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ABSTRACT

PRIME DECOMPOSITION IN ITERATED TOWERS

AND DISCRIMINANT FORMULAE

MAY 2014
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We explore certain arithmetic properties of iterated extensions. Namely, we compute the index

associated to certain families of iterated polynomials and determine the decomposition of prime

ideals in others.

vii



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Iterated extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Field discriminants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Finite field dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. SPECIAL FAMILIES OF POLYNOMIALS . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Power maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Dickson-(−1) polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Generalized Rikuna polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. PRIME DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Description of graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 The graph G(P`, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 The graph G(T`, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.3 The graph G(D`, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 The graph G(γ, q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Decomposition of primes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Decomposition in radical extensions . . . . . . . . . . . . . . . . . . . 29
3.3.2 Decomposition in Chebyshev radical extensions . . . . . . . . . . . . . 30

3.4 Discriminant formulæ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. PRELIMINARIES FOR INDEX COMPUTATIONS . . . . . . . . . . . . . . . . . 35

4.1 Dedekind’s criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Montes algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Valuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. RADICAL EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Monogenic towers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Index calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

viii



6. CHEBYSHEV RADICAL EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 Monogenic number fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2 The multiplicity of ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3 The multiplicity of p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.4 Integral basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Dickson-(−1) extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7. GENERALIZED RIKUNA EXTENSIONS . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Factorization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Monogenic extensions of degree 3 . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3 Shanks’ specialization: ` = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7.3.1 Index calculation: p = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3.2 Index calculation: p 6= 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 69

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix



LIST OF FIGURES

Figure Page

1. A component of the graph of T2 over the finite field of order 294. . . . . . . . . . . . 8

2. G(T3, 53). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Periodic elements categorized by divisor. . . . . . . . . . . . . . . . . . . . . . . . . . 21

4. Table of weights for G(T3, 5318). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5. Selected components of G(T3, 5318) colored by weight. . . . . . . . . . . . . . . . . . 28

6. Components of G(D3, 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7. A φ-Newton polygon (right) and its principal part (left). . . . . . . . . . . . . . . . . 37

8. The φ-polygon for f(x) = x4 + 23x3 + 12x2 + 11x+ 7 and φ(x) = x+ 2. . . . . . . . 38

9. The Newton polygon of T 3
3 (x) (left) and the Newton polygon of T 3

3 (x) − 24 (right)
at 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10. Left: the φ-Newton polygon for T 3
3 (x)− 24. . . . . . . . . . . . . . . . . . . . . . . . 56

11. φ-Newton polygons associated to T5(x)− t0 in Example 6.3.1. . . . . . . . . . . . . . 57

x



C H A P T E R 1

INTRODUCTION

One of the fundamental objects in number theory is the number field, which is a finite extension

of the rational numbers Q. We can isolate any number field K of degree d over Q by identifying

an algebraic integer θ in K for which K = Q(θ). That is to say that θ is the root of a monic

polynomial f of degree d with integer coefficients, and every element of K may be expressed as

a Q-linear combination of powers of θ. The algebraic integer θ is not unique. In fact, there are

infinitely many θ—and hence infinitely many (monic, irreducible, degree d) polynomials—which

generate K. It is therefore a fundamental problem in number theory to identify an “optimal”

representative f with which to model K.

The quality of such a model may be judged, for example, by a ratio of discriminants: disc(f)
disc(K) .

These values may be computed using the following formulas:

disc(f) =
∏

1≤i<j≤d

(θj − θi)2,

where θ1, . . . , θd are the roots of f , and

disc(K) = det(trK/Q(αiαj)),

where α1, . . . , αd is a basis for the ring of integers OK . A precise understanding of these formulas

is not necessary for this discussion. Rather, the formulas are given to illustrate the connection

between these objects and their underlying rings: Z[θ] in the case of f (where θ is a root of f), and

OK in the case of K. In a way, the discriminant provides a measure on the arithmetic complexity

of these rings, where the relative complexity scales in proportion to the square of the index of one

ring inside the other:

[OK : Z[θ]]2 =
disc(f)

disc(K)
. (1.1)
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Throughout, we use ind(f) to denote the index [OK : Z[θ]].

Given Equation (1.1), it is natural to ask if for eachK there is an f for which disc(f) = disc(K).

The answer to this question is “no”. One of the simplest counter-example, attributed to Dedekind,

is the number field generated by a root of x3 − x2 − 2x − 8. We are then left to wonder, what

are the fields K for which there is a monic, irreducible f such that disc(K) = disc(f)? More

generally, given a monic irreducible polynomial f , are there efficient methods for stripping the

“parasitic” factors of disc(f) to recover disc(K)? In this paper, we will answer these questions

for certain families of dynamically generated number fields. In order to discuss these fields, we

will use some basic terminology from dynamics.

Let S be a set, and let f be a map from S to itself. We denote by fn the n-fold composition

(or iterate) of f , which is defined by

fn(x) = f(fn−1(x)), where f0(x) = x.

In order to distinguish between the n-fold iterate and the n-th power of f , we will always write

the exponent before the argument to indicate the n-fold iterate, while the exponent after the

argument will denote the n-th product:

fn(x) =
(
f ◦ · · · ◦ f︸ ︷︷ ︸

n

)
(x); f(x)n =

(
f(x)

)n
.

Given an element a ∈ S, the forward orbit of a is the set

Of (a) = {fn(a) : n ≥ 0}.

We say that a ∈ S is periodic if there exists an integer n > 0 such that fn(a) = a. The period

of a is the least positive integer for which this relationship holds, and we say that a is n-periodic

if the period of a is n. If Of (a) contains a finitely many elements, then a is preperiodic, and the

preperiod of a is the least positive integer m ≥ 0 such that fm(a) is periodic. We say that a

is m-preperiodic to mean that a is preperiodic of preperiod m, and if m > 0, then a is strictly

preperiodic.

The preimages (or backwards orbit) of a is

←−Of (a) = {f−n(a) : n ≥ 0}, where f−n(a) = {b ∈ S : fn(b) = a}.

Note that if f ∈ Z[x] is monic, then by taking preimages of a fixed integer t, we have the potential

to produce algebraic integers of increasingly large degree over Q. This dynamical construction

offers new insights into the structure of number fields.
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1.1 Iterated extensions

Let K be a number field and f be monic polynomial of degree at least 2 with coefficients in

OK , the ring of integers of K. For a fixed t ∈ OK , if fn(x)− t is irreducible for all n ≥ 1, one can

obtain, very naturally, a tower of fields over K in the following way. Let {θ0 = t, θ1, θ2, . . .} be a

compatible sequence of preimages of t satisfying f(θn) = θn−1 (and hence fn(θn) − t = 0), then

we obtain an iterated tower of fields

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ,

where Kn := K(θn) and [Kn : K] = (deg f)n. Throughout this paper, we will always work under

the assumption that

t is a fixed integer for which fn(x)− t is irreducible for every n ≥ 1.

Over the past decade these towers have received increasing attention, in part because the

Galois groups associated to these fields are equipped with a natural action on rooted trees. If Kf

is the field obtained by adjoining all the roots of fn(x)− t for n ≥ 1 (in a fixed algebraic closure

K), then the Galois group Gal(Kf/K) is the iterated monodromy group of f (see Nekrashevych

[30]). At any finite level, the Galois group Gal(Kn/K) is non-abelian and is isomorphic to a

subgroup of the wreath product Z/nZ o Sd ([38], Theorem 3.56). This action is in contrast to the

action of Galois groups on p-adic vector spaces coming from torsion points on abelian varieties

and more generally from étale cohomology.

Aitken, Hajir, and Maire [2] have shown that this process may be used to construct infinite,

yet finitely ramified, extensions. Let

Rf := {r ∈ K : f ′(x) = 0}, and Bf := {f(r) : r ∈ Rf}

denote the ramification points and branch points of f , respectively. The elements of Rf are also

known as the critical points of f , and the elements of Bf are also known as the critical values of

f . The polynomial f is postcritically finite if every critical point of f is preperiodic.

Note that b ∈ Bf if and only if f(x)− b and f ′(x) share a common root. Hence r is a critical

point of f if and only if r is a multiple root of f(x)− b. We denote the multiplicity of this root by

f ′(x) = a d
∏
r∈Rf

(x− r)mr(f),

3



where a is the leading coefficient of f and d = deg(f). For each b ∈ Bf we define

Mb(f) =
∑

r∈Rf ,f(r)=b

mr(f).

Consider the polynomial Φn(x) = fn(x)−t, where t ∈ OK is chosen so that fn(x)−t is irreducible

for every n ≥ 1.

Proposition 1.1.1. We have

disc(Φn) = (−1)(dn−1)(dn−2)/2dnd
n

a(dn−1)2/(d−1)
∏

b∈Bfn

(t− b)Mb(fn).

Proof. [2, Proposition 3.2].

Note that if f ∈ Z[x] is postcritically finite, the number of primes dividing disc(Φn) stabilizes

once n is sufficiently large. That is, there is a finite set of primes S such that the set of primes

dividing disc(Φn) is contained in S for every n ≥ 1. From Equation (1.1), we know that the

discriminant of the number field generated by Φn divides disc(Φn). Moreover, the primes that

ramify in a number field are precisely the primes that divide the discriminant of that field. Thus

we can conclude that postcritically finite polynomials generate infinite finitely ramified towers.

However, our question regarding the parasitic factors of disc(Φn) still stands, with potentially

significant consequences.

The root discriminant of a number field K of degree n over Q is the n-th root of disc(K),

and we call an algebraic extension L over a number field K asymptotically good if (i) L is an

infinite extension of K, and (ii) for every sequence of distinct intermediate subfields of L/K,

the root discriminant remains bounded. In [2], it is asked if there are any asymptotically good

iterated towers. If yes, then the iterated tower would give the first construction of infinite tamely

and finitely ramified extensions. A “no” answer would imply that all iterated towers are deeply

ramified at the primes dividing the degree of the generating function, yielding a dynamical version

of the Fontaine-Mazur conjecture [11, Conjecture 5a]. Hajir has conjectured that the latter to

be the case: iterated extensions cannot give rise to tamely ramified infinite extensions. In either

case, one would need a careful understanding of ind(Φn) to derive an answer from Proposition

1.1.1.

In this paper we compute the index associated to four families of polynomials: the power maps,

the Chebyshev polynomials, the Dickson-(−1) polynomials, and the generalized Rikuna polyno-

mials. (We will discuss these families of maps in more detail in the following chapter.) These
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index calculations allow us to recover discriminant formulas for the iterated towers generated by

these polynomials.

1.2 Field discriminants

Recall that a number field is monogenic if its ring of integers has a basis consisting of the

powers of a single algebraic integer. Moreover, if K = Q(θ) where θ is an algebraic integer with

minimal polynomial θ, and disc(K) = disc(f), then K is monogenic as OK = Z[θ].

The classic example of a monogenic field is the cyclotomic field Q(ζd), where ζd is a primitive

d-th root of unity; the ring of integers of Q(ζd) is Z[ζd]. The maximal totally real subfields of

the cyclotomic fields are also known to be monogenic (see Liang [23]). Quadratic fields Q(
√
D),

where D is a square-free integer, are also monogenic; the ring of integers being

OQ(
√
D) =


Z[
√
D] if D ≡ 2, 3 (mod 4)

Z
[

1+
√
D

2

]
if D ≡ 1 (mod 4).

Although the extension Q(
√
D) is generated by x2−D, when D ≡ 1 (mod 4), the ring of integers

if not generated by a root of x2 − D. In fact, ind(x2 − D) = 2, and so we see that in general,

ind f = 1 is a sufficient, but not necessary, condition for monogeneity.

Determining whether a number field is monogenic is a difficult and largely open question.

