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ABSTRACT 

 
EFFECT OF CHEMOTHERAPEUTIC TREATMENT SCHEDULE ON A TISSUE 

TRANSPORT MODEL 
 

SEPTEMBER 2014 
 

DAN E. GANZ, B.SC., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

M.S. CH.E., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Neil S. Forbes 
 

 
Current chemotherapeutic treatment schedule prediction methods rely heavily on 

PK/PD-based models and overlook the important contribution of tissue-level transport 

and binding. Tissue-level transport and binding phenomena are essential to understanding 

drug delivery and efficacy in tumors. Drugs with desirable PK/PD properties often fail in 

vivo due to poor tissue-level transport. We developed an in silico method to predict the 

effect of treatment schedule on efficacy that couples PK/PD with tissue-level transport. 

Treatment schedules were implemented on theoretical drugs with different PK/PD and 

transport properties. For each drug with a given clearance rate, diffusivity, and binding, 

treatment schedules consisting of one to 20 doses were simulated. Results show that at 

binding constants around one, high diffusivities, and high clearance rates, implementation 

of a treatment schedule becomes more significant. At low clearance rates, regardless of 

tissue-level transport and binding, one dose was predicted to be most efficacious. Tissue 

Drug Exposure (TDE) was shown to be to a crucial factor for treatment schedule 

efficacy. Efficacy was improved by increasing TDE. Implementation of a treatment 

schedule with more doses than one curbed the effect of poor retention with drugs. This 
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model investigates the effect of treatment schedule on a tissue transport model and shows 

implementation of a proper dosing regimen is crucial to maximize TDE and 

chemotherapeutic efficacy. 
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CHAPTER 1 

 
INTRODUCTION 

 

Chemotherapy is an extremely common cancer therapy worldwide. It is estimated 

that in 2014, 1.6 million people in the US alone will be diagnosed with cancer (Howlader 

et al., 2011). Of those patients, approximately 20% will receive chemotherapy (Kolodziej 

et al., 2011). Predicting a dosing regimen of chemotherapy is critical to maximize 

effectiveness of the treatment. Intracellular area under the concentration-time curve 

(AUC) has been shown to be an effective predictor of chemotherapeutic drug efficacy 

(Nagai & Ogata, 1997). The classic “more is better” approach of increasing the maximum 

tolerable dose (MTD) can only go so far in improving chemotherapeutic efficacy for 

cancer patients (Takimoto, 2009). Currently, optimal treatment schedules are primarily 

predicted via mouse models. Mouse models can be extremely expensive and time-

consuming. An average of $330,000 is needed just to adequately test a single potential 

drug candidate in mouse models. In addition, 80% of drugs that are predicted to be 

effective in mice fail when tested in humans (Perrin, 2014). Hence, accurate in silico 

models are desirable to reduce cost and time spent in animal models.  

Many drugs that are successful in vitro fail in vivo. This is because drugs are not 

able to effectively penetrate the tumor, as opposed to the drug having poor efficacy on the 

tumor cells themselves (el-Kareh & Secomb, 1997; Minchinton & Tannock, 2006; Toley, 

Tropeano Lovatt, Harrington, & Forbes, 2013; Tredan, Galmarini, Patel, & Tannock, 

2007; Venkatasubramanian, Henson, & Forbes, 2008).  Drug clearance rate is crucial to 

efficacy. Tissue-level transport (diffusion) and binding are also crucial to predict a drug’s 

ability to penetrate vasculature and reach the tumor. These mass transfer effects play a 
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critical role in drug penetration and retention in cancerous tumors. A drug’s ability to 

penetrate a tumor is determined by its diffusivity and its ability to be retained inside the 

tumor is dependent upon its binding properties. Drug diffusion and retention are 

neglected in pharmacokinetic and pharmacodynamic (PK/PD)-based models yet have 

considerable effect on efficacy. Drug bound to tissue induces cancer cell death. A low 

diffusivity can prevent effective penetration of the drug into the tumor region from the 

blood vessel. With a low diffusivity, the drug can be cleared from the body before 

enough drug reaches the tumor tissue. High diffusivity reduces and limits retention. Even 

with desirable pharmacokinetic and pharmacodynamic properties, drugs can fail in vivo 

due to poor tissue level transport (Toley et al., 2013). A model to predict optimal 

chemotherapeutic regimens must: (a) incorporate pharmacokinetics/pharmacodynamics 

and (b) include mass transfer effects such as tissue-level transport and binding kinetics.  

