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ABSTRACT 

MOTION OF PARTICLES AS A PROBE: 

DYNAMICS AND ASSEMBLY IN GEL NETWORKS/AQUEOUS MEDIA 

MAY 2014 

CHEOL HEE LEE, B.S., HANYANG UNIVERSITY 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHESRT 

Directed by: Professor Alfred J. Crosby 

Professor Todd Emrick 

Professor Ryan C. Hayward 

                                                             

Nanoparticles are of great interest with a wide variety of potential applications due to 

their unexpected but interesting physical properties which are different from bulk state, enable 

small length scale-driven transport through complex materials, and provide the building units 

for well-ordered structures. Observing the motion of nanoparticles provides information about 

surrounding microstructures, flow dynamics, and assembly processes by virtue of 

fluorescence of nanoparticles. However, the proper control of surface chemistry and the 

fluorescence of particles are both paramount and challenging to allow particles to be used in a 

quantitative and robust manner. This thesis describes the use of precisely-defined particles for 

characterizing and building complex structures. The research exploits advantages of the 

particle dynamics in three distinct studies: i) the tracking of single CdSe/ZnS core/shell QDs 

to characterize complex structures of hydrogels, ii) the transformation of dispersed QDs in 
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bulk phase into unique ring assemblies at the air/liquid interface, and iii) the mapping of flow 

dynamics within an evaporating droplet.  

Chapter 2 describes the diffusion dynamics of single quantum dots (QDs) within 

polyacrylamide (PAAm) hydrogels to characterize the structural heterogeneity of gel 

networks by employing the single particle tracking (SPT) technique. Due to their photo-stable 

and highly fluorescent emission and its small size (4- 10 nm), individual QDs can be tracked 

by a fluorescence microscopy as they find pathways through structurally complex gel 

networks. This tracking provides information about spatiotemporal dynamics. The anomalous 

diffusion dynamics revealed by the motion of single QDs suggests that the structural 

heterogeneities of PAAm gels develop with increasing cross-linker content, and the length 

scales discovered are in a good agreement with the correlation length scale reported in the 

previous light scattering studies.  

Chapter 3 describes the assembly of QD rings at the air/water interface by ‘2-D 

Pickering emulsions’. This work emanated from the unexpected observation of QD rings on 

the droplet of QD solutions. These rings form from QDs adsorbed to the interfacial line of 

surfactant islands assembled at the interface, and the QDs mark islands, appearing as rings. 

This island assembly was found to occur only at a specific range of surfactant concentrations 

due to the phase transition. Uniformly dispersed QDs in the bulk phase affording the ring 

patterns exclusively at the air/water interface provides insight that the thermodynamic driving 

force arises at the interfacial line between three phases (air/water/surfactant islands).  

Finally, Chapter 4 details the radial flow dynamics within an evaporating droplet with 

a pinned contact line is investigated. By suspending and tracking fluorescent latex beads, the 

flow dynamics are quantified as a function of contact angle. This phenomenon, commonly 
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called the “coffee ring effect”, is advantageous for patterning and depositing suspended 

solutes on substrates. To develop evaporative assembly as a scalable process, it is particularly 

important to understand the effect of contact angle on radial velocity. By tracking the motion 

of suspended particles in a droplet, we experimentally measured the flow dynamics, 

specifically the height averaged radial velocity, within an evaporating droplet in the range of 

contact angles 5-50
o
. We found that our experimental results are in a good agreement with the 

analytical prediction by Hu and Larson. Following the analytical predictions, we modified the 

original equation to a simplified equation that directly links radial velocity to contact angle 

and evaporation rate. This study provides insight into the manipulation of evaporative 

assembly processes on different substrates in terms of assembly kinetics and structural 

dimensions.  
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CHAPTER 1 

INTRODUCTION 

 

The observation of particle motions allows us to learn about the spatiotemporal 

information of the surrounding structures, e.g., microrheology [1], as well as particle 

dynamics [2] and underlying processes of material assembly. In this thesis, we study the 

motion of particles within different aqueous environments of interest where the locations of 

individual particles are detected by the fluorescent traces of probe particles, such as quantum 

dots (QDs) and dye-functionalized latex beads. To obtain useful information from particle 

motions, there are a few aspects to be considered. The determination of particle locations 

requires the different level of accuracy depending on the probe size and the spatiotemporal 

scale of interest. The surface chemistry rendering particles physically and photochemically 

stable in aqueous media is most important since probe particles in our study are subject to 

aqueous environments, and interactions between particle surface and surrounding structures 

should be avoided. This thesis consists of three works where fluorescent particles are utilized 

to obtain useful information from their motions. In the first work, the anomalous diffusion 

dynamics of single QDs, obtained by single particle tracking technique, are analyzed to obtain 

the information about the heterogeneous structure of surrounding gel networks which is 

known to inherently develop during random polymerization processes. Secondly, the 

formation of surfactant islands at the air/water interface is visualized by the adsorption of 

QDs to the interfacial line of surfactant islands, driven by a reduction of interfacial energy. 

Finally, the radial flow dynamics is explored by tracking individual latex beads within an 

evaporating droplet to find out the effect of contact angle on the radial flow velocity.  
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1.1 The Anomalous Diffusion Dynamics of Single Quantum Dots within Heterogeneous 

PAAm Hydrogels 

Hydrogels are chemically or physically crosslinked hydrophilic polymer networks 

immersed in water. They show interesting physical properties, such as elasticity, swelling 

property, toughness, permeability, turbidity, and mass transport property,[3-8] which make 

hydrogels applicable to many applications, e.g., water absorbent, shock absorber, artificial 

tissue scaffold, and drug delivery.[9-11] These properties, however, are readily affected by 

the extent of structural heterogeneity of hydrogels, which is known to inherently develop 

during the radical polymerization process as a function of crosslinker content.[12] For 

example, the elastic modulus of polyacrylamide hydrogels increases with crosslinker content 

up to ~ 3 mol% relative to monomer after which the modulus begin to decrease.[13] This 

transition point of the elastic modulus is due to the structural heterogeneity taking effect on 

bulk properties at ~ 3 mol% crosslink content.[13] Briefly, the structural heterogeneity of 

hydrogels is attributed to the fluctuation of local polymer density developed by the non-ideal 

crosslinking processes, e.g., backbiting crosslinks (cyclization), and due to hydrophobicity 

and higher reactivity of crosslinkers. Single particle tracking (SPT) is a useful technique for 

the characterization of complex structures since understanding the motion of nanoparticle can 

provide time-scale and length-scale-dependent information about the properties of structurally 

complex matrix materials. The SPT technique allows us to investigate the dynamics of single 

QDs as well as obtain information about the heterogeneous structures of crosslinked polymer 

networks without destroying and/or perturbing the materials structures by analyzing the 

trajectories of single QDs moving within polymer hydrogels. 
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The continuous time random walk (CTRW) has been a popular formalism to 

successfully describe the stochastic transport or dynamics within diverse complex media, as 

first proposed by Montroll and Weiss.[14] For example, the CTRW has been applied to 

explain anomalous dynamics within a cell and on the membrane as well as stochastic 

dynamics in finance and share prices in stock markets.[15] In the CTRW, a random walker 

spends a certain time at random by being localized or trapped before making a step showing a 

random distribution of caging times which is an indicator of the extent of structural 

heterogeneities.  

In this work, we are determined to utilize SPT technique to investigate and 

characterize the nature of structural heterogeneity of PAAm hydrogels by analyzing the 

distribution of caging times obtained from experimental diffusion dynamics of single QDs.  

 

1.2 The Assembly of Quantum Dot Rings by 2-D Pickering Emulsions 

Patterning and assembling nanoparticles (NPs) have been of interest in a broad range 

of scientific areas, such as photonic, electronic and magnetic devices for sensing and 

optics.[16] Using  NPs as a building block, nano- and microscale ordered structures are 

constructed on substrates by many assembly methods, e.g., template-based process, which are 

both time-consuming and costly.[16-18]  

This work presents a simple method of assembling QDs into rings at the air/water 

interface, which was unexpectedly observed from an evaporating droplet. It was noticed that 

the formation of QD rings occurs only on specific substrates, the cover glass with a trace 

amount of unknown impurities on its surface. A trace amount of impurity, playing a critical 

role, leaches into a bulk phase of water containing PEGylated QDs and reaches the air/water 
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interface most likely due to the surface active property. Once the amount of impurities at the 

interface is in the right concentration range, they form round islands due to its coexistence of 

gas (G) and liquid expanded (LE) phases.[19, 20] These islands play a role of templates for 

QDs adsorbing into the interfacial line of islands, a process driven by a reduction in interfacial 

energy. We successfully reproduced this phenomenon, the formation of QD rings, on cleaned 

glass with the addition of surfactants to prove our hypothesis. In addition, the deposition and 

patterning of QD rings on large area substrate is demonstrated employing a dip-coating 

method.  

 

1.3 Flow Dynamics within Evaporating Droplets 

Deegan’s first paper explaining about the ‘coffee ring effect’ in 1997 is one of the 

most cited papers thus far.[21] Due to the inherently non-uniform evaporation flux along the 

droplet interface with contact angles < 90
o
, there is a radial flow generated from the center 

towards the edge to compensate more loss of water at the edge. The ‘coffee ring effect’ has 

been an underlying phenomenon in many mass transport-driven assemblies of solutes, such as 

microshperes, DNA, polymers, and nanoparticles, in evaporating droplets.[22-27] There have 

been many theoretical works studying the radial flow velocity as function of evaporation time, 

contact angle, surfactant concentration, the size of droplets, etc,[28-30] as opposed to 

experimental study. Here we present the empirical observation of the flow dynamics, by 

tracking individual latex beads as a probe, within an evaporating droplet to verify analytical 

predictions. Particularly, the effect of contact angle on the radial flow velocity is examined 

since we are interested in the impact of contact angle on the kinetics and/or the dimensions of 

the ordered structures constructed by the flexible blade flow coating technique. [31] 
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We found that our experimental observation of the effect of contact angle on the radial 

flow velocity agrees well with analytical predictions by Hu and Larson, and modified their 

analytical equation to a simple equation which directly links radial flow dynamics to contact 

angle and evaporation rate, thus providing an intuitive understanding of the influence of 

contact angle.  

 

1.4 Thesis Overview 

 In the following chapters, works will be delivered in detail to address how the motion 

of particles is utilized in each study. In Chapter 2, anomalous diffusion dynamics of single 

QDs within polyacrylamide (PAAm) hydrogels will be described by tracking single QDs, 

providing useful information about the structural heterogeneities which is affected by the 

content of cross-linkers. This result will provide an insight to the heterogeneous, but 

interconnected elastic structures of hydrogels. In Chapter 3, patterning and assembly of QD 

rings will be demonstrated, which was originated from unexpected observations leading to 

finding of an interesting assembly phenomenon. QD rings are assembled by being adsorbed to 

the interfacial line of surfactant islands which are assembled at the air/water interface. The 

transfer and patterning of these QD rings onto different substrate will be demonstrated using 

dip coating technique. In Chapter 4, we will quantify the radial flow dynamics as a function of 

contact angle in evaporating droplets by tracking suspended fluorescent latex particles. This is, 

to our knowledge, the first empirical demonstration of radial flows as a function of contact 

angle whose results are consistent with the analytical predictions by Hu and Larson. 

Furthermore, we will modify the original prediction to a simpler form such that it directly 

relates the radial flows to contact angles as well as evaporation rates. Collectively, these 
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works and results presented here allow us to utilize the spatiotemporal information obtained 

from the motion of particles to explain and/or describe surrounding structures as well as 

assembly processes.  
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CHAPTER 2 

CHARACTERIZATION OF HETEROGENEOUS 

POLYACRYLAMIDE HYDROGELS BY TRACKING OF SINGLE 

QUANTUM DOTS
1
 

 

2.1 Introduction 

Polymer gels, consisting of either chemically or physically cross-linked networks of 

polymer chains immersed in solvent, possess interesting and useful physical properties.[1] In 

particular, hydrogels are attractive materials for use as tissue scaffolds[2, 3] and as media for 

drug delivery[4] and separations,[5] due to their high water content, potential for 

biocompatibility, and highly tunable stiffness and permeability. However, the physical 

characteristics of gels, including their elasticity, permeability, turbidity, swelling propensity, 

mass transport properties, and fracture toughness are known to be sensitive to the presence of 

structural heterogeneities in the network [6-11] that in most cases arise inherently due to the 

random nature of the cross-linking process.[12] Thus, the ability to characterize, understand, 

and ultimately control structural heterogeneity of gel networks is important to tailoring their 

properties. 