Computational evidence of Ash, Brakenhoff, and Zarrabi supports a conjecture of Lenstra [3]

that suggests that monogenic fields are abundant. However, the majority of results are known

only for extensions of small degree (see Gras [15], Nakahara [28], Shah [35], Gaál [12], among

others). A general survey of recent results can be found in Narkiewicz [29, pp. 79–81].

As part of this work, we identify large families of monogenic towers of iterated extensions by

showing that ind Φn = 1, where Φn(x) = fn(x) − t, and f is a polynomial of odd prime power

degree in the power, Chebyshev, or Dickson family. Two special cases of the types of polynomials

that we consider are worth highlighting: the maps x`
n − 1 and Tn` (x)− 2, where ` is a prime, and

T` denoted the Chebyshev polynomial of degree `. The splitting fields of these polynomials are the

cyclotomic field Q(ζ`n) and the maximal real subfield of the cyclotomic field Q(ζ+
`n), respectively.

Hence we have placed these classical one-parameter families of monogenic towers (parametrized

by `) into two-parameter families of monogenic towers parametrized by ` and t. The following is

a generalization of [2, Proposition 6.2].
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Theorem 1.2.1. Let ` be a prime and let K = Q(θ), where θ is a root of Tn` (x)−t. If T`(t)−t 6≡ 0

(mod `2) and both t− 2 and t+ 2 are square-free, then K is monogenic, as [OK : Z[θ]] = 1.

The main tool for identifying when ind(Φn) = 1 is Dedekind’s criterion, which gives a condition

for when a prime divides the index. However, beyond determining that a prime divides ind(Φn),

the Dedekind criterion has no mechanism for computing the multiplicity of that prime divisor,

and we are left to turn to other techniques.

About ten years ago, Montes proposed some new ideas on how one may compute the ring of

integers of a number field. His method, which we refer to as the Montes algorithm, is carried

out in a series of papers by Guàrdia, Montes, and Nart [16, 17, 18]. The algorithm was initially

developed as a computational tool, taking a specified field as an input. But we have found that

the techniques of the algorithm are well suited for and are highly effective at computing the index

associated to iterated polynomials, though it is not a straight forward computation.

The algorithm employs a refined variation of the Newton polygon, called the φ-Newton polygon,

which captures arithmetic data attached to each irreducible factor φ of Φn modulo a prime p.

Similar to usual Newton polygon, the φ-Newton polygon is determined by the p-adic valuations of

the coefficients of a polynomial. In this case, the polynomial of interest is a particular polynomial

in φ. Before we can apply the key result of Guàrdia, Montes, and Nart (Theorem 4.2.2), we must

carefully construct these polygons and show that they satisfy a certain technical condition. The

resulting formulas can be quite complex; the index for the Cheybshev polynomial Tn` and the

Rikuna polynomial rn(x, t; 3) are as follows.

Theorem 1.2.2. Let ` be an odd prime and K = Q(θ), where θ is a root of Tn` (x) − t, with

t 6≡ ±2 (mod `2) and t 6≡ 2 (mod 4). Write t2 − 4 = A2B, where B issquare-free. Then

ind(Tn` (x)− t) =


`EA(`n−1)/2 if t is odd

`E(A/2)(`n−1)/2 if t ≡ 0 (mod 4),

where E is a constant defined in Theorem 6.2.11. Moreover,

∆K =


`n`

n−2EB(`n−1)/2 if t is odd

`n`
n−2E(4B)(`n−1)/2 if t ≡ 0 (mod 4).

Theorem 1.2.3. Write t2 + t+ 1 = A3B, where gcd(A,B) = 1. Then

ind rn(x, t; 3) = 3(3n−1)(3n−3)/4+E
∏
p|AB

p(3n−1)(νp(t2+t+1)−1)/2
∏
p|A

p,
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where E =


1
2

(
3n − 1 + V +

∑V−1
k=0 3n−k

)
if t ≡ 1 (mod 3)

0 otherwise,

for a constant V , which we specify in Theorem 7.3.3.

1.3 Finite field dynamics

Both of the methods mentioned above—Dedekind’s criterion and the Montes algorithm—

require some knowledge of the factorization of our polynomials modulo primes. Our understanding

of the factorization of our polynomials comes from analyzing the dynamics of the polynomials

over finite fields (or in the case of the generalized Rikuna polynomial, the action of a rational

map).

The dynamics of a map f over a finite field Fq can be captured in a graph, which is constructed

as follows: each element a ∈ Fq corresponds to a vertex in the graph, and the graph contains

the directed edge (a, b) if f(a) = b. For each of the four types of maps that we study (power,

Chebyshev, Dickson, and generalized Rikuna), the components of the graph display a surprising

degree of symmetry. (See Figure 1.) Moreover, we are able to give a complete description of the

structure of these graphs. For example, the cycle structure for the Chebyshev polynomials is as

follows.

Theorem 1.3.1. Let ` be a prime, and q = pk a prime power. Write q − 1 = `λ1ω1 and

q + 1 = `λ2ω2, where gcd(ω1, `) = gcd(ω2, `) = 1. The number of periodic vertices in the graph of

T` over Fq is (ω1 + ω2)/2.

The study of maps over finite fields has a long history. Permutation polynomials—polynomials

that permute the elements of Fq—are of particular interest due to their number theoretic prop-

erties and cryptographic applications. The Dickson polynomials, a one-parameter family of poly-

nomials defined by

Dd,a(z + a/z) = zd + (a/z)d,

provide the classic examples. It is known, for example, that for a ∈ F×q , the polynomial Dd,a

permutes Fq if and only if gcd(d, q2−1) = 1, and Dd,0 permutes Fq if and only if gcd(d, q−1) = 1

([25], Theorem 3.2 and Theorem 3.1, respectively). Furthermore, the cycle structures of the

7



Figure 1: A component of the graph of T2 over the finite field of order 294. The color of the
vertex corresponds to the smallest field containing the element associated to the vertex: green –
F29; red – F292 ; blue – F294 .

permutation maps for a ∈ {−1, 0, 1} are given in Lidl and Mullen [24]. For more on permutation

polynomials, see Section 7 of Lidl and Niederreiter [26].

One may also graph the action of rational maps over the projective space P1(Fq). However,

much less work has been done in this vein. Ugolini showed that when Fq is a finite field of

characteristic 2, 3, or 5, the components of the graph of x 7→ x + x−1 are highly symmetric

[40, 41].

In general, our maps will not give a permutation of the field, so we require a theory that

includes a description of the vertices that are not contained in cycles. These graphs also give a

visualization of the decomposition of primes in these extension, an idea that was proposed in [2].

The key finding is that the decomposition of a prime in the full tower can be determined solely

be considering the graph over a finite extensions of Fp. For example, consider the decomposition

of pZ in the iterated extensions coming from Tn` (x)− t, where T` is the Chebyshev polynomial of

prime degree `, and p 6= `. We remind the reader that t is chosen so that Tn` (x)− t is irreducible

for each n ≥ 1. Let ρ denote the preperiod of t ∈ Fp, and let mp denote the maximal preperiod

of elements of Fp under the action of T`.

Theorem 1.3.2. Let ` be an odd prime, let p be a prime that does not divide the discriminant

of Tn` (x) − t, and let Kn = Q(θ), where θ is a root of Tn` (x) − t. If 0 < ρ ≤ mp, then pZ splits

completely in Kn for each 0 ≤ n ≤ mp − ρ, after which all primes above pZ are totally inert.

8



In the case of the special extensions coming from x`
n−1 and Tn` (x)−2, we are able to recover

the cyclotomic reciprocity law. Thus our decomposition result may be viewed as an extension of

cyclotomic reciprocity to certain non-abelian extensions of Q.

? ? ?

The general outline of the paper is as follows. In the following chapter, we describe in more

detail the power, Chebyshev, Dickson, and Rikuna families of polynomials. In Chapter 3, we

describe the graphs of these maps over finites fields to determine the decomposition of primes in

our iterated extensions. We outline the key tools for computing the index computations in Chapter

4, and the remainder of the paper is dedicated to carrying out these careful computations.
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C H A P T E R 2

SPECIAL FAMILIES OF POLYNOMIALS

In this chapter we give a brief overview of the families of polynomials on which this paper

focuses. We mentioned previously that the Galois groups of iterated extensions can be quite large.

However, the special extensions that we study at have Galois groups that are relatively small.

The power map xd − t yields Kummer a extension, which are cyclic over Q(ζd), where ζd is a

primitive d-th root of unity. The Galois groups for the Chebyshev extensions are known to be

dihedral ([4, Proposition 5.6]); the Galois groups of Rikuna polynomials are also known [5, 32,

Theorem 1 and Theorem 2.5, respectively].

2.1 Power maps

The power maps are the polynomials Pd(x) = xd. The iterated extensions arising from the

polynomials Pnd (x) − t = xd
n − t are well studied as they give rise to Kummer extensions. Our

discussion of these maps primarily serves as a model for analyzing the extensions generated by

the other families of maps.

2.2 Chebyshev polynomials

The Chebyshev polynomials of the first kind, Td(x), and second kind, Ud(x), are another

well-studied family of maps. These polynomial are defined by

Td(z + z−1) = zd + z−d, and Ud(x) =
d

dx

Td+1(x)

d+ 1

The Chebyshev family is uniquely rich in that the polynomials satisfy a variety of relations, which

we state here without proof. An interested reader may refer to Rivlin’s book on the subject [33]

10



and Silverman [38, Chapter 7].

Proposition 2.2.1.

1. Td(Te(x)) = Tde(x) for all d, e ≥ 0.

2. Td(−x) = (−1)dTd(x), Ud(−x) = (−1)dUd(x).

3. For all d ≥ 0, the Chebyshev polynomials satisfy the recurrence relation

Td+2(x) = xTd+1(x)− Td(x), Ud+2(x) = xUd+1(x)− Ud(x).

4. For all d ≥ 0, the Chebyshev polynomials satisfy the trigonometric relations

Td(2 cos(θ)) = 2 cos(dθ), Ud(2 cos(θ)) =
sin((d+ 1)θ)

sin(θ)
.

5. For all d ≥ 1, the Chebyshev polynomials are given by the explicit formulas

Td(x) =

bd/2c∑
k=0

(−1)k
d

d− k

(
d− k
k

)
xd−2k, Ud(x) =

bd/2c∑
k=0

(−1)k
(
d− k
k

)
xd−2k.

6. Equivalently,

Ud(x) =

(
x+
√
x2 − 4

)d+1 −
(
x−
√
x2 − 4

)d+1

2d+1
√
x2 − 4

if x 6= ±2.

The key property is that these polynomials, like the power maps, commute under composition,

leading to many interesting dynamical properties. For example, the Chebyshev polynomials are

a rich source of permutation polynomials (see Lidl and Neideritter [26, Chapter 7]). It is also

known that the iterated monodromy group of any Chebyshev polynomial is infinite dihedral [4,

Proposition 5.6]. Other results relating to the dynamics of these polynomials can be found in

Silverman [38, Chapter 6], Ih [19], and Ih and Tucker [20]. For our iterated towers, we take

advantage of the fact that Tn` (x) = T`n(x), which gives us intimate access to the number fields at

every level.

2.3 Dickson-(−1) polynomials

The Dickson polynomials have also been studied to the point where a book has been written

on the subject [25]. As stated in the introduction, the Dickson polynomials are defined by

Dd,a(z + a/z) = zd + (a/z)d,
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which closely resembles the definition for Td(x). In fact, the Dickson family encompasses each of

the previously mentioned families of maps. The specializations at a = 0 and a = 1 give the power

maps and Chebyshev polynomials of the first kind, respectively:

Dd,0(z) = zd, and Dd,1(z + 1/z) = zd + z−d.

There is also a Dickson polynomial of the second kind Ed,a(x), and like the Chebyshev polynomials,

these Dickson polynomials satisfy a variety of relations.

