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ABSTRACT 

PHYSIOLOGY OF COLD ACCLIMATION AND DEACCLIMATION RESPONSES 

OF COOL-SEASON GRASSES: CARBON AND HORMONE METABOLISM 

SEPTEMBER 2014 
 

XIAN GUAN, B.S., BEIJING FORESTRY UNIVERSITY 

B.S., MICHIGAN STATE UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Michelle DaCosta 
 

Winter injury of cool-season turfgrasses in northern climates is a significant 

issue, leading to losses in turf cover and subsequent increased inputs for recovery. 

Despite the different potential causes for winter injury, the overall level of plant 

freezing tolerance has been shown to account for a majority of the variation in winter 

survival of grasses. Freezing tolerance is achieved through cold acclimation, based on 

a series of physiological and biochemical changes that increase cell stability at 

freezing temperatures. Winter injury can result from insufficient cold acclimation, or 

rapid cold deacclimation triggered by temperature fluctuations or freeze-thaw cycles. 

Previous research has been mostly conducted to investigate the mechanisms 

associated with cold acclimation, limited research was applied to deacclimation 

resistance. In order to enhance winter survival, and reduce turf losses and recovery 

costs, a better understanding of the underlying factors associated with cold 

acclimation and deacclimation is necessary. Therefore, the objectives of this thesis 

research are to: (1) evaluate the carbon metabolism factors attributing to different 

freezing tolerance capacity associated with cold acclimation and deacclimation of 

annual bluegrass and creeping bentgrass; (2) investigate the differences in hormone 

regulation of annual bluegrass and creeping bentgrass during cold acclimation and 
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deacclimation; and (3) identify physiological changes in response to cold acclimation 

and deacclimation among perennial ryegrass genotypes contrasting in freezing 

tolerance. Overall, our research found that the fast up-regulation of carbon 

metabolism activities (chlorophyll fluorescence, photosynthesis, respiration) during 

deacclimation was associated with losses in freezing tolerance. In addition, changes in 

hormone content, such as abscisic acid, auxin, salicylic acid, and jasmonic acid, at 

both leaf and crown level, contributed to differences in deacclimation resistance. 

Lastly, increased crown moisture content during deacclimation was also found to be 

responsible for the losses in freezing tolerance. Although these factors may aid in a 

faster recovery in response to temperature increases during late winter and early 

spring, these physiological changes may also make the plants more susceptible to 

freezing injuries if plants are once again exposed to freezing temperatures.
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  CHAPTER 1  

LITERATURE REVIEW 

Temperature is a significant factor influencing plant geographic distribution, 

quality, and productivity. Plants exposed to temperature extremes, including supra-

optimal and sub-optimal temperatures, can result in significant stress and subsequent 

loss of vegetative cover. In temperate regions, winter injury has been cited as a major 

problem limiting the quality and production of various crop plants, including 

vegetables, fruits, cereals, turf and forage grasses (Chen et al., 1983; Saltveit and 

Morris, 1990; Lyons, 1973; Burke et al., 1976; Trenholm, 2000; Bélanger et al. 2002; 

Anderson et al., 2003). Although most research addressing issues with predicted 

increases in future global temperatures have focused on high temperature effects on 

crop plants in summer months, warming events that occur in the fall, winter, and/or 

spring may have significant impact on plant sensitivity to freezing damage (Cannell 

and Smith, 1986). Elevated temperatures may negatively impact survival by 

prolonging the fall growing season and prevent maximal cold hardening prior to 

freezing temperatures, while more frequent temperature fluctuations throughout 

winter months (freeze-thaw events) may result in premature losses in freezing 

tolerance (Bélanger et al., 2002; Thorsen and Höglind, 2010). As a result, it has 

become increasingly important to identify traits necessary for winter survival under 

both current and future winter climate scenarios. 

Winter injury is a general term used to encompass damage to plants associated 

with one or multiples overwintering stresses, including desiccation, anoxia, crown 

hydration, low temperature fungi, and direct low temperature kill. In spite of the 

different potential causes for winter injury, the overall level of plant freezing tolerance 

has been shown to account for a majority of the variation in winter survival of plants, 
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including temperate grasses (Humphreys, 1989; Xiong and Fei, 2006; Hulke et al., 

2008). Therefore, the focus of the following thesis will be to investigate physiological 

mechanisms contributing to differences in freezing tolerance among cool-season 

turfgrasses. The overall goal is to utilize this fundamental information to better inform 

management practices and turfgrass species/cultivar selection aimed at improving 

winter survival of turf stands.  

 

Freezing Injury at the Cellular Level 

Damage to plants caused by low temperature can be generally categoriezed as 

two injuries, including chilling and freezing. Chilling injury refers to damage induced 

by low, non-freezing temperatures (> 0°C) and is primarily associated with cell 

membrane dysfunction (Lyons, 1973; Suzuki and Mittler, 2006; Reulland et al., 2009). 

Symptoms of chilling injury may include reduced growth rate, water-soaked tissues, 

as well as photooxidation of leaves. In general, tropical and subtropical plants are 

primarily susceptible to chilling injury (Taiz and Zeiger, 2006). 

In contrast, freezing injury occurs when temperatures drop below freezing (< 

0°C), and is attributed to both osmotic and oxidative stresses resulting from the 

formation of ice crystals inside of plant tissue. The location of ice crystals within 

tissues plays an important role in plant survival. Intracellular ice formation occurs 

when ice crystals form within the cytoplasm, which induces the malfunction of 

organelles and the cell membrane, thus resulting in cell death (Pearce and McDonald, 

1977). Intracellular ice crystals generally form when the rate of temperature drop is 

greater than 3°C per hour (Palva, 1994). However, under natural conditions, the rate 

of freezing usually does not exceed 2°C per hour, which instead induces the formation 

of extracellular ice crystals mainly in apoplastic spaces (Levitt, 1980; Steffen et al., 
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1989). The plasma membranes serves as a barrier between the ice crystals and the 

cytoplasm, which gives rise to a decreasing water potential gradient from the 

cytoplasm to extracellular spaces. In turn, prolonged presence of extracellular ice can 

result in dehydration and osmotic stress within the cytoplasm, which may potentially 

lead to the instability of cell membranes, denaturation of proteins, as well as the 

malfunction of cell organelles (Nilsen and Orcutt, 1996). However, unlike damage 

due to the presence of intracellular ice, extracellular ice-induced osmotic stress may 

be reversible once the cells are rehydrated.  

In addition to development of osmotic stress, metabolic imbalances at freezing 

temperatures also result in the manifestation of oxidative stress. One of the major 

sources of oxidative stress at low temperature occurs in the chloroplasts of leaf tissues, 

specifically around the light reaction of photosynthesis. When light energy absorbed 

by chloroplasts exceeds the capacity for photosynthesis, oxygen molecules around the 

photosynthesis apparatus can be reduced to produce radical oxygen species (ROS) 

(Asada, 1996). In turn, ROS can readily diffuse through the cell and attack the cell 

membrane, proteins, and DNA, and other major cellular components, ultimately result 

in cell death. 

 

Freezing Tolerance Mechanisms 

Cold Acclimation 

Plants adapted to cold environments that routinely exposed to below-freezing 

temperatures have specialized mechanisms to survive extended period of extracellular 

ice formation in plant tissues, which is dependent on a period of cold acclimation 

during autumn months.  Cold acclimation is induced by low but non-freezing and a 

decrease in photoperiod, light intensity and water availability, all of which typically 
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coincide with conditions of autumn and early winter (Mahfoozi et al., 2000; Fowler et 

al., 2001). In addition to exposure to non-freezing temperatures, enhanced freezing 

tolerance of certain temperate plants, including grasses, also require exposure to mild 

subfreezing temperature (Tumanov, 1940; Trunova, 1965; Herman et al., 2006), 

referred to as subzero acclimation or second phase cold hardening (Tumanov, 1940). 

Subzero acclimation will further improve freezing tolerance of plants, and this 

additional cold acclimation phase has been shown to be important for temperate grass 

species (Dionne et al., 2001; Espevig et al., 2011; Hoffman et al., 2010). Previous 

research has shown the rate of attaining maximal freezing tolerance during cold 

acclimation varies among different plant species (Chen et al., 1979; Fennell et al., 

1985; Vega et al., 2000), ranging from a few weeks to months to achieve the 

maximum freezing tolerance. The capacity of plants to undergo cold acclimation and 

gain freezing tolerance depends on the recognition of environmental signals 

(including temperature and light), along with subsequent changes at the gene through 

whole plant levels to prepare cells to withstand prolonged freezing conditions. 

Low temperature induces the expression of cold-regulated genes, generally 

referred to as COR genes (Weiser, 1970; Thomashow, 1990). Based on whole 

transcriptome studies in Arabidopsis, it has been demonstrated that approximately 

1000 genes are either up- or down- regulated in response to low temperatures, which 

comprise approximately 4 to 20% of the Arabidopsis genome (Fowler and 

Thomashow, 2002; Lee et al., 2005; Hannah et al., 2005; Matsui et al., 2008; Zeller et 

al., 2009). The COR genes include members of the CBF (C-repeat binding 

factor)/DREB (dehydration responsive element binding protein) transcriptional factor 

family, which is currently the best characterized low temperature signaling pathway 

(Thomashow, 1999; Jaglo et al., 2001; Fowler and Thomashow, 2002; Yamaguchi-
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Shinozaki and Shinozaki, 2006). Changes in CBF/DREB transcription factors have 

been shown to occur within minutes of low temperature exposure, leading to COR 

gene expression and increases in freezing tolerance (Yamaguchi-Shinozaki and 

Shinozaki, 1994; Gilmour et al., 1998; Jaglo-Ottoson et al., 1998; Fowler and 

Thomashow, 2002). In turfgrass species, CBF homologs have been identified and 

associated with freezing tolerance in perennial ryegrass (Xiong and Fei, 2006; Tamura 

and Yamada, 2007; Zhao and Bughara, 2008) and tall fescue (Tang et al., 2005). 

Although most research have focused on CBF/DREB pathways, these may not be the 

only transcription factors that control cold acclimation, and therefore additional 

research is needed to understand other pathways that may be involved in the 

expression of genes leading to improved freezing tolerance and overwintering 

capacity of plants (Chinnusamy et al., 2007).  

Many of the COR gene products serve critical roles in protecting cells from 

freeze-induced dehydration, improving the stability of cell membranes at low 

temperature, preventing protein denaturation, and minimizing oxidative stress from 

ROS (Gilmour et al., 1992; Thomashow, 1999; Xin and Browse, 2000; Karpinski et 

al., 2002; Cook et al., 2004; Guy et al., 2008). Most studies examining physiological 

and biochemical changes of grass species during cold acclimation have reported, 

increased accumulation of non-structural carbohydrates (Patton et al., 2007a; Dionne 

et al., 2010; Espevig et al., 2011), induction of COR proteins such as late 

embryogenesis abundant (LEA) and antifreeze proteins (AFP) (Patton et al., 2007b; 

Zhang et al., 2009; Zhang et al., 2011), and modifications in lipid composition that 

enhance membrane fluidity and stability (Samala et al., 1998; Cyril et al., 2002; 

Munshaw, 2004; Hoffman et al., 2010). Differences in the capacity to modify these 

various physiological and biochemical traits during cold acclimation have been shown 
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to contribute to intra- and inter-specific differences in turfgrass freezing tolerance. 

  

Cold Deacclimation Resistance 

In addition to traits associated with cold acclimation and the attainment of 

freezing tolerance, it is also critical to understand the underlying mechanisms required 

to plants to maintain freezing tolerance throughout winter months, particularly where 

fluctuations in temperatures or freeze-thaw cycles can increase the sensitivity of 

deacclimation of plant species. Cold deacclimation is herein defined as a loss of 

freezing tolerance that is generally triggered by increases in air and soil temperatures 

along with increases in photoperiod (Kalberer et al., 2006; Rapacz, 2002a,b). 

Deacclimation typically occurs in late winter through spring, where plants undergo 

metabolic and physiological changes for resumption of plant growth (Sasaki et al., 

2001; Rapacz, 2002a; Arora et al., 2004). Although less research has been conducted 

on factors regulating deacclimation compared to cold acclimation, it has generally 

been observed that the metabolic changes occurring during deacclimation are more 

rapid compared to similar changes during cold acclimation (Gusta and Fowler, 1976; 

Rapacz, 2002b). For example, previous studies have reported that accumulated 

freezing tolerance attained during cold acclimation was lost within a few days to a 

week following deacclimation in some species (Levitt, 1980; Guy and Huskell, 1987). 

Therefore, if plants are exposed to elevated temperatures in mid-winter to early spring 

that trigger the deacclimation process, this may lead to untimely loss of freezing 

tolerance and low temperature kill when temperatures subsequently drop below 

freezing. 

The potential for deacclimation and winter damage can be affected by the 

magnitude of temperature increase and the duration of exposure to elevated 
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temperatures (Gay and Eagles, 1991; Eagles and Williams, 1992; Svenning et al., 

1997; Kalberer et al., 2006; Gu et al., 2008; Patgers and Arora, 2013; Hoffman et al., 

2014a), as well as photoperiod (Rapacz, 2002b; Junttilla et al, 1997). Although 

temperature seems to be the primary factor triggering deacclimation (Patger and Arora, 

2013), increases in photoperiod can exacerbate the deacclimation response (Eagles, 

1994; Junttila, 1997; Rapacz, 2002b). The extent of deacclimation and reacclimation 

capacity in response to mid-winter thawing events seem to be associated with whole-

plant growth responses, such that deacclimation becomes irreversible under 

conditions where the plant initiates regrowth (Rapacz et al., 2001; Rapacz, 2002b). 

Although relatively few studies have investigated genetics of the cold 

deacclimation responses, the available research suggests that genes up-regulated 

during cold acclimation tend to be down-regulated during deacclimation, and vice-

versa (Cattivelli and Bartels, 1990; Nordin et al., 1991; Wolfraim et al., 1993; Oono et 

al., 2006; Welling and Palva, 2008). However, not all genes down-regulated during 

deacclimation were previously up-regulated during cold acclimation (Kalberer et al., 

2006), such as the expression of the gene controlling RNA and protein metabolism in 

winter rye, which was further down-regulated from cold acclimation to deacclimation 

(In et al., 2005). 

 The altered gene expression at early stages of deacclimation promote changes 

at the cell to whole-plant levels, including changes in cellular water content, 

modifications in membrane lipid composition including increase in phospholipids 

saturation levels, and an increase in the metabolism of protective solutes (Tronsmo et 

al., 1993; Ögren, 1997; Arora et al., 2004; Iivonen et al., 2004; Pagter and Arora, 

2013). More specifically, deacclimation and loss of freezing tolerance has been 

associated with a decreased concentration of protective compounds including 
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carbohydrates, proteins, amino acids, and dehydrins (Svenning et al., 1997; Arora et 

al., 2004; Pagter et al., 2011). 

Since climate warming results may result in a much milder winter in future 

years and mid-winter temperature fluctuations become more unpredictable (Arctic 

Climate Impact Assessment, 2005; Intergovenmental Panel on Climate Change, 2007), 

deacclimation of temperate plant species may become more of a problem in future 

years (Repo et al., 1996; Taulavuori et al., 2004; Pagter and Arora, 2013). Premature 

losses in freezing tolerance due to deacclimation has already been shown to contribute 

to significant losses in plant yield (Bokhorst et al., 2008; Ogren, 1996; Taulavuori et 

al., 1997; Zhu et al., 2000). Therefore,to better understand how to limit deacclimation, 

additional research is necessary to better understand the primary physiological factors 

responsible for differences in deacclimation resistance among plants.  

 

Regulation of cold acclimation and deacclimation: Research gaps 

Carbon metabolism encompasses the processes associated with the 

assimilation and consumption of carbohydrates, including the light reactions and 

carbon reactions of photosynthesis, carbon allocation and partitioning, and respiration 

activities. A vast majority of studies evaluating carbon metabolism responses in 

relation to freezing tolerance have focused on the accumulation of total or individual 

carbohydrates in response to changes in temperatures. This may be attributed to the 

important role of carbohydrates in plant freezing tolerance, which include maintaining 

the integrity and fluidity of cell membranes, and protecting the organelles and cell 

function under freeze-induced dehydration (Santarius, 1982; Anchordoguy et al., 1987; 

Alberdi and Corcuera, 1991; Steponkus, 1993). More recently, carbohydrates such as 

sucrose and fructans have been specifically reported to delay freezing by direct 
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inhibition in ice crystal growth in the apoplast (Livingston et al., 2009), and also play 

a role in regulation of the oxidative stress response at low temperature (Parvanova et 

al., 2004). In grasses, researchers have reported a relationship between freezing 

tolerance and either an increase in the total non-structural carbohydrate content during 

cold acclimation (Fry et al., 1993; Cai et al., 2004; Ball et al., 2002; Hoffman et al., 

2010), or of individual carbohydrate fractions such as fructans (Dionne et al., 2010; 

Espevig et al., 2011) and (Fry et al., 1993; Ball et al., 2002; Zhang et al., 2006). 