In silico models that predict treatment schedules are reported in (Carlson & Sikic, 

1983; El-Kareh & Secomb, 2003; Jones, Secomb, Dewhirst, & El-Kareh, 2014; 

Levasseur, Slocum, Rustum, & Greco, 1998). El-Kareh et al successfully models 

pharmacodynamics of Cisplatin at the cellular level with varying exposure times. The 

model incorporates uptake kinetics and intracellular binding while examining survival 

versus exposure time. Jones at al presents a model that predicts cancer cell response to 

combinations of chemotherapeutic drugs. It also models at the cellular level and 

incorporates intracellular uptake and cytotoxicity. Jones et al state in their study that the 

limitations of extracellular transport were not considered. Like El-Kareh et al, Levasseur 

et al investigates effect of exposure time on chemotherapeutic antitumor activity. Carlson 

et al investigate the effect of continuous injection versus bolus injection on systemic 
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toxicity and antitumor efficacy. To the best of our knowledge, no one has investigated the 

effect of treatment schedule on a tissue transport model.  

In this study, plasma concentration of a given chemotherapeutic drug is at a 

maximum immediately upon IV bolus administration. The plasma concentration of the 

drug decreases over time due to absorption and metabolism (Lin & Lu, 1997). The rate of 

clearance of the drug from the body is determined by the half-life. AUC is kept constant. 

The drug arrives to the tumor site and penetrates into tumor tissue via diffusion. Once in 

the tissue, the drug can bind on to and then off of cancer cells at a specified ratio 

determined by the binding constant. If the drug binds to a cancer cell, the drug can then 

kill the cell. The cancer cells have a specified maximum rate of death in response to the 

drug. The drug can also saturate the tissue at a certain concentration.  
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CHAPTER 2 

 
METHODOLOGY 

 
 
 

2.1 Model Formulation 

 
Three dimensionless simultaneous time-dependent partial differential equations that 

balance free drug (C), drug bound to cells (B), and the local fraction of viable cancer cells 

(N) describe the phenomena discussed in Chapter 1.  

 

The following system of partial differential equations were solved using the finite 

element method:  

 
 

 
 

 

 

 

where kon is the parameter of binding of drug on to cells, koff is release of drug off of cells, 

µD
max is the maximum rate of cell death, and Km is the cell death saturation. Four main 

mechanisms and six key parameters contribute to this model: diffusivity (D), cell binding 

(kon, koff), cell death (µD
max, Km) and clearance (t1/2).  The binding constant (R) is defined 

as kon / koff. The boundary and initial conditions are:  

 

 

@t = 0;C0 = B0 = 0; N0 =1

@x = 0;C = C0e

t

t1/2

@x = L;
dC

dx
=

dB

dx
=

dN

dx
= 0

∂C

∂t
= D

∂ 2
C

∂x
2

− konC + koff B

∂B

∂t
= konC − koff B

∂N

∂t
= −µD

max C + B

K m + C + B

Equation 1 

 
 
(1) 
 
(2) 
 

(3) 
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where t1/2 is the half-life of the drug and L is the width of the tissue. It was assumed that 

the tissue here is linear and one-dimensional because of negligible curvature. At the 

proximal edge of the tissue (x=0), the interface with the blood channel, the concentration 

of drug was equal to the concentration in the blood. A Neumann boundary condition of 

zero flux due to symmetry is imposed at the distal edge of the tissue (x=L).   

The boundary condition at the proximal edge of the tissue included a step change 

to simulate a treatment schedule. Keeping exposure time constant, for a given drug with 

mass transport and PK parameters, the only variable manipulated in the model was 

amount of doses. The exposure time was split into equal time steps for dosing 

administration. Correspondingly, AUC was kept constant. Doses administered via IV 

bolus are immediately dispersed in plasma upon administration. Thus, the concentration 

of drug at the proximal edge of the tumor tissue was equal to the concentration of drug in 

the plasma at any given time.  

