University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage

International Conference on Engineering and Ecohydrology for Fish Passage 2014

Jun 9th, 2:10 PM - 2:30 PM

Green Infrastructure and Blue Habitat- making the connection in Massachusetts

C. Bozek University of Wisconsin - Madison

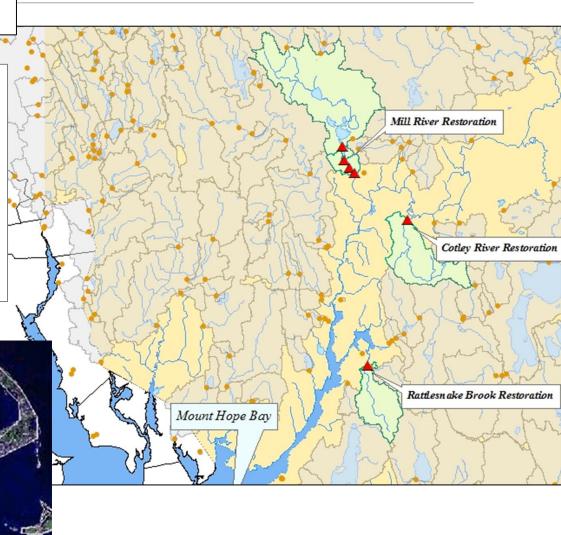
Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Bozek, C., "Green Infrastructure and Blue Habitat- making the connection in Massachusetts" (2014). *International Conference on Engineering and Ecohydrology for Fish Passage*. 46.

https://scholarworks.umass.edu/fishpassage_conference/2014/June9/46

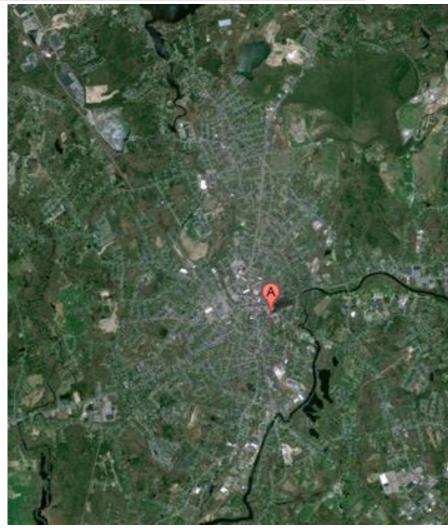
This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Green Infrastructure and Blue Habitat: Making the Connection in Massachusetts

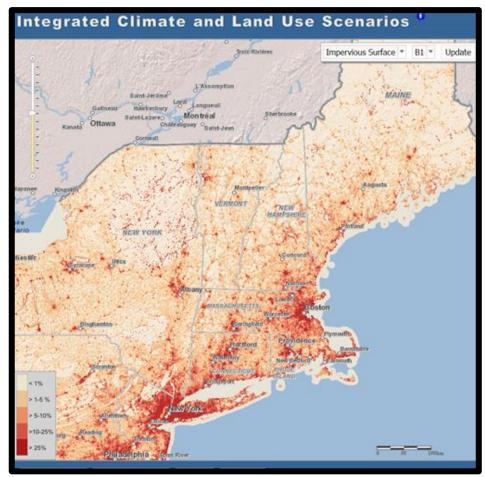

CATHY BOZEK, AQUATIC ECOLOGIST, THE NATURE CONSERVANCY

AQUATIC SYSTEM GOALS

Improve in-stream habitat conditions


 Restore fish passage and river processes with dam removal and culvert replacement

HOWEVER...


 Some of the areas where we work have high percentages of Impervious Cover in the watershed

IMPERVIOUS COVER IN THE NORTHEAST

EPA INTEGRATED CLIMATE AND LAND USE TOOL

Impervious surface, B1 population scenario, 2010

IMPERVIOUS COVER IMPACTS ON AQUATIC SYSTEMS

25%

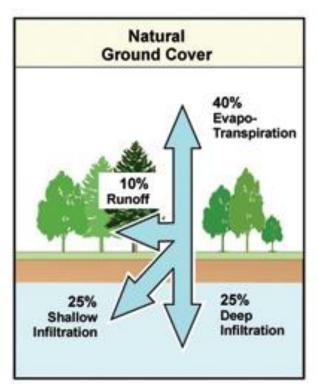
impact on stream Sensitive macroinvertebrate communities Good even at low levels Impacted impervious cover is strong indicator of fluvial fish community health. Fair Stream Quality Non-Supporting Urban Drainage Poor

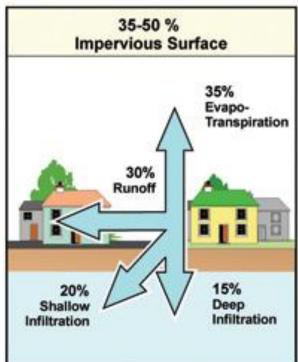
40%

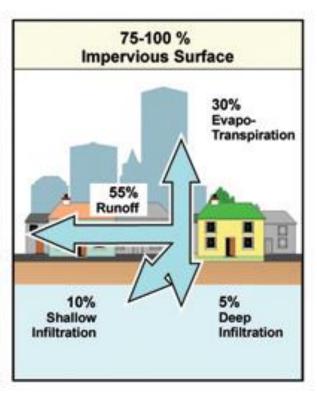
10%

60%

RECENT RESEARCH=


LOWER THRESHOLDS


watershed impervious cover has an


100%

WHAT DO IMPERVIOUS SURFACES DO?

ALTERED HYDROLOGY

Graphic: Horsley-Witten Group 2008

WHAT ARE THE LINKS?