In contrast to the large accumulation of carbohydrates during cold acclimation, 

limited research suggests that deacclimation has been associated with a decrease in 

large pools of carbohydrates for some species (Morin et al., 2007; Pagter and Arora, 

2013), which might account for the loss of freezing tolerance during deacclimation 

(Pagter et al., 2011). The mechanism under large changes in carbohydrate pools may 

be associated with temperature-induced changes in respiration, as it is well recognized 

that plant respiration rates are highly responsive to temperature fluctuations. In 

relationship to deacclimation, it has been shown that plant respiration rates were 

enhanced by mild winter temperatures, thus reducing carbohydrate pools and cold 

hardiness (Ögren, 1996; Ögren et al., 1997). The capacity to minimize winter 

respiration rates has been linked to improving winter survival of winter wheat 

(Sagisaka et al., 1991) and some cool-season forage grasses (Bertrand et al., 2003). 

In addition to changes in respiration, photosynthesis capacity may also 

increases during deacclimation event (Öquist and Hunter, 2003; Bokhorst et al. 2010, 

Saarinen et al. 2011). The recovery rate of photosynthesis depends on the temperature 

and plant growth environment, with higher temperatures resulting in a much more 

rapid recovery of photosynthesis (Saarinen et al., 2011).  

Although the significant emphasis related to carbon metabolism has been 
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placed on the accumulation and consumption of carbohydrates in relation to freezing 

tolerance, there is very little known on the actual regulation of carbon metabolism, 

particularly regarding energy utilization between the light reactions and the Calvin 

cycle, as well as respiratory acclimation at low temperatures for different turfgrass 

species. Moreover, we do not have a good understanding of how these carbon 

metabolism parameters may change in response to cold acclimation and 

deacclimation in grasses. For example, differences in capacity to minimize 

photoinhibition and recover photosynthesis during cold acclimaiton have been shown 

to contribute to intra- and interspecific differences in freezing tolerance for some 

species (Hurry et al., 1995; Pocock et al., 2001; Humphreys et al., 2007). Therefore, a 

better understanding of the photosynthetic and respiration characteristics among 

grasses with varying acclimation and deacclimation capacities may provide additional 

tools to be used to select better adapted grasses for northern environments. 

Plant hormones are essential signaling molecules that regulate all aspects of 

plant growth and metabolism. There are five primary classes of plant hormones 

including abscisic acid (ABA), gibberellic acid (GA), cytokinins, ethylene, and auxin. 

In addition, salicylic acid (SA) and jasmonic acid (JA) have also been more recently 

categorized as plant hormones. Due to the widespread role of plant hormones, 

particularly in terms of abiotic and biotic stress resistances, it is not surprising that 

these signaling molecules have been reported to play a role in the development of 

plant freezing tolerance as described below. 

Abscisic acid is involved in many plant metabolism activities including leaf 

senescence, bud dormancy, seed germination and maturation, protein synthesis, 

pathogen defense, osmotic adjustment and stomatal closure (Swamy and Smith, 1999; 

LaRosa, et al., 1987; Singh et al., 1989). Because of its role in water relations and 
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osmotic adjustment, ABA serves as a critical signal that mediates plant responses to 

different dehydration related stresses including drought, salt, and freezing stresses 

(Rikin et al. 1976; Chen et al., 1982; Gusta et al., 1982; Mohapatra et al., 1988; 

Davies and Zhang, 1991; Moons et al., 1995; Swamy and Smith, 1999; Alves and 

Setter, 2000; Schroeder et al., 2001). Increased concentration of ABA was observed 

during early stages of cold acclimation under both controlled environment and field 

conditions (Machakova et al., 1988; Taylor et al., 1990; Dörffling et al., 1990), 

suggesting that it could help to improve the freezing tolerance of plants (Rikin et al., 

1979; Wrightman, 1979). In some cases, ABA can serve as a signal to trigger plant 

cold acclimation (Perras and Sarhan, 1989; Döffling et al., 1990; Pearce, 1999).The 

maximum freezing tolerance of some plants was achieved when ABA concentration 

reached peak levels (Dörffling et al., 1990). In addition, exogenous application of 

ABA was also found to stimulate cold acclimation (Chen and Gusta, 1983) and 

increased freezing tolerance (Chen et al., 1979; Reaney and Gusta, 1987; Robertson et 

al., 1987; Guy and Huskell, 1988; Mohapatra et al., 1988; Dörffling and Askman, 

1989; Luo et al., 1992; Lång et al., 1994). Some potential mechanisms for 

improvement of freezing tolerance may be related to the ABA-induced reduction in 

leaf elongation rates (Kende and Zeevaart, 1997; Rapacz et al., 2003), as well as 

enhanced protection of the photosynthesis machinery from oxidative stresses (Rapacz, 

2002c). In addition, ABA has been found to participate in the regulation of cold-

regulated (COR) gene expression of plants under stress conditions (Hajela et al., 1990; 

Lång and Palva, 1992; Mahajan and Tuteja, 2005). During deacclimation, both 

Rapacz et al. (2003) and Dörffling et al. (1990) reported increases in ABA 

concentration following a few weeks of deacclimation. However, during the early 

stages of deacclimation, declines in ABA content were reported in several species 
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such as bermudagrasses (Zhang et al. 2011), winter wheat (Taylor et al. 1990) and pea 

(Wealbaum et al., 1997).  

Gibberellic acid is also an important hormone that is associated with 

stimulation of stem elongation and flowering, breaking seed dormancy and delaying 

senescence. In relation to freezing tolerance, increased concentration of GA resulted 

in greater damage to plants due to the increased susceptibility to photoinhibition 

(Rapacz, 2002c). Achard et al. (2008) reported that at low temperature, the up-

regulation of C-repeat-binding transcription factors (CBFs) restrict plant growth rates 

by controlling the concentration of GAs. Rood et al. (1989) found a significant 

increase in GA concentration during the time when plants start to elongate stems and 

flower. Therefore, the reduction of freezing tolerance during deacclimation may be 

connected with GA due to its role in stimulating plant regrowth (Junttila, 1997). It has 

also been reported by Rapacz (2002c) that higher concentration of GA can result in 

much more rapid deacclimation in plants, and less cold acclimation and reacclimation 

capacity. 

Cytokinins are well known as the antagonists of ABA based on their roles 

regulating plant growth and development activities (Blackman and Davies, 1984; 

Thomas, 1992). The major roles of cytokinins are related to cell division and 

expansion, stimulating primary root elongation, and delaying leaf senescence. The 

importance of cytokinins in relation to abiotic stress tolerance has been documented 

for heat stress (Veselov et al. 1995), drought stress (Lopez-Carbonell et al. 1996) and 

salinity stress (Kuiper et al., 1990). In respect to low temperature stress, Guo et al. 

(2010) reported that increased concentration of cytokinins, along with the expression 

of some genes leading to the development of freezing tolerance of plants. However, 

Taylor et al. (1990) compared the cytokinins levels of winter wheat during cold 
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acclimation and deacclimation and concluded that cytokinins did not respond to cold 

acclimation but played a more important role in deacclimation. In bermudagrass, 

increased concentrations of cytokinins was associated with higher photochemical 

efficiency and recovery (ie. green up) as temperature increased during deacclimation. 

(Zhang and Ervin, 2004; Zhang et al., 2011).  

Auxin has major functions in plant development such as apical dominance, 

tropic responses, and root and shoot initiation (Davies, 1995). There are many 

interactions between auxin and other phytohormones, including antagonistic 

responses with cytokinins (Nordström et al., 2004) and ABA (De Smet et al.2003), 

and synergistic responses with ethylene (Morgan and Hall, 1962) and GA (Ross et al., 

2000).  Both auxin signaling and transport were shown to be impacted by low 

temperatures (Miura et al., 2011; Parry et al. 2006; Shibasaki et al., 2009), although a 

direct role of endogenous auxin for freezing tolerance has not been demonstrated. 

Applying exogenous auxin (TA-2 and TA-4) to rapeseed (Brassica napus) at low 

temperature stimulated the accumulation of proline and soluble sugars (Gavelienė et 

al., 2013), suggesting a potential role for improving freezing tolerance. 

 

Freezing Tolerance of Cool-season Turfgrasses 

Cool-season turfgrasses have a C3 photosynthesis pathway, with optimal 

growing conditions at temperatures of 18 to 24 °C.  Cool-season turfgrasses are well 

adapted in temperate regions with a cool humid and sub-humid climate (Hartley, 

1950). There are more than 20 cool-season grasses that are widely used as turf (Beard, 

1973), including Agrostis spp. (bentgrasses), Poa spp. (bluegrasses), Lolium spp. 

(ryegrasses), and Festuca spp. (fescues). Warm-season turfgrasses have a C4 

photosynthesis pathway, and are adapted to tropical and subtropical regions with 
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temperatures of 27 to 35 °C. Common warm-season grasses used for turf are 

comprised of Zoysia spp. (zoysiagrasses), Cynodon spp. (bermudagrasss), 

Eremochloa ophiuroides (centipedegrass), and Stenotaphrum secundatum spp. (St. 

Augustinegrass).  

Although cool-season turfgrasses are generally adapted to northern climates, 

the species do exhibit differences in freezing tolerance and overwintering capacities 

(Gusta et al., 1980). Among cool-season grasses used for turf, creeping bentgrass 

(Agrostis stolonifera L.) and Kentuckey bluegrass (Poa pratensis L.) generally exhibit 

significantly higher freezing tolerance and thus lower susceptibility to winter injury, 

compared to species such as annual bluegrass (Poa annua L.) and perennial ryegrass 

(Lolium perenne L.) (Gusta et al. 1980, Dionne et al., 2001; Bertrand et al., 2013). 

Previous research also found that freezing tolerance can significantly vary among 

different cultivars or genotypes within the same species (Gusta et al., 1980; Ebdon et 

al., 2002; Hulke et al., 2007; Hoffman et al., 2010).  It is widely accepted that freezing 

tolerance is one of the most important parameters determining winter hardiness of 

plants (Humphreys and Eagles, 1988; Hulke et al. 2008). Because of the poor 

winterhardiness of some grass species, winterkill occurs on golf courses and home 

lawns as a major problem during winter months, resulting in compromised turf quality, 

function and economic loss. Therefore, in order to improve turfgrass freezing 

tolerance and overwintering capacity, a better understanding of the genetic and 

physiological mechanisms associated with cold acclimation and deacclimation is 

essential.  
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Biology of Cool-season Turfgrasses Differing in Freezing Tolerance 

Annual Bluegrass  

Annual bluegrass is a cool-season grass species that is widely prevalent in 

temperate regions (Warwick, 1979; Huff, 1996). In northern climates, annual 

bluegrass is usually recognized as an undesirable turf species due to its sensitivity to a 

number of biotic and abiotic stresses, however, due to its aggressiveness in turf stands 

and depending on cultural practices, this species can comprise large areas of golf 

course turf particularly on greens, tees, and fairways. In some instances, annual 

bluegrass has the capacity to exhibit very fine leaf texture, high density and tolerance 

to low heights of mowing, thus turfgrass managers often debate on whether to 

maintain this species as a desired turfgrass or eradicate it as a weed (Johnson et al. 

1993). 

Annual bluegrass are categorized according to biotypes or ecotypes, and 

generally consist of annual and perennial types (Johnson et al., 1993). Different 

biotypes have different biological traits. The annual type of annual bluegrass (Poa 

annua f. annua L.) is considered to exist as winter annual and its habitat is primarily 

in warm climate zones such as the southern part of the United States (Huff, 2003).  It 

is a bunch type grass that germinates in spring or fall, but dies at supra-optimal 

temperatures experience in summer months. The perennial biotype of annual 

bluegrass (Poa annua f. reptans L.) is a perennial grass species and widely spread in 

cool climates. It has a creeping, prostrate growing habit that produces large amounts 

of tillers which increase the density of the turf (Hovin, 1957). The perennial biotype 

of annual bluegrass is commonly found on highly maintained turf such as golf course 

putting greens (Huff, 2003).  

Annual bluegrass is very susceptible to environmental stresses especially 
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extremes in temperature (Beard et al., 1978), and different annual bluegrass biotypes 

exhibit different stress tolerances (Tompkins et al., 2000; Dionne et al., 2001; 

Tompkins et al., 2004; Hoffman et al., 2014a). Annual bluegrass also exhibits high 

susceptibility to important diseases such as dollar spot (Sclerotinia homoeocarpa), 

brown patch (Rhizoctonia solani), anthracnose (Colletotrichum cereal), summer patch 

(Magnaporthe poae) and red thread (Laetisaria fuciformis) (Vargas, 1994). 

 

Creeping Bentgrass  

Creeping bentgrass (Agrostis stolonifera, L.) is a perennial cool-season grass 

species with stoloniferous growing habit. It is tolerant to close mowing and high 

maintenance thus is widely selected on golf courses, home lawns, and sports fields 

(Warnke, 2003). Creeping bentgrass is mainly adapted to cool climates and widely 

utilized in temperate regions, creeping bentgrass is also a popular golf course putting 

green grass species due to its high turf quality characteristics (Warnke, 2003).  

Creeping bentgrass is known to have superior freezing tolerance than most of 

other turf species (Beard, 1973). This species also exhibits relatively good tolerance to 

other abiotic stresses such as flooding and salinity stresses (Warnke, 2003). However, 

creeping bentgrass is susceptible to multiple turfgrass diseases including dollar spot 

(Sclerotinia homoeocarpa), brown patch (Rhizoctonia solani), and pink snow mold 

(Microdochium nivale) (Warnke, 2003). Different creeping bentgrass cultivars may 

exhibit different stress tolerance and disease resistance (Marcum, 2001; Warnke, 2003; 

Jiang and Wang, 2006; Bonos et al., 2006).  

 

Perennial ryegrass 

Perennial ryegrass (Lolium perenne) is a grass species that highly cultivated 
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for forage, turf and bioenergy uses (Thorogood, 2003). It is widely found in Europe, 

Asia, North America, and Oceania. Perennial ryegrass exhibits a bunch type growth 

habit with good turf quality, high canopy density, high wear tolerance and quick 

establishment traits. It is commonly used on landscape areas, home lawns, sports 

fields, as well as golf courses.  

Perennial ryegrass has origins in Europe, therefore it is well adapted to cool, 

humid regions (Beard, 1973; Thorogood, 2003). However, perennial ryegrass exhibits 

sensitivity to temperature extremes and water stress, such as heat, freezing, and 

drought stresses (Van Dersal, 1936; Gusta et al., 1980; Thorogood, 2003; Turgeon, 

2005). In addition, perennial ryegrass is susceptible to brown patch (Rhizoctonia 

solani), red thread (Laetisaria fuciformis), dollar spot (Sclerotinia homoeocarpa), 

Pythium blight (Pythium aphanidermatum), grey leaf spot (Pyricularia grisea), and 

crown rust (Puccinia coronata) (Thorogood, 2003). Because of its good performance 

for turf, forage and bioenergy uses, breeders have placed significant efforts in the 

development of new cultivars with good abiotic and biotic stress characteristics 

(Humphreys and Eagles, 1988; Hulke et al., 2007; Bonos et al., 2009; Morris, 2009). 

To date, there are more than perennial ryegrass cultivars and 200 of them are 

commonly seen on market (Bonos, 2007).  

 

Research Justification 

Freezing tolerance is a major component of winter hardiness of plants 

(Humphreys and Eagles, 1988; Xiong and Fei, 2006), and can be enhanced through the 

process of cold acclimation (Levitt, 1980). However, even if plants have undergone 

optimal cold acclimation going into winter months, damage may still occur due to the 

process of deacclimation in response to fluctuating temperatures. In response to 
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deacclimation, plants may start to take up water, rehydrate the cells, and up-regulate 

plant metabolism in order to return to normal growth.  However, if plants are once again 

exposed to freezing temperatures, the cells may no longer have the same capacity to 

resist extracellular or intracellular ice formation. Therefore, in order to reduce the 

damages brought by winter injury, a better understanding of the underlying factors that 

are responsible for the loss of freezing tolerance during deacclimation is necessary. In 

addition, it would be useful to better understand the relationship between cold 

acclimation capacity and cold deacclimation resistance. For example, it has been 

demonstrated that plants that exhibit high cold acclimaiton capacity do not necessarily 

exhibit high deacclimation resistance (Hummer et al., 1986; Rowland et al., 2005; Arora 

and Rowland, 2011; Pagter et al., 2011) To date, this relationship in turfgrass has not 

been extensively evaluated. 

For our studies, we will evaluate freezing tolerance mechanisms of cool-season 

grasses with contrasting winter injury potential, including freezing tolerant creeping 

bentgrass, and freezing sensitive annual bluegrass and perennial ryegrass. Annual 

bluegrass is widely found on golf course greens, tees, and fairways in the northern U.S. 

and Canada. Previously published research using both field and controlled 

environmental conditions have reported that creeping bentgrass exhibits a greater 

freezing tolerance capacity than annual bluegrass following cold acclimation and 

deacclimation (Beard, 1966; Tompkins et al., 2000; Tompkins et al., 2004; Hoffman et 

al., 2014a,b). However, the underlying factors associated with the differences in freezing 

tolerance remains unknown.  Perennial ryegrass is an important temperate grass species 

that widely selected for turf, forage and even bioenergy uses (Jung et al., 1996). 

However, this species can experience significant winterkill (Gusta et al., 1980; Bertrand 

et al., 2013). Due to its important roles in turf, forage, and bioenergy uses, breeders are 



19 
 

dedicated to cultivate genotypes that perform better freezing tolerance. The genotypes 

and cultivars of perennial ryegrass vary greatly in freezing tolerance (Ebdon et al., 2002; 

Hulke et al., 2007). For a better understanding of the  factors responsible for differences 

in freezing tolerance of perennial ryegrasses and provide more information for breeders 

in the future, a close look into the physiological changes during cold acclimation and 

deacclimation is necessary.  

