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ABSTRACT 

INCREASED BODY WEIGHT IN ADULTHOOD FOLLOWING A PERIPUBERTAL 

STRESSOR AND PROPOSED MECHANISM FOR EFFECTS OF INCREASED 

ADIPOSITY ON ESTROGEN-DEPENDENT BEHAVIORS 

SEPTEMBER 2014 

CHRISTINA FELDER GAGLIARDI, B.A., MOUNT HOLYOKE COLLEGE 

B.S., UNIVERSITY OF MAINE ORONO 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by Jeffrey D. Blaustein 

Exposure to certain stressors during a sensitive period around puberty can lead to 

enduring effects on an animal’s response to estradiol. In estradiol-influenced behaviors, 

such as sexual receptivity, hippocampal-dependent learning and memory, depression-like 

behavior, and anxiety-like behaviors, exposure to a peripubertal stressor such as shipping 

stress or an injection of lipopolysaccharide (LPS) can eliminate or even reverse the 

normal response to estradiol. In addition to regulating these behaviors, estradiol play a 

role in the regulation of body weight. While some of the previous studies touched on 

short-term effects on body weight, no systemic long-term study of the effects of a 

peripubertal stressor on body weight, particularly without interruption by ovariectomy, 

have been undertaken. This paper introduces a hypothesis that proposes that increased 

adiposity following exposure to a peripubertal stressor leads to the changes to estrogen-

dependent behaviors through altered levels of estrogens and changes to estrogen 

receptors. The first chapter examines body weight data collected during studies with 

other aims, and then proposes an experiment to test whether either of two peripubertal 
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stressors results in increased weight gain and body weight. The following chapter 

proposes further experiments designed to determine the proximate mechanisms leading to 

weight gain following peripubertal stressors and the role of diet on weight gain. The final 

chapter proposes experiments to test the effects of adiposity on peripheral levels of 

testosterone, aromatase, estradiol, and estrone; central levels of estradiol and estrone; and 

estrogen receptors in the brain. 
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CHAPTER 1 

THE SENSITIVE PERIPUBERTAL PERIOD, STRESS, ESTRADIOL-

INFLUENCED BEHAVIORS, AND OBESITY: BACKGROUND AND 

HYPOTHESIS 

Previous findings from the Blaustein laboratory 

Introduction 

Exposure to certain stressors during a sensitive period around puberty can lead to 

enduring effects on an animal’s response to estradiol. Specifically, exposure to a 

peripubertal stressor can eliminate or even reverse the normal response to estradiol for a 

variety of behaviors, including sexual receptivity, hippocampal-dependent learning and 

memory, depression-like behavior, and anxiety-like behaviors. This effect was first 

examined and established in the Blaustein laboratory, with a series of papers published 

beginning in 2009. Work on this phenomenon continues in the laboratory with 

exploration on multiple levels into the mechanisms by which these changes occur. This 

section will review the major papers from the lab, in the order in which they were 

published, as well as give a brief mention to preliminary findings from studies in 

progress. It will conclude with a short summary of the findings thus far.  

Establishment of the sensitive peripubertal period 

The initial work establishing an effect of peripubertal stressors on sexual 

receptivity in response to exogenous hormones tested sex, age, and different stressors. 

This initial work was published in two papers (Laroche, Gasbarro, Herman, & Blaustein, 

2009a, 2009b) and all completed in C57Bl/6 mice. Female mice were all ovariectomized 
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and administered estradiol benzoate and progesterone weekly before sexual behavior 

testing. Sexual behavior testing was conducted weekly for five weeks, beginning the 

week after ovariectomy. Sexual receptivity was measured by assessing the animal’s 

lordosis quotient, or the number of times that the female exhibited a lordosis posture in 

response to a mount from a male mouse.  

Laroche et al. first established that female mice shipped at 6 weeks of age have 

significantly reduced sexual receptivity after ovariectomy followed by injections of 

estradiol and progesterone than mice shipped at 12 weeks or animals bred in the 

laboratory (Laroche et al., 2009b). These differences in sexual receptivity are not due to 

differences in age of behavior testing; female mice shipped at 6 weeks and tested 

beginning at 8 or 14 weeks each show significantly reductions in lordosis quotient 

contrasted with animals shipped at 12 weeks and tested beginning at 14. The sensitive 

period was identified by examining mice shipped at 3, 4, 5, 6, 7, 8, 9, 10, and 12 weeks of 

age and tested beginning at week 14. Mice shipped at 6 weeks showed lower sexual 

receptivity than those shipped at ages of 7 weeks or more. The mice shipped at 6 weeks 

also showed decreased sexual receptivity compared with those mice shipped at 3 or 4, but 

only in the fifth test session. No difference was detected between mice shipped at 5 or 6 

weeks. Corticosterone response was assessed after each behavior test session by 

examining plasma corticosterone levels. Corticosterone decreased with each additional 

week of testing for both 6 week and 12 week shipped animals; the only difference found 

between animals shipped at 6 and 12 weeks was following the first week of testing when 

12 week animals had a significantly higher corticosterone level. In conclusion this paper 
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established that the effects of shipping on sexual receptivity are specific to female mice 

shipped at 5 or 6 weeks. 

The second publication (Laroche et al., 2009a), addressed other peripubertal 

stressors and their short-term effects on corticosterone levels and body weight and any 

enduring effects on sexual receptivity. Restraint stress, food deprivation, and a multiple 

stressor paradigm (three daily bouts of restraint under bright light) increased plasma 

corticosterone levels in response to the stressor after some or all applications of the 

stressor. These three stressors decreased body weight as measured for several hours to 

several days following the stressor. While animals from all three stress paradigms 

showed an increase in sexual receptivity by week of testing (increased receptivity with 

additional tests), there were no differences between stressed individuals and controls. 

Injections of several concentrations of lipopolysaccharide (LPS), a bacterial endotoxin 

from the cell membrane of Escherichia coli, increased plasma corticosterone levels, 

although only the highest dose (1.5mg/kg body weight) significantly decreased sexual 

receptivity over several test sessions. This highest dose of LPS specifically decreases 

sexual receptivity on the third, fourth, and fifth test sessions. Finally, animals were 

injected with the high dose of LPS at 3, 4, 5, 6, 7, 8, and 10 weeks of age and tested for 

sexual receptivity in order to determine the sensitive window. Animals injected at 3,7, 8, 

and 10 weeks showed no decrease in sexual receptivity when compared to controls. 

Those animals injected at 4 and 5 weeks decreased during only one or two test sessions, 

while animals injected at 6 weeks significantly decreased sexual receptivity for the third, 

fourth, and fifth test sessions. In summary this paper revealed that the effects of 

peripubertal stressor on sexual receptivity are dependent on the type of stressor and that 
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an injection of a high dose of LPS at 6 weeks results in decreased sexual receptivity in 

response to estradiol. 

Further investigations of effects of peripubertal stressors 

Following the initial publications, research extended to include effects on other 

estradiol-influenced behaviors including anxiety-like behavior, depression-like behavior, 

and memory in female mice. These studies were conducted either in C57Bl/6 mice with 

some experiments performed in parallel with CD-1 mice, or in CD-1 mice alone. The first 

study discussed also examined estrogen receptors in areas involved in sexual behavior. 

Further work (Ismail, Garas, & Blaustein, 2011) replicated the effects of shipping 

and LPS injection on sexual receptivity in CD-1 mice, an unrelated outbred strain, and 

examined differences in estrogen receptor alpha (ERα). An injection of LPS at 6 weeks 

significantly reduced sexual receptivity as compared to saline injected controls; an 

injection of LPS at 8 weeks only reduced sexual receptivity in the fifth test session. 

Shipping mice at ages 6 or 8 weeks decreased sexual receptivity relative to those shipped 

at 3, 4, and 10 weeks in most test sessions. Finally, the effects of shipping on ERα were 

examined in mice shipped at 4 or 6 weeks and euthanized one week after their second 

sexual behavior test. Animals shipped had 6 weeks showed significantly fewer ERα –

stained cells in the arcuate nucleus, medial preoptic area, and ventromedial nucleus of the 

hypothalamus, but not in the anteroventral periventricular nucleus. These experiments 

replicated previous findings from C57Bl/6 mice, of the effects peripubertal stressor on 

sexual receptivity, in CD-1 mice and established a vulnerable peripubertal period of 6 

weeks of age for both shipping stress and LPS injection in CD-1 mice. Additionally, this 
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paper demonstrates for the first time a difference in estrogen receptors in the brains of 

peripubertally stressed animals. 

Another paper expanding on the initial findings, (Olesen, Ismail, Merchasin, & 

Blaustein, 2011), examined the effects of an injection of LPS on anxiety-like behaviors 

under several conditions. In all three experiments both LPS and saline control animals 

were split into two groups: animals either received an injection of estradiol benzoate 

followed by progesterone or vehicle alone.  The first experiment used only C57Bl/6 mice 

injected at 6 weeks, while the second and third studies used C57Bl/6 and CD-1 mice 

respectively injected at both 6 and 8 weeks. Although the results of the individual 

behavioral tests (light/dark box, elevated plus maze, and marble burying task) vary, 

together they show general trends for an effect of LPS injection, hormone, and age. In 

almost all cases, saline treated mice that received estradiol exhibited lower anxiety-like 

behavior than those administered oil, regardless of age of saline treatment. Similarly, 

mice treated with LPS at 8 weeks that received estradiol showed decreased anxiety-like 

behavior compared to those that received vehicle alone. Importantly, mice that received 

LPS at 6 weeks had increases, or no change, in anxiety-like behavior when administered 

estradiol rather than oil depending on the strain and task. In two tests, mice treated with 

LPS at six weeks and oil showed decreased anxiety-like behaviors, compared to those 

that received saline and oil. In conclusion, this paper demonstrated an effect of a 

peripubertal injection of LPS on anxiety-like behavior in two unrelated strains of mice.  

