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ABSTRACT 

 

FUNCTIONAL PHOSPHORYLCHOLINE POLYMERS:  

PRODRUGS AND BIOMATERIALS 

 

MAY 2014 

 

SAMANTHA B.M. PAGE, B.A., MOUNT HOLYOKE COLLEGE 

 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

PH.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

 

Directed by: Professor Todd Emrick 

 

 

 

 This thesis describes the synthesis and applications of multifunctional, 

hydrophilic polymers consisting of a methacrylate backbone and zwitterionic 

phosphorylcholine (PC) pendent groups, prepared by free radical polymerization of the 

zwitterionic monomer, 2-methacryloyloxyethyl phosphorylcholine (MPC).  Advances in 

polymer chemistry, applied to PC polymers, allowed for the preparation of well-defined 

structures with controlled molecular weight, narrow polydispersity, and facile 

incorporation of functional comonomers, giving breadth to the range of materials 

accessible for different applications.  Built-in functionality included fluorophores and 

reactive groups for post-polymerization transformations, such as drug conjugation or 

cross-linking.  The ability to form well-defined structures based on the polyMPC 

backbone is attractive to the fields of polymer therapeutics and biomaterials, due to the 

high level of biocompatibility associated with PC polymers.  The work presented here 

examines methacrylate-based PC polymers as (1) polymer-protein conjugates, (2) 

polymer prodrugs, and (3) polymeric hydrogels. 
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 In Chapter 2, synthetic advances center on tailoring chain-end functionality and 

utilizing such structures as polymer-protein conjugates.  The design of new ATRP 

initiators containing specific functionality allowed for polymer conjugation to lysozyme 

as a model protein.  PolyMPC-lysozyme conjugates retained their native enzymatic 

activity, and pharmacokinetic profiles of the conjugates in mice revealed increased 

circulation half-life compared to lysozyme alone.   

 Chapter 3 describes PC-polymers that enhance intravenous drug delivery of 

potent chemotherapeutic agents.  Functionalized methacrylates for copolymerization with 

MPC were designed, such that multiple copies of a drug can be loaded onto the polymer 

backbone, affording highly water soluble polymer prodrugs with unprecedented drug 

loading (>30 wt %). PolyMPC prodrugs of camptothecin (CPT) and doxorubicin (DOX) 

demonstrated cytotoxicity against several human cancer cell lines in vitro.  PolyMPC-

DOX prodrugs displayed prolonged circulation half-lives, and reduced uptake in healthy 

tissue, enhanced accumulation in tumors, and superior treatment efficacy in 4T1-tumor 

bearing mice. 

 Chapter 4 highlights multifunctional polyMPC as a precursor to new 

phosphorylcholine hydrogels.  Two cell lines, live mouse skeletal muscle myoblasts 

(C2C12) and human ovarian cancer (SKOV3) cells, were observed to specifically attach, 

spread, and proliferate on PC-hydrogels containing the GRGDS peptide sequence, with a 

notable dependence on peptide concentration. The remarkable hydrophilicity and 

biocompatibility attributed to polyMPC combined with facile gelation conditions affords 

a platform of new bio-cooperative materials suitable for cell studies. 
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CHAPTER 1 

HYDROPHILIC POLYMERS FOR BIOMEDICAL APPLICATIONS 

 

1.1 Introduction 

 Polymers have transformed society in many areas of science and technology, 

including breakthroughs in biomedical applications.  Synthetic polymers now offer 

unique and versatile platforms for drug delivery, as they can be chemically “bio-tailored” 

for use as implants, medical devices, and injectable polymer-drug conjugates.
1,2

  While 

several currently-used therapeutic proteins and small molecule drugs have benefited from 

synthetic polymers, the full potential of polymer-based drug delivery platforms has not 

yet been realized.  For injectable therapeutics, fundamental problems that can be 

addressed with synthetic polymer delivery platforms include poor drug solubility in 

aqueous media, short in vivo circulation time, fast clearance, and undesirable (even life-

threatening) side-effects.  The first notion of improving drug behavior in vivo with a 

polymer-drug conjugate came in the 1950’s,
3
 with the concept gaining momentum in the 

1970’s when Ringsdorf and coworkers presented a model for polymer-drug conjugates.  

The model is composed of three major components:  a water-soluble polymer scaffold, a 

therapeutic moiety covalently bound to the polymer, and a degradable (either 

hydrolytically or enzymatically) linkage between the drug and the polymer backbone.
4
   

 Advances in polymer chemistry provided alternatives to standard linear polymers, 

and architectures began to evolve, as well as drug-incorporation strategies, including 

covalent conjugation and encapsulation techniques, and novel release mechanisms.
5
  

Commonly used polymer architectures for biomedical and therapeutic systems are shown 

in Figure 1.1.  Typical linear polymers (Figure 1.1A) tend to suffer from limited drug 
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loading, where conjugation is generally restricted to chain-ends. Alterations to the 

hydrophilic/lipophilic balance through, for example, block copolymers, lead to novel 

self-assembled structures such as micelles and polymersomes, amenable to drug 

encapsulation (Figure 1.1B and Figure 1.1C).  In addition to drug delivery applications, 

synthetic polymers also find use in other biomedical applications, including coatings for 

medical implant devices
6
 (Figure 1.1D and Figure 1.1E) and water-swollen hydrogel 

networks for regenerative medicine (Figure 1.1F).
7-10

   While these and other systems are 

interesting for use in various applications, this thesis focuses on a new synthetic polymer 

platform technology and demonstrates the breadth of applications accessible by simply 

manipulating the chemistry. 

 

Figure 1.1 Polymer architectures for biomedical applications: (A) linear polymers, (B) 

micellar assemblies, (C) polymersomes, (D) thin film coatings, (E) surface-grafted 

coatings, (F) cross-linked networks (hydrogel). 

 

 

1.2 PEGylated polymers for medicine 

Improving the efficacy and efficiency of therapeutics by focusing on the mode of 

delivery, rather than the drug itself, is an emerging yet challenging area of interest in 

(A) (B) (C)

(D) (E) (F)
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medicine, where improved delivery vehicles present an opportunity to maximize the 

therapeutic benefit of existing drugs.  Synthetic polymers have long been established as 

plastics, adhesives, foams, and rubbers, and more recently have emerged as key 

components of drug delivery platforms.
1,2

  The notion of polymers for medicine has 

expanded significantly in recent years, yet the potential for synthetic polymers in drug 

delivery was identified early on.  In 1955, polymer-drug conjugates composed of 

poly(vinyl pyrrolidinone)-co-poly(acrylic acid) random copolymers containing 

oligopeptide pendent groups were reported to prolong the circulation half-life relative to 

the drug alone,
3
 suggesting the potential impact of synthetic polymers on drug delivery.   

Poly(ethylene glycol) (PEG) has proven a “workhorse” polymer for medicine, 

useful for both protein therapeutics as well as small molecule drugs.  Conjugation of PEG 

to therapeutics imparts the critically important characteristics of increased water 

solubility and in vivo residence, and decreased enzymatic degradation and 

immunogenicity.
11

  PEGylated therapeutic agents also are capable of passive tumor 

targeting by the enhanced permeability and retention (EPR) effect.
12-15

  The EPR effect 

refers to the preferential uptake of larger moieties (i.e., polymer conjugates) into the 

“leaky” vasculature of cancer tissue relative to healthy tissue, and subsequent retention 

due to poor lymphatic drainage. 

Most commonly, PEGylation of therapeutic moieties is performed by coupling a 

reactive chain end of PEG to a functional handle on the drug or protein, and the number 

of reactive PEG derivatives available has undoubtedly contributed to its wide-spread use 

in this field.  Some of the more widely used chemistries for PEG attachment include 

PEG-NHS ester or PEG-aldehyde for coupling to amines, and PEG-maleimide for thiol 
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coupling.
5
  Recent efforts geared towards expanding the scope of conjugation chemistry 

include "click" chemistry; "click" reactions generally give high yields, produce by-

products which are easily removed, require mild conditions, and products are isolated by 

facile methods.
16

    

The PEGylated protein Adagen® was the first successful application of 

PEGylation chemistry to a therapeutic protein, gaining FDA approval for the treatment of 

severe combined immunodeficiency disease (SCID), and serving as an alternative to bone 

marrow transplants.
4,17

  PEG Intron
®
, a PEGylated version of Intron A

®
 (interferon--2b) 

developed by Schering-Plough, is another example of a PEGylated protein exhibiting 

advantages over the native protein in vivo.  Interferon--2b is a cytokine that inhibits 

tumor growth and angiogenesis, and is therapeutically relevant for treatment of hepatitis 

B and C, malignant melanoma, and leukemia.
18,19

  To prepare PEG Intron
®

, a 

succinimidyl carbonate functionalized PEG is conjugated to interferon--2b at histidine-

34, giving monoPEGylated protein.
20

   In vivo degradation of the carbamate releases the 

protein during circulation in the bloodstream.  Other PEGylated proteins include 

PEGylated erythropoietin (PEG-EPO) for the treatment of anemia resulting from 

chemotherapy,
21

 and PEGylated granulocyte-colony stimulating factor (PEG-G-CSF), 

used in chemotherapy treatment (marketed as Neulasta®), the success of which is 

attributed to the greater solubilization provided by PEG, as well as the prevention of 

aggregation.
22 

Synthetic polymers are also of current interest for enhancing delivery of small-

molecule cancer therapeutics.  The use of polymers offers several advantages over the 

drug alone, as well as small-molecule derivatives, for reasons relating to solubility, 
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reduction of toxic side effects, long circulation times due to slow renal clearance, and 

passive tumor targeting by the EPR effect.  Exploiting the EPR effect renders polymeric 

materials a viable drug delivery platform, however actively targeted polymer-drug 

conjugates are also desirable to increase the specificity of prodrug uptake to cancerous 

tissues, while eliminating or reducing uptake (and potential damage) to healthy cells that 

occurs despite the EPR effect.   

One prominent example of a PEGylated small-molecule drug is camptothecin 

(CPT), a topoisomerase I inhibitor, active against several types of cancer.
23

  CPT, 

however, suffers from extremely poor water solubility, as well as physiological instability 

of the E-ring lactone.  Several synthetic derivatives have been synthesized to provide 

better solubility, including the piperidinyl-functionalized Camptosar®.  These derivatives 

exhibit poor efficacy and life-threatening dehydration, among other side effects.
5 

 

Prothecan®, developed by Enzon, is one of the earliest examples of PEGylated CPT, 

where two CPT molecules are covalently bound at the chain ends of a 40,000 g/mole 

linear PEG through ester linkages at the 20-OH position of the drug.
24

 Modification at 

this position inhibits lactone ring opening, a critically important factor in preserving the 

therapeutic activity of the drug.  Prothecan® displayed significantly improved circulation 

time, with a half-life of more than 75 hours in patients with advanced solid 

malignancies.
25

 Other examples of PEGylated CPT prodrugs include IT-101, a 

PEGylated cyclodextrin containing polymer,
26

 PEG-SN38, a four-arm PEG star 

containing four drugs per conjugate,
27

 as well as degradable PEGylated polyesters grafted 

with pendent CPT molecules prepared by click chemistry.
28

  These camptothecin 

derivatives are shown in Figure 1.2.   
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Figure 1.2 (A) Camptothecin, (B) Camptosar® (irinotecan), (C) Prothecan®, (D) multi-

arm PEG star with four glycine-linked SN38 molecules, and (E) a PEGylated linear 

cyclodextrin polymer bearing 2 glycine-linked CPT drugs per repeat unit. 

  Polymer micelles stemming from PEGylated block copolymer structures have 

also proven useful in the delivery of hydrophobic drugs.  Polymer micelles assemble 

spontaneously following placement of amphiphilic polymers into selective solvents.  

Hydrophobic-hydrophilic diblock copolymers in aqueous media are especially effective, 

producing core-shell type structures in which the hydrophobic block collapses to generate 

the core, leaving the hydrophilic block as the surrounding corona.  The core-shell 

morphology of polymer micelles makes them ideally suited for drug delivery; the core 

can function as an encapsulating matrix, while the shell, in addition to providing aqueous 

solubility, presents unique opportunities for chemical functionality useful, for example, 

for providing cellular recognition or targeting ligands.  Polymer micelles bear some 

resemblance to liposomal structures in that hydrophobic drugs can be sequestered into a 

hydrophobic region and the structures are of appropriate size to exploit the EPR effect.  

Polymer micelles represent a viable alternative to polymer-based drug delivery as the 

(A) (B)

(D)

(C)

(E)

=

SN-38

1 2 3

4

5
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polymer structure is chemically tunable, where, for example, stimuli responsive linkages 

or cross-links can be incorporated and the size and shape can be controlled. 

PEGylated block copolymer micelles have emerged as systems with great 

potential in drug delivery, as they combine biocompatibility with synthetic versatility.  

Relevant examples include poloxamers, also known by their trade name Pluronics
®
.  

Pluronics
®
 are composed of triblock copolymers of poly(ethylene oxide)-block-

poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) that form core-

shell micelles in aqueous media, imparting the advantages of micellar platforms and also 

contributing unique in vivo properties.
29

  Studies on doxorubicin (DOX)-loaded 

SP1049C, a mixed micelle system of Pluronic
®
 L61 and Pluronic

®
 F127,

30
 indicated 

activity against multiple DOX-sensitive cancer cell lines, with a 2-5 fold greater in vitro 

sensitivity (IC50 values) relative to free DOX.  Interestingly, these drug-loaded micelles 

also showed orders-of-magnitude higher activity compared to free DOX against cancer 

cell lines not normally sensitive to DOX.  SP1049C is able to bind with DNA ten times 

more efficiently than unmodified DOX, due to a combination of factors including an 

increase in drug influx and tissue accumulation by the EPR effect, inhibition of efflux, 

and changes in intracellular trafficking (i.e., is able to enter the cell by endocytosis rather 

than relying solely on DOX diffusion). 

Another DOX-encapsulated polymer micelle delivery system, reported in 2001 by 

Kataoka and coworkers, used PEG-b-poly(aspartic acid) diblock copolymers, with DOX 

attached covalently to the aspartic acid block.
31

  When taken up in water, the diblock 

copolymer formed micelles, in which the DOX-conjugated hydrophobic block facilitates 

additional physical sequestration of DOX into the hydrophobic core (the amide-linked 
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drug is stable under physiological conditions).  These DOX-loaded micelles proved very 

effective, resulting in cures against C-26 colon carcinomas (a model cancer cell line); 

administration of free DOX did not result in any cures.  Kataoka and coworkers added 

sophistication to this polymer-DOX delivery system by attaching the drug to the 

hydrophobic segment of the micelle through a hydrazine linkage,
32

 which releases the 

drug in a pH dependent manner, by covalent bond cleavage at pH ~5.  These polymer 

micelles were constructed from PEG-block-poly(-benzyl-L-aspartate) (PEG-b-PBLA) 

chains functionalized with hydrazide moieties, following removal of the benzyl 

protecting groups from the aspartate repeat units.  Conjugation of DOX with pendent 

hydrazine moieties gives PEG-block-poly(ASP)37-co-poly(Asp-Hyd-DOX)28.  These 

polymer-drug micelles were characterized by dynamic light scattering to be ~65 nm 

average diameter, and displayed the desired pH dependent DOX release.  Incubation of 

these micelles with human small lung cancer SBC-3 cells revealed an effective inhibition 

of cell growth, approaching that found in experiments using unmodified DOX.   

Camptothecin may also benefit from delivery using PEGylated micelles.  The 

uptake and release of camptothecin was studied in vitro with poly(ethylene glycol)-b-

poly(benzyl L-aspartate) (PEG-b-PBLA) micelles, in which the hydrophobicity of the 

core was varied by controlling the percentage of benzyl ester protecting groups.
33

  

Micelles richer in benzyl ester groups (~two-thirds benzylated) were seen to more 

effectively sequester the drug (~90 %).  The same micelle also showed the slowest 

camptothecin release (100 hours were needed to release ~80 % of the sequestered drug).   

Synthetic polymers provide many varieties of opportunities for optimization of 

drug delivery, including tools to alter solubility and biodistribution, reduce side effects, 
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and increase the overall efficacy of the treatment.  Chemical composition has clear 

importance for biocompatibility and, in some cases, degradability, however polymer 

architecture is also known to be of considerable importance.  Novel synthetic polymers 

will continue to benefit the medical community as new synthetic methodologies lead to 

more efficient conjugation, encapsulation, and release chemistries.  

1.3 Polyzwitterions 

 The growing interest in polymers for medicine has created a need for superior 

polymer platform technologies that can be tailored to suit multiple chemical, physical, 

and biological requirements.  While the benefits of PEGylation for increasing the 

therapeutic efficacy of proteins and small molecule drugs have shown preliminary 

success, other polymer structures present intriguing alternatives.  The phospholipid 

bilayer of a cell membrane is considered optimal for interacting with biologics, thus 

polymeric materials composed of synthetic phospholipid analogues have received much 

effort and attention. These biomimetic analogues constitute a class of hydrophilic 

polymers aside from the more conventional hydroxyl- and ether-rich structures (PEG), 

known as polyzwitterions.  Polyzwitterions are net-neutral, hydrophilic polymers, with 

different architectures compared to conventional linear PEG prepared from ethylene 

oxide ring-opening polymerization.  The difference in backbone structure also renders 

them amenable to different chemistries.  Due to the presence of the zwitterion on each 

repeat unit, polyzwitterions are well established as biocompatible and anti-fouling.
34

  

Examples of these polymers are shown in Scheme 1.1, including poly(sulfobetaine 

methacrylate) (polySBMA), poly(carboxybetaine methacrylate) (polyCBMA), and 

poly(methacryloyloxyethyl phosphorylcholine) (polyMPC).  This thesis will focus on 
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new syntheses of functional phosphorylcholine methacrylates designed for applications in 

prodrugs and biomaterials.  

 

Scheme 1.1 Structure of polySBMA (6), polyCBMA (7), and polyMPC (8). 

 Phosphorylcholine (PC)-based polymers resemble naturally occurring 

phospholipids, and are hydrophilic due to the close association of water molecules with 

the zwitterion (about 15-25 molecules per repeat unit).
35

  Perhaps most prominent among 

PC-based polymers are those prepared from the methacrylic derivative 2-

methacryloyloxyethyl phosphorylcholine (MPC).  PolyMPC is quickly becoming 

recognized as perhaps the most biocompatible synthetic polymer, lending itself to 

applications in contact lenses, stents, and coatings for various medical devices and 

implants.
36-38

   

 MPC monomer is polymerized using either conventional or controlled free radical 

polymerization techniques.
39

  For the biomedical applications described in this thesis, 

predictable molecular weights with narrow polydispersity indices were desirable, 

requiring controlled "living" polymerization techniques, including atom transfer radical 

polymerization (ATRP) and reversible addition-fragmentation transfer (RAFT) 

polymerization. 

 ATRP is a versatile, copper-catalyzed radical polymerization technique which is 

easily extended to MPC.  This process relies on an equilibrium between an activated and 

deactivated propagating species, mediated by a transition metal catalyst (usually copper 

n n n

6 7 8
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(I) bromide or copper(I)chloride) which reversibly deactivates the propagating chain with 

a terminal halogen.
40

  The ATRP mechanism is shown in Figure 1.3A.  Typically a 

halide-containing initiator is used, and the MPC polymerization is performed in 

dimethylsulfoxide/methanol solvent mixtures to fully solubilize all components of the 

reaction. The resulting MPC polymers are highly water-soluble (>100 mg/mL), with 

close-to-targeted molecular weights and narrow polydispersity indices (PDI) (~1.1-1.3).  

The polymers possess two well-defined end groups: one from the ATRP initiator, and the 

halide that exchanges with the propagating chain.  

 RAFT polymerization is similar to ATRP in that it also is a form of living radical 

polymerization.  RAFT is based on the conventional free radical polymerization of an 

alkene-bearing monomer, but is carried out in the presence of a chain transfer agent 

(CTA).
41

 Common RAFT CTAs include dithioesters, dithiocarbamates, trithiocarbonates, 

and xanthates, and are responsible for mediating the polymerization through a reversible 

chain transfer process.  The mechanism for RAFT is shown in Figure 1.3B.  RAFT 

represents an alternative approach to living polymerizations, where no metal catalyst is 

required, as in the case of ATRP. 

 

Figure 1.3 Mechanism of (A) ATRP and (B) RAFT polymerization. 

(A)

(B)
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 Additional benefits of extending controlled polymerization techniques such as 

ATRP and RAFT to MPC include the high degree of functional group tolerance.  This 

allows, for example, chain-end functionality to be easily installed on polyMPC by using 

an initiator (ATRP) or CTA (RAFT) containing the desired functional group at the outset 

of polymerization.  End-functional polymers represent important precursor materials for 

post-polymerization conjugation to proteins, ligands, fluorophores, or other therapeutic, 

diagnostic, or targeting moieties.  Furthermore, copolymers (random or block) can be 

synthesized with ease by both ATRP and RAFT.  This allows for functional monomers to 

be incorporated, resulting in reactive sites along the polymer backbone for subsequent 

drug conjugation, or for the addition of hydrophobic blocks to drive self-assembly into 

nanoscale structures such as micelles or capsules.      

1.4 Thesis Outline 

 The use of PC-polymers has largely been restricted to applications such as anti-

fouling coatings due to the uncontrolled molecular weight and polydisperse nature of 

polymers prepared by conventional free radical polymerization techniques.  With the 

advent of controlled polymerization techniques such as ATRP and RAFT, the synthesis 

of well-defined PC-polymers with predictable molecular weights, end-group fidelity, and 

functionality achieved through careful design of initiators or comonomers is now 

possible.  The purpose of this thesis was to investigate the synthesis of PC-methacrylates 

and the incorporation of new functional groups.  Reactive groups were installed at the 

chain-end or as pendent groups along the backbone, giving novel random and diblock 

copolymer structures.    
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 Chapter 2 describes the synthesis of MPC monomer and polymerization using 

ATRP.  Polymers were synthesized in a range of molecular weights with narrow 

dispersity and include specific chain-end functionality.  End-functional polyMPC is 

explored for conjugation to proteins using lysozyme as a model (Biomacromolecules, 

2008; Macromolecules, 2010; Biomacromolecules, 2012).
42-44

 Two conjugation strategies 

were explored: 1) amine-reactive polyMPC was conjugated non-specifically to surface 

available lysine residues and 2) ketone/aldehyde-reactive polyMPC was synthesized in 

order to prepare polymer-protein conjugates with some degree of site-selectivity. 

 Chapter 3 describes PC-polymers that enhance the intravenous drug delivery of 

the potent chemotherapeutic agents camptothecin (CPT)
45,46

 and doxorubicin (DOX) 

(Bioconjugate Chemistry, 2009; Molecular Pharmaceutics, 2013; Molecular 

Pharmaceutics, 2014).
45-48

  Functionalized methacrylates for copolymerization with MPC 

were designed such that multiple copies of a drug can be loaded onto the polymer 

backbone, affording highly water soluble polymer prodrugs with high drug loading (>30 

wt %).  PolyMPC prodrugs demonstrated cytotoxicity against several human cancer cell 

lines in vitro.  PolyMPC-DOX prodrugs displayed prolonged circulation half lives, 

preferential tumor accumulation, and superior treatment efficacy in 4T1 tumor-bearing 

mice.  

 Lastly, Chapter 4 highlights multifunctional polyMPC as a precursor to new 

phosphorylcholine hydrogels (Journal of Materials Chemistry B, 2014).  The remarkable 

hydrophilicity and biocompatibility of polyMPC combined with facile gelation 

conditions affords a platform of new bio-cooperative materials suitable for cell studies.
49 
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CHAPTER 2 

PHOSPHORYLCHOLINE METHACRYLATES FOR PROTEIN 

CONJUGATION 

 

2.1 Introduction 

Covalent conjugation of synthetic polymers, such as poly(ethylene glycol) (PEG), 

to therapeutic proteins is a clinically relevant example of polymer therapeutics.
1-3

  Such 

PEGylated proteins exhibit improved therapeutic efficacy over the native proteins, with 

prolonged in vivo circulation time resulting from enhanced protein stability in the 

bloodstream, increased size, and an associated reduction in immunogenicity.
4
  A major 

therapeutic benefit stemming from these characteristics is a decreased dosing frequency 

required for effective therapy, enabled by the enhanced in vivo pharmacokinetics of the 

PEGylated proteins.
 

Early pioneering studies of PEGylated proteins showed their therapeutic benefit, 

using for example, PEGylated bovine serum albumin (BSA)
5
 and insulin.

6
  Numerous 

proteins have since been PEGylated, including uricase,
7
 collagen,

8
 trypsin,

9
 alkaline 

phosphatase,
10

 granulocyte colony stimulating factor (G-CSF),
11

 and interferon.
12

  The 

commercial availability of PEG derivatives containing terminal functionality suitable for 

protein conjugation, such as maleimides and N-hydroxysuccinimidyl (NHS)-esters, 

contributed to the rapid advances in this field.  

 The aqueous solubility and protein resistant characteristics of PEG are attributed 

to the association of water with the polyether backbone.  The hydrophilic environment 

extending from the polymer shields indiscriminant protein adsorption, as described for 

PEGylated surfaces.
13

  Several other synthetic polymers have also been studied in protein 
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conjugation, including poly(N-hydroxypropyl methacrylamide) (polyHPMA)
14-17

 and 

poly(N-isopropylacrylamide) (polyNIPAAm).
18-20

   

 Methacryloyloxyethyl phosphorylcholine (MPC) polymers, despite their 

extensive track record of biocompatibility in coatings, contact lenses, and blood-

contacting devices such as stents, have been under-exploited for polymer therapeutics.
21

  

Like PEG, polyMPC is hydrophilic due to an extensive association of water molecules 

with the backbone (15-25 per repeat unit).
21-22

  Unlike PEG, which is an amphiphile, 

polyMPC is strictly hydrophilic, exhibiting insolubility in nearly all organic solvents.  

The absence of commercially available polyMPC derivatives has limited its use in protein 

conjugation to only a few recent studies, including our published work presenting the first 

report of end-functional polyMPC for protein conjugation.
23-28

  This thesis also discusses 

subsequent efforts to expand the scope of conjugation chemistries available for use with 

polyMPC.  

2.2 NHS- and benzaldehyde-polyMPC for protein conjugation 

 Traditionally, non-specific conjugation to proteins is achieved by reaction of 

surface available amine groups of lysine residues.  Common functionalities employed to 

achieve this type of conjugation include 1) activated esters, such as N-

hydroxysuccinimidyl (NHS), forming stable amide bonds, and 2) aldehydes for reductive 

amination chemistry where the initially-formed imine can be reduced irreversibly to an 

amine linkage.  Early efforts towards polyMPC for protein conjugation focused on these 

two functional groups, incorporated at the polymer chain-end with an appropriately 

functionalized ATRP initiator (Biomacromolecules, 2008).  
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 Until recently, MPC monomer was not readily commercially available, and was 

prepared according to literature procedures.
29

   MPC was synthesized from reaction of 2-

hydroxyethyl methacrylate 9 (HEMA) and ethylene chlorophosphate, followed by ring-

opening with trimethylamine (Scheme 2.1).  

 

Scheme 2.1 Synthesis of MPC (11) and polymerization to give polyMPC. 

Compound 11 is isolated by filtration and lyophilization, giving the desired MPC 

monomer as a white, hygroscopic powder in 50-60 % yield.  NMR spectroscopy 

confirmed formation of the monomer, showing the characteristic methacrylate alkene 

resonances (
1
H at 5.5 and 6.0 ppm), as well as the expected ring-opened phospholane 

signal at 0 ppm in the 
31

P NMR spectrum.  This process was found to be scalable, 

ultimately producing ~60 grams per batch.   

 NHS- and benzaldehyde- functionalized initiators were prepared according to 

Scheme 2.2 and subsequently used to polymerize MPC by ATRP in 

methanol/dimethylsulfoxide solvent mixtures with Cu(I)Br and bipyridine as the catalyst 

and ligand, respectively.  These conditions give nearly quantitative monomer conversion 

in 12 hours as judged by disappearance of monomeric olefins at 5.7 and 6.1 ppm, and the 

appearance of broad signals centered at 1.0 and 2.0 ppm for the methyl and methylene 

groups of the polymer backbone, respectively.  The polymer products were purified by 

Me3N

TEA, THF

9 10 11

n

8
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elution through a short plug of silica gel to give white solids.  Signals at 2.8 ppm arising 

from the NHS methylenes, or at 9.7 ppm from the aldehyde resonance are useful for 

molecular weight estimation by end-group analysis.  Polymers bearing the NHS or 

aldehyde functionality demonstrated predictable molecular weights up to 10 kDa with 

reasonably narrow polydispersities, determined by aqueous gel permeation 

chromatography (GPC) against linear poly(ethylene oxide) (PEO) standards (0.1 M 

NaNO3 + 0.01 wt % NaN3).  Molecular weights determined by GPC were in good 

agreement with the results of end-group analysis from 
1
H NMR.  A summary of 

polymerization results is provided in Table 2.1. 

 

Scheme 2.2 Synthetic route to NHS- and benzaldehyde-functionalized polyMPC using 

ATRP. 

Table 2.1 Summary of polymerization results for polymers 14 and 17. 

Sample  Initiator  Target 
Molecular 

Weight 
(g/mole)  

Conversion 

by 
1

H NMR 
Spectroscopy  

Molecular 
Weight by 

1

H NMR 
(g/mole)  

Aq. GPC 
Mn 

(g/mole)  

Aq. GPC 
PDI 

(Mw/Mn) 

14 A 13 3,200  Quantitative 2,300  3,500  1.5  

14 B 13 4,500  Quantitative 4,000  5,200  1.2  

14 C 13 7,500  Quantitative 5,900  7,700  1.5  

14 D 13 11,000  Quantitative 8,200  9,600  1.3  

17 A 16 4,000  Quantitative 4,200  4,500  1.1 

17 B 16 6,000  Quantitative 6,000  7,000  1.1  

17 C 16 8,000  Quantitative 9,000  9,700  1.1  

 

n

n

TEA, THF

TEA, THF

ATRP

ATRP

12 13 14

15 16 17
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 NHS- and benzaldehyde-terminated polyMPC were tested for protein conjugation 

using lysozyme as a model.  Lysozyme is a 14.4 kDa protein isolated from chicken egg 

white, and contains seven surface-available amine groups (6 from lysine residues, 1 from 

the N-terminus of the protein) as possible reactive sites.  PolyMPC samples 14 and 17 

were conjugated to lysozyme under aqueous buffer conditions (from pH 6 to 9), and at 

different functional group stoichiometry and concentration (Figure 2.1A).  The 

conjugation reactions were monitored by high performance liquid chromatography 

(HPLC) fitted with a size exclusion column, as well as by polyacrylamide gel 

electrophoresis (SDS-PAGE).  Successful conjugation relied on working within an 

appropriate concentration range; dilute conditions, using, for example, a 1 mg/mL protein 

solution at pH 9.0 gave only ~25 % protein conjugation in 24 hours (conversion 

estimated from the relative areas of protein and conjugate in the HPLC trace).  However, 

at ten-fold higher concentration, 80 % conversion was seen in 24 hours, with nearly 

quantitative conversion achieved following a second addition of polymer.  Clearly the 

higher concentration is preferred, with the dual benefit of increasing the reaction rate and 

reducing the impact of competitive hydrolysis of the NHS end-group.  Further evidence 

in support of lysozyme conjugation with polymer 14 was obtained by SDS-PAGE, which 

separates the PC-protein conjugate (Figure 2.1C, lane 3) from unreacted lysozyme 

(Figure 2.1C, lane 2).  The conjugates smear on the gel (as seen also for PEGylated 

proteins
30,31

) due to inherent polydispersity of the conjugates and variability in 

conjugation sites.  Lysozyme appears as a distinct band corresponding to ~15 kDa.   

 PolyMPC-lysozyme conjugates were purified by fast protein liquid 

chromatography (FPLC), using a Superose 6 10/300 preparative size exclusion column, 
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eluting with PBS buffer at a flow rate 0.5 mL/min.  As seen in Figure 2.1B, the protein-

polymer conjugate elutes over the range of 14-to-19 mL, a significantly lower retention 

volume relative to lysozyme itself (20-21 mL), due to the larger size of the conjugate.  

The bimodal nature of the conjugate peak is expected for samples in which there is 

heterogeneity in the number of conjugated polymers per protein.  Typically, the eluted 

conjugate was collected in 1 mL fractions, with each analyzed further by HPLC with 

size-exclusion columns. 

 Conjugate 18 (prepared from polyMPC 14) was used for preliminary in vivo 

evaluation, specifically monitoring the pharmacokinetics.  Conjugate 18 and free 

lysozyme were fluorescently tagged using an Alexa Fluor dye (AF647) and injected 

subcutaneously in mice.  Blood was withdrawn at preselected time points and dye 

concentration in the serum samples was analyzed using fluorescence spectroscopy.  As 

shown in Figure 2.1D, the conjugate displays the expected increased half life (t1/2) of 50 

hours, compared to the t1/2 for the unmodified enzyme of 2.4 hours.  These preliminary 

findings confirmed that attachment of polyMPC to a protein would increase the 

circulation half life, potentially increasing the overall therapeutic efficacy if this strategy 

were used in conjunction with therapeutically-relevant proteins.    
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Figure 2.1 Synthetic scheme for preparation of polyMPC-lysozyme conjugates (A) and 

characterization including SEC-FPLC (B), SDS-PAGE (C) and preliminary 

pharmacokinetic evaluation in mice (D). 

