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ABSTRACT

DESIGN OF NON-UNIFORM LINEAR ARRAY
VIA LINEAR PROGRAMMING

AND PARTICLE SWARM OPTIMIZATION
AND STUDIES ON PHASED ARRAY CALIBRATION

SEPTEMBER 2014

HUA BAI

B.Sc., SICHUAN NORMAL UNIVERSITY, CHINA

Directed by: Professor Ramakrishna Janaswamy

For a linear array, the excitation coefficients of each element and its geometry

play an important role, because they will determine the radiation pattern of the given

array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation

pattern of the array. Generally speaking, we desire SLL to be as low as possible. For

the linear array with uniform spacing, there are some classic methods to calculate the

excitation coefficients to make the radiation pattern satisfy the given requirements.

For the linear array with non-uniform spacing, linear programming and particle swarm

optimization are proposed to calculate the excitation coefficients to make the array get

minimum SLL in this thesis. They are demonstrated for symmetric and asymmetric

array in the first part of this thesis. In the second part of this thesis, a simple method is

proposed for correcting excitation coefficients of a linear phased array. This proposed

method corrects the coefficients through using the Normalized Least Means Squares
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(NLMS) algorithm, dither signal and a near-field sensor being used for sensing the

field emitted by the array. The advantage of this proposed method is that it avoids the

problem of estimating the largest eigenvalue of the coefficient matrix to get optimal

step size. Its robustness in different environments is demonstrated as well as the

effect of noise with various Signal-to-Noise Ratio (SNR), and mutual coupling. In

addition, the effect of using discrete dither signal to the array is considered, because

the continuous dither signal cannot be generated in practice.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Beamforming is a kind of technology used in phased arrays to get directional

radiation pattern at specified angles. The main lobe is the lobe with maximum

magnitude, it means the array can transmit more energy in the direction of main

lobe when it is used as a transmitter or the signal from that direction will be received

better if the array works as a receiver. Often we need to adjust the radiation pattern

of the phased array to satisfy our various requirements. The radiation pattern of the

phase array is determined by several parameters including the nature of the elements

in the array, the geometry of the array and the excitation coefficients of each element,

etc. The nature of the elements are determined after they are produced, so we are

more interested in adjusting the excitation coefficients and the geometry of the phased

array. This thesis focuses on the excitation coefficients of the linear array. For the

linear array with uniform spacing, the problem of excitation coefficients has already

being solved well, so the linear array with non-uniform spacing will be designed here.

This thesis consists of two parts, the first part (Ch.2 and Ch.3) focuses on figuring out

the optimal excitation coefficients with respect of Side Lobe Level (SLL), the second

part (Ch.4 and Ch.5) solves the problem of correcting the excitation coefficients when

they drift due to environmental conditions.
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1.2 Motivation

With the development of more than one hundred years, phased arrays are widely

used in a lot of areas now, such as weather forecasting, detecting or tracking targets

and so on [1] [2]. For a phased array, its excitation coefficients play an important

role, because they determine the radiation pattern of the system. Considering its

importance, various classic methods have been proposed to generate the array’s exci-

tation coefficients to design the array meeting certain goals. For example, the Taylor

method is one of the popular methods in designing the array. It was first introduced

by Taylor in 1955 [3] and the design makes a compromise between beamwidth and

SLL[4]. An example of using the Taylor design is illustrated in Fig.1.1, which shows

the electric field in far field region of a 32-element array with spacing of λ/2, the SLL

is around -24 dB. Those classic designs are easy to implement; however most of them

can only be used for the linear array with uniform spacing. Here we want to solve

the problem of designing the excitation coefficient of a non-uniform linear array by

methods of the linear programming and the Particle Swarm Optimization (PSO).

Fig. 1.1. The electric field of the array in far-field region

2



The excitation coefficients are of great importance to the array as mentioned be-

fore, but sometimes they may be altered due to the change of working conditions,

errors during fabricating and so on. This will lead to the change of the radiation pat-

tern of the array, which might degrade the gain, directivity of the array and then the

array could not meet the requirement. The second part of the thesis is concerned with

finding a method to calibrate these excitation coefficients. One correction method via

dithering and the Least Mean Squares (LMS) algorithm has been proposed in [5]. In

that paper, the LMS algorithm is used to correct the actual coefficients. In using

the LMS algorithm to correct the coefficients, one necessary step is to estimate the

largest eigenvalue of the coefficient matrix to update the coefficients by following a

gradient based procedure, which makes the method more complicated and increases

execution time. In this thesis, we implement the Normalized Least Mean Squares

(NLMS) algorithm which bypasses finding the minimum eigenvalue, thereby, making

the algorithm faster and more efficient, and demonstrate the robustness of the algo-

rithm.

1.3 Outline of This Thesis

This thesis will be organized as follows: in Chapter 2, we will use linear pro-

gramming to determine the optimal excitation coefficients with the respect of SLL

for a special kind of non-uniform spacing array—the symmetric array. In Chapter

3, the array is extended to the more general case—asymmetric array, and the PSO

algorithm will be introduced for finding out the optimal excitation coefficient. Both

of the two methods will be demonstrated by constructing arrays that meet various

performance requirements. The calibration of the linear array is presented in Chapter

4, the algorithm is demonstrated in noiseless and noisy environment, respectively, and

the effect of mutual coupling and using discrete dithering signal are also considered.

3



The final results of the proposed algorithm is presented in Chapter 5. In Chapter 6,

the thesis work is summarized.

4



CHAPTER 2

LINEAR PROGRAMMING FOR SYMMETRIC ARRAY

2.1 Introduction

An array which consists of multielements is used for improving a radiation pattern

without changing the characteristics of individual elements. Compared with individ-

ual elements, an array can achieve higher directivity, higher gains and lower SLL [6].

The most common geometry for arrays are linear, rectangular and circular [7] [8].

This thesis only focuses on linear arrays. For simplicity and practice, we will only

study the performance of the array consisting of identical elements. An example of a

linear array is shown in Fig.2.1

Fig. 2.1. Linear array with N elements

As illustrated in the above figure, the number of the elements is denoted by N

(N ≥ 2). To start with, the simplest situation is considered: the array consists of 2

infinitesimal dipoles, and the two elements are in phase. For far field (kr � 1, k is

5



the wavenumber, r is the distance from origin to observation point), the electric field

can be written in the xy-plane as [4]

E(φ) = jη
kIole

−jkr

4πr
(w1e

−jkd1cosφ + w2e
−jkd2cosφ) (2.1)

where η is the wave impedance, Io is the current, l is the length of the dipole, dn is the

position of the dipole, and wn is the excitation coefficient for the element, which is also

known as the array weighting characteristics. In 2.1, the element factor is denoted by

jη kIle
−jkr

4πr
, because it is only dependent on the characteristics of elements in the array.

The remaining term, which is inside the parentheses, represents the array factor and

is related to the excitation coefficients of the elements and the geometry of the array.

In order to extend the 2-element array to an N-element array. Equation 2.1 can be

rewritten as

E(φ) = jη
kIole

−jkr

4πr

N∑
n=1

wne
−jkdncosφ = EF ∗ AF (2.2)

where EF is short for element factor, AF is short for array factor. The total radiation

of the array is affected by the element factor and array factor simultaneously, however,

once the element is chosen, the element factor is determined and the electric field is

proportional to AF. In this thesis, we are more interested in the array factor.

When we design the array’s excitation coefficients, some parameters are available

for referring to such as gain, directivity, etc. In this thesis, the SLL is a design

specification meaning that the excitation coefficient which produces the minimum

SLL is optimal. The symmetric broadside array will be designed at first.

2.2 Symmetric Array

Symmetric array means the position of the elements are symmetric with respect

to one axis or some other reference. In this section, the array is symmetric with
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respect to the y-axis, which is illustrated in Fig.2.2. For such an array, the following

equations are valid

AF (φ) = w1e
−jkd1cosφ + w2e

−jkd2cosφ + ...+ wNe
−jkdN cosφ (2.3)

dn = −dN+1−n, n ≤
N

2
(2.4)

wn = wN+1−n, n ≤
N

2
. (2.5)

Via (2.4) and (2.5), (2.3) can be written as

AF (φ) =


∑N

2
n=1 2wncos(kdncosφ),N is even∑N−1

2
n=1 2wncos(kdncosφ) + wN+1

2
cos(kdN+1

2
cosφ),N is odd

(2.6)

when N is odd, dN+1
2

must be zero to guarantee the array is symmetric, equation

(2.6) is rewritten as

AF (φ) =


∑N

2
n=1 2wncos(kdncosφ),N is even∑N−1

2
n=1 2wncos(kdncosφ) + wN+1

2
,N is odd

(2.7)

According to the definition of Side Lobe Ratio (SLR) [9], we can get

SLR = |AF (φ)|max, φ /∈ main beam (2.8)

the relation between SLL and SLR is SLL = 20 ∗ log10(SLR). Assuming that the

element factor is represented by an isotropic radiator (i.e. EF=1), the desired angle

for the array is denoted by φd, which corresponds to the center point of the main

beam of the radiation pattern; when φ = φd, AF should reach its peak value such

that E in (2.2) is a maximum. The peak value of the array factor is assumed to be

equal to 1, AF (φd) = 1. In order to guarantee AF (φd) is at the peak, its derivative
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is also forced to be equal to 0 at φd. Now the problem can be summarized as finding

the minimum SLR with the constraints AF (φd) = 1 and ∂AF (φ)
∂φ
|φd = 0.