A peripubertal injection of LPS alters response to estradiol and progesterone with the 

mice showing no change or an increase in anxiety-like behaviors compared to oil 

controls. 
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A paper examining memory, including tests of object recognition, object 

placement recognition, social discrimination, and social recognition revealed further 

effects of peripubertal stress (Ismail & Blaustein, 2013). CD-1 female mice were injected 

at either 6 or 10 weeks of age with saline or LPS and implanted with Silastic© capsules 

containing either estradiol in sesame oil or sesame oil alone at the time of ovariectomy. In 

the tests for object recognition, object placement recognition, and social discrimination, 

estradiol improved performance in mice treated with saline, at either age, and the mice 

treated with LPS at 10 weeks. However, mice injected with LPS at 6 weeks had no 

improvement on memory with estradiol. There were no differences between any groups 

in a test of general locomotion, indicating that the differences in investigatory behaviors 

were not due to differences in locomotion. Results on the social recognition task were 

inconclusive. Therefore, this work provides evidence that a peripubertal injection of LPS 

eliminates the positive effects of estradiol on cognitive tasks. 

The most recently published paper, (Ismail, Kumlin, & Blaustein, 2013), focused 

on depression-like behaviors and was conducted in both C57Bl/6 and CD-1 mice. For 

both strains, there were two age groups of animals, one injected in the sensitive 

peripubertal period (6 weeks of age) and one at a later period (8 weeks for C57Bl/6 and 

10 weeks for CD-1). At ovariectomy half of the animals received a capsule containing 

estradiol in sesame oil, the other half received capsules containing only oil. The results of 

the tests were similar between strains. In both the forced swim test and tail suspension 

test, the saline treated animals improve and show less depression-like behavior when 

administered exogenous estradiol compared to those administered an oil vehicle alone, 

regardless of treatment age. The same result is seen in animals treated with LPS at an 
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older age. In the animals injected with LPS at 6 weeks, estradiol increased depression-

like behavior compared to oil. Neither strain displayed any differences in sucrose 

preference. Unlike the forced swim and tail suspension test, this task is associated with 

anhedonia rather than behavioral despair. As the authors point out, the role of estradiol in 

the anhedonia in unknown. Thus, the lack of response may indicate either lack of a role 

for estradiol in anhedonia. Further, the results may have been due to depleted estradiol 

levels at the time of test administration, rather than indicating a lack of difference in 

depression-like behavior. The differences in performance in the forced swim test or tail 

suspension test are not due to changes in general locomotion as there were no differences 

within either strain in locomotor activity. A subsequent unpublished analysis of the CD-1 

data shows that in animals treated with vehicle only, those exposed to LPS performed 

significantly better than saline controls in both tests (Holder, unpublished). In summary, 

this paper demonstrates that in both C57Bl/6 and CD-1 mice a peripubertal injection of 

LPS results in an increase in depression-like behavior rather than a decrease following 

administration of estradiol. 

Microglial activation 

Recent work in the laboratory has begun to address the role of neuroinflammation 

in effecting the changes observed in estrogen receptors and behaviors. This work, 

(Holder, 2014), is focused on the role of microglial activation following the peripubertal 

stressor. Preliminary results show differences in microglial activation in several brain 

areas between animals subjected to either an injection of saline or LPS, or shipping, at 

either 6 or 8 weeks of age. These findings indicate that in the arcuate nucleus and 
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ventromedial hypothalamus, which play a role in feeding and sexual behaviors, LPS 

exposure increases microglial activation more in 6 week mice than 8 week. 

Summary 

Together this body of work demonstrates the specificity of a period around 

puberty in which certain stressors can elicit long-term changes in estradiol-influenced 

behaviors. The existence of a sensitive peripubertal period has been demonstrated in two 

unrelated strains of mice. While the effects were first established using shipping as a 

stressor, the multi-faceted, variable nature of the stressor led to attempts to find a more 

reliable stressor. Injection of LPS during the peripubertal period had similar effects on the 

response to hormones in tests of sexual, anxiety-like, and depression-like behavior. The 

effects of estradiol on depression- and anxiety-like behaviors appear to be paradoxical in 

peripubertally stressed animals, insofar as these animals showed increased rather than 

decreased depression- and anxiety-like behaviors. Additionally, an LPS injection appears 

to alter some of these same behaviors in the absence of estradiol when compared with 

saline treated controls. Exposure to a peripubertal injection of LPS also eliminates the 

positive effects of estradiol on memory as demonstrated by hippocampal cognitive tasks. 

A decrease in estrogen receptor alpha expression in areas of the brain associated with 

sexual behavior points to a potential mechanism by which response to estradiol may be 

altered. Finally, current work has begun to show changes in neuroinflammation following 

the stressors at different ages, demonstrating a possible difference in early response to the 

stressors. 
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Obesity: connections with puberty, depression, estrogens, and inflammation 

Introduction 

In addition to the behaviors previously examined in the Blaustein laboratory, 

estradiol regulates body weight (Brown & Clegg, 2010; Wade, Gray, & Bartness, 1985). 

While some of the previous studies touched on short-term effects on body weight, no 

systemic long-term study of the effects of a peripubertal stressor on body weight, 

particularly without interruption by ovariectomy, have been undertaken. This area is a 

potential avenue both for exploration of the effects on body weight but also for the 

potential effects of increased adipose tissue on estrogen-influenced behaviors. Studies 

from both human and rodent literature have pointed to interrelations between 

inflammation, obesity, puberty, and depression with a complex relationship between 

obesity and estrogens.  

Some of these links are explored in the human literature, and some in rodent 

models.  While care must be taken not to try to directly relate results from one species to 

another, female mice are a relevant model group for puberty in girls as will be discussed. 

This section will first discuss connections between puberty, obesity, depression, and 

estrogens in the human literature, and then will review other connections between these 

factors, as well as inflammation, in mice. The section will conclude with a discussion of 

the similarities and differences in female puberty in humans and mice. 

Selected findings from human literature 

For women, the average age of onset for mental disorders, including depression 

and anxiety, falls during adolescence (Hayward & Sanborn, 2002). Puberty, timing of 



 10 

onset of puberty, and stress during puberty in girls have all been implicated in the 

development of depression, vulnerability to later life stress, weight gain, and insulin 

sensitivity (Ellis & Garber, 2000; Ge, Conger, & Elder, 1996; McCabe, Ricciardelli, & 

Finemore, 2002; Patton et al., 1996). Women with severe mental illnesses are more likely 

to be obese (Daumit et al., 2003), and recent work indicates that obesity is predictive of 

depression (Luppino et al., 2010). A recent longitudinal study suggests that it is the 

metabolic dysregulations that often occur in obesity, rather than obesity itself, that 

increase the risk for developing depression (Hamer, Batty, & Kivimaki, 2012).  

The relationship between obesity and depression is complex and reciprocal. While 

obesity increases the risk for depression over time, depression also predicts the 

development of obesity (M. S. Faith et al., 2011; Luppino et al., 2010). This is 

particularly relevant in adolescent girls where the onset of depression in early 

adolescence predicts the development of obesity in later adolescence, and development of 

obesity during adolescence predicts depression in adulthood (Marmorstein, Iacono, & 

Legrand, 2014). Specifically, increased visceral adipose tissue is associated with 

depression in both men and women (Rivenes, Harvey, & Mykletun, 2009). 

Just as obesity and depression are interlinked, the associations between obesity, 

metabolic symptoms, reproductive difficulties, and estrogens are intertwined. Visceral fat 

is also associated with insulin resistance, inflammation, and anovulation (Androulakis et 

al., 2014; Melka et al., 2013). Not only is adipose tissue in adulthood associated with 

metabolic phenotypes, but the timing of pubertal onset and observed changes in body 

weight during puberty are predictive of obesity and metabolic syndrome in adulthood 

(Ferreira, Twisk, van Mechelen, Kemper, & Stehouwer, 2005; Lawlor, 2005; McGill et 



 11 

al., 2000). Adipose tissue synthesizes testosterone in obese women without underlying 

metabolic syndrome (Quinkler, 2004) and has been implicated as a source of testosterone 

in women with polycystic ovary syndrome (Fassnacht et al., 2003). Complicating the 

matter further, adipose tissue, specifically the stromal cells, is known to have high 

aromatase activity and to produce estrogens, particularly estrone (Cleland, Mendelson, & 

Simpson, 1983; Simpson, Merrill, Hollub, Graham-Lorence, & Mendelson, 1989).  

Selected findings from rodent literature 

Rodent models allow investigation into processes that researchers are unable to 

address directly in humans due to time scale, practical, or ethical considerations. Most of 

the information below comes from work in mice, but for clarity the studies performed in 

rats or hamsters are noted as such. These studies show links between puberty, obesity, 

estradiol, and inflammation; these relationships are frequently complex and like the 

relationship between such elements in humans are far from fully understood. A few of 

these relationships are discussed here. 