Polyacrylamide (PAAm) gels are among the most commonly applied and well-studied 

hydrogel material systems due to their utility for high resolution electrophoretic separation of 

proteins and DNA,[13] and more recently as cell culture substrates that provide 

                                                 
1
 Reprinted and adapted with permission from Macromolecules 2014, 47 (2), pp 741-749, 

DOI: 10.1021/ma402373s. Copyright © 2014 American Chemical Society. 
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physiologically relevant stiffness.[14, 15] The structure of PAAm hydrogels have previously 

been examined using scattering techniques (light, X-ray, and neutron),[16-18] transmission 

electron microscopy (TEM),[19, 20] chromatographic methods,[9] and electrophoresis.[21] 

For example, Geissler and coworkers used a combination of scattering techniques to show 

that PAAm hydrogels containing 8 wt% acrylamide monomer, with various contents of N,N’-

methylene bisacrylamide crosslinker, contain significant structural heterogeneities with sizes 

ranging from 2.5 Å  to several hundred nm.[16] Small angle X-ray and neutron scattering 

measurements showed excess forward scattering at small q, indicating the presence of frozen 

heterogeneities in structure.[16, 17] Similarly, dynamic light scattering measurements yielded 

position-dependent speckle patterns characteristic of spatial heterogeneities, which at high 

crosslink density cause the gels to become opaque and increasingly fragile.[22] Fawcett and 

Morris conducted chromatography experiments using PAAm gel beads containing 6 - 15 wt% 

acrylamide, and found that the elution volume of protein solutions first decreased with 

increasing concentration of cross-linker, but then subsequently increased.[9] Both sets of 

studies suggest that increased cross-linker content leads to formation of high-density bundles 

of polymer chains that are tightly crosslinked due to local enrichment of the relatively 

hydrophobic cross-linkers, interconnected by lower density regions with a characteristic pore 

size that actually grows larger with increasing cross-linker content.[9]  

Despite this work, our understanding of structural heterogeneity within even this 

important and well-studied class of materials remains largely incomplete, reflecting the 

fundamental challenges inherent to characterization of irregular nano-scale structures in 

solvated systems. From scattering and chromatographic measurements, one obtains only 

characteristic structural length scales that reflect spatial averages over large volumes of 
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material. Electron microscopy, while enabling high spatial resolution, suffers from difficult 

and invasive sample preparation and the possibility for significant imaging artifacts, and is 

generally poorly suited to capture dynamics within the material.  

Fluorescence-based single particle tracking (SPT) methods provide powerful tools to 

investigate dynamics within complex media with high spatial resolution, since the position of 

each moving object can be located with a precision well below the optical diffraction limit by 

identifying the centroid of fluorescence intensity.[23, 24] Such methods have been employed 

to study dynamics in a diverse range of heterogeneous systems, including lipid membranes 

[24, 25] and the cytoplasm,[26, 27] particles in block copolymer membranes,[28] analyte 

molecules in mesoporous sensors,[29, 30] reactions on catalyst surfaces,[31] networks 

undergoing gelation,[32] and nanopost arrays.[33] The motion of individual fluorescent 

molecules within PAAm gels[34] and surface bound poly(N-isopropylacrylamide) brushes[35] 

has been followed using SPT, in both cases revealing confined and heterogeneous motion of 

the probe molecules. These experiments, however, use individual dye molecules whose 

largest dimensions are only 1-2 nm, thus they are presumably only sensitive to the very 

smallest pores in these polymer structures, and may actually be adsorbing onto the polymer 

network due to hydrophobic interactions.  

On the other extreme in terms of probe size, the Weitz[8, 36] and Granick[37] groups 

have investigated the dynamics of fluorescent sub-micrometer colloidal particles within 

networks of the semi-flexible biopolymer F-actin. In these cases, non-diffusive motion was 

observed, corresponding to probe particles making infrequent jumps between pores in which 

their motion is highly restricted.[36, 37] Similar processes of rare, activated hops between 

confined microenvironments are ubiquitous for a wide range of material systems approaching 
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gelation or glass transitions, with the characteristic feature that the distribution of 

displacements deviates from Gaussian statistics by showing a long exponential tail at large 

displacements.[38-41] 

A variety of models have been used to describe heterogeneous dynamics within 

complex/disordered media.[42-44] One of the most commonly employed approaches is the 

continuous time random walk (CTRW) formalism first introduced by Montroll and Weiss,[45] 

in which a random walker waits for a certain time at any given site before making a jump to a 

neighboring site. A simple choice for the distribution of these ‘caging times’ comes from the 

random trap (RT) model, where each site on regular lattices is characterized by a trapping 

energy selected at random from a distribution that describes the heterogeneity of the complex 

medium. A caged particle at each site advances to neighboring sites by thermally-activated 

hopping mechanism with a jumping frequency dependent on the trapping energy. The RT 

model has been successfully employed to describe aspects of glassy phenomenology,[40, 46, 

47] electronic transport in disordered solids,[48, 49] desorption dynamics in porous activated 

carbon grains,[50] and protein dynamics.[51]  

In this chapter, we demonstrate that SPT of individual quantum dots (QDs) provides a 

simple and useful method to characterize structural heterogeneity within PAAm hydrogels. 

While tracking of single QDs has commonly been employed to understand transport processes 

within cells,[52-55] this method has not yet been widely applied in synthetic materials. We 

choose core/shell CdSe/ZnS QDs as probe particles, since they have high photoluminescence 

and photostability, allowing for straightforward tracking of single particles by standard 

epifluorescence microscopy over long periods of time. In addition, the hydrodynamic 

diameter of the QDs used here is around 20 nm, which represents an intermediate size 
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between the small molecule dyes (~ 1 – 2 nm) and colloidal particles (~ 100 nm - 1 m) more 

commonly used for SPT studies, and which more closely match the characteristic structural 

sizes of synthetic hydrogels such as PAAm. We find that QDs show sub-diffusive behavior 

and non-Gaussian displacement distributions, consistent with prior reports on motion through 

heterogeneous media. We also analyze the distribution of caging times in the context of a 

simple random trap (RT) model for the energy landscape within the gel, and find that the 

characteristic trap energy increases for larger crosslink densities, consistent with greater 

heterogeneity of these networks. 

 

2.2 Experimental 

2.2.1 Reagents 

     Tri-n-octylphophine oxide (technical grade), cadmium acetate dihydrate, 

hexamethyldisilathiane, anhydrous methanol, 11-mercaptoundecanoic acid (95%), and 

tetramethylammonium hydroxide (25% in methanol) were purchased from Sigma-Aldrich. 

Tri-n-octylphosphine (97%) was from Strem Chemicals. Selenium (200 mesh 99.999%) and 

diethylzinc (15 wt% in hexane) were from Alfa Aesar. All reagents were used without further 

purification. 

 

2.2.2 Synthesis of CdSe/ZnS Core/Shell Quantum Dots 

TOPO (tri-n-octylphosphine oxide) capped CdSe/ZnS core/shell QDs were 

synthesized following a modified version of the previously described procedure.[56, 57] To a 

3-neck, 25 mL round-bottom flask equipped with reflux condenser, N2 inlet, septum, and 
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thermocouple probe were added cadmium acetate (0.375 mmol) and tri-n-octylphosphine 

oxide (TOPO, 7.5 g). The mixture was heated to 150 
o
C under vacuum for 15 min. The 

temperature was then increased to 300 
o
C, after which a solution of selenium (5.1 mmol) in 

tri-n-octylphosphine (TOP, 2 mL) was swiftly injected. The nanocrystals were allowed to 

grow at 280 
o
C for 4 min where the color of the solution gradually changed from yellow to 

red. Then, the temperature was reduced to 160 
o
C for shell growth. A precursor solution 

containing Zn and S was prepared by dissolving diethylzinc (15 w% in hexane, 0.45 mmol) 

and hexamethyldisilathiane (0.45 mmol) into tri-n-octylphosphine (3 mL) inside a glove box 

and then administered into the reaction pot using syringe pumps at a rate of 1 mL/hr. The 

solution was allowed to cool to room temperature, and the TOPO-covered CdSe nanoparticles 

were isolated by precipitation into methanol with a few mL of chloroform. The solution was 

centrifuged and the supernatant decanted. The resulting solid was purified by dissolution in 

chloroform, precipitation into methanol, and centrifugation. The red powder isolated from this 

process was dried under a purge of N2 and stored in chloroform or toluene.  

 

2.2.3 Water Soluble CdSe/ZnS Core/Shell Quantum Dots 

The CdSe cores are determined to be ~ 4 nm in diameter from UV/Vis absorption 

spectra,[58] while the ZnS shell size is ~ 1 nm confirmed by TEM. A ligand exchange was 

conducted to replace TOPO with 11-mercaptoundecanoic acid, rendering the QDs dispersible 

in water. For ligand exchange, a QD solution containing 2 mg of QDs was added to a 4 mL 

glass vial and dried under N2 to form a thin layer of QDs. Next, 0.3 - 0.4 mL of anhydrous 

methanol, 11-mercaptoundecanoic acid (MUA, at least a 10-fold excess by weight relative to 

QDs), and tetramethylammonium hydroxide (25 wt% in methanol, 2 eq. to MUA) were 
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placed in the vial under N2. The mixture was stirred overnight at 60 
o
C and precipitated by 

adding 1 mL of hexane with a small amount of chloroform. The solution was centrifuged and 

the supernatant decanted. The red powder was dissolved in deionized water and purified to 

remove residual ligand through a centrifuge tube filter with 100 kg/mol molecular weight 

cutoff.  

An important consideration in SPT measurements is the possibility for adsorption of 

QDs to the polymer network, which may influence particle motion. However, a previous 

micro-rheological study of crosslinked PAAm sols and gels revealed that latex beads with 

carboxylate and amidine surface functionalities show identical behavior, suggesting that 

particle interactions with polymer networks is not critical for these specific functionalities.[59] 

Thus, the carboxylate ligands used here presumably yield minimal adsorption of QDs to the 

network. By contrast, QDs with poly(ethylene oxide) (PEO, MW = 600 Da) ligands, prepared 

according to a literature procedure,[60] were found to show substantially slower motion 

compared to those with carboxylate ligands, likely due to hydrogen bonding interactions 

between PAAm and PEO. 
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2.2.4 Optical Properties of MUA Capped CdSe/ZnS Core/Shell Quantum Dots 

 

Figure 0.1. (a) UV-Vis spectra of CdSe/ZnS QD solution before and after ligand exchange 

from TOPO to MUA ligand. (b) Photo luminescence spectra before and after ligand exchange.    

 

2.2.5 Synthesis of DHLA-PEG600 

DHLA-PEG600 ligand was synthesized by following literature methods. [61, 62] 

Thioctic acid (5.0 g, 24 mmol), poly(ethylene glycol) (MW = 600, 145 g, 242 mmol), a 

catalytic amount of 4-(dimethylamino)-pyridine (890 mg, 7.3 mmol), and CH2Cl2 (240 mL) 

were combined in a flask and degassed with N2. The mixture was cooled to 0 
o
C in an ice 

bath, and a solution of dicyclohexylcarbodiimide (6.5 g, 31 mmol) in CH2Cl2 (20 mL) was 

added dropwise. The mixture was stirred overnight at room temperature. The precipitate was 

filtered over a plug of Celite, and the residue was mixed with an aqueous sodium bicarbonate 

solution, and extracted with ethyl acetate (3 times). The combined organic phase was dried 

over MgSO4, filtered, and evaporated to give a yellow oil. This oil was purified by column 

chromatography on silica gel (chloroform/methanol 95:5), and the product recovered as a 

yellow oil (~ 60 %). Sodium borohydride (13.8 mmol) in a 1:4 ethanol/water (55 mL) was 

used to reduce the disulfide, giving PEG-DHLA. 
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2.2.6 Fabrication of PAAm Hydrogels and Quantum Dot Loading 

PAAm hydrogel samples were prepared by the conventional free radical 

polymerization in aqueous solutions containing 7 wt% acrylamide monomer, and either 0.3, 

0.7, 1.1, or 1.5 mol% N,N’-methylenebisacrylamide cross-linker (expressed relative to 

monomer plus crosslinker). The pre-gel solution containing acrylamide and bisacrylamide 

were degassed to remove oxygen, then tetramethylethylenediamine and ammonium persulfate 

(10% solution) added in respective amounts of 1 L and 5 L per 1 mL of pre-gel solution, 

and the mixture was immediately transferred into a 1 mm gap between glass slides. Following 

30 - 60 min for gelation, the slides were separated and PAAm gels were allowed to swell to 

equilibrium in water for at least 48 h to extract unreacted monomer, initiator, and accelerator. 

Compared to the as-prepared state, gels increased in linear dimension upon swelling by 7-30% 

for 1.5 - 0.3 mol% crosslinker concentrations.  

QDs were loaded into PAAm hydrogels by immersing half of a piece of gel (~ 10 x 20 

mm lateral dimensions) into an aqueous solution containing 0.2 - 0.5 nM QDs, while the other 

half was exposed to air. The resulting flux of water into the gel, driven by evaporation from 

the portion in contact with air, led to convective loading of QDs into the gel.  This method 

allows for transport of QDs to distances of ~ 20 - 30 m within the gel over a time of ~ 36 h, 

which is much more rapid than for passive transport of particles into fully submerged gels. 

This procedure naturally generates a gradient in QD number density as a function of position 

from the gel surface; all measurements reported here were conducted with the focal plane 

located ~ 20 m below the free surface, as this yielded a sufficient density of QDs for 

tracking and should be sufficiently far into the gel to minimize any surface effects. 