Proposition 2.3.1.

1. Dd,a2(ax) = adTd(x), Ed,a2(ax) = anUn(x).

2. Dd,a(x) =

bd/2c∑
k=0

(−a)k
d

d− k

(
d− k
k

)
xd−2k, Ed,a(x) =

bd/2c∑
k=0

(−a)k
(
d− k
k

)
xd−2k.

3. Dd+2,a(x) = xDd+1,a(x)− aDd,a(x), Ed+2,a(x) = xEd+1,a(x)− aEd,a(x).

4. Dde,a(x) = Dd,an(De,a(x)).

From now on, we will use Dd(x) to denote the Dickson polynomial of degree d specialized

at a = −1. The Dickson-(−1) polynomials of odd degree are a third set of polynomials which

commute under composition and thus are ideally situated for our study.

2.4 Generalized Rikuna polynomials

The generalized Rikuna polynomials differ from the previous families in that they are generated

by the iteration of a rational map. Let d > 2 be a positive integer, and let K be a field of

characteristic coprime to d. Let ζ be a primitive d-th root of unity in a fixed algebraic closure

K of K. Assume further that ζ+ := ζ + ζ−1 ∈ K but ζ 6∈ K. Define the polynomials P (x) and

Q(x) ∈ K[x] by

P (x; d) =
ζ−1(x− ζ)d − ζ(x− ζ−1)`

ζ−1 − ζ
and Q(x; d) =

(x− ζ)d − (x− ζ−1)d

ζ−1 − ζ
.

In [32], Rikuna introduced an interesting family of simple polynomials defined by

r(x, t; d) = P (x; d)− tQ(x; d) ∈ K(t)[x],

12



where t is an indeterminate over K. The special case d = 3 and t = s/3 yields Shanks’ “simplest

cubic” polynomial, which parametrizes the cubic extensions of Q. More generally, the Rikuna

polynomial gives rise to cyclic extensions of order d over K(t) that are not Kummer (since ζ 6∈ K).

In [5], Chonoles, Cullinan, Hausman, Pacelli, Pegado, and Wei extend Rikuna’s work to

study dynamically generated extensions of K(t), which are produced as follows. Set γ(x; d) =

P (x; d)/Q(x; d), then the generalized Rikuna polynomial is

rn(x, t; d) = Pn(x; d)− tQn(x; d), where γn(x; d) =
Pn(x; d)

Qn(x; d)
(2.1)

is the n-fold iterate of γ expressed in lowest terms, and Pn(x; d) is monic.

Prior to Rikuna, Shen and Washington [36, 37] we able to identify some units in extensions of

Q(ζ+) generated by rn(x, a/pn; d). The polynomials Pn(x; d) and Qn(x; d) defined above coincide

with the polynomials Rn(x) and Sn(x), respectively, defined in [37].

Here, we derive two expressions for rn(x, t; d) that do not appear in [5, 37]. These expressions

give us a firm handle on the generalized Rikuna polynomials of large degree, which is key to

studying the iterated extensions arising from these maps. The first is a generalization of [32,

Corollary 2.6].

Proposition 2.4.1. The generalized Rikuna polynomial is given by

rn(x, t; d) =
(t− ζ)(x− ζ−1)d

n − (t− ζ−1)(x− ζ)d
n

ζ−1 − ζ
.

Proof. Note that

γ(x; d)− ζ =
(ζ−1 − ζ)(x− ζ)d

(x− ζ)d − (x− ζ−1)d
, and γ(x; d)− ζ−1 =

(ζ−1 − ζ)(x− ζ−1)d

(x− ζ)d − (x− ζ−1)d
.

It now follows by induction on n that

γn(x; d) =
ζ−1(x− ζ)d

n − ζ(x− ζ−1)d
n

(x− ζ)dn − (x− ζ−1)dn
.

We introduce a normalizing factor so that the numerator is monic:

Pn(x; d) =
ζ−1(x− ζ)d

n − ζ(x− ζ−1)d
n

ζ−1 − ζ
, Qn(x; d) =

(x− ζ)d
n − (x− ζ−1)d

n

ζ−1 − ζ
,

from which the result follows.

The generalized Rikuna polynomial can also be expressed in terms of Chebyshev polynomials

of the second kind.
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Proposition 2.4.2. The generalized Rikuna polynomial is given by

rn(x, t; d) = xd
n

− dntxd
n−1 +

dn∑
k=2

(−1)k
(
dn

k

)(
t Uk−1(ζ+)− Uk−2(ζ+)

)
xd

n−k.

Proof. Using binomial expansion and Proposition 2.2.1 (6), it is straightforward to see that

Pn(x; d) =
ζ−1(x− ζ)d

n − ζ(x− ζ−1)d
n

ζ−1 − ζ
=

dn∑
k=0

(−1)k
(
dn

k

)
ζk−1 − ζ−(k−1)

ζ−1 − ζ
xd

n−k

= xd
n

−
dn∑
k=2

(−1)k
(
dn

k

)
Uk−2(ζ+)xd

n−k, and

Qn(x; d) =
(x− ζ)d

n − (x− ζ−1)d
n

ζ−1 − ζ
=

dn∑
k=0

(−1)k
(
dn

k

)
ζk − ζ−k

ζ−1 − ζ
xd

n−k

= dnxd
n−1 −

dn∑
k=2

(−1)k
(
dn

k

)
Uk−1(ζ+)xd

n−k.

The result follows from Equation (2.1).
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C H A P T E R 3

PRIME DECOMPOSITION

In this chapter we focus on the action of our maps (power, Chebyshev, Dickson, and generalized

Rikuna) over finite fields. The graphs of these maps display a remarkable degree of symmetry,

which we seek to describe. Some of these descriptions of graphs are already known. In addition to

the graphs of permutation polynomials [24, 26], the graphs of the power maps over finite fields are

described in [1, 6, 34, 42]; the graph of T2 over Fp is also worked out in [42]. In this chapter, we

determine the structure of the graphs for polynomials in the odd prime degree case. The graphs

of the power maps, though already known, are here to serve as a model for the other cases. The

graphs of the Chebyshev polynomials were worked out by the author in [14].

There is a certain uniformity across all of these graphs. In each graph, the periodic points are

arranged into cycles of varying lengths. The preperiodic values are arranged into rooted trees,

where the root is a periodic point in the graph. The height of a tree is the length of the longest

path in the tree. In other words ‘height’ is synonymous with ‘maximum preperiod’. For each

component, every tree is maximally branched of a fixed height h. That is, the indegree—the

number of incoming edges—of each vertex in the component of preperiod less than h is equal to

the degree of the map; the indegree of the vertices of preperiod h is zero.

In each case, the orbits of the elements in a fixed finite field Fq are determined by the orders

of elements in some cyclic subgroup of units in some finite extension of Fq. The preperiods of the

elements in Fq are determined by the `-adic valuation of the order of this cyclic group.

The graphs give a visualization of the roots of our map modulo p, and thus we can deter-

mine the factorization of our polynomials modulo primes. By a classical result of Dedekind, the

factorization gives the decomposition of the primes ideal pZ in the corresponding extensions.

Dedekind’s result may be stated as follows.
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Theorem 3.0.3. Let K = Q(θ) be a number field, where θ is an algebraic integer with minimal

polynomial f . Let p be a prime that does not divide ind(f). Write

f(x) ≡ f1(x)e1 · · · fr(x)er (mod p),

where f1, . . . , fr are distinct irreducible factors of f in Fp[x]. Then the decomposition of pZ into

prime ideals of OK is pZ = pe11 · · · perr , where norm(pi) = pdeg fi .

3.1 Description of graphs

Throughout this chapter we fix ` to be an odd prime and Fq a finite field of characteristic

p coprime to `. We will always work with maps of prime degree, and from now on we use f to

denote one of these maps:

f ∈ {P`, T`,D`(x), γ(x; `)}.

For each of these maps (P`, T`, D`, and γ), the forward orbits of the elements in Fq are determined

by the orders of elements in some cyclic group, depending on the family of map.

We use ord(a,G) denote the order of a in the group G, we let ν` denote the usual `-adic

valuation. The graph of f over the field Fq will be denoted by G(f, q).

3.1.1 The graph G(P`, q)

In the case of the power map, the orbit of each unit a ∈ F×q is determined by its multiplicative

order in the group; the element 0 is fixed by the power map.

Proposition 3.1.1. Let a ∈ F×q , and write ord(a,F×q ) = `λd, where gcd(`, d) = 1. Then a is

λ-preperiodic, and Pλ` (a) is ord(`, (Z/dZ)×)-periodic for P`.

Proof. Suppose that a is m-preperiodic and Pm` (a) is n-periodic. Then

Pm+n
` (a)− Pm` (a) = 0

⇔ a`
m+n

− a`
m

= 0

⇔ a`
m

(a`
m(`n−1) − 1) = 0.

Since a is a unit, the order of a divides `m(`n − 1). Due to the minimality of m and n, it follows

that m = λ and n = ord(`, (Z/ωZ)×).
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Let ϕ denote the Euler totient function.

Theorem 3.1.2. Write q − 1 = `λω, where gcd(`, ω) = 1. The graph G(P`, q) contains

• one fixed point: 0,

• ϕ(d) periodic values of period ord(`, (Z/dZ)×) for each divisor d of ω,

• ω(`− 1)`k−1 k-preperiodic values for each 1 ≤ k ≤ λ.

Moreover, for each preperiod k, the indegree is constant—the only exception being the vertex 0.

Proof. By Proposition 3.1.1, the orbits of the elements of Fq are determined by the orders of

these elements in F×q . This group is cyclic of order q − 1, hence there are ϕ(d) elements of order

d for each divisor d of q − 1. The preperiod of each of these elements is determined by ν`(d);

the periodic elements correspond to the divisors coprime to `. The constant indegree essentially

follows from the fact that the indegree of any vertex cannot exceed the degree of the map.

3.1.2 The graph G(T`, q)

The critical points for the Chebyshev polynomials are −2 and 2. For all other elements of

a ∈ Fq, the orbit of a is determined by the order of α ∈ F×q2 , where α is a root of ua(x) = x2−ax+1.

That is, a = α+ α−1.

Proposition 3.1.3. Let a ∈ Fq \ {±2} and α ∈ F×q2 be a root of ua(x). Write ord(α,F×q2) = `λd,

where gcd(`, d) = 1. Then a is λ-preperiodic, and Tλ` (a) is ord(`, (Z/dZ)×/(±1))-preperiodic.

Proof. Suppose that a is m-preperiodic, and Tm` (a) is n-periodic. Then

Tn+m
` (a) = Tm` (a) ⇔ α`

n+m

+ α−`
n+m

= α`
m

+ α−`
m

⇔ α`
n+m

α`
n+m

− α`
m

α`
n+m

− α−`
m

α`
n+m

+ 1 = 0

⇔
(
α`

n+m

− α`
m
)(

α`
n+m

− α−`
m
)

= 0

⇔ α`
n+m

= α`
m

or α`
n+m

= α−`
m

⇔ α`
m(`n−1) = 1 or α`

m(`n+1) = 1

⇔ `λd | `m(`n − 1) or `λd | `m(`n + 1),

which implies that λ | m and `n ≡ ±1 (mod d). Due to the minimality of n and m, it follows

that m = λ and n = ord(`, (Z/dZ)×/(±1)).
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Note that if ua is irreducible, the roots of ua are permuted by the Frobenius endomorphism.

That is, αq = α−1, hence α is an element of the cyclic subgroup of order q + 1. Otherwise ua

is reducible, and α ∈ F×q . Thus the orbits of the elements in Fq are determined by the orders

of the q + 1 and q − 1 roots of unity in F×q2 . Note that there is a correspondence between pairs

(α, α−1) ∈ Fq2 × Fq2 and elements a ∈ Fq, with exception when α = α−1. That is, α ∈ {−1, 1}

which corresponds to the critical points of T`: a ∈ {−2, 2}. Since these unit groups are cyclic, we

can easily count the number of elements of each cycle type. Set

q − 1 = `λ
−
ω− and q + 1 = `λ

+

ω+

where gcd(`, ω−) = gcd(`, ω+) = 1.