 While NHS-esters are well-established for protein conjugation to various 

substrates, the susceptibility of NHS to hydrolysis in aqueous buffers can reduce the yield 

of attempted conjugation.
32

  PolyMPC restricts solvent choices for the polymerization 

and work-up to water, methanol, and mixtures of these with some other solvents, so loss 

of the chain-end is likely (and has been characterized by NMR and UV/Vis 

spectroscopy
33

) even before its use in the conjugation reaction.   In an effort to preserve 

the NHS polymer chain end on polyMPC, we also explored the use of ionic liquids as 

polar, non-aqueous solvents for protein-polyMPC conjugation in high yield 

(Macromolecules, 2010).
27

  Despite the success of this method, not all proteins will be 

amenable to reactions in ionic liquids, thus more robust chain-end functionality would be 

required to expand the scope of amine-reactive polyMPC structures in an aqueous 

environment. 
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2.3 Pentafluorophenyl ester-polyMPC 

 Pentafluorophenyl (PFP) esters, originally used in oligopeptide synthesis, react 

selectively with amines, and are more hydrolytically stable than N-hydroxysuccinimidyl 

(NHS) esters.
34,35  

PFP-containing polymers have been studied in different contexts; for 

example, PFP-bearing chain transfer agents (CTAs) were synthesized for the 

polymerization of methacrylates by reversible addition fragmentation chain-transfer 

(RAFT), giving thermally responsive polymers having a PFP chain-end.
36,37

  RAFT-

polymerized PFP-containing methacrylates produced reactive homopolymers
35,38 

and 

copolymers
39

; end-functional polymers prepared by RAFT bearing the PFP group for 

subsequent amidation were also reported.
40

  One example exploited a PFP-acrylate 

copolymer as a surface coating, which allowed for subsequent protein immobilization.
41

  

In addition, a PFP-norbornene monomer was polymerized by ROMP, giving 

polynorbornene with demonstrated capacity for reaction with primary and secondary 

amines.
42 

 The work in this thesis represents the first example of PFP-functionalized 

ATRP initiators for MPC polymerization, giving highly water soluble and biocompatible 

polymers with chain-end functionality for fast and efficient protein conjugation 

(Biomacromolecules, 2012).
28

  Additionally, various polymer architectures were explored 

in conjunction with this chain-end functionality, including linear, two-arm, and graft-type 

PC-polymers, derived from both methacrylate and cyclic olefin polymeric systems.  In 

PEGylated proteins, multi-arm versions of PEG provide an alternative architecture with 

an envisaged “umbrella-like” coverage of the protein.
43

  The architecture of polymer 

coverage may influence the properties of the conjugates, including activity, 

immunogenicity, and in vivo pharmacokinetics.
44

  Yamasaki, et al. reported that 
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attachment of two-arm PEG to proteins resulted in a higher retention of enzymatic 

activity than linear PEG of similar molecular weight.
45

  Similarly, covalently connecting 

a two-arm 10 kDa PEG to asparaginase reduced its antigenicity 10-fold relative to its 

linear PEG counterpart.
46,47  

 Taken together, these materials represent a novel PC-

polymer platform well-suited for protein conjugation and, ultimately, examination in 

therapeutic settings. 

 Linear polyMPC was prepared from the novel ATRP initiator, PFP-ester 20, 

shown in Scheme 2.3.  Compound 20 was prepared in 70 % yield by reacting 

pentafluorophenol with 2-bromoisobutyryl bromide, isolated as a colorless liquid, and 

characterized by 
1
H, 

13
C, and 

19
F NMR spectroscopy, and high resolution mass 

spectrometry (HRMS) (calculated: 331.9483; found: 331.9434).  PolyMPC 21 was then 

prepared from initiator 20 by ATRP in a 1:1 DMSO/methanol solution in the presence of 

Cu(I)Br/bipyridine (bpy) as the catalyst/ligand system.     

 

Scheme 2.3 Synthesis of linear PFP-containing ATRP initiator and polymerization of 

MPC. 

 The PFP-terminated polyMPC structures synthesized ranged from 5,000 to 30,000 

g/mole, with polydispersity index (PDI) values from 1.2 - 1.5, estimated by aqueous gel 

permeation chromatography (GPC) (calibrated against linear PEO standards).  The 

molecular weights were controlled by varying the monomer-to-initiator ratio, and 

monomer conversion was monitored by 
1
H NMR spectroscopy (in CD3OD solution), 

integrating monomer alkene resonances (5.4 and 6.0 ppm) against the polymer methyl 

TEA, THF Cu(I)Br, bpy

DMSO/MeOH

n

20 2119
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protons (1.0 ppm).  At attempted higher molecular weight, some loss of control was 

noted by slightly higher PDI values.  Following polymerization, the Cu catalyst was 

oxidized by exposure to air, and spent catalyst, ligand, and residual monomer were 

removed by passage through a short plug of silica, eluting with methanol.  The pure 

polymer was isolated by precipitation into THF.  
1
H NMR spectroscopy confirmed the 

expected backbone structure, and 
19

F NMR showed the presence of the intact PFP-ester 

chain-end, with expected resonances at -152.9, -157.2, and -162.0 ppm in an integrated 

ratio of 2:1:2.  PolyMPC 21 retained the PFP-ester end group even after several days in a 

solution of pH 9 sodium borate buffer with D2O, as judged by 
19

F NMR spectroscopy, 

showing no liberated pentafluorophenol, confirming PFP as a more robust end-group.  

Characterization data for three representative polymer samples is provided in Table 2.2. 

Table 2.2 Polymerization results for polyMPC 21: target molecular weight calculated 

from monomer:initiator ratio; percent conversion determined by 
1
H NMR spectroscopy; 

peak elution time, Mn, Mw, and PDI determined by aqueous GPC against linear PEO 

calibration standards. 

Polymer Target MW 
(g/mole) 

% 
Conversion 

Peak Elution 
Time (min) 

Mn 
(g/mole) 

Mw 
(g/mole) 

PDI 
(Mw/Mn) 

21A 6,000 Quantitative 26.4 5,000 6,300 1.2 

21B 20,000 90 % 24.9 11,700 15,000 1.3 

21C 40,000 85 % 23.3 27,000 40,500 1.5 

 

Two-arm PFP-polyMPC structures were synthesized and examined as alternatives 

to linear polymer conjugation, noting that one example of two-arm polyMPC can be 

found in a published patent for reductive amination.
48

  Two-arm polyMPC was 

synthesized by incorporating a branching point into the ATRP initiator using bis-

hydroxymethyl propionic acid (bis-MPA), as shown in Scheme 2.4.  Acid chloride 23 

was prepared from 22 with oxalyl chloride in CH2Cl2 followed by esterification with 
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ethylene glycol to give 24 as a colorless oil.  The ethylene glycol linker provides spatial 

extension between the PFP group and the quaternary carbon of the branch point, an 

aspect found to be critical for successful protein conjugation.
28

  Reaction of 24 with 

bis(pentafluorophenyl) carbonate gave PFP-initiator 25, isolated as a pale yellow oil in 76 

% yield.  The structure of 25 was confirmed by 
1
H, 

19
F, and 

13
C NMR spectroscopy, as 

well as HRMS (calculated: 684.9730; found: 684.9697).  MPC polymerization using 

initiator 25 proceeded by ATRP in DMSO/methanol to give two-arm polyMPC 26 as a 

white solid, which was purified by precipitation into anhydrous THF or acetone.  

 

Scheme 2.4 Synthesis of two-arm branched PFP-containing ATRP initiator 25 and 

polymerization of MPC. 

Polymers were synthesized over a range of molecular weights (Table 2.3), and 

characterized by 
1
H and 

19
F NMR spectroscopy, and aqueous gel permeation 

chromatography.  GPC showed monomodal peaks with relatively narrow PDI values 

(~1.3), suggesting that initiation at each site occurred without steric interference from the 

other. The molecular weights estimated by GPC were slightly lower than the molecular 

weight determined by 
1
H NMR spectroscopy and the monomer:initiator ratio.   

(COCl)2

DCM/DMF(cat)
reflux THF, TEA

THF, TEA

MPC

Cu(I)Br, bpy
MeOH, DMSO

n

22 23

24

25
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Table 2.3 Summary of polymerization results for two-arm PFP-polyMPC 26. 

Polymer Target MW 
(g/mole) 

Conversion Peak Elution 
Time (min) 

Mn 
(g/mole) 

Mw 
(g/mole) 

PDI 
(Mw/Mn) 

26A 6,000 Quantitative 25.2 6,450 9,200 1.4 

26B 10,000 Quantitative 25.1 6,600 8,600 1.3 

26C 20,000 Quantitative 24.7 13,700 17,600 1.3 

26D 40,000 90 % 24.0 16,000 21,500 1.4 

 

The steric freedom of PFP-carbonate terminated polyMPC 26 required more 

careful handling to avoid premature hydrolysis or methanolysis compared to the linear 

counterparts.  Nonetheless, the end-group proved stable and effective when using 

minimal methanol, and avoiding a silica column for purification.  Polymer 26 was 

isolated by simply precipitating into anhydrous THF, with retention of the PFP-carbonate 

chain end confirmed by 
19

F NMR spectroscopy. 

To expand the scope of PC polymers containing PFP groups for conjugation, a 

new set of structures was prepared by ring opening metathesis polymerization (ROMP) in 

collaboration with Katrina Kratz in the Emrick research group.  This methodology 

exploits prior synthesis of PC-polyolefins,
49

 while incorporating novel PFP-cyclooctene 

comonomers.  PFP-containing cyclooctene 29 was synthesized from the acid chloride of 

carboxylate 28, giving compound 29 as a yellow oil in 78 % yield.  Copolymers from 27 

and 29 were synthesized using the pyridine-substituted version of Grubbs’ ruthenium 

benzylidene metathesis catalyst ((H2IMes)(Cl)2(pyr)2RuCHPh) 31 in 

trifluoroethanol/CH2Cl2 mixtures, as shown in Scheme 2.5.    Two samples of copolymer 

31 of different molecular weights, each containing ~5 mole % PFP-ester monomer along 

the backbone, as determined by NMR spectroscopy were prepared.  Molecular weight 

control was achieved by adjusting the monomer-to-catalyst feed ratio.  Distinct from the 

PFP-ester terminated polyMPC described previously, these PC-polyolefin copolymers 
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have PFP groups situated randomly along the backbone, providing new, graft-type 

architectures for protein conjugation to the PC-polymer platform. 

 

Scheme 2.5 Synthesis of PFP-COE 29, and ROMP copolymerization with PC-COE 27 to 

give polymer 30. 

2.4 Protein conjugates from PFP-containing polymers 

PFP-terminated polyMPC was tested for conjugation to lysozyme, as shown in 

Figure 2.2A, in pH 9 sodium borate buffer at room temperature.  A lysozyme solution in 

buffer at 10 mg/mL was added to ~20 molar equivalents of PFP-polyMPC 21.  The 

reactions were monitored and characterized by high performance liquid chromatography 

(HPLC) and fast protein liquid chromatography (FPLC) (Figure 2.2B-C) using UV 

detection at 280 nm.  High yielding conversion to conjugate (>80 %) was observed 

within 12 hours.  Following FPLC purification, no unreacted lysozyme remains, as 

observed by SEC-FPLC (Figure 2.2C) and gel electrophoresis (SDS-PAGE) (Figure 

2.2D).  SDS-PAGE was carried out using gradient 4-15 % Tris-HCl polyacrylamide pre-

cast gels with 25 mM Tris, 192 mM glycine, 0.1 % (w/v) SDS buffer at pH 8.3.  The 

conjugates appear as polydisperse peaks by SEC, and as broad, smeared bands in SDS-

Catalyst 31

TFE/DCM

2. 1. SOCl2
THF

n m

27

28

29

31

30
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PAGE, which is attributed to the multiple reaction sites on lysozyme, as well as the 

polydispersity and hydrophilicity inherent to the polyzwitterionic structure. 

Similarly, lysozyme conjugates were prepared from two-arm PFP-polyMPC 26 

and poly(PC-COE)-co-(PFP-COE) 30.  The corresponding conjugates (Figure 2.2E and 

Figure 2.2F) were purified and isolated by FPLC, dialysis and lyophilization.  Unique to 

the PC-polyolefins is the possible formation of conjugates consisting of multiple 

polymers per lysozyme, and/or multiple proteins conjugated to a single polymer chain.  

Considering the Mn and Mw values of these polymer samples, a percentage of the chains 

will have 2 or more PFP groups, giving the possibility of soluble network structures that 

cannot arise with PFP-terminated polyMPC.  However, the excess of polymer used in 

these conjugation reactions precludes the formation of large network structures. 

 

Figure 2.2 Preparation of linear polyMPC-lysozyme conjugate (A) and characterization: 

(B) SEC-FPLC of reaction mixture, (C) SEC-FPLC of purified conjugate, and (D) SDS-

PAGE of purified conjugate.  The corresponding two-arm (E) and grafted (F) conjugates 

were prepared under similar conditions. 
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 Dynamic light scattering was performed on the linear, branched, and grafted 

polymer – protein conjugates prepared from comparable molecular weight polymers 

(approximately 15,000 g/mole) to examine their size in solution using the Malvern 

Zetasizer Nano series instrument.  Native lysozyme had a measured diameter of 4.2 ± 0.1 

nm in PBS solution at pH 7.4, and all of the lysozyme-polymer conjugates exhibited a 

distinct increase in size, with diameters of 10.7 ± 0.2  nm and 8.6 ± 0.1  nm for 

conjugates 32 (linear) and 33 (two-arm polyMPC), respectively.  The grafted conjugate 

34 displayed a large increase over the native enzyme, with a diameter of 22.7 ± 0.2 nm, 

attributed to the possibility of producing small multifunctional structures.  However, in 

no case were unusually large structures seen that would be indicative of heavily 

aggregated or cross-linked material. 

 Polymer-protein conjugates typically exhibit activity and/or efficacy that differ 

from the native enzymes, depending to some extent on the proximity of the polymer to 

the active site.  Even when conjugation is at some distance from the active site, the 

presence of the polymer may reduce activity if it becomes difficult (sterically) for the 

enzyme to interact with its environment.  PEGylated G-CSF (Neulasta®), for example, 

retains 41 % of its native enzymatic activity.
11

 Prior studies with lysozyme conjugated to 

a 5 kDa PEG chain showed suppressed enzymatic activity (77 %) relative to the native 

enzyme,
50

 while a study on polyMPC-BSA and lysozyme conjugates showed 75-90 % of 

native enzymatic activity.
26  

This data suggests that polymer conjugation does not 

markedly reduce enzyme activity, but that a modest reduction in activity may result from 

polymer shielding effects (steric interference). 
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 The enzymatic activity of the polymer-lysozyme conjugates prepared in this study 

was tested using fluorescein-labelled Micrococcus lysodeikticus as the substrate.  All the 

samples were prepared at lysozyme-equivalent concentrations, determined by UV/Vis 

spectroscopy with a standard curve constructed from different lysozyme concentrations at 

280 nm.  The substrate was incubated with the conjugates at 37 °C for one hour, then the 

fluorescence intensity of each was measured by excitation at 485 nm, detecting emission 

at 535 nm.  The averaged measured values for the conjugates were compared to that of 

native lysozyme, and are reported as relative activities on the substrate (Figure 2.3).  A 

no-enzyme control (NEC) experiment shows negligible background fluorescence in the 

absence of lysozyme.  The linear and two-arm polyMPC conjugates were found to retain 

>80 % of the native enzymatic activity, while the graft conjugates retained >65 %. Two 

different molecular weight conjugates of each type were tested and compared to native 

lysozyme, with the results suggesting a correlation between polymer molecular weight 

and the activity retained.  For the linear, two-arm, and grafted conjugates using a 4 - 6.5 

kDa polymer, the relative enzymatic activity was very high (>98 %). At higher polymer 

molecular weight, lower activity was observed, specifically noted for the linear (84 %) 

and grafted (69 %) conjugates.  As mentioned previously, this reduced activity may be 

due to steric interference of the enzyme with the substrate in the presence of these large 

polymer chains. 
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Figure 2.3 Results of fluorescence activity assay of lysozyme and lysozyme-polymer 

conjugates using fluorescein-labeled Micrococcus lysodeikticus (485 and 535 nm 

excitation and emission wavelengths, respectively).  Samples were analyzed in triplicate.  

Error bars represent ± standard deviation. 

 To evaluate the polyMPC - protein conjugates in vivo, lysozyme, linear, and two-

arm polyMPC-lysozyme conjugates were labeled with Alexa Fluor 647 (AF647) 

fluorescent dye.  Such fluorescent labeling enables an evaluation of pharmacokinetics by 

HPLC.  Analysis of aliquots of blood withdrawn at various time points, was used to 

determine the concentration of the conjugate in circulation at a given time.  AF-labeled 

conjugates were purified by passage through a bio-gel P4 column eluting with pH 7.4 

PBS, where two well-separated bands were seen, corresponding to the labeled product 

and unconjugated dye.  The purified conjugates were concentrated and stored in solution 

at 4 °C.  The purity of the AF-labeled structure was judged by SEC-HPLC with 

fluorescence detection, exciting at 650 nm and monitoring emission at 670 nm.  AF647 

concentration was determined by UV/Vis spectroscopy, and the solutions of labeled 

lysozyme and polyMPC-lysozyme were concentrated to 30 µg/mL (AF dye-equivalent 
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concentration).  The labeled samples exhibited good stability at 4 °C for months, and 

were stable to freeze-thaw cycles as confirmed by HPLC analysis following such 

treatment.  This feature is important for providing convenient and lengthy storage of 

polyMPC-protein conjugates.  To analyze the pharmacokinetic properties of polyMPC-

lysozyme conjugates 32 and 33 compared to lysozyme itself, AF647-labeled samples 

were injected intravenously into C57bl/6 mice (6 per group) at a dose of 1.5 mg/kg (AF 

dye equivalent doses).  At designated time points, aliquots of blood were withdrawn from 

the animals.  Following centrifugation and dilution with PBS, the serum samples were 

analyzed by SEC-HPLC with fluorescence detection, exciting at 650 nm and monitoring 

emission at 670 nm.  AF647 dye concentrations in the samples at each time point was 

determined using a calibration curve and were plotted against post-injection time to 

generate the pharmacokinetics profiles of Figure 2.4. 

 The pharmacokinetic experiment reveals that polyMPC-lysozyme conjugate 32 

remains in circulation much longer than lysozyme alone.  The signal from labeled 

lysozyme became indistinguishable from the baseline in less than 12 hours, while the 

signal from the linear polyMPC conjugate extended to 5 days.  The t1/2 of 0.9 hours for 

free lysozyme was extended to 18 hours for the linear polymer-protein conjugate.  

Surprisingly, the two-arm polyMPC-lysozyme conjugate 33 showed a t1/2 of only 1 hour, 

though low protein concentrations were detected for several days post-injection, giving in 

an increased area-under-the-curve (AUC) relative to native lysozyme, a phenomenon that 

is not well-understood.  The presence of the linear polyMPC provides a t1/2 that is ~30 

times longer than the protein alone, and an AUC value ~24 times greater.  In a study 

using interferon-α2a (a 20 kDa therapeutic protein)
,
 conjugation to a 20 kDa PEG-
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equivalent molecular weight polyMPC (as determined by GPC againt PEO standards) 

was found to extend the elimination half life to 30 times that of the native enzyme
25

, a 

result which is in excellent agreement with the findings presented here.   

 

Figure 2.4 (A) Preparation of AF647-labeled polyMPC-lysozyme, (B) structure of 

AF647-NHS, and (C) PK plot comparing lysozyme, linear polyMPC-conjugate, and two-

arm polyMPC-conjugate.  

2.5 PolyMPC for site-selective protein conjugation 

 While the amidation methods discussed in the previous sections can be facile and 

effective for protein conjugation, it often yields non-selective attachment of multiple 

polymer chains, and a distribution of conjugate sizes within a given sample.  Site-specific 

conjugation methods can eliminate the heterogeneity often associated with polymer-

protein conjugates, producing well-defined samples with polymer attachment occurring 

only at particular locations.  To this end, Lewis and coworkers previously reported the 

synthesis of a bis-sulfone polyMPC derivative for conjugation through disulfide 

bridges,
25

 and Ishihara and coworkers subsequently reported the synthesis of a pyridine 

disulfide functionalized polyMPC for conjugation to thiol-containing proteins,
26

 with 

both approaches yielding well-defined polymer-protein conjugates.  Despite these 

advances, some drawbacks are noted, including the multistep synthetic pathways needed 
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to obtain the desired chain-end functionality, and that these particular examples are 

limited to thiol conjugation.   

 The reaction between an aminooxy functional group and a ketone or aldehyde to 

form a stable oxime bond has been explored as a route to chemoselective protein 

conjugation.
51-53

  Ketones or aldehydes can be installed selectively on proteins through 

various methods, including solid phase protein synthesis,
51,54,55

 protein engineering,
56

 and 

chemical modification of amino acid residues.
52

  Oxime formation to afford polymer-

protein conjugates has been exploited in the case of poly(N-isopropylacrylamide) 

(PNIPAAm),
53

 poly(2-hydroxyethylmethacrylate) (PHEMA),
53

 and poly(PEG 

methacrylate),
53

 with the oxime linkage found to be stable under physiological 

conditions.
56

  

 In this work, oxime conjugation chemistry has been extended to polyMPC for 

site-selective modification of proteins.  This was accomplished by first synthesizing the 

aminooxy-containing ATRP initiator 39, shown in Figure 2.5, as a shorter version of a 

known structure containing a tetraethylene glycol linker.
52

  This was prepared by reaction 

of ethylene glycol with 2-bromoisobutyryl bromide, giving compound 38 in 60 % yield, 

followed by carbodiimide coupling of 38 with commercially-available (boc-

aminooxy)acetic acid to give initiator 39 in 85 % yield.  The structure of 39 was 

confirmed by 
1
H NMR spectroscopy, specifically noting the t-boc protons at 1.5 ppm, 

and the methyl protons of the isobutyryl group at 1.9 ppm.  Initiator 39 was mixed with 

MPC in a methanol/dimethylsulfoxide solution of Cu(I)Br/bipyridine as the 

catalyst/ligand system, giving boc-aminooxy terminated polyMPC 40.   
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Figure 2.5 Synthesis of aminooxy-functionalized ATRP initiator 39 and polyMPC 40.  

Inset is 
1
H NMR spectrum before (a) and after (b) deprotection of the chain-end, showing 

disappearance of boc proton signal at 1.5 ppm. 

 Polymerizations were generally performed at room temperature for 18 hours, and 

monitored by 
1
H NMR spectroscopy.  Monomer conversion typically reached >95 %, 

determined by comparing the monomeric vinyl proton signals at 5.5 and 6 ppm with the 

methyl and methylene protons of the polymer backbone at 1 and 2 ppm, respectively.  

Polymers of varying molecular weights were obtained by adjusting monomer-to-initiator 

ratio at the outset of polymerization, and the samples displayed relatively narrow 

polydispersity indices (PDIs) (Table 2.4).  Molecular weight and PDI values were 

characterized by aqueous gel permeation chromatography (GPC) against linear 

poly(ethylene oxide) standards in 0.1 M sodium nitrate and 0.02 weight percent sodium 

azide buffer.  Successful deprotection of boc-aminooxy polyMPC in trifluoroacetic acid 

was confirmed by 
1
H NMR spectroscopy, noting the loss of the t-boc proton signal at 1.5 

ppm.  GPC analysis before and after deprotection revealed no change in molecular 

weight, confirming the polymer backbone is stable to these deprotection conditions.  The 

aminooxy-terminated polymers were purified by dialysis against pure water, followed by 

lyophilization to give the desired material as a white solid. 

DCM

EDC/DMAP

TEA/THF

TFA

ATRP

(    )

t-boc (CH3)3 protons

a

b

n

37 38

39

400.20.40.60.81.01.21.41.6PPM
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Table 2.4 Summary of polymerization results for aminooxy-polyMPC 40. 

Sample [M]:[I] Target Mn
 

(g/mole) 
Conversion Mn

 

 (g/mole) 
PDI 

(Mw/Mn) 

40A 10:1 3,300 > 95 % 2,400 1.4 

40B 17:1 5,400 > 95 % 5,000 1.3 

40C 34:1 10,450 > 95 % 7,700 1.4 

40D 66:1 20,000 > 95 % 15,000 1.5 

  

 Conditions suitable for reaction of aminooxy-terminated polyMPC were 

examined prior to protein conjugation, by reaction with 4-hydroxybenzaldehyde as a 

simple substrate, and one that provides a UV signature following conjugation.  For 

example, polymer 40 was dissolved in pH 5.5 phosphate buffer/dimethylsulfoxide 

solution with 1.2 equivalents of 4-hydroxybenzaldehyde, and stirred at room temperature 

(Figure 2.6A).  After several hours, an aliquot was removed and analyzed by aqueous 

GPC equipped with a UV detector (280 nm), showing substantial UV absorbance (Figure 

2.6B) that reflects successful conjugation to the chain-end to give polymer 41.  

Furthermore, 
1
H NMR spectroscopy showed a singlet at 8.4 ppm corresponding to the 

syn addition product of the benzaldoxime chain-end, as well as signals at 7.05 and 7.64 

ppm for the aromatic protons.  End-group analysis by this technique indicated ~60 % 

conversion to the oxime-linked polymer 41, confirming the ready availability of the 

aminooxy chain-end for reaction with ketones and aldehydes. 
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Figure 2.6 (A) Conversion of aminooxy-polyMPC 40 to benzaldoxime-polyMPC 41 and 

(B) aqueous GPC before and after conjugation (UV detection at 280 nm). 

 Aminooxy polyMPC 40 was tested for protein conjugation using lysozyme as a 

model enzyme.  Lysozyme was first modified with pentafluorophenyl (PFP) ester-

levulinate, compound 43 (prepared using a modified literature procedure
52

), to impart 

ketone functionality to the protein.  Conjugation of lysozyme to 43 was performed in pH 

9 sodium borate buffer, with 10 % DMSO, at room temperature.  After 2 hours, analysis 

of the reaction mixture by cation exchange fast protein liquid chromatography (CE-

FPLC) indicated complete conversion of native lysozyme.   Lysozyme-levulinate 44 was 

purified by dialysis (MWCO 1000) against pure water, and isolated as a white solid 

following lyophilization.  The presence of multiple amine groups on lysozyme allows for 

conjugation of more than one ketone per protein, and the molar ratio of lysoyzme to 

pentafluorophenyl ester-levulinate dictates the degree of modification.  Electrospray 

ionization (ESI) mass spectrometry confirmed successful conjugation, with multiple 

ketones per lysozyme incorporated.  We note that the techniques used here for 

conjugation and characterization are fully applicable to the synthesis of therapeutically 

relevant bioconjugates containing only one reactive site. 
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20 22 24 26 28 30
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n

n
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Scheme 2.6 Synthesis of lysozyme-levulinate 44 and polyMPC-lysozyme conjugate 45. 

 Lysozyme-polyMPC conjugation was carried out using aminooxy-terminated 

polyMPC 40 with the ketone-modified enzyme 44. This was done in phosphate buffer 

with 1:20 molar ratio of enzyme to polymer; conversion to conjugate 45 was monitored 

by size exclusion high performance liquid chromatography (SEC-HPLC).  The 

conjugation was tested under several conditions: at pH 7.4 and 5.5, and with and without 

100 mM aniline as catalyst.  Oxime formation was found to occur at a reasonable rate in 

acidic pH, with aniline catalysis proceeding through a transimination reaction under 

acidic aqueous conditions.
57

  Aliquots were removed from the reaction mixture at t = 2.5, 

6, and 24 hours.  Additionally, a control experiment was performed in which unmodified 

lysozyme was mixed with aminooxy polyMPC, which, as expected, led to no conjugation 

and elution of only native enzyme at 13 minutes.  A representative HPLC chromatogram 

is shown in Figure 2.7, demonstrating efficient and selective conjugation of polyMPC-

lysozyme, with conjugate eluting from 5 - 11 minutes, and unreacted lysozyme-levulinate 

eluting at 13 minutes.   
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 By comparing the peak elution time of the conjugate to a calibration curve 

constructed from protein standards, the total molecular weight of the conjugate is an 

estimated 30,000 g/mole, corresponding to approximately 2 polymer chains per 

lysozyme.  This is in good agreement with the estimated degree of functionalization of 

lysozyme-levulinate obtained by ESI-MS.  Optimum conjugation conditions were found 

to be pH 5.5 phosphate buffer, with the presence of 100 mM aniline affording modest 

improvement in conjugation efficiency.   

 

Figure 2.7 SEC-HPLC characterization of conjugation reactions: (A) lysozyme control; 

(B) conjugation in PBS pH 5.5 + 100 mM aniline. Conjugate elutes from 5-11 minutes 

and free protein elutes at 13 minutes.  (C) SDS-PAGE analysis: Lane 1: protein 

standards; Lane 2: native lysozyme; Lane 3: lysozyme-levulinate; Lane 4: lysozyme 

control reaction; Lane 5: conjugation reaction at 24 hours in pH 5.5 PBS + 100 mM 

aniline.  (D) Conversion vs. time for conjugation at different pH and catalytic aniline 

concentrations. 
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 PolyMPC-lysozyme conjugation was also analyzed by gel electrophoresis (Figure 

2.7), which confirmed the SEC-HPLC findings.  SDS-PAGE was done on gradient 4-15 

% Tris-HCl polyacrylamide pre-cast gels with 25 mM Tris, 192 mM glycine, and 0.1 % 

(w/v) SDS buffer at pH 8.3.  Lane 1 shows broad-range protein standards (top to bottom: 

209.0, 124.0, 80.0, 48.1, 34.8, 28.9, 20.6, and 7.1 kDa), and lanes 2 and 3 show native 

lysozyme and lysozyme-levulinate, respectively.  Lane 4 confirms that conjugate is not 

formed in the absence of ketone functionality on lysozyme, and lane 5 shows the 

polyMPC-lysozyme conjugate as a broad band due to polydispersity and hydrophilicity 

inherent to the polymer, as well as the size distribution of conjugates within the sample 

resulting from the potential for multi-site attachment.   

2.6 Conclusions and future outlook 

 In summary, a series of linear, two-arm, and grafted polymer – protein conjugates 

were prepared, exploiting active esters as chain-ends and pendent groups for protein 

conjugation to PC-polymers.  PFP-esters represent an alternative active ester for efficient 

protein conjugation, with better hydrolytic stability than conventional NHS esters.  DLS 

experiments showed that varying the architecture and molecular weight of the polymer 

affects the solution size of the conjugate, which in turn affects the pharmacokinetic 

properties of a therapeutic conjugate, altering the absorption/elimination half lives and 

effective exposure time.   

 Additionally, the synthesis of novel aminooxy-terminated MPC polymers using 

ATRP for a site-selective approach to forming well-defined protein conjugates was 

explored.  These polymers are amenable to conjugation only with proteins bearing ketone 

functionality, as demonstrated using levulinate-modified lysozyme as a model system.  
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Conjugation conditions were optimized, demonstrating that the reaction is most efficient 

at low pH in conjunction with catalytic aniline.   

 The combination of synthetic ease, conjugation efficiency, retained enzymatic 

activity, and prolonged circulation time makes these structures interesting and potentially 

valuable for future polymer therapeutics.  The examples presented here focus on 

lysozyme as a model system, however, going forward, these and other conjugation 

strategies will be applied to therapeutic proteins.  
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CHAPTER 3 

POLYMPC PRODRUGS FOR CHEMOTHERAPEUTICS 
 

3.1 Introduction to polymer prodrugs 

 Advances in polymer therapeutics provide new opportunities for improving 

pharmaceutical administration and delivery methods, including advances in experimental 

approaches to chemotherapy.
1,2,3

  Small molecule antitumor agents used clinically often 

display poor pharmacokinetics, undesired toxicity and side-effects, and poor water 

solubility, presenting major delivery challenges.  Numerous chemotherapeutic drugs used 

today have a relatively low therapeutic index, or therapeutic ratio, described as the lethal 

dose divided by the therapeutic dose (LD50/ED50).  In essence, therapeutic benefits tend 

to be offset by detrimental side effects.  Covalently conjugating a small molecule drug to 

a water-soluble polymer scaffold affords prodrugs with massively improved aqueous 

solubility, longer in vivo circulation time (t1/2), and reduced side effects.
1
  

Macromolecular scaffolds afford increased hydrodynamic size compared to the drug 

alone, resulting in slower renal clearance, and increased uptake in tumor tissue by the 

enhanced permeability and retention (EPR) effect.
4
  The EPR effect exploits preferential 

uptake of large molecules due to the porous vasculature of tumor tissue, and subsequent 

retention as a result of poor lymphatic drainage relative to healthy tissue.   

Effective polymer prodrugs employ water-soluble, biocompatible polymers that 

introduce potent cancer drugs (which are often hydrophobic compounds) effectively into 

the bloodstream.  In prodrug form, the drug payload is rendered inactive, with release 

from the polymer scaffold dictated by the type of linkage between the drug and polymer.  
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Upon release, active drug is recovered, and the inert polymer carrier clears from the 

body.  A schematic representation of this process is shown in Figure 3.1.   

 

Figure 3.1 Schematic representation of polymer prodrug release mechanism in vivo. 