The relationship between obesity, estradiol, inflammation, and puberty is tangled.  

Removal of endogenous estradiol via ovariectomy increases adipose tissue, while 

estradiol replacement following ovariectomy decreases adipose tissue in both rats (Wade 

et al., 1985) and humans (Keith et al., 2006). Similarly, ERα knock out mice show 

increased adipose tissue (Heine, Taylor, Iwamoto, Lubahn, & Cooke, 2000). Of particular 

relevance to the work outlined below, lower than usual levels of estrogens during early 

development can also lead to obesity during puberty as evidenced that the offspring of 

dams fed low phytoestrogen feed during pregnancy develop obesity at puberty, indicating 
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that alterations in levels of estrogens during development can lead to enduring effects 

during puberty and adulthood (Grün & Blumberg, 2009; Ruhlen et al., 2007).  

Obesity is commonly referenced as an inflammatory disease (Kennedy, Martinez, 

Chuang, LaPoint, & McIntosh, 2008). While numerous factors have been implicated, the 

inflammatory response and obesity are linked at least partially by the mediation of toll-

like receptor 4 (Tlr4), a gene involved in innate immunity (Milanski et al., 2009; Saberi et 

al., 2009). A loss of function mutation in Tlr4 has been shown to prevent obesity in mice 

fed a high fat diet that would normally induce obesity (Tsukumo et al., 2007). Male mice 

exposed to a prenatal stressor show increased body weight in adulthood as well as 

increased expression of Tlr4 as compared to unstressed males, or females regardless of 

prenatal stress, suggesting that early life stressors can affect both body weight and the 

expression of Tlr4 in adulthood (Bolton et al., 2013; Bolton et al., 2012). Microglia also 

increase in number in the hypothalamus in mice exposed to dim light at night, although 

the specific mechanisms are still unclear (Fonken, Lieberman, Weil, & Nelson, 2013). 

This increase can be exacerbated by a high fat diet (Fonken, Lieberman, et al., 2013). 

Additionally, hamsters exposed to dim light at night exhibit a heightened 

neuroinflammatory response to an injection of LPS (Fonken, Weil, & Nelson, 2013). In 

male mice, the exposure to dim light at night has also been shown to lead to obesity 

(Fonken, Aubrecht, Melendez-Fernandez, Weil, & Nelson, 2013; Fonken et al., 2010) 

and depression-like behaviors (Fonken & Nelson, 2013); female hamsters also show 

depression-like behaviors following exposure to dim light at night (Bedrosian, Weil, & 

Nelson, 2012). 
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Puberty 

Puberty is an important developmental stage in which many physiological and 

behavioral changes occur and have lasting effects on both physiology and behavior later 

in life (Forbes & Dahl, 2010; Marshall & Tanner, 1969). Key among these changes are 

altered levels of hormone production, altered sensitivity to hormones, and remodeling of 

the brain, due in part to steroid hormones (Schulz, Molenda-Figueira, & Sisk, 2009). In 

girls, puberty is an extended period beginning with the onset of breast development and 

ending with the first menses and takes approximately two to three years (Sizonenko, 

1989; Tanner, 1962). In female mice, puberty begins with vaginal opening and ends with 

regular estrous cycle and reproductive competence; these events can be separated by 

several weeks (Vandenbergh, 1967, 1969). While several weeks may seem short in 

duration, in an animal that has a lifespan of less than two years (for C57Bl/6 (Russell, 

1966)), this constitutes a prolonged period. Due to the similarly prolonged pubertal 

period, female mice are a relevant model for puberty in human girls. 

Hypothesis for role of obesity in mediating estrogen-dependent processes following a 

peripubertal stressor 

In light of the possibility of an increase in body weight, a new hypothesis emerges 

for the mechanism by which peripubertal stressors lead to the changes enumerated above.  

The overarching hypothesis is that peripubertal stress induces a metabolic syndrome and 

obesity, which in turn alters the hormonal environment, and leads to impaired response to 

estradiol. Because the human literature examines women and girls with ovaries, this 

hypothesis is proposed for intact females, although the enduring effects after ovariectomy 
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and with exogenous hormone administration are addressed as well. The following 

hypothesis is also illustrated in Figure 1. 

 
Figure 1. Hypothesis for obesity as a mediator of estrogen-dependent processes following 
peripubertal stress. 

It is hypothesized that a peripubertal stressor leads to inflammation in the brain. 

This inflammation leads to changes in behavior and metabolism. These changes in turn 

lead to increased weight gain and adiposity. The increased adipose tissue produces 

increased plasma levels of testosterone. Increased adiposity also leads to increased 

aromatase activity. This increased aromatase activity results in increased peripheral 

circulating estrogens. Increased levels of estrogens in the periphery lead to increased 

levels of estrogens in the brain. These increased central levels of estrogens result in long-

term changes in the numbers, activity, and/or sensitivity of estrogen receptors in the 
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brain.  The changes in receptors may be limited to certain receptor types or to specific 

regions. Finally, following ovariectomy, response to exogenous estradiol administration 

is altered due to the changes in receptors as well as enduring endogenous estrogen 

production by adipose tissue. 

Overview of the following chapters 

The hypothesis proposed above presents several unanswered questions and multiple 

avenues for investigation.  Because other work already focuses on the links between 

peripubertal stressors and inflammation, the remaining sections here will address only the 

following areas. 

1) Is there an increase in weight gain and body weight following peripubertal 

stressor?  

2) What is the proximate cause of such weight gain?  

3) Is obesity a mediator of estrogen dependent processes following pubertal stress 

and does it work through the proposed mechanism? 

The first question will be addressed in Chapter 2, which will examine data collected 

during several studies each with other aims. The chapter will then propose a study to test 

the question directly while addressing limitations for analyzing weight data raised by the 

other studies from which data was collected. The second question will be addressed in 

Chapter 3 where a primary and alternative hypothesis will each be presented and 

followed by proposed studies to address the main points of the hypotheses. The third 

point will be addressed in Chapter 4 where the questions from the hypothesis above will 

be reviewed, and a study proposed to examine the effects of adiposity on several factors. 



 16 

While each of these chapters builds on expected results from the previous chapters, each 

chapter will also briefly discuss possible alternative future directions. 
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CHAPTER 2 

WEIGHT GAIN INCREASE FOLLOWING EXPOSURE TO PERIPUBERTAL 

STRESSOR 

Introduction 

Three experiments with different aims gathered weight data as part of the 

experimental design, mainly to monitor animal health. Several members of the Blaustein 

lab conducted these studies. The weight data from each of these three studies were 

analyzed to determine if there is an effect of peripubertal stress on body weight in 

adulthood. Because different experimental paradigms were used in each study, groups 

cannot be compared across studies nor combined for greater statistical power. However, 

the results of each study when examined side by side can provide insight into body 

weight change with age following different peripubertal stressors in two disparate strains 

of mice. Statistical analyses were conducted using HLM software to conduct hierarchical 

linear regressions. Hierarchical modeling was chosen to analyze the data for several 

reasons, most importantly because the data vary across both discrete (treatment) and 

continuous (age) predictors. 

Effect of mouse strain 

As each of these experiments had a discrete aim, they each used the strain of 

mouse most appropriate for the questions being asked. The first and third experiment 

used CD-1 mice, which are outbred and are expected to show variability between 

animals. The second experiment used C57Bl/6 inbred mice, which are expected to show 

less individual variability, as they are genetically identical. CD-1 mice are larger than 



 18 

C57Bl6 mice at all age points studied and have other known differences as well, 

including differences in sensitivity to estradiol (Spearow, 1999). Because two different 

strains of mice were used across these three experiments, the results of the weight 

analyses may yield information about other differences in the response to peripubertal 

stress between strains or support previous demonstrations that strains are affected 

similarly. 

Effect of type of peripubertal stressor 

The three experiments also use two different types of peripubertal stressors, as 

well as two types of controls (Table 1).  While the first and third experiment both use an 

LPS injection as a stressor, and each include a saline injection control, the first 

experiment also contains an non manipulated control group, which received no injection.  

The second experiment also contains an LPS injected group, with a saline control group, 

but also includes a group of mice, with the same birthdate, that were not injected but were 

instead shipped to the research facility on the same day as injections were administered to 

the other groups. The inclusion of two different stress types, as well as a non-injected 

control, may allow conclusions about the similarity in effect of the different stressors and 

support the use of a saline injection as an adequate control for LPS injection. 

Table 1 

Stressor and Control Groups for Previous Experiments 

 Experiment 1 Experiment 2 Experiment 3 

Peripubertal 
Stressors LPS injection LPS injection 

Shipping LPS injection 

Controls Saline injection 
Non-injected Saline injection Saline injection 
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Experiment 1 

Experimental aim 

The aim of this study was to examine the effects on estrous cyclicity in animals 

administered a peripubertal stressor, in order to better understand the effects of such a 

stressor on the hormonal environment without an invasive measure of plasma estradiol.  

Animals were weighed before and after the peripubertal stress as well as before and after 

ovariectomy in adulthood. 

Methods 

Animal use was overseen by the Institutional Animal Care and Use Committee of 

the University of Massachusetts Amherst. 25 female outbred CD1 mice were purchased 

from Charles River Laboratories and arrived at 21 days of age (P21). Animals were 

housed in a temperature controlled, reverse light (14:10 LD, lights off at 10am) colony 

room. The animals were housed 4-‐‑5 to a cage lined with CareFRESH bedding, and were 

provided with a Nestlet at cage change. Cages were covered with a microisolator lid. All 

animals had ad libitum access to phytoestrogen-‐‑reduced mouse chow [Teklad 2014] and 

water. 