Fig. 2.2. A symmetric array

2.3 Linear Programming

In the symmetric case, there exists a linear relationship between the array factor

and the excitation coefficients, considering that the liner programming method is

appropriate for solving this kind of problem. Linear programming was first introduced

by Leonid Kantorovich in 1939 [10], this method has been widely used for solving the

linear optimal problem in a number of fields [11]. This method relies on the apparent

or potential linear relationships between different parameters. How to use linear

programming in symmetric array is what we are going to do next. The first step is to

convert the problem of obtaining the minimum sidelobe to a linear optimal problem.

The general linear programming problems can be expressed as

Maximize/Minimize : ATx (2.9)

Subject to : Bx ≤ C (2.10)

Dx = E (2.11)
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where x is a vector denoting the unknown coefficients, letters A, B and D repre-

sent known matrices, symbol (·)T denotes the transpose of a matrix, letters C and

E denote two known vectors. Equation 2.9 represents the function we want to solve,

subject to the constraints of (2.10) and (2.11). Fig.2.3 depicts a simple example of

the linear programming, the x-axis, the y-axis and the two solid lines constitute the

shaded region which is called feasible region, x-axis, y-axis and the two lines are the

constraints, then we need to find out the optimum result in the feasible region de-

pending on the given requirement.

Fig. 2.3. General linear programming problem

For a symmetric array, since its weights are the variable we need to determine, we

can set [12]

x =



w1

w2

·

wN


(2.12)
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the array factor is the objective function, we can get

AT =

 [2cos(kd1cosφ), 2cos(kd2cosφ) · · · 2cos(kdN
2
cosφ)],N is even

[2cos(kd1cosφ), 2cos(kd2cosφ) · · · 2cos(kdN−1
2
cosφ), 1],N is odd

. (2.13)

Assuming the minimum SLR = m, we can get the following inequality

|ATx| ≤ m,φ /∈ main beam (2.14)

another two equations with respect to the array factor at desired angle are

ATφdx = 1 (2.15)

∂ATφx

∂φ
|φd = 0. (2.16)

Now, the problem reduces to, given the beamwidth and element locations

Minimize :m (2.17)

Subject to :|ATx| ≤ m,φ /∈ main beam (2.18)

ATφdx = 1 (2.19)

∂ATφx

∂φ
|φd = 0. (2.20)

Once the problem is converted to a linear programming problem, we can adopt

some algorithms such as the simplex algorithm to solve it. The simplex algorithm is

derived from the concept of simplex, its appearance brought great improvements to

solving the linear programming problem, you can find more details about this algo-

rithm in [13]. In this thesis, Matlab is used to figure out the problem, the numerical

results gotten by Matlab are shown in next section.
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2.4 Numerical Results

A ten-element linear array is used to verify our method. The desired main beam

angle of the array is set as 90 degrees, and the beamwidth is 40 degrees. Then, the

positions of each element are set as [−2λ, −1.3λ, −0.85λ, −0.5λ, −0.2λ, 0.2λ, 0.5λ,

0.85λ, 1.3λ, 2λ]. By (2.13), AT = [2, 2, 2, 2, 2] at φ = 90◦, then using (2.19), it is clear

to show that

2(w1 + w2 + ...+ w5) = 1. (2.21)

It is not hard to see the above equation satisfies (2.20) at the same time when φd =

90◦. There are just 5 excitation coefficients, because the array is symmetric, the

corresponding elements share the weight and the weights are set to be real numbers

for the broadside array. x′ is set as

x′ =



m

w1

w2

w3

w4

w5


(2.22)

where m is just the minimum SLR. Using (2.21) and (2.22), we get

a · x′ = 1 (2.23)

where a = [0 2 2 2 2 2]. As the beamwidth is chosen as 40 degrees, the side lobe

occurs in the angles range [0◦,70◦] and [110◦,180◦]. The side lobe region is observed

finely every degree so as to not miss the peak of the side lobe. Equation 2.18 can be
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seen as two inequalities without the absolute value sign, which is helpful for future

calculation

ATx ≤ m (2.24)

ATx ≥ −m. (2.25)

Converting the above two inequalities to the following two inequalities

b · x′ ≤ 0 (2.26)

c · x′ ≤ 0 (2.27)

where b = [−1, 2cos(kd1cosφ), 2cos(kd2cosφ), ... 2cos(kd5cosφ)], c = [−1,

−2cos(kd1cosφ), −2cos(kd2cosφ), ... − 2cos(kd5cosφ)]. For φ, it is chosen from

the side lobe region, and as mentioned before, the pattern in side lobe region is

sampled every degree. If the observation number is too small, it may lead to a wrong

result because the peak of any particular side lobes may not be captured by sparse

observation. The optimal excitation coefficients for each element we get finally are

[0.0535, 0.1152, 0.0888, 0.1224, 0.1201, 0.1201, 0.1224, 0.0888, 0.1152, 0.0535], the

SLL is -30.343 dB. The array factor of the array is illustrated in Fig.2.4, the position

and optimal excitation coefficients determined for the array with different number

of elements is shown in Table 2.1 and Table 2.2 respectively. In Table 2.1, Min.

and Max. denote the minimum and maximum spacing, respectively. Notice that for

N=6,8,10, the spacing exceeds the traditional limit of λ/2.
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Fig. 2.4. The array factor with optimal excitation coefficients

Number of Elements d1/λ d2/λ d3/λ d4/λ d5/λ Min./λ Max./λ
2 0.2 0.4 0.4
4 0.2 0.5 0.3 0.4
6 0.2 0.5 0.85 0.3 0.4
8 0.2 0.5 0.85 1.3 0.3 0.55
10 0.2 0.5 0.85 1.3 2 0.3 0.7

Table 2.1. Element spacing of the symmetric array

Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -0.828
4 0.1504 0.3496 -4.344
6 0.1861 0.0657 0.2482 -11.204
8 0.1466 0.1228 0.1098 0.1209 -19.948
10 0.1201 0.1224 0.0888 0.1152 0.0535 -30.343

Table 2.2. Optimum weights for symmetric arrays, broadside and BW=40◦

For the same broadside arrays with beamwidths being 50 degrees and and 60

degrees, the optimum weights and the minimum SLL are shown in Table 2.3 and

Table 2.4, respectively.
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Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -1.276
4 0.1966 0.3034 -6.282
6 0.2112 0.0958 0.1930 -15.603
8 0.1733 0.1221 0.1216 0.083 -26.859
10 0.1433 0.1215 0.1051 0.0971 0.033 -32.111

Table 2.3. Optimum weights for symmetric arrays, broadside and BW=50◦

Number of Elements w1 w2 w3 w4 w5 Minimum SLL(dB)
2 0.5 -1.841
4 0.2361 0.2639 -8.259
6 0.2308 0.1140 0.1552 -20.265
8 0.1924 0.1233 0.1237 0.0606 -34.067
10 0.1756 0.1225 0.1163 0.0725 0.0132 -34.846

Table 2.4. Optimum weights for symmetric arrays, broadside and BW=60◦

From Table 2.2 to Table 2.4, it can be seen that the SLL can be improved with

adding more elements and extending beamwidth. Fig.2.5 and Fig.2.6 illustrate the

array factor of the ten-element array with BW=50◦ and BW=60◦.

