membrane, D76A-hStim1[48, 112]. 

Interestingly, the distribution of  D76A hStim1 alone at MII stage did not show any accumulation 

as  puncta near PM, rather spreaded as recticular structure similar to the WT hStim1-YFP at MII 

stage( Figure S2, left bottom). So to expose hStim1-YFP to thoroughly different phosphorylation 

environments, D76A hStim1 cRNA was injected into oocytes arrested at the GV stage, where 

MPF and MAPK activity are absent, or in oocytes after GVBD, ~1.5 to 2 hr post-IBMX, where 

the activity of M-phase kinases is on the rise (Fig. 4-2A). To evaluate co-localization with 

hOrai1-mRFP, a dead-pore mutant version of hOrai1, E106A-hOrai1, was used to avoid the large 

increases in basal [Ca2+]i caused by the simultaneous expression of Stim1 and Orai1, which 

compromise maturation competence [99]. The distribution of D76A-hStim1-YFP was greatly 

affected by the timing of its expression. For instance, GV oocytes expressing D76A hStim1-YFP 

together with hOrai1-mRFP formed extensive overlay like cortical ring (Figure S2, right), 

whereas in MII egg injected at the GV stage D76A-hStim1-YFP formed large and uniform puncta 

closely overlapping with E106A-hOrai1 (Fig. 4-2B), this was not the case in oocytes injected 

after GVBD, which displayed two patterns of D76A-hStim1-YFP and E106A-hOrai distribution 

(Fig. 4-2C,D). The first pattern, which was observed in ~50% of these cells, D76A-hStim1-YFP 

formed puncta, although the size of the puncta were smaller, they were not equally uniform 

regarding their location near the PM and Orai1 displayed a more diffuse cortical staining whereby 

in some areas it was not associated with D76A-hStim1 (Fig. 4-2C,D). In the other pattern, D76A-

hStim1-YFP failed to form puncta and the degree of overlap with E106A-hOrai1 was greatly 
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reduced.  These results suggest that phosphorylation of Stim1 mediated by M-phase kinases 

regulate its distribution and its ability to interact with Orai1. 

 

4.2.3 Phosphorylation of a CDK1 site affects the distribution of hStim1 in mouse eggs 

The presence of a conserved CDK1 phosphorylation motif on the C-terminal end of 

Stim1, 668SPGR671, combined with demonstration by mass spectrometry that this site is 

phosphorylated in mitotic cells [59, 113], and our data showing that the retardation of hStim1 

mobility detected by western blotting in oocytes at more advanced stages of maturation was 

largely overcome by Roscovitine, led us to examine the cellular and functional consequences of 

expressing a mutant version of the protein, S668A hStim1-YFP. From the standpoint of cellular 

distribution, expression of S668A hStim1-YFP in eggs maintained under basal Ca2+ conditions 

resulted in a proportion of eggs showing large internal clusters, which were absent in WT hStim1-

YFP (Fig.4- 3 A, C, E), and most eggs displaying altered ooplasmic organization characterized by 

a reticular pattern comprised of longer strings than those observed in eggs expressing WT 

hStim1-YFP (Fig. 4-3C, E). In addition and even in this basal state, cortical accumulation near 

the PM could be observed in S668A hStim1-YFP expressing eggs, but not  in eggs expressing 

wild WT hStim1-YFP (Fig. 4-3 A, C, E). Treatment with TG caused internal cluster formation in 

all eggs (Fig. 4-3B, D, F), although the clusters were bigger in S668A hStim1-YFP expressing 

eggs than in the WT hStim1-YFP expressing eggs. In addition, treatment of TG caused puncta 

formation in S668A hStim1-YFP expressing cells, but not in their counterpart control eggs (Fig. 

4-3B, D, F and insets). We next examined using western blotting whether S668A hStim1-YFP 

altered the mobility shift observed in MII eggs expressing WT hStim1-YFP. The mobility pattern 

of S668A hStim1-YFP was not greatly different than from WT hStim1-YFP (Fig. 4-3G), 

suggesting multiple phosphorylations of hStim1. Lastly, we ascertained the functional impact of 

this phosphorylation. Eggs expressing S668A hStim1 showed a consistent but not significant 
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increase in the amplitude and integrated Ca2+ influx induced by TG exposure and Ca2+ add back 

than eggs expressing WT hStim1-YFP (Fig. 4-3H). Altogether, the results show that 

phosphorylation of the 668SPGR CDK1 consensus modifies at least the cellular distribution of 

hStim1 in mouse eggs. 