All animals were monitored for vaginal opening by visual inspection beginning 

the day after arrival.  Following vaginal opening, cells were collected by vaginal lavage 

from each animal daily (omitting P77-P83) until ovariectomy.  

On P42 animals received an intraperitoneal injection of either sterile saline (n = 8) 

or 1.5 mg LPS/kg body weight (n = 9), LPS was dissolved in sterile saline at a 

concentration of 0.1mg/ml. Sickness behavior was monitored at 30 minutes, 4, 24, and 48 
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hours and was scored by assessing ptosis, piloerection, huddling, and lethargy (after 

(Ismail et al., 2011)). Body weight was also recorded. An additional group of eight 

animals received no injection. 

Animals were weighed in a 2l glass beaker on an Ohaus animal scale. At P113 all 

animals were weighed prior to ovariectomy. Animal weights were tracked for several 

days post surgery to check that animals stabilized and regained the weight lost during and 

immediately following surgery. 

Weights from six days between P28 and P115 were analyzed by hierarchical 

regression to determine if there is a difference in body weight over time between the LPS, 

saline, and not injected groups. 

Results 

Regression analysis shows a significant difference between the LPS and saline 

treated groups (p<0.05) and between the control (non-injected) and saline treated groups 

(p<0.05). No significant difference was detected between the LPS and control groups 

(p=0.90). Analysis did reveal a significant difference in intercept between the saline and 

control groups (p<0.05); there were no significant difference in intercept between LPS 

and saline (p=0.59), although there was a trend towards difference between LPS and non-

injected controls (p=0.06). The analysis did detect a significant amount of variance in 

body weight that could not be explained by treatment effect at each age (p<0.05). Mean 

body weights for each group at each age analyzed and linear trend are shown in Figure 2. 

As adults, LPS and control animals weighed significantly (pLPS-Saline<0.05, pControl-

Saline<0.05) more than saline treated animals as exemplified at by the mean body weights 
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at P113 which were 32.1g for the LPS treated animals, 27.6g for the saline treated 

animals, and 33.1g for the animals that did not receive an injection. 

 
Figure 2. Mean body weights for Experiment 1 for each treatment group at each age 
analyzed with associated linear trend lines. Error bars represent standard error of the 
means. 

Discussion 

There is a difference in body weight gain between LPS and saline treated mice 

with LPS treated mice having a greater increase in weight than saline treated animals. 

While this increase was hypothesized, the difference in increase in body weight of the 

control group as compared to the saline treated was not. Indeed the similarity in body 

weight increase between the LPS and control groups is problematic. Rather than 

suggesting that peripubertal LPS treatment increased weight gain, these data indicate that 

the saline treated control mice have a slowed or decreased weight gain. Additionally, it is 

possible that the result of any injection during this sensitive period is more complicated 

than previously thought. Specifically, it is possible that any injection during this period 
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causes decreased weight gain compared to non-injected controls. However, the difference 

in intercept, that is to say the difference in the body weights on the first day weights were 

recorded, suggests that there may have been a difference in body weights between the 

injected groups and the non-injected control group prior to administration of saline or 

LPS. 

The unexplained variance in the model is most likely due to the small sample 

groups. These small sample groups and the lack of data points between the peripubertal 

period and adulthood, make this analysis less valuable than it could be. 

It should be noted here that this experiment was carried out under housing 

conditions that were new to the laboratory at the time, namely the inclusion of a static 

microisolator lid covering the cage.  This practice was abandoned by the laboratory 

following adverse outcomes for animals housed under these conditions not previously 

seen in the lab. Moreover, the use of static microisolator lids has been demonstrated to 

increase heat, humidity, ammonia, and carbon dioxide levels inside such cages (Gonder 

& Laber, 2007). The use of these cages may have had detrimental effects on health and or 

feeding in all animals that received injections causing decreased weight gain over time, 

which may have been masked in LPS treated animals by the increased weight gain caused 

by the LPS treatment. 

In summary the results here do not support the hypothesis and cannot be 

considered conclusive, as the two control groups (saline and non-injected) were 

significantly different from each other. The observation, that the control group more 

closely resembled the LPS group than saline group, cannot be explained. 
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Experiment 2 

Experimental aim 

The aim of this study was to replicate previous findings demonstrating decreased 

sensitivity to estradiol as demonstrated by decreased lordosis quotient in adulthood 

following a peripubertal stressor. The replication study was performed following several 

large-scale disruptions to the laboratory including an outbreak of murine parvovirus and 

construction surrounding the building, which resulted in sound and vibrations thought to 

disrupt mouse reproductive behavior (R. Faith & Miller, 2007; Rasmussen, Glickman, 

Norinsky, Quimby, & Tolwani, 2009; Turner, Bauer, & Rybak, 2007). Several previous 

replications were unsuccessful; although the reasons for this are unclear, the introduction 

of new housing conditions is thought to have played a role. This study was performed 

with the strain of mice used in earlier experiments. It also used both shipping during the 

peripubertal period and injection of LPS. Animals were weighed throughout the 

experiment in order to monitor animal health. 

Methods 

Twenty-four female inbred C57Bl/6 mice were purchased from Charles River 

Laboratories; of these, 16 animals arrived at P22 and the remaining 8 arrived at P36. 

Animals were housed with the same colony room, food, and water conditions as 

described in the first study. The animals were housed 4 to a cage lined with sanichips, 

and were provided with a Nestlet at cage change.  

On P36 the animals that arrived at P22 received either a saline injection (n = 8) or 

an injection of LPS (n = 8), as previously described. The animals that arrived at P36 
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received no injection (n = 8). Sickness behavior and body weight were also recorded as 

described in the first study. 

Animals were weighed as previously described, at 8-9 am (lights out at 10am) 

every 4-8 days. At P85, all animals were weighed prior to ovariectomy. Animal weights 

were tracked for seven days post surgery to check that animals stabilized and regained the 

weight lost during and immediately following surgery. 

Beginning at P93 animals were injected and tested for sexual behavior weekly, for 

five weeks. Animals were injected weekly with 2µg estradiol benzoate in 0.1mL sesame 

oil subcutaneously followed 48 hours later with a subcutaneous injection of 100µg 

progesterone in 0.1mL sesame oil. Animals were tested for lordosis response six hours 

after progesterone injection.  

Body weights from 13 separate days, beginning with P48 and ending with P123, 

were analyzed by hierarchical regression to determine if there is a difference in body 

weight over time between the LPS, saline, and peripubertally shipped groups.  

Results 

Regression analysis shows a significant difference between the shipped 

(peripubertally shipped) and saline treated groups (p<0.05) and between the shipped and 

LPS treated groups (p<0.05). No significant difference was detected between the LPS and 

saline (p=0.997). Analysis did not reveal a significant difference in intercept between any 

groups (pLPS-Shipping=0.48, pLPS-Saline=0.67, pSaline-Shipping=0.78). Mean body weights for 

each group at the ages analyzed and linear trend lines can be seen in Figure 3. At P123, 

the final weight measured, shipped animals weighed significantly more than saline 

(p<0.05) and LPS (p<0.05) treated animals where the mean body weights were 23.6g for 
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the LPS treated animals, 23.9g for the saline treated animals, and 25.9g for the 

peripubertally shipped animals. 

 
Figure 3. Mean body weights for Experiment 2 for each treatment group at each age 
analyzed with associated linear trend lines. Error bars represent standard error of the 
means. 

Discussion 

As expected shipped animals had an increased body weight gain contrasted with 

the saline treated animals. No difference was observed in weight gain between saline and 

LPS treated groups; in fact, the similarity between the slopes of the linear regressions of 

the two groups is striking (see Figure 3). These results clearly demonstrate the effects of 

shipping at P36 rather than P22 on body weight, but it is less clear that it is simply a 

peripubertal stressor that produces these results. Indeed, as LPS failed to produce a 

difference in body weight, it is clear that either the two peripubertal stressors are not 

equal in their ability to produce weight gain, acting as they presumably do through 
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slightly different mechanisms or combinations of mechanisms, or that the LPS did not act 

as a peripubertal stressor. 

Indeed, although the LPS animals lost more weight following injection 

(Appendix, Figure A1), they did not show levels of sickness behavior comparable to 

previous studies (Appendix, Figure A2). Additionally, the results of the sexual behavior 

testing showed no difference in lordosis quotient between any of the groups, although all 

groups displayed abnormally low lordosis quotients with high variability (Appendix, 

Figure A3). These results suggest that the LPS failed to make the animals as sick as 

expected, and hence the injection failed to elicit the previously observed decrease in 

sexual receptivity. In light of this, it is not surprising that the LPS treated animals failed 

to show an increase in weight gain as compared to the saline controls. It is believed that 

the method of preparing the LPS solution used for this study was unreliable and that the 

dosage may have been far lower than intended. In this study, the LPS was prepared in an 

extremely small volume by an inexperienced laboratory member. It is believed that the 

low mass of LPS used, static electricity, and inexperience led to the loss of a substantial 

portion of the LPS before saline was added.  