Additionally, this procedure serves to prevent large aggregates from entering the gel. We do 
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not directly incorporate QDs into the pre-gel solution due to quenching of fluorescence by the 

free radical initiator.  

 

2.2.7 Single Quantum Dot Tracking 

The motion of QDs was imaged by video epifluorescence microscopy (Zeiss Axiovert 

200) using a 100×, oil-immersion objective (Zeiss) with a numerical aperture of 1.4 and a 

Retiga 2000R CCD camera (Q-Imaging), such that each pixel corresponded to a region of 72 

× 72 nm in the sample. A region of interest of 400×400 pixels was studied, and these imaging 

conditions yield a point-spread function (PSF) with a standard deviation of 110 nm. In each 

frame, the positions of the QDs were identified using a publicly available particle tracking 

algorithm based on the work of Grier and Crocker [63] and adapted to MATLAB by Blair and 

Dufresne,[64] which finds the brightness averaged centroid position with sub-pixel accuracy. 

This sub-pixel positioning accuracy of individual particles allows for the video based particle 

tracking to be a powerful technique over the diffraction limited resolution of microscopy 

imaging that is given by a following equation,      
   

    
. R is the diffraction limited 

resolution, em is the emitting light wavelength, and N.A. is the numerical aperture of the 

objective used, where R is approximately a few hundred nanometers. Since a single QD is 5 

nm in diameter much smaller than R, it is critical to accurately pinpoint the location of 

individual particles. In Figure 2.2, the tracking accuracy was determined by observing 

stationary QDs bound to a glass slide, which yielded a standard deviation in the mean position 

of ~ 20 nm (~ 0.3 pixel). We note that the possibility to image single QDs (at 10 – 20 frames 

per second) using a cooled CCD camera without intensification relied on two key factors: the 

high brightness of these core/shell QDs, and the use of a custom filter set providing 
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broadband excitation (320 – 450 nm), which takes advantage of the greatly increased 

absorption coefficient of CdSe QDs for high energy excitation.[58] Blinking of the 

immobilized QDs confirmed that single QDs, rather than aggregates, could be localized at 10 

- 20 frames per second. Additional experiments conducted using an electron-multiplied CCD 

(Andor iXon Duo 897) and an ORCA-flash 4.0 scientific CMOS camera (Hamamatsu) 

yielded similar results to those conducted with the cooled CCD, although with better signal-

to-noise ratios even at higher frame rates (50 fps).  

 

Figure 0.2. (a) Fluorescence microscope image of single QDs immobilized on glass slide. (b) 

3-D intensity profile of single QDs corresponding to QDs from (a) after image processing. 

 

2.3 Parameters of the MATLAB Particle Tracking Algorithm 

 In order to execute the MATLAB particle tracking algorithm, a few parameters need 

to be determined, such as ‘maxdisp’, ‘memory’, and the threshold for the particle intensity. 

‘maxdisp’ refers to the maximum displacement that individual particles are expected to move 

during a certain time interval. ‘maxdisp’ should be set to a value somewhat less than the mean 

spacing between particles. Since in our experiments the number density of particles was 
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adjusted to have a large enough spacing between particles, ‘maxdisp’ was set to 10 pixels 

(720 nm) every 50 ms based on the diffusion coefficient (~20 m
2
/s) of particles with 10 nm 

hydrodynamic radius in pure water. A particle is unlikely to jump so far in this time scale.  

 The ‘memory’ parameter is the number of time steps that a particle can be 'lost' and 

then recovered again.  If the particle reappears after this number of frames has elapsed, it will 

be tracked as a new particle. This is useful if particles occasionally disappear from the field of 

view, especially practical for the tracking of single QDs because of their blinking. ‘memory’ 

parameter was set to a value based on the blinking statistics; how many number of frames it 

takes to come back to “on” state once QDs enter “off” state (dark state). In Figure 2.3a is 

shown QD blinking statistics, the distribution of off times, which is described by a power law 

P(off) ~ off 
-1.5

, off is the time duration of dark state, consistent with previous reports.[65] 

Figure 2.3b presents the cumulative probability of “off” times suggesting that approximately 

99% of QDs become “on” state within 0.5 sec. Therefore, ‘memory’ was set to 10 for 20 fps 

videos and 5 for 10 fps videos. We found qualitatively consistent QD dynamics from a lower 

number density of QDs in the field of view with two parameters set as determined above, 

which makes reliable analyses in terms of particle misrecognition. 



21 

 

 

Figure 0.3. (a) probability distribution of off times of QDs (b) cumulative probability 

distribution of off times of QDs. 

 

 The threshold for the particle intensity from the background noise is critical for the 

consistent image processing. Before determining the threshold, each image is convolved with 

two kernels, Gaussian and boxcar. The original image is first treated with Gaussian kernel to 

smooth things out and then treated with boxcar kernel to remove any features (particles) 

above the background noise. By subtracting the boxcar version from the Gaussian version, 

images are flattened with residual noise which is above the mean noise. The distribution of 

residual noise is described by a Gaussian with a zero center with a variance of noise in Figure 

2.4a. We chose the threshold noise at 4 times standard deviation of the Gaussian fit so that 

there is only 0.006% chance of misrecognizing a noise as a particle, which is corresponding to 

~10 pixels out of 160000 pixels in the region of interest (400×400 ROI). In Figure 2.4b is 

shown the application of threshold noise (4) to the experimental intensity profile, showing 

that peaks above the threshold (dotted red line) are recognized as particles.  
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Figure 0.4. (a) Noise threshold is indicated as a dotted red line at 4 times standard deviation 

() of a Gaussian fit. (b) Application of threshold determined from (a) to the experimental 

intensity profile indicating reasonable separation between residual noises and particles. 

 

2.4 Continuous Time Random Walk (CTRW) 

 The Continuous time random walk (CTRW) is the stochastic/disorder model first 

introduced by Montoll and Weiss. [45] For example, the CTRW has been applied to 

successfully explain anomalous dynamics within a cell and on the plasma membrane as well 

as stochastic dynamics in finance and share prices in stock markets.[66] In the CTRW, the 

number of jumps n made by the walker in a time interval t is a random variable. That is, a 

random walker does not make a jump on a regular basis in the CTRW. A random walker 

makes a jump after waiting for a time t1 and waits for another time period t2 before making 

the next jump. It is not expectable how long time period it would wait before making a jump. 

The time period between subsequent jumps is called ‘caging time’ or ‘waiting time’. 

Furthermore, each jump length by a random walker is also a random variable. If these two 
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variables, i.e. caging times and jump lengths, are statistically independent, it is called a 

decoupled CTRW.  

  

2.4.1 Models of Disordered Systems 

 A random walker experiencing CTRW is considered on regular lattices with different 

transition rates. This is a common approach for modeling diffusion in complex media. This 

modeling captures the concept of random waiting time distribution due to different transition 

rates, but it does not do so for random jump length distribution because a random walker 

makes jumps of a discrete length on regular lattices. Here are some common disorder models 

introduced. 

 

 

Random Barriers (RB) 

 

In this model the transition rates between neighboring sites have the symmetry which are 

given by an Arrhenius law, 

              

            (
       

   
)                               
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where Ji, i+1 is the transition rate from the i to the site i+1 when i and i+1 are neighboring sites, 

and Ei, i+1 is the barrier energy that restricts the transition of particles and is distributed over 

the lattices by a probability density function (PDF) PB(E).  

 

Random Trap (RT) 

 

In this model, the transition rates from one site to all neighboring sites are equal, which are 

given by an Arrhenius law, 

        (
   

   
)                           

where Ji is the transition rate at the site i to any neighboring sites, and Ei is the trap energy at 

the site i which is taken by a PDF PT(E). 

 

Combination of RB and RT 

 

            (
             

   
)                           
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The transition rates of the combined RB and RT model are given as shown above. Ei, i+1 and 

Ei are taken independently from the distribution PB(E) and PT(E). 

 

2.5 Results and Discussion 

2.5.1 Mean Square Displacement 

The motion of individual QDs within polyacrylamide gel matrices is determined from 

time series of epifluorescence images taken with a frame rate of 10-20 fps using tracking 

algorithms described previously.[63, 64] Blinking of each particle is observed, both for QDs 

within the gel and for those immobilized on glass slides, providing confirmation that the 

particles being tracked are individual QDs, rather than aggregates. Furthermore, analysis of 

the diffusive motion of QDs in water/glycerol mixtures (10:90 wt%) reveals a hydrodynamic 

radius of 10.7 ± 2.2 nm, using a literature value for the viscosity of water/glycerol 

mixtures,[67] in good agreement with the value of ~ 10 nm determined by dynamic light 

scattering for particles dispersed in water  (in Figure 2.5). This hydrodynamic radius is ~ 2 

times larger than the estimated geometric radius of ~ 4.5 nm based on known core and shell 

sizes and the estimated thickness of the ligand shell, consistent with previous reports showing 

similar increases in hydrodynamic size due to trapping of a large solvation layer around each 

QD by the hydrophilic carboxylate ligands.[68] 
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Figure 0.5. (left) An example of MSD plot of single QDs diffusing in a 90 wt% glycerol 

aqueous solution shows a linear relationship between MSD and time, indicating Brownian 

motion of single QDs. (right) Table summarizing results of five single QD particle tracking 

experiments in a glycerol aqueous solution confirms that the hydrodynamic size of a single 

QD calculated by Stokes-Einstein equation matches the size obtained from dynamic light 

scattering experiments. 

 

We prepare PAAm gel samples containing a fixed initial monomer concentration of 7 

wt% and crosslinker contents of 0.3, 0.7, 1.1, or 1.5 mol%, with all gels swelled to 

equilibrium before loading of QDs. These compositions were chosen as they provide 

sufficiently large porosities to admit convective loading of QDs across a wide range of 

crosslinker content. Representative trajectories for single QDs moving within the extreme 

cases of 0.3 and 1.5 mol% crosslinker are shown in Figure 2.6a and b, respectively. Clear 

qualitative differences are seen, with the trajectories in the low crosslink density sample 

(Figure 2.6a) appearing almost diffusive, while those in the high crosslink density sample 

(Figure 2.6b) reveal many QDs that remain trapped within a small region of the gel 
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throughout the full duration of the particle tracking experiment (120 s). Within each gel, there 

is also significant variability in the extent of motion for different particles, and most particles 

show intermittent confinement, changing in time between low- and high- mobility states 

which is well shown in Figure 2.7. All of these observations are consistent with the presence 

of a distribution of different microenvironments within the network, as is common for 

complex media including polymer networks, colloidal suspensions, and glassy systems.[39, 

47]  

 

Figure 0.6. (a,b): Representative trajectories of single QDs moving within 7 wt% PAAm 

hydrogels containing (a) 0.3 mol% and (b) 1.5 mol% crosslinker within a 17x 17 m region 

of interest.  Each plotted trajectory is between 2 and 3 s in duration. While heterogeneity is 

evident in both cases, QDs show much greater mobility in the more lightly crosslinked sample. 

(c-f): Ensemble averaged MSD plots at five randomly selected locations within gels of 

different crosslinker content, revealing subdiffusive behavior with considerable variability 
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even within each sample. The different symbols correspond to five different randomly chosen 

locations within a gel of each gel composition. 

 

Figure 0.7. Representative trajectory of a QD suggesting intermittent confinements, changing 

in time between low- and high- mobility states. 

 

It is difficult to completely exclude the possibility that adsorption of QDs to the 

polymer network plays a role in the observed motional heterogeneities, however we do not 

expect strong interactions between the particles—coated with carboxylate ligands that are 

substantially ionized at neutral pH—and the PAAm network. By contrast, QDs functionalized 

with poly(ethylene glycol) (PEG) ligands (MW = 600 Da) show substantially reduced 

mobilities compared to those with carboxylate ligands, most likely due to hydrogen bonding 

interactions between PAAm and PEG. Table 2.1 summarizes the sub-diffusion exponent 

values for both PEG- and MUA-QDs within a gel at the same composition suggesting that 

PEG-QDs show reduced mobilities (smaller exponent value) compared to MUA-QDs. 
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Additionally, the amide groups in PAAm can undergo hydrolysis to yield some degree of 

anionic character to the network; this would inhibit absorption to the network, but also raises 

the possibility that electrostatic interactions between the particle and gel may play a role. 

However, based on a previous study showing little change in gel structure after 5 days of 

storage in water for similar gel compositions,[69] we expect the effects of hydrolysis to be 

minimal. In addition, a previous micro-rheological study of latex beads within crosslinked 

PAAm sols and gels found identical behavior for particles with negative (carboxylate) and 

positive (amidine) surface functionalities, suggesting that particle interactions with the 

network are relatively unimportant.[59] Regardless of the exact nature of the interactions of 

the QDs with the PAAm network, however, their motion clearly reveals the presence of 

heterogeneity in the gel structure.    

 

Table 0.1. MSD sub-diffusion exponent values for MUA (carboxylate)-QDs and PEG-QDs 

within a gel of 7wt% 0.3mol% composition. PEG-QDs show a lower value of MSD exponent 

suggesting PEG-QDs are more restricted in motion in PAAm gel networks.  