4.2.4 C-term phosphorylation consensus sites and the poly-K tail regulate hStim1 
distribution and function in eggs 

Research shows that the C-terminal end of hStim1 undergoes multiple phosphorylations 

in somatic cells and in Xenopus eggs [59, 60], which is consistent with the partial effect of the 

S668A mutation on hStim1 distribution and function. Thus, to get a deeper insight into the role of 

phosphorylation on Stim1 function and distribution, we generated a 482 stop mutant that lacked 

the 204 amino acids encompassing the ten phosphorylation consensus sites for MAPK/MPF (S/T-

P) but maintained the sequences required to interact with hOrai1 [59]; 482stop-hStim1-YFP 

migration pattern was not affected by the cell cycle, suggesting that all phosphorylation sites have 

been removed [99]. Expression of this mutant greatly altered the distribution of hStim1 in MII 

eggs, as even at resting state, it accumulated in large internal patches (Fig. 4-4C). Nevertheless, 

these patches/clusters failed to re-align as puncta upon treatment with TG (Fig. 4-4D) suggesting, 

as pointed out by other study [114], that the poly-K tail might be necessary for translocation to 

the cortex.  Hence, we generated a 481-polyK hStim1-YFP mutant that included the last fourteen 

amino acids from the Stim1 C-terminus containing all seven Ks. Overexpression of 481-polyK 

hStim1-YFP show that it recovered the reticular distribution for hStim1 (Fig. 4-4A, E, C) and, 

following  Ca2+ store depletion, it formed internal patches/clusters in addition to  puncta (Fig. 4-

4F). Co-expression of 481-polyK hStim1 with hOrai1-mRFP revealed co-localization with 

hOrai1 even at basal conditions (Fig. 4-4G), which was enhanced following TG treatment (Fig. 4-

4H); the only exception was the spindle area, which seemed to exclude hStim1 despite Orai1 

being localized to the PM overlaying this area. 
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We next determined how the aforementioned mutants affected SOCE using the TG-Ca2+ 

re-addition method. Despite its unusual distribution and perceived lacked of cortical location, 

expression of 482 stop-hStim1-YFP mutant increased Ca2+ influx as much as expression of WT 

hStim1-YFP (Fig. 4-4I).  Remarkably, expression of 481-polyK hStim1-YFP resulted in almost 

two-fold increase in the amplitude of Ca2+ influx than other group (Fig. 4-4 J, I and K). This data 

supports the notion that enhanced localization of 481-polyK hStim1-YFP near the PM region, 

which is facilitated by removal of the C-term phosphorylation sites, enhances its function. 

Together, the results show that whereas the C-terminus end of hStim1-YFP is not required to 

activate SOCE, it is important for its regulation. 

4.2.5 Substitution of Serines on the C-terminus of hStim1 leads to persistent cortical 
distribution and enhanced SOCE activity 

The previous results using the 481-poly K hStim1-YFP mutant are consistent with the 

notion that the C-term domain of Stim1 with its M-phase kinase phosphorylation sites regulates 

SOCE activity [59]. The interpretation of our results is nevertheless somewhat compromised by 

the modified size of the 481-poly K hStim1 vs. the native protein. To address this, we carry out a 

serious of studies using a version of the protein where all ten serine within conserved 

phosphorylation sites were substituted by alanine, S10A hStim1-YFP, which largely prevented 

phosphorylation of the protein while preserving the native size of hStim1[102]. Expression of 

S10A hStim1-YFP resulted in accumulation of its signal near the cortex and the plasma 

membrane even in the presence of standard extracellular Ca2+ and without addition of TG (Fig. 4-

5B). Such a distribution was not observed following expression of WT hStim1-YFP (Fig. 4-5A) 

or 481-polyK hStim1-YPF, although the latter displayed a similar organization when co-

expressed with hOrai1. These results suggest that the full length of S10A hStim1-YFP confers 

better accessibility to the PM than the shorter 482-polyK hStim1-YFP. 



   62 
 

Next, we examined whether the distribution of S10A hStim1-YFP was influenced by co-

expression with hOrai1. We expressed S10A hStim1-YFP with E106Q hOrai1 [115] instead of 

WT hOrai1 to prevent the exposure of excessive influx during maturation caused when Stim1 and 

Orai1 are co-expressed[99]. In control cells co-expressing WT hStim1-YFP and E106A hOrai1 in 

the presence of regular extracellular Ca2+ concentrations, hStim1-YFP did not accumulate near 

the cortex and no apparent overlap with E106A hOrai1 was observed (Fig. 4-5C); treatment of 

these eggs with TG to reduce Ca2+ in ER levels only somewhat enhanced the co-localization of 

the molecules (Fig. 4-5D). On the contrary, cells co-expressing S10A hStim1 and E106Q hOrai1 

showed extensive co-localization both in the presence of normal external Ca2+ concentrations 

(Fig. 4-5E) and after treatment with TG, although after the latter greater overlap was observed 

mainly the result of additional translocation of S10A hStim1-YFP to the plasma membrane (Fig. 

