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ABSTRACT

STOCHASTIC MODELS FOR CAPACITY PLANNING
IN HEALTHCARE DELIVERY CASE STUDIES IN AN
OUTPATIENT, INPATIENT AND SURGICAL SETTING

MAY 2014

ASLI ÖZEN

B.Sc., BILKENT UNIVERSITY

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Hari Balasubramanian

The U.S. healthcare system has become far too complex and costly to sustain.

As Green points out in her M&SOM editorial, there has never been a more oppor-

tune time for operations research to provide guidelines on medical decision making

and improving the healthcare delivery process (Green [2012]). We study capacity

planning in healthcare while considering the case-mix of patients, using stochastic

modeling in di↵erent application areas: primary care, inpatient bed allocation and
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(spine) surgery scheduling. The research questions we have addressed are relevant

and may be of interest to many researchers and practitioners.

Primary Care: The passage of A↵ordable Care Act (ACA) and the significant

influx of insured individuals create an urgent need to increase the e↵ective primary

care capacity. Our research in primary care provides a tool to assess supply-demand

dynamics, conduct capacity planning and practice design for provider teams. The

main objective of Chapter 2 is to optimize the patient mix of primary care physicians

in a group practice in order to maximize patient-clinician continuity and access. We

use an optimization in a newsvendor-like framework and propose simple, yet near-

optimal heuristics. To model case-mix, we use the number of simultaneous chronic

conditions (count of comorbidities) a patient has as a predictor of the number of

appointment requests. In Chapter 3, we extend this work and use queuing theory

to develop methodologies to quantify and evaluate access to care and continuity of

care for patient visits with di↵erent urgencies. We find that case-mix is a crucial

factor to consider in primary care practice design. Further, both panel redesign and

capacity pooling can be e↵ective strategies for primary care practice improvement.

In particular, even a little capacity pooling can make a big di↵erence.

Inpatient Care: Inability to satisfy the bed requests in a timely fashion for

admitted patients leads to emergency department (ED) crowding, ambulance diver-

sions, patients left without being seen, post-anesthesia care unit (PACU) holds and

delays, surgery cancelations, and overall in decline in care and safety. One of the ma-

jor contributing factors to this patient flow gridlock is delayed discharges. We develop

an empirically calibrated simulation model to represent a time-varying multi-server

ix



queuing network model with multiple patient classes in Chapter 4. This model is

used as a decision support mechanism for inpatient bed planning at Baystate Medical

Center, Springfield MA. Our main focus has been on quantifying the impact of dis-

charge profiles to alleviate inpatient bed congestions. A discharge profile is defined

by (a) discharge window, which specifies which hours of the day discharges are al-

lowed; and (b) the maximum capacity for discharges in each hour of the window. We

conclude that a more responsive discharge policy that prioritizes discharges in units

with longer admission queues can significantly reduce waiting times (40% reduction

in queue size). On the other hand, an early-in-the-day discharge policy has limited

impact on improving bed congestions; we also find that early in day discharges are

very hard to implement in practice.

Surgical Care: Due to the length and variability of spine surgeries (Dexter

et al. [2010])scheduling is a di�cult and important aspect to patient access, e↵ec-

tive operations, and financial performance for the spine surgery practice. The main

objective of our research in Chapter 5 is to create better patient access and improve

revenue as a result of increased surgical capacity with more e�cient schedules and

an improved patient mix. A multi-stage mixed integer optimization framework has

been developed into a web-based application to be used in a pilot study that allowed

the surgeons and schedulers to interactively identify best surgical days with patients.

A pilot implementation resulted in a utilization increase of 19% and a reduction in

overtime by 10%.

This body of work was developed over four years of collaborative research with

hospitals and healthcare providers. To ensure that the models are clinically relevant,

x



we have collaborated extensively with healthcare stakeholders: the spine surgery

team at Mayo Clinic and the nursing group at Baystate Medical Center. Our main

objective has been to develop data-driven analytical tools for managing networks of

healthcare resources to smooth workloads and improve access to care.
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CHAPTER 1

INTRODUCTION

1.1 Industrial Engineering in Healthcare

E↵ective and e�cient delivery of healthcare has become a major concern in the U.S.

With over $2.3 trillion/year spent on U.S. healthcare, it is one of the most expensive

health systems in the world. Nearly 15% of the GDP has been spent on healthcare in

the U.S. (much higher than developed nations’ average), with an unsatisfied patient

population both in terms of quality and access (Mahon and Weymouth [2012]). The

aging population, increase in chronic conditions and significant influx of new patients

covered– 32 million more people who will have insurance by 2019 (Manchikanti et al.

[2011]) under the A↵ordable Care Act (ACA)– will create an even bigger discrepancy

between supply and demand (Schoen et al. [2011]).

In order to improve the healthcare delivery process, operations research has been

applied to healthcare systems since 1916 (Gilbreth [1916]). There were more than a

hundred publications on analytical models applied to healthcare, as early as 1980s

(Fries [1980]). However,this field has been experiencing a renaissance in the last

10 years. The abundance of data has triggered this growth in health systems en-
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gineering as well. As Linda Green points out in her M&SOM editorial, there has

never been a more opportune time for operations research to provide guidelines

on medical decision making and improving the healthcare delivery process (Green

[2012]). “Numerous studies agree that roughly 30% of total U.S. healthcare costs

are attributable to ine�cient poorly designed processes, prompting publications by

the National Academy of Engineering (NAE) and Institute of Medicine (IOM) to

advocate much greater application of systems engineering, operations research, man-

agement science” (IOM and NAE [2012], Grossmann et al. [2011]). In their joint

report IOM and NAE discuss an action plan on how to integrate systems engineer-

ing to healthcare delivery in order to achieve the six “quality aims” set by IOM,

which are safe, e↵ective, timely, patient-centered, e�cient and equitable healthcare

system (IOM et al. [2005]). What’s more important is that policymakers have come

to realize the need for analytical skills in designing healthcare delivery.

The areas for operations research applications have diversified, from medical de-

cision making (Sox et al. [2013]) to lean management in healthcare (Kollberg et al.

[2006]). In her editorial Green points out that operations research can address a wide

spectrum of problems from macro to micro level decisions. Macro or strategic deci-

sions involve policy level decisions that is related to the supply of major healthcare

resources like hospital beds; whereas, micro or operational level deals with decisions

made on a daily basis, most commonly related to issues of process design and re-

source allocation (Green [2012]). This dissertation will focus on operational level

and not on macro level decisions.

2



From an operational perspective, operations research methods can help managers

plan and manage capacity to meet wait time targets (Patrick and Puterman [2008]).

We study capacity planning in healthcare while considering the case-mix of patients,

using stochastic modeling in di↵erent application areas: primary care, inpatient

bed allocation and (spine) surgery scheduling. In what follows, I will provide the

motivating reasons for our research in primary, inpatient and surgical care, and

summarize the focus of this dissertation.

1.2 Research Motivation

1.2.1 Primary care

With the recent passage of the Patient Protection and A↵ordable Care Act, the

uninsured population is expected to decrease by more than half. However, many

areas in U.S. are already facing severe shortage in primary care workforce. According

to the Commonwealth Fund, Americans are reporting greater di�culty in achieving

timely urgent appointments, not including emergency departments (EDs), compared

to the other developed countries (Schoen et al. [2011]). Estimates for the capacity of

primary care physicians (PCPs) report one physician for every 2500 patient, which

is an unsustainable number for the continuity of care requirements (Alexander et al.

[2005]). Hofer et al. [2011] show that 15 to 24 million more primary care visits are

expected as a result of the increase in demand from ACA. And this translates to an

additional 6000 PCPs required to accommodate the increase in demand.

Compounding the increase in patient volumes and the shortage of primary care

workforce is the aging population and the epidemic of chronic diseases, which will
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likely give rise to more patients with multiple comorbidities, requiring more physician

time and resources. Currently, “45% of the U.S. population have chronic conditions

requiring care management. Of this population, 60 million, or roughly half of those

with chronic conditions, have multiple conditions” (Kopach-Konrad et al. [2007]).

From a financial perspective, chronic disease management account to 75% of the

whole medical spending (CDC [2011]). So improving access to PCPs is crucial for

better health outcomes as well as decreasing medical costs.

In order to address this new influx of patients, many practices are engaged in

transforming into Patient Centered Medical Homes (PCPCC [2013]). The main

objective of medical homes is to form a coordinated and integrated care team that

provides patient centered care. Yet, there is a lack of analytical methods that can

inform the formation of such teams and the allocation of workload among di↵erent

team members to achieve the best outcome. Our primary care study provides a

tool to assess the supply demand dynamics, conduct capacity planning and practice

design for primary care teams.

We formulate the problem of minimizing the maximum overflow (probability that

the demand will exceed the capacity) for a multi-physician practice as a non-linear

integer programming problem and establish structural insights that enable us to

create simple yet near optimal heuristic strategies to change panels (set of patients

the physician is responsible from). This optimization framework helps a practice: 1)

quantify the imbalances across physicians due to the variation in case-mix and panel

size, and the resulting e↵ect on access; and 2) determine how panels can be altered

in the least disruptive way to improve access.
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1.2.2 Inpatient care

Inability to satisfy the bed requests in a timely fashion for inpatients leads to ED

crowding, ambulance diversions, patients left without being seen, post-anesthesia

care unit (PACU) holds, operating room (OR) delays, surgery cancellations, and

overall decline in care and safety (Green [2003]). One of the major contributing fac-

tors to this patient flow gridlock is delayed discharges. Late discharges are typically

the result of the timing of physician rounds, lack of coordination with the patients’

family members about the discharge time and delays resulting from post-acute care

facilities.

It is essential to identify capacity levels for hospital beds in conjunction with

finding admissions and discharge policies that will be the most cost e↵ective (Green

[2012]). And our goal with our nursing collaborators in Baystate Medical Center

(BMC) is to provide guidelines on how hospitals should manage their discharge ca-

pacity in the presence of demand, LOS and discharge variability. This research

enabled us to develop insights to reduce waiting times for inpatient beds from all

patient sources. We use an empirically calibrated discrete event simulation to quan-

tify the impact of discharge timing on timely access to inpatient beds. We evaluate

both quantitatively and qualitatively, various discharge policies including expanding

discharge windows, limiting the number of discharges to a threshold and prioritizing

discharges based on the admissions queue. In particular, a more responsive dis-

charge policy that prioritizes discharges for those units that have the longest admis-

sion queues (prioritization scheme) results in significant improvement in decreasing

waiting times.
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1.2.3 Surgical care

As pointed out in Nan and Li [2011], surgical suites management impacts costs, pa-

tient flow and resource utilization throughout the whole hospital. And especially for

spine surgeries, due to the length and variability, scheduling is a di�cult and impor-

tant aspect to patient access, e↵ective operations, and financial performance (Dexter

et al. [2010]). Further complicating factors for scheduling and OR management in

Mayo Clinic Spine Practice are emergency cases, short-term cancellations, and com-

plex cases that require more than one surgery to address a patient’s medical needs.

The primary objective of our research is to create better patient access as a result

of increased surgical capacity with more e�cient schedules. We not only maximize

surgeon and OR utilization but also incorporate profitability while keeping overtime

and potentially unsafe surgical days under control. Our model was implemented at

Mayo Clinic in a controlled pilot and we evaluate the results of the intervention.

A pilot implementation resulted in an increase in utilization of 19%, a reduction in

overtime by 10% and an increase in average NOI per case by 22%. In summary, the

pilot implementation was deemed successful, but not as comprehensively as desired.

All of these bodies of work were developed over four years of collaborative research

with hospitals and healthcare providers. To ensure that the models are clinically

relevant, we have collaborated extensively with various healthcare stakeholders: the

spine surgery team at Mayo Clinic and the nursing group at BMC. Our main objective

in this dissertation is to develop data-driven analytical tools for managing workloads

in networks of healthcare resources to smooth workloads and improve access to care.

6



1.2.4 Salient features

Clearly di↵erent areas of healthcare have di↵erent problems and are in need of dif-

ferent solutions. However, there are some common distinguishing features present in

all of these problems in this dissertation.

(1) Firstly we observe a heterogeneous demand which requires us to model the

case-mix of patients using data mining. For instance, we categorize patients based

on their comorbidity counts in primary care, patients’ major diagnostic categories

(MDC) and admission source in inpatient setting and clinical characteristics in

surgery scheduling. These categorizations are both clinically and statistically rel-

evant.

(2) As in most healthcare applications the objective is generally not only finan-

cially oriented, but rather a multi-objective function, which aims to maximize patient

satisfaction and access to care as well.

(3) Our key methods are almost always data driven modeling. We use data from

Mayo Clinic Rochester, MN (both from Primary Care Internal Medicine Practice

(PCIM) and Spine Practice) and BMC Springfield, MA in order to develop these

models. We used various data analysis to understand the underlying system dynam-

ics, which enabled us to identify the bottlenecks in the healthcare delivery system

and to decide on which areas to focus on and improve.

(4) Another crucial and unique element of our projects is the close collabora-

tion we have with stakeholders. As discussed in Retsef Levi’s response to Green’s

editorial, to have an impact on healthcare delivery, the tools developed have to in-

corporate organizational specifics into the model and there should be institute-level
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collaborations as well as the willingness of researchers to explore and understand the

cultural environment (Levi and Prestipino [2012]). In our projects, we were able to

establish this essential connection with a group of interdisciplinary collaborators.

1.3 Methodology

Using mathematical models to solve problems in clinical settings is a very complex

process. The assumptions supporting the mathematical models need to be clinically

realistic. These projects involved the interactive face to face process of reviewing and

comparing mathematical assumptions and the clinical assumptions. This process is

time consuming but essential to validate the models. The type of mathematical

models we have used in formulating these clinical problems in the following chapters

are:

1.3.1 Mixed integer programming

Optimization is a subject that deals with the problem of minimizing or maximizing

a certain objective function in a finite dimensional Euclidean space, which is usually

determined by functional inequalities. It involves achieving a single objective or

multiple objectives by determining the values of the decision variables. Mixed integer

programs are a subset of mathematical optimization models in which some or all of

the decision variables are restricted to be integers. Since in most of the real world

problems the decision variables are positive integers this area of optimization has

been widely researched. Integer programming has been used for scheduling since

World War 2 as George Dantzig mentions (Freund [1984]). IP models have been
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extensively used in healthcare, especially in areas like hospital location problems,

medical sta↵ and patient scheduling problems (Cao and Lim [2011]). In Chapter 5

we model the spine surgery problem with an integer program.

1.3.2 Stochastic modeling

A stochastic model is a tool that makes use of probability distributions and theory

to model real-world situations, by allowing for random variation in inputs over time,

typically estimated from a historical data.

1.3.2.1 Queuing theory and modeling

Queuing theory was developed in 1904 by A. K. Erlang to determine the capacity

requirements in a call center (Brockmeyer et al. [1948]). Queuing theory concerns

the study of wait lines (Gross and Harris [1985]). It can translate customer arrival

characteristics and service patterns into measures of waiting experienced by the cus-

tomers like, average waiting time or the chance that customers will be delayed in

the service process. Delays result from the mismatch between demand and service

capacity. And as healthcare is riddled with delays, it is an ideal application area

(Green [2011]).

Unlike simulation models, queuing models do not require a lot of data and have

simple closed form expressions for many performance measures. Thus they are much

faster to run and ideal for comparing di↵erent scenarios. However, the models de-

veloped incorporate many assumptions in order to develop closed-form expressions.

Green describes the basic queuing principles in her chapter (Green [2011]).
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In our paper, Liu, N. and Ozen, A. and Balasubramanian, H.J. [2014], we measure

access to care by appointment delays (i.e., wait time) and operationalize continuity

of care by the percentage of patients who see their own primary care providers

(Chapter 3). Since we are interested in studying the relationship among panel size

(which is directly related to patient appointment demand), provider service capacity

and patient appointment delays, queuing theory is an ideal tool for this setting.

1.3.2.2 Newsvendor model

Newsvendor problems solve the optimal size of a single order to be placed before

observing the stochastic demand when there are overage and underage costs. It is

originated from the problem a newsvendor faces every day, when trying to decide

how many newspapers to stock on a newsstand before observing the demand. The

overage cost results from ordering too much, and underage costs from ordering too

little of a perishable item.

Newsvendor models have been applied to capacity planning decisions for single

period stochastic demand problems. It has been used in healthcare capacity deci-

sions as well, for instance, Green et al. [2007a] use a newsvendor model approach in

their paper to determine the relationship between the size of a physician’s panel and

the overflow frequency, where overflow frequency is the probability that the demand

will exceed the available physician capacity. The demand for a panel of patients is a

binomial random variable. Based on what the capacity of a physician is, the proba-

bility of overflow can then be easily calculated by using the cumulative distribution

for the binomial random variable. The approach we use in Chapter 2 (Ozen and Bal-

asubramanian [2013]) is closest to the modeling framework of Green et al. [2007a].
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Their newsvendor like approach is extended to include case-mix and also to establish

the interrelationship between multiple physicians working in a group practice.

1.3.2.3 Simulation (discrete event and object-oriented simulation)

Simulation is one of the most common methodology used in healthcare applications

of operations research. One of the major reasons is that, computer simulation is a

method that allows experimenting on a system while avoiding all the complications,

like adding new sta↵, buying new expensive resources (Carr and Roberts [2011]).

Both discrete event and object oriented simulation models have been widely used

in healthcare since 1978 (Hancock and Walter [1979]). It has been applied to many

areas, including the management of capacity like sta↵ scheduling and admissions

scheduling in operating rooms, outpatient clinics and ambulatory care (Forsberg

et al. [2011]). The main di↵erence between discrete event and object-oriented simu-

lation is that discrete event simulations execute time-ordered events when a system

changes state. On the other hand, object-oriented simulation requires the design

and implementation of the objects, where objects are instances of classes, which are

composed of properties and methods.

In our project with BMC (Chapter 4), we were able to both acquire data and

establish active stakeholder participation, when developing the simulation model.

This is essential, since in order to “sell” the results of the simulation to several parties

the “stakeholders” need to be active participants in all phases of the simulation

project (Carr and Roberts [2011]).

11



1.4 Dissertation Overview

This dissertation consists of six chapters. Chapters 2 and 3 of the dissertation is

related to the primary care aspect of the capacity planning problem. In Chapter 2,

I formulate an integer non-linear program for redesigning panels in a primary care

group practice. In Chapter 3, our objective is to develop methods for evaluating

access to care and continuity of care in commonly-used primary care delivery models

adjusted for case-mixes; and to study how these two system performance measures

change under panel (re)design and provider capacity pooling. Chapter 4 focuses on

inpatient bed capacity planning with a goal of providing guidelines, particularly de-

veloping e↵ective discharge policies, on how hospitals should manage their inpatient

bed capacity in the presence of demand, discharge and length of stay (LOS) variabil-

ity. Chapter 5 is on surgical care to create an optimal spine surgery master schedule

by considering multiple objectives related to utilization, overtime, and financial per-

formance. Lastly, the final chapter proposes future directions for the current research

problems.

The dissertation is based on the following papers: Ozen and Balasubramanian

[2013] and Liu, N. and Ozen, A. and Balasubramanian, H.J. [2014], Ozen, A. and

Marmor, Y. and Rohleder, T. and Balasubramanian, H. and Huddleston, J. and

Huddleston, P. [2014a], Ozen, A. and Marmor, Y. and Rohleder, T. and Balasubra-

manian, H. and Huddleston, J. and Huddleston, P. [2014b], Ozen, A. and Balasubra-

manian, H. and Roche, J. and Samra, P. and Ehresman, M. and Li, H. and Fairman,

T. [2014] which are still under review.
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CHAPTER 2

THE IMPACT OF CASE-MIX
ON TIMELY ACCESS TO
APPOINTMENTS IN A

PRIMARY CARE GROUP
PRACTICE

2.1 Introduction

Primary care providers (PCPs) are typically the first point of contact between pa-

tients and health systems. They include family physicians, general internists, and

pediatricians. A primary care physician’s (PCP) panel refers to the patients whose

long term care she is responsible for. Over time, the PCP becomes familiar with

the patients in her panel and is therefore able to deliver more informed and holistic

care, with a focus on prevention. This long-term patient-physician relationship, also

termed as continuity of care is one of the hallmarks of primary care.

The benefits of continuity for both patients and physicians have been well doc-

umented in the clinical literature. Gill and Mainous [2010] point to several studies

13



which show that patients who regularly see their own providers are 1) more satisfied

with their care; 2) more likely to take medications correctly; 3) more likely to have

their problems correctly identified by their physician; and 4) less likely to be hospi-

talized. Continuity and coordination are especially important for vulnerable patients

with a complex medical history and mix of medications (Nutting et al. [2003]).

In practice continuity translates to maximizing patient-PCP matches when ap-

pointments are scheduled. But the ability of a PCP to provide continuity and timely

access depends on 1) panel size, or the number of patients in her panel; and 2) case-

mix, or the type of patients in the panel. For example, a panel consisting of mostly

healthy patients will have a very di↵erent appointment burden compared to a panel

consisting mostly of patients with chronic conditions.

In this paper, we characterize the interrelationship between panel size, case-mix

and the individual capacities of physicians working in a group practice. This is

done by measuring the overflow frequency of the physicians in relation to each other.

The overflow frequency is the probability that the demand from a physician panel

(i.e. patient requests for appointments in a day) will exceed the physician’s capacity

(i.e. the number of appointment slots a physician has available in a day). A high

overflow frequency for a physician implies that patients in the panel will be unable

to access their physician in a timely manner and are as a result more likely to visit

an unfamiliar physician or emergency room. Thus a high overflow frequency implies

that both timely access and continuity of care are compromised.

The consideration of panel size and case-mix in this paper, is particularly relevant

given the acute shortage of PCPs in the United States. The demand for primary care
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continues to grow as the population ages and the prevalence of chronic conditions

increases. Our approach allows practices to quantify their current supply and demand

imbalances and use available capacity in the most e�cient manner possible. Case-

mix is an important consideration given that patient demographics and care needs

vary from community to community and from one geographic region to another.

The analysis presented in this paper is at the aggregate planning level, where

a practice has to decide how many and what type of patients are appropriate in

each panel to ensure patients have adequate levels of access and continuity. In the

long term, if imbalances in workload exist among the physicians, a practice may

be interested in redesigning panels – that is in changing the size and case-mix of

individual physician panels so that each physician’s capacity is in balance with her

demand. While this involves changing existing panel configurations, opportunities for

redesign arise constantly in primary care (more details in Section 2.5). For example,

new patients may join the practice, existing patients may move from the area, and

patient preferences about their PCP may change over time. On the capacity side,

a physician may leave the practice or retire, with the result that patients in that

physician’s panel now need to be reassigned. In residency practices found in academic

medical centers, the turnover of residents every year provides constant opportunities

for panel redesign. We discuss the feasibility of panel redesign in greater detail in

Section 2.5.

We propose an integer non-linear programming formulation for redesigning panels

in a group practice. The goal is to minimize the maximum overflow frequency over

all physicians. Rather than prescribe exactly what practices should do, we derive
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analytical results to benchmark a practice’s current performance. Then the analytical

results are used to motivate heuristics, which will allow practice managers to: 1)

test various redesign options and, 2)infer which options are the least disruptive.

An important advantage of our approach is that all our analytical results can be

implemented in Excel and used for aggregate level planning and panel management

decisions.

The rest of the paper is organized as follows. In Section 2.2, the relevant literature

is reviewed and in Section 2.3, we explain the modeling of case-mix. We motivate

the panel redesign problem using an example involving 4 physicians in Section 2.4.

The feasibility of panel redesign in practice is discussed in Section 2.5. Section

2.6 contains all the mathematical details and analytical results related to the panel

redesign formulation. In Section 2.7, the heuristics are described. In Section 2.8,

we explain how we used patient and panel data from the Primary Care Internal

Medicine (PCIM) practice in Rochester, Minnesota to create four test practices to

demonstrate the results. Section 2.9 summarizes the conclusions and explains the

implications of our results for practices.

2.2 Literature Review

Appointment scheduling in healthcare is an active and growing area of research. Over

the last decade, the advanced access paradigm, made popular in clinical journals by

Mark Murray (Murray and Tantau [2000]; Murray and Berwick [2003]; Murray et al.

[2007]), attempted to promote same-day access for patients. In traditional appoint-

ment systems, appointments are allowed to be booked into the future, whereas in
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advanced access this is discouraged. All appointments, regardless of their nature and

urgency of request, are to be seen the same day by the patient’s PCP. In practice,

most clinics follow a blend of traditional and advanced access scheduling. Clinical ne-

cessities (follow-ups for chronic conditions) and patient preferences require practices

to allow the future booking of appointments, while at the same time enable same-day

access for acute needs. Yet, whatever appointment system or blend a practice may

follow, e↵ective access is possible only if the panel sizes of the physicians and their

case-mixes are in balance with the available capacity, and the impact of variability

is adequately addressed.

The operations research literature has in the last decade tackled a number of

aspects related to appointment scheduling using stochastic optimization approaches.

This includes an analytical comparison of traditional and advanced access appoint-

ment systems (Robinson and Chen [2010]); the impact of no-shows (LaGanga and

Lawrence [2007], Muthuraman and Lawley [2008], and Chakraborty et al. [2010], Liu

et al. [2010]); the importance of considering patient preferences (Gupta and Wang

[2008], Wang and Gupta [2011]); and capacity allocation methods that allow practices

to o↵er a blend of prescheduled (non-urgent) and same-day (urgent) appointments

(Balasubramanian et al. [2011] and Qu et al. [2006]).

We reiterate that the analysis presented in this paper is at the aggregate level.

Thus we only focus this review on the papers most relevant to our work on panel

size and case-mix. Murray and Berwick [2003] proposed six steps for clinics to

implement advanced access. An important message of this work is that the primary

lever for demand is the number of patients in a physician’s panel. Murray et al.
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[2007] provide a simple algorithm to calculate the “right” panel size for physicians.

Murray et al. [2007] also mention other factors that might a↵ect the workload of

physicians like gender and age (panel case-mix) but do not provide any quantitative

analysis. While the paper provides clinics with easily implementable policies to

realize advanced access by resizing panels, there is no discussion on the impact of

variability, an important factor in appointment scheduling.

Green and Savin [2008] use queuing models and simulation to demonstrate the

impact of panel size on the no-show rate, physician utilization, and the probability of

getting a same-day appointment. They find that the backlog of appointments grows

with panel size and as a result the no-show rate does as well, since patients booked

well into the future will have a greater probability of no-show.

In Green et al. [2007a], a newsvendor like model is proposed to determine the rela-

tionship between the size of a physician’s panel and the overflow frequency. Overflow

frequency, as stated in Section 2.1, is the probability that the demand will exceed

the available physician capacity. They assume that each patient in the panel has a

probability p of requesting an appointment on any given day. This probability can

be estimated from historical visit rates. Since each patient requests independently of

each other, the demand for a panel of patients is a binomial random variable. Based

on what the capacity of a physician is, the probability of overflow can then be easily

calculated using the cumulative distribution function of the binomial distribution.

The approach we take is closest to the modeling framework of Green et al. [2007a].

Their newsvendor like approach is extended to include case-mix and also to establish

the interrelationship between multiple physicians working in a group practice. We
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first extend the binomial framework for modeling demand to consider di↵erent classes

of patients. In our model, case-mix is represented by the number of simultaneous

chronic conditions a patient has (more details in Section 2.3). Next, the overflow

frequency is used as a measure of access, and then theoretical results are developed

that will allow a group practice to benchmark their current performance. Finally we

develop simple heuristics that will allow practices to test long-term panel redesign

scenarios. The results are demonstrated using panel data from the primary care

internal medicine (PCIM) practice at Mayo Clinic.

2.3 Patient Classification

Patients can be characterized by various attributes, such as age and gender and the

chronic conditions a✏icting the patient. Our interest is in attributes that play an

important role in determining the distribution of visits. In addition to operational

and capacity planning reasons, patient classification can be useful for clinics because

they enhance a practice’s understanding of its population and disease trends, and

allow it to design its care models e↵ectively. Barbara Starfield’s seminal work about

ACGs (Ambulatory Care Groups) argued that understanding the role of patients’

clinical complexity in care utilization forms the cornerstone for e↵ective resource

planning and determining payment methods in healthcare (Starfield et al. [1991]).

What classifications are the most e↵ective in predicting appointment request

rates? Age and gender is the simplest patient classification in absence of other data,

yet is generally e↵ective (Murray et al. [2007], Balasubramanian et al. [2010]). In

this paper, the number of simultaneous chronic conditions a patient has is used
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as a predictor of the number of visits. In clinical parlance, these conditions are

comorbidities. Our choice is based on the following reasons. First, comorbidity counts

have clinical relevance and are widely accepted by the primary care practices we

have interacted with. Focusing on all comorbidities of a patient is more holistic than

focusing in isolation on specific chronic conditions, and primary care was conceived

to be a holistic approach rather than a disease specific approach. Secondly, our

categorization has been used both in literature and practice. Naessens et al. [2011]

show that the number of simultaneous chronic conditions is a strong predictor of the

number of o�ce visits. Comorbidity counts have also been used in the new payment

scheme for primary care proposed by the Minnesota Department of Health (MDH

[2010]). Finally, statistical analysis of the patient level data from Mayo Clinic (using

classification and regression trees, CART) revealed the count of comorbidities as the

strongest predictor of appointment request rates.

We note, however, that the models proposed in this paper can be applied to any

patient classification. While patient classification is important, the central theme of

this paper is not to find the “best” classification. Rather, it is to show the impact of

patient classes on access measures. To illustrate the impact of comorbidity counts,

we analyzed the patient population (around 27,000 patients) empanelled at the Pri-

mary Care Internal Medicine Practice (PCIM) at the Mayo Clinic in Rochester,

Minnesota. Examples of commonly observed chronic conditions in patients included

hypertension, depression, diabetes, osteoporosis, urinary tract infections, hyperlipi-

demia, coronary artery disease and otitis. We divided patients based on the number
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of comorbidities they had. In all there were 8 patient categories as patients with

more than 7 comorbidities was extremely rare.

Table 2.1 below summarizes the number of patients, average number of visits and

standard deviation for each comorbidity count category, based on historical visits in

PCIM. Clearly, not only does the mean number of visits increase with the number

of comorbidities, the standard deviation does as well. The standard deviations are

higher than the means, suggesting significant variation in visit rates within each

comorbidity count category.

Table 2.1: Mean and standard deviation of visits in 2006, for patients with di↵erent
counts of comorbidities

# of Comorbidities # of patients avg visits/pat/year Std Dev.

0 6524 1.72 2.88
1 6980 2.74 4.56
2 5819 3.82 6.25
3 4179 5.16 8.56
4 2370 6.82 9.95
5 989 7.67 10.72
6 346 9.62 13.14
7 84 11.17 13.39

2.4 Example of 4 Physicians

In this section, we demonstrate the impact of case-mix using a simple simulation.

In the general case, there are j = 1, ..., J physicians in the practice. Suppose all

patients empanelled in a practice have been categorized into i = 1, ...,M patient

classes. A patient of category i has a probability pi of requesting an appointment

on a given day. This probability will be higher for patients with multiple chronic

conditions than for relatively healthy patients (see Section 2.8 for the exact values
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and how these probabilities are calculated). Next, suppose nij denotes the number

of class i patients in physician j’s panel. The total demand for the physician is the

sum of the demand from each patient class. The demand from each patient class is

a binomial random variable – with nij patients in patient class i and probability of

class i patient requesting on a given day being pi.

The pi and nij values are used to generate binomial data realizations using ran-

dom sampling and thereby simulate the total demand for each physician. If we know

the total daily appointment slots a physician has available in a day, then the simu-

lation can be used to calculate the utilization, overflow frequency, and the expected

overflow for each physician. Utilization is simply the expected total demand divided

by the total daily slots a physician has available in a day. Overflow frequency is the

fraction of total realizations (each realization can be thought of as a day) in which

the patients’ visit requests for the day exceed the available capacity of the physician.

Expected overflow is the average patient backlog (unfulfilled demand) at the end of

each day.

As an example, consider the results of the simulation for four PCIM physicians at

Mayo Clinic. The physicians have approximately the same panel size (around 1060

patients), but di↵erent case-mixes: di↵erent patient numbers in the 8 comorbidity

count categories. The panel compositions of each physician are shown in Table 2.2,

as are the overflow frequency, expected overflow and utilization. All four physicians

have a capacity of 17 slots. We use 10,000 realizations.

Notice that Physician 3 and Physician 1 have relatively high utilizations, overflow

frequencies and expected overflows. This is because they have more patients with
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two or more comorbidities in their panels, and these patient groups generate a higher

number of visits. High overflows result in 1) patients seeing an unfamiliar physician

or visiting an emergency room (loss of continuity), or 2) longer wait times to secure

an appointment (lack of timely access).

Table 2.2: Case-mix, panel size and performance measures for 4 physicians each
with a capacity of 17 appointment slots per day, where OF: overflow frequency; EO:
expected overflow; Util: Utilization

Physicians 0 1 2 3 4 5 6 7 Panel Size OF EO Util

P1 260 249 226 161 108 42 14 3 1063 30% 3.64 92%
P2 299 293 212 147 77 26 6 1 1062 22% 0.94 87%
P3 214 253 223 177 115 44 21 5 1053 35% 7.36 95%
P4 290 296 218 145 84 27 12 5 1077 18% 1.48 83%

These results suggest that, in addition to using panel size, clinics may benefit

by making capacity and allocation decisions based on case-mix. In the face of high

overflows, physicians generally work longer hours. But this is not an appealing

option, especially in primary care where reimbursements are low, and where more

and more physicians are experiencing emotional exhaustion because of the number

of patients they have to see (Bodenheimer and Pham [2010]). The long-term option

for practices is to redesign panels. This means changing case-mix proportions by

reassigning patients across panels so that each physician’s demand is in balance with

her capacity.

2.5 Feasibility of Panel Redesign

Before describing the panel redesign formulation, it is important to discuss how

feasible or useful such a framework is to practices, individual physicians and patients.
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Redesigning panels implies changing existing patient-physician relationships, and

there appears to be a paradox. To improve timely access and continuity in the

long run a practice has to invest in the short term disruption of existing patient

relationships. It is natural therefore to ask: how realistic is redesign in practice?

The feasibility of redesign would be a very valid concern if each patient in the

panel was very loyal to the physician and had spent many years visiting the physician.

Enforcing a break in that relationship would not be satisfactory to either the patient

or the physician. But in practice, a panel is a lot more fluid. While there exist many

patients who have spent years with the physician (we do not recommend that these

relationships be disrupted), there also exist patients who are newly registered or are

as yet uncommitted to their physician even though they have been assigned to a

panel. It is these patients who would be amenable to redesign.

For example, in order to improve access to care, continuity and care coordination,

Group Health Practice of Seattle recently reduced panel sizes from 2300 per physician

to 1800 per physician (Reid, R. J. and Fishman, P.A. and Yu, O. and Ross, T. R. and

Tufano, J. T. and Soman, M.P. and Larson, E.B. [2009]). They hired new physicians

and reassigned 500 patients per physician to either new physician or physicians who

had available capacity. Patients were invited to an open house to meet their new

physicians and surveys were used to identify patients who were willing to change

their PCP.

In their papers, Reid, R. J. and Coleman, K. and Johnson, E. A. and Fishman,

P.A. and Hsu, C. and Soman, M.P. and Trescott, C. E. and Erikson, M. and Larson,

E.B. [2010] and Coleman et al. [2010] analyze the Group Health Clinic after the im-
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plementation. They used survey-based measures to quantify patient satisfaction and

sta↵ burnout. The results of the implementation were: 1) Sta↵ burnout decreases

since they find that emotional exhaustion becomes less frequent for physicians; 2) Pa-

tients’ experience improves in terms of access to care and doctor-patient interactions

(and this manifests itself in 29% fewer ED visits and 11% fewer hospitalizations); 3)

During the reassignment, when physicians are given the chance to choose patients to

keep in their panel, they prefer the elderly and sicker patients, who create a greater

density of visits and need more continuity; and 4) Reassigned patients use primary

care less, but there is no significant increase in their use of the ED.

While Group Health seems to have successfully achieved its redesign to improve

patient centeredness, access and continuity, their reassignment of patients does not

seem to have followed a quantitative basis. For example, how did the practice decide

that 500 patients per physician (more than 20% of the original panel size of 2300)

had to be reassigned? Could fewer patients have been reassigned or do panel sizes

need to be even smaller? Quantitatively capturing the beneficial e↵ects of redesign

and the impact on the number of patients a↵ected – which is the focus of this paper

– will help individual physicians and the practice as a whole to make the choices that

are most appropriate for them.