 

 

To quantify the motion of QDs, we first consider the most commonly used metric for 

characterization of sub-diffusive behavior in single particle tracking experiments, i.e., the 
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ensemble-averaged mean-square displacement (MSD) 
22 ( ) ( )r r t r t     as a function 

of lag time . The angular brackets indicate an average over all starting times t, and all particle 

trajectories collected for a given region of the gel (typically several thousand trajectories). In 

Figure 2.6(c-f) we show MSD plots for five different spatial positions chosen randomly for 

each of the four gel compositions (represented by the different symbols). All twenty curves 

exhibit sub-diffusive behavior, i.e., MSD ~ 

, with 0 <  < 1, indicating that the gel network 

restricts particle movement in all cases. In Table 2.2, we summarize values of  for each gel 

composition averaged across the five different locations, with uncertainties representing 

standard deviations. The values are all in the range of 0.5 – 0.7, and with the exception of the 

0.3 mol% sample, the data suggest a slight trend of decreasing  with increasing crosslinker 

content.  

Further examination of the data for the 0.3 mol% sample shows that for the regions of 

the gel that yield the two smallest values of (circle and square markers in Figure 2.6c), the 

measured MSD actually decreases after a lag time of roughly 1 s, by an amount larger than 

the uncertainties estimated from the standard error of the mean. This decrease in MSD with 

time is a clearly unphysical result that apparently arises because the rapidly moving particles 

diffuse out of the focal plane or the field of view within a relatively short time, while the 

highly confined particles can be tracked for much longer time. Thus, with increasing lag time, 

the MSD value is increasingly dominated by the contribution of a relatively small number of 

nearly immobile particles. In other words, at least for long lag times, the calculated MSD does 

not represent a true ensemble average, but instead reflects sampling biased in favor of the 

slowly moving particles. It remains unclear whether the variability in density of slow 

particles—and correspondingly in the MSD plots—from position to position within the 
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sample (separated by a few mm) reflects real changes in structure, i.e., a greater density of 

trapping sites in some regions, or simply limited sampling statistics. Nonetheless, these results 

highlight the inherent difficulty of interpreting MSD curves for motion in heterogeneous 

media, a result appreciated in prior studies.[35, 70]  

 

Table 0.2. Best fit values of  and A
2
 from different gel compositions 

 

Crosslinker (mol%) 0.3  0.7 1.1 1.5 

 

 0.6 ± 0.1 0.72 ± 0.03 0.65 ± 0.03 0.5 ± 0.1 




 0.33 ± 0.01 0.38 ± 0.01 0.34 ± 0.01 0.31 ± 0.01 

A
2
  (m

2
/s

2
) 


 0.144 ± 0.008 0.090 ± 0.006 0.058 ± 0.001 0.023 ± 0.001 

* uncertainties represent one standard deviation 

** uncertainties represent standard error of best fits 

 

2.5.2 Van Hove Function (Displacement Distribution of a Single Particle) 

We next consider the van Hove correlation function ( , )G x  , which describes the 

probability for a single particle to undergo a displacement by a distance of x from its starting 

position along a given dimension after a lag time (in practice, displacements along both the 

x- and y-directions are analyzed). This method has previously been shown to provide more 

robust characterization of the dynamics of particles in disordered media [8, 37-40] since 

unlike MSD analysis, it allows for a separation of the dynamics of slow and fast moving 

particles. Example of van Hove functions for several values of are shown in Figure 2.8a for 
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a gel containing 0.7 mol% cross-linker. The data for short displacements can be well-

described by a Gaussian (as shown in the inset to Figure 2.8a); however, the breadth of this 

Gaussian does not broaden in time as for diffusive motion, but instead remains nearly constant, 

indicating that it corresponds to the local motion of trapped particles. At larger displacements, 

the van Hove functions show broad non-Gaussian tails that can be well described by an 

exponential dependence, ( , ) ~ exp( )
( )

x
G x 

 

 
 , where () is the characteristic length scale 

of displacements within the exponential tail regimes              
-  

 
 .  

 

Figure 0.8. (a) The van Hove functions for several lag times in a 7 wt% PAAm gel containing 

0.7 mol% crosslinker show exponential tails that evolve in time. The red solid line is the 

exponential fit for a lag time of 0.05 s. The inset shows a Gaussian fit (red solid line) to the 

short displacement data for a 0.05 sec lag time. (b) The characteristic decay length of the 

exponential tail, , is plotted against lag time, revealing power-law dependences with 

exponents close to 0.33 (best fit values  are summarized in Table 2.2). 
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This form of the van Hove function—Gaussian for short displacements with an 

exponential tail—has been reported in a diversity of contexts including colloidal particles in a 

variety of complex fluids [8, 36, 37] and systems close to glass or jamming transitions [38-41], 

and is apparently a rather generic feature of subdiffusive motion in heterogeneous systems. 

The broad exponential tail stems from relatively rare events corresponding to large 

displacements between local microenvironments. In the case of jammed or glassy materials, 

these events represent the escape of a particle from the cage formed by its neighbors.[38] For 

F-actin gels, they represent the jumping of a particle out of a local trap that has a mesh size 

comparable to the particle dimensions.[8, 36]  

In the current PAAm gel system, we interpret the rare events as illustrated in Figure 

2.9a, namely as QDs escaping from one cage and into a neighboring cage. We find the 

characteristic displacement where the distribution crosses over from a Gaussian to an 

exponential dependence to be |x| ~ 100–140 nm for all four gel compositions. We interpret 

this value as the characteristic size of trapping sites T, within which the QDs are able to 

undergo essentially diffusive motion (importantly, this ability of even caged particles to 

undergo sizable displacements provides further evidence that restricted motion does not 

reflect adsorption of QDs to the PAAm network). Notably, T is much larger than the 

characteristic mesh sizes of ~ 3 – 5 nm determined previously by scattering,[16, 17] 

indicating that the cages are not defined by the primary mesh, but instead arise from larger-

scale structural features in the gel. The presence of structural features on these length scales is 

consistent with previous scattering studies on gels of similar composition,[16] as well as 

reports that PAAm gels begin to lose their optical clarity at slightly higher crosslinker 

concentrations of ~ 2-3 mol%.[11, 69] We suggest that the trapping sites correspond to 
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cavities or channels that have a lower density of polymer and/or crosslinks, surrounded by a 

denser polymer mesh. It is known from prior studies that during the early stages of PAAm gel 

formation, denser polymer regions (or ‘microgels’) rich in crosslinker form, due to the higher 

reactivity and hydrophobicity of bisacrylamide compared to acrylamide.[71]  We speculate 

that as these microgels percolate to yield a macroscopic gel, and are filled in by additional 

polymerization, they define an interconnected set of dense regions that are largely 

inaccessible to the QD probes due to their small mesh size. The surrounding regions, which 

are more lightly-crosslinked and possibly lower in polymer content, provide largely 

interconnected pathways for QD motion, but with dead-ends and local constrictions that yield 

trapping sites. Motion of a QD from one such trap to another is therefore presumably limited 

by a free energy barrier E associated with the probability of a QD entering into a small 

constriction between neighboring traps.  

 

 

Figure 0.9. (a) An illustration of the proposed heterogeneous microstructure of PAAm gels, 

and trapping of QDs in cages of size  due to an energy barrier associated with the 

probability of a QD entering into a small constriction between neighboring traps formed by 

percolated microgels with primary mesh size . (b) Schematic of a 1-D random trap (RT) 

model. Each lattice site has a different trap energy depth, E > 0, selected from a given 
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distribution. The frequency of escape events from each site is assumed to follow an Arrhenius 

dependence with activation energy E. 

 

2.5.3 Macroscopic Sub-diffusive Coefficient 

The characteristic length scale of the exponential tail, (), grows with lag time, as 

plotted in Figure 2.8b for each of the four different gel compositions. These data represent 

averages over all five spatial regions analyzed for each composition, with error bars 

representing standard deviations. Unlike the MSD plots, the van Hove functions reveal 

consistent behavior between different regions of the sample. For a given value of , there is 

clear variability between the different gel compositions, with monotonically decreasing as 

crosslinker content is increased. Since  is dependent upon how often probe particles make 

rare jumps, this finding suggests that higher cross-linker concentrations provide more 

restrictive traps, and/or a higher density of trapping sites. For each composition, a power-law 

dependence () = A

 is found to accurately describe the data, with the best fit values of A

2
 

and  summarized in Table 2.2. Wang et al., reported the dependence  ~ 
 0.5

 for several 

different material systems exhibiting anomalous diffusion, suggesting a rather universal origin 

of this behavior.[37] Here, we find slightly lower values of  ≈ 0.33, suggesting that the 

PAAm gels do not follow quite the same behavior.  However, while the estimated 

uncertainties on the best-fit exponents are narrow enough to distinguish them from 0.5, we 

caution that our data cover only one decade in . Since represents the characteristic 

length over which an ensemble of particles will move through the network in a time , from 

the relationship

() = A

2



, we identify A
2
 as analogous to a macroscopic (sub-)diffusion 
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coefficient. As seen in Table 2.2, while  is nearly constant as a function of crosslinker, A
2
 

decreases by approximately an order of magnitude from the gels containing 0.3 mol% 

crosslinker to those containing 1.5 mol%.  

 

2.5.5 Random Trap Model & Caging Time Distribution 

To further characterize the structural heterogeneity of PAAm gels, we turn to the 

distribution of QD caging times, as motivated by the continuous time random walk (CTRW) 

formalism,[45] which is commonly applied to understand anomalous diffusion dynamics.[38-

40] Within this framework, the motion of a random walker is characterized using two 

parameters: the distribution of caging times between successive jumps, and the jump length 

taken in a given step. As a simple model for the structure of heterogeneous PAAm gel 

networks, we consider the random trap (RT) model, where particles undergo jumps of fixed 

size between sites, as shown schematically in Figure 2.9b, with the trapping energy at each 

site E randomly selected from a given distribution P(E).[47] The escape of particles from a 

trap with depth E is assumed to follow an activated (Arrhenius) dependence, thus yielding an 

escape rate  

exp( )o

B

E
J J

k T


  ,       (1)  

where Jo is the jump attempt frequency and kBT is thermal energy.  

While clearly an oversimplification in several respects, we suggest that this model provides 

a reasonable starting point to describe the stochastic motion of QDs between different micro-

environments in the PAAm hydrogel networks. In the simplest case of an exponential 

distribution of trapping energies [47, 72]  
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1
( ) exp( )

c c

E
P E

E E


   ,      (2) 

where 0E  , and Ec represents the average energy trap depth, the model yields a distribution 

of caging times [47, 72, 73]  

( 1)( )c c

o

t t
J






   ,                    (3) 

with 
B

c

k T

E
    describing the magnitude of the characteristic trapping energy relative to the 

amount of thermal energy available for particles to escape. 

 

 

Figure 0.10. The two-dimensional displacement in pixels between successive time points in 

particle trajectories is plotted to illustrate the classification of caging events: (a) A 

representative trajectory for a particle undergoing relatively free motion and (b) a highly 

caged particle. The dotted line represents the jump threshold selected, while the arrows 

represent caged portions of the trajectory identified in this manner (only some caging events 

are indicated). Insets are trajectories for each particle (axes in pixels). 
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To compare with the predictions of the RT model, we extract the distribution of caging 

times from individual QD trajectories, following the method of Gao, et al.[38] The two-

dimensional displacement r between succesive frames is plotted as a function of time, and 

jumping events are identified by displacements larger than a certain threshold, as indicated by 

the dotted lines in Figure 2.10. As examples, Figure 2.10a shows  a particle that undergoes 

many jumps during the period of observation, while Figure 2.10b shows the motion of a 

confined QD that undergoes only one jump above the threshold. The time duration between 

successive jumps is thus identified as the length of a single caging event, and a histogram of  

the frequency of caging times is constructucted from all particle trajectories. In this procedure, 

it is critical to choose an appropriate jump threshold. For example, Figure 2.11 shows caging 

time distributions constructed for gels with 1.5% cross-linker for different jump thresholds. 

For the initial portion of the curve (up to caging times of ~ 1 s) the data are well-described by 

a power law (tc) ~ tc
-(+1)

, in accordance with the predictions of the RT model with 

exponentially distributed barriers, as in equation (3). However, the value of the exponent  

decreases substantially with increases in the jump threshold, in this case from -2 to -1.2 with 

changes in threshold from 0.5 to 2.0 pixels. Notably, the initial slopes for the largest jump 

thresholds (1.7 and 2.0 pixels) are similar values, which is consistent with the values of  

reaching a plateau for sufficiently large thresholds, as we discuss further below. For longer 

caging times, the behavior seems to transition to a steeper power law that is less sensitive to 

the choice of threshold, but due to the relatively poor statistics in this region, we cannot 

confidently say whether this represents a qualitative change in behavior, as opposed to, e.g., 

limited sampling of the high energy traps. 
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Figure 0.11. The evolution of caging time distribution for 1.5 mol% gel composition as a 

function of jump threshold in pixel. The slope gradually decreases from - 2 to -1.2 as the jump 

threshold is changed from 0.5 to 2.0 pixels (36 – 144 nm).   