4-5E and F and their insets). It is worth noting that under both conditions, eggs expressing S10A 

hStim1-YFP displayed extensive fluorescent signal within the spindle region, which was detected 

intercalated between chromosomes (Fig. 4-5F; Fig. S3); this spindle localization of hStim1 was 

not observed following expressing of WT or 481-polyK versions of hStim1. 

We then examined how S10A hStim1-YFP expression affected basal [Ca2+]i levels, Ca2+ 

release and SOCE activity.  Expression of S10A hStim1-YFP alone did not impact basal [Ca2+]i 

levels in MII eggs and addition of TG revealed it did not modify the amplitude or duration of the 

TG-releasable Ca2+ pool (Fig. 4-5G; upper panel). Nevertheless, following re- addition of Ca2+, 

the presence of S10A hStim1-YFP clearly increased the magnitude of the Ca2+ influx by several 

folds over the WT-hStim1-YFP (Fig. 4-5G). It is worth noting that the magnitude of the Ca2+ 

influx in eggs expressing S10A hStim1-YFP was not different than the one observed following 

expression of 481-polyK tail, although there were differences in degree of inactivation, which 

was not obvious in S10A hStim1 YFP expressing eggs (Fig. 4-5G upper and lower panels). These 

results suggest that the consensus phosphorylation sites on the C-terminal end of hStim1 play 

important roles in its distribution and activity. 



   63 
 

4.3 Discussion 

Using confocal images and Ca2+ imaging in the live egg overexpressing fluorescence 

protein tagged mutants of Stim1-YFP on the carboxyl terminus; we investigated underlying 

mechanisms responsible for inactivation of SOCE during mouse meiotic progression. Our study 

clearly showed that Stim1 is  phosphorylated mainly in effect of CDK1 activation, concomitant 

with resumption of mouse meiotic maturation.  Its phosphorylations regulate Stim1 function in 

two ways:  these phosphorylations limit Stim1 reorganization as puncta near PM in response to 

the ER store depletion and restrict poly-K tail interaction with PM. Furthermore, its 

phosphorylations also reduced the interaction with Orai1. In sum, our study provide more detailed 

modulatory insights of how phosphorylations of Stim1 affect the suppression during mouse 

meiotic progression and its regulation can be varied among cell types. 

 

4.3.1 The effect of phosphorylations of Stim1 in regulation of Ca2+ influx varies among 

meiotic or mitotic cell types 

Although the suppression of SOCE, impaired redistribution of Stim1 in response to the 

ER store depletion, and phosphorylations on Stim1 occurred commonly during meiotic or mitotic 

cells, the modulatory roles of phosphorylations in Stim1 distribution and subsequent SOCE may 

differ among cell types and between meiotic and mitotic cells. For example, single expression of 

200 amino acid truncated mutant (485 stop) or with Orai1 in Xenopus oocyte formed internal 

aggregate of Stim1 and co-internalized with Orai1 when was co-expressed, and this internal 

aggregates were suppressed the influx in the oocyte [114].  Whereas in mitotic HeLa cells, co-

expression of 482 stop mutant with Orai1 increase its accumulation near PM and further reverse 

mitotic SOCE suppression[59]. In our observation, expression of almost the same mutant (482 

stop) formed large internal patches similar to the result of Xenopus egg but functionally 

maintained suppression of SOCE similar to the increase when WT Stim1 was expressed in mouse 

oocyte/egg.  But 482 stop expressed egg did not increase the influx significantly as mitotic HeLa 
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cell. Partly these differences are because we tested only single expression of 482 stop but they 

tested co-expression this mutant with Orai1, nonetheless it is clear the same mutants exert 

different outcome depending on the system. 

In the same context, expressing different combination of non-phosphorylated forms of 

Stim1 mutants also show variable effect among cell types.  None of non-phosphorylated mutants 

in Xenopus egg revert cortical localization of Stim1 puncta near PM and the SOCE suppression. 

Then their conclusion is that Xenopus Orai1 internalization play a primary role to suppress the 

influx [60, 86].  On the contrary, two serine to alanine mutations on the C-terminus partially 

recover the formation of puncta of Stim1and SOCE in mitotic HeLa cell [59], and expression of 

S10A fully recover the mitotic suppression by forming Stim1 puncta near cortex [102]. Our study 

also showed S10A expression totally recover cortical localization and fully support the SOCE, 

however its magnitude is less than the immature oocytes expressing Stim1 alone.  These 

observations tell us that regulatory modules of Stim1 during mouse meiotic maturation are more 

close to the mammalian mitotic cells rather than Xenopus meiotic cell. This can be triggered by 

different ways of measuring Ca2+ changes using electrophysiology versus cytoplasmic Ca2+, but 

confocal data clearly suggest that regulatory functions of phosphorylation roles on the C-term are 

quite differently between Xenopus and mouse. Several factors can contribute these differences 

such that there are different combinations of molecular adaptor proteins to regulate SOCE or ER 

distribution, and the needs of Ca2+ influx after fertilization are quite different, therefore the 

system is adapted accordingly. 