 
2.2 Data Analysis 

 
  

 A wide range of theoretical drugs with varying diffusivities, binding 

constants, and clearance rates were created to analyze the effect of treatment schedule on 

efficacy. Efficacy was measured by fraction of viable cells killed. Depending on protocol, 

chemotherapy treatment can last hours or days. 72 hours was found to be a reasonable 

treatment period. Theoretical drugs with static parameters (Table 1) and variable 

parameters (Table 2) were analyzed for efficacy over a range of treatment schedules. The 
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static parameters investigated match closely to those of Doxorubicin (Toley et al., 2013). 

Variable drug tissue transport and PK parameters included the diffusivity (D), the binding 

constant (R), and the clearance rate (pharmacokinetic half-life, t1/2). The effect of 

treatment schedule was then investigated on the drugs with different tissue transport and 

PK parameters. Treatment schedules of up to and including 20 doses were investigated. 

For a drug with a given diffusivity, binding constant, and clearance rate, all treatment 

schedules were simulated for efficacy that was determined by fraction of tumor cells 

killed. Tissue Drug Exposure (TDE) was measured by numerically integrating the area 

under the curve of bound drug using Simpson’s Rule. These simulations were executed 

for all possible combinations of tissue transport and PK parameters. Static parameters 

(Table 1) remained the same for every drug.  

Table 1  Variable (investigated) parameters for theoretical drugs  

Symbol Description Units Range 

D Diffusivity m2s-1 10-18 to 10-2 

R (kon/koff) Binding Constant dimensionless 10-4 to 10-4 

t1/2 Clearance half-life hrs 0.5, 5, 15 
 

Table 2  Static parameters for theoretical drugs  

Symbol Description Units Value Reference 

L Length  m 800 x 10-6 

(Less, Skalak, 
Sevick, & Jain, 
1991) 

C0 Dose Administered mol m-3 2 x 10-2 
(Tang et al., 
2014) 

Km Saturation constant mol m-3 1.66 x 10-3 
(Toley et al., 
2013) 

µD
max  Maximum rate of cell death s-1 3.89 x 10-5 

(Toley et al., 
2013) 
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 Two parameters were created in order to quantitatively analyze efficacy and 

optimal treatment schedule. The One Dose-Twenty Dose (ODTD) and Maximum 

Marginal Change (MMC) were used to determine whether an implementation of more 

than one dose would improve efficacy and where the optimal dose lies, respectively. The 

ODTD was defined as the 1-dose killing percentage subtracted from 20-dose killing 

percentage. The ODTD parameter is used to determine whether administering more than 

one dose has a significant effect. If the ODTD was found to be greater than 0.02, giving 

more than one dose is found to be more efficacious. One dose is most efficacious if the 

ODTD is below than 0.02. A higher ODTD corresponds to a drug that is more 

efficacious with more doses. The MMC was the dose at which there exists a 1% 

difference from the 20 dose killing percentage. The dose at which the MMC is 0.01 was 

found to be the optimal dose.  
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CHAPTER 3 

 
RESULTS 

 

 

Implementation of treatment schedules significantly changed efficacy for drugs of 

differing transport parameters (Figure 1). A treatment schedule with more doses 

improved efficacy for the drug with higher diffusivity and lower binding constant 

(Figure 1A), and decreased efficacy for the drug with lower diffusivity and higher 

binding constant (Figure 1B).  

 

 

 

 

 

 

 

Figure 1. Fraction of cancer cells killed at treatment schedules consisting of 1 to 20 doses 
in a 72 hour time period. Half-life is kept constant at 0.5 hours. A: Drug with diffusivity of 
10-8 m2/s and binding constant of 10-2. B: Drug with diffusivity of 10-12 m2/s and binding 
constant of 102.  
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The ODTD determined whether efficacy was significantly improved with more 

than one dose. Drugs with identical clearance rates but different tissue transport 

parameters R and D had significantly different ODTD values (Figure 2, right). With a 

more positive value of ODTD, a greater improvement in efficacy is observed with a 

given drug. At a half-life of 0.5 hours and across all binding constants, drugs with a 

higher diffusivity exhibited a higher ODTD. With higher diffusivity, tissue penetration 

increases but retention decreases, and thus implementation of a treatment schedule with 

more doses improves efficacy by curbing this phenomenon. Across all diffusivities 

greater than 10-10 m2/s, drugs with a binding constant of 1 exhibited the greatest ODTD. 