Fig. 2.5. The array factor with optimal excitation coefficients and BW=50◦
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Fig. 2.6. The array factor with optimal excitation coefficients and BW=60◦

For the non-broadside arrays, the phase part of the excitation coefficients for the

elements should be considered to make the array scanning to other degrees. For that

kind of arrays, we will use the Particle Swarm Optimization(PSO) method to design

them, which will be discussed in next chapter.
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CHAPTER 3

PARTICLE SWARM OPTIMIZATION FOR
ASYMMETRIC ARRAY

3.1 Analysis of asymmetric array

The symmetric array was designed in the preceding chapter. In this chapter, the

asymmetric array will be designed. Compared with the symmetric case, the asym-

metric array will make the problem more complicated because the positions of certain

elements need not to be symmetric. But we can use the same method to analyze it

and solve it.

Fig. 3.1. An asymmetric array

The problem begins with the basic expression of array factor

AF (φ) = w1e
−jkd1cosφ + w2e

−jkd2cosφ + ...+ wNe
−jkdN cosφ (3.1)
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according to the Euler’s formula, (3.1) can be written as

AF (φ) =w1(−jsin(kd1cosφ) + cos(kd1cosφ)) + ...

+ wN(−jsin(kdNcosφ) + cos(kdNcosφ))

(3.2)

since the expression cannot be reduced to the form as the symmetric case, so it is

better to rewrite it as

AF (φ) =w1cos(kd1cosφ) + ...+ wNcos(kdNcosφ)

− j(w1sin(kd1cosφ) + ...+ wNsin(kdNcosφ))

(3.3)

For the array factor, it is the magnitude that is usually important. So the objective

function becomes |AF (φ)| =
√
AF (φ)AF (φ)∗. As we assumed in the case of sym-

metric array, when φ = φd, AF (φd) = 1. We can finally get the first two equations

that govern the performance of the asymmetric array

w1cos(kd1cosφd) + ...+ wNcos(kdNcosφd) = 1 (3.4)

w1sin(kd1cosφd) + ...+ wNsin(kdNcosφd) = 0. (3.5)

The weights are assumed to be real numbers now because the broadside arrays is

designed at first, the non-broadside array with complex weights will be discussed

later. The above two equations cannot guarantee that the magnitude of the array

factor reaches the peak at φd, one more constraint regarding its derivative should be

added:

∂AF (φ)AF (φ)∗

∂φ
|φd = 0. (3.6)
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Equation 3.6 can be expanded as

∂AF (φ)AF (φ)∗

∂φ
|φd = AF (φ)

∂AF (φ)∗

∂φ
|φd + AF (φ)∗

∂AF (φ)

∂φ
|φd (3.7)

∂AF (φ)∗

∂φ
|φd = R′ − j · I ′ (3.8)

∂AF (φ)

∂φ
|φd = R′ + j · I ′ (3.9)

where R denotes the real part of the array factor, I is the imaginary part, their

derivatives are denoted by R′ and I ′ respectively. Through some basic algebra we can

get

R′ = w1kd1sin(φ)sin(kd1cosφ) + ...+ wNkdNsin(φ)sin(kdNcosφ)|φd (3.10)

I ′ = w1kd1sin(φ)cos(kd1cosφ) + ...+ wNkdNsin(φ)cos(kdNcosφ)|φd. (3.11)

Since R is set as 1 and I is set as 0 at φd, equation 3.7 can be reduced to

∂AF (φ)AF (φ)∗

∂φ
|φd = 2 ·R′. (3.12)

Therefore another equation of the asymmetric array becomes

w1kd1sin(φ)sin(kd1cosφ) + ...+ wNkdNsin(φ)sin(kdNcosφ)|φd = 0. (3.13)

Now the problem can be summarized as minimizing |AF (φ| (φ /∈ main beam), sub-

ject to (3.4), (3.5) and (3.13). Compared with symmetric array, the difference is the

objective function changes into a complex number, which makes it difficult to build

the linear relationship between the magnitude of array factor and the excitation coef-

ficients, so linear programming is not the most appropriate method in this case. Here

the Particle Swarm Optimization (PSO) method [14] will be used to determine the

optimal excitation coefficients for this kind of array.
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3.2 Particle Swarm Optimization

Particle Swarm Optimization(PSO) was originally introduced by Kennedy, Eber-

hart and Shi [14] [15], it has been used in areas such as power system and antenna

designs [16] [17]. The PSO method is easy to implement, but its disadvantage is also

apparent that it cannot guarantee that the final result is globally optimal [18]. The

basic idea behind the algorithm is simulating the movement of a group of animals.

For example, when a bird flock goes to find food, the most important question for

them is where to go. The rational behavior for a bird is to decide its destination

by comparing the places it went previously to places other birds visited. If it finds

more food at the last location it visited, it will continue to fly there or moving a little

around at the point to try to find more food. If not, it will fly to other locations found

by other birds because the possibility of finding more food there is generally higher.

As the process continues, more and more smart birds will come to the location with

most food. In a word, the movement of the bird depends on its own best known

location and the best known location of the whole group.

Let’s extend the example to a more general model, assuming there are N birds in

each flock, each bird can be seen as one particle in the algorithm, and the space is

extended to M dimensions, the total number of the particles is M ∗N . The movement

of each particle will be updated by following two equations

vk+1
mn = wvkmn + c1ξ(p

k
mn − xkmn) + c2η(pkgm − xkmn) (3.14)

xk+1
mn = xkmn + rvk+1

mn (3.15)

where vk+1
mn denotes the velocity of nth particle in mth dimension at (k+1)th time, xkmn

denoted the position of the nth particle in mth dimension at kth time, the initial ve-

locity and position of each particle are generated randomly. Inertia weight is denoted

by w, it relates the next velocity with previous one and is empirically set to 1.2 [15].

The cognitive constant and social constant are denoted by c1 and c2, respectively.
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They build a relation between velocity of next time with its own best known value

and the best known value of the whole group. Both of these are set to a value of two

[14]. There are two random numbers denoted by ξ and γ, which are updated every

time. The best known outputs of its own and the group are denoted by pkmn and

pkgm respectively, and are similar to the quantity of the food of the location for birds.

They are calculated by the best known position of the individual particle and the

best known position of the group. In (3.15), the parameter r is the update constant,

it is always set as 1 [14]. In total, this describes one basic model of PSO method.

With the several decade’s development of the algorithm, some more efficient PSO

methods have appeared, for example, one PSO method with nonconstant c1 and c2

has already been proposed in order to improve the efficiency and speed of the algo-

rithm, more details about these advanced PSO methods can be found in [19] [20] [21].

The following flowchart shows the procedure of the basic PSO method.

Fig. 3.2. The flowchart of the PSO method

A simple problem solved by the PSO method is shown, the objective function

is given y = 2 − cos(3 ∗ x) ∗ exp(−x), we would like to find its maximum value in

the range x ∈ [0, 4]. The number of the particle is chosen as 2 and the maximum
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iteration number is set as 50, which means each particle can try 50 times and every

time there are 2 particles looking for the answer, the final result is shown in Fig.3.3.

Even though the exact maximum value of y and the value of x corresponding to the

peak are not known, what can be seen is after 50 iterations, more points are found in

the peak region.

Fig. 3.3. An example of the PSO method

3.3 Some other popular algorithms

Besides the PSO method, there exist other methods which are also popular in the

area of beamforming, such as the Genetic Algorithm (GA) method[22], the Simulated

Annealing (SA) method [23] and so on. They are also used to get the approximate

solution to the nonlinear and complicated problems.

The GA method was developed by simulating the process of natural selection. In

the GA method, the potential optimal weights are seen as a population, a population

consists of several individuals which is similar to the weight for each element in the

array, a fitness function as the SLL in this thesis is chosen for evaluating the popula-

tion. As evolution affects the populations in nature, in this method, the population

will also go through selection, recombination and mutation, then the next generation
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will be generated. After appropriate iterations(the number of the iterations depends

on the complexity of the problem), the solution will approach to the optimal solution.

The SA method was introduced by Scott Kirkpatrick, C. Daniel Gelatt and Mario

P. Vecchi in 1983 [24], it is a kind of algorithm based on the Monte Carlo method to

find out the optimal solution. This method comes from the procedure of annealing in

metallurgy. When the temperature of the metal is cooled down, the inner particles

will tend to be stable, and the thermodynamic free energy will decrease, if the ther-

modynamic free energy reaches the lowest level, the state is called the stable state.

The whole procedure is controlled by cooling schedule which includes the iteration

number, the termination requirement and so on. When it is used for beamforming,

first of all, we generate a random solution, then we evaluate the solution, if it does

not satisfy the specification (e.g., the SLL should be below -30 dB) or it does not

reach the iteration number, it will generate a new solution, after the new solution

is generated, we need to compute its ”energy” (the energy is related with current

temperature) and decide to accept it or not, then we evaluate the new solution. If

the solution meets the specification or the it reaches the iteration number, then the

solution is just the final solution. More details about the GA and the SA methods in

beamforming can be found in [25] [26].