 

 
Objectives and Hypotheses 

The primary objectives of this research are to examine mechanisms 

responsible for freezing tolerance differences among cool-season turfgrasses, with a 

focus on cold acclimation and deacclimation. To address this goal, we proposed to 

conduct four controlled-environment studies to better understand the physiological 

mechanisms of freezing tolerance, as follows: 

I. Evaluate the carbon metabolism factors attributing to different freezing 

tolerance capacity associated with cold acclimation and deacclimation of 

annual bluegrass and creeping bentgrass; 

II. Investigate the differences in hormone regulation of annual bluegrass and 

creeping bentgrass during cold acclimation and deacclimation;  

III.  Compare the freezing tolerance of eight different genotypes perennial 

ryegrass;  

IV.  Identifying the physiological changes in response to cold acclimation and 

deacclimation among perennial ryegrass genotypes contrasting in freezing 

tolerance 

Based on previous research, we hypothesized that different grass species may exhibit 

different cold acclimation and deacclimation capacities. For the grasses with lower 
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deacclimation resistance, metabolic activities will be up-regulated faster in response 

to warm temperature than the species with higher deacclimation resistance.    
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CHAPTER 2 

CARBON METABOLISM RESPONSES ASSOCIATED WITH COLD 

ACCLIMATION AND DEACCLIMATION OF CREEPING BENTGRASS AND 

ANNUAL BLUEGRASS  

Abstract 

Winter injury on turfgrasses induced by mid-winter deacclimation events is a 

significant concern in northern climatic regions.  To reduce  turf stand losses and 

associated recovery costs, a better understanding of the underlying factors associated 

with the loss of freezing tolerance in response to premature deacclimation is necessary. 

Therefore, the objectives of this study were to: (i) compare the freezing tolerance of 

annual bluegrass (Poa annua L.) (AB) and creeping bentgrass (Agrostis stolonifera L.) 

(CB) during acclimation and deacclimation; and (ii) examine carbon metabolism 

changes for these two species as related to cold acclimation and deacclimation. Plants 

were exposed to five temperature treatments in a controlled environment growth 

chamber as follows: (1) non-acclimated control at 20 °C for 2 weeks; (2) cold 

acclimated at 2 °C for 2 weeks; (3) cold acclimated at -2 °C for 2 weeks; (4) 

deacclimated at 8 °C for 1 d; and (5) deacclimated at 8 °C for 5 d. For each treatment, 

changes in freezing tolerance were evaluated based on lethal temperature resulting in 

50% kill (LT50).  In addition, carbon metabolic activities including photosynthesis, 

respiration, and chlorophyll fluorescence parameters, including photochemical 

efficiency (Fv/Fm) and photochemical yield (Yield), electron transport (ETR) and 

non-photochemical quenching (NPQ) were measured following each treatment. 

Overall, CB exhibited higher freezing tolerance (lower LT50) following cold 

acclimation, and maintained higher freezing tolerance under deacclimation conditions 

compared to AB, as exhibited by a lower LT50 at 8 °C for 1 and 5 d. Photosynthesis, 
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respiration, Fv/Fm and Yield of AB increased more rapidly during deacclimation, 

suggesting that the metabolic and physiological activities of AB are activated earlier 

in response to temperature increases, which may help to explain the potential 

differences in winter injury susceptibility between AB and CB. 
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Introduction 

In temperate regions, winter injury has been cited as a significant 

environmental stress limiting the quality and productivity of many plant species, 

including grasses used for turf and forage (Fry, 1990; Anderson et al., 1997; Dionne et 

al., 1999; Bélanger et al., 2002). Although most research addressing issues with 

predicted increases in future global temperatures have focused on high temperature 

effect on crop plants in summer months, warming events that occur in the fall, winter, 

and/or spring may have significant impact on plant sensitivity to freezing damage 

(Cannell and Smith, 1986). Elevated temperatures may negatively impact survival by 

prolonging the fall growing season and prevent maximal cold hardening prior to 

freezing temperatures, while more frequent temperature fluctuations throughout 

winter months (freeze-thaw events) may result in premature losses in freezing 

tolerance (Bélanger et al., 2002; Thorsen and Höglind, 2010). Consequently, it is 

important to understand plant and environmental factors affecting the capacity of 

plants to attain and maintain freezing tolerance throughout winter months. 

Plants adapted to cold environments that are regularly exposed to below-

freezing temperatures have specialized mechanisms to survive extended periods of 

extracellular ice formation in plant tissues, which is dependent on a period of cold 

acclimation during autumn months.  Cold acclimation is induced by low, non-freezing 

temperatures and a decrease in photoperiod, light intensity and water availability 

(Mahfoozi et al., 2000; Fowler et al., 2001). Additional exposure to mild subfreezing 

temperatures, referred to as subzero acclimation, can further improve freezing 

tolerance in temperate grasses (Dionne et al., 2001; Espevig et al., 2011; Hoffman et 

al., 2010). Cold acclimation occurs as the result of the expression of cold-regulated 

genes, which increase the presence of metabolites that serve critical roles in protecting 
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cells from freeze-induced dehydration, improving the stability of cell membranes at 

low temperature, and minimizing oxidative stress from reactive oxygen species (ROS) 

(Gilmour et al., 1992; Thomashow, 1999; Xin and Browse, 2000; Karpinski et al., 

2002; Cook et al., 2004; Guy et al., 2008).  The rates of cold acclimation vary among 

different plant species, ranging from a few weeks to months to achieve maximal 

freezing tolerance, which can be significantly impacted by environmental conditions 

and agronomic practices (Chen et al., 1979; Fennell et al., 1985; Vega et al., 2000).  

In contrast, cold deacclimation is associated with increases in air and soil 

temperatures along with increases in photoperiod that lead to progressive or rapid 

losses in freezing tolerance (Levitt, 1980; Kalberer et al., 2006; Rapacz, 2002a,b).  

Deacclimation typically occurs in late winter through spring, where plants undergo 

metabolic and physiological changes to favor resumption of plant growth (Sasaki et 

al., 2001; Rapacz, 2002a; Arora et al., 2004). Although less research has been 

conducted on factors regulating deacclimation compared to cold acclimation, 

deacclimation is reported to occur more rapidly compared to cold acclimation (Gusta 

and Fowler, 1976; Chen and Li, 1980; Gay and Eagles, 1991). For example, previous 

studies have reported that accumulated freezing tolerance attained during cold 

acclimation was lost within a few days to a week following deacclimation in some 

species (Levitt, 1980; Guy and Huskell, 1987; Hoffman et al., 2014a). Therefore, 

plants exposed to elevated temperatures in mid-winter to early spring may trigger the 

deacclimation process and lead to premature losses of freezing tolerance and low 

temperature kill when temperatures subsequently drop below freezing.  

Most studies examining physiological and biochemical changes of grass 

species during cold acclimation have reported changes in the accumulation of total or 

individual carbohydrates in relation to freezing tolerance (Fry et al., 1993; Ball et al., 
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2002; Cai et al., 2004; Zhang et al., 2006; Patton et al., 2007; Dionne et al., 2010; 

Hoffman et al., 2010; Espevig et al., 2011). This is due to the important role of 

carbohydrates in plant freezing tolerance, which include maintaining the integrity and 

fluidity of cell membranes, and protecting the organelles and cell function under 

freeze-induced dehydration (Santarius, 1982; Anchordoguy et al., 1987; Alberdi and 

Corcuera, 1991; Steponkus et al., 1993).  However, very few studies have investigated 

the regulation in overall carbon metabolism pathways that ultimately influence the 

accumulation and metabolism of carbohydrates at low temperatures.  Carbon 

metabolism encompasses the processes associated with the assimilation and 

consumption of carbohydrates, including the light reactions and Calvin cycle of 

photosynthesis, carbon allocation and partitioning, as well as respiration rates.  There 

is not a clear understanding of how these carbon metabolism parameters may change 

in response to low temperatures and freeze-thaw cycles, and whether variations in 

these carbon metabolism parameters may lead to differences in cold acclimation 

capacity and deacclimation sensitivity in turfgrasses. For example, differences in the 

capacity to minimize photoinhibition and recover photosynthesis during cold 

acclimation have been shown to contribute to intra- and interspecific differences in 

freezing tolerance for some plant species (Hurry et al., 1995; Pocock et al., 2001; 

Humphreys et al., 2007).  In addition, the ability to regulate carbon metabolism, such 

as respiration rates, has also been demonstrated to influence winter survival capacity 

(Sagisaka et al., 1991; Bertrand et al., 2003). Therefore, a better understanding of the 

photosynthetic and respiration characteristics among grasses with varying acclimation 

and deacclimation capacities may provide additional tools to be used to select better 

adapted grasses for northern environments. 

  In the northern United States and Canada, low temperature injury and 
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winterkill are considered major limitations in the management of particular cool-

season turfgrasses used as golf turf, including AB.  In contrast to golf greens, tees, and 

fairways composed primarily of CB, a species that generally demonstrates very good 

freezing tolerance, turf stands comprised of considerable populations of AB may 

experience as much as 70-90% turf loss from winterkill depending on environmental 

and cultural conditions (Skorulski, 2002). Investigations conducted under both field 

and controlled environmental conditions have shown that CB exhibits a greater 

freezing tolerance capacity compared to AB following a period of cold acclimation 

(Tompkins et al., 2000; Tompkins et al., 2004; Hoffman et al., 2014b). Moreover, 

research by Hoffman et al. (2014a,b) also demonstrated a greater potential for more 

rapid deacclimation of AB in response to elevated temperatures compared to CB that 

was associated with changes in carbohydrate and nitrogen metabolites.  The goal of 

the current study was to expand on our previous research and gain a more thorough 

understanding of carbon metabolism pathways that may regulate differences in cold 

acclimation and deacclimation sensitivity among AB and CB.  Therefore, the specific 

objective was to examine changes in plant photosynthesis, respiration, and 

chlorophyll fluorescence traits in relationship to freezing tolerance during cold 

acclimation and deacclimation.  

 

Materials and Methods 

Plant Materials and Growing Conditions 

Plugs of one creeping bentgrass cultivar (Penncross) (Joseph Troll Turf 

Research Center, South Deerfield, MA) and one annual bluegrass ecotype (Silver 

Spring Country Club, Ridgefield, CT) were removed from the field and transplanted 

into containers (5 cm diameter, 25 cm depth) filled with sand. Plants were grown in a 
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greenhouse at 23 °C/18 °C (day/night) temperatures, irrigated three times per week, 

trimmed to 1 cm height of cut and fertilized with full strength Hoagland solution 

(Hoagland and Arnon, 1950) on a weekly basis. After establishing for 3 months in the 

greenhouse, plants were moved into a controlled environment growth chamber 

(Conviron, Winnipeg, CA) and maintained at 20 °C under a 10-hour photoperiod with 

a photosynthesis photon flux density (PPFD) of 300 µmol m-2 s-1 and a relative 

humidity of 50%. 

 

Treatments 

Plants were exposed to cold acclimation and deacclimation treatments in the 

growth chamber that consisted of a total of five temperature treatments as follows: (i) 

non-cold acclimated control maintained at 20 °C for 2 weeks; (ii) cold acclimation at 

2 °C for two weeks; (iii) sub-zero cold acclimation at -2 °C for two weeks; (iv) cold 

deacclimation at 8 °C for 1 day, and (v) cold deacclimation at 8 °C for 5 days. The 

deacclimation regime of 8 °C was selected based on the research conducted by 

Hoffman et al. (2014a), which demonstrated this temperature to induce deacclimation 

for both AB and CB. The light level of the growth chamber was maintained at 300 

µmol m-2 s-1 PPFD for cold acclimation treatments and at 150 µmol m-2 s-1 PPFD for 

deacclimation treatments. Plants were maintained in the dark during the sub-zero 

acclimation period at -2 °C to simulate natural conditions under snow. At the end of 

each treatment period, plants were harvested for freezing tolerance assessment and 

carbohydrate analysis as described below. 

 

Freezing Tolerance Assessment (LT50) 

Freezing tests were conducted immediately at the end of each temperature 
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treatment to assess changes in freezing tolerance during cold acclimation and 

deacclimation. Ten individual plants (leaf, crown and 1 cm of roots) per replicate 

were wrapped in moist paper towels and placed into plastic bags for each temperature 

treatment according to the methods described by Ebdon et al. (2002). All bags 

containing plant materials were held at 2 °C for the duration of the harvest. Plants 

were exposed to six freezing temperatures in a programmable freezing chamber 

(Tenney TC Series Cycling Test Chamber, SPX Thermal Product Solutions, White 

Deer, Pennsylvania) as follows: -6, -9, -12, -15, -18, and -21 °C. The freezer was 

programmed to decrease at a rate of 2 °C per hour, along with 1 hour plateau at each 

freezing test temperature. After the freezing test, plants were transplanted into the cell 

trays containing commercial potting media (Pro-mix; Griffin Greenhouse and Nursery 

Supplies, Tewksbury, MA) and maintained in the greenhouse at 23/18 °C (day/night) 

for recovery. Following three weeks, the survival percentage at each freezing 

temperature was evaluated by counting the number of living plants out of the total 

number of plants. The LT50 of each genotype was calculated by fitting percent 

survival to temperature using the PROC LOGISTIC procedure. 

 

Measurements 

In order to evaluate the carbon metabolism changes during cold acclimation 

and deacclimation periods, chlorophyll fluorescence parameters, canopy 

photosynthesis, and respiration were measured following two weeks at each treatment 

temperature at 20, 2, and -2 °C, or at 1 and 5 d at 8 °C.  

For chlorophyll fluorescence, the quantum yield (Y), photochemical efficiency 

(Fv/Fm), electron transport rate (ETR), and non-photochemical quenching (NPQ) 

were measured with a portable chlorophyll fluorometer (Opti-Science Inc., Hudson, 



44 
 

NH). The fluorescence chamber was placed on the canopy of the plants at two 

locations per pot, and then averaged. Specifically, Fv/Fm was measured following a 

dark adaptation period of 30 min and calculated as (Fm-F0)/Fm, which provided the 

ratio of variable fluorescence to maximum fluorescence. The F0 refers to the minimal 

fluorescence level measured by applying the modulated weak beam on the canopy 

while Fm refers to the maximum fluorescence level under saturated beam. The other 

two fluorescence measurements (Y and NPQ) were conducted under the ambient light 

levels, and NPQ was calculated based on the following formulas: NPQ= (Fm-

Fms)/Fms, where Fms refers to the maximum fluorescence in a steady fluorescence 

condition. 

Canopy photosynthesis and respiration rates were measured using a portable 

gas exchange system (CIRAS-2, PP Systems International, Inc., Amesbury, MA). The 

measurement was conducted by placing plexi-glass chamber to enclose the plant 

canopy, with the canopy chamber set to provide a constant CO2 concentration of 400 

μmol mol−1. The light intensity at the turf canopy was 300 μmol mol−1 s-1 that was 

provided by lights inside of the growth chamber.  Respiration rate was measured in 

the same manner as described for photosynthesis, but measurements were conducted 

once plants were maintained under dark conditions for a minimum of one hour.   

 

Carbohydrate Analysis 

Plants were harvested at the end of each temperature treatment to extract and 

quantify the carbohydrate content of crowns according to the methods of Ting et al. 

(1959) with modifications. For preparation, crowns were collected and dried at 70 °C 

for a minimum of 72 h prior to being ground using a mortar and pestle. 

Approximately 50 mg of ground tissues were weighed into glass test tubes and mixed 
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with 2.5 ml amylase solution. The tissues were incubated at 37°C for 24 h. Next, 

0.5ml 0.6N HCL (1:1 v/v) was added to the solution, mixed thoroughly, and incubated 

for an additional 18 h at room temperature. Lastly, 0.31 ml of 10N NaOH was added 

to each sample, and volumes of each tube were brought up to 10 ml with distilled 

water.  

For total soluble carbohydrate analysis, 1 ml of extraction solution was mixed 

with 1.5 ml alkaline ferricyanide reagent and vortexed thoroughly. The mixture was 

boiled in a water bath for 10 min and then rapidly cooled to room temperature prior to 

adding 3 ml of 2N H2SO4. The solution was vigorously shaken to release all gas. Next, 

1.2 ml arsenomolybate solution was added and the solution was diluted to 10 ml with 

distilled water. The absorbance was measured at 515 nm with a spectrophotometer 

(Genesys 2, Thermo Electron LLC.; Madison, WI), and the total soluble carbohydrate 

content was calculated based on comparison to a glucose standard curve. 

 

Experimental Design and Statistical Analyses 

Pots were completely randomized in the growth chamber, with a total of five 

temperature treatments and 4 replicates for each species-treatment combination. The 

data were analyzed using analysis of variance (ANOVA) according to the linear 

model procedure for the Statistical Analysis System v. 9.2 (SAS Institute, Inc. Cary, 

NC)  and the means were separated with Fisher’s protected least significant difference 

(LSD) test at the 0.05 probability level. The main effects of two species, five 

temperature regimes, and their interaction were analyzed by partitioning the total 

treatment sums of squares (SS) into single degree of freedom (df) orthogonal 

contrasts.  Contrasts for species included the main effect of AB versus CB, while 

temperature regime included four orthogonal linear contrasts for comparing (i) mean 
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of non-acclimated versus the combined mean for all acclimation and deacclimation 

treatments; (ii) mean of acclimation at 2 and -2 ºC versus the combined mean for 

deacclimation at 8 °C for 1 and 5 d; (iii) mean of acclimation at 2 versus  -2 ºC; and 

(iv) mean for deacclimation at 8 °C for 1 versus 5 d. Species and temperature regime 

main effects and associated contrasts were crossed to partition species × temperature 

regime interaction SS to test for single df interaction components.   