It is interesting to note that although the animals that were shipped during the 

peripubertal period did not show the expected decrease in lordosis quotient, they did 

show increased weight gain. It is likely that the conditions in the laboratory were still not 

sufficiently similar to the conditions under which the previous results (decreased lordosis 

quotient in peripubertally stressed mice) were observed. The weight gain may either be 

very robust, persisting even where other effects do not, or may be due to some other 

element of the peripubertal stressor. 
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In conclusion, together these results demonstrate that shipping during the 

peripubertal period results in higher weight gain in C57Bl/6 mice compared to mice 

shipped prior to puberty even in the absence of other previously observed outcomes. The 

ability of an LPS injection to result in increased weight gain compared to saline controls 

could ultimately not be conclusively proved or disproved as the animals failed to become 

as sick as expected following the injection. 

Experiment 3 

Experimental aim 

This study was conducted to replicate previous findings showing that exposure to 

an LPS injection during the peripubertal period resulted in altered expression of 

depression-like behavior in the presence and absence of estradiol. Additionally, this study 

aimed to examine microglial expression, as a marker of inflammation, in areas of the 

brain involved in depression-like behavior. In this study, animals were implanted with 

capsules containing either estradiol in oil or the oil vehicle alone at ovariectomy; 

therefore the examination of body weights was conducted beginning at ovariectomy at 

which time the animals become four distinct groups. In this experiment animals were 

weighed every four days. 

Methods 

Thirty-two female outbred CD-1 mice were purchased from Charles River 

Laboratories and arrived at P21. Animals were housed with the same colony room, food, 

and water conditions used in the previous two studies. The animals were housed 4 to a 

cage lined with sanichips and were provided with a Nestlet at cage change. Prior to 
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ovariectomy the animals were housed in cages topped with a microisolator lid in a 

ventilated cage rack; following ovariectomy, animals were housed in shoebox cages with 

a wire mesh lid on a wire rack.  

On P42 animals received an injection of either saline (n =16) or LPS (n = 16), as 

previously described. Sickness behavior and body weight were recorded and assessed as 

in the previous two studies. 

Animals were weighed as previously described at 8:45-9:45 am (lights out at 

10am) every 4 days. At P78 all animals were weighed prior to ovariectomy. All animals 

were ovariectomized and implanted with a Silastic© capsule (length: 2.5cm, internal 

diameter: 1.57mm, external diameter: 3.18mm) containing either 50µg E2 in 25µl sesame 

oil or 25µl sesame oil vehicle alone. Animal weights were tracked for seven days post 

surgery to check that animals stabilized and regained the weight lost during and 

immediately following surgery. 

One week following ovariectomy animals were tested in an open field test to 

assess differences in general locomotor behavior. Two and three weeks following 

ovariectomy the animals were then subjected to the tail suspension test and forced swim 

test to examine depression-like behavior. 

Weights from eight days, beginning with P78 and ending with P106, were 

analyzed by hierarchical regression to determine if there is a difference in body weight 

over time between the groups, and specifically whether there is an interaction between 

treatment (LPS or saline) and hormone treatment (estradiol or vehicle). 



 29 

Results 

Regression analysis shows a significant main of effect of hormone (p<0.05) but 

not of treatment (p=0.16).  There is no significant interaction between treatment and 

hormone (p=0.25). Analysis did not find a significant difference in intercept for any 

terms (pTreatment=0.95, pHormone=0.23, pInteraction=0.39).  The analysis did detect a significant 

amount of variance in body weight that could not be explained by treatment, hormone, or 

interaction at each age (p<0.05). Mean body weights for each group at the ages analyzed 

and linear trend lines can examined in Figure 4. At the final weight measured on P106, 

there was no significant difference (p=0.54) in body weight between LPS and saline 

treated animals (when collapsed across hormone capsule type), but animals with an oil 

vehicle capsule weighed significantly (p<0.05) more than those with an estradiol-

containing capsule (when collapsed across treatment). 

 
Figure 4. Mean body weights for Experiment 3 for each treatment group at each age 
analyzed with associated linear trend lines. Error bars represent standard error of the 
means. 

26.0%

28.0%

30.0%

32.0%

34.0%

36.0%

38.0%

70% 80% 90% 100% 110%

W
ei
gh
t'(
g)
'

Age'(days)'

Saline/Oil%

Saline/E2%

LPS/Oil%

LPS/E2%

Saline/Oil%

Saline/E2%

LPS/Oil%

LPS/E2%



 30 

Discussion 

Animals implanted with an oil capsule had increased weight gain compared to 

those with estradiol capsules as predicted. The lack of increased weight gain in animals 

treated with LPS was unexpected, as was the lack of interaction between LPS treatment 

and capsule. A possibility for the lack of effect is that the age at which the animals were 

ovariectomized may have impacted weight gain. The animals in this study were 

ovariectomized five weeks earlier than the animals in the first study. 

In conclusion these data do not support the hypothesis, nor do they replicate the 

results of the first study showing that an LPS injection during the peripubertal period 

results in increased weight gain and higher body weight in adulthood in CD-1 mice. 

Conclusions 

Taken singly these studies do not provide strong evidence for the universality of 

increased weight gain following a peripubertal stressor. However, together these results 

begin to paint a clearer picture of the impact of peripubertal stressors on body weight. 

While none of the studies individually can answer the question of whether different types 

of peripubertal stressors cause increased weight gain in genetically diverse strains of 

mice, the individual results tell us the following: 

1) LPS injection may increase weight gain or may mask, or counteract, decreased 

weight gain following any injection during the peripubertal period in CD-1 mice 

2) Shipping during the peripubertal period results in increased weight gain as 

compared to saline treated mice shipped prior to the period in C57Bl/6 
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3) LPS injection during the peripubertal period may result in increased weight gain 

as compared to saline injection in CD-1 mice but may be confounded by age of 

ovariectomy 

Together these studies indicate that, although both LPS and shipping may result in 

increased weight gain as compared to saline controls, and that this weight gain might be 

seen in unrelated strains of mice, many details still need to be clarified. 

Limitations and unanswered questions 

Despite the conclusions that begin to emerge from the previous three studies, 

some of the initial questions remain unanswered due to limitations of each experiment. In 

order to better understand how ultimately to answer these questions, the limitations must 

be identified and addressed. They fit into three main areas: adequate controls for the 

purposes of comparing weight gain, reproducibility between and within strains and 

stressors, and the effects of timing of ovariectomy and administration of hormones. 

First, because the second and third experiments lacked a non-injected control 

group, the groups in each of these experiments cannot adequately be compared. In the 

second study, the peripubertally shipped mice and mice shipped earlier in life should 

have been compared with a group shipped earlier in life but not injected; without such 

comparison it is unclear whether shipping truly increases weight gain. The results of the 

second study could indeed show a decrease in weight gain in the saline injected group as 

seen in the first study, with the peripubertally shipped mice showing normal weight gain. 

However, without a group shipped prior to puberty and not injected, this is impossible to 

determine. The third study also lacked a non-injected group and it is unclear how such a 

group would have compared to the saline or LPS groups. 
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Second, while there are LPS data from CD-1 mice and peripubertal shipping data 

from C57Bl/6 mice, there is no indication that either strain responds to both of the two 

different stressors in a similar manner in terms of weight gain, nor indeed that the two 

strains show similar increases in weight gain to one another following the same stressor. 

This point is key in the understanding of the effects of these stressors; regardless of other 

experimental limitations, the lack of these data alone prohibits drawing conclusions on 

the effect of peripubertal stress on weight gain. 

Third, the increase in weight gain appears to begin in adulthood, rather than 

immediately following the stressor (as seen in Figure 3); therefore, ovariectomy at this 

age may alter results. The differences in study design make it difficult to draw 

conclusions about the effects that ovariectomy, or differing hormonal treatments, may 

have had on differences in weight gain between groups. In the first study the weight data 

were only recorded for two days following the surgery, making examination of longer-

term effects impossible. In the second study, weight data were available for five weeks 

following ovariectomy, but animals were treated weekly with estradiol injections. It 

should be noted that, in these animals, the difference in weight was significant prior to 

ovariectomy. In the third study, weight data were available for four weeks following 

ovariectomy but because animals received either constant levels of estradiol or no 

estradiol, again it is difficult to piece apart the effects that the surgery itself might be 

having on body weight longer term (following the recovery period) versus the effects of 

treatment on body weight. These animals were ovariectomized five weeks earlier than the 

CD-1 mice from the first study (one week earlier than the C57Bl/6 mice in the second 
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study); it may be that the ovariectomy somehow interfered with an emerging difference 

in weight gain. 

Together, these differences in the three studies, as well as the limitations of the 

individual studies, such as LPS failing to induce normal sickness in the second study, 

combine to produce a very tenuous basis for conclusions. In order to conclude that 

peripubertal stressors do indeed increase weight gain, and body weight in adulthood, 

additional studies are necessary. 

Proposed experiment to test alterations to weight gain following a peripubertal 

stressor 

Experimental basis 

The final section of this chapter proposes a study, which should provide more 

conclusive evidence regarding the effects of LPS and shipping on weight gain. This 

section discusses how these experiments will overcome the limitations of the previous 

experiments. 

First, this study addresses the lack of comparability between strains and stressors 

by including both stressors in a single experiment and then replicating the experiment in 

the other strain. Because both strains will be exposed to both stressors, the universality of 

the increased weight gain across strains should be evident despite the different body sizes 

of the two strains. Similarly, in the event that the stressors affect the strains differently, 

this should be evident both within and between the two experiments. 