3.4 Numerical results

In this section, we will use some examples to demonstrate the PSO method in

designing the array. To begin, the PSO method was used to design a ten-element

symmetric broadside array which was solved by linear programming previously, the

beamwidth is 40◦. The comparison of the results using the two methods are shown

Table 3.1 and Fig.3.4.
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Methods w1 w2 w3 w4 w5 Minimum SLL(dB)
LP 0.1201 0.1224 0.0888 0.1152 0.0535 -30.343

PSO 0.121 0.1226 0.0858 0.1165 0.0538 -29.37

Table 3.1. Comparison between LP and PSO method

Fig. 3.4. Array factor of symmetric broadside array, 40◦

From Table 3.1, it can be seen that using the PSO method we get similar weights

compared with using linear programming method. In this case, the maximum iter-

ation number is set as 20000 and the number of particles is 4 for the PSO method.

Fig.3.4 shows the corresponding array factor, since the SLL is the criterion for de-

signing, the two methods get the approximate result in term of the SLL. Next, an

eight-element asymmetric array is used to verify the method in asymmetric case, the

desired angle is 90◦, the beamwidth is 40◦. In the side lobe region, the array fac-

tor it is sampled every degree. The positions of an eight-element array are set as

d1 = 1.2λ, d2 = 0.85λ, d3 = 0.4λ, d4 = 0.15λ, d5 = −0.1λ, d6 = −0.45λ, d7 = −0.9λ,

d8 = −1.4λ. By (3.4), (3.5) and (3.13), we can get the following equation

w1 + w2...+ w8 = 1. (3.16)
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For an array with eight elements, the number of the dimensions are set to 8, and for

each dimension 4 particles are chosen and the maximum iteration number is chosen

as 500000. In order to avoid the shortfall of partial optimization, a block of computer

code is added into the program to fix it. The optimal excitation coefficients that were

determined are: w1 = 0.085, w2 = 0.0895, w3 = 0.148, w4 = 0.1149, w5 = 0.0836, w6 =

0.182, w7 = 0.1543, w8 = 0.1431, which took 631 seconds to get the solution with a

quad-core 3.2 GHz CPU. In this case, the SLL is approximate -19dB. The array factor

with optimal excitation coefficient is shown in Fig.3.5, and the change of minimum

SLL versus the iteration is shown in Fig.3.6. It can be seen that the minimum SLL

keeps decreasing with iteration number increasing at first, then after around 170,000

times, the minimum SLL remains unchanged until the maximum iteration number is

reached.

Fig. 3.5. Array factor of the asymmetric array
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Fig. 3.6. The minimum SLL versus iteration

Since the PSO method cannot guarantee that the final result is globally optimal, it

is necessary to consider whether the result is reasonable or not. One approach would

be to use the Taylor method to redesign the array. This method is specific for the

uniform spacing arrays. When the total length of the array is 2.6λ, an eight-element

with uniform spacing of 0.371λ is generated. Using the Taylor method, the SLL we

can achieve is -18.4 dB for the broadside uniform spacing array with BW=40◦, which

is also shown in Fig.3.5, considering the difference of the nature of the two arrays,

our results for the asymmetric array is reasonable. Then the SLL versus iteration

number is checked, as mentioned before, the SLL drops at first with iteration number

increasing, then it is kept being constant for a long time. For that two reasons, our

results can be seen as the reasonable result.

The optimum weights and the minimum SLL are gotten via the PSO method for

asymmetric array with different numbers of elements and various beamdwidths are

shown in Table 3.3-3.5. The position of the elements is shown in Table 3.2.
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N d1/λ d2/λ d3/λ d4/λ d5/λ d6/λ d7/λ d8/λ d9/λ d10/λ
2 0.15 -0.1
4 0.4 0.15 -0.1 -0.45
6 0.85 0.4 0.15 -0.1 -0.45 -0.9
8 1.2 0.85 0.4 0.15 -0.1 -0.45 -0.9 -1.4
10 1.7 1.2 0.85 0.4 0.15 -0.1 -0.45 -0.9 -1.4 -2.2

Table 3.2. Elements positions of the asymmetric array

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 SLL(dB)
0.5 0.5 -0.318

0.454 0.003 0.13 0.416 -3.606
0.216 0.151 0.107 0.142 0.13 0.255 -11.454
0.099 0.115 0.149 0.087 0.09 0.198 0.134 0.126 -18.923
0.064 0.086 0.151 0.126 0.112 0.092 0.142 0.134 0.081 0.011 -23.09

Table 3.3. Optimum weights for asymmetric array, broadside and BW=40◦

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 SLL(dB)
0.5 0.5 -0.488

0.422 0.004 0.2 0.377 -5.371
0.2 0.154 0.119 0.159 0.199 0.169 -15.869

0.062 0.076 0.203 0.009 0.203 0.163 0.181 0.103 -23.836
0.075 0.112 0.137 0.205 0.053 0.16 0.129 0.105 0.015 0.009 -25.11

Table 3.4. Optimum weights for asymmetric array, broadside and BW=50◦

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 SLL(dB)
0.5 0.5 -0.688

0.421 0.002 0.264 0.333 -7.353
0.165 0.161 0.169 0.144 0.225 0.137 -20.528
0.025 0.084 0.22 0.026 0.2 0.212 0.176 0.057 -26.267
0.075 0.165 0.158 0.27 0.001 0.167 0.083 0.041 0.021 0.021 -28.29

Table 3.5. Optimum weights for asymmetric array, broadside and BW=60◦

From Table 3.3 to 3.5, we can also conclude that with the beamwidth extending,

the potential SLL can be lower. The final array factors of the ten-element arrays with
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various beamwidths are shown in Fig.3.7 through 3.9. In these figures, the letter I

denotes the iteration number, P denotes the number of the particles in each dimen-

sion and T denotes the total time needed to perform the optimization.

Fig. 3.7. Array factor of the ten-element asymmetric array, BW=40◦

Fig. 3.8. Array factor of the ten-element asymmetric array, BW=50◦
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Fig. 3.9. Array factor of the ten-element asymmetric array, BW=60◦

For the non-broadside array, the weights have two parts, the amplitude and the

phase. When this kind of problem is formulated for the PSO method, the weights are

set as wn + j ∗ w′n and the equation constraints in this case are

N∑
n=1

wncos(kdncosφd) + w′nsin(kdncosφd) = 1 (3.17)

N∑
n=1

−wnsin(kdncosφd) + w′ncos(kdncosφd) = 0. (3.18)

The derivative of the real part of the array factor in this case is

R′ =
N∑
n=1

wnkdnsin(φ)sin(kdncosφ)− w′nkdnsin(φ)cos(kdNcosφ) (3.19)

an additional equation constraint in this case becomes

N∑
n=1

wnkdnsin(φ)sin(kdncosφ)− w′nkdnsin(φ)cos(kdNcosφ)|φd = 0. (3.20)

The remaining part of the algorithm is kept the same as the broadside case. Compar-

ing with the broadside array, it can be found that the problem in this case becomes
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more complicated with the introduction of the imaginary part of the weights, so the

iteration number and the number of the particles in each dimension under the same

condition in broadside case is increased. The positions of the elements of the array

are shown in Table 3.6.

Number of Elements d1/λ d2/λ d3/λ d4/λ d5/λ Min./λ Max./λ
2 0 0.35 0.35 0.35
3 0 0.35 1.4 0.35 0.95
4 0 0.35 1.4 1.85 0.35 0.95
5 0 0.35 1.4 1.85 2 0.15 0.95

Table 3.6. Element spacing of the non-broadside array

The desired angle is set as 45◦, and the range of the beamwidths is from 40◦ to

60◦. The iteration number(I) and the number of the particles (P) for each dimension

we set in different cases are shown in Table 3.7, the time the code consumed (T/m)

is also presented in this table.

