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ABSTRACT 

SEDIMENTOLOGICAL, GEOCHEMICAL AND ISOTOPIC EVIDENCE FOR THE 

ESTABLISHMENT OF MODERN CIRCULATION THROUGH THE BERING STRAIT AND 

DEPOSITIONAL ENVIRONMENT HISTORY OF THE BERING AND CHUKCHI SEAS 

DURING THE LAST DEGLACIATION 

 

SEPTEMBER 2014 

BEN M. PELTO, B.A., ALFRED UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Julie Brigham-Grette 

 

 Sea level regression during the Last Glacial Maximum exposed the Bering Land Bridge, 

and cut off the connection between the North Pacific and Arctic Ocean, ending the exchange of 

North Pacific Water through the Bering Strait.  Exchange of North Pacific Water comprises a 

major portion of fresh water input to the Arctic Ocean, and is of vital importance to North 

Atlantic Deep Water formation, a vital component of Atlantic Meridional Overturning 

Circulation.  Bering Strait throughflow thus plays an integral role in global climate stability.  A 

suite of four cores was selected, three in the Bering Sea and one in the Chukchi Sea, to bracket 

the Bering Strait in order to elucidate changes in sediment delivery, productivity and regional 

oceanography as the Bering Land Bridge flooded and modern ocean circulation was established 

during the last deglaciation.  The arrival of nutrient rich North Pacific Water in the Chukchi Sea 

is recorded around 8 ka by organic carbon isotope depletion and an increase in total organic 

carbon and organic nitrogen, reflecting an increasingly marine isotopic signal and increased 

productivity.  In the Bering Sea, the early deglaciation is marked by depleted organic carbon 
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isotopes that indicate increasing terrestrial input, and increased total organic carbon.  Principal 

component analysis of sedimentologic, geochemical and isotopic data clearly captures discrete 

sediment populations that correspond to key climatic intervals, representing changes in sediment 

delivery, productivity and circulation during the last deglaciation.  In the Bering Sea we observe 

that deglaciation began in earnest around 18–17 ka, but lack of confidence in our age control 

does not allow for a precise date.  Our results suggest that modern circulation through the Bering 

Strait, and thus for the Bering and Chukchi Seas, was established ~8 ka.  Prior to 8 ka there is an 

interval of sediment that appears record a possible reversal of flow through the Bering Strait 

corresponding to the 8.2 ka event.   
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Preface 

 This thesis is being submitted to fulfill the requirements of a Master of Science degree in 

Geoscience at the University of Massachusetts, Amherst.  The thesis presents results and 

conclusions drawn from a suite of sediment cores collected during two legs (HLY02-02 and 

HLY02-04) of the Arctic West Summer 2002 cruise of the USCGC Healy in the Bering and 

Chukchi Seas.  The two cruise legs were funded by a National Science Foundation (NSF) grant 

to Julie Brigham-Grette (University of Massachusetts, Amherst), Neil Driscoll (Scripps 

Oceanographic Institution), and Llyod Keigwin (Woods Hole Oceanographic Institution) entitled 

"Marine Climate and Relative Sea Level Across Central Berinigia". 

 My research was directly funded by an NSF grant awarded to Julie Brigham-Grette and 

Steven Petsch (University of Massachusetts, Amherst) entitled "Late Quaternary Sea Ice History 

of the Beringian Arctic Gateway".   

 This thesis presents the findings obtained through analyses of three Bering Sea and one 

Chukchi Sea sediment cores, building on the work of Beth Caissie, Mea Cook, and Zach 

Lundeen.  The focus of this study is to describe the sediment deposition history of the Bering and 

Chukchi Sea during the last deglaciation, and to better constrain the establishment of modern 

circulation through the Bering Strait following the flooding of the Bering Land Bridge. 

Our work adds to a growing body of Arctic paleoclimate data, in a region which still 

suffers from a paucity of paleoclimate data despite the sensitivity of the Arctic to climatic 

change.  A better understanding of the recent climatic and oceanographic transitions, recorded in 

sediments from the Bering and Chukchi Seas, can aid our ability to predict and adjust to a rapidly 

changing Arctic. 
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 Three chapters comprise this thesis, followed by an appendix.  Chapter One is a general 

introduction to the geography of Beringia and the physical oceanography of the surround seas 

where the general climatic history of the last deglaciation and the primary research questions of 

this study are covered.  Chapter Two is the backbone of this thesis, and covers the data collected 

during this study as well as the hypotheses tested and conclusions drawn from our data.  

Statistical analyses and plots display all of the relevant data that allowed us to draw conclusions 

regarding the history of sediment delivery and paleoceanographic changes as recorded in the 

sediment.  Chapter Three is a brief discussion regarding avenues of research that would be 

valuable to pursue, based primarily upon implications of our data that require better evidence or 

more detailed investigation.  The Appendix features a series of auxiliary figures. 

 All data from this study presented here will be archived with the Advanced Cooperative 

Arctic Data and Information Service (ACADIS, https://www.aoncadis.org/home.htm), and with 

ScholarWorks here at UMass.  ACADIS is a joint effort between the National Snow and Ice Data 

Center (NSIDC), the University Corporation for Atmospheric Research (UCAR), UNIDATA, 

and the National Center for Atmospheric Research (NCAR) to provide data archival, 

preservation and access for all projects funded by NSF's Arctic Science Program (ARC).  
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CHAPTER 1 

OVERVIEW OF THE PHYSICAL GEOGRAPHY AND OCEANOGRAPHY OF BERINGIA 

AND THE SURROUNDING SEAS, AND LAST DEGLACIATION CLIMATIC HISTORY 

1.1.  Introduction 

 Rapid climatic change repeatedly punctuated a warming trend during the last 

deglaciation, as global climate ameliorated following the Last Glacial Maximum (LGM) [e.g. 

Thornalley et al., 2011; Shakun et al., 2012].  During the LGM, the region between Chukotka 

and Alaska was subaerially exposed as the vast Bering Land Bridge (BLB) [Hopkins, 1959], 

uniting Beringia from the Kolyma to the Mackenzie Rivers (Figure 1.1).  The land bridge 

occupied what today is the Bering Strait (BS), and isolated the Arctic Ocean from the North 

Pacific, thereby halting exchange between the North Pacific and North Atlantic via the Arctic 

Ocean.   

 Subaerial exposure of the Chukchi and Bering Sea shelves greatly reduced the area 

covered by the two seas [Jakobsson, 2002], exposing nearly all of the Chukchi Sea and 

essentially restricting the Bering Sea to its deep basin.  The modern circulation of the Bering and 

Chukchi Seas are dominated by Bering Strait throughflow, an overall northward flow that 

defines the regional circulation pattern [Coachman et al., 1975].  With a closed Bering Strait 

during the LGM, the circulation regime would have been markedly different, not only in the 

Bering and Chukchi Seas, but also within the Arctic Ocean [Polyak et al., 2004].  Interpreting 

sediment cores from the region requires an understanding of the sensitivity of the region's 

circulation which also affects age-depth model application.  Changes in past circulation affect 

nutrient supply, sediment delivery, and water mass interaction, which changes preservation, the 

reservoir age and productivity.  In order to determine sediment provenance and better explain the  
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Figure 1.1. Bathymetric and topographic map of Beringia, the North Pacific, and the Bering and 

Chukchi Seas with locations of cores (numbered red stars). Currents denoted by black arrows 

and labeled in black: Alaskan Stream (AS), Aleutian North Slope Current (ANC), Alaskan 

Coastal Current (ACC), Bering Shelf Current (BSC), Bering Shelf Water (BSW), Anadyr Water 

(AW), and Siberian Coastal Current (SCC). The Bering Strait (BS), Umnak Plateau (UP), 

Unimak Pass (UnP), Bowers Ridge (BR), and Kamchatka Strait (KS) are labeled in blue. 

   

sensitivity of these marginal seas and Pacific Arctic Gateway to changing conditions, the 

paleogeography and paleocirculation must be constrained.  The North Pacific Ocean experienced 

large changes in water mass properties and productivity that appear synchronous with those from 

the Bering Sea to the northwest Mexican coast [Crusius et al., 2004].  Explaining these 

widespread periods of change has been a focal point of Pacific paleoclimate study and is an area 

of ongoing debate and research [Davies et al., 2011; Lam et al., 2013].  Sea level, sea ice cover, 

and the extent of ice sheets are all factors that must be taken into account when interpreting past 

records.  Elucidating the story told by sediments in the Arctic requires using a changing lens, as 
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it appears that circulation and water mass interactions changed with rising sea level during 

deglaciation. 

 The purpose of this thesis is to better describe changes in circulation, productivity, and 

sediment delivery in the seas that surround Beringia, using five marine sediment cores that span 

the deglaciation (Figure 1.1).  The sediment cores were chosen to bracket the BS, and best 

represent the diverse water masses that influence the region.  The setting and a brief 

sedimentologic description of each core is as follows:  

 Jumbo Piston Core 3 (HLY02–02–3JPC) was taken between Navarin and Pervenets 

Canyons on the Bering Sea shelf slope (60.13°N, 179.44°W) about 230 km southeast of Cape 

Navarin, Russia, at 1132 m water depth.  3JPC contains the most expanded deglacial sequence of 

the cores in this study, 14 m long, with an average sediment accumulation rate of 185 cm/kyr 

from the beginning to the end of the laminated sequences.  There are four visibly laminated 

intervals, which are composed of pairs of dark and light olive laminae ranging in thickness from 

<1 to 2 mm.  The first three laminated intervals occur during the Bølling-Allerød (BA) (901–763 

cm, 724–602 cm, 574–533 cm) spanning 14.7–12.9 ka (14.7–14.2 ka, 14–13.45 ka, 13.2–12.9 

ka), in excellent correspondence with NGRIP-dated (North Greenland Ice Core Project) 

BA/Younger Dryas (YD) [Rasmussen et al., 2006], with the final interval deposited during the 

PB from 11.5–10.8 ka (342–215 cm), though there are three minor laminae groups of 2–5 cm 

after 10.8 ka.  Intervening massive intervals and the deepest 5.4 m of sediment are composed of 

homogeneous sticky dark olive-gray silty mud, with a slower sedimentation rate (87 cm/kyr).   

 24JPC (HLY04–02–24JPC) was taken from the northwest Chukchi shelf at 80 m water 

depth (73.23°N, 167.88°W), and spans much of the Holocene (14.3–2.5 ka) recorded in 7.5 m of 

dark grey-green silty mud.  There is an interval of rapid sedimentation from 9–6 ka (223 cm/kyr), 
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with slower accumulation before and after this interval (30–40 cm/kyr), although the date from 

the deepest portion of the core may bias the sedimentation rate in the older section of the core. 

 17JPC (HLY02–02–17JPC), the southern-most and deepest core (2209 mbsl), was taken 

from Bowers Ridge (53.93°N, 178.70°W), 270 km north of Amchitka Island near the western 

end of the Aleutian Islands, and comprises the longest record of the cores in this study, from 27–

8 ka, contained in only 3 m of massive diatomaceous olive green-grey silty mud with an average 

sedimentation rate of 20 cm/kyr.   

 51JPC (HLY02–02–51JPC) was taken from 1467 m water depth on the Umnak Plateau in 

the southeast Bering Sea (54.55°N, 168.67°W), about 130 km northwest of Unalaska Island.  The 

background sediment of 51JPC  is composed of relatively homogenous diatomaceous dark olive 

green clay and silt, which is punctuated by two tephra deposits which are each followed by 

laminated intervals are present.  The first laminated interval occurs between 218 and 174 cm 

(15–13.3 ka) and the second between 138 and 134 cm (11.4–11.1 ka).  The laminations are 

composed of black to dark olive green-grey submillimeter thick laminae.  Both are underlain by 

thick tephra deposits (240–219 cm and 148–139 cm).  Sediment accumulation rate is 47 cm/kyr 

from the LGM until around 16 ka when the rate slows to an average of 23 cm/kyr into the 

Holocene. 

1.2. Regional Geography and Paleoceanography 

1.2.1. Bering Land Bridge 

 The continental shelf between Chukotka and Alaska was exposed during the LGM, 

forming the Bering Land Bridge [Hopkins, 1959, 1967], which connected greater Beringia from 

the Kolyma River in Russia to the Mackenzie River in Canada.  The BLB was exposed when sea 
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level was around 120 m lower than present day [Fairbanks, 1989], or around 105 m lower with a 

hydrostatic correction [Guilderson et al., 2000].  As an ephemeral continental land mass, the 

BLB isolated the Arctic Ocean from the North Pacific, and ended direct exchange between the 

North Pacific and North Atlantic oceans.  The Bering Strait was flooded during deglaciation, 

between 11–12 ka [Elias et al., 1996; Keigwin et al., 2006], consistent with global eustatic sea 

level [Fairbanks, 1989], though a precise age of 13.3 cal ky BP has been suggested [England 

and Furze, 2008].  No sea level or flooding history study of the BLB has ever calculated isostatic 

rebound, and while thought to be small (<10 m) [Keigwin et al., 2006], given the shallow depth 

of the BS, the timing of the ~10 m isostatic rebound could have influence the flooding 

chronology of the BLB.  Dating the initial flood of the BLB is important, but of equal value is 

constraining the time at which the water depth over the BLB allowed for significant volume 

transport where water mass exchange could occur between the Bering and Chukchi Seas.  Initial 

flooding was likely channelized due to the shallow nature of the Strait, and allowed a relatively 

small amount of interaction between the Bering and Chukchi Seas.  Once the BLB became the 

BS, an uninterrupted and deeper channel capable of significant water mass exchange would have 

dramatically changed the nutrient supply to the Chukchi Sea, and the early phases of establishing 

modern circulation would commence.  

1.2.2. Bering Strait Role in Global Circulation 

 The first order significance of the Bering Strait is its role as the connection between the 

North Pacific and Atlantic oceans via the Arctic Ocean.  This connection fosters water mass 

exchange, which affects North Atlantic Deep Water formation (NADW).  Bering Strait water has 

an average salinity of 32.5 psu [Roach et al., 1995; Aagaard et al., 2006], making it relatively 

fresh compared to the North Atlantic (34-37 psu).  Today, a net northward flow of 0.8 Sv 
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[Wijffels et al., 1992; Aagaard et al., 2006] through the Strait represents a major contribution of 

freshwater to the Arctic Ocean (34.8 psu) [Aagaard and Carmack, 1989].  The magnitude of the 

freshwater component exiting the eastern Arctic gateway influences NADW production in the 

subpolar North Atlantic [Broecker et al., 1990; Wijffels et al., 1992; Aagaard and Carmack, 

1994; Keigwin and Cook, 2007], and hence NADW is a driving force behind Atlantic Meridional 

Overturning Circulation (AMOC) or the Thermohaline Circulation (TC) [Broecker, 1991].  

AMOC advects warm, salty surface water from the south into the North Atlantic where it cools 

and sinks [Broecker, 1991; Thornalley et al., 2011].  This northward transport of warm water 

pulls heat to the North Atlantic [Ganachaud and Wunsch, 2000] and is responsible for the mild 

climate of Europe [Broecker et al., 1988; Broecker, 1991].  Modeling simulations [Stouffer et al., 

2006; Hu et al., 2013], and paleoclimate records [Broecker, 1994; Keigwin and Jones, 1994; 

Clark et al., 2007] indicate that a slowdown in AMOC could result in cooling of the Northern 

Hemisphere.   

 An open Bering Strait is thought to act as an 'exhaust valve' for the North Atlantic [De 

Boer and Nof, 2004], capable of dissipating freshwater anomalies in the North Atlantic at a rate 

hypothesized to be impossible with the Bering Strait closed [Hu et al., 2014].  The reduced 

volume of land-based ice present in the Northern Hemisphere today [Church et al., 2001] likely 

does not store enough freshwater to deliver an adequate volume to the NA to shut down THC, 

though a reduction in THC is possible [Stouffer et al., 2006].  An open BS is potentially able to 

disperse freshwater anomalies that threaten AMOC, whereas a closed BS significantly 

strengthens AMOC [Wadley and Bigg, 2002], but perhaps makes it less stable.  The combination 

of smaller NH ice volume and open Bering Strait connection, implies that the North Atlantic is 

largely protected from freshwater hosing today, but causes of rapid climatic change, like the 
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Younger Dryas are difficult to unequivocally solve [Bradley and England, 2008].  During 

deglaciation, AMOC experienced both extremes, from a near shutdown during Heinrich Event 1 

(H1), to an overshoot during the BA warm period [Timmermann and Menviel, 2009].   

 Future changes in sea ice extent and duration are expected to have a large impact on 

Northern Hemisphere climate, which may already be seen [Francis et al., 2009; Tang et al., 

2013].  With summer Arctic sea ice expected to disappear completely before the middle of the 

21st century [Comiso et al., 2008; Wang and Overland, 2009; Stroeve et al., 2011], 

understanding past circulation and productivity is vital to projections of possible future 

circulation and ecosystem changes.  Sediment records that span rapid climatic change of the last 

deglaciation are an ideal analogue for modern climate change in the Arctic, as the changes of the 

last deglaciation are the most recent large magnitude, rapid climate transitions.  

1.2.3. Arctic Ocean 

 Bering Strait throughflow delivers ~40% of the freshwater entering the Arctic Ocean 

[Woodgate, 2005], and is also an important nutrient source to Arctic ecosystems.  The water 

properties of the North Pacific and the Arctic Ocean are very different, and small fluctuations in 

flow magnitude and direction can greatly alter the salinity, stratification, sea ice formation, and 

nutrient supply of the Arctic Ocean, especially the Chukchi Sea [Aagaard and Carmack, 1994; 

Wadley and Bigg, 2002].  The net northward flow results from a sea level difference [Coachman 

and Aagaard, 1966, 1981; Coachman et al., 1975] of about 70 cm between the Bering and 

Chukchi Seas [Aagaard et al., 2006]. 

  Pacific water accounts for half to two-thirds of the water of the Arctic halocline over the 

Canadian Basin [Aagaard and Carmack, 1989; Steele, 2004], making Bering Strait inflow an 

important component of Arctic stratification and the Arctic Ocean nutrient maximum, located in 
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the upper halocline [Cooper et al., 1997].  The Arctic halocline fosters sea ice growth and 

protects sea ice from warm Atlantic water that enters at depth via the Fram Strait [Rudels et al., 

1994; Schauer et al., 1997], and determines the ventilation depth of the Arctic [Woodgate et al., 

2005].  Closure of the Bering Strait during major glacials would likely raise the salinity of the 

Arctic Ocean, affecting the Arctic halocline and water column stability [Wadley and Bigg, 2002].  

With an emergent BLB, BS inflow would have been cut off, removing a controlling portion of 

Arctic Ocean nutrient budgets [Codispoti and Richards, 1968], and undermining the 

stratification of the Arctic Ocean.  Stratification promotes a hydrological regime conducive to 

sea ice formation and its associated climate [Aagaard and Carmack, 1989; Rudels, 1989]. 

 The Arctic Ocean basin is nearly landlocked and relatively small, [Jakobsson, 2002], 

with only one deep-water connection to the world ocean via the Fram Strait.  The Arctic Ocean 

has the highest proportion of continental shelf  53% [Jakobsson, 2002], of the world's oceans, 

which otherwise range from 9.1 to 17.7% [Menard and Smith, 1966].  Exposure of these 

extensive continental shelves during glacial episodes effectively cut the area of the Arctic Ocean 

in half.   Arctic Ocean circulation during major glaciations is thought to have been restricted 

[Polyak et al., 2004; Bradley and England, 2008] due to both lowered sea level that reduced the 

size and inputs of Atlantic and Pacific water, and to extensive shelf and sea ice [Landvik et al., 

1998; Dyke et al., 2002; Jakobsson, 2002; Svendsen et al., 2004; Ingólfsson et al., 2008].  

Modeling simulations support a reduction in Arctic circulation when the BS is closed [Hu et al., 

2014].  Weakened circulation is consistent with the closure of the Bering Strait [Hopkins, 1982; 

Elias et al., 1996], blockage of the Barents Sea inflow by the Eurasian ice Sheet [Landvik et al., 

1998; Svendsen et al., 2004], cessation of flow through the Canadian Archipelago [Zreda et al., 

1999], and exposure of the extensive continental shelves of the peripheral Arctic Seas by 



9 
 

lowered sea level and ice sheets [Jakobsson, 2002].  No other ocean experienced such dramatic 

changes in geography between interglacial periods.   

1.2.4. Bering Sea 

 The Bering Sea has a broad continental shelf (50–150 m deep), and a deep basin (<4000 

m) bracketed by Chukotka and Kamchatka to the northwest, Alaska to the northeast, and the 

Aleutian Islands to the south.  It is characterized by relatively low salinity but is nutrient rich 

[Cook et al., 2005], particularly across the shelf and slope region where high nutrient waters of 

North Pacific origin are upwelled [Walsh et al., 1989], making the Bering Sea one of the most 

productive marine systems in the world [Sambrotto et al., 1984]. 

 Surface circulation over the basin is roughly defined by a cyclonic gyre, whose western 

boundary current is the southward flowing Kamchatka Current (Figure 1.1).  In the west, within 

the Gulf of Anadyr, deeper Pacific water is upwelled onto the shelf and mixed with relatively 

high salinity and nutrient-rich Anadyr Water (AW) [Clement et al., 2005].  The Bering Slope 

Current (BSC) flows in the upper 300 m along the continental shelf break and defines the eastern 

edge of the gyre [Schumacher and Reed, 1992], originating near 51JPC and flowing over 3JPC.  

On the shelf, the principal surface flow is northward through the Bering Strait, which is about 85 

m wide and averages 50 m water depth [Schumacher and Stabeno, 1998; Stabeno et al., 1999].  

Bering Shelf Water (BSW), a nutrient-rich and less saline water mass, occupies the central 

region of the northern Bering Sea, while a strong gradient defines the warmer (in summer), 

nutrient-poor, Alaska Coastal Water (ACW) to the east [Coachman, 1986; Grebmeier et al., 

1988].  The ACW originates from the Alaskan Stream (AS), which flows northward through 

gaps in the Aleutian Islands up onto the shelf [Stabeno et al., 1999] through the Unimak Pass 
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 ( 80m deep), and has a major influence on the Uminak Plateau [Caissie et al., 2010].  

 The BSC is known for high productivity and has been referred to as the Green Belt 

[Springer et al., 1996], a band with high chlorophyll and primary production throughout the 

summer [Springer et al., 1996; Hurst et al., 2010].  Tidal mixing and transverse circulation along 

the shelf break keeps stratification at a minimum, bringing nutrients up from 300 to 800 m 

[Springer et al., 1996].  The elevated biological productivity associated with the BSC [Kinney et 

al., 2009] is responsible for high organic carbon accumulation along the Bering shelf slope, thus 

changes in the strength, trajectory, and nutrient content of the BSC should influence the sediment 

record of Bering shelf slope cores.  