 

One route to choose an unambiguous jump threshold is by considering the ensemble-

averaged van Hove function (Figure 2.8), where the crossover from Gaussian to exponential 

statistics at T provides a natural choice to describe the transition from caged to uncaged 

motion. Here, we do so by extracting the point where the Gaussian and exponential fits to the 

van Hove functions cross, yielding values of  for each gel composition as summarized in 

Table 2.3 and plotted in Figure 2.12 for 0.3 and 1.5 mol% gels. In Figure 2.12, the fitted solid 

lines by power law work well for short caging times whereas a slight deviation is shown for 

long caging times. This can be explained by three reasons: i) the analytical equation does not 

predict well for long caging times, ii) the experimental time scale (2 minutes) is not long 

enough to catch those particles dwelling in cages for longer times, and iii) QDs are excluded 

from very small cages in the first place. Experimental caging time distribution following the 
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prediction of RT model indicates that our system is close to equilibrium state at least for short 

caging times, which satisfies Boltzmann statistics used for the jumping frequency of a particle, 

equation (1).  

We also extract values of  for a range of different jump thresholds, and plot the 

results for each gel composition, as in Figure 2.13. Remarkably, each plot shows an initial 

sensitivity to jump threshold at small values, but then reaches a plateau value beyond a 

threshold ranging from about 1.1 pixels for 0.3 mol% crosslinker to 1.5 pixels for 1.5 mol% 

crosslinker. The values of  determined from the plateau regions in Figure 2.13 are in a very 

good agreement with  values obtained by using crossover points as jump thresholds, 

providing further confidence that this procedure yields a robust characterization of the caging 

time distributions. Further, the jump threshold at which the value of  reaches this plateau 

value can also be interpreted as a characteristic size-scale associated with the traps. In this 

case, we obtain estimates of T ~ 80 – 110 nm, slightly smaller than the values of ~ 100 – 140 

nm obtained from the crossover point of the van Hove functions, though still in reasonable 

agreement. 
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Table 0.3. Average values of  and Ec determined from the crossover points for each gel 

composition. 

 

 

 

 

 

 

 

 

 

 

 
Figure 0.12. Experimental caging time distribution for 0.3 and 1.5 mol% cross-linker density 

gels. The solid lines are power law fits showing a good description of experimental data for 

caging times up to 1 sec, whereas a slight deviation for longer caging times. High crosslink 

density gel sample shows a broader distribution of caging times than low crosslink density 

one. 

 0.3 % 0.7 % 1.1 % 1.5 % 

Crossover point (nm) 130 ± 10 134 ± 2 135 ± 8 100 ± 10 

 
*
 1.02 ± 0.27 0.6 ± 0.1 0.52 ± 0.09 0.3 ± 0.1 

Ec (kBT) 1 ± 0.3 1.7 ± 0.3 1.9 ± 0.3 3.3 ± 1.1 

* uncertainties represent one standard deviation 
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Although the values of  at 0.7 and 1.1 mol% are the same to within uncertainty, the 

overall trend of decreasing with increasing crosslink density is clear. Interpreted in terms of 

the RT model with an exponential distribution of trap energies, these data indicate average 

trap depths of 1 kBT in the most lightly crosslinked sample, 1.7 – 1.9 kBT for intermediate 

crosslinker concentrations, and 3.3 kBT for the most densely crosslinked sample. Presumably, 

the larger trap energies for the more highly crosslinked gels reflect the presence of a greater 

steric barrier for the QD probes to pass through the constrictions separating neighboring cages. 

These results are qualitatively consistent with the overall slower motion and greater frequency 

of highly trapped particles for the more highly crosslinked samples. They also imply that the 

more highly crosslinked gels are more heterogeneous, in the sense that a larger average trap 

depth Ec also implies a broader distribution of trap energies. Finally, we note that these results 

are largely consistent with prior studies on structural heterogeneity in PAAm gels at low to 

modest crosslinker concentration, in particular the findings of Fawcett and Morris that the 

permeability of PAAm gels to proteins decreases with increasing crosslink content up to ~ 3 

mol%.[9] 
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Figure 0.13. Values of  extracted from the initial slope of the caging time distributions are 

plotted as a function of the jump threshold for each gel composition studied. The values 

initially decrease for small thresholds, but then reach a plateau above a threshold of ~1.5 

pixel. 

 

2.5.6 Local Dynamics of Free & Confined Quantum Dots 

 We studied the local dynamics of free and confined QDs to examine polymer density 

in and outside traps. For experiments, an ORCA-flash 4.0 scientific CMOS camera 

(Hamamatsu) was used to record images at higher speed, 50 fps. Free and confined particles 

are separated using jump thresholds determined above and MSD plots are constructed for five 

different spatial positions for 0.7-1.5 mol% gels. In Figure 2.14 are shown MSD plots for both 

free and confined particles of 1.5 mol% gel sample. To estimate the diffusion coefficient for 

each group, we used the first one and first five data points with zero intercept for free and 

confined particles, respectively. Using diffusion coefficient determined from MSD plots, local 
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viscosities are also estimated using Stokes-Einstein equation which are all summarized in 

Table 2.4. Despite the limited number of data points for free particles (because they get 

trapped again soon), MSD plots show diffusive motions, while MSDs for confined particles 

evidently plateau within 0.1 second. As shown in Table 2.4, the diffusion coefficient for free 

particles is generally ~6 times larger than confined ones, thereby larger viscosities were 

estimated for confined regions with a slightly increasing trend with increasing crosslink 

content. We are, however, not confident about these findings because many data points could 

be missing in MSD plots for confined particles before the plateaus. Also, van Hove functions 

(not shown here) still possess exponential tails at the shortest experimental lag time, 20 ms, 

suggesting that the experimental time scale is not short enough yet to capture the true 

diffusive motions of confined particles. Thus, it might be premature to conclude that particles 

move more slowly within traps due to higher polymer density, as opposed to another possible 

conclusion that both free and confined particles move at the same speed but the displacements 

within traps are heavily limited due to the confined geometry. 

 

 

Figure 0.14. MSD plots of free (left) and confined particles (right) in five different spatial 

positions.   
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Table 0.4. Local diffusion coefficient and viscosity determined from MSD plots for free and 

confined particles for 0.7 and 1.5 mol% gel samples. 

 

 

2.5.7 Distribution of Successive Trap Distances 

 From the transport property obtained from A
2
 values for each composition, global 

diffusion mechanism seems to be dictated by both travelling distances between traps and 

caging times which was discussed earlier. Here, we first studied the distribution of successive 

trap distances to provide an idea how far a single QD travels before it becomes confined again.  

 Figure 2.15 shows distribution plots of successive trap distances for three different gel 

compositions, 0.3, 0.7, and 1.5 mol% cross-linker contents. Interestingly, there are very large 

populations for short distances for all compositions. This length scale is shorter than the 

characteristic cage sizes that are summarized for each gel composition in Table 2.3 as 

crossover points, which ranges from 1.4 – 2 pixels (100 – 140 nm). Thus, populations below 

the red dotted line, which indicates the trap size, suggests that there are frequent recaging 

events. For now, we are not sure whether these are actual recaging events or artifacts caused 

by the use of an insufficiently large jump threshold applied to calculations. If focused after the 

red dotted line, the trend is the breadth of distribution decreases with increasing crosslinker 

content suggesting that single QDs experience more traps while travelling the same distance 

at higher crosslinker content. Also, the distribution of 0.3 mol% (black solid circle) shows a 

plateau-like region or delayed appearance of a bump, and this plateau disappears at 0.7 mol%. 
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This suggests that single QDs travel farther in more lightly crosslinked gel networks before it 

gets trapped again, which results in a larger value of A
2
.  

 

Figure 0.15. Probability distribution of successive trap distances of three different gel 

compositions, 0.3, 0.7, and 1.5 mol% crosslinker content. The red dotted line indicates the 

trap size (1.5-2 in pixels) which is determined from the crossover points between Gaussians 

and exponential tails. Frequency below this line indicates recaging events.  

 

2.5.8 Characteristic Caging Time 

 The van Hove functions (distribution of single particle displacement) show narrow 

Gaussian statistics for short displacements and exponential statistics for long displacements in 

Figure 2.8(a). These two different statistics originate from heterogeneous particle dynamics 

alternating confined and jumping motions. If there is a characteristic caging time, then one 

would expect that two different statistics (narrow Gaussian and exponential decay) revert to a 

broad Gaussian statistics at sufficiently long times. To test whether this happens in our system, 

we look at long times for van Hove functions. In Figure 2.16, at long lag time of 0.82 and 2 
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sec, are shown the reversion to Gaussian from exponential decay was observed, which is not 

quite often, while most van Hove functions for different compositions show exponential 

statistics until 2 sec. Reversion to Gaussian has been reported from a complex fluid [37, 38] 

such as colloid gels, where each particle vibrates within a cage formed by neighboring 

particles, and relaxes moving to the nearest vacant space by thermal energy.  

 

Figure 0.16. Observation of revert to Gaussian from exponential decay at long lag time, 0.82 

and 2 sec from QDs moving in (a and b) 0.7 mol% and (c) 1.5 mol% cross-linker content gels 

with 50 fps frame rates. 

 

Why do we observe the recover to Gaussian when the RT model predicts infinite 

characteristic caging time? The reason could be explained in many ways. Firstly, in the 

experimental caging time distribution in Figure 2.11 there seems sharp decay for long caging 

times, which possibly suggests that the actual characteristic caging time in our experiments 

could be finite value because either particles might be excluded from cages with long caging 

times or our experimental caging time distribution represents the true energetic distribution 

(RT model does not predict our system well for long caging times). Secondly, according to 

different emerging times of the reversion to Gaussian (Figure 2.16a and b), samplings of 

particles are possibly biased from region to region. Some regions do not sample particles 
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experiencing long caging times, which could cause a finite characteristic caging time during 

observation. Finally, in the case of a system with an infinite characteristic caging time, since 

jumping displacements are rare events, Poisson distribution can describe the exponential 

distribution of magnitude of jumping displacement for short lag time when the number of 

jumping events is quite limited. However, if we wait for a long time even though it cannot be 

longer than infinite characteristic caging time, there always exist particles experiencing 

shorter caging times than experimental time scale, such as region A in Figure 2.17. These 

particles experiencing short caging times allow for the sampling of more jumping events 

leading exponential decay to be approximated to Gaussian at some point. Of course, there are 

also many particles experiencing longer caging times than , which cannot be sampled for 

jumping events, but it does not matter as long as we can sample jumping events from region A. 

Particles experiencing longer caging times in region B contribute to narrow Gaussian statistics 

for short displacements which never disappears due to infinite characteristic caging time. The 

conclusion is that the reversion of Gaussian statistics for distribution of jumping 

displacements does not require sampling of all particles, while, for the recover to the linear 

relationship of MSD with lag time, it requires to sample all displacements of particles at a 

specific lag time when there are many particles still trapped, which suppress the MSD values.  

Thus, it seems premature to conclude whether the characteristic caging time exists in 

our system. Instead, we leave it as open questions how can we experimentally define the 

characteristic caging time in our system?, and what time scale represents a long enough 

experimental time window to observe the reversion to Gaussian from exponential decay in a 

system with infinite characteristic caging time? 
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Figure 0.17. Caging time distribution of the RT model.  is the experimental lag time. In 

shaded region A, caging times are shorter than experimental lag time where jumping events 

can be observed, while in region B where caging time is longer than , jumping events cannot 

be observed within experimental lag time. 

 

2.6 Conclusion 

We have characterized the motion of single quantum dot probes as a means to study 

structural heterogeneity in polyacrylamide hydrogels. Over the five-fold range in crosslinker 

content considered, the probes were found to exhibit sub-diffusive motion at all gel 

compositions, though with increasingly restricted motion as crosslinking became more 

extensive. Analyses of mean-square displacements showed clear qualitative signatures of sub-

diffusion, but otherwise were found not to be a robust means for characterizing motion in 

these materials. Interestingly, van Hove correlation functions showed that particles in each gel 

undergo diffusive motion on scales up to ~ 100 – 140 nm, suggesting the presence of regions 

with lower-density in this size regime that allow for free motion locally. However, they also 

showed exponential tails for larger displacements, indicating the presence of barriers between 
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neighboring trap sites that cause long-range motion to be dominated by relatively rare escape 

events. The characteristic length scale  over which particles had moved was found to 

increase with lag time according to a power-law with an exponent of  ≈0.33. In addition, the 

distributions of particle caging times were found to be well described, at least for relatively 

short caging times, by a simple random trap (RT) model with an exponential distribution of 

trap energies, and characteristic energies ranging from ~ 1 to 3 times thermal energy with 

increasing crosslink density. These results are largely consistent with prior interpretations of 

scattering and bulk permeability measurements on samples with similar compositions, but 

provide new insights into the distribution of micro-environments within these inherently 

heterogeneous materials. Especially if extended to multi-color imaging of several different 

QD probe sizes, we anticipate that this experimental method has the potential to provide a 

wealth of information on the structures of a wide variety of networks with nanometer-scale 

porosities, and should yield sensitive tests of more refined models for the landscape of trap 

energies within these materials.  
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CHAPTER 3 

ASSEMBLY OF Quantum Dot RINGS AT THE AIR/WATER 

INTERFACE BY 2-D PICKERING EMULSIONS
2
 

 

3.1 Introduction 

 Semiconductor and metal nanoparticles (NPs) are attractive building blocks for 

fabricating nano- and microscale structures, which are important components of photonic, 

electronic and magnetic devices for sensing, optical, and other applications. [1-7] In many 

cases, the ability to assemble NPs into ordered structures on substrates is critically important. 