Second, these experiments address the lack of control group for the second and 

third experiments by including a non-injected control group shipped at P21 which will 



 34 

serve both as a control for the animals injected with saline and LPS at P42, and as a 

control for the animals shipped at P42. In order to establish that it is not simply that an 

LPS injection at any age causes weight gain, the second part of the experiment tests an 

additional cohort that will be injected with either LPS or saline at P63, an age which does 

not cause enduring effects of LPS injections (Ismail et al., 2011; Laroche et al., 2009a). 

The non-injected control will serve as a control group for these animals as well.  

Third, the possible effects of ovariectomy are examined by including both 

ovariectomized and unaltered subgroups in the third part of the study. All animals, 

regardless of treatment, will be kept until P119. Examination of intact animals and 

animals ovariectomized, but not receiving hormones, should help to determine whether 

ovarian secretions influence the difference in weight gain. The mice will be 

ovariectomized at the same age used in the third study and should help to determine 

whether ovariectomy alters the change in weight gain. 

Experimental design 

This series of experiments is large and involves the use of large numbers of 

animals; the breadth is necessitated by the myriad possible factors affecting weight gain 

with age as enumerated above and by the necessity of performing the experiments in both 

CD-1 and C57Bl/6 animals. 

The following experiments will be performed first in CD-1 animals, and then 

repeated entirely in C57Bl/6. The study is divided into three parts; the experimental 

groups for each part of the study are shown in Table 2. The experimental procedure is 

outlined below and is followed by a figure depicting the timelines for each part (Figure 

5). 
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Table 2 

Experimental Groups for Parts 1, 2, and 3 

Groups Part 1 Part 2 Part 3 

Non-injected control Yes Yes Yes 

LPS injection P42 P42 & P63 P42 

Saline injection P42 P42 & P63 P42 

Shipping stress P42 – – 

Ovariectomized – – Yes (½ each above) 

Total groups 4 5 6 

Part 1 

Animals with the same birthdate will arrive at 3 weeks (P21) and 6 weeks (P42) 

of age. Twenty-four animals will arrive at 3 weeks; eight animals will arrive at 6 weeks. 

Animals will be housed with 3 conspecifics upon arrival. On P42 all animals will be 

weighed; thereafter all animals will be weighed every four days for experimental body 

weight data. Also on P42, at approximately 9 am, 16 of the animals that arrived at 3 

weeks will be injected with either LPS (1.5 mg/kg) in sterile saline (n = 8) or saline 

vehicle alone (n = 8). The remaining animals will not be injected. Sickness behavior 

including lethargy, huddling, ptosis, and piloerection will be recorded at 30mins, 4, 24, 

and 48hrs following injection. Body weight changes will be monitored daily for seven 

days. These measures will be recorded for all animals regardless of treatment. Animals 

will continue to be weighed every four days until P119 when the experiment will 

conclude. 
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Part 2 

 Forty animals will arrive at 3 weeks (P21) and will be housed and weighed as 

above. On P42 a subset of the animals will receive either an injection of LPS (n = 8) or 

saline (n = 8) as previously described. Sickness behavior and body weight changes will 

be recorded as described above. At 9 weeks of age (P63) a subset of the previously 

untreated animals will be injected with either LPS (n = 8) or saline (n = 8) following the 

same procedure as at P42. The remaining animals will remain as a non-injected control (n 

= 8). Sickness behavior and body weights will be recorded as previously described for all 

groups. Animals will continue to be weighed as previously described until the conclusion 

of the experiment at P119. 

Part 3 

Forty-eight animals will arrive at 3 weeks (P21); the animals will be housed and 

weighed as above. On P42 the animals being injected will receive either an injection of 

LPS (n = 16) or saline (n = 16) as previously described.  The remaining animals (n = 16) 

will remain as the non-injected controls. Sickness behavior and body weight changes will 

be recorded as described above. At 11 weeks of age half of each group will be 

ovariectomized (n = 8, for each peripubertal treatment group). Body weights will be 

recorded daily for one week to assess recovery. As in the previous parts, animals will 

continue to be weighed every four days until day 119 when the experiment will conclude. 
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Figure 5. Experimental design for proposed study examining the effects of peripubertal 
shipping stress, LPS injection, and ovariectomy on weight gain and body weight. 

Limitations and future directions 

While these experiments endeavor to address all of the limitations encountered 

from the data analyzed from previous studies it cannot be fully comprehensive. Several of 

the identified limitations to this experiment are discussed. First, this experiment does not 

address the possibility that shipping at any age after P21 might cause increased weight 

gain; this question is, however, tested in an experiment in Chapter 3. Second, in the event 

that non-injected control animals more closely resemble LPS injected or shipped animals 

in weight, with saline animals showing a decrease in weight gain, this experiment will be 

inadequate to address whether it is specifically a saline injection that induces this gain or 

whether LPS masks an injection effect as no sham injected group (a group receiving an 

intraperitoneal needle stick but no injection) or group orally administered LPS is 

included. Third, in relation to ovariectomy and hormone administration, this experiment 

will not examine effects of exogenous estradiol on body weight gain, or address whether 

the results of surgery alone might affect weight gain as no sham ovariectomy group is 

included. However, both of these questions could provide the basis for future experiments 
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especially depending on any differences in weight gain detected between peripubertally 

stressed animals that are ovariectomized and those that are not. 
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CHAPTER 3 

PROXIMATE CAUSE OF INCREASED WEIGHT GAIN  

Possible causes of increased weight gain 

There are several possible mediators for increased weight gain: (i) behavioral 

changes such as an increase in feeding and/or a decrease in locomotor activity; (ii) a 

change in basal metabolic rate; and (iii) a change in the daily timing of feeding and 

activity which results in a change in metabolism but not total food consumption or 

activity. Mice exposed to dim light at night, a circadian disruption and stressor, show an 

increase in depression-like behavior (Fonken & Nelson, 2013) and increased body weight 

(Fonken, Aubrecht, et al., 2013; Fonken et al., 2010); in these animals, it has been 

demonstrated that the increase in body weight was not due to a change in total 

consumption or activity but instead to an alteration in the daily pattern of when the 

animals feed and were active (Fonken et al., 2010). Stressors such as shipping and an 

LPS injection are both thought to cause neuroinflammation; when administered in 

conjunction LPS has been shown to increase the neuroinflammation seen following 

circadian disruption (Fonken, Weil, et al., 2013). Because induction of 

neuroinflammation is the commonality between circadian disruption, LPS, and shipping, 

it is expected that both LPS and shipping will lead to increased weight gain through an 

alteration of timing of feeding and activity and resultant changes in metabolic rate. The 

experiments described in the following section attempt to disambiguate between the 

possible causes of increased weight gain by examining feeding and locomotor behavior 

as well as metabolic rate and body composition. 
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Specifically, the behavioral parameters of feeding, general locomotion, and wheel 

running will be examined using behavioral cages and analyzed for both total levels and 

patterns of activity over 24 hours. Mice supplied with a running wheel will run 

voluntarily. While general locomotor activity will reveal any differences in total 

locomotion, wheel-running activity will provide a more robust measure for determining 

differences in activity pattern over 24 hour periods (Verwey, Robinson, & Amir, 2013). 

These tests will be run separately from other behavioral behaviors because wheel-running 

behavior itself can induce other behavioral changes, and thus cannot be used as the sole 

measure of activity (Novak, Burghardt, & Levine, 2012). Metabolic rate will be assessed 

by daily energy expenditure as determined by gas exchange in a metabolic chamber, as 

well as by body temperature. Animals with lowered metabolic rate show lowered core 

body temperature (Pelleymounter et al., 1995), and these data will further support daily 

energy expenditure data in determining if metabolism is altered. Body composition will 

be examined by comparing fat, muscle, and bone mass calculated using live radiographic 

imaging, and by further analysis of amount of white adipose versus metabolically active 

brown adipose tissue. It is important to examine muscle, bone, and adipose mass to 

differentiate increases in overall growth from increases in adiposity. Similarly, by 

examining the proportion of white to brown adipose tissue it can be determined whether 

alterations observed in metabolism are due to alterations in amounts of metabolically 

active brown adipose tissue. 

Expected outcomes 

As discussed previously it is expected that the animals exposed to a peripubertal 

stressor will show altered feeding and activity patterns over the day as compared to 
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controls. The result of these altered behavior patterns is expected to be reflected in altered 

metabolic rate as measured by decreased energy expenditure and body temperature.  The 

peripubertally stressed mice are also expected to have higher percentage of adipose tissue 

than the control animals. They are also expected to have less brown adipose tissue 

relative to white adipose tissue, although not a difference total brown adipose tissue. 

Experimental design 

The following experiments use C57Bl/6 mice and shipping as a peripubertal 

stressor.  Following the full experimental methods are additional methods to be used to 

replicate the experiment using an injection of LPS during the peripubertal period as a 

stressor, as it may be instructive to determine whether LPS and shipping affect weight 

gain by the same proximate mechanisms. Figures illustrating the experimental timelines 

for both the shipping stressor (Figure 6) and LPS injection (Figure 7) experiments follow 

the descriptions. If the experiments described in Chapter 2 show differences in weight 

gain between strains and stressors these experiments should be repeated with CD-1 mice 

as necessary and the stressors chosen as appropriate to the strain being tested. 