1.2.5. Chukchi Sea 

 The Chukchi Sea lies to the north of the Bering Strait, bounded by Wrangel Island and 

the Siberian coast to the west, Alaska to the east, and the irregular and indefinite northern 

boundary of the continental shelf break to the north.  The Chukchi is unique among the Arctic 

shelf seas as it is dominated by Pacific Water advected through the Bering Strait [Weingartner et 

al., 2005].  The productive Chukchi Shelf is dependent upon the nutrients of the warm, fresh 

Pacific inflow, which affects ice formation and productivity [Walsh et al., 1989; Martin and 

Drucker, 1997].  A closed BS would have had a profound impact on the Chukchi Sea. 

  Based upon a sea level 120 m lower than at present [Fairbanks, 1989], roughly 90% of 

the Chukchi Sea as defined by Jakobsson (2002), would have been subaerially exposed during 

low stand during the LGM [Jakobsson, 2002].  The emergent BLB occupied most of what is 

today the Chukchi Sea during the LGM, cutting off North Pacific nutrient rich, fresh water from 

reaching the Arctic Ocean.  Chukchi Sea sedimentary records are largely limited to the Holocene 

[Darby et al., 2009; Ortiz et al., 2009] due to the exposure of the BLB, and a subsequent shallow 
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transgressive sea in which sediment preservation would have been difficult due to ice scouring 

[Hill and Driscoll, 2010] and sediment resuspension  in its shallow depths [Reimnitz et al., 

1998]. 

 The four major currents of the Chukchi Sea are the Siberian Coastal Current in the far 

west, and the three main branches -- western, central and eastern -- that comprise the northward 

flowing currents across the Chukchi shelf.  The western branch is relatively salty, cold Anadyr 

Water which flows through the Hope and Herald Valleys [Coachman et al., 1975; Woodgate et 

al., 2005].  Over the north central Chukchi, flow is bounded by the Herald Shoal to the west and 

Hanna Shoal to the east [Weingartner et al., 1998, 2005].  The flow over the central Chukchi, 

averaging 0.2 Sv, accounts for 25% of Bering Strait transport [Woodgate et al., 2005].  Due to a 

dearth of data from the central shelf, its flow is poorly constrained in comparison to the eastern 

and western branches [Woodgate et al., 2005].  However, there is an eastern flow component, 

most noticeable around the Hanna Shoal, where flow appears to bifurcate, with the eastern 

branch flowing along the southern flank of the shoal, suggesting a connection between the north 

central shelf water and the ACC [Weingartner et al., 2005].  In the east, warm and nutrient-poor 

ACW and BSW are coastally trapped in summer and fall, exiting the Chukchi into the Arctic 

Ocean via Barrow Canyon [Paquette and Bourke, 1974; Coachman et al., 1975; Ahlnäs and 

Garrison, 1984].   

 With the BS blocked by the BLB, the Chukchi Sea during the last deglaciation would 

have been smaller, shallower, and nutrient poor.  Circulation over the Chukchi Sea would not 

have had a northern flow component without BS inflow, and thick sea ice, as well as nearby 

large ice sheets, would have enabled extensive ice scour/gouging.  The Chukchi Sea appears to 

have been poorly suited to record continuous sedimentation during the early deglaciaton. 
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1.2.6. River Routing 

 With the Bering Land Bridge exposed, the major regional rivers: Yukon, Kuskowim, and 

Anadyr, would have crossed the exposed continental shelf to reach the ocean [Kummer and 

Creager, 1971].  There is not enough evidence of buried channels to tie present day rivers to 

submarine canyons at specific times [Carlson and Karl, 1984], but it is likely that these three 

rivers played an important role in creating many of the huge submarine canyons of the Bering 

Shelf Slope [Scholl et al., 1968, 1970; Hopkins, 1972; Carlson and Karl, 1984].  The discovery 

of the "Paleo-Anadyr" [Canada. Defence Research Board. Directorate of Scientific Information 

Services and Kotenev, 1966] suggests that perhaps the Anadyr River played a role in excavating 

either the Navarin or Pervenets Canyons (Figure 1.2) during the Pleistocene [Canada. Defence 

Research Board. Directorate of Scientific Information Services and Kotenev, 1966; Hopkins, 

1972].   

 Though not currently known, the drainage network and debouchement location for the 

major rivers could have a major impact on sediment delivery in the Bering Sea.   The Yukon 

drains about 855,000 km
2
, has a total length of over 3000 km, and with a sediment discharge of  

~55 million metric tons per year [Eberl, 2004], it accounts for as much as 90% of river-borne 

sediment entering the Bering Sea [Lisitsyn, 1966].  Although the Yukon empties into the Bering, 

its contribution of sediment is very important to the Chukchi Sea [Creager and McManus, 1968; 

Nelson and Creager, 1977], due to prevailing northward currents (ACC) [Coachman and 

Aagaard, 1966], and the proximity of the mouth of the Yukon to the Chukchi [McManus et al., 

1974].  The debouchement of the Yukon and/or Kuskowim Rivers during the LGM may have 

been at Pribilof Canyon (Figure 1.2) [Scholl et al., 1970; Carlson and Karl, 1984].  If this were 
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the case, then sediment delivery along the Bering shelf slope should have recorded Yukon 

sedimentation.  

 
 

 

Figure 1.2. Map of the Bering Land Bridge. Brown dashed line indicates the estimated shoreline 

during the LGM with sea level 120-125 mbp [Peltier and Fairbanks, 2006]. Blue shaded areas 

on land are estimated glaciation in Alaska [Kaufman and Manley, 2004] and Chukotka [Hughes 

et al., 1977]: Cordilleran Ice Sheet (CIS), Ahklun Mountains (AM), Brooks Range (BR), Koryak 

Mountains (KM) and Pekulney Mountains (PM). Modern currents are included along with core 

locations (numbered red stars). Potential routes of drainage for the Yukon, Kuskokwim and 

Anadyr Rivers are seen as blue dashed lines based upon Scholl et al. [Scholl et al., 1970] and 

Carlson and Karl [Carlson and Karl, 1984]. The Anadyr River drains towards Navarin (NC) and 

Pervenets (PC) Canyons. The Yukon and Kuskokwim Rivers drain towards Pribilof Canyon 

(PrC). 

 

 Where these major rivers drained in the past has implications for sediment delivery at 

core sites of the Bering and Chukchi Seas, as their nutrients and detrital material are an important 

part of the ecosystem and sedimentary budget of the region [McManus et al., 1974; Nelson and 

Creager, 1977; Stein, 2000], and would have been only greater during deglaciation. 



14 
 

1.3. Regional Paleoclimate and Productivity History 

1.3.1. Reservoir Age 

 Before delving into the periods of interest to this study, we must discuss the most 

important part of sediment core studies: chronology.  It is well known that changes in ocean 

circulation and ventilation can dramatically influence the reservoir age of any water mass over 

time [Eiríksson et al., 2004].  

 Paleoclimate reconstructions generally consider that flooding of the Bering Strait took 

place between 11-12 ka [Elias et al., 1996; Keigwin et al., 2006], a claim which is disputed by 

14
C dates on C. kurriana, a low Arctic bivalve mollusk [England and Furze, 2008], which 

suggests an age of 13.3 cal yr BP.  If correct, the early flooding date of 13.3 ka would change our 

view of when the BS flooded, and our understanding of conditions at the beginning of the 

Younger Dryas (YD).  If the BS was flooded around 13.3 ka, then the connection of the Arctic 

and North Pacific could have reestablished circulation in the Arctic Ocean, and led to the break-

up and evacuation of ice in the Arctic Ocean as postulated by Bradley and England [2008].  This 

would seem to require a remarkable establishment of a strong North Pacific inflow to the Arctic 

Ocean, far quicker than one would imagine given glacio-eustatic sea level information 

[Fairbanks, 1989].  This example illustrates the integral role of establishing an accurate 

chronology to determine the timing of the flooding of the BLB. 

 Accurately applying an age depth model to sediment cores from the Bering and Chukchi 

Seas spanning the deglaciation period (LGM to late Holocene) is difficult, due to changes in 

THC, water mass ventilation and interaction, as well as the flooding and opening of the BS.  

Cores in the Arctic Ocean that date from the YD or older were previously only influenced by old, 
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long lived, Arctic and Atlantic waters until the Bering Strait flooded, and Pacific water entered 

the picture, likely with a significant effect on the 
14

C reservoir.   

 We chose a reservoir age of 800 years for our Bering Sea cores as a best estimate 

providing consistency with studies previously published for our cores [Cook et al., 2005; Cook, 

2006; Brunelle et al., 2007, 2010; Caissie et al., 2010], and cores proximal to these cores [Itaki 

et al., 2009; Kim et al., 2011; Schlung et al., 2013].  However, this reservoir correction is 

relatively poorly constrained with estimates in the Bering Sea and NE and NW Pacific ranging 

from 460 to 1100 years for total modern reservoir corrections [Kuzmin et al., 2001; Dumond and 

Griffin, 2002; Kovanen and Easterbrook, 2002; Gorbarenko et al., 2005].  Because the 

termination of the last glacial stage had pronounced impacts on thermohaline circulation 

[Keigwin et al., 1991; Weaver, 2003; McManus et al., 2004] as well as during the YD [Keigwin 

et al., 1991; McManus et al., 2004], the reservoir age for cores in the region may have 

experienced considerable variation during deglaciation. 

 We also applied a reservoir age of 800 years in the Chukchi Sea cores consistent with 

reservoir corrections from the region [Andrews et al., 1993; Polyak et al., 2004].  However, some 

Arctic studies completely omit a reservoir correction [Polyak et al., 2007; Kaufman et al., 2008] 

due to high uncertainty in marine Arctic waters, especially during deglaciation [Björck et al., 

2003; Eiríksson et al., 2004].   

 The uncertainty involved with applying reservoir corrections, which may be changing 

through time, means that absolute dating of events seen in sediment cores is difficult.  Changes 

in water mass interactions associated with global ocean circulation changes, or the 

location/existence of deepwater formation, like hypothesized for the North Pacific during the 

early stages of the Last Glacial Termination  [Okazaki et al., 2010], makes assigning proper ages 
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and interpreting changes challenging.  The following sections assume that the current accepted 

reservoir corrections highlighted above are indeed right. 

1.3.2. Last Glacial Maximum (~20ka) 

 Around 20 ka, the Bering and Chukchi Seas were much smaller due to the exposure of 

the continental shelves (Figure 1.2).  With a closed Bering Strait, there was no communication 

between the Chukchi and Bering Sea.  Bering Sea circulation may have been slower with the 

removal of the incentive for water to enter the Bering Sea and exit through the Chukchi.  Given 

the cold climate of the LGM, there was extensive sea ice cover over the Bering Sea [Sancetta et 

al., 1985; Caissie et al., 2010], and substantial perennial ice over what little of the Chukchi was 

not subaerially exposed [Nørgaard-Pedersen, 2003].  

 Sea level reached a low estimated at 125-135 m below present day [Fairbanks, 1989] 

when the ice sheets of the Northern Hemisphere were at a maximum [Dyke et al., 2002].  The 

Laurentide ice sheet alone held an estimated 40-92 m of sea level equivalent [Licciardi et al., 

1998].  The most proximal ice sheet was the Cordilleran Ice Sheet, extending from what is today 

Washington, Idaho and Montana, northward through British Columbia and along southern 

Alaska [Clague et al., 1989; Dyke et al., 2002]. 

 Glacier ice extent during the LGM in Chukotka was limited to primarily to valley glaciers 

and coalescing valley glacier systems [Glushkova, 2001] as seen in the Pekulney Mountains 

[Brigham-Grette et al., 2003] and Koryak Mountains (Figure 1.2), the latter of which likely 

featured marine terminating glaciers as well [Gualtieri et al., 2000].  Glaciation in Alaska 

(~730,000 km
2
) during the LGM was ten times greater than present day [Kaufman and Manley, 

2004].  The three main glaciated regions of Alaska were the Brooks Range, the Ahklun 
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Mountains and the northern extension of the Cordilleran Ice Sheet (Figure 1.2) (comprised of the 

Alaska Range, Aleutian Range and the Coast Mountains) [Kaufman and Manley, 2004].   

 The cold climate likely limited the input of terrigenous material to the sea, and coupled 

with light limitation [Caissie et al., 2010] imposed by extensive and thick sea ice cover, this kept 

productivity relatively low in the Bering Sea [Keigwin et al., 1992; Jaccard, 2005; Okazaki et 

al., 2005; Tanaka and Takahashi, 2005].  Reduced primary productivity in the Bering Sea and 

subarctic North Pacific [Nakatsuka et al., 1995; Caissie et al., 2010; Lam et al., 2013] supports 

the concept that patterns of glacial-interglacial changes include lower biogenic sedimentation 

during glacial compared to interglacials [Levitan and Stein, 2008]. 

1.3.3. Early Deglacial Period (18 to 15 ka) 

 The early deglacial period began with increasing high northern latitude insolation [Berger 

and Loutre, 1991] and increasing atmospheric carbon dioxide (CO2) concentration [Marchitto et 

al., 2007; Shakun et al., 2012].  As ice began to melt, nutrient inputs from melting ice increased 

[Keigwin et al., 1992], both from glacial runoff, and the subsequent flooding and erosion of 

continental shelf materials [Davies et al., 2011].   

 There are few well-dated records of the LGM across Beringia [Briner and Kaufman, 

2008].  Intermediate moraines have proven difficult to correlate between Chukotka and Alaska, 

but the magnitude of glaciation and LGM moraines are relatively comparable [Heiser and Roush, 

2001].  Dated terminal and younger end moraines, as well as terraces, indicate that deglaciation 

in the Koryak Mountains of Chukotka occurred between 24-16 ka [Gualtieri et al., 2000], while 

glaciers appear to have deposited their younger terminal moraines between 24-10 ka in southern 

Alaska [Briner and Kaufman, 2008].  This large window of deglaciation makes assigning a 
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single age for North Pacific deglaciation impossible, assured by the dearth of well-dated records, 

combined with spatial heterogeneity.  

 Prior to 17 ka, sea ice over Umnak Plateau of the southeastern Bering Sea, was likely 

thick and extensive, potentially perennial [Caissie et al., 2010] as was the case during the LGM 

[Sancetta et al., 1985; Caissie et al., 2010].  At 16.8 ka, there is a transition to seasonal ice 

conditions on the Umnak Plateau [Caissie et al., 2010].  This shift in sea ice would have relieved 

light limitation, allowing for an initial small increase in productivity, until increasing meltwater, 

further sea ice reduction, and nutrient influx spurred a large increase in productivity.  

 Sediment cores from Bowers Ridge in the southwest Bering Sea were south of the 

speculated extent of sea ice [Katsuki and Takahashi, 2005], and record no change in productivity 

proxies, but a 2 ‰ δ
15

Ndb decrease [Brunelle et al., 2010] potentially signals a weakening of 

subarctic North Pacific stratification as hypothesized by Lam et al. [2013].  This would be the 

North Pacific analogue to the increase in vertical exchange thought to have occurred in the 

Southern Ocean at the time of H1 [Marchitto et al., 2007], when temperature and atmospheric 

CO2 began to increase [Monnin, 2001].  Weaker stratification of the North Pacific, in 

combination with an increase in nutrient supply, is thought to have induced light limitation due 

to a very deep mixed layer [Lam et al., 2013], dampening other factors that would have 

encouraged an increase in productivity. 

1.3.4. Bølling-Allerød (15 to 13 ka) 

 The early deglaciation period ended at the onset of the Bølling-Allerød, a warm period 

associated with rapid Northern Hemisphere warming [Broecker, 1998; Schlung et al., 2013].  

AMOC is thought to have collapsed during H1, only to recover and overshoot during the BA 

[Timmermann and Menviel, 2009], warming the Northern Hemisphere.  An abrupt freshening 
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and/or warming event is recorded in planktonic foraminifer δ
18

O of the Bering shelf-slope at 14.4  

ka BP [Cook et al., 2005] and at 15 ka on the Umnak Plateau [Caissie et al., 2010], as well as in 

the Gulf of Alaska [Davies et al., 2011] and North Pacific [Galbraith et al., 2007], corresponding 

with the 14.7 ka date of BA onset at NGRIP [Rasmussen et al., 2006].  This freshening may have 

relieved light limitation by shallowing the depth of the mixed layer [Lam et al., 2013] and 

fostering elevated productivity as predicted by the critical depth theory [Sverdrup, 1953], which 

is valid in the western North Pacific [Obata et al., 1996]. 

 The influx of nutrients and increase in upper water column stability due to fresh water 

input from melting ice [Keigwin et al., 1992], drove an increase in productivity in the Bering Sea 

[Cook et al., 2005; Brunelle et al., 2010; Caissie et al., 2010; Schlung et al., 2013], that also 

occurred over the subarctic North Pacific [Keigwin et al., 1992; Crusius et al., 2004; Galbraith et 

al., 2007; Jaccard et al., 2009].  Ventilation of intermediate waters decreased [Behl and Kennett, 

1996; Ikehara et al., 2006; Schlung et al., 2013], supporting weaker ventilation of intermediate 

waters during interglacials relative to glacial conditions [Keigwin, 1998].   

 The BA warm period is marked by laminated sediments in the Bering Sea as well as in 

the Pacific from Mexico north.  Generally, these widespread laminations correspond to both the 

BA and pre-Boreal (PB) warm periods bracketing the bioturbated sediment deposited during the 

YD from: the northwest coast of Mexico [Ganeshram and Pedersen, 1998], the Gulf of 

California [Sancetta, 1995; Keigwin, 2002; Barron et al., 2005], the Santa Barbara Basin 

[Kennett and Ingram, 1995; Hendy and Kennett, 2003], the California margin [Gardner et al., 

1997; Mix et al., 1999], to the north western Pacific [Shibahara et al., 2007; Brunelle et al., 

2010] (also Keigwin 1992 ILL), the Okhotsk Sea, and into the Bering Sea [Cook et al., 2005; 
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Brunelle et al., 2007; Itaki et al., 2009; Caissie et al., 2010; Okazaki et al., 2010; Khim et al., 

2011; Kim et al., 2011; Schlung et al., 2013]. 

 Laminated sediments are deposited under dysaerobic to anoxic conditions [Kennett and 

Ingram, 1995; Behl and Kennett, 1996] with export productivity and ventilation as the accepted 

primary controls on benthic oxygenation [Hendy and Pedersen, 2005].  Deposition of laminated 

intervals in cores proximal to our Bering Sea sites have been attributed to changes in oxygen 

content of North Pacific Intermediate Water (NPIW) and increased export production, which 

fostered dysaerobic conditions [Cook et al., 2005; Caissie et al., 2010; Davies et al., 2011; Kim 

et al., 2011; Schlung et al., 2013].   

 Today, mixing of the northward flowing warm and saline Kuroshio Current and the 

southward flowing cold and fresh Oyashio Current forms NPIW where they meet east of 

Hokkaido, Japan [Yasuda, 1997; You, 2003].  NPIW is characterized by low salinity and high 

oxygen content, and is largely a product of brine rejection during winter sea-ice formation 

[Takahashi, 1998] in the Okhotsk Sea.  This water flows out through the Kuril Islands, and 

mixes with Western Subarctic Gyre (WSAG) water, forming Oyashio Current water.   

 Extensive sea ice formation during the LGM and cold intervals like the YD had major 

ramifications for ventilation through the production of well oxygenated intermediate water, and 

the brine rejection transport of oxygen-rich surface-water toward the seafloor [Talley, 1991].   It 

is estimated that today,  with less sea ice cover than the LGM, Okhotsk intermediate water 

formation is nearly 2 Sv, which has a major effect on NPIW [Alfultis and Martin, 1987].  It 

stands to reason that in a cold climate the production would be higher due to greater sea ice 

formation [Gorbarenko et al., 2014], enabling benthic life and the bioturbation that produced 

massive sediments during the LGM and YD.  With a weakening of NPIW formation/oxygenation 
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during the BA, NPIW entering the Bering Sea was less oxygenated, and thus preconditioned to 

contribute dysoxic conditions under elevated productivity. 

1.3.5. Younger Dryas (12.9 to 11.7 ka) 

 AMOC is thought to have weakened or ceased altogether during the Younger Dryas cold 

period [Broecker et al., 1988; Timmermann and Menviel, 2009].  The Bering Land Bridge was 

shrinking in extent, but was still a contiguous east-west landmass with sea level ~65 mbp at the 

onset of the YD [Fairbanks, 1989].  Alpine glaciers advanced in Alaska during the YD [Briner et 

al., 2002], illustrating the abrupt change from the warm BA.  Sea ice had declined during the 

BA, but rebounded during the YD (Jim Kocis submitted [Cook et al., 2005]).  Such rapid 

changes in climate had a pronounced effect on the species assemblages of marine organisms and 

the overall productivity [Cook et al., 2005; Barron et al., 2009].   

 The YD marked a hiatus in lamina deposition across the range cited in the above BA 

section [Behl and Kennett, 1996; Cook et al., 2005; Caissie et al., 2010; Schlung et al., 2013].  

The increase in oxygenation that curtailed the deposition of laminations was, like before, due to 

changes in NPIW ventilation [Kennett and Ingram, 1995; Zheng et al., 2000; Max et al., 2014; 

Okazaki et al., 2014], primary productivity [Mix et al., 1999; Crusius et al., 2004; Schlung et al., 

2013], or a combination of both [Hendy and Pedersen, 2005; Ishizaki et al., 2009; Kim et al., 

2011; Gorbarenko et al., 2014].  

 The YD is not a prominent feature in sediment cores from Bower's Ridge, where it is 

identified as an 11 cm thick massive interval [Schlung et al., 2013], that coincided with a 

collapse in % biogenic Ba, CaCO3, and opal [Brunelle et al., 2007], indicative of low 

productivity.  Low sedimentation rates are seen on Bower's Ridge 10 cm/kyr [Schlung et al., 

2013], and in the Gulf of Alaska 9 cm/kyr [Davies et al., 2011], consistent with fairly stable cold 
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and/or saline surface conditions [Davies et al., 2011].  The YD was a stark transition from the 

preceding BA warm period and the following PB, as glaciers advanced, sea ice spread, 

productivity declined, and sedimentation rates fell. 

1.3.6. Pre-Boreal (11.7 to 10.5 ka) 

 The pre-Boreal warm period (PB) marked the end of the YD and is the second major 

laminated interval seen in our Bering Sea cores, as well as the cores cited in the BA section 

above [Behl and Kennett, 1996; Cook et al., 2005; Caissie et al., 2010; Schlung et al., 2013].  