Theorem 3.1.4. The graph G(T`, q) contains

• two fixed points: −2 and 2; the height of the trees attached to these fixed points is max{λ−, λ+},

• ϕ(d)/2 periodic elements of period ord(`, (Z/dZ)×/(±1)) for each divisor d of ω−; the height

of the trees attached to these periodic values is λ−,

• ϕ(d)/2 periodic elements of period ord(`, (Z/dZ)×/(±1)) for each divisor d of ω+; the height

of the trees attached to these periodic values is λ+.

In other words,

• the components containing −2 and 2 each contain (` − 1)`k−1/2 preperiodic elements of

preperiod k for each 1 ≤ k ≤ max{λ−, λ+};

• there are a total of (` − 1)`k−1 elements of preperiod k for each 1 ≤ k ≤ λ− contained in

the components corresponding to divisors of ω−;

• there are a total of (` − 1)`k−1 elements of preperiod k for each 1 ≤ k ≤ λ+ contained in

the components corresponding to divisors of ω+.

Proof. The proof is similar to Theorem 3.1.2 using Proposition 3.1.3 and the theory cyclic

groups—the difference begin that each divisor d only corresponds to ϕ(d)/2 elements, which

comes from the 2-to-1 correspondence between elements of F×q2 and elements of Fq.

Example 3.1.5. Using Theorem 3.1.4 we determine the structure of the graph of T3 over F53 by

considering the divisors of 52 and 54 (p−1 and p+1, respectively). The graph is shown in Figure
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2. When the degree of the Chebyshev polynomial is odd, the values −2, 0, and 2 are fixed, and

we have labeled these values on the graph. Double arrows indicate double roots.

` = 3, p = 53, n = 1

Divisors of 52 Number of points in F53 Period Preperiod Cycles of this type
4 1 1 0 1
13 6 3 0 2
26 6 3 0 2
52 12 6 0 2

Divisors 54
1 1 1 0

1
3 1 - 1
9 3 - 2
27 9 - 3
2 1 1 0

1
6 1 - 1
18 3 - 2
54 9 - 3

2 −20

Figure 2: G(T3, 53).

3.1.3 The graph G(D`, q)

The critical points of the Dickson polynomial are ±
√
−4, which may or may not be contained

in Fq, depending on the equivalence class of q modulo 4. Regardless, for the elements of a ∈

Fq \ {±
√
−4}, the orbit of a is determined by the order of α ∈ F×q2 , where α is a root of

ua(x) = x2 − ax − 1. That is, a = α − α−1. Although this is similar to the Chebyshev case,

the twist adds an rather significant nuance. In the Chebyshev case, the orders of α and α−1 are

always equal. For the Dickson maps, that is not the case: the order of α may differ by a factor of

2 from the order of α−1. Define cd(`) to be the smallest positive integer for which

`cd(`) ≡ 1 (mod d) or `cd(`) ≡ d/2− 1 (mod d).
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Proposition 3.1.6. For any a ∈ Fq, write a = α − α−1 as above, and put ord(α) = `λd where

gcd(`, d) = 1. Then a is λ-preperiodic and Dλ
` (a) is cd(`)-periodic.

Proof. Suppose that a ∈ Fq is m-preperiodic and Dm
` (a) is n-periodic. Then

Dm+n
` (α− α−1)−Dm

` (α− α−1) = 0

α`
m+n

− α−`
m+n

− α`
m

+ α−`
m

= 0

α`
m+n+`m − α−`

m+n+`m − α`
m+`m + α−`

m+`m = 0

α2`m − α`
m

α`
m+n

+ α`
m

α−`
m+n

− 1 = 0(
α`

m

− α`
m+n

)(
α`

m

+ α−`
m+n

)
= 0.

Thus either

Case 1: α`
m

= α`
m+n

⇔ α`
m(`n−1) = 1⇔ `λd | `m(`n − 1)⇔ λ | m and d | `n − 1; or

Case 2: α`
m

= −α−`
m+n

⇔ α`
m(`n+1) = −1⇔ `λd | 2`m(`n + 1) and `λd - `m(`n + 1)

⇔ λ | m and ω | 2(`n + 1) and d - `n + 1.

By the minimality of m, we have λ = m, and by the minimality of n, we have n = cd(`).

Note that u(x) = x2 − ax − 1 is reducible modulo p if and only if α ∈ F×q , if and only if

ord(α) | q − 1. Additionally, u(x) = x2 − ax − 1 is irreducible modulo p if and only if α is a

2(q + 1) root of unity, but not a (q + 1) root of unity. Since these groups are cyclic, the elements

of the group can be categorized by divisors of q − 1 and 2(q + 1).

Let D−q be the set of divisors of q − 1, and let D+
q be the set of divisors of 2(q + 1) that do

not divide q + 1. Each divisor d ∈ D−q ∪ D+
q corresponds to ϕ(d) elements of F×q2 . The map

τ : F×q2 → Fq defined by τ(α) = α − α−1 is two-to-one everywhere except where α = −α−1,

that is, α = ±
√
−1. Furthermore, it is easy to check that the order ord(α) is odd if and only if

ord(−α−1) = 2 ord(α). Otherwise ord(α) = ord(−α−1).

Notation 3.1.7. Write q − 1 = `λ
−
ω− and 2(q + 1) = `λ

+

ω+, and define the additional sets of

divisors

S1 = {d | ω− : ν2(d) = 0}

S2 = {d | ω− : ν2(d) ≥ 2}

S3 = {d | ω+ : d - q + 1}.
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The periodic elements of Fq are in correspondence with the divisors d ∈ S1∪S2∪S3 according

to the table in Figure 3. By Proposition 3.1.6, the preperiodic values attached to cycles of length

cd(`) correspond to the divisors of the form `λd where d ∈ S1∪S2∪S3 and 1 ≤ λ ≤ λ±. If d ∈ S1,

the divisor `λd corresponds to ϕ(`λd) = (`− 1)`λ−1ϕ(d) elements. Else, if d 6= 4, `λd corresponds

to ϕ(`λd)/2 = (`−1)`λ−1ϕ(d)/2 elements. In both of these cases, we see that there are (`−1)`λ−1

elements of preperiod λ for each cd(`)-periodic value. The divisor d = 4 corresponds to the special

values ±2
√
−1 ∈ Fq; all but one of the preimages of ±2

√
−1 have multiplicity 2. It follows that

the indegree of every vertex in the graph, counting multiplicity, is ` if and only if the vertex

is not of maximal preperiod in its component. The maximal preperiod for each component is

determined by the divisor d, and is given in the table in Figure 3. In summary,

Theorem 3.1.8. Let cd(`), S1, S2, and S3 be defined as above. The graph of D` over Fq contains

• ϕ(d)/cd(`) cycles of length cd(`) for each divisor d ∈ S1; the height of the trees attached to

these cycles is λ−,

• ϕ(d)/(2cd(`)) cycles of length cd(`) for each divisor d ∈ S2 \ {4}; the height of the trees

attached to these cycles is λ−,

• ϕ(d)/(2cd(`)) cycles of length cd(`) for each divisor d ∈ S3 \ {4}; the height of the trees

attached to these cycles is λ+,

• 2 periodic elements of period c4(`) if 4 ∈ S2 ∪ S3; the height of the trees attached to these

periodic values is max{λ−, λ+}.

Divisor # elements in Fq Period Maximal preperiod

d ∈ S1 ϕ(d) cd(`) λ−

d ∈ S2 \ {4} ϕ(d)/2 cd(`) λ−

d ∈ S3 \ {4} ϕ(d)/2 cd(`) λ+

d = 4 ∈ S2 ∪ S3 2 cd(`) max{λ−, λ+}

Figure 3: Periodic elements categorized by divisor.

3.1.4 The graph G(γ, q)

Let ` be an odd prime, ζ be a primitive `-th root of unity, and ζ+ = ζ + ζ−1. Since γ is a

rational map, we work over P1(Fq) := Fq ∪ {∞}.
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Proposition 3.1.9. Fix a representative ζ in a fixed algebraic closure Fq. For a ∈ P1(Fq) \

{ζ, ζ−1}, let αa = (a−ζ)/(a−ζ−1) ∈ Fq(ζ)×, and write ord(αa,Fq(ζ)×) = `λd, where gcd(`, ω) =

1. Then a is λ-preperiodic, and γλ(a) is ord(`, (Z/dZ)×))-periodic.

Proof. Suppose a ∈ Fq is m-preperiodic and ϕm(a) is n-periodic. Then

0 = ϕm+n(a)− ϕm(a)

=
ζ−1(x− ζ)`

m+n − ζ(a− ζ−1)`
m+n

(a− ζ)`m+n − (a− ζ−1)`m+n − ζ−1(a− ζ)`
m − ζ(a− ζ−1)`

m

(a− ζ)`m − (a− ζ−1)`m
,

which simplifies to

(ζ − ζ−1)
[
(a− ζ)(a− ζ−1)

]`m (
(a− ζ)`

m(`n−1) − (a− ζ−1)`
m(`n−1)

)
= 0.

Since a 6∈ {ζ, ζ−1}, we conclude that(
a− ζ
a− ζ−1

)`m(`n−1)

= 1.

By the minimality of m and n, it follows that m = ν`(ordα) and n = cd(`).

We are now able to describe the orbits of every element of P1(Fq) := Fq ∪ {∞}.

Theorem 3.1.10. Let Fq be a finite field of characteristic p 6= ` containing ζ, a primitive `-th

root of unity. Write q − 1 = `λω. The graph of γ over P1(Fq) contains

• two fixed points, ζ and ζ−1,

• ϕ(d) periodic values of period ord(`, (Z/dZ)×) for each divisor d of ω,

• ω(`− 1)`k−1 values of preperiod k for each 1 ≤ k ≤ λ.

Proof. The transformation x 7→ x−ζ
x−ζ−1 is a homomorphism of P1(Fq), and in particular {αx : x ∈

P1(Fq) \ {ζ, ζ−1}} = F×q , which is a cyclic group of order q − 1. The result now follows from

Proposition 3.1.9 and the theory of cyclic groups.

Example 3.1.11. Consider the action of ϕ(x; 5) acting on P1(F31). Fix 2 as our representative

for a primitive 5-th root of unity so that

ϕ(x; 5) =
1
2 (x− 2)5 − 2(x− 1

2 )5

(x− 2)5 − (x− 1
2 )5

∈ F31[x].

By Theorem 3.1.10 the cycle structure is determined by the divisors of 30 as follows.
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Divisor of 30 Number of elements Period Preperiod

d ϕ(d) ord(`, (Z/dZ)×) if gcd(`, d) = 1 ν`(d)

1 1 1 0

5 4 - 1

2 1 1 0

10 4 - 1

3 2 2 0

15 8 - 1

6 2 2 0

30 8 - 1

The graph of γ(x; 5) over P1(F31):
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Example 3.1.12. Consider the map γ(x; 3) over P1(F127), and take 19 as our representative for

a primitive cube root of unity. According to Theorem 3.1.10, the cycle structure is as follows.
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Divisor of 126 Number of elements Period Preperiod

d ϕ(d) ord(`, (Z/dZ)×) if gcd(`, d) = 1 ν`(d)

1 1 1 0

3 2 - 1

9 6 - 2

2 1 1 0

6 2 - 1

18 6 - 2

7 6 6 0

21 12 - 1

63 36 - 2

14 6 6 0

42 12 - 1

126 36 - 2

The graph of γ(x; 3) over P1(F127):

24



3.2 Weights

We now turn to the factorization of our maps modulo primes using the graphs described in

the previous section. The key observation is that a ∈ Fq is a root of fn(x) − t if and only if

there is a path of length n from a to t. Thus one way to recognize the roots of fn(x) − t is to

determine the smallest q for which the graph of f over Fq contains all the roots of fn(x)− t. It

is possible that the various roots of fn(x) − t are contained different subfields of Fq, so as we

construct these graphs, we must keep track of the degree of the extension each root generates.