 

Results and Discussion 

The results from the ANOVA for main effects and their interactions are 

presented in Table 2.1.  The main effect of species was a significant factor influencing 

freezing tolerance (LT50), photosynthesis rate, and the chlorophyll fluorescence 

parameters of photochemical efficiency (Fv/Fm), photochemical yield (Y), and 

electron transport rate (ETR).  In contrast, the main effect of temperature regime was 

highly significant for all measured parameters, and contributed to the greatest 

treatment variation among the data.  There were also significant species × temperature 

interactions observed for all parameters except for total soluble sugar content.  

Additional discussion on the main effects, interactions, and orthogonal contrasts are 

detailed in subsequent sections. 

Our results agree with previous reports on the higher cold acclimation capacity 

and freezing tolerance for CB compared to AB (Tompkins et al., 2000; Tompkins et 

al., 2004; Espevig et al., 2014; Hoffman et al., 2014b).  Although the freezing 

tolerance of AB was found to be higher (lower LT50) than CB under non-cold 

acclimating conditions, similar to the results of Hoffman et al. (2014a) and Tompkins 

et al. (2000), successive cold acclimation at 2°C and -2°C resulted in higher freezing 

tolerance for CB (LT50 of -16.3°C) compared to AB (LT50 of -13.5°C) (Fig. 2.1). 
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When plants were exposed to deacclimation at 8°C, the freezing tolerance of both 

species significantly decreased compared to the baseline freezing tolerance at -2°C, 

even as early as 8°C for 1 d.  For example, the freezing tolerance of AB and CB 

declined from -13.5 to -11.0°C and from -16.3 to -12.5°C, respectively, at 1 d of 

deacclimation. Additional freezing tolerance was lost by 5 d of deacclimation for both 

species, although CB maintained a higher freezing tolerance at both 1 and 5 d of 

deacclimation compared to AB. Overall the data suggest a higher rate of 

deacclimation for CB when exposed to temperatures of approximately 8°C, which is 

in agreement with published field and controlled environment experiments (Tompkins 

et al., 2000; Espevig et al., 2014; Hoffman et al., 2014a). Our lab previously reported 

that deacclimation rates for AB and CB varied depending on the deacclimation 

temperature (4, 8, and 12 °C) and duration (1 or 5 d) (Hoffman et al., 2014a). 

Acclimated AB exhibited a 2.5-fold greater loss in freezing tolerance compared to CB 

at 4 °C, whereas CB exhibited a 3-fold greater sensitivity and loss in freezing 

tolerance in response to longer exposures at higher temperatures. Similarly, Espevig et 

al. (2014) compared the deacclimation rates of several cool-season grasses and found 

that CB and AB deacclimated to a greater extent than other species when exposed to 

10 °C, with CB exhibiting a more rapid loss of freezing tolerance compared to AB 

upon exposure to 10 °C for 6 d.   

The development of freezing tolerance during cold acclimation requires a 

significant investment of energy to support the many metabolic changes required to 

prepare cells to survive prolonged freezing temperatures. As such, maximal cold 

acclimation and freezing tolerance has been positively associated with photosynthetic 

capacity and resistance to photoinhibition (Hurry and Hunter, 1991; Öquist et al., 

1993; Krivosheeva, et al., 1996). Low temperatures can inhibit photosynthesis and 
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carbon assimilation by affecting components such as the structural integrity of 

membranes and photosystems, interfering with electron transport, and reducing the 

energy utilization through the carbon reduction reactions. Differences in the capacity 

to minimize photoinhibition and recover photosynthesis during cold acclimation have 

been shown to contribute to intra- and interspecific differences in freezing tolerance. 

(Hurry et al., 1995b; Pocock et al., 2001; Rapacz et al., 2004; Humphreys et al., 2007; 

Rapacz et al., 2007).   

Evaluation of overall carbon metabolism in this study was conducted through 

measurements of chlorophyll fluorescence, gas exchange-based photosynthesis and 

respiration rates, as well as carbohydrate content of crowns. Chlorophyll fluorescence 

has been used as a rapid, non-invasive tool to indirectly monitor changes in 

photosynthesis capacity in response to abiotic stresses, including low temperature 

(Lichtenthaler and Rinderle, 1988; Schreiber and Bilger, 1993; Clement and van 

Hasselt, 1996; Rizza et al., 2001; Ehlert and Hincha, 2008; Mishra et al., 2011). 

Photochemical efficiency (Fv/Fm) is a chlorophyll fluorescence parameter that 

provides information on the maximum potential quantum yield of Photosystem II 

(PSII) within the light reactions of photosynthesis, and is a good indicator how well 

absorbed light energy can be used for photosynthesis.  In contrast to Fv/Fm that is 

measured under dark-adapted conditions, the effective quantum yield (Y) is measured 

under steady-state light conditions and serves as an indicator of how well energy can 

move beyond PSII.  Lastly, NPQ is generally comprised of a protective pathway to 

dissipate excessive excitation energy absorbed in the light harvesting system to 

prevent photooxidative damage, in addition to component of NPQ that may also be 

indicative of photoinhibitory damage to PSII (Müller et al., 2001). 

We found that both Fv/Fm and Y significantly decreased for both species 
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during cold acclimation (Fig. 2.2 and 2.3). These results are in agreement with 

previously published research showing a similar decline in Fv/Fm during cold 

acclimation for creeping bentgrass, Kentucky bluegrass, and perennial ryegrass 

(Sarkar et al., 2009; Hoffman et al., 2010). When comparing the two species, CB 

exhibited higher Fv/Fm (0.64) compared to AB (0.58) following 2°C acclimation, 

whereas no species differences were observed at -2°C (Fig. 2.2). Similar responses 

were observed for Y (Fig. 2.3). This suggested that CB maintained higher capacity for 

absorbing light and moving energy through the photochemistry pathway; however, 

there were no differences detected in actual CO2 assimilation rates as described in 

further detail below.  

When plants were moved from -2°C (dark conditions) to 8°C for 1 d (light 

conditions), CB exhibited a significant decline in Fv/Fm, whereas that of AB 

remained at similar levels to what was observed at -2°C (Figure 2.2). While the 

Fv/Fm of AB significantly increased by 3 d of deacclimation, Fv/Fm activity was not 

restored in CB until plants were maintained at 8°C for 5 d.  Moreover, Y was also 

significantly reduced for CB during the deacclimation period to a greater extent than 

that of AB (Fig. 2.3). Altogether this suggested that the photosynthetic apparatus of 

CB was less functional in response to the temperature shift from -2°C to 8°C, 

particularly at the shorter duration of 1 to 3 d. Moreover, Fv/Fm recovered more 

rapidly during deacclimation compared to Y regardless of species. 

The decreased Fv/Fm and Y of CB during deacclimation was also associated 

with higher NPQ (Fig. 2.4). For example, although an increase in NPQ was observed 

for both species, CB exhibited a significantly higher NPQ (2.02) compared to AB 

(1.66) within 1 d of deacclimation. Together, higher NPQ along with lower Fv/Fm 

and Y at early stages of deacclimation indicate that the light harvesting systems or 
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protein-membrane complexes in CB may be down-regulated or damaged, which can 

inhibit the recovery of photosynthetic activity during short-term warming events. 

Under more prolonged deacclimation (8°C at 3 and 5 d), AB exhibited a higher NPQ 

compared to CB , although the NPQ at 8°C at 3 d dropped compared to what was 

observed at 1 d. Similar results were seen for winter barley (Hordeum vulgare L.), 

where NPQ significantly increased 18 h following freezing at -8°C but then decreased 

by 3 days of recovery (Dai et al., 2007). The reason behind these variable changes in 

NPQ remains unclear. Further detailed investigation regarding the NPQ pathways 

(photoprotection vs damage) may shed additional light on the role of this mechanism 

in cold acclimation, deacclimation, and the relationship with freezing tolerance. 

Although a decline in Fv/Fm and Y were observed in response to acclimation 

at 2°C, photosynthesis rates were similar at 20 and 2°C, with rates at approximately 0 

µmol m-2 s-1 while plants were maintained in the dark at -2 °C (Fig. 2.5). Previous 

studies on cool-season forage grasses have shown that minimum temperatures for net 

photosynthesis can occur down to -4 °C, depending on light levels and exposure to 

frost conditions (Skinner et al., 2007; Höglind et al., 2011).  No significant differences 

in photosynthesis rates were detected between AB and CB at 20, 2, and -2°C (Fig.2.5).  

In contrast, when plants were exposed to 8°C for 1 d, the photosynthesis rate of AB 

was found to be twice as high compared to CB, which was statistically equal to 0 

µmol m-2 s-1. As deacclimation progressed, the photosynthesis rate of both species 

increased, with AB maintaining significantly higher CO2 assimilation compared to CB. 

In woody species, early activation of photosynthesis machinery during deacclimation 

was associated with high demands of photosynthates for bud burst and stem 

elongation (Repo et al. 2006, Hansen and Beck, 1994). Espevig et al. (2011) recently 

reported that AB exhibited significantly higher leaf growth rates compared to CB 
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following exposure at 10°C for 12 d. Although we did not measure leaf elongation in 

our current study, it is plausible that greater elongation rates of AB in response to 

warming events would require functional photosynthetic machinery to support 

continued growth, in addition to the use of reserve carbohydrates.  

Plants consume photosynthates through respiration to provide energy and 

carbon structures for growth and maintenance processes. In response to cold 

acclimation, the respiration rate declined similarly for both species (Fig. 2.6). This is 

contrary to previous reports that respiration rate increased following a prolonged 

period cold acclimation (Klikoff, 1968; Atkin et al. 2000; Talts et al., 2004). When 

plants were maintained at -2°C, the respiration rate of both species was approximately 

0 µmol ·m-2 s-1. During deacclimation, a significant increase in respiration rate for 

both species was observed, with the respiration rate of AB (1.14µmol ·m-2 s-1) 

significantly higher than CB (0.86µmol ·m-2 s-1) at 8°C 1 d. By 5 d, however, there 

was no difference in respiration rate between the two species. 

Cold acclimation is generally associated with a decline in plant growth rate 

and phloem transportation activities, and increases the soluble sugar concentration in 

the source leaves (Guy et al., 1992; Strand et al., 1999). Many studies have reported a 

close association between turfgrass freezing tolerance and higher accumulation of 

total sugars following cold acclimation (Fry et al., 1993; Ball et al., 2002; Cai et al., 

2004; Hoffman et al., 2010), or of individual carbohydrate fractions such as fructans, 

sucrose, and starch (Fry et al., 1993; Ball et al., 2002; Zhang et al., 2006; Dionne et al., 

2010; Hisano et al., 2004). However, other studies have reported inconsistencies 

between carbohydrate accumulation and freezing tolerance (Pollock et al., 1988; 

Thomas and James, 1993; Maier et al., 1994; Bush et al., 2000). In our study, we 

found little changes in the total soluble carbohydrates (sum of glucose, fructose and 
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sucrose) other than at 2°C, where CB had higher crown soluble sugar content (5.22 

mg ·g-1 DW) compared to AB (3.74 mg·g-1 DW) (Figure 2.7). There were no 

significant changes in the soluble carbohydrates content of crowns in response to 

deacclimation for either species. However, in a more comprehensive investigation of 

leaf and crown carbohydrates, Hoffman et al. (2014b) reported a relationship between 

high molecular weight fructan content and the maintenance of freezing tolerance 

during deacclimation, with CB maintaining a higher content of HMW fructans in 

crowns during deacclimation at 8°C. In addition, Dionne et al. (2010) found that 

HMW fructan content accounted for over 50% of the variation in freezing tolerance 

among a collection of 42 ecotypes of AB. Therefore, specific carbohydrate fractions 

such as fructans seem to play a larger role compared to the accumulation of total 

soluble sugars in relation to cold acclimation and deacclimation capacities in these 

species. 

In summary, the greater up-regulation of carbon metabolism of AB during 

deacclimation may promote faster recovery, and potentially a competitive advantage in 

mixed stands of CB. However, in response to mid-winter thaw events, deacclimation 

that may be accompanied by enhanced water uptake and metabolism of protective 

compounds could be detrimental, particularly if followed by subsequent freezing that 

would be common in field environments. Therefore, in order to reduce winer injury on 

golf turf, minimizing mid-winter temperature fluctuations to inhibit carbon metabolism 

activities is necessary, particularly where large stands of annual bluegrass exist. From 

management perspective, one possible solution is to utilize a covering system (ie 

impermeable synthetic cover or deep snow layer) during winter may be a good way to 

protect turf from winter injury induced by mid-winter thaw events by insulating turf 

from air temperature fluctuations (Dionne, 2000; Tompkins et al., 2000; Skorulski, 
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2002).  
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Figure 2.1. Changes of freezing tolerance (lethal temperature that induces 50% kill, 
LT50) in annual bluegrass (AB) and creeping bentgrass (CB) following cold 
acclimation at 20°C, 2°C, -2°C for 2 weeks and deacclimation at 8°C for 1 day and 5 
days. Bars are LSD values (P ≤ 0.05) indicating significant differences among means 
across species and temperature treatments. 
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Figure 2.2. Changes of photochemical efficiency (Fv/Fm) in annual bluegrass (AB) 
and creeping bentgrass (CB) following cold acclimation at 20°C, 2°C, -2°C for 2 
weeks and deacclimation at 8°C for 1 day, 3 days and 5 days. Bars are LSD values (P 
≤ 0.05) indicating significant differences among means across species and 
temperature treatments.  
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Figure 2.3. Changes of quantum yield (Yield) in annual bluegrass (AB) and creeping 
bentgrass (CB) following cold acclimation at 20°C, 2°C, -2°C for 2 weeks and 
deacclimation at 8°C for 1 day, 3 days and 5 days. Bars are LSD values (P ≤ 0.05) 
indicating significant differences among means across species and temperature 
treatments. 
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Figure 2.4. Changes of non-photochemical quenching (NPQ) in light harvesting 
systems of annual bluegrass (AB) and creeping bentgrass (CB) following cold 
acclimation at 20°C, 2°C, -2°C for 2 weeks and deacclimation at 8°C for 1 day and 5 
days. Bars are LSD values (P ≤ 0.05) indicating significant differences among means 
across species and temperature treatments. 
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Figure 2.5. Changes of photosynthesis rate (CO2 assimilation rate) in annual bluegrass 
(AB) and creeping bentgrass (CB) following cold acclimation at 20°C, 2°C, -2°C for 
2 weeks and deacclimation at 8°C for 1 day and 5 days. Bars are LSD values (P ≤ 
0.05) indicating significant differences among means across species and temperature 
treatments. 
 

 

 
 
  

0

1

2

3

4

5

20°C 2°C -2°C 8°C 1d 8°C 5d

AB

CB

Temperature Treatment

CO
2

up
ta

ke
 (µ

m
ol

 ·m
-2

 s-1
)



65 
 

Figure 2.6. Changes of respiration rate (CO2 utilization rate) in annual bluegrass (AB) 
and creeping bentgrass (CB) following cold acclimation at 20°C, 2°C, -2°C for 2 
weeks and deacclimation at 8°C for 1 day and 5 days. Bars are LSD values (P ≤ 0.05) 
indicating significant differences among means across species and temperature 
treatments. 
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Figure 2.7. Changes of total soluble sugar contents (sum of sucrose, glucose and 
fructose) in annual bluegrass (AB) and creeping bentgrass (CB) following cold 
acclimation at 20°C, 2°C, -2°C for 2 weeks and deacclimation at 8°C for 1 day and 5 
days. Bars are LSD values (P ≤ 0.05) indicating significant differences among means 
across species and temperature treatments. 
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Table 2.1. Results from ANOVA of freezing tolerance (LT50), photochemical efficiency (Fv/Fm), quantum yield  (Y), non-photochemical 
quenching (NPQ),  photosynthesis (Pn), respiration (Resp) and total soluble carbohydrates (TSC) as influenced by species/ecotype (CB, AB) in 
response to non acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 wk), and deacclimation (8°C 1d, 5d) treatments. 
 