 

4.3.2 Regulatory roles of C-terminus of Stim1 in Ca2+ influx in mouse meiotic maturation 

The removal of C-terminus of the Stim1, 482 stop mutant, resulted in large internal 

patches in mouse egg at resting state, which likely also co-aggregated with ER as reported in 

Xenopus eggs [114], and its large internal patches seemed immobile aggregate since they did not 

redistribute near PM after the ER store depletion. Notably, only the attachment of positive 
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charged 14 amino acids into 482 stop mutant (481-polyK) totally retrieved these internal patches 

into reticular tubular structures. Similarly in Xenoupus egg, substitution of 200 amino acids of C-

terminus with a similar length, non-functional florescent protein reversed internal aggregation of 

C-term truncated mutant to the reticular structure [114].  These results suggest that C-terminus of 

Stim1 sterically contribute its own conformational stability; hence without C-terminus it 

aggregate internally.  Thus C-terminus involve in regulation of intra molecular interactions of 

Stim1and intracellular distribution.   

Furthermore our study reveals a new mechanistic insight of SOCE regulation during 

meiotic maturation that there is a negative correlation between phosphorylation on the C-terminus 

and poly K tail for Stim1 localization near PM.  It is probably controlled by electrostatic 

interactions between the C-terminus of the Stim1 and PM.   This notion is supported by several 

C-terminus mutants. First, single expression of S10A hStim1 increase spontaneous localization of 

near cortex at resting state. In case of S668A hStim1 mutant, not dramatic as S10A hStim1, but it 

also showed decent increase of spontaneous accumulation near cortex. Interestingly, S668 site is 

the most proximal phosphorylation site from poly K tail that is likely sterically close. In addition, 

481polyK- Stim1 also accumulated as a cortical ring when it co-expressed with Orai1 at resting 

state but it did not occur in single expression of 481-polyK. It may suggest that interaction with 

Orai1 also contribute cortical localization of Stim1 near PM even at resting state. Based on above 

observations, phosphorylations on Stim1 affect negatively to its localization near PM. we propose 

that phosphorylations on Stim1 during maturation induce repulsive interaction between 

negatively charged phospholipids in PM, thus sterically hinder poly K way from PM. 

This notion is underpinned by Ca2+ influx traces after the store depletion among these 

mutants. Both removal of C-terminus or non-phosphorylated S10A reverses inactivation of SOCE 

in MII egg and show dramatic increase in amplitudes of Ca2+ influx.  This increase was consistent 

with redistributions of both mutants after the store depletion.  Interestingly, the traces after the 

peak significantly maintained higher in egg expressing S10A than 481-polyK. As shown in 
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spontaneous accumulation of both mutants in PM, it may occur that the full length of S10A is 

more advantageous to maintain more stable interaction with negatively charged phospholipids in 

PM than the shorter 481-poly K mutant.  These differences will be also triggered by the 

interaction with positive microtubule cytoskeleton, since S10A Stim1 contains the interaction 

domain. However, its effect might be in part in mouse egg because 481-polyK mutant, without 

EB1 binding site, intensively accumulated in the cortex in response to the store depletion.  And 

also high Ca2+ is known to detach Stim1 from EB, and another study show that the treatment of 

nocodazole destructing microtubule polymers does not affect SOCE function. We could not 

exclude whether it is triggered by other Ca2+ machineries such as Ca2+ ATPase, but at least, 

removal of extracellular Ca2+ in S10A hstim1 expressing egg quickly recovered the basal level 

suggesting that this longer duration in S10A expressing egg rely on Ca2+ influx. 

Lastly, we also showed whether distribution of Stim1 can be changed by fluctuations of 

endogenous M-phase. By varying the timing of cRNAs injection before and after M-phase 

kinases activation, we assess whether constitutively active Stim1, D76A Stim1, together with 

Orai1 show changes in their distribution.  Advantage of this approach that we thought are that 

usage of D76A hStim1 ruled out another critical factor, changes of ER Ca2+ contents during 

meiotic maturation, and constitutive binding of D76A Stim1 with Orai1 may sterically hinder 

access of M phase kinases. Remarkably, D76A hStim1and Orai1 injected before the kinases 

activation, the overlay of both molecules was observed as large puncta near PM in the egg, while 

if they were injected after the kinase activation, it clearly showed reduction of size of D76A 

Stim1 puncta and orai1. These observations confirm whether the effect of phosphorylation on 

Stim1 assessed by molecular or physiological approaches, distribution of Stim1 near PM is 

regulated by phosphorylations on C-terminus. 

