
University of Massachusetts Amherst
ScholarWorks@UMass Amherst
International Conference on Engineering and
Ecohydrology for Fish Passage

International Conference on Engineering and
Ecohydrology for Fish Passage 2014

Jun 9th, 3:50 PM - 4:10 PM

Modeling of a non-physical fish barrier
M. Politano
University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage_conference

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has
been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of
ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Politano, M., "Modeling of a non-physical fish barrier" (2014). International Conference on Engineering and Ecohydrology for Fish Passage.
66.
https://scholarworks.umass.edu/fishpassage_conference/2014/June9/66

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference/2014?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference/2014?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/fishpassage_conference/2014/June9/66?utm_source=scholarworks.umass.edu%2Ffishpassage_conference%2F2014%2FJune9%2F66&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


MODELING OF A NON-PHYSICAL 
FISH BARRIER 

M. Politano and J. Martin. IIHR -  Hydroscience & Engineering. The University of Iowa.   
 
Y. Lai and M. Bender. US Department of the Interior. Bureau of Reclamation.  
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Introduction 

• The migration of salmonids in the San 
Joaquin and Sacramento Rivers is of 
great environmental interest. Several 
fish species are listed are threatened 
or endangered under the California 
Endangered Species Act. 
 

• Juveniles encounter alternative 
pathways during migration to the 
Pacific Ocean. Passage through the 
interior Delta decreased the survival 
of juveniles. Fish diversion into the 
Delta may result in delayed migration, 
elevated risk of predation, exposure 
to poor water quality conditions, and 
mortality in pumping facilities.  



Behavioral Bio-Acoustic Fish Fence   
BAFF combines three stimuli to deter fish from entering an undesirable 
pathway without restricting flow: 
 
 
• Bubble curtain 

 
 

• Low-frequency sound 
 
 

• LED modulated intensity lights 
 



Objectives 

• Develop bubble, sound and light models 
 

• Implement the models into a CFD code  
     using a modular approach 

 
 

• Validate the model against several well-known experiments 
 
 

• Simulate a BAFF to predict bubble, sound and light fields and evaluate 
effects of the barrier on the river hydrodynamics 
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Bubble Module 

 



• Mixture model 
 
 
 
 
 

• Bubble number density 
 
 
 

• Bubble velocity 
 
 
 

• Gas volume fraction 
 
 
 

Bubble Model 
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Bubble model predictions and experiments 



Sound Model 
• Classical formulation (Lighthill, 1978): wave equation based on 

compressible Navier-Stokes Equations: 
 

 
 

• Alternative formulation: energy formulation based on the acoustic energy 
W, the acoustic energy flux I and dissipation D 

 
 
• The following relations are proposed to obtain an equation in W: 
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𝜕𝜕𝜕𝜕 = −𝛻𝛻 ∙ 𝑰𝑰 − 𝐷𝐷 

𝑰𝑰 = −𝑫𝑫𝑾𝑾 ∙ 𝛻𝛻𝑊𝑊;    𝐷𝐷 = 𝜎𝜎𝑊𝑊𝑊𝑊 



Sound Model – Diffusion and attenuation coefficients 
• Diffusion coefficient based on architectural models (Picaut et al. 1999): 

• Anisotropy related to length-scale of domain, an diffusion proportional to sound 
speed, with proportionality constant dependent on boundary reflectivity. 

 
 

 
• Attenuation coefficient simplified model based on emission frequency, 

sound speed and void fraction 𝜎𝜎𝑊𝑊 = 0.0124 𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝛼𝛼 (MKS, isothermal) 
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Validation of Sound Model Implementation  
• A cube with 100 m on the side was simulated. A one m3 sound source at the cube 

center and variable distribution of gas volume fraction were included.  
• Isotropic diffusion tensor and length scale as the source dimension were used.   

Sound level with a sound source at 
the origin  

Effect of diffusion parameter Effect of bubbles 

Effect of bubbly region 



Sound Model - Validation 
• Experiments of Wusig et al. (2000):  sound from a pile driving hammer 

in shallow water, with and without bubble curtain 

without  bubble 
curtain 

with bubble 
curtain 



Light Model 
• Classical model : Radiative Transfer Equation  

• Integro-differential equation, on position x and direction Ω is too expensive to solve 
numerically for the present application 
 

 
 

• Alternatives models 
• P-N models  

• Approximate direction dependence using orthogonal series of spherical 
harmonics 

• Valid for high attenuation/scattering conditions 

• Superposition of elementary solutions (planar, linear and point 
sources) 
• Valid for low scattering conditions 

