University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2014

Jun 10th, 2:10 PM - 2:30 PM

Spatially explicit hydraulic analysis of the effects of whitewater parks on fish passage

T. Stephens
University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Stephens, T., "Spatially explicit hydraulic analysis of the effects of whitewater parks on fish passage" (2014). *International Conference on Engineering and Ecohydrology for Fish Passage*. 47.

 $https://scholarworks.umass.edu/fishpassage_conference/2014/June10/47$

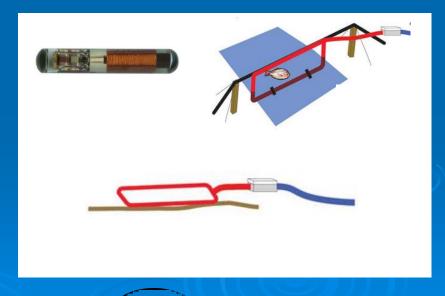
This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

SPATIALLY EXPLICIT HYDRAULIC ANALYSIS OF THE EFFECTS OF WHITEWATER PARKS ON FISH PASSAGE

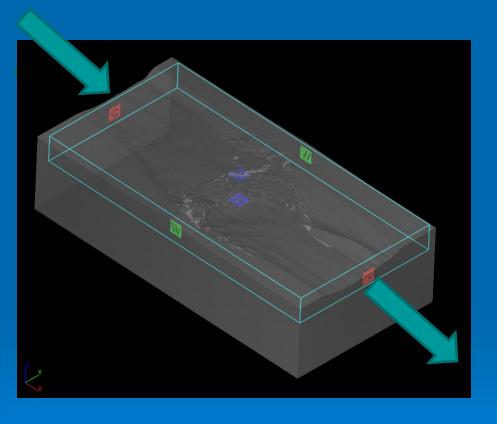
Tim Stephens,
Brian Fox, Nell Kolden,
& Brian Bledsoe

Department of Civil and Environmental Engineering

Colorado State University


- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

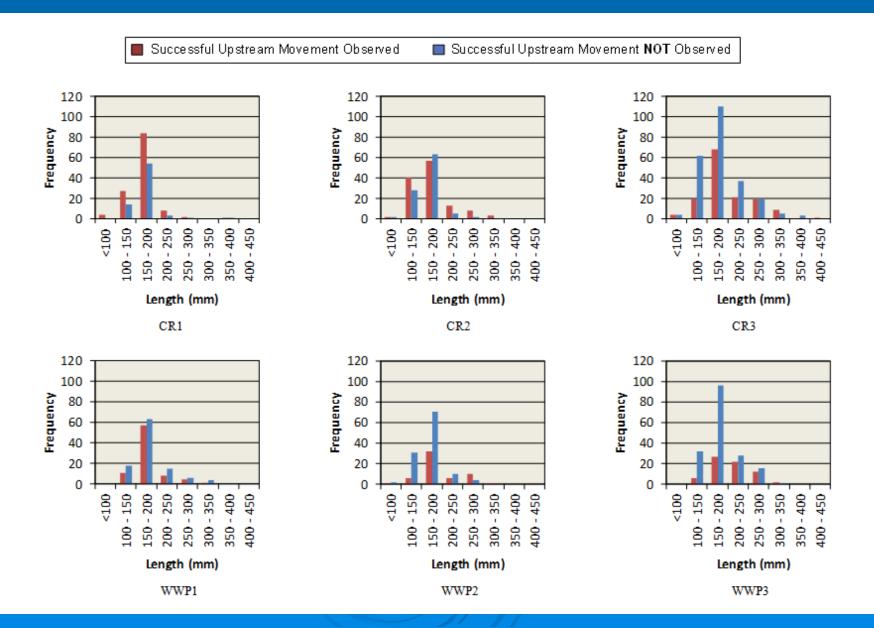
Fish Tracking Data


- North St. Vrain River, Lyons, CO
- > 14 months of fish tracking data
- 3 WWP structures and 3 natural reaches