Examples of hydrophilic polymers suitable for cancer drug delivery include 

poly(ethylene glycol) (PEG),
5
 poly-N-(2-hydroxypropyl)methacrylamide (HPMA),

6-9
 and 

cyclodextrin-based polymers.
10,11  

Prominent among PEGylated cancer drug candidates is 

camptothecin (CPT), for which PEGylated versions show modestly enhanced circulation 

time and reduced side effects.
12

  PEGylated camptothecin, reported by Enzon, Inc. as 

Prothecan®, consists of a 40,000 g/mol PEG chain with camptothecin at each chain-end, 

connected by ester linkages at the C-20-OH position of the drug.
12

  Another 

chemotherapeutic agent, doxorubicin (DOX), has also been improved by PEGylation, 

including for example, with linear PEG conjugation,
13

 as well as through sophisticated 

architectures such as “bow-tie” dendrimers.
14

 The resulting polymer therapeutics display 

increased water solubility, decreased toxicity, and enhanced specificity due to the action 

of the EPR effect.  

PolyMPC has been used extensively in bulk materials and coatings for contact 

lenses and blood-contacting devices that require a high level of biocompatibility and 
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resistance to protein adsorption.
15-21

 As polyMPC has a decidedly lower commercial 

availability than functional PEG-based derivatives, its use in conjugation chemistry 

towards polymer prodrug therapeutics has been limited.  Living free radical 

polymerization techniques, such as ATRP
22-25

 and RAFT,
26,27

 now enable the preparation 

of well-defined polyMPC-drug conjugates with diverse architectures that cannot be 

achieved by conventional PEGylation techniques. In particular, through covalent grafting 

to polyMPC copolymers, a very high drug loading can be envisaged, whereas PEGylation 

chemistry confines covalent drug attachment to the polymer chain-end(s).   

The work described here extends polyMPC to the area of polymeric prodrugs, 

where small-molecule chemotherapeutics are covalently bound to the polymer backbone, 

and retain their therapeutic efficacy upon liberation from the polymer carrier.  The 

chemotherapeutic agents CPT and DOX were investigated as potential drug candidates to 

be improved through the polyMPC delivery platform.   

3.2 PolyMPC-CPT prodrugs by click chemistry 

20(S)-Camptothecin (CPT), a natural alkaloid, was first isolated from the Chinese 

tree Camptotheca acuminata in the 1960s.
28

  CPT shows potent anticancer activity over a 

broad range of cancer cells,
29,30

 but has poor water solubility and high toxicity that has 

limited its clinical use.  The efficacy of CPT and its more water soluble counterparts, 

topotecan and irinotecan, is compromised by ring-opening of the lactone (“E-ring”) to the 

corresponding carboxylate under physiological conditions.
31,32

 Binding of the carboxylate 

to serum albumin contributes to drug toxicity.  In order to better solubilize CPT, its 

conjugation to water soluble polymers has been explored, specifically by acylation at the 

20-OH position; this carries an added benefit of stabilizing the ring-closed form of the 
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drug.
33

  Water-soluble polymers such as poly(ethylene glycol) (PEG),
12,34

 poly-N-(2-

hydroxypropyl)methacrylamide (HPMA),
35,36

 poly-L-glutamic acid (PG),
37-39

 

cyclodextrin-based polymers,
40,41

 and PEG-grafted polyesters from the Emrick group
42

 

have been used to conjugate CPT; these polymer-CPT conjugates show increased 

efficacy over CPT to varying degrees.  

The aim of this work was to apply click chemistry for CPT conjugation to the 

polyMPC backbone, using an acylated and azide-modified CPT, to give polyMPC-CPT 

conjugates with high drug loading and potential for future integration into CPT-based 

injectable cancer therapeutics (Bioconjugate Chemistry, 2009).  This project was done in 

collaboration with Dr. Xiangji Chen, a post-doctoral researcher in the Emrick research 

group.  Considering prior work that demonstrated the amenability of CPT to click 

chemistry,
42

 polyMPC-g-CPT conjugates were prepared by combining this technique 

with ATRP. Copolymerization of MPC with trimethylsilyl (TMS)-protected propargyl 

methacrylate (TMS-PgMA), prepared from 3-TMS-propargyl alcohol and methacryloyl 

chloride
43

 was first explored, however, this method proved unsatisfactory, as the ethyl 2-

bromoisobutyrate-initiated ATRP copolymerization of MPC and TMS-PgMA gave 

copolymers with high PDI (nearly 2), and often multimodal elution peaks by GPC. 

Moreover, 
1
H NMR spectroscopy of these copolymers indicated a loss of the TMS 

protecting groups, likely the result of copper (I) acetylide formation during 

polymerization, as similar results have been observed in other polar organic solvents.
44

 

This undesired side-reaction promotes interchain coupling or even light cross-linking, 

and control experiments showed that the TMS protecting group was indeed lost 

completely when TMS-PgMA was stirred in solution under typical ATRP conditions.  
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Considering the role of copper (I) acetylide as an intermediate in Cu(I)-catalyzed 

Huisgen azide-alkyne click cycloaddition, ATRP and click cycloaddition were attempted 

simultaneously, by introduction of CPT-azide 48 at the outset of the polymerization, as 

shown in Figure 3.2.  Monomer conversion was monitored by 
1
H NMR spectroscopy, and 

cycloaddition was followed by disappearance of the CPT-azide N=N=N stretching signal 

at ~2100 cm
-1

 in the FTIR spectrum.  PolyMPC-g-CPT conjugate 49 prepared in this 

fashion was purified by precipitation into THF, followed by passage over a short plug of 

silica gel in mixed solvents. 

 

Figure 3.2 (A) Synthesis of polyMPC-g-CPT copolymers (49) by one pot ATRP and 

click chemistry; (B) aqueous GPC trace of copolymer 49; (C) plot of light scattering 

intensity with concentration of copolymer 49 (inset is polymer diameter distribution). 

PolyMPC-g-CPT was characterized by aqueous GPC as shown in Figure 3.2B, as 

well as 
1
H and 

13
C NMR spectroscopy. A homogeneous distribution of CPT functionality 

throughout the polymer molecular weight distribution was confirmed by overlaying the 

UV and RI traces obtained from GPC characterization.  Aqueous solution sizes of these 
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structures were also characterized using dynamic light scattering (DLS), with the 

copolymers largely forming unimers, in which the hydrophilic polymers are expected to 

cover a collapsed core of hydrophobic CPT groups (Figure 3.2C). The graft copolymers 

did not show a critical micelle concentration (CMC) up to 20 mg/mL (the highest 

concentration tested) and the average diameter of these structures was 6.8 nm. 

PolyMPC-g-CPT copolymers with different linkers between CPT and the polymer 

backbone, as depicted in Figure 3.2A, were synthesized to investigate drug release 

kinetics associated with ester linkages of variable neighboring hydrophilicity.  For 

example, to contrast the case of the 6-azidohexanoic acid linker,
42

 2-[2-(2-

azidoethoxy)ethoxy]acetic acid was synthesized. This was done by oxidation of 2-[2-(2-

chloroethoxy)ethoxy]ethanol to the corresponding carboxylic acid using Jones reagent at 

room temperature, followed by displacement of the chloride by reaction with NaN3 at 80 

°C.  The presence of the azide group was confirmed by its characteristic infrared spectral 

signal at ~2100 cm
-1

, and -azido methylene resonance at 50.6 ppm in the 
13

C NMR 

spectrum.  CPT-azide compounds were obtained by acylation of CPT with linkers using 

carbodiimide coupling.  Varying linker chemistry was found to have little-to-no effect on 

the polymerization and cycloaddition reactions, as indicated by the relatively low PDI 

values, and experimental agreement with theoretical drug loadings.  Thus, this one-pot 

click/ATRP procedure provides a facile one-step process to introduce CPT into 

hydrophilic, biocompatible MPC polymer backbone with good control over drug loading.   

The CPT loading on the polyMPC backbone could be varied easily by adjusting 

the MPC:TMS-PgMA/CPT ratio at the outset of the polymerization, with exemplary 

samples listed in Table 3.1.  Importantly, PDI control was achieved at CPT loadings up to 
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14 weight percent (compare this to SN-38-PEG 4-arm stars containing 3.7 wt % CPT
45

), 

and the aqueous solubility of this highly drug-loaded polyMPC structure was excellent 

(>250 mg/mL, or >35 mg/mL CPT equivalent).  The lactone form of CPT alone has a 

solubility of 2.5 μg/mL; thus use of the polyMPC framework provides orders-of-

magnitude greater solubility.  Aqueous solutions of these conjugates exhibit viscosities 

that qualitatively resemble pure water, a notable difference from PEGylated drugs that 

often exhibit an undesirably high solution viscosity.  The strongly hydrated zwitterionic 

moiety affects a wide range of properties, from solubility to sliding friction,
46

 making 

these structures more appealing for many biological applications, including injectable 

therapeutics.   

UV/Vis spectroscopy was found to be the most reliable method for determining 

CPT loading.  Recording the UV absorbance of the CPT-loaded polymer at 370 nm 

allowed for the weight percent CPT in each polymer to be calculated, using known 

concentrations of the CPT-azide compounds and their molar extinction coefficients.  The 

CPT loading for each sample is given in Table 3.1 as CPT weight percent.  As expected, 

the relative absorbance at 370 nm from CPT increased with increasing amount of CPT 

incorporated, with experimental values corresponding closely to the theoretical CPT 

incorporation.   

Table 3.1 Summary of polyMPC-g-CPT copolymers prepared by one-pot procedure. 

Sample 
 

Target 
CPT (wt %) 

Conversion Mn 
(g/mole) 

PDI Diameter 
(nm) 

CPT wt % 

49A 5 % 94 % 5,200 1.27 5.3 5.1 % 

49B 10 % 96 % 5,500 1.25 5.5 7.7 % 

49C 15 % Quantitative 5,100 1.36 5.7 13.8 % 

49D 8.5 % Quantitative 13,000 1.31 9.3 7.0 % 

49E 8.4 % Quantitative 7,000 1.26 6.8 5.1 % 
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In vitro drug release studies were performed on polyMPC-g-CPT conjugates to 

gauge their relative release rates and potential utility in delivery applications.  CPT-

carrying polyMPC materials were incubated in PBS at various buffered pH values (5.5, 

7.4, and 9.1) to measure the CPT hydrolysis half-lives from the polymer backbone, with 

the choice of backbone-to-drug linkage leading to significant changes in ester cleavage 

and drug release.  The hydrophobic 6-azidohexanoic acid linker was first chosen for CPT 

conjugation, giving copolymers 49A-C (Table 3.1).  These structures gave very little 

hydrolysis over four days of incubation under several different aqueous conditions, 

suggesting that this linker is too hydrophobic for potential future in vivo use.   To 

expedite ester hydrolysis, the hydrophilic linker 2-[2-(2-azidoethoxy)ethoxy]acetic acid 

was used to prepare copolymers 49D-E (Table 3.1).  The results of hydrolysis studies of 

these structures in different media are shown in Figure 3.3.  SEC-HPLC was used to 

monitor CPT release from 49D and 49E incubated in various media (PBS, mouse serum, 

cell culture medium, and human plasma). The polymer-drug conjugate was observed to 

elute at 9.4 minutes and free CPT eluted at 16.9 minutes.  Over the course of 96 hours, 

the conjugate peak was seen to decrease while the CPT peak increased, as expected, as 

CPT is hydrolyzed from the polymer backbone.  These copolymers, with half-lives of 

210–220 hours in PBS (pH 7.4), showed much faster release profiles than polyMPC-g-

CPT copolymers prepared using 6-azidohexanoic acid linkers. These polymers also 

showed significantly shorter half-lives in mouse serum (~80 hours), cell culture medium 

(~40 hours) and human plasma (8-9 hours).  The hydrophilicity and electron-withdrawing 

effect of the alkoxy group α to the carboxylic acid aids in accelerating ester cleavage. 
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Figure 3.3 Conjugate 49D and 49E degradation in different media at 37 °C. 

HPLC characterization of CPT liberation from polyMPC-g-CPT conjugates 

confirmed the importance of tailored linkers, and was informative for in vitro cell culture 

evaluation of conjugate toxicity against various cell lines.  Taking 49D and 49E as 

examples, a much faster CPT release profile was seen in human plasma as compared to 

CPT release rates in PBS.  These CPT hydrolysis half-lives are, however, slower than 

those reported for PEGylated-SN38 conjugates,
45

 leading to an expected longer blood 

circulation time in vivo.  The anti-cancer activity of these polyMPC-g-CPT structures 

(49D and 49E) was tested against different cancer cell lines, including human breast 

(MCF7), ovarian (OVCAR 3) and colon (COLO 205) adenocarcinoma cells by Dr. 

Sangram Parelkar, a post-doctoral researcher in the Emrick research group.  This was 

done by incubating CPT-equivalent concentrations of 49D and 49E with these cells for 

72 hours, followed by cell viability measurements using a luminescence plate reader. 

Controls included a DMSO solution of CPT, and polyMPC itself.  Dose response curves 

showed that both 49D and 49E were potent against the cancer cell lines tested here and 

importantly the noted cytotoxicity was through CPT only, since polyMPC by itself is 
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non-toxic (Figure 3.4). The IC50 values show that both 49D and 49E induced cytotoxicity 

at IC50 values higher than native CPT alone, resulting from the fact that CPT was slowly 

liberated over time from the polymer chain. It can also be seen that the colon cancer cells 

were most sensitive to polyMPC-g-CPT conjugates.  

 

Figure 3.4 In vitro cytotoxicity of polyMPC-g-CPT conjugates in cell culture of human 

breast (MCF7), ovarian (OVCAR 3) and colon (COLO 205) adenocarcinoma cells.  Error 

bars represent ± standard deviation. 

3.3 Polymer micelles for drug delivery 

In addition to conventional linear polymer-drug conjugates, alternative 

architectures have been used with impressive results, including branched structures, such 

as a dendritic PEG-polyester doxorubicin (DOX) conjugates,
14,47

 as well as numerous 

reports of encapsulated drugs exploiting micellar and liposomal systems.
48-50

  Polymer 

micelles are enabling materials in nanoscale therapeutics, generally prepared from 

amphiphilic block copolymers where, in water, the hydrophobic block sequesters drug 
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within the core, and the hydrophilic block serves as an encapsulating corona, imparting 

both water solubility and stealth properties to the micelles.
51-54

  The ease with which 

drug-loaded micelles can be prepared (usually by dialysis or dilution) makes these 

nanostructures attractive for injectable therapeutics, however, their use can be 

problematic as they tend to suffer from "burst release" kinetics, where a large percentage 

of the payload is released very quickly.
55

 Dilution upon injection is also a concern: self-

assembled polymer micelles are dynamic structures with an equilibrium between free and 

associated polymer chains.  Though polymeric micelles often have low critical micelle 

concentrations (CMC), extreme dilution arising from intravenous injection shifts the 

equilibrium toward free polymer, resulting in disassociation of the micelles and liberation 

of the payload.
55

 An effective method to overcome these challenges is to stabilize 

polymer micelles by covalent cross-linking. 

 Both shell and core cross-linked micelles have been prepared from a variety of 

different chemistries, including cross-linking with bi-functional additives,
56,57

 free radical 

polymerization,
58,59

 and photo-cross-linking.
60,61

  Reversing the cross-linking with an 

environmental trigger is an area of great interest, and examples of pH cleavable and 

redox sensitive cross-links have been reported.
62-65

  Cross-linking with disulfides may be 

particularly important for drug delivery due to their triggered bond breakage under 

physiologically-relevant and intracellular-specific conditions; the intracellular 

environment is up to 1000 times more reducing than extracellular fluids.
66

  Several recent 

reports utilized disulfide cross-linked micelles as drug delivery vehicles.  Thiols have 

been introduced to polymers by post-polymerization modification, for example by thiol 

functionalization of PEGylated poly(lysine) with N-succinimidyl 3-(2-pyridyldithio)-
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propionate.
67

  Following micellization, oxidation led to core cross-linking, and treatment 

with dithiothreitol (DTT) resulted in micelle dissociation.  In another example, a random 

copolymer of methacryloyloxyethyl phosphorylcholine (MPC), glycidyl methacrylate, 

and stearyl methacrylate formed micelles ~100 nm in diameter, with disulfide cross-

linking achieved by reaction of the epoxide with cystamine.
68

  The micelles were 

responsive to DTT, and biocompatible.  Disulfide cross-linked polymer micelles have 

been reported as carriers for chemotherapeutic agents including doxorubicin (DOX)
69,70

 

camptothecin (CPT),
71

 and paclitaxel (PTX).
72,73

 A recent example employed a block 

copolymer of PEG and HPMA, where a percentage of the HPMA block was coupled to 

lipoic acid.  Micelles from this polymer were loaded with DOX, and cross-linked using 

DTT.
74

 However, this post-polymerization modification lacked control over, and 

characterization of, the degree of substitution.  Moreover, the block copolymers were 

water-insoluble. 

The work described in this section presents the synthesis of novel block 

copolymers based on polyMPC, where the second block is prepared from a lipoic acid-

based methacrylate. This synthesis precludes the need for post-polymerization 

modification to introduce thiols, and ensures the presence of a functional hydrophobic 

block with known and easily tunable thiol content.  These MPC-based block copolymers 

proved water soluble, even with high percentages of the lipoic acid-containing block, and 

self-assembled readily into nanoscale micelles.  Such structures are presented as carriers 

for CPT, in which a pyridyldithio-functionalized CPT
71

 was conjugated to the DHLA 

block, thus sequestering CPT to the micelle core.  The disulfide linkages allow for 

controlled CPT release upon exposure to reducing conditions, as would be found upon 
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cellular internalization.  This environmental stimulus, coupled with the passive targeting 

of the EPR effect inherent to polymer-based drug delivery systems, is of interest for 

improving the outcome of polymer-based drug delivery (Molecular Pharmaceutics, 

2013).        

3.4 Synthesis of CPT-loaded polyMPC micelles 

PolyMPC-DHLA block copolymers were synthesized by RAFT polymerization, 

employing sequential monomer addition to form the block copolymers shown as 55 in 

Figure 3.5.  Monomer 51 was prepared in 80 % yield by carbodiimide coupling of 2-

hydroxyethyl methacrylate (9) and lipoic acid (50).
75

  The monomer was isolated as a 

yellow oil, and stored as a CH2Cl2 solution at -80 °C to prevent disulfide exchange.  

Stored in this way, monomer 51 was stable for months. 

PolyMPC-DHLA diblock copolymers were prepared by first polymerizing MPC 

using 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (52) and 4,4'-azobis(4-

cyanovaleric acid) (ACVA, 53) as the chain transfer agent and initiator, respectively, at 

70 °C in methanol/dimethylsulfoxide solution.  Following conversion of MPC to 

polymer, a DMSO solution of 51 was introduced under inert atmosphere, and the mixture 

was stirred at 70 °C for 12 hours.  The polymerization was terminated by immersing the 

flask in liquid nitrogen, then allowing the mixture to warm while open to air.  The 

polymerizations were generally taken to >90 % conversion, as judged by 
1
H NMR 

spectroscopy, comparing vinyl protons of the monomer (5.5 and 6.0 ppm) to methyl 

protons on the polymer backbone (1.0 ppm).  Polymer 54 was isolated as a pink solid 

following purification by passage through a short plug of silica gel, and precipitation into 

THF. 
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Figure 3.5 (A) Synthesis of thiol-containing monomer 51 based on lipoic acid 50; (B) 

Synthesis of MPC block copolymers; (C) 
1
H NMR spectroscopy of a representative 

polymer sample; (D) Aqueous gel permeation chromatography of polymer 55. 

 Block copolymer 54 was reduced immediately to the free thiol form with NaBH4 

(4 molar equivalents relative to lipoic acid).  The reaction was complete in 2 hours, at 

which point concentrated HCl was added to adjust the solution pH to ~3.  The polymer 

solution was dialyzed against methanol, then water, at 4 °C (MWCO 1,000).  

Lyophilization gave polyMPC-DHLA (55) as a white solid.  Polymer 55 was 

characterized by NMR spectroscopy, and GPC eluting with 0.1 M aqueous sodium nitrate 

+ 0.02 % (wt) sodium azide or trifluoroethanol (TFE) (0.2 M sodium trifluoroacetate), 

against linear PEO or PMMA calibration standards, respectively (Table 3.2).  The extent 

of DHLA incorporation was determined by 
1
H NMR spectroscopy in 1:1 CDCl3:MeOD, 

EDC/DMAP

DCM

m n

MeOH

70  C
6 hours

DMSO
NaBH4

0 – 25  C
2 hours

m n

1 1
2 2

1

2, 10, 11, 12, 14

3
4

5

6

7
7 (+ MeOH)

6

3,4,

5, 8

3
8

9
10

11
12

13
14

15

13 15 9

9

50

51

11

52

53

Monomer 51

54

55

0

10

20

30

40

50

60

70

20 30 40

R
I R

e
s
p

o
n

s
e

Elution Time (min)

3A55

(A)

B)

C) D)



65 

 

comparing the DHLA methylene signal at 2.5 ppm with the methyl protons of the 

polymer backbone at 1.0 ppm.  This showed the DHLA content to be well-controlled by 

adjusting monomer feed ratios.  GPC in TFE revealed a well-defined (monomodal) 

polymer signal, with PDI ~ 1.2.  In water, a high molecular weight signal was also seen, 

attributed to copolymer micellization in solution.  Interestingly, aggregation of this sort 

was not observed in our characterization of random copolymers of similar composition 

and molecular weight.  We hypothesize that this behavior arises from (1) the distinct 

amphiphilicity of these diblock copolymers that leads to rapid solution assembly, and (2) 

the dense concentration of thiols in the DHLA block that provides additional stability to 

the micelles through disulfide formation.  We note that these diblock copolymers 

maintained excellent water solubility (to the eye), even at the highest DHLA 

incorporation of 41 mole percent (sample 55C). 

Table 3.2 Summary of polymerization results for block copolymer 55. 

Sample Target Mol. Wt. 
(g/mole) 

Target % DHLA TFE GPC % DHLA 

Mn PDI 

55A 16,000 10 % 24,800 1.19 15 % 

55B 18,000 20 % 26,900 1.24 23 % 

55C 21,000 40 % 22,300 1.15 41 % 

 

The critical micelle concentration (CMC) of block copolymers 55A-C was 

examined using a pyrene fluorescence probe.  Briefly, serial dilutions of polymer were 

prepared in PBS, and 5 μL of pyrene solution in acetone was added to each, giving a 

pyrene concentration of 0.6 M.  The samples were equilibrated at room temperature for 

18 hours.  Pyrene exhibits a shift in peak fluorescence intensity as it transitions from a 

hydrophilic (334 nm) to hydrophobic environment (339 nm), and CMC is determined by 
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plotting peak intensity against the log of the polymer concentration, as shown for 

polymer 55C in Figure 3.6A.  The onset of the sharp change in slope of the line is taken 

as the CMC.  Dynamic light scattering (DLS) analysis of the same series of 

samples/concentrations shows a non-linear relationship between the scattering intensity 

and concentration, confirming the presence of nanoscale micelles above CMC (Figure 

3.6B).  CMC varied slightly among the polymer samples, with an observed dependence 

on hydrophobic content; as expected, the CMC for polymer 55C was lowest due its 

higher DHLA content (41 mole %).  DLS measurements of block copolymers 55A-C 

showed an increase in size with hydrophobic block length, with hydrodynamic diameters 

of 15, 18 and 28 nm, respectively, measured at 1 mg/mL in PBS (Figure 3.6C). 

 

Figure 3.6 Summary of micelle characterization: (A) CMC determination using pyrene 

fluorescence for block copolymer 55C; (B) scattering intensity vs. concentration from 

dynamic light scattering for block copolymer 55C; (C) size (diameter) of micelles from 

copolymers 55A-C. 
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Thiol-containing micelles can self-cross-link by oxidation to disulfide form, 

accomplished by continually purging the system with air.  The process of disulfide 

formation was monitored using Ellman's test,
76

 performed on polymer dissolved in PBS 

above the CMC and agitated by bubbling a slow stream of air through the mixture.  At 

various time points, 10 uL aliquots were removed and added to a buffered solution of 

Ellman's reagent, resulting in a decrease in intensity of the UV absorption at 412 nm as 

the free thiol converted to disulfide (Figure 3.7A). This provides a spectroscopic handle 

to monitor cross-linking efficiency.  Samples generally reached 85 % conversion in 48 

hours.  Solutions simply left open to air, without bubbling, gave significantly lower 

conversion (~20 % after two days).   

 Cross-linked micelles were characterized by DLS and TEM (Figure 3.7).  DLS of 

cross-linked micelles formed from polymer solutions at 1 mg/mL showed no difference 

from the uncross-linked samples, suggesting that the cross-linking process neither 

disrupts the structure of the micelles nor promotes inter-micelle cross-linking.  Aqueous 

solutions of cross-linked micelles (0.25 mg/mL) were cast on copper grids and imaged by 

TEM.  Micelles observed by TEM supported the DLS data, with an average micelle 

diameter of 26 ± 4 nm (Figure 3.7B).  The micelles imaged by TEM appeared as 

spherical structures and were dispersed cleanly on the substrate. 

 Cross-linked micelle solutions were stable, as characterized by DLS, to 

concentrations well below the CMC (0.01 mg/mL).  However when treated with 5 mM 

dithiothreitol (DTT) at 37 °C, then cooled to room temperature and analyzed again by 

DLS, no signal was detected (as for the uncross-linked polymer at the same 
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concentration) indicating complete dissolution of the polymer micelle by disruption of 

the disulfide cross-links (Figure 3.7C).   

 

Figure 3.7 (A) Percent decline of free thiol over time for micelles prepared from 

copolymer 55B, monitored by Ellman's test; (B) TEM of cross-linked micelles formed 

from polymer 55B; (C) DLS of cross-linked polymer micelles from copolymer 55A 

below the CMC (0.01 mg/mL) (left), and DLS of the same sample after treatment with 

DTT (right); DTT cleavage of disulfide linkages gives free polymer in solution (below 

CMC).  

These redox-sensitive core cross-linked PC polymer micelles comprise a 

potentially suitable delivery platform for therapeutics, in which a triggered release can 

enable selective and targeted delivery of a drug, as the cytosol and nucleus are known to 

have a significantly higher reducing potential (mM) than the extracellular fluids (μM).
66

 

CPT was used as the chemotherapeutic, specifically a pyridyl disulfide-functionalized 

CPT derivative, prepared similarly as reported in the literature,
71

 to facilitate conjugation 

to the polymer by disulfide formation.  Briefly, 3-(2-pyridyldithio)-propionic acid (56) 

was prepared by reaction of 2,2'-dithiodipyridine with 3-mercaptopropionic acid in ethyl 

acetate, and purified by column chromatography on silica gel to yield the desired product 
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in 95 % yield.
77

  Carbodiimide coupling of camptothecin (1) and linker 56 was achieved 

in anhydrous methylene chloride
71

 (Figure 3.8).  Following purification by column 

chromatography on silica gel, eluting with methanol/methylene chloride mixtures, 

camptothecin derivative 57 was obtained as a yellow solid in ~50 % yield.  The structure 

was confirmed by NMR spectroscopy and high resolution mass spectrometry (calculated, 

546.115; found, 546.113).   

 CPT-pyridyl disulfide 57 was conjugated to polyMPC-DHLA by stirring in a 2:3 

mixture of MeOH/DMSO for 72 hours at 37 °C.  The solution was dialyzed against 

methanol (MWCO 1,000) to remove unreacted 57, then against water to induce micelle 

formation.  After complete removal of the organic solvents, the aqueous solution was 

transferred to a vial and purged with air to form CPT-loaded core-cross-linked polymer 

micelles, as depicted in Figure 3.8.  CPT loading was characterized by UV/Vis 

spectroscopy, comparing absorbance at 370 nm with a CPT solution of known 

concentration.  Polymer-CPT prodrugs prepared in this way achieved from 5 to 10 wt % 

CPT-loading.   

 

Figure 3.8 Synthesis of CPT-pyridyl disulfide 57, conjugation to polyMPC-DHLA 

copolymer to give prodrug 58, subsequent cross-linked micelle formation, and 

characterization of CPT loading by UV/Vis spectroscopy. 
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 CPT release from the polymer micelles was monitored by dialysis, where 1 mL of 

micelle solution was transferred to a cassette (MWCO 3,500), and dialyzed against PBS, 

or PBS + 3 mM DTT (300 mL), in a closed container at 37 °C.  At select time points, 

aliquots were removed from the external medium, and replaced with fresh buffer, while 

monitoring fluorescence intensity at 440 nm over time (λex = 370 nm). Free CPT was 

dialyzed against PBS to demonstrate that diffusion out of the dialysis cassette is not a 

limiting factor, and to establish a benchmark for assessing the performance of the 

micelle-based systems.  CPT (without encapsulation) diffused through the cassette within 

6 hours, with 90 % released in the first 2 hours (Figure 3.9).  For further comparison, 

polymer micelles were prepared containing unmodified CPT simply encapsulated in the 

core (i.e. having no disulfide linkage).  Physically encapsulated systems showed little 

difference from CPT alone, with an initial burst release of 75 % in 4 hours, followed by 

slow release of the remaining drug over two days.  In contrast, the disulfide-conjugated 

CPT prodrug micelles showed much different release profiles.  In PBS containing DTT (3 

mM), CPT release was fast, with 50 % release in 5.5 hours, and complete release in 2 

days.  In PBS at pH 7.4, CPT release was slow (85 % over 5 days), presumably due to 

slow hydrolysis of the ester linkage, with a half-life (t1/2) of 28 hours.  These results 

suggest these polyMPC-CPT prodrug micelles as a potential drug delivery system that is 

relatively stable in a neutral environment, yet can exploit the redox characteristics of the 

intracellular environment.   
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Figure 3.9 Release profiles of CPT, encapsulated CPT, conjugated CPT in PBS, and 

conjugated CPT in PBS + 3 mM DTT.  Samples were analyzed in triplicate; error bars 

represent ± standard deviation. 

The cytotoxicity of poly(MPC-DHLA)-CPT conjugates was tested in vitro against 

human breast cancer (MCF7) and colorectal (COLO205) adenocarcinoma  cells by Dr. 

Sangram Parelkar.  This was done by incubating CPT-equivalent concentrations of 

poly(MPC-DHLA)-CPT conjugates with these cells for 72 hours, followed by cell 

viability measurements using a luminescence plate reader.  Dose response curves (Figure 

3.10) showed that micellar conjugates (with CPT loadings of 2 and 5 weight percent) 

were potent against the cancer cell lines tested.  The observed cytotoxicity arises from 

released CPT (a result of ester bond cleavage), and the polymer itself exhibits no toxicity 

even at extremely high concentrations (2.5 mg/mL).   

 The half-maximal inhibitory concentration (IC50) values of poly(MPC-DHLA)-

CPT prodrug micelles were in the range of 3-9 μM, as shown in Table 3.3, where the 

comparable IC50 values for both poly(MPC-DHLA)-CPT conjugates originate from their 

similar release rates.  The data shows poly(MPC-DHLA) micelles containing CPT 

conjugated by disulfide linkage induce toxicity at higher concentrations than CPT alone.  

This is expected for polymer prodrugs, and is a key feature that allows higher maximum 

0

20

40

60

80

100

0 20 40 60 80 100 120

C
P

T
 r

e
le

a
s

e
 (
%

)

Time (hours)

Free CPT

Encapsulated CPT

Conjugated CPT (PBS)

Conjugated CPT (PBS+ 3 mM DTT)

Sample Half Life

Free CPT (Control) < 1 hour

Encapsulated CPT 1 hour

Conjugated CPT (PBS) 31 hours

Conjugated CPT (PBS/DTT) 6 hours



72 

 

tolerated dose (MTD) of prodrugs in vivo.
78,79

  Interestingly, CPT that was physically 

encapsulated within the micelles (i.e. no covalent linkage) showed nearly identical 

toxicity to native CPT.  This is likely due to the fast release observed for these structures, 

as compared to the gradual release of CPT from the prodrugs.  The combination of redox 

triggered release and the cell culture data presented here will be beneficial for controlling 

drug release in vivo, while exploiting the very high water solubility arising from the 

phosphorylcholine-substituted polymer. 

 

Figure 3.10 In vitro cytotoxicity of (A) polyMPC-DHLA micelles, and of CPT-loaded 

polyMPC-DHLA micelles with (B) human breast (MCF7) and (C) colorectal (COLO205) 

cells.  Error bars represents ± standard deviation. 
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Table 3.3 IC50 values of poly(MPC-DHLA)-CPT micelles in MCF7 and 

COLO205 cancer cell lines. 

IC50 [μM] MCF7 COLO 205 

CPT 0.51 ± 0.05 0.43 ± 0.1 

Poly(MPC-DHLA)-CPT (encapsulated) 0.48 ± 0.01 0.44 ± 0.1 

Poly(MPC-DHLA)-CPT (2 wt %) 3.0 ± 1.8 8.3 ±0.8 

Poly(MPC-DHLA)-CPT (5 wt %) 3.6 ± 0.8 4.7 ± 0.3 

 

 In summary the synthesis of novel diblock copolymers and micelles based on 

phosphorylcholine and dihydrolipoic acid-containing methacrylates was shown, as well 

as their potential utility as a drug delivery platform.  Use of DHLA as the hydrophobic 

block allows for post-polymerization conjugation and cross-linking reactions by disulfide 

formation.   CPT was successfully conjugated to the DHLA block, then released in a 

controlled manner in buffer, with the benefit of a trigger in a reducing environment.  The 

CPT-loaded micelles demonstrated cytotoxicity at higher CPT concentrations than with 

the drug alone, as expected for polymer prodrugs due to the covalent connection of CPT 

to the backbone.  The combination of robust, highly water soluble micelles and stimuli-

responsive drug release yields a system that is promising for overcoming challenges 

faced by micellar delivery vehicles, including in vivo stability and fast, non-specific 

release of their contents. 