To avoid any confusion between the graph theoretic and number theoretic notions of ‘degree’, we

use the term weight to denote the exact degree of a vertex over Fp. That is, for a ∈ G(f, q),

weight(a) = [Fp(a) : Fp].

In order to ensure that the graph of f over Fq contains paths of length n terminating at

t, we must look for a graph that contains preperiodic elements with preperiod equal to n plus

the preperiod of t. From the previous section, we know that the preperiod of an element is

determined by the `-adic valuation of q±1, depending on the map. Thus this question is reduced

to understanding the `-adic valuation of pn ± 1 as n varies.

For any prime p different than `, let µ− be the minimal positive integer for which pµ
− ≡ 1

(mod `), and let µ+ be the minimal positive integer for which pµ
+ ≡ −1 (mod `), if it exists.

Otherwise, set µ+ =∞.

Lemma 3.2.1. We have

ν`(p
n − 1) =


ν`(p

µ− − 1) + ν`(n) if µ− | n

0 otherwise;

(3.1)

ν`(p
n + 1) =


ν`(p

µ+

+ 1) + ν`(n) if µ+ | n

0 otherwise.

(3.2)

Proof. For (3.1), pn ≡ 1 (mod `) if and only if µ− | n. Assume µ− | n and write n = kµ−. Then

pn − 1 = pkµ
−
− 1 = (pµ

−
− 1)

(
(pµ

−
)k−1 + (pµ

−
)k−2 + · · ·+ 1

)
,

thus

ν`(p
n − 1) = ν`(p

µ−
− 1) + ν`

(
(pµ

−
)k−1 + (pµ

−
)k−2 + · · ·+ 1

)
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= ν`(p
µ−
− 1) + ν`(k) = ν`(p

µ−
− 1) + ν`(kµ

−) = ν`(p
µ−
− 1) + ν`(n).

For (3.2), µ+ exists only if the order of p in F×` is even. If the order of p is even, then pn ≡ −1

(mod `) if and only if µ+ | n. In fact, n must be an odd multiple of µ+ since the order of p is

2µ+. Write n = kµ+, where k is an odd integer. Then

pn + 1 = (pµ
+

+ 1)
(

(pµ
+

)k−1 − (pµ
+

)k−2 + (pµ
+

)k−3 − · · ·+ 1
)
.

It follows form the same argument as above that ν`(p
n + 1) = ν`(p

µ+

+ 1) + ν`(n).

This lemma tells us that, initially, there is a jump in preperiod that is dictated by the `-adic

valuation of pµ
− − 1 and pµ

+

+ 1. Afterwards, the maximum preperiod can only be increased by

increasing the degree of the extension by `. Thus we have the following correspondence between

the weight and preperiod of the vertices in the graphs.

Proposition 3.2.2. Consider the components of G(P, q) that contain elements of Fp. The weights

of elements in these components is given by

Components of G(P, q) corresponding to divisors

of pµ
− − 1

Preperiod ρ Weight

ρ = 0 1

1 ≤ ρ ≤ ν`(pλ
− − 1) µ−

ρ = ν`(p
λ− − 1) + k `kµ−

Proof. The result follows from Theorem 3.1.2 and Lemma 3.2.1.

Proposition 3.2.3. Consider the components of G(T, q) that contain elements of Fp. The weights

of elements in these components is given by

If µ− < µ+

Components of G(T, q)

corresponding to divisors of

pµ
− − 1

Components of G(T, q)

corresponding to divisors of

pµ
−

+ 1

Preperiod ρ Weight Weight

ρ = 0 1 1

1 ≤ ρ ≤ ν`(pλ
− − 1) µ− 2µ−

ρ = ν`(p
λ− − 1) + k `kµ− 2`kµ−
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If µ+ < µ−

Components of G(T, q)

corresponding to divisors of

pµ
+

+ 1

Components of G(T, q)

corresponding to divisors of

pµ
+ − 1

Preperiod ρ Weight Weight

ρ = 0 1 1

1 ≤ ρ ≤ ν`(pλ
+

+ 1) µ+ 2µ+

ρ = ν`(p
λ+

+ 1) + k `kµ+ 2`kµ+

Proof. The result follows from Theorem 3.1.4 and Lemma 3.2.1.

Example 3.2.4. Returning to the previous example where ` = 3 and p = 53, we have µ+ = 1

and µ− = 2. As we saw in Figure 2, the cycles corresponding to divisors of 54 have trees of height

3, and the cycles corresponding to divisors of 52 have trees of height 0. Over the finite field of

order 5318, all components have trees of height 5. A table of weights is given in Figure 4. Also

see Figure 5.

Preperiod
Weights of elements in

components corresponding to
divisors of 54

Weights of elements in
components corresponding to

divisors of 52

0 1 1
1 1 2
2 1 2
3 1 2
4 3 6
5 9 18

Figure 4: Table of weights for G(T3, 5318).

Proposition 3.2.5. Consider the components of G(D, q) that contain elements of Fp. The weights

of elements in these components is given by

If µ− < µ+

Components of G(D, q)

corresponding to divisors of

pµ
− − 1

Components of G(D, q)

corresponding to divisors of

2(pµ
−

+ 1)

Preperiod ρ Weight Weight

ρ = 0 1 1

1 ≤ ρ ≤ ν`(λ− − 1) µ− 2µ−

ρ = ν`(λ
− − 1) + k `kµ− 2`kµ−
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2
00

F5

F53

F59

F52

F56

F518

Figure 5: Selected components of G(T3, 5318) colored by weight.

If µ+ < µ−

Components of G(D, q)

corresponding to divisors of

pµ
+ − 1

Components of G(D, q)

corresponding to divisors of

2(pµ
+

+ 1)

Preperiod ρ Weight Weight

ρ = 0 1 1

1 ≤ ρ ≤ ν`(λ+ + 1) 2µ+ µ+

ρ = ν`(λ
+ + 1) + k 2`kµ+ `kµ+

Proof. The result follows from Theorem 3.1.8 and Lemma 3.2.1.
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Example 3.2.6. We consider the graphs of D3 over finite fields of characteristic 7. Here 71−1 ≡ 0

(mod 7), so µ− = 3 and µ+ = ∞. Recall that the structure of the components of the graph of

determined by the divisors of q − 1 and the divisors of 2(q + 1) that do not divide q + 1. Each

divisor d corresponds to ϕ(d)/2 elements (with exception to d = 4). Each odd divisor d is in

correspondence with the divisor 2d, so together, the pair of divisors (d, 2d) corresponds to ϕ(d)

elements. The preperiod of each element is the `-valuation of its divisor, and each periodic element

has period cd(`). The divisors corresponding to the elements of F7 are shown in Figure 6. The

components of G(D3, 7
18) containing elements of F7 are shown in Figure ??.

Divisors of D−7 # of elements of F7 Period Preperiod Weight

1, 2 1 1 0 1
3, 6 2 - 1 1

Divisors of D+
7

16 4 4 0 1

Figure 6: Components of G(D3, 7).

3.3 Decomposition of primes.

We now use Theorem 3.0.3 in conjunction with the theory of the graphs developed in the

previous section to describe the decomposition of primes in our iterated extensions.

3.3.1 Decomposition in radical extensions

Theorem 3.3.1. Let ` be an odd prime and let p be a prime different from `. Let µ =

ord(p, (Z/`Z)×), let mp = ν`(p
µ − 1), and let ρ be the preperiod of t ∈ Fp. The factorization of

Pn` (x)− t modulo p is as follows.

1. If t ≡ 0 (mod p), then Pn` (x)− t ≡ x`n (mod p).

2. If t 6≡ 0 (mod p) is periodic (ρ = 0), and n ≤ mp, then Pn` (x)− t factors into

(a) one factor of degree 1, and

(b)
∑n
k=1(`− 1)`k−1/µ factors of degree µ.

3. If t 6≡ 0 (mod p) is periodic (ρ = 0), and n > mp, then Pn` (x)− t factors into
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(a) one factor of degree 1,

(b)
∑mp

k=1(`− 1)`k−1/µ factors of degree µ, and

(c) (`− 1)`mp−1/µ factors of degree µ`k for each 1 ≤ k ≤ n−mp.

4. If t is strictly preperiodic (ρ > 0) and n ≤ mp − ρ, then Pn` (x) − t splits completely into

factors of degree 1.

5. If t is strictly preperiodic (ρ > 0) and n > mp−ρ, then Pn` (x)− t factors into `mp−ρ factors

of degree `n−mp+ρ.

Proof. The result is essentially a direct consequence of Proposition 3.2.2. Again, the roots of

Pn` (x) − t are precisely the elements in the graph whose distance from t is n. These roots will

lie at varying preperiods, and from Proposition 3.2.2, we known their weights. These weights

correspond to the degrees of the irreducible factors of Pn` (x)− t. If t is preperiodic, then all the

roots of Pn` (x)− t are ρ+n-preperiodic, hence all of the irreducible factors of Pn` (x)− t have the

same degree. If t is periodic, then Pn` (x)− t has roots at every preperiod up to n, and the degrees

of the irreducible factors of Pn` (x)− t will vary.

From this factorization result, we can determine the decomposition of primes in the radical

extensions. Let ` be an odd prime, and let t be an integer for which Pn` (x)− t is irreducible for

each n ≥ 1. Fix an iterated tower generated by preimages of t, and let Kn denote the field at the

n-th level. That is, Kn = Q(θn) where θn is a root of Pn` (x)− t.

Corollary 3.3.2. Let p be a prime that does not divide the discriminant of Pn` (x)− t, and let ρ

denote the preperiod of t ∈ Fp. The decomposition of pZ is as follows.

1. If ρ > 0, then pZ splits in K1, . . . ,Kmp−ρ and is totally inert afterwards.

2. If ρ = 0, then there is at least one prime of degree 1 above pZ at every level.

Proof. This result follows directly from Theorem 3.0.3 and Theorem 3.3.1.

3.3.2 Decomposition in Chebyshev radical extensions

For the Chebyshev polynomials, the weights depend on the cycle type. We use the following

notation to describe the factorizations. Let ` be an odd prime and let p be a prime different from
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`. Let µ be the minimal integer for which pµ ≡ ±1 (mod `). Let D1, D2 ∈ {pµ − 1, pµ + 1} be

the number with the larger and smaller `-valuation, respectively.

Theorem 3.3.3. Let ` be an odd prime, and let p be a prime different from `. Let µ,D1, and

D2 as just defined. Put mp = ν`(D1) and let ρ denote the preperiod of t ∈ Fp. The factorization

of Tn` (x)− t modulo p is as follows.

1. If ρ > 0, then Tn` (x)− t factors into

(a) `n factors of degree 1 if 1 ≤ n ≤ mp − ρ, or

(b) `v−ρ factors of degree `n−mp+ρ if n > mp − ρ.

In particular, if ρ = mp, then Tn` (x)− t is irreducible modulo p.

2. If t ∈ {−2, 2}, then Tn` (x)− t factors into

(a) one degree 1 factor, and

(b)
∑n−1
k=0

`−1
2µ `

k additional factors of degree µ if 1 ≤ n ≤ mp, and

(c) `−1
2µ `

mp−1 additional factors of degree µ`k for each k ∈ {1, 2, . . . , n−mp}.

Each of the factors from parts (b) and (c) have multiplicity 2.