Accompanying these laminations was another increase in productivity [Crusius et al., 2004; 

Davies et al., 2011; Schlung et al., 2013], and a second abrupt freshening and/or warming event 

recorded in planktonic foraminifer δ
18

O of the Bering shelf-slope at 11.65 ka BP [Cook et al., 

2005].  However, the deposition of laminations in the Gulf of Alaska led the planktonic δ
18

O 

depletion in the Gulf of Alaska by a few hundred years [Davies et al., 2011].   

 Around the end of the YD and onset of the early Holocene (PB), the Bering Land Bridge 

likely ceased to exist as a contiguous landmass connecting Chukotka and Alaska [Elias et al., 

1996; Keigwin et al., 2006].  Sea level at the time was at about 50 m below modern [Fairbanks, 

1989].  For the first time since ~75ka the BLB connection of Beringia was severed, and the BS 

began to mediate water interaction between the Bering and Chukchi Seas.  The laminated 

interval of the PB was indicative of an ameliorating climate with elevated productivity in the 

Bering Sea [Khim et al., 2011].  

1.3.7. Holocene (10.5 ka to present) 

 By ~10 ka, the remainder of the BLB was largely inundated, with sea level at the time at 

about 20 m below modern [Hopkins, 1979; Fairbanks, 1989].  While the climate has varied 
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during the Holocene, variability has generally been weaker in magnitude than during the last 

deglaciation [Mayewski et al., 2004].  NADW production has fluctuated [Oppo et al., 2003] 

during the Holocene, yet there hasn't been a weakening or shutdown to the extent seen during 

deglaciation [Keigwin et al., 1991; Thornalley et al., 2011].  Holocene ventilation of the North 

Pacific has been weak, as NP ventilation is stronger in cold periods [Schlung et al., 2013], 

whereas NA ventilation increased during the BA and Holocene (warm periods) [Robinson, 2005; 

Thornalley et al., 2011].   

1.4. Primary Research Questions 

 With our Bering and Chukchi Sea cores, we aim to examine a period of rapid climatic 

change that was marked by the connection of the Arctic and North Pacific Oceans through the 

flooding of the BLB and opening of the BS.  What can sedimentary archives from across the 

Bering Sea tell us about oceanographic change during the deglacial period and through the 

opening of the BS?  What story do sediments spanning the BS tell us about productivity, 

circulation and sediment delivery mechanisms during the deglaciation? 

 As sea level rose, the Bering Land Bridge shoreline regressed until it was flooded around 

11–12 ka [Elias et al., 1996; Keigwin et al., 2006].  The submergence of the Bering Strait was 

likely a gradual event, punctuated by rapid shifts in the coastline across the flatter portions of the 

shelf.  Modern average depth of the strait is only 50 m, so initial flow would have likely been 

limited in location and magnitude.  Early flooding would have led to a small amount of water 

mass interaction, but when modern circulation was established remains an open question.  Cores 

from the Chukchi Sea hold the most promise in answering the question of when flow through the 

Bering Strait approximately reached the magnitude seen today.   
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 Present day flow through the Bering Strait is the result of a pressure gradient driven by a 

difference in sea surface topography between the Bering and Chukchi Seas [Coachman and 

Aagaard, 1966; Woodgate et al., 2005].  In the past BS flow may have reversed in direction, with 

a net transport south through the Bering Strait, as supported by modeling simulations [De Boer 

and Nof, 2004; Hu and Meehl, 2005; Hu et al., 2007, 2012b, 2013].  Generally, a reversal of flow 

is thought to be due to freshwater hosing (strong buoyancy forcing) of the North Atlantic, and 

subsequent weakening or shutdown of AMOC [De Boer and Nof, 2004; Hu et al., 2014].  What 

was flow like when the Bering Strait initially flooded?  Which direction was net Bering Strait 

throughflow during following land bridge flooding?  To date, sediment records from Beringia do 

not answer the question of flow direction; however, it is important to consider when interpreting 

both chronology and abrupt shifts in paleorecords from the Chukchi Sea in particular. 

 How did sediment delivery to the Bering Sea sites change through time?  As sea level 

transgressed, did terrigenous input change in both magnitude and source location?  The Yukon 

and other major rivers would have had to cross the continental shelf to drain into the Bering Sea.  

Is this recorded in the sediment record on Bering shelf slope and the Umnak Plateau?   

 Were there distinct sediment units corresponding to separate climate intervals?  What 

properties and characteristics defined these sediment units? 

 With flow restricted through Unimak Pass, and likely a weaker overall northward flow in 

the Bering Sea at the time of the LGM, was the Bering Slope Current weaker, and when did it 

become similar in strength to today?  A reduced influx of ACW would have weakened the BSC.  

At a minimum, it would have been shifted to the south as the coast of the Bering Land Bridge is 

near its present location.  Can we see the BSC increase in strength through productivity data, or a 

change in material being delivered to the site? 
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 Detailed examination of sedimentologic and geochemical parameters recorded during 

crucial climatic intervals of deglaciation such as the BA warm period, and YD stadial, are 

important to elucidate changes in regional oceanography as the Bering Land Bridge flooded, and 

modern ocean circulation was established.  Examining the implications and effects of rapid 

climatic change seen during deglaciation in the Bering and Chukchi Seas will better aid our 

understanding of their potential response to modern climate change, be it shifting plankton 

bloom season, changes in overall primary productivity and species assemblages, or changes in 

water mass exchange and ventilation.  The benthos of the Bering Sea saw major changes during 

deglaciation, from suboxic intervals when laminations were deposited, to times of bioturbation 

and plentiful benthic life.  The Bering-Chukchi Seas over the shelf are a major sink for CO2 

[Kaltin and Anderson, 2005], and thus understanding how this may change in the near future, as 

biology, temperature and ice cover control the CO2 uptake, could have ramifications for the 

global carbon cycle.  Changes in the ventilation and water column stratification are expected in 

the near future; understanding what these changes can mean for the ecosystems of the Bering Sea 

via paleoceanographic study can help better prepare us for what is to come.  The rapid climatic 

change of the last deglaciation is the ideal paleoclimatic lens with which to view the potential 

changes in the near future as the newest climatic interval dawns. 
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CHAPTER 2 

ABSTRACT 

SEDIMENTOLOGICAL, GEOCHEMICAL AND ISOTOPIC EVIDENCE FOR THE 

ESTABLISHMENT OF MODERN CIRCULATION THROUGH THE BERING STRAIT AND 

DEPOSITIONAL ENVIRONMENT HISTORY OF THE BERING AND CHUKCHI SEAS 

DURING THE LAST DEGLACIATION 

 

 Sea level regression during the Last Glacial Maximum exposed the Bering Land Bridge, 

and cut off the connection between the North Pacific and Arctic Ocean, ending the exchange of 

North Pacific Water through the Bering Strait.  Exchange of North Pacific Water comprises a 

major portion of fresh water input to the Arctic Ocean, and is of vital importance to North 

Atlantic Deep Water formation, a vital component of Atlantic Meridional Overturning 

Circulation.  Bering Strait throughflow thus plays an integral role in global climate stability.  A 

suite of four cores were selected, three in the Bering Sea and one in the Chukchi Sea, to bracket 

the Bering Strait in order to elucidate changes in sediment delivery, productivity and regional 

oceanography as the Bering Land Bridge flooded and modern ocean circulation was established 

during the last deglaciation.  The arrival of nutrient rich North Pacific Water in the Chukchi Sea 

is recorded around 8 ka by organic carbon isotope depletion and increases in total organic carbon 

and organic nitrogen, reflecting an increasingly marine isotopic signal and increased 

productivity.  In the Bering Sea, the early deglaciation is marked by depleted organic carbon 

isotopes that indicate increasing terrestrial input, and increased total organic carbon.  Principal 

component analysis of sedimentologic, geochemical and isotopic data clearly captures discrete 

sediment populations that correspond to key climatic intervals, representing changes in sediment 

delivery, productivity and circulation during the last deglaciation.  In the Bering Sea we observe 
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that deglaciation is recorded around 18–17 ka, but lack of confidence in our age control does not 

allow for a more precise date.  Our results suggest that modern circulation through the Bering 

Strait, and thus for the Bering and Chukchi Seas, was established ~8 ka.  Prior to 8 ka, the 

sediment sequence appears to record a possible reversal of flow through the Bering Strait 

corresponding to the 8.2 ka event.   

2.1. Introduction 

 The transition from the Last Glacial Maximum (LGM) through deglaciation and into the 

Holocene was a period of rapid climatic change [Keigwin et al., 1991], and though punctuated by 

cold periods [Broecker et al., 1988; Bradley and England, 2008], featured the most recent 

significant warming in the Arctic.  Today, the Arctic is enduring great impacts of climate change 

[Grebmeier et al., 2010; Wipf et al., 2013] with rapid warming and decreases in sea ice cover 

[Overland and Wang, 2007; Comiso et al., 2008; Snape and Forster, 2014] resulting in major 

changes in energy distribution and atmospheric patterns [Francis et al., 2009; Tang et al., 2013; 

Peings and Magnusdottir, 2014].  In studying the last intervals of major warming in the Arctic, 

we hope to better document the Arctic marine response to climatic change, and provide insight 

into Arctic system dynamics particularly with respect to circulation and productivity, in order to 

better understand rapid contemporary changes.    

 While the North Pacific and Arctic Ocean have been the focus of renewed interest in light 

of climate change [Snape and Forster, 2014], and the potential for economic [Smith and 

Stephenson, 2013] and scientific activity resulting from the near future projections of an Arctic 

absent of sea ice [Overland and Wang, 2007; Stroeve et al., 2011; Snape and Forster, 2014], the 

region still suffers from a paucity of paleodata.   
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 The Bering Strait (BS) serves as the connection between the North Pacific and North 

Atlantic Oceans via the Arctic Ocean, with the Bering and Chukchi Seas acting as intermediaries 

(Figure 2.1).  During the LGM, the emergent BLB (Figure 2.2) occupied what is today the 

Chukchi and Bering shelves [Hopkins, 1959]. The subsequent submergence of the BLB and 

extensive shelf regions [Jakobsson, 2002] put the Bering and Chukchi Seas in a unique position 

to record postglacial depositional and environmental change. 

 Previous studies in the Bering Sea (Table 2.1) during the late Quaternary have focused on 

diatoms as recorders of environmental change and nutrient utilization [Sancetta et al., 1985; 

Brunelle et al., 2007, 2010; Caissie et al., 2010], sea surface temperature (SST) [Caissie et al., 

2010], oxygen isotopes [Cook et al., 2005; Schlung et al., 2013], and radiolarians [Tanaka and 

Takahashi, 2005].  We aim to complement these studies by providing additional data to better 

document past changes and thus better constrain hypotheses regarding postglacial sediment 

delivery and environmental changes. 

 Our study builds upon a growing body of western Arctic paleoclimate records drawing 

upon high resolution bulk sediment parameters to produce quantitative and semiquantitative 

paleoclimate data from cores on either side of the Bering Strait. We apply our bulk 

biogeochemical and isotopic data to estimate relative productivity, nutrient utilization, and 

sediment sourcing to more accurately define deglaciation as recorded in the Bering and Chukchi 

Seas.  We use proxy data to define the earliest establishment of modern circulation through the 

Bering Strait based upon our Chukchi Sea records.  Our data document postglacial changes in 

sediment delivery, productivity, and circulation across greater Beringia.   

 As the BLB flooded, our selected cores became less proximal to land, and river routing 

likely changed, with a net result of weakening terrestrial input.  The cores selected for this study 
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Figure 2.1. Bathymetric and topographic map of Beringia, the North Pacific, and the Bering and 

Chukchi Seas with locations of cores (numbered red stars, see Table 2.1). Currents denoted by 

black arrows and labeled in black: Alaskan Stream (AS), Aleutian North Slope Current (ANC), 

Alaskan Coastal Current (ACC), Bering Shelf Current (BSC), Bering Shelf Water (BSW), 

Anadyr Water (AW), and Siberian Coastal Current (SCC). The Bering Strait (BS), Umnak 

Plateau (UP), Unimak Pass (UnP), Bowers Ridge (BR), and Kamchatka Strait (KS) are labeled 

in blue. 

   

are well suited to represent the Bering Sea as a whole through the climatically dynamic 

deglaciation period [Mix et al., 1999; McManus et al., 2004].  Interpretations of past 

productivity, terrestrial input and circulation are based on δ
13

Corg, %TOC, bulk δ
15

N, %Norg, 

Corg/Norg, elemental X-ray fluorescence (XRF) data, grain size analysis, and PCA, incorporating 

all of the aforementioned proxies.   

 Our findings describe centennial to millennial scale changes in productivity and 

terrestrial input that may be compared with previous paleoclimate records from the Bering Sea 
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Figure 2.2. Map of the Bering Land Bridge. Brown dashed line indicates the estimated shoreline 

during the LGM with sea level 120-125 mbp [Peltier and Fairbanks, 2006]. Blue shaded areas 

on land are estimated glaciation in Alaska [Kaufman and Manley, 2004] and Chukotka [Hughes 

et al., 1977]: Cordilleran Ice Sheet (CIS), Ahklun Mountains (AM), Brooks Range (BR), Koryak 

Mountains (KM) and Pekulney Mountains (PM). Modern currents are included along with core 

locations (numbered red stars, as in Figure 2.1). Potential routes of drainage for the Yukon, 

Kuskokwim and Anadyr Rivers are seen as blue dashed lines based upon Scholl et al. [Scholl et 

al., 1970] and Carlson and Karl [Carlson and Karl, 1984]. The Anadyr River drains towards 

Navarin (N) and Pervenets (P) Canyons. The Yukon and Kuskokwim Rivers drain towards 

Pribilof Canyon (Pr). 

 

 [Cook et al., 2005; Brunelle et al., 2007, 2010; Caissie et al., 2010; Kim et al., 2011; 

Schlung et al., 2013], Gulf of Alaska [Barron et al., 2009; Davies et al., 2011; Addison et al., 

2012], and North Pacific [Keigwin et al., 1992; Lam et al., 2013].  We find that marine carbon 

was the dominant source of OC to the Bering Sea shelf slope during the LGM and Holocene, and 

terrestrial carbon supply was the primary source during the deglaciation (~18-11 ka).  Based on 

clay content, and TOC δ
13

Corg, we find that modern circulation through the Bering Strait was 
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established ~8 ka as recorded in the Chukchi Sea, following a potential reversal of flow possibly 

corresponding to the 8.2 ka event, ~3–4 ka after the submergence of the Bering Strait [Elias et 

al., 1996; Dyke and Savelle, 2001; Keigwin et al., 2006]. 

 

Table 2.1. Regional cores referred to in text with primary citations, location and relevant 

proxies.  Cores used in this study are in bold font. 

 

 

2.2. Background 

 In order to interpret past changes in sedimentological, geochemical and isotopic data, it is 

necessary to understand the circulation regime and physical setting that were in place from the 
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LGM to the Holocene.  The climatic intervals referred to in this paper are color coded as 

background shading in the XRF, isotopic and grain size plots, and by colored points in the 

principal component analysis (PCA) biplots.  The climatic intervals are as follows: LGM: 27–18 

ka, grey/black, Early Deglacial (ED) 18–15 ka, green, Bølling-Allerød (BA) 14.9–13 ka, red, 

Younger Dryas (YD) 12.9–11.7 ka, blue, Pre-boreal (PB) 11.7–10.5 ka, pink, and the Holocene 

10.5–2.5 ka, cyan.  This color scheme is used in all applicable figures. 

2.2.1. Bering Sea  

 The Bering Sea has a broad continental shelf (50–150 m deep), and a deep basin (<4000 

m) bracketed by Chukotka and Kamchatka to the northwest, Alaska to the northeast, and the 

Aleutian Islands to the south (Figure 2.1).  It has relatively low salinity but is nutrient rich [Cook 

et al., 2005], particularly across the shelf and slope region where high nutrient waters of North 

Pacific origin are upwelled [Walsh et al., 1989], making the Bering Sea one of the most 

productive marine systems in the world [Sambrotto et al., 1984]. 

 Surface circulation over the basin is roughly defined by a cyclonic gyre, whose western 

boundary current is the southward flowing Kamchatka Current (Figure 2.1).  In the west, within 

the Gulf of Anadyr, deeper Pacific water is upwelled onto the shelf, with relatively high salinity, 

nutrient-rich Anadyr Water (AW) [Clement et al., 2005].  The Bering Slope Current (BSC) flows 

in the upper 300 m along the continental shelf break and defines the eastern edge of the gyre 

[Schumacher and Reed, 1992], originating near 51JPC and flowing over 3JPC (Figure 2.1).  On 

the shelf, the principal surface flow is northward through the Bering Strait, which is about 85 km 

wide and averages 50 m water depth [Schumacher and Stabeno, 1998; Stabeno et al., 1999].  

Bering Shelf Water (BSW), a nutrient-rich and less saline water mass, occupies the central 

region of the northern Bering Sea, while a strong gradient defines the warmer (in summer), 
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nutrient-poor, Alaska Coastal Water (ACW) to the east [Coachman, 1986; Grebmeier et al., 

1988].  The ACW originates from the Alaskan Stream (AS), which flows northward through 

gaps in the Aleutian Islands up onto the shelf [Stabeno et al., 1999] near 51JPC, where it enters 

the Alaska Coastal Current (ACC).   

 The BSC is known for high productivity and has been referred to as the Green Belt 

[Springer et al., 1996], a band with high chlorophyll and primary production throughout the 

summer [Springer et al., 1996; Hurst et al., 2010].  Tidal mixing and transverse circulation along 

the shelf break keeps stratification at a minimum, bringing nutrients up from 300 to 800 m 

[Springer et al., 1996].  The elevated biological productivity associated with the BSC [Kinney et 

al., 2009] is responsible for high organic carbon accumulation along the Bering shelf slope as 

described below in 3JPC. 

 To the south, the Bering Sea is connected to the North Pacific through four major straits 

and passes from 4400 to 430 m water depth.  Physical properties of water on either side of the 

Aleutian Islands are different below 2000 m [Cook et al., 2005], indicating relatively unimpeded 

exchange between the Bering Sea and North Pacific except through the deep Kamchatka Strait 

(4420 m).  In the eastern Bering Sea, northward flow through the Unimak Pass ( 80m deep) is 

the major ACC (ASW) conduit between the North Pacific and the shelf [Stabeno et al., 1999], 

and has a major influence on 51JPC of the Umnak Plateau [Caissie et al., 2010].  During the 

LGM, Unimak Pass was above sea level, but given the depth of the major straits, exchange 

through the remainder of the Aleutian Arc was probably not constrained by sea level regression.  

2.2.2. Bering Strait 

 Bering Strait water has an average salinity of 32.5 psu [Roach et al., 1995; Aagaard et 

al., 2006], making it relatively fresh compared to the North Atlantic (34–37 psu).  Today, a net 
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northward flow of 0.8 Sv [Wijffels et al., 1992; Aagaard et al., 2006] through the Strait 

represents a major contribution of freshwater to the Arctic Ocean (34.8 psu) [Aagaard and 

Carmack, 1989].   

 The first order of significance of the Bering Strait is its role in global circulation.  It is the 

connection between the North Pacific and Atlantic oceans via the Arctic Ocean, which in turn 

affects the freshwater component exiting the eastern Arctic gateway, which plays a major role in 

North Atlantic Deep Water (NADW) production in the subpolar North Atlantic [Broecker et al., 

1990; Wijffels et al., 1992; Aagaard and Carmack, 1994; Keigwin and Cook, 2007].  NADW is a 

driving force behind Atlantic Meridional Overturning Circulation (AMOC) [Broecker, 1991], 

which advects warm, salty surface water from the south into the North Atlantic where it cools 

and sinks [Broecker, 1991; Thornalley et al., 2011].  The net northward transport of warm water 

associated with AMOC pulls heat to the North Atlantic [Ganachaud and Wunsch, 2000] and is 

responsible for the mild climate of Europe [Broecker et al., 1988; Broecker, 1991].  Modeling 

simulations [Stouffer et al., 2006; Hu et al., 2013], and paleoclimate records [Broecker, 1994; 

Keigwin and Jones, 1994; Clark et al., 2007] indicate that a slowdown in AMOC can result in 

Northern Hemisphere cooling.   

 An open Bering Strait is thought to act as an 'exhaust valve' for the North Atlantic [De 

Boer and Nof, 2004], capable of dissipating freshwater anomalies in the North Atlantic at a rate 

hypothesized to be impossible with the Bering Strait closed [Hu et al., 2014].  The reduced 

volume of land-based ice present in the Northern Hemisphere today [Church et al., 2001] likely 

does not store enough freshwater to deliver an adequate volume to the North Atlantic to shut 

down AMOC, though a reduction in AMOC is possible [Stouffer et al., 2006].  An open BS is 

potentially able to disperse freshwater anomalies that threaten AMOC, whereas a closed BS 
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significantly strengthens AMOC [Wadley and Bigg, 2002], but perhaps makes it less stable.  The 

combination of smaller Northern Hemisphere ice volume and open Bering Strait connection, 

implies that the North Atlantic is largely protected from freshwater hosing today, but causes of 

rapid climatic change, like seen during the YD, are difficult to unequivocally solve [Bradley and 

England, 2008].  During deglaciation, AMOC experienced both extremes, from a near shutdown 

during Heinrich Event 1 (H1), which occurred in what is our ED, to an overshoot during the BA 

warm period [Timmermann and Menviel, 2009].   

 For the Bering Strait to help disperse a North Atlantic fresh water cap, flow must reverse 

through the strait.  The end of the Younger Dryas (11.7 ka) [Alley et al., 1997] may have been 

linked to flooding of the Bering Strait (11–12 ka) [Keigwin et al., 2006], but the initial depth of 

the Bering Strait would have been quite shallow.  The 8.2 ka event is thought to have featured a 

strong freshwater buoyancy forcing over the North Atlantic, but only lasted ~150 years, possibly 

because of an open Bering Strait.   Our data indicate the possibility for a reversal of flow coeval 

with the 8.2 ka event, consistent with modeling simulations for dispersion of North Atlantic 

freshwater anomalies through the Bering Strait [De Boer and Nof, 2004; Hu and Meehl, 2005; 

Hu et al., 2007, 2012a, 2012b, 2014].   

2.2.3. Chukchi Sea 

 The Chukchi Sea lies to the north of the Bering Strait, bounded by Wrangel Island and 

the Siberian coast to the west, Alaska to the east, and the continental shelf break to the north.  