At the diffusivity range, drugs with binding constants less than 1 exhibited greater 

ODTD values than drugs with binding constants above 1. At a higher half-life of 5 

hours, ODTD was greatest for drugs with high diffusivities and low binding constants. 

High diffusivity and low binding constant results in low tissue retention and poor drug 

binding. Hence, implantation of a treatment schedule with more doses significantly 

improves efficacy. Implementation of a treatment schedule with more doses can only go 

so far for drugs with poor retention. Hence, ODTD is optimal for drugs with binding 

constant of one. At even lower binding constant (10-4) retention becomes more 

significant and implementation of treatment schedule becomes not as effective 

implementing a treatment schedule for drugs of high diffusivity and binding constant 

one. Decreasing the drug clearance rate curbs the low retention/poor binding effect and 

hence ODTD decreases as half-life increases.  
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Figure 2. ODTD for two half-lives keeping D and R fixed. A) a half-life of 0.5 hours and 
diffusivity of 10-10 m2/s. B) a half-life of 0.5 hours at binding constants of 1 and 100. C) a half-
life of 5 hours and diffusivity of 10-10 m2/s. D) a half-life of 5 hours at binding constant of 1.  
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The optimal efficacy across all treatment schedules (Figure 2, left) was dependent on 

both tissue transport and PK/PD drug properties. Drugs with a half-life of 0.5 hours 

exhibited high efficacy at high diffusivities and high binding constants. However, drugs 

with low binding constants and high diffusivities were not as efficacious as those with 

higher binding constants and high diffusivities. This, again, could be attributed to poor 

retention of drug in tumor tissue. Similar to ODTD, at all binding constants efficacy also 

increased across drugs with higher diffusivity. Efficacy increased due to implementation 

of treatment schedule. Drugs with lower clearance rates (higher half-lives) did not exhibit 

poor efficacy at high diffusivities and low binding constants. A low clearance rate 

improved retention of drug in tumor tissue. Across all binding constants and diffusivities, 

drugs with higher half-lives had a greater efficacy.  

The trends for treatment schedules of up to 20 doses over 72 hours significantly 

changed for drugs of different tissue transport and PK/PD properties (Figure 3). Dosing 

regimens of these theoretical drugs could be predicted. No optimization is needed for 

treatment schedules as a simple trend exists for the search space investigated. 
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Figure 3. Treatment schedule (number of doses) contour maps for drugs with a half-
life of A: 0.5 hours, B: 5 hours, and C: 15 hours.  
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At a half-life of 0.5 hours, a treatment schedule of more doses is most beneficial 

for drugs with high diffusivity and low binding constants (Figure 3a). At high diffusivity 

and low binding constants, drugs are not retained effectively in tumor tissue. This is true 

especially with high clearance rates. Retention can be improved by increasing the binding 

constant and thus drugs with higher binding constants at high diffusivity do not benefit 

from more doses. Drugs with low diffusivity retain better in tumor tissue, and thus such 

drugs also do not benefit from more doses across all binding constants. At binding 

constants less than and including one, more doses resulted in significant improvement in 

efficacy (ODTD≥0.02) at diffusivities greater than and including 10-12 m2/s. For drugs 

with a binding constant of 102, there was significant improvement in efficacy with more 

than one dose for drugs with diffusivities greater than and including 10-8 m2/s. For drugs 

with a binding constant of 104, there was no significant improvement in efficacy with 

more than one dose across all diffusivities. 