For example, Keng et al. assembled polymer-coated ferromagnetic cobalt NPs into 1-D and 2-

D structures, enabled by the inherent dipole moment of the NPs. [8] Kim et al. employed 

flow-coating to produce well-aligned stripe and grid patterns of quantum dots (QDs), [2] 

where a QD solution is loaded and trapped in a confined geometry by capillary forces, and 

translation of an underlying substrate affords QD deposition along the contact line during 

solvent evaporation. Numerous approaches have been reported to fabricate patterns of nano- 

or microscale particles by template-based assembly. [4, 5, 9-12] However, self- or directed-

assembly methods that eliminate the need for template fabrication remain of interest for 

assembling NPs over large areas in a simple fashion. 

                                                 
2
 Reprinted and adapted from the manuscript submitted to ACS Applied Materials and 

Interfaces. 
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 The formation of NP rings has attracted particular attention due to their suitability as 

optical and electronic resonators. [13-17] Chen et al. demonstrated the controlled formation of 

2-D periodic arrays of nanorings from CdSe QDs by introducing an aqueous solution of 

microspheres and QDs onto a glass substrate. [1] QDs became confined to the meniscus of the 

microspheres during evaporation, leading to QD rings by capillary forces. Boker et al. 

produced well-ordered hexagonal patterns of QDs assembled at an oil/water interface. [18] 

Evaporative cooling of a volatile polymer solution containing QDs produced micron-sized 

water droplets on the polymer surface, giving ‘breath figures’ in which the QDs segregate to 

the polymer solution/water droplet interface. Khanal et al. demonstrated the formation of 

rings of PS-functionalized Au nanorods using a similar breath figure technique. [19]  

 In this chapter, we present a simple solution-based self-assembly method that affords 

2-D QD ring structures. This began with the unanticipated formation of QD rings on the 

surface of water droplets containing PEGylated CdSe/ZnS core/shell QDs on borosilicate 

coverslips. Further investigation revealed that this behavior arose due to the presence of 

surface-active impurities present on the glass surface, and led to experiments showing that 

such assemblies can be achieved by introducing a suitable concentration of insoluble 

surfactant. We speculate that the surfactant molecules form islands at the air/water interface 

(where gas (G) and liquid expanded (LE) phases coexist) followed by QD adsorption to the 

three phase interfacial line of the islands, in a process driven by a reduction in interfacial 

energy. The areal density of surfactant molecules proved critical to the successful formation 

of QD rings, and the rings could be transferred to other substrates by dip-coating. 
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3.2 Experimental 

3.2.1 Water Soluble CdSe/ZnS Core/Shell Quantum Dots. 

 CdSe/ZnS core/shell QDs were synthesized according to literature methods. [20-22] 

Two QD samples were used, having 4 and 9 nm diameter as determined by UV-Vis 

absorption [23] and TEM. Ligand exchange was conducted on the QDs, converting the 

surface functionality to polyethylene glycol (Mn = 600) with a dihydrolipoic acid (DHLA) 

binding group (PEG-DHLA). [24] Briefly, 1 – 2 mg of TOPO- or oleic acid- capped QDs, 50 

– 100 mg of excess DHLA-PEG600 ligand, and 0.3 – 0.4 mL of methanol were placed in a 4 

mL vial and degassed. This mixture was stirred overnight at 70 
o
C until the solution became 

clear, then cooled to room temperature and precipitated by adding hexane and chloroform. 

The supernatant was removed, and water was added to dissolve the QDs. The aqueous QD 

solution was purified by passing through a centrifugal filter membrane (MWCO = 100 kDa) 

in RO water.  

 

3.2.2 Synthesis of DHLA-PEG600.  

DHLA-PEG600 ligand was synthesized by following literature methods. [24, 25] 

Thioctic acid (5.0 g, 24 mmol), poly(ethylene glycol) (MW = 600, 145 g, 242 mmol), a 

catalytic amount of 4-(dimethylamino)-pyridine (890 mg, 7.3 mmol), and CH2Cl2 (240 mL) 

were combined in a flask and degassed with N2. The mixture was cooled to 0 
o
C in an ice bath, 

and a solution of dicyclohexylcarbodiimide (6.5 g, 31 mmol) in CH2Cl2 (20 mL) was added 

dropwise. The mixture was stirred overnight at room temperature. The precipitate was filtered 

over a plug of Celite, and the residue was mixed with an aqueous sodium bicarbonate solution, 

and extracted with ethyl acetate (3 times). The combined organic phase was dried over 
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MgSO4, filtered, and evaporated to give a yellow oil. This oil was purified by column 

chromatography on silica gel (chloroform/methanol 95:5), and the product recovered as a 

yellow oil (~ 60 %). Sodium borohydride (13.8 mmol) in a 1:4 ethanol/water (55 mL) was 

used to reduce the disulfide, giving PEG-DHLA.  

3.2.3 Octadecyltrichlorosilane (OTS) Coating on Coverslips (Borosilicate Micro Cover 

Glasses).  

A coverslip (VWR® micro cover glasses, No. 1.5, catalog number: 48393-194) was 

sonicated in toluene for 20 min, and subjected to UV/ozone treatment for 30 min. The cleaned 

coverslip was immersed into 0.1 v/v% OTS in toluene, and the solution was stirred for 1 hr. 

Then, OTS treated coverslip was washed with toluene and isopropanol several times. To 

reduce the water contact angle of OTS treated substrates to ~35
o
, it was exposed to UV/ozone 

for ~ 6 min resulting in partial oxidization of OTS layer. 

 

3.2.4 Quantum Dot Ring Formation on Substrates.  

A droplet of 0.4 wt% aqueous solution of acrylamide, containing PEGylated QDs (~1 

nM), was placed on various substrates, such as coverslip, silicon wafer, TEM grid, OTS 

treated glass, and soda-lime glass slide (1 mm thick). Among all of these substrates, QD rings 

formed only on the glass coverslips.  The coverslips were used as received with brief rinsing 

with water. 
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3.2.5 Quantum Dot Ring Deposition and Alignment by Dip-Coating.  

A 0.4 wt% aqueous solution of acrylamide, containing PEGylated QDs (~1 nM), was 

filled in a cylindrical chamber, and a coverslip (22 mm x 50 mm) was immersed in a solution. 

After ~15 min, QD rings formed at the interface were deposited on a coverslip by dip-coating 

with a continuous withdrawal rate of 1 m/s using servo motor (Parker Daedal, Parker 

Hannifin Corp., Cleveland, OH). The alignment of the rings was achieved by dip-coating in a 

controlled manner, with 1 min stopping time in between 2 mm/s withdrawals steps. The 

movement of substrates was controlled at a computer interface with LabView (National 

Instruments, Austin, TX) software. 

 

3.3 Results and Discussion 

3.3.1 Formation of Quantum Dot Rings at the Air/Water Interface 

 The unexpected observation of 2-D QD assembly into rings at the air/water interface 

occurred when a droplet of aqueous solution containing ~ 0.4 wt% acrylamide and ~ 1 nM 

QDs was placed onto a borosilicate coverslip substrate.  The fluorescence micrographs of 

Figures 3.1a and b represent typical examples of QD rings formed at the air/water interface 

near the contact line of the droplet. In contrast, Figure 3.1c shows a network morphology of 

QDs on top of a droplet. In Figures 3.1a and b, QD rings in the center of the images are in 

focus, while the rings in the upper and lower regions are out of focus; this is caused by the 

curvature of the droplet near the contact line. The QD rings were observed near the edge of 

the droplet of this solution during evaporation, rather than on the whole of the droplet. The 

observed QD rings covered a range of sizes, from hundreds of nanometers to ~10 microns in 
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diameter. Two different QDs in size, 4 and 10 nm, were used to make rings as shown in 

Figure 3.2. 

 

Figure 0.1. (a and b) Fluorescence microscope images of QD rings formed at the edge of the 

droplet (scale bar = 10 m); (c) QD network formed on top of the droplet surface (scale bar = 

20 m). 

 

 

Figure 0.2. QD rings formed from two QDs different in sizes, 4 nm (a) and 10 nm (b), 

respectively. 

 

3.3.2 Characterization of Quantum Dot Rings 

 Figure 3.3a shows a fluorescence microscope image of QD rings deposited on the 

coverslip substrate upon evaporation of water and recession of the contact line. The solid 
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arrow denotes the contact line, and the dashed arrow the receding direction. The upper left 

portion of the image shows QD rings after deposition; in the lower right of the image, no QD 

rings are visible because the rings are out of focus (the substrate is in focus). After deposition, 

the QD rings were characterized by electron microscopy and atomic force microscopy (AFM). 

Figures 3.3 (b-d) show scanning electron microscopy (SEM) and AFM images of the QD 

rings. The SEM image of Figure 3.3b shows an easily recognized ring with a continuous rim 

consisting of QDs. The AFM image of Figure 3.3d shows a discrete circular pattern, with a 

height corresponding to the QD diameter of ~ 5 nm, while the phase image in Figure 3.3c 

indicates the presence of material, likely the ring template-forming material, inside the rings. 

In Figure 3.4, AFM height analysis of a single QD ring indicates that the height of inside the 

ring is higher than substrate suggesting that some materials occupy the inside of the ring, 

which is corresponding to the AFM phase image in Figure 3.3c. 
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Figure 0.3. (a) Fluorescence microscope image of QD rings deposited on borosilicate glass as 

the contact line recedes: the solid arrow indicates the contact line and the dotted one the 

receding direction; (b) SEM image of a QD ring (scale bar = 1 m); (c) AFM phase image; (d) 

3-D AFM height image: the lateral dimension is 5 m ×5 m and vertical dimension is ± 5 

nm. 
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Figure 0.4. AFM height analysis of a single QD ring indicating that the height inside the ring 

is higher than the substrate (outside the ring). 

 

3.3.3 Assembly of Surfactant Islands 

 Interestingly, attempts to form QD rings on numerous other substrates (TEM grids, Si 

wafers, or other glass substrates) failed. Indeed, we were able to reproduce QD ring formation 

from the droplets only on the glass coverslips used in our initial experiments.  The water 

contact angle of these coverslip was higher (~ 35
o
) than the other glass substrates tested (~ 

10
o
). We suspect this difference in contact angle reflects the presence of organic impurities on 

the untreated borosilicate coverslip surfaces, as described by Sumner.[26]  Extensive cleaning 

(solvent washing, plasma, or UV/ozone cleaning) of these coverslips reduced the water 

contact angle to <10
o
, but this treatment precluded the formation of QD rings. Thus, it seems 

that organic impurities are key to QD ring formation, rather than the acrylamide, though we 

note the possibility for acrylamide to function as a surfactant as well.[27] Indeed, in some 

cases, the QD rings formed on the coverslips when acrylamide was excluded from the 
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experiments as shown in Figure 3.5. This variability of QD ring formation is also found in the 

presence of acrylamide, and this variability may reflect different amounts of impurities on the 

coverslips in each trial.  

 

Figure 0.5. QD rings form on untreated coverslips in the absence of acrylamide.  

 

 

Figure 0.6. Schematic of 2-D Pickering emulsions at the air/water interface. (a) Top view and 

(b) side view of 2-D Pickering emulsions where green dots refer to QDs and blue rods surface 

active impurities.  
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 Thus, a further investigation was undertaken, with the objective of producing QD 

rings on substrates other than the more hydrophobic commercial coverslips. Attempts to form 

QD rings on OTS treated coverslips (CA ~90
o
) and oxidized OTS-treated coverslip (CA ~35

o
) 

both failed, suggesting that CA is not the key determining factor in QD ring formation. We 

speculate that the impurities from the coverslip are surface active, and leach from the surface 

to the air/water interface, followed by the adsorption of QDs surrounding the impurity islands 

that can be considered as a 2-D Pickering emulsion, as depicted in Figure 3.6.[28]  Motivated 

by this hypothesis, we examined the effect of added surfactant, such as myristic acid (MA), 

which is known to form islands at the air/water interface due to coexistence of gas (G) and 

liquid expanded (LE) phases. [29-31] Solutions of MA were first prepared in chloroform at 

concentrations from 0.1 to 50 M, then 10 L of a QD solution (~1 nM in water) was placed 

on OTS treated coverslips (exposed with UV-ozone for partial oxidation) followed by a 0.5 

L drop of surfactant stock solution that spread at the air/water interface. Figure 3.7a shows 

fluorescence microscope images of QD rings formed from experiments having a 0.5 M 

surfactant stock solution. QD ring formation occurred quickly in these experiments (~ 1 min), 

suggesting fast adsorption kinetics of QD to the interface.  MA concentration proved 

important, as no ring formation was observed at values substantially above or below ~0.5 M.  