Number of Elements I P T/m
2 200000 4 10.4
3 500000 6 87.4
4 1000000 8 263.3
5 1500000 15 631.9

Table 3.7. Some parameters we set for the non-broadside array

The optimum weights and the SLL determined in this case are shown in Table 3.8-

3.10, where wn represents the real part of the weights and w′n represent the imaginary

part.
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w1 0.5 0.324 0.249 0.278
w′1 0 -0.1 -0.052 0.0002
w2 0.008 -0.13 -0.088 -0.089
w′2 0.499 0.205 0.288 0.162
w3 0.47 0.163 0.14
w′3 -0.063 -0.104 -0.151
w4 -0.156 0.371
w′4 0.257 0.284
w5 -0.495
w′5 -0.284

SLL(dB) -0.21 -3.24 -5.05 -6.59

Table 3.8. Optimum weights for non-broadside arrays, θd=45◦, BW=40◦

w1 0.5 0.311 0.289 0.15
w′1 0 -0.109 0.006 -0.138
w2 0.008 -0.142 -0.036 -0.182
w′2 0.499 0.265 0.329 0.293
w3 0.423 0.191 0.156
w′3 -0.063 -0.176 0.008
w4 -0.173 0.181
w′4 0.127 0.333
w5 -0.249
w′5 -0.109

SLL(dB) -0.287 -4.3 -6.516 -7.292

Table 3.9. Optimum weights for non-broadside arrays, θd=45◦, BW=50◦

w1 0.5 0.293 0.261 0.265
w′1 0 -0.117 -0.032 -0.013
w2 0.008 -0.151 -0.074 -0.104
w′2 0.499 0.32 0.378 0.221
w3 0.386 0.196 0.198
w′3 -0.064 -0.148 -0.215
w4 -0.137 0.078
w′4 0.116 0.352
w5 -0.16
w′5 -0.261

SLL(dB) -0.356 -4.954 -7.21 -8.316

Table 3.10. Optimum weights for non-broadside arrays, θd=45◦, BW=60◦
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Additional degrees are selected as the scan angles, in this thesis, 30◦ and 60◦ are

also selected as the scan angles to verify our method, the beamwidth is set as 60◦,

the optimum weights we got are shown in Table 3.11-12.

w1 0.5 0.451 0.386 0.299
w′1 0 -0.058 -0.012 -0.068
w2 -0.164 -0.103 -0.006 -0.216
w′2 -0.472 0.061 0.082 0.078
w3 0.126 0.079 0.167
w′3 0.44 0.113 -0.123
w4 -0.293 -0.367
w′4 -0.258 0.084
w5 0.321
w′5 -0.432

SLL(dB) -0.1 -1.489 -2.499 -3.153

Table 3.11. Optimum weights for non-broadside arrays, θd=30◦, BW=60◦

w1 0.5 0.254 0.075 0.063
w′1 0 -0.129 -0.06 -0.137
w2 0.227 0.029 0.053 0.003
w′2 0.446 0.437 0.305 0.379
w3 -0.147 -0.186 -0.135
w′3 -0.314 -0.385 -0.257
w4 0.195 0.182
w′4 -0.07 -0.142
w5 0.101
w′5 -0.017

SLL(dB) -0.723 -5.506 -6.24 -6.35

Table 3.12. Optimum weights for non-broadside arrays, θd=60◦, BW=60◦

The array factor of the five-element non-broadside array with various beamwidths

are shown in Fig.3.10-3.14.
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Fig. 3.10. Array factor of the five-element asymmetric array, θd=45◦, BW=40◦

Fig. 3.11. Array factor of the five-element asymmetric array, θd=45◦, BW=50◦
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Fig. 3.12. Array factor of the five-element asymmetric array, θd=45◦, BW=60◦

Fig. 3.13. Array factor of the five-element asymmetric array, θd=30◦, BW=60◦
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Fig. 3.14. Array factor of the five-element asymmetric array, θd=60◦, BW=60◦

How can we say the SLL determined now is the lowest with the given conditions,

or what is the limit for the SLL with the given conditions? In fact, for an arbitrary

linear array and an arbitrary beamwidth, it is difficult to find out its limit about the

SLL, and unlike linear programming method, the PSO method can not guarantee that

its final result is the globally optimal result. A useful intermediate step is to prove

that the final result is the approximate optimal result. Like what is done in broadside

case, the final result is compared with the SLL achieved by the Taylor method for

uniform spacing arrays, the SLL achieved by the Taylor method is shown in Table

3.13, the number inside the parentheses is the SLL we achieved previously for the

asymmetric array via the PSO method under the same condition. The comparison

of the array factor of the two kinds of the arrays are shown in Fig.3.15-17. As is

mentioned before, the Taylor method is only effective for uniform spacing arrays, the

total length is kept being same as the asymmetric arrays, but their positions to are

changed in order to make them into the uniform spacing arrays. The result gotten

by the Taylor method is used as the reference, but it is not right to say the uniform

spacing can always get better performance, and vice a versa. By comparing the two

groups of the results and considering the difference of the positions of some elements,
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we conclude that our results are reasonable. Secondly, the SLL versus the iteration is

studied in different cases; we used arrays with θd=45◦ and BW=60◦ as the example,

which are shown in Fig.3.18-20. It can be seen that the final minimum SLL is being

kept constant for a long time in each case. Of course the SLL may drop with setting

a larger iteration number, but we do not think it will drop a lot even with a much

larger iteration number. Considering the above two respects, the final results we get

are the approximate optimal results.

N
θd,BW

45◦,40◦ 45◦,50◦ 45◦,60◦

2 -0.2 dB (-0.21 dB) -0.3 dB (-0.29 dB) -0.4 dB (-0.36 dB)
3 -3.2 dB (-3.24 dB) -4.4 dB (-4.3 dB) -5.5 dB (-4.95 dB)
4 -5.4 dB (-5.05 dB) -7.1 dB (-6.52 dB) -7.8 dB (-7.21 dB)
5 -5.9 dB (-6.59 dB) -7.4 dB (-7.29 dB) -8.6 dB (-8.32 dB)

Table 3.13. Comparison of the SLL of the uniform spacing non-broadside arrays
and the non-uniform spacing non-broadside arrays

Fig. 3.15. Comparison of the array factor, θd=45◦, BW=40◦
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Fig. 3.16. Comparison of the array factor, θd=45◦, BW=50◦

Fig. 3.17. Comparison of the array factor, θd=45◦, BW=60◦
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Figure 3.18. The SLL vs. iteration, N=2 Figure 3.19. The SLL vs. iteration, N=3

Figure 3.20. The SLL vs. iteration, N=4 Figure 3.21. The SLL vs. iteration, N=5

From the case of broadside and non-broadside asymmetric arrays, it can be seen

that PSO method is helpful for designing this kind of arrays. Compared with the

LP method, the PSO method can be used for solving more complicated problems.

However, its disadvantages cannot be ignored, one has been mentioned several times

in this chapter that the PSO method cannot guarantee that the result is globally

optimal. Another one is when the PSO method is used to design the array, it takes

longer compared with the LP method, especially for non-broadside array. For example
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it costs more than ten hours to get the final result for the five-element non-broadside

asymmetric array, that is another disadvantage of the PSO method.
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CHAPTER 4

ADAPTIVE ARRAYS VIA THE NORMALIZED LEAST
MEAN SQUARES ALGORITHM

4.1 Background of adaptive arrays

The Adaptive array is also called smart antenna, it is widely used in astronomy

and communication engineering [27] [28]. It is used for calibrating or adjusting the

excitation coefficients of the array to make the array get optimal beamforming perfor-

mance in different cases. Why is it important for phased array? As it was mentioned

in the proceeding part, the excitation coefficients are vital to the array, they can

determine the radiation pattern of the array. In this chapter, a method is proposed

to help us calibrate the excitation coefficients. We will use dither signal and a near

field sensor to accomplish this. Our method will be demonstrated in noiseless envi-

ronment, noisy environment, and the effect of mutual coupling and discrete dither

signal will be considered.

One correction method via dithering and the Least Mean Squares (LMS) algorithm

has been proposed in [5]. The LMS algorithm was developed by Widrow in 1960 [29].

In that method of [5], white noise is deliberately introduced to the coefficients as

the dither signal, then the LMS algorithm is used to correct the actual coefficients.

In using the LMS algorithm to correct the coefficients, one thing we have to do is

estimating the largest eigenvalue of the coefficient matrix to update the coefficients

in gradient based procedure, that is described in [30]. This necessary step in the LMS

algorithm is one drawback since it will make the method more complicated and take

a longer time. In order to avoid this problem, the Normalized Least Mean Squares
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(NLMS) algorithm [31] is proposed to update the coefficients in this part of this thesis.