3.5 PolyMPC-DOX prodrugs 

 Doxorubicin (DOX) is another example of a clinically relevant chemotherapy 

agent that can benefit from a polymer-based delivery platform.  DOX is a DNA 

intercalator, affecting a wide range of DNA processes.  As is the case with many 

chemotherapeutics, the potent anticancer activity of DOX is accompanied by undesirable 

side effects.  Doxil, a PEGylated liposomal formulation of DOX, has shown favorable 
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pharmacokinetics compared to the free drug, as well as reduced dose-limiting 

toxicity.
80,81

  Despite the benefits of this formulation, Doxil suffers from its own 

toxicities, especially palmer-planter erythrodysesthesia and mucositis/stomatitis arising 

from accumulation in the skin.
82-85

 Covalent polymer-drug conjugation has also been 

explored with DOX, including a PEGylated dendrimer at a drug loading of 10 weight 

percent, showing promise in preclinical studies.
14

  In addition to the degradable dendritic 

structures,
14,86

 HPMA,
87-89

 and PEO-based polymers
90

 were also conjugated to DOX 

exploiting pH-sensitive hydrazone chemistry.  The use of an acid-labile linker enables 

specific release of DOX either in the slightly acidic environment of tumor tissue
91,92

 or 

intracellularly in the acidic environments of the endosomal or lysosomal compartments.
93

 

 In 2012, Dr. Xiangji Chen, a post-doctoral researcher in the Emrick research 

group, reported the synthesis of polyMPC-DOX conjugates, prepared by integrating 

hydrazone linkages as pendent groups along the polymer backbone.
94

  Such structures 

were prepared by ATRP copolymerization of MPC with either 2-tert-butoxy-2-oxoethyl 

methacrylate (TBOEMA) or 2-ethoxy-2-oxoethyl methacrylate (EtOEMA) using copper 

bromide and bipyridine as the catalyst and ligand, respectively.  The ethyl esters of 

copolymer 60 are readily converted to acyl hydrazides by substitution with hydrazine to 

give polyMPC-hydrazine, shown as polymer 61 in Scheme 3.1.  Polymer 61 was 

characterized by aqueous gel permeation chromatography (GPC) against linear PEO 

standards and by 
1
H NMR spectroscopy to determine the mole percent of hydrazine 

monomer units within the polymer.  Polymer 61 was conjugated to DOX by hydrazone 

formation in methanol, in the presence of magnesium sulfate and acetic acid, to give 

polyMPC-DOX prodrug 62.  PolyMPC-DOX 62 was purified by preparative size 
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exclusion chromatography, and lyophilized to give a bright red powder, which proved 

stable for months when stored as a dry solid at -20 °C.   

 

Scheme 3.1 Synthesis of polyMPC-DOX conjugate 62 from ethyl ester-containing 

polyMPC precursor polymer 60. 

 The synthesis towards polyMPC-DOX prodrugs described by Chen et al
94

 results 

in conjugates with exceptionally high water solubility and tunable drug loading, reaching 

or exceeding 30 weight percent DOX.  These polyMPC-DOX conjugates displayed pH 

sensitive release profiles, with half-life (t1/2) values ranging from 2-40 hours at pH 5.0, 

while only 2 to 20 % of DOX was released in 48 hours at pH 7.4.  In cell culture, the 

half-maximal inhibitory concentration (IC50) values for polyMPC-DOX ranged from 1.5 - 

16 μM for human breast cancer (MCF7 and MDA-MB-231) and colorectal (COLO 205) 

adenocarcinoma cell lines.
94

  Moreover, the maximum tolerated dose (MTD) was 

determined for polyMPC-DOX in athymic Nu/j mice, and was found to be well-tolerated 

to over 30 mg/kg over the course of the 30 day study; mice which received doses of 50 

mg/kg showed only a 10 % weight loss at 22 days.  These values represent an increase 

compared to the MTD of free DOX (~6 mg/kg),
95

 the liposomal formulation DOXIL(36 

mg/kg)
14

 and a PEGylated polyester dendritic DOX example (20-40 mg/kg).
14

   

 The work presented in this thesis aims to extend in vivo prodrug characterization 

to include pharmacokinetics, biodistribution, and treatment efficacy data for polyMPC-

DOX using a 4T1 murine breast cancer model in collaboration with Dr. Sallie Schneider 
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at the Pioneer Valley Life Sciences Institute (PVLSI) (Molecular Pharmaceutics, 2014).  

The 4T1 mammary carcinoma was selected as an extremely aggressive breast cancer 

model that is highly tumorigenic and metastatic, and thus can be considered as a model 

for triple negative breast cancer.
96,97

  Unlike many tumor models, 4T1 tumors can 

metastasize spontaneously from the primary tumor to multiple distant sites including the 

lungs, lymph nodes, liver, brain and bone within weeks following injection.
96

  We viewed 

the 4T1 model as a challenging tumor model to test the effect of polyMPC-DOX 

prodrugs, potentially enhancing the utility of DOX in late stage breast cancer.  4T1 cells 

can be introduced orthotopically by direct injection into the mammary gland, such that 

the primary tumor site is anatomically correct, and the syngeneic nature of the cells 

allows for use of immuno-competent animals, and thus examination of the effects of 

polyMPC-DOX conjugates on the immune system. The 4T1 breast cancer model has 

been used by others to study polymer prodrugs in vivo, including paclitaxel,
98,99

 

docetaxel,
98

 cisplatin,
100,101

 gemcitabine,
102

 and doxorubicin
103,104 

with variable success 

with respect to slowing tumor growth and reducing off-target toxicity.  Given the high 

level of water solubility and degree of drug loading achievable with polyMPC-DOX, 

these prodrugs have potential for the treatment of breast cancer, and this study 

demonstrates their efficacy in 4T1 tumor-bearing mice.   

3.6 Efficacy of polyMPC-DOX in 4T1 tumor-bearing mice   

 For the efficacy study described here, we used polyMPC-DOX with an estimated 

molecular weight of 25,000 g/mole, and DOX loading of 22 weight percent.  To further 

extend our in vivo prodrug characterization, the pharmacokinetic profile of polyMPC-

DOX was evaluated in BALB/c mice.  Animals were sorted into three groups of eight, 
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with a control group (HBSS), a free DOX group, and a polyMPC-DOX group (6 mg/kg 

DOX equivalent doses) introducing drugs by a single tail vein injection of 100 μL total 

volume.  Blood serum levels of DOX were monitored over time, analyzing for the 

presence of drug by HPLC equipped with a fluorescence detector.  As shown in Figure 

3.11, free DOX concentration decreased rapidly, with a t1/2 of 15 minutes, clearing to 

near-undetectable levels within 1 hour.  This is consistent with reported values for 

DOX.
95,103

 PolyMPC-DOX displayed a significantly longer circulation half life of 2 

hours.  Accordingly, the area-under-the-curve (AUC) was dramatically higher for the 

polyMPC-DOX prodrug (408 μg•h/ml) compared to free DOX (22 μg•h/ml).      

 

Figure 3.11 Pharmacokinetic analysis of polyMPC-DOX in BALB/c mice.  

Polymer conjugation extends the circulation half life from 15 minutes to 2 hours and 

increases the AUC from 22 μg•h/ml to 408 μg•h/ml .  Error bars represent ± standard 

deviation. 

 The biodistribution of DOX was determined for both the free drug, and polyMPC-

DOX, three and five days post-injection from the 6 mg/kg DOX equivalent doses 

administered to the tumor-bearing mice used in the PK study (Figure 3.12).  The tumor 

uptake of DOX for polyMPC-DOX was 700 ng per gram of tissue three days after 

injection, and 390 ng/g five days after injection. This represents a two-fold increase over 

free DOX at Day 3 (350 ng/g) and a three-fold increase over free DOX at Day 5 (130 
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ng/g).  Moreover, polyMPC-DOX conjugates displayed reduced accumulation in off-

target organs, including the spleen and especially the lungs relative to free DOX.  

Significantly higher drug accumulation was noted in the liver for the polyMPC-DOX 

group compared to the free DOX group, which we attribute to the prolonged circulation 

times and delayed clearance noted for the polymer prodrug.
  
While DOX is known to be 

metabolized primarily by the liver, the liposomal formulation DOXIL was found to have 

impaired hepatic metabolism, suspected to be excluded from uptake based on liposome 

size.
105

 Similarly the increased size of polyMPC-DOX prodrugs relative to free DOX 

may hamper hepatic uptake, resulting in delayed accumulation.  Low drug accumulation 

found in the heart for the polyMPC-DOX group is potentially advantageous, reducing 

cardiotoxicity effects, a known dose-limiting side effect commonly associated with DOX 

administration.
81

 Tumor-to-normal tissue distribution ratios are given in Table 3.4, 

highlighting the preferential DOX uptake in tumor tissue relative to healthy tissue.  The 

benefits of passive tumor targeting of polymer prodrugs has been noted before, and the 

data presented here suggests the polyMPC-DOX has similar benefits in vivo.
4,103

  

 

Figure 3.12 Biodistribution analysis of polyMPC-DOX compared to free DOX after (A) 

3 days and (B) 5 days expressed as ng DOX / g tissue.  The significance was determined 

using a two-tailed Student's t-test [* p=0.05 to 0.01; ** p=0.01 to 0.001; *** p<0.001].  

Error bars represent ± the standard error of the mean (SEM). 
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Table 3.4 Tumor-to-normal tissue distribution ratios for polyMPC-DOX and DOX. 

  Liver Spleen Lung Heart Kidney 

PolyMPC-DOX Day 3 0.52 1.50 1.86 4.00 0.90 

Day 5 0.66 2.40 2.45 5.94 0.94 

Free DOX Day 3 0.83 0.35 0.45 2.01 0.39 

Day 5 0.63 0.21 0.33 1.43 0.49 

 

 At the conclusion of the PK and biodistribution study, the spleen, liver, kidney, 

heart, lungs, and tumors were removed from the animals and weighed, with livers and 

spleens fixed and paraffin-embedded for histological analysis.  As shown in Figure 

3.13A, only small differences amongst the groups were noted with respect to tissue 

weights. Histological analysis of tissue sections stained with hematoxylin and eosin 

(H&E) suggested no significant off-target toxicity at these high levels of DOX, consistent 

with the use of the polyMPC as a carrier.  Despite the previously noted increase in drug 

accumulation in the liver, H&E analysis revealed no sign of adverse effects or off-target 

toxicity in the liver (Figure 3.13B).  

 
Figure 3.13.  (A) Weights (g) of tissues collected at conclusion of the study (5 days post-

injection): liver, spleen, lung, kidneys, heart and tumor.  Error bars represent ± SEM.  [*p 

= 0.5 - 0.1]; (B) H&E stained liver sections from HBSS, DOX, and polyMPC-DOX 

treatment groups from biodistribution study. 

 While our data, and other literature reports on polyMPC point to the safety of its 

use in vivo, we are not aware of prior reports that examine potential in vivo 

immunogenicity arising from its presence in the bloodstream.  Thus, in conjunction with 

these in vivo efficacy studies, we also sought to gauge whether there were innate or 
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adaptive immune system responses to polyMPC, accomplished through a complete blood 

count (CBC), and measurement of cytokine responses by an enzyme-linked 

immunosorbent assay (ELISA) (Figure 3.14).  Analysis of serum cytokine and white 

blood cell (WBC) levels indicated an initial increase in total WBC count on Day 3 with 

polyMPC DOX (Figure 3.14A), with no differences noted on Day 5 (Figure 3.14B).  The 

initial increase in white blood cell count, suggestive of a foreign antigen response, was 

rectified by Day 5.  Red blood cell (RBC) counts indicated no differences across the 

treatment groups. Furthermore, we observed no significant differences between 

polyMPC-DOX and HBSS in Th1 versus Th2 cytokines by ELISA at Day 3, with only a 

slight decrease in IL12 and IL10 noted at Day 5. However, this cannot be attributed to the 

polyMPC carrier, since this decrease is much more pronounced in the case of animals 

treated with free DOX (Figures 3.14C-3.14H).  These results suggest that polyMPC-

bound DOX does not elicit significant adverse immunogenic effects that could lead 

towards undesired anemia or inflammatory response in animals.  
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Figure 3.14.  Analysis of immune response across all treatment groups using complete 

blood count (CBC) and ELISA cytokine measurements three and five days after 

injection. (A) White blood cell count (WBC) (Day 3); (B) WBC (Day 5); (C) Interferon-γ 

(IFN- γ) (Day 3); (D) IFN- γ (Day 5); (E) Interleukin-12 (IL-12) (Day 3); (F) IL-12 (Day 

5); (G) Interleukin-10 (IL-10) (Day 3); (H) IL-10 (Day 5).  Error bars represent ± SEM. 
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3
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animal appeared to be showing signs of stress, including a scruffy appearance or 

abnormal behavior. A summary of tumor efficacy results is presented in Figure 3.15.  

Figure 3.15A shows that survival was increased substantially for mice receiving 

polyMPC-DOX compared to both the untreated and free DOX-treated mice.  Notably, 

mice receiving the free DOX treatment showed no improvement, essentially mirroring 

results for the HBSS group; all these mice were removed from the study by Day 18.  In 

contrast, 80 % of the mice receiving the polyMPC-DOX treatment remained in the study 

at Day 18, with overall survival in the polyMPC-DOX group extended almost two-fold 

(29 days) compared to the other treatment groups.  Figure 3.15B shows that tumor growth 

was greatly suppressed in the mice receiving the polyMPC-DOX, whereas the mice 

receiving free DOX showed no difference relative to the untreated mice.  Untreated and 

free DOX treated mice surviving to Day 18 displayed tumors with average volumes 

ranging from 1600-1850 mm
3
, requiring their removal from the study.  PolyMPC-DOX 

treated mice at Day 18 had average tumor volumes of 1050 mm
3
, and at the Day 29 end-

point, average tumor volume was 1170 mm
3
.  The weights of the mice overall remained 

largely unchanged over the course of the study, as shown in Figure 3.15C.  However, 

following the third dose of polyMPC-DOX, animal weights did not return to normal 

range quickly enough, necessitating their removal from the study. At the conclusion of 

the study, tissues (livers, spleens, hearts, kidneys) were collected and analyzed to 

compare to the results obtained from the PK/biodistribution study, with the efficacy mice 

displaying comparable tissue weights amongst treatment groups, with the exception of 

the lungs.  The significant weight increase in the lungs of the polyMPC-DOX group is 

attributed to the numerous metastases in the lungs, likely due to the prolonged survival of 
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the mice in this group (two times that of the free DOX and HBSS mice).  We note that 

the mice receiving polyMPC-DOX treatment were dosed below the previously 

determined MTD for these conjugates (30-50 mg/kg DOX equivalent) so that the 

cumulative dose received did not exceed the MTD.  Since the PK data reveals that 

polyMPC-DOX is nearly cleared within 48 hours, future animal studies will examine a 

more frequent dosing regimen, aiming towards complete tumor regression.  Nonetheless, 

this experiment confirms the efficacy of polyMPC-DOX prodrugs, even when presented 

with aggressive, highly metastatic 4T1 cancer in live animals.          

 
Figure 3.15.  Summary of efficacy data in 4T1 mouse model.  (A) Survival curve for 

mice treated with HBSS (squares, solid line), polyMPC-DOX (triangles, dashed line), 

and free DOX (inverted triangles, dotted line); (B) tumor growth over time for mice 

treated with HBSS (squares, solid line), polyMPC-DOX (triangles, dashed line), and free 

DOX (inverted triangle, dotted line); (C) mouse weight for mice treated with HBSS 

(squares, solid line), polyMPC-DOX (triangles, dashed line), and free DOX (inverted 

triangle, dotted line) Arrows indicate days on which treatments were administered: 0, 7, 

and 17 (polyMPC-DOX only).  Error bars represent ± SEM. 

 The present study demonstrates the ability of polyMPC-DOX to prolong 

circulation half-life from 15 minutes to 2 hours, with favorable accumulation occurring in 

the tumor as opposed to healthy tissues, and no significant innate or adaptive 

immunogenic responses.  Moreover, we demonstrate the efficacy of polyMPC-DOX in 

4T1 tumor-bearing mice, increasing the overall survival two-fold, and significantly 

reducing tumor growth in mice.  The aggressive 4T1 mouse model reveals the potential 
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for polyMPC-DOX in the treatment of triple negative breast cancer, and ongoing studies 

include evaluating the in vivo efficacy against a human breast cancer cell line.     

3.7 Conclusions and Future Outlook 

 PolyMPC has been demonstrated as an effective drug carrier for small molecule 

chemotherapeutic agents, with camptothecin and doxorubicin as examples.  Using 

appropriately functionalized comonomers with MPC, drugs can be incorporated along the 

polymer backbone as pendent groups, a strategy which has allowed for unprecedented, 

massively high drug loadings, for example up to 45 weight % in the case of DOX.  

Furthermore, the mechanism of release can be tailored according to the linker, including 

through simple hydrolysis, or according to environmental (i.e. intratumoral or 

intracellular) triggers including redox or pH sensitivity. 

 Future studies will include the further exploration of more advanced architectures, 

for example, polyMPC-based micelles.  Polymer micelles provide a route to larger 

structures (20 - 100 nm in diameter), enhancing the circulatory retention and thus 

therapeutic window.  Additionally, active targeting strategies will be employed, aiming to 

reduce non-specific uptake by healthy tissue and reduce off-target toxicity.  To realize 

this synthetically, the antibody Erbitux (Cetuximab), known to target the epidermal 

growth factor receptors (EGFR) that are typically upregulated in tumors, will be used.  

Antibody-polyMPC conjugation can be accomplished through installing a thiol-reactive 

polymer chain end, such as maleimide.  Antibody-polymer prodrug conjugates have the 

added benefit of high drug loading; in addition to incorporating multiple copies of drug 

along the polymer, multiple polymer chains (usually between 4 and 8) can be conjugated 

to a single antibody.   
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CHAPTER 4 

PROMOTING CELL ADHESION ON SLIPPERY PHOSPHORYLCHOLINE 

HYDROGEL SURFACES 

 

4.1 Introduction 

 Hydrogels are three-dimensional cross-linked polymeric materials capable of 

absorbing and retaining large amounts of water.  This "water-rich" environment makes 

hydrogels suitable for biological applications, while the mechanical tunability of the 

polymer component gives substantial breadth to these materials.   Hydrogels from both 

natural and synthetic polymers are of interest for drug delivery,
1-4

 sensors
5-7

 and tissue 

engineering,
8-11

 where tuning the chemistry tailors the materials towards desired 

applications.  Synthetic polymer hydrogels are commonly prepared by conventional free 

radical polymerization, in which a small percentage of difunctional monomer leads to 

cross-linking.  Newer gelation methods have been developed with the advent of "click 

chemistry",
12

  for example exploiting copper-catalyzed azide-alkyne cycloaddition
13,14

 

and thiol-ene reactions.
15,16

 

 Synthetic polymers commonly utilized as hydrogels for biomaterials include 

poly(ethylene glycol),
17-20

 poly(hydroxyethyl methacrylate),
21,22

 poly(vinyl alcohol),
23,24

 

and poly(acrylamide).
25,26

 Phosphorylcholine (PC)-based polymers are of growing 

interest as biomaterials, since the zwitterionic pendent groups in these polymers impart 

exceptional hydrophilicity and biocompatibility.  PC-polymer hydrogel membranes were 

introduced by Nakabayashi and coworkers,
27

 consisting of a copolymer of 2-

methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate.  Additional 

examples include MPC hydrogels prepared by conventional radical polymerization with 



96 

 

various difunctional cross-linkers,
28

 a novel PC-dimethacrylate cross-linker that produces 

cross-linked MPC hydrogels,
29,30

 degradable PC hydrogels containing phosphoester 

linkages,
31

 PC hydrogels that gel by hydrogen bonding interactions,
32

 a boronic acid-

containing PC copolymer hydrogel for 3-D cell encapsulation,
33

 and our prior work on 

PEG-PC hydrogels with tunable mechanical properties.
34

  PC-based hydrogels are also 

used in contact lenses, with several examples of siloxane-containing PC hydrogels 

reported.
35-37  

This thesis sought to improve upon the PC-polymer scaffold by exploiting 

new chemistries and mild gelation conditions, while promoting cell interactions with 

these conventionally non-adherent (‘slippery’) biomaterials, making them attractive for 

future applications in 3-dimensional cell culture.  

 The new MPC-containing polymers reported in this thesis work utilize a lipoic 

acid-containing methacrylate and a GRGDS (glycine-arginine-glycine-aspartic acid-

serine) substituted methacrylamide for copolymerization with MPC.  Incorporation of the 

lipoic acid comonomer gives access to dihydrolipoic acid (DHLA) moieties in the 

polymer structure, which allows for facile post-polymerization cross-linking with 

poly(ethylene glycol)diacrylate (PEGDA) by Michael addition between the alkenes and 

the thiols of DHLA, precluding the need for initiators or other additives.  The reaction of 

thiols with the electron-deficient olefins of acrylates occurs rapidly at slightly basic pH, 

and we observed fast hydrogel formation (<10 minutes) from these components.  The 

GRGDS peptide, a minimal cell adhesion sequence found in extracellular matrix (ECM) 

proteins, permits mammalian cell attachment to the ECM by cell adhesion receptors 

(integrins).
38  

Using C2C12 and SKOV3 cells, known to express RGD interacting α5β1 and 

αvβ3 integrins,
39-41 

we demonstrate that the incorporation of the GRGDS peptide sequence 
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into the hydrogel permits specific cell adhesion,
42

 with a notable effect of peptide 

concentration on cell attachment, spreading and proliferation (Journal of Materials 

Chemistry B, 2014).
43 

4.2 Synthesis of cross-linkable polyMPC for hydrogels 

 Phosphorylcholine (PC)-based hydrogel precursor polymers were prepared 

according to Scheme 4.1, by incorporating monomer 51 into random copolymer 

structures,
 
providing a synthetic handle for efficient cross-linking.  Esterification of

 
2-

hydroxyethyl methacrylate (HEMA) with lipoic acid (LA), using EDC coupling, gave 

HEMA-LA monomer 51 as a yellow oil.
44

  Compound 51 was characterized by 
1
H NMR 

spectroscopy, specifically noting the vinyl protons at 5.4 and 6.1 ppm, and the 

characteristic signals from the lipoic acid moiety in the alkyl region of the spectrum (~2.5 

ppm).  A GRGDS-containing methacrylic monomer was prepared by Fmoc-protected 

solid phase peptide synthesis (SPPS) for the purpose of promoting cell adhesion and 

enhancing the utility of these PC-containing hydrogels as biomaterials.  GRGDS 

methacrylamide 63 was prepared on a 2-chlorotrityl chloride resin, by coupling with 

serine, followed by reactions with aspartic acid, glycine, arginine and glycine.  The final 

glycine coupling was followed by an N-Fmoc-amidocaproic acid linker, then capped with 

methacrylic acid.  Simultaneous side-chain deprotection and resin-cleavage, using a 

solution of trifluoroacetic acid/H2O/triisopropylsilane, gave GRGDS-methacrylamide 

monomer 63 as a white solid in 50 % yield after precipitation from ether.  The structure 

of the GRGDS monomer was confirmed by 
1
H and 

13
C NMR spectroscopy, as well as 

electrospray ionization mass spectrometry (calculated: 672.3, found, 672.4).   
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Scheme 4.1 Synthesis of GRGDS-methacrylamide 63 by solid phase peptide synthesis 

and copolymerization with MPC and HEMA-LA to give copolymer 64. 

 Copolymerization of MPC, HEMA-LA, and GRGDS-MA was carried out using 

conventional free radical polymerization with azobisisobutyrylnitrile (AIBN) as the 

initiator in a methanol/dimethylsulfoxide solution at 65 °C (Scheme 4.1).  Monomer 

conversion generally reached >95 % within 4 hours, as judged by 
1
H NMR spectroscopy, 

comparing the integration of the monomer vinyl peaks at 5.4 and 6.1 ppm with the 

polymer backbone methyl protons at 1.0 ppm.  The copolymers were precipitated from 

THF, and further purified by passing over a short silica column eluting with methanol.  

The lipoic acid-containing copolymers were reduced to the free thiol form with NaBH4 in 

water (4 molar equivalents relative to lipoic acid).  The reaction was complete in 2 hours, 

at which point the solution pH was adjusted to ~3 with HCl(conc).  Purification by dialysis 

(MWCO 1000) followed by lyophilization afforded copolymer 64, poly(MPC-co-DHLA-

co-GRGDS), as a white solid in 80 % yield.  The polymers were characterized by 

aqueous gel permeation chromatography (GPC) (0.1 M NaNO3 + 0.02 wt % NaN3) 

relative to linear poly(ethylene oxide) standards, giving number-average molecular 

weights ranging from 40 to 65 kDa, with molecular weight distributions typical of free 

radical polymerization (Figure 4.1).  DHLA incorporation (~20-30 mole percent) was 
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characterized by 
1
H NMR spectroscopy, and found to match closely with comonomer 

feed ratio, shown in Table 4.1.  GRGDS content was adjusted from 0.25 to 5 mole 

percent by changing the feed ratio of the GRGDS-methacrylamide. While precise 

quantification of oligopeptide incorporation is difficult to perform spectroscopically, 

quantitative monomer conversion (as confirmed by 
1
H NMR spectroscopy) suggested 

that the target copolymer composition was achieved.  The copolymers maintained good 

water solubility (>100 mg/mL) even at relatively high DHLA content and at high 

molecular weight, highlighting the exceptional hydrophilicity of the phosphorylcholine 

moiety and its ability to solubilize these multifunctional copolymers. 

 

Figure 4.1 A) Aqueous GPC and B) 
1
H NMR spectroscopy (in MeOD) of poly(MPC-co-

DHLA). 

 

Table 4.1 Summary of polymerization results for poly(MPC-co-DHLA-co-GRGDS). 

Sample Theoretical MW 
(g/mole) 

Mn (g/mole) PDI % DHLA % GRGDS 

64A 14,500 64,200 4.4 21 % 0 % 

64B 12,300 48,100 5.2 24 % 0.25 % 

64C 12,500 54,400 4.6 29 % 1 % 

64D 13,400 42,200 4.7 27 % 5 % 
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4.3 Preparation of polyMPC hydrogels by Michael addition 

 Hydrogels containing polymer 64 formed readily under slightly basic conditions 

(pH 9 sodium borate buffer), using PEGDA as a difunctional cross-linker in a 1:1 molar 

ratio of thiol:acrylate (Scheme 4.2).  We emphasize that the PC-polymers allow for 

simple, initiator-free gelation in a completely aqueous environment, in contrast to many 

hydrogels that require external initiators, and sometimes organic solvents, which must be 

removed prior to their use in a biological setting.  Upon addition of PEGDA to DHLA-

containing polyMPC, gelation in pH 9 buffer occurred in <10 minutes at 37 °C.  We note 

that no gelation was observed in the absence of PEGDA, confirming cross-linking occurs 

by Michael addition and not interchain disulfide formation of polyMPC-co-DHLA. 

 

Scheme 4.2 Preparation of hydrogels, represented as polymer 65, by mixing PEGDA at 

37 °C in pH 9 sodium borate buffer. 

 The equilibrium water content (EWC) of the hydrogels was analyzed by soaking 

the gels in water to equilibrate the swollen state, and remove any uncross-linked material.  

After three days, excess water was removed and the weight of the swollen hydrogel was 

compared to that of the dried hydrogel.  These polyMPC hydrogels are very water-rich 

(>90 % water by weight), with no significant EWC variation observed for samples 

prepared from PEGDA cross-linkers of different molecular weight, and having different 

GRGDS peptide content (Figure 4.2).  The water uptake of PC hydrogels is much higher 
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than that of many PEG-based examples,
4,10,19

 highlighting the exceptional properties of 

the PC zwitterion.   

 

Figure 4.2 PolyMPC-co-DHLA and PEG2000DA: (A) before gelation and (B) hydrogel 

formation after 10 minutes of heating at 37 °C. Hydrogels were cut into 1 cm disks (C) 

and used to analyze equilibrium water content (EWC, %). (D) EWC of polyMPC 

hydrogels: (1) hydrogel cross-linked with PEG700DA (91.3 ± 0.2 %); (2) hydrogel cross-

linked with PEG2000DA (93.2 ± 1.5 %); (3) GRGDS-containing hydrogel cross-linked 

with PEG2000DA (97.6 ± 0.2 %).  Samples were measured in triplicate and error bars 

represent ± standard deviation. 

 Dynamic mechanical analysis (DMA) and shear rheology were used to probe the 

mechanical properties of swollen hydrogels (Figure 4.3).  After swelling for 48 hours, a 

test of the frequency response using DMA was performed, showing a constant elastic 

modulus (G') of 2.95 ± 0.16 kPa throughout the measured frequency range, with the 

elastic modulus always greater than the loss modulus (G"; 0.27 ± 0.16 kPa).  

Furthermore, rheology experiments indicated the potential for mechanical tunability of 

this system: as expected, increasing polymer concentration or molecular weight led to 

greater elastic modulus of the resulting hydrogels, illustrating the range of 

physical/mechanical properties accessible through this materials chemistry.   
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Figure 4.3 (A) Dynamic mechanical analysis (DMA) frequency response experiment of 

hydrogels prepared from polyMPC-co-DHLA (100 mg/mL), cross-linked with 

PEG700DA.  (B) Shear rheology experiments demonstrate the effect of varying polymer 

component molecular weights on the elastic modulus (G').  Sample 1: polyMPC-co-

DHLA (60 kDa) with PEG6000DA; Sample 2: polyMPC-co-DHLA (25 kDa) with 

PEG6000DA; Sample 3: polyMPC-co-DHLA (25 kDa) with PEG700DA. 

4.4 In vitro cell culture: Evaluating cell adhesion  

 We next examined the influence of the GRGDS sequence on polymer-cell 

interactions, using hydrogels prepared in 24-well tissue culture plates.  Stock solutions of 

both polymer and cross-linker were prepared in pH 9 sodium borate buffer, then mixed in 

the plate at a 1:1 ratio of [SH]:[acrylate], with a final polyMPC concentration of 50 

mg/mL.  The plate was incubated at 37 °C for 20 minutes to ensure effective gelation.  

The resulting hydrogels were washed/exchanged with PBS to remove the borate buffer.  

The hydrogels were then washed twice in sterile cell culture growth medium, and 

incubated for 2 hours at 37 °C in 5 % CO2 to remove residual PBS and reduce non-

specific cell binding. The media was aspirated and the surface of the hydrogel seeded 

with C2C12 or SKOV3 cells, followed by incubation at 37 °C; cell adhesion was 

visualized using optical microscopy (Figure 4.4).  Notably, cells seeded on polyMPC 

hydrogels lacking the GRGDS peptide failed to attach, and at 24 hours were aggregated 

in the media above the hydrogel, as seen in Figure 4.4A-B.  In contrast, hydrogels 
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functionalized with the GRGDS peptide sequence showed cell spreading and 

proliferation on the hydrogel surface, similar to the control (polystyrene tissue culture 

plate), with no floating cells observed (Figure 4.4C-H).  C2C12 cells adhered to these 

hydrogels relatively quickly (<6 hours), while SKOV3 cells adhered within 24 hours.  

Increasing cell density was observed upon increasing GRGDS content from 0.25 % to 1 

% to 5 % (corresponding to 0.4, 1.6, and 7 mM bulk GRGDS, respectively).  Hydrogels 

prepared from copolymer 64D, containing 5 % GRGDS, showed excellent cell spreading 

and density, comparable to the polystyrene controls.   
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Figure 4.4 Optical micrographs of C2C12 and SKOV3 cells after 24 hours incubation on 

hydrogels from polymers containing (A-B) no GRGDS, (C-D) 0.25 % GRGDS, (E-F) 1 

% GRGDS, (G-H) 5 % GRGDS, and on (I-J) polystyrene tissue culture plate.  Scale bar = 

100 μm. 

 Cell density was quantified using the CellTiter-Glo Luminescent Cell Viability 

Assay (Promega) 24 hours post cell-seeding.  The cell density measured for each 

hydrogel is given as a percentage of the polystyrene control.  For both C2C12 and SKOV3 

cells, the density tracked with GRGDS peptide content.  This is shown in the graph of 

A) B)

C) D)

E) F)

G) H)

I) J)

C2C12 SKOV3
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Figure 4.5, in which cell density increased as a function of peptide incorporation, from 

<50 % for 0.25 % peptide, to >90 % for 5 % peptide.  The relative difference in cell 

densities 24 hours after seeding confirms that the hydrogel surface permits cell 

proliferation in addition to attachment, and that the GRGDS oligopeptide in the hydrogel 

interacts with the cellular integrins.  

 

Figure 4.5 Quantification of cell adhesion after 24 hours for C2C12 and SKOV3 cells, 

expressed as percent cell density, on hydrogels containing no GRGDS (A), 0.25 % 

GRGDS (B), 1 % GRGDS (C), and 5 % GRGDS (D), relative to the cell density in the 

control (polystyrene tissue culture plate).  Error bars indicate ± standard deviation. 