Indeed our experimental results (see Section 2.8.2) based on the primary care

internal medicine practice (PCIM) at Mayo Clinic suggest that panel redesign will

a↵ect at most 5 � 8% of the total patients (250 patients out of 4300 total) in the

practice. Furthermore, the number of patients a↵ected can be as low as 2% (less than

100 out of 4300 total). So the very large majority of patient physician relationships
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will remain una↵ected. Yet, the improvements in overflow frequency due to redesign

are significant for the overburdened physicians in the PCIM practice. There is thus

a strong incentive for overburdened physicians to consider redesign, since it improves

access measures for their patients.

Furthermore, as Balasubramanian et al. [2010] argue, redesign does not need to

be carried out instantly as in the Group Health case, but can be achieved by most

practices in the long term. Every practice has a natural attrition rate as well as

a group of new patients wanting to join the practice. Patients’ comorbidities can

change over time as well. Retiring physicians will need to transition their patients to

newly hired physicians. These rates could be used, over time (a period of 1-2 years or

perhaps more) to adjust case-mixes so that timely access and continuity are improved.

Indeed we view the framework of this paper not as a strict prescription that dictates

what practices should do. Rather it is an assessment tool, which practices can use to

benchmark their current access and continuity levels on a quarterly or yearly basis

and use whatever leverage they have to change panels.

2.6 The Panel Redesign Formulation (PRF) and
Analytical Results

In this section, a mathematical formulation is provided to redesign physician panels in

a multi-physician practice to minimize the maximum overflow frequency. We choose

overflow frequency since it is a more tractable non-linear objective function than the

expected overflow. It also allows us to derive properties that eventually allow near

optimal solutions to be reached using simple heuristics. Later in the results section,
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the positive correlation we have already observed between overflow frequency and

the expected overflow, will be seen again.

We choose a minimax objective function over a summation function because even

if the sum of overflow frequencies over all physicians in the practice is minimum, some

physicians may still have higher overflow frequencies in relation to others. This will

eventually lead to redirections to unfamiliar physicians and hence a loss of continuity.

The minimax function, on the other hand, will ensure to the extent possible that

each physician’s panel demand is in balance with her capacity. We will also see in

this section that identical overflow frequencies for all physicians does not mean that

physician panels have to be identical in their case-mix proportions.

As discussed in the Section 2.4, nij denotes the number of patients from patient

class i in physician j’s current panel. The nij values over all J physicians and all

M patient classes together describe the current panel design. However, the practice

would like to redesign panels, that is determine new allocations from each patient

class i to each physician panel j to minimize the maximum overflow frequency. Let

xij be the number of patients to be assigned from patient class i to physician j. The

constraints are that xij values should be integer and that all patients from each class

have to be allocated,
PJ

j=1 xij = Ni, 8i = 1, ...,M . Here Ni is the total number of

class i patients (or category i patients) in the practice.

As before, the probability that a patient of class i requests for an appointment on

any given day is pi. If we assume that patients request independently of each other

then the total demand for physician panel j from patient class i after reassignment

is a binomial random variable with mean xijpi and variance xijpi(1 � pi). If we
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take the sum over all M patient classes, the mean and standard deviation of the

total demand arising from physician j’s panel are given by: µj =
PM

i=1 pixij and

�j =
qPM

i=1 pi(1� pi)xij, respectively, 0 < pi < 1. Note that both the mean and

standard deviation depend on the case-mix distribution given by the xij values for

the physician. If panel sizes are su�ciently large (> 800-1000 patients), the total

demand is the sum of as many Bernoulli random variables, and is likely to be well

approximated by a normal distribution. We verified this statistically by applying

the Kolmogorov-Smirnov (KS) goodness of fit test. The test was applied to total

demand data generated using 10,000 random samples from the binomial demand

distributions corresponding to the individual patient categories.

Let Cj denote the capacity of the physician, the total daily slots that she has

available in a day. Then Zj, the standard normal Z-score for physician j, is given

by: Zj = Cj�µj

�j
. Intuitively, the Z-score gives the number of standard deviations

that the capacity is distant from the mean of the panel demand. If the percentile of

the standard normal distribution is denoted by �, then the probability of overflow

for physician j, Oj, is Oj = 1��(Zj). The greater the positive distance between Cj

and µj and the smaller the �j, the greater the Zj value and the lower the overflow

frequency Oj.

The goal is to optimize xij allocations to minimize max{O1, O2, ...., OJ} – that is

minimize the maximum overflow frequency over all physicians in the practice. The

formulation is summarized below. We call it the panel redesign formulation (PRF).

(PRF ) min
xij

{max{O1, O2, ...., OJ}} (2.1)
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s.t. Oj = 1� �{Cj � µj

�j

}, 8j = 1, ..., J (2.2)

µj =
MX

i=1

pixij 8j = 1, ..., J (2.3)

�j =

vuut
MX

i=1

pi(1� pi)xij 8j = 1, ..., J (2.4)

JX

j=1

xij = Ni 8i = 1, ...,M (2.5)

xij � 0 and integer 8(i, j) (2.6)

Note that PRF is an integer non-linear program. The formulation is described

visually in Figure 2.1. The total mean and variance of the entire patient population

given by µtotal =
PM

i=1 piNi and �2
total =

PM
i=1 pi(1�pi)Ni. The allocation problem is

all about optimally partitioning the total population mean, µtotal, and variance, �2
total

to individual physicians in the practice. The lever through which the partitioning is

achieved are the xij values. The means and variances are not allocated independently

of each other but are tied to the xij allocations. In other words, Oj, µj and �j will

all increase (decrease) together when xij increases (decreases) for any i = 1...M .

Clearly, the maximum overflow will always be minimized if all the Z-scores and

corresponding overflows can be made equal. Even if they cannot be made exactly

equal, the di↵erences in the overflows will be small enough to be negligible for large

panel sizes. In other words, there is su�cient granularity in large panels (> 800

patients) to smooth the overflows in the practice.

Consider, first, the equal capacity case, C1 = C2 = C3.... = CJ , which is relatively

easy to understand. Since the physicians are all identical, then any allocation in
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Figure 2.1: A visual summary of the panel redesign problem to minimize the maxi-
mum overflow

which µ1 = µ2 = ... = µJ = µtotal/J and �2
1 = �2

2 = ... = �2
J = �2

total/J will

minimize the maximum overflow frequency. Note the above statement refers to a set

of allocations, not a particular one – the optimal overflow can be reached in multiple

ways.

A special case is the allocation where each physician j gets the same number

of patients from each category i. Mathematically, xij = Ni/J, 8i, j. To maintain

integrality of the decision variables in such a symmetric allocation, the number of

patients in each category i should be a multiple of the number of physicians J in

the practice. Even if this condition does not hold true, the general idea is that

all physicians have nearly identical panel compositions. A symmetric allocation has

practical benefits. PCPs are the generalists of healthcare. Their training allows them
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to treat a wide variety of patients, ailments and chronic conditions. The xij = Ni/J

allocation maximizes diversity of patients in physician panels. This is especially

important for panels of primary care residents in academic medical centers. Patient

and diagnostic diversity is an essential education and training objective of a resident.

Similarly private practices with a large number of relatively new physicians might

benefit from introducing diversity in panels.

Practices, however, do not have to follow such symmetric allocations. Panels tend

to grow more organically over time. In the interest of not disturbing existing patient-

physician relationships, a practice may choose other allocations that are asymmetric

yet in a manner that the overflows turn out to be identical. Thus, although the

structure of allocations in the equal capacity case is obvious, the subtle point is that

there are multiple optimal solutions. We revisit this theme again in the heuristics

and results section. One of our objectives there is try to redesign panels with the

minimum possible disruption to existing panels.

We next consider the more general unequal capacity case: C1 6= C2 6= C3.... 6= CJ .

In academic medical centers, where physicians have research responsibilities, the un-

equal capacity case is more prevalent. But even in non academic small practices,

with 3 or 4 physicians on sta↵ (where majority of primary care in the U.S. is de-

livered), physicians will often have di↵erent schedules or may work only part time.

Physicians on the path to retirement also may gradually reduce their work hours.
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2.6.1 The unequal capacity case

When the physicians have di↵erent number of slots available every day, it would

seem appropriate to allocate patients keeping in mind the capacity a physician has.

Greater capacity would imply a greater share of µtotal and �2
total. However, the

di�culty is in determining precisely how much greater that share should be for an

optimal allocation. Let C be the total capacity of the clinic – total slots the clinic

has available on a typical workday. Therefore C = C1 +C2 + ...+CJ . An allocation

in proportion to the capacity is given by: xij = (Cj/C) ⇤Ni for all i and j. In other

words, the number of patients from each category is proportioned in the ratio of an

individual physician’s capacity to the total clinic capacity. This seems an intuitive

way of allocating patients and is an extension of the equal capacity case where each

physician was assigned the same number of patients.

However, the allocation xij = (Cj/C) ⇤Ni, while likely to be a good heuristic, is

not guaranteed to give the optimal solution (specific examples in Section 2.8). This

is because while the allocation of patients from each patient class increases linearly as

the capacity increases, the objective function changes non-linearly. Indeed, a simple

closed form expression for the optimal allocation, as described in the equal capacity

case, may not be possible. It may be possible to solve PRF (at least numerically) by

relaxing the integrality constraints on xij. However, rather than choosing this course,

we approximate the optimal objective. This will give practices a reference or a target

overflow frequency, Oref to aim for when they redesign panels. We show that for all

practical purposes Oref is a good surrogate for the optimal overflow frequency Oopt.

A practice can use Oref to test various redesign options (multiple ways of reaching
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the optimal value), and choose whatever works best for them. This approach is less

prescriptive than solving the non-linear program exactly to determine xij values.

Furthermore, the calculation of Oref can be achieved using an Excel spreadsheet,

and therefore will be easy to implement in practice.

2.6.2 Deriving the reference overflow Oref

Our method relies on relating overflow of individual physicians in the optimal alloca-

tion to the overflow of a hypothetical “combined physician”. This combined physician

(CP) is simply the aggregated system. In other words, the combined physician has a

capacity of C = C1+C2+ ...+CJ , a mean demand equal to µtotal and variance equal

to �2
total. In such a practice, a physician can see the patients of any other physician

– there is thus no concept of continuity. The standard normal value corresponding

to the combined physician, ZCP is given by:

ZCP =
C � µtotalp

�2
total

(2.7)

Notice that the above expression can be easily obtained independently, without any

knowledge of the xij values in the optimal allocation. We shall next try to relate

the ZCP value to the standard normal value Zj for each physician j in an optimal

allocation. Suppose µj, �j and Zj represent the mean, standard deviation and Z

value for physician j in an optimal allocation. For su�ciently large panel sizes, we

know that the overflows of the physicians in an optimal allocation are approximately

equal, which implies that the Zj values will be approximately equal as well. So it is

reasonable to write Zopt = Z1 = Z2 = Z3 = .... = ZJ . More precisely:
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Zopt = Zj =
Cj � µj

�j

, 8j (2.8)

�j ⇤ Zopt = Cj � µj, 8j (2.9)

If we add all the J equations, one for each physician, based on the equality above,

we get:

JX

j=1

�j ⇤ Zopt =
JX

j=1

Cj �
JX

j=1

µj

Zopt =

PJ
j=1 Cj �

PJ
j=1 µj

PJ
j=1 �j

=
C � µtotalPJ

j=1 �j

(2.10)

From the expression for Zopt and ZCP (see equations 7 and 8) we have the following

result.

Zopt =
ZCP

R
,where R =

PJ
j=1 �jp
�2
total

(2.11)

Note that since �2
total =

PJ
j=1 �

2
j , we can rewrite R as:

R =

PJ
j=1 �jqPJ
j=1 �

2
j

(2.12)

Notice that R � 1. This is because the sum of J positive numbers (the numerator

of R) is always greater than the square root of the sum of squares of the J numbers

(denominator of R). This means that ZCP � Zopt. The equality is tight when R = 1

(i.e., the extreme case where one physician has all capacity and all demand, while all
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the others have none). We can also derive an upper bound on R. The upper-bound

R =
p
J is realized when all the J numbers involved in the expression are equal,

that is �1 = �2 = ... = �J . We define Zref = ZCPp
J
. If the capacities of the physicians

are equal, then Zopt = Zref and if the capacities of the physicians are unequal, we

have ZCP
R

� ZCPp
J
, which implies Zopt � Zref .

Intuitively, R captures the decline in variability when demands and capacities

are aggregated (the well known aggregation e↵ect). The decline is highest when

each physician has the same variance (and standard deviation). As physician panels

become more and more unequal with regard to the variances allocated to them,

R starts to approach 1 and ZCP starts to approach Zopt. Indeed, to calculate the

optimal Zopt, we do not need to know the exact standard deviation values of the

individual physicians. But we need to know how the standard deviations of the J

physicians stand in relation to each other – that relationship is captured by R. From

the above analysis, the following key result is derived:

ZCP � Zopt �
ZCPp

J
(2.13)

The overflows corresponding to the Z-scores above are given by OCP = 1��(ZCP ),

Oopt = 1 � �(Zopt) and Oref = 1 � �(Zref ) respectively. The relationship between

the overflows can be described as follows:

OCP  Oopt  Oref (2.14)
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OCP can be interpreted as the overflow of a practice that has no concept of panels.

Any physician in the practice can see any of the total patients in the practice. There

is no continuity. Such sharing however has the benefit of capacity pooling and hence

OCP is the best overflow a practice can achieve – it is the lower bound. Oopt on

the other hand is the overflow of each physician assuming that the physicians do

not share their patients at all. This provides perfect continuity but the benefit of

capacity pooling is lost. Practices usually lie between these two extremes. Thus the

di↵erence between Oopt and OCP measures the price of continuity.

While there is no exact method of computing Oopt, Oref = 1 � �(Zref ) is used

as a surrogate for the optimal overflow. It will be demonstrated that Oref � Oopt

is fairly small for most cases found in practice. Indeed, for the equal capacity case

R =
p
J, Zref = Zopt and therefore Oref = Oopt: the reference value is exactly equal

to the optimal value.

2.6.3 Oref �Oopt for common cases in practice

To characterize Oref�Oopt we must consider what values of R are reasonable in prac-

tice. Consider a 2-physician practice. When the physicians have identical capacities,

we expect to see �1 = �2 in the optimal allocation and therefore R =
p
2 = 1.414.

The more unequal the physicians are with regard to their capacities, the more R

starts to approach 1.

When the capacities of the two physicians are not equal, the optimal allocation

is unknown. But the asymmetry in physician capacities can give us a hint of what

the R value might be. Suppose one physician works full time and has 24 slots in a

36



day (assuming an 8 hour day with 3 patients per hour, a typical workload for PCPs),

while the other physician works only 6 slots in a day. This asymmetry in capacities

is perhaps the limit of what might be observed in a practice – seeing 6 patients a

day (about 2-3 hours of work per day) is generally not common except in residency

practices.

Although the optimal allocation of patients for the above case is not known, we

can still state that the mean and variance allocated to the full time physician should

be roughly four times that allocated to the quarter-time physician. This can be

stated because, it is known that the mean and variance are tightly coupled through

the xij values – they both increase and decrease together. So we have: µ1 = 4µ2 and

�2
1 = 4�2

2. This gives us an R value of 1.34. So R = 1.34 represents (approximately)

a fourfold variation in capacities for a 2-physician practice. R values smaller than

this imply that one physician works a negligible amount of time daily in relation to

the other. Capacities of 12 and 24 or 10 and 20 are more reasonable since since some

physicians may work full time while others may work only for half a day. For such

cases R � 1.34. In general, all practical 2 physician cases are well represented by

1.34  R  1.414.

So a 2-physician practice which has R = 1.34 allows us to test the strength of

our reference value Oref . If Oref approximates Oopt well for for this case, it will be

even better for R > 1.34, which are more commonly observed.

As an example, suppose we find that ZCP = 1.0 for a 2 physician practice with

R = 1.34 (recall that ZCP can be computed independently). If we do not know

anything about the optimal allocation, our only option is to use the reference value,
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Zref = ZCPp
J

= 1.0
1.414 = 0.707. The optimal value, using R = 1.34 is Zopt =

ZCP
R

=

1.0
1.34 = 0.746. It follows that the reference overflow and optimal overflow are Oref =

1 � �(Zref ) = 1 � 0.772 = 0.239 and Oopt = 1 � �(Zopt) = 1 � 0.745 = 0.2227

respectively. The di↵erence is within 1%.

Figure 2.2a below shows Oref and Oopt as a function of ZCP , which is varied from

0 to 3. The two lines are almost indistinguishable. At ZCP = 0, when the aggregated

demand equals the aggregated supply and the utilization is 100%, both Oref and Oopt

are 0.5. The prediction is exact. As the overflow decreases, Oref and Oopt di↵er from

each other, with Oref always being larger, but the di↵erence never exceeds 1.3 %.

(a) 2-physician case (b) 4-physician case

Figure 2.2: Comparison of Oref and Oopt as a function of ZCP for the 2-physician
and 4-physician example

To further reinforce the point a 4 physician example is considered. Here we

assume a sixteen-fold di↵erence in capacities C1 = 4C2 = 9C3 = 16C4, which is an

extreme limit on the capacity variation a practice is likely to have. Here the variance

relationship will approximately be: �2
1 = 4�2

2 = 9�2
3 = 16�2

4. The R value for this

setting is 1.825. We use Oref = 1��(Zref ) = 1��( ZCP
sqrt(4)) as the reference value. If

Zref works for well for this case, it will work even better for 1.825 < R  2. Figure

38



2.2b shows Oref and Oopt as a function of ZCP for the 4 physician example where

R = 1.825. Here the di↵erence between the two is slightly larger but Oref is still

within 2.5% of Oopt. We have thus shown that Oref is good surrogate for the optimal

overflow Oopt for practical cases.

2.6.4 Summary of contributions

In summary, the PRF formulation allows a practice to:

1) Benchmark the access performance of each physician in the practice with other

physicians as well as the reference overflow value.

2) Capture the price of continuity (in terms of lost access). Specifically, the price

of continuity for a practice is the di↵erence between the reference or target overflow

and the overflow of a practice in which all physicians together serve all the patients

in the practice (no concept of a panel, but pooled capacity to meet the demand).

3) Quantitatively evaluate and arrive at the least disruptive way of redesigning pan-

els, since achieving the reference overflow is possible in many di↵erent ways (mul-

tiple optimal solutions). This allows a practice to quantify the minimum number

of patients whose current PCP assignments will be a↵ected if redesign were to be

implemented.

Our heuristics and results, described in the next sections, quantitatively demon-

strate each of these contributions and provides the foundation for a spreadsheet-based

decision tool for aggregate level panel management decisions in a group practice.
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2.7 Heuristics

In the last section, we have seen how a reference or target overflow can be determined

for a group of physicians, and that this value is a good proxy for the optimal overflow

for most practical scenarios. In this section, heuristics are described that practices

can use to switch patients between panels so that this target overflow is achieved.

Since switching patients disrupts existing patient-PCP relationships, a practice will

be keen to 1) minimize the number of patients that are switched; 2) ensure that

patients with the greatest continuity needs (for example a patient with multiple

chronic conditions) are not switched. As it is demonstrated with our heuristics,

these two goals can be conflicting.

Before explaining our heuristics, it is important to note that we assume that pa-

tient categories are ranked in non-decreasing order, based on their pi values, which

determines the visit rate of that patient category. In our classification method for in-

stance, zero comorbidity patients have the lowest visit rate, one comorbidity patients

have the next lowest visit rate and so on.

To use the patient switching heuristics, practices start with an initial solution, for

example the practice’s current case-mix or current panel design. Next, the overflow

value for each of the physicians is computed based on the initial solution. The

physicians are ranked in decreasing order of their overflow values. A patient of the

lowest visit category (the group with 0 comorbidities in our case) is then selected

from the panel of the physician with the highest overflow and is now assigned to

the panel of the physician with the lowest overflow. The overflow values for the

two physicians are updated. If maximum overflow for the practice is greater than
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the reference overflow value (calculated as described in the previous section), another

patient from the lowest visit category is transferred. If the physician with the highest

overflow has no more patients in the lowest visit category, we move to the patient

category with the next lowest visit rate and transfer a patient to the physician

with the least overflow. This process of transferring patients is continued until the

di↵erence between maximum overflow of the practice and the reference overflow is

small enough. We call this Heuristic 1, or H1.

Notice that in H1, we may have to shift a very large number of patients from low

visit rate categories to achieve identical overflows in the practice. This may not be a

bad strategy since relatively healthy patients have a lower chance of having formed

a strong bond with the PCPs and are therefore more likely to change their PCPs.

In Heuristic 2, or H2, a di↵erent approach which involves all patient categories in

the patient transfers is analyzed. As before we start with the current panel design and

identify the physicians with the highest and lowest overflow values. We then transfer

one patient from the patient category with the lowest visit rate to begin with, update

the overflow values of the two physicians and again identify the physicians with the

highest and lowest overflow values. If the current value of maximum overflow and

the reference overflow is still large, we switch – in contrast to H1 – a patient from

the category with the next lowest visit rate. Thus we move from one category to

the next, whereas in Heuristic 1, we tried to exhaust all possibilities in the lowest

visit category. In Heuristic 2, patients are more evenly moved across the di↵erent

categories, but more importantly fewer patients are moved in relation to Heuristic
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1. The downside is that patients with chronic conditions who are more likely to have

a strong relationship with their PCP will also be transferred in Heuristic 2.

While H1 and H2 lie at two ends of the spectrum, a practice manager can be

more creative in his transfer choices. Patient and physician surveys as well as past

visit patterns can be used to make more intelligent transfer choices that minimize

disruption. In practice, patient reassignment is a dynamic process, which will be

carried out over a period of time, as new patients are empanelled in the practice,

when physicians leave or retire (thus leaving their panel to be reassigned among

still working physicians). In addition, practices can use surveys to determine the

willingness of patients to change their PCPs, thus creating a pool of patients who

are amenable to changing their PCPs.

2.8 Case Study

2.8.1 Data description

We use data from the Primary Care Internal Medicine (PCIM) practice at the Mayo

Clinic in Rochester, MN. This practice empanels around 27,000 patients and employs

39 physicians. Many of these physicians worked part time. Panel data enabled us to

identify which patients belonged to which physician. Patient level data included the

number and type of chronic conditions a✏icting each patient as well as the number of

visits for each patient for 3 years (2004, 2005 and 2006). The list of chronic conditions

included commonly occurring diseases such as hypertension, depression, diabetes,

osteoporosis, urinary tract infections, hyperlipidemia, coronary artery disease and

otitis. As discussed before, the number of comorbidities are used to come up with
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patient categories and this gives us 8 patient categories in all. To determine the pi

values for each comorbidity count, we first determine Ai, which is the total number

of appointment visits for all patients with i comorbidities in the population for a

long period of time, say a year. If Ni denotes all patients with i comorbidities, and

if there are T workdays in a year, then:

pi =
Ai

Ni ⇤ T
. (2.15)

Assuming there are 250 workdays in a typical year, we are now able to calculate the

per day request probability pi for each patient category. The method is similar to the

one proposed in Green et al. [2007a]. The values are listed in the Table 2.3 below.

It is also possible to calculate the p value for the entire population. If A is the total

Table 2.3: Binomial pi values for each patient category

p0 p1 p2 p3 p4 p5 p6 p7

0.0062 0.0106 0.0149 0.0199 0.0260 0.0298 0.0380 0.0412

visits generated by the total population of N patients, then:

p =
A

N ⇤ T = 0.0143 (2.16)

This value will be used to set the capacity of physicians in the test practices created

based on our data. The idea is to replicate the default process by which practices

typically assign capacity – they recognize that capacity should increase with panel
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size, but generally do not consider case-mix in how they determine capacity. Thus, if

a physician’s panel size is Lj, then the physician’s capacity, Cj, is assigned as follows:

Cj = d(Lj ⇤ p+ 0.1 ⇤ Lj ⇤ p)e (2.17)

The physician is given 10% more slots than the mean demand Lj ⇤p. Setting it equal

to the mean – as many practices might, since they remain unaware of the impact of

variance – would mean that each physician’s utilization would be 100%, leading to

an unsustainable system. The 10% additional slots ensure that there are a few extra

slots to bu↵er variability in demand. Yet the utilization of the physician will still be

su�ciently close to 100%, as it is for most PCPs practicing in the U.S. today. The

above expression rounds up to the closest values, since the number of appointment

slots per physician per day is typically an integer. We note that our approach can

work with any other capacity inputs as well.

Our goal is not to obtain results specific to Mayo Clinic data. Rather it is to

use the data to generate a series of “test” practices with 2 and 4 physicians, with

di↵erent case-mixes to illustrate the impact of case-mix and our heuristics. The

majority of practices in the U.S. have 5 physicians or less, so our practice sizes

are appropriate. Furthermore, larger practices tend to be divided into smaller self-

contained subgroups to ensure continuity. We note, however, that our method is not

computationally constrained in any way and can address larger practices as well.
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2.8.2 Panel redesign for test practices

Tables 2.4, 2.5, 2.6 and 2.7 provide detailed results for our 4 test practices. The table

format allows a reader to see the panels, case mixes and corresponding measures

clearly. We consider the equal and unequal capacity case and under each we test a 2

physician case and a 4 physician case. In the first two test practices, the physicians

have approximately the same panel sizes and hence the same capacity. In the next

two, physicians have di↵erent panel sizes and hence have di↵erent capacities. The

capacities are calculated as described above, based on panel size only. The physicians

are numbered based on the original Mayo Clinic data (which had 39 physicians) to

distinguish them from each other. We note that any combination of the 39 physicians

from the data set can be considered in a similar way.

In the tables, we present panel case mixes before and after redesign, the corre-

sponding means and variances for each panel, the overflow and the utilization for

each physician. We also present panels designed based on the 1) Capacity Ratio

2) Heuristic 1 and 3) Heuristic 2. Note that the capacity ratio rule allocates pa-

tients from each category i to each physician j as follows: xij = (Cj/C) ⇤ (Ni),

where C =
PJ

j=1 Cj is total capacity of the clinic. In the equal capacity case, when

C1 = C2 = ... = CJ , the allocation reduces to xij = (Ni/J), which gives the optimal

solution (see Section 2.6). In the unequal capacity cases, xij = (Cj/C) ⇤ Ni is a

heuristic that is expected to perform well, but will not necessarily be optimal. For

these cases, reference overflow values are used as the benchmark for comparisons.

In both Heuristic 1 and Heuristic 2, we start with the current panels or current

case-mix and switch patients (as described in the previous section) until the required
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maximum overflow value is reached. In each heuristic (including the Capacity Ratio),

we list the number of patients switched from each comorbidity group as well as the

total number of patients switched.

Table 2.4: Results for Test Practice 1: 2 physicians with equal capacity. Oref for
this practice is 0.24. The number of patients switched is provided as a separate row
under each heuristic. The total patients switched by a particular heuristic appears
under the Panel Size column.

Comorbidity Count

0 1 2 3 4 5 6 7Panel Size µj �2
j Cj Oj Utilization

Current

Phy 4 33236032427014440205 1495 21.9921.58 24 0.33 0.92
Phy 28 41838529921111132102 1469 19.6419.31 24 0.16 0.82

# Switched 0 0 0 0 0 0 0 0 0

Capacity Ratio

Phy 4 37537231224012836153 1481 20.8020.43 24 0.24 0.87
Phy 28 37537331124112736154 1482 20.8320.46 24 0.24 0.87

# Switched 43 12 12 30 16 4 5 2 124

Heuristic 1

Phy 4 14436032427014440205 1307 20.8120.42 24 0.24 0.87
Phy 28 60638529921111132102 1656 20.8120.47 24 0.24 0.87

# Switched188 0 0 0 0 0 0 0 188

Heuristic 2

Phy 4 32535331726313733140 1442 20.8020.43 24 0.24 0.87
Phy 28 42539230621811839167 1521 20.8320.46 24 0.24 0.87

# Switched 7 7 7 7 7 7 6 5 53

In Test Practice 1 shown in Table 2.4, while the two physicians have almost

the same panel size and therefore the same capacity (24), di↵erences in their case-

mix result in significantly di↵erent overflow values. Physician 4 would therefore be

unable to provide timely access and continuity to her patients. It is quite likely that

the patients of Physician 4 that are unable to secure an appointment would end up

seeing Physician 28. When the panels are redesigned, their overflow values can be
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made even. Physician 28’s overflow and utilization increase as she receives some of

Physician 4’s patients.

The Capacity Ratio heuristic which is optimal for this practice evens the case-

mix di↵erences between the physicians and in the end results in similar panel sizes as

before. However, in order for the two physicians to achieve the allocation suggested

by Capacity Ratio, 124 patients need to be switched – this includes a number of

high comorbidity patients. Heuristic 1 achieves identical overflows by starting with

the original case-mix and then transferring 0 comorbidity (healthy) patients from

Physician 4 to Physician 28. As mentioned before, these patients are more likely to

accept a PCP change. Notice that Heuristic 1 results in very di↵erent panel sizes as

a result. Heuristic 2, on the other hand, switches patients evenly across categories

but this does mean that higher comorbidity patients will be switched. The total

patients switched however is only 53, about half of what Heuristic 1 requires. The

panel sizes are di↵erent after Heuristic 2, but the di↵erence is not as drastic as that

produced by Heuristic 1.

For Test Practice 2 (Table 2.5), all four physicians have a capacity of 17 and

approximately the same panel size. These are the same four physicians whom we

used to motivate the paper in Section 2.4. We see here too Physicians 34 and 8 have

significantly higher overflow. The Capacity Ratio heuristic evens out the di↵erences

but this comes at a cost of shifting 193 patients. Heuristic 1 switches 229 patients,

which constitutes 5% of the total patients, but all of them are 0 comorbidity patients.

Heuristic 2 switches only 62 patients (only 1.5% of the total patients) but this does

include a few high comorbidity patients. The di↵erence in the number of patients
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switched (from each patient category and in total) can clearly be observed from Table

2.5. Notice that both Heuristic 1 and Heuristic 2 are able to reach the overflow values

that the Capacity Ratio allocation produces, which is optimal in this equal capacity

case. Both the capacity ratio algorithm and the heuristics are able to balance the

utilization and overflow frequency.

In Test Practice 3 (Table 2.6), Physician 20 has more patients in her panel and

also has more capacity (21) compared to Physician 24 (15). However, the former’s

overflow is more than double the latter’s. There is a clear case for panel redesign

here, since Physician 20’s current capacity of 21 slots per day is already quite high

and mostly likely cannot be increased anymore. This is especially true since PCPs

are responsible for numerous other non-visit tasks during the day, such as attending

phone calls, coordinating with specialists her patient might have recently visited and

so on. The Capacity Ratio reduces the imbalance in panel workloads somewhat but

clearly does not provide the optimal solution. Notice that the utilizations (which are

calculated using the mean demands and the capacity of the physician) are perfectly

balanced under Capacity Ratio, but the overflows are not. This is because the utiliza-

tion (µj/Cj) does not consider variance but the overflow frequency does. Moreover

Capacity Ratio switches 142 patients. Heuristic 1 and 2, on the other hand, pro-

duce overflows that are almost identical to the reference overflow (0.264). Heuristic

1 switches 172 healthy patients, while Heuristic 2 switches 52 patients in total from

all the categories. Thus with regard to both overflow and patients switched, the H1

and H2 are better than Capacity Ratio.
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Table 2.6: Results for Test Practice 3: 2 physicians with unequal capacities. The
reference overflow value, Oref for this practice is 0.264. The number of patients
switched is provided as a separate row under each heuristic. The total patients
switched by a particular heuristic appears under the Panel Size column.

Comorbidity Count

0 1 2 3 4 5 6 7Panel Size µj �2
j Cj Oj Utilization

Current
Phy 20 25531428922312454211 1281 19.3318.97 21 0.35 0.92
Phy 24 255262189107 52 25 5 1 896 11.6411.45 15 0.16 0.78

# Switched 0 0 0 0 0 0 0 0 0

Capacity Ratio
Phy 20 29733627819210246151 1267 18.0117.69 21 0.24 0.86
Phy 24 213240200138 74 33111 910 12.9612.73 15 0.28 0.86

# Switched 42 22 11 31 22 8 6 0 142

Heuristic 1
Phy 20 83 31428922312454211 1109 18.2617.90 21 0.26 0.87
Phy 24 427262189107 52 25 5 1 1068 12.7112.51 15 0.26 0.85

# Switched172 0 0 0 0 0 0 0 172

Heuristic 2
Phy 20 24730628221611747140 1229 18.2617.92 21 0.26 0.87
Phy 24 263270196114 59 32122 948 12.7112.50 15 0.26 0.85

# Switched 8 8 7 7 7 7 7 1 52

Finally as can be seen from Table 2.7, in Test Practice 4, there are four physi-

cians with di↵erent panel sizes and capacity values (24, 17, 15 and 14 respectively).

Notice, however, that the overflow and utilization values are not dramatically di↵er-

ent to begin with (at least in relation to Test Practice 3). In this case, the practice

may decide that no redesign is required. We note here that our approach and pre-

sentation of performance measures will help practices come to such a conclusion.
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Table 2.7: Results for Test Practice 4: 4 Physicians with unequal capacities. The
reference overflow value, Oref for this practice is 0.177. The number of patients
switched is provided as a separate row under each heuristic. The total patients
switched by a particular heuristic appears under the Panel Size column.

Comorbidity Count

0 1 2 3 4 5 6 7Panel Size µj �2
j Cj Oj Utilization

Current

Phy 28 41838529921111132102 1469 19.6419.31 24 0.16 0.82
Phy 19 299293212147 7726 61 1062 14.1013.86 17 0.22 0.83
Phy 17 274245189 98 5223111 894 11.5711.37 15 0.15 0.77
Phy 12 244233162107 4627 92 830 10.9610.77 14 0.18 0.78

# Switched 0 0 0 0 0 0 00 0

Capacity Ratio

Phy 28 426399297194 9837122 1465 19.3619.03 24 0.14 0.81
Phy 19 310290216142 7328102 1071 14.2414.00 17 0.23 0.83
Phy 17 259242181118 6022 71 890 11.7511.55 15 0.17 0.78
Phy 12 240225168109 5521 71 826 10.9110.73 14 0.17 0.78

# Switched 28 33 11 27 15 8 61 129

Heuristic 1

Phy 28 45838529921111132102 1508 19.8919.56 24 0.18 0.83
Phy 19 219293212147 7726 61 981 13.6013.37 17 0.18 0.80
Phy 17 315245189 98 5223111 934 11.8211.63 15 0.18 0.79
Phy 12 243233162107 4627 92 829 10.9510.77 14 0.18 0.78

# Switched 81 0 0 0 0 0 00 81

Heuristic 2

Phy 28 41838730121311234113 1479 19.8919.56 24 0.18 0.83
Phy 19 295290209144 7423 30 1038 13.6113.39 17 0.18 0.80
Phy 17 278246190 99 5424131 905 11.7911.60 15 0.17 0.79
Phy 12 244233162107 4627 92 830 10.9610.77 14 0.18 0.78

# Switched 4 3 3 3 3 3 31 23

As in Test Practice 3, we note that Capacity Ratio is a good heuristic and reduces

the imbalance between physicians but does not give the optimal overflow. It also

requires that 129 patients be moved, despite the fact that overflow di↵erences between

the physicians are not significant. Heuristic 1 and 2 are more e↵ective in reducing

the overflow, but also move fewer patients compared to Capacity Ratio. Heuristic
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1 switches 2%, whereas Heuristic 2 only changes 0.5% of the total patients. As

before this is because, Heuristic 1 a↵ects only the healthy patients, while Heuristic

2 involves patients from all categories.

2.8.3 Quantifying the price of continuity

We can also measure the price of continuity by quantifying the gap between Oref and

OCP in terms of the number of new patients who can can be empanelled. Recall that

Oref is a surrogate for the best possible access that the physicians in the practice

can provide with the available capacity once panels are redesigned and assuming

that physicians do not see each others patients. In contrast, OCP is the overflow

of a practice in which all panel demand is aggregated and all physician capacity is

pooled. The latter provides improved access to care (lower wait times) but at the

expense of continuity. (Since OCP  Oref from Sec. 2.6)

Table 2.8: Price of continuity in terms of number of patients, where TP: Test Practice

Capacity TP # physicians Capacity Ocp % Oref % Patients added

Equal
1 2 48 16 24 127
2 4 68 17 31 255

Unequal
3 2 36 18 26 100
4 4 70 3 18 500

If a practice cares more about access to care than continuity, then how many

patients could it have added if OCP is allowed to increase and until it equals Oref?

