University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2014

Jun 10th, 2:10 PM - 2:30 PM

Dam removal and freshwater mussels: effective restoration and prioritization through case studies

E. McCombs University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

McCombs, E., "Dam removal and freshwater mussels: effective restoration and prioritization through case studies" (2014). *International Conference on Engineering and Ecohydrology for Fish Passage*. 46. https://scholarworks.umass.edu/fishpassage_conference/2014/June10/46

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Dam Removal and Freshwater Mussels: a guide for effective restoration and prioritization

American Rivers Rivers Connect Us **Erin Singer McCombs** Associate Director of Southeast Conservation Fish Passage Conference 2014 | Madison, WI

Presentation Outline

- Freshwater Mussel life history and ecology
- Dams: big and small, are they the same?
- Dam removal as restoration
- Dam removal freshwater mussel case studies
- Guidelines for effective restoration

Freshwater Mussel Life Cycle

1

Freshwater Mussel Life Cycle

State of the Unionids

- ~300 species in the US
- 70% extinct or imperiled
- 23% Federally listed (endangered/threatened)
 Long lived with late reproductive maturity
- Life histories and habitat requirements not understood for many species
 - Important ecological role

Ecology and life history

- Filter water column
- Mix sediments
- Stabilize streambeds
- Food source for wildlife
- Inhabit range of habitats
- Long life span (30-200 years)
 - Long and short term brooders

Distribution and Habitat

- Distribution largely determined by...
 - stream size
 - surface geology
 - drainage area
 - fish diversity
- Reservoirs are inhospitable to most freshwater mussel species due to...
 - sedimentation
 - low DO
 - loss of fish hosts

Dams

- Large vs. Small dams
- Run of the river vs. large hydropower dam
- Best candidates for removal?

Dam removal as river restoration

Restores...

- flow characteristics
- temperature regime (and DO)
- sediment dynamics
- connectivity
- fish passage
- vegetative cover (long-term)
 bed features & habitat (long-term)

Ensure long-term gains outweigh short term impacts

Temporary/Short Term

- Increased turbidity during construction
- Sedimentation, impacts on downstream habitat
- Impoundment habitat and bank adjustment

Avoid or Minimize

- Contaminant transport
- T/E species impacts (especially mussels)
- Invasive species colonization

Case Studies

Fort Covington Dam, Salmon River, NY

renter -filter d

NEWE AL

Fort Covington Dam, Salmon River, NY

Unionid Mussel Mortality from Habitat Loss in the Salmon River, New York, Following Dam Removal. 2011. Cooper, JE. In: advances in Environmental Research. Vol. 14. p 351-364.

- In 2009, the 3.2 acre impoundment was drained in 25 hours lowering the water at the dam 3.3 m.
- The rapid dewatering stranded and killed 3200 freshwater mussels.

Immediately after removal

Goodwin's Mill Dam, Big Canoe Creek, AL

Goodwin's Mill Dam, Big Canoe Creek, AL

- Dam built in early 1900s
- Disparity in fish up and downstream of dam
- Breached
- Critical habitat for freshwater mussels
 - Southern pocketbook (*Pleurobema decisum*), triangular kidneyshell (*Ptychobranchus* greenii), and one endemic mussel, the Canoe Creek Clubshell (*Pleurobema* athearni).

After removal

Dillsboro Dam, Tuckasegee River, NC

Before/during Removal

Dillsboro Dam, Tuckasegee River, NC

- Dam removed in 2009 as a part of Duke settlement.
- Federally listed Appalachian elktoe (*Alasmidonta raveneliana*) present.
- 1,137 mussels were relocated before dam removal.
- In 2010 intensive monitoring occurred in May and October.
- Confirmed mortality to date is 7 (<1%) at the relocation site.
- Appalachian elktoe now occupy the 0.9-mile formerly impounded reach, reconnecting the Tuckasegee River population.

2 months after removal

Carbonton Dam, Deep River, NC

Carbonton Dam, Deep River, NC

Short-term Effects of a Small Dam Removal on a Freshwater Mussel Assemblage. 2013. Heise, RJ., Cope, WG., Kwak, TJ., Eads, CB. Walkerana, 16(1): Pages 41-52.

- 4 year study post removal of Carbonton Dam
- No significant differences found in mussel density, richness, substrate composition, or mortality compared to control reach.
- Adverse short-term impacts of dam removal on freshwater mussels can be minimized with appropriate planning, timing, and removal techniques.

3 Years After Removal

Homestead Woolen Mill Dam Ashuelot River, NH

Federally endangered dwarf wedgemussel (Alasmidonta heterodon) present upstream

Mussels relocated before removal.

100

- Post-removal monitoring of tagged mussels allowed for evaluation of successful relocation.
- Post-removal quantitative mussel study helped to establish new baseline population and habitat data in the former impoundment
- In 2012, stream was still adjusting to removal and mussel populations were still patchy.

Homestead Woolen Mill Dam Ashuelot River, NH

Guidelines for effective restoration with mussels present

- Prioritize breached dams with high scouring
- Identify mussels in your project area and determine distribution and life history
- Consider timing of project
- Manage sediment appropriately
 - Excavation
 - Tiered draw down
- Manage flow velocities
 - Relocate mussels in heavily impacted areas
 - Monitor populations pre- and post- removal Partner with academics

Questions?