The Chukchi is unique among the Arctic shelf seas as it is dominated by Pacific Water advected 

through the Bering Strait [Weingartner et al., 2005].  The productive Chukchi shelf is dependent 

upon the nutrients of the warm, fresh Pacific inflow, which affects ice formation and productivity 

[Walsh et al., 1989; Martin and Drucker, 1997].  
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  Based upon a sea level ~120–125 m lower than at present [Fairbanks, 1989; Peltier and 

Fairbanks, 2006], roughly 90% of the Chukchi Sea as defined by Jakobsson [Jakobsson, 2002], 

would have been subaerially exposed during the LGM (Figure 2.2).  The BLB occupied most of 

the Chukchi Sea during the LGM, and cut off North Pacific nutrient rich, fresh water from 

reaching the Arctic Ocean.  Chukchi Sea sedimentary records are largely limited to the Holocene 

[Darby et al., 2009; Ortiz et al., 2009] due to the exposure of the BLB, and a subsequent shallow 

transgressive sea with limited continuous sedimentation due to ice scouring [Hill and Driscoll, 

2010] and sediment resuspension  in its shallow depths [Reimnitz et al., 1998]. 

 The four major currents of the Chukchi Sea are the Siberian Coastal Current (SCC) in the 

far west, and the three main branches -- western, central and eastern -- that comprise the 

northward flowing currents across the Chukchi shelf [Weingartner et al., 2005].  The western 

branch is relatively salty, cold AW which flows through the Hope and Herald Valleys 

[Coachman et al., 1975; Woodgate et al., 2005].  Over the north central Chukchi shelf, flow is 

bounded by the Herald Shoal to the west and Hanna Shoal to the east [Weingartner et al., 1998, 

2005].  The flow over the central Chukchi shelf averages 0.2 Sv, accounts for 25% of Bering 

Strait transport [Woodgate et al., 2005], and has an eastern flow component around the Hanna 

Shoal, where flow appears to bifurcate, with the eastern branch flowing along the southern flank 

of the shoal, suggesting a connection between the north central shelf water and the ACC 

[Weingartner et al., 2005].  In the east, warm and nutrient-poor ACW and BSW are coastally 

trapped in summer and fall, exiting the Chukchi into the Arctic Ocean via Barrow Canyon 

[Paquette and Bourke, 1974; Coachman et al., 1975; Ahlnäs and Garrison, 1984].   

2.2.4. Laminations 

 Two of our cores, 3JPC and 51JPC, feature laminae that correspond to widespread North 
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Pacific deposition of laminations in sediments from BA and PB warm periods bracketing 

bioturbated sediment deposited during the YD.  These laminae are found along the northwest 

coast of Mexico [Ganeshram and Pedersen, 1998], the Gulf of California [Sancetta, 1995; 

Keigwin, 2002; Barron et al., 2005], the Santa Barbara Basin [Kennett and Ingram, 1995; Hendy 

and Kennett, 2003], the California margin [Gardner et al., 1997; Mix et al., 1999] to the 

northwestern Pacific [Keigwin et al., 1992; Shibahara et al., 2007; Brunelle et al., 2010], the 

Okhotsk Sea, and into the Bering Sea [Cook et al., 2005; Brunelle et al., 2007; Itaki et al., 2009; 

Caissie et al., 2010; Okazaki et al., 2010; Khim et al., 2011; Kim et al., 2011; Schlung et al., 

2013]. 

 Laminated sediments are deposited under dysaerobic to anoxic conditions [Kennett and 

Ingram, 1995; Behl and Kennett, 1996] with export productivity and ventilation as the accepted 

primary controls on benthic oxygenation [Hendy and Pedersen, 2005].  Deposition of laminated 

intervals in cores proximal to our Bering Sea sites have been attributed to changes in oxygen 

content of North Pacific Intermediate Water (NPIW) and increased export production, the 

combination of which fostered dysaerobic conditions [Cook et al., 2005; Caissie et al., 2010; 

Davies et al., 2011; Kim et al., 2011; Schlung et al., 2013].   

2.3. Methods  

 The cores used in this study were collected during two legs (HLY02-02 and HLY02-04) 

of the Arctic West Summer 2002 cruise of the USCGC Healy in the Bering and Chukchi Seas 

led by Julie Brigham-Grette (University of Massachusetts, Amherst), Neil Driscoll (Scripps 

Oceanographic Institution), and Lloyd Keigwin (Woods Hole Oceanographic Institution, 

WHOI).  The cores were collected using a jumbo piston coring apparatus aboard the USCGC 

Healy.  The cores were split longitudinally into a working half, from which samples can be 
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taken, and an archive half, on which non-destructive analyses can be performed.  The samples 

were stored at room temperature "moist" on special racks in sealed "D-tubes" in the core 

repository at McLean Laboratory on WHOI's Quissett Campus.  We brought the cores to UMass 

for subsampling and core scan measurements, and stored them in a cold room at 4°C in the 

sealed "D-tubes". 

2.3.1. Age Models 

 3JPC, 17JPC, and the section of 51JPC chosen for our study have six, six, and four 
14

C 

ages respectively (Table 2.2), obtained previously using Neogloboquadrina pachyderma 

(sinistral), a planktic foraminifera, [Cook et al., 2005; Cook, 2006].  24JPC has seven 

radiocarbon dates on paired (3) and single bivalve (3) shells and shell fragments (1) [Lundeen et 

al., 2005].  51JPC has two tephra deposits that were treated as instantaneous events. 

 For all of the cores, a reservoir age of 800 years (ΔR 400) was chosen to be consistent 

with other published studies of these cores [Cook et al., 2005; Cook, 2006; Brunelle et al., 2010, 

2010; Caissie et al., 2010], and other proximal cores [Itaki et al., 2009; Kim et al., 2011; Schlung 

et al., 2013; Kuehn et al., 2014], as well as the marine calibration dataset  

(http://calib.qub.ac.uk/marine/) using data from McNeely et al. [McNeely et al., 2006]. However, 

this reservoir correction is relatively poorly constrained with estimates in the Bering Sea and 

northeast and northwest Pacific ranging from 460 to 1100 yrs for total modern reservoir 

corrections [Kuzmin et al., 2001; Dumond and Griffin, 2002; Kovanen and Easterbrook, 2002; 

Gorbarenko et al., 2005].  Both the YD [Keigwin et al., 1991; McManus et al., 2004] and the 

termination of the last glacial stage had pronounced impacts on thermohaline circulation ages.  

Additionally, the reservoir age in the region may have experienced considerable variation during 

deglaciation, particularly around 18 ka (personal correspondence, Mea Cook).   

http://calib.qub.ac.uk/marine/
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Table 2.2. Uncorrected AMS 
14

C ages, and corrected, calibrated ages measured on N. 

pachyderma (s.) in 3, 17, and 51JPC [Cook et al., 2005], and shells in 24JPC [Lundeen et al., 

2005]. Calibrations were performed with Clam 2.2 [Blaauw, 2010] using ΔR = 400 yr, 

corresponding to a ~800-yr reservoir correction. 

 

 

 

[Keigwin et al., 1991; Weaver, 2003; McManus et al., 2004], which would affect global reservoir

 We also applied a reservoir age of 800 years in the Chukchi Sea cores consistent with 

reservoir corrections from the region [Andrews et al., 1993; Polyak et al., 2004; Kuehn et al., 

2014].  However, some Arctic studies completely omit a reservoir correction [Polyak et al., 

2007; Kaufman et al., 2008] due to high uncertainty in marine Arctic waters, especially during 

deglaciation [Björck et al., 2003; Eiríksson et al., 2004].  We have the least confidence in the 

oldest portion of 24JPC as Chukchi Sea sedimentary records are largely limited to the Holocene  
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Figure 2.3. Age depth models for 3JPC (a), 24JPC (b), 17JPC (c), and 51JPC (d). Blue dots are 
14

C ages, with 1σ error plotted. Grey shaded area is the 1σ range, which is largest when 

extrapolating to the core top or bottom. Tehpra were treated as instantaneous events in 51JPC, 

and are indicated by grey bars. 

 

[Darby et al., 2009; Ortiz et al., 2009] considering the exposure of the BLB, and a subsequent 

shallow transgressive sea in which sediment preservation would have been difficult due to ice 

scouring [Hill and Driscoll, 2010] and sediment resuspension in its shallow depths [Reimnitz et 
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al., 1998].  The youngest portion of 17JPC has the highest uncertainty as seen in Figure 2.3, as it 

lacks a date in the uppermost 150 cm. 

 The 
14

C ages were calibrated using Clam version 2.2 [Blaauw, 2010] operated in the free 

open-source statistical software R (version 3.0.2; R Development Core Team, 2013) using the 

Marine13 calibration curve [Reimer et al., 2013].  All age-depth models were created in Clam 

using linear interpolation for minimal investigator bias (Figure 2.3).  While dated sedimentary 

units such as laminations match well with regional studies, we present our data with the caveat 

that reservoir age could have fluctuated by a few hundred years at certain points of the record, 

particularly around what we define as 18 ka. 

2.3.2. Non-destructive Analysis  

 All archive-half sections of our cores were logged at UMass on both a Multi-Sensor Core 

Logger (MSCL, GEOTEK), and an high-resolution continuous micro fluorescence-X (XRF) core 

scanner (ITRAX, COX Analytical Systems). 

2.3.2.1. Elemental XRF 

 The ITRAX XRF core scanner provides high-resolution elemental composition and X-

Radiograph images [Löwemark et al., 2008].  ITRAX (uses an intense non-destructive micro X-

ray beam that irradiates the sample to collect positive X-ray images, and detects the energy of 

fluorescent radiation in order to provide high-resolution relative concentration of elemental 

profiles (from Al to U).   ITRAX analyses were measured on a 4 mm-wide and 0.1 mm-thick 

area using a molybdenum tube.  The XRF output data are an intensity given in counts per second 

(cps) with an average value around 19 kcps for our cores.  Any measurement point with fewer 

than 10 kcps was not considered, and any points with Validity=0 were also not considered 
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(Validity generally is zero when kcps was below 10k).  The ITRAX validity output is defined as 

1 if the sensor is in the correct position.  If zero, then the X-ray detector is not in the correct 

position, which occurs when the surface is uneven or shows sudden variability, such as a crack in 

the core.  Radiograph images were taken with an exposure time of 1600 ms at a voltage of 60 

kV, and a 50 mA current.  XRF exposure time was 10 s at a voltage of 30 kV and a 55 mA 

current.  XRF data were analyzed at 1000 µm scale, and though data was taken at 200 µm in 

laminated sections, 1000 µm scale was chosen for consistent analysis and interpretation.  

Without quantitative mineralogy [Viscosi-Shirley et al., 2003; Eberl, 2004], we do not interpret 

XRF elemental count data as quantitative or exact, merely as a general descriptor of relative 

changes in sediment composition. (For a detailed description of the ITRAX core scanner see 

Croudace et al. [2006]) 

2.3.2.2. MSCL Data 

 The MSCL obtained magnetic susceptibility (MS), gamma ray attenuation density, 

spectral properties, and high-resolution images.  Magnetic susceptibility was measured using a 

point sensor (MS2E, Bartington) mounted on an arm that allows the sensor to be placed on the 

core surface for each measurement. The point sensor has a field of influence of about 1 cm in 

diameter.  The bulk density for the GEOTEK is GRAPE bulk density (gamma ray attenuation 

porosity evaluator) obtained using a cesium-137 gamma source which emits a narrow beam of 

collimated gamma rays with energies at 0.662 MeV.  A color spectrophotometer (CM-2600d, 

Konica Minolta) measured reflectance in the near UV through the visible spectrum and just into 

the near IR range (wavelengths 360–740 µm). 
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2.3.3. Destructive Analysis–Sampling 

 The sediment cores were sampled for biogeochemical and isotopic data, as well as grain 

size analysis using 1 cm diameter sediment plugs.   

 3JPC was sampled at 10 cm resolution in massive sections and 5 cm resolution in both 

laminated intervals and the top meter of the core for isotopic and grain size analyses.  24JPC was 

sampled at 5 cm resolution in the upper two meters of the core (1 m for grain size) and 10 cm 

throughout the remainder.  51JPC was sampled at 10 cm resolution for grain size, and 2 cm 

resolution from 124–242 cm and 4 cm from 242–420 cm, only for δ
13

Corg and %TOC.  17JPC 

was sampled at 10 cm resolution.   

2.3.3.1. Elemental Isotopic Analyses  

 Bulk biogeochemical properties include δ
13

Corg, δ
15

N, %TOC, %Norg and C/N ratios 

measured on an Isotope Ratio Mass Spectrometer (IRMS) with a Sercon GSL and Gilson gas 

auto-sampler prep unit (PDZ-Europa 20/20). The isotopic data were measured by the Stable 

Isotope Research Unit of the Department of Crop and Soil Sciences at Oregon State University, 

Corvallis, OR.  Samples were freeze-dried and then ground to a fine powder before being treated 

with 1 M HCl to remove carbonate for samples used to measure δ
13

Corg and %TOC [Ramnarine 

et al., 2011].  The samples were then mixed with deionized water, centrifuged and excess water 

was removed by pipette.  This process was repeated five or more times, until reaching a neutral 

pH, after which the samples were left to air dry.  Samples were then heated in an oven at 50°C 

and placed in a container with desiccant.  The samples were encapsulated in tin capsules 

(Elemental Microanalysis D1008 or D1010).   For all four cores we used ~150µg total C (15 mg 

of sample) for δ
13

Corg, and %TOC.  Replicate analyses indicated a standard deviation of 0.91 

wt% for %TOC, and 0.09‰ for δ
13

Corg.  



44 
 

 For δ
15

N, %N and %TC, each sample had about 75 µg total N (55 mg sample).  Replicate 

analyses indicated a standard deviation of 0.24‰ for δ
15

N, and 0.26 wt% for %N.   

2.3.3.2. Carbon Isotope Mixing Models 

 The δ
13

Corg of marine sediments is often used to estimate the relative amounts of 

terrigenous and marine organic carbon in sediment organic matter (OM) using a linear mixing 

model of terrigenous and marine OM [Hedges and Parker, 1976; Shultz and Calder, 1976; Prahl 

et al., 1994; Addison et al., 2012; Trefry et al., 2014], according to the following equation: 

                 
                  

                
 

The value obtained from this equation (OCterr) is then used to calculate the %TOCterr: 

                                        

 Depleted δ
13

Corg values (-26 to -28) are typical of terrigenous OM using the C3 pathway 

of photosynthesis [Stein and Macdonald, 2004], as seen in the following regions: Mackenzie 

Beaufort terrigenous end-member: -26.5 to -27‰ [Naidu et al., 2000], Russian Rivers draining 

taiga/tundra: -26.5‰ [Lobbes et al., 2000], Yukon: -26 to -28‰ [Guo and Macdonald, 2006], 

Gulf of Alaska: -26‰.  Marine δ
13

Corg is generally assumed to be <-25‰ [Grebmeier et al., 

1988], with average marine phytoplankton values of -19 to -22‰ [Fontugne and Jouanneau, 

1987; Meyers, 1994].  We chose -27‰ for terrigenous OC and -21‰ from marine OM based on 

the above cited values, and for consistency with studies from the Bering and Chukchi Seas 

[Walsh et al., 1989; Naidu et al., 1993, 2000, 2004; Trefry et al., 2014], and the Gulf of Alaska 

[Addison et al., 2012]. 
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2.3.3.3. C/N Ratios and %Norg 

 Arctic sediments have been known to have relatively high amounts of inorganic nitrogen 

bound to clay minerals (Nbou) [Stein and Macdonald, 2004], which can bias C/N ratios which are 

interpreted as "Corg/Norg".  To better represent source materials, we plotted %TOC (x) versus 

%TN (y), where the y-intercept represents Nbou (Figure 2.4) [Schubert and Calvert, 2001; Stein 

and Macdonald, 2004].  

 We estimated %Norg using the following equation: 

               

Where %Nbou is the intercept from Figure 2.4.  We calculated C/N mole ratios for 3JPC 17JPC, 

and 24JPC using %TOC and %Norg values, as no nitrogen analyses were performed on 51JPC.   

2.3.3.4. Grain Size Analysis 

 Grain Size (GS) analyses were performed at the Marine Sediments Lab of Iowa State 

University, using laser diffraction (Malvern Mastersizer 3000) to measure particle size from 

0.01–3500 µm.  Prior to running the samples, a 3M solution of sodium hexametaphosphate 

(SHMP) was added to the dry material to deflocculate the clay, and then the vial was agitated.  

Sodium carbonate (0.05 moles) was added when making the SHMP to increase the pH to 8.  

Samples for grain size analysis were not treated to remove carbonates, organics, or siliceous 

organisms [Aiello and Ravelo, 2012], and are thus representative of bulk grain size.  We 

followed the Wentworth grain size chart [Wentworth, 1922] in defining our grain size intervals: 

clay <4 µm, silt 4–63 µm, and sand 63–3500 µm [Aiello and Ravelo, 2012].  Samples were each 

run three times, and the data presented for each sample is the average of the three measurements. 

 



46 
 

  

 

 

 

Figure 2.4. Total organic carbon versus total nitrogen 

correlation in 3JPC (top left), 24JPC (top right), and 17JPC 

(bottom left).  The estimated amount of inorganic nitrogen 

(Nbou) is indicated in lower left of each figure.  Note that 3JPC 

and 17JPC (0.01%) have a significant amount of Nbou, whereas 

24JPC has negligible Nbou.  See methods for further explanation. 
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2.3.3.5 Sediment Compositional Analysis 

 We took six samples from 24JPC from each of the TOC plateaus for visual analysis.  

Each sample was around 10 cm
3
 and each was washed over a 63 µm sieve.  The dried residues 

were scanned under a microscope at x 72.  We observed agglutinated forams, diatoms, woody 

particles, coal/charcoal, and sand.  There was nothing calcareous, which is not uncommon in the 

Chukchi Sea; however given the age of the cores, it is possible that a minimal amount of 

calcareous material was present when collected, but since dissolved.  All forams were 

agglutinated, and were very fragile.  Relative abundance was estimated by Mark Leckie, UMass 

Amherst, from very rare to abundant. 

2.3.4. Principal Component Analysis (PCA) 

 PCA was completed for XRF, grain size, bulk biogeochemical and isotopic data using 

MATLAB [MathWorks, 2014].  Data were normalized (z-score) prior to PCA.  Variables were 

included in PCA based upon their performance within PCA, but primarily based upon Pearson 

correlation coefficients at a statistically significant level (0.01).  Elemental XRF data were 

selected for PCA based upon Pearson correlation coefficients as well as the perceived value of 

the data.  Many of the heavier elements, particularly the trace metals showed no variability and 

were very noisy, essentially displayed as a thick straight line, and many went undetected in 

sections of the cores.      

 In the PCA biplots, each variable is represented by a vector, and the direction and length 

of the vector indicate how each variable contributes to the two principal components (PC) in the 

plots.  The PCA included further PCs, but they were not plotted as elements like Ca, S, and Mn 

generally loaded best onto the third PC.  The elements are marked by sharp peaks with low 
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counts in between, and do not tell a valuable story as is.  In addition to the general lack of value 

the third PC, the 2-d plots are far easier to visually interpret.  with The biplots also include a 

point for each observation or data point.  Each data point is a sample depth from the core that is 

represented by all the variables (i.e. elemental XRF data, grain size data, and isotopic data).  The 

coordinates for each observation point indicates the score of each observation for the first two 

principal components, where the score is the original data transformed into PC space.  PCA 

biplots of scores for both XRF data only, and for a full suite of 

geochemical and sedimentologic parameters (hereafter referred to as full suite PCA), were 

produced in MATLAB in order to investigate differences between sediments deposited during 

separate climatic intervals.  The samples are color coded after PCA; they are not treated 

differently, simply colored by age. 

   When a full suite of data was used for PCA, it was necessary to use the resolution of the 

most coarsely resolved data, the isotopes.  To best represent the high resolution data, a moving, 

centered 11-point running average was used for the 1000 µm resolution XRF data, and a 3-point 

running average for 0.5 cm MSCL data, thus representing 1 cm, which is the width of the 

samples taken from the cores for isotopic analysis. 

2.4. Results 

2.4.1. Western Bering Sea Shelf Slope, 3JPC  

 Jumbo Piston Core 3 (HLY02-02-3JPC) was taken between Navarin and Pervenets 

Canyons on the Bering Sea shelf slope [Cook et al., 2005], about 230 km southeast of Cape 

Navarin, Russia, at 1132 m water depth (Figure 2.1).  At 14 m long, 3JPC (Figures 2.5, 2.6, 2.7, 

2.8) contains the most expanded deglacial sequence of the cores in this study, with an average 
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sediment accumulation rate of 185 cm/kyr from the beginning to the end of the laminated 

sequences (20–10 ka). There are four visibly laminated intervals, which are composed of pairs of 

dark and light olive lamina ranging in thickness from <1 to 2 mm.  The first three laminated 

intervals occur during the BA (901–763 cm, 724–602 cm, and 574–533 cm) spanning 14.7–12.9 

ka (14.7–14.2, 14.0–13.45, and 13.2–12.9 ka).  These intervals are recorded in excellent 

correspondence with NGRIP-dated BA/YD [Rasmussen et al., 2006].  The final interval was 

deposited during the PB from 11.5–10.8 ka (342–215 cm), though there are three minor laminae 

groups of 2–5 cm each after 10.8 ka.  Intervening massive intervals and the deepest 5.4 m of 

sediment are composed of homogeneous sticky dark olive–gray silty mud, with a slower 

sedimentation rate (87 cm/kyr).   

 During the LGM (21–18.1 ka), δ
13

Corg averages -22.80±0.2 punctuated by a precipitous 

drop that begins around 18 ka and bottoms out by 17 ka at -25‰ (Figure 2.5).  From 17–10.7 ka, 

δ
13

Corg averages -24.91±0.32‰, and at 10.7 ka there is a second rapid change as δ
13

Corg values 

become more enriched, reaching -21.8‰ by 9.8 ka.  While the trend of δ
13

Corg values is one of a 

depletion followed by a later enrichment, the period from 17–10.7 ka does have variability, 

including enrichment during the BA (14.7–12.9 ka, -24.73±0.23‰), and a depletion during the 

YD (12.9–11.7 ka, -25.08±0.23‰). 

 For 3JPC, TOC begins with relatively low values (0.82%) from 21–18 ka, before rapidly 

rising around 18 ka to 1.46% from 17.2–14.8 ka (Figure 2.5).  TOC during the LGM is 

predominately of marine origin given high %OCmar (0.58%) and low %OCterr (0.25%), before 

terrestrial carbon surpasses marine carbon ~17.5 ka.  At the onset of the BA, TOC falls to 1.14% 

until the YD, where values further decrease to 0.94%, before increasing at the end of the YD 

around 11.6 ka.  During the laminated PB interval, TOC is the highest in the record (1.41%), 
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before a dramatic decrease at 10.8 ka that leaves TOC around 0.5% by 9.8 ka, with OCmar re-

established as the largest source of TOC. 