Another significant role of phosphorylation effects on Stim1 is ER retraction in 

metaphase plate. We also observed that intercalation of ER in S10A, which is known to interact 

with EB1 and S668 A mutant is also accumulated near the metaphase plate. However the effect of 
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ER intercalation during mouse meiotic maturation is also elusive like mitotic cell study. We did 

not observed statistically significant defect in cell cycle progression between S10A expressed egg 

and control eggs during in vitro maturation and Sr2+ induced pathenogenetic activation. As it is 

also suggested in mitotic somatic cells, dissociation of growing microtubule end due to Stim1 

phosphorylation effect on SOCE function is not critical as we saw in 481-polyK . 

In this study, we show how this mammalian meiotic cell regulated its Ca2+ influx 

mediated by Stim1. Our study reveals that phosphorylations on the C-term affect its own 

intermolecular polymerization, negatively affect polyK tail availability for interaction with PM, 

and interaction with Orai1.  Its modulatory regulation of Stim1during mammalian oocyte/eggs 

may be more complicated than we described here, since many versatile roles of Stim1 and its 

adaptor or regulators are found these days in somatic studies. Combined with our knowledge will 

help clarify to understand for suppression mechanism.  
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Figure 4-1.   
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Figure 4-1. Stim1 is differentially phosphorylated during mouse oocyte maturation. (A-D) 

Confocal images show the changes in distribution of hStim1-YFP between GV and MII stages.  

Images were taken at an equatorial section of live hStim1-YFP expressing GV- or MII-stage 

oocytes in presence of normal extracellular Ca2+ (A,B) or after addition of thapsigargin (TG) to 

reduce ER Ca2+ content (C,D).  Insets show magnified views of cortical regions. Scale bar: 5µM. 

(E-H)  Stim1 is phosphorylated by M-phase kinases active during cell-cycle transitions. (E) A 

schematic of the fluctuation of MAPK and MPF activities during oocyte maturation. (G) Western 

blots showing migration patterns of hStim1-YFP from oocytes collected at different stages of 

maturation. (F) Changes in migration pattern of human Stim1-YFP (n=10 eggs per lane, left 

panel) between GV and MII stage were enhanced by separating polypeptides in 6% Phos-tag-

containing gel followed by normal immunoblotting. (G) The source of phosphorylation and 

change in migration patterns of hStim1-YFP was ascertained using the pharmacological inhibitors 

Cdk1/MPF and MAP kinases during the different stages of oocyte maturation. Arrowheads 

denote the expected position of hStim1-YFP at GV stage. 
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Figure 4-2.   
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Figure 4- 2. hStim1-YFP phosphorylation affects hStim1-YFP’s ability to co-localize with 

hOrai1. (A) A schematic of the experimental design where D76A hStim1-YFP and hOrai1-

mRFP were co-injected at the GV stage or after GVBD. (B-D) Distribution of D76A hStim1-YFP 

and hOrai1-mRFP was examined using confocal microscopy in live MII oocytes; cRNAs were 

co-injected at GV (B) or at GVBD (C, D) and were translated for 12-14 hr during in vitro 

maturation. Arrowheads denote the position of D76A hStim1 puncta.  Left panels within B, C, D 

show images of the whole egg, whereas right panels show magnified versions of the cortex area. 

The bottom panels show merged image of D76A hStim1 and hOrai1-mRFP images. Lines graphs 

within each image show the fluorescence the intensity of D76A hStim1-YFP and hOrai1-mRFP 

where the line scan was performed. (F) Averages sizes of puncta were quantified using image J. 
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Figure 4-3. 

Figure 4- 3. A point mutation on a Cdk1 consensus site alters the distribution of WT 

hStim1-YFP in MII stage oocytes.  (A-B) Distribution of WT hStim1-YFP in MII oocytes under 

normal Ca2+ conditions (A) or after treatment with TG in the absence of external Ca2+(B). (C-F) 

Distribution of S668A hStim1-YFP in MII stage oocytes under normal conditions (C, E) and after 

TG treatment (D, F).  Oocytes assessed for redistribution of S668A hStim1-YFP after TG (D, F) 

are the same oocytes at rest state (C, E, respectively). Bottom panels show magnified images of 
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the cortical area. Arrowheads denote the presence of hStim1-YFP and S668A hStim1-YFP 

puncta. (G) SOCE was examined in WT hStim1 vs. hStim1-YFP S668A expressing cells using 

the TG-Ca2+addition method and the amplitude of Ca2+ influx in each group is displayed in the 

adjacent bar graph. (H) Immunoblot showing the migration pattern of S668A hStim1-YFP. 
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Figure 4-4.    