Drugs with lower clearance rates exhibited less benefit from a treatment schedule 

consisting of more doses (Figure 3b). Similar to drugs with a half-life of 0.5 hours, drugs 

with a half-life of 5 hours only benefited from more doses at high diffusivities and low 

binding constants. These drugs still exhibit poor retention and hence benefit from more 

doses. Drugs with binding constants less than and including one, two doses resulted in 

significant improvement in efficacy at diffusivities greater than and including 10-10 m2/s. 

At binding constants greater than one, no improvement in efficacy with more than one 

dose was observed over all diffusivities.  

Drugs with the lowest clearance rates, at a half-life of 15 hours, exhibited no 

improvement in efficacy with more than one dose over all binding constants and 

 



 

 14

diffusivities (Figure 3c). A drug with a low clearance rate is retained in the blood for a 

longer period of time. This phenomenon curbs the poor tissue retention effect exhibited 

with drugs of higher clearance rates. Treatment schedule recommendations were 

summoned from the model (Figure 4).  

 

 

Treatment schedule efficacy was directly correlated to TDE (Figure 5). Efficacy 

(Figure 5a) and TDE were calculated for drugs with different tissue transport parameters 

and the same clearance rate for treatment schedules consisting of two and ten doses. TDE 

 
Figure 4. Overall trend map of optimal treatment schedules for drugs of a given half-    
life and various tissue transport properties.  
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was calculated for drug bound to tumor cells (Figure 3b). The relative improvement 

(percent improvement in killing) was taken between each treatment schedule. There was 

found to be a correlation between the percent improvement in killing and TDE, with a 

Pearson product-moment correlation coefficient of 0.99. With higher drug exposure to 

tumor tissue, efficacy increased. In cases where administering more doses was found to 

have no improvement on efficacy, TDE had no increase. Treatment schedule can improve 

TDE with constant AUC when incorporating tissue transport, thus improving efficacy. 
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Figure 5. A and B represent profiles for a theoretical drug with diffusivity of 10-4 m2/s, 
binding constant of 1, and half-life of 0.5 hours. These profiles compare treatment 
schedules consisting of 2 doses and 10 doses. A) fraction cancer cells killed versus time. 
B) concentration of bound drug in the tumor versus time. C) Tissue Drug Exposure (TDE) 
comparison for four theoretical drugs that differ in improvement of efficacy from 2 dose 
to 10 dose treatment schedule.  
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CHAPTER 4 

 
CONCLUSION AND FUTURE WORK  

 

  This study presents a tissue transport model that illustrates the effect of treatment 

schedule on chemotherapeutic antitumor efficacy. Previous studies show tissue level 

transport plays a key role in penetration and retention of drug (Toley et al., 2013). At 

high diffusivities, low binding constant, and low half-life, a drug is quickly cleared from 

the body and penetrates the tumor well but is not retained. A treatment schedule 

consisting of more doses helps improve efficacy by increasing TDE (Figure 5). At high 

diffusivities and high binding constants for all half-lives, a drug penetrates the tumor well 

and is retained. Implantation of treatment schedule on such drugs has no significant 

improvement on efficacy (Figure 2). At higher half-lives (15 hours), drug is cleared 

slowly from the body and has more time be in contact with the tumor. Regardless of 

diffusivity or binding constant, implementation of treatment schedule consisting of more 

than one dose had no improvement on efficacy. Based on this model, drugs that exhibit 

higher clearance rates have greater improvement in antitumor efficacy using a treatment 

schedule with more than one dose. The model developed here is a useful tool to predict 

optimal treatment schedules.  Doxorubicin, an established chemotherapeutic drug, 

currently has a 72-hour treatment schedule with 12 doses. This model predicts the 

optimal treatment schedule would be 10 doses over 72 hours. Thus, compared with the 

drug of which the model static parameters were taken, this model predicted accurately the 

dosing scheme of Doxorubicin. With this model the optimal efficacy, optimal treatment 

schedule, and improvement from one dose can thus be predicted. From this study, we can 
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conclude that it is essential to also take tissue transport phenomena into account as well 

as PK/PD for in silico treatment schedule models.  