 δ
15

N averages 7.52‰ during the LGM, and decreases rapidly during the early 

deglaciation at ~18.15 ka (Figure 2.5).  From 18–15.4 ka, δ
15

N is relatively depleted (5.66‰) 

until beginning to rise preceding the BA.  During the BA, δ
15

N values increase until topping out 

at around 7.9‰ by 14 ka, averaging 7.07‰ from 14.7–13.7 ka, where a decrease begins that 

continues into the YD until around 12.5 ka.  After 12.5 ka, values slowly increase until the end of 

the YD where the increase accelerates, bringing elevated δ
15

N during the PB laminated interval 

(6.15‰) from 11.5 to 11 ka, before decreasing after 10.8 ka with an average of 5.68‰ from 

10.8–9.8 ka. 

 During the LGM until ~18.5 ka, %Norg averages 0.101% (Figure 2.5).  After 18.5 ka, 

%Norg begins to increase, a trend which accelerates after 18 ka with the highest %Norg in the 

record averaging 0.162% from ~17.1–14.9 ka.  There is a rapid decrease in %Norg around the 

onset of the BA, and by 14.6 ka, %Norg is present at a relatively constant but declining 0.123% 

until the YD.  At the onset of the YD (12.9 ka), there is a spike in %Norg to 0.132%, followed by 

a rapid decrease to 0.096% by 12.4 ka, where values remain until the end of the YD.  Around 

11.5 ka, %Norg rapidly increases coeval with the beginning of PB lamina, and remain at an 

average of 0.129% until ~10.8 ka after the PB laminations have ended.  There is a precipitous 

decrease until ~10.5 ka, and from 10.5–9.8 ka average %Norg is the lowest in the record 

(0.069%).  

 The C/N ratio averages 15.3 from 21–20 ka, before dropping to 12.2 from 20 ka to the 

BA (Figure 2.5).  C/N averages 13.5 during the BA, and increases during the YD, reaching 16.5  
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Figure 2.5. 3JPC Bulk δ

13
Corg and δ

15
N, %TOC, estimated %OCmar and %OCterr, %Norg, and C/N. Laminated intervals are indicated by 

brown/green boxes. Six 
14

C dates are given in calendar years, red stars [Cook et al., 2005]. Blue arrow is the window of BLB flooding 

[Keigwin et al., 2006]. Background color scheme corresponds to climatic intervals described in section 2.2, and used in all subsequent 

figures: H=Holocene, PB=Pre-Boreal, YD=Younger Dryas, ED=Early Deglacial, LGM=Last Glacial Maximum. 
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Figure 2.6. 3JPC Grain size data, accumulation rate, bulk density, and magnetic susceptibility. Laminated intervals are indicated by 

brown/green boxes. Six 
14

C dates are given in calendar years, red stars [Cook et al., 2005]. Blue arrow is the window of BLB flooding 

[Keigwin et al., 2006]. 
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Figure 2.7. 3JPC XRF elemental intensity data in counts per second (cps).  Laminated intervals indicated by brown/green bars on the 

right.   
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Figure 2.8.  3JPC PCA biplots. Left panel is full suite PCA.  Right panel is XRF PCA.  Populations are color coded by age.  PC1 and 

PC2 are principal components one and two, and the percent label is the percent of variation in the data explained by PC1 and PC2 

respectively. Blue lines PC coefficients for each variable. TERR and PROD represent the area of terrestrial and productivity end-

members respectively (See Discussion 2.5.1). 
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during the PB before peaking at 22 during the Holocene and decreasing to 16 by the end of the 

record. 

  Median grain size averages 13.7 µm from 21–10.8 ka, before increasing to 35.1 µm from 

10–9.8 ka (Figure 2.6).  Laminated units have smaller median grain size (14.4 µm) than massive 

sections (18.2 µm).  Clay in the 3JPC record began ~13% from 21–18.2 ka, followed by a sharp 

clay peak at the onset of the ED  to ~20%.  After the peak, clay is still abundant through the ED 

at ~12.5% until rapidly decreasing at 15 ka.  Clay content plateaus at 4.8% from 14.8–11.7 ka 

before reaching the lowest values of the record at 1.1% in the core top from 11.5–9.8 ka.  Silt is 

relatively stable throughout the record, averaging 77.3% from 21–10.8 ka with the only major 

deviation being a large increase in sand (20 to 50%) from 10.8–9.8 ka, and the corresponding 

drop in silt to 50%.  Sand averages 14.3% through the LGM until decreasing at 18.1 ka, reaching 

the lowest sand content of the record (9.9%) from 18–15 ka. Though there is variability, sand 

averages 17.2% through the BA and YD and into the PB before the major increase at 10.8 ka.   

 During the laminated intervals in 3JPC, there is a decrease in Ti, Fe, K, and Rb and an 

increase in Cl, Br, and to a lesser extent Ca, corresponding to the BA and PB (Figure 2.7).  Ti, 

Fe, K, and Rb are highest during the LGM, ED, and YD.  Si shows little variability until 

increasing following the PB, in concert with an increase in sand and Sr.  Rb and Sr vary together 

from the BA through the PB, but not before or after whereas Sr and Zr track well reasonably well 

together throughout the record. 

In 3JPC, the ED interval tracks closest to the terrigenous end-members (Fe, Ti, K, Rb and 

Clay), the LGM is loaded positively onto PC1, YD centers around the origin, and the PB and BA 

show the greatest variability, but plot closest to %TOC, %Norg, silt, Cl and Br (Figure 2.8).  The 

early Holocene is a clear anomaly and plots closest to sand.   
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2.4.2. Northwest Chukchi Shelf, 24JPC 

 24JPC (HLY04-02-24JPC) was taken from the northwest Chukchi shelf at 80 m water 

depth [Lundeen et al., 2005], and spans much of the Holocene (14.3–2.5 ka) over 7.5 m of dark 

grey–green silty mud (Figures 2.9, 2.10, 2.11, 2.12).  There is an interval of rapid sedimentation 

from 9–6 ka (223 cm/kyr), with slower, accumulation before and after this interval (30–40 

cm/kyr), although the deepest portion of the core is uncertain. 

 δ
13

Corg is relatively stable averaging -24.69±0.16‰ from 14–8 ka, where a steady 

increase begins, continuing until the end of the record with values around -22 ‰ by 2.5 ka 

(Figure 2.9). The anomalous excursion seen from ~3.5–3 ka is likely due to sample 

contamination as previous results on this core suggested no such feature [Lundeen et al., 2005]. 

 δ
15

N and %Norg essentially match the %TOC curve (Figure 2.9), with five intervals that 

could be deemed steps, and are listed with the TOC data in parentheses: (δ
15

N, Norg).  %N is 

taken to be equivalent to %Norg because the intercept of the %TOC to %N plot (%Nbou Figure 

2.4) is close to zero (0.0036%) [Stein and Macdonald, 2004]. 

 %TOC shows greater variability than δ
13

Corg, essentially existing as five steps of like 

grouped data, with an overall trend towards higher TOC, with a notable excursion in the middle 

of the record.  From 14–11.1 ka, %TOC increases slightly but averages 0.72% (5.20‰, 0.100%), 

until a sharp increase to average values of 1.03% (6.87‰, 0.139%) from 11–8.8 ka.  The sharp 

excursion occurs from ~8.5–8.2 ka, with an interval of rapid sedimentation and low TOC at 

0.86% (6.02‰, 0.109%) that ended as quickly as it came, with values rebounding by 8 ka to a 

plateau around 1.36% from 8–5.5 ka (7.92‰, 0.169%).  Another increase in %TOC occurs after 

5.5 ka and values reach the final step averaging 1.56% (8.63‰, 0.205%) from 5.1–2.5 ka.  OCterr 
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accounts for more than half of the TOC in 24JPC until ~7.1 ka, when OCmar overtakes OCterr.  By 

the end of the record, nearly all (80%) of the TOC at 24JPC is of marine origin.  

 C/N ratios in 24JPC show considerable variability, averaging 8.5 from 14–8.5 ka, then 

increasing to 9.33 from 8.4–5.5 ka, and reaching the highest average of the record (9.68) from 

5.2–3.8 ka, before falling to ~8.5 by the end of the record (Figure 2.9). 

 Sand is a prominent component of the bottom of 24JPC (12.4%) from 14.1–12.8 ka, 

before diminishing to an average of 3% by 12 ka, that is sustained throughout the remainder of 

the record (Figure 2.10).  Following the initial peak in sand, median GS is relatively steady 

around 6.9 µm from 12.5–8 ka, before increasing to ~12 µm by the core top at 2.5ka.  Silt is the 

dominant component after 8 ka, averaging 84%, compared to 68% in the earlier portion of the 

record, excluding the sand peak.  Clay and silt both mirror TOC remarkably well.  Clay is 

abundant early in the record, averaging 28.7%, until ~9.1 ka when clay and silt begin to decrease 

as TOC increases with an abrupt decrease (increase) in TOC and silt (clay) from 8.5–8.2 ka.  The 

collapse featured clay returning to over 28%, and silt falling to 66%.  After the excursion, silt 

rebounds dramatically, and quickly reaches the 68% average (by 7.8 ka) that is maintained to the 

core top while clay decreases to an average of 13% from 7.8–2.5 ka. 

 Elemental XRF data from 24JPC increase ~9.5 ka in S, Cl, Br, and Ca, and decrease in 

Ti, Fe, K and Rb (Figure 2.11).  Coeval with the TOC anomaly from ~8.5–8.2 ka, there is an 

increase in Ti, Fe, K and Rb, with a decrease in Cl, Br, Ca, and S.  Mn is prominent (870 cps) 

and exhibits great variability from 14.3 ka until decreasing at 8 ka (430 cps), followed by little 

variability.   

 In 24JPC, PC1 in the full suite PCA accounts for 65% of the variability, and the data 

loads from positive to negative along PC1 with age (Figure 2.12).  The older samples plot most 
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Figure 2.9. 24JPC %TOC, estimated %OCmar and %OCterr, %Norg, δ
13

Corg, δ
15

N, and C/N. Seven 
14

C dates are given in calendar years, 

red stars [Lundeen et al., 2005]. Lower blue arrow is the window of BLB flooding [Keigwin et al., 2006]. Our postulated 

establishment of modern currents (EMC) indicated by blue dashed line and arrow. 8.2 ka event is marked by upper blue box
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Figure 2.10. 24JPC grain size data, accumulation rate, bulk density, and magnetic susceptibility. Seven 

14
C dates are given in calendar 

years, red stars [Lundeen et al., 2005]. Lower blue arrow is the window of BLB flooding [Keigwin et al., 2006]. Our postulated 

establishment of modern currents (EMC) indicated by blue line and upper arrow. Sand peak at ~13 ka is our transgressive-scour 

deposit. Final 
14

C date may be reworked. 8.2 ka event is marked by upper blue box. 
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Figure 2.11. 24JPC XRF elemental intensity data in counts per second (cps). Our postulated establishment of modern currents (EMC) 

indicated by blue dashed line and arrow. 8.2 ka event is marked by upper blue box. 
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Figure 2.12.  24JPC PCA biplots. Left panel is full suite PCA. Right panel is XRF PCA. Populations are still color coded by age, but 

in this case are grouped not by climatic interval, but by the distinct intervals seen in %TOC (see Results). Percent variation explained 

is given with axes labels. Blue lines PC coefficients for each variable. TERR and PROD represent the area of terrestrial and 

productivity end-members respectively (see Discussion 2.5.1).
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positively along PC1, loading better with the terrigenous end-members to the right (Ti, Fe, K, 

Rb, Clay), and younger samples plot to the left towards organic end-members (%Norg, %TOC, 

δ
15

N, silt, Br, Cl, and δ
13

Corg) which are negatively associated with PC1.  Given that PC2 

explains little of the variance (9%), PC1 best shows the change in sedimentology. 

 All forams found in 24JPC were agglutinated forams, which are common in the modern 

Arctic, and can be indicative of seasonally ice free conditions [Cronin et al., 2008].  The sample 

from 730 cm (13.18 ka) was diluted by abundant sand, but also featured coaly and woody bits 

that were few to common, with very rare forams and diatoms.  A sample from 620 cm (9.78 ka) 

featured rusty colored sediment with few forams of the Ammo-baculoides genus and centric 

diatoms, with rare coaly bits and very rare Haplophragmoides forams.  The sample from 505 cm 

(8.87 ka) had few centric diatoms, rare coaly bits, and very rare pennate diatoms, Textularia 

forams, Ammo-baculodies, sponge spicules, and total agglutinated forams.  A sample from 415 

cm (8.46 ka) had common Ammo-baculoides, rare diatoms, and very rare Reophax forams, 

Textularia, and glacuconite, with the biggest assemblage of agglutinated forams.  The sample 

from 280 cm (7.78 ka) had abundant centric diatoms, few pennate diatoms and pyrite, rare 

Textularia, and very rare sponge spicules and total agglutinated forams.  The sample from 86 cm 

(4.38 ka) had abundant centric diatoms, rare Textularia, very rare pyrite, Trochammina, 

Haplophragmoides, Reophax, and Ammo-baculoides, with the most diverse agglutinated foram 

assemblage, though all of them were tiny (Personal Communication, Mark Leckie). 

2.4.3. Southwest Bering Sea, Bowers Ridge, 17JPC 

 17JPC (HLY02-02-17JPC), the southern-most and deepest core (2209 mbsl), was taken 

from Bowers Ridge [Cook et al., 2005], 270 km north of Amchitka Island near the western end 

of the Aleutian Islands, and comprises the longest record of the cores in this study, from 27–8 ka, 
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contained in only 3 m of massive diatomaceous olive green-grey silty mud with an average 

sedimentation rate of 19.66 cm/kyr (Figure 2.13, 2.14, 2.15).   

 δ
13

Corg of 17JPC averages -22.2‰ with minimal variability, likely due to the low 

resolution of isotopic data (Figure 2.13).  During the LGM and ED, δ
13

Corg averages -22.25‰ 

before depletion at the onset of the BA, averaging -21.87‰ through the BA, YD, and PB.  The 

LGM/ED and Holocene portions of the record were slightly enriched (22.39‰) in comparison to 

the middle of the record. 

 TOC has three steps in the 17JPC record: low from 27–18 ka (0.75%), higher from the 

ED through the PB (1.55%), and lower again (0.87%) entering the Holocene (Figure 2.13). 

OCmar comprises nearly all TOC preserved in 17JPC according to our simple mixing model.  

δ
15

N averages 6.29±0.68‰ throughout the record, but due to low resolution no trends can be 

confidently described (Figure 2.13).  %Norg averages 0.126±0.067%, and is assumed to be 

equivalent to %Norg in 17JPC because %Nbou is close to zero (0.0092%) [Stein and Macdonald, 

2004]. 

 C/N ratios of 17JPC display the same three step pattern as TOC: low during the LGM 

(7.78), higher from the ED through the PB (8.38), and lower (8.15) entering the Holocene 

(Figure 2.13). 

 From 27–16 ka, median GS is 12.2 µm (Figure 2.13).  After 16 ka, median GS increases 

to an average of 26.3 µm until the end of the record at 8 ka.  The increase in median GS 

corresponds to an increase in sand-size particles and a reduction in silt and clay.  Prior to 16 ka, 

average percent sand is 10.5%, before increasing to 29.3% from 16–8 ka.  During these 

respective intervals, silt averages 74.7% and 65.6%, whereas clay decreases from 14.5% to 6.1%. 

 Terrigenous elements (Ti, Fe, K, and Rb) are abundant from 27–16 ka before decreasing  
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Figure 2.13. 17JPC bulk δ
15

N, %Norg, %TOC, estimated %OCterr and %OCmar, bulk δ
13

Corg, C/N, grain size data, and accumulation 

rate. Four 
14

C dates are given in calendar years, red stars [Cook et al., 2005]. Blue arrow is the window of BLB flooding [Keigwin et 

al., 2006].  
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Figure 2.14. 17JPC elemental XRF intensity data in counts per second (cps). Blue arrow indicates BLB flooding window [Keigwin et 

al., 2006]. 
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Figure 2.15. 17JPC PCA biplots. Left panel is full suite PCA. Right panel is XRF PCA. Populations are color coded by age, and 

percent variation explained is given with axes labels. Blue lines PC coefficients for each variable. TERR and PROD represent the area 

of terrestrial and productivity end-members respectively (see Discussion 2.5.1).
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into the BA, where terrigenous counts are low, before increasing after 14 ka, and peaking during 

the YD and into the PB (Figure 2.14).  Just after 11 ka, the terrigenous elements decrease sharply 

to counts comparable to those of the BA.  When the terrigenous elements have low counts, Sr, 

Ca, Br, and Cl are abundant.  Zr, Si, and Mn track reasonably well with the terrigenous elements 

listed above.  

 The full suite PCA (Figure 2.15) reveals that the LGM and ED plot together proximal to 

terrigenous end-members (Ti, Fe, K, Rb, Clay), with the Holocene associated with sand, as seen 

in 3JPC, and the BA plotted closer to productivity end-members including: %TOC, %Norg, 

δ
13

Corg, Ca, Cl, Br, and Sr. The PB only has two points in the full suite PCA so cannot be 

accurately represented, and the YD is completely omitted.  The data are primarily influenced by 

PC1 (53.5%), but PC2 explains a significant portion of the variance (17.25%).  The XRF PCA 

(Figure 2.15) captures both these intervals, with the YD plotted between the LGM/ED and the 

BA/PB/Holocene populations.  The PB group has two distinct populations, one just above the 

YD, and one centered over the Holocene data.  The samples plot along PC1 from right to left 

with age in the XRF PCA, which explains 71.5% of the variability. 

2.4.4. Southeast Bering Sea, Umnak Plateau, 51JPC 

 51JPC (HLY02-02-51JPC) was taken from 1467 m water depth on the Umnak Plateau in 

the southeast Bering Sea [Cook et al., 2005], about 130 km northwest of Unalaska Island.  The 

background sediment of 51JPC is composed of relatively homogenous diatomaceous dark olive 

green clay and silt, which is punctuated by two tephra deposits which are each followed by a 

laminated interval (Figure 2.16, 2.17).  The first laminated interval occurs between 218–174 cm 

(15–13.3 ka) and the second from 138–134 cm (11.4–11.1 ka).  The laminations are composed of 

black to dark olive green-grey sub millimeter thick lamina.  Both are underlain by thick tephra 
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deposits (219–240 cm and 139–148 cm).  Sediment accumulation rate is 47 cm/kyr from the 

LGM until ~16 ka when the rate slows to an average of 23 cm/kyr into the Holocene. 

 δ
13

Corg of 51JPC is indicative of a marine signal, averaging -22.1‰ (Figure 2.16).  

During the LGM and into the ED, values are relatively enriched (-22.5‰), before depletion 

begins ~16.5 ka, with δ
13

Corg steady at -21.8‰ from ~15 ka into the Holocene. 

 TOC is lowest during the LGM into the ED (0.8%), and within the older tephra layer 

which appears to be either bioturbated and/or disturbed by coring (Figure 2.16).  Around 17.5 ka 

TOC increases reaching 1.9% by 16.5 ka before declining to 1% leading into the older tephra 

unit.  After the older tephra unit, TOC is relatively constant around 1.35%, until increasing at 

11.5 ka to 1.43% entering the Holocene.  OCmar is the dominant component of TOC throughout 

the record, but during the ED there is an increase in OCterr from ~17–16ka. 

 Median GS tracks the lithology, with maxima corresponding to the two tephra units 

around 15.5 and 11.75 ka respectively, and an overall increase in median GS when sand becomes 

more abundant around 16 ka (Figure 2.16).  From 20–16 ka, sand was 7.6%, compared to 15.4% 

from 16 ka on.  Clay was abundant in 51JPC during the LGM (15.1%), before increasing from 

17.7 ka to 16.4 ka (20.2%), and then decreasing to an average of 8.4% from 16–10.5 ka.  As the 

primary sediment component, silt was most prevalent in the massive units (76.2%), and least 

abundant in the tephra units (70%).  Silt was very steady outside of the tephra units averaging 

75.8%. 

51JPC is difficult to interpret with respect to XRF data, because the two tephra deposits 

correspond with two periods of climatic significance, the end of the YD, and preceding the BA.  

The tephra themselves are marked by an increase in Ti, Fe, Si, and Ca, along with low Cl, K, Br, 

S, and Sr (Figure 2.17).  Ca and Sr are high separate from the tephra activity ~13.5 ka.  During  



69 
 

 

Figure 2.16. 51JPC %TOC, estimated %OCmar and %OCterr, bulk δ
13

Corg, grain size data, and accumulation rate. Four 
14

C dates are 

given in calendar years, red stars [Cook et al., 2005]. Blue arrow is the window of BLB flooding [Keigwin et al., 2006]. Laminations 

are indicated by brown/green striped bars, with tephra displayed as light grey boxes. Tephra were not treated as instantaneous events 

due to bioturbation (older unit) and disturbance during coring (younger unit is at a steep angle within the core).  
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Figure 2.17. 51JPC elemental XRF intensity data in counts per second (cps). Tephra are indicated by grey stippled bars, and were 

treated as instantaneous. The older tephra has been dispersed through the sediment above the tephra blocks, which fall withing the 

grey bar. The younger unit is at a steep angle within the core, clearly resulting from coring disturbance.  
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Figure 2.18. 51JPC PCA biplots. Left panel is full suite PCA. Right panel is XRF PCA with the tephra data (TEPHRA) located 

around the smaller PB population.  Populations are color coded by age, and percent variation explained is given with axes labels. Blue 

lines PC coefficients for each variable.  The direction and length of the vector indicate how each variable contributes to the two 

principal components in the plot. TERR and PROD represent the area of terrestrial and productivity end-members respectively, and 

TEPHRA represents the samples from the two tephra units (see Discussion 2.5.1
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the BA and PB, the terrigenous elements (Ti, Fe, K, and Rb) are low and are higher during the 

YD and LGM/ED outside of the tephra units.  Cl, and Br are increased during the BA and PB. 

Both the full suite and XRF PCA display the ED and LGM plotted together, near Rb, K 

and Clay (Figure 2.18).  The ED shows great scatter in the XRF PCA, and two populations in the 

full suite PCA, with the upper population being the tephra unit, which is plotted closest to Ti, 

Mn, Ca and Fe, as was seen in Figure 2.17.  The PB has two populations, with one population 

plotted with the BA with the "productivity" end-members, and the other with the XRF scatter, 

and is thus the other tephra unit.  The YD plots in the center of both PCA plots. 