4.2 Theory of adaptive arrays via the NLMS algorithm

‘

4.2.1 Introduction

An array consisting of N half-wavelength dipoles with all dipoles are arranged

along the x-axis with an inter-element spacing of d is illustrated in Fig.4.1. A sensor

is set in the near-field of the array to measure the array’s radiation. The normalized

current excitation coefficient for n-th element is denoted by wn, it is same as the

weights in proceeding part, wn = ane
jψn , where an represents the magnitude and ψn

is the phase. Once the array is excited, the array will radiate power, which will be

received by the sensor, the z-component of the electric field Ez in the x-y plane is

given by [4]

Ez =
jηI0l

4π

N∑
n=1

wn
1

Rn

(
1 +

1

jk0Rn

− 1

k20R
2
n

)
e−jk0Rn (4.1)

=
jηI0l

4π
gw (4.2)

where Rn =
√

(xs − xn)2 + y2s , xs is the value of the sensor’s position in x-axis, ys

is the value of the sensor’s position in y-axis, xn is the location of n-th element

in the array, k0 is the wavenumber in free space. In (4.2), w is a 1 × N matrix,

w = [w1, w2....wn....wN ]T , g is an N × 1 matrix, g = [g1, g2....gn....gN ] , and gn is

defined as

gn =
1

Rn

(
1 +

1

jk0Rn

− 1

k20R
2
n

)
e−jk0Rn . (4.3)
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Fig. 4.1. Array consisting of N elements and the sensor

The NLMS algorithm will be used to calibrate the excitation coefficients. The

general model of the NLMS algorithm is depicted in Fig.4.2. The actual coefficients

that we will correct is represented by vector ŝ, and vector s represents the desired or

reference coefficients, h is the input vector, y represents the desired output, while ŷ

is the actual output, e denotes the difference between y and ŷ.

Fig. 4.2. The general model of NLMS algorithm

The general NLMS algorithm can be summarized as
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h = [h1, h2......hN ] (4.4)

ŝ(k) = [ŝ
(k)
1 , ŝ

(k)
2 ......ŝ

(k)
N ]T (4.5)

s = [s1, s2......sN ]T (4.6)

ŷ(k) = ŝ(k) · h (4.7)

y = s · h (4.8)

e(k) = ŷ(k) − y (4.9)

ŝ(k+1) = ŝ(k) − µ (e(k))∗h(k)

(h(k))Hh(k)
(4.10)

where the superscript k in (4.5) represents the iteration number and in (4.10) the

symbol ∗ denotes complex conjugation, H denotes Hermitian conjugation, and µ is

the step size. The initial condition is always set as ŝ(0) = [0, 0......0] if it is not given,

then with iteration number k increasing, ŝ will converge to the desired coefficients s

step by step, the proof of the NLMS algorithm is in the Appendix. In our research,

the actual current excitation coefficients can be seen as ŝ in the model, the desired

current excitation coefficients can be seen as s, all terms except w can be seen as

the input vector h, by (4.2) we can get hn = jηI0l
4π

1
Rn

(
1 + 1

jk0Rn
− 1

k20R
2
n

)
e−jk0Rn , for

simplicity, the constant factor is ignored, so hn = 1
Rn

(
1 + 1

jk0Rn
− 1

k20R
2
n

)
e−jk0Rn , the

actual electric field which can be sensed by the sensor is the actual output in the

model, and the desired electric field pattern which can be seen as the desired output

is already known. Then the algorithm will be verified in different situations.

4.2.2 Noise Free Case

First of all, let us consider the ideal and simplest situation that the array works

in a noise-free environment; the effect of noise will be talked later. Before correcting

the actual coefficients, a dither signal should be added into the actual coefficients

which are denoted by ŵ. The desired coefficients are denoted by w. Dithering has

been used for correcting signals in a lot of areas, especially in the area of digital
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audio and video processing [32], the effect of dithering on correction to phased array

coefficients has been studied in [5] and the comparison between the coefficients and

field without dithering and with dithering are shown in Fig.4.3 and Fig.4.4. Once the

dither signal is added, the algorithm will be used to correct the actual coefficients. In

this thesis, desired coefficients w are known, they are current excitation coefficients

of the 32-element array with spacing of λ
2
, λ is the wavelength, the location of each

element is xn = −L+ (n− 1)λ
2
, L is the half length of the whole array, and the array

is designed by the Taylor method [3] with side lobe level of −24dB. The weights ŵ

are generated randomly to denote an arbitrarily excitation coefficients of the array, w

and ŵ are shown in Fig.4.3. Since the current excitation coefficients in our research

have two parts, the magnitude part and the phase part, the dither signals also consist

of two parts, for the magnitude part, it is subject to log-normal distribution with the

standard deviation of σ dB, and the phase part is subject to uniform distribution

with deviation of ∆. The magnitude part and the phase part of the dither signal are

independent of each other, and they are independent of the original coefficients ŵ.

Vector w̃ is denoted as the desired coefficients with the dither signals added to it,

w̃ = [w̃1, w̃2....w̃n....w̃N ]T , and vector ˜̂w is denoted as the actual coefficients with the

dither signals added to it, ˜̂w = [ ˜̂w1, ˜̂w2.... ˜̂wn.... ˜̂wN ]T , w̃n and ˜̂wn are defined as

w̃n = wne
αnejβn (4.11)

˜̂wn = ŵne
αnejβn (4.12)

where the superscript n represents the nth element in the array, eαnejβn is the dither

signal, αn = 0.05 · ln(10) ·σ · vn, βn = µn∆, where vn is a normal distribution variable

with zero mean and unit variance, µn is a variable subject to uniform distribution

between −1 and 1. In this thesis σ is set as 3 dB and ∆ is set as 12 degrees [5]. In

the standard LMS algorithm, the coefficients are corrected by the following equation

[5]
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ĉ(k+1) = ĉ(k) − µ
〈

(Ê(k) − E)E∗0

〉
(4.13)

where E = gw̃, Ê(k) = g˜̂w(k), ˜̂w(k) =
[
ŵ

(k)
1 eα1ejβ1 , ŵ

(k)
2 eα2ejβ2 .......ŵ

(k)
N eαN ejβN

]T
, µ

is the step size, the optimal step size µopt is determined by the largest eigenvalue of

coefficients matrix, E0 = [t1, t2..tn..tN ]T , tn = gn ·eαnejβn , E0 can be seen as the input

vector in Fig.4.2, gn can be calculated by the location of each element in the array

and the sensor from (4.3). The location for each element of the array xn is already

known and the location of the sensor is set as xs = 0, ys = 4λ, 〈·〉 denotes 1
M

∑M
m=1 (·),

M represents the number of realizations, the values of α and β will update in each

realization and the actual coefficients are expected to converge to the desired ones

with increasing M under the same iteration. In order to avoid the step of calculating

µopt, the NLMS algorithm is proposed to update the actual coefficients, equation 4.13

will be written as

ŵ(k+1) = ŵ(k) −
µ
〈

(Ê(k) − E)E∗0

〉
(E∗0)

H E∗0
. (4.14)

In using the NLMS algorithm, the optimal step size µopt can be obtained easily,

because µopt in NLMS is constant instead of depending on other parameters, and it

is always equal to 1 [33]. Once the value of µopt is set, the next step is choosing an

appropriate value for the realization number M , as it was mentioned before, the value

of M larger, the actual coefficient will converge to the desired coefficients better and

the results will become stable. However, a larger M means the algorithm will take

longer time to get the final results. By observing and comparing the final corrected

coefficients with different values of M (from 1 to 100), when M is around 10, it gen-

erates satisfactory and stable data. Compared to the results with M equal to 20 or

larger, the differences can be ignored. Fig.4.3 shows the actual and desired excitation

coefficients and Fig.4.4 shows the electric field with dither signal.
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Fig. 4.3. Original coefficients and dithered coefficients

Fig. 4.4. Original and dithered electric field in near-field region

4.2.3 With Gaussian White Noise

In practice, it is impossible to find an environment without noise or interference.

In this section the effect of noise to our algorithm will be considered.

The noise being added is assumed to be with zero mean and it is independent of

the dithering process. In addition, the noise is supposed to be generated within the

receiver. After the noise is considered, the actual electric field component that the
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sensor receives is written by Êd, Ê
(k)
d = g˜̂w(k)+p˜̂w(k), k denotes the iteration number,

and p represents the noise part, p = [p1, p2......pN ], variable pn is subject to Gaussian

distribution with zero mean and standard deviation of γ. For the desired electric

field pattern with the noise added to, it is denoted by Ed, Ed = gw̃ + p′w̃, p′ shares

the identical statistical characteristics with p, but they are independent because the

noise changes all the time randomly, the input vector with unit excitation coefficients

is denoted as E1, E1 = [t′1, t
′
2..t
′
n..t
′
N ]T , t′n = gn · eαnejβn + pn · eαnejβn . Then, the

coefficients can be corrected by

ŵ(k+1) = ŵ(k) −
µ
〈

(Ê
(k)
d − Ed)E∗1

〉
(E∗1)

H E∗1
. (4.15)

For the noisy system, the noise part is added to the correcting equation, and this

noise part keeps changing as the real noise. Since the algorithm works based on the

gradient of the square error, it will bring deterioration to the final results with the

introduction of noise, which will be demonstrated in next section.

