University of Massachusetts Amherst ScholarWorks@UMass Amherst

International Conference on Engineering and Ecohydrology for Fish Passage International Conference on Engineering and Ecohydrology for Fish Passage 2014

Jun 9th, 10:40 AM - 11:00 AM

Prediction of Total Dissolved Gas below Overthrough Spillways

J. Gulliver University of Wisconsin - Madison

Follow this and additional works at: https://scholarworks.umass.edu/fishpassage conference

Gulliver, J., "Prediction of Total Dissolved Gas below Overthrough Spillways" (2014). *International Conference on Engineering and Ecohydrology for Fish Passage*. 16.

https://scholarworks.umass.edu/fishpassage_conference/2014/June9/16

This Event is brought to you for free and open access by the Fish Passage Community at UMass Amherst at ScholarWorks@UMass Amherst. It has been accepted for inclusion in International Conference on Engineering and Ecohydrology for Fish Passage by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu.

Prediction of Total Dissolved Gas at Overthrough Spillways

John S. Gulliver, Professor, Department of Civil Engineering, University of Minnesota

John Groeneveld, Senior Engineer, Hatch Energy, Calgary, Alberta

Guy E. Paul, Senior Engineer, Avista Corporation, Spokane, WA **Kimberly Pate**, Power Production Dam Safety Supervisor, Seattle City and Light, Seattle, WA

Outline

- 1. Background on overthrough spillways
- 2. TDG challenge
- 3. Projects for TDG prediction
- 4. Numerical method
- 5. Results and discussion
- 6. Conclusions

Background on Overthrow Spillways

 Spillways that dissipate energy by "throwing" spilled water over the plunge pool.

UNIVERSITY OF MINNESOTA Driven to Discover⁵⁴

Total Dissolved Gas Challenge

There are three conditions necessary to result in high TDG concentrations in a spillway tailwater:

- 1. An energetic flow with a substantial amount of turbulent energy,
- 2. Air entrainment that occurs, and
- 3. Air bubbles that are carried to depth within the tailwater.

Reduction of any of the three will likely result in lower TDG concentrations.

Projects for TDG Prediction Cabinet Gorge Project

- Montana-Idaho Border
- 270 MW capacity
- 1080 cms powerhouse discharge
- 2270 cms 7Q10 spill discharge
- •Spillway fall height = 18 m
- Combined TDG =132%
- TDG regulations = 110%
- Proposed tunnel for spill rejected
- Alterations to gate structures believed to be best solution

UNIVERSITY OF MINNESOTA Driven to Discover™

Projects for TDG Prediction Boundary Project

- Pend Oreille River in northeastern Washington – boundary with Canada
- 1040 MW capacity
- 1500 cms powerhouse discharge
- 750 cms 7Q10 spill discharge
- 60 m fall from spillway
- •TDG regulations = 110%
- Alterations to spillways and gate structures believed to be best solution

UNIVERSITY OF MINNESOTA Driven to Discover™

Numerical Method

- FLOW3D
- Model Velocities
- Particle tracking for bubbles
- Mass transfer calcs. on bubbles

UNIVERSITY OF MINNESOTA

Spillway Discharge

Assumptions for Gas Transfer

- There is sufficient air entrainment so that the rate of air entrainment is not a limiting factor.
- TDG concentration in the tailwater pool has reached steady state.
- The bubbles are exposed to a similar water concentration throughout the pool.
- The mass transfer across the water surface is negligible (probably the least reliable assumption).
- TDG from the powerhouse can be used in a flowweighted mean with the spillway TDG

Gas transfer computations

- Particle tracking of bubbles with rise velocity of 0.2 m/s
- Bubbles change size and concentration with hydrostatic pressure
- Applied mass transfer relations to each bubble
- Optimized to steady state water concentration of TDG
- NO fitted coefficients

JNIVERSITY OF MINNESOTA Driven to Discover™

Mass transfer relationships

- Mass transfer $\frac{1}{AC_{e}}\frac{dM}{dt} = K_{L}\left(\frac{C}{C} \frac{C_{E}}{C}\right)$
- Bubble concentration, C_E

$$\frac{K_{L}}{C_{s}} \left(\frac{\overline{C_{s}}}{\overline{C_{s}}} \right)$$
$$\frac{C_{E}}{C_{s}} \cong 1 + \frac{depth(m)}{10.3}$$

Liquid film coefficient

$$K_{L} = (2\pi D)^{1/2} \frac{U^{\eta}}{L^{1-\eta} v^{\eta-1/2}}$$

- L = 0.7*dia. (Nezu and Nakagawa, 1994)
- $-\eta = 0.75$ (Azbel, 1980)

Verification Spillway Results

Spillway	Powerhouse	Predicted		Predicted	
Discharge	Discharge	Spillway TDG	Powerhouse	Combined	Measured
(CMS)	(CMS)	(%)	TDG (%)	TDG (%)	TDG (%)
Cabinet Gorge					
1200	1060	149	115	133	132
Boundary Dam					
420	480	150	101	124	127
340	1500	147	122	126	127
750	1480	158	128	138	134

Boundary Spillway Alterations

Visualization of bubble paths

UNIVERSITY OF MINNESOTA ■ Driven to Discover[™]

Bubble Depths

Before Spillway Alteration = 135.3%

After Spillway Alteration = 126.6%

UNIVERSITY OF MINNESOTA
Driven to Discover⁵⁴⁴

Conclusions

- Assumptions are designed for overthrow spillways with plunge pools
- CFD particle tracking
- Mass transfer model
- No fitted coefficients with these assumptions
- TDG predicted to within +/- 4%.
- Alterations to spillway and gate design can be tested.

Thank you!

Questions?