Metabolic cages 

The following will examine behavior and metabolic rate by measuring feeding, 

locomotion, and energy use directly using a metabolic cage. 24 female C57Bl/6 mice will 

arrive at 3 and 6 weeks (n=12 per week). Animals will be housed with 3 conspecifics 

upon arrival, and will be isolated at 12 weeks for 96 hours of testing in a metabolic cage. 

This amount of time in the metabolic cages will be sufficient to collect accurate measures 

of activity and daily energy expenditure (Speakman, 2013), while minimizing stress on 
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the animals due to single housing. Feeding and drinking behavior will be monitored at 

regular intervals. Locomotor activity will be measured by beam break. Daily energy 

expenditure will be measured by calculating basal metabolic rate and respiratory 

exchange rate from oxygen and carbon dioxide gas exchange (Speakman, 2013). In a 

subset of 4 animals from each group, animals will be surgically implanted with 

temperature probe in the abdomen at 9 weeks of age to measure core body temperature. 

To eliminate inadvertently examining possible temperature changes due to exposure to 

the behavioral test cages themselves, temperatures will be recorded for 96 hours before 

and after the behavioral testing. Beginning at 6 weeks all animals will be weighed every 

fourth day.  

Behavioral cages 

Activity patterns over the day will be further examined using behavioral cages 

equipped with a running wheel. Animal numbers and protocol will mirror those given in 

the previous experiment with the exception that instead of metabolic cages, animals will 

be tested in a behavioral cage where only wheel running and feeding activity will be 

recorded and analyzed. In order to ensure that animals will recognize the running wheel, 

animals will be housed with an identical running wheel in their group housing conditions 

upon arrival. Body temperatures and weights will also be recorded as in the previous 

experiment. 

Body composition 

In order to establish that changes in body weight are due to increases in adipose 

tissue rather than increases in muscle tissue or general growth, the body composition of 
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all animals used the previous two experiments will be analyzed using a live radiographic 

imaging system 4 days after behavioral testing. Percentage body fat, bone, and muscle 

mass will be compared between all 4 groups. Additionally, distribution of white versus 

brown adipose tissue will be analyzed.  

 
Figure 6. Experimental design for proposed experiments examining the proximate causes 
of increased weight gain following a peripubertal shipping stress. 

Using LPS as a peripubertal stressor 

24 female C57Bl/6 mice will arrive at 3 weeks of age. As in the shipping 

experiments, animals will be housed with 3 conspecifics upon arrival. The animals will 

receive an injection of LPS (1.5 mg/kg) or saline vehicle at 6 weeks of age. Sickness 

behavior including weight change, lethargy, huddling, and piloerection will be recorded 

at 4 time points. At 12 weeks the animals will be isolated for 96 hours of testing in a 

metabolic cage. Feeding behavior, locomotor activity, metabolism, and body weight will 

be tested by the same methods used in the shipping stress experiments with the exception 

that all animals will be weighed every fourth day beginning the day after arrival at 3 

weeks. 

As in the shipping stress experiments, activity levels will be further examined 

using behavioral cages equipped with a running wheel. Animal numbers and protocol 
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will mirror that of the previous experiment with the exception that instead of metabolic 

cages, animals will be tested in behavioral cages as in the second shipping experiment. 

Finally, body composition of animals will be examined in the same manner as the 

shipping stress animals. 

 
Figure 7. Experimental design for proposed experiments examining the proximate causes 
of increased weight gain following a peripubertal injection of LPS. 

Potential pitfalls and future directions 

Although no difference is expected in total feeding or locomotor activity, 

alterations in either of these behaviors would indicate these behavioral changes as the 

mediators of weight gain instead of, or in addition to, metabolic or daily pattern changes. 

Future work would then examine the underlying mechanisms promoting these changes in 

addition to mechanisms underlying metabolic changes; such studies are discussed in the 

following sections of this chapter. In the event that radiographic imaging is unavailable, 

brown and white adipose fat pad weights will be compared following gross dissection of 

the pads of each group of animals and carcass analysis of the remaining animals. It is also 

recommended that, if carcass analysis is unnecessary, blood and brains be collected and 

preserved for future analyses, such as those discussed in Chapter 4.  
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Role of diet switch in increased weight gain 

Findings indicating a change in total feeding or locomotor activity or in 

metabolic, but not activity patterns, would necessitate further exploration of the structural 

and hormonal underpinnings of the change in metabolism, or behavior, that directly cause 

the differences in weight gain in adulthood. Particularly when examining the mice 

shipped during the peripubertal period, one potential avenue for research concerns the 

change in chow that the mice experience when they are transferred from the breeder to 

the laboratory facility. While the animals experience a wide variety of changes (tap 

water, air quality, housing conditions, cagemates) upon arrival at the laboratory, the 

change in food is important to consider both in regards to long established and recent 

findings. It has long been understood that a change in food can have impacts on both 

body weight and reproduction, which can endure for several generations, and that 

different strains of mice are differently sensitive to changes in food (Hoag & Dickie, 

1966). Much recent work has focused on the interactions between the microbiome and 

the body (McFall-Ngai et al., 2013), specifically on the microbiome and obesity 

(Cotillard et al., 2013; Everard et al., 2013; Ley et al., 2005). Not only do the animals 

experience a change in food when they arrive at the laboratory, but the chows are known 

to vary in two potentially important elements. 

The two chows used by the animal supplier (Purina 5L79, 5% fat chow) and used 

by the Blaustein laboratory (Teklad 2014, phytoestrogen-reduced, 4% fat chow) differ in 

both phytoestrogen and fat content. These differences could elicit changes either alone or 

in conjunction with the stress of either shipping or an LPS injection during the sensitive 

period. The switch of chow before the peripubertal period might occur at a time when the 
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body can adapt to the changed nutrient or hormone content, while the animal may be less 

plastic in its ability to adjust to a new food during the peripubertal period. These changes 

in response may be due to classical physiological mechanisms or to alterations in the 

microbiome. 

A switch from a high fat to lower fat diet may cause a fundamental shift in 

metabolism inducing a famine state in animals with subsequent weight gain and lower 

metabolic rate. Alternatively, the lower fat diet may cause an increase in food 

consumption and/or a decrease in either locomotor behavior or metabolic rate, which 

could also lead to increased body weight. The lowered concentration and variability of 

phytoestrogens present in the Blaustein laboratory food may also contribute, 

independently or in interaction with the change in fat content, to changes in weight by 

altering either behavior or metabolism. Estrogens have been previously demonstrated to 

cause changes in body weight in rodents – sometimes positively, sometimes negatively 

(Keith et al., 2006). 

Alternatively, the change in feed may also point to a role for the microbiome in 

regulation of estradiol.  Recent work has shown a link between an animal’s hormone 

secretion, microbiome, and hormonal and metabolic response (Markle et al., 2013). It 

may not be the animal’s inherent inability to adjust to switching the chow but the 

microbiome’s inability to adapt or change of gut flora, which induces a change in 

metabolism and or behavior. 

Examining effects of diet switch and shipping stress on body weight experimentally 

In order to test the possible effect of change of diet on weight gain, the 

experiment will include groups of mice bred in the laboratory on either on the Purina 
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5L79, 5% fat chow or the Teklad 2014, phytoestrogen-reduced, 4% fat chow, and would 

examine the effect of switching chows, the timing of switching chows, and the presence 

or absence of an additional stressor at time of chow switch on body weight. A figure 

(Figure 8) outlining the experimental design follows the description. Although outlined 

only briefly here, future work should also explore possible differences and changes in the 

microbiome on different chows, following switches in chows, and in response to 

peripubertal stressors shown to elicit changes in body weight. Finally, this section closes 

with a discussion of the implications of results of the following experiment and what 

future experiments might be necessitated by certain results. 

Experimental design 

This study will use both female C57Bl/6 mice bred in the laboratory from dams 

purchased from the supplier and mice bred by the supplier and shipped to the laboratory 

at several ages. Animals bred in the laboratory will be raised on two different chows; 

eight animals will be raised on the laboratory’s standard Teklad 2014, phytoestrogen-

reduced, 4% fat chow, another 32 animals will be raised on the standard chow used by 

the supplier, Purina 5L79, 5% fat chow. At each of 3, 6, and 9 weeks of age, eight 

animals will be switched from the Purina chow to the Teklad. The animals will be 

weighed daily for a week following the change in chow, and then will be weighed every 

four days for the rest of the study. The animals raised in the laboratory that remain on 

their original chow will be weighed every four days beginning at week 3. 48 animals will 

arrive from the supplier, 16 each at 3, 6, and 9 weeks of age; upon arrival half of each 

group (eight animals) will be switched to Teklad chow, the other half will continue to 

receive the chow they received at the breeding facility.  All animals will be weighed 
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every day for a week following arrival, then every four days for the duration of the study. 

All animals will be aged to P106 (15 weeks+) when the experiment will terminate. 

 
Figure 8. Experimental design for proposed experiment examining the effects of chow, a 
switch in chow, and shipping on weight gain, when chow switch and shipping occur 
before, during, or after the sensitive peripubertal period. 