3. If t 6∈ {−2, 2} is periodic and t corresponds to a divisor of D1, then Tn` (x)− t factors into

(a) one degree 1 factor, and

(b)
∑n−1
k=0

`−1
µ `k additional factors of degree µ if 1 ≤ n ≤ mp, and

(c) `−1
µ `mp−1 additional factors of degree µ`k for each k ∈ {1, 2, . . . , n−mp}.

4. If t 6∈ {−2, 2} is periodic and corresponds to a divisor of D2, then Tn` (x)− t factors into

(a) one degree 1 factor, and

(b)
∑n−1
k=0

`−1
2µ `

k additional factors of degree 2µ if 1 ≤ n ≤ mp, and

(c) `−1
2µ `

mp−1 additional factors of degree 2µ`k for each k ∈ {1, 2, . . . , n−mp}.

Proof. The idea of the proof is the same as in Theorem 3.3.1: the roots of Tn` (x) − t modulo p

are precisely the elements whose distance from t is n. The weights of these elements are derived

from Proposition 3.2.3, and these weights give the degrees of the irreducible factors.
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Consider the tower generated by the iterates Tn` (x) − t, and let Kn denote the field at the

n-th level of the tower.

Corollary 3.3.4. Let ` be an odd prime, let p be a prime that does not divide the discriminant

of Tn` (x)− t, and let ρ denote the preperiod of t ∈ Fp. Then pZ decomposes as follows.

1. If ρ > 0, then p splits in K1, . . . ,Kmp−ρ and is totally inert afterwards.

2. If ρ = 0, then there is at least one prime of degree 1 above p at every level.

Proof. The result follows from Theorem 3.0.3 and Theorem 3.3.3.

In our introduction, we noted the special case Tn` (x)−2 for its connection to cyclotomic fields.

Namely, the iterated towers are Kn = Q(ζ`n + ζ−1
`n ), which are the totally real subfields of the

cyclotomic fields. We show that our result regarding the decomposition of primes coincides with

cyclotomic reciprocity in these cases.

Example 3.3.5 (Cyclotomic Z` extension). Let ` be an odd prime, then the iterated extension

generated by the iterates Tn` (x)−2 is the cyclotomic Z` extension of Q. If follows that a prime pZ

splits completely at the n-th level in the tower if and only if Tn` (x)− 2 splits completely modulo

p. By Theorem 3.3.3, the polynomial Tn` (x)− 2 splits completely into linear factors if and only if

mp ≥ n. Thus pZ splits completely in Kn if and only if p ≡ ±1 (mod `n).

We note that Theorem 3.3.1(5) and Theorem 3.3.1(1) give a rather interesting irreducibility

criterion. Namely, if t attains the maximal preperiod of elements in G(P, p), (resp. G(T, p)), and

t is strictly preperiodic, then Pn` (x)− t (resp. Tn` (x)− t) has only one irreducible factor. In other

words, Pn` (x)− t (resp. Tn` (x)− t) is irreducible modulo p for each n ≥ 1.

Corollary 3.3.6. Let ` be an odd prime.

1. Pn` (x)− t is irreducible for every n ≥ 1 if there exists a prime p ≡ 1 (mod `) such that t is

maximally preperiodic in G(P, p).

2. Tn` (x)− t is irreducible for every n ≥ 1 if there exists a prime p ≡ ±1 (mod `) such that t

is maximally preperiodic in G(T, p).

In particular, this shows that for a fixed prime `, there are infinitely many values t such that

every iterate Pn` (x) − t (resp. Tn` (x) − t) is irreducible. By Dirichlet’s theorem on arithmetic

32



progressions, there are infinitely many primes p satisfying the congruence condition modulo `.

For any one of these primes, Theorem 3.1.2 and Theorem 3.1.2 guarantee a large number of

equivalence classes modulo p that generate irreducible families.

A similar factorization result for D` modulo primes can easily be obtained from Theorem 3.1.8

and Proposition 3.2.5, from which a decomposition result can be obtained by applying Theorem

3.0.3.

Likewise, a factorization result may be obtained for the generalized Rikuna polynomials. How-

ever, since the polynomial rn(x, t; `) is defined over Q(ζ+) (where ζ+ = ζ+ζ−1 and ζ is a primitive

`-th root of unity), a careful analysis is required to understand how each prime above pZ in OQ(ζ+)

decomposes in the iterated extensions over Q(ζ+). We leave this analysis for a future project.

3.4 Discriminant formulæ

We point out that the decomposition result, Theorem 3.0.3, applies to all but finitely many

primes. Specifically, it does not address the primes that divide ind(f). As we know from Equation

(1.1), we know that ind(f) divides disc(f). Thus by omitting the primes dividing disc(f)—as we

did in Corollaries 3.3.2 and 3.3.4—we avoid any trouble. In this section, give the discriminant

formulas for the power, Chebyshev, Dickson, and generalized Rikuna maps so as to identify the

potentially troublesome primes. In the next section, we begin to to address the index calculations,

and these discriminants will be necessary for determining formulas for the corresponding number

fields.

It is relatively easy to verify that the power maps, Chebyshev polynomials, Dickson-(−1)

polynomial of odd degree, and generalized Rikuna polynomials of prime power degree are post-

critically finite. Thus we may apply [2, Proposition 3.2] (see Proposition 1.1.1), and in the case

of the generalized Rikuna maps, [9, Proposition 1].

Proposition 3.4.1. Let ` be an odd prime. We have

1. disc(Pn` (x)− t) = ±`n`nt`n−1,

2. disc(Tn` (x)− t) = ±`n`n(4− t2)(`n−1)/2,

3. disc(D`n(x)− t) = ±`n`n(t2 + 4)(`n−1)/2.
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4. disc rn(x, t; `) = ±`n`n(ζ−ζ−1)(`n−2)(`n−1)(t2−(ζ+ζ−1)t+1)`
n−1, where ζ is a primitive

`-th root of unity.

Proof. The discriminant of Pn` (x) − t is well known and can easily be derived from Proposition

1.1.1. This map has one critical point (x = 0), and d
dxP

n
` (x) = `nx`

n−1, henceM0(Pn` ) = `n− 1.

The Chebyshev polynomial has two distinct critical values: 2 and −2. It is easy to verify that

the critical points of Tn` (x) are at 2 cos(kπ/`n) for k = 1, . . . , `n − 1, where half of these critical

values map to −2 and the other half to 2. Hence M2(Tn` ) =M−2(Tn` ) = (`n − 1)/2.

The discriminant of the Dickson polynomials may be computed similarly; its critical values

are ±
√
−4. The discriminant for the generalized Rikuna polynomial appears in [5, p. 9].
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C H A P T E R 4

PRELIMINARIES FOR INDEX COMPUTATIONS

4.1 Dedekind’s criterion

We now outline the computational tools that we will use throughout this paper beginning

with Dedekind’s criterion. The version of Dedekind’s criterion stated here is a generalized version

where the base field is an arbitrary number field. This theorem appears in Cohen [8, Theorem

2.4.8]. The classical result with base field Q can be found in Cohen [7, Theorem 6.1.4].

Let denote reduction modulo a prime ideal.

Theorem 4.1.1. Let L/K be a relative extension, with L = K(θ) and θ an algebraic integer with

minimal polynomial Ψ(x) ∈ K[x]. Let p be a prime ideal of OK , and let β be a uniformizer of

p−1, so that β ∈ OK \ p−1. Let Ψ(x) =
∏

1≤i≤r ψi(x)ei be the factorization of Ψ(x) in (OK/p)[x]

with the ψi monic. Set

g(x) =
∏

1≤i≤r

ψi(x), h(x) =
∏

1≤i≤r

ψi(x)ei−1, and f(x) = β(g(x)h(x)−Ψ(x)).

The ring OK [θ] ⊆ OL is p-maximal if and only if gcd(f, g, h) = 1 in (OK/p)[x].

Remark 4.1.2. Dedekind’s result is independent of the choice of lifts and the choice of uniformizer.

Moreover, an order is p-maximal if the discriminant of the order is not contained in p.

As we mentioned previously, Dedekind’s critterion is powerless once gcd(f, g, h) 6= 1, and we

must turn to other methods.

4.2 Montes algorithm

In order to compute the index ind(f) and prove Theorem 1.2.2 and Theorem 1.2.3, we apply

the Montes algorithm, which is explained in a series of papers [16, 17, 18]. This algorithm employs
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a refined variation of the Newton polygon, called the φ-Newton polygon, which captures arithmetic

data attached to each irreducible factor φ of f . We begin this section by outlining their methods

and terminology following the presentation of El Fadil, Montes, and Nart [10]. As with the

usual Newton polygon, the φ-Newton polygon requires knowledge of valuations of coefficients of

a particular polynomial in φ. We follow up this section with some useful results for computing

the p-adic valuations of certain numbers.

We fix the following notation. Let p be a prime and let φ(x) ∈ Z[x] be a monic polynomial

whose reduction modulo p is irreducible. We denote by Fφ the finite field Z[x]/(p, φ), and by

: Z[x]→ Fp[x], red: Z[x]→ Fφ

the respective homomorphisms of reduction modulo p and modulo (p, φ). We extend the usual

p-adic valuation to polynomials by

νp(c0 + · · ·+ crx
r) := min

0≤i≤r
{νp(ci)}.

Any f(x) ∈ Z[x] admits a unique φ-adic development :

f(x) = a0(x) + a1(x)φ(x) + · · ·+ ar(x)φ(x)r,

with ai(x) ∈ Z[x] and deg(ai) < deg(φ). To each coefficient ai(x) we attach the p-adic value

ui = νp(ai(x)) ∈ Z ∪ {∞}

and the point of the plane (i, ui), if ui <∞.

The φ-Newton polygon of f(x) is the lower convex envelope of the set of points (i, ui), ui <∞,

in the Euclidean plane. We denote this open polygon by Nφ(f). The φ-Newton polygon is the

union of different adjacent sides S1, . . . , Sg with increasing slopes λ1 < · · · < λg. We shall write

Nφ(f) = S1 + · · ·+ Sg. The end points of the sides are called the vertices of the polygon.

The polygon determined by the sides of negative slope of Nφ(f) is called the principal φ-

polygon of f(x) and will be denoted by N−φ (f). The length, of N−φ (f), denoted `(N−φ (f)), is

always equal to the highest exponent a such that φ(x)a divides f(x) in Fp[x]. See Figure 7.

From now on, any reference to the φ-Newton polygon of f(x) will be taken to mean the

principal φ-polygon, and for simplicity, we will write Nφ(f) := N−φ (f).

A simple script can be used to obtain the φ-development and polygon. For example, the

following code is written for PARI [39].
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Nφ N−φ

Figure 7: A φ-Newton polygon (right) and its principal part (left).

// returns the phi-development of f as a polynomial in y.

phidev(f,phi) = {

local(V);

f = Pol(Vec(f),y);

phi = Pol(Vec(phi),y);

V = vector(floor(poldegree(f)/poldegree(phi))+1,\

i,(lift(Mod(f,phi^i))-lift(Mod(f,phi^(i-1))))/phi^(i-1));

sum(i=0,length(V)-1,V[i+1]*x^i);

}

// returns the phi-Newton polygon of f at the prime p.

phiPoly(f,phi,p) = {

newtonpoly(phidev(f,phi),p);

}

We attach to any abscissa 0 ≤ i ≤ `(Nφ) the following residual coefficient ci ∈ Fp[x]/(φ).

ci =


0 if (i, ui) lies strictly above Nφ or ui =∞,

red(ai(x)/pui) if (i, ui) lies on Nφ.

Note that ci is always nonzero in the latter case, because deg(ai(x)) < deg(φ).

Let S be one of the sides of Nφ, with slope λ = −h/e, where e and h are relatively prime,

positive integers. The length of S is the length, `(S), of the projection of S to the horizontal axis,

the degree of S is d(S) := `(S)/e, the ramification index of S is e(S) := e.

