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ABSTRACT

BEAM STEERING CONTROL SYSTEM FOR LOW-COST PHASED
ARRAY WEATHER RADARS: DESIGN AND CALIBRATION

TECHNIQUES

MAY 2014

RAFAEL H. MEDINA SANCHEZ

B.E.E., UNIVERSIDAD TECNOLOGICA DE BOLVAR

M.Sc., UNIVERSITY OF PUERTO RICO MAYAGUEZ

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David J. McLaughlin

Phase array antennas are a promising technology for weather surveillance radars. Their

fast beam steering capability offer the potential of improving weather observations and ex-

tending warning lead times. However, one major problem associated with this technology

is their high acquisition cost to be use in networked radar systems. One promising tech-

nology that could have a significant impact in the deployment of future dense networks

of short-range X-band weather radars is the “Phase-Tilt Radar”, a system that uses a

one-dimensional phase scanned antenna array mounted over a tilting mechanism. This

dissertation addresses some of specific challenges that arise in designing and implement-

ing air-cooled, low-cost, one-dimensional phased antenna arrays for phase-tilt radars. The

goal of this work is to develop methods that can lead to reduce the cost and enhance the

performance of this type of systems.

Specifically, the thesis focuses on three concrete areas. The first one is on the develop-

ment of a versatile low-cost beam steering system that can enable dual-polarimetric phased

array radars to operate with high-frequency repetition pulses, difference pulsing schemes,

vii



and modern scanning strategies. In particular, the dissertation will present the development

of critical components and describes the concept of operations of the beam steering system.

The second area is to develop a calibration technique for small phased arrays. The

work focused in finding the calibration settings for the array that best fit to the desired

excitation. The technique provides lower random errors than conventional approaches,

enabling the implementation of radiation patterns with sidelobes closer to the desired level.

Additionally, the technique is extended to solve the gain-drift problem occurring in the

two-way antenna pattern due to the temperature changes.

The third area studies the use of mutual coupling as signal injection technique to main-

tain the calibration of both array and radar. Future air-cooled phased array radars will

require the use internal circuitry to calibrate the aspect of the radar that tends to change

over time. In particular, this work is focused on developing low-cost calibration techniques

to correct the antenna gain and radar constant from effects of temperature changes and

element failures.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Long range S-band weather radar networks have been in use for many years, and al-

though they have proved to be extremely useful for weather forecasting and warning service,

their ability for observing severe and hazardous weather phenomena in the lower part of the

atmosphere (< 2 Km) has been limited [1]. Part of the problem is caused by the Earth‘s

curvature and terrain-induced blockage, which prevents these systems from observing more

than 50% of atmosphere below 2 km altitude above ground level [2]. Another difficulty

is that current systems provide slow volume scan update time and observations with low

spatial resolution. In general, today’s long-range radars cannot detect the formation and

full vertical rotation of most tornadoes; also they cannot provide accurate estimation of

precipitation near the ground.

The Engineering Research Center (ERC) for Collaborative and Adaptive Sensing of the

Atmosphere (CASA) was established in 2003 with the vision of researching a new technol-

ogy that could improve the observation, detection, and prediction of weather events at the

lower atmosphere. CASA proposed a revolutionary technology, based on a dense network

of short-range dual-polarized X-band weather radars, that can operate collaboratively and

adaptively to sense the atmosphere [3]. The use of various short-range X-band radars can

overcome the problems of blockage due to the Earth’s curvature and enable high spatial and

temporal resolution observations. The center proved the concept by installing four small

radars in a research network in Oklahoma, each radar using a mechanically scanned an-

tenna with a magnetron transmitter. The network served to demonstrate the technology of

adaptive scanning and high-resolution observations of precipitation, providing scan update

times at intervals of one minute or less. The next step in the evolution of this technology

is to improve radars using active electronically scanned antennas (also called phased array
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antennas). Advantages obtained from phased array radars (PAR) over the mechanically

scanned radar include rapid beam steering, adaptive scanning, multifunction capability,

and graceful degradation.

Phased arrays offer significant technical advantages compared to other types of radar

systems. Their benefits have been extensively proved in military applications for many

years. However, their use in civil applications has been limited because of their high cost.

Although recent advancements in microwave technology have made phase-array components

more affordable, there remains much more to be done in terms of reducing their cost and

the cost of processes that are used to form arrays, if such technology is to be used in future

networked radar systems. Because of phased array benefits, the weather radar community

has recently started to invest time and resources into this technology. Currently, there is

an ongoing project in the United States that involves multiple government agencies and

academic institutions to study the possibility of updating multiple currently civilian radar

systems (around 500 radars) with a single network of long range Multifunction Phased Array

Radars (MPAR), reducing $3 billion in life cycle cost [4]. Preliminary studies indicates

that the cost of a full MPAR system (single node) will be approximately $11.5 million [5].

Although the implementation of an MPAR network may bring many benefits, the system

still has the limitation of providing of reduced coverage in the lowest 3 km of the atmosphere.

CASA offers an alternative approach to MPAR, the center visualizes that a dense net-

work of 10,000 small phased array radars at 30 km radar spacing may be required to provide

nationwide coverage at 30 km radar spacing. CASA argues that “such network have the

potential to supplement, or perhaps replace large radars” [3]. However, for this concept to

be economically feasible alternative, radars need to be built at dramatically lower cost than

current phased array systems. A special challenge is to develop these radars commercially

at a cost of U.S $50 k per unit (U.S $200 k four per node). To meet the cost criteria,

different architectures for realizing electronically steered arrays have been evaluated includ-

ing frequency-phase, phase-tilt and phase-phase technology. CASA demonstrated through

a feasibility study [6] that both cost and performance requirements can be achieved us-

ing a phase-tilt radar. This type of system uses a one-dimensional phase antenna array

mounted over a tilting mechanism. Such configuration will allow radars to perform elec-
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tronic scanning in azimuth direction and mechanical scanning in elevation direction. Some

of the features that this technology should have, includes small-aperture, low power, dual-

polarization elements, low profile, and lightweight. Some established specification for these

systems are described in Table 1.1. Their small size and low weight will allow them to be

mounted on small towers having small footprints or used on existing infrastructures such

as communication towers and rooftops, reducing potentially infrastructure costs.

Table 1.1: Key Radar specifications [7].

Parameter Value

Operating frequency 9.3 GHz

Antenna size 1 m x 1 m

Antenna beamwidth 2o x 2o

Maximum range 30 km

Power 10 W to 100 W

Azimuth scan range ± 45o

Elevation scan range 0-56o

The first part of this dissertation presents the development of a beam steering network

that enables the development of low-cost, one-dimensional phased antenna arrays for future

phase-tilt weather radars. Beam steering networks are systems that control the shape and

direction of the formed beam by controlling the gain and phase of radiating elements. They

are also the most expensive system in a phased array because they require the replication

of the RF subunits that control the gain and phase of each element. The RF subunits are

typically known as Transmit/Receive (T/R) modules, active components whose functions

are controlled by amplifiers, phase shifters, and attenuators. Phased array systems are ex-

pensive because of the number and high cost of T/R modules populating the antenna. T/R

module costs can make up about 50% of overall phase array costs [8, 6]. Another key com-

ponent in the construction of beam steering networks is the RF distribution network. These

components have the function of splitting/combining the signal that is transmitted/received

from T/R modules. A beam steering system also requires communication interfaces and

digital control units at level of T/R modules to translate the commands sent from the

beam steering computer into control signals that can interpreted by attenuators and phase
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shifters. One goal of this dissertation is to reduce cost and improve beam switching speed

of phased array radars. This will be done by working in three areas. The first one is to

use high levels of system integration and low cost manufacturing process. The second one

is to design a low-cost high-speed communication interface capable of reducing intercon-

nect complexity. The third one is to design a fast control architecture for T/R modules.

In addition, cost is also reduced by using low-cost T/R modules that operate in alternate

polarization.

The second part of the dissertation presents a calibration technique for small phased

arrays. For successful beam shaping and beam steering in phased array radars, it is im-

portant to precisely set the gain and phase of each element. Precisely settings can only be

obtained if the array is calibrated in advance. The purpose of the calibration is to com-

pensate the amplitude and phase differences among radiation elements, while allowing the

implementation of the desired excitation function. Amplitude and phase differences can

occur due to natural variance of different RF hardware connected to each element. Also,

amplitude and phase characteristic of T/R modules depend on temperature and usually

tend to change in time. Calibration is necessary because it reduces the array errors, which

in turn, leads to the implementation of radiation patterns with very low sidelobes. The

smaller the array errors, the closer the implemented radiation pattern to the theoretical

pattern will be. However, in practice, array errors are limited by the quantization errors

and variance of bit error in both attenuators and phase shifters. Conventional calibration

methods correct the problems associated with theses errors by using calibration look-up

tables in T/R modules. Although these methods have been effectives in the calibration of

arrays, they do not always provide the best settings to be set in the attenuators and phase

shifters. The goal of the second part of the dissertation is to achieve calibration errors

close to the theoretical minimal than can be achieved in an array. In turn, it will allow the

implementation of more ideal radiation patterns. All the above will be done by means a

calibration algorithm that will search for the attenuator and phase shifter settings that best

fit to desired excitation. Techniques to predict the radiation patterns and to compensate

the two-way antenna gain loss due to temperature changes are also presented.
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The last part of the dissertation studies various techniques to monitor and calibrate

phased array systems in the field. Phased array systems have long been recognized by their

high reliability [9, 10, 6]. They can operate with a certain number of failed elements and

support a wide range of temperatures. However, failures and temperature fluctuations are

aspects that affect the performance of radars. The effect of failures is to reduce the effec-

tive radiated power and raise sidelobes, while temperature tends to produce fluctuations

in the transmit power and receive gain of phased arrays. In order to avoid errors in the

measurements, phased array radars use internal calibration procedures to maintain their

calibration. Typically, internal calibration is performed using a calibration loop, a system

based on directional couplers that can measure the individual characteristics of each element

[11]. Other methods use mutual coupling measurements as calibration techniques [12, 13].

While the calibration loops tend to increase hardware complexity and cost of phased arrays,

the mutual coupling techniques stand because their simplicity and low hardware require-

ment making them suitable for low-cost phased arrays. In the literature, mutual coupling

techniques have been discussed as techniques to maintain the calibration of radiating ele-

ments and to diagnose failures. However, their use in the calibration of radar parameters

have not been reported or covered. The goal of the last part of the dissertation is to develop

low-cost methods to calibrate the antenna gain and radar constant from variations caused

by temperature changes and element failures. This will be done by using two different

methods, both based on results of mutual coupling measurements obtained from passive

elements within the array aperture. Techniques to maintain the element calibrations and

to predict the radiation pattern in the field are also presented.

1.2 Problem Statement

This research aims to address some of the unique and specific challenges that arise in

designing and implementing air-cooled, low-cost, one-dimensional phased array antennas for

short-range X-band weather radars. Specifically, the research concentrates on the design

of a beam steering system, array calibration, and internal calibration of small low-power

phased arrays. The main goal of this work is to present several various methods that

simultaneously reduce cost and enhance the performance of phased array radar system. This
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leads us to work on three main objectives: At first, develop a versatile low-cost beam steering

control system that will enable operation of dual-polarimetric phased array radars with high

frequency repetition pulses and modern scanning strategies (for example, beam multiplexing

techniques [14]). Second, develop an optimal calibration method for small phased array

having digital attenuators and phase shifters. The method will find the calibration settings

for radiating elements that best fit to desired excitation, providing lower random excitation

errors than conventional approaches. Finally, a study of the use of mutual coupling as signal

injection technique to maintain both array and radar calibration will be investigated. The

study will be focused in the gain calibration due to the effects of temperature changes and

element failures. This research is the first step towards developing of low cost hardware and

calibration techniques for a future networked radar system.

1.3 Dissertation Contributions

This section presents a list of the main contributions of this dissertation, highlighting

three main areas. The first area is the design a beam steering control system for one-

dimensional phased array antennas. The second area is a calibration technique for phased

arrays. The third area is the internal calibration of phased array systems. The following

items summarize the main contribution of this dissertation.

Versatile low-cost beam steering control system for one-dimensional phased

array antennas

• Develop the requirements for the design of a one-dimensional phased array antenna

for low-cost X-band weather radars.

• Design, implementation, and test of T/R modules for an analog beamformer network.

The beamformer will enable the development of low-cost phase array antennas.

• Design of a backplane board to simplify the interconnection between T/R modules and

other radar subsystem. The backplane includes two RF power distribution networks,

a DC bias network, and a control and communication bus. The design reduces wiring

complexity and cost of arrays by integrating various subsystem in a single board

(which simplifies manufacturing process), and by using low cost PCB materials.
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• Design and evaluation of a high-speed heavily loaded communication bus for the

control of T/R modules. The bus is capable of driving up to 32 T/R modules in

parallel using communication speeds up 100 Mbps.

• Design and evaluation of a versatile beam steering control system. The control ar-

chitecture is based on a distributed beam steering system, which consists of a central

controller and several element controllers at the level of each T/R module. The control

differs from others architectures in that element controllers are controlled in paral-

lel and synchronously by the central controller, and that element controllers do not

use arithmetic units to compute the amplitudes and phases. The system has been

designed to supports multiple pulsing schemes.

Calibration Technique for Phased Arrays

• Development of a calibration algorithm that finds the best available settings to im-

plement the excitation function of a phased array. While conventional calibration

technique only use the attenuator and phased shifter states that fit to ideal quantiza-

tion states, the proposed technique takes advantage of the variance of attenuator and

phased shifter states and use the discarded value from conventional technique to in-

crease resolution of calibration data. The proposed method allows the implementation

of radiation patterns with sidelobes that are closer to designed sidelobes.

• Development of a novel open loop calibration technique to compensate the two-way

antenna gain from temperature changes. The method is suitable for air-cooled phase

arrays with transmitters operating under compression. Compensation is performed in

the receive array.

• Demonstrate experimentally the similarity between scanned gain of a phased array

and embedded element pattern. It was shown that the scanned gain is affected by the

ripples created the quantization errors, being more notable this effect in the receive

array than the transmit array.

• Present a method to predict the radiation patterns of a phased array antenna by using

calibration data and the embedded element pattern.

Internal Calibration of Low-Cost Phased Array Systems
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• Demonstrate the use of a monitoring and calibration technique for elements of a phased

array that is susceptible to temperature changes. The technique uses the inherent mu-

tual coupling between active and passive elements as signal injection method to track

and maintain the calibration of active elements. Because of the minimal hardware

requirements and easy implementation, the technique is suitable for low-cost phased

array system.

• Demonstrate a method to estimate the radiation patterns of a phased array from

mutual coupling measurements. The technique is suitable to maintain the antenna

patterns of fielded phased array radars, for example it can be used to estimate the side-

lobe and beamwidth degradation after array maintenance or after diagnosing element

failures.

• Development of a calibration technique based on mutual coupling measurements for

maintaining the internal calibration of low-cost, air-cooled phased array radars. It was

the first time that mutual coupling technique is used to calibrate the radar constant

from variations in the antenna gain and transmit/receive power caused by temperature

changes and failures. The technique eliminates the use of calibration networks and

reduces cost of future arrays.

• Development of a calibration technique based on a deterministic model to maintain the

radar calibration constant of low-cost, air-cooled phased array radars. The model that

takes into account the temperature characteristics of T/R modules and the number of

failed elements presents in array. The model has the advantage that mutual coupling

measurements are not needed to calibrate the gain during precipitation measurement.

1.4 Dissertation Overview

This dissertation describes the design and implementation of a beam steering system for

one-dimensional active phased array antennas, a system that will enable the development

of low-cost solid stated weather radars. It also describes various techniques to calibrate and

maintain the calibration of phased array systems. This thesis is organized as follows.

8



Chapter 2 presents a short description of the basic definitions used in the theory of linear

phased arrays, beamformer network, and radar systems. The correction of the weather radar

equation for use with one-dimensional phased array radars is also presented.

Chapter 3 describes the design and implementation of a low-cost and high-performance

beam steering system for linear phased arrays. A short description of the system archi-

tecture of the CASA phased array antenna is given. This chapter also describes the array

requirements by first describing the radar system requirements. The development of T/R

modules and other array subsystems are also presented. The design of a low-cost hybrid

backplane board that reduces wiring complexity and provides RF signal, bias voltages, and

communication signal to T/R modules is described. The last section describes the design

and implementation of a high-speed beam steering system. Details about system operation,

serial communication, digital commands, and test are given.

Chapter 4 develops a technique to carry out the initial calibration of arrays. The tech-

nique is based on an algorithm that searches in the raw data of each element the best

amplitude and phase settings that minimize the random errors in the excitation. This

chapter provides the theory and experimental demonstration of the calibration technique

in 64 element active phased array. The scanning performance of several array parame-

ters including sidelobes, beamwidth, and beam positioning error are shown. In addition, a

technique to calibrate the two-way antenna gain due to temperature changes is presented.

Chapter 5 presents several techniques based on mutual coupling measurements that can

be used to maintain the calibration of phased array systems. These techniques are suitable

for small low-cost phased array radars due to their reduced cost, easy implementation,

and accuracy. This chapter evaluates the use and limitations of mutual coupling technique

in the monitoring and calibration of radiating elements due to hardware variations and

under the presence of temperature effects. Lastly, two calibration techniques for estimating

and correcting the radar constant due to antenna gain variations are presented. Effects

of temperature changes and T/R module failures on the antenna gain of a receive phased

array antenna isalso studied.

Finally, chapter 6 summarizes the conclusions obtained in this work.
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CHAPTER 2

FUNDAMENTALS OF PHASED ARRAYS

2.1 Introduction

Phased array antennas can adopt a number of different configurations, including linear,

planar, and circular. This work focuses on linear active phased array antennas whose unit

cell is formed by a subarray of radiating elements, each fed by a transmit and receive module

that can provide amplitude and phase control. Linear phased arrays use the progressive

phase excitation between the elements to scan the antenna beam electronically over one-

dimension, while using the element amplitude distribution to control the pattern shape. The

main advantages offered by phased arrays over conventional systems are increased scanning

speed, high reliability, and multifunction capability. These advantages make the use of

this technology the most logical choice for the next generation weather radars. The use of

linear active phased arrays as a component of future low-cost weather radars is the major

motivator of this work; consequently, this chapter is dedicated to explain the basic concepts

related to the theory of linear phase arrays and how their characteristics can be used in a

radar system.

2.2 Linear Array

Typical configurations used in arrays that perform electronically scanning in one dimen-

sion are shown in Figure 2.1. The array elements can be individual radiators, as shown in

Figure 2.1a, or they can be subarray of radiators, as illustrated in Figure 2.1b. In general,

the excitation of each array element is controlled in amplitude and phase by attenuators

and phase shifters. In addition to the excitation control on each element, there is a relative

phase shift between the waves arriving at the element due to their position in the space and

the angle of arrival of the wave. Under the assumption that all radiating elements have the
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Figure 2.1: Array configuration of one-dimensional phased array antennas. a) Single ele-
ments. b) Columns of elements

same element pattern, the far-field array pattern is the summation over all N-elements of

element patterns adjusted by the excitation control and incremental phase shift in space of

each element, that is

f(θ, φ) = f0(θ, φ)
N∑
n=1

Vne
jnkdxsin(θ)cos(φ) (2.1)

where f0(θ, φ) is the common radiation pattern to all elements, Vn is the complex excitation

assigned to each element, k is the free-space propagation constant at the operating frequency,

and dx is the element spacing in x-direction. The pattern f(θ, φ) is maximum when the

far-field contribution from the elements add in-phase. This occurs in the direction (θ0, 0)

by choosing the excitation coefficient , Vn to be

Vn = Ane
−jnkdxsin(θ0) (2.2)

This implies that the attenuator and phase shifter at each element must be adjusted to

set the amplitude An and phase αn = −nkdxsin(θ0). In general, the aperture amplitude

distribution controls the beam shape of the pattern, while the phase distribution controls

the pointing direction of the main beam.
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2.2.1 Directive Gain

The directivity is the characteristic of an antenna that describes how much it concentrate

energy in one direction in preference to radiation in other directions. By definition, the

directivity is given as the ratio of the radiation intensity in a certain direction to the average

radiation intensity, or

D(θ, φ) =
U(θ, φ)

Uave(θ, φ)
=

|f(θ, φ)|2
1
4π

∫ ∫
|f(θ, φ)|2sin(θ)dθdφ

(2.3)

where f(θ, φ) is the normalized field pattern of the antenna. Although the above expression

gives the antenna directivity at any angular position, the maximum directivity is the value

that is used to describe the directive of an antenna, which is defined as

D(θ, φ) =
4π∫ ∫

|f(θ, φ)|2sin(θ)dθdφ
(2.4)

Also from 2.3 in 2.4, one can see that

D(θ, φ) = D|f(θ, φ)|2 (2.5)

For a linear array of N equally spaced isotropic elements, the maximum directivity [15]

is given by

Da =
|
∑N

n=1An|2∑N
n=1

∑N
m=1 VmVne

j(n−m)kdxsin(θ0)sinc((n−m)kdx)
(2.6)

where sinc(x) = sin(x)/x. This expression shows that directivity is a function of the

aperture amplitude distribution, the element spacing, and scan angle. In the particular

case that the element spacing is close to λ/2 (λ= wavelength), the maximum directivity

reduce to (for θ0 = 0)

Da =
|
∑N

n=1An|2∑N
n=1A

2
n

(2.7)

The maximum value that can be obtained from above expression is N , and occurs when all

elements have the same amplitude coefficient.
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For large planar arrays with a separable aperture distribution, the directivity [16] is

approximately given by the following expression

Da(θ0) = πDxDy cos(θ0) (2.8)

where Dx and Dy are the directivities corresponding to linear arrays with isotropic elements

in the x-direction and y-direction. When scanning to an angle θ0, the directive gain is

reduced to that of the projected aperture. It should be noted that this expression is valid

only for array with not visible grating lobes.

2.2.2 Realized Gain

Theoretically, the realized gain is equal to the maximum directivity reduced by the

radiation efficiency and losses due to impedance mismatches. However in practice, the

realized gain is also affected by the inherent mutual coupling between elements. This effect

modifies the element impedance and produces mismatch losses between T/R modules and

elements. These losses can be taken into account in terms of the reflection coefficients seen

into a typical element (i.e central element) when the entire array is excited [17, 16, 18].

In this case, the realized gain and directivity for a large phased array that scan in one

dimension are related to each other as

Gr(θ0, 0) = εr|f0(θ0, 0)|2(1− |Γ((θ0, 0)|2)DeDa (2.9)

where εr is the radiation efficiency, f0(θ0, 0) is the normalized field pattern form an isolated

element, Γ(θ0, 0) is the active reflection coefficient of a typical element, D is the array

directivity, and De is the element directivity, defined as

De =
4πdxdy
λ2

(2.10)

in (2.9), the reflection coefficient varies as a function of the scan angle because the resulting

impedance mismatch from the mutual coupling depends on the element excitation.
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Now, considerer the case when a single element is excited and all other elements are

terminated match loads. The array directivity is equal to unity. From 2.9, the realized gain

reduces to

g0(θ0, 0) = ε|f0(θ0, 0)|2(1− |Γ((θ0, 0)|2)De (2.11)

This is the realized gain for a single element in a large array, sometimes called active

element pattern or embedded element pattern. The above expression shows that the mutual

coupling, which is implicit in the active reflection coefficients, alters the radiation power

pattern of the isolated element. Comparison with (2.9) shows that

Gr(θ0, 0) = g0(θ0, 0)Da (2.12)

If the array is large enough that the individual element pattern are approximately iden-

tica, then the expression shows that gain of the fully excited array is equal to gain of a

single element augmented by the directivity of the array. Other way to represent the eq.

2.11 is substituting the element realized gain by the multiplication of normalized element

pattern, the element directivity, and radiation efficiency, that is

Gr(θ0, 0) = g0n(θ0, 0)εrDeDa (2.13)

where g0n(θ0, 0) = g0(θ0, 0)/g0(0, 0). This formula shows that the array realized gain de-

pends on the shape of normalized element pattern, therefore if the element pattern has dips

or nulls at particular angles, it can be concluded that the full array will have drops in gain

when scanned to these angles.

2.2.3 Half-Power Beamwidth

The beamwidth is defined as the angular separation of the points where the main beam

of the power pattern equals one-half. In a phase array, this parameter can be controlled

by choosing the adequate element amplitude distribution. In general, the principal plane

beamwidths of a rectangular array at broadside are given by
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θ3,br =
0.8858Bxλ

Nxdx
(2.14)

φ3,br =
0.8858Byλ

Nydy

where θ3,br is the beamwidth on the x− z plane, φ3,br is the beamwidth on the y− z plane,

Bx and By are the beam broadening factors when tapered aperture distributions are used.

While in a uniformly illuminated array this factor is equal to unity, in a -25 dB Taylor

distribution the factor is equal to 1.2.

For other scan angles, the beamwidth increase approximately as 1/cos(θ0). In the case

of a linear array having phase shifters along the x-axis, the beamwidth on the x− z plane

varies as

θ3(θ0) =
θ3,br
cos(θ0)

(2.15)

while the beamwidth in the orthogonal plane is constant.

2.2.4 Half-Power Beamwidth for Two-Way Patterns

The radiation patterns obtained from a phased array radar is not always same while

transmitting and receiving in the direction of the target. For example, in transmit the

array may use an uniform illumination for transmitting the maximum power available in

transmitter, and then in receive use a tapered illumination for controlling the total sidelobes

in the two-way pattern. In this case, the half-power beamwidth resulting from multiplication

of two is given as

θ2w3 =

√
θ23txθ

2
3rx

θ23tx + θ23rx
(2.16)

where θ3tx and θ3rx are the one way half-power beamwidth for transmit and receive patterns

in the x − z plane, respectively. Now, in an antenna that has similar patterns in transmit

and receive, the beamwidth for one-way and two-way patterns are related as

θ1w3 =
√

2θ2w3 (2.17)
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From 2.16 in 2.17, one can see that

θ1w3 =

√
2θ23txθ

2
3rx

θ23tx + θ23rx
(2.18)

This is the equivalent half-power beamwidth that would be produced by a linear array when

it transmits and receives with the same radiation pattern. Similarly, if θ3 is substituted by

φ3, 2.18 can be used to determine the beamwidth in the orthogonal plane φ1w3 .

2.2.5 Gain of Active Beamformers

Figure 2.2a depicts a linear array of N-elements configured in transmits. Considerer

that each branch has a complex signal gain gn and that N-way power divider is lossless and

has equal phase in the output terminal. The power divider splits the input power in N

equally portions, where the voltage coupling coefficients is C = 1/
√
N . Thus, the output

power at each antenna element is Poun,n = g2nPin/N . Now, the total power available in the

antenna output is

Pout =
N∑
n=1

Pout,n =
N∑
n=1

g2nPin
N

=
Pin
N

N∑
n=1

g2n

Hence, the power gain for a transmit beamformer is given by

GBF,tx =
Pout
Pin

=

∑N
n=1 g

2
n

N
(2.19)

In the case that all branches have the same signal gain g, the beamformer gain is equal

to that of the single branch GBF,tx = g2.

Now, consider the case of linear array configured in receive, see Figure 2.2b. The total

power received in the antenna aperture, Pin, is equally distributed among all array elements

as Pin/N . The received voltage at each radiating element is Vin =
√
Pin/N . This signal is

amplified and then coupled to the output port Vout,n = gn
√
Pin/N . The combination of all

power in the output yields

Pout = |
N∑
n=1

gn

√
Pin
N
|2 =

Pin
N
|
N∑
n=1

gn|2
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Figure 2.2: Beamformer networks. a) Transmit array. b) Receive array

the ratio of powers gives the total power gain, which is given as

GBF,rx =
Pout
Pin

=
|
∑N

n=1 gn|2

N
(2.20)

In the case that all branches have the same signal gain g, the beamformer gain is equal to

that of the single branch GBF,rx = g2.

2.2.6 Total Power Gain of Active Phased Arrays

The power gain of an array is by definition associated to the array directivity and antenna

efficiency. However, this concept does not consider that an active phased array has a gain

associated to the array beamformer. The effect of this gain is to increase the radiation

intensity in the space when the array is used as transmitter, or to increase the received

power when the array is used as a receiver. Because of this effect, it results appropriate to

redefine the antenna gain to take into account the beamformer gain.

Consider a transmit array as the one depicted in Figure 2.2a. The radiation pattern

generated by an array having isotropic element at distance r is given by

f(θ, φ) =
ejkr

4πr

N∑
n=1

gnVin√
N

ejnkdxsin(θ)cos(φ)
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The maximum radiation intensity in the far-field will occur when all the fields radiated

by the element are in phase. This values is proportional to

Umax = |fmax(θ, φ)|2 =
1

4πr2

(
N∑
n=1

gnVin√
N

)2

The maximum gain is obtained as

Ga =
4πr2Umax

Pin
=

(∑N
n=1

gnVin√
N

)2
V 2
in

=

(∑N
n=1 gn

)2
N

(2.21)

In the special case that all branches have the same gain g, the total gain is Ga = Ng2 = Dg2,

since directivity is D = N in an uniformly excited array. This result shows that the gain

in an active phased array is augmented by the gain of the beamformer. (2.21) can also be

obtained by multiplying the array directivity and the beamformer gain, that is

Ga = DaGBF (2.22)

where Da is given by (2.7) replacing An = gn. Consequently, the total gain for a transmit

array can be obtained using (2.7) and (2.19) in (2.22)

Ga,tx =

(∑N
n=1 gn,tx

)2
∑N

n=1 g
2
n,tx

∑N
n=1 g

2
n,tx

N
=

(∑N
n=1 gn,tx

)2
N

(2.23)

this is analogous to the expression given in (2.21).The above procedure can also be used

to compute the gain for the receive array. But first, it should be note that in Figure 2.2b

all radiating elements receive the same current. This means the array is receiving with

an uniform illumination before the beamformer. Consequently it is assumed that D = N .

Using this value and (2.20) in (2.22), one can see that

Ga,rx = N

∑N
n=1 g

2
n,rx

N2
=

(∑N
n=1 g

2
n,rx

)
N

(2.24)
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giving a similar expression to that obtained in (2.21). Although the beamformer gains for

transmit and receive array have been defined differently, the expression for the total gain

are similar.

It should be pointed out that equations (2.21),(2.23), and (2.24) represent the ideal gain

of an array and not the realized gain, which includes the term of impedance mismatch or

element pattern. Since we know the effect of the beamformer gain is to increase the array

gain, the realized gain in (2.13) can be written for transmit array and receive array as

Gr,tx(θ0, 0) = g0n,tx(θ0, 0)εr(DeDxDy)GBF,tx = g0n,tx(θ0, 0)εrGa,tx (2.25)

Gr,rx(θ0, 0) = g0n,rx(θ0, 0)εr(DeDxDy)GBF,rx = g0n,rx(θ0, 0)εrGa,rx (2.26)

where

Ga,rx(θ0, 0) = DeDy

(∑N
n=1 gn,rx

)2
N

(2.27)

Ga,tx(θ0, 0) = DeDy

(∑N
n=1 gn,tx

)2
N

(2.28)

The above expressions are given for a linear array with column of elements (see Figure

2.1b ). In the cases of single radiating elements, Dy is unity.