2.5. Discussion 

2.5.1. Principal Component Analysis End-Member Selection 

 We deemed Fe, Ti, K, Rb, and clay to be terrigenous end-members in this study, because  

all five are terrestrially derived products, they correspond with the geologic composition of 

Alaska and Chukotka, and plot together in our PCA biplots.  For all four cores, these five 

variables plot together, with the samples of intervals known to have the highest terrigenous input 

(like the ED) plotting in close proximity (e.g. Figure 2.8).  Of the four elements, only Fe can be 

altered by diagenesis  since it is one of the few sediment seafloor electron acceptors [Froelich et 

al., 1979].  Clay deposited in the Arctic is primarily known to be a terrestrial material [Nürnberg 

et al., 1994; Viscosi-Shirley et al., 2003] in part because concentrations of Arctic shelf 

sedimentary biogenic matter are generally low [Mammone, 1998].  Si and Mn both plot in close 

proximity to terrigenous end-members, but were not included as they did not plot as part of the 

same clear-cut group of four elements, are not strongly correlated with terrigenous elements, and 

have other complicating factors.  Si displayed proximally to terrigenous end-members, likely due 
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to quartz grains, but is also a major component of diatoms and other siliceous microfossils 

[Sancetta, 1995], and thus is not trusted as purely a terrigenous element.  Si was not well 

correlated with any of the four terrestrial elements, with Pearson's r-value of 0.35 to 0.58, similar 

to that of Mn with r-values from 0.34 to 0.54, whereas as the terrigenous elements had r-values 

of 0.68 to 0.88 in relation to each other (P-values all <0.01).   

 Mn is thought to be supplied to the Arctic Ocean via permafrost drainage down rivers 

during warm periods [Jakobsson et al., 2000; Löwemark et al., 2008], but Mn was not selected as 

a purely terrestrial end-member.  Mn has high variability (Figure 2.11) possibly due to its known 

propensity for diagenetic alteration and remineralization within marine sediments [Heggie et al., 

1987].  The mobility of Mn within sediments [Heggie et al., 1987; Van Cappellen and Wang, 

1996] is the primary reason we did not include it as a terrestrial end-member.  The oxides and 

hydroxides of Fe and Mn reductively dissolve when later buried or mixed below the aerobic 

surface of sediments underlying oxygenated bottom waters [Van Cappellen and Wang, 1996].  

Pore waters containing Fe(II) and Mn(II) may precipitate or be transported back toward the 

sediment-water interface via pore water diffusion and lost from the sediment [Heggie et al., 

1987; Van Cappellen and Wang, 1996].  Considering that Fe tracks nearly identically with Ti, K, 

and Rb, we assumed in our cores that only Mn was greatly affected by diagenesis.  Mn plotted 

along the same vector as the primary terrigenous variables (e.g. Figure 2.8), but was best loaded 

onto the third or fourth PC in most cases, which is why the magnitude (length) of the score 

vector for Mn is shorter in most plots than the other terrigenous end-members.   

 The geologic provinces of Chukotka are compositionally similar to those of Alaska 

[Deming et al., 1992].  Both primarily feature sedimentary rocks, extensive unconsolidated 

Quaternary deposits, and volcanic rocks [Hoare, 1961; Deming et al., 1992; Parfenov, 1992; 
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Soloviev et al., 2006].  However, Alaska has a highly variable geology, and little geologic work 

has been done that would allow for fingerprinting of specific sources [VanLaningham et al., 

2009].  VanLaningham et al. [2009] used bulk sediment 
40

Ar-
39

Ar and Nd isotopic analysis to 

constrain the sediment sources of the Meiji Drift, but had to work around the lack of source rock 

age data from the major rivers of the region, with the exception of the Yukon [Eberl, 2004].  On 

its own, our XRF data does not seem enough to fingerprint individual sources without better 

quantification [Thomson et al., 2006].  Nevertheless, Fe, Ti, K and Rb are widely known to be 

derived from the rocks and weathering products, with iron being the only element of the group 

subject to diagenetic alteration, which is minimal in our cores.  

 We have selected %TOC, %Norg, Br, Cl as the productivity end-members.  We chose 

these four variables because in every PCA biplot, they all plotted closely with the sample 

population of the periods associated with high Bering Sea productivity (BA and PB) [Cook et al., 

2005; Brunelle et al., 2010; Caissie et al., 2010; Schlung et al., 2013], and are known to be 

related to primary productivity and OM.  TOC provides a first order estimate of 

paleoproductivity [Stein, 1986], but can be influenced by terrestrial carbon input as well as OC 

accumulation rates, which are influenced by oxygenation.  Cl and Br are known to be 

concentrated in sedimentary OM [Price and Calvert, 1977; Harvey, 1980], with Br strongly 

bonded to OM.  Cl, associated with sea salt, is elevated in OM-rich sediment in our cores, 

because these sections are primarily low density, leaving more room for interstitial pore fluids 

and thus more salt.  XRF core scanning Br data has been shown to be directly related to TOC, 

but the relationship is weaker during intervals of high terrestrial carbon input [Ziegler et al., 

2008].  In certain cores, other elements appeared to be associated with productivity, like Sr and 

Ca in 17JPC (Figure 2.15), while not in other cores.  As much as 40% of variability in silt 
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content of cores can be explained by diatom abundance in the Bering Sea [Aiello and Ravelo, 

2012], but that still leaves silt content split between biogenic materials and terrigenous materials, 

as shown by the location of silt roughly halfway between the terrigenous and productivity end-

members in the full suite PCA biplots (e.g. Figure 2.18).   

 Our terrigenous and productivity end-members were thus chosen to represent sediment 

delivery to all four cores.  We do not claim that these end-members are a perfect representation 

and are not quantitatively applied in this study, but we have confidence that they do indeed 

broadly represent sediment dominated by terrigenous input as seen during the ED and LGM, and 

sediment dominated by biogenic components as seen during the PB and BA. 

2.5.2. Last Glacial Maximum (27 to 18 ka) 

 Around 26 ka, the Bering and Chukchi seas were much smaller than today (Figure 2.2) 

due to the exposure of the continental shelves (Figure 2.1).  Sea level, estimated at 120–125 m 

below present day [Fairbanks, 1989; Peltier and Fairbanks, 2006],  closed the Bering Strait 

[Hopkins, 1959], and ended communication between the Chukchi and Bering Seas.  The cold 

climate of the LGM permitted extensive sea ice cover over the Bering Sea [Sancetta et al., 1985; 

Caissie et al., 2010], and substantial perennial ice over what little of the Chukchi was not 

subaerially exposed [Nørgaard-Pedersen, 2003].  

2.5.2.1. Western Bering Sea Shelf Slope, 3JPC 

 Situated between Navarin and Pervenets Canyons on the western side of the Bering Sea 

shelf slope, 3JPC would have been located roughly 200 km from the BLB during LGM low 

stand (~26 ka) [Peltier and Fairbanks, 2006], with a cold climate and permanent or seasonal sea 

ice cover [Sancetta et al., 1985; Katsuki and Takahashi, 2005; Caissie et al., 2010].  Prior to 18 
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ka, the environment of 3JPC would likely had relatively low biological activity, supported by 

limited TOC (0.8%), and the lowest sedimentation rate of the record (86 cm/kyr).  Relatively 

enriched LGM δ
13

Corg (-20.8‰) primarily represents a marine signal at the time [Walsh et al., 

1989; Naidu et al., 1993], with low terrestrial input (low %OCterr), and OCmar dominating the 

LGM supply of TOC (Figure 2.5).  PCA performed on geochemical and isotopic data of 3JPC 

reveals that the LGM population plots separately from other age-grouped populations, farthest 

from the productivity and terrigenous end-members, supporting both the low TOC and relatively 

enriched δ
13

Corg (Figure 2.8).  Restricted LGM Bering Sea and subarctic North Pacific 

productivity [Keigwin et al., 1992; Nakatsuka et al., 1995; Jaccard, 2005; Okazaki et al., 2005; 

Tanaka and Takahashi, 2005; Caissie et al., 2010; Lam et al., 2013] likely corresponds to light 

limitation suppressing phytoplankton blooms [Tanaka and Takahashi, 2005], and minimal 

ventilation of nutrient rich deep water limiting the nutrient supply to the euphotic zone [Brunelle 

et al., 2007]. 

2.5.2.2. Southwestern Bering Sea, Bowers Ridge, 17JPC 

 In contrast to 3JPC, 17JPC is purely an open marine site, with no major proximal sources 

of terrigenous material at any time during the record, supported by an average of -22.2‰ δ
13

Corg 

from 27–8 ka.  PCA of 17JPC XRF data indicates that the LGM had the highest terrestrial input 

of any time during the record, substantiated by its plotting along PC1 (Figure 2.15) where 

assumed terrigenous end-members are located (Fe, Ti, K, and Rb, and clay--for the full suite 

PCA).  The highest contributions of these terrigenous end-members were observed from 27–16 

ka in the XRF data.  The higher input of terrestrial material at 17JPC may have resulted from 

increased aerial extent of the Aleutian Islands [Mann and Hamilton, 1995] with lowered sea 

level, increased aeolian flux [Otosaka et al., 2004; Lam et al., 2013], and material derived from 
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glacier erosion from the Aleutian Islands, Koryak Mountains, and/or Kamchatcha Peninsula 

[Mann and Hamilton, 1995; Gualtieri et al., 2000].  Loess deposition recorded south of 17JPC 

on the Detroit Seamount in GGC–37 was highest during the LGM/ED, and declined at 11 ka, 

coeval with the flooding of the Bering Strait, suggesting that subaerial delivery of exposed 

Bering Shelf sediments was the dominant contributor of loess-like material to the core [Lam et 

al., 2013].  Our XRF data support the Lam et al. [Lam et al., 2013] loess delivery interpretation 

as counts of Ti, Fe, K and Rb are high during the LGM, ED, and YD, before decreasing during 

the PB and Holocene once the exposed shelves would have been largely flooded.  Without 

quantitative mineralogy [Viscosi-Shirley et al., 2003; Eberl, 2004], we do not interpret XRF 

elemental count data as quantitative or exact, merely as a general descriptor of relative changes 

in sediment composition.  

2.5.2.3. Umnak Plateau, Southeastern Bering Sea, 51JPC 

 51JPC was also an open marine site during the LGM, as shown by δ
13

Corg (-22.5‰) 

indicating a predominately marine signal [Naidu et al., 2000].  During the LGM, lower sea level 

and glaciation of the Aleutians [Mann and Hamilton, 1995; Kaufman and Manley, 2004] 

prevented warm ASW from arriving at 51JPC through the shallow Unimak Pass [Caissie et al., 

2010].  Clay content was higher during the LGM (~12%) than during the younger portion of the 

record (~2%) (Figure 2.16), likely due to decreased current velocity over the site when Aleutian 

Island channels were blocked.  Cutting off ASW injection through Aleutian Passes [Okazaki et 

al., 2005] would have limited the strength of the BSC [Okazaki et al., 2005], and supported sea 

ice growth [Overland and Pease, 1982].  In conjunction with the limitation of ASW injection, 

extensive sea ice cover likely limited wind forcing, weakening the strength and quantity of 

eddies that define the BSC [Clement et al., 2005],  
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 PCA for 51JPC shows the LGM population plotting with terrigenous end-members, 

particularly K and Rb.  LGM K and Rb are at their highest counts observed in the record, 

whereas other terrigenous elements (Ti, Fe) are higher during the YD and tephra units. 

2.5.3. Early Deglaciation (18 to 15 ka) 

2.5.3.1. Increased Terrestrial Influx, Bering Sea 

 There are four main lines of evidence supporting increased terrestrial input during the 

ED: δ
13

Corg depletion, increased OCterr, high counts of terrigenous elements, increased fine clay  

content (<2 µm), and PCA plotting of  ED samples with terrigenous end-members. 

2.5.3.2. Organic Carbon Isotopes and Terrestrial Carbon Input  

 In 3JPC, the relative δ
13

Corg depletion and TOC increase that begin ~18 ka (Figure 2.5) 

are likely indicators of the initiation of deglaciation, but since we lack a date in proximity to the 

depletion to constrain the accumulation rate (i.e., no date between ~20.4 and 14.7 ka), we do not 

have confidence in the timing of deglaciation as recorded by 3JPC.  It is possible that the 

excursion is closer to 17.5 ka, which is the attributed date by Brunelle et al. [2010], based upon a 

δ
15

Ndb depletion corresponding to the depletion seen in our record at 18 ka (Figure 2.5).  The 

increase in TOC and δ
13

Corg suggests that the low sedimentation rate applied through the period 

would have been higher during the TOC peak, thereby pushing the deglaciation to a later date 

which does not correspond with the onset of H1 (our ED).  If the sedimentation rate was indeed 

higher in this interval, it would essentially delay the peak in TOC and δ
13

Corg depletion, and 

extend the initial interval of low TOC and marine δ
13

Corg signal seen in Figure 2.5.  Oxygen 

isotopes of planktonic forams provide evidence for the onset of deglaciation in the region, with 
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δ
18

O depletion beginning around 16.9 ka for the Gulf of Alaska [Davies et al., 2011], consistent 

with freshening and warming of surface waters due glacial melt water and rising temperature. 

 By 17 ka, the δ
13

Corg of 3JPC (-25‰) is dominated by terrestrial carbon, seen in OCterr 

which overtook OCmar by 17.5 ka (Figure 2.5).  The increase in OCterr is indicative of an influx of 

terrigenous material likely derived from glacial materials.  The erosion of continental shelves 

during inundation and glacial melt [Davies et al., 2011] would have also contributed, however 

major global sea level rise did not occur until the BA [Peltier and Fairbanks, 2006] suggesting 

that the OC source of the ED was most likely from further upriver on the landscape.  A 

corresponding peak in clay content is suggestive of fine grained glacial material delivered via 

rivers, coastal inundation, and dust storms known to transport micronutrient-rich loess to the 

Gulf of Alaska [Crusius et al., 2011].  This terrigenous material contribution led to the highest 

period of TOC in the record (1.46%) from 17.2–14.8 ka, likely fostering increased productivity 

seen in the Gulf of Alaska [Davies et al., 2011; Addison et al., 2012].  

 Similar to 3JPC, the most depleted δ
13

Corg values of the 51JPC (-22.28‰) and 17JPC (-

22.75‰) records occur during the ED.  Although OCmar is the dominant component throughout 

the 51JPC record, OCterr increases during the ED, essentially matching OCmar during the height 

of the ED (Figure 2.16).  The poor resolution of isotope data in 17JPC does not lend confidence 

to describing the terrestrial carbon component for any one interval. 

2.5.3.3. Elemental XRF data and PCA Analysis 

 The ED sample populations of both 3JPC and 17JPC (Figure 2.8 and Figure 2.15) plot 

closest to the terrigenous end-members (Fe, Ti, K, Rb and Clay).  These four terrigenous 

elements are high in all three cores during the ED, and increase in 3JPC during the ED.  The 

PCA plotting of ED samples with terrigenous elements and high counts during the ED supports 
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the interpretation of increased deglacial delivery of terrestrial material during the ED (Figure 

2.5).   

 Interestingly, C/N ratios do not show much change during the ED in 3JPC, increasing 

from ~12 to 13 in 3JPC, but are nonetheless indicative of a terrestrial signal.  High C/N values 

(>10) indicate terrestrial soil and plant material input and/or low quality, older, more refractory 

detrital material [Parsons et al., 1977; Grebmeier et al., 1988].   

 The ED population in 51JPC also plots closely to the terrigenous end-members, but 

shows great scatter in the XRF PCA, and displays two populations in the full suite PCA (Figure 

2.18).  The scatter in the XRF PCA that corresponds to the second population in the full suite 

PCA plot closely with Ti, Mn, Ca, and magnetic susceptibility, and represent the tephra units.  

The ED outside of the tephra units plot with the LGM population, closely associated with K and 

Rb.  The increase in terrestrial material delivery from the LGM to the ED was likely due to 

glacier melt, inundation of the BLB and exposed continental shelves, and loess deposition [Lam 

et al., 2013]. 

2.5.3.4. Nitrogen Isotopes of the Early Deglacial 

 Enriched δ
15

N values during the LGM (7.52‰) in 3JPC decrease rapidly during the early 

deglaciation at ~18.15 ka, averaging 5.66‰ from 18–15.4 ka.  This pattern of high LGM δ
15

N 

followed by a decrease during the ED is seen across the North Pacific as documented by 

Brunelle et al. [Figure 4, 2010], in 17JPC, as well as in GGC27 of the Okhotsk Sea and PC13 of 

the Northern Emperor Seamounts, located in the open western subarctic Pacific.  The sustained 

enriched δ
15

N values of the LGM may be due to increased nutrient consumption in the 

Subantarctic southern ocean, lowering the nutrient content of intermediate waters traveling 

northwards across the Pacific [Robinson, 2005], and thus enriching the source nitrate in the 
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Bering Sea.  At 17.5 ka, there is an interval of depleted δ
15

N (5.5‰) in the North Pacific 

[Brunelle et al., 2010], corresponding to our ED depleted δ
15

N record (5.7‰).  This depletion is 

postulated to have been driven by decreased southern ocean utilization after 18 ka [Wolff et al., 

2006; Winckler et al., 2008], which left the source nitrate with more 
14

N-nitrate, as well as a 

potential decrease in nitrate utilization in the North Pacific [Brunelle et al., 2010]. 

2.5.3.5. Early Deglacial River Drainage Networks 

 The drainage network and debouchement location for the major Beringian rivers have a 

major impact on sediment delivery in the Bering and Chukchi Seas [McManus et al., 1974; 

Nelson and Creager, 1977; Stein, 2000].  With a sediment discharge of ~55 million metric tons 

per year, the Yukon River accounts for as much as 90% of river-borne sediment entering the 

Bering Sea [Lisitsyn, 1966; Eberl, 2004].  The Yukon and Kuskokwim Rivers are separated by 

no topographic divide in their lower reaches, which has led to speculation that they may have 

joined in the past, perhaps even during the LGM [Scholl et al., 1970] when the BLB was 

exposed, forcing the major regional rivers: Yukon, Kuskokwim, and Anadyr, to cross the 

subaerially exposed continental shelf to reach the southern Bering Sea [Kummer and Creager, 

1971; Mann and Hamilton, 1995].   With the BLB submerged the rivers empty farther to the 

north in modern times, with Yukon and Anadyr discharge transported northward through the BS 

[Coachman and Aagaard, 1966; Roach et al., 1995; Woodgate et al., 2005].   

 There is not enough evidence of buried channels to tie present day rivers to submarine 

canyons at specific times [Carlson and Karl, 1984], but it is likely that these three rivers played 

an important role in excavating many of the huge submarine canyons of the Bering shelf slope 

[Scholl et al., 1968, 1970; Hopkins, 1972; Carlson and Karl, 1984].  A probable debouchement 

of the Yukon and/or Kuskokwim Rivers during the LGM is Pribilof Canyon (Figure 2.2) [Scholl 
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et al., 1970; Hopkins, 1972; Carlson and Karl, 1984], which would have brought the Yukon 

closer to 3JPC, allowing the BSC to transport material to the core site from the mouth of the 

Yukon.  Alternatively, the rivers may have drained across the BLB as sluggish, meandering 

streams which spread the available water over the tundra [Sancetta et al., 1985].  In this scenario, 

the riverine materials and clay deposited over the BLB would have entered the Bering Sea during 

the inundation and erosion of the BLB during the ED.  This material would have been ripe for 

transport to the Bering Sea via aeolian transport or during inundation.  Whether the Yukon and 

Kuskokwim drained directly into the Bering Sea [Scholl et al., 1970; Hopkins, 1972], or 

deposited most of the sediment load en route to the Bering, the ED saw an increase in the 

delivery of terrigenous material to the Bering Sea, as supported by an increase in OCterr, PCA 

plotting of ED with terrigenous end-members, and high XRF counts of terrigenous elements in 

all three cores. 

 There is a rapid increase of clay before 18 ka in 3JPC from 12–20% after averaging 13% 

from 21–18.2 ka is coeval with an increase in OCterr and Norg (Figure 2.5).  The Yukon and 

Kuskokwim River watersheds are known to be rich in illite and kaolinite [Naidu and Mowatt, 

1983] so an increase in clay may be from riverine transport, and this is supported by the increase 

in OCterr and the PCA loading of the ED samples with terrigenous end-members (Figure 2.8).  

Interestingly there is a peak in clay <2 µm during the ED from 4% to 17%, which is seen as 

slightly lower clay content than during the LGM in clay <4 µm.  The peak in very fine clay may 

be due to increased input of glacial flour.  The increase in OCterr indicates that the Norg increase 

was likely terrestrially-derived as well.  The depleted δ
13

Corg of 3JPC (-25‰) is consistent with 

river input, as the Yukon River (-26.5 to -28‰) [Guo and Macdonald, 2006], the Colville, 

Mackenzie, Anadyr, and Lena (<-26.5‰) [Naidu et al., 2000], and Siberian rivers (-27.5‰),  
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draining both taiga and tundra [Lobbes et al., 2000], are all relatively depleted. 

 The discovery of the "Paleo-Anadyr" [Canada. Defence Research Board. Directorate of 

Scientific Information Services and Kotenev, 1966] suggests that perhaps the Anadyr River 

played a role in excavating either the Navarin or Pervenets Canyons (Figure 2.2) during the 

Pleistocene [Canada. Defence Research Board. Directorate of Scientific Information Services 

and Kotenev, 1966; Hopkins, 1972].  If the Anadyr drained downstream of or proximal to 3JPC 

during the LGM, it would have been a major influence during the onset of melt during the ED, 

and possibly could have played a role in the increase in terrigenous elements seen in 3JPC during 

the ED, compared to 17JPC and 51JPC, which had high counts but saw no increase. 

 If the Kuskokwim River drained via the Bering Canyon, then a larger difference would 

be expected between the LGM/ED δ
13

Corg (-22.5‰) and the remainder of the record (-21.8‰).  

The <1‰ change in δ
13

Corg can be explained via the proximity to land, blockage of North Pacific 

Water (NPW) injection through the Aleutians due to extensive glaciation and lower sea level 

[Mann and Hamilton, 1995; Katsuki and Takahashi, 2005; Caissie et al., 2010].  Increased 

glacier input from the portion of the Cordilleran Ice Sheet occupying the Aleutian Range 

[Kaufman and Manley, 2004] may account for the high clay content during the LGM and ED 

(16%) versus the BA through the Holocene (8%).  