Let s be the initial abscissa of S, and let d := d(S). We define the residual polynomial attached

37



to S (or to λ) to be the polynomial

Rλ(f)(y) := cs + cs+ey + · · ·+ cs+(d−1)ey
d−1 + cs+dey

d ∈ Fφ[y].

Example 4.2.1. Consider the irreducible polynomial f(x) = x4 + 23x3 + 12x2 + 11x+ 7, which

factors over F3[x] into f(x) ≡ (x+ 2)4 (mod 3). Set φ(x) = x+ 2, then the φ-development of f is

f(x) = −135 + 207(x+ 2)− 102(x+ 2)2 + 15(x+ 2)3 + (x+ 2)4.

The φ-Newton polygon is two-sided: one side of slope −1 and length 2, the other side of slope

−1/2 and length 1. The residual coefficients are c0 = 1, c1 = −1, c2 = −1, c3 = 0, and c4 = 1,

and the residual polynomials attached to the sides S1 and S2 are R−1(f)(y) = −y2 + 1 and

R−1/2(f)(y) = y − 1, respectively. See Figure 8.

1

2

3

1 2 3 4

S1

S2

+

Figure 8: The φ-polygon for f(x) = x4 + 23x3 + 12x2 + 11x+ 7 and φ(x) = x+ 2.

Let φ(x) ∈ Z[x] be a monic polynomial, irreducible modulo p. We say that f(x) is φ-regular

if for every side Nφ(f), the residual polynomial attached to the side is separable. For any monic

polynomials φ1(x), . . . , φr(x) ∈ Z[x] whose reduction modulo p are the different irreducible factors

of f(x) ∈ Fp[x]. We say that f(x) is p-regular with respect to this choice if f(x) is φi-regular for

every 1 ≤ i ≤ r.

The φ-index of f(x) is deg φ times the number of points with integral coordinates that lie

below or on the polygon Nφ(f), strictly above the horizontal axis, and strictly to the right of the

vertical axis. We denote this number by indφ(f).

Let θ be an algebraic integer with minimal polynomial f(x) ∈ Z[x], and let ind(f) = [OQ(θ) : Z[θ]].

We denote by indp(f) the p-adic valuation of the index of the polynomial f(x):

indp(f) := νp(ind(f)).

Theorem 4.2.2. Theorem of the index:

indp(f) ≥ indφ1
(f) + · · ·+ indφr

(f),

38



and equality holds if f(x) is p-regular.

Proof. See [18, Section 4.4].

Example 4.2.1 (continued). Returning to the previous example with f(x) = x4 + 23x3 + 12x2 +

11x + 7, both of the residual polynomials R−1 and R−1/2 are separable over F3[x]. Hence f is

3-regular, and by Theorem 4.2.2, we have ind3(f) = indφ(f) = 3, since deg φ = 1 and there are

three points with integral coordinates on or below the polygon. This result is verified by PARI.

4.3 Valuations

For any prime p and any integer a, the p-adic expansion of a is

a = a0p
0 + a1p

1 + a2p
2 + · · ·+ arp

r

with 0 ≤ ai < p. We define the function

σp(a) =

∞∑
i=0

ai.

Lemma 4.3.1 (Kummer). Let p be a prime, and let σp be the function defined above.

1. Let a and b be integers written in base p. The number of “carries” performed when summing

a+ b in base p is

#carries =
σp(a) + σp(b)− σp(a+ b)

p− 1
.

2. νp(a) =
1 + σp(a− 1)− σp(a)

p− 1
.

3. νp(a!) =
n− σp(a)

p− 1
.

4. νp

(
a+ b

b

)
= #carries in a+ b summed in base p.

Though these are well-known, for the convenience of the reader, we provide proofs, as they

are short.

Proof.
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1. Write a and b in their base p expansions: a =
∑
aip

i and b =
∑
bip

i. If ever ci := ai+bi ≥ p,

then perform a “carry”: subtract p from ci and add 1 to ci+1, repeating until all ci are less

than p. These ci are the coefficients for the base p expansion of a+ b: a+ b =
∑
cip

i. Each

carry reduces the sum σp(a) + σp(b) by p− 1, and the result follows.

2. This follows immediately from part (1). If k is the smallest integer for which a − 1 ≡ −1

(mod pk), then the sum (a− 1) + 1 requires k carries in base p.

3. By part (2), we have the telescoping sum

νp(a!) =

a∑
i=1

νp(i) =

a∑
i=1

1 + σp(i− 1)− σp(i)
p− 1

=
a− σp(a)

p− 1
.

4. By part (3)

νp

(
a+ b

b

)
= νp

(
(a+ b)!

a!b!

)
= νp((a+ b)!)− νp(a!)− ν(b!)

=
a+ b− σp(a+ b)

p− 1
+
a− σp(a)

p− 1
− b− σp(b)

p− 1

=
σp(a) + σp(b)− σp(a+ b)

p− 1
.

The result follows from part (1).

Another important tool for determining whether a binomial coefficient is divisible by a prime

is the following result of Lucas.

Lemma 4.3.2. Let p be a prime, and let 0 ≤ m ≤ n with n =
∑r
j=0 njp

j and m =
∑r
j=0mjp

j.

Then (
n

m

)
≡

r∏
j=0

(
nj
mj

)
(mod p).

Proof. See [27, Section 3].

The Montes algorithm requires that we count the number of lattice points below the polygon.

Pick’s Theorem is a convenient tool for this.

Lemma 4.3.3 (Pick’s theorem). The area A of a simple polygon whose vertices lie on a lattice

is given by

A = I +B/2− 1,

40



where I is the number of lattice points on the interior of the polygon, and B is the number of

lattice points on the boundary of the polygon.

Proof. See [31].
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C H A P T E R 5

RADICAL EXTENSIONS

As motivation for the coming sections, we briefly discuss the extensions generated by the

polynomial Pn` (x) − t. We remind the reader that ` is an odd prime, and t ∈ Z is chosen so

the polynomial is irreducible for each n ≥ 1. The radical polynomials and the fields that they

generate are well-studied as they generate Kummer extensions (see, for example [21]), and they

will serve as a model for our analysis of other families of maps.

Using Dedekind’s criterion, we are able to identify large families of monogenic towers by

showing ind(Pn` (x)− t) = 1. In order to identify towers of monogenic fields, we find that we only

need to check to see if the first level of the tower is monogenic. This idea of only having to check

for monogeneity at the first level will carry over to the other families.

5.1 Monogenic towers

Recall from Proposition 3.4.1 that disc(Pn` (x) − t) = `n`
n

t`
n−1. Thus in order to compute

ind(Pn` (x) − t), we are only concerned with the primes ` and the primes that divide t. The

following results are elementary.

Lemma 5.1.1. If a divides t, then Pn` (x) ≡ x`n (mod a). Moreover, Pn` (x) ≡ (x− t)`n (mod `).

Lemma 5.1.2. P`(a) ≡ P`(b) (mod `2) if and only if a ≡ b (mod `).

Proof. If a` ≡ b` (mod `2), then a` ≡ b` (mod `), whence a ≡ b (mod `). For the converse, it

suffices to show that P`(a) ≡ P`(r) (mod `2), where a = `q+r and 0 ≤ r < `. This follows easily:

a` = (`q + r)` ≡ r` (mod `2).

Lemma 5.1.3. Pn` (t) ≡ t (mod `2) if and only if P`(t) ≡ t (mod `2).
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Proof. Since Pn−1
` (t) ≡ t (mod `), it follows from Lemma 5.1.2 that Pn` (t) ≡ P`(t) (mod `2).

We are now in position to apply Dedekind’s criterion (Theorem 4.1.1). Let Kn denote a radical

extension at the n-th level. That is, Kn = Q(θn), where θn is a root of Pn` (x)− t.

Theorem 5.1.4. If ` is an odd prime, t is square-free, and P`(t) − t 6≡ 0 (mod `2), then Kn is

monogenic as disc(Pn` (x)− t) = disc(Kn).

Proof. We begin by showing that ` does not divide ind(Pn` (x)− t). Set

g(x) = x− t, h(x) = (x− t)`
n−1, and f(x) =

(x− t)`n − (x`
n − t)

`
.

By Theorem 4.1.1, the index ind(Pn` (x) − t) is divisible by ` if and only if t is a root of f(x)

modulo `. Note that f(t) = −(Pn` (t) − t)/`, and hence t is a root of f modulo ` if and only if

Pn` (t)− t ≡ 0 (mod `2). But by our assumption and Lemma 5.1.3, t cannot be a root of f modulo

`. Thus ` - ind(Pn` (x)− t).

Now for all other primes: let p be a prime dividing t. Set

g(x) = x, h(x) = x`
n−1, and f(x) =

x`
n − (x`

n − t)
p

.

Theorem 4.1.1 tells us that p divides the index if and only if 0 is a root of f modulo p. Here,

f(0) = t/p, hence 0 is a root of f modulo p if and only if t ≡ 0 (mod p2). However, our assumption

is that t is square-free, thus p - ind(Pn` (x)− t).

5.2 Index calculation

In the non-monogenic case, we can apply the Montes algorithm. In some cases, Theorem 4.2.2

renders the index calculation nearly trivial.

Proposition 5.2.1. Let p be a prime dividing t, and let v = νp(t). If gcd(`, v) = 1, then

indp(P
n
` (x)− t) =

(`n − 1)(v − 1)

2
.

Proof. Applying the Montes algorithm, we see from Lemma 5.1.1 that there is only one irreducible

factor of Pn` (x)− t modulo p: φ(x) = x. Hence Pn` (x)− t is the φ-development, and the φ-Newton

polygon is one-sided with vertices (0, v) and (`n, 0). If gcd(`, v) = 1, then the length of this side

is 1, hence Pn` is p-regular, and by the Theorem 4.2.2, the p-adic valuation of the index is the
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number of lattice points under the polygon, which we obtain using Lemma 4.3.3. The region

under the polygon is a triangle, and the only lattice points on the boundary are the lattice points

on the axes. Hence by Lemma 4.3.3,

indp(P
n) = I = A−B/2 + 1 =

`nv

2
− `n + v + 1

2
+ 1 =

`nv − `n − v + 1

2
=

(`n − 1)(v − 1)

2
.

Remark 5.2.2. If gcd(`n, v) > 1, the p-adic valuation of the index can be computed using Newton

polygons of higher order, which are explained in [16, 17, 18]. However, we will not address these

cases in this paper.

Theorem 5.2.3. Suppose t 6≡ 0 (mod `). Set v = ν`(P
n
` (t)− t). Then

ind`(P
n
` (x)− t) =

min{v−1,n}∑
i=1

`n−i.

Proof. By Lemma 5.1.1, we have Pn` (x) = x`
n − t ≡ (x − t)`n (mod `). Set φ(x) = x − t, then

the φ-development of Pn is

Pn` (x) = Pn` (φ(x) + t) = (φ(x) + t)`
n

− t = −t+

`n∑
k=0

(
`n

k

)
t`

n−kφ(x)k

= Pn` (t) +

`n∑
k=1

(
`n

k

)
t`

n−kφ(x)k.

Set ai =
(
`n

k

)
t`

n−k for 1 ≤ i ≤ `n. To construct the φ-Newton polygon, we must determine the

valuations of the ai’s. Since t 6≡ 0 (mod `), we have ν`(ai) = ν`
(
`n

k

)
.

Lemma 5.2.4. Suppose `m ≤ k < `m+1 for some m < n. Then ν`
(
`n

k

)
≥ n−m with equality if

k = `m.

Proof. Write k = `m + ε for some 0 ≤ ε < `m(`− 1). Then(
`n

k

)
=

(
`n

`m + ε

)
=

`n!

(`m + ε)!(`n − `m − ε)!
=

`n!