Assuming the MA to spread uniformly over the droplet surface, this corresponds to an area of 

~ 10
4
 Å

2
/molecule, which is far greater than the value of ~200-400 Å

2
/molecule reported for 

the G-LE transition in MA.[31, 32] Thus, while the density is too low for G-LE coexistence in 

the absence of QDs, we speculate that adsorption of QDs to the edges of surfactant islands 

stabilizes LE droplets.  Once QD rings form on the surface of droplets, they change shape as 

water evaporates, due to the decrease in the surface area, while QD rings formed at a flat 
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air/water interface do not show shape deformation over time (Figure 3.7b). As seen in Figure 

3.7, although QD rings formed with MA were found to appear less organized than those in 

Figures 3.1 (a and b), the formation of QD rings in the presence of myristic acid strongly 

support our hypothesis that surface active impurities from the coverslip were responsible for 

the formation of QD rings. Whether other types of nanoparticles (metallic, magnetic, etc) 

could participate in such ring formation is an open question and a topic of future investigation, 

although we think it should be a general strategy given proper ligands that allow adsorption of 

nanoparticles at the edge of surfactant domains. 

 

 

Figure 0.7. Fluorescence microscope images of QD rings formed in the presence of myristic 

acid at the air/water interface. (a) QD rings on top of a droplet surface and (b) QD rings 

formed on a flat air/water interface. (Scale bar = 20 m). 

 

However, in case of the flat surface, it was more difficult to observe the formation of 

QD rings, which is not explained yet. Also, QD rings were observed from two different 

concentrations of MA stock solutions, ~1 and ~50 mM, with non-uniform distribution of QD 

rings at the interface as shown in Figure 3.8. Thus, we were determined to find out the areal 
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density of surfactant molecules over the area where QD rings are formed. Since we cannot 

assume the uniform spreading of surfactant molecules to directly calculate the areal density 

per molecule, the areal coverage, instead, of QD rings over the yellow square in Figure 3.8 is 

compared with areal coverage in Figure 3.7a, which are 0.16 and 0.06, respectively. The 

difference in these two values could come from the measurement errors or the possible 

existence of surfactant islands which is invisible due to no QDs around them. Given these 

possible errors, the areal densities of both cases seem to be similar, suggesting that the 

formation of QD rings requires a certain areal density of surfactant molecules. 

 

 

Figure 0.8. Non-uniform distribution of QD rings over the area of flat interface. The areal 

coverage of QD rings were calculated from inside the yellow square to compare it with the 

areal density of surfactant molecules in Figure 3.7a. 

 

3.3.4 Deposition & Alignment of Quantum Dot Rings 

Beyond the formation of individual QD rings, we found that the rings could be aligned 

over a large area (~cm
2
) by dip-coating onto untreated coverslips (Figure 3.9). For example, 

an aqueous acrylamide solution (~0.4 wt %) containing QDs was filled in a chamber with a 
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circular opening, and a coverslip was immersed at an angle of ~35-45
o
. Figure 3.9a shows a 

fluorescence microscope image of deposited QD rings after dip-coating, with a continuous 

withdrawal rate of 1 m/s at an angle of ~ 35
o
. Alignment of the rings was accomplished by 

implementing a 1 minute stopping time between 0.5 second withdrawal steps at 2 mm/s at an 

angle of ~45
o
. In Figure 3.9b, the pulling direction of the substrate is indicated by the arrow, 

and QD rings were aligned on the substrate at the initial contact line, with the quick slip 

motion of the substrate, to give lines of rings along the contact line. In Figure 3.10, a series of 

images of aligned QD rings is shown with numbers indicating n-th pulling of the substrate. 

From the 5th pull, QD rings were consistently aligned along the contact line. Pulling direction 

of a substrate was towards right, and there exist aggregates of QDs deposited on the right side 

of QD ring alignments due to water evaporation during the stopping time. Interestingly, the 

aligned rings in Figure 3.9(b) are rather uniform in size compared to those in Figure 3.2. 

However, we note that in many cases the sizes of aligned rings are more broadly distributed. 

This demonstrates a very simple and effective method of QD ring deposition over a large area 

(~cm
2
).  
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Figure 0.9. (a) QD rings deposited on a coverslip by dip-coating at an angle of ~ 35
o
; (b) 

aligned QD rings by a controlled dip-coating method at an angle of ~ 45
o
. The white arrow 

shows pulling direction of substrate in (b). Scale bars = 10 m.   
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Figure 0.10. A series of images of aligned QD rings is shown with numbers indicating n-th 

pulling of the substrate. From the 5
th

 pull, QD rings were consistently aligned along the 

contact line. Pulling direction of a substrate was towards right, and there exist aggregates of 

QDs deposited on the right side of QD ring alignments due to water evaporation during the 

stopping time. 
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3.4 Conclusion 

We report 2-D self-assembly of PEG-functionalized QDs into rings at the air/water 

interface. This study emanated from the unanticipated observation of QD rings formed on the 

surface of droplets placed on coverslips. On clean (impurity-free) coverslips, surfactant were 

used to generate the QD rings. We manipulate the concentration of surfactant at the air/water 

interface to produce self-assembled surfactant islands (G-LE coexistence phase) driving QDs 

to adsorb at the 3-phase interface (air, water, and surfactant island) to reduce interfacial 

energy, thereby resulting in the formation of QD rings. The deposition and alignment of QD 

rings onto large area was demonstrated by dip-coating. The method demonstrated here for the 

fabrication of QD rings is very simple, and allows for a large area deposition by dip-coating 

without requiring complex template fabrication steps. 
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CHAPTER 4 

FLOW DYNAMICS WITHIN AN EVAPORATING DROPLET 

 

4.1 Introduction 

Evaporation of solutions has been widely proposed and demonstrated as a way to 

assemble solutes (e.g. polymers, DNA, microspheres, nanoparticles) into ordered structures 

on substrates.[1-8] This assembly from suspended solutes is dependent on evaporation-

induced flow dynamics, which are generally associated with the phenomenon commonly 

called the “coffee ring effect”. This effect, first explained by Deegan and co-workers, refers to 

the non-uniform deposition of solutes near the contact line due to mass transport balance 

when the contact line of the evaporating coffee droplet is pinned.[9] Since evaporation flux is 

greater at the edge of the droplet compared to the top, a flow is generated from the center 

toward the edge to compensate for solvent mass loss.[10] The characteristics of this flow are 

dependent on several factors, including the evaporation rate, evaporation flux distribution 

over the droplet surface, and the contact angle.  

There have been several theoretical and analytical studies of this important mass 

transport phenomenon. Deegan and co-workers derived the height averaged radial velocity 

and successfully predicted the time-dependent radial distribution of solute particles.[9, 11]  

Hu and Larson developed an expression to map the locally resolved axisymmetric flow field 

in a slowly evaporating droplet with a pinned contact line using analytical and finite element 

analysis (FEA), both with and without a Marangoni flow effect.[12, 13]  Petsi and Burganos 
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also considered this problem and provided an analytical solution for any contact angle of an 

infinitely long cylindrical liquid evaporating on hydrophilic and hydrophobic substrates.[14]  

For continued development of evaporative assembly as a scalable process, it is particularly 

important to understand the effect of contact angle on radial velocity. The relationship 

between the contact angle and the radial velocity is important because as contact angle 

decreases with time during evaporation, the evaporation flux at the edge increases despite the 

total evaporation flux remaining approximately the same.[10] This increase in the evaporation 

flux at the edge generates a faster flow, hence faster solute assembly. Although there has been 

considerable theoretical work on the flow dynamics within evaporating droplets, to our 

knowledge there has been limited, if any, experimental verification of these derived 

relationships. A better experimental understanding of this effect will improve the time 

efficiency of these processes and quality of the assembly. 

In this chapter, we present the experimental measurement of height averaged radial 

velocity in the range of contact angles, 5-50
o
, and at different evaporation rates

 
using a 

particle tracking method, and compare the results with a previous theoretical study by Hu and 

Larson. We find good agreement between theory and experiment, and we develop a simplified 

equation to relate the height averaged radial velocity to evaporation rate (k) and the contact 

angle (). This simple relationship provides clear design rules that are expected to guide the 

scaling up of process speeds and scaling down of structural dimensions for evaporative 

assembly methods. 
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4.2 Experimental 

4.2.1 Octadecyltrichlorosilane (OTS) Coating on Coverslips.  

A coverslip (VWR micro cover glass No. 1.5) was sonicated in toluene for 20 min and 

subjected to UV/ozone treatment for 30 min. The cleaned coverslip was immersed in 0.1 v/v% 

OTS in toluene, and the solution was stirred for 1 h. The OTS treated coverslip was then 

washed with toluene and isopropanol several times. The water contact angle of the OTS 

treated coverslip was measured as ~90-100
o
. To control the water contact angle of the OTS 

treated substrates, the substrates were exposed to UV/ozone to partially oxidize the OTS layer. 

For a ~6 min UV/ozone exposure time, the water contact angle of the OTS treated coverslip 

was reduced to ~35
o
.  

 

4.2.2 Particle Tracking  

1 L of a water droplet containing 1 m latex particles (0.00004 vol%) was placed on 

an OTS-treated coverslip on an inverted fluorescence microscope (Zeiss Axiovert 200) 

equipped with a CCD camera (Retiga 2000R), and another CCD camera (Pixelink) was 

utilized for viewing the side view of droplets to measure contact angle change with time. 

Fluorescent particles suspended in a droplet were recorded in gray scale every 120 ms, and 

the side view images of the droplet were taken every 12 s. 100 Successive fluorescent particle 

images were stacked to generate an image with overlapped particle images, and the first and 

last image of each stack are processed to afford green and red color, respectively. In this way, 

each 100-image stack has continuous trajectories starting from green to red dots indicating the 

direction of particle motion. The distance from the green to red particles was measured using 

ImageJ software to obtain individual radial velocity.  
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4.3 Results and Discussion 

4.3.1 Effect of Contact Angle on Radial Flow Dynamics  

The radial flow dynamics were observed by tracking the motion of individual 1 m 

fluorescent colloid particles within an evaporating water droplet. We tracked particles in three 

different radial positions, 𝕣 = r/R (A = 1-0.8, B = 0.8-0.65, and C = 0.65-0.5) where R is the 

radius of a droplet, and r is radial distance from the center depicted in Figure 4.1a, during the 

evaporation. To create a single overlapped particle images, 100 successive fluorescent particle 

images were stacked, where the first and last frame of each stack were processed to afford 

green and red in color, respectively. In this way, each stack has continuous trajectories 

starting from green to red dots indicating the direction of particle motions. A representative 

stack of images is shown in Figure 4.1b.  

 

Figure 0.1. (a) A stacked series of images after image processing shows a number of particle 

trajectories moving from the center to the contact line (green to red dots). (b) A schematic of a 

droplet with different radial positions (A, B, C) with a green dot moving towards the edge due 

to the capillary flow while the contact line is pinned.   
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These stacked images were used to measure the radial flow velocity as a function of 

contact angle . The distances of all particle trajectories from each stack were measured, and 

divided by time interval (12 s) for different radial positions, providing the measurement of 

height averaged radial velocities since all particles at different heights within a depth of focus 

are considered. Also, we tracked particles at different focal planes which allows for the 

comparison between the height averaged radial velocities determined at different focal planes. 

The range of contact angles,  in this experiment was ~5-50
o
 using two OTS treated 

substrates with different extent of oxidation as described in the Experimental section. During 

evaporation, the droplets on the substrate with a high initial contact angle (~50 
o
) began 

receding when the contact angle reached ~20
o
, and droplets on the substrate with a low initial 

contact angle (~35 
o
) remained pinned until the contact angle ~5-10

o
.  

In Figure 4.2a are shown plots of the height averaged radial velocities at different 

focal planes as a function of contact angle, . In general, the radial velocity increases with 

decreasing . This is due to mass conservation; the water flows faster radially  within a 

thinner droplet to replenish the water loss by evaporation at the edge as the evaporation rate 

remains the same throughout the experiments.[10] The data in Figure 4.2a also shows that the 

height averaged radial velocities at different focal planes fall onto a single curve. Although 

radial velocity seems independent of height within a given range of focal planes examined in 

this experiment, this apparent independence is due to large depth of focus (DOF), which is 

approximately 100 m, for our measurement system. Furthermore, only projected distances 

were considered, however in reality, the particles have 3-D displacements. Also, even 

particles out of DOF are carried into the DOF shortly due to the decrease in contact angle  

with time.  Figure 4.2b shows the height averaged radial velocity as a function of  for three 



81 

 

radial positions. For each radial position, the radial velocity increases with decreasing , 

seemingly following a similar power law trend for all three regions (A, B, and C). 

Furthermore, the magnitude of the radial velocity at a given  is found to increase with 

increasing radial position, 𝕣 = r/R.   