When it comes to noisy system, one important factor is the signal-to-noise ratio

(SNR). In this thesis, the noise part is p, and g can be seen as the signal part, the

SNR for this system is defined as 10 · log( ‖g‖
2

‖p‖2 ), where ‖g‖2 =
∑N

n=1 g
2
n, for p, since

each element in the vector is independent with each other and subject to Gaussian

distribution with zero mean and standard deviation of γ, ‖p‖2 =
∑N

n=1 γ
2 = Nγ2.

When the algorithm is used under the noisy environment, the value of M should be

adjusted with the change of SNR, the detail will be presented in next section.

4.3 Effect of Mutual Coupling

For an array, mutual coupling is one factor that cannot be ignored. In this section,

the effect of mutual coupling will be studied on the performance of our algorithm.

Like what was shown in the situation with noise, mutual coupling does not alter the
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essence of the algorithm, but it will change some parameters in the algorithm that

will have an impact on the convergence of our algorithm. The impedance of the array

is denoted by an N by N matrix Zm and defined as [34]

Zm = Z∞ + ∆Z (4.16)

Z∞ is an N by N diagonal matrix with entries Z∞, Z∞ represents the input impedance

of an isolated element. In this thesis, the array consists of half-wavelength dipoles,

thus Z∞ = 73 + j42.5, ∆Z denotes the mutual impedance, it is also an N by N

matrix, and for side-by-side configuration ∆Zmn(m 6= n) is calculated by [4] as

∆Zmn =
η

4π
[2Ci(µ0)− Ci(µ1)− Ci(µ2)] + j

(
− η

4π
[2Si(µ0)− Si(µ1)− Si(µ2)]

)
(4.17)

where µ0 = kd, µ1 = k
(√

d2 + l2 + l
)
, µ2 = k

(√
d2 + l2 − l

)
, d = |m− n| λ

2
, l = λ

2

and Ci (x) =
∫ x
∞

cos(τ)
τ
dτ, Si (x) =

∫ x
0
sin(τ)
τ
dτ . The coupling matrix is denoted by c

[34]

c = (Zm + Zs)
−1 · (Z∞ + Zs) (4.18)

where Zs denotes the source matrix, it is an N by N diagonal matrix with entries

Zsn, Zsn is set as 50. With mutual coupling being considered, the algorithm will be

changed by replacing g with gc′ and the rest part of the algorithm is the same as the

case without mutual coupling, equation 4.15 will be rewritten as

ŵ(k+1) = ŵ(k) −
µ
〈

(Ê
(k)
m − Em)E∗m

〉
(E∗m)H E∗m

(4.19)

where Em = gc′w̃, Ê
(k)
m = gc′ ˜̂w(k), Em = c′E0, for the optimal step size in the al-

gorithm, in using the LMS algorithm, the largest eigenvalue of the coefficient matrix
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will be recalculated every time because the input is not constant. In the NLMS, µopt

is kept being as 1, but the efficiency of the algorithm will be affected. One special case

is when the algorithm is used in the case with mutual coupling and noise, if
∥∥cTg

∥∥2
is larger than ‖g‖2, according to the expression of SNR in the preceding subsection,

it will increase SNR which will increase the final error level.

4.4 Dithering with Discrete Magnitudes and Phases

In reality, the dither signal is generated by certain digital attenuator and phase

shifter, thus the real dither signal is to be discrete instead of continuous with infinite

states as used in our algorithm. Considering this, studying the effect of using the

discrete dither signal to our algorithm is of practical value. Assuming the digital

attenuator and phase shifter are both n-bits, it means that for the magnitude part

and the phase part, they both have S = 2n states and each state is selected with

equal chance. The magnitude part of the continuous dither signal is denoted by eαn ,

where αn = 0.05 · ln(10) · σ · vn. For the discrete dither signal, eα
′
n is denoted as the

magnitude part, the prime on αn emphasizes that it is different from the continuous

one, α′n = 0.05 · ln(10) ·σ · v′n, v′n has only S states. An arithmetic progression with S

terms for v′n and the probability of each state is 1
S

. Considering that the mean value of

the normal distribution vn is 0, the range of the discrete sequence is set from −W to

W to produce the same mean value. Thus the difference of the two successive terms is

2W
S−1 . Then the value of W will be determined such that the variance of the magnitude

part is close to 1 as in the continuous case. For variables with S elements subject to

the discrete uniform contribution from −W to W , the variance is calculated by

σ2 =
S∑
n=1

1

S
· (−W +

2

S − 1
·W · n)2 (4.20)
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by equation 4.19, the value of W can be determined. Assuming the digital atten-

uator and phase shifter are both 4-bit, S = 16, then W will be set as 1.62 by

(4.20), the variance is 0.9914 now. In this way, the arithmetic progression is set

as: [1.62, 1.404, 1.188, 0.972, 0.756, 0.54, 0.324, 0.108,−0.108,−0.324,−0.54,−0.756,

− 0.972,−1.188,−1.404,−1.62]. The phase part will be adjusted by the similar

method as that used for the magnitude part. In the continuous dither signal, ejβn is de-

noted as the phase part, where βn = µn∆. In the discrete dither signal, ejβ
′
n is denoted

as the phase part, β′n = µ′n∆. What is altered is setting 16 fixed terms with constant

difference between two successive terms for µ′n ranging between −1 and 1. Since µn is

uniformly distributed from −1 to 1 and the variance is 1
3

for the continuous case, µ′n

will be picked up from [−15
16
,−13

16
,−11

16
,− 9

16
,− 7

16
,− 5

16
,− 3

16
,− 1

16
, 1
16
, 3
16
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16
, 7
16
, 9
16
, 11
16
, 13
16
,

15
16

] with equal probability. The variance is 0.332 for the discrete case by (4.20). Using

the discrete signal, the whole dither signal is written as eα
′
nejβ

′
n , compared with the

continuous dither signal, since the values for the discrete dither signal are just picked

up from those certain fixed values and the variance is a little different, the efficiency

of the algorithm will be affected somewhat.
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CHAPTER 5

NUMERICAL RESULTS

5.1 Noiseless Environment

The purpose of this section is to demonstrate the capability of our proposed algo-

rithm in different cases and present the numerical results to show the effect of noise,

mutual coupling and discrete dither signal to our algorithm. The coefficients without

the added dither signal (which are called Original) and the coefficients with dither

signal are shown in Fig.4.3, the corresponding electric fields in near-field are shown

in Fig.4.4, by dithering the coefficients, both the real part and the imaginary part are

increased a little. Then, Fig.5.1 and Fig.5.2 show the corrected coefficients with 2000

iterations in the noise-free environment and the corresponding electric filed pattern

in far-field region.

Fig. 5.1. Desired, corrected and actual coefficients
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Fig. 5.2. Desired, corrected and actual electric fields in far-field region

From Fig.5.1, it is clear that after 2000 iterations, the coefficients have been cor-

rected very well, not only the real part, but also the imaginary part. In this way, it

is natural that the far-field electric field pattern is also corrected well in Fig.5.2. The

relative error as a function of iteration number is shown in Fig.5.3, the relative error

being defined as
∑N

n=1|(ŵn−wn)|∑N
n=1|wn|

, N = 32.

Fig. 5.3. The error vs. the iteration number
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From Fig.5.3, it can be seen that with iteration number increasing, the error de-

creases quickly, the slope of the line is around −0.007.

5.2 Noisy Environment

Our algorithm will next be demonstrated in the noisy environment, in order to

find the influence of the SNR to the algorithm, four groups of noise are selected, the

values of their SNR being 30dB, 25dB, 20dB and 10dB respectively. When the value

of their SNR is changed, the realization number M should be adjusted at the same

time, because a larger M is necessary to get the stable corrected coefficients and

the relative error with the noise increasing. By doing the comparisons with different

values of M , M is set as 100 for 30dB, 200 for 25dB, 500 for 20dB and 1000 for

10dB. The far-field electric field patterns (the iteration numbers are all set as 2000)

are shown in Fig.5.4-5.7, the error analysis (
∑N

n=1|(ŵn−wn)|∑N
n=1|wn|

) of the cases with various

SNR and free-noise case (SNR=∞) are shown in Fig.5.8.