 Identifying where these major rivers drained in the past has implications for sediment 

delivery at core sites of the Bering and Chukchi Seas, as their nutrients and detrital material are 

an important part of the ecosystem and sedimentary budget of the region [McManus et al., 1974; 

Nelson and Creager, 1977; Stein, 2000], and would have been even more significant during the 

height of the deglaciation. 
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2.5.4. Bølling-Allerød (15 to 13 ka) 

 The BA warm period marked the end of the ED.  An abrupt freshening and/or warming 

event is recorded in planktonic foraminifer δ
18

O of the Bering shelf-slope at 14.4 ka [Cook et al., 

2005], and at 15 ka on the Umnak Plateau [Caissie et al., 2010], as well as in the Gulf of Alaska 

[Davies et al., 2011], corresponding with the 14.7 ka date of BA onset at NGRIP [Rasmussen et 

al., 2006] that featured rapid Northern Hemisphere warming [Broecker, 1998; Schlung et al., 

2013], and Meltwater Pulse 1a (MWP 1a) [Weaver, 2003].  Meltwater pulse 1a increased eustatic 

sea level by 20 m in the span of ~500 years (14.4–13.8 ka) and was likely derived primarily from 

Laurentia [Tarasov and Peltier, 2005].  Freshening from MWP 1a may have relieved light 

limitation by shallowing the depth of the mixed layer [Lam et al., 2013] and fostering elevated 

productivity as predicted by the critical depth theory [Sverdrup, 1953], which is valid in the 

western North Pacific [Obata et al., 1996].   

 Over the Bering Sea, upper water column stability is thought to have increased due to 

fresh water input from melting ice [Keigwin et al., 1992; Lam et al., 2013], driving an increase in 

productivity in the Bering Sea as seen in our cores, that also occurred over the subarctic North 

Pacific [Keigwin et al., 1992; Crusius et al., 2004; Galbraith et al., 2007; Jaccard et al., 2009].  

A freshwater influx could drive an increase in productivity by trapping nutrients in the euphotic 

zone, shallowing the mixed layer and relieving light limitation, our data do not support or dispute 

this hypothesis. 

2.5.4.1. Bølling-Allerød Laminations 

 3JPC has two low-density laminated sections separated by a bioturbated interval (Figure 

2.5) similar to many Bering Sea and North Pacific Cores [Behl and Kennett, 1996; Cook et al., 
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2005; Ikehara et al., 2006; Brunelle et al., 2007; Ishizaki et al., 2009; Khim et al., 2011; Schlung 

et al., 2013].      

 The BA laminated interval begins at 14.85 ka (BA: 14.7–13 ka, YD: 12.9–11.7 ka 

NGRIP (North Greenland Ice Core Project) [Rasmussen et al., 2006]) and ends at 12.9 ka with 

laminations beginning again at 11.5 ka.  Laminae deposition at 3JPC during the BA was coeval 

with lamina [Schlung et al., 2013] and green layers rich in OM, CaCO3, and biogenic opal seen 

on Bowers Ridge [Brunelle et al., 2007].  The correspondence between 3JPC laminae deposition 

and the dating of the BA and YD in NGRIP [Rasmussen et al., 2006], and with other regional 

cores with laminae [Behl and Kennett, 1996; Davies et al., 2011], is evidence that our age depth 

model is robust during this period.  

 During the BA laminated section, there are two bioturbated gaps that last 200 years each, 

the first beginning at ~14.23 ka and the second at ~13.45 ka.  These bioturbated intervals may 

represent the Older Dryas period, and Inter-Allerød Cold Period (IACP) [Lehman and Keigwin, 

1992; Benson et al., 1997; Björck et al., 2003], and are perhaps driven by a decrease in 

productivity, which rendered oxygen utilization incomplete at depth, and/or better intermediate 

water ventilation [Mikolajewicz et al., 1997].  This remarkable correspondence may support the 

hypothesis that there is a teleconnection between Greenland and the Bering Sea [Kuehn et al., 

2014].  At the least, the correspondence of our bioturbated gaps to NGRIP cold periods suggests 

that the large scale change in climate at these times was felt synchronously in Greenland and the 

Bering Sea.  

2.5.4.2. Increased Bølling-Allerød Productivity 

 Increased productivity marked the BA in the Bering Sea [Cook et al., 2005; Brunelle et 

al., 2010; Caissie et al., 2010; Schlung et al., 2013; Kuehn et al., 2014], but TOC in 3JPC 
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decreased by 0.32% from the ED (1.14%), whereas the BA in 51JPC featured its highest 

sustained TOC (1.35%).  This TOC decrease during a time known for high productivity is likely 

due to decreased terrigenous input separate from marine productivity.  OCmar marginally 

increases during the BA, and OCterr decreases following the initial peak in OCterr during the ED 

(Figure 2.5).  The decrease in 3JPC TOC is likely due to the inundation of the nearby BLB, 

making the terrigenous material supply more distal due to the increased distance to major river 

drainage outlets.   

 Given that MWP 1a occurred after the ED, it would seem that this would have provided 

an even larger influx to all Bering Sea cores sites.  The increased productivity during the BA 

may have overprinted some of this terrestrial signal, implying that perhaps the ED featured a 

pulse of terrestrial material absent a spike in productivity.    

 The %Norg and %TOC curves look nearly identical for 3JPC, suggesting that they are 

similarly influenced by changes in marine and terrestrial inputs (Figure 2.5).  Therefore, the 

decrease in %Norg appears to be due to a decrease in terrigenous-sourced Norg.  

 In 3JPC, the PB and BA show the greatest variability in PCA, but plot closest to 

productivity end-members: %TOC, %Norg, silt, Cl and Br.  BA XRF data for 3JPC support a 

more productive, less terrigenous signal with a decrease in Ti, Fe, and K, and an increase in Cl, 

Br, and to a lesser extent Ca (Figure 2.7).  The PB and BA plot together in PCA biplots in all 

three Bering Sea cores, in every case plotting closer to assumed productivity indicators and far 

from the terrigenous end-members.  This clearly suggests that the PB and BA are best explained 

by productivity at the time, which likely overrode a terrigenous signal. 

 The southwestern Bering Sea recorded an increase in productivity during the BA 

[Brunelle et al., 2007] as recorded by increased %silt, XRF elemental data, and PCA biplots of 
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our data.  The increase in grain size seen in 17JPC supports this increase in productivity, as 

approximately 40% of the variance in particle size in IODP cores from the Bering slope and 

Bowers Ridge (U1340, U1341, U1343, and U1344) can be explained by the abundance and 

preservation of diatom valves, a rough indicator of biogenic opal productivity [Aiello and 

Ravelo, 2012].  Like 17JPC, U1340 is also from the Bower's Ridge, suggesting that the increase 

in percent silt in 17JPC is recording an increase in diatoms and/or the size of diatoms, as SST 

warmed to ~11°C during the BA at Bowers Ridge [Schlung et al., 2013].  

2.5.4.3. δ
13

Corg and Alaskan Stream Water 

 In 3JPC, δ
13

Corg remained relatively depleted during the BA (-24.7‰), only slightly 

enriched relative to 17–10.7 ka (-24.9‰), perhaps indicative of a minor reduction in terrestrial 

material input, and/or an increase in marine carbon export.   

 The LGM and ED were relatively enriched in δ
13

Corg at 51JPC (-22.5‰), before 

depletion ~16.5 ka, with δ
13

Corg steady (-21.8‰) from the onset of the BA into the Holocene 

(Figure 2.16).  The stable but enriched values of δ
13

Corg, as well as low OCterr and high OCmar at 

51JPC suggest that sediment delivery to the core site was fairly constant from the BA into the 

Holocene.  This could have resulted from any combination of the following: increased flux of 

NPW, increasing distance to land, local submergence of subaerially exposed shelf, reduction of 

local glaciation, and the decreasing proximity of the major river mouths, like the Kuskokwim 

and the rivers that empty into Bristol Bay. 

 The decline in sea ice cover during the BA [Caissie et al., 2010], may have strengthened 

the BSC, improving nutrient transport from the subsurface to the euphotic zone [Kinder et al., 

1975; Johnson et al., 2004; Okkonen et al., 2004] supporting high primary productivity as 

suggested by Kim et al. [2011].  High productivity is supported by elevated %TOC and in PCA 
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biplots with the BA samples plotting with productivity end-members (Figure 2.8, Figure 2.15, 

and Figure 2.18).  

2.5.4.4. Bølling-Allerød Nitrogen Isotopes 

 During the BA, δ
15

N in 3JPC increased until peaking by 14 ka (7.9‰), averaging 7.1‰ 

from 14.7–13.7 ka, where a decrease began that continued into the YD until around 12.5 ka.  

 The δ
15

N enrichment of 3JPC at the onset of the BA is best explained by the 

intensification of denitrification and increased nitrate utilization in the Bering Sea [Schlung et 

al., 2013].  Although the BA has been documented as a high productivity interval in the region 

[Caissie et al., 2010], associated higher nitrate utilization likely cannot fully explain the increase 

from 5.7 to 7.1‰.  When surface nitrate is entirely utilized, accumulating particulate organic 

matter (POM) has the isotopic signature of the source nitrate [Sigman et al., 2009], which is ~5–

6‰ in the Bering Sea today [Lehmann et al., 2005].  This makes it unlikely that enhanced nitrate 

utilization produced the elevated BA values without a concurrent change in the δ
15

N of the 

nitrate source.  Under well-oxygenated conditions, settling POM is consumed using oxygen as 

the electron acceptor.  When oxygen becomes scarce, as suggested by laminae deposition during 

the BA, nitrogen becomes the preferred electron acceptor, and heterotrophic bacteria oxidize OM 

in order to gain energy via denitrification.  During denitrification the bacteria preferentially use 

15
N-depleted nitrogen, thus enriching the residual δ

15
N values. 

 During the BA and PB periods, water column suboxia was prevalent, and enabled the 

deposition of laminae; whether due to elevated productivity, suppressed intermediate water 

oxygenation, or a combination of the two [Cook et al., 2005; Caissie et al., 2010; Davies et al., 

2011; Kim et al., 2011; Schlung et al., 2013].  Under suboxic conditions, denitrification at 3JPC 

during the BA was coeval with denitrification on Bowers Ridge [Brunelle et al., 2007, 2010; 
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Schlung et al., 2013].  Our 3JPC BA data (7.9‰) are consistent with other studies that have 

measured bulk δ
15

N BA peaks of 7.5‰ at 17JPC [Brunelle et al., 2007] and 8.25‰ at IODP site 

1340 [Schlung et al., 2013].  The 3JPC record is further evidence of a widespread rise in 

denitrification from sites around the North Pacific [Emmer and Thunell, 2000; Kienast et al., 

2002; Kao et al., 2008; Brunelle et al., 2010; Addison et al., 2012; Schlung et al., 2013]. 

 Recent work [Studer et al., 2013] has indicated that bulk δ
15

N in the region could be 

biased by sponge spicules (δ
15

N ~-11‰), and while this may be the case for our core, the 

correspondence in δ
15

N changes with climatic intervals and the Bowers Ridge records implies 

that the overall implications are unchanged, though the absolute magnitude could be affected. 

2.5.5. Younger Dryas (12.9 to 11.7 ka) 

 AMOC is thought to have weakened or ceased altogether during the Younger Dryas cold 

period [Broecker et al., 1988; Timmermann and Menviel, 2009].  The BLB was shrinking in 

extent, but was still a contiguous east-west landmass  at the onset of the YD, with sea level ~65 

mbp at the onset of the YD [Fairbanks, 1989].  Sea level rise slowed [Bard et al., 2010] as alpine 

glaciers advanced in Alaska [Briner et al., 2002], marking the YD as an abrupt change from the 

BA.  Sea ice had declined during the BA, but rebounded during the YD [Jim Kocis submitted; 

Cook et al. 2005].  Such rapid climatic changes had a pronounced effect on the species 

assemblages of marine organisms and the overall productivity of the region [Cook et al., 2005; 

Gorbarenko et al., 2005; Barron et al., 2009].   

2.5.5.1. Decreased Younger Dryas Productivity 

  The YD marked a hiatus in laminae deposition in 3JPC, 51JPC and across the range 

cited in the BA section [e.g. Cook et al., 2005; Caissie et al., 2010].  This hiatus in laminae is 
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attributed to an increase in oxygenation due to changes in NPIW ventilation [Kennett and 

Ingram, 1995; Zheng et al., 2000; Max et al., 2014; Okazaki et al., 2014], primary productivity 

[Mix et al., 1999; Crusius et al., 2004; Schlung et al., 2013], or a combination of both [Hendy 

and Pedersen, 2005; Ishizaki et al., 2009; Kim et al., 2011; Gorbarenko et al., 2014].  The 

massive sediment character during the YD interval is seen as a period of decreased productivity 

in all three of our Bering Sea cores as recorded by decreased sedimentation rate, decreased TOC 

and Norg, depletion of both δ
15

N and δ
13

Corg, and its central but discrete location in the PCA 

biplots. 

 The YD is not a prominent feature in sediment cores from Bower's Ridge, where it is 

identified as an 11 cm thick massive interval in U1340 [Schlung et al., 2013], and a 6 cm thick 

section in 17JPC, that coincided with a collapse in %biogenic Ba, CaCO3, and opal [Brunelle et 

al., 2007].  Low sedimentation rates were common during the YD as seen on Bower's Ridge (10 

cm/kyr) [Schlung et al., 2013], and 4–5 cm/kyr in 17JPC, as well as in the Gulf of Alaska (9 

cm/kyr) [Davies et al., 2011], consistent with fairly stable cold and/or saline surface conditions 

[Davies et al., 2011].  

 δ
13

Corg of 3JPC remained depleted during the YD, with a further slight decrease to            

-25.1‰, consistent with YD glacier re-advance [Briner et al., 2002], which likely increased the 

export of terrigenous material through erosion and reworking of proglacial sediments.  

Decreased YD productivity in the Bering Sea is recorded in 3JPC by lower TOC (0.95%), low 

Norg (0.095%), and a depletion of δ
15

N (-5.73‰), indicative of decreased nitrate utilization and 

denitrification [Schlung et al., 2013].  51JPC also featured a TOC decrease (1.15%) during the 

YD, likely resulting from a reduction in productivity, as there is no net change in OCterr.   

 PCA biplots for the Bering Sea cores display the YD at or near the center.  This implies 
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that the YD was different from the other time periods, not as productive as the BA or PB, and 

with less terrestrial input than the ED, but not as biologically dormant as the LGM.  In 17JPC 

this can only be seen for the XRF PCA (Figure 2.15), as the isotope data are too coarse to 

capture the YD.  In 51JPC and 3JPC, the YD plots near the center in both the full-suite and XRF 

PCA biplots, marking the YD as a unique period of the last deglaciation in the Bering Sea. 

 The terrigenous elements (Fe, Ti, Rb, and K) in all three Bering Sea cores have high 

counts during the YD.  All three cores increase around 13.5 ka from the low values of the BA, 

with the biggest increase coming at the onset of the YD.  The increase leading into the YD 

cannot be used as evidence regarding the onset of the YD, but could potentially indicate 

preconditioning, or a gradual slide into the YD.  After terrigenous-related elements peaked 

during the middle of the YD, a decline brought low counts by the early PB, comparable to values 

during the BA. 

2.5.5.2. Northwest Chukchi Shelf, 24 JPC 

 Our age depth model for 24JPC indicates that the record begins around 14.3 ka, which is 

far older than most Chukchi Sea sedimentary records, which are limited to the Holocene [Darby 

et al., 2009; Ortiz et al., 2009].  The Chukchi Sea was not an ideal location for preservation until 

the Holocene because of the exposure of the BLB, and the subsequent shallow, transgressive sea 

in which sediment preservation would have been difficult due to ice scouring [Hill and Driscoll, 

2010] and sediment re-suspension in its shallow depths [Reimnitz et al., 1998].  There is a peak 

in sand (18%) from ~14–12.5 ka that we deem to be the transgressive-scour deposit (Figure 

2.10).  A sample from this interval (~13.18 ka) contained few to common coaly and woody bits, 

undoubtedly sourced from the BLB [Flores et al., 2004].  Nevertheless, we interpret our record 

to begin around 14 ka with the caveat that the deepest portion of the record (~14.3–9.2 ka) may 
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not reach back into the BA or even the YD.  Regardless, we have strong age control during the 

Holocene, the time we are most concerned with in the Chukchi Sea.  All further discussion of 

24JPC assumes that our age depth model (Figure 2.3) is valid.    

 Following the transgressive-scour deposit, clay content is high (29%), indicating that the 

current’s velocity over the site was weak [Nelson and Creager, 1977], since the BLB was either 

not yet sufficiently flooded to open the BS, or just beginning to flood, keeping water exchange 

over the site to a minimum.  If the BLB was flooded or not transporting a significant amount of 

water over the core site, then sluggish circulation would remain as is hypothesized for the YD 

[Polyak et al., 2004; Bradley and England, 2008]. 

 The coaly and woody bits found in the transgressive-scour deposit must have originated 

from the Alaskan side of the BLB [Flores et al., 2004], supporting our analysis that this interval 

had a near-shore shallow water environment, dominated by input from the BLB.  Depleted 

δ
13

Corg (-24.7‰) provides additional support for the influence of BLB material in the core site, as 

the depleted value is nearer to the the expected terrigenous value for the area (-27‰) than the 

expected marine value (-21‰) [Naidu et al., 2004; Trefry et al., 2014].  OCterr accounts for over 

60% of TOC during the early portion of the record until nearly 8 ka, indicative of BLB-sourced 

OC in the shallow water, near-shore environment of 24JPC.  TOC (0.71%) and Norg (0.104%) are 

low, indicative of low productivity and minimal preservation.   

2.5.5.3. Younger Dryas Summary 

 Our YD Bering Sea data provide additional evidence that productivity decreased during 

the YD, but also indicates that the YD was a unique period in our record, with lower productivity 

than the BA or PB, and lower terrestrial material input than the ED, yet was not as biologically 

quiet as the LGM.  The increase in terrestrial end-members in XRF data, without a 
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corresponding change in δ
13

Corg, suggests that the flux of terrigenous material delivered during 

the YD was different than that of the ED.  During the ED, there was considerable flooding of 

subaerially exposed continental shelves [Davies et al., 2011; Lam et al., 2013], which led to a 

large influx of material and micronutrients to the Bering Sea.  The lack of a significant increase 

in OCterr with the corresponding terrigenous XRF counts during the YD indicate that glacier 

readvance likely supplied a major portion of terrestrial material, consistent with the decreased 

rate of sea level rise during the YD [Bard et al., 2010].  Sediment in the path of glacier 

readvance during the YD would have largely been limited in OC, with little time to build soil or 

allow for significant plant growth during the BA, as glaciers retreated.  A further source of 

terrestrial material during the YD could be sea ice, which may have been largely absent during 

the BA, before rebounding during the YD [Sancetta et al., 1985; Cook et al., 2005].  The YD 

was a stark transition from the preceding BA warm period and the following PB, as glaciers 

advanced, sea ice spread, productivity declined, and sedimentation rates fell. 

2.5.6. Pre-Boreal Warm Period (11.7 to 10.5 ka) 

 The pre-Boreal warm period (PB) marked the end of the YD and is the second major 

laminated interval seen in our Bering Sea cores, as well as the cores cited in the BA section 

above [e.g. Behl and Kennett, 1996; Cook et al., 2005; Caissie et al., 2010; Schlung et al., 2013].  

Accompanying these laminations was another increase in productivity [Crusius et al., 2004; 

Davies et al., 2011; Schlung et al., 2013], and a second abrupt freshening and/or warming event 

recorded in planktonic foraminifer δ
18

O of the Bering shelf-slope at 11.65 ka [Cook et al., 2005].   

 Around the end of the YD and onset of the early Holocene (PB), the BLB likely ceased to 

exist as a contiguous landmass connecting Chukotka and Alaska [Elias et al., 1996; Keigwin et 

al., 2006], with sea level at the time ~50 m below modern [Fairbanks, 1989], equivalent to the 
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sill height of the BS [Coachman et al., 1975].  For the first time since ~75 ka the BLB 

connection of Beringia was severed, and the BS began to mediate water interaction between the 

Bering and Chukchi Seas.  The laminated interval of the PB was indicative of an ameliorating 

climate with elevated productivity in the Bering Sea [Khim et al., 2011].  

2.5.6.1. Increased Pre-Boreal Productivity 

 The increase in productivity is marked by a second laminated interval in 3JPC, and is 

recorded as increased TOC (1.4%) comparable to the ED (Figure 2.5), and to a lesser increase in 

51JPC (0.9%) and 24JPC (1.4%).  Norg was high during the PB in 3JPC (0.129%) and δ
15

N 

increased to 6.15‰ along with C/N ratios (12.5).  The increase in δ
15

N was likely again due to an 

increase in local denitrification, driven by elevated productivity and the return of suboxic 

conditions, as seen during the BA [Cook et al., 2005; Brunelle et al., 2007; Schlung et al., 2013].  

The initial increase in TOC of 24JPC seen during the PB (Figure 2.9) may reflect the first 

incursion of nutrient rich NPW, with too small a quantity to affect many other proxies or 

stimulate a major TOC increase. Though both marine and terrigenous components of TOC 

increased at 3JPC, the increase of OCterr was most dramatic, increasing from ~0.6 to 1% after the 

YD.  The OCterr peak may have been derived in part from meltwater pulse 1B  (MWP-1b) [Bard 

et al., 2010], which occurred ~11.3 ka [Fairbanks, 1989; Bard et al., 1990, 1993], and could 

have further inundated coastal regions.  

   MWP-1B increased eustatic sea level by ~15 m over ~300 years (11.4–11.1 ka), and 

was likely primarily sourced from Antarctica [Domack et al., 2005; Peltier and Fairbanks, 

2006].  MWP-1B coincides with the flooding window for the BS (12–11 ka) [Elias et al., 1996; 

Keigwin et al., 2006], and certainly would have increased the rate of inundation.   
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 The submergence of Unimak Pass leading into the PB allowed ASW to contribute to sea 

ice melt, increasing productivity by relieving light limitation [Caissie et al., 2010].  Significant 

increase in ASW at 51JPC was marked by the proliferation of Neodenticula seminae ~12 ka, a 

Pacific Water indicator species[Caissie et al., 2010], which supported elevated PB productivity 

marked by increased TOC (Figure 2.16) and PB PCA clustering (Figure 2.18). 

  PCA biplots show the PB and BA plotting together in all three Bering Sea cores.  Like 

the BA, PB populations plot closest to the productivity end-members, but unlike the BA, there 

are two populations of PB sediment in 51JPC and 17JPC XRF data PCA.  While both the PB and 

BA feature widely dispersed samples, there are not two distinct populations for the BA.  These 

two populations exist only in the XRF PCA as there are too few data points in the full PCA to 

distinguish two populations.  One possibility is that the samples represent light and dark lamina, 

but given the width of the lamina, <1 to 2 mm, the moving average applied to the data and 

resolution of XRF data (1000µm) should not allow for individual lamina to be represented in 

PCA.  More likely, there was a change of conditions during the PB.  In 51JPC, we have no 

sediment younger than 10.5 ka, but for 17JPC XRF data, the earlier PB interval (11.7–11 ka) of 

the two PB populations (Figure 2.15, pink diamonds) plots just above the YD data, and the 

younger population (11–10.5 ka) (Figure 2.15, pink dots) plots with the Holocene data, 

indicating that Holocene conditions at 17JPC began ~11 ka, following the flooding of the BS 

[Elias et al., 1996; Keigwin et al., 2006].  