4.5 Summary and future outlook 

 In summary, the synthesis of thiol-containing PC-polymers based on the 

polymerization of MPC and HEMA-LA was described, with incorporation of GRGDS-

MA for cellular recognition.  These polymers rapidly form hydrogels by Michael addition 

to PEGDA in an initiator-free system at 37 °C in pH 9 buffer leaving no residual 

initiators/additives after hydrogel formation.  Mechanical properties testing suggests the 

hydrogels as ideal materials for biological assays, capable of mimicking soft tissues or 

tumor environments. PolyMPC and polyMPC-hydrogels, despite their excellent 
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biocompatibility, are incapable of cell adhesion/proliferation on the hydrogel surface, 

while hydrogels containing variable percentages of GRGDS promote cell adhesion and 

proliferation, demonstrated using C2C12 and SKOV3 cells.  Equipping these traditionally 

‘slippery’ PC-polymers with such pronounced cell adhesion properties broadens the 

scope of functional biomaterials available for developing more sophisticated in vitro and 

in vivo applications.  
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CHAPTER 5 

EXPERIMENTAL SECTION 

 

5.1 Materials 

Pentafluorophenol, 4-(dimethylamino)pyridine (DMAP), triethylamine (TEA), N-(3-

dimethylaminopropyl)-N´-ethylcarbodiimide hydrochloride (EDC), 2-bromoisobutyryl 

bromide, copper(I) bromide, 2,2´-bipyridine (bpy), bis-hydroxymethyl propionic acid, 

oxalyl chloride, bis(pentafluorophenyl) carbonate, Grubbs' generation II catalyst, ethyl 

vinyl ether, pyridine, lysozyme from hen egg white, 2-hydroxyethylmethacrylate 

(HEMA), N-boc-aminooxy acetic acid, levulinic acid, ethylene glycol, trifluoroacetic 

acid, methanol (anhydrous), dimethylsulfoxide (anhydrous), 4-hydroxybenzaldehyde, 

sodium azide, N,N´-diisopropylethylamine (DIPEA), 2-bromopropionyl bromide, 6-

bromohexanoic acid, 2-[2-(2-chloroethoxy)ethoxy]ethanol, ethyl 2-bromoisobutyrate, 3-

(trimethylsilyl)propargyl alcohol, methacryloyl chloride, mouse serum, human plasma,  

lipoic acid, 3-mercaptopropionic acid, 2,2'-dithiodipyridine, 4-cyano-4-

(phenylcarbonothioylthio)pentanoic acid, 4,4'-azobis(4-cyanovaleric acid) (ACVA),  

ethyl bromoacetate, hydrazine monohydrate, acetic acid, magnesium sulfate, acetonitrile 

(anhydrous), methacrylic acid, Fmoc-chloride, 6-aminocaproic acid, triisopropylsilane 

(TIPS), poly(ethylene glycol) diacrylate (Mn 6,000, 2,000 and 700), and 

dimethylformamide (anhydrous) were purchased from Aldrich.  2-Methacryloyloxyethyl 

phosphorylcholine (MPC) was purchased from Aldrich or synthesized according to 

literature procedures.  MPC purchased from Sigma Aldrich was washed with anhydrous 

ether prior to use.
 
Oxalyl chloride and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide) 

(EDC) were purchased from TCI America.  Ethylene chlorophosphate (COP) was 
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purchased from Alfa Aesar.  Camptothecin (CPT) and doxorubicin (DOX) were 

purchased from 21CEC.  HEMA and COP were purified by Kugelrohr distillation prior to 

use.  Dichloromethane and triethylamine were distilled over calcium hydride and 

tetrahydrofuran was dried over sodium/benzophenone ketyl and freshly distilled before 

use.  All other chemicals were used as received unless otherwise noted.  EnzChek® 

Lysozyme Assay Kit and Alexa Fluor 647 dye were purchased from Invitrogen.  Pre-

stained broad-range protein standards, 4-15 % Mini-Protean TGX precast gels, and Bio-

Safe Coomassie stain were purchased from BioRad.  Human colorectal (COLO205) and 

breast (MCF7) adenocarcinoma cells were purchased from American Type Culture 

Collection (ATCC).  RPMI 1640 and MEM cell culture media were purchased from Life 

Technologies and Mediatech, respectively.  Fetal bovine serum (FBS) was purchased 

from Atlanta Biologicals and bovine insulin from Aldrich.  Cell viability was measured 

using CellTiter-Glo luminescent cell viability assay from Promega.  Dialysis cassettes 

(MWCO 3,500; total volume 0.5-3 mL) were purchased from Fisher Scientific and 

hydrated in water prior to use.  Spectra/Por 3 dialysis membrane (MWCO 1000) was 

purchased from Spectrum Laboratories, Inc. Sephadex (LH-20 and G-25) was purchased 

from GE Life Sciences and swelled for 24 hours prior to use.  Hank's Balanced Salt 

Solution used for in vivo studies was obtained from Life Technologies (Gibco).  

5.2 Instrumentation 

Nuclear magnetic resonance (NMR) spectroscopy was performed on a Brüker 

Spectrospin DPX300, an Avance 400, or an Agilent 700. Aqueous GPC was performed in 

0.1 M sodium nitrate and 0.02 weight percent sodium azide buffer against poly(ethylene 

oxide) calibration standards, operating at 1.0 mL/ min with three Waters Ultrahydrogel 
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columns (7.8 x 300 mm) equipped with RI and UV/Vis detectors.  GPC in 1,1,1-

trifluoroethanol (TFE) (with 0.2 M sodium trifluoroacetate) was performed against 

poly(methyl methacrylate) (PMMA) standards, operating at 0.75 mL/min at 40 °C with 

three Agilent PL HFIPgel columns (300 x 7.5 mm) equipped with RI and UV/Vis 

detectors.  UV/Visible spectroscopy was performed on a Perkin-Elmer Lambda 25 

spectrometer.  Fluorescence measurements were taken on a Perkin-Elmer LS 55 

fluorimeter.  Dynamic light scattering was performed on a Malvern Zetasizer Nano-ZS.  

Transmission electron microscopy (TEM) was performed using a TEM JEOL 2000FX 

with samples prepared on carbon-coated copper grids purchased from Electron 

Microscopy Sciences.  High-resolution mass spectral (HRMS) data were obtained on a 

JEOL JMS700 MStation.  IR absorbance data were obtained on a Perkin-Elmer Spectrum 

One FT-IR spectrometer equipped with a universal ATR sampling accessory. The HPLC 

system consisted of a Waters Alliance system with a 2996 photodiode array detector and 

a 2475 fluorescence detector. A size exclusion column (Shodex KW-803) eluting with 

10% ethanol in PBS buffer (pH 7.4) at a flow rate of 1 mL/min was used to analyze 

protein-polymer conjugate samples.  A reverse phase C18 column (250 × 4.6 mm) eluting 

with a gradient of 5-95% of acetonitrile in 0.05% TFA at a flow rate of 1 mL/min was 

used to analyze prodrug samples.  A reverse phase C18 column (250 × 4.6 mm) eluting 

with 40% acetonitrile in water + 1% TFA at a flow rate of 1 mL/min was used to analyze 

biological samples obtained from polyMPC-DOX animal studies.  Dynamic rheological 

properties of hydrogels were analyzed using a Rheometrics Mechanical Spectrometer, 

performing frequency sweeps from 0-10 Hz on hydrogels in the equilibrium swollen 

state. Optical microscopy was performed on a Nikon CKX41 inverted microscope and 
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cell density measured by plate reader in luminescence mode (BMG Labtech FLUOstar 

OPTIMA plate reader).  Size exclusion FPLC was performed on a GE AKTA system 

using Superose 6 10/300 columns with PBS buffer at a flow rate of 0.5 ml/min, 

monitoring at 280 nm.  Cation exchange FPLC was performed on a GE AKTA system 

equipped with a Hitrap SP HP 5mL cation exchange column at a flow rate of 5 mL/min. 

5.3 Methods 

 Synthesis of 2-(2-oxo-1,3,2-dioxaphospholoyloxy)ethyl methacrylate 

(OPEMA) (10) 

 

OPEMA was prepared according to literature procedures as described by Nakabayashi 

and coworkers.
1
 

 Synthesis of 2-methacryloyloxyethyl phosphorylcholine (MPC) (11) 

 

MPC monomer was prepared according to literature procedures, as described by 

Nakabayashi and coworkers.
1
 

 Synthesis of NHS ATRP initiator (13) 

 

NHS initiator 13 was prepared according to literature procedures.
2 
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 Synthesis of NHS-polyMPC (14) 

 

Initiator 13 (13 mg, 0.05 mmol) was dissolved in degassed DMSO (1.5 mL).  To this 

solution, CuBr (7 mg, 0.05) mmol) and 2,2’-bipyridine (15 mg, 0.10 mmol) was added, 

followed by a solution of MPC monomer (547 mg, 1.85 mmol) in degassed methanol (0.5 

mL).  The reaction mixture was subjected to three freeze-pump-thaw cycles, then stirred 

under inert (argon or nitrogen) atmosphere at room temperature for 12 hours.  The 

mixture was eluted through a short column of silica gel, and a colorless solution was 

recovered.  The solution was dried under vacuum, and washed with dry THF (2 mL) to 

give the desired polymer (190 mg) as a white powder. 
1
H NMR (400 MHz, CD3OD): δ 

0.81-1.33 (br), 1.81-2.22 (br), 2.87 (s), 3.25 (s), 3.69-3.81 (br), 4.04-4.45 (br) ppm; 
31

P 

NMR (400 MHz, CD3OD): -0.3 ppm. Gel permeation chromatography, against PEO 

calibration standards, eluting with 0.1 M aqueous NaNO3 containing 0.2 weight percent 

NaN3: Mn 8,900, Mp 9,600, Mw 11,600, PDI 1.3. 

 Synthesis of 4-(2-hydroxyethoxy)benzaldehyde (15) 

 

Sodium hydroxide (0.8 g, 20 mmol) was dissolved in 25 mL of H2O in a 2-neck round 

bottom flask.  The solution was stirred vigorousy.  4-Hydroxybenzaldehyde (2.44 g, 20 

mmol) was added to the flask in small batches over the course of 15 minutes.  2-

Bromoethanol (2.49 g, 20 mmol) was added to the reaction mixture dropwise.  The 

n
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resulting solution was heated to 98 °C for 30 hours.  The reaction was cooled to 10 °C 

using an ice-water bath, and the pH was adjusted to ~10 using aqueous NaOH.  The 

reaction mixture was then extracted with dichloromethane (4 times, 30 mL each). The 

organic layers were combined and dried with MgSO4.  After filtration, solvent was 

removed using rotary evaporation.  The residue was purified using column 

chromatography (70 % ethyl acetate/hexanes on silica gel) to afford the purified product 

as a pale yellow oil (2.23 g, 67 % yield). 

 Synthesis of benzaldehyde ATRP initiator (16) 

 

4-(2-hydroxyethoxy) benzaldehyde (0.96 g, 6.0 mmol) was dissolved in CH2Cl2 (13 mL) 

under nitrogen atmosphere.  Triethylamine (0.71 g, 7.0 mmol) was added slowly, and the 

mixture was cooled to 0°C.  A solution of 2-bromoisobutyryl bromide (1.3 g, 5.7 mmol) 

in CH2Cl2 (4 mL) was added dropwise over the course of 10 minutes.  The reaction 

mixture was then stirred at room temperature for 16 hours.  The reaction mixture was 

filtered, washed twice with saturated aqueous NaHCO3, dried over MgSO4, filtered, then 

concentrated by rotary evaporation.  The crude mixture was purified by column 

chromatography over silica gel, eluting with ethyl acetate:hexane mixtures, to give the 

desired product as a yellow oil (650 mg, 59 %).  
1
H NMR (300MHz, CDCl3): δ 9.7 (s), 

7.9 (d), 7.2 (d), 4.5 (t), 4.3 (t), 1.9 (s) ppm; 
13

C NMR (300MHz, CDCl3): δ 30.67, 55.36, 

63.79, 65.77, 114.9, 130.32, 132.05, 163.4, 171.63, 190.85 ppm; HRMS-FAB (m/z): 

[M]+ calculated 315.02, found 315.0232. 
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 Synthesis of benzaldehyde-polyMPC (17) 

 

To a stirring solution of initiator 16 (18.8 mg, 0.060 mmol) in DMSO (2 mL) under 

nitrogen atmosphere was added Cu(I)Br (8.6 mg, 0.06 mmol) and bipyridine (18.7 mg, 

0.120 mmol).  The mixture was then subjected to two freeze-pump-thaw cycles.  A 

solution of MPC (479.5 mg, 1.62 mmol) in MeOH (1 mL) was then added to the mixture 

using a degassed syringe.  Three freeze-pump-thaw cycles were performed.  The reaction 

mixture was brought to room temperature, and the reaction was stirred for 18 hours.  
1
H 

NMR spectroscopy was used to monitor monomer conversion.  To remove copper and 

DMSO, the mixture was purified by column chromatography over silica gel, eluting with 

methanol.  Solvent was removed by rotary evaporation and dried overnight under vacuum 

yielding a white, crystalline solid (300 mg).  
1
H NMR (300 MHz, D2O): δ 0.6-1.1 (br), 

1.6-2.1 (br), 3.12 (s), 3.57 (s), 3.97 (br), 4.1-4.3 (br), 7.15 (d), 7.91 (d), 9.77 (s) ppm.  The 

polymer was also characterized by aqueous GPC against poly(ethylene oxide) calibration 

standards, eluting with 0.1 M aqueous NaNO3 containing 0.2 weight percent NaN3: Mn = 

7,000, Mp =7,500, Mw = 8,000, PDI = 1.12. 

 Preparation of lysozyme-polyMPC conjugate (18)  

 

Lysozyme (1 mg, 3.3x10-5 mmol) and polymer 17 (2.5 mg, 3.5x10-4 mmol) was 

dissolved in 1.5 mL of pH 6 phosphate buffer.  The reaction mixture was maintained at 

n
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ambient temperature, and gently shaken for 1 hour.  NaCNBH3 (20 mg, 0.32 mmol) was 

then added to the reaction.  After 1 day, additional NaCNBH3 (40 mg, 0.63 mmol) was 

added.  The solution was incubated at room temperature with continuous, gentle shaking.  

The reaction was monitored with SEC-HPLC, using a Shodex KW-804 column and a UV 

detector set at 280 nm, and with SDS-PAGE.   

 Synthesis of pentafluorophenol ATRP initiator (20) 

 

Pentafluorophenol (3.00 g, 16.3 mmol) was dissolved in tetrahydrofuran (30 mL, 

anhydrous) in a dry 2-neck round bottom flask.  Triethylamine (2.50 g, 24.5 mmol) was 

added to the stirring solution slowly, and the reaction mixture was cooled to 0 °C.  2-

Bromoisobutyryl bromide (5.60 g, 24.5 mmol) was added to the reaction mixture 

dropwise.  The mixture was allowed to warm to room temperature, and stirred for 18 

hours, then passed through Celite to remove TEA salt, and solvent was removed by rotary 

evaporation.  The residue was redissolved in dichloromethane, and washed with 1M HCl 

(aq), saturated NaHCO3 (aq), and brine.  The organic layers were dried over MgSO4, and 

filtered, and solvent was removed.  The orange liquid obtained was purified by column 

chromatography over silica gel, eluting with ethyl acetate/hexanes mixture, to obtain the 

pure product as a colorless liquid (4.0 g, 76 %).  
1
H NMR (300 MHz, CDCl3):  = 2.10 

(s, 6H); 
19

F NMR (282 MHz, CDCl3):  = -152.9 (2F), -157.2 (1F), -162.0 (2F); 
13

C 

NMR (75 MHz, CDCl3):  = 30.5, 52.9, 124.8, 136.1, 138.1, 139.4, 141.4, 142.7, 168.1. 

HRMS-FAB (m/z): calculated: 331.9483, found: 331.9434. 
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 Synthesis of PFP-polyMPC (21) 

 

In a dry 2-neck round bottom flask, initiator 20 (8.0 mg, 0.025 mmol) and MPC 

monomer (500 mg, 1.7 mmol) were dissolved in 1:1 methanol/dimethylsulfoxide (3 mL), 

and the stirring solution was degassed with nitrogen.  Cu(I)Br (4.0 mg, 0.025 mmol) and 

bipyridine (8.0 mg, 0.05 mmol) were added simultaneously as solids to the reaction flask.  

The mixture was degassed for 20 minutes by bubbling with dry nitrogen gas, then sealed 

and let stir at room temperature.  Most reactions were run for 8-16 hours, then stopped by 

exposing the reaction to air to oxidize the catalyst.  Polymers were generally purified by a 

short silica plug eluting with methanol, followed by precipitation into THF or acetone to 

isolate a white solid (350 mg, 70 % yield).  
1
H NMR (300 MHz, MeOD): δ = 0.93-1.08 

(3H, br), 1.85-2.1 (2H, br), 3.50 (2H, br), 4.04 (2H, br), 4.19 (2H, br), 4.29 (2H, br).  
31

P 

NMR (122 MHz, MeOD): δ = 0.0.  
19

F NMR (282 MHz, CDCl3):  = -152.8 (2F), -156.8 

(1F), -161.6. (2F).   Aqueous GPC (0.1 M NaNO3 + 0.02 wt% of NaN3): Mn, 11,700 

g/mole; Mw, 15,000 g/mole; PDI, 1.3.   

 Synthesis of carboxylic acid 22 

 

Bis-(MPA) (8.0 g, 60 mmol), pyridine (9 mL), and DMAP (732 mg, 6 mmol) were 

suspended in dry dichloromethane (30 mL). 2-Bromoisobutyryl bromide (54 g, 29 mL) 

n



119 

 

was added dropwise. A white solid precipitant was observed. The reaction mixture was 

stirred for 12 hours, then methanol (100 mL) and glacial acetic acid (2 mL) was added. 

The reaction mixture was filtered, and the solvent was collected and evaporated.  The 

product was purified by column chromatography using ethyl acetate/hexanes/1 % acetic 

acid mixtures to afford a white solid (22 g, 38.3 %). 
1
H NMR (300 MHz, CDCl3):  =  

1.40 (s, 3H), 1.94 (s, 12H), 4.39 (q, 4H); 
13

C NMR (75 MHz, CDCl3):  = 17.7, 30.6, 

46.5, 55.2, 65.9, 170.9, 178.6. FAB-MS (m/z): calculated: 429.96, found: 429.97. 

 Synthesis of acid chloride 23 

 

Compound 22 (1.0 g, 2.3 mmol) was dissolved in DCM (10 mL), then cooled to 0 °C 

with an ice bath.  Oxalyl chloride (431 mg, 3.40 mmol) was added dropwise to the 

stirring solution, then several drops of DMF were added. The mixture was warmed to 

room temperature, then heated to reflux.  After 3 hours, TLC indicated that the reaction 

was complete, and the solvent was removed under reduced pressure.  The isolated 

product was dried under vacuum, yielding 700 mg of 23 as a colorless oil (70 %).  
1
H 

NMR (300 MHz, CDCl3):  =  1.40 (s, 3H), 1.94 (s, 12H), 4.39 (q, 4H);  
13

C NMR (700 

MHz, CDCl3):  = 17.7, 30.6, 46.5, 55.2, 65.9, 170.9, 174.8.   

 

 

 



120 

 

 Synthesis of compound 24 

 

Ethylene glycol (930 mg, 15.0 mmol) was dissolved in anhydrous THF (5 mL) in a dry 

round bottom flask.  Triethylamine (181 mg, 1.80 mmol) was added slowly, then the 

reaction flask was cooled over an ice bath.  Using an addition funnel, a solution of 

compound 23 (1.13 g, 2.5 mmol, dissolved in 5 mL THF) was added to the stirring 

solution dropwise.  The mixture was allowed to warm to room temperature, and let stir 

for several hours while monitoring by TLC.  TEA salt was removed by filtration over a 

plug of Celite, and the product was isolated by column chromatography (silica gel, 

eluting with ethyl acetate/hexanes mixture).  The solvent was removed by rotovap, and 

the product was dried under vacuum, yielding 24 as a colorless oil in 60 % yield (714 

mg).  
1
H NMR (300 MHz, CDCl3):  = 1.40 (s, 3H), 1.94 (s, 12H), 3.83 (t, 2H), 4.25 (t, 

2H), 4.39 (q, 4H); 
13

C NMR (75 MHz, CDCl3):  = 17.9, 30.6, 46.9, 55.3, 60.8, 66.3, 

67.1, 171.1, 172.6.  

 Synthesis of pentafluorophenyl carbonate 25 

 

Compound 24 (2 g, 4.2 mmol) was dissolved in THF (5 mL) in a dry 100 mL round 

bottom flask.  Triethylamine (505 mg, 5.00 mmol) was added slowly to the stirring 

solution.  Bis(pentafluorophenyl) carbonate was dissolved in THF (2 mL), then added 
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dropwise to the reaction mixture at 0 °C.  The mixture was stirred for 16 hours, then the 

solution was washed with water and saturated NaHCO3 (aq).  The organic layers were 

collected and dried over MgSO4, filtered and concentrated by rotary evaporation.  The 

residue was purified by column chromatography over silica gel, eluting with ethyl 

acetate/hexanes mixtures, to afford a pale yellow oil (1.9 g, 70 %).  
1
H NMR (300 MHz, 

CDCl3):  =  1.40 (s, 3H), 1.94 (s, 12H), 4.39 (q, 4H), 4.49 (t, 2H), 4.59 (t, 2H);  
13

C 

NMR (75 MHz):  = 17.7, 30.5, 46.7, 55.3, 62.4, 66.1, 67.6, 124.8, 136.1, 138.1, 139.4, 

141.4, 142.7, 151.2, 170.9, 172.1; 
19

F NMR (282 MHz, CDCl3):  = -152.8 (2F), -156.8 

(1F), -161.6. (2F). HRMS-FAB (m/z): calculated: 684.9730, found: 684.9697. 

 Synthesis of two-arm PFP-polyMPC (26) 

 

Two-arm polyMPC was prepared using ATRP, according to the same procedure used for 

polymer 21. 

 Synthesis of 5-(phosphorylcholine) cyclooctene (27) 

 

PC-COE was prepared by Dr. Katrina Kratz, according to literature procedures.
3 

 

n
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 Synthesis of 5-carboxylic acid cyclooctene (28) 

 

PC-COE was prepared by Dr. Katrina Kratz, according to literature procedures.
4 

 Synthesis of 5-(pentafluorophenyl ester) cyclooctene (29) 

 

PC-COE was prepared by Dr. Katrina Kratz. Into a flame-dried two-neck flask equipped 

with a N2 inlet and addition funnel, a solution of 5-carboxylic acid cycloocetene
 
(0.032 

mol, 5.0g) in THF (150 mL) was cooled to 0 C. Thionyl chloride (0.034 mol, 2.5 mL) 

was added dropwise and the solution was warmed to room temperature and stirred for 1 

hour. The reaction was cooled to 0 C and triethylamine (0.064 mol, 9.0 mL) was added 

as a white precipitate formed.  After 15 minutes, a solution of pentafluorophenol (0.035 

mol, 6.5g) in THF (25mL) was added dropwise and the solution was stirred at room 

temperature for 12 hours. The white solid was removed by filtration through celite and 

the filtrate was concentrated. Product was purified by silica gel column chromatography 

with chloroform as an eluent (Rf value: 0.8). Product was isolated in 78 % yield (0.025 

mol, 6.4 g). as a yellow oil. 
1
H NMR (300 MHz, CDCl3):  = 5.66 (m, 2H), 3.85 (m, 1H), 

2.50-2.00 (br, m, 6H), 1.80-2.0 (br m, 4H), 
13

C NMR (75 MHz, CDCl3): δ = 171.7, 142.6, 
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140.6, 139.9, 139.2, 138.1, 136.7, 125.3, 43.1, 31.2, 29.5, 27.8, 25.5, 23.4.  
19

F NMR 

(282 MHz, CDCl3):  = -152.77 (2H), -158.66 (1F), -162.77 (2F).   ESI-MS: calculated 

320.250, found: 321.090 (M+H
+
).  

 Synthesis of poly(PC-COE-co-PFP-COE) (30) 

 

Poly(PC-COE-co-PFP-COE) was prepared by Dr. Katrina Kratz.  PC-COE monomer 27 

(3.40 mmol, 1.00 g) and PFP-COE monomer 29 (0.170 mmol, 0.042 g) were dissolved in 

2 mL of dry 30 % trifluoroethanol in dichloromethane, and stirred under nitrogen.  In a 

separate vial, the pyridine substituted ruthenium benzylidene methathesis catalyst
5
 (0.024 

mmol, 30 mg) was dissolved in dichloromethane (0.1 mL). The catalyst solution was 

injected rapidly into the monomer solution, and the mixture was stirred for 30 min. Ethyl 

vinyl ether (0.5 mL) was added to terminate the polymerization, and the solution was 

concentrated under vacuum. The crude product was dissolved in methanol (~0.1 mL) and 

poured into an excess of acetone. The resulting polymer was filtered, dried under 

vacuum, purified by dialysis in water (2,000 g/mol MWCO) and then lyophilized to 

afford 70 % of a white solid. 
1
H-NMR (300 MHz, 25 % MeOD in CDCl3):  = 5.17 (m, 

2H), 4.0 (m, 3H), 3.48 (t, 2H), 3.0 (s, 9H), 2.60 (br, 1H) 1.80-2.0 (br m, 4H), 1.5-1.7 (br 

m, 2H), 1.2-1.4 ( br m, 4H). 
13

C-NMR (75 MHz, 25% MeOD in CDCl3):  = 171.7, 

142.6, 140.6, 139.9, 139.2, 138.1, 136.7, 135.0, 134.0, 70.0, 65.0, 58.2, 47.2, 43.1,  34.6, 

n m
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34.0, 24.8, 24.1, 21,8.  
31

P-NMR (122 MHz, 25% MeOD in CDCl3):  0.0. 
19

F-NMR 

(282 MHz, 25% MeOD in CDCl3):  = -152.77 (2H), -158.66 (1F), -162.77 (2F).   

 Preparation of Lysozyme-polyMPC Conjugates (32-34) 

 

In general, lysozyme was dissolved in pH 9 borate buffer at a concentration of 10 

mg/mL.  The buffered protein solution was added to a vial containing an excess of the 

phosphorylcholine polymer (20 molar equivalents).  The reaction mixture was gently 

shaken at room temperature, and conjugation progress was monitored by size exclusion 

high performance liquid chromatography (SEC-HPLC) eluting with 10 % ethanol/PBS at 

1.0 mL/min.  The conjugates were purified using fast protein liquid chromatography 

(FPLC) eluting with PBS at 0.5 mL/min, or dialysis (MWCO 20,000). 

 Preparation of AF647-labeled lysozyme-polyMPC conjugate (35) 

 

Lysozyme and lysozyme-polyMPC conjugates were labelled with Alexa Fluor 647 

succinimidyl ester purchased from Invitrogen, according to the manufacturer's 

instructions.  The labeled lysozyme and conjugates were purified by passage through a 

bio-gel P4 gel column with PBS as eluent. Fractions containing the labeled products were 

collected and combined. The labeled lysozyme and conjugates were concentrated with 
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Centricon YM-3 by filtering off the PBS. After measuring the UV/Vis absorbance at 280 

and 650 nm, the concentration and degree of labeling were calculated based on the 

manufacturer’s protocol. The purified conjugates were also characterized by fluorescence 

spectroscopy, and HPLC with a fluorescence detector.. 

 Synthesis of 2-hydroxyethyl 2-bromoisobutyrate (38) 

 

To a solution of ethylene glycol (2 g, 0.032 mol) in 10 mL of anhydrous tetrahydrofuran 

(THF), triethylamine (1.95 g, 0.019 mol) was added.  The solution was cooled on ice 

while stirring.  Using an addition funnel, 2-bromoisobutyryl bromide (3.6 g, 0.16 mol) in 

5 mL THF was added dropwise to the solution. Gradually allowed to warm to room 

temperature, and continued to stir for 18 hours.  The TEA salt was subsequently filtered 

off, and the remaining solution was concentrated by rotary evaporation.  The residue was 

the purified by column chromatography on silica gel, eluting with 20:80 ethyl 

acetate/hexanes.  The product was obtained as a colorless liquid (2 g, 59 %).  
1
H NMR 

(300 MHz, CDCl3): δ = 1.95 (s, 6H), 3.87 (t, 2H), 4.41 (t, 2H).  HRMS-FAB (m/z): 

[M+H]+ calculated for C6H11BrO3: 210.99, found: 210.9970. 

 Synthesis of t-boc-aminooxy ATRP initiator (39) 

 

Compound 38 (1 g, 4.76 mmol) and t-boc aminooxy acetic (909 mg, 4.76 mmol) were 

dissolved in 50 mL of anhydrous dichloromethane.  The flask was cooled to 0 °C on ice, 

and EDC and DMAP were added simultaneously to the reaction.  Gradually let warm to 
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room temperature, and continued stirring for 18 hours.  The solvent was then removed by 

rotary evaporation, and the residue was purified by column chromatography on silica gel, 

eluting with 80:20 ethyl acetate/hexanes, to afford to product as a colorless oil in (1.7 g, 

94 %).  1H NMR (300 MHz, CDCl3): δ = 1.46 (s, 9H), 1.93 (s, 6H), 4.4 - 4.7 (m, 6H), 

7.78 (s, 1H).  13C NMR (75 MHz, CDCl3): δ = 28.16, 30.60, 55.28, 62.35, 63.21, 72.50, 

82.14, 156.24, 169.39, 171.52.  FAB-MS (m/z): [M+H] calculated for C13H22BrNO7: 

384.06, found: 384.07. 

 Synthesis of aminooxy-polyMPC (40) 

 

MPC monomer (2 g, 6.75 mmol) and initiator 39 (75 mg, 0.198 mmol) were added to a 

round bottom flask and dissolved in 3 mL of anhydrous methanol and 5 mL of anhydrous 

DMSO with stirring.  The solution was purged with nitrogen for 10 minutes.  Cu(I)Br (28 

mg, 0.198 mmol) and bipyridine (62 mg, 0.397 mmol) were added as solids to the 

reaction mixture under a stream of nitrogen.  The mixture was degassed with nitrogen for 

10 minutes, then let stir overnight at room temperature.  The polymerization was 

monitored using 
1
H NMR, stopped by exposure to air, oxidizing the Cu catalyst.  The 

mixture was precipitated into THF, redissolved, and passed over a plug of silica eluting 

with methanol.  Solvent was removed to give the polymer product as a white solid (1.5 g, 

72 %).  Polymers were characterized by 
1
H NMR and aqueous GPC for relative 

molecular weight determination.  PolyMPC (1g) was dissolved in 10 mL of 10 % 

methanol in trifluoroacetic acid solution and stirred at room temperature to achieve chain-

end deprotection.  After 3 hours, solvent was removed by rotary evaporation.  The 

(    )
n
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polymer residue was dissolved in water, and purified by dialysis (MWCO 1000).  

Lyophilization resulted in the desired polymers as white solids.  GPC analysis confirmed 

that no polymer degradation was caused by the harsh acid treatment, and 
1
H NMR was 

used to confirm the disappearance of the t-boc protecting group.     

 Synthesis of 4-hydroxybenzaldoxime-polyMPC (41) 

 

PolyMPC 40 (100 mg, 0.02 mmol) was added to a small reaction vessel, and dissolved in 

300 uL of pH 9 borate buffer.  4-hydroxybenzaldehyde (3 mg, 0.024 mmol) was added, 

and the reaction was vortexed to dissolve, then gently shaken for 18 hours at room 

temperature.  A 20 uL aliquot was removed and diluted to 1mL and injected onto aqueous 

GPC, monitoring with a UV detector set to 280 nm.  Comparing the signal intensity 

obtained from polymer 40 and conjugate 41 indicated that oxime formation occurred, 

linking the UV-active benzaldehyde moiety to the polymer chain. 

 Synthesis of pentafluorophenyl levulinate (43) 

 

Levulinic acid (1 g, 0.0085 mol) and pentafluorophenol (1.4 g, 0.0075 mol) were added 

to a 100 mL round bottom flask, and dissolved in 30 mL of anhydrous dichloromethane.  

The reaction flask was cooled on ice, then  EDC (1.7 g, 0.009 mol) and DMAP (92 mg, 

0.00075 mol) were added together as solids.  The reaction was allowed to gradually warm 

n
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to room temperature, and continued stirring for 18 hours.  The desired product was 

purified by column chromatography on silica gel, eluting with 1-5 % methanol in DCM, 

to yield 43 as a white solid (2 g, 95 %).   
1
H NMR (300 MHz, CDCl3): δ = 2.22 (s, 3H), 

2.88 - 2.95 (m, 4H).  
19

F NMR (282 MHz, CDCl3): δ = -152.5 (2F), -157.9 (1F), -162.3 

(2F). 

 Synthesis of lysozyme-levinate (44) 

 

Lysozyme (250 mg, 0.0174 mmol) was dissolved in 10 mL of pH 9 sodium borate buffer.  

In a separate vial, 43 (50 mg, 0.174 mmol) was dissolved in 1 mL of DMSO, then added 

dropwise to the protein solution.  After 2 hours, cation exchange FPLC indicated 

complete conversion from native lysozyme.  The reaction mixture was transferred to a 

dialysis membrane and dialyzed against pure water.  Lyophilization afforded a white 

solid.  ESI-MS revealed a mixture of products. 