Fig. 5.4. The electric field patterns in far-field region, SNR=30dB
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Fig. 5.5. The electric field patterns in far-field region, SNR=25dB

Fig. 5.6. The electric field patterns in far-field region, SNR=20dB
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Fig. 5.7. The electric field patterns in far-field region, SNR=10dB

Fig. 5.8. The error analysis vs. the iteration with various SNR

From Fig.5.4-5.7, it can be seen that with the SNR decreasing, the difference be-

tween the corrected electric field pattern and the desired electric field pattern becomes

more and more obvious. When it is 30dB, the electrical pattern is still being corrected

well, but it is not as good as that under the noise-free environment, when the SNR

reaches 10dB, the corrected electric field is even worse than the actual electric field

in Fig.5.2, it means in that case the algorithm does not work at all. By Fig.5.4-5.7, it
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can be concluded that the noise plays an important role in our algorithm and there

exists the limit can make the algorithm stop working. It is more straightforward to

see the effect of noise to our algorithm in Fig.5.8, when there is no noise, the error

keeps decreasing with iteration number increasing. However, after the noise is added,

the performance of the error changes. If the SNR is above 10dB, the residual error

decreases with iteration number increasing at first, then they become constant even

the iteration number is still increasing. If the SNR is set as 10dB, the error increases

with iteration number increasing at first, then it is kept constant; it explains why the

corrected field is even worse than the uncorrected field in Fig.5.7. Another important

point is that when SNR is 30dB the final value of the error is around −13.4dB, then

it will increase to −11dB and −8dB with SNR decreasing to 25dB and 20dB. This

explains why the corrected electric field pattern becomes worse with SNR decreasing

in Fig.5.4-5.6.

Fig. 5.9. The error analysis vs. SNR

Fig.5.9 plots the final error levels for various SNR, it gives the approximate answer

to the question that for a given SNR, what is the accuracy of the algorithm? The

results are generated with 3000 iterations when all the errors are already stable and
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the slope of the line is around −0.53, it means if the SNR decreases by 10dB, the

error will increase by 5.3dB.

5.3 The Effect of Mutual Coupling

Thirdly, the effect of mutual coupling to the proposed algorithm is presented.

The corrected far-field electric field with considering the effect of mutual coupling

in noiseless environment is shown in Fig.5.10, Fig.5.11 shows the field with mutual

coupling and noise (SNR=25dB), both of them are gotten with 2000 iterations , the

error analysis for the case with mutual coupling is shown in Fig.5.12.

Fig. 5.10. The electric field patterns in far-field region with mutual coupling

56



Fig. 5.11. The electric field patterns in far-field region with mutual coupling and
noise

Fig. 5.12. The error analysis vs. the iteration for mutual coupling

By comparing Fig.5.10 and Fig.5.11 with the corrected electric field patterns un-

der the environment without mutual coupling (Fig.5.2 and Fig.5.3), it can be seen

that the final results become worse in the case with mutual coupling under the same

condition. Fig.5.12 describes the change of the relative error with introduction of

mutual coupling, it makes the speed of converging of the algorithm slow down and it

will make the final error stay in a higher level (for SNR=25dB, the error is increased
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by around 0.2dB) compared with the case without mutual coupling, this is the same

as what we expected in the preceding chapter. Fig.5.13 shows the accuracy of the

algorithm with mutual coupling, it can be seen that mutual coupling increases the

final error level a little.

Fig. 5.13. The error analysis vs. SNR with mutual coupling

5.4 The Effect of Discrete Dither Signal

Finally, the corrected electric filed using the discrete dither signal and the error

analysis are shown in Fig.5.14-Fig.5.17. In Fig.5.14, the corrected electric filed using

the discrete dither signal in noiseless environment is shown, we can see it is corrected

well after 2000 iterations. Fig.5.15 and Fig.5.16 show the effect of using the discrete

dither signal to the algorithm with noise and mutual coupling, compared with cases

using the continuous dither signal, the difference is not that obvious. The error

analysis is presented in Fig.5.17 to support that.
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Fig. 5.14. The electric field patterns in far-field region with discrete dither signal

Fig. 5.15. The electric field patterns in far-field region with discrete dither signal
and noise
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Fig. 5.16. The electric field patterns in far-field region with discrete dither signal
and mutual coupling

Fig. 5.17. Error analysis with discrete dither signal

From Fig.5.14-5.16, we can get the conclusion that using the discrete dither signal

does not change the corrected fields so much compared with the results we got using

the continuous dither signal. In Fig.5.17, it is clear to see that for the cases with noise

and mutual coupling, the corresponding dash line which represents results using the

discrete dither signal in each case is almost the same as the solid line, for noiseless
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case, the difference is larger with iteration number increasing, but they both keep

decreasing. The effect of using the discrete dither signal is not so obvious because

the mean value we set for the discrete dither signal remains the same as it for the

continuous dither signal and the variance is very close to it in the continuous dither

signal, it ensures the statistical characteristic of the two dither signal being similar.

Even though sometimes using the discrete dither signal will slow down the speed of

converging for our algorithm, the difference is not so obvious and it can be ignored.
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CHAPTER 6

CONCLUSION

The Linear programming (LP) and the Particle Swarm Optimization (PSO) meth-

ods have been used to design the arrays in the first part of this thesis, respectively.

The LP method is demonstrated by broadside symmetric arrays with element number

from 2 to 10. The advantage of this method that it is easy to implement and fast have

been presented in this thesis, however its disadvantage that it cannot be used to solve

complicated nonlinear problem is also shown. Then the PSO method is introduced,

the PSO method is used to design the asymmetric arrays and the non-broadside ar-

rays, the two cases demonstrate the robustness of the PSO method in designing this

kind of array, the disadvantage that the PSO method is time-consuming is also shown

in this part.

In the second part, an adaptive method for correcting the current excitation of the

phased array via using dither signal and the NLMS algorithm has been proposed, and

it is demonstrated by a 32-element broadside array designed by the Taylor method

with side lobe level of −24dB. The advantage of the NLMS algorithm in determining

the optimal step size is demonstrated and the effect of noise and mutual coupling on

our algorithm have been shown. After the noise is added, it will make the corrected

coefficients stop converging to the desired coefficients when the iteration number reach

some certain numbers. In other words, the noise will decrease the accuracy of our

algorithm and there exists the limit for the noise. When it exceeds the limit, our

algorithm will not work, so when we use the algorithm we should pay attention to it.

For mutual coupling, it will not alter the essence of the algorithm, but it will affect the
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speed of converging and the accuracy of the algorithm. When the noise and mutual

coupling are considered together, they will affect the efficiency at the same time. In

the end, the discrete dither signal is considered because the continuous dither signal

cannot be generated by the attenuator and phase shifter in practice. Compared with

using the continuous dither signal, the discrete dither signal will slightly decrease the

speed of our algorithm, but if the values are set properly, the effect can be ignored.
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APPENDIX

PROOF OF NLMS ALGORITHM

The magnitude of the difference between the actual coefficients and the desired

coefficients is defined as: Γ(n) = |d− d̂(k)|, ρ is defined as ρ(n) = Γ(n)2 = |d− d̂(k)|2.

E[ρ(n+ 1)] = E[|d̂(n) + µ
(e(n))∗h(n)

(h(n))Hh(n)
− d|2] (A.1)

E[ρ(n+ 1)] = E[|d̂(n) + µ
((y(n))∗ − (ŷ(n))∗)h(n)

(h(n))Hh(n)
− d|2]. (A.2)

Let γ(n) = d(n) − d.

E[ρ(n+ 1)] = E[|γ(n) + µ
((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
|2] (A.3)

E[ρ(n+ 1)] = E[(γ(n) + µ
((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
)H(γ(n) + µ

((y(n))∗ − (ŷ(n))∗)∗h(n)

(h(n))Hh(n)
)].

(A.4)

Assuming the independence, we can get

E[ρ(n+ 1)] = ρ(n) + E[(µ
(e(n))∗h(n)

(h(n))Hh(n)
)H(µ

(e(n))∗h(n)

(h(n))Hh(n)
)]− 2E[µ

|(e(n))∗|2

(h(n))Hh(n)
] (A.5)

E[ρ(n+ 1)] = ρ(n) + µ2E[|(e(n))∗|2]
(h(n))Hh(n)

− 2µE[
|(e(n))∗|2

(h(n))Hh(n)
]. (A.6)

The optimal step is gotten at dE[ρ(n+1)]
dµ

= 0, then we can get

2µE[|(e(n))∗|2]− 2E[|(e(n))∗|2] = 0 (A.7)

µ = 1. (A.8)
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