Source of variation df LT50 FvFm Y NPQ Pn Resp TSC 
 Species 1 *** *** *** NS *** NS NS 
 Temperture treatments 4 *** *** *** *** *** *** *** 
    Control vs. All 1 *** *** *** *** *** *** *** 
    AC vs. DAC 1 *** NS *** *** *** *** NS 
    Within AC 1 *** NS *** *** *** *** * 
    Within DAC 1 *** *** *** *** *** *** NS 
 Species x Environment 4 *** *** *** *** *** * NS 
    (AB vs. CB) x (Control vs. All) 1 *** ** *** *** * * NS 
    (AB vs. CB) x  (AC vs. DAC) 1 ** *** *** *** *** NS NS 
    (AB vs. CB) x (Within AC) 1 *** *** *** * NS NS NS 
    (AB vs. CB) x (Within DAC) 1 * *** ** *** * NS NS 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability 
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CHAPTER 3 

EVALUATION OF HORMONE CHANGES IN ASSOCIATION WITH COLD 

ACCLIMATION AND DEACCLIMATION OF ANNUAL BLUEGRASS AND 

CREEPING BENTGRASS 

Abstract 

Annual bluegrass (Poa annua) (AB) and creeping bentgrass (Agrostis 

stolonifera) (CB) are two cool-season turfgrass species that vary in their winter 

survival, which is associated with the intraspecific differences in cold acclimation and 

deacclimation capacities. In order to reduce winter injury and mitigate re-

establishment costs, a better understanding of factors that contribute to freezing 

tolerance for these two species is necessary. Therefore, the objective of this study was 

to quantify changes in major hormones in leaf and crown tissues during cold 

acclimation and deacclimation in relation to freezing tolerance of AB and CB. Plants 

were propagated and established in the greenhouse for 12 months and then moved to a 

growth chamber for cold acclimation and deacclimation treatments, including: (1) 

non-acclimated control at 20 °C; (2) cold acclimated at 2 °C; (3) cold acclimated at -

2 °C; (4) deacclimated at 8 °C for 1 d; and (5) deacclimated at 8 °C for 5 d. Following 

each treatment, changes in chlorophyll fluorescence were monitored by 

photochemical efficiency (Fv/Fm) and quantum yield (Y), and freezing tolerance was 

evaluated based on lethal temperature resulting in 50% kill (LT50).  Hormones were 

extracted from leaves and crowns, including abscisic acid (ABA), indole-3-acetic acid 

(IAA), zeatin, salicylic acid (SA), and jasmonic acid (JA), using ultrafast liquid 

chromatography-electrospray ionization tandem mass spectrometry. Overall, CB 

exhibited higher freezing tolerance (lower LT50) following cold acclimation and 

maintained higher freezing tolerance during deacclimation, which was associated with 
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a lower Fv/Fm compared to AB during deacclimation. Cold acclimation was most 

consistently associated with increases in ABA, IAA, and SA contents of leaves and 

crowns. In contrast, the levels of these hormones significantly declined in response to 

deacclimation, in particular for AB compared to CB.  

 

  



70 
 

Introduction 

The development of freezing tolerance is an important trait required for 

overwintering survival of cool-season grasses, and is dependent on a cold acclimation 

period that is initiated on exposure to low, nonfreezing temperatures and decreases in 

photoperiod (Levitt, 1980). These environmental cues lead to signal transduction 

cascades associated with induction of cold-regulated (COR) genes, many of which 

result in the production of metabolites that aid in membrane stability, osmotic 

adjustment, and antioxidant scavenging capacity (Karpinski et al., 2002; Munshaw et 

al., 2006). Altogether these critical changes help to lower cellular freezing point and 

allow plants to withstand extensive freeze-induced cellular desiccation. Differences in 

the capacity to modulate the extent of these various physiological and biochemical 

traits during cold acclimation have been shown to contribute to species and cultivar 

differences in freezing tolerance (Rajashekar et al., 1983; Harrison et al., 1997; Patton 

et al., 2007a,b; Hoffman et al., 2010).  

The occurrence of a warming event during winter or early spring can 

potentially reverse the cold acclimated state (i.e., cold deacclimation) and cause a 

reduction or complete loss of freezing tolerance.  Compared to the large body of 

literature related to the genetics and physiology of cold acclimation, there is 

considerably less understood on the mechanisms regulating cold deacclimation of 

plants. Losses of freezing tolerance induced by deacclimation have been associated 

with changes such as increases in cellular water content, modifications in membrane 

lipid composition, and increases in the metabolism of protective solutes (Tronsmo et 

al., 1993; Ögren, 1997; Arora et al., 2004; Iivonen et al., 2004). If plants are exposed 

to elevated temperatures in mid-winter to early spring that trigger the deacclimation 

process, this may lead to untimely loss of freezing tolerance and low temperature kill 
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when temperatures subsequently drop below freezing. Consequently, the ability of 

plants to resist deacclimation and maintain maximum freezing tolerance may be 

considered an integral overwintering strategy for some plants species and account for 

inter- and intraspecific variations in winter survival (Eagles and Williams, 1992; 

Huner et al., 1998; Hoffman et al., 2014a). 

Deacclimation has been reported to occur more rapidly in comparison to the 

time required to achieve freezing tolerance through cold acclimation, with freezing 

tolerance losses occurring within few days to less than two weeks upon warmer 

temperature exposure (Gay and Eagles, 1991; Rapacz, 2002a; Kalberer et al., 2006; 

Espevig et al., 2011; Hoffman et al., 2014a,b).  In comparison, the development of 

freezing tolerance during cold acclimation may take weeks to months, depending on 

plant species. The extent of deacclimation can be influenced by the magnitude of 

temperature increase and the duration of exposure to elevated temperatures (Gay and 

Eagles, 1991; Eagles and Williams, 1992; Svenning et al., 1997; Kalberer et al., 2006; 

Gu et al. 2008; Pagter and Arora, 2013; Hoffman et al., 2014a), as well as photoperiod 

(Rapacz, 2002b; Junttila, 1997).  Given the potential rapid losses in freezing tolerance 

in response to warming events, this suggests the rapid activation of signaling 

compounds that are involved in triggering downstream responses leading to 

deacclimation. 

Plant hormones are an important group of signaling compounds that help 

regulate most aspects of plant growth and metabolism. There are five primary classes 

of plant hormones including abscisic acid (ABA), auxin, gibberellic acid (GA), 

cytokinins, and ethylene.  In addition, compounds such as salicylic acid (SA), 

jasmonic acid (JA), and brassinosteroids have been more recently included within the 

plant hormone classification. Due to the widespread role of hormones, particularly in 
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terms of water relations, growth regulation, and triggering stress-associated 

metabolites, it is not surprising that some of these signaling molecules have been 

reported to play a role in the development of plant freezing tolerance.   A majority of 

studies have focused on the role of ABA in freezing tolerance, where it has been 

shown to accumulate during cold acclimation and mediate the expression of cold 

regulated genes (Hajela et al., 1990; Lång and Palva, 1992; Gusta et al., 2005; 

Mahajan and Tuteja, 2005; Xin and Li, 1993; Semeniuk et al., 1986; Bravo et al., 

1998). Other hormones associated with stimulation of cell division and growth, such 

as cytokinins, auxins, and GA have been shown to be down-regulated at low 

temperatures (Achard et al., 2008; Kosová et al., 2012). Although compounds such as 

SA and JA have primarily been studied in relation to pathogen or wounding responses, 

recent investigations have suggested relationships between the accumulation of these 

compounds and freezing tolerance development (Tasgín et al., 2003; Horváth et al., 

2007; Janda et al., 2007; Majláth et al., 2012; Pieterse et al., 2012; Santino et al., 

2013). Compared to the studies described above that focus primarily on cold 

acclimation responses, there is little information on how hormones are involved to 

regulate deacclimation of plants, particularly in relation to short and longer term 

warm temperature exposures. 

Annual bluegrass (Poa annua L.) (AB) and creeping bentgrass (Agrostis 

stolonifera L.) (CB) are two cool-season grass species that vary in their winter 

survival. Investigations conducted under both field and controlled environmental 

conditions have shown that CB exhibits a greater freezing tolerance capacity 

compared to AB following a period of cold acclimation (Tompkins et al., 2000; 

Tompkins et al., 2004; Hoffman et al., 2014b).  In addition, research by Hoffman et al. 

(2014a,b) and Guan et al. (unpublished) also demonstrated differences in the 
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deacclimation sensitivity of these two species, which could be observed within 1 d of 

exposure to warming temperatures.  Therefore, the goal of the current study was to 

expand on our previous research and gain a more thorough understanding of the 

regulation of freezing tolerance in AB and CB, with a particular emphasis on the early 

hormone changes associated with cold deacclimation of these two species.  In 

addition to information on fundamental processes involved in freezing tolerance of 

perennial grass species, a greater understanding of hormones changes involved in cold 

acclimation and deacclimation may also have more practical applications in turfgrass 

management, potentially through exogenous application of plant growth regulators to 

help reduce deacclimation in response to mid-winter warming events. Therefore, the 

specific objective of the study was to quantify changes in leaf and crown hormone 

concentrations at different stages of cold acclimation and deacclimation for AB and 

CB. 

 

Materials and Methods 

Plant materials and growing conditions 

Plugs of one creeping bentgrass cultivar (Penncross) (collected from the 

University of Massachusetts Joseph Troll Turf Research Center) and one annual 

bluegrass biotype (collected from Longwood Cricket Club, Chestnut Hill, MA) were 

transplanted into containers (5 cm diameter, 25 cm depth) filled with USGA sand. 

Plants were maintained in greenhouse for 1 month  under optimal growing conditions, 

which consisted of 23 °C/18 °C (day/night) temperatures, irrigated three times per 

week, trimmed to 1 cm height of cut and fertilized with full-strength Hoagland 

solution (Hoagland and Arnon, 1950) on a weekly basis. Once plants were fully 

established, plants were moved into a controlled environment growth chamber 
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(Conviron, Winnipeg, CA) and maintained at 20 °C under a 10-hour photoperiod with 

a photosynthesis photon flux density (PPFD) of 300 µmol m-2 s-1 and a relative 

humidity of 50%. 

 

Treatments 

Plants of CB and AB were exposed to cold acclimation and deacclimation 

temperature environments based on the work conducted by Hoffman et al. (2014b). 

Temperature environments were as follows: (i) non acclimated at 20 °C for 2 weeks; 

(ii) cold acclimated at 2 °C for two weeks; (iii) cold acclimated at -2 °C for two weeks; 

(iv) deacclimated at 8 °C for 1 d; and (v) deacclimated at 8 °C for 5 d. In the growth 

chamber, the light level was at 300 µmol m-2 s-1 PPFD for cold acclimation at 2 °C, 0 

µmol m-2 s-1 PPFD at -2 °C, and at 150 µmol m-2 s-1 PPFD for deacclimation 

treatments. Following each temperature treatment, plants were harvested for freezing 

tolerance assessment and hormone contents. 

 

Measurements 

Freezing tolerance was determined based on the lethal temperature resulting in 

50% plants killed (LT50).  Freezing tests were conducted following each temperature 

treatment to assess changes in freezing tolerance during cold acclimation and 

deacclimation. Ten individual plants (leaf, crown and 1 cm of roots) per replicate were 

wrapped in moist paper towels and placed into plastic bags for each temperature 

treatment according to the methods described by Ebdon et al. (2002). All bags 

containing plant materials were held at 2 °C for the duration of the harvest. Plants 

were exposed to six freezing temperatures in a programmable freezing chamber 

(Tenney TC Series Cycling Test Chamber, SPX Thermal Product Solutions, White 
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Deer, PA) as follows: -6, -9, -12, -15, -18, and -21 °C. The freezer was programmed to 

decrease at a rate of 2 °C per hour, along with 1 hour plateau at each freezing test 

temperature. After the freezing test, plants were transplanted into the cell trays 

containing commercial potting media (Pro-mix; Griffin Greenhouse and Nursery 

Supplies, Tewksbury, MA) and maintained in the greenhouse at 23/18 °C (day/night) 

for recovery. Following three weeks, the survival percentage at each freezing 

temperature was evaluated by counting the number of living plants out of the total 

number of plants. The LT50 of each species was calculated by fitting percent survival 

to temperature using the PROC LOGISTIC procedure. 

To monitor changes in photosynthetic activity as an indirect measure of carbon 

metabolism, photochemical efficiency (Fv/Fm) was measured at the end of each 

treatment and prior to harvest using a portable chlorophyll fluorometer (Opti-Science 

Inc., Hudson, NH). The fluorescence chamber was placed on the canopy of the plants 

at two locations per pot, and then averaged. The Fv/Fm was measured following a 

minimum dark adaptation period of 30 min. 

At the same time as harvests for LT50 determination, additional leaf and crown 

tissues (200 mg each) were collected for hormone analyses. The tissues were washed 

free of soil, wrapped in foil packets, and frozen in liquid nitrogen. Following harvest, 

the tissues were then stored in a -80°C chamber until further analyses. Five major 

hormones, including ABA, auxin (IAA), cytokinin (zeatin), SA, and JA , were 

extracted and quantified according to the method of Liu et al. (2008) with 

modifications, as detailed below. 

Approximately 200 mg frozen tissues (leaves and crown) were ground to a 

fine powder in liquid nitrogen using a mortar and pestle, and transferred to 1.5ml 

tubes. Ground tissues were mixed with 850 µL cold extraction buffer (methanol: 
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water: acetic acid, 80: 19: 1, v/v/v) and shaken vigorously at 4°C for 16 h in the dark. 

The tissues were then centrifuged at 14000 rpm for 20 min at 4°C, and the supernatant 

was transferred to a new 1.5 ml tube. The remaining pellet was re-mixed with 400 µL 

of the extraction buffer, shaken at 4°C for 4 h in the dark, and centrifuged at 14000 

rpm for 20 min at 4°C. The supernatant from the two tubes was combined, dried using 

centrifugal vacuum concentrator (Labconco, MO), and then dissolved in 200 µL 

methanol. Approximately 100 nano moles of deuterium labelled internal standards of 

ABA (2H6-ABA) was added at the time of extraction. The hormones were quantified 

using ultra-fast liquid chromatography-electrospray ionization tandem mass 

spectrometry (UFLC-ESI-MS/MS) (Waters Acquity TQD,Waters, MA).  

 

Experimental Design and Statistical Analyses 

The plants were completely randomized in the growth chamber. The 

experiment consisted of two species (AB and CB) and five temperature treatments, 

with 4 replicates for each species-temperature treatment combination. The data were 

analyzed using analysis of variance (ANOVA) according to the linear model 

procedure for the Statistical Analysis System v. 9.2 (SAS Institute, Inc. Cary, NC) and 

means were separated with Fisher’s protected least significant difference (LSD) test at 

the 0.05 probability level. The main effects of two species, five temperature regimes, 

and their interaction were analyzed by partitioning the total treatment sums of squares 

(SS) into single degree of freedom (df) orthogonal contrasts.   

 

Results and Discussion 

In response to our cold acclimation treatments (2 and -2°C), there was a 

significant increase in freezing tolerance (lower LT50) compared to that at 20°C for 
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both species (Fig. 3.1).   Among the cold acclimation treatments, sub-zero acclimation 

at -2°C resulted in the highest freezing tolerance, with CB achieving a significantly 

greater level of freezing tolerance (LT50 of -20.1°C) compared to AB (-14.7°C). These 

results are in agreement with our previous study and others comparing the cold 

acclimation capacity and freezing tolerance of AB and CB (Tompkins et al., 2004; 

Hoffman et al., 2014a,b; Guan et al., unpublished). In response to transferring plants 

from -2 to 8°C, deacclimation was observed as early as 1 d of treatments as indicated 

by the significant increases in LT50 for both species. The freezing tolerance of AB 

decreased to a greater extent at 8°C for 1 d compared to CB (LT50 of -14.7 to -12.0°C 

for AB, and -20.1 to -18.6°C for CB). As plants were exposed for longer duration at 

8°C, additional freezing tolerance was lost. In contrast to the species responses at 8°C 

for 1d, where the freezing tolerance of AB seemed to decrease at a greater rate than 

CB during early stages of deacclimation,  deacclimation of CB was observed to be 

greater than AB from 1 to 5 d of deacclimation, with CB losing approximately 4.3°C 

(-18.6 to -14.3°C) and AB losing approximately 3.1°C (-12 to -8.9°C) in freezing 

tolerance. Hoffman et al. (2014a) recently reported that deacclimation rates for AB 

and CB varied depending on the deacclimation temperature (4, 8, and 12 °C) and 

duration (1 or 5 d), with AB exhibiting a 2.5-fold greater loss in freezing tolerance 

compared to CB at 4 °C, whereas CB exhibiting a 3-fold greater sensitivity and loss in 

freezing tolerance in response to longer exposures at higher temperatures. Irrespective 

of rate of deacclimation, CB always exhibited a significantly lower LT50 compared to 

AB, indicating that CB maintained a higher freezing tolerance than AB during 

deacclimation. Following deacclimation at 8°C for 5 d, the freezing tolerance of AB 

was similar to the AB non-acclimated control at 20°C. 

 Photochemical efficiency (Fv/Fm) was assessed as an indirect measure of the 
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physiological activity during cold acclimation and deacclimation.  The Fv/Fm of all 

plants significantly decreased in response to cold acclimation at 2°C (from 0.79 to 

0.68 and 0.78 to 0.64 for AB and CB, respectively) (Fig 3.2). However, contrary to 

the results from our previous study where AB either had lower or equal Fv/Fm to CB 

during cold acclimation, AB exhibited higher Fv/Fm compared to CB at both 2 and -

2°C.  This may be attributed to the use of different AB biotypes between the two 

studies, which showed variable cold acclimation capacity and freezing tolerance (data 

not shown). Similar results has been previously reported in a field study by Rapacz et 

al. (2004), in which they observed a negative correlation between Fv/Fm in autumn 

and winter survival in of Festuca pratensis × Lolium multiflorum hybrids, with 

freezing tolerant lines exhibiting  a greater reduction of Fv/Fm in favor of non-

photochemical quenching and protection of the photosynthesis apparatus.  In response 

to exposure at 8°C for 1 d, the Fv/Fm of AB and CB remained at similar levels to 

what was observed at -2°C. By 3 and 5 d of deacclimation, Fv/Fm continued to 

increase, with AB always having a significantly higher Fv/Fm during deacclimation.  