Ω𝛻𝛻𝐿𝐿 𝒙𝒙,𝜃𝜃,𝜑𝜑, 𝜆𝜆 = −𝑐𝑐E 𝒙𝒙, 𝜆𝜆 𝐿𝐿 𝒙𝒙, 𝜃𝜃,𝜑𝜑, 𝜆𝜆 + � 𝐿𝐿 𝒙𝒙,𝜃𝜃′,𝜑𝜑′, 𝜆𝜆 𝛽𝛽𝑠𝑠 𝒙𝒙,𝜃𝜃′,𝜑𝜑′,𝜃𝜃,𝜑𝜑, 𝜆𝜆 𝑑𝑑Ω′
4𝜋𝜋

  +  𝑠𝑠E 𝒙𝒙,𝜃𝜃,𝜑𝜑, 𝜆𝜆  

variation of 
spectral  
radiance L 

absorption 𝑎𝑎E  and 
scattering out 𝑏𝑏E  
of beam 

scattering into beam external 
source 



Light Model - P-1 model 
• Simplest of P-N models.  

• Radiance approximately by  

      𝐿𝐿 𝒙𝒙,𝜑𝜑,𝜃𝜃 ~ 1
4𝜋𝜋

𝐿𝐿 0 + 3 𝐿𝐿 1 cos𝜑𝜑 + 𝐿𝐿 2 sin𝜑𝜑 cos𝜃𝜃 + 𝐿𝐿 3 sin𝜑𝜑 sin𝜃𝜃 ,  

      𝐿𝐿 0 = 𝐸𝐸, the scalar irradiance 
 

• Effectively results on diffusive-like equation for irradiance E, 
 
 
 

• Valid for “thick” optical media, 𝑎𝑎E + 𝑏𝑏E  ℓ ≫ 1, with ℓ a characteristic 
length-scale   
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Light Model: Superposition of elementary solutions 

• Elementary solutions 
• Planar source: 𝐸𝐸(𝑧𝑧) = 𝐸𝐸0exp(−𝐾𝐾𝐾𝐾)  

• Point source: 𝐸𝐸 𝑟𝑟 = 𝑟𝑟02

𝑟𝑟2
𝐸𝐸0exp −𝐾𝐾𝐾𝐾  

• Elementary solutions can be represented numerically by solving 
𝛻𝛻 ∙ 𝐮𝐮𝐄𝐄𝐸𝐸 = 𝑆𝑆E − 𝐾𝐾𝐾𝐾, with imposed ‘advective’ 𝐮𝐮𝐄𝐄. 

• Scattering by media cannot be modeled, only attenuation, valid for 
‘thin’ optical media 

• Reflections from boundaries can be included if the reflection direction 
distribution is imposed and discretized 

• Examples of possible boundary conditions are 
• specular reflection 
• Lambertian cosine law (diffuse reflection) 
• Partial transmission  



Light Model: Scattering and attenuation coefficients  

• For modeling purposes it was assumed that all 
attenuation was caused by the water and dissolved solids 
and all scattering by the bubbles 
 

• Attenuation coefficient 
 
• Scattering coefficient 

• Non-interacting (dilute) scatterers : 𝑐𝑐dilute = 3
4
𝛼𝛼
𝑅𝑅
 

• Interacting scatterers (VF > 8%): 𝑐𝑐E = 𝛾𝛾𝑐𝑐dilute, 𝛾𝛾 = 1 + 3
2
𝛼𝛼 − 3

4
𝛼𝛼2 

𝐾𝐾𝐷𝐷 = 𝐾𝐾𝑤𝑤+𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐾𝐾𝑐𝑐 𝐶𝐶𝑐𝑐 + 𝐾𝐾𝑠𝑠 𝐶𝐶𝑇𝑇𝑇𝑇𝑇𝑇 



Validation of Light Model Implementation – Closed Cavity  
Normal sunlight 

Dimensionless 
Irradiance 

Sunlight with a zenith angle 

Attenuation of 
radiation by 

medium 

  

 
 

 
 

 
 

Reflection 

No reflection  
No attenuation 



Validation of Light Model Implementation – Closed Cavity  

Dimensionless 
Irradiance 

Normal sunlight 

  

No attenuation 

Point sources 



Validation of Light Model Implementation – Contours of Irradiance with P1 Model 

α = 0.01 α = 0.02 

α = 0.05 α = 0.1 

α = 0.01 α = 0.02 

α = 0.05 α = 0.1 

Water-air interface Fully reflecting 



Simulation of a BAFF 



Fish Barrier in a Quiescent Medium – Bubble distribution and velocity vectors 



Fish Barrier in a River– Bubble distribution and velocity vectors 



Streamlines colored by acceleration 

Quiescent Medium  

River 



Fish Barrier in a Quiescent Medium – Sound energy 



Fish Barrier in a River– Sound energy 



Fish Barrier – Sound energy attenuation 



Fish Barrier – Irradiance 

Quiescent 
Medium  

River 



COMMENTS AND QUESTIONS 
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