2.3 Radar Systems

Radars are systems that are capable of measuring the distance, velocities, and transversal

area of objects. Their working principle is based on the transmission of radio waves at a

specific direction in the space and use the returned signal from the illumined scene to

estimate the target properties. The time delay, frequency shift or signal amplitude are

some of the signal characteristics that are used to measure the distance, velocities, and

reflectivity of targets. There are various kinds of radar systems for different purposes. For

weather sensing, the Pulsed-Doppler radar is the most popular system. These systems are

used mainly to locate precipitation, calculate its motion, estimate its category (rain, snow,

hail, etc.), and forecast its future position and intensity.
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2.3.1 Radar Equation for Point Target Return

The radar equation provides a relationship between the transmitted power Pt, the char-

acteristics of the target, and the receiver power at certain distance from the target. For a

point scatter having backscatter cross section σ, the received power Pr at the receiver input

is given [19] as

Pr =
Ptgtgrλ

2σ

(4πr)3r4l2
(2.29)

where Pt is the transmit power, gt is the transmit antenna gain, gr is the receive antenna

gain, λ is the wavelength at operating frequency, r is the target range, and l is the system

loss. For mechanically steered radars with dish antennas, the above equation is valid for all

scan angles in azimuth and elevation direction. Whereas for phased array radars, the equa-

tion is not completely true since the scan losses produced when the beam is electronically

steered off-broadside.

To find the appropriate radar equation for a phased array radar that scans in one

dimension, one must substitute (2.26) and (2.25) in (2.29), this yields

Pr(θ0) =
Ptgt(θ0, 0)gr(θ0, 0)Ga,txGa,rxλ

2σ

(4πr)3r4l2
(2.30)

where the radiation efficiency of antenna has been include in the system losses. It should

be also noted that Pt represents the input power in the transmit array and not the total

transmit power delivered by the phased array as it is established in (2.29). Additionally,

(2.30) shows that received power is a function of scan angle and the element pattern roll-off.

It is obvious that to obtain accurate measurements with this formula, all system parameters

must be measured accurately. Unfortunately, in practice, sometimes some of these parame-

ters are not precisely known (i.e antenna characteristics and losses) and the radar must be

calibrated to obtained the combined effect of these parameters. For example, rearranging

terms, (2.30) can be written as

Pr(θ0) =

(
PtGa,txGa,rx

l

)(
gt(θ0, 0)gr(θ0, 0)λ2σ

(4πr)3r4l2

)
(2.31)
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The first term on the right side of (2.31) contains radar parameters that are typically

unknown and which contribution must be quantified. The purpose of the calibration is to

determine the combined value of this first term. A classical approach of doing this is to

measure the returned power from a reference target of known backscatter cross section and

known range. Using (2.31), the first term can be computed as

Cs =

(
PtGa,txGa,rx

l

)
=

(
(4π)3r4Pr(θ0)

gt(θ0, 0)gr(θ0, 0)λ2σ

)
(2.32)

where Cs is the system calibration constant. Note the measurement must be made when

the array beam is pointing to the direction of the reference target.

2.3.2 Weather Radar Equation

The weather radar equation is an extension of the classical radar equation applied to a

distributed target of many scattering elements. The equation is based on the measurement

of the equivalent reflectivity factor Z of precipitation particles from the average received

power that is returned by a volume target concentrated in the main beam. The expression

is defined as

Z =
1024ln(2)

cπ3

(
λ2l

Ptgtgrτθ3φ3

)(
Prr

2

|K|2

)
(2.33)

where Z is the radar reflectivity (mm6/m3),Pr is the average receive power (W), τ is the

pulse width (s), c=3x108 m/s is the light speed, K=0.93 is the water dielectric constant,

and θ3 and φ3 are the beamwidth of the one-way antenna pattern. Note that in this formula,

the first term on the right side groups a set of constants, the second term groups the radar

characteristics, and the third term groups the target characteristic.

The weather radar equation for a phased array radar that performs scanning in one-

dimension is obtained by substituting (2.15), (2.25) and (2.26) in (2.33), giving

Z(θ0) =
1024ln(2)λ2

cτπ3

(
l

PtGa,txGa,rx

)(
cosθ0

g0n,tx(θ0, 0)g0n,rx(θ0, 0)θ3,brφ3,br

)(
Prr

2

|K|2

)
(2.34)

This is the equivalent reflectivity factor obtained from the volume illuminated by the

antenna at the scan angle θ0. The third term in (2.34) represents the scan loss produced
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by the normalized element pattern and beam broadening effect. When the array uses two

different aperture illuminations in transmit and receive, the beamwidth θ3,br and φ3,br are

the values obtained using (18). The second term represents the system calibration constant

Cs. Finally, it should be pointed out that (34) corrects the reflective factor due to the

scanning loss and broadening effects produced when beam is steered away from broadside,

other effects as field projections [20, 21] are already included in the measured element

pattern. For the case of a polarimetric radar that is tilted in elevation, the reflectivity

factor of each polarization must be corrected by the effect of axis rotation.

The equ. (2.34) can also represented as

Z(θ0) = CR

(
cosθ0

g0n,rx(θ0, 0)g0n,tx(θ0, 0)

)
(Prr

2) (2.35)

where,

CR =

(
1024ln(2)λ2

cτπ3|K|2θ3,brφ3,br

)(
l

PtGa,txGa,rx

)
(2.36)

is the radar constant, a combination of radar system parameters and physical constants

that determines the proportionality factor between the reflectivity of a target at a given

range and received power.

In general, the reflectivity factor is represented in logarithmic units dBZ, that is

Z[dBZ] = Pr[dBm] + CR[dB] + 20log(r[km]) + 10log(cosθ0) (2.37)

−10log(g0n,rx(θ0, 0)g0n,tx(θ0, 0))

This formula corrects the equivalent reflectivity of one-dimensional phased array radar.

The results obtained by using this formula should be the same to the ones obtained from a

mechanically steered weather radar (assuming zero tilt angle)
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CHAPTER 3

BEAMFORMER AND BEAM STEERING CONTROL SYSTEM

3.1 Introduction

Phased array antennas are composed by many subsystems including radiating elements,

TR modules, control electronic, communication interfaces, beam steering computer, RF

distribution networks, DC manifold, cooling systems, built-in-test, etc. It is a common

practice to design independently each subsystem in small modules, which are later used

to construct subarray assemblies or build blocks (sometimes called tile or brick [15]) for

the array. Typically, subsystems in a tile or brick construction are interconnected each

other by mean cables (RF cables, ribbon cables, flex cables, etc). Example of type of

construction in phased array that performs scanning only in azimuth plane are given in

[22, 23, 24, 25, 26]. The advantage of this approach is that each subsystem can be tested for

proper operation before the array integration, avoiding the installation of fail components.

The disadvantage is that the lack of high integration between subsystems increases the

fabrication and assembly process steps and increases wiring complexity and cost. Another

approach for realizing the array assemblies is the fabrication of T/R packs (or panels), blocks

that groups 4, 8, or 16 T/R modules with RF distribution networks and control electronic,

all them fabricated in a high integrated PCB [27, 28]. This approach allows cost reduction

of PCB and assembly, and minimize wiring interconnect. The disadvantage is that the

system is expensive to maintain because to replace a failed module it is necessary to replace

an entire T/R pack. Other disadvantage is that mutual coupling (leakage) between T/R

modules limits the use of built-in test based on mutual coupling injection signal techniques

[29].

This chapter describes the design of a low-cost beamformer network for CASA phased

arrays which uses the concept of backplanes utilized in computer systems. Backplane archi-

tecture reduces wiring connections by allowing many daughter cards (T/R modules) to be

23



inserted in slots of a parallel bus. In this work, the backplane board includes all passive sub-

systems needed by the array, which includes RF distribution networks, DC manifolds, and

communication buses. The design approach reduces cost by reducing the fabrication mate-

rials and simplifying the manufacturing process with the integration of various subsystem

in a single board. In addition, T/R modules are fabricated in individual boards to reduce

maintenance cost and provide low cost replacement parts. They also use their own enclo-

sure to reduce the coupling between adjacent modules, which will allow the investigation of

mutual coupling as a calibration technique.

Short-range phased array radars with adaptive and multifunction capabilities require

flexible hardware that allows the system to adapt the scanning strategy according the

target or weather events. It is desired to have systems that can support programmable

pulse repetition frequency (PRF), pulse width, and dwell time, as well as support dual-

polarization, beam-multiplexing, and adaptive scan. In order to support these capabilities,

the beam steering control system must be fast enough to respond the commands sent by the

beam steering computer, which implies the use of high-speed communication interfaces and

microprocessor cores to calculate the attenuator and phase shifter settings that are required

to implement each beam.

Different beam steering control architectures have been used in phased arrays [30, 31].

All them have in common the use of processing units to calculate the T/R module setting

from a phase gradient (phase increment between element), element position and correc-

tion offsets (constant that corrects the hardware errors). Settings must be calculated for

each beam; in a full polarimetric radar this might include the beams TV, TH, RH, and

RV. Computation is performed either by a central processor or by element processors in

T/R modules or subarray. However, there are some disadvantages associated with these

approaches: They requires fast processing units that can add significantly to the array

cost, the processing time to compute and transfer the settings to the attenuator and phase

shifter imposes constraints to radar parameters (i.e. PRF and pulse width), and the trans-

fer of digital commands during radar operation can interfere with RF signals. To overcome

these limitations, a new beam steering control archicture based on look-up tables and state-

machines was designed. The advantages of this system include: flexibility, reduce cost,
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reduced wiring connection, high speed communication (higher that conventional system),

minimize interference with RF signals, and allow high speed beam switching at very high

PRFs and short pulse widths.

This chapter is organized as follow: Section 2 gives an overview of the array architec-

ture proposed for CASA to developed phased array systems that meet the cost criteria

for implementing low-cost low power X-band weather radars. Section 3 develops the sys-

tem requirements for the beamformer network and beam steering control system of the

array. Section 4 describes the design, implementation approach, and results of T/R mod-

ules. Section 5 explains the design and implementation of RF power distribution networks,

communication bus, and power distribution system. The remaining sections describe the

architecture of beam steering control system, as well as explain the communication and

digital commands used to control the T/R modules.

3.2 System Overview

3.2.1 Antenna Array

A general discussion of the antenna array design is provided in [32]. The radiating

aperture consists of a linear array of 72 vertical subarrays. The inner 64 subarrays are

active elements that are fed by dedicated T/R modules that provide amplitude, phase, and

polarization diversity. Additionally, the aperture has four passive subarrays at both edges

that are used to reduce the edge diffraction effects and non-uniform mutual coupling. The

vertical subarray used in the aperture consists of a linear array of 32 dual-linear-polarized

aperture-coupled microstrip patch antennas that are interconnected by series-fed networks

to each polarization port. The spacing between elements is 17 mm (0.53λ0) in both azimuth

and elevation. This value restricts the maximum scanning angle to ± 62.5o in azimuth,

where the first grating lobe is located. The aperture is fabricated as an array of 4 antenna

tiles (panels) [6], each of which has 18 vertical subarrays in azimuth and 32 elements in

elevation.
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3.2.2 Antenna Architecture and Construction

Based on the general specifications of the phased array system that were settled on at

an early stage, the aperture was divided in 4 Line Replaceable Units (LRU). Each LRU

consists of an antenna panel having 16 active elements, a beamformer structure having 16

T/R modules, two RF manifolds, a power distributions system, and a serial communication

bus. The decision of splitting the full array aperture into four LRUs is due to the limitation

of fabrication process of the PCB (printed circuit board) and the maximum size of material

used. Panel sizes are limited by manufacturing and assembly capabilities of PCB makers

and PCB assemblers, respectively. Ultimately, the LRU size was chosen to maximize the

material used in the antenna while meeting the requirements by standard PCB fabrication

and assembly processes, which are key to reducing cost. The other key aspect that should

be considered to reduce array fabrication costs is to use high levels of integration in both

electronic components and array subsystems.

In order to reduce the cost and the interconnection complexity between T/R modules

and other array subsystems, key components as RF manifolds, DC distribution systems, and

serial communication buses of each LRU are fabricated into a multilayer PCB. The PCB

design allows the T/R modules to plug directly into a shared high-speed communication bus

and shared power and ground planes, eliminating the use of cables. The connection format

is designed to provide DC, control, and RF signals on the same side of the T/R module.

Although cables are not required to provide DC and control signals to T/R modules, the

interconnections T/R modules and RF manifolds are still realized with conventional RF

cables.

The beamformer architecture used in the linear active phased array is shown in Figure

3.1. The beamformer network is comprised of four beamformer structures, each having an

array of 16 T/R modules and a backplane. The backplane has independent RF, digital,

and DC bias section. The RF section is comprised of two passive corporate feed networks;

one is used as a power divider and the other as a power combiner. The power divider

ports interconnect the radar transmitter with all the transmit modules, while the power

combiner ports interconnect the radar receiver with all the receive modules. The digital

section consists of a scalable and parallel bus that interconnects the 64 T/R modules to
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Figure 3.1: Beamformer architecture for linear active phased array.

a central array controller [33]. T/R modules are plugged to the backplane bus through a

single multi-pin connector. This connector also allows T/R modules to receive the DC bias

signals from the DC bias section, which consists of various power planes integrated in a

multilayer PCB.

3.3 Array Requirements

3.3.1 T/R Modules Requirements

The requirements that modules should meet for this application are shown in Table

3.1. The key parameters of the transmitter design are a minimum transmit peak output

power of 1 W with a maximum duty cycle of 30% at 9.36 GHz over a minimum of 80 MHz

bandwidth. In the receiver chain, the goal are a minimum gain of 21 dB and less than 5

dB noise figure. The isolation between the antenna ports (H and V polarization) must be

greater than 45 dB. This value is necessary to reduce the polarization errors that can be

induced by the radar system at the polarization switch.

A high resolution control of the phase and gain is desirable to implement the array ex-

citation function with low quantization errors. The required attenuator and phased shifter

steps correspond to 6-bit quantization, the highest-resolution commercially available com-

ponents. To achieve pattern with low sidelobe levels, the attenuator must have a minimum

attenuation range of 10 dB.
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Table 3.1: T/R module requerements.

Parameter Value

Polarization Alternate H and V

Transmit center frequency 9.36 GHz

Bandwidth >50 MHz

Duty cycle <30%

Pulse duration 1-60 uS

Transmit peak power >1 W

Transmit gain >21 dB

Receive gain >21 dB

Noise figure <5 dB

H-V isolation >45 dB

Attenuator step 0.5 dB

Attenuation range >10 dB

Phase shifter step 5.625o

Phase shifter range 360o

The use of commercial-off-the-shelf (COTS) devices with conventional PCB fabrication

and assembly process is recommended in the design of the T/R modules to be able of

developing this component at a cost of less than $500 [3, 34], including the packaging.

Based on the array size and number of T/R modules, the design of individual units instead

of a T/R array panel (several T/R modules) is required to ensure low cost replacement

modules. Typically, the RF MMIC (microwave monolithic integrated circuit) devices are

the dominant factor in the module cost, accounting for about 80% of the current module

costs [8]. Similar proportion is obtained for T/R panels. In a small phased array radar

with few failed modules, one finds that replacing the failed modules by T/R array panel

is more expensive than replacing individual modules. Additionally, the use of individually

packaged modules reduces the inherent mutual coupling between modules.

3.3.2 RF Power Distribution Network Requirements

RF distribution networks are key subsystems for feeding antenna elements or for col-

lecting the power received by antenna elements. Usually, the RF power at the input port is

distributed equally to an arbitrary number of outputs. The specifications for these compo-

nents are the divider ratio, the phase and amplitude balance stability at the output ports,
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the isolation between different output port and the return loss of each port. The divider

ratio is specified typically as 1 : N , where N is the number of output ports.

Various methods of feeding the array elements are discussed in [35]. The most common

method is the parallel-feed network (also known as corporate feed network), which the

array elements are combined into a network with transmission paths of equal electrical

length. Equal transmission paths leads to equal amplitude and phase signals in the output.

Corporate feed networks are generally preferred in phased arrays because they provide wide

instantaneous bandwidth and good impedance match [36]. Based on these characteristics,

this feeding method was chosen for this work.

The requirements that the corporate feed should meet for this applications are: A

division ratio of 1:16, low insertion loss (<-10 dB), high isolation (<-30 dB), and low-cost.

3.3.3 Array Pattern Design

Weather radars require well designed antenna with very low sidelobes to reduce the error

that may be introduced when the main beam point to a weak reflectivity and the sidelobes

are illuminated by a strong reflectivity. The power received in the main beam is affected

by the power received by the sidelobes, causing errors in the measurements. To reduce the

errors, radars use antennas with sidelobes that are at least 25 dB below the main beam

peak (the two-way sidelobes must be at least 50 dB or better below the main lobe peak).

In a phase array antenna, a 50 dB sidelobe level is obtained when the transmit and receive

aperture use the same tapered amplitude distribution, i.e. a 25 dB Taylor distribution.

The problem of using a tapered amplitude distribution in the transmit aperture is that the

radar cannot transmit at maximum power. The taper distribution limits power of the T/R

modules, reducing the modules efficiency and the radar sensitivity. For instance, a 25 dB

Taylor distribution generates a directivity loss of 0.43 dB and transmit power loss of 2.7 dB

compared to an uniform distribution. Both terms cause a reduction in the radar sensitivity

of 3.1 dB in one-way. In a phased array radar, the use of an uniform distribution in both

transmit and receive apertures can maximize the radar sensitivity. The disadvantage is that

it produces a two-way sidelobes of -26 dB.
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The most simple and efficient solution for the problem of radar sensitivity and sidelobes

is to use a uniform distribution in the transmit aperture and taper distribution in the receive

array. This criteria allows the transmit array to transmit at maximum power and efficiency

while the receive array can be used to reduce the two-way sidelobes. The question that

arises is what is the best taper function for the receive array?. The question naturally

occurs since the pattern multiplication from a uniform distribution and a highly tapered

distribution for low sidelobe does not provide always the best two-way sidelobe level. Figure

3.2 shows the two-way sidelobes obtained by multiplying the radiation patterns of a uniform

distribution with different Taylor distribution functions in a 64 element array. It shows peak

and average values for different n. The minimum sidelobe peak is -38.8 dB, which is obtained

using a 24 dB Taylor distribution. An average SLL better than 50 dB is obtained when the

designed SLL is specified in the range 20 dB and 34 dB. There is not an improvement in the

two-way sidelobe peak for high values of the designed SLL. Figure 3.3 shows the pattern

multiplication between a uniform distribution and a 24 dB n = 4 Taylor distribution. Note

the beamwidth is wider in the Taylor distribution. This beamwidth gets wider as the

designed SLL is reduced, due to the energy removed from sidelobes is focused in the main

beam. A designed SLL greater than 24 dB produces a radiation patterns whose a main

beams are as wide as the location of the first sidelobe peak of the uniform distribution.

The overlap between the main beam and first sidelobe peak in the pattern of a uniform

distribution results in an increment in the two-way sidelobes, as is show in Figure 3.2.

3.3.4 Excitation Errors

The effect of the random excitation errors and failures on the antenna performance is

to reduce the directivity gain and effective radiate power, and to raise the average sidelobe

level and of some individual sidelobes. Theoretically, one can design the radiation pattern

of an array with any sidelobe level as one desire. However, the random excitation errors

limit the actual sidelobe level that one desires to achieve. The lower and closer the actual

sidelobe level is to the designed sidelobe level, the smaller is the array error required. In

practice, one can deteriorate the designed sidelobe level to achieve the desired sidelobe level

with an acceptable error tolerance [37]. However, reducing the designed sidelobe level much
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in excess would increase dramatically the two-way sidelobe level of the radar. To keep low

the two-way sidelobe level, the excitation errors must be low and the designed sidelobe level

not so far from the desired value. For example, to implement a radiation pattern with a

sidelobe peak of 24 dB the array may require a designed sidelobe or 25 dB. However, there

is a probability that designed sidelobe level will exceed the desired value. This probability

can be found from probability density function of the ensemble pattern, which is a Ricean

distribution. The probability of individual sidelobes equal to or less than designed sidelobe

level is given by [37, 15]

P (SLL < SLL0) =

∫ SLL0

0

2.SLL

∆2
e

(
−SLL2+SLL2

0

∆2

)
I0

(
2.SLL.SLL0

∆2

)
.dSLL (3.1)

where SLL0 is the designed sidelobe at some given angle, I0 the modified Bessel function

of the first kind, and ∆2 is the variance of the ensemble pattern sidelobe (also called the

average sidelobe level). The variance for a linear array is given as

∆2 =
∆2
a + ∆2

p

D0
(3.2)

where ∆2
a is the amplitude ratio variance normalized to unity, ∆2

p is the phase error variance

in radians squared, and D0 is the array directivity without error is given in (2.7) as

D0 =
|
∑N

n=1An|2∑N
n=1A

2
n

(3.3)

where An is the excitation coefficient for the nth element. For a linear phased array antenna

of 64 element having a 25 dB Taylor distribution, a directivity of 17.7 dB is obtained. The

increase in the peak sidelobe level as a function of the array errors is shown in Figure 3.4.

The curves are obtained from the cumulative probability function (3.1). For example, when

the array error variance is ∆2
a = 0.001 (the case when an attenuator of 0.5 dB resolution and

6 bit phase shifter are used) the peak sidelobe level is raised in less than 0.05 dB 50% of the

time, less than 0.6 dB 90% of the time, less than 1.05 dB 99% of the time, and less than 1.5

dB 99.99% of the time. For higher error variances, the increase in the peak sidelobe level is
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Figure 3.4: Increase in the peak sidelobe for a 64 element array using a 25 dB Taylor
distribution.

much higher. The conclusion is that a linear phased array antenna of 64 elements requires

an array error variance of 0.001 to be able to implement the radiation pattern with 25 dB

peak sidelobes, with a probability of 99% that the sidelobe level will not exceed 24 dB. This

error tolerance can be satisfied using digital attenuators with 0.5 dB resolution steps and

6-bit digital phase shifters. Similarly, the excitation errors can affect the sidelobes when an

uniform distribution is used. Figure 3.5 shows the resulting increase in the first sidelobe

(SLL0=13 dB) for a 64 element array. The calculated directivity for this array is 18 dB.

The results show in general a considerable reduction in the peak sidelobe in comparison to

a 25 dB Taylor distribution, which is the result of using a larger directivity in the CDF of a

Ricean distribution (3.1). For a phased array that uses digital attenuator with 0.5 dB step

size and 6-bit digital phase shifter, the peak sidelobe is raised in less than 0.38 dB 99.99%

of the time.
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Figure 3.5: Increase in the peak sidelobe for a 64 element array using an uniform distribu-
tion.

3.3.5 Array Built in Test

In general, phased arrays are provided with Built-In-Test (BIT) functions, which contin-

ually monitor the integrity of all of the array elements in the operational environment. BITs

are important components for diagnostic and calibration of arrays. Basically, a built-in-test

measures the element characteristics using a test signal that is generated by an internal

reference sources. Measurements are used to detect failures or hardware drift. To carry out

the measurements, phased arrays must meet three requirements [38]: 1) the ability to turn

on only one T/R module at a time, in either transmit or receive, with other elements are

terminated in match loads, 2) separate transmit and receive beamforming networks, and 3)

a method for injecting the test signal into or out of each module.

Three methods used to inject the test signals into or out all T/R modules are [39, 38]: RF

coupler networks connected to test ports in the T/R modules, near-field antennas mounted

around the periphery of the array, and inherent mutual coupling between elements. In

the two first methods, the array requires additional hardware to implement the built-in-

test, increasing the complexity and cost of the array. In contrast, in the mutual coupling
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techniques the arrays use their owns elements to couple the test signals. Because of the

minimum hardware requirements and cost, the mutual coupling as a built-in test signal

injection technique is the recommended technique in this work.

3.3.6 Beam Steering Control System

Solid-state phased array radars with adaptive capabilities require flexible control fea-

tures that allow changing the radar parameters during scanning operation, such as antenna

scan patterns, pulse repetition frequency (PRF), pulse width, data collection rates, etc.

Particularly, in short-range adaptive radar system, it is desired to have a PRF and pulse

width that change depending on the situation and needs. A PRF of 1 to 5 KHz (to achieve

an unambiguous range of 30 km) and pulse width of 1 µsec to 60 µsec are typical values

for solid-states radars. To provide these values, the beam steering control system must be

designed with high-speed microprocessors and high-speed communication interfaces that

allow the T/R modules to update rapidly the calibration settings for the next beam. For

example, a polarimetric weather radar operating in alternate mode and using 1 µsec pulse

width (or beam switching) requests beam updates in less than 1 µsec. This implies that

T/R module control signals must be updated in less than 1 µsec (beam update rates higher

than 1 MHz) to switch from transmit beam (i.e. uniform illumination) to receive beam

(i.e.taper illumination). The beam update time must include the beam processing time and

command distribution time to all T/R modules. Beam steering control systems with this

characteristic are not common. In fact, past work has demonstrated that response time of

a beam steering system can be in the range of 5 µsec to 1 msec [40, 10, 41]

The main requirement is to design a low-cost beam steering control system for a dual-

polarimetric radar that can support beam update rates of 1 MHz with minimum ”dead time”

(i.e. the finite time it take to update the T/R module controls for a new beam direction

during which the radar is not transmitting or receiving). The system must also allow pulse-

to-pulse beam switching, a characteristics that radars need to implement scanning strategies

based on beam multiplexing techniques [14]. This technique requires that the beam location

changes every single pulse; which implies that T/R modules settings must be updated every

pulse.
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The design of the beam steering control system must also include capabilities to control

the element during the calibration. Most calibration techniques require that array has the

ability to turn on only one module at a time, in either the transmit mode or the receive

mode. This feature allows the measurements can be made in a single element while all other

elements are off. During the calibration, the beam steering control system must be able to

control all RF components of a T/R module, for example phase shifter, attenuator, T/R

switch, and V/H switch. The control system must also include digital components such as

memories and registers for storing calibrated data. It must also have the ability to control

the write and read operation of memories and register.

To reduce the cost and wiring complexity in the system, a shared bus topology must

be used to interconnect the digital sections of all T/R modules with the array controller.

Typically this can be done by using communication interfaces the RS-485 standard and

twisted pair cables (CAT5), which allow multidrop communications for up to 32 devices

using speeds lower than 1 Mbps. Other alternative includes the use of LVDS standard and

backplane buses. The advantage of using LVDS is that this standard is used in FPGA

input/output pins, and it does not require external interfaces as the RS-485. Additionally,

it works at speed much higher (up 200 Mbps) than RS-485. While backplane buses are low

cost interfaces, designed typically with microstrip lines, that allow various LVDS devices

can be interconnected in parallel. Based on these characterizes, it is recommended that the

beam steering control system can be implemented over a LVDS backplane bus.

Two communications modes must be supported by the system: unicast and broadcasts.

In unicast, the beam steering control system sends or receives commands to or from a

single T/R module, for example during calibration mode, or when memory is written or

temperature register is read. In broadcast, the beam steering control system sends the same

commands to all T/R modules. This mode can be only used to update the beam commands

stored in T/R modules.
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3.4 T/R Modules

3.4.1 T/R Module Architecture and Design

Different T/R modules architectures can be found in the literature. However, the archi-

tecture selection should be closely related to the functionality required in the active aperture

of the array in which it is used. An excellent overview of the performance and tradeoff anal-

ysis for different T/R modules architectures is given by [42]. In it, it is concluded that the

common-leg architecture provides the best third-order-intercept (TOI) performance com-

pared to other architectures, it also allows high-levels of integration at a lower cost. The

third-order intercept point affects the ability of the radar to reject clutter. In a radar sys-

tem, it is desired to provide a receiver with a high dynamic range [43]. This implies to

have a high third-order intercept points at the same time have a low noise figure. Based

on the conclusion in [42], the common-leg architecture was selected. However, some mod-

ifications were introduced in the architecture to satisfy some system requirements such as

dual polarization and independent transmit and receive ports. The block diagram of the

T/R module is given in Figure 3.6 (see full schematic and part list in Appendix A). A

common 6-bit phase shifter and 6-bit attenuator with a gain block are used for receive and

transmit channel. Two separated T/R switches connect the shared control circuitry to the

transmitter and receiver blocks. These blocks in turn are connected to a PIN diode based

high power diversity switch that provides transmit/receive and polarization diversity to the

radiating elements. All RF circuits use GaAs MMICs from Hittite.

The Transmit channel consists of a 2 W power amplifier (PA HMC591LP5), a medium

power amplifier (MPA HMC441LP3), a diversity switch, and the common control circuit.

The bias-current of the amplifiers is controlled by MOSFET switches, which are controlled

by the signal T (transmit). The amplifiers are turned off during the receive mode to reduce

the temperature dissipation and eliminate any feedback loop. The details of the transmit

channel analysis are given in Table 3.2. The table shows the gain, power in, power out,

and 1 dB compression of each element of the transmitter. The input and output power are

computed assuming that the power amplifier is operating at compression. It is projected

an overall gain of 29 dB and 1 W of output power. Additionally, modules require 1 dBm

input power to operate the power amplifier in compression.
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Figure 3.6: T/R module block diagram.

Table 3.2: Transmit channel performance

Comp. performance Cumulate module performance

Component Gain (dB) P1dB (dBm) Gain (dB) Pin (dBm) Pout (dBm) Pout (W)

Switch -2 22 -2 1 -1 0.0008

Attenuator -4 22 -6 -1 -5 0.0003

Gain block 15 18 9 -5 10 0.01

Phase shifter -7 28 2 10 3 0.002

Switch -2 22 0 3 1 0.0013

Medium power amp 15 18 15 1 16 0.0398

Power Amplifier 17 32 32 16 33 1.9953

Diversity switch -3 40 29 33 30 1

The Rx block consists of a diversity switch, a low noise amplifier (LNA HMC564LC4),

a gain block (GB1 HMC441LP3), and the common control circuit. The low-noise amplifier

offers a high dynamic range with a gain of 17 dB and noise figure of 1.5 dB. The 45 dB

isolation of the diversity switch provides receive protection during the 1-Watt transmit

pulse. Additionally, the MOSFET switches controlling the bias-current of the amplifiers

provide additional protection during transmit mode. The details of the receive channel

analysis are given in Table 3.3. The table shows the gain, noise figure, and the input third

order of intercept of each element used in the receiver. The total receiver channel has gain of

38



Table 3.3: Receive channel performance

Component performance Cumulate module performance

Component Gain (dB) NF (dB) TOIout (dBm) Gain (dB) NF (dB) TOIin (dBm)

Diversity switch -3 3 - -3 3 -

Low noise amp 17 1.8 25 14 4.8 8

Gain block 15 4.5 29 29 4.9 9.86

Switch -2 2 50 27 4.9 24.86

Attenuator -4 4 45 23 4.91 22.83

Gain block 15 4.5 29 38 4.92 9.47

Phase shifter -7 7 41 31 4.94 24.46

Switch -3 2 50 28 4.96 17.46

29 dB and 4.95 dB of noise figure. The channel input TOI point is about 8 dB at maximum

gain (attenuator set to zero).