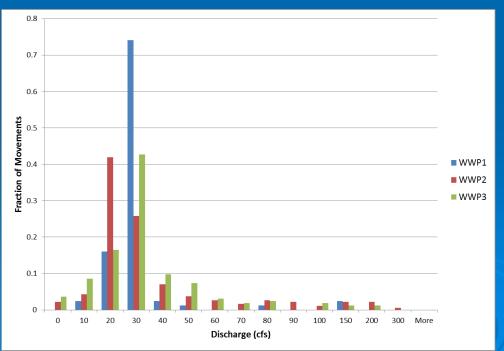
(Fox, 2013; Kolden, 2013)

Hydraulic Modeling

Numerical Modeling Results (Software: FIOW-3D)

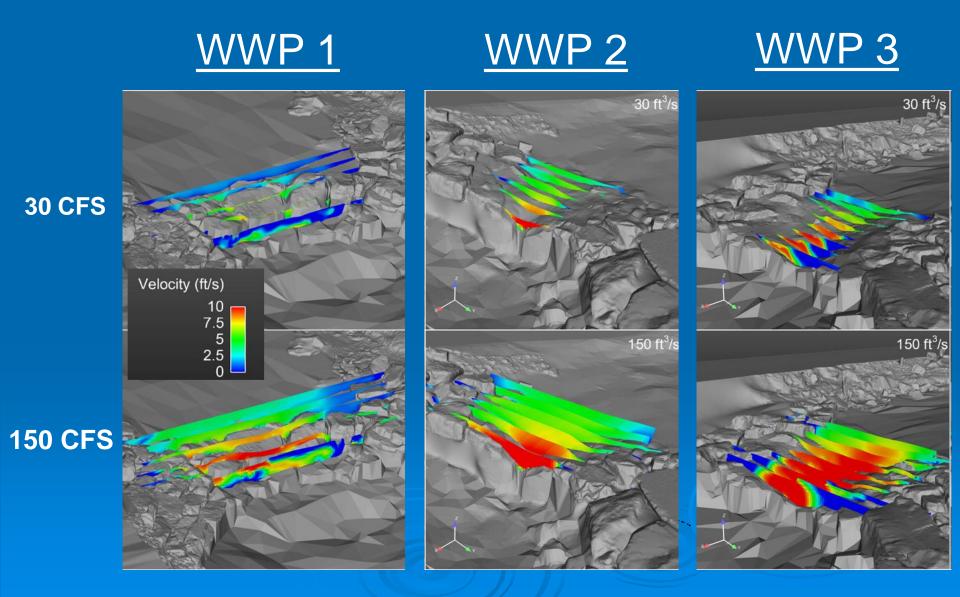


(Fox, 2013; Kolden, 2013)


- North St. Vrain River, Lyons, CO
- 3 WWP structures and 3 natural reaches
- Modeled 7 discharges
- Model Resolution: approximately3 inch mesh size
- Post processing using EnSight 10.03

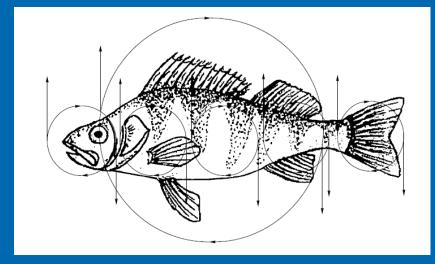
- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

Suppression of Movement (Fox, 2013)


0.8 0.7 0.6 0.7 0.4 0.3 0.2 0.1 0.1 0.1 0.2 0.1 0.5 Fish Length (mm)

Passage Success

- Varies among the three WWP structures
- Varies among <u>size classes</u> of fish at each individual structure
- The fraction of observed movements among the 3 WWP structures varies with discharge


Spatial and Temporal Hydraulic Heterogeneity

- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

Fish Swimming Abilities

- Fish body length is correlated with swimming ability (Castro-Santos et al., 2012).
- ➤ High levels of turbulence pose a stability challenge for fish (Tritico and Cotel, 2010).
- At high current speeds, turbulence can reduce a fish's swimming ability (Lupadin, 2005; Pavlov et al., 2000).