 Synthesis of lysozyme-polyMPC conjugate (45) 

 

A 10 mg/mL solution of lysozyme in the desired buffer was prepared, and to it, 20 molar 

equivalents of aminooxy polyMPC was added.  The reactions were kept at room 

temperature and gently agitated, and 50 uL aliquots were removed at predetermined time 

points and diluted to a final volume of 500 uL.  50uL was injected to SEC-HPLC to 

monitor conversion to conjugate. 
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 Synthesis of TMS-propargyl methacrylate (47) 

  

The TMS protected alkyne monomer was synthesized according to the literature.
6
 3-

(Trimethylsilyl)propargyl alcohol (2 g, 15.6 mmol) and triethylamine (2 g, 20.3 mmol) in 

20 mL of dry ethyl ether was cooled to -20 °C. A solution of methacryloyl chloride (2 g, 

18.7 mmol) in 10 mL of dry ethyl ether was added dropwise over 30 min. The reaction 

mixture was stirred for 30 min at -20 °C, then overnight at room temperature. The 

precipitation was removed by filtration and the solvent was removed by rotary 

evaporation. The crude product was further purified on silica column chromatography 

eluted with hexane-ethyl ether (100:1) to give the pure TMS-PgMA monomer as clear oil 

(4.0 g, 58 % yield). IR: (cm
-1

) 2961 (C-H), 1723 (C=O), 1638 (C=C). 
1
H NMR (CDCl3, 

300 MHz): δ 6.16 (m, 1H), 5.61 (m, 1H), 4.75 (s, 2H), 1.95 (m, 3H), 0.18 (s, 9H). 
13

C 

NMR (CDCl3, 75 MHz): δ 166.6, 135.7, 126.4, 99.1, 91.9, 53.0, 18.3, 0.3. HRMS-FAB 

(m/z): [M]+ calculated for C10H16O2Si: 196.0920, found: 196.0891. 

 Synthesis of CPT-azides (48) 

 
Several linkers were prepared for CPT. for example, an alkyl linker was synthesized 

according to the literature.
7
 6-bromohexanoic acid (5 g, 25.6 mmol) was reacted with 

sodium azide (8.4 g, 129 mmol) in 50 mL of DMSO at room temperature to generate 6-

azidohexanoic acid, which then was reacted with CPT using EDC/DMAP as coupling 

agents in DCM to obtain compound 48. IR: (cm
-1

) 2094 (N=N=N). 
1
H NMR (CDCl3, 300 

NaN3

DMSO

EDC/DMAP

DCM
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MHz): δ 8.43 (s, 1H), 8.24 (d, J = 8.3 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 7.0 

Hz, 1H), 7.70 (t, J = 7.1 Hz, 1H), 7.23 (s, 1H), 5.71 (d, J = 17.6 Hz, 1H), 5.43 (d, J = 17.6 

Hz, 1H), 5.31 (s, 2H), 3.25 (t, J = 6.8 Hz, 2H), 2.45-2.63 (m, 2H), 2.11-2.37 (m, 2H), 

1.71 (qp, J = 7.6 Hz, 2H), 1.63 (m, 2H), 1.42 (m, 2H), 1.00 (t, J = 7.3 Hz, 3H).   

 

Alternatively, chromium trioxide (25 g, 164 mmol) was dissolved into 300 mL of 1.5 M 

H2SO4 and the solution was cooled to 0 °C. 2-[2-(2-chloroethoxy)ethoxy]ethanol (8.3 g, 

49 mmol) in 150 mL acetone was added into the Jones reagent dropwise and the reaction 

mixture was stirred at room temperature for 6 h. The acetone was removed by 

evaporation under vacuum and the aqueous phase was extracted with DCM (3 × 100 

mL). After the combined organic phase was dried over MgSO4, 2-[2-(2-

chloroethoxy)ethoxy]acetic acid (6.3 g, 70 % yield) was obtained by removing the 

solvent by rotary evaporation. IR: (cm-1) 1734 (C=O). 
1
H NMR (CDCl3, 300 MHz): δ 

10.49 (b, 1H), 4.23 (s, 2H), 3.80 (t, J = 5.8 Hz, 4H), 3.74 (t, J = 5.7 Hz, 2H), 3.66 (t, J = 

5.8 Hz, 2H). 
13

C NMR (CDCl3, 75 MHz): δ 174.4, 71.4, 71.1, 70.4, 68.5, 42.6.  2-[2-(2-

chloroethoxy)ethoxy]acetic acid (6.3 g, 34.4 mmol) and NaN3 (9 g, 138 mmol) were 

dissolved in 20 mL of water. The reaction mixture was refluxed at 80 °C for 48 h. After 

cooling to room temperature, the reaction mixture was acidified with HCl solution and 

extracted with DCM (4 × 50 mL). The combined organic phase was dried over MgSO4 

and then MgSO4 was removed by filtration. Solvent was removed under reduced pressure 

Jones Reagent

NaN3

Water

EDC/DMAP

DCM
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to obtain the linker as clear oil (5.0 g, 77 % yield). IR: (cm
-1

) 2097 (N=N=N). 
1
H NMR 

(CDCl3, 300 MHz): δ 10.80 (b, 1H), 4.22 (s, 2H), 3.79 (t, J = 5.7 Hz, 2H), 3.69-3.74 (m, 

4H), 3.43 (t, J = 5.3 Hz, 2H). 
13

C NMR (CDCl3, 75 MHz): δ 174.7, 71.2, 70.5, 70.1, 68.4, 

50.6. HRMS-FAB (m/z): [M+H]+ calculated for C6H12O4N3: 190.0828, found: 190.0816.  

2-[2-(2-azidoethoxy)ethoxy]acetic acid (327 mg, 1.72 mmol) and EDC hydrochloride 

(330 mg, 1.72 mmol) were dissolved in 20 mL DCM at 0 °C. CPT (300 mg, 0.86 mmol) 

and DMAP (210 mg, 1.72 mmol) were added. The reaction was stirred at room 

temperature till the suspension turned clear. After washing with 1 N HCl (50 mL × 3), 1 

% NaHCO3 (50 mL × 3), and brine (50 mL × 1), the organic phase was dried over 

MgSO4. After filtration, the solvent was removed by evaporation to gave a yellow solid, 

which is recrystallized from MeOH/CH2Cl2 (95:5) to give CPT azide 48 (389 mg, 87 % 

yield) as light yellow solid. IR: (cm
-1

) 2104 (N=N=N). 
1
H NMR (CDCl3, 300 MHz): δ 

8.43 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.87 (t, J = 7.5 Hz, 1H), 

7.70 (t, J = 7.5 Hz, 1H), 7.23 (s, 1H), 5.73 (d, J = 17.4 Hz, 1H), 5.44 (d, J = 17.4 Hz, 1H), 

5.31 (s, 2H), 4.39 (d, J = 5.0 Hz, 2H), 3.77 (t, J = 5.5 Hz, 2H), 3.66-3.70 (m, 4H), 3.40 (t, 

J = 5.1 Hz, 2H), 2.13-2.39 (m, 2H), 1.00 (t, J = 7.4 Hz, 3H). 
13

C NMR (CDCl3, 75 MHz): 

δ 169.7, 167.3, 157.3, 152.2, 148.9, 146.4, 145.4, 131.2, 130.7, 129.6, 128.4, 128.2, 

128.2, 128.1, 120.3, 95.9, 76.4, 71.1, 70.6, 70.0, 68.2, 67.2, 50.6, 50.0, 31.8, 7.6. HRMS-

FAB (m/z): [M+H]+ calculated for C26H26O7N5: 520.1832, found: 520.1821. 
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 Synthesis of poly(MPC-g-CPT) (49) 

 

CPT azide compound was charged into a 10 mL two-neck round-bottom flask and three 

cycles of vacuum-nitrogen were employed. Nitrogen gas bubbled DMSO (2 mL) was 

injected with a syringe. After the CPT azide was completely dissolved, a solution of ethyl 

2-bromoisobutyrate (11.7 mg. 0.06 mmol), MPC and alkyne monomer in 0.7 mL 

methanol was injected. CuBr (17 mg, 0.12 mmol) and bipyridine (37.4 mg, 0.24 mmol) 

were added quickly under nitrogen atmosphere. The reaction mixture was then subjected 

to four freeze-pump-thaw cycles. The reaction mixture was stirred at room temperature 

for 20 h and the polymerization conversion was monitored by 
1
H NMR. The 

polymerization was stopped by precipitating the reaction mixture into THF (100 mL) and 

the crude product was isolated by filtration. The crude product was further purified on 

silica column with MeOH/CH2Cl2 (95:5) as eluent to give the polyMPC-g-CPT 

copolymers as light yellow solid. The polymers were characterized using NMR and 

aqueous GPC. 

 Synthesis of HEMA-LA monomer (51) 

 

Lipoic acid (4.00 g, 19.4 mmol) and 2-hydroxyethyl methacrylate (2.50 g, 19.4 mmol) 

were dissolved in 60 mL of anhydrous CH2Cl2 in a dry roundbottom flask.  The stirring 
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solution was cooled to 0 °C, and EDC (7.40 g, 38.8 mmol) and DMAP (2.40 g, 19.4 

mmol) were added as solids.  The reaction mixture was allowed to warm to room 

temperature, and stirred for 18 hours.  The mixture was diluted with dichloromethane, 

and washed with 1 M HCl(aq), saturated NaHCO3(aq), and brine.  The organic layer was 

dried over MgSO4, filtered, and concentrated by rotary evaporation, to give monomer 51 

as a yellow oil (4.9 g, 80 % yield).  
1
H NMR (300 MHz, CDCl3):  = 6.06 (s, 1H), 5.36 

(s, 1H), 4.26 (s, 4H), 3.5 (m, 1 H), 3.11 (m, 2H), 2.40 (m, 1H), 2.3 (t, 2H), 1.87 (s, 3H), 

1.35-1.70 (m, 8H) ppm.  
13

C NMR (75 MHz, CDCl3):  = 18.31, 24.60, 28.70, 33.87, 

34.58, 38.49, 40.21, 56.29, 61.99, 62.43, 126.10, 135.89, 167.08, 173.22 ppm.   

 Synthesis of poly(MPC-b-DHLA) copolymer (55) 

 

MPC (1.00 g, 3.37 mmol), 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (19 mg, 

0.067 mmol), and 4,4'-azobis(4-cyanovaleric acid) (ACVA) (4.0 mg, 0.014 mmol) were 

added to a dry round bottom flask.  Methanol (3 mL) and dimethylsulfoxide (DMSO) (2 

mL) were added and the solution was degassed for 20 minutes by bubbling with dry 

nitrogen gas.  The reaction mixture was placed in a preheated oil bath at 70 °C and stirred 

for 6 hours.  In a separate vial, HEMA-LA 51 (212 mg, 0.67 mmol) was dissolved in 

DMSO (1 mL) and degassed for 30 minutes.  The solution of 1 was added rapidly to the 

reaction flask by syringe, and stirring was continued for 12 hours.  Propagation was 

m n
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terminated by placing the solution in liquid nitrogen, then allowing the mixture to warm 

while open to air.  The solution was then passed through a short plug of silica gel, eluting 

with methanol, then precipitated into THF to afford polymer 54 as a pink solid.  This 

solid was dissolved in 20 mL of degassed water, and stirred at 0 ºC.  Sodium borohydride 

(102 mg, 2.68 mmol) was added under a stream of nitrogen.  The reaction mixture was 

stirred at 0 °C for 1 hour, then at 25 °C for 1 hour.  HClconc was added to adjust the pH to 

~3, and the polymer was purified by dialysis (MWCO 1,000) against methanol and water 

at 4 °C.  Lyophilization afforded the desired block copolymer 55 in 80 % yield as white 

solids.  
1
H NMR (300 MHz, MeOD/CDCl3):  = 4.32 (2H, br), 4.22 (2H, br), 4.07 (2H, 

br), 3.75 (2H, br), 2.95 (2H, br), 2.71 (2H, br), 2.45 (2H, br), 1.37-2.28 (H, br), 0.52, 1.23 

(3H, br).  
13

C NMR (175 MHz, MeOD/CDCl3):  = 16.91, 18.59, 21.81, 24.45, 26.31, 

33.78, 38.43, 39.01, 42.70, 44.70, 45.10, 53.76, 59.09, 64.70, 66.09, 173.44, 176.79, 

177.60, 177.87.  GPC (TFE + 0.2 M Na trifluoroacetate, 1 eq DTT, PMMA standards): 

Mn, 26,900; PDI 1.24.  

 Synthesis of 3-(pyridyl disulfide) propionic acid linker (56) 

 

Comound 56 was synthesized according to literature procedure.
8
  2,2'-Dithiodipyridine 

(500 mg, 2.27 mmol) was dissolved in ethyl acetate (2.5 mL) with stirring in a 

roundbottom flask.  Separately, 3-mercaptopropionic acid (160 mg, 1.51 mmol) was 

dissolved in ethyl acetate (1.5 mL), and added dropwise to the stirring solution, which 

gradually became yellow.  One drop of boron trifluoride diethyl etherate was added.  

After 7 hours, the reaction mixture was concentrated by rotary evaporation and purified 
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by column chromatography on silica gel, eluting with methanol/dichloromethane 

mixtures to give the desired product as a yellow oil in 95 % yield (307 mg).  
1
H NMR 

(300 MHz, CDCl3):  = 12.8 (s, 1H), 8.4 (br, 1H), 7.6 (br, 2H), 7.1 (br, 1H), 3.04 (tr, 2H), 

2.8 (tr, 2H).  
13

C NMR (75 MHz, CDCl3):  = 33.71, 34.01, 114.32, 121.19, 134.00, 

138.06, 149.93, 176.16. 

 Synthesis of CPT-pyridyl disulfide (57) 

 

Camptothecin-pyridyl disulfide was prepared according to literature procedures.
9
 

Compound 56 (232 mg, 1.07 mmol) was dissolved in anhydrous dichloromethane (30 

mL) in a roundbottom flask.  Camptothecin (250 mg, 0.718 mmol) was added to form a 

pale yellow suspension.   EDC (276 mg, 1.44 mmol) and DMAP (175 mg, 1.44 mmol) 

were added. The mixture was stirred for 24 hours, then diluted with dichloromethane, and 

washed with 1M HCl (aq), brine, and water.  The organic layer was dried over MgSO4, 

filtered, and concentrated by rotary evaporation.  The residue was further purified by 

column chromatography on silica gel, eluting with methanol/dichloromethane to give the 

desired product as a yellow solid in 50 % yield (195 mg).  
1
H NMR (300 MHz, DMSO): 

 = 8.71 (s, 1H), 8.48 (d, 1H), 8.14 (m, 2H), 7.62-7.83 (m, 3H), 7.36 (d, 1H), 7.11-7.2 (m, 

2H), 5.51 (s, 2H), 5.31 (s, 2H), 3.34 (m, 2H), 2.96 (m, 2H), 2.15 (m, 2H), 0.90 (tr, 3H).  

13
C NMR (175 MHz, DMSO):  = 171.01, 167.57, 157.61, 156.96, 153.82, 150.01, 

148.33, 146.37, 145.73, 137.10, 132.00, 130.90, 130.25, 129.29, 129.00, 128.42, 128.14, 
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122.75, 120.40, 119.28, 95.66, 76.56, 66.72, 50.66, 34.25, 30.65, 29.36, 7.99.  HRMS-

FAB [M+H]: calculated: 546.115, found: 546.113 g/mole. 

 Synthesis of polyMPC-CPT loaded micelles (58) 

 

Polymer 55 (50 mg, 0.064 mmol DHLA) and camptothecin-pyridyl disulfide (16 mg, 

0.029 mmol) were dissolved in methanol/DMSO (5 mL).  The solution was stirred 

vigorously at 37 °C for 72 hours, then dialyzed against methanol to remove unconjugated 

camptothecin.  The polymer solution was dialyzed against water to induce micelle 

formation, and bubbled with air to promote disulfide formation from residual thiols.  

Micelle solutions were passed through 0.45 μm filters to remove any free CPT, and 

lyophilized to produce off-white solids which were re-dissolved in water or methanol for 

characterization.  CPT loading, as a weight percent, was determined using UV/Vis 

spectroscopy, comparing to a sample of known concentration. 
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 Synthesis of 2-ethoxy-2-oxoethyl methacrylate (59) 

 

Monomer 59 was prepared by Dr. Xiangji Chen.  Sodium methacrylate (9.7 g, 90 mmol) 

and 10.02 g of ethyl bromoacetate (60 mmol) were added into 55 mL of dry acetonitrile. 

To the suspension, 3.5 g of tetrabutylammonium bromide (TBAB) was added. The 

reaction mixture was heated to reflux overnight. The salt was removed by filtration and 

solvent was removed by evaporation under reduced pressure. The residue was redissolved 

in ethyl acetate and washed four times with water. The organic phase was dried over 

MgSO4 and removal of the solvent gave the desired monomer as a pale yellow oil (9.8 g, 

95 %). 
1
H NMR (CDCl3, 300 MHz): δ 6.21 (s, 1H), 5.64 (m, 1H), 4.66 (s, 2H), 4.22 (q, 

2H), 1.97 (s, 3H), 1.27 (t, 3H). 
13

C NMR (CDCl3, 75 MHz): δ 167.9, 166.7, 135.4, 126.8, 

61.4, 60.9, 18.2, 14.1. 

 Synthesis of polyMPC-co-EtOEMA (60) 

 

Initiator EBiB (5.9 mg, 0.03 mmol), MPC and EtOEMA were charged to a 10 mL two-

neck round-bottom flask and three cycles of vacuum-nitrogen were employed. Nitrogen 

gas-bubbled DMSO and MeOH were injected with a degassed syringe. The reaction 

mixture was bubbled with nitrogen gas for 20 min. Cu(I)Br (8.6 mg, 0.06 mmol) and 

mn



138 

 

bipyridine (18.7 mg, 0.12 mmol) were added as solids quickly under nitrogen 

atmosphere. The reaction mixture was then bubbled with nitrogen gas for another 20 min 

and left under nitrogen atmosphere. The reaction mixture was stirred at room temperature 

and the polymerization conversion was monitored by 
1
H NMR. The polymerization was 

stopped by exposing to air. The crude product was purified by silica column eluting with 

methanol to give the poly(MPC-co-EtOEMA)  random copolymer as a white solid. The 

monomer ratio in the copolymer was characterized by 
1
H NMR spectroscopy, comparing 

the peak integration at 3.58 ppm (-CH2-N in MPC) to peak integration at 1.27 ppm ((-

CH3) in EtOEMA).   

 Synthesis of polyMPC-co-Hydrazine (61) 

 

Poly(MPC-co-EtOEMA) 60 was dissolved in methanol at a concentration of 100-200 mg 

/mL. Hydrazine monohydrate was added to the polymer solution to a final concentration 

of 25 %. The reaction mixture was stirred at room temperature, monitoring by 
1
H NMR 

spectroscopy. Upon completion, the reaction mixture was diluted with water and purified 

by dialysis against water with MWCO 1000 membrane for 2 days and filtered through a 

0.45 µm filter. The copolymer was obtained as a white powder after lyophilization. The 

average yield was over 80 % and the loading of the hydrazine group was calculated by 

comparing the peak integration at 3.58 ppm (–CH2-N in MPC) to peak integration at 4.64 

ppm (-CH2-CONHNH2) on 
1
H NMR spectrum.  

1
H NMR (MeOD, 300 MHz): δ = 0.9-1.2 
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(br, 3H), 1.8-2.3 (br, 2H), 3.3 (s, 9H), 3.75 (br, 2H), 4.16 (br, 2H), 4.3 (br, 2H), 4.38 (br, 

2H), 4.64 (br, 2H).  
13

C NMR (MeOD, 100 MHz):  = 16.8, 18.5, 44.7, 45.0, 53.4, 59.3, 

62.2, 62.9, 64.8, 66.1, 167.1, 176.9, 178.1. GPC (0.1 M NaNO3 + 0.02 wt % NaN3, PEO 

standards): Mn, 25,000; PDI 1.4. 

 Synthesis of polyMPC-DOX (62) 

 

MPC copolymer 61 (200 mg, 0.165 mmol -NHNH2) and DOX•HCl (58 mg, 0.1 mmol) 

were dissolved in anhydrous methanol (5 mL).  To this solution, 60 μL of acetic acid and 

200 mg of anhydrous magnesium sulfate were added.  The reaction mixture was stirred in 

the dark at room temperature for 2 days.  The resulting conjugate was purified first by 

passage over a Sephadex LH-20 column eluting with methanol.  Fractions containing 

polymer-DOX conjugate were concentrated by rotary evaporation, redissolved in water, 

and further purified by Sephadex G-25 column eluting with pure water.  PolyMPC-DOX 

conjugate 62 was obtained as a dark red powder after lyophilization (230 mg, 88 %).    

 Synthesis of GRGDS-methacrylamide (63) 

 

mn
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Standard solid phase peptide synthesis procedures were used, starting from a 2-

chlorotrityl chloride resin containing 1.6 mmol/g active sites.  Resin (3.0 g, 4.8 mmol) 

was added to the reaction vessel, and 30 mL of anhydrous dichloromethane was added.  

The suspension was agitated with dry nitrogen pressure for 30 minutes to swell the resin.  

Separately, Fmoc-Ser(But)-OH (3.7 g, 9.6 mmol) was dissolved in 30 mL of anhydrous 

dichloromethance.  DIPEA (2.47 g, 19.2 mmol) was injected to the serine solution 

immediately prior to addition to the reaction vessel.  The peptide-resin mixture was 

agitated with nitrogen pressure for one hour at room temperature.  The reaction mixture 

was filtered.  CH2Cl2:MeOH:DIPEA (80:15:5) (30 mL) was added, and agitated with 

nitrogen pressure for 10 minutes, to block any unreacted active sites.  The solution was 

filtered, and 30 mL of fresh CH2Cl2/MeOH/DIPEA solution was added and agitated for 

10 minutes.  The resin was washed with 30 mL DMF (3 x 1 minute each).  The amino 

acid was deprotected using a 25 % piperidine solution in DMF, agitating for three 

minutes, then exchanging for fresh solution and agitating for 20 minutes.  The resin was 

washed with DMF (6x), CH2Cl2 (3x), isopropanol (3x), hexanes (6x), and once with 

dichloromethane, then dried under vacuum overnight.  Serine loading was calculated to 

be 1.36 mmol/g.  Aspartic acid (6.7 g, 16.32 mmol), HBTU (5.3 g, 16.3 mmol), and 

HOBt (2.20 g, 16.3 mmol) were dissolved in 40 mL anhydrous DMF.  DIPEA (4.20 g, 

32.6 mmol) was added, and the solution was quickly transferred to the reaction vessel 

containing the serine-loaded resin and agitated with nitrogen pressure for 1 hour.  The 

solution was filtered, and washed with DMF (3x), then deprotected with 25 % piperidine 

in DMF.  After filtering, the resin was washed with DMF (6x).  This procedure was 

repeated for the additions of glycine, arginine, glycine, N-Fmoc-amidocaproic acid, and 
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methacrylic acid.  After the addition of methacrylic acid, the resin was washed with 

dichloromethane (6x), and then agitated for 1 hour with a 95:2.5:2.5 trifluoroacetic 

acid:water:triisopropylsilane solution to cleave the peptide from the resin.  The solution 

was filtered into a dry round bottom flask; the cleavage procedure was then repeated 

twice.  The peptide solution was concentrated to a minimal volume using rotary 

evaporation and precipitated into 1 L diethyl ether.  The GRGDS-methacrylamide 

monomer 63 was recovered as a white solid by filtration and dried under vacuum (1.9 g, 

45 %).  
1
H NMR (300 MHz, DMSO):  = 7.9-8.5 (br, 8H), 5.61 (s, 1H), 5.28 (s, 1H), 

4.55-4.75 (br, 3H), 4.2-4.4 (br, 2H), 3.6-3.85 (br, 6H), 3.15 (br, 4H), 3.0 (br, 1H), 2.85 

(br, 1H), 2.7 (br, 1H), 2.55 (br, 2H), 2.12 (tr, 2H), 1.84 (s, 3H), 1.5 (br, 8H), 1.25 (br, 

2H).  
13

C NMR (75 MHz, DMSO):  = 173.19, 172.27, 172.15, 171.97, 171.39, 171.11, 

170.23, 169.78, 169.10, 167.85, 157.12, 140.53, 119.21, 67.08, 65.38, 55.28, 52.65, 

51.06, 49.65, 42.42, 36.72, 35.53, 29.48, 29.30, 26.56, 25.38, 19.13.  ESI-MS [M+H]: 

calculated, 672.3; found, 672.4. 

 Synthesis of polyMPC-co-DHLA-co-GRGDS (64) 

 

MPC (1.0 g, 3.4 mmol), HEMA-LA (218 mg, 0.69 mmol), and 2,2'-

azobisisobutyrylnitrile (AIBN) (8 mg, 0.05 mmol) were added to a dry round bottom 

n m p
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flask.  A 1:1 mixture of MeOH and DMSO (6 mL total volume) was added and the 

solution was purged with dry nitrogen gas.  The reaction mixture was placed in a 

preheated oil bath at 70 °C and stirred for 4 hours.  Propagation was terminated by 

placing the solution in liquid nitrogen, then allowing the mixture to warm while open to 

air.  The solution was precipitated into THF to afford the polymer product as an off-white 

solid.  This solid was dissolved in 20 mL of degassed water, and stirred at 0 ºC.  Sodium 

borohydride (104 mg, 2.74 mmol) was added under a stream of nitrogen.  The reaction 

mixture was stirred at 0 ºC for 1 hour, then at 25 ºC for 1 hour.  HCl(conc) was added to 

adjust the pH to ~3, and the polymer was purified by dialysis (MWCO 1,000) against 

methanol and water at 4 °C.  Lyophilization afforded the desired copolymer 64 as a white 

solid.  
1
H NMR (300 MHz, MeOD): =   4.4 (br, 2H), 4.3 (br, 2H), 4.1 (br, 2H), 3.75 (br, 

2H), 3.0 (br, 2H), 2.75 (br, 2H), 2.5 (br, 2H), 1.5-2.1 (br, 5H), 0.8-1.1 (br, 3H).  
13

C NMR 

(100 MHz, MeOD/CDCl3):  = 177.5, 66.1, 62.9, 59.3, 53.8, 45.0, 44.7, 42.7, 39.0, 38.4, 

33.6, 26.4, 24.4, 21.8, 18.6, 16.7.  Aqueous GPC (0.2 M NaNO3 + 0.01 % NaN3; PEO 

standards): Mn, 64,200 g/mole; PDI, 4.4.  This general procedure was used for all of the 

GRGDS-containing polymers, adding the desired amount of oligopeptide comonomer at 

the outset of the polymerization.   

 Preparation of polyMPC hydrogel (65) 
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Stock solutions of poly(MPC-co-DHLA) (with and without the GRGDS peptide) were 

prepared at a concentration of 100 mg/mL in pH 9 sodium borate buffer.  Separately, a 

stock solution of PEG2000DA cross-linker was prepared at a concentration of 180 mg/mL 

in sodium borate buffer.  The poly(MPC-co-DHLA) and PEGDA solutions were 

combined to give a [SH]:[acrylate] ratio of 1:1, then heated to 37 °C for 20 minutes.  The 

resulting hydrogels were swelled in pure water or PBS, which was changed several times 

to remove any uncross-linked material.  The equilibrium water content (EWC) was 

determined by comparing the weight of the gel after swelling in water for 3 days to the 

weight of the dry gel.  Equation 1 was used to determine EWC (as a percent): 

            -  
  

  
        

where Ws and Wd are the weights of the swollen and dried gels, respectively.  Excess 

water was removed from the hydrogel by gently wicking with filter paper.  Dynamic 

mechanical analysis was used to characterized the physical properties of the hydrogels.  

PolyMPC-co-DHLA hydrogels were prepared with PEG700DA as the cross-linker, with a 

polyMPC-co-DHLA concentration of 50 mg/mL in pH 9 borate buffer.  The hydrogel 

samples were swelled to equilibrium for 48 hours.  Frequency response tests were 

conducted at room temperature, from 0 - 10 Hz, and the storage (G') and loss (G") moduli 

were recorded. 

 Determination of lysozyme activity 

The activity of lysozyme, and lysozyme – polymer conjugates, was measured using the 

EnzChek® Lysozyme Assay kit purchased from Invitrogen.  The samples were diluted in 

the reaction buffer provided, generating samples of protein equivalent concentrations, and 

incubated at 37 °C for 1 hour with the substrate Micrococcus lysodeikticus fluorescently 

(1) 
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labeled with fluorescein.  The fluorescence intensity of the digestion product was 

measured using excitation/emission wavelengths of 485/535 nm, respectively.  The 

activities of the conjugates were determined from the relative fluorescence intensities.  

 Pharmacokinetics of PC-polymer protein conjugates 

All procedures were performed in accordance with NIH guidelines for the ethical 

treatment of animals, and were approved by the Baystate Medical Center Institutional 

Animal Care and Use Committee.  The AF647-labeled lysozyme and linear polyMPC 

conjugate were injected into the lateral tail vein of C57bl/6 mice (~20 g) intravenously, at 

a dose of 1.5 mg/kg (AF647 concentration) with 6 mice in each group.  At specified time 

points, 40 uL of blood was withdrawn from the tail vein, followed by centrifugation at 

1500 g for 15 minutes at 4 °C to sediment the blood cells.  The samples were stored at -

80 °C until analysis.  10 µL of the plasma sample was diluted with 20 µL of PBS in a 

HPLC vial, and 25 µL of each diluted sample was injected into the HPLC and analyzed 

using a fluorescence detector, with excitation at 650 nm and emission at 670 nm.  The 

area under the curve (AUC) for the conjugate was recorded and converted to 

concentration of AF dye using a calibration curve constructed from samples of known 

concentrations. 

 Drug release from polyMPC-g-CPT conjugates 

The CPT containing polymers were dissolved into different media at concentration of 3 

mg/mL. The mixtures were incubated at 37˚C and aliquots (100 µL) were taken out at 

different time points. Twenty µL of the sample from PBS and cell culture media were 

analyzed on SEC-HPLC. The sample taken from mouse serum and human plasma were 

mixed with 200 uL of PBS and filtered through 0.45 µm filter membrane; 60 µL of the 
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filtrate was analyzed on SEC-HPLC. The stability profile was generated by plotting the 

percentage of remaining CPT on the polymer over a time course. The percentage was 

calculated based on the peak area of UV absorbance at 370 nm. The sample was also 

analyzed on RP-HPLC and the integrity (lactone vs carboxylate) of the released CPT was 

based on the retention times. 

 Cell culture of polyMPC-g-CPT conjugates  

The COLO 205 and OVCAR 3 cancer cells were cultured in RPMI-1640 medium 

supplemented with 10 % fetal bovine serum (FBS) or 20 % FBS and 0.01 mg/ml bovine 

insulin, while MCF7 cells were cultured in MEM medium supplemented with 10 % FBS 

and 0.01 mg/ml bovine insulin.  All cells were grown in 5 % CO2 incubators at 37 ˚C.  

For in vitro cytotoxicity assays cells were seeded into 96 well plates and after reaching 

about 40 % cell density were incubated for 72-96 hours with varying camptothecin 

equivalent concentrations of polymer drug conjugates as well as polymer control (i.e., 

without drug attachment). Cell viability post-treatment was measured using CellTiter-Glo 

luminescent cell viability assays (Promega) as per manufacturer’s instructions on a 

FLUOstar OPTIMA plate reader (BMG LABTECH). The percentage camptothecin 

mediated toxicity was calculated with respect to untreated cells, and graphed to give dose 

response curves. IC50 values for each treatment were then calculated using the GraphPad 

Prism4 statistical analysis software. 

 Determination of critical micelle concentration (CMC) for poly(MPC-b-

DHLA) 

CMC was determined using a pyrene fluorescence probe.  Briefly, a stock solution of 

pyrene in acetone (1.2 x 10
-4

 M) was prepared.  Polymers 55 A-C were dissolved in PBS, 
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and diluted from 5 mg/ml to 1.25 μg/mL, with each solution having a total volume of 1 

mL.  5 μL of pyrene solution was added to each for a final pyrene concentration of 6 x 

10
-7

 M.  The polymer solutions were kept at 18 °C for 18 hours.  An excitation spectrum 

was recorded of each solution from 300-360 nm at a scan rate of 100 nm/s, with emission 

set to 394 nm.  CMC was determined by plotting log(concentration) vs. the ratio of the 

intensities at 339 and 334 nm. 

 CPT release from cross-linked polyMPC-b-DHLA micelles 

Release of CPT from the polymer micelles was monitored by dialysis.  Briefly, 

lyophilized polymer micelles containing CPT were dissolved in PBS (1 mL).  The 

solution was transferred to a dialysis cassette (MWCO 3500) by syringe.  The cassette 

was suspended in a sealed container with 300 mL of PB, or PBS containing 3 mM DTT.  

Containers were kept in a water bath at 37 °C, and at select time points 1 mL aliquots 

were removed from the external media and replaced with fresh buffer.  The fluorescence 

intensity at 440 nm (λex=370 nm) was monitored, and the experiments were carried out 

until a plateau was reached.   