In other words, if the access performance as measured by overflow frequency is held

constant, how many more patients can a pooled practice with no concept of continuity

empanel compared to a dedicated practice where patients only see their own PCP?
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We quantify the number of patients that could be empaneled for each of the test

practices in Sec. 8.2.

In Test Practice 1, which consists of 2 equal capacity physicians, 127 new patients

could have been empanelled if the current OCP value of 0.16 is allowed to increase to

the Oref value of 0.24. For this calculation, we assume that the new patients added

have the same comorbidity mix that the practice currently has. For example, 750 of

the 2963 total patients (around 25%) in Test Practice 1 were 0 comorbidity patients.

Since this may be a fair reflection of the demographics of the neighborhood in which

the practice is located, we assume that 25% of the 127 new patients that the practice

can empanel will also be 0-comorbidity patients. Similar calculations apply for other

comorbidity counts.

The addition of new patients implies a loss of continuity since any physician in the

practice can see any patient. There is no single PCP who coordinates the patients’

care. In a fee-for-service system, where physicians are reimbursed based on the

number of visits, the revenues for the practice will increase as will the overall ability

to access physicians, but patient centeredness and possibly physician satisfaction will

likely to decrease.

Among the two 4-physician practices, Test Practice 2 will be able to add 255

patients at the expense of continuity while Test Practice 4 will be able to add 500

patients at the expense of continuity. This di↵erence is because of two reasons.

First, comorbidity counts are higher in Test Practice 2 compared to Test Practice 4.

Second, utilization and overflow values are lower in Test Practice 4 to begin with,

allowing for a greater number of patients to be added.
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Thus our framework allows a practice to look at extremes of best possible conti-

nuity and best possible access and make their empanelment decisions accordingly.

2.8.4 Impact on other measures

We have so far investigated overflow frequency and utilization. We now look at

Expected overflow (EO) and Expected unfilled slots (EU). Expected overflow, which

was explained in Section 2.4, represents the average number of patients who were

not able to get appointments. Expected unfilled slots tells us how under-utilized

each physician is. To test the impact on these two measures, we choose Physicians

19 and 34, from Test Practice 2. Both these physicians have equal capacity (17)

and before their panels are redesigned, their overflow frequencies were 0.22 and 0.42

respectively. We calculate EO and EU for both physicians before redesign (Current)

and after redesign (Balanced). The heuristic used for redesign is Capacity-ratio,

which gives an optimal allocation since the two physicians have the same capacity.

Since there is no closed form expressions for EO and EU, we simulate 10,000

realizations of demand, sampled from the binomial distributions appropriate for each

patient category. Each realization represents a day in the model. If the physicians

have any backlog it is transferred to the next day. We also investigate the impact of

sharing or transferring patients. That is if a physician has capacity available after

seeing her own patients, then she is allowed to see the other physician’s patients (if

the other physician has a backlog), at the expense of continuity. We compare this

case against the dedicated case, where the physicians do not share or transfer their

patients; that is, they maintain continuity at the expense of timely access.
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Figure 2.3 clearly shows the benefits of redesign (Balanced versus Current). The

benefits are especially significant when the two physicians do not share their patients

(the No Transfer case). If the physicians are not allowed to transfer patients and case

mixes remain the same then the resulting expected overflow is almost unsustainable

(for Physician 34 especially), resulting in poor access. Panel redesign produces more

even EO profiles when sharing is allowed (Transfer case), but the di↵erence is not

as significant as in the no-transfer case. We notice here that sharing of patients

mitigates the poor timely access problem. The unevenness in expected unfilled slots

between physicians is leveled with the balanced case mixes.

(a) Expected Overflow (b) Expected Unfilled Slots

Figure 2.3: Results for 2 physicians with equal capacity

These results suggest that even if the practices are unwilling to redesign panels,

sharing of patients between physicians is a viable alternative, especially if a practice

consists of 2-3 physicians. Moreover the sharing can be restricted to same-day re-

quests for which continuity is not always necessary or desired by the patients. While

this is not the ideal scenario, access is improved at the cost of continuity of care. If
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the physicians are keen on providing continuity then it is clear that the panels have

to be redesigned. We find similar results while testing other pairs of physicians, but

in the interest of keeping the paper concise these results are not presented.
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Table 2.5: Results for Test Practice 2: 4 physicians with equal capacity. Oref for
this practice is 0.31. The number of patients switched is provided as a separate row
under each heuristic. The total patients switched by a particular heuristic appears
under the Panel Size column.

Comorbidity count

0 1 2 3 4 5 6 7Panel Size µj �2
j Cj Oj Utilization

Current

Phy 39 290296218145 84 27125 1077 14.7314.47 17 0.28 0.87
Phy 8 26024922616110842143 1063 15.5415.26 17 0.35 0.91
Phy 19 299293212147 77 26 6 1 1062 14.1013.86 17 0.22 0.83
Phy 34 21425322317711544215 1053 16.1615.85 17 0.42 0.95

# Switched 0 0 0 0 0 0 0 0 0

Capacity based

Phy 39 266272220157 96 34143 1062 15.1114.83 17 0.31 0.89
Phy 8 266272220157 96 34143 1062 15.1114.83 17 0.31 0.89
Phy 19 265273219158 96 35134 1063 15.1514.87 17 0.32 0.89
Phy 34 266274220158 96 36124 1066 15.1714.90 17 0.32 0.89

# Switched 58 44 9 23 31 16 9 3 193

Heuristic 1

Phy 39 357296218145 84 27125 1144 15.1414.89 17 0.32 0.89
Phy 8 19424922616110842143 997 15.1314.85 17 0.31 0.89
Phy 19 461293212147 77 26 6 1 1223 15.1114.87 17 0.31 0.89
Phy 34 51 25322317711544215 889 15.1514.84 17 0.32 0.89

# Switched229 0 0 0 0 0 0 0 229

Heuristic 2

Phy 39 292298220147 86 30147 1094 15.1314.86 17 0.31 0.89
Phy 8 25824722415910639121 1046 15.1414.87 17 0.31 0.89
Phy 19 305299218153 83 31116 1106 15.1114.84 17 0.31 0.89
Phy 34 20824721717110939160 1007 15.1514.87 17 0.32 0.89

# Switched 8 8 8 8 8 8 7 7 62
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2.9 Conclusions and Implications for Practice

In summary, we have shown that case-mix is an important consideration in primary

care. Physicians with the same panel size but di↵erent case-mixes can have very

di↵erent overflow frequencies. We have characterized how overflow frequencies can

vary from physician to physician and demonstrated, using actual data from a primary

care practice, how these imbalances in supply and demand can be minimized in the

long term.

To implement our results, a practice will have to collect appointment request rates

of its patient population from historical data. Two to three years worth of visit data

should be su�cient to classify patients according to their visit patterns. With the

increasing use of electronic records, such data should be easily available. Practices

can use the opportunity to update information about currently active patients and

obtain more precise information about panel sizes.

Once this assessment is complete, practices can then begin to benchmark their

current performance by comparing the overflow frequencies of the physicians in re-

lation to one another and in relation to the reference overflow derived in this paper.

Panel redesign options can be easily tested, in a manner similar to Tables 2.4, 2.5,

2.6, 2.7 and the least disruptive options of redesigning panels can be identified. In

general clinics should be aware that Oref values of 0.3 or above, which result in high

utilization, should be avoided.

All overflow frequency calculations derived in this paper can be easily carried out

in an Excel spreadsheet. The American Academy of Family Physicians (AAFP) has

an Excel spreadsheet tool for panel size calculations (Murray et al. [2007]). However,
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it uses only the mean, does not consider case-mix and does not consider the impact of

variance. The Excel tool provided by Green et al. [2007a] allows practices to decide on

panel size for a single physician based on overflow frequency. The impact of variance

is also considered in their calculations. The results in this paper extends the Green

et al. [2007a] framework, to allow for an Excel tool that 1) quantifies the impact

of case-mix; 2) calculates a benchmark overflow value for a group practice; and 3)

allows for testing of various panel redesign options in the long term. A preliminary

version of our Excel spreadsheet is available for free at people.umass.edu/hbalasub/

PanelDesignSpreadsheet.xlsx.

Our model does have limitations, which provide opportunities for future investi-

gation and model refinement. We do not consider seasonality and day of week e↵ects

on overflow frequencies. In Savin [2006] (Section 3.2.7), he analyzes the e↵ect of

seasonality and day-to-day variability in a primary care practice and observes that

variations can be quite high. To model this e↵ect, he adjusts the probability that a

patient requests an appointment for a specific day or month. Our category specific

pi values can also be adjusted depending on the time of the year or day of the week.

Savin [2006] suggests that to cope with such variations practices will either have to

adjust panel sizes, or flexibly adjust the capacities of the physicians. In addition,

practices can leverage the benefits of working in groups – an aspect we consider in

this paper. In peak seasons or busy days, urgent same-day requests could be flexi-

bly shared by a small group of two-three physicians. As Section 2.8.4 shows, such

flexibility can improve access; the compromises in continuity will be small so long

as provider team is small. For more details on how same-day flexibility can be de-
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signed to balance access and continuity under di↵erent utilization levels, we point to

Balasubramanian et al. [2013] and Balasubramanian et al. [2011].

Another extension worth considering is whether physician practice style has an

impact on visit rates and consequently overflow frequencies. This can happen if some

physicians schedule more follow-up visits than others on average. Recall that in the

current model, demand is controlled by the pi values for the comorbidity categories,

which in turn is decided by the total number of visits from each category over a

long period (2-3 years). Now, as an example, if we were able to determine – through

new empirical data and appropriate statistical tests – that physician j scheduled

twice as many visits for high comorbidity count patients compared to physician k,

then the pi values for that category would accordingly have to be physician specific.

So not only do higher comorbidity patients have higher visit rates (which is indeed

the case and is the premise of our paper), but some physicians schedule more visits

for these patients than others, with implications for the overflow frequency. This is

an interesting direction for future work, and would require careful collection of new

physician-specific appointment data.

As mentioned earlier, our modeling approach is designed for aggregate level panel

management decisions. While we do not explicitly consider di↵erent appointment

types, such as prescheduled and same-day, a high overflow frequency will be corre-

lated with the inability to provide access for both types of appointments. In the same

way, although no-shows are not a part of our model, well designed panels can only

reduce the impact of no-shows, by improving time to earliest available appointments.

See Green and Savin [2008] for a discussion. Finally, patients with more comorbidi-
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ties are more likely to have longer appointments than healthy patients. Our values

for overflow frequency are therefore likely to be slightly smaller than those found in

practice. However, in a relative sense, our approach will still correctly identify the

imbalances in supply and demand across physicians. If anything, redesign will have

an even greater e↵ect.
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CHAPTER 3

PRIMARY CARE PRACTICE
DESIGN UNDER CASE-MIX:
JOINT CONSIDERATION OF

ACCESS TO CARE AND
CONTINUITY OF CARE

3.1 Introduction

Primary care can prevent illness, improve health outcomes and reduce mortality

(Starfield et al. [2005]). Providing communities with high-quality primary care is set

as priority in many countries healthcare agenda. To build a successful primary care

delivery system, access to care and continuity of care are two crucial cornerstones.

The concept access to care has a broad meaning (Aday and Andersen [1974]).

Some researchers equate it to the availability of health system resources in an area,

while others relate it to characteristics of the population, e.g., incomes, insurance

coverage and attitudes toward medical care. Simply put, accessibility to primary

care can be thought of as how easy it is for a patient to receive primary care when
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he/she needs it. Previous research has developed quantitative measures of accessi-

bility, among which one of the most important measures is the appointment delay

(Balasubramanian et al. [2010]). The appointment delay refers to the time between a

patient’s call for an appointment and her actual appointment date. The shorter the

appointment delay, the earlier a patient can receive the medical service, and hence

the more accessible the primary care service is.

The other crucial cornerstone for a successful primary care system is continuity of

care. Saultz [2003] summarizes this concept in a hierarchical way: 1) informational

continuity means patient information is transferred when she sees another provider;

2) longitudinal continuity of care refers to patients receiving most of their care from

the same provider; 3) interpersonal continuity implies an ongoing relationship and

trust existing between each patient and a personal physician. The most commonly-

used concept for continuity of care is the longitudinal continuity of care, which is

usually defined as the percentage of time that the patient is seen by her own primary

care provider (Bice and Boxerman [1977]).

Ideally, a primary care practice would like to improve both access to care and

continuity of care o↵ered to its patients, but these two goals are often conflicting

(2). For example, many primary clinics aim to improve access to care and reduce

appointment delays by implementing open access (Murray and Tantau [2000]). In

doing so, they try to provide a majority, if not all of, the patients with same-day

appointments. To build up enough service capacity, they may choose to form practice

teams with multiple providers, say two to three, sharing their patients. Though this

pooling strategy does improve service capacity, it may lead to loss of continuity of
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care, because there is no guarantee that patients will always be seen by their own

providers unless the patients’ situations dictate that or their own providers happen

to have open slots during their visit. Indeed, among those Open Access trials that

failed, many are because the loss of continuity as a price to pay for speedy access is

just too high (Phan and Brown [2009]).

In the design of a primary care practice, case-mix is another crucial factor that

needs to be accounted for. Case-mix refers to the type of patients served by a

practice. Because di↵erent types of patients may have di↵erent visit frequencies as

well as various demand for providers’ consultation time, case-mix directly influences

the “demand” side of a primary care practice. For example, Potts et al. [2011] have

calculated the disease burden of a physician’s panel by using the risk categories set

for chronic diagnoses in order to decide on the support the physician needs from

nurse practitioners (NPs). The goal of this paper is to develop methodologies to

quantify and evaluate access to care and continuity of care in primary care practices,

taking into account the impact of case-mixes.

Adding more patients in a physician’s panel increases the physician’s workload,

and thus leads to longer appointment delays. The panel size, as explained in Chapter

2, is the number of patients that a physician (group) is held accountable for (Murray

et al. [2007]). Given the same panel size, a physician’s workload is larger if patient

acuity level is higher because patients visit the clinic more often and each visit

might also take longer time (Knox and Britt [2004]; Roos et al. [1998]). To reduce

appointment delays and improve practice, there are two major operational strategies.

One is to take the advantage of economies of scale by forming a practice team and
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pooling service capacity together, but there would be a loss of continuity of care.

Another strategy is via panel redesign, i.e., to reallocate patients to providers’ panels

according to patient needs and individual provider service capacity so that the whole

care team is used more e↵ectively (Balasubramanian et al. [2010]); but reallocating

patients may not be an easy task as it takes time and e↵ort, and involves changing

existing patient-PCP relationships. The qualitative e↵ect of these two strategies

is clear. The question, however, is how to quantify these e↵ects ex-ante and also

adjusted for case-mixes.

In this chapter, we will use queueing theory to develop methods that enable us

to conduct such quantitative analysis, which should provide useful information for

practice change. Queueing theory concerns the study of wait lines (Gross and Harris

[1985]). It can translate customer arrival characteristics and service patterns into

measures of waiting experienced by the customers, e.g., average waiting time and

the chance that customers will be delayed in the service process. In this paper, we

measure access to care by appointment delays (i.e., wait time) and operationalize

continuity of care by the percentage of patients who see their own primary care

providers. Since we are interested in studying the relationship among panel size

(which, to be discussed shortly, is directly related to patient appointment demand),

provider service capacity and patient appointment delays, queueing theory is an ideal

tool.

We consider three typical practice designs used in primary care. The first design

is a dedicated service model where patients only see their own providers. This de-

sign can also be viewed as a solo-practitioner service where the provider serves her
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own patients only. The second and third designs are both group practice models

involving multiple providers working in the same team. The di↵erence is that, in the

second design, some patients have their dedicated providers while others see anyone

available. In the third design, patients see any available provider. For each of these

designs, we develop corresponding queuing models and derive performance measures

for both access to care and continuity of care. We use data collected from the Mayo

Clinic to populate our models and discuss how these measures change among designs.

All these measures can be computed via closed-form formulas, and they can be easily

evaluated using spreadsheet tools like Excel or even just calculators.

With the recent passage of the Patient Protection and A↵ordable Care Act, more

than 30 million Americans are expected to gain healthcare coverage in the U.S. How-

ever, many areas in the nation are facing severe shortage in primary care workforce

(HHS [2009]). Compounding the increase in patient volumes and the shortage of

primary care workforce is the aging population and the epidemic of chronic diseases,

which will likely give rise to more patients with multiple comorbidities requiring

more physician time and resources. To reform primary care delivery in the U.S.,

many practices are engaged in transforming into Patient Centered Medical Homes

(Nielsen et al. [2012]), one of the most important objectives being to form a coor-

dinated and integrated care team that provides patient centered care. Yet, there is

a lack of scientific and systematic methods that can inform the formation of such

teams and the allocation of workload among di↵erent team members to achieve the

best outcome. Our study provides a tool to assess the supply demand dynamics,

conduct capacity planning and inform practice design for primary care teams.
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3.2 Methods

3.2.1 The models

We use queueing models to describe the operations in di↵erent primary care practice

designs, using the formulas in the Appendix A. As an example, consider a single

physician’s practice. Patients in the physician’s panel call and request an appoint-

ment. To better understand our model, suppose for now that patients will take the

earliest appointment slot available and the service time for each patient is determin-

istic with a common length (we will relax this assumption later). Thus the provider

knows exactly when to schedule this patient upon her request. In particular, incom-

ing appointment requests are registered on the provider’s work schedule in the order

they arrive. The provider’s schedule is the queue in our models. The queue here

is not the physical waiting line of patients in the clinic, but rather a virtual list for

those who have not yet been seen by the provider.

During o�ce hours, the provider sees patients and shortens the queue. When

the practice is closed, no one joins or leaves the schedule, i.e., the queue remains

intact. If we remove the non-o�ce hours from the time horizon, we can view the

provider’s work schedule as a continuous queueing process, where jumps and drops

in this queue correspond to the arrival of an appointment request and the service

completion of a patient, respectively.

In reality, patient preferences, punctuality and type of appointments (presched-

uled versus same-day) may play an important role in practice operations. These

factors can be considered by more sophisticated frameworks, e.g., Wang and Gupta

[2011], which usually focus on intra-day operations; while our goal is to evaluate the
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access to care and continuity of care in primary care practices across days. To that

extent, our analysis is on a more strategic level, and thus we choose not to incorporate

too many intra-day scheduling details in our models. Omitting these details leads

to much more accessible formulation that provides quantifiable outcome measures

for practical use. More importantly, several recent studies support the use of such

models in setups like ours (Green and Savin [2008]; Liu and D’Aunno [2012]). In

particular, by comparing with more realistic simulation models that consider patient

preference and other scheduling details, Green and Savin [2008] show that queueing

models can yield relatively accurate estimates for panel sizes.

One interesting and innovative feature of our models is that they can account

for case-mixes. Case-mix refers to the type of patients in a panel, and it can be

characterized by various attributes, such as age, gender and the chronic conditions

a✏icting the patient (Balasubramanian et al. [2010]). The idea is to group patients

into “categories,” and within each category patients have similar demand pattern

and needs for providers’ time and resources. Using data from the Mayo Clinic, we

will discuss how to categorize patients shortly.

In Figure 3.1, the Greek letters � and µ represent the patient arrival rate and

provider service rate, respectively. We now describe the specifics of our models. The

appointment rate of a patient is assumed to follow a Poisson Process with a rate

�0
i per day, for patient category i. If there are Ni patients in category i, then the

appointment rate from this category is �i = Ni⇤�0
i . If there are M patient categories,

then the panel size is the number of patients in all categories, i.e., N1+N2+ ...+NM ;

and the joint arrival process is also a Poisson process whose arrival rate is the sum of
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those of its constituting arrival streams, i.e., �1 + �2 + ...+ �M . The Poisson process

is a widely used customer arrival model (Gross and Harris [1985]). It is especially

reasonable in our outpatient primary care setting as patients requests usually arrive

one at a time, and they can be treated independent of one another.

Since patients in di↵erent categories may require di↵erent amounts of service

time, the service time of a physician also needs to be adjusted for the case-mix. For

instance, a physician with more of higher acuity level patients in her panel should

have a lower number of appointments per day to accommodate for longer service

times. To adjust for case-mix, we calculate the average appointment duration for a

physician by taking the weighted average of the service times from di↵erent categories

of patients, where the weights correspond to proportions of the arrival rate from

each patient category. Thus the weighted average service time µ is calculated as
PN

i
�iPM
i �i

µi, where µi is the service time for category i.

With the above model description in mind, we proceed to discussing the three

practice designs (Figure 3.1) we will investigate in this article.

The first design is a dedicated service model where patients always see their own

provider. This design can also be used in a multi-provider practice, where each

provider practices as an independent single physician. The second design is a group

service model with partial pooling of provider service capacity, where some patients

have dedicated providers while others are flexible. In particular, dedicated patients

to provider 1 have an arrival rate of �1 and they will wait as long as provider 1

is busy. Similarly, dedicated patients to provider 2 arrive at rate �3 and they will

wait as long as provider 2 is busy. Another stream of patients arriving at rate �2
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Figure 3.1: Practice designs

are flexible patients; they will see any available provider and they wait only if both

providers are busy. The third design is a group service model with complete provider

capacity pooling, where patients will see any provider who is available.

Finally, we relax our service time assumption in our analysis. Recall that when

describing our models, we suppose that the provider service time is deterministic.

Under this service time assumption, we typically do not have closed-form expressions

for the performance measures that we are interested in. For better tractability, we

relax this assumption and assume that service times are random, which, in particular,

follow exponential distributions. On the one hand, random service times bring some

variability into the service process and seem to resemble practical settings better. On

the other hand, queues with exponential service times are usually easier to analyze

and often have closed-form expressions for their performance measures. Furthermore,
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previous studies show that variability in provider service time typically does not have

a significant impact on the productivity of a practice, while the mean service time is

a more important determinant (Liu and D’Aunno [2012]; Liu et al. [2012]). For all

reasons above, we will focus our analysis on queues with exponentially distributed

service times.

3.2.2 Data and model parameters

We analyze the patient population (around 20,000 patients) empanelled at the Pri-

mary Care Internal Medicine Practice (PCIM) of the Mayo Clinic in Rochester, Min-

nesota. Our data constitute patient visits over three years 2003-06 to 39 physicians

at PCIM. Detailed analysis on patient demand rates has been reported in an earlier

study by 2. We recapitulate the key results here for convenience. Their analysis

reveals that comorbidity count (CC) is the strongest predictor for patient demand

rate. Thus we divide patients based on the number of comorbidities they had. In all,

there are 8 patient categories as patients with more than 7 comorbidities were ex-

tremely rare. Our categorization is consistent with earlier literature (Naessens et al.

[2011]) as well as practice guidelines set by governments (MDH [2010]). However, we

should note that other categorization rules can also be used if deemed appropriate.

To estimate the daily demand rate of a patient from each category, we calculate

the probability that a patient from a certain category will request an appointment

on a given day (�0
i values), i.e., the total visits over a year for that category divided

by the total patients in the category times the total workdays in a year. The daily

appointment request rate for a given category is simply the multiplication of this
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probability with the patient counts in that category. The total daily appointment

request rate from a physician’s panel is the sum of daily appointment request rates

from all categories.

To estimate the physician service rate, we use the idea of adjusted service times

based on case-mix mentioned above. Since no time-stamps data are available for us to

estimate the length of provider consultation time, we set the following length based

on the experiences of PCIM physicians. These lengths also seem to be consistent

with those reported in the literature (Mechanic et al. [2001]). Patients with zero,

one and two comorbidity count category require a 20 minute visit on average, whereas

those that belong to higher comorbidity count categories require a 40 minute visit

on average. Thus, we calculate the appointment duration for a physician by taking

the weighted average of the service times. That is, we multiply the proportion of the

patients that belong to the zero, one and two comorbidity count category with the

required average appointment time (20 minutes) and add with the product of the

proportion of those with higher comorbidity counts and the 40 minutes average. For

example, if a physician has 50% of patients with lower comorbidity counts and 50%

with higher, then the average appointment duration for this physician is 0.5 ⇤ 20 +

0.5 ⇤ 40 = 30 minutes. Assuming eight hour work time every day, this physician can

see on average 16 patients (=8 hours/30 minutes) daily.

3.2.3 Model analysis

Under our model assumptions, the first practice design becomes a simple M/M/1

queue and the third design is an M/M/2 queue; see Appendix A for the notation
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and analysis of such models (Gross and Harris [1985]). The second design, however,

is di�cult to analyze. It is not amenable to the standard balance equation approach

(Kulkarni [1995]), due to the inclusion of flexible patients. Gurumurthi and Benjaafar

[2004] is the first to provide exact methods for the analysis of queuing systems with

general customer and server flexibility and heterogeneous servers. Their analytical

model allows asymmetric demand and service times, as well as an arbitrary flexibility

matrix. The models they generate can be used to analyze flexible queuing systems

in a variety of applications. Recently, Guo and Hassin [2012] study a two-server

queuing system where some customers may place duplicate orders at both servers

but will immediately withdraw one when they receive services from the other. More

importantly, they are the first to provide closed-form formulas to analyze such a

system. A close examination of their work reveals that their model is equivalent

to our second practice design where the flexible patients play the role of customers

placing duplicate orders in the queueing system. Thus we can adopt their formulas

to analyze our second design. The formulas and the steps of the calculation for the

waiting times is explained in detail in Appendix A. We use Microsoft Excel for the

computations.

One of the primary benefits of using a queuing model is that it produces useful

steady-state outputs. In our paper we only make use of some of them: utilization of

the physician, probability that a patient will be seen by her own provider (continuity

of care measure) and average waiting time for the patients (access to care measure).

All these measures can be calculated using closed-form formulas reported in the

literature discussed above.
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3.3 Results

3.3.1 Impact of case-mix on provider utilization

System utilization is an important measure for the workload placed on a service

system; it is evaluated as the ratio of patient daily request rate and the provider

daily service rate. A higher utilization level indicates a heavier workload, i.e., more

percentage of time being spent by providers in seeing patients; however, it also

comes with more congestion and longer patient wait. More importantly, as the

system utilization increases, the customer wait does not increase linearly but rather

exponentially (Green [2011]). That is, when the system utilization is high, even a

small disturbance, such as a slight increase in patient demand or drop in service

rate, can significantly increase patient wait. Therefore, the system utilization is a

crucial measure to monitor and control for, in order to balance the utilization and

congestion in a service system. In this section we discuss how case-mix can a↵ect

this important measure.

To illustrate, we use Mayo comorbidity count visit rates, �0
i values (see Table

3.1), to create seven hypothetical panels with the same system utilization 93.5% in

Table 3.2. Recall that patients with di↵erent acuity may have di↵erent appointment

demand rates, and they may also require di↵erent length of service times. Thus, it

is not too surprising to observe that although these panels have the same system

utilizations, their sizes are dramatically di↵erent due to di↵erent case-mixes. The

largest panel is panel 5, in which a majority of the patients have no more than 4

comorbidities; in contrast, panel 4 is the smallest panel whose size is even smaller
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than a quarter of panel 5, and it is predominantly occupied by patients with more

than 4 comorbidities.

Table 3.1: Arrival rate per patient per day for each category.

Comorbidity count

0 1 2 3 4 5 6 7
0.006 0.011 0.015 0.02 0.026 0.03 0.038 0.041

Table 3.2: Example of 7 hypothetical panels, with varying case-mixes, panel sizes,
daily request rates and service rates. All the 7 panels have the same utilization of
93.5% (Rates are daily)

Comorbidity count Panel Size Arrival Rate Service Rate
Panels 0 1 2 3 4 5 6 7

1 160 150 226 200 142 42 14 3 937 15.53 16.6
2 100 100 226 161 108 40 50 20 805 14.98 16.05
3 50 50 140 140 5 30 85 90 590 13.67 14.57
4 5 5 5 5 25 50 100 125 320 11.34 12.17
5 425 350 275 200 110 13 2 1 1376 17.8 19.05
6 5 5 180 150 100 30 64 45 579 13.53 14.45
7 300 275 250 184 108 42 14 3 1176 16.89 18.05

As mentioned above, one way to balance workload and improve practice is via

panel redesign. That is, reassigning patients across panels in the long term to achieve

identical workload proportions and thereby using the existing capacity in the most

e�cient way possible (Balasubramanian et al. [2010]). Here we use two real physician

panels from Mayo Clinic Primary Care Internal Medicine (PCIM) to demonstrate

the e↵ect. The initial panel size and case-mixes are shown in Table 3.3. Physicians

1 and 2 di↵er in their case-mixes, panel sizes, arrival and service rates and therefore

utilizations. Physician 1 has a utilization of 94.8%, while Physician 2 has a utilization

of 99.6%. These di↵erences can occur in practice due to reasons such as physician

74



seniority, physician and patient preferences. As a result, patients of Physician 2

will experience poorer access compared to those of Physician 1. Now, what if the

panels could be redesigned such that these two physicians had similar case-mixes? In

this case, we balance panels simply by dividing the patients from each comorbidity

count category equally among the two physicians. In doing so, the utilization of each

physician equals at 97.2% (see Table 3.4). In the next section, we will discuss how

panel redesign a↵ects the access to care and continuity of care measures.

Table 3.3: Case-mixes of Physicians 1 and 2: Initial/Baseline panels (where PS:
Panel Size,RR: Request Rate, SR: Service Rate)

Comorbidity count
0 1 2 3 4 5 6 7 PS RR SR Utilization

Physician 1 380 372 269 187 98 33 8 1 1348 17.91 18.91 94.70%
Physician 2 230 272 240 190 124 47 23 5 1131 17.38 17.45 99.60%

Total 610 644 509 377 222 80 31 6 2479

Table 3.4: Case-mixes of Physicians 1 and 2: Balanced Panels/After redesign (where
PS: Panel Size, RR: Request Rate, SR: Service Rate)

Comorbidity count
0 1 2 3 4 5 6 7 PS RR SR Utilization

Balanced 305 322 255 189 111 40 16 3 1241 17.68 18.18 97.20%

3.3.2 Comparison of practice designs under di↵erent case-
mixes

In this section, we compare the three practice designs introduced before (see Figure

3.1). Recall that in Design 1, the two physicians practice independently; while in

Design 3, they form a provider team and share all their patients. In the former

case we expect to see long waiting times (i.e., poor access) especially for a highly
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utilized physician, but the continuity of care is perfect for all patients. However, in

the latter case, we expect the waiting times to decrease but continuity of care is no

longer perfect. The patients may see one of two providers and hence continuity is

0.5 as opposed to 1 in the first case (0.5 means that patients will be seen by their

own providers with 50% chance).

Between these two extremes of best continuity and best access is the partial

pooling case, i.e., Design 2, where the providers form a team and share a subgroup

of patients. Care for this group of patients could be provided by either provider;

continuity for the shared patients is therefore 0.5. But each provider also retains a

certain number of dedicated patients for whom continuity is 1. Thus, based on the

number of patients shared and the number of patients dedicated, we can calculate

an overall (weighted) continuity of care measure. If 50% of the total visits are shared

by the two providers, and 25% are dedicated with each of the physicians, then the

weighted continuity measure is 1 ⇤ 0.25 + 1 ⇤ 0.25 + 0.5 ⇤ 0.5 = 0.75.

In practice, it makes sense to provide greater levels of continuity to patients with

multiple chronic conditions. Reid, R. J. and Coleman, K. and Johnson, E. A. and

Fishman, P.A. and Hsu, C. and Soman, M.P. and Trescott, C. E. and Erikson, M. and

Larson, E.B. [2010] and Coleman et al. [2010] discuss that in Group Health Practice

during the reassignment of panels, when physicians were given the chance to choose

which patients to keep, they preferred the elderly and sicker patients. Compared to

relatively healthy patients, these patients need a stronger bond with their PCP for

better management of their health conditions.
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To start with, we allow the providers to share only patients with zero comorbidity

count, i.e., CC = 0, who are apparently healthier patients in the panel; all other

patients still remain dedicated to their respective providers. We calculate access and

continuity measures for this setting. Next we allow providers to share patients with

CC up to 1, thereby increasing the number of shared patients and again calculate

access and continuity measures. We proceed in the same way until all patients are

shared by the two providers; this becomes Design 3. In our data, since CC range

from 0 to 7, we have a total of 9 cases, including the two extreme cases (i.e., Designs

1 and 3).

Table 3.5 provides the waiting time and continuity measures for each of these

9 cases, for baseline panels and panels balanced via redesign introduced in the last

section. Figure 3.2 summarizes the changes in access and continuity of care provided

across all 9 cases for both the baseline and balanced panels. In Table 3.5, W1

is the average appointment delay of patients dedicated to Provider 1; W2 is the

average appointment delay of patients shared by both providers; W3 is the average

appointment delay of patients dedicated to Provider 2. Clearly in the M/M/1 case,

since no patients are shared, W2 does not exist. Similarly, since no patients are

dedicated in the M/M/2 case, W1 and W3 do not exist. W is a consolidated access

measure for all patients, calculated as the weighted average of W1, W2 and W3,

where the weights are based on the proportion of the arrival rates for the dedicated

and shared patients. The unit of W1, W2 and W3 is days.

In the baseline dedicated case (Design 1), Provider 2’s patients have average

appointment delay of 13.8 days (see W3), while Provider 1’s patients have an average
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Table 3.5: Design comparison under the baseline and balanced panels, where CG:
Comorbidity groups, WC: Weighted Continuity

CG shared % pooled WC Baseline Panels Balanced Panels
W1 W2 W3 W W1 W2 W3 W

None (Dedicated) 0% 1 1 0 13.8 7.3 1.8 0 1.8 1.8
0 11% 0.95 1 0.9 1.2 1.1 1.1 0.9 1.1 1
0-1 30% 0.85 0.9 0.8 1 0.9 1.0 0.9 1 0.9
0-2 52% 0.74 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9
0-3 73% 0.64 0.9 0.8 0.9 0.9 0.9 0.9 0.9 0.9
0-4 89% 0.55 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0-5 96% 0.52 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0-6 99% 0.5 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

0-7 (Pooled) 100% 0.5 0 0.9 0 0.9 0 0.9 0 0.9

delay of only 1.0 days (see W1). This dramatic di↵erence is due to the imbalance in

the case-mixes of these two physicians, which results in 99.6% utilization for Provider

2 and 94.8% utilization for Provider 1, as discussed in the last section. This also

signifies our earlier point that when utilization level is high, a slight increase in

utilization will lead to a dramatic increase in patient wait. Now, if we look at all

patients, the average delay is 7.3 days in this case and the continuity of care is perfect.

However, if we were able to redesign the panels of these two physicians and balance

their workload, the utilization of both providers equals at 97.2% and the average

appointment delay for all patients is reduced to 1.8 days (see Balanced Dedicated

case). This is a 75% improvement in access to care.

Next, consider the Baseline panels when 0 Comorbidity Count (CC) patients or

apparently healthy patients are shared by the 2-physician team. The access improves

significantly for all patients (see W1, W2 and W3), with the overall average delay

reduced from 7.3 days to 1.1 days (85% reduction). Interestingly, the overall continu-
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ity measure drops only marginally from 1 to 0.95. Thus for a 5% drop in continuity

of care in relatively healthy patients, we get an 85% improvement in access to care.

For the balanced panels after panel redesign, we obtain similar findings. On top of

the benefits generated from panel redesign, pooling 0 CC patients further reduces

overall patient waiting time by additional 44% (from 1.8 days to 1.0 days) with only

5% drop in continuity measure.

A closer examination of Figure 3.2 reveals that when more patients are shared

by the two physicians, access measures improve, but the improvement is not as

significant as going from the dedicated to the 0 CC shared case. Furthermore, as

more patients are shared, the Baseline and Balanced cases tend to get similar. When

all patients are shared, they converge to Design 3 and have the same access and

continuity measures.