In addition to the RF circuit, the T/R module has a digital control circuit that interfaces

the module with the commands sent from array controller [33]. The functionality of this

control circuit is implemented in a FPGA, some of its functions are:

1. To provide a fast serial interface to communicate with command from the array con-

troller.

2. To provide memory interface to store the calibration data.

3. To provide interface to control the attenuator, phase shifter, LNAs bias, power am-

plifier bias, and transfer switch.

4. To monitor the temperature from a temperature sensor

5. To provide T/R module timing.

Since the T/R module is integrated with analog and digital components, it requires

separate power supplies to avoid mixing analog and digital signals. T/R modules are pri-

marily powered by +10 V, +5 V and -10 V power supplies that are provided from very

low-impedance power planes in the backplane board. These voltages are regulated to ap-

propriate DC levels on the T/R module according the specifications of the components.

Separate ground and power planes for analog and digital signals distribute the voltages

across the module, avoiding in this way the coupling and noise interference among these sig-

nals. Figure 3.6 shows in detail the voltage levels used by each component. All components
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are directly connected to the power planes, except the amplifiers used in the transmitter

and receiver blocks. The drain bias voltages for these amplifiers are driven by load switches,

which in turns are controlled by the T/R signal generated by a digital controller.

3.4.2 Diversity Switch Design

Early on in the design of the T/R module, it became apparent that PIN diodes were the

most appropriated switching element available. GaAs (Gallium Arsenide) MMIC switches

that could drive 2 W were not commercially available. For that reason, a large signal GaAs

Pin diode diversity switch is proposed. The switch uses a star configuration of 4 Single-Pole

Single-Throw (SPST) switches [44]. A characteristic of microwave SPST switches is that

diodes are spaced by quarter-wavelength transmissions, which help to increase the isolation

when multiplex diodes are used.

Each pole is independently controlled by a bipolar control signal, as illustrated in Figure

3.7a. The entire switch incorporates a total of 10 GaAs PIN diodes: two diodes at each arm

to increase the isolation between ports, and an additional diode in the polarization switches

to terminate the ports in a load of 50 Ω when they are switched off. Matched loads are

needed in the ports to terminate the radiating array element at its characteristic impedance

during the antenna calibration. The bias networks were designed with two radial microstrip

radial stub and high impedance microstrip lines, see Figure 3.7b.

An important aspect of the switch design is that its implementation differs from the

conventional approaches because the diode cathodes are not directly connected to grounded

vias. When diodes are directly grounded with vias, the insertion loss of the switch tends to

increase by the impedance of the vias, especially at high frequencies. To avoid this problem,

the diode cathodes are directly connected to microstrip lines that are previously grounded

to zero potential. To keep a low insertion loss, the reactance of equivalent impedance seen

from diode anodes is cancelled out by using microstrip radial stubs, which are also part of

the bias networks. Designing these networks is the most critical part of the switch.

The switch was designed, optimized and simulated in a 2D electromagnetic simulator.

The optimization focused in the tuning of the microstrip radial stubs that cancel out the

diode reactance. An empirical model of the PIN diode in the simulator was used. To reduce
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Figure 3.7: Pin diode diversity switch. a) Schematic. b) Implementation.

risk of failure because the fabrication tolerances, it was necessary to create different designs,

each having different tuning/bias networks. A PCB array having different switch designs

was fabricated and tested. The circuit having the best performance was chosen for the T/R

module design. Figure 3.8 shows the switch performance in the frequency range 8 - 12 GHz.

Figure 3.8a shows the measured insertion loss and return loss when poles TX and V are

on. A 3.2 dB insertion loss at 9.36 GHz and return loss better than -10 dB are obtained.

Similarly, Figure 3.8b shows the measured insertion loss and return loss when poles RX and

H are on. In this plots an insertion loss of 3.4 dB and return loss better than -10 dB is

obtained. In Figure 3.8c and 3.8d are shown the isolation and return loss for the poles V

and H when one is on and the other is off. The isolation is better than 40 dB in the range

9.3 - 11 GHz. In figure 3.8e and 3.8f are shown the coupling (insertion loss) between the

antennas poles and the unable channel (off). A coupling better than 40 dB was measured

in the range 9.3 - 11 GHz.

In addition to S-parameter measurements, power measurements were realized to deter-

mine the power operation range. Measurements were realized with a power meter and a
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signal generator with a 10 W power amplifier. Results shown that the diversity switch has

a high 1dB compression point, being able to hand 10 W without introducing any distortion.

3.4.3 Control Electronics and Interfacing

The control logic is implemented in a Field Programmable Gate Array (FPGA). This

component generates the control signals for the attenuator, phase shifter, T/R switches, and

amplifier’s load switches from commands that are sent from the array controller. In addition,

the module is equipped with an I2C temperature sensor, whose temperature register can be

read from the FPGA through dedicated lines. The on-board FPGA, a Xilinx Spartan-3E

XC3S100E FPGA, is locally programmable with an external flash Programmable Read-

Only Memory (PROM). As a part of the control logic, the FPGA internal memory is

configured as a look-up table, where calibrated settings for the attenuator and phase shifter

are stored. The memory, registers and I/O ports of the FPGA are remotely controlled from

an external FPGA-based array controller, which translates the user commands from the

host computer to control and timing signals for the radar system. The communication (25

Mbps data transfer) between the Array Controller and the T/R module is realized through

five differential transmission lines, which include CLK1, DATA1 and CLK3 as differential

inputs to the module, CLK2 and DATA2 as differential outputs from the module, as it is

shown in Figure 3.6. CLK2 and DATA2 allow the array controller to read the memory, the

attenuator, phase shifter, and temperature register of the T/R module. While CLOCK3 has

different purposes, it works as a trigger signal when the array controller request to update

the attenuator and phase shifter or work as advancing clock to read a sequence command

table on the FPGA. The sequence table contains information to access the look-up table

for a predetermined beam position and transmit-receive sequence (TV, TH, RH, and RV).

The resulting output data of each sequence is used to update the attenuator, phase shifter,

and T/R switches.

3.4.4 Module Implementation and Fabrication

The printed circuit boards (PCB) for T/R modules were panelized in 2x2 arrays dur-

ing the manufacturing process, allowing them to be easily populated and soldered using
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Figure 3.8: Diversity switch performance as a function of frequency.
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standard processes. In addition, arrayed PCBs can help to reduce cost because they fewer

fabrication steps which speeds the assembly. A picture of a fully populated T/R module

is shown in Figure 3.9. The PCB comprises six circuit layers fabricated on a hybrid con-

struction of Rogers 4350 and FR4, see Figure 3.10 . A laminate of 10 mil Rogers 4350 in

the TOP layer is used to implement the RF and digital sections. The remaining layers,

four FR4 laminates including the bonding adhesives, are used to implement the analog and

digital ground/power planes, and to distribute the control signals. The PCB is designed to

have low thermal impedance from the power amplifier footprint through the board mount-

ing plate, which works as a heat spreader. A thermal patch isolates the PCB from the

baseplate avoiding that vias and transmission lines be short-circuited.

In Figure 3.9, the RF components are COTS plastic-packaged GaAs microwave mono-

lithic integrated circuits (MMICs). The large square containing microstrip lines and radial

stubs to the right of the module is the high power diversity switch. The area inside the

gold square to the left of the module corresponds to the digital components and interfacing

section. The two ports at the right side of the module are SMP sub-miniature connectors

that connect to the radiating element via short coaxial cables. The two ports at the left

side are SMA connectors that connect the TR module to two separate RF manifolds. All

components except the connectors were placed on the board using pick and place machine.

The module with enclosure weights 140 g and has a dimension of 6.6 cm x 11.2 cm.

3.4.5 Measurements

One of the challenges of producing phased-array antennas is the large number of T/R

modules that must be tested during the development phase or prototype production. In

addition, the testing of a single module is a labor intensive that generally involves hundreds

or thousands of measurements under different conditions. The use of automated equipment

is a requirement to reduce cost and time while keeping a standardized process. Based on

this need, an automated test station was specifically designed for this project. The test

station is based on a PNA series Network Analyzer from Agilent that is remotely controlled

via LAN (local area network) from a host computer. Figure 3.11 shows the schematic

diagram of the measurement equipment setup for the T/R module evaluation. The entire
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Figure 3.9: Photograph of the implemented T/R Module.
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characterization process is controlled from the host computer by mean of a Graphical User

Interface that was developed in the C language. The system only allows measurements of

pulsed S-parameters and power at only one temperature. However, measurements can be

repeated at other temperatures after manually abjusting the module temperature with a

cold plate. The process starts by first heating up the module with a pulse of 30% duty

cycle, once the steady-state temperature is reached, module parameters are measured at

several frequencies.

Figure 3.11: Measurement equipment setup for the T/R module evaluation.

3.4.6 Test Results

Table 3.4 summarizes the module performance at the operating temperature. The values

were obtained from a group of 64 T/R modules at the frequency of 9.36 GHz. Measurements

are made with zero insertion attenuation and phase. According the results, the modules

present a transmit peak output power of 30.9 dBm, a noise figure of 5.5 dB, and an isolation

between H and V ports of 45 dB. Although the noise figure exceeded in 0.5 dB the desired

value, the key parameters meet the module design requirements. On the other hand, gains

and return losses (RL) were obtained from small signal measurements. The average perfor-

mance for these parameters is shown in the Figure 3.12. From gain measurements, it can

be estimated that the modules have a bandwidth of about 1GHz.

Figure 3.13 shows the typical transmit output power and power efficiency of one module

as a function of the input power. The minimum input power to reach the 1 dB compression

point and maximum module efficiency are 5 dBm and 12% respectively. The low efficiency

is a consequence of using a linear power amplifier having an efficiency of 20%, it is also
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Table 3.4: T/R module performance summary at 9.36GHz.

Parameter H-Pol V-Pol

Transmit gain (dB) 24.5 24.7

Transmit peak power (dBm) 30.9 30.8

Transmit input 1 dB compression (dBm) 5 5

Transmit input return loss (dB) -15.5 -15.6

Tx small signal gain variation over temperature (dB/oC) 0.09 0.09

Receive gain (dB) 27.3 27.1

Receive input 1dB compression -15.7 -15.2

Minimum noise Floor (dB) 5.4 5.6

Receive input return loss (dB) -12.7 -11.8

Receive output return loss (dB) -12.9 -13

Rx gain variation over temperature (dB/oC) 0.016 0.016

Isolation between RFin and RFout ports (dB) 78 78

Isolation between V and H port (dB) 47.4 46

Phase shifter step (degrees) 5.531 5.531

RMS phase error (degrees) 1.49 1.49

Attenuator step (dB) 0.476 0.476

RMS attenuation error (dB) 0.161 0.161

Transmit and receive settling time (µsec) <2 <2

Overall module efficiency 12% 12%
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Figure 3.12: Average gain and return losses for 64 modules.
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Figure 3.13: Transmit peak output power and module efficiency versus input power.

because insertion loss produced by the diversity switch and low efficiency of DC linear

voltage regulators.

The small signal gain/phase and Tx saturation power performance are shown in Figure

3.14 as a function of temperature. Measurements are normalized to the operating temper-

ature of 32 oC. The gain and phase in the Rx channel decay at a rate of 0.016 dB/oC and

0.6 deg/oC respectively. The results show that these variations can be compensated with

one attenuation step and 3 phase shifting steps in the temperature range. In contracts, the

gain in the Tx channel decay a faster rate, 0.09 dB/oC, with a similar phase variation, 0.6

deg/oC. For large signal excitation, the relative saturation power (loss) increases at a rate

of 0.018 dB/oC.

The typical gain and phase performance versus the attenuator and phase shifter states

of one receive module at 9.36 GHz are shown in Figure 4.4 (Chapter 4). The plots comprise

of a set of 64 curves, each representing the response at a specific attenuation state. The

results show that the gain is affected by the insertion loss of each phase shifter state. Similar

effect is observed in the phase, but its value is only affected by the insertion phase of the

attenuator. For example, at zero phase state, the module phase varies from 0o to -50o when
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Figure 3.14: Relative gain/phase performance and saturation power loss versus module
temperature.

the attenuator is adjusted from zero to maximum attenuation. This effect can be corrected

by using calibration techniques and by storing the corrected settings in the module memory.

Ultimatly the calibration should be done for different temperatures. Results could be used,

for instance, to compensate the gain/phase deviation due to the temperature, as it is shown

in Figure 3.14. On the other hand, the step size (resolution) for the attenuator and phase

shifter as a function of component state for a typical T/R module is shown in Figure 3.15.

The attenuator presents a non-uniform attenuation step versus states; the mean step and

standard deviation are 0.457 dB and 0.161 dB, respectively. Similar behavior is obtained

with the phase shifter, which has a mean phase step of 5.54o and standard deviation of

1.49o.

Measurements were also performed in the time domain to determine the settling time

of T/R modules. Settling time is the time required for the output to reach the steady-

state within a given error bound following some input stimulus. For this test, a signal

generator connected to module input and a microwave Schottky diode detector connected

to the module output were used. The diode voltage was measured with a high-speed digital

oscilloscope. Figure 3.16a shows the typical switching characteristic of a T/R module for a
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Figure 3.15: Resolution step as a function of component states. Left: Attenuator. Right:
Phase shifter

pulse of 100 µsec. The green signal represents the control signal applied to either transmit

channel or receive channels and yellow signal is the IF signal measured at the channel

output. The voltage demodulated by the diode detector during rise time for both transmit

and receive channel are shows in figure 3.16b and 3.16c, respectively. The settling time in

both cases is about 2 µsec. This values is important because it can indicate the maximum

PRF that can be implemented by the radar. For example, assuming the minimum pulse

width of the radar is τpw= 1 µsec and maximum duty cycle is limited at DC= 30% to protect

the T/R module power amplifier of excessive heating. It is obvious that the waveform must

be transmitted until the settling time has elapsed to avoid the amplitude modulation that

could created by the variable gain. Therefore, the transmit channel will be enable by the

time τst+ τpw= 2µsec+1 µsec= 3 µsec. The minimum pulse repetition interval is obtained

as

PRI =
τst + τpw
DC

=
2µS + 1µS

0.3
= 10µS

using this value one can find the maximum PRF is 1/PRI = 100 kHz. The wide PRF-range

enable the system to work in a widely range of radar applications including weather and
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(a)

(b) (c)

Figure 3.16: Typical switching characteristics of a T/R module.a) RF and DC bias pulse.
b) RF pulse at the transmitter output. c) RF pulse at the receiver output.

airborne surveillance. On the other hand, Figure 3.16c suggests the radar gain in receive

must be calibrated during the settling time to observe targets close to the radar.

3.5 Backplane Board

3.5.1 Description

The backplane is the interface between TR modules and other radar subsystems. All RF

signal distribution lines, DC bias signal, and digital bus that connect the T/R modules with

the transceiver, power supplies, and array Controller are located in this board. The array

system uses four backplanes to interface the 64 T/R modules with other radar subsystems.

Figure 3.17 depicts how the radar subsystems are interconnected through the backplane and

what sections are integrated in it. The RF, digital and DC bias sections are implemented in
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Figure 3.17: Backplane subsystem.
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Figure 3.18: Backplane PCB cross section.

a multilayer hybrid PCB fabricated on FR4 and Roger 4350 material. Figure 3.18 shows the

board layout structure and the layers assigned to each subsystem. Each section is complete

isolated each other by ground planes. The RF and DC power distribution networks partially

share the top layer because both the RF connectors and DC bias connectors are assembled

on it. The cost model for the backplane is described in Appendix B.

Figure 3.19 shows the front and rear view of the backplane and how the beamformer

structure is assembled. In Figure 3.19a, the from view shows the backplane’s top layer

where the RF manifold are designed. The rear view shows the header connector array that

forms the backplane bus. In Figure 3.19b, the T/R module header connector is plugged to

backplane bus, while the RF connectors are connected to RF manifold with RF semi-rigid

cables. Note that the corporate feeds are enclosed in a metallic lid in order to eliminate any

radiation or coupling with other subsystems. The whole RF power distribution network is
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shown in Figure 3.20. Two 1:4 power dividers are needed to connect the outputs from the

4 power combiners and inputs of the 4 power dividers, respectively.

3.5.2 Corporate Feed Network

3.5.2.1 Design and Implementation

Typical components used in the design of corporate feeds are the microstrip T-junction,

Wilkinson power divider, and rat-race coupler [18]. T-junctions and Wilkinson power di-

vider are three-port networks that can split the power equally. T-junctions are passive

components of simple design that are characterized by a poor performance. Wilkinson

power dividers are also simple components which solve the matching and poor isolation

problem of T-junctions. The drawback of these two components is that both are lossy

components. On the other hand, rat-race couplers (also known as hybrid ring coupler) are

lossless four-port networks that provide ports with very good return loss and high isolation.

Compared with thee-port networks, the rat-race couplers are larger structures, but they

provide a better performance. Based on the system requirements, such as low insertion loss

and high isolation, the rat-race coupler was chosen for this design.

A rat-race coupler consists a 3λ0/2 ring of microstrip line with line impedance of 70.71

Ω an 4 microstrip lines of 50 Ω spaced at intervals of λ0/4 as shown in Figure 3.21a. The

input power at port 1 splits and travels both ways round the ring. At ports 2 and 3 the

signal arrives in phase and adds whereas at port 4 it is out of phase and cancel. Ports 2

and 3 are in phase with each other, while port 4 is terminated in a resistive load of 50 Ω. A

1:16 corporate feed is designed by connecting several rat-race couplers in cascade at ports

2 and 3 as is shown in Figure 3.21b. Fifteen couplers are needed in total. Note that 50

Ohms terminations at port 4 of each coupler are grounded by radial stubs and that half of

the corporate feed is symmetrically opposite to the other half. Theoretically, the insertion

loss in a 1:16 power divider is 10log10(1/16)=-12 dB.

The corporate feed is implemented in a 10 mil Roger 4350 material, its design was

simulated in 2D electromagnetic simulator. Simulated results indicated a good amplitude

and phase balance among output ports. A photography of the fabricated 1:16 corporate

feed network is shown in Figure 3.22. The ports are connected to surface mount SMA
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(a)

(b)

Figure 3.19: Backplane board and Beamformer structure. a) Front and rear view of back-
plane board. b) Beamformer assembly
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Figure 3.20: RF power distribution network.
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Figure 3.21: Component and schematic circuit of the RF power distribution network. a)
Rat-race coupler. b) 1:16 corporate feed.
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Figure 3.22: Corporate feed layout.

connectors, and the peripheral is surrounded by a gold-color ground plane that allows the

attachment of a conducting lid that can be placed over the PCB to provide isolation.

3.5.2.2 Results

Measurements were made using a two port vector network analyzer in the frequency

range from 9.06 GHz to 9.66 GHz. Each output port was measured while the other ports

were terminated in 50 Ohms loads. The return loss for each of the 17 ports is depicted in

Figure 3.23. In average, the return loss is lower than -10 dB. The amplitude and phase

insertion loss for each of the 16 branches is depicted in Figure 3.24. In Figure 3.24a, the

insertion loss is -16.6 dB at 9.36 Ghz and there is approximately 0.3 dB spread in insertion

loss among output ports. A increment of 4.6 dB with respect to theoretical insertion loss was

obtained. This value is attributed to losses in the transmission lines and SMA connectors.

In figure 3.24b, there is approximately a 7o spread in the insertion phase.

3.5.3 Backplane Bus

3.5.3.1 Design

Backplanes have been widely used in high-speed communication and computer system

because they are low cost and reliable system. However, their use in phased array antennas

has been unknown or it has not been reported. A backplane is an interconnect system that

allows the parallel connection of various digital cards (PCBs) to a shared bus. They should

be designed properly to guarantee signal integrity and high-speed performance. To meet

these high performance standards, the buses use differential signaling over a pair of mi-
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Figure 3.23: Return loss for each input port of a 1:16 corporate feed.

crostrip lines (or striplines) as method for transmitting information. Differential signaling

is the preferred method because they are much more immune to noise than single-ended sig-

naling, which uses a single transmission line. For high-speed backplane system, low-voltage

differential signaling (LVDS) is the technology of choice. LVDS is a standard that allows

high-speed data transfers, low power consumption, and low electromagnetic interference.

The performance of a backplane is strictly related with elimination and reduction of

reflections caused by impedance mismatches between the bus and load impedances. Reflec-

tions affect the signal integrity and reduce the speed with which data can be transmitted.

Designing of the proper microstrip line pairs and using the best matching terminations in

a backplane are key for a good performance. A general discussion of basic design con-

siderations for backplanes is provided in [45]. Other aspect related to backplane designs

is the bus topology. Two common topologies are LVDS multidrop and LVDS multipoint

[46]. In a multidrop topology, there is a single driver and multiple receivers over the bus

length. The communication is unidirectional. While the multidrop topology has multiple
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Figure 3.24: Insertion loss and insertion phase measured at each branch of a 1:16 corporate
feed. a) Insertion loss. b) Insertion phase.
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signal drivers and receivers, all sharing a single bus. This configuration allows bidirectional

communications.

For simplicity, in this project, a multi-drop topology for the communication and beam-

steering control system was chosen. The backplane bus that connects the array controller

with T/R modules uses five transmission line pairs (buses). Three buses are used to transmit

data (ones bus) and clocks (two buses) from the array controller to T/R modules; each of

these buses can be represented as shown in the top in Figure 3.25. There also two buses to

transmit data and clock from the T/R modules to array controller. In this case, each bus can

be represented as shown in the lower part in Figure 3.25; where each driver is a tree-states

transmitter. Normally all driver outputs are set to high impedance and only the driver that

responds to array controller commands can transmit over the bus. A general diagram of

the bus topology used in the array system is depicted in Figure 3.26. The configuration

used two arms, each having two backplanes in cascade with 32 T/R modules connected in

parallel. Two repeater/buffer boards connected at the end of each arm are used to extend

the connection between the beamformer structure and the array controller. Ultimately, the

three buses transfering data and clock toward T/R modules are connected in parallel in

the array controller. While the two buses coming from T/R modules are multiplexed into

a single data line. The advantage of this topology is that all T/R modules are connected

in parallel at the Array controller using a simple, high speed, and low cost communication

bus.

D

R RRRRRR

R

D DDDDDD

RL

RL

Figure 3.25: Multidrop topology.
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Figure 3.26: Communication architecture topology for linear phased array antenna.

Zo, 17mm Zo, 17mm Zo, 17mm Zo, 17mm Zo, 5mmZo, 17mmZo, 5mm

Ct Ct Ct Ct Ct CtCtRL/2 RL/2

Figure 3.27: Equivalent circuit for a backplane bus.

The primary goal of this design is to implement a 100 Mbps multipoint backplane that

can be scalable and allow interconnect 32 modules in parallel. To design the microstrip lines,

the equivalent electrical circuit of backplane bus is used. Figure 3.27 shows the equivalent

circuit of Figure 3.25, where an equivalent capacitive load (Ct) replaces the receivers (or

drivers) and stubs (transmission line pairs that connect the devices to backplane connectors).

The spacing between T/R modules is equal to radiating element spacing, 17 mm, and it is

assumed that all connectors are populated with T/R modules. When the microstrip line is

loaded with the devices and stubs, the distributed capacitance of the receivers and stubs

affects the characteristic impedance of the line. The net result is that the effective (loaded

line) impedance will be lower than the characteristic impedance of the line. The effective

impedance of the loaded line is given as

Z0(loaded) =

√
L

C +NCt/H
(3.4)
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whereN number of devices,H is the total length of transmission line, L and C are inductance

and capacitance per unit length of the microstrip line. These values are given in [47] as

C =
0.67(εr + 1.41)

ln

(
5.68h

0.8w + t

) in pF/in (3.5)

L =
CK2

12(εr + 1.41)
ln
(

5.68h
0.8w+t

)
in nH/in

where εr is the relative permittivity of the material, t is the thickness of the material, w is

the trace width of the microstrip, t is the trace thickness, k=87 for 15 < w < 25 mils, or

k=79 for 5 < w < 15 mils. The value of the termination resistor at each end of the line

depends on the effective impedance of the line. Its values is chosen as RL = 2Z0(loaded)

The microstrip line was implemented in the top layer of the backplane having a 10 mil

Roger 4350 material with εr=3.48 and t=0.5 mils, see figure 3.18. The design equation for

the trace width for a microstrip line is given by [47] as

w = 7.475he
−Z0
√
εr+1.41
87 (3.6)

The microstrip impedance without the loading effect is designed to be 70 Ω. Therefore,

the trace width is

w = 7.475 ∗ 10 ∗ e
−70
√
3.48+1.41
87 ≈ 12 mils

When this value is used in (3.5) and (3.6), one find that C= 1.86 pF/in and L= 8.92

pH/in. Since the material used in top layer in both backplane and T/R modules are the

same, the distributed capacitance can be used to calculate the capacitance of the stub

(Cstub) connecting the device to the bus. The stub is the transmission line that connects

the module’s FPGA to the header connector, which is approximately 0.5 inches. Therefore,

Cstub=0.5 in*1.86 pF/in= 0.93 pF. On the other hand, the capacitance associated to FPGA

input port in differential mode can be obtained from the manufacturer’s specification sheet.

This value is about 8 pF. The total equivalent capacitance for the device and stub is summed

Ct=0.93+8=8.93 pF.
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With all the connector filled (32 connector), the total length of the backplane is approx-

imately 32*1.7 cm/2.54 = 21.41 inches. The effective impedance of the loaded microstrip

line is obtained from (3.7) as

Z0(loaded) =

√
8.92

1.86 + 32 ∗ 8.93/21.41
= 24.22 Ω (3.7)

To reduce the reflections at the ends, the termination resistor should be close to the

effective differential impedance of backplane. That is RL = 2Z0(loaded) = 2 ∗ 24.22 =

48.44Ω. Finally, this values was rounded to 50 Ω. Also, as part of the design, PSPICE

simulations using the equivalent circuit of the backplane were performed. The purpose of

the simulation was to verify signal integrity at different speeds. Simulations indicated that

the backplane bus can work perfectly up 100 Mbps.

3.5.3.2 Implementation

Figure 3.28 shows a photograph of the front view of the backplane, the board face where

the buses are implemented. There are five microstrip line pairs with termination pads at

the ends. The two black connectors at the ends are used to connect either repeater boards

or jumper cables. While the connector for the T/R modules are installed in the rear side

plane. A photograph of a partially assembled beamformer structure is shown in Figure 3.29.

Figure 3.28: Backplane bus layout.
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Figure 3.29: Assembled beamformer structure.

3.5.3.3 Measurements

Testing consisted of measuring waveforms on the buses of two fully loaded backplanes

connected in cascade with a short ribbon cable. The data were clocked over the backplane

at a frequency of 25 Mbps. Single and differential waveforms for the input receiver are

shown in Figure 3.30. Measurements were made at the termination resistor. The differen-

tial waveform (V ) was calculated by the oscilloscope from the non-inverting receiver input

waveform (V p) and inverting receiver input waveform (V n). The three waveform show a

little undershoot or overshoot and small load reflections. The differential waveform have

substantial noise margins with respect to the receiver thresholds of ±10 mV. An eye dia-

gram for the differential waveform is shown in Figure 3.31. The jitter is about 1 nsec while

the eye rise time and eye fall time are about 5 nsec.
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Figure 3.30: Serial data transmission in a backplane at 25 Mbps.

3.6 Beam Steering Control System

3.6.1 Architecture

A phased array with 64 elements, each having a T/R module with 16 control signals (6

bit phase shifter, 6 bit digital attenuator, transmit signal, receive signal, H polarization, and

V polarization), require of 16x64= 1024 control signals to switch the beam. Because of the

large amount of wiring that must be supplied to all T/R modules, the only practical solution

to reduce cost and wiring complexity is to use serial communication. The serial transmission

of this amount of data in a short time would require a large bandwidth and the use of well

designed high-speed serial interfaces that might increase the system costs. Fortunately, the

bandwidth problem can be avoided if a distributed beam steering control system is used. In

this type of system, the beam steering computer broadcasts phase gradients (for azimuth

and elevation) to all T/R module digital controllers, which generate phase and amplitude

settings that are needed to implement the beam [40, 48, 30, 49, 31]. The phase setting is

computed from the phase gradient, the element position in the array, and phase correction

constant of that particular element. While the amplitude, it is obtained typically from a

look up table. An example of phase calculation from phase gradients in the T/R modules is

given in [49]. The calculation of a 6-bit phase setting is carried out using a FPGA. The time

taken to broadcast a 36 bit phase gradient over 10 Mbps network (3.6 µsec) and to compute
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Figure 3.31: Eye diagram for bus LVDS backplane at 25 Mbps.

the phase (2.12 µsec) was about 5.7 µsec. The problems with this implementation are that

the phase calculation is performed every transmit and receive pulse, and the computational

cost in time to generate each beam might be too large for adaptive short range radars (using

alternate polarization and beam multiplexing technique), which require short pulses (i.e. 1

µsec)

Rather than attempting to compute the phase with a digital controller, the BSCS devel-

oped in this work uses calibrated look-up tables to translate beam commands into calibrated

phase and amplitude settings. The look-up tables are unique for each T/R modules. They

store the phase shifter and attenuator states for each scan angle at all operation modes.