 Cell culture of CPT-loaded polyMPC-b-DHLA micelles 

COLO205 cancer cells were cultured in RPMI-1640 medium supplemented with 10% 

fetal bovine serum (FBS), while MCF7 cells were cultured in MEM medium 

supplemented with 10% FBS and 0.01 mg/mL bovine insulin.  All cells were grown in 5 

% CO2 incubators at 37 °C.  For in vitro cytotoxicity assays, cells were seeded in 96 well 

plates, and after reaching about 40 % cell density were incubated for 72 hours with 

varying camptothecin equivalent concentrations of prodrug micelles, as well as control 

samples, including polymer only and polymer micelles (physically entrapped CPT).  Cell 
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viability post-treatment was measured using CellTiter-Glo luminescence cell viability 

assay (Promega) following the manufacturer instructions on a FLUOstar OPTIMA plate 

reader (BMG LABTECH).  The CPT-mediated toxicity was calculated with respect to 

untreated cells, and graphed to give dose-response curves.  IC50 values for each treatment 

were then calculated using GraphPad Prism4 statistical analysis software. 

 Pharmacokinetics of polyMPC-DOX 

All experiments were performed in accordance with protocols approved by the Baystate 

Institutional Animal Care and Use Committee. Four week old BALB/c female mice were 

injected subcutaneously into the right flank with 5 x 10
6
 4T1 murine breast cancer cells 

suspended in 100 µL of Hank’s Balanced Salt Solution (HBSS). Once tumors reached a 

size of 100-300 mm
3
 (calculated by L x W

2
 x π/6), mice were injected through the lateral 

tail vein with 100 µL HBSS, free doxorubicin (6 mg/kg), or polyMPC-DOX (6 mg/kg, 

DOX equivalent) (n=8/treatment).  Blood samples (30-50 µL) were taken from the 

submandibular vein prior to injection, and then 30 minutes, 2 hours, 6 hours, 12 hours, 1 

day, 2 days, 3 days, and 5 days post-injection. Blood samples were clotted on ice and 

centrifuged at 1500 x g for 15 minutes at 4 ˚C.  Serum was collected and stored at -80 ˚C 

until HPLC analysis to determine doxorubicin concentration. On day 3 and day 5 post-

injection, mice were euthanized from each treatment group.  For HPLC analysis, 10 μL of 

each serum sample was diluted with 90 μL of HPLC mobile phase (40 % acetonitrile in 

water + 1 % trifluoroacetic acid), and incubated at room temperature for 2 hours, then 

overnight at 4 °C.  Samples were centrifuged to sediment residual debris, and 25 μL was 

injected on the HPLC fitted with a reverse phase (C18) column, and monitoring with 
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fluorescence detection (480/580 nm, ex/em).  DOX concentration was determined using a 

calibration curve, then plotted against post-injection time to generate the PK profile.  

 Immunogenicity of polyMPC-DOX 

Following completion of the PK study, blood from each mouse was collected by cardiac 

puncture (800 μL), and a complete blood count (CBC) was performed on 500 µl using the 

VetScan HM5. The remainder of the samples were allowed to clot on ice, centrifuged at 

1500 x g for 15 minutes at 4 ˚C, serum was collected and stored at -80 ˚C for ELISA of 

cytokine responses.  

 Biodistribution of polyMPC-DOX 

Tumors, hearts, livers, lungs, kidneys, and spleens, were collected, weighed, and frozen 

in liquid nitrogen. Livers and spleens were divided and half of each tissue was 

additionally fixed in 10% buffered formalin overnight at 4 ˚C, transferred to 70 % EtOH 

at 4 ˚C, and paraffin embedded for histological analysis. Frozen tissues were 

homogenized at maximum speed in acidified isopropanol (90 % isopropanol containing 

0.6 mL concentrated HCl). Samples were then centrifuged at 1500 x g for 15 minutes at 4 

˚C, and the upper aqueous phase was collected and stored at -80 ˚C until HPLC analysis 

of doxorubicin concentration.  50 μL of each tissue homogenate was transferred to a 

clean vial, and the IPA was evaporated under a stream of nitrogen, and redissolved in 50 

μL of HPLC mobile phase (40 % acetonitrile in water + 1 % trifluoroacetic acid).  

Samples were centrifuged for 30 minutes at 12,000 rpm to sediment precipitated proteins 

and cell debris.  25 μL was injected in the HPLC equipped with a reverse phase (C18 



149 

 

column), monitoring with fluorescence detection.  DOX concentration was calculated 

using a calibration curve, then normalized per gram of tissue. 

 Antitumor efficacy of polyMPC-DOX in 4T1 tumor-bearing mice 

Four week old BALB/c female mice were injected into lower right mammary fat pad with 

5x10
6
 4T1 murine breast cancer cells suspended in 100 µL of Hank’s Balanced Salt 

Solution (HBSS). Once tumors reached a size of 42-132 mm
3
 (calculated by L x W

2
 x 

π/6), mice were injected through the lateral tail vein with free doxorubicin (3mg/kg), 

polyMPC-DOX (15mg/kg DOX equivalent), or HBSS (control) (n=15/treatment). A 

second injection of the same concentration was given on Day 7, and mice treated with 

polyMPC-DOX received a third dose on Day 17. Animals were monitored for signs of 

distress, and body weights and tumor measurements were collected every 2 days. Upon 

completion, tumors, hearts, livers, lungs, kidneys, and spleens, were collected, weighed, 

and fixed in 10 % buffered formalin overnight at 4 ˚C, transferred to 70 % EtOH at 4 ˚C, 

and paraffin embedded for histological analysis. 

 Cell culture, cell density, and proliferation studies for polyMPC hydrogels 

Mouse skeletal muscle myoblasts C2C12 cells were cultured in growth medium 

(Dulbecco’s Modified Eagles Medium, DMEM), while human ovarian adenocarcinoma 

SKOV3 cells were cultured in growth medium (McCoy’s 5A) supplemented with 10 % 

Fetal Bovine Serum (FBS) and Penicillin and Streptomycin, at 37 °C in a 5 % CO2 

incubator.  Gels were prepared in a tissue culture 24-well plate, according to the general 

procedure described previously, with a final solution volume of 200 μL.  The 24-well 

plate was incubated at 37 °C for 20 minutes.  The gels were rinsed and swollen in PBS 

for 18 hours.  The hydrogels were washed twice with sterile growth medium, and were 
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incubated with growth medium for 2 hours at 37 °C in 5 % CO2 incubator.  The medium 

was then replaced with 1 mL growth medium containing 10 × 10
4
 proliferating C2C12 or 

SKOV3 cells and incubated at 37 °C for up to 24 hours.  Cell spreading and proliferation 

were visualized by optical microscopy.  Percent cell density was determined using the 

CellTiter-Glo reagent and a luminescence plate reader. 

5.4 References 

1. Ishihara, K.; Ueda, T.; Nakabayashi, N. Preparation of phospholipid polymers and 

their properties as polymer hydrogel membranes. Polymer Journal 1990 22, 355-

60. 

 

2. Nicolas, J.; Miguel, V. S.; Mantovani, G.; Haddleton, D. M. Fluorescently tagged 

polymer bioconjugates from protein derived macroinitiators. Chemical 

Communications 2006 4697–9. 

 

3. Kratz, K.; Breitenkamp, K.; Hule, R.; Pochan, D.; Emrick, T. PC-Polyolefins: 

Synthesis and Assembly Behavior in Water. Macromolecules 2009, 42, 3227-9. 

 

4. Hillmyer, M. A.; Laredo, W. R.; Grubbs, R. H. Ring-Opening Metathesis 

Polymerization of Functionalized Cyclooctenes by a Ruthenium-Based 

Metathesis Catalyst. Macromolecules 1995, 28, 6311-16. 

 

5. Love, J.; Morgan, J.; Trnka, T.; Grubbs, R. A practical and highly active 

ruthenium-based catalyst that effects the cross metathesis of acrylonitrile. 

Angewandte Chemie (International ed. in English) 2002, 41, 4035–7. 

 

6. Ladmiral, V.; Mantovani, G.; Clarkson, G.; Cauet, S.; Irwin, J.; Haddleton, D. 

Synthesis of neoglycopolymers by a combination of “click chemistry” and living 

radical polymerization. Journal of the American Chemical Society 2006, 128, 

4823–30. 

 

7. Parrish, B.; Emrick, T. Soluble camptothecin derivatives prepared by click 

cycloaddition chemistry on functional aliphatic polyesters. Bioconjugate 

Chemistry 2006, 18, 263–7. 

 

 

 



151 

 

8. Digilio, G.; Menchise, V.; Gianolio, E.; Catanzaro, V.; Carrera, C.; Napolitano, 

R.; Fedeli, F.; Aime, S. Exofacial protein thiols as a route for the internalization 

of Gd(III)-based complexes for magnetic resonance imaging cell labeling. Journal 

of Medicinal Chemistry 2010, 53, 4877–90. 

 

9. Cabral, H.; Nakanishi, M.; Kumagai, M.; Jang, W.-D.; Nishiyama, N.; Kataoka, 

K. A photo-activated targeting chemotherapy using glutathione sensitive 

camptothecin-loaded polymeric micelles. Pharmaceutical Research 2008, 26, 82–

92. 



152 

 

BIBLIOGRAPHY 

 

Abuchowski, A.; Davis, F.F. Preparation and properties of polyethylene glycol-trypsin 

adducts. Biochimica et Biophysica Acta 1979, 578, 41-46. 

 Abuchowski, A.; Karp, D.; Davis, F.F. Reduction of plasma urate levels in the cockerel 

with polyethylene glycol-uricase. Journal of Pharmacology and Experimental 

Therapeutics 1981, 219, 352-354. 

Abuchowski, A.; van Es, T.; Palczuk, N.C.; Davis, F.F. Alteration of immunological 

properties of bovine serum albumin by covalent attachment of polyethylene 

glycol.  Journal of Biological Chemistry 1977, 252, 3578-3581. 

Alakhov, V.; Klinski, E.; Li, S.; Pietrzynski, G.; Venne, A.; Batrakova, E.V.; Bronitch, 

T.; Kabanov, A.V. Block copolymer-based formulation of doxorubicin. From cell 

screen to clinical trials. Colloids and Surfaces B: Biointerfaces 1999, 16, 113-34. 

Bae, Y.; Fukushima, S.; Harada, A.; Kataoka, K. Design of environment-sensitive 

supramolecular assemblies for intracellular drug delivery: polymeric micelles that 

are responsive to intracellular pH change. Angewandte Chemie (International ed. 

in English) 2003, 42, 4640–3.  

Barckyz, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Research 2010, 339, 269-

280. 

Berry, G.; Billingham, M.; Alderman, E.; Richardson, P.; Torti, F.; Lum, B.; Patek, A.; 

Martin, F. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in 

AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. 

Annals of Oncology 1998, 9, 711–6. 

Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. Pegnology: a review of PEG-ylated systems. 

International Journal of Pharmaceutics 2003, 257, 111-24. 

Bhatt, R.; de Vries, P.; Tulinsky, J.; Bellamy, G.; Baker, B.; Singer, J.; Klein, P. 

Synthesis and in vivo antitumor activity of poly(l-glutamic acid) conjugates of 

20S-camptothecin. Journal of Medicinal Chemistry 2003, 46, 190–3. 

Bissett, D.; Cassidy, J.; Bono, J.S.; Muirhead, F.; Main, M.; Robson, L.; Fraier, D.; 

Magne, M.L.; Pellizzoni, C.; Porro, M.G.; Spinelli, R.; Speed, W.; Twelves, C. 

Phase I and pharmacokinetic (PK) study of MAG-CPT (PNU 166148): a 

polymeric derivative of camptothecin (CPT). British Journal of Cancer 2004, 91, 

50-5. 

Bontempo, D.; Li, R.C.; Ly, T.; Brubaker, C.E.; Maynard, H.D. One-step synthesis of 

low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP Chemical 

Communications 2005, 37, 4702-4704. 



153 

 

Bontempo, D.; Maynard, H. Streptavidin as a macroinitiator for polymerization: in situ 

protein-polymer conjugate formation. Journal of the American Chemical Society 

2005, 127, 6508–9. 

Bridges, A.; García, A. Anti-inflammatory polymeric coatings for implantable 

biomaterials and devices. Journal of Diabetes Science and Technology 2008, 2, 

984–94.  

Bryant, S.; Cuy, J.; Hauch, K.; Ratner, B. Photo-patterning of porous hydrogels for tissue 

engineering. Biomaterials 2007, 28, 2978–86. 

Bukowski, R.; Tendler, C.; Cutler, D.; Rose, E.; Laughlin, M.; Statkevich, P. Treating 

cancer with PEG Intron: pharmacokinetic profile and dosing guidelines for an 

improved interferon-alpha-2b formulation. Cancer 2002, 95, 389–96.  

Burdick, J.; Anseth, K. Photoencapsulation of osteoblasts in injectable RGD-

modified PEG hydrogels for bone tissue engineering. Biomaterials 2002, 23, 

4315–23.  

Cabral, H.; Nakanishi, M.; Kumagai, M.; Jang, W.-D.; Nishiyama, N.; Kataoka, K. A 

photo- activated targeting chemotherapy using glutathione sensitive 

camptothecin-loaded  polymer micelles. Pharmaceutical Research 2008, 26, 82-

92. 

Caiolfa, V. R.; Zamai, M.; Fiorino, A.; Frigerio, E.; Pellizzoni, C.; d'Argy, R.; Ghiglieri, 

A.; Castelli, M. G.; Farao, M.; Pesenti, E.; Gigli, M.; Angelucci, F.; Suarato, A. In 

9th International Symposium on Recent Advances in Drug Delivery Systems; 

Elsevier Science: Salt Lake City, Utah, 1999, 105-19. 

Caliceti, P.; Veronese, F. Pharmacokinetic and biodistribution properties of poly(ethylene 

glycol)-protein conjugates. Advanced Drug Delivery Reviews 2003, 55, 1261–77. 

Carrico, I.S.; Carlson, B.L.; Bertozzi, C.R. Introducing genetically encoded aldehydes 

into proteins. Nature Chemical Biology 2007, 3, 321-322. 

Cascone, M. G.; Laus, M.; Ricci, D.; Guerra, R. S. D. Evaluation of poly(vinyl alcohol) 

hydrogels as a component of hybrid artificial tissues. Journal of Materials 

Science: Materials in Medicine 1995, 6, 71-75. 

Casey, R.; Skubitz, A. CD44 and beta1 integrins mediate ovarian carcinoma cell 

migration toward extracellular matrix proteins. Clinical and Experimental 

Metastasis 1999, 18, 67–75. 

Charles, S.A.; (Oligasis Corporation, USA). US Patent Application Publication US 

2010/0166700 A1, July 1, 2010. 

Chen, M.; Briscoe, W.; Armes, S.; Klein, J. Lubrication at physiological pressures by 

polyzwitterionic brushes. Science 2009, 323, 1698–701.  



154 

 

Chen, X.; Lawrence, J.; Parelkar, S.; Emrick, T. Novel Zwitterionic Copolymers with 

Dihydrolipoic Acid: Synthesis and Preparation of Nonfouling Nanorods. 

Macromolecules 2012, 46, 119-27. 

Chen, X.; McRae, S.; Parelkar, S.; Emrick, T. Polymeric phosphorylcholine-

camptothecin conjugates prepared by controlled free radical polymerization and 

click chemistry. Bioconjugate Chemistry 2009, 20, 2331–41.  

Chen, X.; McRae, S.; Samanta, D.; Emrick, T. Polymer−Protein Conjugation in Ionic 

Liquids. Macromolecules 2010, 43, 6261-3.  

Chen, X.; Parelkar, S.; Henchey, E.; Schneider, S.; Emrick, T. PolyMPC-Doxorubicin 

Prodrugs. Bioconjugate Chemistry 2012, 23, 1753-63. 

Cheng, J.; Khin, K.; Davis, M. Antitumor activity of beta-cyclodextrin polymer-

camptothecin conjugates. Molecular Pharmaceutics 2003, 1, 183–93. 

Cheng, J.; Khin, K.; Jensen, G.; Liu, A.; Davis, M. Synthesis of linear, beta-cyclodextrin-

based polymers and their camptothecin conjugates. Bioconjugate Chemistry 2002, 

14, 1007–17. 

Cheng, R.; Feng, F.; Meng, F.;  Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive 

nano-vehicles as a promising platform for targeted intracellular drug and gene 

delivery. Journal of Controlled Release 2011, 152, 2-12. 

Christian, D.A.; Cai, S.; Garbuzenko, O.B.; Harada, T.; Zajac, A.L.; Minko, T.; Discher, 

D.E. Flexible Filaments for in Vivo Imaging and Delivery: Persistent Circulation 

of Filomicelles Opens the Dosage Window for Sustained Tumor Shrinkage. 

Molecular Pharmaceutics 2009, 6, 1343-52. 

Chu, H.; Liu, N.; Wang, X.; Jiao, Z.; Chen, Z. Morphology and in vitro release kinetics of 

drug-loaded micelles based on well-defined PMPC-b-PBMA copolymer. 

International Journal of Pharmaceutics 2009, 371, 190-6. 

Convertine, A.J.; Diab, C.; Prieve, M.; Paschal, A.; Hoffman, A.S.; Johnson, P.H.; 

Stayton, P.S. pH-Responsive polymeric micelle carriers for siRNA drugs. 

Biomacromolecules 2010, 11, 2904-11. 

Court, J.; Redman, R.; Wang, J.; Leppard, S.; Obyrne, V.; Small, S.; Lewis, A.; Jones, S.; 

Stratford, P. A novel phosphorylcholine-coated contact lens for extended wear 

use. Biomaterials 2001, 22, 3261–72. 

Cruise, G.; Scharp, D.; Hubbell, J. Characterization of permeability and network structure 

of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. 

Biomaterials 1998, 19, 1287–94.  



155 

 

da Silva Freitas, D.; Abrahao-Neto, J. Biochemical and biophysical characterization of 

lysozyme modified by PEGylation. International Journal of Pharmaceutics 2010, 

392, 111-117. 

Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment 

modality for cancer. Nature Reviews Drug Discovery 2008, 7, 771-82. 

Davis, S.; Abuchowski, A.; Park, Y.K.; Davis, F.F. Alteration of the circulating life and 

antigenic properties of bovine adenosine deaminase in mice by attachment of 

polyethylene glycol. Clinical and Experimental Immunology 1981, 46, 649-52. 

Digilio, G.; Menchise, V.; Gianolo, E.; Catanzaro, V.; Carrera, C.; Napolitano, R.; Fedeli, 

F.; Aime, S. Exofacial protein thiols as a route for the internalization of Gd(III)-

based  complexes for magnetic resonance imaging cell labeling. Journal of 

Medicinal Chemistry 2010, 53, 4877-90. 

Dirksen, A.; Dawson, P.E. Rapid oxime and hydrazone ligations with aromatic aldehydes 

for biomolecular labeling. Bioconjugate Chemistry 2008, 19, 2543-2548. 

Duncan, R. Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer 

2006, 6, 688-701. 

Duncan, R. The dawning era of polymer therapeutics. Nature Reviews Drug Discovery 

2003, 2, 347-60. 

Duncan, R.; Ringsdorf, H.; Satchi-Fainaro, R. Polymer Therapeutics - Polymers as 

Drugs, Conjugates and Gene Delivery Systems: Past, present and future 

opportunities. Advanced in Polymer Science 2006, 192, 1-8. 

Duong, H.T.T.; Nguyen, T.L.U.; Stenzel, M.H. Micelles with surface conjugated RGD 

peptide and crosslinked polyurea core via RAFT polymerization. Polymer 

Chemistry 2010, 1, 171-82. 

Eberhardt, M.; Mruk, R.; Zentel, R.; Théato, P. Synthesis of 

pentafluorophenyl(meth)acrylate polymers: New precursor polymers for the 

synthesis of multifunctional materials. European Polymer Journal 2005, 41, 

1569-1575. 

Eberhardt, M.; Théato, P. RAFT Polymerization of Pentafluorophenyl Methacrylate: 

Preparation of Reactive Linear Diblock Copolymers. Macromolecular Rapid 

Communications 2005, 26, 1488-1493. 

Ehrick, J.; Deo, S.; Browning, T.; Bachas, L.; Madou, M.; Daunert, S. Genetically 

engineered protein in hydrogels tailors stimuli-responsive characteristics. Nature 

Materials 2005, 4, 298–302. 



156 

 

Elbayoumi, T. A.; Torchilin, V. P. Tumor-specific antibody-mediated targeted delivery of 

Doxil® reduces the manifestation of auricular erythema side effect in mice. 

International Journal of Pharmaceutics 2008, 357, 272-279. 

Ellman, G.L. Tissue Sulfhydryl groups. Archives of Biochemistry and Biophysics 1959, 

82, 70-7. 

Engin, K.; Leeper, D.B.; Cater, J.R.; Thistlethwaite, A.J.; Tupchong, L.; McFarlane, J.D. 

International Journal of Hyperthermia 1995, 11, 211-6. 

Etrych, T.; Jelínková, M.; Ríhová, B.; Ulbrich, K. New HPMA copolymers containing 

doxorubicin bound via pH-sensitive linkage: synthesis and preliminary in vitro 

and in vivo biological properties. Journal of Controlled Release 2001, 73, 89–

102. 

Etrych, T.; Sirova, M.; Starovoytova, L.; Rihova, B.; Ulbrich, K. HPMA Copolymer 

Conjugates of Paclitaxel and Docetaxel with pH-Controlled Drug Release. 

Molecular Pharmaceutics 2010, 7, 1015-26. 

Gao, H.; Matyjaszewski, K. Synthesis of Star Polymers by a Combination of ATRP and 

the “Click” Coupling Method. Macromolecules 2006, 39, 4960-5. 

Gao, Z.-G.; Tian, L.; Park, I.-S.; Bae, Y.H. Prevention of metastasis in 4T1 murine breast 

cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric 

micelles. Journal of Controlled Release 2011, 152, 84-9. 

Gibson, M. I.; Fröhlich, E.; Klok, H.-A. Postpolymerization modification of 

poly(pentafluorophenyl methacrylate): Synthesis of a diverse water-soluble 

polymer library. Journal of Polymer Science Part A: Polymer Chemistry 2009, 

47, 4332-4345. 

Glenn, H.; Wang, Z.; Schwartz, L. Acheron, a Lupus antigen family member, regulates 

integrin expression, adhesion, and motility in differentiating myoblasts. American 

Journal of Physiology. Cell Physiology 2009, 298, C46–55. 

Goda, T.; Furukawa, H.; Gong, J. P.; Ishihara, K. Relaxation modes in chemically cross-

linked poly(2-methacryloyloxyethyl phosphorylcholine) hydrogels. Soft Matter 

2013, 9, 2166-2171. 

Gohy, J.- F. Block Copolymer Micelles. Advances in Polymer Science 2005, 190, 65-136. 

Greenwald, R. B.; Pendri, A.; Conover, C. D.; Lee, C.; Choe, Y. H.; Gilbert, C.; 

Martinez, A.; Xia, J.; Wu, D. C.; Hsue, M. Camptothecin-20-PEG ester transport 

forms: the effect of spacer groups on antitumor activity. Bioorganic and 

Medicinal Chemistry 1998, 6, 551-62. 



157 

 

Greenwald, R.; Pendri, A.; Conover, C.; Gilbert, C.; Yang, R.; Xia, J. Drug delivery 

systems. 2. Camptothecin 20-O-poly(ethylene glycol) ester transport forms. 

Journal of Medicinal Chemistry 1996, 39, 1938–40. 

Greenwald, R.B.; Choe, Y.H.; McGuire, J.; Conover, C.D. Effective drug delivery by 

PEGylated drug conjugates. Advanced Drug Delivery Reviews 2003, 55, 217-50. 

Guillaudeu, S.; Fox, M.; Haidar, Y.; Dy, E.; Szoka, F.; Fréchet, J. PEGylated dendrimers 

with core functionality for biological applications. Bioconjugate Chemistry 2008, 

19, 461–9. 

Gupta, K.; Barnes, S.; Tangaro, R.; Roberts, M.; Owen, D.; Katz, D.; Kiser, P. 

Temperature and pH sensitive hydrogels: an approach towards smart semen-

triggered vaginal microbicidal vehicles. Journal of pharmaceutical sciences 2007, 

96, 670–81. 

Hamilton, A.; Biganzoli, L.; Coleman, R.; Mauriac, L.; Hennebert, P.; Awada, A.; Nooij, 

M.; Beex, L.; Piccart, M.; Van Hoorebeeck, I.; Bruning, P.; de Valeriola, D. 

EORTC 10968: a phase I clinical and pharmacokinetic study of polyethylene 

glycol liposomal doxorubicin (Caelyx, Doxil) at a 6-week interval in patients with 

metastatic breast cancer. Annals of Oncology 2002, 13, 910–8. 

Han, I.; Han, M.-H.; Kim, J.; Lew, S.; Lee, Y.; Horkay, F.; Magda, J. Constant-volume 

hydrogel osmometer: a new device concept for miniature biosensors. 

Biomacromolecules 2001, 3, 1271–5. 

Henselwood, F.; Liu, G. Water-soluble nanospheres of poly(2-cinnamoylethyl 

methacrylate)-block-poly(acrylic acid). Macromolecules 1997, 30, 488-93. 

Herben, V. M. M.; Huinink, W.; Beijnen, J. H. Clinical pharmacokinetics of topotecan. 

Clinical Pharmacokinetics 1996, 31, 85-102. 

Heredia, K.; Bontempo, D.; Ly, T.; Byers, J.; Halstenberg, S.; Maynard, H. In situ 

preparation of protein-“smart” polymer conjugates with retention of bioactivity. 

Journal of the American Chemical Society 2005, 127, 16955–60. 

Heredia, K.L.; Tolstyka, Z.P.; Maynard, H.D.  Aminooxy end-functionalized polymers 

synthesized by ATRP for chemoselective conjugation to proteins. 

Macromolecules 2007, 40, 4772-4779. 

Hermanson, G.T. Bioconjugate Techniques 1996, Academic Press, Inc., 139-140. 

Herrick, W.; Nguyen, T.; Sleiman, M.; McRae, S.; Emrick, T.; Peyton, S. PEG-

Phosphorylcholine Hydrogels As Tunable and Versatile Platforms for 

Mechanobiology. Biomacromolecules 2013, 14, 2294–304. 

Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: biomaterials for stimulated 

cell adhesion and beyond. Biomaterials 2003, 24, 4385–415. 



158 

 

Hillmyer, M. A.; Laredo, W. R.; Grubbs, R. H. Ring-Opening Metathesis Polymerization 

of Functionalized Cyclooctenes by a Ruthenium-Based Metathesis Catalyst. 

Macromolecules 1995, 28, 6311-6. 

Hilmer, S.N.; Cogger, V.C.; Muller, M.; Le Couteur, D.G. The hepatic pharmacokinetics 

of doxorubicin and liposomal doxorubicin. Drug Metabolism and Disposition 

2004, 32, 794-9. 

Hinds, K.; Kim, S. Effects of PEG conjugation on insulin properties. Advanced Drug 

Delivery Reviews 2002, 54, 505–30. 

Hu, X.; Li, H.; Luo, S.; Liu, T.; Jiang, Y.; Liu, S. Thiol and pH dual-responsive dynamic 

covalent shell cross-linked micelles for triggered release of chemotherapeutic 

drugs. Polymer Chemistry 2013, 4, 695-706.  

Iijima, M.; Nagasaki, Y.; Okada, T.; Kato, M.; Kataoka, K. Core-polymerized reactive 

micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 

1999, 32,1140-6. 

Ikada, Y. Surface modification of polymers for medical applications. Biomaterials 1994, 

15, 725–36. 

Ishihara, K. New polymeric biomaterials - phospholipid polymers with a biocompatible 

surface. Frontiers of Medical and Biological Engineering 2000, 10, 83-95. 

Ishihara, K.; Iwasaki, Y. J. Reduced protein adsorption on novel phospholipid polymers. 

Journal of Biomaterials Applications 1998, 13, 111-127. 

Ishihara, K.; Nomura, H.; Mihara, T.; Kurita, K.; Iwasaki, Y.; Nakabayashi, N. Why do 

phospholipid polymers reduce protein adsorption? Journal of Biomedical 

Materials Research 1998, 39, 323–30.  

Ishihara, K.; Takai, M. Bioinspired interface for nanobiodevices based on phospholipid 

polymer chemistry. Journal of the Royal Society Interface 2009, 6, S279-S291. 

Ishihara, K.; Ueda, T.; Nakabayashi, N. Preparation of phospholipid polymers and their 

properties as polymer hydrogel membranes. Polymer Journal 1990, 22, 355-360. 

Ito, H.; Arimoto, K.; Sensul, H.; Hosomi, A. Direct alkynyl group transfer from silicon to 

copper: New preparation method of alkynylcopper (I) reagents. Tetrahedron 

Letters 1997, 38, 3977-80. 

Iwasaki, Y.; Ishihara, K. Phosphorylcholine-containing polymers for biomedical 

applications. Analytical and Bioanalytical Chemistry 2005, 381, 534–46. 

Jatzkewitz, H. Peptamin (glycyl-L-leucyl-mescaline) bound to blood plasma expander 

(polyvinylpyrrolidone) as a new depot form of a biologically active primary 

amine (mescaline). Z. Naturforsch 1955, 10b, 27-31. 



159 

 

Jevsevar, S.; Kunstelj, M.; Porekar, V. PEGylation of therapeutic proteins. Biotechnology 

Journal 2009, 5, 113–28. 

Jones, M.-C.; Leroux, J.-C. Polymeric micelles-a new generation of colloidal drug 

carriers. European Journal of Pharmaceutics and Biopharmaceutics 1999, 48, 

101-11. 

Joralemon, M.J.; McRae, S.; Emrick, T. PEGylated Polymers for Medicine: From 

conjugation to self-assembled systems. Chemical Communications, 2010, 46, 

1377-93. 

Kabanov, A.; Batrakova, E.; Alakhov, V. Pluronic block copolymers as novel polymer 

therapeutics for drug and gene delivery. Journal of Controlled Release 2002, 82, 

189–212.  

Kakizawa, Y.; Harada, A.; Kataoka, K. Environment-sensitive stabilization of core-chell 

structured polyion complex micelle by reverible cross-linking of the core 

throughdisulfide bond. Journal of the American Chemical Society 1999, 121, 

11247-8. 

Katre, N.V. The conjugation of proteins with polyethylene glycol and other polymers.  

Advanced Drug Delivery Reviews 1993, 10, 91-114. 

Kessler, D.; Roth, P.; Theato, P. Reactive surface coatings based on polysilsesquioxanes: 

controlled functionalization for specific protein immobilization. Langmuir : the 

ACS journal of surfaces and colloids 2009, 25, 10068–76. 

Kiew, L.V.; Cheong, S.K.; Ramli, E.; Sidik, K.; Lim, T.M.; Chung, L.Y. Efficacy of 

Poly-L-Glutamic Acid-Gemcitabine Conjugate in Tumor-Bearing Mice. Drug 

Developement Research 2012, 73, 120-9. 

Kimura, M.; Fukumoto, K.; Watanabe, J.; Takai, M.; Ishihara, K. Spontaneously forming 

hydrogel from water-soluble random- and block-type phospholipid polymers. 

Biomaterials 2005, 26, 6853–62. 

Kiritoshi, Y.; Ishihara, K. Preparation of cross-linked biocompatible poly(2-

methacryloyloxyethyl phosphorylcholine) gel and its strange swelling behavior in 

water/ethanol mixture. Journal of Biomaterials Science. Polymer Edition 2001, 

13, 213–24. 

Kiritoshi, Y.; Ishihara, K. Synthesis of hydrophilic cross-linker having 

phosphorylcholine-like linkage for improvement of hydrogel 

properties. Polymer 2004, 45, 7499-7504. 

Kisfaludy, L.; Schon, I. Preparation and applications of pentafluorophenyl esters of 9-

fluorenylmethyloxycarbonyl amino acids for peptide synthesis. Synthesis 1983, 4, 

325-327.  



160 

 

Kochendoerfer, G.G.; Chen, S.-Y.; Mao, F.; Cressman, S.; Traviglia, S.; Shao, H.; 

Hunter, C.L.; Low, D.W.; Cagle, E.N.; Carnevali, M.; Gueriguian, V.; Keogh, 

P.J.; Porter, H.; Stratton, S.M.; Wiedeke, M.C.; Wilken, J.; Tang, J.; Levy, J.J.; 

Miranda, L.P.; Crnogorac, M.M.; Kalbag, S.; Botti, P.; Schindler-Horvat, J.; 

Savatski, L.; Adamson, J.W.; Kung, A.; Kent, S.B.H.; Bradburne, J.A. Design and 

chemical synthesis of a homogenous polymer-modified erythropoiesis protein. 

Science 2003, 299, 884-887. 

Konna, T.; Watanabe, J.; Ishihara, K. Enhanced solubility of paclitaxel using water-

soluble and biocompatible 2-methacryloyloxyethyl phosphorylcholine polymers. 

Journal of Biomedical Materials Research Part A 2002, 65, 209-14. 

Kopecek, J.; Kopeckova, P.; Minko, T.; Lu, Z. HPMA copolymer-anticancer drug 

conjugates: design, activity, and mechanism of action. European Journal of 

Pharmaceutics and Biopharmaceutics 2006, 50, 61-81. 

Kratz, F.; Azab, S.; Zeisig, R.; Fichtner, I.; Warnecke, A. Evaluation of combination

 therapy schedules of doxorubicin and an acid-sensitive albumin-binding 

prodrug of doxorubicin in the MIA PaCa-2 pancreatic xenograft model. 

International Journal of Pharmaceutics 2013, 441, 499-506. 