 

 

Figure 0.2. (a) The log-log plot of height averaged radial velocity at radial position B (r/R = 

0.65-0.8) with contact angle for different focal planes from the surface of the substrate. In the 

legend, LC and HC refer to low and high contact angle, respectively, for two different 

substrates used in this experiment and the focal plane height is indicated in m. Plot (a) is the 

same as the plot in (b) for region B (red dots). (b) A log-log plot of height averaged radial 

velocity at three different radial positions with regard to contact angles.  

 

4.3.2 Effect of Evaporation Rate on Radial Flow Dynamics 

In addition to the magnitude increasing with radial positions, the magnitude of the 

radial velocity is directly related to the evaporation rate. To demonstrate this, the humidity 

was increased to slow the evaporation rate of a droplet. Figures 4.3(a and b) show the droplet 



82 

 

volume, V, and as a function of time for both humidity levels, respectively. The magnitude 

of the slopes, k = |d/dt|, in Figure 4.3b are related to the evaporation rate, dV/dt, in Figure 

4.3a according to the correlation between volume V and : 
  

  
 

   

 
(  

  

 
)  is derived 

from   
 

 
     

 

 
       

 

 
 
 
  using small angle approximation of tangent function (tan 

≈  with less than 5% error within 0 ≤  ≤ 0.7 in radian) such that dV/dt = (dV/d)·(-k). Since 

dV/d is almost a constant at a given range of  as shown in Figure 4.3c, k is proportional to 

the evaporation rate in a given condition, 0 ≤  ≤ 0.7 in radian comparable to 0 ≤  ≤ ~ 40
o 
(k 

= 0.03 deg/sec for the slow evaporation and k = 0.1 deg/sec for the ambient condition). 

Figure 4.3d shows the height averaged radial velocity as a function of  for both 

evaporation rates. For both rates, the radial velocity increases with decreasing , and the 

relative velocity at a fixed  is greater for the higher evaporation rate. The faster the rate of 

water loss at the edge is, the faster the capillary flow is. Interestingly, for a slowly evaporating 

droplet, there exists a range of 20
o
 <  < 40

o
, where the radial velocity plateaus. This velocity 

independence is likely due to the capillary flow weakening at high  and a slow evaporation 

rates, resulting in the Brownian motion of colloid beads dominating over capillary flow.  
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Figure 0.3. (a) Plots of droplet volume as a function of time for slow and ambient evaporation 

rates. (b) Plots of contact angle as a function of contact angle , which gives a linear trend. (c) 

Plots of droplet volume as a function of contact angle . (d) The log-log plots (solid circle) of 

height averaged radial velocity with regard to contact angle at radial position B for slow and 

ambient evaporation environments. Solid and dotted lines are drawn based on the equation (2) 

for height averaged radial velocity with two different radial positions, r/R = 0.8 for solid lines 

and 0.65 for dotted lines. The black solid line is for the exponent value -1 of a power law. 

 

4.3.3 Comparison of Experimental Results to Analytical Prediction 

 Thus far, we experimentally presented the height averaged radial velocity profile with 

regard to both  and k, where radial flow velocity increases with decreasing  and increasing 
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k. These experimental results were compared with the analytical predictions developed by Hu 

and Larson as shown below.[13]  

 

      
 

          

 

𝕣
[   𝕣           𝕣  ]                 

                    

where   is height averaged radial velocity, 𝕣 = r/R, t(θ) is the experimental time at θ,  tf is 

the total evaporation time, and           
 

   
 indicating the uniformity of evaporation 

across the surface, which is empirically determined by using a FEA.[10] The evaporation flux 

along the droplet surface is uniform at  = 90
o
 ( = 0) and becomes non-uniform towards = 

0
o
 ( = 0.5). The term, tf - t(),can be rewritten as a function of /k since t() = -/k + tf as 

found in Figure 4.3b. Thus, equation (1) can be rewritten as.  

 

      
  

 

 

𝕣
[   𝕣           𝕣  ]                

 

Equation (2) contains information on both  and k and was plotted (dotted and solid 

line) as a function of  with known values of R, k, and 𝕣 to be compared with our 

experimental plots (solid circles) in Figure 4.3d. Since the experimental values of height 

averaged radial velocities are measured within a certain range of radial position such as 𝕣 = 

0.65-0.8, an analytical equation was plotted with two different radial positions, 𝕣 = 0.65 and 

0.8 for dotted and solid line, respectively. As shown in Figure 4.3d, experimental results are 

in a good agreement with analytical predictions within experimental errors.  
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4.3.4 Modification of Analytical Equation  

We found that the trend is close to a power law, which is a much more insightful form 

than equation (1), due to small contribution of the last term, S, to the  dependence, S =  

 

𝕣
[   𝕣           𝕣  ]. Thus, we were determined to modify the equation (2) to a 

simpler form such that it can provide the impact of  on   as a scaling. It is empirically found 

that S can be described well by an exponential fit to give       
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)] (Figure 

4.4a). Then, this can be approximated using Taylor’s series to give, 
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Therefore,   is proportional to kand inversely proportional to as a simple scaling equation 

(4). Accordingly, this simple power law 


 is drawn into Figure 4.3d as a solid black line 

showing a good prediction of the trend of radial flow velocities as a function of  for the 

radial position B. This scaling prediction is also valid for positions close to the contact line 

since the slope does not change with positions as shown in Figure 4.2b, only shifting 

vertically as function of radial positions. However, we note that the exact value of velocity 

calculated from equation (3) will have increasing error as r/R approaches 1 due to poor 

approximation with larger  where  is a function of r/R.  

This simple power law relationship is most important in the design of evaporative 

assembly, where suspended solutes move at different speed towards the contact line. 
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Evaporative assembly has many attractive attributes over complexity, cost, scale, and 

throughput, however the required processing times to achieve high fidelity continuous 

structures has been a drawback. As presented, the scaling equation (4) isolates two key 

parameters, k and , to maximize assembly rate and uniformity. For high assembly rates, k 

must be large and  must be small. For uniformity, it is critical that  is constant across 

relevant lateral length scales. Both of these lessons were critical in the development of a 

recent evaporative assembly method, called flexible blade flow coating.[7] In this method, a 

dilute solution of particles in an organic solvent is trapped by capillary forces between a 

flexible blade and a rigid substrate. The flexibility of the blades allows  to be uniform across 

the full width of macroscopic blades, while the organic solvent allows k to be large. With this 

method, assemblies of CdSe nanoparticles were created with dimensions of width ~250 nm, 

height ~10 nm, and length ~ 10 cm.[7] This simplified estimation of radial flow velocity will 

help understand and manipulate the evaporative assembly processes on different substrates 

(different ) in terms of both required experimental time for assembly and structural 

dimensions, such as width and/or height of assembled structures. [6-8]   

 

4.3.4 Approximation Error 
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  𝕣 
]                                                         

 

Equation (6) is approximated from equation (5) by Taylor’s series up to the third term, 

and equation (3) is approximated up to second term since the value of  is smaller than unity. 

However, as  approaches unity, the approximation has increasing error for the exact value 

of height averaged radial velocity. Thus, we qualitatively examined the approximation in the 

range of 𝕣 = r/R up to 0.999. In Figure 4.5a is shown the variability of  as function of  in 

the range of 21 <  < 200 for four contact angles, 5, 10, 12, 20 and 30
o
. The range of  is 

determined from the range of 0.5 < 𝕣 < 0.999 in Figure 4.4b. Figure 4.5b shows the error of 

this approximation as a function of for approximations with two terms and three terms of 

Taylor series. If the contact angle is around 5
o
, the approximation could be reduced with two 

terms with error less than ~ 2% at any radial position, 𝕣. However, the error increases rapidly 

up to ~ 18% with the contact angle of 10
o
 at 𝕣 = 0.999, where the approximation with 

equation (3) seems not reasonable, as opposed to ~ 3% error with equation (6). At radial 

position 𝕣 = 0.97 which is very close to contact line, equation (3) can be applied to contact 

angles up to ~ 12
o
 with error less than ~ 2%, which is most cases of flow coating conditions 

using organic solvents. For higher contact angles, equation (6) can be applied with an error 

less than ~ 3%. Generally, the exact value of velocity calculated from equation (6) and (3) has 

an error increasing with increasing  and increasing 𝕣, in which case  increases. However, 

the power law scaling prediction is valid for any positions close to the contact line since the 

slope does not change with positions, only shifting vertically as function of radial position and 

evaporation rate.  
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Figure 0.4. (a) Plots of S (solid circles) as a function of  for different radial positions, 𝕣 = 

r/R are fitted by an exponential function, A·exp(-) (black solid lines). (b) Plot of  as a 

function of r/R up to 0.999 is best described by an equation,  = 245 (1- 𝕣)
0.5

 + 21. 

 

 

Figure 0.5. (a) The plot of the value of  as a function of t for different contact angles, 5, 10, 

12, 20, and 30
o
. (b) The plot of errors as a function of the value of  for equation (6) and (3). 
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4.4 Conclusion 

We have demonstrated experimentally that the magnitude of capillary flow during 

evaporation of a pinned droplet is non-linearly dependent on the contact angle. The flow 

velocity increases as the contact angle decreases for contact angle ranging from almost 5 - 50
o
. 

This resulting trend can be quantitatively described by modifying Hu and Larson’s analytical 

equation. The simplified estimation demonstrates that  and k are primary parameters in 

evaporative assembly processes. This study allows us to understand the effect of substrate 

surface property on assembled structures and kinetics in evaporative assembly processes, such 

as flow coating.  
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CHAPTER 5 

CONCLUSION 

 

The focus of this thesis is the use of fluorescent particles as a probe to reveal 

anomalous dynamics and assembly processes occurring within materials of interest, i.e., 

polymer gels and aqueous solution. In Chapter 2, we used CdSe/ZnS Core/Shell QDs covered 

with carboxylate ligands as a fluorescent probe within structurally complex PAAm hydrogels 

to discover the anomalous diffusion of QDs and structural heterogeneities of polyacrylamide 

hydrogels with increasing cross-linker content by tracking single QDs. The surface chemistry 

with hydrophilic ligand, carboxylate, rendering the QDs water-soluble, photo-stable, and 

highly fluorescent in aqueous solution made it possible for accurately tracking individual 

single QDs, which has been the largest obstacles to researchers. By adopting the formalism of 

continuous time random walk (CTRW) with a specific model, the random trap (RT) model, 

we studied the transient caging times extracted from experimental data to obtain the 

information about the energetic landscape of gel networks which suggests the extent of 

structural heterogeneity of PAAm hydrogels. This is, to our knowledge, the first successful 

experimental demonstration of single particle tracking using QDs within synthetic polymer 

hydrogels, where the small size of QDs, which is larger than dye molecules, affords diffusing 

motion that can explore the complex structures of gel networks. If extended to multi-color 

imaging of several different QD probe sizes, we anticipate that this experimental method has 

the potential to provide a wealth of information on the structures of a wide variety of 

networks with nanometer-scale porosities, and should yield sensitive tests of more refined 

models for the landscape of trap energies within these materials.  
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In Chapter 3, we studied the formation of QD (CdSe/ZnS Core/Shell QD covered with 

PEG ligands) rings at the air/water interface by “2-D Pickering emulsions”. Dispersed QDs in 

bulk phase (water) allowed the assembly of surfactant islands visualized at the air/water 

interface by being absorbed onto the interfacial line. The formation of QD rings discovered at 

the interface introduces a simple method for nanoparticle assemblies without the need of 

templates or costly ion-beam etching processes. Since this assembly of QD rings occur only at 

the interface, they were easily transferred to other substrates by dip coating. Furthermore, 

patterning of QD rings were successfully demonstrated on other substrate by controlled dip 

coating. These patterned and deposited QD rings have a potential to be applied for optical and 

electronic resonators. The key to a better and consistent assembly of QD rings by this method 

is the kinetics of each component participating in this assembly system. Surfactants should 

first form islands at the air/water interface, then, followed by the adsorption of QDs into 

interfacial lines of islands. That is, if QDs are absorbed to the interface before surfactant 

islands are formed, no QD rings can be assembled. Therefore, fine control over the 

introduction of surfactants or QDs into the system would greatly enhance the robustness of 

this method for the interfacial assembly of nanoparticles.  

Lastly, in Chapter 4, suspended fluorescent latex beads were used to quantify the 

radial flow generated within an evaporating droplet due to the phenomenon commonly called 

the “coffee ring effect”. With controlled contact angle of glass surfaces, we studied the effect 

of contact angle on the radial flow dynamics by tracking individual probe particles drifting 

within droplets. Our experimental results agreed well with the analytical prediction by Hu and 

Larson, which is, to our knowledge, the first empirical verification of the previous theoretical 
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studies. Additionally, we found that the original equation can be reduced to a simple power 

law as a function of contact angle and evaporation rate. This study could help understand the 

effect of substrates on the kinetics or efficiency of evaporative assembly of ordered structures 

constructed by e.g., flexible blade flow coating. For future work, the dimensions of ordered 

structures constructed by flow coating as a function of hydrophobicity of substrates should be 

examined by applying this simple power law to predict the kinetics of assembly.  
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