  There are several components that could be added to the model to improve 

accuracy of prediction. First, unequal dosing regimens could be investigated. This could 

perhaps further improve efficacy. Second, tumor growth could be incorporated into the 

model. Over the time period investigated, it was assumed tumor cells did not regenerate. 

Adding such a component to the model can further improve treatment schedule prediction 

accuracy. 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 19

 

APPENDIX 

 
MATLAB CODE FOR TISSUE TRANSPORT MODEL AND INVESTIGATION 

OF TREATMENT SCHEDULES FOR THEORETICAL DRUGS 

 

optim.m 

 

 
%THIS M FILE INVESTIGATES ALL THEORETICAL DRUGS 
%the m file runs Looping, func, conc_blood, and nonline m files 
  
ndose=20; %input treatment schedules to investigate here (1 to ndose treatment schedules will 
be investigated)  
  
%all possible combinations of Dfact, Rfact, and Thalf will be investigated 
  
Dfact=[1e-6,1e-4,1e-2,1,1e2,1e4,1e6,1e8,1e10]; %diffusivities to investigate 
Rfact=[1e-4,1e-2,1,1e2,1e4];%binding constants to investigate 
Thalf=[0.5,5,15];%half-lives to investigate 
  
%create for-loops to investigate all possible combinations 
  
out=zeros(ndose, length(Dfact)*length(Rfact)*length(Thalf)); 
counter = 0; 
for i = 1:length(Dfact) 
    for j = 1:length(Rfact) 
        for n = 1:length(Thalf) 
            counter = counter+1; 
            for M=1:ndose 
                   out(M, counter)=Looping(M, Thalf(n), Dfact(i), Rfact(j)); 
                   disp(['Thalf ', num2str(n)]); 
                   disp(['Dfact ', num2str(i)]); 
                   disp(['Rfact ', num2str(j)]); 
            end 
        end 
    end 
end 
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Looping.m 

 
 
function loop=Looping(dose,thalf, dfact, rfact) 
% THIS CODE SOLVES THREE SIMULTAEOUS PDE'S FOR CONCENTRATION OF FREE 
DRUG, 
% BOUND DRUG, AND LIVE CELLS WITHIN TISSUE 
  
%---- Discretization Parameters---------------- 
T = 72; % Total experiment time (hours) 
dose=10; %manually input treatment schedule (number of doses) here to investigate one 
treatment schedule 
dfact=1e8;%manually input diffusivity here to investigate one treatment schedule 
rfact=1e4;%manually input binding consant to investigate one treatment schedule 
thalf=5;%manually input half-life here to investigate one treatment schedule 
ndose=dose; %number of drug doses 
Nt = 200; % Number of bins in time; 
N = 50; % Number of bins in x (distance) 
  
  
%---------------------------------------------- 
h = 1/ N; % Non dimensional step size in space 
  
%Loop the entire structure to investigate the dependence of a parameter 
Size = 1; 
Result = zeros(4,Size); 
for Pass=1:Size 
  
% GENERATING INITIAL CONDITION VECTOR 
% Setting all initial values to zero, except live cell density, which is 
% set to 1 at time t=0 
X0 = zeros(((3*N)+2),1); 
for i = (2*N)+2 : (3*N)+2 
    X0(i,1) = 1; 
end 
  
  
%Manipulations 
  
Dfact = dfact; 
Mufact = 1; 
Konfact = 1; 
Rfact = rfact; 
  
A0fact = 1;   %10^(Pass-11); 
  
%------- Solution Parameters 
%--------------------------------------------------------------------- 
  
L = 800e-6; % Length of domain (m) 
  
D = Dfact*(1e-12); % Diffusivity of Dox (m2/s) 
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kon = 1.00 * Konfact; % Forward reaction rate constant (1/s) 
  
R = 1 * Rfact; % Equilibrium constant = kon/koff 
  
koff = kon/R; % Reverse reaction rate constant (1/s) 
  
Thalf = thalf; 
%Thalf = .2; %half-life (hours, used in conc_blood) 
  
A0 = 2e-2 * A0fact; % Maximum drug concentration. Value in parenthesis is in uM. It is converted 
to mol/m3 
  