 

Figure 4-4.   The C-terminal end of hStim1 modulates its distribution and Ca2+ influx-

mediating ability during meiotic maturation.   Distribution in MII oocytes of hStim1-YFP 

mutants in which portions of the C-terminal end of the molecule that contain consensus sites for 

M-phase kinase have been omitted. (A-F) Distribution of WT hStim1-YPF, 482 stop hStim1-YPF 

and 482-poly K hStim1 in MII oocytes in control conditions (A, C, E) or after TG treatment in the 
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absence of external Ca2+ (B, D, F).  (G, H) Co-expression of 482-poly K hStim1 and hOrai1-

mRFP cRNA in control conditions (G) or after TG treatment in the absence of external Ca2+ (H). 

The area denoted by a square in B, D, F, H is magnified in panels below (fluorescence image, 

left, and light image superimposed to fluorescence image, right). Insets in G and H show line scan 

profiles in each representative image. (I-K) [Ca2+]i
 responses and influx after TG and Ca2+ 

addition in the aforementioned hStim1-YFP mutants.  Representative Ca2+ traces for 482 Stop 

hStim1 and 481-poly K hStim1mutant are shown in I and J, respectively, and quantifications of 

amplitude of Ca2+ influx for both groups are shown in K. 
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Figure 4-5.   
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Figure 4-5. The S10A hStim1-YFP mutant display increased SOCE activity at the MII stage 

and attains near PM distribution. (A) Localization of WT hStim1-YFP and (B) S10A hStim1-

YFP in MII oocytes under control conditions. (C-F) Images demonstrating the co-localization of 

hStim1 and Orai1 signals after co-expression of WT hStim1-YFP+hOrai1-mRFP (C, D) or 481-

polyK hStim1-YFP and hOrai1-mRFP (E, F) in normal Ca2+ condition (C, E) or after TG 

treatment (D, F), respectively. Same oocytes were used for images before and after addition of 

TG. (G) Ca2+ influx was measured in controls, WT hStim1-YFP and S10A hStim1-YFP 

expressing MII oocytes after TG treatment and Ca2+ addition. Representative traces are shown in 

the upper panel and the amplitude of Ca2+ influx following the addition of CaCl2 was quantified at 

peak and 15 min after. 
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SUPPLEMENTARY FIGURES 

  

Figure S1. Changes in migration pattern of endogenous mouse Stim1 (n=150 eggs) between GV 

and MII stage were enhanced by separating polypeptides in 6% Phos-tag-containing gel followed 

by normal immunoblotting. 

 

 

Figure S2. Distribution of D76A hStim1-YFP alone in GV oocyte and MII stage egg (left)and 

co-expressed with hOrai1-mRFP  in GV stage oocyte (right) in normal [Ca2+]e. 
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Figure S3. Distribution of WT hStim1 (A) or S10A hStim1-YFP (B, C) juxtaposed with 

metaphase II stage plate. S10A hStim1-YFP is interposed in metaphase II plate or  accumulated 

next to metaphase II ( white filled arrow heads), while WT hStim1 is not (empty arrow heads). 
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CHAPTER 5 

CONCLUSIONS 

Free Ca2+ is an important second messenger and as such controls numerous functions in cells 

including activating dormant oocytes/eggs from their MII arrest following sperm entry to begin early 

embryonic development. Hence, understanding the mechanisms that lead to the generation of Ca2+ 

responses has been regarded as an important question in the reproductive biology field as a mean to 

overcome infertility as well as to design now and more physiological contraceptive methods. The Ca2+ 

signal is ubiquitous and therefore oocytes have acquired the molecular toolkit present in most cells to 

maintain Ca2+ homeostasis.  Nevertheless, it is also likely that they have acquired some specific 

mechanism(s), many of which are presently unknown, to make possible the persistent oscillations that 

are a hallmark of mammalian fertilization.  Most studies to characterize those mechanisms in oocytes 

and eggs thus far have focused on the role of IP3R1, which is the main intracellular channel responsible 

for Ca2+ release, and it optimization during maturation, as well on several changes that occur during the 

same process with the ER, which is the host organelle of IP3R1 [18, 32-34]. Nevertheless, an covert 

Ca2+ toolkit in oocytes/eggs are the plasma membrane channels that make possible the filling of the 

[Ca2+]ER  store during maturation and its refilling during oscillations, as without Ca2+ influx oscillations 

do not persist [88]. Our study was designed to examine the Ca2+ influx pathway(s) that are associated 

with the increase in [Ca2+]ER during mouse oocyte maturation and their regulation during this process. 

Our expectation is that these results will contribute to identify the Ca2+ influx pathway(s) that underlie 

the fertilization induced [Ca2+]i oscillations. 