The advantages of this technique are: 1) The time taken to translate the command into

calibrated settings is much lower than the time taken to compute the calibrated setting with

a processor, 2) Digital controllers are simpler to design. Figure 3.32 shows a block diagram

of the key logic modules developed for the BSCS. The system consists of a network of cus-

tom state machines (digital controllers) implemented in the T/R module FPGAs, instead

of microprocessor core. State machines have the advantage of responding immediately and

in parallel to a large number of timing signals. The system is totally synchronous because

a global clock controls all operations. T/R modules are controlled by means of 16-bits
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Figure 3.32: Block diagram of the key logic modules used in beam steering control system.

commands and by a TR signal (called “CLK3” signal in the T/R module). The digital

controller includes a serial to parallel interface that passes the received commands to a 16

line parallel bus in the FPGA. A programmable sequence table stores the next sequence of

beams that must be implemented by the array. A look-up table then translates the beam

commands to calibrated settings. A port register stores the settings for the current beam

and generates control signals to RF components (attenuator, phase shifter, T/R switches,

V/H switch, amplifiers). The beam switching and timing are controlled at the rising edge

(transition for low to high level) of the TR signal. This signal also serves as “advance

signal”, which allows the next beam command can be read from the sequence table.
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In order to understand the concept of operation behind the BSCS, let’s consider a specific

example. Suppose that the radar system is performing dual polarization measurements

with the sequence TH, RH, TV, RV, TH, RV, TV, and RH. A timing diagram illustrating

this operation mode is shown in Figure 3.33. For the nth scan angle, the array controller

generates a serial stream by concatenating 8 beam commands. The beam command includes

a bit for array channel (TR), a bit for polarization (HV), and several bits to represent the

scan angle as an integer binary number (beamID). The relationship between beamID

and scan angle is explained in chapter 4 (see equation 4.19). The sequence table for this

operation mode is defined in Table 3.5. Four different beams or radiation patterns must

be implemented by the beamforming network: two transmit beams (TH and TV) and two

receive beams (RH and RV). The serial stream having the sequence table is broadcasted

from the array controller to all T/R modules during the dead time between two dwell

periods. Each digital controller accepts the commands and stores them in a 8 words (16-

bits) memory (sequence table). Once this operation is completed, the read pointer points to

the first location of the sequence table, reading the first beam command. The command bits

are supplied in parallel to the corresponding input terminals of the look-up table, which

translates the beam commands to calibrated settings. The output data returned by the

look-up table contains the setting for the next beam including the bits T, R, H, V, PS[5:0],

and AT[5:0]. These bits are described in Table 3.6. The data will be hold by the look-up

table until the rising edge on the TR signal, at which point the data is latched in the output

port. Simultaneously, the read pointer of the sequence table advances one position for each

rising edge on the TR signal, reading the next beam command. Therefore, the first pulse

on the TR signal allows the transmit beam b0 to be implemented, and the same time, it

allows the next calibration setting (receive beam b1) to be read from the lookup table, as

shown in Figure 3.33. When the second pulse on the TR signal arrives, the receive beam b1

is implemented and the next calibration settings is read. This procedure is repeated until

the last command in the sequence table is read (receive beam b1), at this point the read

pointer of the sequence table is returned to point to the first location on the sequence table,

starting a new loop. The loop will run indefinitely until the sequence table is updated with

a new beam sequence.
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Figure 3.33: Timing diagram of representative command/response sequence.

The communication and control architecture of the beam steering control system has

been designed to operate with clock signals up to 100 MHz. However, the clock was fixed to

25 MHz to get a low bit error rate (BER) in the serial communication. At this clock speed,

the sequence table is transmitted in the order of 6 µsec. A short-range radar operating

in alternate polarization and using 3 kHz PRF with 30 pulses of integration per channel,

has a dwell time of 4x30/3000= 40 msec. For this radar, the dead time to update the

Table 3.5: Data structure of sequence table

Beam command

sequence TR HV Scan angle beam index

TH 1 1 beamID b0

RH 0 1 beamID b1

TV 1 0 beamID b2

RV 0 0 beamID b3

TH 1 1 beamID b0

RV 0 0 beamID b3

TV 1 0 beamID b2

RH 0 1 beamID b1
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Table 3.6: Digital controller interface signals.

Port Width Type Signal Description

DATA1 2 input differential Serial data line input

CLK1 2 input differential Serial clock line input

DATA2 2 output differential Serial data line output

CLK2 2 output differential Serial clock line output

CLK3 2 input differential Serial TR line input (TR signal)

RST 1 input single Reset line input

T 1 output single Transmit channel enable

R 1 output single Receive channel enable

H 1 output single Horizontal polarization enable

V 1 output single Vertical polarization enable

PS 6 output single Phase shifter control bits

AT 6 output single Attenuator control bits

SDA 1 bidirectional single I2C serial data line

SCL 1 output single I2C serial clock line

sequence table is about 6/40x103*100= 0.015% of the dwell period, which denotes a very

small fraction of time.

3.6.2 Interfacing Signals

The input and output signals used by the digital controller are defined in table 3.6. The

signals DATA1, CLK1, DATA2, CLK2, CLK3, and RST are supplied by the backplane bus

(see Figure 3.6). DATA1 and CLK1 are signals generated by the array controller. DATA2

and CLK2 are signals generated by the T/R modules when the array controller request

status information. The CLK3 signal (or TR signal) controls the beam switching in the

array and controls the signals generated by the output port. The RST signal is generated

by the array controlled, when it is set to 1, the state-machines and registers in all T/R

module are restarted.

The controller has an output port that generates the signals: T, R, H, V, PS, and AT .

These signals control the RF devices in the T/R module (see Figure 3.6)

3.6.3 Serial Communication

The communication system uses a serial data bus and a serial clock bus to transfers

data between the digital transmitters and receivers. The transmitter has a parallel-to-serial

interface that accepts 16-bit parallel data and then shifts it out bit by bit in an especial

69



d0 d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14 d15
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Figure 3.34: Transmission of a 16-bit word.

protocol. The data is transmitted with the least significant bit first. The receiver has a

serial-to-parallel interface that accepts serial data and then converts it to 16-bit parallel

data. There is one clock pulse for each data bit that is transmitted, see Figure 3.34. The

serial data bus is logically high when it is idle. The transmission starts with a start bit,

which is 0, followed serially by a 16-bit word, and ends with a stop bit, which is 1. At the

receiver, each bit is sampled on the middle of each bit period using the falling edge of the

clock signal. A transition on the serial data bus from idle to a low level is interpreted as

the beginning of communication.

3.6.4 Digital Command

T/R modules are controlled by means of commands that are based on 16-bit words.

There are two types of commands: broadcast and unicast. The broadcast commands con-

trol simultaneously all T/R modules using a common command, for example when a new

sequence table is loaded. On the contrary, the unicast commands are used to establish a di-

rect point-to-point communication between the array controller and a specific T/R module,

allowing the attributes of a particular module can be set or read. The digital controllers

accept four unicast commands: write port, write address register, write memory, and read

temperature register. The T/R module controller requires a 7-bit address to enable a read

or write operation. The first word in unicast, is the addressing commands, which comprises

a mandatory one in the most significant bit (this bit in 1 means a uncast communication),

followed by 6 reserved bits ( all bits are set in 1), a 6-bits module address (AD5-AD0),

a 2-bits register address (M1 and M0), and ends with a write/read select bit in the least

significant bit (refer to Table 3.7). The reserved bits can be used to extend the number

of T/R module addresses, allowing up to 4096 possible modules. The register address is
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defined in Table 3.8. The bit (M1 and (M0 are used for addressing the internal registers

and memory. The WR select bit set the operation mode, 1 = write and 0 = read.

Table 3.7: First word in unicast command

First word in unicast command (addressing command)

UB bit Reserved Module address Register address WR bit

bit b15 b14 : b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

value 1 1 AD5 AD4 AD3 AD2 AD1 AD0 M1 M0 WR

Table 3.8: Register address

Register address

M1 M0 Description

0 0 Address register

0 1 Memory

1 0 Port

1 1 Temperature register

3.6.4.1 Unicast Commands

3.6.4.1.1 Write Port. It is possible to update the signals that control the RF compo-

nents (T, R, H, V, PS[5:0], and AT[5:0]) by writing a 16-bit word in the port register and

sending one pulse (during one clock cycle) into the signal CLK3 once write port command

has been completed. The word is loaded in the port at the CLK3’s rising edge. The write

command uses two words, see Table 3.9. The first word is the addressing command and

the second word is the binary value to be assigned the port. The bits in the second word

are described in Table 3.6. A timing diagram of the serial sequence used to write the port

of a T/R module is shown in Figure 3.35. The write port command has been implemented

to control individually the T/R module functions during the array calibration. Calibration

techniques require typically that only one element can be controlled while all other elements

are off.

3.6.4.1.2 Write Memory. The FPGA of each T/R module has a 4096 x 16 bit internal

memory that can be used for storing calibration look-up tables. Details regarding the

71



Table 3.9: Write Port Command.

bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1st
word

1 1 1 1 1 1 1 A5 A4 A3 A2 A1 A0 1 0 1

2nd
word

H V T R PS5 PS4 PS3 PS2 PS1 PS0 AT5 AT4 AT3 AT2 AT1 AT0

1 1 1 1 1 1 1 1 1Data1

CLK1

AD5 AD4 AD3 AD2 AD1 AD0

H V T R PS2 PS1 PS0 AT5 AT4 AT3PS5 PS4 PS3 AT2 AT1 AT0Data1

CLK1

CLK3

CLK3

First word sequence

Second word sequence

Figure 3.35: Transmission of write port command.

look-up table organization are given in chapter 4. The memory write operation requires

an addressing command, followed by a 16-bit word that contains the number of words

(N<=4096) to be written in the memory, and a serial stream having the data (N words)

to be stored in the memory. The write memory command is defined in Table 3.10. The

number of words is represented by a 10-bits command, allowing for 4096 possible values.

The data to be stored in the memory contains control bits for the T/R module at different

scan angles and operation modes. Once the write operation is complete, the T/R module

returns the same data to the array controller. The returned data can be used to detect

communication errors. A timing diagram of the serial sequence used to write the controller

memory is shown in Figure 3.36 .

3.6.4.1.3 Write Address Register. The internal memory is accessed by commands

that are stored in the sequence table or by commands that are stored in an address register.

The write address register command allows the memory of each individual T/R module
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Table 3.10: Write memory command.

bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1st word 1 1 1 1 1 1 1 A5 A4 A3 A2 A1 A0 0 1 1

2nd
word

0 0 0 0 0 0 L9 L8 L7 L6 L5 L4 L3 L2 L1 L0

3rd
word

H0 V0 T0 R0 PS0[5 : 0] AT0[5 : 0]

(n+3)th
word

Hn Vn Tn Rn PSn[5 : 0] ATn[5 : 0]

(N+3)th
word

HN−1 VN−1 TN−1 RN−1 PSN−1[5 : 0] ATN−1[5 : 0]

1 1 1 1 1 1 1 1 1Data1 AD5 AD4 AD3 AD2 AD1 AD0

L8 L7 L6 L5 L4 L3L9 L2 L1 L0Data1

1st word sequence

2nd word sequence

H V T R PS2 PS1 PS0 AT5 AT4 AT3PS5 PS4 PS3 AT2 AT1 AT0Data1

3rd word sequence

Data1

nth word sequence

Data1

Nth word sequence

Figure 3.36: Transmission of write memory command.

can be accessed without affecting the status of other T/R modules. To set a calibration

setting that is stored in the memory, the write address register command must be sent to

T/R module followed by one pulse of the signal CLK3. This pulse is necessary to load the

data read from the memory into the output port. The command comprises two words, the

first word is the addressing command, and the second word is the memory address to be

accessed, see details in Table 3.11. Because the number of memory locations is 4096, the

memory address bits (MA11-MA0) has been limited to 12 bits. Figure 3.37 shows the timing

diagram of write operation in the memory address register of a T/R module. Once the write

operation is complete, the T/R module returns the same data to the array controller.
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Table 3.11: Write address register command.

bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1st
word

1 1 1 1 1 1 1 A5 A4 A3 A2 A1 A0 0 0 1

2nd
word

0 0 0 0 MA11 MA10 MA9 MA8 MA7 MA6 MA5 MA4 MA3 MA2 MA1 MA0

1 1 1 1 1 1 1 1Data1

CLK1

AD5 AD4 AD3 AD2 AD1 AD0

MA8 MA7 MA6 MA5 MA4 MA3MA11 MA10 MA9 MA2 MA1 MA0Data1

CLK1

CLK3

CLK3

First word sequence

Second word sequence

Figure 3.37: Transmission of write address register command.

3.6.4.1.4 Read Temperature Register. T/R modules have a temperature register

that continuously is updated with real-time information from a temperature sensor installed

in the T/R module. This register can be read by means of the read temperature command.

The read operation starts with a 16-bit command word that is sent from the array controller

throughout the serial lines DATA1 and CLK1. Once this operation is completed, the T/R

module returns back two command words throughout the serial DATA2 and CLK2. The

serial stream includes the addressing command sent originally by the array controller and

a word having the 8-bits temperature data. The read temperature command is defined in

Table 3.12. A timing diagram of the serial sequence used to read the temperature register

from a T/R module is shown in Figure 3.38. Note that the serial lines DATA1 and CLK1

transmit a single word and thatthe serial lines DATA2 and CLK2 transmits two words.
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Table 3.12: Read temperature register.

bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1st
word

1 1 1 1 1 1 1 A5 A4 A3 A2 A1 A0 1 1 0

2nd
word

0 0 0 0 0 0 0 0 T7 T6 T5 T4 T3 T2 T1 T0

1 1 1 1 1 1 1 1 1Data2

CLK2

AD5 AD4 AD3 AD2 AD1 AD0

T7 T6 T5 T4 T3 T2 T1 T0Data2

CLK2

First word sequence

Second word sequence

1 1 1 1 1 1 1 1 1Data1

CLK1

AD5 AD4 AD3 AD2 AD1 AD0

First word sequence

T7 T6 T5 T4 T3 T2 T1 T0Data2

CLK2

Second word sequence

Figure 3.38: Transmission of read temperature command.

3.6.4.2 Broadcast Command

3.6.4.2.1 Write Sequence Table. The sequence table stores the list of beams that

the array must implement for a time interval. The beam sequence comprises 8 states: 4

transmit states and 4 receive states. Two consecutive states, including a transmit state

and a receive state, is called a cycle. The write sequence table command comprise 9 words,

see Table 3.13. Note the most significant bit of each word starts in 0; this indicates that

a broadcast command has been sent from the array controller. The first 8 words contain

the beam commands to be implemented by the array, and the last word defines the number

of pulses per cycles (L) in a sequence. The beam commands are formatted as memory
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Table 3.13: Write sequence table.

bit b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1st word 0 0 0 0 MA0[11 : 0]

2nd word 0 0 0 0 MA1[11 : 0]

3rd word 0 0 0 0 MA2[11 : 0]

nth word 0 0 0 0 MAn−1[11 : 0]

8th word 0 0 0 0 MA7[11 : 0]

9th word 0 0 0 0 0 0 0 0 L7 L6 L5 L4 L3 L2 L1 L0

address bits (MA11-MA0), which indicate the physical location of a calibration setting in

the look-up table. The number of pulses per cycle is 8-bits wide allowing for 256 possible

pulses. Depending on how the sequence table and number of pulses per cycle is defined,

different pulsing schemes can obtained. Some examples of pulsing schemes are indicated in

Tables 3.14 - 3.19. The phased array can be configured to operate using single polarization

(HH or VV or HV or VH), dual polarization (HH and VV, or HH and HV, or VV and

VH), and quad-polarization (HH, VV, HV, and VH). Where HH is the horizontally po-

larized transmitted energy and horizontally polarized received energy, VV is the vertically

polarized transmitted energy and vertically polarized received energy, HV is the horizon-

tally polarized transmitted energy and vertically polarized received energy, and VH is the

vertically polarized transmitted energy and horizontally polarized received energy.

Figure 3.39 shows the timing diagram of write operation for the sequence table. Once

the sequence table is written, the CLK3 rising-edge must sent to set the new calibration

settings for the next beam in the output ports (see also Figure 3.33 ). CLK3 signal causes

the modules to toggles between transmit and receive states.

Table 3.14: Sequence table for Single polarization.

State T/R H/V Beam pulses/cycle

1 T H beamID
1

2 R H beamID

3 T H beamID
1

4 R H beamID

5 T H beamID
1

6 R H beamID

7 T H beamID
1

8 R H beamID

76



Table 3.15: Sequence table for dual pol - dual PRT.

State T/R H/V Beam pulses/cycle

1 T H beamID
1

2 R H beamID

3 T H beamID
1

4 R H beamID

5 T V beamID
1

6 R V beamID

7 T V beamID
1

8 R V beamID

Table 3.16: Sequence table for dual pol - dual PRF

State T/R H/V Beam pulses/cycle

1 T H beamID
nf12 R H beamID

3 T H beamID
nf24 R H beamID

5 T V beamID
nf16 R V beamID

7 T V beamID
nf28 R V beamID

Table 3.17: Sequence table for fully polarimetric- single PRT (alternate pulse)

State T/R H/V Beam pulses/cycle

1 T H beamID
1

2 R H beamID

3 T H beamID
1

4 R V beamID

5 T V beamID
1

6 R H beamID

7 T V beamID
1

8 R V beamID

Table 3.18: Sequence table for fully polarimetric -alternate dwell

State T/R H/V Beam pulses/cycle

1 T H beamID
n

2 R H beamID

3 T H beamID
n

4 R V beamID

5 T V beamID
n

6 R H beamID

7 T V beamID
n

8 R V beamID
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Table 3.19: Sequence table for single polarization - beam multiplexing

State T/R H/V Beam pulses/cycle

1 T H beamID0
n

2 R H beamID0

3 T H beamID1
n

4 R H beamID1

5 T H beamID2
n

6 R H beamID2

7 T H beamID3
n

8 R H beamID3

Data1

CLK3

Data1

CLK3

1st word seq

9th word seq

2nd word seq 3rd word seq 4th word seq 8th word seq

PRT

Figure 3.39: Transmission of sequence table.

3.6.4.3 T/R Module Digital Controller

The conceptual block diagram of the T/R module digital controller is shown in Figure

3.40. It consists of six major components: serial interface, command controller, sequence

table, sequence counter, lookup table, and I2C interface. All other blocks are used for storing

temporary values or for interfacing. The controller is implemented in a Xilinx Spartan-3E

XC3S100E FPGA using the Verilog language.

3.6.4.3.1 Serial Interface. The serial interface comprises of a receiver and a transmit-

ter. The receiver receives serial data (DATA1) and serial clock (CLK1) from two LVDS

input buffers, which convert from differential to single end signaling. A serial-to-parallel

shift register is used to convert the serial data to 16-bit parallel data. The receiver stores

the recovered word in a 16-bit buffer and generate a flag signal that indicates when a word

has been received. The transmitter is implemented with a parallel-serial shift register. The

serial output data is sent to a LVDS output buffer, which converts the signal from single-
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Figure 3.40: Internal structure of the digital controller core.

ended to differential signaling. The flow charts for the serial receiver and serial transmitter

interface are shown in Figure 3.41.

3.6.4.3.2 Command Controller. The command controller handles the data traffic

between the array controller and various registers and memory tables in the T/R module

controller. It reads the data from the serial interface, and based upon clocking and received

commands, the command controller generates control signals for controlling the operation

of the lookup table, sequence table, port register, memory address register, and tempera-

ture register. The flow chart for the command controller is shown in Figure 3.42. When

the controller receives unicast commands, it decodes the T/R module address from the
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Figure 3.41: Serial receiver and transmit interface flow chart.

addressing command and compare it to the one saved in a local register. If addresses are

different, the next command words are omitted. Otherwise, the local controller accepts the

next command words, addressing the data to a register or a memory table according the

decoded register address bits (M1 and M0, see table 4). Depending on these bits, different

operations can be realized:

• If a command of write port is accepted, the command controller generates the preg clk

signal to stores the 2nd word in a temporal register (Data register), see Figure 3.40.

It also sets the selection signal (sel1) of the multiplexer MUX1, allowing the output

port to route the values from the temporal register. The data is passed to the port
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register when the CLK3’s rising edge arrives. Once the write operation in the output

port is completed, the controller sends the addressing command and port data to the

serial transmitter, which transmits them back to the array controller.

• If a command of write memory is accepted, the command controller sets the selection

signal (sel2) of the multiplexer MUX2 controlling the memory address bus to route

the values from the address register. It also sets the selection signal (sel1) of the

multiplexer MUX1 controlling the output port to route the values from the memory

output lines. For the first memory word, the address register is set to point to 0.

Then, for each received word, the command controller generates the wrmem en signal

(write memory enable) to write the words in the memory; subsequently, it increases

the address register by 1. Once the write operation in the memory is completed,

the controller sends sequentially the addressing command, memory data length, and

memory data to the serial transmitter, which transmits them to the array controller.

• If a command of write address register is accepted, the command controller stores the

2nd word in the address register. It also generates the sel1 signal and sel2 signal to

read the memory from the address register and route the memory output data to the

input of the port register. Then, it sends the address command and address register

data to the serial transmitter to transmit them back to the array controller.

• If a command of read temperature is accepted, the command controller reads the tem-

perature register from the I2C controller, which periodically updates the temperature

value from a external sensor using the SDA line and SCL line. The temperature reg-

isters is 8-bit wide. Once the temperature read operation is completed, the controller

sends the addressing command and temperature value (formatted in a 16-bit word)

to the serial transmitter to respond to the request from the array controller.

On the other hand, when the command controller receives a broadcast commands, which is

write sequence table, it sets the address register to zero and sets the selection signal (sel2)

of the multiplexer MUX3 that controls the addresses bus of the sequence table memory

to route the values from the address register. Then, for each beam command word that is

received, the command controller generates a pulse of the wrst en signal (write sequence

81



Idle state

Receive_done==1

address_com[15]==1

address_com[8:3]== 

TRM address

address_com[2:0]== 

Write mem address

Read 2
nd

 word

Receive_done==1

TRM_address_st==1

address_com[2:0]== 

Write memory

address_com[2:0]== 

Write port

address_com[2:0]== 

Read temperature

Read next word

Receive_done==1

TRM_address_st==1

2
nd

 word?

address_com=

1st word

TRM_address_st=1 TRM_address_st=0

address_reg=

2st word

Length = 2st word

address_reg= 0

Memory[address_reg]= nth word

address_reg=address_reg+1

address_reg==

Length-1

Transmit command to 

array controller

Transmit command to 

array controller

Read 2
nd

 word

Receive_done==1

TRM_address_st==1

port_reg=2st word

Transmit command to 

array controller

TRM_address_st==1

Temperature_reg=

Temperature

Read Temperature

Transmit command to 

array controller

Send address_com

Transmitter flag==1

Sent address_reg

Transmitter flag==1

Send address_com

Transmitter flag==1

Transmitter flag==1

Send address_com

Transmitter flag==1

Sent port_reg

Transmitter flag==1

Send address_com

Transmitter flag==1

Sent Temperature_reg

Transmitter flag==1

Sent Length

address_reg=0

Send 

Memory[address_reg]

Transmitter flag==1

address_reg=

address_reg+1

address_reg==

Length-1

address_reg=0

Memory[address_reg]= 

1st word

Read next word

address_reg=

address_reg+1

Memory[address_reg]= 

nth word

Receive_done==1

address_reg==7

Read 9th word

Receive_done==1

Repetition_reg=9th word

R

R

T

F

T

F

FT

T

F

T

F

T T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

TF

T

F

T

F

T

F

T

F

T

F

T

F

T

F

F

Figure 3.42: Command controller flow chart.
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table enable) to write the words in the sequence table memory while the address register is

incremented by 1. The 9th command word (last command word) is stored in the repetition

register. Once the write operation is completed, the controller resets the sequence counter

to zero, subsequently it generates the sel2 signals to switch the control of the sequence table

to a sequence counter, and generates the sel1 signal to pass the data from the look-up table

to the port.

3.6.4.3.3 Sequence Table and Sequence Counter. The sequence table is imple-

mented in a 8 x 16 bit memory which is used to store beam commands. Its output lines

control the addressing of the calibration look-up table. The sequence table address bus

is controlled initially by the address register during writing operation, but each time this

operation is completed, the control is passed to the sequence counter. A repetition register

determines how the sequence counter is operated, using single or double loop. When the

repetition registers is 1, the counter operates as a single loop, the count start at 0 and

increases monotonically to 7 and wraps around, each increments is controlled by the CL3’s

rising edge. When the repetition register is set to the binary number n (for n10<256), the

counter operates as a double loop, it counts from 0 to 1 and wrap around n times, each

increment is controlled by the CL3’s rising edge. Then, the counter passes to counts from 2

to 3 and wrap around n times. Same procedure is repeated by numbers 4-5 and 6-7. Once

the cycle has been completed, the counter is returned to zero and the process is repeated

indefinitely.

3.6.4.3.4 Look-up Table. The look-up table is based on a 4096 x 16 bit random ac-

cess memory (RAM). The memory stores calibration settings as a function of the memory

address, which in turn, is also a function of scan angle (beamID), channel bit (TH), and

polarization bit (VH), see chapter 4 for more details. Tables are pre-calculated and stored

in the radar computer after the array calibration. Then they are stored in the memory

during the radar initialization phase. The data read from memory is controlled by means of

beam commands that are supplied by the address register (when an memory address com-

mand is used) or by the sequence table (when the write sequence table command is used).
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The resulting output data is sent for storing to the port register throughout of multiplexer

Mux1.

3.6.4.3.5 I2C Interface. The T/R module has a low cost digital temperature sensor

(TC74) that can provide temperature measurements in the range of -40oC to +125 oC using

8-bit digital words. The sensor is a two-wire serial output devices that is compatible with

I2C interface. In order to communicate with this sensor, the T/R module controller has

implemented an open core I2C interface [50]. Communication between devices is realized

at 100 Kbps using the serial data line (SDA) and serial clock line (SCL). All transfers take

place under the control of the T/R module controller, acting as the Master, while the TC74

always operates as a slave. The interface also includes and I2C controller, which generates

the commands to access and to read the digital sensor. The controller is programmed to

read the sensor’s temperature each second. Measurements are stored in a 16-bit temperature

register, which outputs are connected to command controller.

3.6.5 System Integration and Test.

After measuring each individual component of the array, the four LRUs were assembled

and tested individually to check out electrical operation and communication. The commu-

nication test was performed with the LRU connected to the array controller. A computer

was used to generate random unicast commands that were sent to T/R modules. The re-

turned commands from T/R modules were then compared with the original commands to

check out the bit error rate and to verify the bus backplane operation. After passing the

communication test, the electrical performance of each LRU was measured to verify inter-

connection between corporate feeds and T/R modules. Then the array was built to check

out the design concepts and calibration. Figure 3.43 shows a photograph of the beamformer

network assembled in the array.

84



Figure 3.43: Photo of the beamformer network mounted in the antenna frame.
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CHAPTER 4

ARRAY CALIBRATION

4.1 Introduction

Active phased array antennas are usually complex systems that are composed of a large

number of electronically controlled radiating elements. Beams are formed by adjusting the

amplitude and phase of the signal emitted (or received) from each radiating element, and

by coherently adding the corresponding signals of each element in the desired direction. To

achieve the desired shape and direction of the beam, the electrical differences in the paths

of RF signals that feed the radiating elements must be calibrated before applying the am-

plitude and phase settings. Electrical differences are originated by natural variances in the

T/R modules, cables, RF manifold, etc. The procedure used to compensate these differences

is known as array alignment or calibration. While the details of this procedure vary from

system to system, the main goal is the same, to find the proper element calibration settings

that both compensate the hardware differences and implement the desired excitation func-

tion. There are different techniques to find what the element calibration settings should be,

depending on the application and the characteristic of the array. The most common and

simple technique is the one based on measurements of the radiation pattern at broadside

of each radiating element [10, 51, 52, 53]. Measurements are made by placing a near-field

probe in front of each element while other elements terminated in matched load. Resulting

data is used to determine the radiated offset vector, which represents the inherent disparity

in the amplitude and phase between elements. These offset vectors are then used to equalize

the amplitude and phase of element patterns without altering the element patterns shape.

There are also techniques to compensate the element pattern differences at all angular

positions from variations caused by mutual coupling and edge diffraction effects [54, 55].

These techniques require full measurement of radiation patterns from all elements. Patterns

are then used to extract calibration coefficients that cancel out the mutual coupling and
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edge diffraction effect. The advantage of this method is that theoretical patterns with

ultra low sidelobes and deep nulls can be achieved. Drawbacks are that high resolution

attenuators and phased shifters are needed; it is difficult to implement in a large array

because of the number of measurements; and it requires large far field range facilities with

special algorithms to extract the calibration coefficients.

All of above techniques are restricted to arrays whose elements can be examined indi-

vidually, in other words, arrays that have the ability to individually turn on and off each

element. This property increases the isolation between the element under test and inactive

elements, minimizing the errors due to radiation effects from other elements. In contrast,

arrays whose elements are simultaneously turned on and off, need special techniques to mea-

sure each individual element. The most relevant technique in this category is the rotation

element field vector (REV) method [56]. In this method, the relative amplitude and phase

of each element are obtained from absolute power measurements. To obtain these values,

the phase shifter in the element under test is stepped through all its states, while phase

shifters in the inactive elements are held in the same state. In this fashion, the measured

power as a function of the phase shifter states describes a sinusoidal behavior. The complex

gain is obtained from three parameters of this sinusoidal function: the maximum power,

the minimum power, and the phase shift corresponding to the maximum power. The main

disadvantage of this method is that it is time consuming; many measurements must be

made to obtain the amplitude and phase of a single element.

Another aspect related with the calibration of phased arrays is the element characteri-

zation, which is a procedure that consists in measuring the amplitudes and phases of each

element as a function of attenuator and phase shifter states. Characterization is important

because attenuators and phase shifters are nonlinear components, and measurements allows

to know the existing relationship between the commanded states and implemented ampli-

tude and phase of an radiating element. For analog devices, this relationship is found by

fitting the data in curves. Models are used to create calibrated states that are later stored

in memory look-up tables at the T/R modules [53, 54]. Because the characterization and

modeling of analog components are consuming processes for large arrays, digital attenuator

and phased shifter are preferred component to build phased arrays. Digital devices present
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a better response between the commanded state and implemented state, making them easy

to use. However, they are not perfect components and need some level of calibration to

achieve low excitation errors. For example, attenuators and phase shifters have an insertion

phase and insertion loss, respectively, that changes with the commanded state. For that

reason, characterization is still need for correcting these shifts.

Typically, element characterization is performed in planar near-field antenna test facility.

During this process, a sampling probe is positioned in front of each radiating element,

with only that element enabled in either transmit or receive. The amplitude and phase

is measured through all attenuator and phase shifter states that can be controlled from a

T/R module [38]. After characterization, the data is calibrated to correct for component

variances, insertion loss and insertion phase shift that are naturally created by phase shifters

and attenuators, respectively. The calibrated data is then stored into memory-based look-

up tables in the T/R modules [25, 57, 58]. Look-up tables translate the ideal commands

sent from the beam steering computer into corrected commands. Disadvantages of this

procedure are: the unacceptable time that is needed to measure the whole array, and

calibrated settings do not provide the most optimal weights for implementing excitation

functions with low RMS errors. It is known that excitation errors are theoretically limited

by the quantization errors. It will be shown in this chapter that the quantization errors

due to the attenuator and phase shifter are increased by the variance of the insertion loss

and insertion phase of these components, limiting the possibility of reaching RMS errors

close to the theoretical minimum value and getting a best array performance. Calibration

is necessary because it reduces the array errors, which in turn, leads to the implementation

of radiation patterns with very low sidelobes. The smaller the array errors, closer the

implemented radiation pattern to the theoretical pattern will be.