Kratz, K.; Breitenkamp, K.; Hule, R.; Pochan, D.; Emrick, T. PC-Polyolefins: Synthesis 

and Assembly Behavior in Water. Macromolecules 2009, 42, 3227-9. 

Ladmiral, V.; Mantovani, G.; Clarkson, G.; Cauet, S.; Irwin, J.; Haddleton, D. Synthesis 

of neoglycopolymers by a combination of “click chemistry” and living radical 

polymerization. Journal of the American Chemical Society 2006, 128, 4823–30. 

Lee, C.; Gillies, E.; Fox, M.; Guillaudeu, S.; Fréchet, J.; Dy, E.; Szoka, F. A single dose 

of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon 

carcinomas. Proceedings of the National Academy of Sciences of the United 

States of America 2006, 103, 16649–54. 

Lee, K.; Mooney, D. Hydrogels for tissue engineering. Chemical Reviews 2001, 101, 

1869–79. 

Lee, W.-C.; Li, Y.-C.; Chu, I.-M. Amphiphilic poly(D,L-lactic acid)/poly(ethylene 

 glycol)/poly(D,L-lactic acid) nanogels for controlled release of 

hydrophobic drugs. Macromolecular Bioscience 2006, 6, 846-54. 

Lewis, A. L. Phosphorylcholine-based polymers and their use in the prevention of 

biofouling. Colloids and surfaces. B, Biointerfaces 2000, 18, 261–75. 

Lewis, A.; Tang, Y.; Brocchini, S.; Choi, J.; Godwin, A. Poly(2-methacryloyloxyethyl 

phosphorylcholine) for protein conjugation. Bioconjugate Chemistry 2008, 19, 

2144-55. 



161 

 

Li, L.; Wang, J.-H.; Xin, Z. Synthesis and biocompatibility of a novel silicone hydrogel 

containing phosphorylcholine. European Polymer Journal 2011, 47, 1795-1803. 

Li, Y.T.; Lokitz, B.S.; McCormick, C.L. RAFT synthesis of a thermally responsive ABC 

triblock copolymer incorporating N-acryloxysuccinimide for facile in situ 

formation of shell cross-linked micelles in aqueous media. Macromolecules 2006, 

39, 81-9. 

Licciardi, M.; Tang, Y.; Billingham, N.; Armes, S.; Lewis, A. Synthesis of novel folic 

acid-functionalized biocompatible block copolymers by atom transfer radical 

polymerization for gene delivery and encapsulation of hydrophobic drugs. 

Biomacromolecules 2004, 6, 1085–96. 

Lin, C.-C.; Anseth, K. PEG hydrogels for the controlled release of biomolecules in 

regenerative medicine. Pharmaceutical Research 2009, 26, 631–43. 

Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with 

carbon nanotubes for in vivo cancer treatment. Cancer Research 2008, 68, 6652-

60. 

Lobb, E.; Ma, I.; Billingham, N.; Armes, S.; Lewis, A. Facile synthesis of well-defined, 

biocompatible phosphorylcholine-based methacrylate copolymers via atom 

transfer radical polymerization at 20 degrees C. Journal of the American 

Chemical Society 2001, 123, 7913–4. 

Lotem, M.; Hubert, A.; Lyass, O.; Goldenhersh, M.A.; Ingber, A.; Peretz, T.; Gabizon, A. 

Skin toxic effects of polyethylene glycol-coated liposomal doxorubicin. Archives 

of Dermatology 2000, 11, 1029-33. 

Love, J.; Morgan, J.; Trnka, T.; Grubbs, R. A practical and highly active ruthenium-based 

catalyst that effects the cross metathesis of acrylonitrile. Angewandte Chemie 

(International ed. in English) 2002, 41, 4035–7. 

Lowe, A. B.; Hoyle, C. E.; Bowman, C. N. Thiol-yne click chemistry: A powerful and 

versatile methodology for materials synthesis. Journal of Materials Chemistry 

2010, 20, 4745-4750. 

Lowe, A.B.; McCormick, C.L. Synthesis and solution properties of zwitterionic 

polymers. Chemical Reviews 2002, 102, 4177-89. 

Lu, Z.; Kopecková, P.; Wu, Z.; Kopecek, J. Functionalized semitelechelic poly[N-(2-

hydroxypropyl)methacrylamide] for protein modification. Bioconjugate 

Chemistry 1998, 9, 793–804 

Lutolf, M.; Hubbell, J. Synthetic biomaterials as instructive extracellular 

microenvironments for morphogenesis in tissue engineering. Nature 

Biotechnology 2004, 23, 47–55.  



162 

 

Ma, I. Y.; Lobb, E. J.; Billingham, N. C.; Armes, S. P.; Lewis, A. L.; Lloyd, A. W.; 

Salvage, J. Synthesis of Biocompatible Polymers. 1. Homopolymerization of 2-

Methacryloyloxyethyl Phosphorylcholine via ATRP in Protic Solvents:  An 

Optimization Study. Macromolecules 2002, 35, 9306-9314. 

Ma, Y.; Tang, Y.; Billingham, N. C.; Armes, S. P.; Lewis, A. L.; Lloyd, A. W.; Salvage, 

J. P. Well-Defined Biocompatible Block Copolymers via Atom Transfer Radical 

Polymerization of 2-Methacryloyloxyethyl Phosphorylcholine in Protic Media. 

Macromolecules 2003, 36, 3475-3484. 

Maeda, H.; Greish, K.; Fang, J. The EPR effect and polymeric drugs: a paradigm shift for 

cancer chemotherapy in the 21st century. Advances in Polymer Science 2006, 193, 

103–121.  

Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and 

the EPR effect in macromolecular therapeutics: a review. Journal of Controlled 

Release 2000, 65, 271-84. 

Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.; Mason, A.; Hedrick, 

J.; Liao, Q.; Frank, C.; Kingsbury, K.; Hawker, C. Synthesis of well-defined 

hydrogel networks using click chemistry. Chemical Communications 2006, 26, 

2774–6. 

Mathijssen, R.; van Alphen, R.; Verweij, J.; Loos, W.; Nooter, K.; Stoter, G.; 

Sparreboom, A. Clinical pharmacokinetics and metabolism of irinotecan (CPT-

11). Clinical Cancer Research 2001, 7, 2182–94. 

Matsumura,Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer 

chemotherapy: mechanism of tumoritropic accumulation of proteins and the 

antitumor agent smancs. Cancer Research 1986, 46, 6387-92. 

Matsushima, A.; Nishimura, H.; Ashihara, Y.; Yokota, Y.; Inada, Y. Modification of 

E.Coli Aspariginase with 2,4-Bis(methoxypolyethyleneglycol)-6-chloro-s-triazine 

(activated PEG2); Disappearance of Binding Ability Towards Anti-Serum and 

Retention of Enzymatic Activity.  Chemistry Letters 1980, 9, 773-776. 

McRae, S.; Chen, X.; Kratz, K.; Samanta, D.; Henchey, E.; Schneider, S.; Emrick, T. 

Pentafluorophenyl ester-functionalized phosphorylcholine polymers: preparation 

of linear, two-arm, and grafted polymer-protein conjugates. 

Biomacromolecules 2012, 13, 2099–109.  

Mellman, I.; Fuchs, R.; Helenius, A. Acidification of the endocytic and exocytic 

pathways. Annual Review of Biochemistry 1986, 55, 663-700. 

Meng, F.; Hennink, W.E.; Zhong, Z. Reduction-sensitive polymers and bioconjugates for 

biomedical applications. Biomaterials 2009, 30, 2180-98. 



163 

 

Metters, A.; Anseth, K.S.; Bowman, C.N. Fundamental studies of a novel, biodegradable 

PEG-b-PLA hydrogel. Polymer 2000, 41, 3993-4004. 

Miron, T.; Wilchek, M. A spectrophotometric assay for soluble and immobilized N-

hydroxysuccinimide esters. Analytical Biochemistry 1982, 126, 433-435. 

Miyamoto, D.; Watanabe, J.; Ishihara, K. Effect of water-soluble phospholipid polymers 

conjugated with papain on the enzymatic stability. Biomaterials 2003, 25, 71–6. 

Moad, G.; Chiefari, J.; Chong, (Bill) Y.; Krstina, J.; Mayadunne, R. T.; Postma, A.; 

Rizzardo, E.; Thang, S. H. Living free radical polymerization with reversible 

addition - fragmentation chain transfer (the life of RAFT). Polymer 

International 2000, 49, 993-1001.  

Mrkvan, T.; Sirova, M.; Etrych, T.; Chytil, P.; Strohalm, J.; Plocova, D.; Ulbrich, K.; 

Rihova, B. Chemotherapy based on HPMA copolymer conjugates with pH-

controlled release of doxorubicin triggers anti-tumor immunity. Journal of 

Controlled Release 2005, 110, 119–29. 

Muggia, F. M.; Dimery, I.; Arbuck, S. G. In Conference on the Camptothecins - From 

Discovery to the Patient; Pantazis, P., Giovanella, B. C., Rothenberg, M. L., Eds.; 

New York Acad Sciences: Bethesda, Md, 1996, 213-23. 

Nakabayashi, N.; Williams, D. Preparation of non-thrombogenic materials using 2-

methacryloyloxyethyl phosphorylcholine. Biomaterials 2003, 24, 2431–5. 

Nakanishi, T.; Fukushima, S.; Okamoto, K.; Suzuki, M.; Matsumura, Y.; Yokoyama, M.; 

Okano, T.; Sakurai, Y.; Kataoka, K. Development of the polymer micelle carrier 

system for doxorubicin Journal of Controlled. Release 2001, 74, 295-302 

Nicolas, J.; Miguel, V. S.; Mantovani, G.; Haddleton, D. M. Fluorescently tagged 

polymer bioconjugates from protein derived macroinitiators. Chemical 

Communications 2006, 4697-9. 

Numbenjapon, T.; Wang, J.Y.; Colcher, D.; Schluep, T.; Davis, M.E.; Duringer, J.; 

Kretzner, L.; Yen, Y.; Forman, S.J.; Raubitschek, A. Preclinical results of 

camptothecin- polymer conjugate (IT-101) in multiple human lymphoma 

xenograft models. Clinical Cancer Research 2009, 15, 4365-73. 

Nuttelman, C. R.; Mortisen, D. J.; Henry, S. M.; Anseth, K. S. Attachment of fibronectin 

to poly(vinyl alcohol) hydrogels promotes NIH3T3 cell adhesion, proliferation, 

and migration. Journal of Biomedical Materials Research 2001, 57, 217-223. 

Opanasopit, P.; Yokoyama, M.; Watanabe, M.; Kawano, K.; Maitani, Y.; Okano, T. 

Block copolymer design for camptothecin incorporation into polymeric micelles 

for passive tumor targeting. Pharmaceutical Research 2004, 21, 2001–8.  



164 

 

O'Reilly, R.K.; Hawker, C.J.; Wooley, K.L. Cross-linked block copolymer micelles: 

functional nanostructures of great potential and versatility. Chemical Society 

Reviews 2006, 35, 1068-83. 

Ossipov, D. A.; Hilborn, J. Poly(vinyl alcohol)-Based Hydrogels Formed by “Click 

Chemistry.” Macromolecules 2006, 39, 1709-1718. 

Page, S.M.; Henchey, E.; Chen, X.; Schneider, S.; Emrick T.  Efficacy of polyMPC-DOX 

prodrugs in 4T1 tumor-bearing mice.  Molecular Pharmaceutics 2014, Accepted. 

Page, S.M.; Martorella, M.; Parelkar, S., Kosif, I.; Emrick, T. Disulfide Cross-Linked 

Phosphorylcholine Micelles for Triggered Release of Camptothecin. Molecular 

Pharmaceutics 2013, 10, 2684-92. 

Page, S.M.; Parelkar, S.; Gerasimenko, A.; Shin, D.Y.; Peyton, S.; Emrick, T. Promoting 

Cell Adhesion on Slippery Phosphorylcholine Hydrogel Surfaces. Journal of 

Materials Chemistry B 2014, 2, 620-624. 

Paraskar, A.; Soni, S.; Basu, S.; Amarasiriwardena, C.J.; Lupoli, N.; Srivats, S.; Roy, 

R.S.; Sengupta, S. Rationally engineered polymeric cisplatin nanoparticles for 

improved antitumor efficacy. Nanotechnology 2011, 22, 265101. 

Paraskar, A.S.; Soni, S.; Chin, K.T.; Chaudhuri, P.; Muto, K.W.; Berkowitz, J.; 

Handlogten, M.W.; Alves, N.J.; Bilgicer, B.; Dinulescu, D.M.; Mashelkar, R.A.; 

Sengupta, S. Harnessing structure-activity relationship to engineer a cisplatin 

nanoparticle for enhanced antitumor efficacy. Proceedings of the National 

Academy of Sciences USA 2010, 107, 12435-40. 

Parrish, B.; Emrick, T. Soluble camptothecin derivatives prepared by click cycloaddition 

chemistry on functional aliphatic polyesters. Bioconjugate Chemistry 2006, 18, 

263–7.  

Pasut, G.; Veronese, F.M.; PEG conjugates in clinical development or use as anticancer 

agents: An overview. Advanced Drug Delivery Reviews 2009, 61, 1177-88. 

Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as 

an emerging platform for cancer therapy. Nature Nanotechnology 2007, 2, 751-

60. 

Peyton, S.; Raub, C.; Keschrumrus, V.; Putnam, A. The use of poly(ethylene glycol) 

hydrogels to investigate the impact of ECM chemistry and mechanics on smooth 

muscle cells. Biomaterials 2006, 27, 4881–93. 

Pulaski, B.A.; Ostrand-Rosenberg, S. Mouse 4T1 Breast Tumor Model. Current 

Protocols in Immunology 2001, 39, 20.2.1-20.2.16. 

 



165 

 

Rajan, R.; Li, T.; Aras, M.; Sloey, C.; Sutherland, W.; Arai, H.; Briddell, R.; Kinstler, O.; 

Lueras, A.; Zhang, Y.; Yeghnazar, H.; Treuheit, M.; Brems, D. Modulation of 

protein aggregation by polyethylene glycol conjugation: GCSF as a case 

study. Protein science : a publication of the Protein Society 2006, 15, 1063–75.  

Rhee, W.; Carlino, J.; Chu, S.; Higley, H. Poly(ethylene glycol) Chemistry: Biotechnical 

and Biomedical Applications 1992, Platinum Press, New York, 183-198. 

Ringsdorf, H. Structure and properties of pharmacologically active polymers. Journal of 

Polymer Science: Symposium 1975, 51, 135-53. 

 Roberts, M.; Harris, J. Attachment of degradable poly(ethylene glycol) to proteins has 

the potential to increase therapeutic efficacy. Journal of Pharmaceutical Sciences 

1998, 87, 1440–5. 

Rodrigues, P.; Beyer, U.; Schumacher, P.; Roth, T.; Fiebig, H.; Unger, C.; Messori, L.; 

Orioli, P.; Paper, D.; Mülhaupt, R.; Kratz, F. Acid-sensitive polyethylene glycol 

conjugates of doxorubicin: preparation, in vitro efficacy and intracellular 

distribution. Bioorganic and Medicinal Chemistry 1999, 7, 2517–24. 

Roth, P. J.; Wiss, K. T.; Zentel, R.; Theato, P. Synthesis of Reactive Telechelic Polymers 

Based on Pentafluorophenyl Esters. Macromolecules 2008, 41, 8513-8519. 

Roth, P.J.; Jochum, F.D; Zentel, R.; Theato, P. Synthesis of Hetero-Telechelic α,ω Bio-

Functionalized Polymers. Biomacromolecules 2010, 11, 238-240. 

Rowinsky, E.K.; Rizzo, J.; Ochoa, L.; Takimoto, C.H.; Forouzesh, B.; Schwartz, G.; 

Hammond, L.A.; Patnaik, A.; Kwiatek, J.; Goetz, A.; Denis, L.; McGuire, J.; 

Tolcher, A. A phase I and pharmacokinetic study of PEGylated camptothecin as a 

1-hour infusion every 3 weeks in patients with advanced solid malignancies. 

Journal of Clinical Oncology 2003, 21, 148-157. 

Rubina, A.; Pan’kov, S.; Dementieva, E.; Pen’kov, D.; Butygin, A.; Vasiliskov, V.; 

Chudinov, A.; Mikheikin, A.; Mikhailovich, V.; Mirzabekov, A. Hydrogel drop 

microchips with immobilized DNA: properties and methods for large-scale 

production. Analytical Biochemistry 2004, 325, 92–106. 

Safra, T.; Jeffers, S.; Tsao-Wei, D.D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; 

Gabizon, A. Pegylated liposomal doxorubicin (doxil): Reduced clinical 

cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. 

Annals of Oncology 2000, 11, 1029-33. 

Saito, K.; Ingalls, L.R.; Lee, J.; Warner, J.C. Core-bound polymeric micellar system 

based  on photocrosslinking of thymine. Chemical Communications 2007, 24, 

2503-5. 



166 

 

Salmaso, S.; Semenzato, A.; Bersani, S.; Matricardi, P.; Rossi, F.; Caliceti, P. 

Cyclodextrin/PEG based hydrogels for multi-drug delivery. International Journal 

of Pharmaceutics 2007, 345, 42–50. 

Samanta, D.; McRae, S.; Cooper, B.; Hu, Y.; Emrick, T.; Pratt, J.; Charles, S. End-

functionalized phosphorylcholine methacrylates and their use in protein 

conjugation. Biomacromolecules 2008, 9, 2891–7. 

Satchi-Fainaro, R.; Duncan, R.; Barnes, C. M. Polymer therapeutics for cancer: current 

status and future challenges. Advances in Polymer Science 2006, 193, 1–65.  

Schafer, F.Q.; Buettner, G.R. Redox environment of the cell as viewed through the redox 

state of the glutathione disulfide/glutathione couple. Free Radical Biology and 

Medicine 2011, 30, 1191-1212. 

Schluep, T.; Cheng, J.; Khin, K.; Davis, M. Pharmacokinetics and biodistribution of the 

camptothecin-polymer conjugate IT-101 in rats and tumor-bearing mice. Cancer 

chemotherapy and pharmacology 2006, 57, 654–62.  

Schluep, T.; Hwang, J.; Cheng, J.J.; Heidel, J.D.; Bartlett, D.W.; Hollister, B.; Davis, 

 M.E. Preclinical efficacy of the camptothecin-polymer conjugate IT-101 

in multiple cancer models. Clinical Cancer Research 2006, 12, 1606-14. 

Seo, J.; Matsuno, R.; Lee, Y.; Takai, M.; Ishihara, K. Conformation recovery and 

preservation of protein nature from heat-induced denaturation by water-soluble 

phospholipid polymer conjugation. Biomaterials 2009, 30, 4859-4867. 

Seymour, L.W.; Ferry, D.R.; Kerr, D.J.; Rea, D.; Whitlock, M.; Poyner, R.; Boivin, C.; 

Hesslewood, S.; Twelves, C.; Blackie, R.; Schatzlein, A.; Jodrell, D.; Bissett, D.; 

Calvert, H.; Lind, M.; Robbins, A.; Burtles, S.; Duncan, R.; Cassidy, J. Phase II 

studies of polymer-doxorubicin (PK1, FCE 28068) in the treatment of breast, 

lung, and colorectal cancer. International Journal of Oncology 2009, 34, 1629-36. 

Shao, H.; Crnogorac, M.M.; Kong, T.; Chen, S.Y.; Williams, J.M.; Tack, J.M.; 

Gueriguian, V.; Cagle, E.N.; Carnevali, M.; Tumelty, D.; Paliard, X.; Miranda, 

L.P.; Bradburne, J.A.; Kochendoerfer, G.G.  Site-specific polymer attachment to a 

CCL-5 (RANTES) analogue by oxime exchange. Journal of the American 

Chemical Society 2005, 127, 1350-1351. 

Shimizu, T.; Goda, T.; Minoura, N.; Takai, M.; Ishihara, K. Super-hydrophilic silicone 

hydrogels with interpenetrating poly(2-methacryloyloxyethyl phosphorylcholine) 

networks. Biomaterials 2010, 31, 3274–80. 

Singer, J. W.; Bhatt, R.; Tulinsky, J.; Buhler, K. R.; Heasley, E.; Klein, P.; de Vries, P. In 

International Symposium on Tumor Targeted Delivery Systems; Elsevier Science: 

Bethesda, Maryland, 2000, 243-7. 



167 

 

Slichenmyer, W.J.; Rowinsky, E.K.; Donehower, R.C.; Kaufman, S.H. The current status 

of camptothecin analogues as antitumor agents. Journal of the National Cancer 

Institute 1993, 85, 271-91. 

Stile, R. A.; Burghardt, W. R.; Healy, K. E. Synthesis and Characterization of Injectable 

Poly( N -isopropylacrylamide)-Based Hydrogels That Support Tissue Formation 

in Vitro. Macromolecules 1999, 32, 7370-7379. 

Sure, V.; Etrych, T.; Ulbrich, K.; Hirano, T.; Kondo, T.; Todoroki, T.; Jelinkova, M.; 

Rihova, B. Synthesis and Properties of Poly[N-(2-Hydroxypropyl) 

Methacrylamide] Conjugates of Superoxide Dismutase. Journal of Bioactive and 

Compatible Polymers 2002, 17, 105-122. 

Tanaka, H.; Satake-Ishikawa, R.; Ishikawa, M.; Matsuki, S. Pharmacokinetics of 

recombinant human granulocyte colony-stimulating factor conjugated to 

polyethylene glycol in rats. Cancer Research 1991, 51, 3710-3714. 

Tannock, I. F.; Rotin, D. Acid pH in tumors and its potential for therapeutic exploitation. 

Cancer Research 1989, 49, 4373–84. 

Tao, K.; Fang, M.; Alroy, J.; Sahagian, G.G. Imagable 4T1 model for the study of late 

stage breast cancer. BMC Cancer 2008, 8, 228-46. 

Tao, L.; Liu, J.; Davis, T. Branched polymer-protein conjugates made from mid-chain-

functional P(HPMA). Biomacromolecules 2009, 10, 2847–51. 

Tao, L.; Mantovani, G.; Lecolley, F.; Haddleton, D. M. α-Aldehyde terminally functional 

methacrylic polymers from living radical polymerization: application in protein 

conjugation “Pegylation”. Journal of the American Chemical Society 2004, 126, 

13220-13221. 

Thomson, A.H.; Vasey, P.A.; Murray, L.S.; Cassidy, J.; Fraier, D.; Frigerio, E.; Twelves, 

C. Population pharmacokinetics in phase I drug development: a phase I study of 

PK1 in patients with solid tumours. British Journal of Cancer 1999, 81, 99-107. 

Tillman, H.; Kuhn, B.; Kranzlin, B.; Sadick, M.; Gross, J.; Gretz, N.; Pill, J. Efficacy and 

immunogenicity of novel erythropoietic agents and conventional rhEPO in rats 

with renal insufficiency. Kidney International 2006, 69, 60-67. 

Trappmann, B.; Gautrot, J.; Connelly, J.; Strange, D.; Li, Y.; Oyen, M.; Cohen Stuart, 

M.; Boehm, H.; Li, B.; Vogel, V.; Spatz, J.; Watt, F.; Huck, W. Extracellular-

matrix tethering regulates stem-cell fate. Nature Materials 2012, 11, 642–9. 

Tumelty, D.; Carnevali, M.; Miranda, L.P. A new approach to the chemical synthesis of 

keto-proteins. Journal of the American Chemical Society 2003, 125, 14238-39. 



168 

 

Ulbrich, K.; Etrych, T.; Chytil, P.; Jelínková, M.; Ríhová, B. HPMA copolymers with 

pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor 

activity. Journal of Controlled Release 2003, 87, 33–47. 

Ulbrich, K.; Strolhalm, J.; Plocova, D.; Oupicky, D.; Subr, V.; Soucek, J.; Pouckova, P.; 

Matousek, J. Poly [N-(2-Hydroypropyl) Methacrylamide] Conjugates of Bovine 

Seminal Ribonuclease. Synthesis, Physicochemical, and Preliminary Biological 

Evaluation.  Journal of Bioactive and Compatible Polymers 2000, 15, 4-26. 

Uziely, B.; Jeffers, S.; Isacson, R.; Kutsch, K.; Wei-Tsao, D.; Yehoshua, Z.; Libson, E.; 

Muggia, F.; Gabizon, A. Liposomal doxorubicin: antitumor activity and unique 

toxicities during two complementary phase I studies. Journal of Clinical 

Oncology 1995, 13, 1777–85. 

Van De Wetering, P.; Metters, A.; Schoenmakers, R.; Hubbell, J. Poly(ethylene glycol) 

hydrogels formed by conjugate addition with controllable swelling, degradation, 

and release of pharmaceutically active proteins. Journal of Controlled Release 

2005, 102, 619–27. 

Van Der Poll, D.; Kieler-Ferguson, H.; Floyd, W.; Guillaudeu, S.; Jerger, K.; Szoka, F.; 

Fréchet, J. Design, synthesis, and biological evaluation of a robust, biodegradable 

dendrimer. Bioconjugate Chemistry 2010, 21, 764–73.  

Van Nostrum, C.F. Covalently cross-linked amphiphilic block copolymer micelles. Soft 

Matter 2011, 7, 3246-59. 

Vasquez-Dorbatt, V.; Tolstyka, Z.P.; Maynard, H.D. Synthesis of aminooxy end-

functionalized pNIPAAM by RAFT polymerization for protein and 

polysaccharide conjugation. Macromolecules 2009, 42, 7650-7656. 

Vaz, R.; Martins, G.; Thorsteinsdóttir, S.; Rodrigues, G. Fibronectin promotes migration, 

alignment and fusion in an in vitro myoblast cell model. Cell and Tissue Research 

2012, 348, 569–78. 

Veronese, F. M.; Monfardini, C.; Caliceti, P.; Schiavon, O.; Scrawen, M. D.; Beer, D. 

Improvement of pharmacokinetic, immunological and stability properties of 

asparaginase by conjugation to linear and branched monomethoxy poly( ethylene 

glycol). Journal of Controlled Release 1996, 40, 199-209. 

Vetvicka, D.; Hruby, M.; Hovorka, O.; Etrych, T.; Vetrik, M.; Kovar, L.; Kovar, M.; 

Ulbrich, K.; Rihova, B. Biological evaluation of polymeric micelles with 

covalently bound doxorubicin. Bioconjugate Chemistry 2009, 20, 2090–7. 

Vogel, N.; Théato, P. Controlled Synthesis of Reactive Polymeric Architectures Using 5-

Norbornene-2-carboxylic Acid Pentafluorophenyl Ester. Macromolecular 

Symposia 2007, 249-250. 



169 

 

Wachiralarpphaithoon, C.; Iwasaki, Y.; Akiyoshi, K. Enzyme-degradable 

phosphorylcholine porous hydrogels cross-linked with polyphosphoesters for cell 

matrices. Biomaterials 2007, 28, 984–93. 

Wall, M. E.; Wani, M. C.; Cook, C. E.; Palmer, K. H.; McPhail, A. T.; Sim, G. A. Plant 

Antitumor Agents. I. The Isolation and Structure of Camptothecin, a Novel 

Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminata 1,2. 

Journal of the American Chemical Society 1966, 88, 3888-90. 

Wang, J.-S.; Matyjaszewski, K. Controlled/“Living” Radical Polymerization. Halogen 

Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox 

Process. Macromolecules 1995, 28, 7901-7910. 

Wang, Y.-S.; Youngster, S.; Grace, M.; Bausch, J.; Bordens, R.; Wyss, D. Structural and 

biological characterization of pegylated recombinant interferon alpha-2b and its 

therapeutic implications. Advanced Drug Delivery Reviews 2002, 54, 547–70.  

Wei, R.; Cheng, L.; Zheng, M.; Cheng, R.; Meng, F.; Deng, C.; Zhong, Z. Reduction-

responsive disassemblable core-cross-linked micelles based on poly(ethylene 

glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for 

triggered intracellular anticancer drug release. Biomacromolecules 2012, 13, 

2429-38. 

Wichterle, O.; Lím, D. Hydrophilic Gels for Biological Use. Nature 1960, 185, 117-118. 

Wiss, K. T.; Krishna, O. D.; Roth, P. J.; Kiick, K. L.; Theato, P. A Versatile Grafting-to 

Approach for the Bioconjugation of Polymers to Collagen-like Peptides Using an 

Activated Ester Chain Transfer Agent. Macromolecules 2009, 42, 3860-3863. 

Xu, Y.; Jang, K.; Konno, T.; Ishihara, K.; Mawatari, K.; Kitamori, T. The biological 

performance of cell-containing phospholipid polymer hydrogels in bulk and 

microscale form. Biomaterials 2010, 31, 8839–46. 

Xu, Y.; Meng, F.; Cheng, R.; Zhong, Z. Reduction-sensitive reversible crosslinked 

biodgradable micelles for triggered release of doxorubicin. Macromolecular 

Bioscience 2009, 9, 1254-61. 

Yamasaki, M.; Okabe, M.; Suzawa, T.; Yokoo, Y. New PEG2 type polyethylene glycol 

derivatives for protein modification. Biotechnology Techniques 1998, 12, 751-

754. 

Yang, T.; Long, H.; Malkoch, M.; Gamstedt, E. K.; Berglund, L.; Hult, A. 

Characterization of well-defined poly(ethylene glycol) hydrogels prepared by 

thiol-ene chemistry. Journal of Polymer Science Part A: Polymer Chemistry 

2011, 49, 4044-4054. 

Yigit, S.; Sanyal, R.; Sanyal, A. Fabrication and functionalization of hydrogels through 

“click” chemistry. Chemistry, an Asian Journal 2011, 6, 2648–59. 



170 

 

Yoshinaga, K.; Shafer, S.G.; Harris, J.M. Effects of Polyethylene Glycol Substitution on 

Enzyme Activity. Journal of Bioactive and Compatible Polymers 1987, 2, 49-56. 

Yu, B.; Lowe, A.; Ishihara, K. RAFT synthesis and stimulus-induced self-assembly in 

water of copolymers based on the biocompatible monomer 2-

(methacryloyloxy)ethyl phosphorylcholine. Biomacromolecules 2009, 10, 950–8. 

Yusa, S.-I.; Fukuda, K.; Yamamoto, T.; Ishihara, K.; Morishima, Y. Synthesis of well-

defined amphiphilic block copolymers having phospholipid polymer sequences as 

a novel biocompatible polymer micelle reagent. Biomacromolecules 2004, 6, 

663–70. 

Zamai, M.; VandeVen, M.; Farao, M.; Gratton, E.; Ghiglieri, A.; Castelli, M.; Fontana, 

E.; D’Argy, R.; Fiorino, A.; Pesenti, E.; Suarato, A.; Caiolfa, V. Camptothecin 

poly[n-(2-hydroxypropyl) methacrylamide] copolymers in antitopoisomerase-I 

tumor therapy: intratumor release and antitumor efficacy. Molecular Cancer 

Therapeutics 2002, 2, 29–40. 

Zhang, J.; Gong, M.; Yang, S.; Gong, Y.-K. Crosslinked biomimetic random copolymer 

micelles as potential anti-cancer drug delivery vehicle. Journal of Controlled 

Release 2011, 152, e1-e132. 

Zhang, Y.; Wang, G.; Huang, J. A new strategy for synthesis of “umbrella-like” 

poly(ethylene glycol) with monofunctional end group for bioconjugation. Journal 

of Polymer Science Part A: Polymer Chemistry 2010, 48, 5974-5981. 

Zhao, H.; Lee, C.; Sai, P.; Choe, Y.; Boro, M.; Pendri, A.; Guan, S.; Greenwald, R. 20-O-

acylcamptothecin derivatives: evidence for lactone stabilization. The Journal of 

Organic Chemistry 2000, 65, 4601–6. 

Zhao, H.; Rubio, B.; Sapra, P.; Wu, D.; Reddy, P.; Sai, P.; Martinez, A.; Gao, Y.; 

Lozanguiez, Y.; Longley, C.; Greenberger, L.; Horak, I. Novel prodrugs of SN38 

using multiarm poly(ethylene glycol) linkers. Bioconjugate Chemistry 2008, 19, 

849–59. 

Zhao, X.; Harris, J. Novel degradable poly(ethylene glycol) hydrogels for controlled 

release of protein. Journal of pharmaceutical sciences 1998, 87, 1450–8. 

Zhou, L.; Cheng, R.; Tao, H.; Ma, S.; Guo, W.; Meng, F.; Liu, H.; Liu, Z.; Zhong, Z. 

Endosomal pH-Activatable Poly(ethylene oxide)-graft-Doxorubicin Prodrugs: 

Synthesis Drug Release, and Biodistribution in Tumor-Bearing Mice. 

Biomacromolecules 2011, 12, 1460-7. 

Zhu, J. Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. 

Biomaterials 2010, 31, 4639–56. 

 



171 

 

Zou, Y. Y.; Wu, Q. P.; Tansey, W.; Chow, D.; Hung, M. C.; Vej, C. C.; Wallace, S.; Li, 

C. Effectiveness of water soluble poly(L-glutamic acid)-camptothecin conjugate 

against resistant human lung cancer xenografted in nude mice. International 

Journal of Oncology 2001, 18, 331-6. 


	FUNCTIONAL PHOSPHORYLCHOLINE POLYMERS: PRODRUGS AND BIOMATERIALS
	Recommended Citation

	tmp.1395959538.pdf.A6_lF