Km = (1.66) * (1e-3); % drug saturation constant. Value in parenthesis is in uM. It is converted to 
mol/m3 
  
Mudmax = (0.14) * Mufact / 3600; % Max death rate. Value in parenthesis is in 1/hr. It is 
converted into 1/s 
  
frac = 1; % Contribution of free drug to killing cells; 0<frac<1 
  
Ratio=(L.*L)/D; 
  
dt = ((T*3600)/Nt)*(1/Ratio); % Non dimensional step size in time 
  
  
  
  
 
  
%--------------------------------------------------------- 
% DIMENSIONLESS VARIABLES 
  
KON = kon*Ratio; 
KOFF = koff*Ratio; 
T0 = Ratio; 
MU = Mudmax*Ratio; 
Q = Km/A0; 
%--------------------------------------------------------- 
  
  
%-- Pre-defining Mass Matrix and Vectors as Zeros -------- 
  
A = zeros ((3*N)+2); 
  
  
  
%--------------------------------------------------------- 
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%-- Creating Mass Matrix A -------- 
  
f = 1/(h^2); % for convenince 
  
%Row 1 
A(1,1) = (-2*f) - KON; 
A(1,2) = f; 
A(1, N+2) = KOFF; 
  
  
  
%Row N 
A(N,N-1) = 2*f; 
A(N,N) = (-2*f) - KON; 
A(N,N+N+1) = KOFF; 
  
%Rows 2 to N-1 
for i = 2:N-1 
    A(i,i-1) = f; 
    A(i,i) = (-2*f) - KON; 
    A(i,i+1) = f; 
    A(i,i+N+1) = KOFF; 
end 
  
%Row N+1 
A((N+1),(N+1)) = -KOFF; 
  
  
%Rows N+2 to N+N+1 
for i = 1:N 
    A(N+1+i,i) = KON; 
    A(N+1+i,i+N+1) = -KOFF; 
end 
%------Finished creating matrix A---- 
%----------------------------------------- 
  
  
%Initializing Solution Matrix--- 
C = zeros(((3*N)+2),Nt); % Final Solution Matrix 
Y = zeros(((3*N)+2),1); 
  
  
% MAIN SOLVER---------------------------------------------- 
sol = X0; 
  
for i = 1:Nt 
    t = (i-1)*dt; %Nondimensionalized time 
    X = sol; 
    sol = fsolve(@(Y) func(X,Y,f,t,dt,T0,A,N,MU,Q,KON,frac,ndose,Thalf), X); 
    C(:,i) = sol; 
end 
%---------------------------------------------------------- 
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%-----Extracting individual components from solution------- 
conc_A = zeros(N+1,Nt); 
  
conc_A(2:N+1,:) = C(1:N,:); 
  
for i = 1:Nt 
    t = (i)*dt; 
    conc_A(1,i) = conc_blood(t,T0,ndose,Thalf); 
end 
  
  
conc_B = C((N+1):((2*N)+1),:); 
  
conc_tot = conc_A + conc_B; 
  
conc_live = C((2*N)+2:(3*N)+2,:); 
  
  
%---- creating axes for plots 
t_axis = T/Nt:T/Nt:T; 
x_axis = 0:h:1; 
  
  
% %---- PLOTS -------- 
  
subplot(2,3,1) 
plot (x_axis,conc_A); 
xlabel ('distance'); 
ylabel ('Conc of free drug'); 
  
subplot(2,3,2) 
plot (x_axis,conc_B); 
xlabel ('distance'); 
ylabel ('Conc of bound drug'); 
  
subplot(2,3,3) 
plot (x_axis,1-(conc_live)); 
xlabel ('distance'); 
ylabel ('dead cell concentration'); 
  
subplot(2,3,4) 
plot (t_axis,mean(conc_A)); 
xlabel ('time (hrs)'); 
ylabel ('average free drug conc'); 
  
subplot(2,3,5) 
plot (t_axis,1-mean(conc_live)); 
xlabel ('time (hrs)'); 
ylabel ('average dead cell conc'); 
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subplot(2,3,6) 
plot (t_axis,mean(conc_B)); 
xlabel ('time (hrs)'); 
ylabel ('average bound drug conc'); 
  