Plant hormones are essential molecules that signal and regulate plant growth 

and metabolism, and in particular play important roles in regulating plant responses to 

various abiotic and biotic stresses (Rikin et al. 1976; Kuiper et al., 1990; Taylor et al., 

1990; Davies and Zhang, 1991; Ciardi et al. 1997; Durner et al., 1997; Mauch-Mani et 

al., 2005; Guo et al., 2010; Zhu et al., 2014). Plant hormones may influence plant 

stress responses individually, or have syngergistic/antagonistic effects (Ross et al., 

2000; Swarup, 2002; De Smet et al.2003; Gray, 2004; Nordström et al., 2004; Huang 

et al., 2014). In the current study, we quantified changes in plant hormones in relation 

to freezing tolerance, with particular emphasis on the hormones that could be 

involved in signaling cold deacclimation in response to warming temperatures. While 
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a majority of previous studies have focused on changes in leaf hormone levels, we 

performed a more comprehensive investigation on both leaf and crown tissues, which 

are major over-wintering structures in grass species.  In general, we found that ABA, 

IAA, SA, and JA contents were significantly increased in crowns and/or leaves 

specifically in response to prolonged sub-zero acclimation at -2°C for two weeks (Fig. 

3.3, 3.4, 3.6, and 3.7). It is important to point out that sampling for hormones at 20, 2, 

and -2°C occurred at the end of two weeks exposures at each temperature, and 

therefore may not reflect early changes in these acclimation responses (compared to 

our sampling during short-term deacclimation). This may help to explain why some 

hormones showed either no changes or decreases in certain hormone concentrations in 

response to 2°C cold acclimation, which is within a temperature range for cold 

acclimation that has previously been shown to induce significant increases in 

hormones such as ABA.  For example, Dörffling et al. (1990) and Rapacz et al. (2003) 

previously reported decreases in ABA content followed a prolonged cold acclimation. 

More recently, a comprehensive evaluation of multiple hormones at different time 

points of cold acclimation (1 d, 3 to 7 d, and 21 d) showed unique hormone profiles at 

the different stages of acclimation, likely representing the dynamics of changes in the 

cell metabolism to fully adjust to low temperatures (Kosová et al., 2012). When plants 

were shifted from -2 to 8°C to induce deacclimation, the hormones varied in their 

responses, which depended on species and plant tissue (ie leaves, crowns).  

Both ABA and IAA contents generally declined in leaf and crown tissues in 

response to 8°C (Fig. 3.3 and 3.4).  However, AB exhibited a greater decline in these 

hormones at 8°C 1 d compared to CB, whereas no significant differences in crown 

ABA and IAA levels were detected between the two species. The relationship 

between ABA and freezing tolerance has been extensively studied, showing that ABA 
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serves as an important signaling compound that regulates gene expressions under cold 

stresses and contributed to freezing tolerance (Chen and Gusta, 1983; Mundy and 

Chua, 1988; Lång and Palva, 1992; Xin and Li, 1993; Bravo et al., 1998; Shinozaki et 

al., 2000). Moreover, ABA also functions in water balances to avoid cell dehydration 

and membrane damage (Rikin et al., 1979; Ristic and Cass, 1993), and in photosystem 

II protection (Rapacz, 2002a). Auxins are well known plant hormones functioning in 

plant development such as apical dominance, tropic responses, and root and shoot 

initiation (Davies, 1995). According to a study conducted by Gavelienė et al. (2013), 

applying auxin analogues to rapeseed (Brassica napus) improved the freezing 

tolerance due to enhanced accumulation of proline and soluble sugars. Endogenous 

IAA concentration was also reported by Du et al. (2012) to increase when plants were 

exposed to low temperature.  

In comparison to ABA and IAA, leaf zeatin concentration was not 

significantly different among species or temperature treatments during cold 

acclimation at 2°C (Fig. 3.5). In the crowns, the only significant change was the 

increase in AB zeatin content at -2°C. During deacclimation, zeatin content of CB 

leaves significantly increased at 8°C 1 d, and CB maintained higher levels of zeatin 

during deacclimation (1 and 5 d) compared to AB. In fact, based on single-degree of 

freedom orthogonal contrasts, the leaf zeatin content was significantly higher for cold 

deacclimation treatments compared to cold acclimation treatments, regardless of 

species. The increased concentration of zeatin in leaves during deacclimation may 

result in the up-regulation of photosynthesis-related genes (Boonman et al., 2007; 

Zubo et al., 2008), as well as increase in growth (as related to cytokinin-induced cell 

division) (Xia et al., 2009). In a study using transgenic tall fescue (Festuca 

arundinacaea Shreb.) transformed with the ipt gene (isopentenyltransferase), 
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enhanced cytokinin biosynthesis at low temperature was associated with enhanced 

chlorophyll content and tillering capacity (Hu et al., 2005).  

Salicylic acid is a plant hormone that has mostly been studies in relation to 

pathogen responses (Farmer and Ryan 1992, Jackson and Taylor 1996; Mou et al., 

2003). In response to low temperature stress, SA was found to be partially involved in 

growth inhibition (Scott et al., 2004). Pociecha et al. (2009) also reported that freezing 

tolerant Festulolium genotypes were characterized by less accumulation of SA (and 

higher ABA) compared to freezing sensitive genotypes. In our study, there was a 

significant increase in leaf SA content in response to -2°C acclimation, but no species 

differences were detected (Fig. 3.6).  In crowns, only AB exhibited higher SA content 

at -2°C.  In response to deacclimation at 8°C 1d, no significant changes in leaf SA 

were detected. However, crown SA content for AB increased significantly at 8°C 1d 

and then declined by 5 d, whereas no changes were found for CB in response to cold 

acclimation or deacclimation. 

The focus of JA research has centered on plant pathogen resistance and 

wounding responses (Pieterse et al., 2012), whereas less is understood regarding the 

role of JA in abiotic stress tolerance. Under both abiotic and biotic stresses, JA was 

found to participate in stress signaling (Santino et al., 2013), and regulate gene 

expression (Tuteja, 2009). Studies also found that JA could cross talk with other 

hormones such as ABA (Ton and Mauch-Mani, 2004), GA (Wasternack and Hause, 

2013), and SA (Ferrari et al., 2003) within stress signaling pathways.  In response to 

low temperature, JA was found to contribute to chilling tolerance, which was 

associated with its role in modifying cell membranes at low temperature (Santino et 

al., 2013). Its accumulation has also been associated with increased resistance to snow 

mold pathogens (Gaudet et al., 2011), which would be an important trait for grasses 
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such as CB and AB. In general, the leaf JA content did not vary based on cold 

acclimation treatments for both AB and CB (Fig. 3.7).  In crowns, there was a 

significant increase in JA content following -2°C acclimation. However, following 

exposure at 8°C for 1 d, leaf JA level in CB increased significantly, whereas no 

changes were observed for AB. In general, CB had higher leaf and crown JA contents, 

regardless of temperature treatment. 

 In summary, CB exhibited higher freezing tolerance (lower LT50) following 

cold acclimation and maintained higher freezing tolerance during deacclimation, 

which was associated with a lower Fv/Fm compared to AB during deacclimation. 

Cold acclimation was most consistently associated with increases in ABA, IAA, and 

SA contents of leaves and crowns. In contrast, the levels of ABA and IAA declined 

more rapidly in leaves of AB compared to CB during deacclimation. The zeatin,(leaf) 

and JA (leaf and crown) contents of CB were generally higher than levels found in AB 

regardless of temperature treatments, and in particular under deacclimation treatments. 

In contrast to these responses, the SA content of crowns was significantly greater for 

AB compared to CB.  Additional research is necessary to also integrate information 

on the changes in GA content, which could not be completed in the current study due 

to limitation of plant tissues.  
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Figure 3.1. Freezing tolerance (LT50) of annual bluegrass (AB) and creeping bentgrass 
(CB) in response to cold acclimation (2, -2°C) and deacclimation (8°C for 1 and5 d). 
Vertical bars are LSD values (p≤0.05) representing statistically significant differences 
across species and different temperature treatments. 
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Figure 3.2. Photochemical efficiency (Fv/Fm) of annual bluegrass (AB) and creeping 
bentgrass (CB) in response to cold acclimation (2, -2°C) and deacclimation (8°C for 1 
and5 d). Vertical bars are LSD values (p≤0.05) representing statistically significant 
differences across species and different temperature treatments. 
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Figure 3.3. Changes in leaf (A) and crown (B) abscisic acid (ABA) concentration 
(ng/g FW) of annual bluegrass (AB) and creeping bentgrass (CB) in response to cold 
acclimation (2, -2°C) and deacclimation (8°C for 1 and5 d). Vertical bars are LSD 
values (p≤0.05) representing statistically significant differences across species and 
different temperature treatments. 
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Figure 3.4. Changes in leaf (A) and crown (B) auxin (IAA) concentration (ng/g FW) 
of annual bluegrass (AB) and creeping bentgrass (CB) in response to cold acclimation  
(2, -2°C) and deacclimation (8°C for 1 and5 d). Vertical bars are LSD values (p≤0.05) 
representing statistically significant differences across species and different 
temperature treatments. 
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Figure 3.5. Changes in leaf (A) and crown (B) cytokinins (zeatin) concentration (ng/g 
FW) of annual bluegrass (AB) and creeping bentgrass (CB) in response to cold 
acclimation (2, -2°C) and deacclimation (8°C for 1 and5 d). Vertical bars are LSD 
values (p≤0.05) representing statistically significant differences across species and 
different temperature treatments. 
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Figure 3.6. Changes in leaf (A) and crown (B) salicylic acid concentration (ng/g FW) 
of annual bluegrass (AB) and creeping bentgrass (CB) in response to cold acclimation  
(2, -2°C) and deacclimation (8°C for 1 and5 d). Vertical bars are LSD values (p≤0.05) 
representing statistically significant differences across species and different 
temperature treatments. 
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Figure 3.7. Changes in leaf (A) and crown (B) jasmonic acid concentration (ng/g FW) 
of annual bluegrass (AB) and creeping bentgrass (CB) in response to cold acclimation  
(2, -2°C) and deacclimation (8°C for 1 and5 d). Vertical bars are LSD values (p≤0.05) 
representing statistically significant differences across species and different 
temperature treatments. 
 

 
 
 

0

50

100

150

200

250

300

350

400

20°C 2°C -2°C 8°C 1d 8°C 5d

AB

CB

0

100

200

300

400

500

600

700

20°C 2°C -2°C 8°C 1d 8°C 5d

AB

CB

ng
g-1

 F
W

ng
g-1

 F
W

Temperature Treatments

A

B



97 
 

Table 3.1. Results from ANOVA for freezing tolerance (LT50) and photochemical efficiency (Fv/Fm) for two species (annual bluegrass and 
creeping bentgrass) and five temperature environments including non-acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 
wk), and deacclimation (8°C 1d, 5d) treatments.   
 
Source of variation  df LT50 Fv/Fm 
 Species 1 *** *** 
 Environment 4 *** *** 
    Control vs. All 1 *** *** 
    AC vs. DAC 1 *** *** 
    Within AC 1 *** *** 
    Within DAC 1 *** *** 
 Species x Environment 4 *** * 
    (AB vs. CB) x (Control vs. All) 1 *** * 
    (AB vs. CB) x (AC vs. DAC) 1 *** *** 
    (AB vs. CB) x (Within AC) 1 *** NS 
    (AB vs. CB) x (Within DAC) 1 ** NS 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability 
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Table 3.2. Results from ANOVA of Leaf hormone contents (SA, JA, ABA, IAA, CK) (ng g-1) as influenced by species/ecotype (CB, AB) in 
response to non-acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 wk), and deacclimation (8°C 1d, 5d) treatments. 
 

 Leaf Hormone Content 
Source of variation df SA JA ABA IAA CK 
 Species 1 NS *** NS NS *** 
 Environment 4 *** *** *** *** *** 
    Control vs. All 1 *** Ns *** *** ** 
    AC vs. DAC 1 NS ** *** NS *** 
    Within AC 1 *** NS *** *** * 
    Within DAC 1 *** *** NS *** * 
 Species x Environment 4 NS *** NS NS NS 
    (AB vs. CB) x (Control vs. All) 1 NS NS NS NS NS 
    (AB vs. CB) x (AC vs. DAC) 1 NS * NS NS NS 
    (AB vs. CB) x (Within AC) 1 NS NS NS NS NS 
    (AB vs. CB) x (Within DAC) 1 NS *** NS NS NS 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability. 



99 
 

Table 3.3. Results from ANOVA of Crown hormone contents (SA, JA, ABA, IAA, CK) (ng g-1) as influenced by species/ecotype (CB, AB) in 
response to non-acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 wk), and deacclimation (8°C 1d, 5d) treatments. 
 

 Crown Hormone Content 
Source of variation df SA JA ABA IAA CK 
 Species 1 ** *** NS NS ** 
 Environment 4 *** *** *** *** *** 
    Control vs. All 1 * NS NS *** * 
    AC vs. DAC 1 NS * *** NS NS 
    Within AC 1 ** *** *** *** *** 
    Within DAC 1 *** NS NS *** NS 
 Species x Environment 4 * NS * NS *** 
    (AB vs. CB) x (Control vs. All) 1 NS NS NS NS NS 
    (AB vs. CB) x (AC vs. DAC) 1 NS NS NS NS *** 
    (AB vs. CB) x (Within AC) 1 NS NS * NS *** 
    (AB vs. CB) x (Within DAC) 1 ** NS NS NS NS 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability. 
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CHAPTER 4 

IDENTIFYING THE PHYSIOLOGICAL CHANGES ASSOCIATED WITH 

COLD ACCLIMATION AND DEACCLIMATION IN PERENNIAL 

RYEGRASS GENOTYPES WITH CONTRASTING FREEZING 

TOLERANCE 

Abstract 

Perennial ryegrass (PR) is an economically important  turf and forage grass 

species, but often exhibits poor winter survival. A better understanding of the 

mechanisms required for freezing tolerance and overwintering capacity, from genetic 

to whole-plant physiology, is required in order to select and breed for better adapted 

cultivars of PR. Therefore, we conducted initial screening tests of eight PR breeding 

accessions and selected two: one freezing tolerant (T73), and one freezing sensitive 

(S16). Plants were exposed to five temperature treatments including: (1) non-

acclimated control at 20°C for 2 week, (2) cold acclimated 2°C for 2 weeks, (3) cold 

acclimated -2°C for 2 weeks, (4) deacclimated at 4°C for 1d, (5) deacclimated at 4°C 

for 5 d. During each treatment, plants were harvested and exposed to freeze tests for 

freezing tolerance (LT50) evaluation. Chlorophyll fluorescence measurements were 

quantified as an indirect measure of carbon metabolism, including: photochemical 

efficiency (Fv/Fm), quantum yield (Y), and non-photochemical quenching (NPQ). In 

addition, crown moisture content, leaf growth rate (LGR) and tiller numbers were 

assessed. Our results indicated that T73 exhibited significantly lower LT50 than S16 

during cold acclimation and deacclimation, indicating a higher freezing tolerance. In 

addition, T73 exhibited significantly higher Fv/Fm and Y following acclimation and 

deacclimation, indicating higher photosynthetic efficiency. The crown moisture 

content of S16 was significantly higher compared to T73 in response to 2°C 
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acclimation and 4°C 1d deacclimation, which may contribute to higher freezing injury 

potential. The LGR and relative tiller number were significantly reduced following 2 

and -2°C acclimation, but increased in response to deacclimation. However, no 

genotype differences in LGR or relative tiller number were observed.  
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Introduction 

Perennial ryegrass (Lolium perenne L.) (PR) is one of the most widely utilized 

temperate grass species selected for turf and forage uses, along with more recent 

interests for this species as a producer of biomass for conversion to biofuel 

(Thorogood, 2003, El Bassam, 2010). This species is generally known for excellent 

turf quality characteristics related to color and density, as well as rapid establishment 

and superior traffic tolerance. As a result, PR is widely used as a species of choice 

alone or in mixtures for turf stands on home lawns, athletic fields, and golf courses. 

However, among cool-season grasses, PR is sensitive to temperature extremes, 

particularly freezing temperatures. For example, killing temperatures have been 

observed as high as -5 to -15 °C in comparison to other cool-season turfgrasses 

(Beard, 1973; Gusta et al., 1980), which makes it highly susceptible to winter injuries 

(Taylor et al., 1997). Previous research also found that freezing tolerance can 

significantly vary among different cultivars or genotypes within PR (Ebdon et al., 

2002; Hulke et al., 2007; Hoffman et al., 2010).  Therefore, improved freezing 

tolerance and winter hardiness traits are important breeding goals for this species 

(Thorogood, 2003). 

Earlier research has focused on traits related to the capacity of PR plants to 

acclimate to freezing temperatures (Hoffman et al., 2010). During the process of cold 

acclimation, a series of physiological and biochemical changes within plants prepare 

cells to withstand extensive periods of ice-induced desiccation, including the 

accumulation of non-structural carbohydrates (Koster and Lynch, 1992; Dionne et al., 

2010; Ball et al., 2002; Patton et al., 2007a; Espevig et al., 2011) and proline 

(Dörffling et al., 1997; Dionne et al., 2001b; Patton et al., 2007a; Hoffman et al., 

2010), induction of cold regulated proteins (Patton et al., 2007b; Zhang et al., 2009; 
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Zhang et al., 2011), and alterations in cell membrane lipids and composition (Lynch 

and Steponkus, 1987; Samala et al., 1998; Cyril et al., 2002; Munshaw, 2004; 

Hoffman et al., 2010). The capacity to adjust cell metabolism during cold acclimation 

to maximize cell freezing tolerance depends on several factors, including plant 

genotype, environmental conditions, as well as general agronomic practices (Webster 

and Ebdon, 2005; Hulke et al., 2007; Hulke et al., 2008; Hoffman et al., 2010).  