Figure 3.2: The impact of partial pooling on access to care and continuity of care for
both baseline and balanced panels. The x-axis ranges from the fully dedicated case
(Design 1) to fully-pooled case (Design 3)
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3.4 Discussion

Our study is among the first to develop case-mix adjusted methods to evaluate conti-

nuity of care and access to care for primary care delivery models. We consider three

commonly-used practice designs, namely dedicated service design, partial pooling

design and complete pooling design. Our study highlights the importance of consid-

ering case-mix in primary care practice design. Case-mix not only a↵ects, on average,

how frequently patients need healthcare services, but also influences how much time/

resources that a patient needs for each visit. Many primary care providers in the

U.S. have panel sizes exceeding 2000 patients regardless of the case-mix (Alexander

et al. [2005]), Green et al. [2013] even look at alternative methods of delivering care

on the supply side in order to increase the nationwide panel size of 2500 patients

to 5000 patients due to the soon to increase demand in primary care. Our results

suggest that such a seemingly one-size-fit-all approach does not work. Providers can

easily feel overwhelmed if their panels contain a relatively large number of patients

with complicated conditions. It is crucial to take case-mix into account.

A practice typically has two strategies to improve access to care with available

capacity. One is to create provider teams and pool service capacity on a certain

group of patients. This strategy seems to be spreading fast in the U.S. as more and

more primary care practices shift from solo-practice to group practice and physicians

cover each others work in a care team. Indeed, the share of solo practices fell to 18

percent by 2008 from 44 percent in 1986, according to the AAFP’s 2008 member

survey (Harris [2011]). One important question that arises from such a practice

shift is what kind of patients can be shared. Intuitively, patients who are relatively
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healthy can be shared because their cases are relatively simple and easy to handle. In

our data examples, we use comorbidity counts (CC) as a measure for patient health

status and the provider can choose who to share based on their CCs. We find that,

letting providers share patients with 0 CC, who only contribute to 11% of the total

visits, can significantly improve access to care by 85% but continuity of care only

decreases by 5%. More importantly, most of the benefits that can be generated by

patient sharing come from just sharing zero comorbidities patients. In other words,

a little flexibility can go a long way. Indeed, such ideas of using flexibility have

been discussed in other non-healthcare contexts such as manufacturing (Jordan and

Graves [1995]), and are shown to be e↵ective in improving system e�ciency.

The other strategy often used by practice is via panel redesign to balance workload

among physicians. In our data examples, the two physicians have imbalanced panels

at baseline. Panel redesign alone can improve the overall access of care by 75%.

However, when a practice tries to redesign existing panels, it usually involves much

e↵ort related to redirecting and re-empanelling the patients; and such changes can

take a long time and much e↵ort (Balasubramanian et al. [2010]). The reassignment

experience at the Group Health practice in Seattle also illustrates these challenges

(Coleman et al. [2010]). Instead, if panels were to be designed proactively in the

early phase of empanelling new patients rather than to be redesigned reactively after

panels have been formed, the work might have been much easier and e↵ective.

There are other strategies that a primary care practice can use to improve access

to care. For instance, some practices choose to delegate certain tasks, e.g., preventive

care and chronic care work, to non-physician members of the care team. A recent
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study examines how such task delegation a↵ects the choice of panel size (Altschuler

et al. [2012]). In particular, it considers how much time a physician can save by task

delegation, and then simply equates the available physician time with the time con-

sumed by patients to derive the reasonable panel size, which usually gets expanded

post task delegation. Altschuler et al. [2012] do not, however, consider the impact

of such system changes on continuity or access to care. In contrast, our modeling

framework can achieve both ends, i.e., considering task delegation and evaluating

continuity and access to care. To do so, we just need to include only patient visits

to the physician in our model analysis.

Our modeling framework is developed using queuing theory. It provides general

and yet easy-to-use tools to model and analyze service systems when customer wait

is an important focus of the problem. Despite its many merits, this method also

has a few limitations in modeling a primary care practice. In particular, we assume

that the service process is continuously running and “ignore” weekends when most

practices are closed. We also assume that patients are always assigned to the earliest

appointment slot available although it may not be the case in reality. Thus the

appointment delay estimates generated by queueing models may underestimate the

actual patient wait time. Using the weighted average of the service times is an

approximation but this allows us to use tractable, closed-form expressions. As an

extension, for a more accurate estimation Gurumurthi and Benjaafar [2004]’s novel

approach can be implemented.

However, our analysis depicts how the appointment delay varies across di↵erent

practice designs (see Figure 3.2), thereby enabling us to evaluate the relative changes
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in access to care. These relative changes perhaps provide more useful information

compared to the absolute values of appointment delays when comparing practice

designs.

Our study points to several future research directions. First, we use comorbidity

count as a criterion for patient sharing. It is important for the clinical community to

study how patient sharing a↵ects health outcomes and develop guidelines for it, i.e.,

who to share or when to share. Second, it will be interesting to develop simulation

models (Law and Kelton [1991]) rather than analytic models (like ours) to study

di↵erent primary care practice designs. The advantage of a simulation model is

that it can incorporate more details and represent the reality better; however, it is

usually developed based on a single facility, making its results di�cult to generalize.

Third, our models only consider primary care providers, e.g., physicians and nurse

practitioners. There are many other important medical professionals in a care team,

e.g., medical assistants. It will be interesting to develop more comprehensive models

to study the dynamics and patient flow through the whole care team. Last but not

least, we only consider the e↵ect of panel redesign. How to proactively develop panels

in the early phase of building up a group practice remains an unexplored and yet

very important research topic.
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CHAPTER 4

MODELING HOSPITAL-WIDE
PATIENT FLOWS USING

SIMULATION

4.1 Introduction

Hospital care accounts for 31% of the nation’s health expenditures (Martin et al.

[2012]) and inpatient beds are one of the most important resources in a hospital. A

mismatch between demand and supply in inpatient beds can cause hospital wide con-

gestions. Green [2003] and Williams [2006] point that the unavailability of inpatient

beds a↵ects the functioning of other parts in the hospital. These e↵ects include but

are not limited to: patients waiting long hours in the emergency department (ED)

for an inpatient bed; patients not being placed in their primary unit (i.e. o↵-service

placement); urgent patients bumping less critically sick patients from intensive care

units (ICUs) to “step-down units”; patients waiting in post acute care unit (PACU)

for an inpatient bed, operating room (OR) delays; ambulance diversions and refusing

transfers from other hospitals.
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In this paper, we use an empirically calibrated discrete event simulation to quan-

tify the impact of discharge timing on timely access to inpatient beds. By discharge

timing we mean how the number of patient discharges varies by the hour of the day.

Timely access is measured in two ways: 1) by the average non-value added waiting

time spent by a patient in the ED, PACU or other locations after the physician has

made a request for an inpatient bed; and 2) the average number of patients waiting

for an inpatient bed (average queue length).

Our simulation model is based on a year’s worth of inpatient flow data from

Baystate Medical Center (BMC), an acute care medical center in the Northeast of

the U.S. On average each day there are around 100 bed requests and discharges at

this medical center. Figure 4.1 shows the mean number of inpatient bed requests

and patient discharges by hour of the day at BMC. The time-varying nature of the

admission requests and the discharge process can be clearly observed. Notice that

discharges peak in the afternoon between 2-4 PM, producing a bell-curve centered

on these afternoon hours.

There are 2 main reasons behind the underlying empirical discharge distribution

as observed in Figure 4.1, which are hospitalist shifts and prioritization rules. First,

the hospitalist shifts in the hospital is divided into 3 shifts. During regular hours

(8 AM to 5 PM) when most of the discharges happen, around 15 to 18 hospitalists

are scheduled; after 5 PM to midnight there are only 2 hospitalists and very few

discharges; and after midnight, there is typically just one hospitalist for urgent cases

and no discharges happen in this duration. Second, during 8 AM to 5 PM, when

hospitalists are doing their rounds they tend to first see the recently admitted patients
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Figure 4.1: Admission and discharge rates

or patients who are critical, which results in discharges that are completed later in

the day with a higher LOS.

Bed requests also vary by the hour, although less dramatically than the discharge

rates. Once a bed request is fulfilled, a patient stays on average for 4.8 days (around

120 hours). Thus patients who are being discharged, say today, most likely requested

for an inpatient bed a few days ago. This two time-scale feature distinguishes the

inpatient admission and discharge process from the service settings typically studied

in the operations research literature. We return to this point again while reviewing

the relevant literature.

We investigate in this paper whether discharge profiles di↵erent from empirically

observed one in Figure 4.1 (our baseline) can improve timely access to inpatient beds.

A discharge profile is defined by (a) discharge window, which specifies the hours of

the day discharges are allowed; and (b) maximum capacity for discharges in each
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hour of the window. The typical window is 10 AM-7 PM, and capacity varies in each

hour of the window as shown in Figure 4.1. A number of alternatives are possible to

ensure speedier admissions for waiting patients. For instance, how much would be

gained if the hospital tried to discharge most of its patients by noon, thereby freeing

up beds earlier in the day? Are discharges by noon feasible given current capacity

constraints of the hospital? What if a more uniform discharge capacity was adopted

from one hour to the next or if discharge hours were extended in the evening by a

few hours? How much would waiting be impacted if the hospital tried to prioritize

discharges in units that had longer queues? We also discuss the feasibility of these

alternatives in practice for both patients and hospital sta↵. Some of the issues are

discussed in Tables 4.1 and 4.2.

We consider heterogeneity in inpatient bed request sources (such as ED, surgical

area, community referrals), clinical diagnostic categories, and desired inpatient unit

(medical-telemetry, renal, psychiatric unit and so on). Inpatient length of stay (LOS)

of the patients in our model varies as a function of these categories. We also consider

time-varying (non-homogeneous) inpatient bed request rates. With these as inputs,

we use the model to test a wide variety of discharge profiles in our model.

Together, this constitutes a time-varying multi-server queuing network model

with multiple patient classes. The model is queuing network for two reasons. First

we allow patients to first visit the ICU before stepping down to regular unit. Second,

in our model there is a front-end queue of patients waiting to get admitted to an

inpatient bed, and a back-end queue of patients who have completed their LOS

and are now waiting to be discharged. The front-end queue builds up in each unit
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Table 4.1: Earlier in the day discharge

Pros Cons

Patient’s Perspective Go home earlier in the
day.

Might be thought of
a premature decision.
Timing might be hard
for families, since they
will have to leave work
to pick up the patients
during the day.

Hospital’s perspective Patient flow improves
significantly as the beds
free up before the de-
mand for it builds up.
Better financially, since
the earlier the patients
leave the hospital, they
need to provide less
food and medicine.

A big burden on the
hospital and hospital-
ists to coordinate most
of the discharges to hap-
pen before noon. Unre-
alistic.

Physician’s perspective Patient will be home
early in the day if
there are any questions,
issues– and MD o�ce
would still be open–
avoid night time ques-
tions to MD’s o�ce.

The physician/
hospitalist would
need to address dis-
charge issues (expected
to be routine matters).
This competes with
the need to see new
admits, sicker patients,
and patients with issues
occurring during the
night.

since beds may not be available, and the back-end queue may develop since the

discharge capacity of the hospital (hospitalists in our case) in a particular hour may

be tight. What’s more, this capacity is expected to grow tighter since the demand

for hospitalists nationwide is expected to grow, as life expectancy is increasing and
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Table 4.2: Later in the day discharge

Pros Cons

Patient’s Perspective Family members might
be more available to
pick up the patient later
in the day than dur-
ing the day when they
have to leave work. Also
patients will go home
rather than having to
stay another night in
the hospital.

Leaving the hospital at
night might be incon-
venient for some pa-
tients, who need the de-
livery of oxygen or med-
ical equipment. Some
pharmacies close early
and prescription pick up
could be complicated in
the evening.

Hospital’s perspective Easier to coordinate
than early in the day
discharge.

Hospitalists shifts and
hours of the ancillary
services will need to
readjusted.

Physician’s perspective Allow time to have all
test and lab results from
day. Hospitalist can
speak directly to family
members who work dur-
ing the day.

Any problems that
arise when the patient
gets home, it is “af-
ter hours” to reach
physician. Could be
managed by hospitalist
being available for any
follow up calls from
patient.

older, sicker patients mean more complex case management for hospitalists (Collins

[2012a]).

This two service line feature gives us the opportunity to test whether prioritizing

discharges for those units that have the longest admission (front-end) queues has an

impact on timely access to inpatient beds. Prioritization thus allows us to model

state-dependent discharges, where a hospital responds in a holistic fashion by rec-

ommending that physicians and support sta↵ (nurses, case managers) conduct their

rounds and other discharge related preparations in units which have more patients
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waiting to be admitted. We reiterate that we are not recommending a patient be

discharged before their LOS is completed. Discharges in our model only apply for

patients who have completed their LOS.

We quantify the impact on admissions queue lengths for each unit under various

discharge profiles with and without prioritization, and thereby study the individual

and combined e↵ects of these two factors. Even though, early in the day discharge

policy has been studied extensively in the literature (Shi, P. and Chou, M. C. and

Dai,J.G. and Ding, D. and Sim, J. [2012], Powell et al. [2012]), to the best of our

knowledge, we are the first to propose and evaluate the impact of extending regular

discharge hour windows. Early in the day discharge policy alone does not result in

significant improvement in waiting times, and it also requires significant behavioral

change. However, expanding the discharge windows by only 2 hours creates the same

benefit with early in the day discharge policy. We also model a more responsive

discharge policy that prioritizes units in allocating the restricted discharge capacity

based on the admissions queue. This prioritization scheme results in significant

improvements in decreasing waiting times.

A less tangible but equally important contribution is the fact that the entire

simulation modeling process - assumptions, data inputs, analysis of outputs, impli-

cations for practice, implementation of results – was conducted over a 3-year period

with constant input provided by key stakeholder groups at our partner hospital.

This chapter is organized as follows. We first provide some background on dis-

charge planning and then review the relevant literature, and make the case for why

we did not choose queuing models to tackle the problem (Section 4.3). We then
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describe the data and provide basic background on BMC’s operations in Section 4.4.

After building a simulation model that mimics the patient flow in our partner hos-

pital in Section 4.5, we evaluate di↵erent discharge profiles both quantitatively and

qualitatively (Section 4.7). In Section 4.9 we discuss some potential future directions.

As an ongoing work, in Section 4.10 we present our motivation for modeling overflow

transfers with some preliminary analysis. Lastly we discuss a related future research

direction: hospitalist scheduling problem, in Section 4.11.

4.2 Discharge Planning

Medicare describes discharge as “a process used to decide what a patient needs for a

smooth transition from one level of care to another”. In general, the basics of a dis-

charge plan are: (1) Evaluation of the patient by qualified personnel, (2) Discussion

with the patient or her representative (which includes details of the types of care that

will be needed; and whether discharge will be to a facility or home; information on

medications and diet; what extra equipment might be needed, such as a wheelchair,

oxygen tank and so on); (3) Planning for homecoming or transfer to another care

facility; (4) Determining if caregiver training or other support is needed; (5) Referrals

to home health agencies and/or appropriate support organizations delivering needed

equipment to the home; and (6) Arranging the follow-up appointments or tests (FCA

[2013]).

The timing of discharges is closely related to how hospitalists prioritize patients on

their rounds. The term “hospitalists” was first used in 1996 (Wachter and Goldman

[1996]). Hospitalists are specialists in inpatient medicine, and are responsible for
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managing the care of inpatients in the same way that PCPs care for outpatients.

They admit the patients to the hospital, plan their workup, and arrange the transition

back to the outpatient setting (Wellikson [2010]; Maguire [2009]).

In the morning rounds, hospitalists need to prioritize their work and although

they can discharge patients who are ready, such a policy violates their first rule of

triage: “see the sickest (the newly admitted patients) patients first”. Priority overall

is given to admissions and acute patients (Quinn [2011]), not to discharges. This

results in discharges either being deferred or completed later with a greater LOS.

Patients who are ready to go home, although relatively less sick, need the hospitalists’

attention as well to start the discharge process which involves initiating paperwork,

ordering tests, educating the patient and developing a care plan for discharge.

Late discharges are typically the result of the timing of physician rounds, lack of

coordination with the patients’ family members about the discharge time and delays

resulting from post-acute care facilities. University of Utah Hospitals and Clinics

have identified thirty non-medical barriers to a timely discharge, with transportation

(28%), late discharge order (13%) and patient delay (8%) being the three major

reasons (Nelhin [2006]). The patients to be discharged on a given day are typically

known the day before. But even if these patients are ready to leave on the morning,

their discharges happen much later in the day.

Besides having adverse e↵ects on patient flows, delayed discharges have clinical

drawbacks like increasing the possibility of hospital acquired infections (DH [2004]).

Also the hospital has to provide nursing care, food and medicine until patients are

discharged, so it creates a further financial burden on the hospital. What’s more
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patient satisfaction is a↵ected adversely. Thus, discharging medically fit patients in

a timely manner has many potential benefits and can improve the waiting times of

patients for a bed significantly.

Although there are only a few papers that have looked at the relationship between

discharge timings and waiting times (Shi, P. and Chou, M. C. and Dai,J.G. and Ding,

D. and Sim, J. [2012], Powell et al. [2012], Bekker et al. [2014]), a possible solution

to inpatient congestions is implementing e↵ective discharge policies.

One of the main discharge policies of interest is the early in the day (EITD)

discharge policy, as it has both been proposed in the literature and applied in practice.

For example, Hospital of Miami has set a goal of discharge time by 11 AM to free

beds earlier in the day (HMA [2006]), by having specific nurses who work as patient

discharge care facilitators. Their main job is to do rounds with hospitalists to identify

patients who will be ready to be discharged the next day and get a running start on

the discharge to-do list (tests, paperwork, patient educations, scheduling follow-up

appointments and arranging transportation) in order to discharge patients earlier in

the day. They also point out that no matter how early the team starts to work there

are generally delays when transporting patients to nursing homes.

Research in this field presents conflicting outcomes. Shi, P. and Chou, M. C.

and Dai,J.G. and Ding, D. and Sim, J. [2012] demonstrate that this policy does not

significantly improve the hospital operations. On the other hand, the results from

Powell et al. [2012] show the opposite. Powell et al. [2012] test the impact of shifting

the discharge distribution to earlier in the day as well as the impact of two inpatient

discharge timing policies, by using a simple Excel model, with homogeneous demand
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and total bed flexibility. They conclude that the alternative discharge policies de-

crease both the ED and surgical boarding (waiting) time. One of the most drastic

results is that even by shifting the peak discharge hour from 3 PM to 2 PM there is a

decrease in waiting time by 50%. However, an important caveat is that their model

is static and deterministic, whereas Shi, P. and Chou, M. C. and Dai,J.G. and Ding,

D. and Sim, J. [2012] report on an actual implementation (at a Singapore hospital)

of an early discharge policy.

4.3 Literature Review

The literature is reviewed in two parts: first we go over the literature for hospital-

wide flow models and secondly discuss why we used a simulation model as opposed

to a queuing model by reviewing a list of queueing models applied to healthcare

networks with time-varying arrivals.

4.3.1 Hospital-wide flow models

Modeling and improving patient flow has been studied extensively in the literature.

In fact, the problem of inpatient bed congestion is not only prevalent in the U.S.,

but it is a problem commonly observed in other countries like Singapore and Israel

(Armony et al. [2012], Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim,

J. [2012]). Much work has been done in this area (see Williams [2006] for a detailed

literature survey), but we are specifically focusing on the hospital-wide optimization

models rather than unit specific ones.
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For instance, a common way to address the problem is by implementing better

OR schedules in order to reduce census variability. The motivation is that elective

admissions typically exhibit more census variability than ED patients. This is due

to a lack of consideration of downstream e↵ects, ward/bed requirements in admit

decisions (Helm and Van Oyen [2010]). As a solution Bekker and Koeleman [2010]

use a combination of quadratic programming and queuing theory in order to come

up with quota scheduling for elective surgeries to reduce the artificial variability

caused by scheduled surgery patients. Whereas, Helm and Van Oyen [2010] look at

this problem by using a “Poisson-arrival-location” model (PALM) based on patients’

stochastic location, and further develop a deterministic model using probability dis-

tributions for patient pathways. They find the optimal mix of elective patients that

will smooth the census by coordinating with the admit decisions in the hospital.

Even though this approach smoothes the bed census, the interactions between

di↵erent demand lines are ignored. Unit specific analysis might optimize a specific

part of the hospital but will not consider impact on the hospital as a whole. Thus,

we turn our focus to hospital-wide optimization models. Various IEOR techniques

have been used including queuing models (Bekker and Koeleman [2010], Shi, P. and

Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J. [2012], Armony et al. [2012],

Green and Nyugen [2001], Green [2003]), mixed integer programming (Helm and

Van Oyen [2010]), Markov decision processes (Helm et al. [2011], Helm et al. [2010]),

stochastic optimizations (Best et al. [2012]), in order to alleviate the inpatient bed

congestions.
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However, by far the most common methodology used for modeling and improving

inpatient flow in hospitals is discrete event simulation, since Hancock and Walter

[1979]. Hancock and Walter [1979] have used simulation for inpatient admission

scheduling in order to reach the maximum occupancy attainable. Since then many

papers have used discrete event simulation as a decision support system in order to

simulate flows in a hospital (Montgomery and Davis [2013], Proudlove et al. [2007],

Helm et al. [2011], Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J.

[2012]). For example, Proudlove et al. [2007] have used a forecasting and simulation

model to gain generalized insights and to be able to demonstrate “what if?” scenarios

rather than reproducing a specific small part of the network. Helm et al. [2011], on

the other hand, develop methods to control the inpatient admissions to decrease the

negative impacts of demand variability, by using a combination of Markov Decision

Process (MDP) and a simulation model. Also the papers using simulation models,

almost always highlight that cooperation and careful planning with stakeholders, and

simulation model graphics or visualization are crucial aspects for implementation

aspect (Forsberg et al. [2011]).

4.3.2 Why simulation and not queuing?

Both queueing and discrete event simulation models have been used extensively in

improving and modeling healthcare problems. Queuing models and simulation mod-

els each have their benefits. Queuing models are simpler, require less data, and

provide more generic results than simulation (Green [2006]). On the other hand, dis-
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crete-event simulation is more flexible and enables us to model the details of complex

patient flows.

Kolker, A. [2010] provides examples that clearly demonstrate why in most cases

discrete event simulation models are superior and preferred over queuing models.

Kolker looks at an example in a healthcare setting with time-varying arrival rates, and

concludes that the queuing analysis should not be used for such models. Supporting

this, Green [2011] discusses that for these types of queuing systems “using queuing

models is inappropriate for estimating the magnitude and timing of delays, and a

simulation model will be far more accurate”.

The sta�ng problem lends itself easily to queuing models, because of its closed

form expressions for useful output measures like waiting times, number of people

in the queue. This is one of the main reasons why queuing models have been used

extensively in healthcare as well. For example, Green [2003] evaluates the optimal

bed capacity based on a target probability of delay using an M/M/S queuing model.

Green and Nyugen [2001] use a queuing model to determine optimal policies for bed

planning considering the trade-o↵ between delays and occupancy levels. Though

simple models, they are tractable and develop insights on hospital capacity planning

that are generalizable.

Despite the abundant literature on stationary queuing models applied to health-

care processes, research on applications of non-stationary arrival rates is scarce.

Closed form expressions typically do not exist for non-stationary customer arrival

rates. Numerical analysis, stationary model approximations, infinite server approx-

imations and fluid approximations have typically been used to generate approxi-
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mations. To the best of our knowledge, the only papers that consider time-varying

arrival rates in modeling healthcare queuing networks are Armony et al. [2012], Green

et al. [2007b], Yom-Tov and Mandelbaum [2010] and Zeltyn et al. [2009]. The closest

formulation is Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J. [2012]

who develop a two-time scale queuing network but they are only able to model one

patient source rather than multiple patient sources, a feature essential to our hospital

flow model.

One of the most extensive queueing research in inpatient flows is conducted by

Armony et al. [2012], who analyze the hospital-wide patient flow from a queuing

approach. Exploratory data analysis (EDA) is used to study detailed patient flow

data from a large Israeli hospital. They analyze the flow in ED, internal wards

(IWs) and the transfers from ED to the IWs. They emphasize the importance of

understanding the system’s behavior at hourly resolution. However, Armony et al.

[2012] do not analyze the impact of discharge policies, but their main focus is on

patient flow from ED to internal wards.

Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J. [2012] is the first

to explore stochastic models to analyze the impact of e↵ective discharge policies.

To do so, they develop an analytical model and then use a very rigorous simulation

model that mimics the inpatient operations in a Singaporean hospital. They study

the e↵ect of early in the day discharge, that was implemented in the hospital, on ED

waiting. Similar to our finding in Section 4.7, the authors observe that this policy

alone has limited impact on reducing waiting time. One of the major findings is that

instead of an early in the day discharge policy, a hypothetical discharge distribution,
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which still discharges 26% of patients before noon, but shifts the discharge peak

time to 8-9AM, provides significant improvement in waiting times. Shi et al. also

find further improvements by combining the impact of discharge policies with other

policies like increasing the number of beds.

Motivated from their stochastic network, Dai and Shi (2014) develop an analytical

framework with a two-timescale analysis. They evaluate time-dependent performance

measures for a single class time-varying queuing network, while modeling the hospital

inpatient flow. Using a stationary queuing system, they first obtain the performance

measures on a daily level for the “midnight customer count”. Whereas, the second

time scale is used to derive the distribution for hourly customer count, which leads

to the calculation of time-dependent performance measures for the single-customer

class model (Shi, P. [2013]).

Our problem, on the other hand, consists of multiple patient categories each

exhibiting a di↵erent LOS distribution and time-varying arrival process. We have

looked at implementing time-varying arrival rate queuing models to our inpatient

flow model. However, the queuing models are unable to tackle the complexity of the

problem. As discussed in Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and

Sim, J. [2012], time-varying models have been studied extensively for call centers.

Time between arrivals (TBA) and time between services (TBS) happen every few

minutes in call centers – i.e. same time-scale – whereas TBA in inpatient setting

is hourly and TBS is at least one day (on average 5 days). Clearly the latter case

involves two di↵erent time-scales, as discussed in Ramakrishnan et al. [2005] and Shi,

P. [2013].
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Also, unlike call centers our model has extremely long service times and the

number of servers (beds) cannot be adjusted in a short time window. Additionally,

approximations for the time-varying queuing models, work well for under-loaded

models, whereas typically at peak hours, the hospitals are working over capacity

(using hall beds, unlicensed beds,...). Thus, existing approximation methods gener-

ated for call center models are not applicable to our hospital model. As a result, we

have turned our focus to simulation models based on sampling from historical data

collected from BMC, a large tertiary care hospital in the Northeast of the U.S. in

our case.

The queuing framework behind the simulation model can be observed from Figure

4.2. There are time-varying arrival rates from di↵erent patient sources which can

be categorized into 2 major sources as controllable (scheduled) and uncontrollable

(urgent). The patients get admitted to units and require care depending on their

MDC category, which are individual queuing systems (G/G/Cs) themselves. We

only account for the ICU transfers, due to lack of data. After the LOS is complete,

we assume the patients join the discharge queue. As can be observed we model two

di↵erent service lines: one to be admitted and the other to be discharged. This

allows us to model both a state dependent and an independent discharge profile

and quantify the impact. Since, we have used a simulation model for modeling the

inpatient flow process, we were able to construct a detailed system, as opposed to

having numerous simplifying assumptions in analytical model formulation (Davies

and Davies [1995]).
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Figure 4.2: Queuing framework

4.4 Data Collection and Analysis

We analyzed data from all patients who were admitted to an inpatient bed at BMC

from May 2010 to April 2011. We used anonymous patient records which included

patient age and gender, and diagnoses related categorizations. These include the

diagnosis related groups (DRGs) and major diagnostic categories (MDCs). This

MDC categorization was initially created for the claims and administrative process;

each MDC aggregates related DRGs into a single broader category – for example, two

such categories are “Respiratory Diseases” and “Circulatory Diseases”. There are 25

MDCs and this keeps the model concise and tractable. Additional data analysis for

MDCs and the features of the data used in sampling is provided in Appendix B.
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We have also analyzed the time-stamps for each patient and in fact these form

the basis of some key inputs in our simulation model (see Figure 4.3). A patient may

enter the hospital information system by registering through the ED, surgical unit,

a physician’s o�ce or other sources. After the patient goes through the assessment,

consultation and care process, the relevant physician or care provider decides that

the patient should be admitted to an inpatient bed in a desired unit. This is the bed

request time and in our simulation model it translates to a patient arrival.

Figure 4.3: Admission and discharge process

The patient then waits until a bed is available and is then admitted. After staying

for some duration in the inpatient bed, the patient is discharged. The important point

here is that by length of stay we mean time spent by the patient in the inpatient

bed. In Figure 4.3 this is “the discharge time” minus the “in the bed” time. From

the point of view of our simulation model, inpatient bed LOS is the “service time”

and number of inpatient beds in a unit are the number of “servers”.

Unfortunately, we did not have data on patient transfers between units. Overflow

transfers happen because the patient was originally admitted to a non-primary unit

that may not have had the equipment and sta↵ to adequately deal with the patient’s
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condition. Transfers in general are not desirable and are costly (West [2010b], West

[2010a]). In fact, many hospitals are trying to implement a “right patient, right bed”

policy for accommodating patients in the correct place, so they do not have to be

transferred (West [2010a]). We assume in our model that 1) the unit from which

the patient was discharged was the patient’s desired unit; and 2) that there are no

transfers other than critical care unit transfers: the patients simply wait in a non-

ideal location until a bed becomes available in the desired unit. We have performed

some preliminary analysis on overflow transfers, but will only focus on the impact of

discharges in this paper.

Inpatient bed LOS can vary significantly from patient to patient. In addition to

regular inpatients (27,000 in our one year data), there are two separate categories

of patients called “day-stay” and “observation patients”. Day-stay patients, as the

name suggests, are patients who undergo small procedures like tonsillectomy and stay

for 24 hours or less in an inpatient bed (ASCA [2013]). Observation patients refer to

those patients whose conditions can be treated in 48 hours or less, or when the cause

for the symptoms has not yet been determined. Some examples are nausea, vomiting,

and some types of chest pain. Bed requests for these patients are typically made

through the ED (CMS [2011]). In the data we analyzed, day-stays and observation

patients sum up to 20,000 patients. Thus, in total with regular inpatients, we have

a total of 47,000 total patients who used an inpatient bed for the one year period of

interest.

Regular inpatient bed requests can get admitted through the ED, surgical units

(this includes elective surgeries such as hip and knee replacements as well as emer-
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gency surgeries), from physician o�ces (direct admits), from other community hos-

pitals (transfers from other hospitals). Categorizing patients by these admit sources

and their MDC, mimics accurately which units they get admitted to and how long

they stay in an inpatient bed. Figure 4.4 shows total annual bed requests of the

major sources with respect to hours of the day. We can clearly see the time-varying

arrival nature of each source.

Figure 4.4: Arrival pattern by patient sources

Figure 4.5 shows the LOS and daily bed request rate for the patient sources

discussed above. Day-stay patients who exhibit a high annual volume of 10000

patients, spend less than a day in the hospital. On the other hand, ED patients

present an annual volume of 14000 as well as a high LOS of around 5 days. The

“controllable” patients – elective surgery patients, who can be scheduled in advance

– are denoted with solid fill, whereas the “uncontrollable” sources (patients from the

ED, for example) are represented with solid diamonds, and the horizontal lines are

104



for patients somewhere in between. Calculating the “patient bed days” (total volume

* average LOS) consumed by each patient category, suggests that ED patients, at

this hospital at least, consume the majority of inpatient capacity. Even though the

literature about changing surgical schedules is abundant (Helm and Van Oyen [2010],

Bekker and Koeleman [2010]), for this specific hospital the impact of ED patients

dominates all the controllable sources. Note however that surgery rates because they

are elective are scheduled over 5 weekdays, whereas emergency surgeries are admitted

throughout the whole week (both weekdays and weekends). Additional analysis on

elective surgeries can be seen in Appendix B.

Figure 4.5: Volume and LOS values of patient sources

There are 25 departments that the patients get admitted to, which total to 575

inpatient beds. The medical specialties include: adult respiratory, oncology, day-

stay, medical, observation, congestive heart failure (CHF), surgical, interventional,

critical care, women health, renal, neurology, orthopedic and pediatric medical and
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surgery units. We have analyzed the units in terms of their bed capacity, daily arrival

rate, the mean and variance of LOS, utilization level and average percentage of total

discharges before noon.

Table 4.3 provides twelve of the most highly utilized units. Here we define “uti-

lization” with an aggregate simple formula: daily bed request times the average

LOS, divided by the number of beds. The LOS values exhibit significant variability,

in most cases it is higher than the mean. There are also some hospital specific dynam-

ics that a↵ect the hospital-wide flow. Di↵erent units host di↵erent kinds of patients.

The highest utilized unit S2, a medicine-telemetry unit, generally hosts “socially

challenging” patients (like overdose patients who require further care). Telemetry

service is often recommended after a heart attack, or when a patient is seriously ill.

Nursing sta↵ in telemetry units is usually highly trained so that they can respond

to emergent issues quickly (McMahon [2014]). Another unit to point out is APTU,

the psychiatric unit which has the highest LOS and highest variability. In both of

these units the predictability of discharge is harder to estimate, than a surgical ward,

because these patients generally require a post-acute care service. Hospital specific

subtleties like these a↵ect the whole admission and discharge process and by using

random sampling from the historical data we are able to incorporate these factors

implicitly to our model.
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Table 4.3: Unit specific analysis

Unit LOS
(days)

Std
Dev
LOS

Daily
Rate

Capacity Utilization % dis-
charge
before
noon

Medical Telemetry 5.09 5.85 5.16 26 101% 16%
Cardiac CHF 4.19 4.29 7.58 32 99% 24%
Cardiac interventional 2.64 3.27 11.87 32 98% 23%
Neurological 3.91 5.08 9.94 41 95% 13%
Renal 3.25 4.19 6.92 24 94% 27%
Adolescents 2.6 3.38 2.86 8 93% 27%
Medical Respiratory 5.27 7.35 5.36 31 91% 29%
Surgical/Orthopedic 4.74 5.02 6.47 34 90% 15%
General Medical 3.26 3.21 11.95 44 89% 23%
Psychiatric 8.68 10.87 2.79 28 87% 21%
Intermediate Surgical 5.41 6.25 6.97 44 86% 9%
Short Stay Surgical 4.25 5.61 6.28 32 83% 12%

4.5 Simulation Model and Analysis

Figure 4.2 and pseudocode presented in Appendix C, show the main idea behind

our simulation model. There are M inpatient bed request sources. The number of

requests from source i in hour t is denoted by the random variable �i,t and is sampled

randomly without replacement in order to reflect the time of day and day of week

e↵ect. These requests fall into some MDC category and are consequently mapped

into demand for N inpatient units. The total number of bed requests for unit j at

hour t is denoted by the random variable �
0
j,t. Each unit has Bj beds, and each

unit is a time-varying G/G/Bj queue. The arrival rate in each hour follows some

general stochastic process; Poisson arrival rates are not a bad assumption, but in

our case, we use arrivals sampled from historical data, hence “G” in the queuing

notation. The random variable LOSj indicates the service time in unit j and follows
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some general distribution. We provide examples for arrival rates and LOS values for

di↵erent admission sources that were used in sampling in Appendix B.

Some patients make their way to an inpatient unit via the ICU where critical care

is provided. We assume that these patients spend a deterministic amount of time

specific to an MDC, CritLOSMDC , before requesting for a regular inpatient bed.

Each hour, bed requests are fulfilled on a first come first served (FCFS) basis. The

patients are ready to be discharged from the hospital after their LOS is completed.

They join a discharge queue, which has a capacity of Dt in hour t. To start with,

patients are discharged on a FCFS basis as well; so there is no speeding up or slowing

down, which is commonly observed in practice (Jaeker et al. [2012], Kc and Terwiesch

[2009]). As an alternative discharge policy, we also consider prioritizing discharges

in units which have the longest admission queues. The bed is available after the bed

turnover time (a deterministic value) is complete.

In each unit j, a queue Qj develops consisting of those patients waiting for a bed

to become available. We assume that the patients simply wait until they receive a

bed, irrespective of the size of the queue; i.e. there is no balking. In practice, the

hospital may use alternate strategies, such as using free beds in other units, though

this is not desirable. Note that the queue is not a physical waiting line of patients;

rather it consists of patients waiting in di↵erent parts of the hospital (ED, PACU)

or other hospitals. Waiting time measured as the time di↵erence between in the

bed time for the right bed and time of bed request. So this measure includes ED

boarding, PACU holds, and all other waiting times relevant for an inpatient to be

placed in an inpatient bed. It is also possible that a patient is waiting at home for an
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inpatient bed, after a bed request was made by a community physician the patient

consulted with.