The first aim of our studies focused on identifying the Ca2+ influx pathways associated with the 

spontaneous increase in [Ca2+]ER  during maturation.  Given that the stores are low at the GV stage and 

there is increased Ca2+ influx at this stage, we examined the presence of SOCE, as it is a well known 

Ca2+ influx pathway modulated by levels of [Ca2+]ER and is ubiquitously expressed. We confirmed that 

oocytes and eggs express the SOCE components, Stim1 and Orai1, both at the message and protein 
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levels. We also demonstrated that whereas Ca2+ influx, either induced following TG addition or simply 

by changing the levels of [Ca2+]e, was robust in GV oocytes, it was severely decreased in MII eggs. 

Thus, these observations show that Ca2+ influx is distinctly regulated during oocyte maturation, and that 

the levels of [Ca2+]ER  might be one of the factors involved in the modulation of Ca2+ influx. 

We next investigated whether the regulation of Ca2+ influx during maturation was also observed 

after expression of the of ER Ca2+ sensor component of SOCE, hStim1-YFP. Remarkably, 

overexpression of hStim1-YFP greatly increased the Ca2+ influx triggered by ER store depletion 

throughout maturation. Nevertheless, and consistent with the changes observed for endogenous Ca2+ 

influx, the magnitude of Ca2+ influx was significantly reduced as maturation progressed and it was 

minimal at the MII stage. Therefore, overexpression of hStim1-YFP recapitulated the regulation of 

endogenous Ca2+ influx during maturation, suggesting that SOCE may be one of the mechanisms 

involved in Ca2+ influx during mouse oocyte maturation. Similar effects and down regulation of Ca2+ 

influx was observed when both components of SOCE, Stim1 and Orai1, were co-expressed.  

Importantly, the only example where the suppression of Ca2+ influx with meiotic progression was 

bypassed was when constitutively active Stim1, D76A hStim1 [48], was co-expressed with hOrai1; in 

this case, the increased influx rates remained throughout maturation, even at the MII stage.  These 

results suggest that one of the mechanism mediating the inactivation of Ca2+ influx is the increase in 

[Ca2+]ER levels,  as the suppression is bypassed by expression of D76A-hStim1, which is insensitive to 

levels in the ER. The excessive influx following expression D76A-hStim1 had detrimental effects on 

maturation rates, as it prevented the progression of meiosis in many of the oocytes.  In sum, we 

demonstrate that the components of SOCE are expressed in mouse oocytes/eggs and that Ca2+ influx 

mediated through this mechanism, and possibly through others, is downregulated during maturation. 

The inactivation of the influx is associated with increased [Ca2+]ER levels, although others mechanisms 

are also thought to participate and will be investigated below [60, 86]. Lastly, inactivation of Ca2+ 

influx seems necessary, as it is maintained unchanged throughout maturation, compromises meiotic 

progression. 
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To better understand the mechanisms underlying the suppression of SOCE during maturation, 

we expressed hStim1-YFP and using confocal microscopy we monitored its distribution throughout 

maturation. We found that during maturation, hStim1-YFP undergoes remarkable changes in 

distribution such that at the GV stage hStim1-YFP displayed appears organized in large patches that are 

spread throughout the ooplasm. As maturation commences, these internal patches appear to dissolve 

and the distribution becomes nearly homogenous throughout the ooplasm, which is similar to the 

distribution of the ER. Upon ER Ca2+ depletion, hStim1 presence in the ooplasm at the GV stage 

decreases and this is accompanied by the appearance of distinct puncta and accumulation near the PM. 

Importantly, the same treatment in MII eggs does not affect the distribution hStim1-YFP. Further, if 

Stim1 and Orai1 are co-expressed, following TG treatment and emptying of the stores, there is 

extensive co-localization of these molecules at the sites of puncta formation in GV stage oocytes 

whereas the overlap is negligible in MII eggs. Therefore, the distribution of Stim1 undergoes significant 

reorganization during maturation, and the inability of Stim1 to form puncta at the MII stage might be a 

mechanism that underlies the inactivation of SOCE in MII eggs. 

Earlier studies have reported that phosphorylation of Stim1 may be one of the mechanisms that 

contributes to the suppression of SOCE in mitotic cells [59, 116] and in Xenopus eggs [64, 65, 86]. 

Importantly, whereas both studies agreed that Stim1 is phosphorylated during M-phases of the cell 

cycle, results in somatic cells pointed at this mechanism as responsible for inhibition of puncta 

formation and Ca2+ influx (Smyth, Petranka et al. 2009), although in Xenopus eggs it was shown to 

affect Stim1 distribution but not the function of SOCE[86] . To examine the possible impact of Stim1 

phosphorylation in mouse oocytes/eggs, we designed a series of studies to demonstrate whether Stim1 

phosphorylation takes place in our system and how this impacts the function of SOCE. Our results 

show that the exogenously expressed hStim1-YFP is differentially phosphorylated during maturation, 

and this might also be the case for the endogenous mStim1. We confirmed that the phosphorylation was 

occurring on the C-terminal end of the molecule, as expression of a hStim1 mutant missing the last 200 

amino acids failed to show any migration changes following western blotting. Lastly, with the use of 
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pharmacological inhibitors and collection of oocytes during different stages of maturation we show that 

the majority of Stim1 phosphorylation is mediated by CDK1, although MAPK also seems to target 

Stim1 during mouse oocyte maturation. 