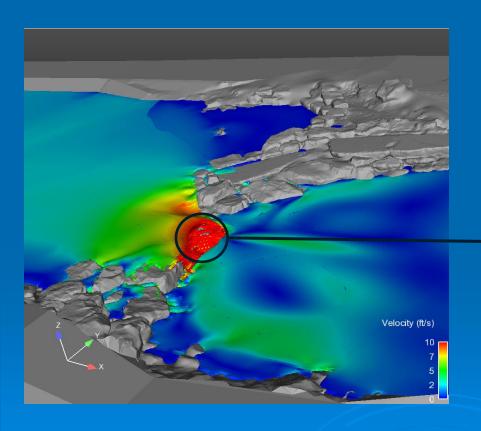
(Lupandin, 2005)

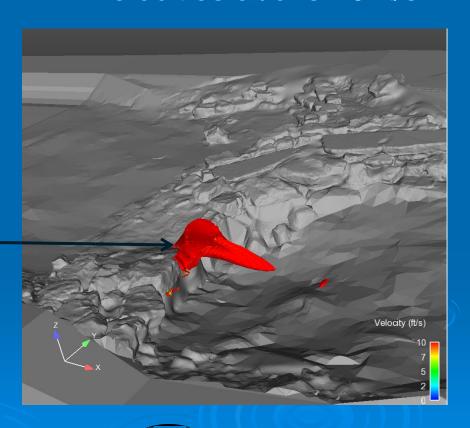
Quantifying Hydraulics

- > 3-D field studies are limited to point measurements that are not spatially continuous.
- Additional field studies are limited by a 2-D analysis and averaging over larger spatial scales.
- Laboratory studies that continuously quantify hydraulics in 3-D are limited in transferability (Lacey et al, 2012).

- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

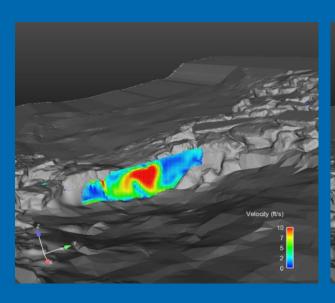
Objectives

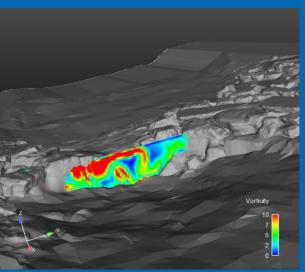

- Provide a continuous and spatially explicit description of velocity, vorticity, and TKE along the flow field at a scale meaningful to a fish.
- Compare the magnitude and structure of velocity, vorticity, and TKE among the Lyons WWP structures.
- ➤ Determine the influence of velocity, vorticity, TKE, and depth on the suppression of movement of upstream migrating trout.