We used C# for the simulation representing the whole hospital-wide flow. We

run the model for a year, with hourly increments, kept the warm-up period as 2

months. We sample from historical data, observed unit requests and LOS values.

All the �i,t, �
0
j,t and LOSj for each hour and day of week are sampled randomly.

In the sampling process, we retain time of day and day of week e↵ects for arrivals.

As an example, for Monday 8 AM, we randomly sample, without replacement, from

arrival, MDC and desired unit requests observed on 52 Mondays at that exact hour.

We also develop a simulation model in Arena for internal validation purposes (we

provide a detailed explanation of the Arena model in Appendix D).

4.5.1 Replications

We have compared the waiting times and number of people in the queue, using various

discharge profiles. In order to have an unbiased comparison, we use the common set

of random patients for each replication. This is the common random numbers (CRN)

approach which serves as a variance reduction technique when comparing di↵erent

policies (Banks et al. [2004]). We have used 10 replications, following Shi, P. and

Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J. [2012] who also use 10 replications

to perform their analysis. More replications will lead to a higher accuracy, however,

due to the computational complexity (around 2 hours for each run) we limit the

number of replications. Also, the main motivation of these runs is to be able to
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compare and analyze the impact of using di↵erent discharge policies for improving

the bed capacity planning.

4.6 Analyzing the Impact of Discharge Policies

Recall that the purpose of this paper is to test di↵erent discharge profiles by chang-

ing the Dt and observing the impact on queue lengths Qj and the waiting time.

We are evaluating 3 components of discharge profiles: (1) Discharge windows which

determines the hours of the day when the discharges are allowed; (2) The maximum

capacity for discharges in each hour of the discharge window (the Dt values); and

(3) The prioritization of discharges in each hour based on admission unit queues (i.e.

which patients should have first access to discharge capacity in a given hour). We

evaluate di↵erent combinations of these 3 components and compare it with the base-

line which represents our partner hospital’s discharge operations. We now present

all the discharge profiles we test in our simulation and also provide the rationale for

each.

4.6.1 Baseline

The baseline discharge profile for BMC was briefly described in the Introduction. The

discharge window is currently from 10 AM-7 PM. The hourly maximum discharge

capacity is set to the average number of discharges achieved by the hospital in the

one year period studied. As we explained earlier, discharges follow a bell curve that

peaks between 2 and 4 PM. Starting with the hour 10-11 AM, we set Dt equal to

5, 7, 11, 12, 14, 18, 16, 10, 6, 5 until 7 PM. For all other hours Dt is 0. Currently
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at the hospital, there is no obvious prioritization of discharges, so we assume in the

baseline that discharges are done on a FCFS basis. In other words, a patient whose

LOS finishes earlier will be given priority, irrespective of which unit the patient is

from.

4.6.2 DP2: Maximum capacity of 10 in each hour from 10
AM-7 PM, no prioritization

We analyze restricting the number of discharges to 10 each hour. Notice that in the

baseline, the hospital achieves up to 17 discharges on average in each hour. Therefore

10 is a very reasonable upper limit and was suggested by our collaborators. Thus,

in this policy Dt is restricted to be 10 in each hour from 10 AM-7 PM; for all other

hours Dt is 0. This promotes a more even or uniform discharge workload for the

hospital sta↵ in the window rather than having a peak in the afternoon. Discharges

are carried out on a FCFS basis (no prioritization).

4.6.3 DP3: Early in the day discharge policy, 10 AM-7 PM,
no prioritization

The main motivation of early in the day discharge (EITD) policy is to align the

discharges and the admissions by pushing some of the afternoon discharges to the

mornings so that the beds are available before the demand builds up. In this discharge

profile, Dt is only restricted to be less than the remaining number of average daily

discharges. Because of this, most of the patients leave the hospital in the first 2

hours of the window (10 AM-noon). These patients have already completed their

LOS overnight and have been waiting for the hospitalist to discharge them; hence
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the name early in the day discharge. Discharges are carried out on a FCFS basis

(no prioritization). The actual number of discharges realized each hour is analyzed

in Section 4.7.2.3.

This profile is of particular interest since many hospitals have been emphasizing

that discharges should happen before noon. This is quite a di�cult process because

even if the patients are ready, their post-hospitalization transition (family pick-ups,

rehab facility and so forth) may not have been coordinated. However some of the

patients are more amenable to early discharge, especially “simple discharges” that

account to 80% of hospitals’ discharges. These are the patients who are discharged

to their homes or do not require complex planning, like most of the surgical floor

patients (DH [2004]). Motivated from this, Department of Health in UK has reported

a 40% decrease in the number of elective surgery cancellations in Nottingham City

Hospital, simply by implementing a policy based on discharging medically fit patients

by midday.

4.6.4 Expanded discharge windows

Our collaborators in BMC also urged us to test the feasibility of expanding discharge

hours as an alternative to early in day discharges, because they felt that discharges

by noon were very di�cult to implement in practice (as explained in Section 4.6.3).

So instead of having a 10 AM to 7 PM discharge window, an expanded window from

10 AM to 9 PM or 10 AM to 11 PM could be tested. Each hour in the expanded

window Dt = 10 and 0 otherwise. We test three discharge profiles with expanded

windows:
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DP3: Maximum capacity of 10 in each hour from 10 AM-9 PM, no prioritization.

DP4: Maximum capacity of 10 in each hour from 10 AM-11 PM, no prioritization.

DP5: Early in the day combined with a 4-hour expanded window, 10 AM-11 PM,

no prioritization.

The end result of an expanded discharge window is that more patients could be

discharged in the day; more beds become available the next day as a result. The

expanded window is also more in line with the hospitalists’ natural prioritization

rules. They can see the most recently admitted patients, who need more urgent

attention, in the morning, and get to the patients who are ready to be discharged

later in the day. Expanding the discharge hours also allows them to discharge those

patients who would unnecessarily wait until the next day. The families of patients

may be more available to pick up patients in the evening rather than during the

day. The actual number of discharges realized in each hour after 7 PM is analyzed

in Section 4.7.2.3.

Caveats do apply. An expanded discharge window does require staggering of shifts

so that hospitalists are available between 7-9 PM or 7-11 PM (like nurse shifts).

Additionally ancillary services that are essential for a patient’s discharge process

also need to be available in the evening hours. The patients need to pick up their

medication from the pharmacy, and perhaps equipment such as walkers. Patient

transport and valet services are also needed to escort the patients out of the hospital.

In general, the more services that patients need after their discharge, the greater

the sta↵ availability needs to be in the evening hours. Thus the hospital needs to

adopt a case-by-case approach, and utilize evening discharges wisely. Our partner
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collaborators in BMC agreed that these changes that need to accompany expanded

hours are indeed feasible.

4.6.5 Prioritization of discharges

Up until now, decisions in our simulation have not been responsive to the state of the

system. Thus even when the hospital is facing a gridlock, our assumption is that the

hospital carries out its regular operations and queues continue to grow. However, in

practice hospitals may respond by canceling elective surgeries, diverting ambulances,

or by speeding up discharges. All of these have potentially negative outcomes.

We take a di↵erent approach to model the hospital’s responsiveness. In our simu-

lation, we prioritize the use of hourly discharge capacity. This prioritization is based

on front-end admission queues for each unit. If queue is larger than some threshold

the hospitalist and related sta↵ first focus on discharging patients from these units.

However, it is important to point out that these are not hasty discharges (which may

cause readmissions), rather a policy that allocates the restricted discharge capacity

to the units that require it the most. Using the red-yellow-green system discussed in

(Resar et al. [2011]), we categorize the units into two: red and green units. For the

red units the current queue length of the unit exceeds a predefined threshold. Green

units are those that do not exceed this value. Prioritization in our model implies

that the hourly discharge capacity should be first used for the red units. Thus, this

state-dependent discharge policy observes the congestion in the first service line (ad-

mitting patients to an inpatient unit) and accordingly adjusts the use of capacity in

the second service line (discharging patients from the unit). Pseudo-code for priori-
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tization is provided in the Appendix C. We test this prioritization for the following

discharge profiles:

DP6: Baseline with prioritization.

DP7: Maximum capacity of 10 in each hour from 10 AM-7 PM with prioritiza-

tion.

DP8: Maximum capacity of 10 in each hour from 10 AM-9 PM with prioritiza-

tion.

4.6.6 DP9: 24-hour discharge

This discharge profile cannot be realized in practice and is meant purely as a bench-

mark. Dt is unrestricted in each hour of the day. No prioritization is necessary as

patients can leave as soon as their LOS is finished.

4.7 Results of the Simulation

4.7.1 Validation

Before trying to improve the existing system, validation was the initial step. The

validation involved two steps: stakeholder face validation and comparison of means

of the inputs and outputs (as discussed in Montgomery and Davis [2013]).

Using mathematical models to solve problems in clinical settings is a very complex

process. The assumptions supporting the mathematical model need to be clinically

realistic. Tucker et al. [2001] remind us that clinicians make decisions based on their

perceived patient priorities, rather than system e�ciency. These decisions dictate

clinicians’ actions (prioritizing which patients to see first). The clinician is motivated
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by their perceived action value to patient care, and system e�ciency is secondary to

this goal. The assumption underlying mathematical projections only include value

weights programmed into the model. This project involved the interactive face to

face process of reviewing and comparing mathematical assumptions and the clinical

assumptions. This process is time consuming but essential to validate the model.

Thus, face validation is a result of our close collaboration with our team of clin-

icians and data managers. It was an iterative process and we asked questions like

“Does it represent the reality?”, “What should be changed?” and so on. We have

also discussed with our clinical collaborators about the system dynamics like queue

sizes (unfortunately we cannot validate this precisely with the data-set). On average

at any given hour 40 people waiting to be admitted to an inpatient unit, was an ac-

curate estimate to the queues in our partner hospital. We have performed sensitivity

analysis (like changing capacities in di↵erent units) in order to further validate the

results of our simulation model.

After face validation, we have also compared the means and quantiles in our

model, with the empirical distribution. We have compared input and output vari-

ables with the empirical data, including the comparison of: waiting times, admission

patterns and LOS values for patients on MDC levels and utilization levels for units.

Some of the output variables overestimate the empirical values. There are 3

main reasons for the overestimated values of our simulation model: firstly in our

simulation model we do not model redirections between units, while in the hospital

patients would be overflown to other units. The simulation model mimics a perfect

world, in which patients are only admitted to their primary unit. Secondly, we sample
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from biased LOS values; since these values from the data-set already have embedded

delays and non-value added times. Lastly, our simulation model is not responsive

to over-crowdedness, whereas in real life the hospital would go on “code red” to

cope with the congestion by employing policies like ambulance diversions, cancelling

transfers, elective surgeries and so on. Thus, in some sense we are modeling a worst

case scenario.

Even though the values do not match precisely, our main objective is to compare

di↵erent scenarios and policies to improve the patient flow. Also, even if the waiting

times or queue sizes are not precisely the same, the congestion pattern is the same.

So the most congested units are the same, the same is true for the patients who wait

the most.

We observe the phenomenon as pointed out in Green [2012], that a hospital

may have ample beds in some units and insu�cient in others, resulting in long

ED waits and ambulance diversions. This is simply because, not all the beds are

identical. Thus, needed bed capacity is highly dependent on the patient mix. Green

also mentions that the smaller the system, the longer the delays will be for a given

utilization level; and the greater the variability in service times, the longer the delays

at any utilization level. So the smaller units with higher variability in LOS will have

a higher wait time. This can also be seen from our results as well. For instance,

psychiatric unit with the highest variability in LOS experiences long queues.
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4.7.2 Impact of discharge policies

We now present results of 10 simulation replications for the various discharge profiles,

with and without prioritization. We begin with the analysis for the average queue

size. The average queue size represents the average number of people waiting to be

admitted to a unit waiting in ED or PACU, or in the community hospitals. We

use one-factor ANOVA to analyze the di↵erences in average queue size between the

discharge profiles (Figure 4.6), and also the all-pairs Tukey test (as can be seen in

Table 4.4).

The red lines in Figure 4.6 represent the quantiles with the box plot, the blue

lines the standard deviation, the green horizontal bar represents the mean for each

category, and the top and bottom of the diamond shape are the 95% confidence

intervals. Lastly, the horizontal line is the overall mean queue length across all

discharge policies and replications. The discharge profiles are presented in descending

order in terms of the average queue size observed. DP9 represents the 24 hour

discharge policy, which is a hypothetical best-case benchmark; DP6, DP7, DP8 are

the prioritized discharge policies, the rest are the un-prioritized discharge profiles and

the baseline represents 10 AM-7 PM with empirically observed discharge capacities

(see Section 4.7.2.3).

The connecting letters report in Table 4.4 summarizes the results of the all-pairs

Tukey tests. If two discharge profiles share the same letter, they cannot be said

to be statistically significant. However, statistical significance, while important to

acknowledge, should not be confused with clinical significance. Clinical significance

has a qualitative component; in our case, it is decided by our clinical collaborators.
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For example, a 6-person average reduction in queue size is non-trivial even though

it may not be statistically significant. In our results we find that a discharge profile

when compared to another (1) may not be either statistically or clinically significant;

(2) may be clinically significant, but not statistically significant; and (3) may be

both statistically and clinically significant. Table 4.4 suggests that the third type of

conclusion is prevalent only with regard to the prioritized discharges.

Table 4.4: Connecting letters report for queue size

Level Mean

Baseline A 45.849
DP1 A 46.122
DP2 A B 39.570
DP3 A B C 38.841
DP4 A B C D 33.733
DP5 B C D 31.319
DP6 B C D 28.596
DP7 B C D 27.012
DP8 C D 24.673
DP9 D 20.481

Our results can be summarized as follows:

(1) The empirical discharge distribution (Baseline) is neither statistically nor

clinically di↵erent from a discharge profile that restricts the number of discharges to

10 each hour (DP1). Thus allowing a steady discharge rate of 10 every hour is not

di↵erent from a discharge policy that peaks in the afternoon.

(2) If the majority of discharges happen before noon, as in the early in the day

discharge policy (DP2), then there are 6 less people waiting in the queue compared

to Baseline (clinical significance) but there is no statistical di↵erence. This supports

the findings in Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and Sim, J.
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[2012]. The exact number of people discharged before noon is provided in Section

4.7.2.3; which will demonstrate that early in the day discharges will be very di�cult

to implement in practice. In DP2 the discharge capacities each hour between 10 AM-

7 PM are only restricted to be less than the remaining number of daily discharges.

Despite this, queue sizes do not decrease significantly. This suggests that not enough

patients’ LOS ends in the 10 AM-7 PM window.

(3) With 2 additional hours of discharge and a steady maximum capacity of 10

discharges in each hour (10 AM-9 PM, DP3), we have 7 fewer patients waiting com-

pared to Baseline (clinically significant). Notice that DP3 matches the performance

of early in the day discharge (DP2). Thus expanding discharge by two hours while

limiting the maximum hourly discharge capacity to 10 produces the same e↵ect as

performing a large (and impractical) number of early in the day discharges. In fact,

section 4.7.2.3, we will show that the number of patients discharged in the hours

between 7 PM and 9 PM is actually well below 10 for each hour.

(4) With 4 additional hours of discharge, and a steady maximum capacity of 10

discharges in each hour (10 AM-11 PM, DP4) there are 12 fewer patients waiting

compared to Baseline (clinically quite significant, but not statistically). This rein-

forces the idea that expanding discharge windows while keeping a practically feasible

and steady limit on discharge capacity has a stronger impact than allowing an early

in the day discharge policy between 10 AM-7 PM.

(5) When early in the day discharge profile is combined with a 4-hour expanded

discharge window, we have DP5. Such a discharge profile is not realistic since it

requires too much alteration of current practices; nevertheless, DP5 serves as a
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benchmark. We see that DP5, while statistically di↵erent from Baseline and DP1,

produces only a 2.5 patient reduction in queue size compared to DP4 (not statisti-

cally significant and perhaps not clinically significant either). This again suggests

that expanding the discharge windows has a stronger e↵ect than carrying out early

discharges between 10 AM-7 PM.

(6) We begin to see both statistical and clinical di↵erences when discharges are

prioritized in units that have the most patients waiting (DP6, DP7 and DP8). We

see also from Figure 4.6 that the higher percentiles of the average queue size (for

each discharge profile there are 10 average queue size observations obtained from

the 10 replications) are also reduced drastically. Using the current or empirically

observed discharge capacity as the maximum capacity for each hour and a discharge

window of 10 AM-7 PM with prioritization, produces a statistical improvement from

the Baseline: it leads to 17 less patients waiting to be admitted. The only di↵erence

between Baseline and DP6 is prioritization: the only change in practice is that each

hour the hospital sta↵ (physicians, case-managers, nurses, valets and escorts) has to

prioritize their discharge activities in units that have longer front-end (admission)

queues. Notice also, that DP6 produces a greater improvement (though not statis-

tically significant) than using the combination of early in the day discharge policy

with a 4-hour expanded discharge window (DP5). DP7 shows identical results as

DP6.

(7) The impact of prioritization is further enhanced under when the discharge

window is expanded by 2 hours (DP8), and a maximum of 10 discharges are al-

lowed each hour. Now, we have 20 fewer patients waiting (47% improvement) to be
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admitted, compared to Baseline. This di↵erence is both clinically and statistically

significant. Indeed, DP8 is comparable to the queue size observed from 24 hour

discharge policy (DP9). DP9 is only a benchmark – a lower bound that can never

be achieved. It is surprising how close DP8, which has some feasibility in practice,

performs with regard to this benchmark.

4.7.2.1 Unit specific analysis

We present how the queue size changes with di↵erent discharge profiles, in Table 4.5,

for the 5 units with the highest queues; Medical Telemetry, Renal, Medical Respi-

ratory, Cardiac Interventional units. As can be seen prioritization mostly benefits

Medical Telemetry unit, whereas the queue size in the Neurological unit is worse o↵

with this policy.

Table 4.5: Average queue size

Admit unit Baseline DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9

Medical Telemetry 16.46 16.31 14.81 13.37 16.36 13.08 9.75 9.78 8.98 8.01
Renal 4.63 4.44 3.86 3.41 4.43 3.42 2.95 3.00 2.53 2.26
Medical Respiratory 3.81 3.69 3.37 3.08 3.67 3.02 1.77 1.81 1.67 2.15
Cardiac interventional 4.40 4.62 3.00 2.18 2.27 1.56 1.66 2.13 1.53 1.00
Neurological 3.36 4.06 2.62 1.85 1.82 1.30 2.02 2.44 1.76 0.78
SUM 32.66 33.12 27.67 23.90 28.56 22.38 18.15 19.15 16.46 14.21
% improvement -1% 11% 19% 9% 22% 32% 30% 35% 40%

We also study the queue size quartiles for the two units of interest: Medical

Telemetry and Neurological unit in Table 4.6. Note that average queue sizes are

highly driven by higher percentiles, with median and 25th percentile typically having

a value of 0 for most of the units. Only Medical Telemetry unit has a queue size

greater than 0 in the first quartile, observed in the Baseline discharge profile.
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Table 4.6: Queue size percentiles using di↵erent discharge policies

BASELINE EITD PRIORITY
Med-tele Neuro Med-tele Neuro Med-tele Neuro

1st quartile 3 0 3 0 1 0
Median 14 0 13 0 8 0

3rd quartile 27 2 26 0 15 0
Avg 16.85 2.66 16.76 1.86 9.92 1.55
Max 55 34 55 29 39 24

4.7.2.2 Waiting time analysis

The second output measure of interest is the waiting time, which is a weighted average

of the admissions waiting time. Di↵erent from previous research in the literature, it

is not only based on ED boarding time, but rather includes the PACU holds, transfer

waiting times and ICU holds as well. The reason why the waiting times are higher

than the average values in the literature is because we are calculating the time for

patients to be admitted into their primary units and consider the waiting times from

all di↵erent patient sources. The improvements in waiting times follow the same

trend as queue sizes, as can be observed from the ANOVA analysis in Figure 4.7.

The confidence intervals for the waiting times are provided as well.

4.7.2.3 Resulting discharge capacities

In order to analyze the resulting discharge capacities from di↵erent discharge profiles,

we have looked at two of the most highly utilized units: Medical Telemetry and

Surgical/Orthopedic. The limited discharge capacity is especially allocated for these

units under the prioritized discharge policy (Figure 4.8). Medical Telemetry unit

benefits the most from this prioritization, in improving the long waiting times.
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We have also analyzed these di↵erent discharge profiles, in terms of the actual

realization of hourly discharges for the whole hospital. The hourly discharge capacity

thresholds and the actual discharge number, using di↵erent discharge profiles can be

observed from the Figure 4.9 below.

The infeasibility of early in the day discharge policy can clearly be explained with

the graph. As can be seen the first two hours together require almost 70 discharges,

which is more than the double of the average discharge capacity observed in peak

hours (approximately 16 patients). And even with this unlimited discharge capacity,

the improvements are not significant.

Figure 4.9: Capacity thresholds and actual realizations
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It is also noteworthy that with only 7 to 13 more discharges after 7 PM the queue

sizes and waiting times improve drastically with the expanded discharge window. The

reason is that the discharges are performed more evenly throughout the day. The

discharge capacities are not reached in most of the cases, as can be observed from

Figure 4.9.
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Figure 4.6: Queue size ANOVA analysis where Baseline: 10 AM to 7 PM empirical
discharge distribution, DP1: 10 AM-7 PM max 10, DP2: 10 AM-7 PM EITD, DP3:
10 AM-9 PM max 10, DP4: 10 AM-11 PM max 10, DP5: 10 AM-11 PM EITD,
DP6: 10 AM-7 PM Empirical Priority, DP7: 10 AM-7 PM max 10 Priority, DP8:
10 AM-9 PM max 10 Priority, DP9: 24 hour discharge

126



Figure 4.7: Waiting time ANOVA analysis, where Baseline: 10 AM to 7 PM empirical
discharge distribution, DP1: 10 AM-7 PM max 10, DP2: 10 AM-7 PM EITD, DP3:
10 AM-9 PM max 10, DP4: 10 AM-11 PM max 10, DP5: 10 AM-11 PM EITD,
DP6: 10 AM-7 PM Empirical Priority, DP7: 10 AM-7 PM max 10 Priority, DP8:
10 AM-9 PM max 10 Priority, DP9: 24 hour discharge

Figure 4.8: Discharge profile for two units Medical Telemetry and Surgical/
Orthopedic
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4.8 Discussion and Conclusion

As discussed in Powell et al. [2012] e↵ective solutions require a system-wide approach.

Thus, we provide a hospital-wide patient flow model as opposed to a unit specific

analysis, which can be used a decision support mechanism. The clinical leaders

involved in this simulation used the results in deciding on the capacity for new units.

For instance, the medical telemetry unit that was identified as having the longest

queue, was moved to a larger unit with more beds.

In our project, gridlock and long wait times for inpatient beds were compelling

issues to administrators, and managers. Clinicians (physicians and nurses), however,

are more influenced by their most critical patients’ needs. Realistic time-frames and

goals used in the model need to reflect this tension between priorities. The early

in the day discharge option is an example of the conflict between the individual

clinicians’ decisions and the management targets for this model (See Table 4.1).

Historically (see Figure 4.1), the maximum number of discharges accomplished in an

hour has been 17. If the early in the day discharge model is used – there would need

to be 32 to 40 discharges per hour (Figure 4.9), demonstrating an unrealistic clinical

target, with the same system rules and resources. Hospital administrators have been

recommending these early morning discharges. However, in 2004, Kealey and Asplin

[2004] reported the best practice “Forget about trying to get all discharges out by

11 AM”, instead they recommend scheduled discharges.

Many methods have been investigated in the literature to alleviate the bed con-

gestions including using flexible beds, increasing the number of beds (Green [2003]),

optimizing the surgical schedule (Bekker and Koeleman [2010]) or creating some
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kind of admissions control mechanism (Helm et al. [2011]). In our research we in-

vestigate using e↵ective and realistic discharge policies, that could be implemented

and actually create a significant improvement. We evaluate various discharge poli-

cies including expanding discharge windows, limiting the number of discharges to a

threshold and prioritizing discharges based on the admissions queue. We conclude

that e↵ective discharge policies have a significant impact on reducing waiting times.

For example, expanding the discharge windows only by a few hours provides sub-

stantial benefit, although not as significant as prioritized discharge policies (which

reduces queue sizes up to 48%).

By exploring other “windows” (evening hours) for discharge that could decrease

the wait time and queue size, the mathematical model gives the clinicians “new eyes”

to explore a new model to use increased discharges to decrease congestion. Clinical

administrators underestimate the conflict of priorities between system e�ciency and

clinical priorities. Engineers work to identify the mathematical system possibilities

and project the impact of system changes. The best solution exists at the intersection

of all three partners in this modeling, as in Figure 4.10.

Figure 4.10: Best solution
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Like any model there are some points that we have failed to address in this paper.

Our model can be potentially extended in several directions. First of all, we assume

a dedicated system in our simulation for bed capacity planning in which all of the

patients get admitted to their primary units. This is in fact desirable both from

the hospitals’ and patients’ point of view. However, in reality most of the time, the

patients will be redirected to other units (non-primary units) after a certain time.

This will decrease the waiting times and queue sizes, however the patients will not be

receiving the exact medical attention that they require. Even if the room is equipped

adequately, nurses are best prepared to care for the diagnoses commonly accepted to

their units. Each unit has specialty protocols, common treatments, known by the unit

nurses. When they care for patients with di↵erent diagnoses and issues, the match

between the patient and nurse will not be optimal. This mismatch may result in

delayed or inappropriate care. Furthermore, the patients in their non-primary units

will then have to be re-transferred to their primary requested unit. This results in

unnecessary costs, bed turnovers, potential health risks related with unsuitable admit

unit and patient dissatisfaction resulting from an unnecessary transfer (West [2010b],

West [2010a]). Thus in this study, we choose not to incorporate transfers, in order

to model the worst case scenario. As an extension to this study, we have integrated

overflow transfers to our simulation model and performed some preliminary analysis

on the impact of these (see Section 4.10 for detailed explanation).

An important point to consider, like in any data driven modeling, is the reliability

of data. Electronic health record generated admissions data consist of numerous
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time-stamps, the accuracy of which relies on human input. However, we have done

numerous data analysis and checks with our collaborators to validate the accuracy.

4.9 Ongoing Research

The current research on patient flow modeling can be potentially extended in the

following directions:

• The number of discharges from each admit unit can be limited to a certain

threshold every hour. This would result in a more realistic model, since the

data analysis has pointed out that there are at most two discharges that can

happen in any unit any hour. Incorporating this to the simulation model is

essential in order to simulate the hospital-wide flow more accurately. Our

preliminary analysis has shown that this does not significantly or statistically

impact the queue sizes, when discharges are prioritized with these unit level

constraints in mind. The initial results for the one replication is provided in

Appendix E.

• Instead of prioritizing some units, a prioritization scheme for some of the pa-

tients can be explored as well. Certain types of patients might have more

impact on alleviating bed congestions than others. For instance, our nursing

collaborators have hypothesized that if observation patients, who face a more

problematic discharge process, are prioritized over inpatients this might lead

to significant improvements in ED congestions.
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• We have assumed that the bed turnover times are deterministic. However, in

the afternoons when the majority of discharges happen, cleaning time typically

takes longer than the average (around 47 minutes for our collaborating hospi-

tal). In the simulation model, these durations can be modeled as a random

input parameter depending on the housekeeping workload, or at least a value

that varies over the hours of the day.

4.10 Incorporating Transfer Activities Among Dif-
ferent Units

On average 40–70% of inpatients in U.S. hospitals are transferred each day, thus

patient transfers are an important part of hospital patient flow (Abraham and Reddy

[2010]). There are two main types of patient transfers in a hospital; either it may

be medically necessary for the complex patients to receive medical treatment from

di↵erent units during their LOS (Hilligoss and Cohen [2013]) or there may not be

available beds in the primary unit requested. The first type of patients typically

require transfers from critical units to intermediary care units and we will refer to

them as “critical transfers”, whereas other patients will be referred to as “overflow

transfers” from now on.

From a medical point of view, overflow transfers hinder the quality of care, thus

they are not desirable (West [2010a], Association [2013]). Also these hand-o↵s be-

tween units lead to discontinuity in the care of patients (Cohen and Hilligoss [2010]).

However, from a practical perspective, transfers are almost unavoidable. It is a com-

mon strategy for hospitals to cope with bed congestions (Shi, P. and Chou, M. C.
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and Dai,J.G. and Ding, D. and Sim, J. [2012]). Thus, incorporating this into our

simulation framework is essential for developing a more accurate patient flow model.

The “critical transfers” are already incorporated into the simulation model, with

the transfers from critical care units, ED and PACU, using average values specific for

each MDC category. We have initially failed to incorporate the overflow patients into

our simulation framework, because the data-set from BMC does not include patient

transfers. As an extension, we added an algorithm to integrate interdepartmental

transfers by allowing overflow transfers for units with the highest interactions. In

order to so, we establish a set of alternative units for each admit unit as a result of

our data analysis. A patient is overflown to a secondary unit, if the queue size for

the primary unit is greater than a pre-specified threshold, and the alternative unit’s

queue size is less than the primary unit’s queue.

The preliminary analysis of the outputs show that incorporating overflow transfers

has a significant impact on decreasing waiting times and queue size (see Appendix E

for the results). In order to have more conclusive results, a simulation that incorpo-

rates transfers should be analyzed for 10 replications. Also the relationship between

transfers and the discharge policies can be investigated to investigate questions like

how many discharges should happen in a congested unit to avoid the overflow trans-

fers. This analysis will enable us to construct a trade-o↵ curve between number of

discharges and transfers.

A di↵erent way to model transfers is to incorporate an overflow policy. For

instance, in the hospital Shi, P. and Chou, M. C. and Dai,J.G. and Ding, D. and

Sim, J. [2012] is working with, National University Hospital (NUH), there exists

133



a guideline on when and how to overflow a patient. The hospital would overflow

patients more aggressively during late night and early morning (before 7 AM). The

reason is that few discharges happen in this time period, so there is little chance

that a bed in the primary unit will become available in the next few hours. After

understanding the overflow policy of BMC, using the expert idea of our nursing

collaborators, a policy similar to this can be incorporated.

4.11 Hospitalist Scheduling Problem

After briefly summarizing some of the literature on hospitalist operations, I will

provide an overview of the hospitalist scheduling problem, followed by some of the

field observations from BMC.

4.11.1 Literature review

The term “hospitalist” was first used in 1996 (Wachter and Goldman [1996]). Simply

put, physicians whose primary professional focus is hospital medicine are called hos-

pitalists. Hospitalists, most of whom are board-certified internists (internal medicine

physicians), coordinate the care of patients in the hospital. They are the equivalent

of PCPs in the inpatient setting and are vital to the flow process, since hospitalists

are familiar with the hospital’s system and maintain close relationships with specialty

physicians.

There are three main types of hospitalists: 1) Admission hospitalists who are

solely responsible for admitting patients. 2) Rounding hospitalists who are respon-

sible for the discharge and the overall care of the patients. There are 2 types of
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rounding hospitalists: a) Teaching (Attending physicians mentoring residents and

medical students), b) Non-teaching (Only attending physicians).

Six years after their first article, Wachter and Goldman [2002] published another

paper supporting the premise that hospitalists improve inpatient e�ciency without

harmful e↵ects on quality or patient satisfaction, justified by empirical evidence.

Even though, there is supporting evidence that hospitalists improve e�ciency, there

is little data that explains how hospitalists achieve this. Tipping et al. [2010] find

that only 17% of a hospitalists’ time is spent as direct patient care and 64% for indi-

rect patient care, which is mostly spent on working with electronic medical records

(EMR). These EMR activities mostly include progress notes and discharge instruc-

tions. Travel time accounts to 6% of their time. Thus interestingly the authors find

that hospitalists spend more time reviewing and updating the EMR than directly

with the patient.

Other studies with similar findings are published by a couple of groups: O’Leary

et al. [2006], Maguire [2010] and Kim et al. [2010] find that hospitalists on average

spent 18% of their time on direct patient care, 69% on indirect patient care, 4%

on personal activities, and rest on education and travel. From the 69% for indirect

patient care, communication accounted for 24% of their activities, with 6% used

for paging other physicians, and 7% for returning pages. The hospitalists at the

study believed they frequently performed simultaneous activities and were excessively

interrupted by pagers. As a solution, the authors discuss that 2 way pagers could

facilitate communication to decrease the unnecessary interruptions (O’Leary et al.

[2006]).
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One problematic area in hospitalist schedules is “batching” behavior. Maguire

[2010] focus on the impact of batching, which is described as “cyclicality of hospitalist

workflow”. This leads to problems for other departments, for instance labs, radiology

and pharmacy and congestions throughout the hospital. Kim et al. [2010] also discuss

the batching behavior of the hospitalists, which cause delays and spikes in indirect

care followed by spikes in direct patient care, especially at shift changes.

Even though the workload of a hospitalist varies significantly, typically hospitals

target a workload of 12-15 patients per day per physician, depending on whether the

physician has support from residents or not. A lower number applies when physicians

are working without house sta↵ while a higher number is used when hospitalists are

serving as attendings on the teaching service. According to Colwell [2013], if you

ask a group of hospitalists how many patients they can manage without feeling

overburdened, answers would range from 10 to 20 or more. Nationally, hospitalists

care for an average of 11.3 patients per shift.

Colwell [2013] also discusses that “there is a point beyond which patient care

su↵ers, when hospitalists are not able to make good decisions and keep track of ev-

erything”. Hospitalists in academic institutions experience high levels of burnout and

have relatively little opportunity for scholarly work (Dyrbye and Shanafelt [2011]). In

a survey that was performed in big medical centers, 67% of hospitalists reported high

levels of stress, and 23% being burnout (Kling [2011]). More importantly, 40% of the

hospitalists nationwide reported that inpatient census levels exceeded “safe” levels

at least once a month, and 36% having an unsafe workload at least once a week. This

leads to physicians ordering unnecessary tests, procedures, or consultations as well
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as not being able to answer questions from the patients due to inadequate time with

the patient and eventually leads to decline in care and patient satisfaction (Glasheen

et al. [2011]). As the life expectancy increases, patients grow older, and the di�cult

cases with multiple chronic conditions increase, hospitalists will have to deal with

more complex case management and thus will face a greater workload. Thus, cre-

ating a better schedule for hospitalists is also vital to the delivery of high-quality

health care.

4.11.2 The problem

One of the main contributing factors to long waiting times is the delayed discharges.

Typically, hospitalists are responsible for patient admissions, monitoring and dis-

charge process. Hospitalists experience high levels of stress and burnout, because

of their high workload. On their morning rounds hospitalists need to both care for

patients admitted overnight, acute inpatients and also discharge the patients who are

completing their LOS. The timing of discharges is closely related to how hospitalists

prioritize patients on their rounds. Priority overall is typically given to more severe

patients over discharges, because newly admitted patients have more urgent needs.

This leads to delayed discharges, which results in delays for patients who are waiting

for an inpatient bed.

Physical layout of the hospital further complicates the scheduling problem, and

introduces a geographic, traveling salesman type component to the model. To the

best of our knowledge, no study has tackled this problem. Modeling the patient mix

while optimizing the hospitalist rounds in order to improve the patient flow will be
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a significant extension to our current research on inpatient capacity management.

It will be crucial to link the problem of hospitalist scheduling with the results of

simulation model that suggests e↵ective discharge policies.

The optimization/simulation framework will have a multiple objective structure

while incorporating the impact of case-mix on the workload of a hospitalist. Potential

objectives include:

• Minimizing the number of hand-o↵s.

• Minimizing traveling time.

• Maximizing patient diversity.

• Maximizing the number of patients seen without an adverse impact on quality

of care.

• Maximizing the number of early in the day discharges for units that are full.

The main decision variable is the number of patients assigned to each hospitalist from

each admit unit every hour. In other words, what is the optimal panel size and case-

mix for a hospitalist? How does a hospital allocate the limited discharge capacity to

units? It will be an essential step to integrate the results of our simulation, which

finds e↵ective discharge policies, with the schedules of the hospitalists.

4.11.3 Observations from BMC

I shadowed three di↵erent types of hospitalists for 3 days and our observations are

similar to the literature. In BMC, these hospitalists work under three shifts: Regular
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hours (8 AM-6 PM), evening (3 PM-9 PM) and night (8 PM-8 AM) shift. The

majority of the hospitalists are employed during the regular hours. Case managers

also work with hospitalists on the discharge process. They are typically nurses and

are responsible for arranging the post-acute care of patients like nursing and rehab

facilities.