In contrast to studies on cold acclimation of PR, there have been few 

examinations on the deacclimation sensitivity of this species (Gay and Eagles, 1991; 

Eagles and Williams, 1992). The potential for deacclimation and winter damage can 

be affected by the magnitude of temperature increase and the duration of exposure to 

elevated temperatures (Gay and Eagles, 1991; Eagles and Williams, 1992; Svenning 

et al., 1997; Kalberer et al., 2006; Gu et al. 2008; Patgers and Arora, 2013; Hoffman 

et al., 2014a). Although temperature seems to be the primary factor triggering 

deacclimation (Patger and Arora, 2013), increases in photoperiod can exacerbate the 

deacclimation response (Eagles, 1994; Junttila, 1997; Rapacz, 2002). The extent of 

deacclimation and reacclimation capacity in response to mid-winter thawing events 

seems to be associated with whole-plant growth responses, such that deacclimation 

becomes irreversible under conditions where the plant initiates regrowth and water 

uptake (Rapacz et al., 2001; Rapacz, 2002; Arora et al., 2004). Previous research 

conducted by Webster and Ebdon (2005) reported a strong correlation between shoot 

growth rate, crown moisture content, and freezing tolerance (LT50) in perennial 

ryegrass, where higher shoot growth rates were associated with lower freezing 

tolerance as crown hydration increased with shoot growth.   

From our previous studies using creeping bentgrass (Agrostis stolonifera L.) 

and annual bluegrass (Poa annua L.), we determined that increased carbon 
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metabolism and changes in leaf and crown hormones were associated with the losses 

of freezing tolerance in response to short-term shifts in temperatures (Hoffman et al., 

2014b; Guan et al., unpublished). To better understand these and other mechanisms 

contributing to differences in deacclimation sensitivity among plants, we selected to 

look more closely at PR, a species for which there is greater relative genetic 

information compared to creeping bentgrass and annual bluegrass. For example, 

genetic linkage maps for PR have been developed that are aligned with maps of other 

Poaceae species (Jones et al., 2002a,b; Inoue et al., 2004; Warnke et al., 2004; Sim et 

al., 2005), which could facilitate comparative studies for the identification of genes 

important for PR winter hardiness. Therefore, the goal of the current study was to 

establish baseline physiological information related to cold acclimation and 

deacclimation traits in PR, using genotypes that vary in their freezing tolerance 

capacity. Specifically, the objectives of the study were to (i) evaluate freezing 

tolerance of eight breeding accessions of PR and select a freezing tolerant and 

freezing sensitive genotype; and (ii) examine how changes in photosynthetic 

parameters, crown hydration, leaf growth rates, and relative tiller numbers are related 

to differences in cold acclimation and deacclimation capacities among the two 

genotypes. 

 

Materials and Methods 

Experiment 1 

Eight accessions were obtained from the University of Minnesota perennial 

ryegrass breeding program based on differences in winter survival, designated as: 

TOL73, TOL74, TOL88, TOL89 (representing tolerant accessions) and SUS08, 

SUS16, SUS23, SUS38 (representing susceptible accessions) (Erik Watkins, personal 
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communication).   All plant materials were seeded in May 2012, and cultivated in the 

green house for five months before transplanting into cell trays and moving into the 

growth chamber. 

For cold acclimation and deacclimation regimes, plants were exposed to four 

temperature treatments including: (i) non-acclimated at 20 °C for 2 weeks; (ii) cold-

acclimated at 2 °C for 2 weeks; (iii) cold-acclimated at -2°C for 2 weeks; (iv) 

deacclimated at 8 °C for 3 d.  At each treatment, the relative humidity level in the 

growth chamber was held at 50%, and the photoperiod was set at 10 hours/day. The 

light level was 320µmol m-2 s-1 PPFD for non acclimation and 2°C cold acclimation 

treatments, and 0 µmol m-2 s-1 PPFD for -2°C. For deacclimation treatments, the light 

level was adjusted to 150µmol m-2 s-1 to avoid photooxidation conditions. 

Freezing tolerance was determined based on the value of lethal temperature 

that induces 50% plant killed (LT50). Plant materials were harvested at the end of each 

treatment to assess freezing tolerance of the plant using the methods previously 

described by Ebdon et al. (2002). Plants were harvested from soil and separated into 

individual tillers with leaf, crown and 1 cm of roots attached.  In order to induce the 

ice nucleation, 10 tillers of one plant genotype was wrapped into a moist paper towel 

and placed into a plastic bag. A total of 4 replicates (40 tillers) were placed in one 

plastic bag for each freezing temperature test. All bags containing plant materials 

were held at 4 °C for until the harvest was completely finished. Plants were exposed 

to six freezing temperatures including -6, -9, -12, -15, -18, and -21 °C in a 

programmable freezing chamber (Tenney TC Series Cycling Test Chamber, SPX 

Thermal Product Solutions, White Deer, PA). Temperature in the freeze chamber was 

programmed to decrease at a rate of 2 °C per hour. In addition, a soaking period for 1 

hour was programmed when temperature in the chamber reached the freezing 
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temperatures as listed above. After the freeze tests, plant tillers were replanted into the 

cell trays containing commercial potting media (Pro-mix; Griffin Greenhouse and 

Nursery Supplies, Tewksbury, MA) and moved to the greenhouse at 23/18 °C 

(day/night) for recovery. Water was supplied as needed and full strength Hoagland’s 

solution (Hoagland and Arnon, 1950) was applied once per week. Three weeks later, 

plant survival percentage at each freezing temperature was evaluated by counting the 

number of living plants out of the total number of plants. The LT50 of each genotype 

was calculated by fitting percent survival to temperature using the PROC LOGISTIC 

procedure. 

 

Experiment 2 

Based on variations in freezing tolerance from Experiment 1, two PR 

genotypes were propagated from previous accessions were selected, including T73 

(designated as freezing tolerant) and S16 (designated as freezing susceptible). Plants 

were vegetatively propagated into 10.16 cm square pots and maintained in the 

greenhouse at 23 °C/18 °C (day/night) temperatures. During the time period, plants 

were irrigated 3 times per week, trimmed to approximately 6 cm height of cut and 

fertilized with full strength Hoagland solution (Hoagland and Arnon, 1950) on a 

weekly basis. Eight months later, plants were moved to a controlled environment 

growth chamber (Conviron, Winnipeg, CA) where plants were exposed to five 

temperature treatments as described in Experiment 1 (20, 2, -2 °C to induce cold 

acclimation and 4 °C to induce deacclimation).  

Following each temperature treatment, plants were harvested for freezing 

tolerance based on the value of lethal temperature that resulted in 50% plant mortality 

(LT50) as described above. Additional crown tissues were harvested to assess changes 
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in crown moisture content.  Approximately 300 mg of crown tissues (leaves and roots 

removed) were harvested and immediately weighed to record fresh weight (FW). 

Crowns were then wrapped in aluminum foil packets and placed in an oven at 70°C 

for a minimum of 72 h prior to measuring dry weight (DW). Crown moisture content 

was calculated as: (FW-DW)/FW*100%. 

Plant growth changes including leaf elongation rate and tiller number were 

monitored using a second subset of plants grown in cell trays. One tray containing 10 

individual tillers (2 to 3 tillers per cell) of each genotype was prepared in the 

greenhouse 3 weeks before the start of the treatments, indicating that each genotype 

had 10 replications for this assessment. During each treatment, leaf elongation rate 

was measured using a ruler. The grass leaf was straightened on the ruler from the 

bottom of the crown to the tip of the leaf.  The number of tillers was measured by 

counting non-senescent tillers in each cell. Data were normalized based to the number 

of tillers per cell under non-acclimating conditions (20°C).  

Chlorophyll fluorescence parameters including quantum yield (Y), 

photochemical efficiency (Fv/Fm), and non-photochemical quenching (NPQ) were 

measured with a portable chlorophyll fluorometer (Opti-Science Inc., Hudson, NH). 

The fluorescence chamber was placed on the plant canopy at two locations per pot, 

and the data was averaged over two measurements. To be specific, Fv/Fm was 

measured following a 30 min dark adaptation period and calculated as (Fm-F0)/Fm, 

representing the ratio of variable fluorescence to maximum fluorescence. The F0 refers 

to the minimal fluorescence level measured by applying the modulated weak beam on 

the canopy while Fm refers to the maximum fluorescence level under saturated beam. 

The other two fluorescence measurements (Y and NPQ) were conducted under the 

ambient light levels, and NPQ was calculated based on the following formulas: NPQ= 
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(Fm-Fms)/Fms, where Fms refers to the maximum fluorescence in a steady 

fluorescence condition. 

 

Experimental Design and Statistical Analyses 

For both Experiment 1 and Experiment 2, plants were completely randomized 

in the growth chamber.  A total of four (for Experiment 1) and five (for Experiment 2) 

temperature treatments with 4 replicates for each genotype were designed in the study.  

The data were analyzed using analysis of variance (ANOVA) with SAS v. 9.4. (SAS 

Institute, Inc.)  and the means were separated with Fisher’s protected least significant 

difference (LSD) test at the 5% probability level. In Experiment 2, the main effects of 

genotypes, temperature regimes, and their interaction were analyzed by partitioning 

the total treatment sums of squares (SS) into single degree of freedom (df) orthogonal 

contrasts.  Contrasts for genotypes included the main effect of T73 versus S16, while 

temperature regime included four orthogonal linear contrasts for comparing (i) mean 

of non-acclimated versus the combined mean for all acclimation and deacclimation 

treatments; (ii) mean of acclimation at 2 and -2 ºC versus the combined mean for 

deacclimation at 4 °C for 1 and 5 d; (iii) mean of acclimation at 2 versus -2 ºC; and 

(iv) mean for deacclimation at 4°C for 1 versus 5 d. Species and temperature regime 

main effects and associated contrasts were crossed to partition species × temperature 

regime interaction SS to test for single df interaction components.   

 

Results and Discussion 

In Experiment 1, which served as our preliminary screening tests, we 

evaluated the freezing tolerance changes of eight PR accessions previously shown to 

exhibit differences in their overwintering capacity in Minnesota. We found that under 
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non-cold acclimated conditions at 20°C for 2 weeks, there were no significant 

differences in freezing tolerance (LT50 ranging from -9.20°C to -9.40°C) (Table 4.1). 

Following cold acclimation at 2°C for 2 weeks, the LT50 of the eight genotypes all 

decreased 2-3°C, indicating an increase in freezing tolerance. However, there was no 

significant difference detected in freezing tolerance among the accessions (LT50 

ranged from -11.3°C to -12.2°C). Following 2 weeks of -2°C cold acclimation, S16 

and S08 had the lowest freezing tolerance (LT50 of -17.9 and -18.1°C respectively), 

whereas T73 and S38 exhibited the highest freezing tolerance (-21.9°C and -21.8°C, 

respectively). After being deacclimated at 8°C for 3 days, the increased to similar 

levels to that observed at 20°C. However, there were no significant differences 

observed between the accessions. Based on these results, we selected T73 and S16 to 

serve as freezing tolerant and freezing susceptible genotypes, respectively, for 

Experiment 2.  

As described earlier, one of our objectives were to quantify major changes in 

photosynthetic efficiency of PR, since photosynthesis adaptation in response to low 

temperature has been reported to be able to influence cold acclimation process 

(Pocock et al., 2001). In addition, changes in crown moisture content, leaf growth 

rates and number of tillers (as related to senescence or generation of new tillers) in 

response to cold acclimation and deacclimation were also investigated as these traits 

have been previously associated with deacclimation sensitivity and freezing injury 

(Fowler and Gusta, 1977; Leinonen et al., 1997; Webster and Ebdon, 2005; Tompkins 

et al., 2000; Rapacz, 2002). 

Similar to our pre-tests in Experiment 1, we confirmed that T73 exhibited 

better overall freezing tolerance following cold acclimation compared to S16 (Fig. 

4.1). One difference was that following 2 weeks of 2°C acclimation, where T73 
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exhibited higher freezing tolerance than S16, but these differences were not detected 

in Experiment 1. In response to deacclimation, after being exposed at 4°C for 1 d, the 

freezing tolerance of S16 was reduced, whereas no significant changes in freezing 

tolerance were detected for T73, suggesting that S16 had a higher deacclimation 

sensitivity to temperature increase compared to T73. Following 5 days of 4°C 

deacclimation, S16 did not present significant changes in freezing tolerance, but 

freezing tolerance of T73 was reduced. 

Crown moisture content (CMC) is one of the major factors associated with 

freezing injury during deacclimation, including turfgrasses. Crown hydration was 

negatively related to freezing tolerance for perennial ryegrass (Webster and Ebdon, 

2005), as well as in annual bluegrass and creeping bentgrass (Tompkins et al., 2000). 

Generally, when temperature drops below the freezing point, a high percentage of 

crown hydration can results in intracellular ice formation, which will ultimately 

results in cell death. In the current study, the CMC of both genotypes decreased 

significantly during cold acclimation at 2 and -2°C (Fig. 4.2). It seemed that the 

reduced water content within the crowns favors the accumulation of freezing 

tolerance during cold acclimation. Following 2 weeks at -2°C, no statistical 

differences in CMC between the two species were detected. In response to 

deacclimation at 4°C, both PR genotypes exhibited significant increases in CMC 

within 1 day at 4°C, with S16 having significantly higher CMC compared to T73, and 

is in agreement with the previous work in PR (Webster and Ebdon, 2005). The result 

suggested that S16 took up water more rapidly than T73 in response to temperature 

increases, which could negatively affect plant freezing tolerance as intracellular ice 

crystals are more likely to form once temperature drops below freezing.  

Photosynthesis serves as the energy source for plants to accumulate freezing 
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tolerance at low temperatures (Andersson, 1944). The photochemical efficiency 

(Fv/Fm) represents the maximum quantum efficiency of photosystem II, indicating 

the capacity of excitation energy captured by photosynthesis apparatus. At low 

temperature, plants may adjust their photosystems to acclimate to current 

environmental conditions (Öquist et al., 1993). In our study, we observed a significant 

decrease in Fv/Fm in both genotype following 2°C acclimation (Fig. 4.3), which 

might be associated with the down regulation of photosynthetic related genes and the 

suppression of photosynthesis proteins production (Strand et al., 1997), or a feedback 

response induced by increased concentration of soluble sugars (Foyer et al., 1990). 

Among the genotypes, T73 exhibited significantly higher Fv/Fm compared to S16, 

indicating the photosynthesis apparatus of T73 was more active than S16 at 2°C. 

Following two weeks of -2°C acclimation (no light conditions), Fv/Fm slightly 

increased with no differences observed between the genotypes. As is described by 

Rizza et al. (2001), when plants were exposed to freezing temperature in the dark, the 

Fv/Fm might not be severely affected as the primary injury had been placed on the 

membranes. Since plants were fully exposed to darkness at -2°C, the photosynthesis 

apparatus may have already adjusted to the light conditions and the Fv/Fm increased 

as a result of homeostasis of photosystem II. Gray et al. (2003) also observed the 

recovery of Fv/Fm of cold acclimated plants in the dark.  

In response to deacclimation at 4°C, both T73 and S16 exhibited a significant 

decrease in Fv/Fm following 1 day of deacclimation. The reason for the decrease in 

FvFm might be that the photosynthesis apparatus were adjusting for the elevated 

temperature from -2°C to 4°C, and from the darkness to a light level of 150µmol m-2 

s-1 PPFD. No differences were detected between the two genotypes at 4°C 1d. The 

Fv/Fm increased as deacclimation progressed, and the differences between the two 
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genotypes were observed at 4°C 3d, with T73 recovering Fv/Fm to a greater extent 

than S16. Similar response was found by Fracheboud et al.(1999) in Zea mays L. that 

cold tolerant species recovered faster than the sensitive species after low temperature 

exposure. Although the slower recovery might due to the chlorophyll deficiency in 

sensitive species as a result of oxidative stress response, further research is needed to 

investigate the relationship between photosynthetic apparatus and freezing tolerance 

in perennial ryegrass during deacclimation, such as chlorophyll content evaluation, 

gene expression investigation and photosynthetic protein quantification. 

Quantum yield (Y) is a chlorophyll fluorescence parameter indicating the 

quantum efficiency of Photosystem II under steady light conditions, reflecting the 

current functioning of the photosynthesis apparatus. Quantum yield is also an 

important tool for plant stress conditions assessment, even though it is not used as 

extensively as Fv/Fm. Following 2°C acclimation, the Y in both genotypes decreased 

significantly, T73 had a statistically higher Y than S16, which is consistent with the 

Fv/Fm at 2°C (Fig. 4.3). The Y in S16 decreased to a greater extent than T73 in 

response to 2°C acclimation (T73: from 0.65 to 0.46, S16: from 0.67 to 0.43). During 

-2°C acclimation, the responses of Y in both genotype were similar to Fv/Fm that they 

both increased significantly. Given the fact that plants were under dark, the increases 

in Y might also due to the increased Photosystem II excitation capture capacity 

without photoinhibtion. During deacclimation, the Y in both genotypes declined 

significantly, however, T73 had higher Y than S16. In general, the higher Y in T73 in 

response to temperature increases were associated with Fv/Fm during deaclimation. 