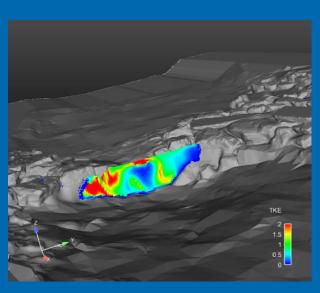

- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

Velocity Barrier

All velocities below 10 ft/s

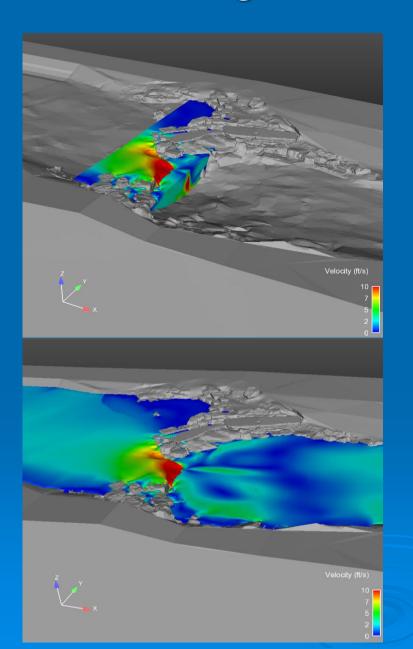

All velocities above 10 ft/s





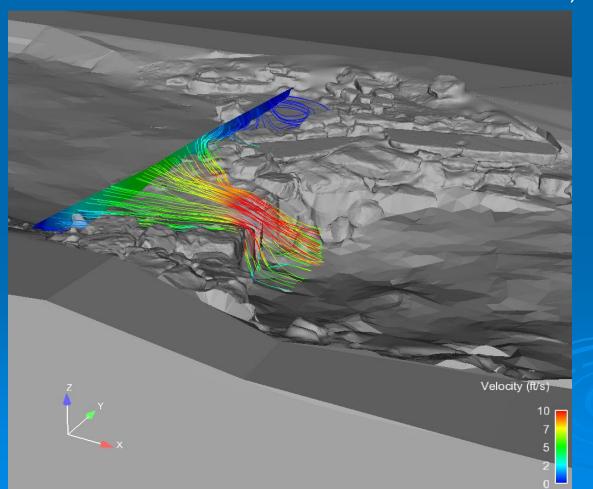
Hydraulic Interaction

Velocity Vorticity TKE

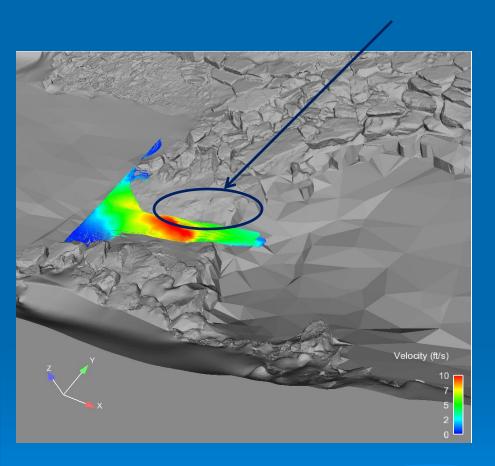


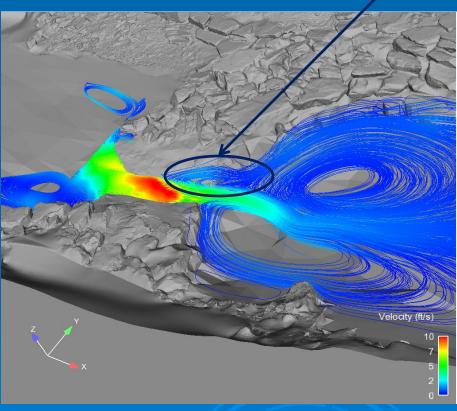
- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions

Defining the Flow Field Dimensions

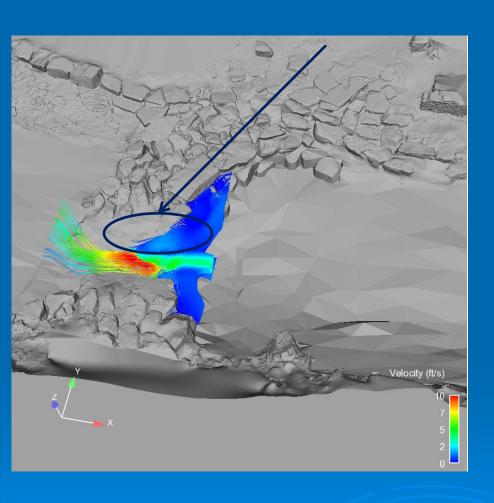


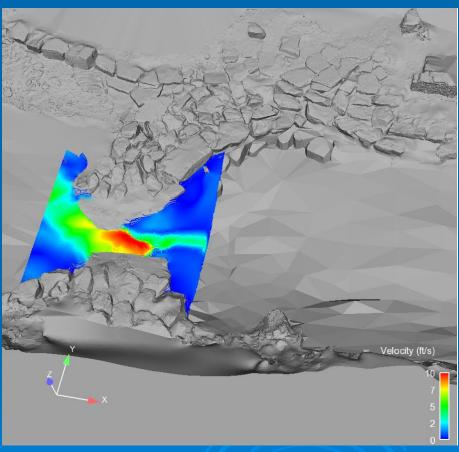
- Establish a physical criteria for the upstream and downstream boundary
- Must be equally comparable across flows at each structure
- Must be equally comparable across all structures
- Incorporate the full length of potential hydraulic barriers

