University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2014

Jun 11th, 11:00 AM - 11:20 AM

Complex effects of partial barriers on a simulated watershed trout population

S. Railsback University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Railsback, S., "Complex effects of partial barriers on a simulated watershed trout population" (2014). *International Conference on Engineering and Ecohydrology for Fish Passage*. 16. https://scholarworks.umass.edu/fishpassage_conference/2014/June11/16

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@libraryumass.edu.

Complex effects of partial barriers on a simulated trout population

Steve Railsback Bret Harvey Margaret Lang

International Conference on Engineering and Ecohydrology for Fish Passage 2014

- Is all this money for fish passage wellspent?
- How important is it to eliminate partial barriers?
 - that block some fish, at some flows
- Field studies alone are not likely to answer this

A marriage of convenience

- inSTREAM: an individual-based trout population model that can represent barriers
- FishXing to predict passage flows at barriers
- How does the abundance & persistence of a (simulated) trout population vary with partial passage characteristics?

inSTREAM www.humboldt.edu/ecomodel

- Sites made up of cells
- Individual trout, redds
- Daily time step
- Processes:
 - Habitat selection
 - Feeding & growth
 - Survival
 - Spawning

Fish movement in inSTREAM is habitat selection

- Each day, each trout
 - Examines cells within a radius that increases with trout size
 - Moves to the cell offering best foraging (a tradeoff of growth and risk)
- Not represented:
 - Spawning migrations
 - Long-distance exploration
 - "Site fidelity"
 - Downstream transport

- ...

How inSTREAM represents barriers

 Upstream: Fish cannot examine or move to cells upstream of a barrier

• Downstream:

- Fish have no information about habitat downstream of a barrier
- Fish move down over a barrier only if life above it stinks– estimated P(90-day survival) < 0.1

• Three size classes of fish

Little Jones Creek Smith River basin, NW California

• Fork site

FishXing results: Percentage of days with passage

	Small fish (<10 cm)	Medium fish	Large fish (>16 cm)
Fork – min passage	100%	100%	100%
Fork – max passage	0%	0%	10%
Both flows met:	0%	0%	10%
Tributary— min passage	100%	81%	64%
Tributary— max passage	10%	34%	44%
Both flows met:	10%	15%	8%

Simulation experiments

- 78 years (1932-2009) but with 4 × frequency of extreme high and low flow years
- Three barrier scenarios:
 - No barriers
 - Partial barriers with passage predicted by FishXing
 - Full barriers (no passage at any flow)
- Results analyzed:
 - Abundance of age 1 and older trout at September
 - Number of reaches (out of 9) still occupied by any trout

Fish size: Effect of minimum passage length

- Experiment: Fish with length > passage minimum can pass at all flows; otherwise never
- Conclusions:
 - passage of small fish not necessarily good
 - passage of fish >12 cm seems especially important

10

Why does improved passage for only medium-sized trout benefit the simulated population?

- Small trout can't move as far
- Large trout:
 - are few
 - don't do well in small tributaries
- Medium trout:
 - are many
 - can have high survival in small streams
 - are big enough to spawn and repopulate sites

What does this simulation study say about fish passage design?

- Think about:
 - What size fish can thrive above barriers on small streams
 - Small spawners can repopulate reaches
- Low passage for small fish may not cause populations to be smaller or less persistent