Similar results has been demonstrated by Dai et al. (2007) where a tolerant winter 

Hordeum vulgare L. cultivar exhibited significantly higher Y compared to the sensitive 

cultivar.  



 
 

113 

 When the light energy absorbed by photosynthesis apparatus exceeds 

photochemical uses, excess light energy will either be reflected as fluorescence, or 

dissipated as heat. Non-photochemical quenching (NPQ) is a parameter that indicates 

the amount of heat dissipated, and is a protection system against the over-reduction of 

QA (Gilmore, 1997). In our study, during cold acclimation at 2°C, the NPQ in both 

T73 and S16 remained similar to that at 20°C. However, following -2°C acclimation, 

NPQ in both genotypes decreased significantly, but no differences between the two 

genotypes were detected. The decreased NPQ matched the increased Fv/Fm and Y, 

indicating more excitation energy flow into the Photosystem II. The down-regulation 

of NPQ at -2°C suggested the reduction of photoinhibition, as there were no light 

provided at -2°C. In response to deacclimation, at 4°C 1d, the NPQ of S16 exhibited a 

more rapid increase compare to T73. Given the fact that the yield of T73 was 

significantly higher than S16, the lower NPQ of T73 at this point compensated the 

rapid responses of quantum efficiency of electron transport. It also suggested that S16 

was more susceptible to photoinhibiton at this point. From 1d to 3d, the NPQ of T73 

increased while S16 exhibited a significant decrease. The increase of NPQ in T73 

might be a result of slower adaptation of quenching system to the new environment 

conditions, and the reduction in S16 might due to the damaged caused by higher light 

levels compared to the darkness at -2°C. However, further investigation on the 

responses of NPQ at early stages of deacclimation is necessary. Following 5 days of 

deacclimation at 4°C, there were no differences in NPQ system. Overall, the changes 

in NPQ during cold acclimation and deacclimation were related to the responses of 

Fv/Fm and Y, suggesting the photosynthesis apparatus of the two genotypes of 

perennial ryegrass is influenced under cold acclimation and deacclimation conditions.  

Cold acclimation is associated with the gradual cessation of plant growth. For 



 
 

114 

instance, Gray et al. (1997) reported decreases in leaf expansion in winter rye during 

5°C acclimation. Similarly, in our study, the leaf growth rate (LGR) decreased 

significantly in both T73 and S16 following 2°C acclimation, which is below 0.1cm 

(Fig. 4.4). Since plants were exposed to the same light levels compared to the non-

acclimated treatment at 20°C (320µmol m-2 s-1 PPFD), the decreased LGR is very 

likely induced by the decreased temperature (from 20° to 2°C), which had also been 

demonstrated by Gray et al. (1997). According to Savitch et al. (2002), the reduced 

growth of plants at low temperature might be associated with the inhibition of CO2 

assimilation, or the photodamages to photosystem II induced by high light levels. In 

addition, we compared the changes in leaf length within the 2 weeks of 2°C 

acclimation (1 d, 1 to 8 d, and 8 to 14 d). The data indicated both genotypes exhibited 

significantly higher LGR at the 1st day of 2°C than the rest, and S16 was significantly 

higher than T73. There were no differences detected between the LGR averaged over 

1 to 8d and 8 to 15d. This informed us that during the early stage of 2°C acclimation, 

plants still maintained relatively high LGR, however, prolonged acclimation at 2°C 

resulted in reduced growth. In addition, the growth of T73 seemed to be less active 

than S16 during 1d of acclimation, indicating that the leaf growth of the tolerant 

genotype was more sensitive to temperature decrease. During -2°C acclimation in the 

dark, the LGR was close to zero for both genotypes, which was statistically lower 

than the growth rates observed at 2°C (Table 4.2).  

Deacclimation induces a series of physiological and metabolic changes in 

plants that would stimulate the resumption of growth and also result in the losses in 

freezing tolerance (Sasaki et al., 2001; Arora et al., 2004; Kalberer et al., 2006; Huang 

et al., 2014). The ability to re-acclimate is significantly diminished once plants 

resume growth (Leinonen et al., 1997; Rapacz , 2002), although this is also influence 
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by light level and photoperiod (, 2002). Our data revealed that at 4°C 1d, the LGR in 

both genotypes increased slightly, however was still not significantly different from 

LGR at -2°C (Fig. 4.4). Plants remained the same levels of LGR in both genotypes in 

response to 5 days of 4°C deacclimation. This indicated that a short-time 

deacclimation at 4°C and under 150 µmol m-2 s-1 PPFD was not enough to induce a 

significant amount of regrowth in plants, although a trend was evident for increases in 

LGR. This indicates that high temperatures and differences in the light levels could 

lead to enhanced growth and therefore reduced re-acclimation in response to freezing 

temperatures.  

Unlike leaf growth, the relative tiller number (TN) served as a measure of the 

development or senescence of leaf tissues in response to cold acclimation and 

deacclimation. The means of TN averaged over T73 and S16 during 2°C acclimation 

was significantly higher than the -2°C means (2°C: 100.9%, -2°C: 92.93%, LSD=7.1). 

Given the fact that 2°C resulted in significant decreases in LGR, it is possible that 

plants had allocated the energy for leaf growth to the build up of freezing tolerance 

during 2°C acclimation rather than development of new plant tissues. In response to 

deacclimation, by contrasting the means at 4°C 1d to 4°C 5d, the results showed that 

plants exposed to 4°C 5d had significantly higher TN than at 4°C 1d, revealing that 

plants were already adapted to temperature increases and were ready for new tiller 

growth.  

In summary, T73 was found to have higher freezing tolerance than S16 

following cold acclimation and deacclimation. The photosystem II efficiency of T73 

was significantly higher than S16 following 2°C acclimation, as shown by higher 

Fv/Fm and Y.  In response to deacclimation, T73 also exhibited higher Y, but lower 

NPQ. The changes in chlorophyll fluorescence parameters suggesting that the 
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photosystem apparatus of T73 was more responsive to temperature changes than S16, 

thus may have prevented the damages to the photosynthesis machinery brought by 

low temperature. Higher CMC of S16 following 2°C acclimation and 4°C 1d 

deacclimation indicated higher water content within the crowns of S16, which 

induced higher susceptibility to low temperature injury than T73. Therefore, 

decreasing turf water content during freezing temperatures is critical for winter 

survival. On golf courses, sand is more preferable than soil due to their poorer ability 

to hold water, therefore reducing the crown moisture content during winter months 

thus makes the plants more tolerant to low temperature injuries. Using impermeable 

covers are also important, as they are able to prevent crown hydration and serve as an 

insulation to maintain plant winter hardiness (Skorulski, 2002). In addition, shaded 

areas on golf courses need to be eliminated, as plants under shade are more 

susceptible to low temperature injury than plants under sun, which is associated with 

higher crown moisture content and less ability to photosynthesize and accumulate 

protective compounds (Skorulski, 2002). Low temperature inhibited both tiller and 

leaf growth, however once temperature increases, the tiller growth resumes faster than 

leaf growth, as significantly higher TN was observed at 4°C 5d compared to 4°C 1d, 

however LGR was not significantly influenced by temperature increase. According to 

Webster and Ebdon (2005), nitrogen and potassium play a role in regulating plant 

winter hardiness, as they were able to affect plant crown moisture content and 

stimulate shoot growth. Therefore, from management perspective, avoiding high rates 

of soluble nitrogen as an early fall application is critical for enabling plant survival 

through winter. In addition, applying potassium would contribute to the building up of 

freezing tolerance, as it was previously reported to interact with nitrogen and affect 

shoot growth, carbohydrate reserves and hydration levels thus affect freezing 
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tolerance (Monroe et al., 1969; Christian et al., 1981; Ebdon et al., 1999; Webster and 

Ebdon, 2005). For future research on cold acclimation and deacclimation mechanisms 

in PR, more detailed investigations from genetic to whole plant levels is necessary. 

We suggested to provide research on the gene expression in response to temperature 

changes such as the cold regulated genes, the photosynthesis genes and carbohydrate 

synthesis genes. In addition, changes in metabolic responses such as proteins and 

carbohydrates are also needed to provide more information for genetic analysis. 
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Figure 4.1. Changes in freezing tolerance (LT50) of T73 and S16 following cold 
acclimation (2, -2°C) and deacclimation (4°C 1d, 5d). Vertical bars are LSD values 
(P≤0.05) indicating significant differences between the two genotypes among 
different temperature treatments.  
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Figure 4.2. Changes in crown moisture content (CMC) of T73 and S16 following cold 
acclimation (2, -2°C) and deacclimation (4°C 1d, 5d). Vertical bars are LSD values 
(P≤0.05) indicating significant differences between the two genotypes among 
different temperature treatments. 
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Figure 4.3. Changes in photochemical efficiency (Fv/Fm), quantum yield (Y), and 
non-photochemical quenching (NPQ) of T73 and S16 following cold acclimation (2, -
2°C)  and deacclimation (4°C 1d, 5d). Vertical bars are LSD values (P≤0.05) 
indicating significant differences between the two genotypes among different 
temperature treatments. 
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Figure 4.4. Changes in leaf growth rate (LGR) of T73 and S16 following cold 
acclimation (2, -2°C)  and deacclimation (4°C 1d, 5d). Vertical bars are LSD values 
(P≤0.05) indicating significant differences between the two genotypes among 
different temperature treatments. 
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Figure 4.5. Changes in tiller number (TN) of T73 and S16 following cold acclimation 
(2, -2°C)  and deacclimation (4°C 1d, 5d). Vertical bars are LSD values (P≤0.05) 
indicating significant differences between the two genotypes among different 
temperature treatments.  
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Table 4.1. Means from ANOVA of freezing tolerance (LT50 ) of four freezing tolerant PR genotypes (T73, T74, T88, T89) and four freezing 
sensitive PR genotypes (S08, S16, S23, S38) following non-acclimation (20°C for 2 weeks), cold acclimation (2 and -2°C for 2 weeks) and 
deacclimation (8°C 3d) in Experiment 1. 
 
Genotypes LT50 (°C) 
 Overall 20°C 2°C -2°C 8°C 3d 

T73 -13.1 c†
 -9.3 a -11.7 a -21.9 d -9.0 a 

T74 -12.5 abc -9.3 a -12.1 a -19.2 ab -9.5 a 

T88 -12.7 bc -9.9 a -11.3 a -20.7 cd -9.3 a 

T89 -12.7 bc -9.4 a -11.4 a -20.3 bc -9.4 a 

S08 -12.1 ab -9.3 a -11.9 a -18.1 a -9.3 a 

S16 -11.9 a -9.2 a -11.5 a -17.9 a -9.1 a 

S23 -12.5 abc -9.5 a -11.3 a -19.9 bc -9.3 a 

S38 -13.1 c -9.4 a -11.5 a -21.8 d -9.4 a 
†Means followed by the same letter within each column for each genotype are not significantly different based on Fisher’s protected LSD 
(P≤0.05) 
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Table 4.2. Results and contrasts from ANOVA of freezing tolerance (LT50), crown hydration (CH), leaf growth rate (LGR), tiller growth rate 
(TGR) as influenced by genotype (T73, S16) in response to non acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 wk), 
and deacclimation (4°C 1d, 5d) treatments. 

 
Source of variation df LT50 CH LGR TN 
  ------ °C ------ ------ % ------ ------ cm ------ ------ % ------ 
 Genotype  1 *** *** NS NS 
 Environment 4 *** *** *** * 
    Control vs. All 1 *** *** *** NS 
    AC vs. DAC 1 ** *** NS NS 
    Within AC 1 *** *** * * 
    Within DAC 1 NS NS NS ** 
Species x Environment 4 *** ** NS NS 
    (T73 vs. S16) x  (Control vs. All) 1 NS NS NS NS 
    (T73 vs. S16) x  (AC vs. DAC) 1 NS NS NS NS 
    (T73 vs. S16) x  (Within AC) 1 NS NS NS NS 
    (T73 vs. S16) x  (Within DAC) 1 ** *** NS NS 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability. 
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Table 4.3. Results and contrasts from ANOVA of photochemical efficiency (Fv/Fm), quantum yield (Y), and non-photochemical quenching 
(NPQ) as influenced by genotype (T73, S16) in response to non acclimation (20°C for 2 wk), cold acclimation (2°C for 2 wk, -2°C for 2 wk), 
and deacclimation (4°C 1d, 3d, 5d) treatments. 

 
Source of variation df Fv/Fm Y NPQ 
 Genotype 1 *** *** NS 
 Environment 5    
    Control vs. All 1 *** *** *** 
    AC vs. DAC 1 ** *** NS 
    Within AC 1 *** *** *** 
    Within DAC 2 NS *** NS 
Species x Environment 5    
    (T73 vs. S16) x  (Control vs. All) 1 ** *** NS 
    (T73 vs. S16) x  (AC vs. DAC) 1 NS NS NS 
    (T73 vs. S16) x  (Within AC) 1 NS NS NS 
    (T73 vs. S16) x  (Within DAC) 2 ** *** *** 
NS, Nonsignificant   
***,**,* Significant at P≤ 0.001, 0.01, and 0.05 probability. 
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CHAPTER 5 

CONCLUSION 

Although winter injury of cool-season grasses can be caused by multiple 

factors, the ability of plants to maintain high freezing tolerance throughout winter 

months is critical for winter survival. To date, most research has focused on the 

factors influencing cold acclimation capacity of plants, whereas much less is known 

about mechanisms underlying losses of freezing tolerance that can occur in response 

to warming events from winter through spring months. Therefore, the overall goal of 

this research was to examine mechanisms responsible for freezing tolerance 

differences among cool-season turfgrasses, with a focus on cold acclimation capacity 

and deacclimation resistance. To address this goal, we conducted three controlled-

environment studies to better understand the physiological mechanisms of freezing 

tolerance using grasses that differed in cold acclimation and deacclimation.  

Our results suggested that the up-regulation of carbon metabolism was 

triggered very early in the deacclimation response (ie. 1 d), as measured by 

chlorophyll fluorescence, photosynthesis, and respiration rates, which coincided with  

the losses of freezing tolerance for annual bluegrass and creeping bentgrass. Moreover, 

we observed significant changes in hormone contents of leaves and crowns of annual 

bluegrass and creeping bentgrass, such as abscisic acid, auxin, salicylic acid, and 

jasmonic acid, which could contribute to differences in deacclimation resistance and 

overwintering capacity. Therefore, practical application of plant growth regulators or 

other compounds that may influence endogenous hormones may help to mitigate 

freezing tolerance losses and protect the grasses from winter injury. 

Using perennial ryegrass, we confirmed sensitivity of carbon metabolism to 

short-term warm temperature exposures, which was also accompanied by increased 
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crown moisture content. These physiological changes may aid in a faster recovery and 

regrowth during late winter and early spring. However, in response to mid-winter 

thaw events, these physiological changes could make the plant more susceptible to 

low temperature kill when plants are then re-exposed to freezing temperatures. 

Therefore, minimizing mid-winter fluctuation, inhibit early up-regulation of carbon 

metabolism, and reduce crown moisture content are necessary for maintaining plants 

winter hardiness. On golf courses, a covering system (i.e. impermeable cover) is 

suggested to be used during winter months as it would prevent turf from hydration 

and insulate them from extensive temperature fluctuations (Skorulski, 2002). In 

addition, reducing the fertilizer application in early fall can also reduce crown 

moisture content and maintains plant winter hardiness (Webster and Ebdon, 2005). 

In the future, a more detailed focus on deacclimation mechanisms is warranted, 

particularly greater information on gene expression changes in response to freezing 

and freeze-thaw cycles such as the cold regulated genes, the photosynthesis genes and 

carbohydrate synthesis genes are encouraged. In addition, physiological and 

metabolic changes such as proteins and carbohydrates are also needed to provide 

more information for genetic analysis. 
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APPENDIX 

FREEZE TEST PROGRAM 

Freeze tests were conducted in a programmable freeze chamber (Tenney TC Series 

Cycling Test Chamber, SPX Thermal Product Solutions, White Deer, PA). The freeze 

tests were programmed as follows (using the program for 2°C acclimation treatment 

as an example): 

Step 1. Auto start program at 3:00 am on 04/03/14 at 2°C 

Step 2. Ramp 4 hours to -6°C  

Step 3. Soak at -6°C for 1 hour 

Step 4. Ramp 1.5 hours to -9°C 

Step 5. Soak at -9°C for 1 hour 

Step 6. Ramp 1.5 hours to -12°C 

Step 7. Soak at -12°C for 1 hou 

Step 8. Ramp 1.5 hours to -15°C 

Step 9. Soak at -15°C for 1 hour 

Step 10. Ramp 1.5 hours to -18°C 

Step 11. Soak at -18°C for 1 hour 

Step 12. Ramp 11 hours to 4°C 

Step 13. End step, hold.  

Temperature in the freeze chamber were set to decrease at the rate at 2°C per hour. 

For the 20°C non-acclimation treatments, the temperature start point in Step 1 was set 

at 4°C. For cold acclimation treatments at 2 and -2°C, the start points were set at 2 

and -2°C, respectively. For deacclimation treatments at 8°C and 4°C, the start points 

were set at 8 and 4°C, respectively.  
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