Microbiome and other future directions 

Pending the results of the previous experiment, the next logical step may be to 

examine differences in the microbiomes of animals fed different chows, specifically those 

that show difference in weight gain. As this laboratory does not have expertise in the 

microbiome, a collaboration is suggested in which the flora of the different groups would 

be profiled – if planned, it may be possible to collect from the mice from the previous 

experiment at the conclusion of the study. Alternately, or perhaps additionally, a rescue 

of mice showing increased weight gain might be attempted by fecal transplant from 

animals showing normal weight gain in a future experiment, again, in collaboration with 

a laboratory with experience in these techniques. 
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Unexpected results and further experiments 

Because the following chapter builds on expected results from the studies outlined 

here, namely that change in weight gain will be due either to the conjunction of switch in 

chow and peripubertal stressor or peripubertal stressor alone, it is important to discuss the 

other possible results. If the increase in weight gain is due the change in chow alone, then 

the increased adipose tissue may still result in alterations of estrogens and estrogen 

receptors. The experiments outlined in Chapter 4 could still be performed to establish 

whether these mechanisms explain the other changes seen in animals exposed to 

peripubertal stressors in the Blaustein laboratory. However, a more direct experiment to 

test the fundamental basis of this hypothesis would be to repeat earlier experiments on 

sexual receptivity, cognition, and depression-like behaviors using mice kept on one chow 

for their entire lifespan. This repetition might also be performed if both switch in chow 

and a peripubertal stressor result in increased weight gain. If on an unchanging chow, the 

same results are seen in the behavioral tests as previously, the role of chow switch can be 

abandoned as the alternation in response to estradiol. If, however, chow switch alone 

results in increased weight gain, and behavioral tests repeat previous results with an 

unchanging diet, the hypothesis established in Chapter 1 (that obesity mediates estrogen-

dependent processes following a peripubertal stressor) should be rejected as behavior test 

results would be independent of diet induced adiposity. 
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CHAPTER 4 

OBESITY AS A MEDIATOR OF ESTROGEN DEPENDENT PROCESSES 

FOLLOWING PERIPUBERTAL STRESS 

Introduction 

The elements of the hypothesis to be discussed and tested in this chapter are those 

that occur as a result of increased adipose tissue. Because the difference in body weights 

occurred before ovariectomy in the two studies in which it was observed, all of the 

following experiments will be performed in non-ovariectomized animals. These 

experiments will address the portions of the hypothesis concerning the following.  

1) Whether adiposity results in increased testosterone levels and aromatase activity 

2) Whether adiposity results in increased levels of circulating estrogens 

3) Whether adiposity results in increased central levels of estrogens and whether 

these levels correlate with altered peripheral levels of estrogens 

4) Whether adiposity results in changes in expression of estrogen receptors in the 

brain 

Experimental Overview 

These experiments will address the questions above by examining differences in 

obese and average weight animals. First, plasma testosterone levels will be examined and 

aromatase activity will be examined by comparing aromatase activity in adipose tissue. 

Second, estrogen levels will be examined by assaying plasma levels of estrone and 

estradiol. These two estrogens have been chosen for analysis, as estrone is the primary 

estrogen produced by adipose tissue (Cleland et al., 1983), and estradiol is the most 
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active estrogen in reproductive aged females (Feder & Silver, 1974). Third, central 

estrogen levels will be compared in the hippocampus and the hypothalamus areas using 

homogenized tissue. The choice of these regions is due to the role of the hippocampus in 

cognition and depression-like behaviors, and the role of areas of the hypothalamus in 

feeding and sexual behavior. Finally, estrogen receptors in the brain will be examined by 

comparing regulation of ERα, ERβ, and GPR30 by examining mRNAs specific to each 

receptor type. Specifically, the hippocampus and medial basal hypothalamus will be 

examined for their roles in the behaviors listed above; the amygdala will also be 

examined. 

The following experiments use one cohort of animals in order to reduce animal 

numbers and duration of experiment. If the results are positive the experiments should be 

repeated with a cohort of animals that experience a peripubertal stressor, in order to 

confirm that adiposity induced by peripubertal stressor is working by the same 

mechanisms. 

Experimental design 

32 female C57Bl/6 mice will arrive at 11 weeks of age. 16 of these animals will 

be standard C57Bl/6 animals, reared on Purina 5TJS, 5% fat chow (“Western Diet” 

control). The other 16 animals will be diet-induced obesity animals, animals that have 

been induced to obesity by being reared on the high fat diet Purina 5TJN, 20% fat chow 

(“Western Diet”). The animals will be allowed to recover from shipping for one week; 

body weights will be recorded daily. Because diet induced obese animals can rapidly 

begin to lose weight when placed on a standard chow (Parekh, Petro, Tiller, Feinglos, & 

Surwit, 1998), animals will be fed the same chows as at the breeding facility. At 12 
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weeks of age, animals will be deeply anesthetized with an injection of pentobarbital, 

blood will be collected by cardiac puncture, and the animals will be decapitated. Brains 

will be collected and preserved as described in sections below. Blood will be collected in 

EDTA coated tubes and plasma separated via centrifugation. Plasma will be aliquoted 

and stored at -80ºC. Abdominal fat pads will be removed, weighed, flash frozen, and 

stored at -80ºC. Collected tissues will then be analyzed as described in the following 

sections and in Figure 9. 

Testosterone and aromatase 

  Plasma will be assayed for testosterone levels using a commercially available 

ELISA kit.  

 Aromatase activity will be measured in adipose tissue. Tissue will be thawed, 

homogenized and then aromatase assessed using either a commercially available ELISA 

kit to measure concentration of aromatase or following the methods established by 

Lephart & Simpson (Lephart & Simpson, 1991) to determine aromatase activity. 

Peripheral estrogens 

Plasma collected from the mice above will be assayed for both estrone and 

estradiol using commercially available ELISA kits. 

Central estrogens 

Brains collected from half of each group will be rapidly microdissected and the 

hippocampus and hypothalamus from each animal flash frozen and stored at -80ºC until 

use. Brain areas will be thawed then homogenized and estrogens extracted using an ether 

extraction followed by solid phase extraction as established by Chao (Chao, Schlinger, & 



 53 

Remage-Healey, 2011). Central levels of estrone and estradiol will be determined using 

the same commercially available ELISA kits used in the above analysis. 

Expression of estrogen receptors in areas key in estrogen-dependent behaviors 

Brains collected from the remaining half of each group will be microdissected. 

The amygdala, hippocampus, and medial basal hypothalamus will be dissected and 

preserved in RNAlater®. Preserved sections will be incubated overnight at 2-8ºC, then 

transferred to -80ºC until used. Tissue will be thawed and homogenized, then the cells 

lysed and the lysate diluted. RNA will be purified using an Oligotex Direct mRNA kit. In 

separate assays, primers specific to mRNA for ERα, ERβ, and GPR30 will be used in 

RT-qPCR to amplify and quantify these mRNAs in the tissue homogenate. 

 
Figure 9. Experimental design for proposed experiments examining the effects of 
adiposity on: peripheral levels of testosterone, aromatase, estradiol, and estrogen; central 
levels of estradiol and estrogen; and ERα, Erβ, and GPR30. 
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Limitations and future directions 

The experiments above contain limitations, but also avenues for expansion and 

extension in new directions. One of the most difficult limitations is that the accuracy of 

estrogen ELISAs in detecting physiological levels of estrogens is unreliable at best. 

Because of this limitation, exact results from individual samples will be examined not for 

statistical differences but for trends in differences between groups. While this limits 

analysis of estrogen levels, techniques using mass spectrometry to assay estradiol are 

becoming more accessible and might soon allow for more accurate measurements. When 

looking towards future directions the first step would be to repeat the above experiments 

using peripubertally stressed mice, rather than diet-induced obese mice. Some of these 

analyses could be performed using blood and brains collected from animals from the 

experiments described in Chapters 2 and 3. Not only could similar analyses be performed 

on those tissues are were performed in this section to further support these results, but the 

brains could also be examined for more region specific mRNA expression of estrogen 

receptors using either in situ hybridization or by further RT-qPCR of micropunches. 

Additionally, studies of altered response to estradiol in depression- and anxiety- like 

behaviors or in sexual receptivity or cognitive tasks should be carried out in animals with 

diet-induced obesity. This would build not only on findings in peripubertally stressed 

animals but also on studies of male diet-induced obesity mice which show increased 

depression- and anxiety- like behaviors (Sharma & Fulton, 2012). 
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APPENDIX 

ADDITIONAL FIGURES 

 
Figure A.1. Percent change in bodyweight following peripubertal stressors for 
Experiment 2. Error bars represent standard error of the means. Percent change in body 
weight is calculated by subtracting the weight before treatment from the current weight, 
then dividing by the weight before treatment. Note that for shipped animals, the initial 
weight used is the weight of animals upon arrival; the weight gain experienced by these 
animals results in a body weight which is not different from the saline or LPS animals 
until after P63. 
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Figure A.2. Sickness behavior for Experiment 2 scored on a three-point scale for the 
saline and LPS injected groups at four time points following injection. Error bars 
represent standard error of the means. Sickness behavior scores for LPS treated animals 
were lower, and decreased more quickly than has been seen previously in C57Bl/6 
(Ismail et al., 2013; Olesen et al., 2011). 
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Figure A.3. Lordosis quotients for all treatment groups across five weeks of sexual 
receptivity testing for Experiment 2. Error bars represent standard error of the means. 
There were no effect of treatment, week of testing, or interaction on lordosis quotient. 
Lordosis quotients were far lower and showed much greater variability than seen 
previously in C57Bl/6 (Laroche et al., 2009a, 2009b). 
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