Admission hospitalists are solely responsible from admitting the patients, order-

ing initial labs, contacting the PCPs and performing reconciliation (reviewing the

list of medications the patient is taking and updating the dosage during the hospi-

talization period). They are not responsible for the follow-up of the patients after

the admitting decision is made, rather the rounding hospitalists are responsible for

their care in the hospital.

For the rounding hospitalists on teaching service, there is no geographical align-

ment as the diversity of patients is crucial for residents’ training. On the other hand,

the non-teaching groups work based on geographical alignment so less time is spent

traveling.

The day of a hospitalist can be summarized in 5 main groups: direct patient

care, indirect patient care, travel, education, professional development. The direct

patient care involves taking the history, initial examination, meetings with the family

members, seeing patients during the follow-up visits and providing discharge instruc-

tions. Indirect patient care is composed of communication, documentation, writing

orders, initiating and returning pages, reviewing test results and medical records.

The education component involves teaching during the rounds.
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In our limited time-motion study we observed that hospitalists spent most of their

time on indirect patient care activities and relatively little time on direct patient

care. Table 4.7 demonstrates some of the observations from our time-motion study,

supporting that indirect patient care constitutes the majority of the hospitalists’

workload. Studies in the literature have reported similar findings (O’Leary et al.

[2006], Tipping et al. [2010]).

Table 4.7: Time motion study

Patient # Examination Indirect patient care Travel

1 2 10 1.5
2 6 4 0.5
3 6 8 1
4 1.5 6 2.5
5 13 3 3
6 1.5 3 1.5
7 3.5 4 0
8 2 1.5 1.5
9 1 3.5 1.5
10 2 4 3
11 1 5 1.5
12 5 3 0
13 1 3.5 3
14 2 6 3

Average 3.4 4.6 1.7
Std dev 3.2 3.2 1.0
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CHAPTER 5

OPTIMIZING SPINE OR
SURGICAL THROUGHPUT:

ENGINEERING A PULL
SYSTEM FOR OUTPATIENT

ACCESS

5.1 Introduction

For spine surgeries, large medical centers like Mayo Clinic generally face more patient

demand than available capacity. One reason is the relatively long surgical times for

spine patients. Data from Mayo Clinic shows that 50% of spine surgeries are over

4 hours in length. Thus, on most days a spine surgeon is able to do only one or at

most two surgeries. This limits patient access and may cause significant delays for

surgery scheduling.

Due to the length and variability of spine surgeries scheduling is a di�cult and

important aspect to patient access, e↵ective operations, and financial performance for

the spine surgery practice (Dexter et al. [2010]). In addition, as noted in Espin et al.
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[2006] safety for both the patient and surgical sta↵ may be an issue if surgical days

run long. Further complicating scheduling and operating room (OR) management

is emergency cases, short-term cancellations, and complex cases that require more

than one surgery to address a patient’s needs.

These factors together create significant uncertainty for scheduling spine surg-

eries. At Mayo Clinic this resulted in 38% of surgical days going past the desired

end time of 5 PM. Overtime is a significant issue at Mayo Clinic due to the impor-

tance of quality of life for the surgeons and the surgical teams in addition to the

aforementioned concerns regarding safety. At the same time, OR utilization during

normal hours was less than desired, limiting patient access and reducing potential

financial performance.

5.1.1 Historical spine surgery scheduling at Mayo Clinic

Many of the concepts and approaches discussed in this research are relevant to other

surgical practices and particularly those in spine surgery, nonetheless, the orthopedic

spine surgery practice at Mayo Clinic has many unique characteristics. In this section

we discuss the specific problem setting.

Mayo Clinic’s core value is the “needs of the patients come first.” This influences

surgical scheduling because patient timing needs (preferences) are important to final

scheduling decisions. This is in contrast to many surgical settings where patients are

simply told when to show up. Thus, at Mayo Clinic the patient discusses with the

surgeon and their team, when to schedule their surgery. Due to the fact that spine

surgeries often have significant impact on patients’ lives for extended periods and

142



the lengthy recovery process, the patients’ scheduling preferences are important to

consider.

However, this approach led to problems in daily surgical loads. If a patient

preferred their surgery on a particular day or week where several other surgeries

were already scheduled it may have led to significant overtime. In part, this was

due to the di�culty in simply “squeezing in” another spine surgery due to their

length and variability. Conversely, other days and weeks were underutilized. In the

absence of good information regarding the current status of their schedule, surgeons

and those doing their scheduling were often driven to make decisions influenced too

much by patient preferences.

Scheduling surgeries at Mayo Clinic is further complicated by the fact that ded-

icated OR time is available to most surgeons. This is a positive in that it allows

the surgeons a great deal of autonomy in managing their cases. However, it is prob-

lematic in that the organization cannot pool OR time and balance loads across all

ORs. Rather each surgeon’s load must be balanced across their surgical days. These

surgical days are assigned via the “Blue and Orange” system at Mayo Clinic. This

harkens back to the system developed by the Mayo brothers, Dr. Will and Charlie,

who performed surgeries every other day, in complementary fashion. In the first

week, one surgeon (“blue”) performs surgeries on Mondays, Wednesdays and Fri-

days, while the other surgeon (“orange”) is active on Tuesdays and Thursdays. In

the next week, the orange surgeon performs surgeries on Monday, Wednesday and

Friday while the blue surgeon does so on Tuesday and Thursday. This alternating

cycle is then repeated. On days that surgeries are not performed, the surgeon sched-
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ules clinical consultations with patients. This created a simple management system

for clinic and surgery days that continues today, but results in some restrictions in

scheduling flexibility and can make short-term case load imbalances worse as some

surgeons get overloaded and others underutilized.

While Mayo Clinic is a non-profit organization, financial viability and sustainabil-

ity is still an important consideration. Profits from clinical practice support research,

education, and ongoing improvement initiatives, all of which are important to Mayo

Clinic’s mission. With limited capacity to allocate to the high demand for spine surg-

eries, some control of which surgeries are performed and when, can be important to

net operating income (NOI). NOI is a measure of the projected revenue less oper-

ating and fixed allocated costs. Given specific revenue reimbursements and Mayo’s

cost structure, some types of spine surgeries are more profitable than others. Note

that patients with government payers (e.g., Medicare and Medicaid) generally have

lower profitability, but there was no desire to reduce the number of such patients.

Further the overall patient profitability to Mayo Clinic, including their hospital

stay is a↵ected by the timing of surgeries. A significant proportion of spine surgery

patients require discharge to a skilled nursing facility (SNF). These facilities generally

do not accept patients on weekends and therefore if a patient requires a SNF and their

planned discharge is on a weekend, Mayo often incurs the additional costs without

compensating revenue. This is because government insurance payers generally have a

fixed reimbursement for each procedure type. It may be di�cult to a priori determine

the risk of a patient requiring a SNF at discharge, however, it is known that older

patients have a higher risk and because such patients were generally covered by
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Medicare, special attention is paid to when these patients were scheduled. In general,

these patients were scheduled on Mondays and Fridays with the assumption that this

would result in the least number of delayed discharges. It is important to recognize

that while all the above factors are important when scheduling patients, the Mayo

system needed to have the flexibility to ensure that the needs of the patients always

come first.

5.1.2 Objectives

The primary objective of our research is to create better patient access as a result

of increased surgical capacity with more e�cient schedules. We not only maximize

surgeon and OR utilization but also incorporate profitability while keeping overtime

and potentially unsafe surgical days under control. In addition, the proportion of

government payer patients was set to at least be maintained at historical levels.

Because the overall objective was to increase patient access, this constraint should

actually increase the number of Medicare and Medicaid patients treated at Mayo

Clinic.

5.1.3 Approach

Our approach involves seven steps: First, we perform data analysis to identify cate-

gories of surgeries, that can be grouped together based on the their surgical durations.

Next using these surgical categories, a simulation model is used to identify feasible

surgical pairs that can be performed in a day. The surgical pairs and their outcomes

are then used in the first stage optimization model to maximize a weighted combi-

nation of utilization and net operating income. This generates the optimal surgical
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case-mix to be performed from each surgery category on each day over a planning

horizon. The second stage optimization model creates the optimal schedule using

the results of the first stage model and maximizes available slots for complex multi-

ple days staged surgery cases. The last stage of the optimization creates a schedule

that remains feasible to the requirements of the hospital, by incorporating Mayo

Clinic specific scheduling requirements (blue-orange surgical template). A second

simulation model is developed and used to test the impact of urgent surgeries and

cancellations on the optimal schedule. As a last step, our optimization framework

was implemented in Mayo Clinic in a controlled pilot and we evaluate the results of

the intervention.

5.2 Literature Review

Surgery scheduling has three main decision levels: strategic, tactical and opera-

tional level. These levels represent long, medium and short term decisions respec-

tively. These typically refer to case-mix planning, master surgery scheduling and

case scheduling. Case-mix planning assigns available OR time to specialties, whereas

master surgical scheduling creates a recurring cyclic timetable (Guerriero and Guido

[2011]).

Some of the most commonly analyzed problems, as identified by Gupta [2007],

include sequencing surgical cases, allocating elective surgical capacity to di↵erent

sub-specialties, creating a booking limit for elective cases, finding the optimal sub-

specialty mix and creating a master surgical schedule (MSS) with a rolling horizon.
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There is a wide variety of papers on surgery scheduling in the literature. And

various approaches have been used to optimally schedule surgeries to ORs like, integer

programming (Blake and Donald [2002], Denton et al. [2007], Denton et al. [2010],

Vissers et al. [2005], Adan et al. [2009]), stochastic optimization models (Denton

et al. [2010], Batun et al. [2011], Van Oostrum et al. [2008], Testi et al. [2007]), goal

programming (Rohleder et al. [2005]), discrete event simulation (Adan et al. [2009]),

and heuristics (Denton et al. [2010], Van Oostrum et al. [2008], Testi et al. [2007]).

Rohleder et al. [2005] use a goal programming approach to schedule surgery blocks

to an OR schedule with the objective of smoothing post-surgery patient flow. Their

formulation is similar to Blake and Donald [2002] who use an integer programming

approach to create a master surgical schedule. Both of these papers and most of

the formulations in the literature use deterministic models. Whereas, we take into

account the stochastic nature of surgery durations and use scenarios (derived from

the simulation model) in our integer program. There are a limited number of papers

that model stochastic surgical durations (Denton et al. [2010], Batun et al. [2011]).

The objectives in the formulations range from smoothing post-surgery patient

flow (Denton et al. [2010]), minimizing the over and under-utilization of multiple

resources (Van Oostrum et al. [2008], Testi et al. [2007]), minimizing the weighted

sum of the expectation of waiting time, idle time, and tardiness (Denton et al. [2007]),

minimizing the deviation from the target utilization level (Vissers et al. [2005]), to

minimizing both the overtime and fixed cost related with opening an OR (Denton

et al. [2010]).
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Accordingly, the decision variables of the models vary as well. Most commonly,

authors look at block assignment decisions and development of a cyclical master

schedules which involves assigning the number of sessions to each sub-specialty (Adan

et al. [2009], Van Oostrum et al. [2008], Testi et al. [2007]). On a more daily level,

the authors look at decisions for sequencing surgeries in ORs, which ORs to use, and

the start times of each surgery (Batun et al. [2011]). Some papers assume that the

type of surgeries to be performed in a day is predetermined and only focus on the

sequencing of surgeries in an OR (Choi and Wilhelm [2012]). The common result

is that the smallest variance first (SV) rule gives the best sequencing decision, and

that the decision on the first surgery is the most crucial (Weiss [1990], Van Oostrum

et al. [2008], Denton et al. [2007]). In our model, we do not consider the sequencing

of the surgeries.

5.2.1 Contributions

The problem we address is motivated by a specific case study at Mayo Clinic and is

unique compared to the previous surgical scheduling research. Due to the long and

highly variable nature of spine surgeries, only one or at most 2-3 surgeries can be

performed within the ten hours of operating time available at Mayo Clinic. There-

fore, sequencing does not play an important role. However, because of the high

variability of surgery times, maintaining both high OR utilization and low overtime

is challenging. To assist the practice, our model considers alterations to the patient

mix and identifies which surgeries can be performed to achieve acceptable overtime
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levels. The patient categorization using clinical information known at the time of

case scheduling is also unique and can be applicable to other surgical areas.

In addition, we consider constraints on financial performance and at the same

time ensure access to Medicare patients. To the best of our knowledge, we are one

of the first to consider the impact of patient mix, surgical schedule and LOS on the

financial performance. In order to achieve this, we identified the best days to perform

each type of surgery based on the hospitalization period, to avoid uncompensated

weekend stays.

We consider a multiple objective, multiple surgeon/OR surgical case assignment

problem with stochastic surgical durations. However, it is not a block scheduling

problem rather, we are creating a cyclical surgical schedule specific for the spine

surgery clinic that assigns di↵erent types of surgical cases to days of the week while

optimizing the surgical case-mix.

Lastly, the literature on surgical scheduling is quite extensive, however, imple-

mentations are rare (Cardoen et al. [2010]). Namely, Blake and Donald [2002] is one

of the rare applications that develop a deterministic model without considering the

variability in surgical durations. The authors do not provide details on the process

of implementation. Indeed, there is lack of information on the behavioral factors

that influence the actual implementation and identification of the causes of failure

or the reasons that lead to success (Cardoen et al. [2010]). We believe that our main

contribution is being able to evaluate the results of our pilot study with a pre and

post evaluation, as well as using a control and a test group. Secondly, despite the

wide variety of literature on OR scheduling problems, the multi-OR surgical suite
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scheduling problem and the impact of addressing demand uncertainty have not been

studied thoroughly (Erdogan et al. [2011]). With this research our objective is to

contribute to both of these fields.

5.3 Optimization Models

As described in Section 5.1.3, our optimization model involves multiple stages; if

all stages are considered together, tractability becomes an issue. The stages also

represent the corresponding decision level as we move from a strategic (first stage)

to a daily decision level (third stage). The first stage is a strategic level decision that

decides on the optimal patient case-mix in a given time horizon in order to maximize

a weighted function of utilization and estimated profitability (via NOI). With this

optimal surgery mix as input, the operational decision level (second stage) allocates

cases to specific days in the time horizon, while ensuring that multiple days staged

surgeries (performed on the same patient) can be carried out within a few days.

The third stage assigns the surgeries to operating rooms, using the surgical template

from second stage, while balancing the workload between surgeons and incorporating

Mayo’s blue-orange surgery template.

Before describing the 3 stages, we note that there are 3 sets of indices for days

in the formulation; k, d and t. k represents the index for group of day which can

either be a late start day or a regular start day (late starts happen due to teaching

responsibilities on specific days, and the start time influences overtime measures); d

represents the day of week (Monday to Friday, which help in di↵erentiating hospital
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specific dynamics such as blue and orange surgical days described in Section 5.1.1);

and t is the index for days in the time horizon.

5.3.1 First stage IP optimization

In this stage we find the optimal surgery mix whilst maximizing a weighted combina-

tion normalized NOI and utilization with Equation 5.1. This stage uses the outputs

of the simulation (NOI, utilization and overtime percentage derived for each surgical

combination) as an input to the optimization model. The formulation is as follows:

Indices

i(1...I): Combination of surgeries

Each combination i consists of some surgery category l and a payer type r associated

with it.

k(1...K): OR-weekday category (where 1 means a regular weekday; and 2 is a late

start day)

d(1...5): Day of week (Monday, Tuesday, Wednesday, Thursday and Friday)

l(1...L): Surgery category index

r(1..R): Payer index (where 1 is for Medicare or government; and 2 is for non-Medi-

care or private)

t(1...T ): Days in the planning horizon

Parameters

OTik: Simulation derived parameter representing the probability of finishing after

the end of day (5 PM) when surgery combination i is performed on day group k. Re-
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stricted to be less than “o” in the optimization model which is the practice imposed

limit on the proportion of overtime after 5 PM.

EOik: Simulation derived parameter representing the expected overtime observed

after end of day (5 PM) when the surgery combination i is performed on day group

k. Restricted to be less than “e” in the optimization model which is the historical

limit on the expected overtime after 5 PM.

✓ik: Simulation derived parameter representing the probability of finishing after 11

PM when surgery combination i is performed on day group k. Restricted to be less

than “f” in the optimization model which is the empirical limit on the percentage

of overtime after 11 PM.

NOIi: Simulation derived parameter for normalized NOI of surgery combination i.

Uik: Simulation derived parameter for the average OR utilization when surgery com-

bination i is performed on kth day group.

!: Weight assigned to utilization in the objective function.

Milr: The number of category l surgeries in each surgical combination i with payer

r.

T : Number of working days in the planning horizon.

Pl : Empirically observed number of surgeries from surgical category l per OR room.

b: The case-mix bound width represented as a fraction between 0 and 1 (i.e. allowed

flexibility in changing the case-mix).

m: Minimum percentage of Medicare surgeries to be performed.

Fld: Binary parameter that takes on the value of 1 if day of week d is the best surgical

day for category l Medicare patients; 0 otherwise.
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P
d Fld = 1 and Fld binary 8l, d.

Dkd: Binary parameter that takes on the value of 1 if day of week d is a type k day

(i.e. if it is a regular start or late start day); 0 otherwise.
P

k Dkd = 1 8d and Dkd binary 8k, d.

Jt: The open number of ORs on day t.

B: Large integer constant.

Decision Variables

xik: Total number of surgery combinations of type i performed on day group k over

the time horizon T .

⇣ld: Output variable representing the number of Medicare surgeries from surgical

category l scheduled on day of week d.

First Stage Model

max ! ⇤
X

k

X

i

Uik ⇤ xik + (1� !) ⇤
X

k

X

i

NOIi ⇤ xik (5.1)

s.t

Pl ⇤ (1� b) ⇤ Jt 
X

k

X

i

X

r

Milr ⇤ xik  Pl ⇤ (1 + b) ⇤ Jt 8l (5.2)

X

k

X

i

xik ⇤Mil1 �
X

i

X

k

X

r

xik ⇤Milr ⇤m (5.3)

Pl ⇤ (1� b) ⇤ Jt ⇤m 
X

k

X

i

xik ⇤Mil1  Pl ⇤ (1 + b) ⇤ Jt ⇤m 8l (5.4)

X

i

X

k

OTik ⇤ xikP
t Jt

 o (5.5)
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X

i

X

k

EOik ⇤ xikP
t Jt

 e (5.6)

X

i

X

k

✓ik ⇤ xikP
t Jt

 f (5.7)

X

i

X

k

Dkd ⇤ xik =
X

w

J5⇤w+d 8d (5.8)

⇣ld =
X

i

X

k

xik ⇤Mil1 ⇤ Fld ⇤Dkd 8l, d (5.9)

X

i

X

k

xik ⇤Dkd ⇤Mil1  B ⇤ Fld 8l, d (5.10)

xik 2 Z�0 8i, k (5.11)

There are four main groups of constraints in this stage: case-mix and payer mix

calculations (Equations 5.2-5.4), overtime restrictions (Equations 5.5-5.7), restricting

the number of surgeries based on the open number of ORs (Equation 5.8), and

enforcing that Medicare surgeries are scheduled on best day of the week to minimize

the number of weekend discharges (Equations 5.9-5.10). We explain these in more

detail below.

In order to build a realistic model, the surgical schedule needs to create a surgical

case-mix that is similar to observed levels in the current practice. Thus, Equation

5.2 ensures that number of patients from surgical categories (1...L) are only allowed

to deviate from the current case-mix within a pre-specified bound width, b. Medicare

surgeries constitute at least m% of the overall number of surgeries performed with

Equation 5.3. Further, Equation 5.4 enforces that the sum of Medicare patients from

each surgical category is within the ±m% range of the empirically observed number

of patients.
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The percentage of days that result in overtime (percentage of days that end

after 5 PM) is enforced to be smaller than some overtime limit based on the clinic’s

preference, “o” (Equation 5.5). Expected hours of overtime after 5 PM is kept

less than the empirical average overtime hours, “e” (Equation 5.7). Similarly, the

proportion of days with overtime after 11 PM is required to be less than the empirical

overtime limit based on historical data, “f” (Equation 5.6).

Equation 5.8 ensures that the total number of surgeries that will be performed

on each day of week d in the horizon must be equal to the total number of operating

rooms available on such weekdays in the horizon.

In Equation 5.9, ⇣ld represents the number of Medicare surgeries from category

l scheduled on day of week d; which is simply the product of a binary variable that

indicates whether or not that day was indeed the best day to do the surgery for a

category l Medicare patient day and the sum of all Medicare surgeries for that specific

surgery category. With Equation 5.10, Medicare patients are assigned to their best

day of surgery, specific for each category so that the Medicare weekend overflow is

minimized. This has a huge financial impact, which will be discussed later in the

case study using empirical data.

5.3.2 Second stage IP optimization

Using the case-mix results of the first stage optimization as an input, we create a

schedule over the planning horizon, by assigning the surgery combinations to days

in the horizon. The surgical schedule repeats itself every T days.
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The main objective in the second stage is to maximize the availability of ORs for

complex surgeries performed on the same patient staged over multiple days. We call

them “multiple days staged surgeries” (MDSS). These result when some of the very

long surgeries are broken down into 2 or more surgeries with feasible durations by

the surgeons; that need to be carried out within 2-5 days. Data analysis indicated

that these types of surgeries constitute a non-negligible 10% of the overall surgeries

performed. For example a patient may need to undergo a category 6 surgery followed

by a category 8 surgery within two days (this would be MDSS type 6 8). If t is the

day of the first surgery, then this means that a combination containing surgery 6

must be scheduled on day t and a combination containing surgery 8 on day t + 2.

One of the ways this would be possible is if combination 1 6 is scheduled on day t

and combination 1 8 is scheduled on day t+2. To ensure MDSS constraints are met

in the formulation, we use a binary parameter �ics that takes on the value of 1 if

surgery combination i = (1 6) contains one element of the MDSS of type s = (6 8)

in cth position; for this example if c = 1, �ics = 0, but if c = 2, �ics = 1.

Note that, this stage has no impact on NOI or utilization, since they have already

been optimized in the first stage.

Indices

i, j(1...I, 1...J): Combination of surgeries

s(1...S): MDSS index

c(1...C): Position in the sequence in which the MDSS is performed

w(1...W ): Weeks in the planning horizon
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Parameters

⇣ld: Number of Medicare surgeries from surgery category l scheduled on day of week

d (Derived from the first stage).

�s: Weight of type s MDSS in the objective function.

↵: Coe�cient for balancing the workload over the weekdays.

�ics: Binary parameter that takes on the value 1, if surgery combination i contains

one element of the MDDS s in cth position; 0 otherwise.

Decision Variables

Yit: Integer decision variable representing how many of the surgery combination i’s

are performed on day t as a part of multi-surgery pair.

Zit: Integer decision variable denoting how many of the surgery combination i’s are

performed on day t not as a part of MDSS (rather as a single stand-alone surgery

combination).

Lts: Integer decision variable denoting how many of the surgeries on day t are per-

formed as the first component of the MDSS type s.

Qid: Number of surgery combination i’s to be performed on day of week d.

Second Stage Model

max
X

t

X

s

(�s ⇤ Lts) (5.12)

s.t
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X

d

QidDkd = xik 8i, k (5.13)

X

w

(Yi(5w+d) + Zi(5w+d)) = Qid 8i, d (5.14)

X

i

X

w

Yi(5w+d)Mil1 +
X

j

X

w

Zj(5w+d)Mjl1 = ⇣ld 8l, d (5.15)

X

i

Yit +
X

j

Zjt = Jt 8t (5.16)

Lts 
X

i

�i1s ⇤ Yit +
X

j

�j2s ⇤ Yj(t+2) 8t, s (5.17)

Lts 
X

i

�i1s ⇤ Yit 8t, s (5.18)

Lts 
X

j

�j2s ⇤ Yj(t+2) 8t, s (5.19)

X

w

X

s

L(5w+d)s � 5↵
X

t

X

s

Lts 8d (5.20)

Yit, Zit 2 Z�0 8i, t (5.21)

Lts 2 Z�0 8t, s (5.22)

Qid 2 Z�0 8i, d (5.23)

The objective function maximizes the weighted sum of MDDS performed (Equa-

tion 5.12). The weights (�s) are derived from the empirically observed proportions

of type s MDSS. Detailed analysis is presented in Section 5.4.1.2.

Constraints

Equation 5.13 links the first stage output (the optimal surgery case-mix), to

the second stage decision variable (number of surgeries scheduled from each surgery

category on specific days of week). Equation 5.14 ensures that number of combination
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i surgeries performed on each day of week matches with the first stage results, via

the Qid decision variable. Next, Equation 5.15 enforces that the required number of

Medicare surgeries are performed on the right day of week for each category.

All in all there can at most be Jt number of combinations scheduled each day

(Equation 5.16); recall that Jt is the number of open/available operating rooms on

day t. Equations 5.17, 5.18 and 5.19 ensure that for a MDSS of type s to take place,

the second surgery of MDSS pair needs to be arranged within 2 working days after

the first surgery. With Equation 5.20 MDSSs are spread evenly over the workdays,

using a lower bound ↵. This ensures that not all of the MDSSs are performed on the

same days of week.

5.3.3 Third stage IP optimization

The last stage of the optimization model uses the surgery template generated from

second stage to balance the surgeons’ workloads over the days of the week, while

incorporating Mayo specific scheduling requirements. In Mayo Clinic, the surgeons

operate under the blue-orange schedule, in which they perform surgery on one day

and have clinical consultations on the next day, as discussed in Section 5.1.1. For

pairs of surgeons, these surgical and consultation days alternate.

Indices

h(1...H): Surgeon indices

q(1...Q): Types of surgical weeks
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Parameters

�hdq: Binary parameter matrix denoting if day of week d on week type q is the surgery

day for surgeon h.

For instance, if we look at this matrix for Surgeon 1 (a blue surgeon) under a blue-

orange surgical schedule (where Q = 2), �1dq, would be equal to:

2

64
1 0 1 0 1

0 1 0 1 1

3

75.

This implies that Surgeon 1 would be operating on Monday, Wednesday and Friday

the first week type (q = 1) and on Tuesday and Thursday on the second week type

(q = 2).

Decision variables

�qw: Binary decision variable denoting if the week w is of week type q. For example,

�q0w0 = 1 implies that week w0 is of type q0.

⌧lhr: Absolute di↵erence of workload for surgeon h, from the average number of cat-

egory l surgeries scheduled over the planning horizon with payer r.

Wlhr: Number of category l surgeries with payer r scheduled over all weeks for sur-

geon h.

Third Stage Model

min
X

l

X

h

X

r

⌧lhr (5.24)

s.t
X

w

X

q

�qw = W (5.25)
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Wlhr =
X

q

X

w

X

d

(
X

i

(Yi(5w+d) + Zi(5w+d))Milr�qw�hdq 8l, h, r (5.26)

⌧lhr � Wlhr �
PH

h0=1 Wlh0r

H
8l, h, r (5.27)

⌧lhr �
PH

h0=1 Wlh0r

H
�Wlhr 8l, h, r (5.28)

X

q

�qw = 1 8w (5.29)

�qw 2 0, 1 8q, w (5.30)

⌧lhr � 0 8l, h, r (5.31)

Wlhr 2 Z�0 8l, h, r (5.32)

The objective is to balance the workload between the surgeons so that this ab-

solute di↵erence is minimized. Index h is the index for surgeons and q represents

the di↵erent patterns of weeks (1...Q). In our case study, we implement the blue or-

ange surgical schedule, however, the model is kept general to accommodate di↵erent

scheduling patterns in other hospitals.

Constraints

The decision variable �qw is a binary variable denoting if the week w is of week

type j. The sum of all types of weeks should add up to W , which is enforced by

Equation 5.25.

Each surgeon’s workload over the planning horizon is calculated using Equation

5.26. ⌧lhr is calculated as the absolute di↵erence between the workload of each

surgeon and the average number of surgeries from each surgical category, in a linear

fashion with Equations 5.27 and 5.28. Lastly, with Equations 5.29 and 5.30 we ensure
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that the weeks are of some type q. In Section 5.4.3.3 we provide an example from

our case study with 2 surgeons.

5.4 Case Study

The optimization model was developed and evaluated based on the operations and

data of the orthopedic spine practice at Mayo Clinic, Rochester MN. Model develop-

ment and evaluation occurred over much of 2012 with a live implementation target

set as December 2012. We have set the planning horizon T to 120 days (with a

surgical day length of 10 hours) this is a large enough horizon to observe demand for

all the surgery categories, including those that are sparsely represented. We consider

two types of surgical days: regular and late start days. The latter occurs on Mondays

to allow for sta↵ meetings and reduce the day length by one hour. As discussed in

Section 5.1.1, Mayo Clinic surgeons have alternating surgical and non-surgical days

based on the “Blue and Orange” system. The non-surgical days are typically spent

in clinic where surgeons have follow-up appointments or see new patients who may

require surgery.

5.4.1 Data and model assumptions

Spine surgery related data involves 2 primary OR rooms with 5 surgeons performing

more than 2500 surgeries over a 7 year horizon from 2005 to 2011. Data available

includes patient-related (age, gender, geographical location, American Society of

Anesthesiologists (ASA) scores of patient physical condition before surgery, initial

diagnosis (ICD9 code), and length of stay(LOS)), surgery-related (surgeon name, OR
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room, long description of the surgery performed provided by the surgeons, surgery

durations broken down into OR enter to incision time, incision to closure time, and

closure time to OR exit time) and financial information (procedures performed, cost

and revenue for each case) at a very detailed level.

Some of the crucial characteristics of the system are: average patient age was

57.6, with 45% female patients. Hospital LOS is on average 5.9 days with a standard

deviation of 6.5 days. The average OR enter to Incision time is 1.5 hours with a

standard deviation (SD) of 0.4, the average incision to closure time is 4.6 hours with

a SD of 2.5 hours. The average closure to OR exit time is 0.5 hours with a standard

SD of 0.3 hours. More detail on the patient characteristics is provided in Appendix

F.

5.4.1.1 Surgery type:

We classified the whole patient population with 10 surgery categories using Classi-

fication and Regression Tree (CART) analysis in JMP (version 9.01, SAS Institute,

2010). This data mining analysis enabled us to more accurately predict how long

each surgery will take and therefore better plan the surgery days. Figure 5.1 shows

the cumulative distributions for the surgical categories and highlights the di↵erence

between the categories. For example, surgeries from category 1 always take less than

4 hours to complete, while on average only 50% of all cases take less than 4 hours to

complete.
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Figure 5.1: Cumulative distribution of the surgery time by each patient category

5.4.1.2 Multiple days staged surgery (MDSS) patients:

Some of the very long surgeries are split into 2 or more procedures with feasible

durations. From the data, we determined that these types of surgeries constituted

10% of the all surgeries. These staged surgeries need to be planned within a certain

number of days (ideally in 2 days).

Whether a patient will be undergoing a MDSS or not, depends on the American

Society of Anesthesiologists (ASA) scores, anatomical location, surgical approach

and other factors. We have also analyzed which surgical categories are generally

divided into multiple segments, as can be seen in Table 5.1. For instance, a surgery

category 6 followed by an 8 in the next 2 days constitute the biggest percentage.

These percentages are then used as weights in the objective function of the second

stage.
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Table 5.1: Properties of multi-segment surgeries

Comb # Surgery Pair Proportion (%)

1 6 8 9%
2 8 9 7%
3 4 5 7%
4 8 8 5%
5 1 2 5%
6 7 9 4%
7 4 8 4%
8 4 9 4%
9 2 5 3%
10 3 8 3%
11 5 9 3%
12 1 1 2%
13 1 5 2%
14 1 8 2%
15 2 6 2%
16 2 8 2%
17 4 6 2%
18 7 7 2%
19 7 8 2%
20 1 6 2%

5.4.1.3 Financial analysis and length of stay (LOS):

Our financial analysis is based on the reported Net Operating Income (NOI) values.

Data mining approaches were used to derive the cost drivers for the Clinic. NOI

values were mainly driven by the LOS of the patients, i.e., the hospitalization period

in an inpatient unit post surgery. As well as the LOS, the type of surgery significantly

a↵ected NOI. Therefore, depending on the equipments used (such as microscope and

CT scanner), characteristics of the surgery (fusion, no fusion, number of vertebrae

segments and so forth), the cost of surgeries varied significantly.
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Figure 5.2: Relationship between NOI and LOS for Medicare and Non-Medicare
patients

We have performed the NOI analysis for Medicare and Non-Medicare patients

separately, because of the reimbursement policies (Figure 5.2). Regardless of their

hospitalization period, Medicare patients only get reimbursed for 4 days and the

hospital almost always loses money for the Medicare surgeries. However, for non-

Medicare patients, hospital is reimbursed depending on the number of hospitalization

days. Thus, as can be seen from the graph as the LOS days increase for Non-Medicare

patients so does the NOI. However, the opposite is true for Medicare patients. Only

some of the patients with small LOS indicate a potential gain, the majority of patients

result in negative NOI. In performing this analysis, we have only considered first

surgeries of the day, so that the e↵ect of overtime is discarded.

Furthermore, the LOS values of Medicare patients are typically higher than non-

Medicare patients (The average is a day longer for Medicare patients). This is mostly

because the Medicare patients are mostly elderly and it takes a longer time for the

elderly patients to recover. Also, another reason is that they typically require post-

acute care, leading to delays in the discharge process.
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The initial analysis showed that the optimal surgery day for Medicare surgeries re-

quired further examination. Because these patients often require discharge to skilled

nursing facilities (SNF) that do not accept patients on weekends, it was important to

schedule surgeries to avoid unnecessary weekend stays in the hospital. We calculated

LOS in base 7 to analyze their discharge day of the week after the surgery. For

example, a LOS value of 8 was equal to 1, meaning the discharge happened on the

following day of week (DOW) of the surgery. We look at the probability of weekend

overflow by DOW of the surgery and surgery category. Figure 5.3 represents the

percentage of patients who are ready to be discharged on any weekend if they have

their surgery on that DOW. Our analysis has shown that Mondays and Fridays are

generally the best days to schedule surgeries, where it is important to avoid unneces-

sary weekend stays. However, this is not true for all surgery categories. In particular,

some of the more complex surgeries were better to schedule in mid-week due the LOS

distribution.

We integrate the optimal day of Medicare surgeries into the first part of our

optimization model using the Fld parameter, to minimize the weekend overflows in

the optimal solution. Using the results of the data analysis, this binary parameter

takes on a value of 1 if the best day of week to perform category l Medicare surgery

is d and 0 otherwise.

5.4.2 Simulation for scenario generation

5.4.2.1 Surgery steps and times:

Similar to Batun et al. [2011] we divide the surgery durations into 3 components: pre-

incision, incision to closure, and post-closure activities. Pre-incision time involves
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Figure 5.3: The percentage of weekend overflow by each patient category and surgery
DOW

preparing the patient for surgery, incision to closure time is the actual procedure

time and the post-closure is required to close up the incision and prepare the patient

for recovery. Surgeons only need to be present in the OR for incision to closure; the

other activities can be performed with other surgical sta↵ present.

In addition to the pre-incision, incision to closure and post-closure time, we an-

alyzed the surgeon turnover, OR cleaning and BOD time distributions as well (see

Figure 5.4). Table 5.2 summarizes the best theoretical distribution fit of the empiri-

cal data. The lognormal function typically fits the best and is commonly used in the

literature to represent similar highly variable procedure times (Spangler et al. [2004],

Choi and Wilhelm [2012]). Additional information on these time-stamps is provided

in Appendix F.
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Figure 5.4: Stages in OR time

Table 5.2: Distributions for the time-stamps

25% quartile Median 75% quartile Mean Std dev Best Fit

OR enter to incision [h] 1.1 1.4 1.7 1.4 0.47 Johnson Su
Incision to closure [h] 2.2 3.7 5.7 4.2 2.77 Weibull
Closure to OR exit [h] 0.3 0.45 0.6 0.5 0.29 Johnson Su
OR Turnover Time [m] 37 44 55 48.5 18.3 Normal 2

Due to the significant stochasticity of the problem environment we created a

simulation model that mimics the surgical flow. The outputs of performing di↵erent

surgical combinations were derived from the simulation and then used as inputs to

the optimization model. The simulation used data for the time distributions of the

10 surgery categories. The distributions are derived for: beginning of day (BOD),

pre-incision, incision to closure, post-closure, surgeon turnover, and OR cleaning for

the 10 categories.
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5.4.2.2 Why did we use a simulation model for outcomes projection?