We next examined how phosphorylations affected the distribution of hStim1 and the function 

of SOCE. On way we tested this effect was by expressing hStim1 and hOrai1 before and after GVBD, 

which is before and after activation of Cdk1. We used the D76A-Stim1 mutant, so its distribution would 

not be affected by [Ca2+]ER levels, and E106Q hOrai1, which is inactive so that excessive Ca2+ influx 

does not alter the progression of meiosis. The rationale for injecting post-Cdk1 activation was to allow 

hStim1 to become phosphorylated prior to interacting with hOrai1. We found that the distribution of 

D76A hStim1 was greatly affected by the timing of injection, as injection after GVBD reduced the 

interaction of D76A hStim1 with E106Q hOrai1, as reflected by the smaller puncta size as well as 

reduced overlap following the merging of their respective images.  We also examined the impact 

phosphorylation on Stim1 distribution and function by specifically deleting/replacing residues that are 

targets of phosphorylation. Expression of a mutant with a large truncation of the C-terminal end of the 

molecule, hStim1-482-stop, showed altered organization with large internal patches, which seemed to 

remain largely intact following depletion of [Ca2+]ER after addition of TG, which is radically different 

from the distribution of WT hStim1. Remarkably, this mutant supported Ca2+ influx as much as WT 

hStim1. A second mutant examined was similar to hStim1-482-stop, although in this case the poly-K 

found at the end of hStim1 was added back, 481-poly K mutant. Expression of this mutant resulted in a 

nearly homogenous distribution throughout the ER, although it seemed to form a series of internal 

parallel sheets, possibly as a consequence of ER reorganization. Upon depletion of [Ca2+]ER, 481-poly K 

hStim1 continued to form these internal sheets, although it formed prominent puncta near the PM. 

Consistent with the cortical accumulation of m481-polyK tail, it greatly enhanced Ca2+ influx following 

the re-addition of Ca2+ to the media. Mutation of S668 to A within a conserved CDK1 site at the very 

tail end of the molecule, also altered the distribution of hStim1, as puncta formation was seen even 

before depletion of [Ca2+]ER, although its effects on Ca2+ influx was comparable to that of WT hStim1.  
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Finally, we tested a mutant where all serine amino acids within the minimal kinase motif S/T-P in the 

C-terminal end of the molecule were substituted to alanine, S10A hStim1-YFP. Expression of this 

mutant resulted in nearly constitutive cortical distribution of the molecule, extensive overlap with Orai1 

and significant enhancement of Ca2+ influx, which also seemed unable to be inactivated. Taken together, 

our results show that phosphorylation of Stim1 limits its cortical distribution, its ability to form puncta 

and interact with Orai1, and therefore represent one of mechanisms whereby SOCE is suppressed in M-

phase stages of mitosis and meiosis. 

Despite our findings, important aspects of the regulation of Ca2+ influx in mouse 

oocytes/eggs remain unknown. For example, what is the role of endogenous SOCE in the increase 

of [Ca2+]ER and support of the oscillations during fertilization? This could be answered in part by 

performing knockdown studies as well as using tissue-specific knockouts. Our attempts using 

knockdown studies or dominant negative constructs have thus far being unsuccessful.  

Importantly, we need to identify the endogenous channel(s) that hStim1 is binding and gating in 

mouse oocytes. It is possible that one of the channels is Orai1, as we have shown that is expressed 

in mouse oocytes. Nevertheless, Stim1 has been shown to interact with others family of channels 

[112, 117-120], and it would be pivotal to show if these channels are expressed in mouse oocytes 

and if Stim1 gates them. In addition, it would be necessary how these channels contribute to Ca2+ 

homeostasis during maturation and fertilization. Ca2+ influx is required to maintain the 

fertilization-initiated oscillations and initiate embryo development. In spite of its relevance, we 

know nearly nothing about the mechanisms, channels and regulation of Ca2+ influx in these cells.  

Therefore, our studies are a first step in the characterization of the channels that regulate Ca2+ 

influx in oocytes and eggs. We have developed novel tools that will make possible to probe the 

function of SOCE but also of other channels, which should make possible the elucidation of the 

mechanisms that underlie Ca2+ influx in these cells.  Such knowledge will contribute to improve 

conditions for in vitro maturation conditions, which will enhance the developmental competence 
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of in vitro matured oocytes. Lastly, these mechanisms could be utilized to design better egg 

activation protocols as well as serve as targets for contraception. 
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