This chapter develops mathematically and demonstrates experimentally a calibration

method that takes advantage of the variance in the amplitude and phase characteristics of

T/R modules to implement the desired excitation coefficients with low RMS errors. The

goal is to reach quantization errors close or better than the theoretical minimum value.

These low errors are important in small and medium size phased array radar to achieve

very low sidelobe levels. The proposed method is used in the calibration of a linear phased

88



array testbed. The procedures to calibrate the transmit array operating in compression and

receive array using a taper illumination are described. It is shown that after calibrating,

it is possible to predict the radiation pattern and scanning performance. Additionally,

the method is modified to make it more robust and allow the calibration of phased array

antennas at different temperatures. In particular, it is described how the two-way antenna

gain drift due to the temperature variation can be corrected. This method overcomes the

difficulties of correcting the gain drift in transmit arrays operating in compression. The

evaluation of the relevant features of the phased array testbed such as beam pointing error,

beamwidth, peak sidelobes, scanned gain, active element pattern is presented.

4.2 Theory

4.2.1 Array Alignment

It is known from array theory, that the radiation pattern characteristics of an uniformly

spaced antenna array can directly be synthesized by selecting properly the excitation of its

radiating elements. Sidelobe level, null position, or beamwidth are some input parameters

used to design the array excitation. Theoretically, the far-field radiation pattern is expressed

as the product of a common element pattern multiplied by an array factor. While in an

ideal array, the element patterns are considered to be the same, in real arrays, the element

patterns differ from each other because its environment. Effects as mutual coupling, edge

diffraction, mismatch, and variations in elements themselves, affect the embedded element

radiation patterns from their original patterns (i.e. isolated pattern). An embedded element

pattern is the radiation pattern obtained when a single element is driven and the surrounding

elements are terminated in the generator impedance. For a N-elements linear array, the

exact computation of its radiation pattern can be expressed as [59]

fa(θ, φ) =
N∑
n=1

fn(θ, φ)vne
jkr̂.r̂n (4.1)

where fn(θ, φ) is the far-field embedded element pattern, vn is the complex excitation coef-

ficient (or illumination) for the nth element, k is the free-space propagation constant, r̂ is

the unit radial vector from the coordinate origin in the observation direction, and r̂n, is a
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position vector from the origin to the center of the nth element. For a large uniform array,

where the number of inner elements is much greater than the number of edge elements, it is

reasonable to assume that element radiation patterns are alike because they see an identical

environment. This assumption allows the definition of an array element factor that accounts

for the all varying effects in the array, which is called average embedded element pattern

or average active element pattern, fav(θ, φ). Using this term, the overall array radiation

pattern (4.1) can be written as [59]

fa(θ, φ) = fav(θ, φ)
N∑
n=1

vne
jkr̂.r̂n (4.2)

This expression corresponds with concept of principle of pattern multiplication used in

array theory [60]. All calibration needs to do is to compensate for hardware imperfections

in the elements and permit the desired excitation coefficients vn to be implemented.

In order to carry out the array calibration, a set of vector offsets or calibration coefficients

that describe the disparity of amplitudes and phases among elements need to be determined

from measurements of the system. The introduction outlined the conventional technique to

perform this calibration, which consists in measuring the transfer function of each element

separately by using an external near-field antenna (NF probe) placed in front of the element

under test. This can be seen in the example of a linear array depicted in Figure 4.1. It

is assumed here that the probe is linearly polarized and that both array and probe are

connected to a vector network analyzer, having their input impedances perfectly matched

to the characteristic impedance of the system. The gain or insertion loss of each element is

measured using the scattering parameter S21 (forward transmission), which is the voltage

transfer function between the array and reference NF probe. Depending on the array

configuration, separate transmit and receive parameters may have to be determined.

Let’s consider that the nth element is driven by the excitation and other elements

are terminated in matched load. The measured transfer function can be considered to be

made up of a T/R module normalized complex gain, Wn(att, phs), which depends on the

attenuator and phase shifter states, att and phs respectively; the combined effects of RF

manifold, RF cables, connectors, radiating element, and the T/R module gain when the
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Figure 4.1: Array calibration performed with a near field probe measurement system.

attenuator and phase shifter are set to its digital reference, or the state zero, denoted by

the complex quantities un; and the free space coupling between the radiating element and

sensing probe, denoted by Cn. Thus, the measured transfer function can be expressed as

Sq21(n, att, phs) = Cnu
q
nW

q
n(att, phs) (4.3)

where the superscript q denotes the operation mode on the driven element. For single

polarization, q = R (receive) or T (transmit). If the array elements are designed with

horizontal (H) and vertical polarization(V), then q denotes any four modes: RH, RV, TH

and TH. For a large array, it can be assumed that the free space coupling between the

radiating elements and probe is identical and that it does not vary with the probe position,

that is, C1 = C3 = C3 = ... = Cn = C. In addition, it is defined that the normalized

gain, with the attenuator and phase shifter in the state zero, is Wn(0, 0) = 1. Hardware

differences between array elements can be observed when all modules are set to state zero,

on this case (4.3) reduces to

Sq21(n, 0, 0) = Cuqn (4.4)

It is immediately noticed that the measured transfer functions will not be similar if

there are hardware differences in the RF path of each radiating element, that is, uq1 6= uq2 6=
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uq2... 6= ...uqN . These random variations must be compensated with the attenuators and

phase shifters such that the desired excitation can be implemented. Since the calibration

is simply a matter of making S21 the same for all radiating elements, it is desirable to

adjust the amplitudes and phases of all array elements with respect to the element that

presents the lowest transfer function in the array in state zero, which is denoted by the index

nref . This assumption theoretically allows the implementation of excitation coefficients with

zero random errors. Subsequently, the relative errors between the elements n and nref is

computed as follow

Kq(nref , n) =
Sq21(nref , 0, 0)

Sq21(n, 0, 0)
=
uqnref

uqn
(4.5)

The quantity Kq(nref , n) is the vector offset between the elements n and nref . This

vector, when used as complex multiplier, make the complex gain of the element n looks

like the complex gain in the element nref . Consequently, consider the vector offset has

been determined by the above method, and desired array excitation for the nth element is

given by the complex coefficient vn. To implement the excitation function and correct for

hardware differences between elements, the attenuator and phase shifter have to be set to

some state att and phs such that

W q
n(att, phs) = Kq(nref , n)vqn (4.6)

Note that magnitude and phase of W q
n(att, phs) corresponds to the insertion loss and

insertion phase that need to be set by the attenuator and phase shifter to achieve the

desired excitation. To carry out the calibration in conventional arrays, both amplitude and

phase offsets are stored in tables for use by the array control computer. Details about the

implementation of this calibration can vary from system to system, but the concept is the

same in all of them, the array control computer computes the phase steering commands

for each element and adds the phase offsets stored in the calibration table to the phase

commands that are sent to T/R modules. Analogically, attenuator commands are generated

from the amplitude offsets and excitation coefficients that are stored in look-up tables. One
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example of computation of required states for the attenuators and phase shifters is given in

[22]. In it, the phase shifter states for the nth element is computed as follow

phs(n) = mod
(∆P (n) + round(nΨ)

LSBp
, 2p
)

(4.7)

where ∆P (n) is the phase offset in degrees, LSBp is the phase shifter Least Significant Bit

in degrees, p is the number of bits of the phase shifter,

Ψ =
180

λ0
d.sin(θ0) (4.8)

is the phase increment in degrees between elements, d is the spacing between elements, θ0

is the desired beam steering angle, and λ0 is the wavelength. While the attenuator states

for the nth element is computed as follow

att(n) = −round
{∆A(n) +A(n)

LSBa

}
att(n) = att(n)−min(att(n)) (4.9)

where ∆A(n) = 20log10(|W q
n(att, phs)|), is the amplitude offset in dB,A(n) = 20log10(|vqn|),

is the excitation coefficient in dB , and LSBa is the attenuator Least Significant Bit in dB.

4.2.2 Element Calibration

Unfortunately, conventional attenuators and phase shifters have electrical characteristics

that deviate from those of the ideal components. Unless these deviations are compensated,

the implemented excitation function will not be optimal because of the random errors, de-

creasing the ability to create patterns with very low sidelobes. In fact, the states obtained

from (4.7) and (4.9) are raw states that should not be directly applied to phase shifters and

attenuators to avoid high quantization errors. In practice, active elements are characterized

through all attenuator and phase shifter states, then the data is processed to remove the

deviations between ideal and measured states [38, 51]. In active arrays using analog atten-

uators and phase shifters, the characterization is important because these components are
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typically nonlinear; and it is necessary to know the existing relationship between the raw

states and implemented states of elements. In this case, the relationship is found by fitting

the data in curves. Then, these curves are used to create calibrated states that are later

stored in memory look-up tables at the T/R modules [61, 53].

On the other hand, digital attenuators and phased shifters are preferred component

to build phased arrays. Digital devices present a better response between raw states and

implemented states, making them easy to use. However, because they are not perfect

components, they need some level of calibration if one wants to achieve low excitation

errors. For example, attenuators have an insertion phase characteristic and attenuation

bit error that change with attenuation states. Similarly, phase shifters have an insertion

loss characteristic and phase bit error that change with phase states. Examples of these

variations from a typical T/R module at 9.36 GHz are depicted in Figure 4.2. Measurements

correspond to a 0.5 dB step digital attenuator and 5.625o step digital phase shifter. In the

attenuation bit error versus attenuation states characteristic of Figure 4.2, the attenuation

error gradually increases as a function of the attenuation state. This is because in the

calculation an ideal step of 0.5 dB is assumed. However, the attenuation step obtained from

the slope of normalized attenuation versus attenuation states characteristic is 0.456 dB. In

the attenuator insertion phase versus attenuation states characteristic, there is a gradual

variation in phase. This arises because the implementation of the attenuator circuits, higher

attenuations use more concatenated attenuation sections and longer circuit paths. On the

other hand, in the phase error versus phase shifter states characteristic of Figure 4.2, it is

shown that the phase error is uniformly distributed between -2o and 10o, with a mean of 3.8o.

However, this mean is brought to zero in the calculation if the measured phase step of 5.531o

is used instead. In the phase shifter insertion loss versus phase state characteristic, it is

shown that the insertion loss varies across all phase states is in the same order of magnitude

than the attenuator resolution step. Hence, it became clear that the characterization is

necessary to determine the actual LSBs or resolution steps of attenuators and phase shifters,

which values are slightly different from the value specified by the manufacture.

Typically T/R modules have electrical characteristics as shown in Figure 4.2, all cali-

bration need to do is to remove as much of these variances as possible. Past examples of
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Figure 4.2: Attenuator and phase shifter performance in a X-band T/R module.

how to perform this calibration are given in [57, 62, 58]. In [57], the attenuator and phase

shifter states are calibrated separately by adjusting the measured data to linear models

that represent the theoretical states of each component. In this work, two separate algo-

rithms for amplitude and phase corrections are presented. Unfortunately, this approach

cannot correct the effects of phase and insertion loss shift created by attenuators and phase

shifters, respectively. In [62], a nearest state algorithm is used to correct simultaneously

both attenuator and phase shifter performances. The algorithm is mentioned but not cov-

ered in this work. Nevertheless, it can be assumed that the algorithm works similarly as

the nearest neighbor algorithm, which can find the closest points to a desired point in the
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measured data. This process is represented algorithmically in Figure 4.3. The attenua-

tor and phase shifter states of a T/R module are adjusted such as the norm between the

measured complex gain, Sq21(n, att, phs), and theoretical complex gain is minimized. The

optimization problem can be written as

xmin = min
att,phs

‖ Sq21(n, att, phs)− 10−LBSa.attraweLSBp.phsraw ‖ (4.10)

This expession provides a set of values for att and phs that allows the implementation

of desired complex gain given by attraw and phsraw. In practice, the translation from raw

states to calibrated states is performed using a two-dimensional look-up table stored in the

internal memory of each T/R module.

The comparison between uncorrected and corrected gain/phase maps of a typical X-

band T/R module based on a 6-bit 32 dB digital attenuator with attenuation steps of 0.5

dB, and a 6-bit digital phase shifter that provides 360o phase coverage with phase shift

steps of 5.625o are shown in Figure 4.4 and Figure 4.5. After characterization, it is found

that LSBa and LSBp are 0.456 dB and 5.531o, respectively. These values are then used

in (4.10) to find the calibrated states that correct the gain and phase variations. Finally,

the lower attenuator states in the calibrated data are discarded in order to have a uniform

gain characteristic and implement states with low calibration errors. In Figure 4.5, the

corrected gain map has a very uniformly distributed pattern through all attenuator and

phase shifter states. It should be noted the attenuation range was reduced from 64 to 60

states in order to improve the gain characteristic at the lower attenuation states, where it’s

almost impossible to achieve calibrated states with low errors. While in the corrected phase

characteristic, the spreading caused by the attenuator and phase bit error have been nearly

reduced in all the range. For this particular example, a RMS amplitude error of 0.24 dB

and RMS phase error of 1.73o are achieved. Theoretically, due to quantization errors, it is

expected an amplitude error of 0.13 dB RMS and phase error of 1.6o RMS. The amplitude

errors differences arise because the variance caused by the phase shifter on the gain.

On the other hand, the corrected gain and phase maps (see Figure 4.5) are obtained

by the combination of 60 attenuation states and 64 phase states, together, each map is
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Figure 4.3: Amplitude and phase calibration algorithm for T/R modules.

comprised by 3840 states. After a comparative analysis between calibrated data and un-

calibrated data, it was found that only 2944 of the original 4096 states were used in the

creation of these maps. As result, there is a significant data reduction when elements are

calibrated.

4.2.3 Element Characterization

In principle, it is desirable to measure all possible combinations of amplitude and phase

states realized by the active elements in order to minimize the errors produced by the

calibration process. However, full calibration of an active array is measurement intensive.

It is common for array elements to have at least 6 bits at each digital attenuators and

phase shifters, when are used together, they can provide 4096 combinations of amplitude
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Figure 4.4: Raw gain and phase map for a X-band T/R module at 9.36 GHz.
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Figure 4.5: Calibrated gain and phase map for a X-band T/R module at 9.36 GHz.
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and phase states per channel. In addition, measurements are realized at different frequency

and temperature. As a result, thousands of measurements are required to fully characterize

the performance of each element [63]. However, in practice, this procedure is avoided

if the array is large, because it will result in a large number of measurements and an

unacceptable long test time, affecting consequently the array test cost. To save time, the

number of measurements are reduced and the omitted states are then recovered from the

measurements.

In theory, the characterization could be done during the T/R modules production test,

when they are isolated, allowing measurements at different temperatures [62]. But it can

be also performed when modules are integrated on the system, connected to radiating

elements and RF feed networks. In this case, measurements are taken with a near-field

probe measurement system. A sampling probe is positioned in front of each element to be

measured and amplitude and phase data are taken for that element, while other elements

are terminated in match loads. For large arrays, the number of states to be measured from

attenuators and phase shifters will depend on a trade-off between calibration error budget

and test time [51]. While in moderate-size arrays, the measurements can be realized at

cardinal states (states contained in the set 0,1,2,4,..2Nbits ) or through all states of each

component [22, 57].

4.3 Calibration approach based on nearest state algorithm

Standard methods for array calibration assume that amplitude and phase characteristics

of active elements have been calibrated in advance. Thus, array control computers only

need to compute the amplitude and phase commands (attenuator and phase shifter raw

states) for each module. Then, correction look-up tables in T/R modules translate the

raw states into calibrated states. The data stored in the look-up tables is determined from

measurements of the amplitude and phase behavior of each individual module; only data

points that best approximate to ideal curves representing the ideal T/R module performance

are selected. One disadvantage of this approach is that many amplitude and phase states

are discarded during the creation of correction tables, reducing the ability to implement the

desired excitation function with better amplitude and phase settings.
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The problem of interest is to calibrate a phased array antenna in the presence of a RF

beam former network with digital attenuators and phase shifters, focusing on the imple-

mentation of excitation functions with the lowest possible random errors. This goal can

be accomplished if all the amplitude and phase settings measured from each element are

available for the calibration. Optimum excitation settings are obtained if the calibration

is performed using a nearest state algorithm. The algorithm searches across all amplitude

and phase settings of each element for the values that best match the desired excitation

coefficients for a particular beam. Settings for different beams are computed and then for-

matted into binary tables (beamtable) that are unique for each T/R module. To implement

the array excitation, beamtables are stored in memory based look-up tables in the T/R

modules, where the appropriated amplitude and phase settings for each desired beam are

stored.

The proposed method assumes that gain and phase characteristics of radiating elements

have been characterized through all attenuation and phase shifter states using a NF probe.

Subsequently, these data can be used to compute the relative errors between elements (Eqn.

4.5) and ideal weighting (Eqn. 4.6) that is requered to implement the excitation function

and correct the amplitude and phase differences among elements. Let’s assume that the

array has been calibrated by the above method. When (4.5) and (4.6) are used in (4.3),

yields

Sq21(n, att, phs) = vqnCu
q
nref

(4.11)

This quantity represents the implemented complex gain. Now, from (4.4), Sq21(nref , 0, 0) =

Cuqnref . Hence, it follows that

Sq21(n, att, phs) = vqnS
q
21(nref , 0, 0) (4.12)

Note that excitation coefficient is scaled by the gain of the element that has less gain

in state zero. This condition allows the gain realized by the elements fall within the oper-

ation range of attenuators and phase shifters, or within the gain and phase range of each

element. The values att and phs in the above formula are the states that must be found at

each element to satisfy the equally (4.12). However, due to quantization effects the array
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excitation will not be perfectly implemented. The goal of calibration is to find the proper

settings that minimize the error between the implemented complex gain Sq21(n, att, phs) and

the theoretical complex gain Sq21,theo(n), which depends on the desired aperture amplitude

distribution function (an) and the scan angle (θ0). Formally, this is expressed as

[attq(n, θ0), phs
q(n, θ0)] = argmin

att,phs
‖ Sq21(n, att, phs)− S

q
21,theo(n, θ0) ‖ (4.13)

Sq21,theo(n, θ0) = ane
jnkdsin(θ0)Sq21,ref

|Sq21,ref | ≤ |S
q
21(nref , 0, 0)|

In fact, the expression (4.13) works for any scaling factor less than or equal to refer-

ence gain Sq21(nref , 0, 0), its value has been replaced by S21,ref . The criteria to choose the

reference gain depends on the operation mode. For receive mode, the criteria should be

|S21,ref | ≤ min(|Sq21(n, 0, 0)|) to reduce the random excitation error and obtained better

sidelobes levels. While in transmit mode, if the amplifiers need to operates in compression,

the criteria should be S21,ref = max(Sq21(n, 0, 0)) .

To find the array calibration settings, a nearest states algorithm is used. The algorithm

searches in the measured data of each element, the best approximation for the attenuator

and phase shifter states that minimizes the norm between the measured gain Sq21(n, att, phs)

and theoretical gain S21,theo for that particular element. This process is represented algorith-

mically in Figure 4.6. This procedure gives two set of vectors attq(n, θ0) and phsq(n, θ0),

which are quantized and formatted into a binary table ( beamtable) that is unique to a

particular T/R module.

RMS amplitude and phase errors between implemented excitation and theoretical exci-

tation for each beam are computed as follow

σa(θ0) =

√√√√ 1

N

N∑
n=1

(
|Sq21(n, attq(n, θ0), phsq(n, θ0))| − |S21,theo(n, θ0)|

|S21,theo(n, θ0)|

)2

(4.14)

σa(θ0) =

√√√√ 1

N

N∑
n=1

( 6 Sq21(n, att
q(n, θ0), phsq(n, θ0))− 6 S21,theo(n, θ0))2 (4.15)
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Figure 4.6: Amplitude and phase calibration algorithm for phase array system.
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Theoretically, the amplitude and phase errors will depend on quantization errors created

by the attenuators and phase shifters, respectively. Those values are given by following

equations

σa,theo =

√
LSB2

a

12
+ std(LSBa)2 (4.16)

σa,theo =
LSBp√

12
(4.17)

4.3.1 Pattern Prediction

Let it be assumed that the array has been calibrated by the above method, and the

implemented array excitation for the nth element is proportional to the complex parameter

Sq21(n, att, phs). If an average embedded element pattern, fav(θ, φ), can be determined, for

example by far-field measurements, then the array radiation pattern can be computed from

(4.2) as

fa(θ, φ) = fav(θ, φ)
N∑
n=1

Sq21(n, att
q(n, θ0), phs

q(n, θ0))e
jnkdsin(θ0) (4.18)

4.3.2 Beamtable Format

The control electronic unit of each T/R module has 4K bytes (4096 x 16 bits) of RAM

that is used for storing the beamtables of that particular element, as discussed in chapter

[1]. The beamtables are arranged in memory blocks where calibration settings for different

beams and operation modes are stored. To access the calibration settings, the memory

blocks are configured in form of look-up tables, which looks up what the output should

be for any given combination of input states. The number and size of beamtables that

can be allocated in the memory depends on the number of beams, operation modes and

temperatures tables. Table 4.1 summarizes the number of beamtables that are available

for single and dual polarization when the array is calibrated for 128 and 256 beams. For

example, a dual-polarized array with 256 beams, operating in both polarization used as

minimum 4 different beamtables (one for each channel: RH, RV, TV and TH) for a single

temperature. However, the memory size can allow the implementation of a maximum of

4096/(256)=16 beamtables, which can be used to calibrate the array at other temperatures.
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Table 4.1: Number of beamtables available in a 4K Memory look up table

Mode Number
of beams

Number of
channels

Max. number
of beamtable

Max. number of beamtable per
channel

single 128 2 32 1(T)+31(R)

dual 128 4 32 1(TH)+1(TV)+15(RV)+15(RH)

single 256 2 16 1(T)+15(R)

dual 256 4 16 1(TH)+1(TV)+7(RV)+7(RH)

For the particular case when the element memory is configured with 4 beamtables and

256 beams, the memory configuration and memory map are depicted in Figure 4.7 . The

4*256=1024 memory locations are addressed with only 10-bits of the 12-bits wide beam

commands. The addressing command is concatenated as follows: two unused bits, one bit

for T/R signal (operation mode), one bit for H/V signal (polarization), and 8-bits for the

beamID (beam index), where, the bit T/R={0 for receive, 1 for transmit} and bit H/V={0

for horizontal, 1 for vertical} select the beamtable, while the beamID = 0, 1, 2, ..., 255

selects the desired beamsteering angle θ0. Assuming the normal azimuth scanning range

for the antenna is ±45o and that the beam sampling is uniformly distributed with angular

increment ∆θ = 90o/(256− 1) = 0.3529o. With these values, beamID and θ0 are related as

beamID = round

(
θ0 − θinitial

∆θ

)
θ0(beamID) = θinitial + ∆θ0beamID = −45 + 0.3529beamID (4.19)

The above formula generates the sequence θ0(0 : 255) = {-45o, -44.6471o ,..., -0.1765o ,

0.1765o,..., 44.6471o, 45o}.

For the above example, the beamtable data is comprised of 1024 16-bit wide words.

Each 16-bit words is the binary concatenation of 6 bits that specify the attenuator state, 6

bits that specify the phase shifter state, and bits H,V, T, and R, as it is indicated in Table

3.10. Based on memory configuration depicted in Figure 4.7, and the states obtained from

(4.13), the beamtable data for the nth element is computed as follows:
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Beam Command

4096 x 16bit

RAM

A9

A7
A6
A5
A4
A3
A2
A1
A0

A8
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0

D10
D11
D12
D13
D14
D15 H

Attenuator control

(6 bits)

Phase shifter control

(6 bits)

V
T
R

BeamID 

(8 bits)

A10
A11

T/R
H/V

                        0             000h

0         0     

                      255           0FFh

                        0             100h

0         1     

                      255           1FFh

                        0             200h

1         0     

                      255           2FFh

                        0             300h

1         1     

                      255           3FFh

Beamtable for 

channel RV

Beamtable for 

channel RH

T/H    H/V    BeamID    Address

Beamtable for 

channel TV

Beamtable for 

channel TH

Memory Map

H/VT/H BeamID[7:0]Unused[1:0]

Beam

-45

45

-45

45

-45

45

-45

45

Figure 4.7: Look up table configuration: Left: memory configuration. Right: memory
map.

beamtable(n, address) = conc2{bit(H/V ), H/V , bit(T/R), T/R, phs2[5 : 0], att2[5 : 0]}

address = beamID + 256bit(T/H) + 512bit(H/V )

phs2[5 : 0] = dec2bin(phsq(n, beamID), 6)

att2[5 : 0] = dec2bin(attq(n, beamID), 6)

where conc2 is the concatenate function, dec2bit is the function that converts decimal to

binary numbers and q is the channel (TH, TV, RH and RV). Finally, the beamtable is

transferred from the array controller to T/R module memories using the write memory

command (see Table 3.10 in section 3.6.4.1).

Table 4.2: Beamtable data format

TRM command beamtable length beamtable(n)
16 bits 16 bits 1024x16 bit
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4.3.3 Internal Temperature Compensation

The phased array system described in Chapter 3 is equipped with an inexpensive forced

air cooling system to prevent the T/R modules from excessive heat. A voltage-controllable

fan array that forces ambient air to circulate from the antenna base to the top, passing

through the T/R modules is used. Although the cooling system seems adequate to regulate

the heat of the active components, it has the disadvantage that system temperature varies

with the ambient temperature (or weather condition). The problem with this is that changes

in ambient temperature can causes drifts in the gain and phase of T/R modules [34]. As

a result, the overall gain in both transmit and receive array is varied from their operating

points, causing important changes in the radar parameters.

To ensure the gain and phase stability over ambient temperature, both transmit array

and receive array should be calibrated at different temperatures. However, in many solid-

state radars, the transmitters are calibrated to extract the maximum available power from

power amplifiers. The problem that arises is when transmit modules operate in saturation;

the gain drift cannot be compensated by adjusting the element gain. A solution to this

problem is to make the assumption that transmit array gain is stable with temperature and

attempt to compensate the two-way gain variation (Tx gain drift + Rx gain drift) with

the receive array gain. In fact, for this approach to be valid, it must be assumed that the

temperature drift is uniform all over the array.

In a phased array, the gain variations over temperature are caused generally by the

RF solid-states devices used in the T/R modules. Both DC and RF characteristics (cur-

rent, voltages, gain etc) of RF linear devices vary exponentially with temperature [64].

While gain in decibels and phase may vary quadratically [22] or linearly with temperature.

Particularly in the phased array testbed described in Chapter 3, it was found in the RF

component datasheets that the gain (in decibels dB) and phase variation over temperature

vary linearly with temperature. Same behavior was observed experimentally during the test

as well [65]. To model the gain, the measured gain in dB is converted to linear scale using

exponential transformation. After transformation, one finds that gain varies exponentially

with temperature.
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Consider an active element that has been measured with a NF probe at different temper-

atures, the gain in linear scale as a function of temperature, t, can be described empirically

by the equation

Sq21(n, att, phs, t) = Sq21(n, att, phs, t0)e
−(αq+jβq)(t−t0) (4.20)

where Sq21(n, att, phs, t0) is the gain in the reference temperature t0, α
q represents the

gain variation coefficient (Neper/oC), βq represents the phase variation over temperature

(radians/oC). When measured gain (4.13) is expressed in dB, that is

|Sq21(n, att, phs, t)| = 20 ∗ log1010(|Sq21(n, att, phs, t0)|)−A(t− t0) (4.21)

where A = 20log10(e)α
q is the gain variation over temperature in dB/oC . Note that the

phase in (4.20) and gain in dB (4.21) vary linearly with temperature, as it is shown in

Figure 4.13.

Now, let’s consider that transmit gain variation is attributed to the receive channel and

the gain drift can be compensated with the receive array. Then the modified receive array

gain for the nth element is expressed as follow

SR21(n, att, phs, t)e
−(αT+jβT )(t−t0) = SR21(n, att, phs, t0)e

−(αR+αT+jβR+βT )(t−t0) (4.22)

Using (4.22) and (4.13) , we can define an expression for estimating the attenuator and

phase shifter states as a function of temperature for receive elements

[attR(n, θ0, t), phs
R(n, θ0, t)] = argmin

att,phs
||SR21(n, att, phs, t0)e−(α

R+αT+jβR+βT )(t−t0)

− SR21,theo(n, θ0, t0)|| (4.23)

the quantity SR21,theo(n, θ, t0) is defined as (4.13). The fact of keeping SR21,theo(n, θ, t0) con-

stant at any temperature in (4.23) obliges the adjustment of att and phs to compensate the

gain drift produced by the factor e−(α
R+αT+jβR+βT )(t−t0) .
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4.4 Experimental Evaluation

4.4.1 Test Equipment Description

The phased array calibration and antenna pattern measurements were carried out using

the near-field range system shown in Figure 4.8. The system consists of a linear scanner that

carries an open-ended waveguide as a NF probe, and a Agilent E8362B network analyzer

to measure the S-parameters. The lineal scanner is a product of Velmex inc having a travel

range of 1.5 meters. The setup of the measurement equipment is shown in Figure 4.9. The

array, network analyzer, and scanner controller are interfaced to a central computer, that

in turn, controls them. The computer also provides timing and communication, processes

the data, and records the measurements. The entire system is controlled by the user using

a GUI developed in C language.

The linear scanner is controlled from the host computer via a RS232 interface. The NF

probe position is controlled by commands that are generated by the computer and that are

sent to the scanner controller. When the probe is placed in the desired location, the system

can perform either single element measurements (i.e element characterization) or radiation

pattern measurements. To do so, the host computer first enables the array elements and

then sends trigger commands to E8362B network analyzer to perform standard S-parameter

measurements. All measurements are realized in pulsing mode. Data is transferred to the

computer via a 100 Mbps local area connection (LAN).

4.4.2 Scanner Alignment and Antenna Position Error Estimation

In order to minimize calibration errors, the linear positioner is parallel attached to the

antenna support structure, with the near-field probe aligned to the center of the subarrays.

The mechanical alignment is realized by hand using a webcam and image processing GUI

developed in Matlab [66], see figure 4.10. The alignment procedure consists in positioning

the webcam in front of each array elements and computing their positions in the array from

snapshots that are taken at those particular positions. The location errors and offsets that

are obtained from this procedure are used to correct any misalignment can exist between

the array and scanner.
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Figure 4.8: Near field probe test system.
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Figure 4.9: Measurement equipment setup for phased array calibration.