Instead of using the empirical values for the surgical combinations, we have created a

simulation model because not all the combinations were represented in the data-set.

We were able to derive the results of interest (overtime, normalized NOI, utiliza-

tion) using a simulation model for all possible surgical combinations, both for single

surgeries, 2-surgery and 3-surgery pairs.

We have analyzed the convolution of lognormal variables, in order to predict the

EOD for di↵erent surgical combinations. For instance, Gao et al. [2009] study the

asymptotic behavior of a probability density function for the sum of any two lognor-

mally distributed random variables. They approximate both the left and right with

some simple functions. However, these models get intractable when we are consid-

ering the tail probability density function of more than two lognormally distributed

random variables. Thus, we have turned our focus to using simulation models that

mimics the ORs in Mayo Clinic based on sampling from historical data.

5.4.2.3 Parameters and scenarios:

We do not model the sequencing of surgeries, thus initially only 55 multiple surgery

combinations are created. For example, from our modeling perspective 1 after 2 (1 2:

a category 1 surgery followed by a category 2 surgery in the same OR) and 2 after

1 (2 1: a category 2 surgery followed by a category 1 surgery in the same OR) will

result in the same EOD distribution. However, there were only a limited number of

double and triple surgeries that could be performed, since most of the cases resulted

in 100% overtime as can be seen from Figure 5.5. The red line represents the average
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Figure 5.5: Percentage of overtime and utilization by patient category

utilization, whereas the blue line is the percentage of overtime after 5 PM. After our

discussions with the surgeons, in all we came up with 42 surgical combinations (10

of which are individual surgeries performed in one day). However, for the case study

we have only considered 20 combinations that result in feasible overtime.

We have compared the empirical EOD collected over 7 years with the results of

the simulation model. Simulation model accurately predicts the EOD values of the

empirical distribution, with 95% confidence, as can be seen from Figure 5.6. The

cumulative distribution for the EOD values is always in between the two confidence

intervals, almost always indistinguishable from the simulation values.
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Figure 5.6: Validation of simulation model with 95th percentile, where the orange
and purple lines represent the bounds for confidence interval.

5.4.2.4 Inputs to the optimization model:

Table 5.3 is the main input for the optimization model. It provides the output

measures for all of the surgery combinations that are feasible for implementation.

The values in parenthesis represent the Monday outputs, since Mondays start late.

5.4.3 Example optimization results

The outputs of the simulation model was used used to test and evaluate the op-

timization model. In addition, the optimization model was explored to consider

tradeo↵s and relationships among utilization levels, financial performance, overtime

allowance, and case mix.
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Table 5.3: Simulation inputs to the optimization model

Combination EOD
% Days
End After
5 PM

Hours
After 5
PM

Utilization

Norm.
NOI for
Medi-
care

Norm.
NOI for
NON-
Medi-
care

% over-
time (11
PM)

1 10:18 AM 0.0 (0.0) 0.0 (0.0) 21.6 (31.6) 22% 41% 0.0 (0.0)
2 12:18 PM 0.9 (1.2) 0.0 (0.1) 40.7 (50.9) 25% 38% 0.1 (0.4)
3 1:24 PM 1.7 (4.4) 0.1 (0.1) 52.8 (62.8) 23% 42% 0.0 (0.2)
4 1:30 PM 5.2 (9.6) 0.1 (0.1) 53.9 (63.3) 20% 48% 0.0 (0.1)
5 2:54 PM 16.2 (29.8) 0.2 (0.4) 67.1 (76.5) 22% 45% 0.0 (0.1)
6 2:42 PM 12.1 (16.8) 0.3 (0.4) 64.0 (73.0) 20% 56% 2.0 (1.6)
7 4:06 PM 34.6 (44.3) 0.7 (1.0) 76.1 (82.3) 6% 87% 0.9 (1.8)
8 4:00 PM 23.8 (37.5) 0.7 (0.9) 74.6 (83.1) 19% 65% 3.9 (3.6)
9 6:06 PM 59.1 (74.4) 1.6 (2.2) 89.0 (94.0) 10% 77% 7.8 (8.8)
10 6:30 PM 66.6 (76.9) 2.0 (2.5) 90.9 (94.5) 13% 75% 2.1 (6.3)
1 1 2:18 PM 5.2 (14.0) 2.2 (1.5) 68.9 (78.4) 16% 54% 0.1 (0.6)
1 2 4:12 PM 18.6 (68.0) 2.0 (1.6) 85.5 (94.5) 19% 51% 1.7 (2.1)
1 4 5:24 PM 43.4 (80.5) 2.2 (2.9) 91.1 (96.6) 13% 61% 3.3 (5.3)
1 3 5:24 PM 42.9 (90.7) 1.8 (2.2) 93.5 (98.7) 17% 55% 2.6 (3.1)
2 2 6:06 PM 61.4 (96.8) 2.0 (2.8) 96.6 (99.6) 22% 47% 4.0 (4.9)
1 6 6:42 PM 66.3 (97.6) 2.7 (3.5) 96.9 (99.7) 14% 69% 7.5 (13.3)
1 5 6:48 PM 70.4 (94.0) 2.8 (3.4) 96.1 (98.8) 16% 58% 5.6 (14.6)
2 4 7:30 PM 81.7 (97.8) 3.2 (3.6) 98.4 (99.7) 16% 58% 10.8 (14.0)
1 8 7:54 PM 84.0 (94.9) 3.5 (4.1) 98.3 (99.3) 13% 78% 13.7 (16.7)
1 7 8:18 PM 86.7 (99.2) 4.1 (4.3) 98.3 (99.9) 0% 100% 21.3(18.2)

5.4.3.1 First stage optimization:

The optimal surgery mix determines the optimal values of proportion of overtime

after 5 PM, expected hours of overtime after 5 PM, OR utilization levels, overtime

percentage after 11 PM, normalized NOI and access (number of surgeries performed

in comparison with the current access). As mentioned earlier, these reflect di↵erent

stakeholders’ perspectives. The optimal surgery mix is highly dependent on the
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Figure 5.7: Optimal surgery mix

constraints and the values of the parameters (overtime limit, proportion of case-mix

bound, Medicare patient proportion, and planning horizon).

An example of the optimal surgery mix can be observed in Figure 5.7. The

figure displays the optimal number of surgeries from each combination performed

on di↵erent day groups. As can be seen, the shorter surgeries (which are the lower

numbered categories) are performed on Mondays. Fridays are heavily loaded with

longer Medicare patient procedures. This is intuitive, since the Mondays start late

and in order not to create excessive overtime, long Medicare surgeries are left to

Fridays, creating a greater surgery burden on these days. Note that for profitability

reasons, Medicare patient surgeries are generally best scheduled on Mondays and

Fridays (however not for all surgery types).

5.4.3.2 Second stage optimization:

The second stage creates the optimal 12 week schedule with the focus on maximizing

the availability for multiple days staged surgeries. For example, the most common
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occurrence of MDSS, a category 6 followed by a category 8, happens 16% of the

time. The schedule assigns more priority to surgeries that have a greater empirical

percentage. The schedule repeats itself every 12 weeks.

5.4.3.3 Third stage optimization:

Table 5.4 is an illustration of the final output of our optimization model, for one set of

parameter values. This specific schedule is created so that it follows the blue-orange

schedule template of Mayo Clinic. In the schedule, a blue week represents Surgeon

1 operating on Monday, Wednesday and Friday and Surgeon 2 on Tuesday and

Thursday and an orange week represents Surgeon 2 operating on Monday, Wednesday

and Friday and Surgeon 1 on Tuesday and Thursday. This stage ensures there is a

balanced workload between blue and orange surgeons.

Table 5.4: Optimal 12 week blue-orange schedule, where blue week represents Sur-
geon 1 operating on Monday, Wednesday and Friday; Surgeon 2 on Tuesday and
Thursday and orange week represents Surgeon 2 operating on Monday, Wednesday
and Friday; Surgeon 1 on Tuesday and Thursday. The surgery combination each of
the two surgeons will perform on each day for the 12 weeks is indicated.
Week Number Type of Week Monday Tuesday Wednesday Thursday Friday
W01 Blue Week 2 9 9 6 7
W02 Orange Week 3 5 8 2 1 6
W03 Blue Week 3 6 4 9 6
W04 Orange Week 2 9 2 1 6 2 1
W05 Blue Week 2 5 4 8 6
W06 Orange Week 4 9 4 9 10
W07 Blue Week 2 8 8 4 6
W08 Orange Week 3 10 7 5 9
W09 Blue Week 4 6 9 9 8
W10 Orange Week 2 6 9 9 6
W11 Blue Week 3 9 9 4 5
W12 Orange Week 3 6 9 8 6
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5.4.3.4 Simulation for testing the robustness:

Even though, most of the spine patients tend to be pre-scheduled, there are also

some urgent cases. Six percent of the time patients present infections, which need to

be operated quickly (within 24 hours). These surgeries generally result in overtime,

because infection patients need to be operated as the last surgery of the day, due

to medical reasons (to prevent the spread of infections). The urgent cases typically

take much shorter than regular surgeries (with an average length of 2 hours). Also,

anecdotally on average 5% of the time last minute cancellations happen when the

insurance company declines the surgery or when the health of the patient deterio-

rates.

We developed a second simulation model to test the impact of unplanned surg-

eries (infections) and cancellations. We analyzed the impact of these on EOD when

utilizing the optimal schedule. We conclude that the simulation models and the re-

sults of our optimization model are robust and are not statistically di↵erent when

compared with a year’s worth of data (with a confidence interval of 99%).

5.4.3.5 Sensitivity analysis

We performed sensitivity analysis, in order to observe the impact of our constraints

and associated parameters. We have changed the weight assigned to utilization in

the objective function, the values of case-mix bound width, limit on overtime, length

of planning horizon and analyzed the impact on optimal case-mix, NOI, expected

overtime, total number of surgeries and utilization. We have used multi-variate

analysis in order to study the interactions. This analysis has shown that planning
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horizon did not have a statistically significant impact on any of the output measures.

Thus we focused our sensitivity analysis on the impact of bound-width, overtime

limit and weights.

In order to understand the trade-o↵ between NOI and utilization, we generated

an e�cient frontier (as can be seen in Figure 5.8). We altered the weights assigned

to these two output measures, to generate the non-inferior points curve. We have

performed this analysis for di↵erent bound widths and overtime limits. It is possible

to gain more while utilizing the ORs the same level, but by changing the patient mix.

The initial flat line in the curve shows the potential gain in NOI without sacrificing

from utilization. The underlying reason is that, the surgeries that are creating high

utilization levels do not necessarily result in higher revenue.

Figure 5.8: Trade-o↵ between utilization and NOI

We have used this sensitivity analysis in order to set the values of the parameters

in the optimization model for the pilot study implementation. We have presented

the results of our sensitivity analysis to our stakeholders and discussions about the
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tradeo↵s have led to the values of parameters used for the pilot study. Some of the

main parameter values are: w (weight assigned to utilization)= 80%, o (overtime

percentage after 5 PM)= 25%, e (number of hours past 5 PM)= 5 hours, f (percent-

age of days that end after 11 PM)= 5%, m (Medicare patient proportion)= 30%, T

(planning horizon)= 120 days. We provide additional research on sensitivity analysis

in Appendix G.

5.5 Implementation

The optimized scheduling approach was implemented via a custom designed web-

based application that partially integrates with Mayo Clinic’s existing surgical plan-

ning systems. The application, Spine Surgery Scheduling Optimization (SSSO), pro-

vides visual cues to promote scheduling surgeries on the appropriate days identified

by the optimization model. If a surgeon or their delegated scheduler needs to sched-

ule a case on a “non-optimal” day, the tool provides visual information as to the

case load and the likelihood of going overtime. The application can be used on any

o�ce or tablet computer and is therefore easy to use in an interactive way with the

patient. Figures 5.9, 5.10 and 5.11 show screenshots of the web-based application.

To evaluate the e↵ectiveness of the optimization model and SSSO application, a

pilot study was run from December 2012 to June 2013. Two of the four orthopedic

spine surgeons participated in the study. It should be noted that other initiatives were

going on at the same time as the pilot. In particular the orthopedic spine practice was

working to increase case volumes and improve work processes related to on-time case

starts and room turnover. Therefore, as in an intervention to an on-going process,
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Figure 5.9: SSSO screenshots

it is di�cult to determine the precise benefit or cost of the implementation. In the

following section we will describe the results of the pilot and how we attempted to

account for process e↵ects not due to SSSO.

5.5.1 Results of the pilot implementation

In evaluating the results, the first month of the pilot data was removed, because

surgical cases during this period were primarily scheduled using the old approach.

Figure 5.12 shows the results for the key performance measures during the evaluated

pilot period. For all measures, we consider only days during which surgeons had cases

scheduled, thus we eliminated empty days that were due to holidays, vacations, and

on-call duties. For utilization, this was evaluated as the busy percentage of the prime

time period of 7:30 AM to 5:00 PM. Overtime is defined as the percentage of days

that went over 5 PM.

Figure 5.12 shows that, in general, the implementation of the SSSO system pro-

vided the desired results. Patient access and utilization were higher and overtime
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Figure 5.10: Question screen to categorize surgical case

Figure 5.11: Initial screen that identifies optimal days
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Figure 5.12: Comparison of output measures evaluated during the pilot

lower for the surgeons participating in the pilot. In particular, it is interesting to

note the significant increase in cases per day for the surgeons participating in the

pilot. It is also important to note that this was not done by using more overtime.

Of course, it may be that the surgeons participating in the pilot had practices

that performed better before the pilot. Therefore, we also present the pre and post-

implementation results for all surgeons in Table 5.5.

It is gratifying to identify that the overall e↵orts of the practice to improve

patient access were achieved because all surgeons increased their number of cases

per day during the pilot evaluation period. The two surgeons participating in the

SSSO pilot increased their access by a higher percentage (30.1%) versus the non-

participating surgeons (24.6%). In our study, Surgeon 1 achieved the kind of results

the optimization method was intended to return: an increase in cases per day, prime-

time utilization, and decrease in days going to overtime. Surgeon 2, who was also
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Table 5.5: Pre and post-implementation results for all surgeons

Cases per day Utilization Overtime

Surgeon Pre-Imp Post-Imp Pre-Imp Post-Imp Pre-Imp Post-Imp
S1 1.30 1.57 72% 77% 30% 24%
S2 1.16 1.63 70% 83% 21% 37%
S3 1.07 1.30 75% 83% 33% 48%
S4 0.85 1.09 61% 76% 25% 29%

Surgeons 1 and 2 participated in the SSSO pilot implementation.
Shaded values show statistical di↵erence at 0.05 significance level.

involved in the pilot increased access and utilization, but also significantly increased

days going to overtime. Thus, we would say that Surgeon 1 used a “working smarter”

approach and Surgeon 2 a “working harder” approach (as it appears Surgeon’s 3 and

4 also did). Working hard is, of course, commendable, but the continued strain on

the surgeons and the surgical teams working in this mode may not be sustainable or

safe in the long run.

From a financial perspective, the average per case increase in NOI for the two

surgeons participating in the pilot was 122%. For the non-participating surgeons the

average actually decreased by 25%. As part of this analysis we also considered if there

were any significant changes in the mix of patients by payer type. For the surgeons

participating in the SSSO pilot there was a small overall drop in the proportion of

government paid patients, however, the proportion was still well above the minimum

established by the practice. Also, profitability for Medicare patients increased during

the pilot period, suggesting that the e↵orts to do these surgeries on the best days to

avoid uncompensated hospital days were e↵ective. Together with the overall increase

in access due to the SSSO implementation and other improvement initiatives, the
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financial sustainability in the orthopedic spine surgery practice has improved and

will provide better access for all patients, regardless of reimbursement type, in the

future.

In summary, the pilot implementation was deemed successful, but not as compre-

hensively as desired. As the pilot rolled out, several challenges occurred, including

technical issues with the programming of SSSO, lack of desired flexibility in schedul-

ing patients, and some discomfort by users of the tool with its reliability. The

following section will discuss some of the lessons we learned and proposed solutions

as the system is rolled out more broadly across the surgical practice at Mayo Clinic.

5.5.2 Lessons learned from the pilot

Pilot implementations by their nature are intended as learning experiences. The

points below are some of the key lessons we learned from our pilot.

• The SSSO application was generally developed in the classic waterfall approach.

The optimization team handed o↵ a completed method to the programming

team. There was some integration and communication, but not as much as de-

sired. This resulted in some technical issues with the tool. Some of these issues

were the responsibility of the optimization team and some the responsibility of

the programming team. All or most of these issues could have been avoided by

earlier involvement and better integration of the teams.

• Some assumptions were built into the optimization method that did not work

in practice. In particular, we assumed that case-mix could be shaped by how

access was controlled at the time of surgery scheduling. However, for spine
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surgery it is common for the surgeons to see patients several times before the

surgery decision is made. Limiting a patient’s surgical access when they had

developed a relationship with a surgeon pushed against Mayo Clinic’s high-

quality service philosophy. Thus, this approach is being adapted for ongoing

implementations. E↵orts at controlling access before patients come to Mayo

Clinic have been implemented and are still under way that will ensure the best

use of our capacity while ensuring the needs of the patient come first.

• As identified in the previous section, surgeon 1 had the most desired perfor-

mance profile during the pilot. This surgeon and his scheduling team were

the most involved during the optimization and tool development process. It

is not surprising that the sta↵ in this group had the most confidence in and

understanding of what the tool was trying to accomplish. For ongoing imple-

mentations of the modified tool we are working to involve more surgeons and

sta↵ in the development process.

• Both surgeons in the pilot found the ability to see the impact of scheduling a

particular case on a day, even if they were overriding what was recommended

by the optimization. The visualization shown in the window in Figure 5.11,

was of particular value. As scheduling decisions evolve from being very patient

preference oriented to being more system optimized, providing the surgery

schedulers with useful information to guide decision making with flexibility is

being incorporated into new versions of the tool.
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A great deal was learned from the pilot and specific improvements are being

incorporated into new versions that are in development for several surgical practices

at Mayo Clinic.

5.6 Conclusions

In this paper we presented an improved method for scheduling spine surgeries in the

orthopedic spine surgery practice at the Mayo Clinic. The method we developed

addresses specific elements of spine surgery at Mayo Clinic, however, the general

concepts used to develop the method are likely to be useful at other healthcare or-

ganizations. Unique aspects of our model include the incorporation of both resource

utilization and financial objectives. The latter was also addressed by considering the

profitability of the patients entire encounter related to their surgery, including post-

surgery hospitalization and the e↵ects of unnecessary hospital stays (and associated

costs) for patients likely to require skilled nursing facilities upon discharge. Fur-

ther, categorizing surgeries and developing statistical models for predicting surgical

lengths using clinical factors is a key contribution. Using input from the surgeons

to categorize case types that led directly to scheduling decisions assisted in gaining

clinical sta↵ engagement.

An implementation using a customized web-based tool that incorporated our op-

timization model showed generally positive results. Patient access improved signifi-

cantly for the surgeons involved in the pilot and operating room utilization improved

marginally. For one of the two surgeons participating in the pilot the access benefits

were achieved by also reducing the percentage of overtime days. It should be noted
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that patient access also increased for the surgeons not participating in the pilot, but

not by as much.

There are some topics we have failed to address in this paper. We consider

hospital LOS implicitly in considering profitability, but the impact on downstream

resources is not investigated. We consider the surgeons as bottlenecks and the im-

pact on inpatient or PACU beds is not in the scope of this project. In general, at

Mayo Clinic in Rochester, these resources are not constraints. Lastly, due to lack

of information about cancellations, we did not directly incorporate these into our

model.

Since the surgical durations are relatively long, the number of surgical combi-

nations is restricted (20 surgical combinations). As the number of surgery pairs

increase (for specialties with shorter durations) the computational burden will in-

crease as well. We have developed the optimization model using both Excel Solver

and AMPL. Excel was favored for implementation and the pilot study, and the com-

putational time was around an hour for each stage. AMPL, which should be favored

for research, on the other hand, provides solutions in less than 5 minutes for each

stage. Exploring the general problem (with a greater number of decision variables)

will allow us to understand the computational complexity of the optimization model

more accurately.

Thus, while this chapter highlights a specific case study application, we believe

that many of the results and insights will be of interest more broadly. In particu-

lar, the emphasis on considering the tradeo↵s and e↵ects of constraint limits may

help other similar surgical operations gain useful insights. At Mayo Clinic the gen-
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eral approach we developed is being considered for other surgical services and would

likely benefit other organizations. Thus, while our paper discusses the specific im-

plementation, we emphasized the underlying ideas and theory of the application and

show results of experiments that develop managerial insight. Other surgical services

such as cardio-thoracic, neurosurgery, and plastic surgery that have long average and

highly variable procedure times may benefit from our research as well. As reported

in Abouleish et al. [2003] these services together (with spine surgery) may make up

to about 20% of surgical volume in hospitals.

From a literature perspective we believe our paper is a significant contribution

because it does more than just consider the issues of changing case-mix and surgical

scheduling (which are prevalent in the conceptual operations management literature).

We extend the research area by considering the multiple objectives related to uti-

lization (and correspondingly, patient access), overtime, and financial performance.

Further, considering the downstream financial issues related to an important class

of patients (those with fixed reimbursements) is novel and increasingly important,

particularly in the U.S. where healthcare reform is a prominent issue. Finally, consid-

ering the behavioral aspects of the patients and those doing the surgical scheduling

is unique.
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CHAPTER 6

FUTURE WORK

In this chapter, I outline the research plan that I will conduct in the future. The

material in this chapter is organized under the three application areas.

6.1 Opportunities in Primary Care

6.1.1 Testing the applicability of the findings for primary
care on a national level

The National Ambulatory Medical Care Survey (NAMCS) is a national survey that

provides data on ambulatory medical care services in the United States. Also Medical

Expenditure Panel Survey (MEPS) collects nationwide data on the health services

that Americans use, how frequently they use them, the cost of the services and the

insurance that the patients have. By using these datasets, we can test if the heuristics

we developed to improve timeliness and continuity in group practices using data from

Mayo Clinic, would create the same significant impact at the national level.
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6.1.2 The Patient Centered Medical Home (PCMH) in pri-
mary care

Patient-centered medical homes (PCMH), a new model of primary care delivery, is a

research line to explore. PCMH aims to reorganize primary care to improve access,

coordination, quality, satisfaction, and provide comprehensive patient-centered care

(Nutting et al. [2009]). This has a nationwide importance since 15 to 24 million

additional primary care visits are expected as a result of the increase in demand

from A↵ordable Care Act (ACA) (Hofer et al. [2011]). Compounding the increase in

patient volumes and the shortage of primary care workforce, is the aging population

and the epidemic of chronic diseases, which will likely give rise to more patients

with multiple comorbidities, requiring more PCP time and resources. Currently,

45% of the U.S. population has chronic conditions requiring care management. Of

this population, 60 million, or roughly half of those with chronic conditions, have

multiple conditions (Kopach-Konrad et al. [2007]).

Capacity design of a PCMH is challenging, since care coordination across multiple

providers, email, phone and home visits need to be considered. Impact of non-visit

care is an important topic in medical homes. Patients require care outside of o�ce

visits, much of which is not reimbursed. Non-visit care activities include emails,

telephone calls, refilling prescriptions, reviewing consultations, lab test results and

imaging reports. Studies show that almost one half of PCPs’ workday involves these

non-face-to-face tasks (Chen et al. [2011]). On the one hand, these may improve

access and reduce o�ce visits, however, these are a huge burden on PCPs’ workload

and are not reimbursed (Dyrbye et al. [2012]).
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Modeling these non-face-to-face tasks in calculating the optimal panel size and

case-mix is an essential extension to our paper. Otherwise the calculations might be

misleading and potentially underestimate the workload of a physician. This stochas-

tic capacity allocation problem is further complicated by the patient preferences.

The National Ambulatory Medical Care Survey (NAMCS) and Medical Expen-

diture Panel Survey (MEPS) can again be used in order to start investigating the

impact of patient characteristics (patient mix) and preferences on the design of med-

ical homes.

6.1.3 Studying the relationship between readmissions and
access to primary care

Studying the relationship between readmissions, access to primary care and the num-

ber of comorbidities is an interesting research direction. Hospital readmission rates

have become an important predictor for both quality and costs. This is partly be-

cause of the very high readmission rates (17.6% of Medicare patients were readmitted

within 30 days, resulting in $15 billion annually), but more importantly 10-50% of

readmissions are potentially avoidable (MedPac [2007]).

Discharges can be looked at as a transfer of the responsibility of care from the

hospitalist to the primary care provider. Traditionally, PCPs admitted their own pa-

tients, provided hospital care and followed them after their discharge. However, since

this became unsustainable over the years, the hospitalists have started to take care

of the hospital medicine side and PCPs the outpatient side (Wachter and Goldman

[1996]). However, this discontinuity in care hinders the PCPs’ ability to provide ade-

quate follow-up care, increasing the risk of a readmission (Harding [2002], Kripalani
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et al. [2007a]). This is especially because of the shortfall in the communication of

information between the hospitalist and the PCP. The most typical way of communi-

cation is through the discharge summaries, which generally fail to provide important

information on patients’ medical condition. Also surveys show that typically these

summaries do not arrive to PCPs on time for the follow-up appointment of the

patient (Kripalani et al. [2007b], van Walraven and Weinberg [1995]).

Relatively few studies have looked at the relationship between primary care and

readmissions. Jencks et al. [2009] show that one in five Medicare patients ends up

back in the hospital within 30 days, and of those readmitted within 30 days, 50%

did not see their PCP for a follow-up appointment after their hospital discharge. It

is essential to analyze if this finding can be extended to non-Medicare beneficiaries

as well. Weinberger et al. [1996] find conflicting results for veterans discharged from

Veterans A↵airs hospitals, in their study to test the impact of a primary care inter-

vention. This intervention was designed to improve the veterans access to primary

care providers, which actually increased the rate of re-hospitalization. However, pa-

tients in the intervention group were more satisfied with their care. On the other

hand, Bodenheimer and Pham [2010] show that a good chronic care management can

significantly decrease hospital readmissions for certain types of chronic conditions.

In support of this point, Donz et al. [2013] study higher risk groups for readmissions

and show that patients with certain chronic conditions like heart failure, and chronic

kidney disease have a higher risk of readmission.

It is a thought-provoking research field to study whether certain comorbidities

have a higher probability of readmission or not, and what kind of an action plan
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can be developed accordingly. The post-discharge care of the patient will need to

consider the risk factors that might lead to a higher probability of readmission,

and not only the acute condition of the patient. More attention could be given

to these patients for a closer follow-up to monitor their chronic conditions. More

importantly, a better coordination of care between the hospitalists and the PCP

will be especially crucial for these types of “high-risk” patients. This idea again

relates back to the PCMH structure, which addresses each patient’s unique needs

and also values a clear communication and coordination across patients, the medical

home, and members of the patients’ healthcare team (Rittenhouse et al. [2009]).

Hospitalists and a tighter connection between PCPs and hospitalists, are crucial for

a successful implementation of a PCMH (Collins [2012b]).

6.2 Opportunities in Inpatient Bed Planning

Our inpatient bed planning project can be potentially extended in the following

areas:

6.2.1 Pre and post allocation delays

As a possible extension, we aim to integrate pre and post bed allocation delays

to model the possible secondary bottlenecks, including but not necessarily limited

to sta↵ shortages. In reality even if a bed is available for the patient, a patient

can experience a pre-allocation delay first, and then a post-allocation delay before

being transferred to an inpatient bed (Shi, P. [2013]). This would mean explicitly

modeling the operational delays that are caused by resource constraints (like ED and
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unit nurses) other than bed unavailability in inpatient units. Thus the time that the

bed is available is not necessarily the same as the time that patient is in the bed.

This could be integrated into the model by adding a delay (either deterministic or

based on a probability distribution) for each patient based on the hour of the day.

6.2.2 Modeling readmissions based on di↵erent discharge
policies

As discussed in Section 6.1.3, readmission refers to a patient being admitted to a

hospital within a certain time period from the initial admission. In the Medicare

framework, readmissions happen when a patient is being hospitalized within 30 days

of an initial hospital stay. There are many factors that a↵ect the possibility for

readmission, including patients’ diagnoses and severity; patients’ behavior and the

quality of post-discharge care (James [2013], Kripalani et al. [2007b]). Thus, some

patients are more prone to readmissions than others and the studies show that the

discharge planning has a major impact on the probability of a readmission. The

readmissions perspective can be integrated to our simulation framework by including

a readmissions probability based on di↵erent discharge policies or the type of patients.

6.2.3 Incorporating uncertainty to the discharge process

In our simulation model, the discharge process is assumed as deterministic, so once

the LOS of the patient is complete (which was randomly sampled from empirical

distribution) the model assumes the patient is ready to leave the hospital. However,

in reality (which is in fact reflected in the data implicitly), even when the patient is

considered as a potentially dischargeable patient for the next day, there is a prob-
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ability that the patient will not be able to go home. This can be due to a couple

of reasons: a healthcare delay (deterioration in patient’s health), a problem related

to the availability in post-acute care facilities (like skilled nursing facilities), incon-

venient discharge timing for the family members, or a social care delay. Thus there

can be many factors that influence the timing of the discharge process and make it

random.

In order to make the discharge process stochastic, we can assign a probability

distribution based on a patient’s type. These probability distributions can be derived

from the expert opinion of our nursing collaborators.

6.3 Opportunities in Spine Surgery Scheduling

6.3.1 Modeling other types of uncertainties

The models presented in this study consider only the uncertainty in surgery dura-

tions. Depending on the characteristics of the surgical specialty and the healthcare

institution, other types of uncertainties such as add-on surgeries, patient no-shows

or cancellations can also be included in the optimization model. We have tested the

impact of these factors on our optimization model using a simulation. However, a

more realistic approach which incorporates both no-shows and the dynamic nature of

the appointment scheduling process can be developed based on our current models.

6.3.2 Extended surgery scheduling model in the presence of
other resources and uncertainty

We have only considered the surgeons and operating rooms as bottlenecks in our

surgery scheduling model. An updated model could include multiple stages of the
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hospital service (e.g. surgery followed by recovery). In other words, linking the unit

census levels to an operating room schedule and/or other critical hospital subsystems

(surgical ICUs and PACUs) can be a potential extension. With more general models,

the simultaneous e↵ects of demand uncertainty from no-shows and add-on cases could

be better estimated.

6.3.3 Testing the robustness of the model by extensions to
other surgical services

At Mayo Clinic the general approach we developed is being considered for other

surgical services (e.g., Neurosurgery) and would likely benefit other organizations.

Thus, while our paper discusses the specific implementation, we emphasize that the

underlying ideas and theory of the application can be used to develop managerial

insight.

Other surgical services such as cardio-thoracic, neurosurgery, and plastic surgery

that have long average and highly variable procedure times may benefit from our

research as well. As reported in Abouleish et al. [2003] these services together (with

spine surgery) may make up to about 20% of surgical volume in hospitals. However,

every specialty has its own set of constraints and objectives. Thus, this kind of

implementation will require further data mining analysis specific to that specialty.

This will include a new categorization model for grouping the patients with similar

surgical durations and creating the required inputs to the optimization model. Test-

ing the robustness of the optimization model with other surgical services can be a

potential next step.
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APPENDIX A

QUEUING MODEL FORMULAS
FOR CHAPTER 3

Formula for the M/M/1 Queue

Wq(average waiting time in the queue)= �
µ(µ��)

Formula for the M/M/2 Queue

⇢(utilization)= �
2µ

Wq =
�2

µ(1�⇢2)

Formulas for the Partial Pooling Model

We have directly used the approach described in Guo and Hassin [2012], which is

summarized in this section, in order to derive numerical results.
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For the symmetric case:

As described in Section 3.2.1, �1 is the arrival rate of the dedicated patients of

Physician 1, �3 is the arrival rate of the dedicated patients of Physician 2. And

�2 represents arrival rate of the flexible patients, which is equal to
Pk

i=1 �
0
i ⇤ Ni,

where Ni is the total number of patients from category i and patients from category

1 to k are shared (�0
i values represent the Mayo comorbidity count visit rates). xij

values are used to calculate the values for �1 and �3 and it represents the number of

dedicated patients from category i assigned to physician j. �1 =
PM

i=k+1 �
0
i ⇤xi1 and

�3 =
PM

i=k+1 �
0
i ⇤ xi2, where M is the total number of categories. And � is the total

arrival rate to the practice, thus � = �1 + �2 + �3.

Guo and Hassin [2012] assume that Type 2 (flexible) customers who see both

servers idle, will choose to join server 1 in probability  and server 2 with probability

1� . And for all of the balance equations to hold,  needs to satisfy:

 = �2+�3
�1+2�2+�3

Thus,  represents the chance that a customer will choose which idle server to

join is proportional to the inverse the total patient arrival rate into that server’s

queue.

For the symmetric case, Guo and Hassin [2012] assume µ1 = µ2 = µ,  = 0.5

(flexible patients randomly pick up the two queues in equal probability) and �1 =

�3 = (� � �2)/2. Using these they derive the waiting times for the three patient

types.

W1 = W3 =
1
2
�
µ

8µ2+4�2µ+�2
2�4µ����2

(2µ��)(2µ��+�2)(2µ+�2)

W2 =
1
2
�
µ

�+�2
(2µ+�2)(2µ��)
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For the asymmetric case:

We create a variable p, which represents the percentage of flexible patients (a measure

of continuity), calculated as p = �2
�1+�2+�3

.

In order to perform the calculations for the asymmetric case, we also need to

derive the values for �0
1, and �0

3. �
0
1 is the total number of patients Physician 1 cares

for, similarly �0
3 is the total number of patients Physician 2 cares for, including the

shared patients. First, we assume that the shared patients are assigned to physicians

based on the  proportions. Thus  percent of the shared patients will see Physician

1, and (1� ) percent of the patients will see Physician 2.

�0
1 = �1 + (�2 ⇤ )

�0
3 = �3 + �2 ⇤ (1� )

The weighted service time for each surgeon is adjusted based on the values of �0
1

and �0
3 (as a result of change in the number of patients shared).

We have also altered the algorithm of how the shared patients were assigned

to physicians and analyzed the impact of equally assigning the shared patients to

physicians. For example if only 0 comorbidity patients are shared, we assume half

of the 0 comorbidity patients see Physician 1 and other half sees Physician 2 (like in

symmetric case). The values for �0
1, and �0

3 are calculated as follows:

�0
1 = �1 +

�2
2

�0
3 = �3 +

�2
2

The results were almost identical when using  and assigning half of the shared

patients. Thus, we only present one set of results for assigning half of the shared

patients.
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Methodology for Evaluating the Waiting Times:

We now present the steps we followed for evaluating the waiting times for �1, �2

and �3 customers.

1. Define the state variable age time, which is the total time spent by the oldest

customer in the queue.

Vi(t): Age of customer waiting at the head of Qi at t, if Vi(t) � 0; -Time from t

until next arrival instant, if Vi(t) < 0.

The sample path of the three-dimensional age process is defined with V =

(V1, V2, V3)

2. Define the positive age times as follows:

X = V +
1 = max{0, V1}

Y = V +
2 = max{0, V2}

Z = V +
3 = max{0, V3}

And the system has three queues: Q1, Q2 and Q3.

3. Use the formula 25 in Guo and Hassin [2012] to calculate the value of F0

(probability that all queues are empty):

F0 =
C

(�1�2�3)
1

(�1+�2+�3)
( (µ1µ2)
(�1+�2)

+ (µ1µ2)
(�3+�2)

) C
(�1�2�3)

( µ1

(�1+�2)
+ µ2

(�3+�2)
) + C

(�1�2�3)

4. And use F0 in Formula 26 to solve for the constant C from the normalization

condition:

F0+
(�2+�3+µ2)
(�2+�3)

C
(�2�3(µ1��1))

+ C
(�1�3(µ1+µ2��2))

+ (�1+�2+µ1)
(�1+�2)

C
(�1�2(µ2��3))

+ C
(�2(µ1��1)(µ2��3))

+

C
(�1(µ1��2))

( 1
(µ2��3)

� 1
(µ1+µ2��2��3)

)+ C
(�1(µ1+µ2��2)(µ1+µ2��2��3))

+ C
(�3(µ1+µ2��2)(µ1+µ2��1��2))

+

C
(�3(µ2��2))

( 1
(µ1��1)

� 1
(µ1+µ2��1��2)

)+ Cµ1µ2

�1�3(µ1��1)(µ2��3)(µ1+µ2��1��2��3)
� Cµ1

�1�3(µ1��1)(µ1+µ2��1��2)
�

Cµ2

�1�3(µ2��3)(µ1+µ2��2��3)
+ C

�1�3(µ1+µ2��2)
= 1
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5. After obtaining the value of C use formulas on page 39 from Guo and Hassin

[2012] to find the performance measures (E(X) and Pr(X > 0)).

a) Derive the mean aging times:

E(X): The expected waiting time for an arrival to move to the front position of

Q1.