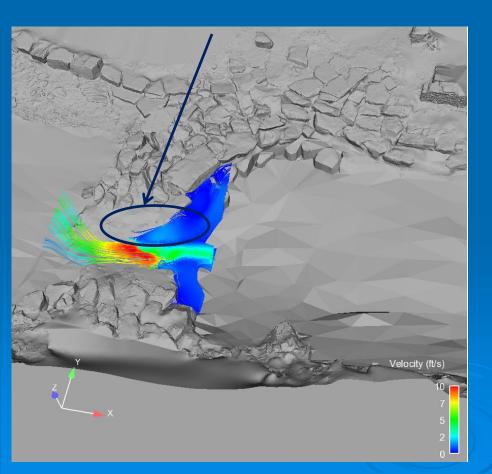

Continuous and Spatially Explicit Description


Emit "n" particle traces through the flow field

 $n \approx 10,000 - 20,000$ (encompass all features of the flow field)




Encompassing the Entire Flow Field

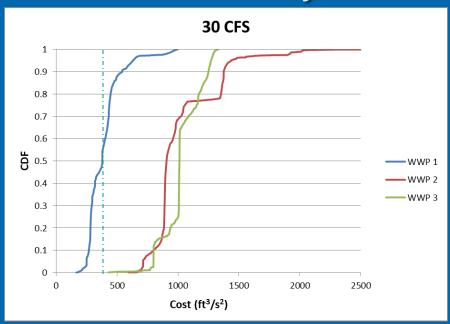

Encompassing the Entire Flow Field

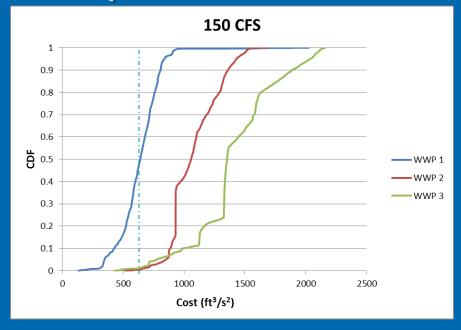
Hydraulic Descriptors

Incorporate a directional component of velocity based on the upstream direction

Cost along a trace

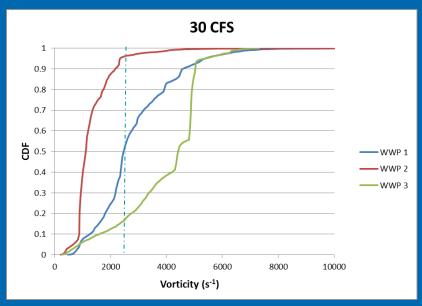
$$Cost = \sum v_{rms}^2 \times d$$

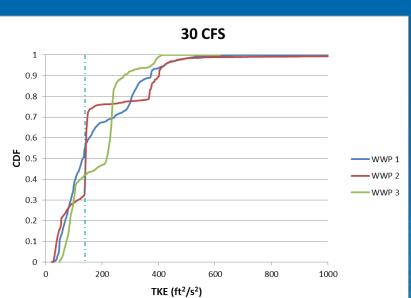

 \succ Ratio of water velocity to burst swimming speed v_{water}

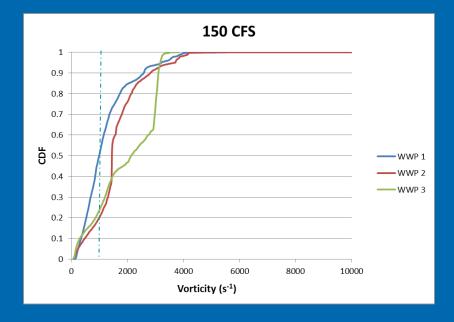

$$v_{burst}$$

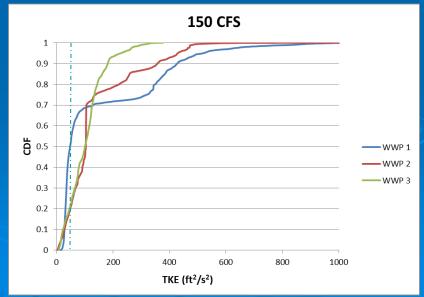
- Fraction of usable crosssectional area based on a usable minimum flow depth
- Sum of vorticity along a trace
- Sum of TKE along a trace

- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- Conclusions


Hydraulic Descriptors






	Fraction of Traces Where V _{water} /V _{burst} >= 1													
Fish Size	Class (mm)	100	125	150	175	200	225	250	275	300	325	350	375	400
Ŧ	WWP1	0.88762	0.20284	0.11712	0.071758	0.01794	0.01794	0	0	0	0	0	0	0
	WWP2	0.84914	0.11123	۱ ه	0	0	0	0	0	0	0	0	0	0
	WWP3	1	0.072575	0	0	0	0	0	0	0	0	0	0	0
150 cfs	WWP1	0.98927	0.89847	0.099289	0.033678	0.030186	0.004241	0.003118	0.003118	0.003118	0.003118	0.003118	0.003118	0.003118
	WWP2	1	0.75988	0.61974	0.15062	0.002828	0	0	0	0	0	0	0	0
	WWP3	1	0.90052	0.50491	0.003821	0	0	0	0	0	0	0	0	0
00 d	WWP1	0.96295	0.54333	0.046467	0.005163	0.003746	0.003746	0.003746	0.003746	0.003746	0.003746	0.003746	0.003746	0.003746
	WWP2	1	0.97627	0.22859	0.028296	0.00184	0	0	0	0	0	0	0	0
	WWP3	0.99987	0.75633	0.34351	0.009666	0	0	0	0	0	0	0	0	0

Hydraulic Descriptors

Stepwise Regression

- Fraction of traces where v_{water}/v_{burst} > 1 for 25-BLS and 10-BLS for each individual fish
- > 5th, 16th, 50th, 84th, & 95th percentiles of cost
- ➤ 50th percentile of the sum and Maximum Vorticity along each trace
- ➤ 50th percentile of the sum and Maximum TKE along each trace
- Fraction of usable crosssectional area based on minimum depth criteria

Significant

- $V_{water}/V_{burst} > 1 \text{ for } 25\text{-BLS}$
- $\triangleright v_{water}/v_{burst} > 1 \text{ for } 10\text{-BLS}$
- ➤ 16th percentile of cost
- 50th percentile of the sum of vorticity
- 50th percentile of the maximum vorticity
- 50th percentile of the sum of TKE
- Depth criteria

Logistic Regression

Inclusion

- $\triangleright v_{water}/v_{burst} > 1 \text{ for 25-BLS}$
- Depth criteria

Model	-LogLikelihood	DF	ChiSquare	Prob>ChiSq				
Difference	127.64228	2	255.2846	<.0001*				
Full	235.09806							
Reduced	362.74035							
RSquare (U)	0.3519						
AICc		476.233						
BIC		489.645						
Observatio	ns (or Sum Wgts)	654						
Measure	Measure Training Definition							
Entropy RS	Entropy RSquare 0.3519 1-Loglike(model)/Loglike(0)							
Generalized	RSquare 0.4	22 (1-(L(0)/L(model))^(2/n))/(1-L(0)^(2/n))						
Mean -Log	p 0.3	595 ∑ -Log(ρ[j])/n						
RMSE	0.3	215 √ ∑(y[15 √ ∑(y[j]-ρ[j])²/n					
Mean Abs I	Dev 0.2	107 ∑ [y[j]	97 Σ y[j]-ρ[j] /n					
Misclassific	ation Rate 0.1	177 <u>ζ</u> (ρ[j]	7.					
N	654	l n	n					

△ Parameter Estimates									
Term		Estimate	Std Error	ChiSquare	Prob>ChiSq				
Intercep	t	24.1854197	.9927563	147.30	<.0001*				
25BLS		-2.6987911	.9286701	8.45	0.0037*				
Depth	/	-26.788947	2.1017976	162.45	<.0001*				

- Site Description
- Suppression of Movement
- Current Knowledge Base
- Objectives
- Qualitative Hydraulic Assessment
- Quantitatively Describing the Flow Field
- > Results
- > Conclusions

Conclusions

- ➤ A continuous and spatially explicit description of the flow field highlights the difference in the magnitude and distribution of velocity, vorticity, and TKE among the WWP structures and across a range of discharges.
- The variation in the magnitude and distribution of the water velocity relative to the burst swimming ability of a fish is reflective of relative passage success at each structure.
- Logistic regression shows a statistically significant influence of velocity and depth on passage success.
- These results might be transferable to other WWPs and can help inform future projects; however, additional WWPs of various sizes and hydrologic regimes must be investigated.
- These results have implications for native fishes with lesser swimming abilities.

Questions?