To measure the element position errors, first, the linear scanner automatically aligns

the webcam with the first element of the array (i.e. the first element on the right hand

side). This point is set as the antenna origin. Then, the webcam is moved in steps equal

to the element spacing (d=17 mm), taking at each position a snapshot of each element,

untill the last element is reached. Subsequently, the GUI processes the snapshots with a

shape recognition algorithm, which recognizes the shape of microstrip patch antennas and

computes the coordinates of their centroids from the image’s center. The element location is

determined when coordinates of the centroid are added to the theoretical element position.
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Figure 4.10: Webcam-based alignment control system

Figure 4.11 shows the example of misalignment between the array and scanner system that is

obtained with the aforementioned GUI. In this particular case, the last element in the array

(element 64) is 1.2 mm off in x direction (red curve) from the theoretical center; while in

the y direction (blue curve) one panel is 0.8 mm off in height from the other antenna panels,

this misalignment arises from fabrication defects in one of the antenna panels. Figure 4.11

also shows the discontinuities in the x direction that are produced by gaps between antenna

panels. Based on this approach, a horizontal error of 0.20 mm RMS and vertical error of

0.33 mm RMS were found. The horizontal error produces in the system a phase error of

2.32o RMS.

4.4.3 Temperature Characterization

The purpose of this test is to characterize the performance of the array elements as

a function of ambient temperatures. Since the array is not equipped with a temperature

control system that can hold a constant temperature in the array, it is necessary to esti-

mate how the gain and phase of elements changes with temperature. Although ideally it

is desirable to perform the array characterization in an environmental test chamber that
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Figure 4.11: GUI that determine the element position errors and alignment errors

can emulate different ambient temperatures, such facility was not available for this test.

However, it can be realized if the T/R module temperature can be varied externally, and

if it is assumed that temperature dependence of manifold networks, cables, and passive

array are negligible over the temperature range. In fact, passive components usually have

low coefficients of thermal expansion that results in small changes in insertion phase with

temperature compared to the insertion phase created by solid-state devices at the same

temperature range. In this work, the T/R module temperature is controlled by adjusting

the fan speed of a fan array system, which in turn controls the temperature of the airflow

that passes through T/R modules.

The temperature characterization consists in measuring the S-parameter S21 from a cal-

ibrated array at different temperatures. To do this, first the array is calibrated at lower

temperature, when the fan array operates at maximum speed; then temperature of T/R

modules is varied in steps until it reaches the maximum temperature, that is when the fan

array is off. At each temperature step, the parameter S21 of each active element is mea-

sured when module temperature reaches steady state. Figure 4.12 shows the temperature,

gain and phase characteristics at different fan voltages as a function of time for a receive

element, right after being turned on. The time to reach steady state depends on the initial
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Figure 4.12: Measured temperature and Transmission coefficient S21 as a function of time
and different fan voltages. Top: Temperature. Middle: S21 Magnitude. Bottom: S21 phase.

temperature, temperature constant, and pulse duty cycle. In this test, the time is between

60 sec to 500 sec.

The procedure to characterize the elements is described below:

1. Calibrate the array at low temperature, that is when fan speed is maximum.

2. Reduce the fan speeds to increase the temperature.

3. Place the NF probe in front the first element.
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4. Pulse with a duty cycle of 30% the T/R module under test and read internal temper-

ature. Repeat this step till steady-state temperature is reached. Then, measure the

parameter S21(att, phs, t) with the network analyzer.

5. Move the NF probe to the next element and repeat steps 4 and 5 until last module is

reached.

6. Repeat steps 2 to 5 until the fan speed is zero, point where the temperature is maxi-

mum.

It should be noted that, while in receive the temperature characterization is realized in

the linear region, in transmit the characterization is realized using the power amplifiers in

the saturation region. Figure 4.13 shows the average gain, phase and Tx saturation power

characteristics versus module temperature for both Tx and Rx elements, at central frequency

of 9.36 Ghz. Measurements are normalized to the temperature of 34 oC. According to the

results, the receive gain and phase variation over temperature are 0.061 dB/oC and 0.43

deg/oC, respectively. The total gain loss is about 1.1 dB in the range. The gain variation

over temperature is dominated specially by the thermal characteristics of three amplifiers

(HMC441LP3 and HMC564LC4) used in the receive channel, the manufacturer specifies

a typical gain variation of 0.2 dB/oC for each component. In contrast, the Tx saturation

power and Tx phase vary in at rate of 0.009 dB/oC and 0.45 degree/oC respectively, being

the total power variation 0.14 dB in the range of interest. The small variation in the

transmit saturation power is because the power amplifier is heavily compressed.

Based on above results, the gain for transmit and receive elements can be modeled using

(4.20) or (4.21). For receive mode, α = A/(20 ∗ log10(e)) = 0.061/8.68 = 0.0079 Neper/oC

and β = 0.43 ∗ π/180 = 0.0075 radians/oC, thus the gain can be written as

SR21(n, att, phs, t) = SR21(n, att, phs, t0)e
−(0.0070+j0.0075)(t−t0) (4.24)

|SR21(n, att, phs, t)|(dB) = 20log10(|SR21(n, att, phs, t0)|)− 0.061(t− t0)

the reference gain SR21(n, att, phs, t0) is selected at temperature to. While for transmit mode,

α = 0.001 Neper/oC and β = 0.0079 radians/oC. Hence, using (4.20) or (4.21), it follows

that
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Figure 4.13: Relative gain, phase and saturation power performance versus module tem-
perature.

ST21(n, att, phs, t) = ST21(n, att, phs, t0)e
−(0.001+j0.0079)(t−t0) (4.25)

|ST21(n, att, phs, t)| = 20log10(|ST21(n, att, phs, t0)|)− 0.009(t− t0)

Finally, although the gain was only modeled for the temperature range 34 oC - 52 oC,

it is not clear if the linear characteristic of the gain in decibels can be extended to 0 oC .

But assuming that the linear model is still valid for a temperature range from 0 oC to 54

oC, we will expect a Rx gain variation of 3.0 dB and Tx saturation power variation of 0.45

dBm into the range. These values suggest that the array will need an internal calibration

system to correct the gain drift due to temperature changes.

4.4.4 Receive Array Calibration

In principle, it is desirable to measure all possible combinations of amplitude and phase

states realized by the active elements in order to minimize the errors produced by the cali-

bration process. But, the time to reach the steady-state temperature and time to measure

the 4096 states (64x64) at difference frequencies of each element will result in unaccept-
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able long test time. To reduce the characterization time, the number of measurements are

reduced to 128 and the unmeasured states are recovered from measurements.

The characterization starts by first placing the NF probe in front of the subarray un-

der test (SUT) and measuring the S21 parameter, with that element in receive mode and

remaining array subarrays terminated in matched loads. To save time, the attenuator and

phase shifter are only switched through a subset of 128 of the possible 4096 states, initiating

the measurements with the attenuator in the state zero (0 dB) while the phase shifter is

switched through each of its 64 states, and then setting the phase shifter to state zero (0o)

while switching the attenuator through each of its 64 states. The remaining 3968 states are

obtained as follow:

Sq21(n, att, phs, t0) =
Sq21(n, att, 0, t0)S

q
21(n, 0, phs, t0)

Sq21(n, 0, 0, t0)
(4.26)

where q represents the channel (RH, or RV), n is the SUT index (n=1,2,3,..,64), att and

phs are states defined in range from 0 to 63, and t0 is the temperature index for calibration

temperature. The parameters Sq21(n, att, 0, t0), S
q
21(n, 0, phs, t0) and Sq21(n, 0, 0, t0) represent

three of the 128 measurements recorded for the subarray n at a specific frequency. This

data reconstruction scheme allows the characterization time to be reduced by a factor of 32

compared to full measurements. Once the data is reconstructed and stored in individual

files, the procedure is repeated with the next subarray until all the subarrays are measured.

It should be noted that eq. 4.26 is an approximate formula that assumes that attenuators

and phase shifters are perfectly matched at any states. Therefore, it is expected that

reconstructed data is affected by small errors introduced by the approximation.

Following the above procedure, 128 files for the 64 elements were generated, 64 files for

horizontal elements and 64 files for vertical elements. The files contain data at 10 different

frequencies, from 9.31 GHz to 9.41 GHz. The data was taken using a separation distance of

4.4λ0 between the NF probe and antenna, where λ0 is the wavelength at central frequency.

The next step consists in choosing a scaling factor for both polarizations that can be

applied to the theoretical excitation distribution function. A common scaling factor al-

lows that both polarizations have the same amplitude pattern at broadside; this in turn
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Figure 4.14: Measured transmission coefficient S21 for receive array at state zero. Top:
Relative amplitude. Bottom: Relative phase

will allow the polarimetric calibration of vertical and horizontal channels. To choose this

factor, it is necessary first to determine the lowest S21 among elements when attenuators

and phase shifters are set to state zero. Figure 4.14 shows the measured amplitude and

phase distribution for the transmission coefficient S21 at state zero across the array. It is

important note that amplitude and phase disparities for a given polarization are caused

by hardware differences among elements. While gain differences between polarization in

a particular element is due to losses between T/R modules and radiators, which can be

caused by some imperfection in T/R module connectors, antenna connectors, and loose

interconnection cable. For the uncalibrated test array, the amplitude and phase variations

at both polarizations are less than 1.3 dB RMS and 100.3o RMS, respectively. In addition,

the lowest amplitude value is -37.3 dB, which is found at the element 30. To minimize the

RMS excitation error after calibration, it is necessary that the scaling factor should be less

than or equal to lowest S21; for this test, the chosen value is -39 dB.

The calibration is performed to implement a -25 dB n=2 Taylor taper. Normalized

amplitude coefficients are scaled by the scaling factor, and results are then used by the
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Figure 4.15: Comparison of calibrated transmition coefficiente S21 in receive mode . Top:
Amplitude distribution. Bottom: Phase distribution

calibration algorithm to compute the element setting that implements the desired taper.

For the purpose of demonstrating the improvement of RMS errors, the standard calibration

is also implemented. Both calibrations are carried out at central frequency of 9.36 GHz. The

amplitude and phase as determined by standard calibration and by the proposed approach

are shown in figure 4.15 . The RMS errors, which are the main indicators of the performance,

are shown in Table 4.3. The theoretical error were calculated from ( 4.16) and (4.17), using

the measured values LSBa=0.46 dB, std(LSBa)=0.1671 dB, LSBp= 5.51o; while RMS

errors for the other two methods were calculated using (4.14)-(4.17). Table 4.3 shows that

RMS errors obtained from calibration based on nearest state algorithm are close to the

theoretical values and better than the values obtained from standard calibration.

In order to evaluate the array calibration, the calibrated settings are loaded in the T/R

modules to measure the far-field radiation patterns. In this case, the figure of merit is
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Figure 4.16: Theoretical and measured azimuth far field patterns at 9.36GHz, derived from
Near-Field measurement. Top: H polarization. Bottom: V polarization.

how well the calibrated pattern approaches the theoretical pattern. In the experiment, the

fields are measured in the near-field range. But they are transformed to far-field applying a

Fourier transform. Additionally, an idealized probe correction is applied to data to remove

the probe effects. The resulting normalized azimuth patterns and theoretical pattern in

receive, for V and H polarization at 0o scan angle are depicted in figure 4.16. The results

are excellent based on the null locations and because there is not a large deviation in the

peak sidelobes between measured and theoretical patterns. At 4.13o, the increment in the

larger sidelobes peak is 0.32 dB in the horizontal polarization and 0.76 dB in the vertical

polarization.

Table 4.3: Comparison of RMS excitation errors for calibrated array in receive

Method RMS amplitude error (dB) RMS phase error (degrees) Total error (σ)

Theoretical 0.21 1.59 0.037

Standard calibration 0.30 2.14 0.051

Nearest state algorithm 0.23 1.61 0.038
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4.4.5 Transmit Array Calibration

The calibration goal for the transmit array is slightly different from the receive array.

While in receive, the goal is to implement a Taylor-weighted amplitude taper that provides

a radiation pattern with low sidelobes, in transmit the goal is to implement a uniform

illumination using the maximum power available in the T/R modules. In order to use the

maximum available output power, all transmit modules are operated in compression. This

leads the array to lose the ability to control the gain. Having no gain control, the phase is

the only parameter that needs to be characterized. To calibrate the transmit array with its

modules in compression, an extra test is performed before the element characterization. The

test consists in measuring the output power variations of each element versus the antenna

input power with the NF probe. Test is done after setting the attenuator and phase shifter

in the state zero. Measurements allow the determination of the minimum power (Pin1dB)

that should be applied in the antenna input to operate the T/R modules under saturation.

Once this boundary is found, an input power level greater than Pin1dB is applied to the

antenna and the elements are characterized.

Figure 4.17 shows the average output power from 64 elements in both polarizations

sensed with the NF probe versus the antenna input power. The standard deviation of the

sensed output power was 0.92 dBm and 0.74 dBm for V and H polarization, respectively.

The variance of these parameters is due in part to the interconnection losses between the

T/R modules and the array elements, which is realized with push-on SMP connectors. The

average (Pin1dB) is around 30 dBm. Above this point, any power level will be enough to

saturate the modules.

For this experiment, the element characterization is performed using an input power

of 35 dBm. The procedure used to measure the parameter S21 is similar to the receive

elements. Although only the phase shifter should be characterized, the attenuator is also

characterized to improve the phase resolution. The improvement in the phase steps is

because the element insertion phase also changes as a function of the attenuation states,

being its phase slope less than phase slope produced by phase shifter. As a result, the total

phase can be controlled by adjusting both the attenuator and phase shifter. In contrast, in

the standard calibration, the phase is only controlled by the phase shifters.
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Figure 4.17: Average output power and error bars versus input power

In order to operate the array in compression, the scaling factor is chosen equal to the

maximum S21 across the array. Figure 4.18 shows the corresponding amplitude (compressed

gain) and phase distribution for the transmission coefficient S21 in both polarizations when

measured in state zero. The amplitude errors are less than 0.89 dB RMS and the phase

errors are less than 31.6o RMS, while the maximum S21 is 1.3 dB.

After choosing the scaling factor, the nearest state algorithm is used to determinate

the calibration settings that provide the uniform illumination to array. In addition, array

calibration is performed using the standard calibration to compare the results obtained

from both methods. The amplitude and phase settings for the vertical polarization obtained

from the two calibration methods are depicted in Figure 4.19. The top graph shows that the

amplitude distribution is not affected by the calibration as expected. While the lower graph

shows that phase distribution obtained from the nearest state algorithm is better than the

one obtained with the standard calibration. Table 4.4 shows that the RMS phase error

obtained with nearest state algorithm is even better than the theoretical error (Calculated

from phase shifter characteristic). The improvement is due to the extra phase shift created

by the attenuator.
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Figure 4.18: Measured transmition coefficiente S21 for transmit array at state zero. Top:
Amplitude distribution. Bottom: Phase distribution

Table 4.4: Comparison of RMS excitation errors for calibrated array in transmit

Method RMS amplitude error (dB) RMS phase error (degrees) Total error (σ)

Theoretical - 1.59 0.102

Standard calibration 0.82 2.02 0.105

Nearest state algorithm 0.82 1.01 0.100

Unfortunately, due to laboratory safety issues, the radiation patterns from transmit

array could not be measured in the near-field range. Rather, the patterns are predicted

using (4.13). Figure 4.20 shows the predicted far-field radiation patterns at the central

frequency 9.36 GHz. The patterns achieved peak sidelobe levels of -12.4 dB and -13.3 dB

in the vertical and horizontal polarization respectively. The peak sidelobe level for the

vertical polarization exceeds in 0.9 dB the expected value for a uniform distribution. This

degradation is due to RMS amplitude errors of the implemented amplitude, which can not

be calibrated.
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Figure 4.19: Comparison of calibrated transmission coefficient S21 in transmite mode. Top:
Relative amplitude distribution. Bottom: Relative phase distribution.

4.5 Scanning performance

The purpose of this test is two-fold: first, to evaluate the array calibration at different

scan angles. Second, to measure the array characteristic as a function of the scan angle.

Part of this information will be useful to define the radar system equation. During the test,

the array was calibrated such that it could generate 255 beams (using 25dB Taylor taper) at

each polarization, ranging from -45o to 45o with uniform increment of 0.354o. Calibration

data is stored in the T/R module’s beamtables in order to measure all beams in a single

pass of the near-field scanner. Measurements in receive mode are only performed.

The procedure to measure the radiation pattern in a polarization is described below:

1. Calibrate the array for 255 beams and load the setting in the module’s beamtables.
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Figure 4.20: Theoretical and predicted azimuth far field patterns at 9.36 GHz. Top: V
polarization. Bottom: H polarization.

2. Load sequence table for the first 8 beams (4 beams for receive and 4 beams for trans-

mit). Transmit commands are loaded with settings that unable the transmit function.

3. Place the NF probe in front the first sampling position.

4. Pulse the array with a duty cycle of 30% until steady-state temperature is reached.

5. Measure the parameter S21 for each beam given by the sequence table

6. Load a sequence table for the next 4 beams repeat step 5 and 6 until the last table

with the last beam is measured.

7. Move the NF probe to the next sampling position and repeat steps 5 to 7 until the

last sampling position is reached.

8. Rotate 90o the NF probe to measure the cross-polar component and return to step 2.

9. Transform near-field patterns to far-field pattern. Then, apply the theoretical probe

correction.

10. Determine beamwidth, sidelobe level, and beam pointing accuracy for each beam.
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Figure 4.21: Overlay of 255 far field radiation pattern measurements, derived from Near-
field measurements. Top: Horizontal polarization. Bottom: Vertical polarization

Figure 4.21 shows the measured far-field patterns (for 255 beams) at the azimuth plane

for the main components of each polarization. Patterns have been normalized to the max-

imum gain at broadside. The density plot looks a little crowded, but one can clearly see

how the scanned gain changes with scan angle. The scanned gain rolls off at larger scan

angles because the element pattern rolls off.

Figure 4.22 and 4.23 show the co-polar and cross-polar patterns at azimuth plane for

both H and V polarization, only 47 beams have been plotted to simplify the data visual-

ization. It is important to note in both figures that calibration only works for the main

components, and that the cross-polar patterns are always 30 dB lower than the co-polar

patterns. These results corroborate the results of previous measurements that were ob-

tained using element pattern measurements [67]. Additionally, Figure 4.22 and 4.23 also

show the beamwidth broadening effect that occurs when the beam is steered off broadside.

124



−60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

φ (deg)

E
h(

φ,
θ=

90
)

 

 

Copolar

−60 −40 −20 0 20 40 60
−50

−40

−30

−20

−10

0

φ (deg)

E
v(

φ,
θ=

90
)

 

 
Cross−pol

Figure 4.22: Overlay of 47 far field radiation patterns for receive mode, horizontal polar-
ization. Top: Copolar pattern. Bottom: Cross polar pattern
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Figure 4.23: Overlay of 47 far field radiation patterns for receive mode, vertical polarization.
Top: Cross polar pattern. Bottom: Copolar pattern

125



−50 −40 −30 −20 −10 0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

Scan angle (deg)

N
or

m
al

iz
ed

 A
m

pl
itu

de
 (

dB
)

 

 
H pol
V pol

Figure 4.24: Measured gain envelope for receive horizontal and vertical polarization.

The scanning performance is verified by estimating the amplitude and phase of the main

beam at the beam scan angle. The gain envelope (also called scanned gain or average active

element pattern) for H and V polarization as a function of scan angle is depicted in Figure

4.24. The asymmetry in the plot about 45o occurs due to the active element pattern roll-off,

which depends on the mutual coupling and array tolerances (i.e. variations in the radiating

elements or panel misalignment). The gain loss is less than 2.5 dB when the beam is steered

to ± 45o. The ripple present in the gain envelope is caused by the variance of the main beam

peak due to excitation errors. The variance of the main beam peak is directly proportional

to the amplitude mean error caused by attenuator quantization errors.

Figure 4.25 shows the main beam phase as function of the azimuth scan angle. The

phase for H polarization is almost identical to the phase in V polarization.

4.5.1 Sidelobes

As mentioned above, the calibration goal in receive is to implement a -25 dB Taylor

amplitude distribution with low random errors. This illumination creates theoretically a
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Figure 4.25: Measured phase for main beam peak in receive horizontal and vertical polar-
ization.

radiation pattern having sidelobes that are always below -25 dB level. However, in practice

when the beam is steered, some sidelobes can exceed the sidelobe level because of the

element pattern roll off. The evaluation of maximum and first normalized sidelobe peaks

at both polarizations as a function of scan angle for the calibrated array is shown in Figure

4.26. The sidelobes vary randomly with scan angle because the excitation errors change

with the implementation of each beam. While the level for the first sidelobes is better that

-24 dB in all the range, the maximum sidelobe increases up to -22 dB when the beam is

steered to ±45o. The increase is because the gain loss falls off about 2.5 dB at 45o.

4.5.2 Beamwidth

The half power beamwidth at broadside of a phased array that uses a 25 dB n = 2

Taylor taper is θ3dB(θ = 0) = 1.76o. When the beam is steered to scan angle θ0, the scanned

beamwidth is increased from the broadside beamwidth to θ3dB(θ0) = θ3dB(θ = 0)/cos(θ).

The measured and theoretical scanned beamwitdh as a function of the azimuth scan angle
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Figure 4.26: Measured sidelobe peaks versus azimuth scan angles.

are shown in Figure 4.27. The results are very good; the beamwidth performance with

scanning is virtually identical. The maximum beamwidth is about 2.45o at ±45o, resulting

in a 42.4% beam broadening.

4.5.3 Beam Pointing Error

Typically, beam-pointing errors are small in medium and large phased arrays, and when

it is given as a fraction of beamwidth, its value increases proportionally with the variance

of random errors. For the calibrated array using 255 beams and 0.354o beam increments,

the beam pointing error as a function of the azimuth scanning angle is shown in Figure

4.28. The variance of beam point error with scan angle is originated by excitation errors.

In addition, it is noted an anti-symmetric behavior of pointing error, which does not have

an explanation. The beam pointing error has a maximum value of 0.06o and RMS error

across the range of 0.0125o, both values are small compared to beamwidth. The theoretical

standard deviations are evaluated using the theoretical values given in Table 4.3 in the
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Figure 4.27: Comparison between theoretical and measured beamwith as a function of scan
angle.

following equation [68]

∆θRMS =
2
√

3(σ2δ + σ2φ)

kdN3/2
=

2
√

3(0.02452 + 0.00952)

196.03 ∗ 17x10−3 ∗ 643/2
= 5x10−5rad = 0.0029o

this value is very small compared to the measured value.

In order to demonstrate the minimum scan angle increment that can implemented by

the system, the array is calibrated in the scanning range of ±1o using 255 beams with

0.025o increments (2*RMS beam point error = 2*0.0125). The resulting error for the V

polarization pattern is depicted in Figure 4.29. The plot shows that the beam pointing

error does not excess the scan angle increment of 0.025o. The result is interesting because

the array can provide excellent pointing accuracy using 6 bit phased shifters with 5.625o

resolution steps.
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Figure 4.28: Measured beam pointing error as a function of scan angle, derived from
patterns with scan angle increments of 0.354o
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Figure 4.29: Measured beam pointing error as a function of scan angle, derived from
patterns with scan angle increments of 0.0025o.
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4.5.4 Active Element Pattern and Pattern Prediction

The measurement of the average active element pattern is important because it can

help to answers some questions that arise from the system, for example: are the transmit

and receive average element patterns the same?, are the average active element pattern and

scanned gain the same?, can the scanning performance predicted from measurements of the

element pattern?. Answering the first question can help to demonstrate that all tests and

results obtained from the receive array can be also applied to transmit array. Thus, one can

avoid measuring the radiation patterns from the transmit array if one has no antenna range

facilities to perform such measurements. The second and third question are investigated for

the purpose of predicting the array performance.

In this test, the radiation patterns for 64 elements in both transmit and receive mode,

and in H and V polarization were measured. At each mode, the near-field data for 64 ele-

ments is collected in a single pass of the near-field scanner. Then, the data was processed

to obtain the far-field radiation patterns. The embedded element patterns for a set of 64

elements on each mode (RH, RV, TH, TV) are shown in Figure 4.30. The measurement

frequency is 9.36 GHz and the azimuth range is ±80o. Note that gain variations among pat-

terns are due to hardware differences. Additionally, each element has a different embedded

element pattern, which depends on the mutual coupling effect and element positions.

To calculate the average embedded element pattern, it was necessary to align the pat-

terns at broadside so that the broadside response from all elements were the same. Then,

at each angular position, the average was calculated. Figure 4.31 and 4.32 show the average

embedded element pattern for transmit and receive, in V and H polarizations. The results

demonstrate that patterns in transmit and receive are identical in both polarizations. In

H polarization, the patterns have a null at around ±62o, where a blind spot occurs. The

blidness is created by the effecf of surfaces waves close to the position of the grating lobe

[67]. While in V polarization, the patterns exhibit a smooth roll off that end at ±90o.

The element pattern and mutual coupling effects are subsumed into the average em-

bedded element pattern; which is an important design factor because it describes how the

array performs with scan and whether blind angles exist. The overall radiated power is

the product of average embedded element pattern and the isotropic array factor scanned to
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Figure 4.30: Overlay of 64 elements pattern measurements, derived from near-field mea-
surements.

the proper angle (this is represented mathematically in 4.2). Since the average embedded

element pattern is an envelope of array gain versus scan angles, its effect is similar to the

term “scanned array gain” that has been obtained from a set of scanned radiation patterns

when all elements are excited (see figure 4.24). Ideally, the terms “average embedded ele-

ment pattern” and “scanned array gain” are the same. But in practice, they can differ if

the scanned array gain is affected by random excitation errors.

The top graph of Figure 4.33 shows the comparison between the average embedded

element pattern and scanned gain for the array in receive and H polarization, in the scanning

range ±45o (data is also used in Figures 4.24 and 4.32). It is clear that both curves have the

same behavior with scan angles, but the scanned gain is affected by ripples. The amplitude

and angular position of each ripple depend on array size and quantization errors that are

produced by attenuator and phase shifter settings. While the lower graph of Figure 4.33

shows the comparison between the average embedded element pattern and scanned gain in

transmit and H polarization. Note that ripples in transmit are much lower than in receive in
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Figure 4.31: Average embedded element pattern for V polarization.
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Figure 4.32: Average embedded element pattern for H polarization.
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spite of having a larger RMS errors. The ripples are caused by variations in the amplitudes

of the main beam with scan angle; the fractional error of the scanned gain at a specific

scan angle with respect to the average gain is proportional to the mean amplitude error of

elements, which depends on the attenuator quantization error. It should be pointed out

that for large arrays this effect is negligible, but in small and medium-size phased array, the

ripple effects can be notable. In transmit mode, on the other hand, the amplitude errors

are large because the amplitude cannot be calibrated, but their variance with scan angle is

almost negligible because modules operate in compression. As a result, the scanned gain

presents low ripples with respect to receive mode.

The data shown in Figure 4.33 is important because it describes how the radar antenna

gain (one-way gain) performs with scan angle. Ultimately, this data should be stored in

a look-up table or should be fit to a curve in order to calibrate the radar system. Figure

4.34 shows how the radiation pattern is affected by the average embedded element pattern

roll-off.

The average embedded element pattern can also be used to predict the radiation pattern

and scanned gain of a phased array using (4.18). Typically, the radiation patterns of a

phased array are measured in an antenna test facility before fielding the radar (or during

radar calibration in the field). Once the radar is deployed, the patterns must be predicted

routinely to verify that the array is operating within the specifications. This can be done

during array maintenance. There are two scenarios where the pattern prediction can results

necessary: first when the array is recalibrated, and second when the built-in-test system

detects the presence of failed modules.

For the purpose of demonstrating the utility of pattern prediction, two examples are

shown in Figure 4.35 and 4.36. In Figure 4.35, the comparison between measured and

predicted radiation patterns at V polarization for a 0o scan angle is shown. Measurements

are made when there are not failed modules. The results are good based on the sidelobe

level and null locations. In Figure 4.36, the comparison between measured and predicted

scanned array gain is shown. The predicted curve is obtained after predicting 255 different

beams (using eqn. (4.18)). Clearly, the agreement between measurement and prediction is
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Figure 4.33: Comparison between average embedded element pattern and scanned gain in
H polarization.

good in terms of roll off and ripples locations. An error of 0.042 dB RMS was calculated

between the two data sets.

4.6 Temperature Compensation

In the temperature test described in section 4.3.3, the element characteristics were mea-

sured as a function of T/R module temperature, as it is shown in Figure 4.13. Results

revealed that the gain in decibels (dB) and phase in both transmit and receive mode vary

linearly with temperature. For the temperature range from 34oC to 52oC, the gain drift

was 1.1 dB in receive and 0.16 dB in transmit. It is important to note that a radar system
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Figure 4.34: Overlay of average embedded element pattern (AEP) and 64 radiation pattern
measurements.

using this array, in the same temperature range, will have a two-way antenna gain drift of

1.26 dB. However, the drift can even result in a larger value if the temperature range is

extended. For example, a two-way gain variation of 3.64 dB can be obtained if the temper-

ature is varied from 0oC to 52oC. Evidently this can cause problems of bias in the radar

reflectivity measurements. To avoid the bias errors, the array gain must be calibrated for

different temperatures.

To demonstrate the temperature compensation technique in the system, the receive

array was calibrated for providing a constant gain in the range from 34oC to 54oC. We

assumed that reference temperature is 34oC and that 14 beamtables are enough to calibrate

the array at 14 different temperatures. The two-way gain drift in dB of each module is given

by

|∆S21| = (AR +AT )(tH − tL) = (0.061 + 0.009)(54− 34) = 1.4dB

where AR and AT are the gain variations over temperature in receive and transmit, re-

spectably; which values have been characterized in section (4.4.3). For a look-up table with
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Figure 4.35: Comparison between measured and predicted radiation patterns at broadside.

14 beamtables, the gain increment between tables is ∆G = 1.4dB/14 = 0.1dB; which im-

plies that array gain is incremented in intervals of 0.1 dB. Similarly, the temperature step

(temperature least significant bit) between beamtables is LSBtemp = ∆G/(AR + AT ) =

0.1/(0.061 + 0.009) = 1.4286oC; which implies the array gain must be adjusted in tempera-

ture intervals of 1.4286 oC. Therefore, the beamtables are calculated for temperature values

t= 34, 35.43, 36.86, 38.29, 39.71, 41.14, 42.57, 44, 45.43, 46.86, 48.29, 49.71, 51.14, 52.57. To

select the beamtable, the average temperature of T/R modules must be computed. Then,

the temperature index (tn=0,1,2,...13) that address the beamtable is computed as

tn = round

(
t− t0

LSBtemp

)
= round

(
t− 34

1.4286

)

where t is the average temperature in the T/R modules. The index tn is calculated and

formatted with other settings into binary commands by the array controller. Ultimately,

these commands are broadcasted to T/R modules to control the beamtables.
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Figure 4.36: Comparison between measured and predicted scanned gain in receive H po-
larization.

