Complex effects of partial barriers on a simulated watershed trout population

S. Railsback
University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

Railsback, S., "Complex effects of partial barriers on a simulated watershed trout population" (2014). International Conference on Engineering and Ecohydrology for Fish Passage. 16.
https://scholarworks.umass.edu/fishpassage_conference/2014/June11/16

Complex effects of partial barriers on a simulated trout population

Margaret Lang
International Conference on Engineering and Ecohydrology
for Fish Passage
2014

A nagging question...

- Is all this money for fish passage wellspent?
- How important is it to eliminate partial barriers?
- that block some fish, at some flows
- Field studies alone are not likely to answer this

A marriage of convenience

- inSTREAM: an individual-based trout population model that can represent barriers
- FishXing to predict passage flows at barriers
- How does the abundance \& persistence of a (simulated) trout population vary with partial passage characteristics?

inSTREAM
 www. humboldt.edu/ecomodel

- Sites made up of cells
- Individual trout, redds
- Daily time step
- Processes:
- Habitat selection
- Feeding \& growth
- Survival
- Spawning

Fish movement in inSTREAM is habitat selection

- Each day, each trout
- Examines cells within a radius that increases with trout size
- Moves to the cell offering best foraging (a tradeoff of growth and risk)
- Not represented:
- Spawning migrations
- Long-distance exploration
- "Site fidelity"
- Downstream transport
- ...

How inSTREAM represents barriers

- Upstream: Fish cannot examine or move to cells upstream of a barrier
- Downstream:
- Fish have no information about habitat downstream of a barrier
- Fish move down over a barrier only if life above it stinksestimated $\mathrm{P}(90$-day survival $)<0.1$

How inSTREAM represents

 partial barriers- Minimum, maximum passage flows
- Three size classes of fish

Simulated watershed:

9 reaches, 27 sites,
24 barriers

- $3 \times$ mainstem site
- $6 \times$ fork site
- $18 \times$ tributary

Little Jones Creek Smith River basin, NW California

- Mainstem site

Little Jones Creek Smith River basin, NW California

- Fork site

Little Jones Creek Smith River basin, NW California

- Trib site

FishXing results: Percentage of days with passage

	Small fish $(<10 \mathrm{~cm})$	Medium fish	Large fish $(>16 \mathrm{~cm})$
Fork - min passage	100%	100%	100%
Fork - max passage	0%	0%	10%
Both flows met:	0%	0%	10%
	100%	81%	64%
Tributary- min passage	10%	34%	44%
Tributary- max passage Both flows met:	10%	15%	8%

Simulation experiments

- 78 years (1932-2009) but with $4 \times$ frequency of extreme high and low flow years
- Three barrier scenarios:
- No barriers
- Partial barriers with passage predicted by FishXing
- Full barriers (no passage at any flow)
- Results analyzed:
- Abundance of age 1 and older trout at September
- Number of reaches (out of 9) still occupied by any trout

Results (1): Adult trout abundance

- Small effect of partial barriers...

Results (2): reach occupancy (5 replicates)

- Partial barriers allow all reaches to be occupied.

What's going on?

- Why does only very limited passage strongly reduce the negative effects of barriers?
- What barrier characteristics allow populations to persist without unlimited passage?

Fish size: Effect of minimum passage length

- Experiment: Fish with length > passage minimum can pass at all flows; otherwise never
- Conclusions:
- passage of small fish not necessarily good
- passage of fish >12 cm seems especially important

Fish size and passage frequency: Effect of maximum passage flow

- Vary the maximum passage flow, separately for each length class

Does improved passage of small fish help?

- No- as indicated by fish size experiment

Does improved passage of large fish help?

- No...

Does improved passage of medium fish help?

- Just right!

Why does improved passage for only medium-sized trout benefit the simulated population?

- Small trout can't move as far
- Large trout:
- are few
- don't do well in small tributaries
- Medium trout:
- are many
- can have high survival in small streams
- are big enough to spawn and repopulate sites

What does this simulation study say about fish passage design?

- Think about:
- What size fish can thrive above barriers on small streams
- Small spawners can repopulate reaches
- Low passage for small fish may not cause populations to be smaller or less persistent

HUMBOLDT Thinem STATE UNIVERSITY

- inSTREAM, publications etc.:
www. humboldt.edu/ ecomodel
- FishXing: www. fi shxing. org