 Loess deposition recorded south of 17JPC on the Detroit Seamount in GGC–37 was 

highest during the LGM/ED, and declined with the flooding of the Bering Strait at 11 ka, 

suggesting that subaerial delivery of exposed Bering Shelf sediments was the dominant 

contributor of loess-like material to the core [Lam et al., 2013]. 
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2.5.7. Holocene (10.5 to 2.5 ka) 

 By ~10 ka, the remainder of the BLB was largely inundated, with sea level at the time at 

about 20 m below modern [Hopkins, 1979; Fairbanks, 1989].  While the climate has varied 

during the Holocene, variability has generally been weaker in magnitude than during the last 

deglaciation [Mayewski et al., 2004].  NADW production has fluctuated [Oppo et al., 2003] 

during the Holocene, yet there hasn't been a weakening or shutdown to the extent seen during 

deglaciation [Keigwin et al., 1991; Thornalley et al., 2011].  Holocene ventilation of the North 

Pacific has been weak, as North Pacific ventilation is stronger in cold periods [Schlung et al., 

2013], whereas North Atlantic ventilation increased during the BA and Holocene (warm periods) 

[Robinson, 2005; Thornalley et al., 2011].   

2.5.7.1. Holocene Changes in the Chukchi Sea, 24JPC 

 TOC in 24JPC increases to ~1% from 11–8.8 ka before collapsing to 0.85% from 8.5–8.2 

ka (Figure 2.9).  This interval of low TOC is matched by decreases in %Norg (0.109%), δ
15

N 

(6.02‰), and a rapid increase in clay from 23 to 29% (7 to 12% in the <2 µm clay), and features 

the biggest assemblage of agglutinated forams with Ammo-Baculoides counted as common, and 

centric diatoms as rare.  This anomaly corresponds with a period of major Arctic oceanographic 

change with a potential shift in the Transpolar Drift to the east and the onset of flow through the 

Canadian Arctic Archipelago [Dyke et al., 1997].  The 8.2 ka event lasted ~150 years as recorded 

in Greenland ice cores [Alley et al., 1997; Thomas et al., 2007, p.2].  It’s thought to have resulted 

from the largest discharge to the North Atlantic of freshwater from Lake Aggassiz and the 

melting of the Laurentide Ice Sheet [Wagner et al., 2013].  The flux of fresh water is presumed 

to have weakened AMOC [LeGrande and Schmidt, 2008], and thus the advection of warm water 
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to the North Atlantic [Broecker, 1991].  In our case, a pulse of freshwater to the North Atlantic 

could have caused a weakening and/or reversal in flow through the BS, as net BS throughflow is 

controlled by the sea surface gradient between the North Pacific and North Atlantic [Coachman 

and Aagaard, 1966; Stigebrandt, 1984; Woodgate et al., 2005].  The decrease in TOC, Norg, 

δ
15

N, and the increase in clay content could be explained by a weakening or reversal of BS 

throughflow which reduced NPW at the site.  Less NPW would result in less nutrients to the 

Chukchi Sea [Walsh et al., 1989; Martin and Drucker, 1997], and a decrease in overall current 

velocity, allowing for deposition of clay.  However, diatoms appeared less abundant during this 

period, perhaps due to the large amount of forams, and the decrease in silt at this time 72 to 65% 

could mean that the clay increase is due to a decrease in silt-sized diatoms, independent of 

current velocity.  The relative abundance of agglutinated forams, combined with reduced diatom 

abundance, could have resulted from sea ice coverage change [Cronin et al., 2008], independent 

of, or resulting from, a weakening of BS throughflow. 

 This 8.5–8.3 ka anomaly in a trend of rising TOC and decreasing clay content ends 

abruptly and TOC rebounds by 8 ka to a plateau around 1.36% from 8–5.5 ka (7.92‰, 0.169%).  

With the increase in TOC came a decrease in clay content, which fell to 13% from 7.8 ka in the 

top of the record.  The virtual disappearance (2%) of clay content <2 µm in the core, and 

reduction of total clay content is likely due to an increase in cross-shelf current velocities with 

increased BS throughflow, considering that modern Chukchi shelf current velocities are 

sufficient to transport silt and clay sized particles [McManus et al., 2004], which explains why 

median GS increases with steady silt/sand/clay contents during the last few thousand years of the 

record.  The decrease in clay and increase in TOC and median GS roughly fits with the dramatic 

decrease in Chukchi sedimentation rates ~7 ka [Keigwin et al., 2006; Hill and Driscoll, 2008].  
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OCmar was a minor component in the early portion of the record, increasing sharply at 8 ka, and 

by 7 ka, OCmar had surpassed OCterr as the dominant component of TOC for the first time in the 

record (Figure 2.9). 

 Once TOC recovered following the anomalous interval, δ
13

Corg began to become 

enriched, and TOC continued to increase throughout the record, as did silt, Norg, and OCmar.   

The sharp increase in OCmar and enrichment of δ
13

Corg are indicative of a marine influence that 

suggests increased nutrient rich NPW advection over the site.  This increase in NPW brought 

nutrients as recorded by increased TOC, Norg, and OCmar, which supported increased 

productivity, and increased diatom abundance as seen in our visual analysis and increased %silt 

[Aiello and Ravelo, 2012].  The increase in δ
15

N at this time may be due to increased nutrient 

utilization, but the nitrogen isotope record of 24JPC appears convoluted.  Based upon the 

decrease in clay, and coeval increases in TOC, OCmar, Norg, and enrichment of δ
13

Corg, we 

conclude that modern circulation was established shortly after 8 ka (Figure 2.9, EMC).  

 Sancetta [1979] suggested that modern physical oceanography was established in the 

North Pacific by 8 ka but does not elaborate further.  Ortiz et al. [2009] examined Pacific inflow 

to the Chukchi Sea using chlorite and muscovite as Pacific Water tracers, but had poor age 

control older than 8 ka in JPC6.  They observed an increase in NPW in the Chukchi from 6–3.6 

ka.  Early Holocene circulation may have been established ~11 ka at in the North Pacfic (17JPC) 

as suggested in the PB section, but in order for true modern physical oceanography to be 

established in the North Pacific, and the Bering/Chukchi Region, flow through the Bering Strait 

must have been of a comparable magnitude and direction to modern circulation.  Our Chukchi 

Sea data demonstrates that flow through the Bering Strait is too important to the region, in terms 

of circulation and water mass exchange [Hu and Meehl, 2005; Hu et al., 2014], for true modern  
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circulation to be established prior to 8 ka.   

 The full suite PCA for 24JPC (Figure 2.12) highlights the stark contrast between 

sediment from 9–8 ka (cyan diamonds) and sediment from 8–2.5 ka (cyan dots).  Sediment older 

than 8 ka is most strongly associated with terrigenous end-members, whereas sediment younger 

than 8 ka is seen to be negatively associated with PC1, plotting with the productivity end-

members.   

 Though change progressed after 8 ka, with continued increase of TOC, Norg, and OCmar 

as well as δ
13

Corg depletion, there was a clear transition recorded in 24JPC around 8 ka.  We 

propose that this transition was the establishment of modern circulation, which possibly followed 

a period of weakened or reversed BS throughflow coeval with the 8.2 ka event.  By 2.5 ka, 

24JPC resembles a marine dominated site with depleted δ
13

Corg, low terrestrial elemental 

abundance, and PCA samples aligned with productivity end-members.  

2.5.7.2. Bering Sea Sandy Core-top, 3JPC 

 Though there is variability, sand averages 16% through the BA and YD in 3JPC and into 

the PB before a major increase at 10.8 ka to >50%.  The sediment in this interval in the nearby 

IODP site, U1345, is composed of quartz, feldspar, rock fragments and some volcaniclastic 

material [Expedition 323 Scientists et al., 2011].  The sandy texture may be due to a decrease in 

sedimentation rate, and therefore a decrease in dilution by clay and marine biogenics, as both 

clay (0.3%) , TOC (0.5%) and OCterr (<0.1%) fall to the lowest values of the record.  The near-

cessation of terrigenous organic input is reflected in the dramatic change in δ
13

Corg (-22‰) to 

open marine values [Naidu et al., 2000], but C/N ratios increase dramatically with the onset of 

the sand peak.  The peak in sand content is seen by a major increase in Si, Sr and Zr (Figure 2.7).  

The Holocene in 3JPC is a clear anomaly with the Holocene sample population plotting closest 
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to sand in the full suite PCA (Figure 2.8).  Based on the apparent lithology and lack of OCterr 

while OCmar becomes the dominant TOC component for the first time since the LGM, it may be 

that the flooding of the BLB and opening of the BS is responsible for this major increase in sand.   

 Prior to the flooding of the BLB, it is feasible that the Yukon and/or Kuskokwim Rivers 

had a major impact on the Bering Sea.  Given the importance of the sediment of the Yukon to the 

Chukchi and northern Bering Sea today [McManus et al., 1974; Nelson and Creager, 1977], it is 

possible that if the Yukon were to discharge in part or in full to the south, a portion of its 

substantial sedimentary load [Lisitsyn, 1966; Eberl, 2004] could have remained in the southern 

Bering Sea, and would have been transported to 3JPC by the BSC.  When the BS was reopened 

via flooding between 12–11 ka [Keigwin et al., 2006], the direction of BS throughflow is 

unknown, but if flow were to the north as is the case today [Coachman and Aagaard, 1966], then 

the Yukon sediment would be transported directly north, removing Yukon material from the 

sedimentary budget of the Bering shelf slope and 3JPC.   

 Alternatively, with flow strengthened to the north over the Bering Sea, the BSC could 

have increased in strength with the increased northward flow velocity, which could have 

prevented deposition of fine grain terrestrial material, making the top of core 3JPC a contourite 

[Hans Nelson et al., 1993].  

2.6. Conclusions 

 Beringia and the surrounding seas experienced not only rapid climatic change during the 

last deglaciation, but also major physical change as the extensive Arctic continental shelves 

flooded and the Bering Strait was re-opened.  The Bering and Chukchi Seas clearly capture local 

change, but also record changes seen across the North Pacific and in Greenland with remarkablly 

consistent timing [Kuehn et al., 2014]. 
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 3JPC captures a changing environment along the productive Bering shelf slope region, 

where a relatively biologically dormant marine LGM environment changed into a terrestrially 

dominated but productive site during the early deglacial through the PB.  The early Holocene 

featured a return to marine dominated conditions, with little biogenic sedimentation, but 

abundant sand.  Sedimentologic and geochemical data from 3JPC potentially indicate changing 

influence of the Yukon and other major rivers to the southern Bering Sea through the 

deglaciation.  Previously hypothesized North Pacific denitrification during the BA and PB is 

supported by bulk δ
15

N in 3JPC, further supporting the concept of large regional changes in 

productivity, and water column ventilation through the deglaciation [Kao et al., 2008; Max et al., 

2014].  All three of the Bering Sea cores capture the transition from sediment dominated by 

terrigenous influx to marine productivity, as seen in the PCA biplots, which indicate that while 

some of the climatic intervals were similar, each featured a unique depositional environment. 

Though more in depth statistical analysis would be valuable, our study demonstrates that PCA is 

a valuable tool for studies with many discrete proxies.   

 24JPC in the Chukchi Sea captures the establishment of modern circulation through the 

Bering Strait ~8 ka, shortly after the hypothesized shift of the Transpolar Drift, and the onset of 

flow through the Canadian Arctic Archipelago.  Our data suggest that the establishment of 

modern oceanography followed an anomaly seen in TOC, Norg, δ
15

N, and clay content, from 8.5-

8.2 ka, that may have represented a weakening or reversal in flow direction associated with the 

8.2 ka event.  
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CHAPTER 3 

FUTURE PERSPECTIVES 

 This thesis presents the results of a wide variety of sedimentological, geochemical, and 

isotopic data from a suite of four cores collected from the Bering and Chukchi Seas.  We used 

our results to investigate circulation, productivity, and sediment delivery conditions during the 

last deglaciation.  This project advanced our understanding of the establishment of modern 

circulation through the Bering Strait, and has further distinguished the differences in sediment 

delivery and productivity between different climatic periods of the last deglaciation. 

 The primary results of the thesis were fully detailed in Chapter Two, and the remainder of 

Chapter Three focuses on what we envision as valuable work going forward;  lines of 

investigation that we believe would improve upon this study and other studies of the region. 

3.1 Reversal of Flow through the Bering Strait? 

 We were able to draw interesting conclusions from the  24JPC sedimentary record, 

particularly the establishment of modern circulation ~8 ka.  The anomalous interval from 8.5-8.2 

ka in our record is also intriguing.  It features a very rapid sedimentation rate (~200 cm/kyr), 

with low TOC and Norg, along with depleted δ
15

N and high clay content.  We believe that this 

could be evidence for a reversal of flow through the Bering Strait occurred coeval to the 8.2 ka 

event.  In order to better understand, and to provide corroborating evidence that this event was a  

widespread phenomenon, other Arctic cores that observe similar change must be found.  If there 

was indeed a weakening of AMOC resulting from buoyancy forcing over the North Atlantic, 
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then it stands to reason that flow would have reversed through the BS as shown in modeling 

simulations [De Boer and Nof, 2004; Hu and Meehl, 2005; Hu et al., 2007, 2012a, 2012b, 2014].   

 The Bering Sea cores did not provide evidence for or against this reversal of flow theory, 

as the Holocene section of 3JPC did not have enough planktonic foraminifera to allow dating 

[Cook et al., 2005], and our selected sections from the three Bering Sea cores did not contain 

sediment younger than 8 ka.  If there were a reversal of flow, even if only for a short period, it 

should show up in some records from the Bering Sea, but given the distance from the BS of the 

Bering shelf slope (no long cores exist from the Bering Shelf north of the shelf slope), the effect 

may have been minimal, and not easy to detect given the low sedimentation rates at the time.  

Nevertheless, it would be very interesting to have sedimentologic evidence that corroborates 

reversal of flow for periods of AMOC shutdown/weakening that are manifest in modeling 

simulations [Hu et al., 2014].  If the Bering Strait can indeed function like an "exhaust valve" for 

North Atlantic freshwater anomalies [De Boer and Nof, 2004], this has major implications for 

interpretation of Quaternary paleoclimate records.  If the Bering Strait is capable of dispersing 

freshwater anomalies, then potentially the short duration of the 8.2 ka event (150 yrs) [Alley et 

al., 1997; Thomas et al., 2007] in comparison to the YD (~1200 yrs [Alley et al., 1997; 

Rasmussen et al., 2006]) is a direct result of having an open BS during the 8.2 ka event. 

3.2 Reservoir Ages 

 The reservoir age used in a paleoclimate study is very important, and for consistency 

within our study and with other published research from the area, we used a single reservoir age 

for all four cores.  However, the Chukchi Sea in particular lacks a well defined reservoir age 

[Polyak et al., 2007], which is not surprising given the magnitude of changes experienced by the 

Bering Strait and Chukchi Sea since the last deglaciation.  Marine reservoir ages in Arctic waters 
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are poorly defined, especially for deglaciation [Björck et al., 2003; Eiríksson et al., 2004].  Given 

that most Chukchi cores only cover the Holocene [Ortiz et al., 2009], a better constrained 

reservoir age for the Chukchi Sea over the Holocene would be extremely valuable, and 

fortunately is under way (personal correspondence, Leonid Polyak, Ohio State University).  Ortiz 

et al [2009] examined Pacific inflow to the Chukchi Sea using chlorite and muscovite as Pacific 

Water tracers, but had poor age control older than 8 ka in JPC6.  They observed an increase in 

NPW in the Chukchi from 6–3.6 ka.   

 Ideally we would use a network of well-dated cores that could be correlated by other 

proxies, like carbon isotopes, to obtain a best estimate of the Holocene/deglacial Chukchi 

reservoir age(s).  This would give us better confidence in attributing the 8.5–8.2 ka anomaly to 

the 8.2 ka event. 

 The Bering Sea cores have datable planktonic material through the last deglaciation, but 

dating the onset of deglaciation has proven difficult.  Work is ongoing (personal correspondence, 

Mea Cook, Williams College) to examine the changes around the deglaciation.  In core 3JPC, we 

have no date near the onset of deglaciation but if we had a date, the peak in TOC and other 

proxies would likely be moved earlier, as the period should have seen an increase in 

sedimentation rate given the increased TOC and terrestrial input.  Ongoing work by Mea Cook in 

core U1345 near 3JPC, shows planktonic and benthic foraminifera 
14

C ages converging during 

H1 (our ED).  Clearly strange things were happening to ventilation, with convection in the 

Northern Bering Sea eliminating the age difference between the planktonic and benthic 

community.  Understanding what happened at this interval and resolving the reservoir effects 

during this time would allow us to assign a date to deglaciation as recorded in the Bering Sea.  

This would be a valuable comparison to oxygen isotope records from marine sediment cores 
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[Cook et al., 2005; Caissie et al., 2010; Davies et al., 2011], and glacier landform dating 

[Gualtieri et al., 2000; Briner and Kaufman, 2008]. 

3.3 Bering Strait Flooding and Isostatic Sea Level 

 There has been no local sea level reconstruction for the Beringia region.  Isostatic 

rebound in the area is thought to have been small, but no sea level or flooding history study of 

the BLB has ever calculated isostatic rebound, and while thought to be small (<10 m) [Keigwin 

et al., 2006], given the depth of the BS (50 m), the ~10 m isostatic rebound could have 

influenced the flooding chronology of the BLB.  Dating the initial flooding of the BLB is 

important, but of equal value is constraining the time at which the water depth over the BLB 

allowed for significant volume transport, when water mass exchange could occur between the 

Bering and Chukchi Seas.  Establishing control on isostatic rebound, and better constraining the 

sea level history of the Bering Strait would be valuable, especially if both the timing and 

magnitude of isostatic rebound could be constrained.  If the land around the Bering Strait was at 

all depressed by ice in the region, this could have allowed for earlier flooding of the Bering 

Strait, as suggested by England and Furze [England and Furze, 2008].  Lev Tarasov (personal 

correspondence, Memorial University of Newfoundland) has conducted glacial isostatic 

adjustment for the Bering Strait.  His calculations show an offset between Barbados [Fairbanks, 

1989] and the BS of ~15 m during the LGM, but the BS matches Barbados sea level during the 

13–12 ka interval proximal to BLB flooding.   Though these calculations did not include 

rotational effects (which at most would be a few meters), but support the Fairbanks [1989] data, 

which supports the Keigwin et al. [2006] flooding window (12–11 ka), which we have used in 

this study.  
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3.4. Biogenic Silica 

 In our study we used TOC [Hendy and Pedersen, 2005], Norg, and estimated %OCmar as 

proxies for productivity.  Br and Cl proved to be related to OM-rich sediments as well.  While 

our methods for determining productivity seem robust, the extent to which diatoms compose 

sediments in the Bering and Chukchi Seas [Takahashi et al., 2000] make biogenic silica (opal) a 

valuable productivity proxy.  In addition, organic carbon flux is in part derived from siliceous 

rather than calcareous plankton, so differences in OC flux can largely be explained by 

differences in opal flux [Takahashi et al., 2000].  Clearly opal would be valuable as 

corroborating evidence in productivity reconstructions, and give a more complete representation 

of biogenic mass flux, irrespective of source species [Takahashi et al., 2000].   

 Detailed diatom assemblage work as was done by Caissie et al. [2011] for 51JPC would 

greatly benefit the interpretations of this thesis, and better constrain changes in productivity and 

environmental conditions during the deglaciation. 

 In 3JPC, there was a drop in TOC from the early deglacial to the Bølling-Allerød warm 

period, that is generally associated with elevated Bering Sea productivity [Brunelle et al., 2007].  

We interpreted the TOC decrease to be a reduction in terrestrial organic carbon, but having opal 

flux data would allow us to better test this hypothesis. 

3.5 PCA in Paleoclimate Studies 

 Principal component analysis is a valuable tool, good for finding strong associations and 

clusters within a dataset.  We used PCA to better define the primary factors influencing our 

sediment, which for the most part were terrigenous and biogenic (productivity).  At times there 
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were other factors that controlled the data; like sand for some of the Holocene samples (Figure 

2.8) or tephra units in the Umnak Plateau core (Figure 2.18).   

 Our study did not feature the detailed analysis of other studies from the region that have 

looked at diatom assemblage change as climate/physical change indicators [Caissie et al., 2010], 

but instead utilized a wide variety of sedimentological, geochemical, and isotopic data.  PCA is a 

valuable tool for distinguishing controlling factors, and should be considered for paleoclimate 

studies that either have a number of different proxies, or can incorporate different proxies from 

past studies in the same, or proximal cores.  For example, PCA may be able to provide further 

evidence for the factors that control diatom assemblages.  Caissie et al. [2010] collected data on 

diatom assemblages, and reconstructed SSTs using Uk'37.  Combining diatom assemblage data 

with SSTs and other proxies like δ
18

O, δ
13

C, and %TOC could elucidate controlling factors 

behind diatom assemblage change, and better constrain the paleoenvironment of the time.  PCA 

is a valuable tool that has the potential to improve our ability to understand and interpret large 

datasets of discrete data. 

3.6. Summary 

 The Bering and Chukchi Seas are productive marine environments that play a major role 

in both ecosystem health and fishery economics.  The Bering Sea is characterized by high 

surface-water productivity [Grebmeier et al., 1988; Springer et al., 1996] and  has a great 

potential to drawdown atmospheric CO2 by acting as a biological pump [Kaltin and Anderson, 

2005].   Arctic and subarctic regions are shaped by processes involving sea ice and continental 

ice, the formation of dense oxygenated deep waters, and some of the most productive ecosystems 

in the world; all of which are very sensitive to climate change [Comiso et al., 2008; Grebmeier et 

al., 2010].  Understanding how the Arctic has responded to major climate change in the recent 
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past, is possibly our best analogue to modern climate change that has already begun to reshape 

the Arctic physically through ice loss and sea ice decline [Tang et al., 2013; Snape and Forster, 

2014], and the in terms of the food web [Grebmeier et al., 2010]. 
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Figure A.19. 3JPC percent variance explained and eigenvalues for each principal component for 

both full suite and XRF PCAs. Eigenvalues are listed within each PC box. 
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Figure A.20. 24JPC percent variance explained and eigenvalues for each principal component 

for both full suite and XRF PCAs. Eigenvalues are listed within each PC box. 



112 
 

 

 
 

Figure A.21. 17JPC percent variance explained and eigenvalues for each principal component 

for both full suite and XRF PCAs. Eigenvalues are listed within each PC box. 
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Figure A.22. 51JPC percent variance explained and eigenvalues for each principal component 

for both full suite and XRF PCAs. Eigenvalues are listed within each PC box. 
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