%write excel data here 
xlswrite('t_axis', t_axis); 
xlswrite('x_axis', x_axis); 
xlswrite('mean(conc_B)', mean(conc_B)); 
xlswrite('mean(conc_A)', mean(conc_A)); 
xlswrite('conc_B', conc_B); 
xlswrite('conc_A', conc_A); 
xlswrite('1-conc_live', 1-conc_live); 
xlswrite('1-mean(conc_live)', 1-mean(conc_live)); 
% Can display values here 
% ratio = conc_live(0.8*N,Nt) / conc_live(0.2*N,Nt); 
%  
% %disp([length(x), x(length(x),5), x(length(x),6), ratio]) 
% disp(' ') 
% disp(num2str(Pass)); 
% disp(['survival ', num2str(mean(conc_live(:,Nt)))]); 
% disp(['proximal ', num2str(conc_live(0.2*N,Nt))]); 
% disp(['distal ', num2str(conc_live(0.8*N,Nt))]); 
% disp(['ratio ', num2str(ratio)]); 
%  
% saveas(gcf,['Exp_RD2_' num2str(Pass+5)]); 
%  
% Result(1,Pass)=mean(conc_live(:,Nt)); 
% Result(2,Pass)=conc_live(0.2*N,Nt); 
% Result(3,Pass)=conc_live(0.8*N,Nt); 
% Result(4,Pass)=ratio; 
%  
% end; 
% loop=mean(conc_live(:,Nt)); 
  
  
end 
 
 

 

 

 

 

 

 

 



 

 25

Func.m  

 

function c = func(X,Y,f,t,dt,T0,A,N,MU,Q,KON,frac,ndose,Thalf) 
  
I = eye ((3*N)+2); 
  
M = (I - (dt*A)); 
  
b = zeros (((3*N)+2),1); 
  
A1=X(1,1)/f; 
A2=X((N+1),1)/KON; 
  
b(1,1) = f*conc_blood(t+dt,T0,ndose,Thalf); 
  
b((N+1),1) = KON*conc_blood(t+dt,T0,ndose,Thalf); 
  
  
c = M*Y - X - (dt*b) - (dt*Nonlin(t,dt,T0,Y,MU,Q,frac,N,ndose,Thalf)); 
 
 
 

Conc_blood.m 

 
function c = conc_blood(t,T0,ndose,Thalf) 
  
T=72; %total experiment time 
M=ndose;%number of doses 
  
delt=T/M;%interval between each dose (hours) 
  
K = 0.693/Thalf; % 1/hrs 
  
t_dim = t.*T0/3600;% time (hours) 
  
  
C0=1/M; %concentration of each administered  
  
cd=zeros(M,1); %create concentration profiles for each dose  
for i=1:M 
    cd(i,1) =C0*exp(-K.*(t_dim-((i-1).*delt))); % Normalized boundary condition 
end 
c=0; 
  
%implement dose at each interval  
if t_dim <= delt %first dose implemented  
    c=cd(1,1) ; 
end 
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for i=M:-1:2 %doses 2 to ndose implementation  
     
  
    if t_dim > (i-1)*delt 
  
        for j=1:(i) 
            c=cd(j,1)+c; 
        end 
        break; 
    end 
end 
 
 
Nonlin.m 

 
 
function c = Nonlin(t,dt,T0,X,MU,Q,frac,N,ndose,Thalf) 
  
  
  
CA = X(1:N); 
CB = X(N+1:(2*N)+1); 
lf = X(((2*N)+2):((3*N)+2)); 
  
vect = zeros(((3*N)+2),1); 
  
  
Ceff = (frac*conc_blood(t+dt,T0,ndose,Thalf)) + CB(1,1); 
vect((2*N)+2,1) = -MU * (Ceff/(Q + Ceff)) * lf(1); 
  
for i = 2:(N+1) 
     
    Ceff = (frac*CA(i-1) + CB(i)); 
     
    vect((2*N)+1+i,1) = -MU * (Ceff/(Q + Ceff)) * lf(i); 
     
end 
  
c = vect; 
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