To calibrate the array, one must choose a scaling factor at least 1.4 dB less than the

lowest S21 at state zero (see Figure 4.14) As demonstrated in the section 4.4.4, an initial

scaling factor of -39 dB was used to calibrate the receive array. However, to perform the

temperature compensation here, the scaling factor is chosen to be -41 dB. Thus, any gain

degradation due to temperature can be compensated by increasing element gains from -41

dB to -39 dB. Now, using the values computed in section 4.4.3, αR = 0.007 and αT = 0.001,

in (4.23) and substituting, t − t0 = 1.4286tn, the calibration algorithm for this problem is

defined as
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[attR(n, θ0, tn), phsR(n, θ0, tn)] = argmin
att,phs

||SR21(n, att, phs, t0)e−0.008(1.4286tn)

− SR21,theo(n, θ0, t0)||

SR21,theo(n, θ0, t0) = vnS
q
21,ref = 10−41/20ane

jnkdsin(θ0)

for tn = 0, 1, 2, ..13

For this test, the receive array at vertical polarization was used. Beamtables were created

to implement 47 beams in the scanning range±46oC, using uniform beam increments of 2oC.

Here, the number of beams has been reduced to save time during the pattern measurements.

A simulation was carried out to predicted the scanned gain and gain increment for each of

the beamtables as shown in Figures 4.37 and 4.38, respectively. In Figure 4.37, each gain

curve has been normalized by the broadside gain corresponding to beamtable t0, which has

been computed for the reference temperature 34oC. Note that as the temperature index

increases the scanned gain also increases, as expected. Therefore, the gain loss due to an

increase of temperature can be compensated with an increase in the array gain. Figure

4.38, on the other hand, shows the relative gain increment of each beam with respect to the

scanned gain at 34oC (BTt0). The predicted increment between curves, after averaging the

47 beams, was found close to the theoretical gain increment of 0.1 dB. The results indicate

that despite the gain resolution steps of 0.5 dB (attenuator LSB) in the T/R modules, the

array gain can be controlled in steps of 0.1 dB.

During the test, the temperature of T/R modules was adjusted arbitrary with the speed

of the fan array. At each temperature (in steady-state), the radiation patterns were mea-

sured to evaluate the gain stability. The beamtables were selected by the computer after

averaging the temperature in the T/R modules. Figure 4.39 shows the relative scanned gain

obtained from radiation pattern measurements at 5 different temperatures ( t = 34.1oC,

36.9oC, 38.5oC, 46.0oC, 51.0oC) for the central frequency of 9.36 GHz. The calibration set-

tings corresponding to the gain curves shown in the plot correspond with the data stored in

beamtables t0, t2, t3, t8, and t12. The fact that all the curves remain relatively at the same

level at the testing temperatures demonstrates the temperature compensation technique
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Figure 4.37: Predicted scanned gain for different beamtables as a function of scan angle.
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Figure 4.38: Predicted gain increment between beamtables tn and t0.
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Figure 4.39: Scanned gain measuremenst at different temperatures. Derived from 47
patterns

works. To estimate the resulting gain drift, each gain curve is subtracted from the refer-

ence gain curve at 34.1oC. Then, the resulting points are averaged to get the average gain

drift over scan angle. The comparison of the average gain drift with and without tempera-

ture compensation is made Figure 4.40. The gain drift is quite low when the temperature

compensation system is used, being 0.03 dB the maximum value obtained from the testing

temperatures.
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CHAPTER 5

INTERNAL CALIBRATION

5.1 Introduction

Weather radar systems require some level of calibration in order to estimate accurately

the precipitation. There are basically two different approaches: the ground truth method

and the engineering calibration [69]. The ground truth method tries to correlate the mea-

surement obtained by the weather radar with the measurement obtained by an accurate

ground sensor placed right below the volume observed by the radar. The engineering cal-

ibration is based on the use of the weather radar equation, which relates the features of

radar subsystems to the reflectivity of the precipitation. This last approach is the most

used method to calibrate weather radars.

In general, the engineering calibration requires the entire knowledge of the radar pa-

rameters to be able to perform the calibration. The parameter list include the transmit

power, antenna gain, receiver gain, and system losses. Most of the time these parameters

or their combined effect in a radar is not precisely known. The purpose of calibration is to

determine directly or indirectly these parameters or their combined effect such that they can

be included in the radar equation. A classic method for calibrating the radar parameters

is to calibrate the receive power using a reference target of known radar cross section [70].

Usually, this external calibration method can only be realized one of few times during the

radar deployment.

The other type of calibration, “internal calibration”, deals with variation over time of

radar parameters. This may include, for example, the transmit power and receiver gain.

Internal calibration can be performed using a ”calibration loop”, a special circuit that

samples radar internal signals and measure gain variations. A calibration loop can be easily

implemented in radars with single transceivers and single antennas, but its implementation

in active phased array radar is more complex and costly because of the number of elements.
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An example of this type of calibration is discussed in [11]. In this work, the calibration loop

comprises several couplers and an N-way power divider connected to the test port of each

T/R module.The system measures the characteristics of each individual element and uses

the data for antenna gain monitoring, which is obtained by processing all measurements.

Unfortunately, future low cost phased array radars may not be designed this feature as a

way to reduce cost. For these systems, other techniques must be employed to monitor and

calibrate the array gain.

Some of the problems that might affect the gain of a phase array are: external tempera-

ture, T/R module failures, and array excitation errors. The temperature and failures affect

the radiated power and receive beamformer gain. Failures and excitation error reduce the

antenna directivity gain in both transmit and receive. When all these effects are combined,

the net effect can be so significant that it might lead to a degradation of the radar per-

formance. Such degradation can cause a reduction in the transmitted and received power

or create gain imbalance between polarization channels. Unless these effects are compen-

sated, the precipitation measurements will be affected by a bias error. When this occurs,

we should pay attention to the accuracy of the measurements. For precipitation estimation,

it is desirable that weather radars provide an accuracy of 1 dB in reflectivity, 0.1 dB in

differential reflectivity and low depolarization ratio.

Some of the problems affecting the stability of phased arrays can be compensated by

hardware, for example, the gain variation due to temperature changes can be compensated

by adjusting the element gain or by using a thermal control system. There are also some

cases where neither of these solutions is appropriate for an array, either because the cost of

thermal control or because elements operate at maximum gain to get the highest possible

sensitivity, without leaving a gain margin to compensate the temperature. On the other

hand, there also exist other problems that affect the radar stability and that cannot be

compensated such as the failed modules. Systems like that, where temperature changes

and failures can be not be compensated by hardware, the only possible solution to reduce

the errors in radar measurements is to calibrate the radar system constant over time. For

a phased array system, the radar constant (2.36) is given as
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CR =

(
1024ln(2)λ2

cτπ3|K|2θ3,brφ3,br

)(
l

PtGa,txGa,rx

)
(5.1)

The first factor on the right side of (5.1) contains physical constants and system constants

that are known and not necessary vary with system variations. The second factor con-

tains parameters which vary over time, for example Pt might change because of component

degradation in the up-converter, a way to track its degradation over time is by means a

calibration loop in the transmit array input. Additionally, the second term includes the

parameters Ga,rx and Ga,tx, both with characteristics that depend on temperature and fail-

ures. The problem with the calibration of Ga,rx and Ga,tx is that both includes the effect of

directivity gain, and it is clear that their values cannot be measured directly with an internal

calibration network. The motivation of this work is to use the definition of Ga,rx and Ga,tx

(equation 2.27) to estimate their degradation over time, for this purpose the performance

of each array element must be measured with a low-cost calibration technique.

Usually, array elements are monitored and maintained by means of calibration signals

that are injected into each element. The calibration signal can be injected through couplers

and calibration networks [11, 71], or by coupling with external reference antennas [13], or

even by mutual coupling between radiating elements [12]. The comparison of a previously

measured (measurement in the field) and stored (factory measurement) data leads to the

detection of failed modules or element gain variations. For low cost phase array systems, the

signal injection technique most suitable, is the one based on mutual coupling because of the

minimum hardware requirements. To obtain accurate measurements with this technique,

the antenna environment in the field should be similar to the one found in the factory,

without external interference that could affect the measurements. Unfortunately, in some

systems, for example air cooled X-band phase array radars with flat radome covering the

aperture, this condition is sometime difficult to meet because of the variant ambient tem-

perature and precipitation. In fact, if the array calibration is performed at a temperature

different from the calibration temperature, the comparison between data taken in the field

and factory data will be affected by a bias. Unless this bias is removed, the calibration of

elements with gain and phase drift will be affected by quantization errors. The precipita-
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tion can also affect the array environment, for example the water accumulation over the

array aperture can change the transmission and reflection properties of the radome [72],

inducing error in the measurements. Based on the above limitations and array needs, the

use of mutual coupling measurements as calibration technique for both array and radar are

investigated.

This chapter describes and demonstrates experimentally several calibration techniques

for both phased array antennas and phased array radars that take advantage of the inherent

mutual coupling in an array. The technique is based on mutual coupling measurements that

are made between the dummy elements and active elements of an array. Measurements are

used to detect failed modules and gain variations due to temperature or aging components.

Results from array diagnostic are used to calibrate both the array elements and radar system

constant. Two internal calibration methods for radar are presented. The first method is

based on the measurement of the antenna gain by mutual coupling measurements. The

second method is based on a mathematical model that includes correction terms that are

expressed as a function of T/R module temperature and the number of failed modules.

The advantage of this model is that mutual coupling measurements are not needed to

detect the gain drift during radar operations; therefore, the radar will not be distracted

in performing calibration measurements. Phased array performance degradation due to

temperature changes and failures is predicted and experimentally validated by means of

measurements made to the scanned gain of an experimental phase array. It is shown that

results obtained by correction constants are in good agreement with far-field measurements.

5.2 Theory

5.2.1 Monitoring and Calibration Technique

Before entering in service, all active phased array antennas should be calibrated in a

test facility. The purpose of this calibration is to align the array elements and ensure the

desired radiation pattern can be implemented. Once this process is completed, and after

the array with other radar subsystems have been deployed in the field, the quality of this

calibration must be monitored continuously over of the life of the system to ensure that the

performance of each active elements hasn’t change with time. In practice, this procedure
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is performed by a monitoring and calibration system, sometimes called built-in-test. These

systems have the purpose of ensuring that calibration aspect of the array elements that

may change with time, for example gain and phase, can be monitored and even corrected

when the array is deployed in the field; avoiding thus the use of external instruments and

equipments for array calibration.

In general, a monitoring and calibration system requires a signal injection technique to

monitor the aspects of actives components of an array. For the linear phased array used

in this research, the injection technique is achieved by using the mutual coupling between

active elements and passive elements. The phased array comprises of 64 active columns

of elements and 4 passive columns of elements at each end. The purpose of the passive

elements is to reduce the diffraction effect produced by the array edges. Two of these passive

elements, one on each edge (see Figure 5.1), are used as reference antenna to transmit or

receive the calibration signal. Figure 5.2. depicts the simplified block diagram of monitoring

scheme for both transmit and receive array. For the receive array, the calibration pulse is

transmitted from the passive element and received by one active element with other elements

terminated. The voltage obtained at the array output represents the measurement of mutual

coupling for the receive element, which is proportional to the gain of that particular element.

In the transmit array, the calibration pulse is transmitted from one active element and

received by one passive element. The voltage obtained at the passive element represents

the measurement of mutual coupling for the transmitting element.

The requirements that the system must meet to successfully detect any change in active

elements is that mutual coupling between array elements and passive element characteristics

should not change with time. If this assumption can be made in the system, then any gain

and phase deviation measured after initial calibration can be only attributed to the active

elements.

During the initial calibration, the array elements are characterized by placing a near-

field probe in front of each radiating element and measuring the signal path gain with

a network analyzer, as it is explained in chapter 4. The signal path gain of an element

includes the effect of RF manifold, cables, T/R module gain, radiating element, and free

space mutual coupling. We have assumed that the gain (the transmission coefficient S21
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Figure 5.1: Location of reference passive elements on the array aperture.

measured using a network analyzer) is made up of a T/R module normalized complex

gain, Wn(att, phs), which depends on the attenuator and phase shifter states, att and phs

respectively; the combined effects of RF manifold, RF cables, connectors, radiating element,

and T/R module gain when att = phs = 0, denoted by the complex quantities un; and free

space coupling between the radiating element and the sensing probe, denoted by C. Thus,

the measured transmission coefficient can be expressed as

Sq21(n, att, phs) = CuqnW
q
n(att, phs) (5.2)

where the superscript q denotes the operation mode on the driven element. For single

polarization, q = R (receive) or T (transmit). If the array elements are linear dual-polarized,

then q denotes any of following modes: RH,RV, TH, and TH. When measurement are

made with the attenuator and phased shifter are set in the zero state, it is assumed that

Wn(0, 0) = 1, meaning that no insertion loss and insertion phase have been introduced by

attenuator and phase shifters. Then, (2) can be reduced to

Sq21(n, 0, 0) = Cuqn (5.3)

The quantity Sq21(n, 0, 0) is a sample of the initial complex gain of the nth element, but

scaled by coupling coefficient C. Next, consider the characteristics of the nth element is
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Figure 5.2: Simplified block diagram of monitoring technique based on mutual coupling
measurements.

now measured using the mutual coupling from the passive element p. The mutual coupling

transfer function Cqm,p can be expressed as

Cqn,p(n, att, phs) = uqpM
q
n,pu

q
nW

q
n(att, phs)

or

Cqn,p(n, 0, 0) = uqpM
q
n,pu

q
n (5.4)

where uqp is insertion loss of the passive element p and Mn,p represents the mutual coupling

between radiating element n and p. This coupling mutual might include effects of coupling

due to surface waves, free space coupling, and reflection. The quantity Cqn,p(n, 0, 0) also

represents a sample of the initial complex gain of the nth element, but scaled by coefficient

Mn,p and uqp.

Denote any subsequent multiplicative change in transmit or receive element by Kq
n. Un-

der the assumption that mutual coupling and passive element characteristic do no change

with time, the subsequent mutual coupling transfer function measured by the passive ele-

ment p is

C
′q
n,p(n, 0, 0) = Kq

nC
q
n,p(n, 0, 0) (5.5)

Dividing this expression by the initial mutual coupling transfer function, we have
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Kq
n =

C
′q
n,p(n, 0, 0)

Cqn,p(n, 0, 0)
(5.6)

This quantity represents the gain and phase deviation for the nth element. Note that if

Kq
n is equal to unity, the element has retained its calibration. On the other hand, if Kq

n = 0,

the element represents a faulty element. Any other value different from 0 and 1 will mean

the element needs to be recalibrated. In general, Kq
n can be used to correct the deviation

in the transmitters and receivers.

In an active phase array, it is likely that element characteristics tend to change over time

due to aging or because the T/R module has been replaced. When this occurs, the actual

characteristics of affected elements must be updated to accept the new changes. This can

be done by multiplying the original transmission parameter by Kq
n, which gives

S
′q
21(n, att, phs) = Kq

nS
q
21(n, att, phs) (5.7)

Because of the new characteristics, drifted elements needs to be calibrated to take into

account the changes in the implementation of the element excitation. The calibration can

be performed using the nearest state algorithm described in (section 4.3, equ. 4.13), that is

[attq(n, θ0), phs
q(n, θ0)] = argmin

att,phs
‖ S

′q
21(n, att, phs)− S

q
21,theo(n, θ0) ‖ (5.8)

where n represents the index of the drifted elements and Sq21,theo(n, θ0) is the transmission

parameter that represents the desired excitation function. It should be pointed out that

the use of (5.8) should be limited to those systems which performance is not temperature

dependent. On the contrary, those systems for which performance is temperature depen-

dent, for example in an air-cooled phased array system, it may happen that mutual coupling

measurements will be made in the field at unspecified temperature. In this case, the gain

drift caused by the temperature effect must be removed from the data to avoid quantization

errors. The calibration of drifted elements can be performed using the approached described

in (section 4.3.3, equ.4.23)

[attR(n, θ0, t), phs
R(n, θ0, t)] = argmin

att,phs
||S
′q
21(n, att, phs, t)e

−(αq+βq)(t−t0) − Sq21,theo(n, θ0, t0)|| (5.9)

150



where t is the monitoring temperature in the field, t0 is the initial calibration tempera-

ture, αq represents the amplitude variation coefficient (Neper/oC), and βq represents the

phase variation over temperature (radians/oC). Note that when monitoring and calibration

temperature are the same, the expression (5.8) reduces to (5.9).

Once the recalibration is complete, the actual radiation pattern can be predicted to

ensure if sidelobes meet the system requirements. The pattern prediction can be made by

using the procedure described in (section 4.3.1 equ.4.18), that is

fa(θ, φ) = fav(θ, φ)

N∑
n=1

Sq21(n, att
q, phsq)ejnkdsin(θ0) (5.10)

where fa(θ, φ) is the average embedded element pattern and Sq21(n, att
q, phsq) is the imple-

mented excitation, which has been obtained using (5.8) or (5.9).

5.2.2 Radar Internal Calibration

Radars should be calibrated periodically to ensure that aspects of the system that tend to

change over time do not affect the measurement accuracy. The calibration can be performed

one or few times per day, or even every volume scan as the popular WSR-88D Radar [73].

In this process, internal and external methods are used to estimate the radar parameters

that need calibration, results are then used for the radar to adjust the radar constant [74].

The internal method usually calibrates the transmit power and receiver gain by means

a calibration loop at the antenna terminal. The external method typically uses the Sun

as reference source to calibrate the receive antenna gain. This gain will be basically the

same for the transmitting antenna if the radar uses a common antenna for both operations.

Unfortunately, same reciprocity principle cannot be applied in active phased array radars

if two different aperture illuminations and beamformer networks are used. This limitation

leads to the need for developing a new calibration method to correct the gain of active

phased array radars.

The calibration method presented below corrects the radar constant from variations

that affect the beamformer and directive gain of air-cooled phased array radars. Since the

transmit power depends on the beamformer gain, we can also say that the method corrects

the transmit power indirectly. The method assumes the radar constant has been obtained by
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the engineering approach using a reference target. Let’s consider the initial radar constant

CR0 is give as

CR0 =

(
1024ln(2)λ2

cτπ3|K|2θ3,brφ3,br

)(
l

PtGa,tx(T0, Frx0)Ga,rx(T0, Frx0)

)
(5.11)

where T0 is the average temperature of T/R modules, Ft0 and Fr0 are the number of failed

modules in the array at the calibration time. Consider any subsequent multiplicative change

(produced by temperature and failure) in the transmit gain and receive gain as Ctx and Crx

respectively. The subsequent radar constant after changes occur in the array will then has

a value of

CR =

(
1024ln(2)λ2

cτπ3|K|2θ3,brφ3,br

)(
l

PtCtxGa,tx(T0, Frx0)CrxGa,rx(T0, Frx0)

)
(5.12)

=
CR0

CtxCrx
when this constant is expressed in dB, it can be writen as

CR[dB] = CR0 − Ctx[dB]− Ctx[dB] (5.13)

The purpose of the calibration is to estimate the values of Ctx and Crx such that the

radar constant can take into account the gain deviation that can caused by temperature

changes and failures. Having this correction constants, the equivalent reflectivity can be

estimated directly from the received power without bias errors. The value obtained in (5.13)

can be used in (5.12) to estimate the equivalent radar reflective for a phased array radar

that electronically scan in one dimension.

Z[dBZ] = Pr[dBm] + CR[dB] + 20log(r[km]) + 10log(cosθ0) (5.14)

−10log(g0n,rx(θ0, 0)g0n,tx(θ0, 0))

This equation also corrects for the scan loss produced by the element pattern and beam

broadening effect when the beam has been steered away from broadside.

5.2.2.1 Calibration Based on Mutual Coupling Measurements

Consider an phased array of N elements as the one shown in Figure 2.1b. The array gain

seen from the beamformer input (or output) terminal is proportional to the beamformer
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gain and directivity gain of the array. If the array uses directive elements arranged in

columns, the maximum gain can be expressed as in (2.27)

Ga = DeDy
|
∑N

n=1 gn|2

N
= DeDy|

N∑
n=1

gb,n|2 (5.15)

where De is the element gain (given by equ. (2.10)), Dy is the directivity of a column,

gb,n = gn/
√

(N) is the signal gain of nth branch of the array, which includes the effects of

RF manifolds, cables and T/R modules. Because De and Dy are constants, the antenna

gain only depends on the sum of gains of all individual branches. Therefore, any change

in the antenna gain can only be caused by changes in the gain of each branch, mainly in

T/R modules, whose characteristics can be affected by temperature, aging components, and

failures.

Now, denote the antenna gain when the radar is calibrated with the reference target at

temperature T0 as G′a0. This is the antenna gain that will be obtained right after the radar

calibration using mutual coupling measurements, and that will be used always as reference

data. Let’s now assume a multiplicative change in the antenna gain as Ca, the gain obtained

from mutual coupling measurements can be written as

G′a = CaG
′
a0 (5.16)

Dividing the current gain by the reference gain value, and using (5.15), we obtain the

next ratio

Ca =
G′a
G′a0

=
|
∑N

n=1 g
′
b,n|2

|
∑N

n=1 g
′
b0,n|2

(5.17)

This ratio can be used to estimate the gain deviations in the transmit or receive arrays.

The complex gain of each branch is directly proportional to the values obtained by mutual

coupling in (5.7), therefore they can be defined as

g′b0,n = S′21,0(n, att, phs) = Kn0S21(n, att, phs) (5.18)

g′b,n = S′21(n, att, phs) = KnS21(n, att, phs)

Note that S21(n, att, phs) is measured during the array calibration using a near-field

probe, while Kn0 and Kn are the gain drift of each element obtained from mutual coupling
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measurements at two different times, one during the radar calibration and the other during

the array monitoring. When this procedure is applied to both transmit and receive arrays,

we can find the gain calibration constant for both arrays, which are defined as

Ca,tx =
G′a,tx
G′a0,tx

=
|
∑N

n=1 g
′
btx,n|2

|
∑N

n=1 g
′
btx0,n|2

(5.19)

Ca,rx =
G′a,rx
G′a0,rx

=
|
∑N

n=1 g
′
brx,n|2

|
∑N

n=1 g
′
brx0,n|2

(5.20)

These two values should be used in (5.13) to correct the radar constant.

5.2.2.2 Calibration Based on a Deterministic Model

Next, consider the phased array system of N-element shown in Figure 5.3a. Each radi-

ating element is fed by a T/R module with gain gn = An.gmax, where An is the normalized

excitation coefficient controlling the amplitude and phase of the nth radiating element, and

gmax is the T/R module maximum gain. Figure 5.3b shows the equivalent bock diagram of

Figure 5.3a, one can assume the directive gain is only controlled by excitation coefficients

An and that the beamformer gain is only controlled by the T/R module gain. Particularly,

the directive gain of a linear array is defined in (2.7) as

Dx =
|
∑N

n=1An|2∑N
n=1A

2
n

= εTN (5.21)

where

εT =
1

N

|
∑N

n=1An|2∑N
n=1A

2
n

(5.22)

is the tapering efficiency of the aperture. Its value is always less than or equals to 1. It

should be mentioned that (5.21) gives the maximum directivity of an array for a certain

value of εT , coinciding when there are not failed elements. Subsequently, from (5.21), the

directivity of an array with failed elements can be written as

Dx = εT (N − F ) (5.23)

where F is the number of failures in the array. The above equation shows that array

directivity tends to decrease when the number of failures increases.
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(a) Original diagram (b) Equivalent diagram

Figure 5.3: Block diagram of an active phased array with tapered amplitude distribution.

In the case of the beamformer network, the maximum gain is defined in 2.19 as

GBF =

∑N
n=1 g

2
max

N
=
g2maxN

N
(5.24)

When in the presence of failures, the beamformer gain can be expressed as

GBF =
g2max(N − F )

N
(5.25)

At this point, it should be clear that T/R module gain is temperature dependent and that

this dependence can be found by characterizing the T/R module at different temperatures.

We have demonstrated experimentally that the gain characteristic can be written as (3.20)

gmax = gmax0e
−(α+jβ)(T−T0) (5.26)

where gmax0 is the maximum gain of a T/R module at reference temperature T0, T is the

actual temperature of T/R modules, α represents the gain variation coefficient (Neper/oC),

and β represents the phase variation over temperature (radians/oC). When (5.26) is sub-

stituted in (5.25) and the phase is omitted, we obtained that

GBF =
g2max0e

−2α(T−T0)(N − F )

N
(5.27)

Having the array directivity and beamformer gain, we can derivate the total gain for a

phased array that scan in one dimension as
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Ga(T, F ) = DeDyDxGBF = εTDeDyg
2
max0e

−2α(T−T0) (N − F )2

N
(5.28)

The antenna gain depends on the number of failures and actual temperature of T/R

modules. It should be noted that this equation assumes that temperature gradient between

T/R modules is zero, which implies that all T/R modules have almost the same temperature.

Because, in reality, the temperature among T/R modules can be a slightly different, we must

assume that T and T0 are the average temperatures in the T/R modules.

During radar calibration, using the reference target, it is important to read the temper-

ature of each T/R module and compute its average value. Denote this temperature value

as T0. Additionally, mutual coupling measurements should be taken and data compared

with the factory measurements to quantify the number of failures at the calibration time.

Denote this value as F0. Consequently, from 5.28,the initial antenna gain when the radar

is calibrated at temperature T = T0 will yield

Ga0(T0, F0) = εTDeDyg
2
max0

(N − F0)
2

N
(5.29)

The ratio between the actual gain (5.28) and the initial gain (5.29) gives the gain devi-

ation in the array, that is

Ca =
Ga(T, F )

Ga0(T0, F0)
(5.30)

For the transmit and receive array, the above ratio yields the values

Crx = e−2αrx(T−T0) (N − Frx)2

(N − Frx0)2
(5.31)

Ctx = e−2αtx(T−T0) (N − Ftx)2

(N − Ftx0)2
(5.32)

These are the two calibration constant that we need to calibrate the radar constant in

(5.12), or in (5.13) if they are expressed in decibels (dB)

Crx[dB] = −20αrxlog(e)(T − T0) + 20log(N − Frx)− 20 ∗ log(N − Frx0) (5.33)

Ctx[dB] = −20αtxlog(e)(T − T0) + 20log(N − Ftx)− 20 ∗ log(N − Ftx0) (5.34)

The first term on right side of (5.33) and (5.34) represents the gain deviation caused

by temperature changes in T/R modules. The other two terms represents the gain loss

caused by increase of the number of failures in the array. The advantaged of using these
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expressions is that each effect can be calibrated independently, and at different times. We

should expect that because the failure rate in a phased array is typically small, the gain

correction due to this effect shouldn’t be updated so often. On the contrary, due to the

T/R module temperature depends on outdoor ambient temperature and this varies in a

wide range of values during the day and year, the calibration due to this effect should be

performed continuously, for example every volume scan according to the temperature read

from T/R modules sensors.

5.3 Experimental Results

5.3.1 Phased Array Calibration by Mutual Coupling Measurements

The experimental phased array used in this test is the one described in the Chapter 3.

The calibration was performed in an improvised anechoic chamber that was built to reduce

the reflections from walls and other objects within the test facility. The initial calibration

is performed using the technique described in Chapter 4, the purpose of this calibration is

to align elements and implement the desired excitation function. Once this procedure is

complete, the mutual coupling between actives and reference passive elements is recorded

using a network analyzer. Measurements are made by enabling each module, one at a time,

with the attenuator and phased shifter set at zero states, and measuring the complex gain

(transmission parameter S21) between the array input/output terminal and passive elements

at the selected frequency of 9.36 GHz. The T/R modules, instrument, and measurements

are controlled by a GUI-based program running in windows computer, where the measured

data is stored.

To demonstrate the calibration technique in the experimental array, the mutual coupling

was measured in the receive array under two different scenarios, one right after the array

calibration to record the factory data, and another when some elements in the array have

suffered of intentional gain and phase drifts. To simulate the performance monitoring in

the field, measurements in the two scenarios were performed at different temperatures,

being 29 oC at first test and 37 oC at the second test. These temperature values are the

average temperatures measured in the T/R modules. Figure 5.4 shows the insertion loss and

insertion phase obtained in the two tests from mutual coupling measurements made from
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one passive element. The passive element is located next to the first active element in the

array. Figure 5.4a shows how the magnitude of mutual coupling decreases with the increase

of separation distance between the passive and active elements in both curves. Ideally, one

should expect a smooth exponential curve, but because the electrical misalignment between

active elements at the state zero, the mutual coupling exhibits the behavior shown in the

plot. Additionally, the temperature drift creates a small bias between the two data. While

in Figure 5.4a the element suffering of gain drift cannot be distinguished, the phase shown

in Figure 5.4b reveals those elements that need to be recalibrated.

The gain and phase deviation in the elements are obtained from the ratio of the two

mutual coupling measurements, calculating the parameter Kn with (5.6). The amplitude

and phase of Kn as a function of the element number are shown in Figure 5.5. The results

show that elements 2, 4, 8, 16, 32, 48, and 64 exhibit a large gain and phase deviation with

respect to others elements. In Figure 5.5a, there is a bias of 0.86 dB in all data, which is

caused by the temperature change. The large error between the gain deviation and bias

level in the last 24 elements (from element 40 to 64 ) is due to the low mutual coupling

and low signal to noise ratio in this region. This problem could have been avoided if the

mutual coupling measurements for elements 32 to 64 had been made from the closer passive

element (element next to element 64). Similar effect can be observed in Figure 5.5b, the

data has a bias of approximately 4.2o, and errors between phase deviation and bias level

increase for the last 24 elements.

The elements 2, 4, 8, 16, 32, 48, and 64 are calibrated using the equation (5.9), with

α=0.007 Neper/oC and β=0.38o/oC (both constants were determined experimentally in

Chapter 4). Additionally, the actual characteristics of aforementioned elements were com-

puted using (5.7) and results then used in (5.9). The calibration’s goal was to implement

the array excitation using a -25 dB Taylor distribution. The amplitude and phase distri-

bution determined by the initial excitation, monitored excitation with errors (after using

(5.7)), and recalibrated excitation (after error correction) are shows in Figure 5.6. Values

are determined at frequency of 9.36 GHz. The gain and phase drift is strongly corrected

in most of the elements, except for element 64, which still has a large difference between

the initial and calibrated excitation, being the error of 3.1 dB in gain and 11.9o in phase.
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Figure 5.4: Comparison of mutual coupling measurements, at two different temperatures,
obtained before and after calibration errors. a) Insertion loss. b) Insertion phase.
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Figure 5.5: Gain and phase deviation detected by using mutual coupling technique. a) Gain
deviation. b) Phase deviation.
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These differences are because the mutual coupling in the last element is quite low and its

measurement could be affected by the noise floor.