E(X) = µ2
2

�2�3(�2+�3)(µ2��2��3)
⇤ C

(µ1��1)2
� µ1µ2

�3(µ2��3)(µ2��3)(µ2��2��3)(µ1+µ2��2��3)
⇤

C
(µ1+µ2��1��2��3)2

b) Calculate the probability of the existence of a positive X value:

Pr(X > 0) = 1�F0� C
�1�3(µ1+µ2��2)

� C(�1+�2+µ1)
�1�2(�1+�2)(µ2��3)

� C(µ1+2µ2��2��3)
�1(µ2��3)(µ1+µ2��2)(µ1+µ2��2��3)

c) Perform the same operation for Y.

E[Y ] = (µ1µ2)
�1�3(µ1��1)(µ2��3)

⇤ C
(µ1+µ2��1��2��3)2

Pr(Y > 0) = 1� F0 � C(�2+�3+µ2)
�2�3(�2+�3)(µ1��1)

� C(�1+�2+µ1)
�1�2(�1+�2)(µ2��3)

� C
�2(µ1��1)(µ2��3)

6. Use Equation 27 to calculate W1 (expected waiting time in the queue for a Q1

customer):

W1 = E[X] + Pr(X>0)
�1

7. Use Equation 28 to calculate W2.

W2 = E[Y ] + Pr(Y >0)
�2

Likewise, W3 is calculated.

8. Q1 and Q3 customers have their own dedicated servers and their expected

waiting times can be calculated as:

S1 = W1 +
1
µ1

S3 = W3 +
1
µ2

9. Expression E(S2) is derived as follows:
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Guo and Hassin [2012] define P1 to be the probability of only 1 server being busy

and P2 to be the probability of both servers being busy.

P1 =
C

�1�2�3
( µ1

�1+�2
+ µ2

�3+�2
) + Cµ2

�2�3(�3+�2)(µ1��1)
+ Cµ1

�1�2(�1+�2)(µ2��3)

P2 = 1� C
�1�2�3

1
�1+�2+�3

( µ1µ2

�1+�2
+ µ1µ2

�3+�2
)� C

�1�2�3
( µ1

�1+�2
+ µ2

�3+�2
)� Cµ2)

�2�3(�3+�2)(µ1��1)
�

Cµ1

�1�2(�1+�2)(µ2��3)

Thus the expected waiting time for Q2 customers is:

S2 = W2 +
P1+2P2��1

µ1
�frac�3µ2

�2

Formulas for the Priority Queuing Model in a Non-
preemptive Queueing System

There are n priority classes with arrival rates: �i. And the utilization is calculated

as:

⇢i =
�i
µi

Using Erlang’s delay formula

Wqk: Expected steady state time in the system spent by a type k customer.

Wqk =
Pn

k �kE(S2
k)/2

2(1�ak�1)(1�ak)

Where a0 = 0:

ak =
P

( i = 1)k⇢i
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APPENDIX B

ADDITIONAL DATA ANALYSIS
ON INPATIENT CARE

We provide additional data analysis on inpatient care that might be helpful for

understanding the system dynamics.

Analyzing the Major Diagnostic Categories (MDCs)

We have analyzed the average LOS and volume for each MDC in Figure B.1, the

MDCs are presented in descending order in terms of the volume presented. For

example, the patients from MDC 5 have the highest volume presented and even if

patients from MDC 18 do not present such a high volume, because of their long LOS,

their impact on hospital occupancy is higher.
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Figure B.1: ALOS and volume for each MDC

Arrival Rates

To develop insights on the data-set that is used for sampling in C#, we provide

examples for arrival rates of di↵erent patient sources.

ED arrival rate

We compare the arrivals from ED observed over hours of the day with the Poisson

distribution generated using the empirical means (Figure B.2). It is clear that Poisson

is a good fit and the arrival rates for ED patients are often characterized with a

Poisson distribution in the literature as well (McCarthy et al. [2008], Ozcan [2005]).

Using data from Baystate Medical Center, Kim [2013] shows that the inter-arrival
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rates for ED patients by hour of the day follow an exponential distribution, resulting

in an arrival rate from ED to follow a Poisson distribution.

Figure B.2: Arrivals by hour – 50th percentile

Figure B.3 depicts the annual arrival rate of ED patients over hours of the day

and each day of week:

As can be seen, the time-varying arrival patterns of the patients follow a similar

pattern each day of the week, with peaks around the same hours of the day.

Arrival rate of elective surgeries

The annual patient volume observed for the elective patients over hours of the day

and days of the week is presented in Figure B.4.

As can be seen there is virtually no demand observed on Saturday or Sunday.

Thus unlike ED patients fitting the overall weekly demand to a distribution will not
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Figure B.3: Arrival rate of ED patients on each DOW and hours of the day

be appropriate, instead sampling from the data-set keeping day of week and time of

day e↵ects is more suitable.
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Figure B.4: Arrival rate of elective surgeries

LOS Values

To develop intuition we provide examples on the LOS patterns of two di↵erent MDCs.

For one of them, lognormal is a good fit, whereas for the other MDC instead of a

lognormal, beta distribution works the best. Kim [2013] use lognormal distribution in

order to represent the LOS of patients for the non-ED patients admitted to Baystate

Medical Center. Lognormal is considered to be a good fit for LOS durations for

inpatients in the literature as well (Marazzi et al. [1998], Faddy et al. [2009]). In

our Arena model, we typically use a lognormal distribution as well for characterizing

the LOS of inpatients, however, C# model is developed based on sampling from the

empirical values.
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LOS for patients from MDC 4

For patients from MDC 4, lognormal is a good fit with the expression: -18 +

LOGN(136, 114), with a square error of 0.0027 (as can be observed in Figure B.5).

Figure B.5: Distribution of the LOS (hours) for patients from MDC 4

LOS for patients from MDC 22

Lognormal is not a good fit for patients from MDC 22 as can be observed from Figure

B.6. One of the reasons is that the sample size is extremely low for this specific MDC.

Indeed a beta distribution fits better with the expression: 5+49*BETA(0.938,0.696)

and with a square error of 0.02.
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Figure B.6: Distribution of the LOS for patients from MDC 22

Elective Surgery Patients

We have started our analysis on elective surgeries by studying how the LOS and

volume of scheduled surgeries vary across the days of the week (Figure B.7). As in

many hospitals, there are virtually no elective surgeries performed on the weekends.

The highest number of surgeries are performed on Wednesdays, and the highest LOS

results from surgeries performed on Fridays (apart from the weekend surgeries which

have a very small sample size).

To develop further understanding on elective surgery patterns, we have analyzed

the distribution of surgeries over days of the week based on their APR-DRG severity

of illness. Table B.1 indicates that the majority of the most critical surgeries are

performed on Wednesdays and the least number of these surgeries happen on Thurs-
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Figure B.7: LOS and volume of elective patients presented over days of the week

days. One of the main reasons is that Thursdays have the least number of surgeries

performed, leading to a smaller number in critical surgeries as well.

Table B.1: Percentage of ”APR-DRG Severity of Illness” categories by days of the
week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Extreme 0.18 0.23 0.24 0.14 0.16 0.01 0.03
Major 0.16 0.21 0.23 0.19 0.19 0.01 0.01

Moderate 0.2 0.2 0.25 0.17 0.17 0.01 0
Minor 0.19 0.22 0.19 0.19 0.19 0.01 0
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APPENDIX C

ALGORITHM OF THE
INPATIENT FLOW

SIMULATION MODEL

Logic Behind the C# Simulation Model

Let’s say the simulation is at week 1, day 1, hour 8. The simulation looks at the

historical data for Mondays 8 AM to sample the number of patients from each ad-

mission source (elective surgeries, direct admits...) with a certain MDC (or Daystay

or OBS). This is used to find the number of patients to sample from that MDC in

order to assign the LOS and admit unit value. Based on the admit unit, if there is

a free bed, the patient is assigned a bed, if not the patient joins the queue for that

unit. If the patient needs critical care, they will first visit CVICU, ICU or PICU

(which is based on a discrete probability distribution derived separately for each

MDC) and spend an average amount of time for that specific MDC and finally get

transferred to their discharge unit. Next cycle (hour), before admitting new patients,

the enqueued patients are assigned a bed. The patients are discharged after their
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LOS is completed, on a FCFS basis. The bed is free after the bed turnover time is

completed.

Pseudocode for the C# Simulation Algorithm

for w = 1..52 {For each week in the year} do

for dow = 1...7 {For each day of the week} do

for t = 1...24 {For each hour of the day} do

for i = 1...8 {For each patient admission source} do

Sample number of patients �i,t

Sample MDC of patients M = 1..25

end for

for M = 1...25 {For each MDC type} do

Sample Critical care patients and assign LOS value (Critical LOSM) and

a critical admit unit specific for each MDC.

Sample admit units j = 1..24 (A patient can either be directly admitted

to their intercare bed or if they are critical patients they will first visit

ICU before stepping down to these units).

Total bed requests for unit j in time t is �
0
j,t.

Sample LOS to be spent in unit j LOSj.

end for

for j = 1...24 {Each admit unit} do

for Each patient in the admitted beds do

if TNOW is within discharge window then
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if TNOW � Dtime {If LOS is complete (in FCFS basis)} then

if Dischargedt  Dt {The number of discharges that hour is less

than the discharge capacity} then

Dischargedt++ {Increase the number of discharged patient for

that hour}

Bt++ {Increase the number of available beds after bed turnover

time}

end if

end if

end if

end for

for AU = 1...3 {Each critical admit unit} do

if TNOW � ICU Dtime {If LOS in critical unit is complete} then

Bt + + {Increase the number of available beds after bed turnover

time}

end if

end for

for Each patient requesting a bed or in the queue (in a FCFS basis) do

if Bt � 1 {If there is an available bed} then

if Patient is a critical patient then

ICU Dtime = TNOW + Critical LOSM {Admit patients and

assign discharge time based on the LOS specific for each MDC

category}
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Bt �� {Decrease the number of available beds}

Qt �� {Decrease the queue size if there is queue}

if Bt  0 {If there is no available bed} then

Qt ++ {Increase the queue size if there is queue}

end if

end if

if Patient is not a critical patient or is already discharged from the

ICU then

Dtime = TNOW + LOS {Admit patients and assign discharge

time}

Bt �� {Decrease the number of available beds}

Qt �� {Decrease the queue size if there is queue}

end if

if Bt  0 {If there is no available bed} then

Qt ++ {Increase the queue size if there is queue}

end if

end if

end for

end for

end for

end for

end for
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Algorithm for Prioritized Discharges

To incorporate prioritization of discharges, we have only altered specific parts of the

discharge algorithm as follows:

Algorithm 1 Change in the discharge algorithm for prioritized discharges

if TNOW is within discharge window then
for j = 1...24 {Each admit unit} do
if Qt >= ↵ {Number of patients waiting is greater than ↵} then
Prioritize patients that have a high number of patients waiting to be ad-
mitted
for Each patient in prioritized units do
if TNOW � Dtime {If LOS is complete} then
if Dischargedt  D t {The number of discharges that hour is less than
the discharge capacity} then
Dischargedt++ {Increase the number of discharged patient for that
hour}
Bt + + {Increase the number of available beds after bed turnover
time}

end if
end if

end for
end if
if Dischargedt  D t {If there is still capacity left after discharging patients
with long queues} then
for Each patient in un-prioritized units do
if TNOW � Dtime {If LOS is complete} then
Dischargedt + + {Increase the number of discharged patient for that
hour}
Bt++ {Increase the number of available beds after bed turnover time}

end if
end for

end if
end for

end if
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Algorithm for Early Discharge Policy

We have tried various approaches to improve the bed congestions in Baystate Medical

Center. Our initial approach was based on performing early discharges (note that

this is not the same policy as early-in-the-day discharge policy–EITD). One of the

main motivation for this proposed early discharge system is that, the LOS of a patient

typically involves some non-value added time, due to delays. Thus, the LOS values

we sample from the data-set already include some non-value added times. The main

idea is to align the discharges and the admit times by pushing some of the evening

discharges to the mornings as a result of discharging a subset of patients earlier than

their original discharge time, as the morning are a low time for discharges.

The algorithm behind this early discharge policy is as follows: Between 9 AM

3 PM if a unit’s utilization is over 85%, and if the patients have less than 6 hours

to be discharged, and lastly if the truncated LOS of the patient is still more than

the geometric mean for that specific MDC, then they become candidates for an

early-discharge.

Making early discharges was justified by the fact that only the non-value added

durations were truncated for a small subset of patients, and it did not decrease the

average LOS across the inpatients significantly. Decreasing the LOS of each patient

by 6 hours while keeping the LOS greater than the geometric mean, has led to

significant improvements in waiting times. We have interacted with clinicians to see

what level they would be comfortable with applying. However, the truncated LOS

values can lead to hasty discharges, which may result in readmissions. That is why

this approach was deemed infeasible, and we turned our focus to developing realistic
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discharge policies which would not lead to a worse clinical outcome for patients (like

readmissions).

216



APPENDIX D

ARENA MODEL

Why Did We Model in C# Instead of Arena?

Modeling in Arena and C#, both have their own benefits and drawbacks. Arena

enables a better visualization of the model compared to C#, which can be helpful

in presentations for stakeholders. On the other hand, being able to tailor the C#

code instead of modeling with the “black-box” of Arena allowed us to include all the

details of the complicated patient flow. In terms of computational time, Arena is a

lot faster (each replication takes around 5 minutes) compared to C# model (each

replication takes around 2.5 hours). One of the reasons is that we are using fitted

distributions in Arena instead of sampling from the historical data. Sampling from

historical data instead of using distributions allows us to more easily keep the time of

day and day of week e↵ects. Also, another important consideration is the cost factor,

Arena is an expensive software for companies to invest in. On the other hand, coding

with C# is more burdensome so it requires more labor, increasing expenses. For a

practice implementation, Arena tool might be ideal, however, for research purposes

C# o↵ers more flexibility.
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Logic Behind the Arena Simulation Model

Our analysis presented in Chapter 4 is based on our C# model. However, later we

have developed an Arena model that mimics the C# code, for internal validation

and to be possibly used in our partner hospital. The logic of the Arena model is

explained below:

First we create separate entities for inpatients, observation and day-stay patients

and assign the related attributes:

- Assign MDC for each patient using the discrete probability distributions based

on the empirical proportions.

- Assign the admit unit based on the MDC, again by using a discrete probability

function using the empirical data.

- Assign the LOS as a function of the admit unit and MDC, by using the best

probability distribution fitted to the empirical data.

- Assign the probability that a patient requires critical care based on the MDC

of a patient.

- Assign a deterministic amount of time spent in critical care based on the MDC

of a patient.

Once the LOS of a patient is completed, the patient releases the bed resource

and joins the discharge queue, in which the resource is a hospitalist. The number

of hospitalists every hour is restricted depending on the discharge profile used. The

service time is 1 hour, so the number of hospitalist implies how many discharges are

allowed every hour. The patients release the hospitalist once the service time for the

discharge is over.
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- If the empirical discharge distribution is used, the number of hospitalists is

restricted to be less than empirically observed capacities.

- If we are using the EITD policy, the number of hospitalists is practically infinite.

The hospitalists perform their discharges depending whether or not we employ a

prioritization scheme.

- In the non-prioritized discharge policy, the patients are served on a FCFS basis.

- In the prioritized discharge policy, we assign a priority attribute for units that

have a queue size greater than 2 (assign a lower number value for the attribute

compared to the units with no queues or a lower queue size). And the patients are

served based on a lowest attribute first basis in the discharge process. So the patients

from the units with highest admission queues will be given priority when assigning

the restricted discharge capacity.

The illustration of the Arena model with the prioritized discharge policy is shown

in Figure D.1.

The results of the 10 replications is presented in Table D.1. Even though, the

results do not match precisely with the outputs of the C# model, they follow the

same trend as the C# results. The prioritized discharge policy performs the best,

expanded discharge policy performs better than EITD, but both EITD and expanded

discharge window performs better compared to the C# results. One of the main

reasons for the di↵erence in outputs is that we are sampling from historical data in

C#, whereas we are using distributions fitted to the empirical data in Arena model.

However, as it is discussed in Section 4.5.1 our main motivation of these runs is to
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Figure D.1: Illustration of Arena model

be able to compare and analyze the impact of using di↵erent discharge policies, and

Arena allows us to do that as well.
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Table D.1: Results of the Arena model

Unit 10AM-7PM 10AM-9PM

Empirical Max 10 EITD Priority Max 10
S1500 0.02 0.02 0.01 0.03 0
S2 20.91 14.41 11.37 6.74 11.27
W3 4.57 5.07 3.98 2.56 3.25
S1 3.5 3.45 2.64 3.08 2.31
D6b 1.3 1.07 0.87 0.83 0.7
D6a 2.69 2.9 1.91 1.48 1.72

S3 Onc 2.08 2.19 2.09 1.9 1.92
Adolescents 0 0 0 0 0

InCh (Infants and Childrens) 0 0 0 0 0
PICU 0.33 0.34 0.33 0.29 0.3
ICU 0.02 0.02 0.02 0.02 0.02

CVICU 0 0 0 0.01 0
APTU 2.1 1.74 1.63 1.77 1.28

S4 3.32 3.68 2.31 2.24 2.08
S5 2.16 2.26 1.86 1.25 1.66

S3 MED 0.53 0.64 0.46 0.27 0.34
D5a 5.86 9.8 3.81 4.08 2.81
W4 2.24 2.6 1.93 1.26 1.46

S6400 1.1 1.59 0.72 0.72 0.41
ED 0 0 0 0 0

Surge Area 0 0 0 0 0
PACU 0 0 0 0 0
sum 52.74 51.79 35.93 28.53 31.51

% improvement NA 2% 32% 46% 40%
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APPENDIX E

INITIAL ANALYSIS ON
ONGOING WORK IN
INPATIENT CARE

Initial Results on Limited Discharge Capacity for
Each Unit

As explained in Section 4.9, limiting the number of discharges from each admit unit

to a certain threshold every hour (2 in this case) would result in a more realistic

model, since data analysis has pointed out that there are at most two discharges

that can happen in any unit any hour. We present the results in Table E.1 for one

replication, when we incorporate unit-level constraints to the simulation model. Our

preliminary analysis has shown that this does not significantly or statistically impact

the queue sizes, when discharges are prioritized with these unit level constraints in

mind.
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Table E.1: Impact of restricting the number of discharges on queue size, where
Baseline: 10 AM to 7 PM empirical discharge distribution, DP1: 10 AM-7 PM max
10, DP2: 10 AM-7 PM EITD, DP3: 10 AM-9 PM max 10, DP4: 10 AM-11 PM
max 10, DP5: 10 AM-11 PM EITD, DP6: 10 AM-7 PM Empirical Priority, DP7:
10 AM-7 PM max 10 Priority, DP8: 10 AM-9 PM max 10 Priority, DP9: 24 hour
discharge, DP10: 10 AM-7 PM Empirical Priority with restricted unit level discharge

Admit
unit

BaselineD1 D2 D3 D4 D5 D6 D7 D8 D9 D10

S2 16.46 16.31 16.36 14.81 13.37 13.08 9.75 9.78 8.98 8.01 10.19
W3 4.63 4.44 4.43 3.86 3.41 3.42 2.95 3.00 2.53 2.26 4.12
S1 3.81 3.69 3.67 3.37 3.08 3.02 1.77 1.81 1.67 2.15 0.68
D6b 1.34 1.29 1.20 1.07 0.93 0.90 0.77 0.79 0.66 0.58 0.88
D6a 0.16 0.15 0.14 0.12 0.10 0.10 0.16 0.16 0.13 0.05 0.28
S3 Onc 0.67 0.65 0.60 0.59 0.54 0.51 0.56 0.58 0.53 0.39 0.19
Adolescents 3.74 3.56 3.20 3.15 2.77 2.64 2.23 2.32 2.06 1.84 1.12
PICU 0.11 0.10 0.09 0.09 0.07 0.07 0.07 0.07 0.06 0.06 0.01
APTU 2.00 2.01 1.81 1.85 1.74 1.64 1.95 2.01 1.87 1.19 1.57
S4 2.86 2.88 2.20 2.35 1.99 1.68 1.73 1.93 1.59 1.18 1.80
S5 0.46 0.46 0.33 0.36 0.30 0.26 0.12 0.14 0.12 0.17 0.11
S3 MED 1.80 1.83 1.41 1.55 1.35 1.12 1.21 1.34 1.15 0.72 3.90
D5a 4.40 4.62 2.27 3.00 2.18 1.56 1.66 2.13 1.53 1.00 4.26
W4 3.36 4.06 1.82 2.62 1.85 1.30 2.02 2.44 1.76 0.78 2.20
SUM 45.80 46.05 39.54 38.80 33.70 31.29 26.94 28.50 24.63 20.38 31.30
% im-
provement

NA -1% 14% 15% 26% 32% 41% 38% 46% 55% 32%

Initial Results on Transfers

We incorporate overflow transfers to our simulation (as explained in Section 4.10),

and Table E.2 represents the results for one replication. These results indicate that

the queue sizes are reduced significantly when we perform overflow transfers for units

with a queue size greater than 2. We present the results for the case with transfers

without the prioritized discharges (DP10) and the case both with transfers and pri-

oritization (DP11). The improvement from these policies is extremely substantial.
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Table E.2: Impact of transfers on queue size, where Baseline: 10 AM to 7 PM
empirical discharge distribution, DP1: 10 AM-7 PM max 10, DP2: 10 AM-7 PM
EITD, DP3: 10 AM-9 PM max 10, DP4: 10 AM-11 PM max 10, DP5: 10 AM-11 PM
EITD, DP6: 10 AM-7 PM Empirical Priority, DP7: 10 AM-7 PM max 10 Priority,
DP8: 10 AM-9 PM max 10 Priority, DP9: 24 hour discharge, DP10: 10 AM-7 PM
Transfers without prioritization, DP11: 10 AM-7 PM Transfers with prioritization

Admit
Unit

BaselineDP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP10 DP11

S2 17.06 16.85 16.76 14.87 13.75 13.57 9.90 9.73 8.67 7.36 2.84 0.40
W3 5.24 5.28 5.24 4.35 3.97 4.01 4.21 4.14 3.63 2.77 1.84 0.32
S1 1.38 1.41 1.35 1.11 1.04 1.03 0.70 0.69 0.66 0.67 0.52 0.10
D6b 1.21 1.35 1.18 0.97 0.81 0.80 0.88 0.90 0.72 0.53 0.91 0.77
D6a 0.24 0.25 0.22 0.20 0.15 0.15 0.26 0.27 0.22 0.08 0.31 0.55
S3 Onc 0.21 0.21 0.19 0.19 0.17 0.16 0.19 0.20 0.17 0.12 0.19 0.07
Adolescents 1.32 1.38 1.23 1.17 1.08 1.05 1.11 1.14 0.99 0.81 1.15 0.27
APTU 1.56 1.57 1.46 1.41 1.27 1.26 1.57 1.61 1.44 1.00 1.60 1.58
S4 2.58 2.56 2.12 2.08 1.72 1.56 1.78 1.92 1.50 0.99 1.23 0.22
S5 0.29 0.29 0.22 0.23 0.20 0.18 0.11 0.12 0.10 0.13 0.16 0.25
S3 MED 5.49 5.33 4.45 4.57 4.09 3.63 3.72 4.00 3.49 2.51 1.49 0.42
D5a 10.16 8.32 5.16 5.87 4.81 3.85 3.60 4.34 3.30 2.50 1.22 0.43
W4 2.98 2.66 1.55 2.15 1.53 1.05 1.69 2.16 1.55 0.67 0.88 0.16
SUM 49.73 47.45 41.12 39.16 34.57 32.31 29.72 31.19 26.44 20.13 14.37 5.55
% im-
provement

NA 5% 17% 21% 30% 35% 40% 37% 47% 60% 71% 89%
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APPENDIX F

ADDITIONAL DATA ANALYSIS
ON SURGICAL CARE

Patient Characteristics

We use data from Mayo Clinic spine surgery practice, Rochester MN. Spine surgery

related data involves 2 main OR rooms with 6 surgeons who have performed more

than 2500 number of surgeries over a 5 years horizon over the years 2005 to 2011.

Data available has patient-related, surgery-related and financial information on a

very detailed level. We use these data properties in order to better predict and

model the surgery time that enabled us to create an accurate simulation model that

mimics the OR flow.

The following table summarizes the patient characteristics, their overall propor-

tion and corresponding average surgical durations with the standard deviations.

Clinical characteristics that have a high impact on surgical duration, become vital

in our categorization scheme that we developed using classification and regression

tree analysis, explained in Section 5.4.1.1.

225



Table F.1: Patient characteristics

Characteristics Number of pa-
tients

Mean and stan-
dard deviation
(or 95CI)

Average surgi-
cal duration ±
standard devia-
tion

Gender 2578
Female 1182 45.85% 4.57±2.55
Male 1396 54.15% 4.60±2.66
Age 2,578 57.5±16.4 4.58±2.61
Geographical
location

2,578

Within 5 state 2,232 86.60% 4.50±2.54
Outside 5 state 346 13.40% 5.16±2.93

Table F.2: Clinical characteristics

Characteristics Number of pa-
tients

Mean and stan-
dard deviation
(or 95CI)

Average surgi-
cal duration ±
standard devia-
tion

Fusion 2,468
No 1,208 47% 3.53±2.3
Yes 1,369 53% 5.52±2.50
Number of lev-
els

2,556 2.79±2.60 (0-9)

Deformity 2,578
No 2,417 93.80% 4.42±2.52
Yes 161 6.20% 7.03±2.75
Approach 2,556
Posterior 1,842 71.95% 4.37±2.45
Lateral 112 4.38% 5.45±2.51
Anterior 498 19.38% 4.45±2.48
Staged 106 4.14% 8.18±3.11
Decompression 2,578
No 1,033 40% 3.88±2.43
Yes 1,545 60% 5.06±2.62
Grafting 2,578
No 1,134 43.99% 3.41±2.16
Yes 1,444 56.01% 5.51±2.56
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Time-stamps

This section describes the time-stamps that were an important part of the simulation

model used for outcomes projection.

Beginning of day

The beginning of day duration represents the delay from 7 AM to the OR-enter

time of the patient. Days in OR are set to start at 7 AM so that the patients

can be prepared for the surgery before the incision happens. However, our analysis

has shown that the days typically do not start at 7 AM, as can be seen from the

distribution in Figure F.1. The second peak in the graph is caused by Mondays,

which start late in Mayo Clinic due to surgical fellow training objectives.

Figure F.1: The BOD distribution

Beginning of day distributions are also highly influenced by the surgery durations,

as it is indicated by the figure on the right. For the first cases of the day, the longer

the surgery, the earlier the surgery starts. It is characterized with a negative slope

line. Thus in the simulation, di↵erent BOD distributions are used for each patient
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category. The green dots on the graph indicate the start time of surgeries on late-

start days (Mondays).

OR enter to incision time

Pre-incision (OR enter to incision) time includes all the time required for positioning

the patient and performing anesthetic requirements. Spine surgery requires a longer

pre-incision period, compared to most of the other surgeries. This is mainly because,

the positioning of the patient is much more challenging than most of the other

specialties. For instance, the positioning involves making sure the patients’ head is

at a certain angle, turning the patients while under anesthesia for a posterior surgery

and so on. The surgeon is not required to be present for the preparation of the patient.

Pre-incision time tends to be long even for short surgeries and almost never shorter

than an hour. However, depending on the patients’ clinical characteristics and the

surgery type di↵erent durations are observed. Thus, there is a great variability in

pre-incision times as well.

Incision to closure time

This is the actual skin to skin time, the time that the surgeon is actively performing

the surgery. Because of the variety in types of surgeries performed this time distri-

bution is highly variable as well. 10 patient groups described previously are a good

proxy for incision to closure times (1 being the one with lowest and 10 being the one

with highest duration).
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Closure to OR exit time

This represents the time for closing the incision, again the surgeon does not necessar-

ily have to be there. It involves closing up of the incision, which can be performed by

a surgical fellow. Closure time is typically short, independent of the type of surgery

performed.

OR cleaning

Even though, in literature mostly a deterministic average value is used for OR clean-

ing our analysis points out that the underlying distribution is highly variable (as can

be seen from Figure F.2). Indeed, it is well approximated by a Normal 2 function,

with a 1st peak around 40 minutes and the second one around 80 minutes.

Figure F.2: OR cleaning time distribution
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In order to ensure the time between surgeries was due to just OR cleaning and

not surgeon related factors, we have only considered the cases for which the initial

surgery’s closure happens before the OR exit of the surgery in the OR room for the

surgeon’s next surgery. For instance we wanted to avoid taking into consideration the

case presented on the left of the Figure F.3, which includes the delay from surgeon

turnover time. However, the figures on the right represent the accurate calculation

of OR turnover time.

Figure F.3: Calculation of OR cleaning time

Scrub time

This time is the turnover time of a surgeon. It is most accurately calculated by the

time between the points when the surgeon is done with the first surgery and the

surgeon is starting the incision of the second surgery whose patient has already been

prepared. Otherwise the calculation is biased, because it involves the durations other

than scrubbing, like doing consults, checking up on patients and so on. Scrub time

of a surgeon is generally short with a mean around 15 minutes.
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APPENDIX G

SENSITIVITY ANALYSIS

We have performed sensitivity analysis through regression models, partitioning

analysis and exploring the optimization framework. Regression and partitioning

analysis were performed in JMP (version 9.01, SAS Institute, 2010). We derive

similar conclusions from these analyses.

Partitioning Analysis

Partitioning analysis (decision tree model) allows us to examine the relationship be-

tween a response variable and multiple possible predictors. The potential predictors

are evaluated using statistical methods and assessed depending on their impact on

the response variable. The data is then split into two groups based on the value of

the predictor (Myles et al. [2004]).

In order to understand the dynamics and the most influential factors, as a part

of our sensitivity analysis, we have performed partitioning analysis. The outputs

of the optimization model were used to create the experimental design. We first

analyzed the most influential factors (overtime limit (o), case-mix bound width limit
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(b), weight assigned to utilization (omega), enforced percentage of Medicare patients

(m) and planning horizon(T )) for the 3 main output measures: normalized NOI,

access and utilization.

Depending on the results of the initial decision tree analysis, and utilizing the

ranges that the parameters were the most influential, we created experimental groups

that reflect the impact of these factors on the three main outcome measures: access,

utilization and NOI. We use these groups in order to conduct new experiments and

run the optimization model over these specific parameter ranges and generate an

unbiased data-set for the partitioning analysis.

We now summarize our findings for the key output measures:

Access analysis

Figure G.1 indicates that the most significant factor that influences access is the

limit on case-mix bound width. The first split depends on whether this limit is less

than or greater than 40% (Average increase in access changes from 12% to 21%).

Overtime limit is the second most influential.

Thus, the impact of bound-width limit is higher than the overtime limit, in terms

of improving the access. The reason is that access is directly linked to the number of

surgeries, so as the surgery length decreases, more surgeries can be performed in a

day. So shorter the surgeries, the higher the access. Thus, relaxing the constraint on

bound-width limit allows the model to perform more of these surgeries, by allowing a

flexible case-mix. Increase in overtime limit does not significantly increase the access.
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This is because, longer days are not necessarily linked to more surgeries, they can

be the result of very long single surgeries.

Figure G.1: Partitioning for access

NOI analysis

The primary factor that a↵ects NOI is the overtime limit, as can be seen from

Figure G.2. If the overtime limit is over some threshold (40%), the impact of case-

mix bound width limit becomes significant. Surprisingly, weight assigned in the

objective function does not significantly impact the normalized NOI.

Higher NOI is a result of longer surgeries, since these are the more complex

patients with longer hospitalization periods. And the longer the LOS, the higher

the revenue. Thus, if the days are allowed to end later, the optimization will assign

longer surgeries resulting in a higher NOI. However, even if relaxing the overtime

limit will improve NOI, longer surgeries (patients from higher numbered categories)
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also occur more rarely than shorter surgeries. So the bound width limit is a limiting

factor as well, however, has a lower impact on NOI.

Figure G.2: Partitioning for NOI

Utilization analysis

The primary factor that a↵ects utilization is the overtime limit (Figure G.3). The

higher the overtime limit, the higher the prime-time period utilization. The utiliza-

tion can be increased within a wide range of case-mix bound widths. The longer

surgeries are not necessarily what drives a higher utilization, di↵erent combinations

of surgery pairs can result in a high utilization as well. As long as these pairs increase

the length of surgical days, they will have the same impact as long surgeries. So the

bound width limit is not as restricting when trying to achieve a high utilization.

We have also observed that what drives NOI also drives utilization. However, a

high utilization rate does not necessarily imply higher access, since access is primarily

234



Figure G.3: Partitioning for utilization

influenced by the limit on bound width and long surgical days are not necessarily a

result of a greater number of surgeries.
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Regression Analysis

Regression analysis is typically used to estimate the relationship between a depen-

dent variable (access, utilization and NOI) and the independent variables (utilization,

overtime and case-mix bound width limit, enforced Medicare percentage, planning

horizon). Thus, regression analysis enables us to test how the dependent variable

changes when the independent variables are varied, while the other independent vari-

ables are fixed (Kleinbaum et al. [2013], Kutner [1996]). Partitioning and regression

analysis led to similar conclusions in terms of the relationship among constraints and

output measures.

Access analysis

The results presented in Table G.1 and Figure G.4 show that weight assigned to

utilization, overtime and case-mix bound width limit has a significant impact on

access (number of surgeries performed). There is a positive correlation between the

percentage of overtime and case-mix bound width with the increase in access. On

the other hand, planning horizon and percentage of Medicare patients do not.

Table G.1: Parameter estimates for access

Term Estimate Std Error t Ratio Prob> |t|
Intercept 0.1299109 0.007672 16.93 <.0001*

Planning Horizon 0.0001462 0.00005 2.93 0.0038*
medicare proportion -0.023457 0.017746 -1.32 0.1879
OverTime ( 5PM) 0.0804239 0.008114 9.91 <.0001*

Case-mix bound width 0.0285461 0.0014 20.4 <.0001*
Weight 0.0311085 0.006511 4.78 <.0001*
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Figure G.4: Regression analysis for access

NOI analysis

Regression analysis indicates that NOI is influenced by all of the independent vari-

ables except for the planning horizon (Table G.2 and Figure G.5). Out of the three

output measures only NOI is influenced by the enforced Medicare percentage, since

di↵erent reimbursement policies have a significant impact on revenue.

Table G.2: Parameter estimates for NOI

Term Estimate Std Error t Ratio Prob> |t|
Intercept 0.7486846 0.022687 33 <.0001*

Planning Horizon 0.000364 0.000148 2.47 0.0146*
medicare proportion -0.537294 0.052478 -10.24 <.0001*
OverTime ( 5PM) 0.1051077 0.023993 4.38 <.0001*

Case-mix bound width 0.0197918 0.004139 4.78 <.0001*
Weight -0.156976 0.019252 -8.15 <.0001*
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Figure G.5: Regression analysis for NOI

Utilization analysis

Table G.3 and Figure G.6 show that utilization is primarily influenced by overtime

and case-mix bound width limit. Weight assigned in the objective function, planning

horizon and percentage of Medicare patients do not have a significant impact on

utilization.

Table G.3: Parameter estimates for utilization

Term Estimate Std Error t Ratio Prob> |t|
Intercept 0.7248899 0.011331 63.97 <.0001*

Planning Horizon 0.0001741 7.37E-05 2.36 0.0193*
medicare proportion -0.032645 0.02621 -1.25 0.2146
OverTime ( 5PM) 0.0745261 0.011983 6.22 <.0001*

Case-mix bound width 0.0153224 0.002067 7.41 <.0001*
Weight 0.0259018 0.009616 2.69 0.0077*
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Figure G.6: Regression analysis for utilization
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