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Hydroscience & Engineering

MODELING OF ANON-PHYSICAL
FISH BARRIER

M. Politano and J. Matrtin. [IHR - Hydroscience & Engineering. The University of lowa.
Y. Lai and M. Bender. US Department of the Interior. Bureau of Reclamation,

D. Smith. U.S. Army Corps of Engineers.



Introduction

* The migration of salmonids in the San
Joaquin and Sacramento Rivers is of
great environmental interest. Several
fish species are listed are threatened
or endangered under the California
Endangered Species Act.

» Juveniles encounter alternative
Sar-Joaquin River pathways during migration to the
Pacific Ocean. Passage through the
interior Delta decreased the survival
of juveniles. Fish diversion into the
Delta may result in delayed migration,
elevated risk of predation, exposure
to poor water quality conditions, and
mortality in pumping facilities.




Behavioral Bio-Acoustic Fish Fence

BAFF combines three stimuli to deter fish from entering an undesirable
pathway without restricting flow:

e Bubble curtain

* Low-frequency sound

e LED modulated intensity lights




Objectives

Develop bubble, sound and light models

‘ ISOFoamBLS
 Implement the models into a CFD code

using a modular approach

* \Validate the model against several well-known experiments

 Simulate a BAFF to predict bubble, sound and light fields and evaluate
effects of the barrier on the river hydrodynamics
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Bubble Module

Effective density
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Bubble Model

e Mixture model
V.U

m
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Sound Model

e C(lassical formulation (Lighthill, 1978): wave equation based on
compressible Navier-Stokes Equations:

92 _o 0% 0 ofi OTjj _5 0%P
— —c 2 - P = q 0df; + Yo o2 zh
ox: dat ot  Odx;  0x;0xj dat

e Alternative formulation: energy formulation based on the acoustic energy

W, the acoustic energy flux / and dissipation D
ow =—V-I—D
ot

 The following relations are proposed to obtain an equation in W:

I=-Dy-VW; D=ogyuW



Sound Model — Diffusion and attenuation coefficients

e Diffusion coefficient based on architectural models (Picaut et al. 1999):

* Anisotropy related to length-scale of domain, an diffusion proportional to sound
speed, with proportionality constant dependent on boundary reflectivity.

Dxx 0 0 Dyx _ Dyy - Dzz — D C
Dy=|0 Dy, 0 ly 2y — e, 73D
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e Attenuation coefficient simplified model based on emission frequency,
sound speed and void fraction gy, = 0.0124 f,,.ca (MKS, isothermal)
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Validation of Sound Model Implementation

A cube with 100 m on the side was simulated. A one m?3 sound source at the cube

center and variable distribution of gas volume fraction were included.
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Sound Model - Validation

- Experiments of Wusig et al. (2000): sound from a pile driving hammer
in shallow water, with and without bubble curtain
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Light Model

- Classical model : Radiative Transfer Equation

- Integro-differential equation, on position x and direction Q is too expensive to solve
numerically for the present application
QVL(x,0,9p,1) = —cg(x,)L(x,6, ¢, 1) +f L(x,0', 9", )B:(x,0",¢",0,p,1)dQ" + sg(x,0,¢p,1)

41T
variation of  absorption (ag) and scattering into beam external

spectral scattering out (bg) source
radiance L  of beam

- Alternatives models

- P-N models

- Approximate direction dependence using orthogonal series of spherical
harmonics

- Valid for high attenuation/scattering conditions
- Superposition of elementary solutions (planar, linear and point
sources)
- Valid for low scattering conditions



L
Light Model - P-1 model

- Simplest of P-N models.
- Radiance approximately by

L(x,¢@,0)~ ﬁ (L + 3(LM cos g + L sin g cos 8 + L sin ¢ sin 9)),

L = E the scalar irradiance

- Effectively results on diffusive-like equation for irradiance E,

23: o1 oE_, i
- d0x; 3(ag + bg) 0x; — e T AE
1=

- Valid for “thick” optical media, (ag + bg) £ > 1, with £ a characteristic
length-scale



Light Model: Superposition of elementary solutions

- Elementary solutions
- Planar source: E(z) = Eyjexp(—K2z)
- Point source: E(r) = :—Oonexp(—Kr)

- Elementary solutions can be represented numerically by solving
V- (ugE) = Sg — KE, with imposed ‘advective’ ug.

- Scattering by media cannot be modeled, only attenuation, valid for
‘thin’ optical media

- Reflections from boundaries can be included if the reflection direction
distribution is imposed and discretized

- Examples of possible boundary conditions are
- specular reflection
- Lambertian cosine law (diffuse reflection)
- Partial transmission



Light Model: Scattering and attenuation coefficients

- For modeling purposes it was assumed that all
attenuation was caused by the water and dissolved solids
and all scattering by the bubbles

« Attenuation coefficient Kp =K, ipoc + K. C, + K, Crsg

- Scattering coefficient

- Non-interacting (dilute) scatterers : cgijute = >—

¢ Interacting scatterers (VF > 8%): cg = yCgilute, ¥ = 1 + %a — %az
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Simulation of a BAFF
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Fish Barrier in a Quiescent Medium — Sound energy
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Fish Barrier in a River— Sound energy
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Fish Barrier — Sound energy attenuation
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Fish Barrier — Irradiance
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Hydroscience & Engineering

COMMENTS AND QUESTIONS
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