Other way to evaluate the calibration technique is to measure the far-field radiation

patterns created by the array. For this test, the array is calibrated to implement 47 beams

in receive, from -45o to +45o using 1o increment step. Figure 5.7 shows the resulting

radiation patterns when the beam is steered to broadside for the three excitations shown

in Figure 5.6. The results show why the calibration in a phased array must maintained,

it is clear that elements with calibration errors tend to increase the random errors in the

excitation, and this in turn also increase the sidelobes. Once the array is recalibrated, the

sidelobes return to their initial state, below 25 dB. The performance of normalized sidelobe

and beamwidth as a function of scan angle are show in Figure 5.8 and 5.9, respectively. The

sidelobe and beamwidth degradation in an array with random errors was improved after

element recalibration for all scan angles.

Radiation pattern measurements are useful in the verification of antenna parameters

such as sidelobes and beamwidth. For fielded phased array radars, it is important to

measure the radiation patterns after failures occur or after element calibration, to ensure

that antenna parameters meet the radar specifications. In practice, the measurements are

carried out at the radar site using external antennas and instrumentation. However, they

are sometimes impractical or difficult to implement in the field because ground multipath.

This limitation motivates the use of other alternate methods to perform this task. To attend

this need, we use the results from calibration test based on mutual coupling measurements

to predict the far-field radiation pattern. Figure 5.10 shows the radiation pattern for a

re-calibrated array as determined by far-field measurements and by prediction using (5.10).

A very good match is obtained for the main lobe and the first sidelobes. There are some

differences in the far sidelobes at the -35 dB level, which can be attributed to excitation

errors created by mutual coupling.

5.3.2 Gain Calibration Due to T/R Module Failures

T/R module failures can be caused due to damaged components in either transmit

or receive channel. Amplifiers are one of the most common causes of failures, leading
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Figure 5.6: Amplitude and phase distributions in the array, obtained after initial calibration,
errors occur, and recalibration. a) Amplitude distribution. b) Phase distribution.
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Figure 5.7: Comparison of radiation patterns measured at the initial calibration, after error
occurs, and after element calibration.
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Figure 5.8: Measurements of sidelobes at the initial calibration, after error occurs, and after
element calibration, obtained from measured radiation patterns.
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Figure 5.9: Measurements of beamwidth at the initial calibration, after error occurs, and
after element calibration, obtained from measured radiation patterns.
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Figure 5.10: Comparision of far-field radiation pattern obtained from near-field measure-
ments and after prediction with mutual coupling measurements.
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to extinction of the signal and cease of operation in an radiating element. The effect

of failures is to reduce the antenna gain and effective transmit power, and to raise the

sidelobes. To retain the benefit of graceful degradation, arrays are usually operated with

acceptable number of failed elements. Element with failed modules will be replaced when

only a significant amount of modules have failed. In the particular case of a weather radar,

the system will need to estimate the gain degradation caused by the antenna and to use the

results to maintain the radar calibration.

The failure rate for T/R modules in the experimental phased array was estimated

through a statistical analysis, giving as result a rate of 2.5 million per hours for both

transmit and receive functions [6]. Assuming the radar can operates 24 hours per day and

365 day per year, and assuming that duty cycle is 30% (30% of the time the array is trans-

mitting and other 70% is receiving), we can find that after 5 years, the failure percentage

can be 8% in receive and 3% in transmit. For a 64 element array, these percentages corre-

sponds to 5 and 3 failures in receive and transmit, respectively. The low number of failures

suggests that gain calibration due to failure effects does not need to be performed so often.

Since the number of failures increases gradually over time, we have decided to demon-

strate experimentally how the antenna gain will change with the increase of failures. The

tests were only performed in receive mode because the methodology is the same for transmit

mode. Failures are simulated by turning off the amplifiers in the ”failed module” during

mutual coupling measurements. Failed modules were chosen randomly, corresponding to

the numbers: 4, 7, 11, 20, 32, 51, and 59.

Figure 5.11 shows the amplitude of the mutual coupling measurements made from one

passive element before and after the failure occurs. Measurements were obtained at a fixed

temperature, after calibrating the receive modules with a uniform amplitude distribution.

Note the large difference in gain in the locations of failed elements. Theoretically, the gain

differences should be larger than -50 dB, but because of the noise floor in the system, mutual

coupling measurements lower than -75 dB are not possible. Therefore, the failed elements

that are closer to the reference passive element present a larger gain difference than those

that are farther away. This effect can be observed after computing the ratio Kn between

the two set of data, as shown in Figure 5.12. Since the noise tends to introduce errors in the
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Figure 5.11: Mutual coupling measurements before and after T/R module failures.

measurements of farther elements, the actual gain of faulty elements cannot be estimated

with accuracy. However, the measurement errors can be avoided if a threshold is applied to

the data and only data below this reference is replaced by zeros.

Once the threshold operation is complete, the resulting data is used in (5.7) to compute

gain of each element. Figure 5.13 shows the resulting normalized gain distribution for a

-25 dB Taylor function. The threshold operation also allows the actual number of failures

can be determined, for example, by counting the number of elements having a zero gain.

Subsequently, both results were used by the two proposed methods to compute the gain

deviation. Furthermore, in order to verify the results, the radiation patterns from the

experimental array were measured with and without failed elements. Initially, the array

was calibrated with zero failures, then 47 radiation patterns at different scan angles were

measured and used to determine the scanned gain. This procedure was repeated 4 times for

different sets of failed modules. In the end, the computed gain deviation (from proposed

methods) and initial scanned gain (with zero failures) were used to predict the scanned gain

for the cases when the array has failed modules. As described in (5.33), the actual gain can

be obtained as
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Figure 5.12: Gain deviation in an array with 7 failed elements.
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G′rx(θ, F ) = Crx(F )G′rx0(θ, F0) (5.35)

Comparisons of scanned gain obtained from far-field measurements with mutual cou-

pling measurements (equ. 5.20) and deterministic model (equ. 5.33) are shown in Figures

5.14 and 5.15, respectively. Measurements were obtained from receive array using the hor-

izontal polarization, at a constant temperature of 29oC. Note the receive gain loss with 7

failures is approximately 1 dB for all scan angles, corresponding to a bias error of 1 dB

in the equivalent radar reflectivity if the radar constant is not corrected. When Figure

5.14 and 5.15 are compared, one found that results obtained from deterministic model are

slightly more accurate than results obtained from mutual coupling measurements. Table 5.1

indicates the gain deviation and error as determined by the mutual coupling measurements

and by deterministic model. In both cases, the error in the gain deviation with respect to

the measured deviation don’t exceed the 1.4%.

The above tests assume that initial number of failures in the array is zero. However, it

might also occur that a phased array radar can present a certain number of failures from

the beginning, before radar operation. Subsequently, when new failures appear, the actual

gain drift must be computed with respect to initial gain with failures. To give an example,

consider the case when the array has initially 3 failures (element number =11,32,51) and

we wish to estimate the gain drift when number of failures in the system has increased to

5 and 7. Using (5.33) at T = T0, we found that the gain drift Crx(F = 5)= -0.28 dB and

Crx(F = 7)= -0.48 dB, next, the predicted gain is obtained as

G′rx(θ, F = 5, 7) = Crx(F )G′rx0(θ, F0 = 3) (5.36)

Table 5.1: Gain deviation due to element failures obtained from radiation pattern measure-
ments, mutual coupling method, and deterministic model

Failed element # of Gain deviation, Crx (dB) Error in the gain (%)

number failures MCM Det.
model

measured MCM Det.
model

11 1 -0.19 -0.14 -0.13 1.37 0.07

11,32,51 3 -0.43 -0.42 -0.44 0.26 0.59

7,11,20,32,51 5 -0.69 -0.71 -0.73 1.06 0.64

7,11,20,32,44,51,59 7 -0.96 -1.01 -1.01 1.16 0.17
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Figure 5.14: Comparison of scanned gain under different failure condition, obtained by
radiation pattern measurements and by prediction using mutual coupling measurements.
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Figure 5.15: Comparison of scanned gain under different failure condition, obtained by
radiation pattern measurements and by prediction using deterministic model.
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Figure 5.16: Comparison of scanned gain for the case of an array with initial failures,
obtained by far-field radiation pattern and by prediction using deterministic model.

Figure 5.16 shows the scanned gain as determined by far-field measurements and by

prediction based on the deterministic model when the initial array has 3 failures and actual

array has 5 and 7 failures. We found again a very good match between the measured and

predicted gain. The result demonstrates that gain estimation must be based on the initial

number of failures, the number than can be found using mutual coupling measurements

after radar calibration.

Failures not only affect the gain of an array, it also increases the sidelobe in a radiation

pattern. Figure 5.17 shows how sidelobes are affected by the failed elements given in Table

5.1. The data corresponds to the maximum sidelobe, which can occur at any azimuth angle.

Note that a small number of failures produce a large change in the sidelobes. For example,

when the beam is at broadside, the sidelobe is raised from -24 dB to -19 dB, point where

the array has 3 failed elements. Because of the small number of elements in the array (64

elements), the sidelobes tends to increase rapidly after a few failures, something that does

not occur on a large phased array with thousand of elements.
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Figure 5.17: Maximum sidelobe level for a -25 dB Taylor pattern under different failure
conditions.

5.3.3 Gain Calibration Due to Temperature Changes

To demonstrate the gain calibration technique by temperature, the scanned gain ob-

tained by scanning the beam was measured at different temperatures by means of a near-

field scanner, then for each operating temperature, the mutual coupling measurements were

recorded. Subsequently, gain deviations were computed from mutual coupling measure-

ments using the two proposed methods. Validation of results is made by comparison to

those obtained from radiation pattern measurements.

For this test, mutual coupling measurements are obtained from two element passives

as shown in Figure 5.18. Curves are given 5 different temperatures. The coupling from

elements 1 to 32 were measured from the passive element adjacent to element 1, while

coupling from elements 33 to 64 were measured from passive element adjacent to element

64. Measurements were performed in receive mode after calibrating the array with an

uniform amplitude distribution. Figure 5.19 shows the respective temperature distribution

across T/R modules for each operating temperature. Each temperature curve follows an
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Figure 5.18: Mutual coupling measurements obtained at different operating temperatures
using two passive elements.

uniform distribution with means T0=30.1 oC, T1=32.9 oC, T2=34.5 oC ,T3=42 oC, and

T4=47 oC, and mean standard deviation of 0.86 oC.

As described in section 5.2.2.1, the calibration uses the comparison of a previously

measured data with a reference data for detecting gain variations. In this test, we have

considered as the reference data, the measurements taken at temperature 30.1 oC. The

mutual coupling ratio Kn between the actual data (data at temperatures T1, T2, T3, and

T4) and reference data (data at temperature T0) as a function of element number is shown

in Figure 5.20. As expected, an increase in the T/R module temperature causes a decrease

in the gain of each element, reducing the intensity of mutual coupling between the active

and passive elements. The coupling reduction produces a negative shift in the parameter

Kn that is equal to the gain drift in each element.

Having obtained the parameter Kn, the subsequent gain drift at each temperature is

computed using (5.18) and (5.20). Additionally, the gain drift is computed by using the

deterministic model (5.33), after considering no failures in the array, and using αrx=0.007.
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The calibration constant for the receive array is given as

Crx[dB] = −0.0608(T − 30.1)

Results obtained from both methods were used to predict the array scanned gain at

each operating temperature. Comparisons of scanned gains obtained by mutual coupling

measurements and deterministic model with obtained by far-field radiation pattern mea-

surements are shown in Figure 5.21 and 5.22. In most cases, the predicted results are in

good agreement with measurements. While at temperature 47 oC there are some differences

at certain scan angles. These differences are caused by two reasons: the increase of random

errors in the excitation and by failures that occurs in some T/R modules. Failures in T/R

modules are caused by the thermal protection circuits in the voltage linear regulators that

feed the amplifiers. It has been observed specifically in 3 T/R modules that voltage reg-

ulator tends to cut-off the output current when temperatures reach values higher than 50

oC. Since the scanned gain measurement with the near-field scanner take about 40 minutes,

it is possible that affected modules can be switching between“on” and “off” states. Table

5.2 summaries the gain drift measured and computed by the two proposed methods, as

well as the errors obtained by each methods. The estimated errors are quite low, providing

evidence that both methods work very well to monitor the gain drift caused by temperature

changes.

Table 5.2: Gain deviation due to temperature changes

Initial Actual Gain deviation, Crx (dB) Error in the gain (%)

temperature
oC

temperature
oC

MCM Det.
model

measured MCM Det.
model

30.1 32.9 -0.17 -0.170 -0.15 0.20 0.21

30.1 34.5 -0.29 -0.27 -0.23 0.66 0.39

30.1 42 -0.72 -0.73 -0.67 0.60 0.68

30.1 47 -1.04 -1.03 -1.07 0.30 0.40

5.3.4 Gain Calibration Due to Temperature Changes and T/R Module Failures

The gain deviation due to temperature changes and failures was also investigated. The

test was realized at a temperature 41oC simulating 5 faulty elements (module numbers =
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Figure 5.21: Scanned gain at different operating temperatures, obtained by radiation pat-
tern measurements and by prediction using mutual coupling measurements.
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tern measurements and by prediction using deterministic model.
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7, 11, 20, 32 and 51) in the array. It has been assumed as reference data, the data obtained

from an array operating with zero failures at temperature of 30.1 oC. For each temperature,

receive pattern measurements were made at 47 different scan angles in the range ±45o,

results were then used to estimate scanned gain in the scanning range. Subsequently, mutual

coupling measurements were made to estimate the gain drift and number of failures. Figure

5.23 shows the comparison of the initial scanned gain with actual scanned gain affected by

failure and temperature changes, as determined by measures and by prediction using the

two proposed methods. Results from this comparison are shown in Table 5.3. The measured

and predicted gain are matched fairly well over most of the scan range, the error obtained

from prediction using mutual coupling method and deterministic model are 0.2% and 0.6%,

respectively.
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Figure 5.23: Effects of temperature and failures on the scanned gain. Curves obtained
by radiation pattern measurements, by prediction using mutual coupling method, and by
deterministic model.
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Table 5.3: Gain deviation due to temperature changes and failed elements

Actual # of Gain deviation, Crx (dB) Error in the gain (%)
temperature
oC

failures MCM Det.
model

measured MCM Det.
model

41 5 -1.40 -1.37 -1.35 0.2 0.6
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CHAPTER 6

SUMMARY AND CONCLUSION

Benefits of dense networks of short-range X-band weather radars using mechanically

steered dishes has been recognized in the past 10 years. The need to improve radar capa-

bilities in order to provide early warning of hazardous weather phenomena, and the need

to provide more reliable and cost-effect radar systems have led to the consideration of us-

ing the phased array as an alternative technology to mechanically steered antennas. A

drawback of phased array systems are their high cost, making them too expensive for civil

application. For the concept of dense networks of phased array radar to be an economically

feasible alternative, the radar must be built at dramatically lower cost than current phased

array systems. A feasible solution is to use the phase-tilt array architecture, which performs

electronic scanning in azimuth direction and mechanical scanning in elevation direction.

The first part of this dissertation describes the design and implementation of a beam-

forming network and beam steering control system that enable the development of low-cost

low-power phase-tilt radars. A detailed, system-oriented description of the electrical re-

quirements, design, test, and performance of different subsystems were given.

A summary of the most important results and findings in this part of the dissertation

are as follows:

• The phase-tilt array architecture reduces cost because it uses a reduced number of

low-cost T/R modules in the array aperture. T/R modules make up about 50% of

overall system cost. Additionally, a significant cost reduction have been achieved in

the fabrication of other array subsystems by integrating in a single printed circuit

board (called backplane) the design of RF power distribution networks, DC power

network, control network. The cost has been reduced over other architectures through

increased integration of subsystems and reduced wiring, accounting for about 6% of

total array cost.
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• T/R module design approach is based on radar system specifications and calibration

requirements. Modules are designed in individual boards to reduce maintenance cost

and provide low cost replacement parts. They also use their own housing to reduce

coupling between adjacent modules, which allows the investigation of mutual coupling

as calibration technique. The fabrication and assembly is realized in arrayed panels

to ensure low-cost manufacturing. The cost of each module is approximate $ 350

dollars (in year 2010) at high volume production. Within the module cost, the digital

phased shifter is the dominant factor, accounting for about 25% of current module

cost. Module test was very intense and time consuming. Measurements were realized

at an automated test station that was specifically designed for this project. The key

parameters, the transmit peak power, noise figure and the isolation between antenna

polarization ports met the design requirements. Additionally, the modules presented

a low settling time. Switch characteristics allows the phased array to theoretically

achieve pulse repetition frequencies up to 100 KHz, making it suitable for a wide

range of radar applications.

• Considerable simplification in the integration of various subsystems with T/R mod-

ules have been obtained by means of a hybrid backplane architecture, an interconnect

interface widely used in computer systems to make reliable and high speed connec-

tions between several daughter cards. The backplanes are composed of two RF power

distribution networks, a DC power network, and a control and communication bus.

These subsystems have been incorporated into a low-cost multilayer printed circuit

board. The board allows the interconnection of 16 T/R modules to a common com-

munication bus and power distribution system without using cables. T/R modules

are plugged into the backplane in their appropriate slots, according T/R module ad-

dress. The connection between T/R modules and RF manifold is realized through RF

coaxial cables. The advantages of using a backplane architecture is that it reduces

cost (i.e. reduce material and manufacturing process steps), reduce wiring complexity

and space, simplifies array integration, and allows the implementation of high-speed

communication buses.
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• One of the most important results coming from the beam steering control design

was the implementation of a high-speed bus based on a LVDS multidrop backplane

architecture. The bus is capable of driving up to 32 T/R modules in parallel when

two backplanes are cascaded. It also allows data transmission speeds up to 100 Mbps.

The communication speed is 10 times higher than the communication speed obtained

in most phased arrays using RS485 and RS422 standards. Buses are designed with

a pair of microstrip lines and with terminations at the ends to eliminate reflections

caused by the mismatch between the transmission lines and loads. Tests made in a

heavily load backplane with 32 modules using a 25 Mbps serial transmission resulted

in a zero-error communication.

• A new control architecture for the beam steering system of a phased array radar was

designed and implemented. The control is based on a distributed system, which has a

central controller and several element controllers at the level of each T/R module. The

central controller generates beam commands and element controllers translate them

into calibrated settings allowing the implementation of the desired excitation. The

control differs from others architectures in that all element controllers are controlled in

parallel and synchronously by the central controller, and that non computing units are

used. In addition, element controllers can be controlled individually or simultaneously

by means of unicast or broadcast commands. Advantages of this architecture include

real time rapid update, high steering throughput, decreased complexity, and reduced

hardware cost. Some of these features enable the implementation of adaptive scan

and beam multiplexing scan strategy with a widely range of PRF and pulse width.

Another feature is that sequence table enables the implementation of a variety of

different pulse schemes.

• Element controllers are implemented in a low-cost small FPGA incorporated in the

T/R modules. The design is based on a state-machine with a programmable sequence

table and pre-stored calibration look-up table. The sequence table stores the beam

commands (scan angle + pulse scheme) to be used for the radar at a specific beam.

Look-up table translates the command indicated by the sequence table into control
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signals for phase shifter, attenuator, T/R switches, polarizations switches and ampli-

fier bias. Each T/R module has a unique look-up table, which contains calibrated data

for different operation modes, temperature or even frequencies. Control of sequence

table, memory and registers is realized through commands. A list of commands with

their description have been presented.

The second study has addressed a method to perform the initial calibration of phased

arrays. The conventional method of setting the phase and amplitude in a phased array

system is through calibration look-up tables that are stored locally at each T/R module.

These tables store calibration offsets or calibrated settings that correct the errors created

by attenuators and phased shifters. This method does not always provide the best avail-

able setting for a given element excitation. The third chapter has addressed a calibration

algorithm that provides better calibration settings than the standard calibration. The algo-

rithm searches in the raw data of each element the best amplitude and phase settings that

minimize the random errors in the excitation. The settings are obtained as a function of

module, scan angle, and temperature. These data are organized and stored into calibration

tables, called ”beamtables”, in the array control computer, which transfers them to T/R

modules each time the radar is turned on or is in idle mode. Additionally, array radiation

patterns can be calculated from the calibration settings, the known array element positions,

and a known embedded element pattern.

A summary of the most important results and findings in this part of the dissertation

are as follows:

• The power of the calibration technique has been demonstrated by calibrating success-

fully a phased array system in both receive and transmit mode. The criteria used to

choose the gain scaling factor for the calibration algorithm at each mode depends on

the antenna operation mode. In receive, the gain scaling factor should be chosen less

than or equal to the minimum gain found across elements (having the attenuators and

phase shifters are loaded with all zeros) in order to implement the desired excitation

function with low random errors. This condition allows achievement of errors that

are approximately close to theoretical errors. On the other hand, in transmit, the
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gain scaling factor should be chosen equal to the maximum gain found across the

elements. This condition ensures that elements will operate in compression. Results

have shown that when attenuator’s insertion phase is considered into the calibration,

a RMS phase error better than the theoretical error is obtained.

• Radiation pattern measurements obtained from calibrated array are in good agreement

with both theoretical and predicted patterns. Results indicate that radiation patterns

can be calculated directly from calibration settings if the embedded element pattern is

known. This method may be applicable to predict the radiation patterns of a fielded

phased array after internal calibration.

• Both measured and predicted patterns have been used to determine the array scanning

performance. Comparisons of scanned gains obtained by measurements, by prediction,

and by average embedded element pattern are made. It has been observed the presence

of ripples on the scanned gain in both receive and transmit array, being most noticeable

in receive than in transmit, although the latter had higher excitation errors. These

ripples are caused by the variation of amplitude errors with scan angles. Particularly,

in transmit there are not variations in the amplitude errors with scanning because the

elements operates in compression. For that reason, the ripples are quite small in the

scanned gain.

• Array characteristics as beamwidth, sidelobes, and beam pointing errors have been

measured are different scan angles in order to evaluate the quality of the calibration

process. The beamwidth performance is in good agreement with the theory. Sidelobe

level for beams close to broadside corresponds with the designed value, however its

value increases when the beam is scanned away from broadside because of the scanning

loss, being the maximum value equal to -21 dB at 45o. Beam pointing errors less than

0.06o has been obtained.

• An open loop calibration technique that compensates for the two-way antenna gain

drift caused by temperature changes is also presented. The technique is applicable

to phased arrays that have transmit modules operating in compression. Because the

gain cannot be adjusted in the transmit array, the compensation is realized in the
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receive array. Gain compensation has been demonstrated experimentally at several

temperatures. Results show that the gain drift obtained after compensation is less

than 0.05 dB.

The third study has addressed a technique that uses mutual coupling measurements for

both monitoring and calibration of phase array systems. The technique takes advantage

of the inherent mutual coupling between the active elements and passive elements of an

array to measure the characteristics of active elements. The only two requirements of the

technique is that characteristics of passive elements and mutual coupling between radiating

elements must not change over time. It has been demonstrated successfully that mutual

coupling measurements can be used to monitor and maintain the calibration of an array.

In general, experiments has been conduced to estimate gain variations in the elements that

may be caused by temperature changes, aging, or even replaced modules. Results have been

used to calibrate the array elements when they suffers of excitation errors, and to calibrate

the radar constant when the array suffers of temperature and failures effects. The approach

has the advantage of low cost and easy implementation. The added circuit complexity is

also minimal.

A summary of the most important results and findings in this part of the dissertation

are as follows:

• The theory associated with monitoring and calibration of phased arrays that are sus-

ceptible to temperature changes has been discussed and demonstrated experimentally.

The calibration concept uses the comparison of two mutual coupling measurements,

one obtained during the monitoring task, the other one obtained during initial ar-

ray calibration, to determine calibration errors that occur in the elements over time.

It has been demonstrated that when two measurements are made at different tem-

peratures, the calibration constant is affected by a bias error that is exponentially

proportional to the temperature drift. The proposed calibration algorithm removes

the bias caused by the temperature and corrects the characteristics of uncalibrated

elements according to the calibration constant. Test results indicate that both gain

and phase drift can be calibrated with good accuracy if the signal-to-noise ratio is
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the appropriated. Radiation pattern measurements confirmed that sidelobe level and

beamwidth are within the expected values after calibration procedure.

• The accuracy of the mutual coupling measurements are affected by the signal-to-noise

ratio resulting from the coupling between the active elements and passive elements,

as the separation distance increases, the signal-to-noise ratio decreases and accuracy

decreases. In a small linear phased array, the accuracy of calibration can be improved

by using two passive elements, one on each edge of the array, and measuring each half

of the antenna with the closer passive element.

• Results obtained by mutual coupling measurements can be used with the initial array

excitation function, and a known embedded element pattern to predict the array

radiation pattern. It has been shown that prediction results are in good agreement

with conventional far-field measurements. This method may prove to be very useful in

the maintenance of future low cost phased array radars where the radiation patterns

must be monitored routinely to insure that they meet the radar specifications. In

particular, small phased arrays are more susceptible to failures than large phased

array, the effect of failures is to reduce the antenna directivity and rise the sidelobes.

The antenna degradation can only be determined by measuring the antenna radiation

pattern. The pattern prediction by mutual coupling measurements can be a viable

alternative for performing this task.

• An experimental investigation of temperature and failures effects in an air-cooled,

phased array antenna has been made. It was shown that losses in receive gain can

be approximately 1 dB when the array has 7 failed modules. Similarly, the gain

deviation is 1 dB when the antenna is affected by a temperature change of 17 oC.

Combining both effects, the net gain deviation in receive can be equal to 2 dB. Unless

this deviation and transmit gain deviation is compensated, the equivalent reflectivity

measured by the radar will be affected by a bias error larger than 2 dB.

• The potential for radar calibration based on mutual coupling measurements has been

demonstrated. Two methods that effectively estimate the antenna gain deviation due

to temperature changes and failures are presented. The first method is based on the
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comparison of the actual antenna gain with the initial antenna gain measured during

the external calibration of the radar. Each gain depends on the individual gains of

each array branch, which are obtained by mutual coupling measurements. The second

method is based on a mathematical model that takes into account the temperature

characteristic of T/R modules and the number of failures presents in the array. The

number of failures is estimated by mutual coupling measurements. The calibration

constants obtained from these methods correct the combined losses that occur in

the beamformer networks and antenna directivity. Two calibration constants, one

for transmit array and one for receive array, are defined to correct the radar system

constant. It was also shown that calibration constants can be used with the embedded

element pattern to predict the scanned gain of an array.

• Various calibration tests made under different operating temperatures and failures

conditions were shown. Results indicate that gain deviation can be accurately esti-

mated using any of the two proposed methods. Predicted scanned gains are in good

agreement with far-field measurements. Residual errors are less than 1.4 % in the

mutual coupling method and less than 0.7% in the mathematical model. Besides

accuracy, the mathematical model has the advantage that non mutual coupling mea-

surements are needed to calibrate the gain during radar operations. It is assumed that

calibration term due to failures is updated only after the array maintenance, when

there is not precipitation, while calibration term due to temperature should be up-

dated more often, for example, every scan sector after reading the temperature from

T/R modules.

• The calibration techniques based on mutual coupling measurements prove to be a vi-

able alternative to conventional techniques. Their accuracy, reduced cost and reduced

complexity makes them a good candidate for use in low-cost X-band phased array

radars.
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APPENDIX A

T/R MODULE SCHEMATIC

This appendix provides the following circuit board schematics:

• RF circuit diagram

• Voltage regulators diagram

• Digital circuit and 30 pin header diagram

This appendix also includes the bill of material for T/R module
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APPENDIX B

BACKPLANE

This appendix provides the bill of material and cost model for the backplane board.

B.1 Bill of material

Item Quantity Part Part Number Description Distributor Dist Part Number Package Type

1 8 10A01-T 10A01-T RECTIFIER 50V 10A R-6 Digi-Key 10A01CT-ND R-6 Through-holes 

2 18 SOCKET 15X2 SFML-115-T1-S-D CONN HEADR .05" 30POS DL T/H R/A Digi-Key SAM8243-ND CONN30SCK Through-holes 

3 34 SMA 142-0711-201 CONN JACK SMA 50 OHMS PC MOUNT Digi-Key J819-ND SMA  conn Surface Mount

4 1 HEADER 12POS 10-84-4120 MALE CONN HEADER 12POS .084 VERT TIN Digi-Key WM1261-ND CONN12 Through-holes 

5 1 HEADER 6POS 10-84-4060 MALE CONN HEADER 6POS .084 VERT TIN Digikey WM1259-ND CONN2 Through-holes 

6 1 HEADER 2POS 10-84-4020 MALE CONN HEADER 2POS .084 VERT TIN Digi-Key WM1256-ND CONN2 Through-holes 

7 10 43 Ohms CRCW040243R0FKED RES 43.0 OHM 1/16W 1% 0402 SMD Digi-key 541-43.0LCT-ND SMD_402 Surface Mount

8 30 50 Ohms RC3-0402PW50R0J RES 50 OHM 1/16W 1% 0402 SMD IMS-Resistor RC3-0402PW50R0J SMD_402 Surface Mount

B.2 Component costs

Unit price  Unit price of backplane (only parts)

Item Quantity Part Distributor Dist Part Number 1 10 100 500 1000 1 10 100 500 1000

1 8 10A01-T Digi-Key 10A01CT-ND 0.74 0.578 0.495 0.462 0.462 5.92 4.624 3.696 3.696 3.696

2 18 SOCKET 15X2 Digi-Key SAM8243-ND 4.95 3.51 2.88 2.565 2.52 63.18 51.84 45.36 45.36 45.36

3 34 SMA Digi-Key J819-ND 4.55 4.052 2.9772 2.3156 2.0675 137.768 101.2248 70.295 70.295 70.295

4 1 HEADER 12POS Digi-Key WM1261-ND 2.19 1.931 1.2873 1.0298 0.85473 2.19 1.931 1.2873 1.0298 0.85473

5 1 HEADER 6POS Digikey WM1259-ND 1.35 1.195 0.7968 0.6374 0.52904 1.35 1.195 0.7968 0.6374 0.52904

6 1 HEADER 2POS Digi-Key WM1256-ND 0.6 0.53 0.3533 0.2826 0.23456 0.6 0.53 0.3533 0.2826 0.23456

8 10 43 Ohms Digi-key 541-43.0LCT-ND 0.0083 0.083 0.0444 0.0255 0.0174 0.83 0.444 0.174 0.174 0.174

7 30 50 Ohms IMS-Resistor RC3-0402PW50R0J 0.79 0.69 0.59 0.5 0.35 20.7 17.7 10.5 10.5 10.5

232.538 179.4888 132.4624 131.9748 131.6433

B.3 Cost model

Item Distributor 1 10 100 500 1000

Backplane parts Various 232.538 179.4888 132.4624 131.9748 131.6433

Fabrication Cirexx 1000 580 296 274 270

Assembly Cirexx 1058 180.7 62.6 61 60

Total 2290.538 940.1888 491.0624 466.9748 461.6433
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