FLOW

More Water:

- Increased <u>volume</u> of runoff
- Greater stream/runoff velocity during storms
- Increased <u>peak</u> discharge
 - → Erosion
 - →Impacts fish movement

Less Water:

Reduced base flow

- → Reduce habitat amount and quality
- → Stresses fish, migration problems

Photo: StormwaterPartners.org

WHAT ARE THE LINKS?

SEDIMENT

- Fine sediment fills interstitial spaces
 - makes streambed uniform, reduces habitat diversity
 - reduces habitat for inverts
- Sediment also:
 - clogs gills
 - reduces feeding success
 - affects migration
 - smothers vegetation
 - carries metals and nutrients

WHAT ARE THE LINKS?

POLLUTION

Nutrients:

- algal blooms → low DO
- affects migration, fish kills

Metals:

 behavioral/ reproductive abnormalities

Organics:

reduced immune response, fin erosion, egg mortality

Salts:

- impact prey, vegetation

Temperature:

- Impacts to movement, spawning

WHAT CAN WE DO?

GRAY VS. GREEN INFRASTRUCTURE

Gray Infrastructure

- Goal is to get water off site as quickly as possible
- Water quality treatment is usually minimal

Green Infrastructure

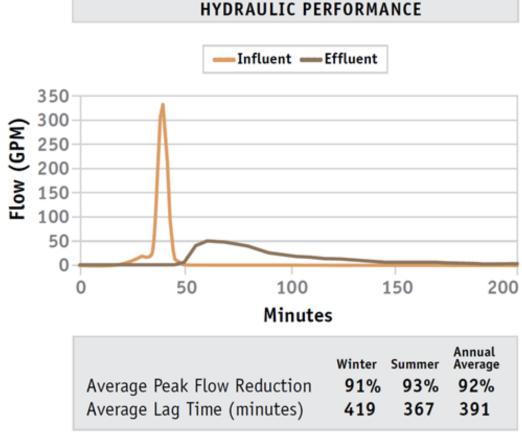
- Range of systems
- Infiltrates water on site
- Water quality treatment
- Can convey water
- Can be used in coordination with gray infrastructure

WHAT IS IT?

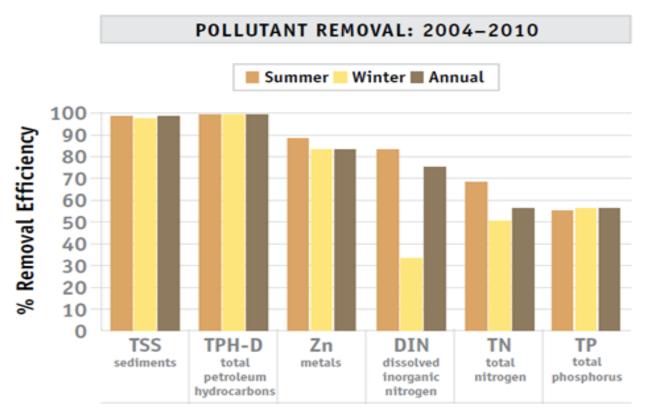
<u>Site-based:</u>Best Management Practice (BMP)mimics natural hydrology

OR

Landscape level:
 Conservation/restoration of natural land


- Infiltrates water
- Filters and cleans water using natural processes
- Other benefits

MANAGING FLOW


- Green infrastructure can:
- ✓ Reduce peak flow, delay peak flow, reduce overall runoff
- ✓ Reduce erosion
- ✓ Reduce load on sewer system (storm sewer and combined systems)

From: UNH Stormwater Center 2012 Biennial Report Data for subsurface gravel wetland.

MANAGING POLLUTION

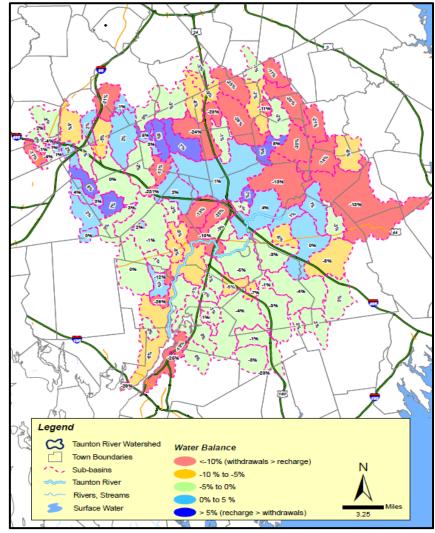
From: UNH Stormwater Center 2012 Biennial Report Data for subsurface gravel wetland. .

BENEFITS

- ✓ Be economical.
- ✓ Reduces need for and stress on gray infrastructure, used in combination
- Avoided waste water treatment and drinking water costs
- ✓ Help comply with regulations
 - MS4
 - TMDL
 - MA Sustainable Water Management Initiative
- √ Improve home values
- √ Reduce energy costs
- ✓ Benefit communities (resilience, air quality, traffic calming, aesthetics, access to nature)

ENABLING GREEN INFRASTRUCTURE

OUTREACH/EDUCATION


- Working with engineers
- Educating legislators
- Workshops
- Demonstration projects

ENABLING GREEN INFRASTRUCTURE

PRIORITIZE

- Study hydrology and land use
- Modeling to guide municipal/ regional plans
- EPA Healthy Watersheds
 Initiative project

Taunton Watershed Water Budget, Horsley Witten Group 2008

ENABLING GREEN INFRASTRUCTURE

SUPPORT POLICY

- Regulations and permits
- Incentives
 - Grants: TIGER, 319, SRF
 - Technical assistance
- Stormwater utilities
- Many levels