`m!(`n − `m)!

`m!ε!

(`m + ε)!

(`n − `m)!

(`n − `m − ε)!ε!

=

(
`n

`m

)(
`m + ε

ε

)−1(
`n − `m

ε

)
.

It is straightforward to verify that the sum (`n − `m) + `m requires n−m carries in base `, while

`m + ε requires no carries. Hence by Lemma 4.3.1

ν`

(
`n

k

)
= ν`

(
`n

`m

)
− ν`

(
`m + ε

ε

)
+ ν`

(
`n − `m

ε

)
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≥ ν`
(
`n

`m

)
− ν`

(
`m + ε

ε

)
= n−m.

Note that when ε = 0, we have equality throughout.

Returning to the proof of Theorem 5.2.3, it follows from Lemma 5.2.4 that the φ-Newton

polygon of Pn` is the lower convex hull of the set of points {(0, v)} ∪ {(i, n− i) : 1 ≤ i ≤ n}. Each

side of this polygon has length 1, hence Pn` is `-regular. The lattice points under this polygon

are arranged into rows whose lengths are decreasing powers of `, and the formula for ind`(P
n
` )

follows.
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C H A P T E R 6

CHEBYSHEV RADICAL EXTENSIONS

We now turn to the computation of the index ind(Tn` (x) − t). We remind the reader that `

is an odd prime, and t ∈ Z is chosen so that Tn` (x)− t is irreducible for each n ≥ 1. For ease of

notation, we set Φ(x) := Tn` (x)− t for the remainder of this section. This chapter closely follows

previous work of the author: [13].

Our first approach is to apply Dedekind’s criterion, Theorem 4.1.1, in order to identify con-

ditions on t that yield monogenic towers. We then carry out the Montes algorithm in the non-

monogenic case.

6.1 Monogenic number fields

In this section we give a proof of Theorem 1.2.1 based on Dedekind’s criterion. Dedekind’s

result gives local conditions for when a prime divides ind(Φ), and combined with the factorization

results from the previous section, we obtain conditions for when ind(Φ) = 1. The then prove a

proposition that will allow us to show that ind(Φ) = 1 if and only if ind(T`(x) − t) = 1. This

particular result also applies to the case ` = 2, thus our method gives an alternative proof of [2,

Proposition 6.2].

We highlight the pertinent factorization results from earlier in the paper.

Lemma 6.1.1. We have Φ(x) ≡ (x − t)`n (mod `). Moreover, if p is a prime different from `

such that t ≡ ±2 (mod p), then

Φ(x) ≡ (x− t)φ1(x)2 · · ·φr(x)2 (mod p),

where φ1, . . . , φr are distinct irreducible factors in Fp[x].
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Proof. These are special cases of Theorem 3.3.3.

We now prove a weak version of Theorem 1.2.1.

Theorem 6.1.2. Let K = Q(θ), where θ is a root of Φ. Then DΦ = ∆K if and only if Φ(t) 6≡ 0

(mod `2) and both t− 2 and t+ 2 are square-free.

Proof. By Proposition 3.4.1, we are only concerned with the prime ` and the primes dividing

t2 − 4. We first address the prime `. By Lemma 6.1.1, Φ(x) ≡ (x− t)`n (mod `), so we set

g(x) = x− t, h(x) = (x− t)`
n−1, and f(x) =

(x− t)`n − Φ(x)

`
.

Hence gcd(f, g, h) = 1 if and only if f(t) 6≡ 0 (mod `), and it follows from Theorem 4.1.1 that

` - ind(Ψ) if and only if Φ(t) 6≡ 0 (mod `2).

Now let p be a prime dividing t2− 4. By Lemma 6.1.1, we have Φ(x) ≡ (x− t)τ(x)2 (mod p),

for some separable polynomial τ ∈ Fp[x]. Set

g(x) = (x− t)τ(x), h(x) = τ(x), and f(x) =
(x− t)τ(x)2 − Φ(x)

p
.

In this case, gcd(f, g, h) = 1 if and only if the roots of τ are not roots of f modulo p. Let α be a

root of τ modulo p. Then

f(α) 6≡ 0 (mod p) if and only if Φ(α) 6≡ 0 (mod p2).

Note that

Φ(α) = Tn` (α)− t+ t− t = (α− t)τ(α)2 + t− t ≡ t− t (mod p2).

Since t ≡ ±2 (mod p), we conclude by Theorem 4.1.1 that

p - ind(Φ) if and only if t 6≡ ±2 (mod p2),

completing the proof.

In order to prove Theorem 1.2.1, we are left to show that the condition Φ(t) 6≡ 0 (mod `2)

in Theorem 6.1.2 is equivalent to the condition T`(t)− t 6≡ 0 (mod `2). The following result will

allow us to bridge this gap.
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Proposition 6.1.3. For any integers a and b,

T`(a) ≡ T`(b) (mod `2) if and only if a ≡ b (mod `).

Proof. Suppose that T`(a) ≡ T`(b) (mod `2). By Proposition 2.2.1 (1), T`(x) = x` + `g(x), where

g(x) is a polynomial of degree `− 2. Hence

T`(a) ≡ T`(b) (mod `2)⇒ a` + ` g(a) ≡ b` + ` g(b) (mod `2)

⇒ a` ≡ b` (mod `)

⇒ a ≡ b (mod `).

For the converse statement, let a ∈ Z and write a = q` + r such that 0 ≤ r < `. It suffices to

show that T`(a) ≡ T`(r) (mod `2). We have

T`(a) = T`(q`+ r) =

b`/2c∑
k=0

(−1)k
(`− k − 1)!

k!(`− 2k)!
`(q`+ r)`−2k

=

b`/2c∑
k=0

(−1)k
(`− k − 1)!

k!(`− 2k)!

`−2k∑
i=0

(
`− 2k

i

)
qi`i+1r`−2k−i

≡
b`/2c∑
k=0

(−1)k
(`− k − 1)!

k!(`− 2k)!
`r`−2k

≡ T`(r) (mod `2).

Proof of Theorem 1.2.1. By Lemma 6.1.1, we have Tn−1
` (t) ≡ t (mod `), so by Proposition

6.1.3,

Tn` (t) = T`(T
n−1
` (t)) ≡ T`(t) (mod `2).

Thus

Tn` (t) ≡ t (mod `2) if and only if T`(t) ≡ t (mod `2).

The result is now an immediate consequence of Theorem 6.1.2.

We conclude this section by identifying the equivalence classes for which T`(t) ≡ t (mod `2).

Corollary 6.1.4. T`(t) ≡ t (mod `2) if and only if T`(a) ≡ t (mod `2) for some a ∈ {0, 1, . . . , `−

1}.
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Proof. Suppose that T`(a) ≡ t (mod `2) for some a ∈ {0, . . . , `−1}. Then T`(a) ≡ t (mod `), and

by Lemma 6.1.1, a ≡ t (mod `). Now by Proposition 6.1.3, T`(a) ≡ T`(t) (mod `). The converse

statement is satisfied by setting a to be the representative of t modulo ` in {0, . . . , ` − 1}, then

applying Proposition 6.1.3.

In other words, ` | ind(Φ) if and only if the reduction of t modulo `2 has a representative in

{T`(0), T`(1), . . . , T`(`− 1)}.

6.2 The multiplicity of `

For the remainder of the paper, we assume that ` is an odd prime and t 6≡ ±2 (mod `2). We

address the proof of Theorem 1.2.2 in two parts. In this section we compute ind`(Φ), the `-adic

valuation of ind(Φ), and in the following section we compute indp(Φ) for the primes dividing

t2 − 4. We remind the reader of our notation that Φ(x) = Tn` (x) − t, and ind(Φ) = [OK : Z[θ]],

where θ is a root of Φ, K = Q(θ), and t is chosen so that Tn` (x)− t is irreducible for each n ≥ 1.

From Theorem 6.1.2, we know that Φ(t) ≡ 0 (mod `2) is the necessary and sufficient condition

for which ind`(Φ) > 1. We recover this condition using the method of Guàrdia, Montes, Nart.

We tackle the computation of ind`(Φ) in two cases: first in the special case for t ≡ 0 (mod `),

and then in the general case where t 6≡ ±2 (mod `2). Recall from Lemma 6.1.1 that Φ(x) ≡

(x − t)`n (mod `), so we only have one factor, φ(x) = x − t, to consider in our analysis. The

case where t ≡ 0 (mod `) is simpler since the φ-Newton polygon is the standard Newton polygon

of Φ, and a result of Kummer [22] will be sufficient for computing the `-adic valuations of the

coefficients of Φ. When t 6≡ 2 (mod `2), we must derive the φ-development of Φ. We then use a

series of lemmas, including a result of Lucas [27], in order to determine the `-adic valuations of the

coefficients in the φ-development. Once we construct the φ-Newton polygon, we apply Theorem

4.2.2 to give a formula for ind`(Φ).

We consider the case where t ≡ 0 (mod `) and proceed by computing the Newton polygon of

Tn` (x). By Proposition 2.2.1 (1), we have

Tn` (x) =

b`n/2c∑
k=0

cix
`n−2k, where ci =

2`n

`n + i

(
(`n + i)/2

(`n − i)/2

)
.

Proposition 6.2.1. For any integer 0 < i ≤ `m ≤ `n, ν`(ci) ≥ n−m with equality only if i = `m.
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Proof. When i = `m,

ν`(c`m) = n+ ν`

(
(`n + `m)/2

(`n − `m)/2

)
− ν`(`n + `m).

Note that (
(`n + `m)/2

(`n − `m)/2

)
=

(
(`n + `m)/2

(`n + `m)/2− (`n − `m)/2

)
=

(
(`n + `m)/2

`m

)
.

The `-adic valuation of this number can be determined using Lemma 4.3.1 by considering a sum

in base `. Writing

`n + `m

2
− `m =

`− 1

2
· `m +

`− 1

2
· `m+1 + · · ·+ `− 1

2
· `n,

it is easy to see that(
`n + `m

2
− `m

)
+ `m =

`+ 1

2
· `m +

`− 1

2
· `m+1 + · · ·+ `− 1

2
· `n

requires no carries when summed in base `. Thus by Lemma 4.3.1

ν`

(
(`n + `m)/2

(`n − `m)/2

)
= 0.

Furthermore,

ν`(`
n + `m) = ν`(`

m) + ν`(`
n−m + 1) = m,

proving that ν`(c`m) = n−m.

If 0 < i < `m, then ν`(`
n + i) = ν`(i) < m. Hence

ν`(ci) = n+ ν`

(
(`n + i)/2

(`n − i)/2

)
− ν`(`n + i) > n−m,

concluding the proof.

Corollary 6.2.2. The Newton polygon of Tn` (x) at ` is
∑n
m=1 Sm where Sm is the edge with

endpoints (`m−1, n−m+ 1) and (`m, n−m).

Proof. By Proposition 6.2.1, the polygon
∑n
m=1 Sm is a tight lower bound for the points {(i, ν`(ci)}.

It is easily verified that this polygon is convex by considering the slope of Sm.

Now that we have the Newton polygon for Tn` , we must only consider the `-adic valuation of

t to obtain the Newton polygon for Φ.
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Corollary 6.2.3. Suppose t ≡ 0 (mod `), and let v = ν`(t). Let Sm be the edge defined in

Corollary 6.2.2. Define S′ to be the edge with endpoints (0, v) and (`n−v+1, v − 1). Then

Nφ(Φ) = S′ + Sn−v+2 + Sn−v+3 + · · ·+ Sn.

Proof. Let λm be the slope of Sm and λ′ be the slope of S′. It suffices to show that λn−v+1 <

λ′ < λn−v+2. This is easily verified:

λn−v =
−1

`n−v(`− 1)
< λ′ =

−1

`n−v+1
< λn−v+2 =

−1

`n−v+1(`− 1)
.

We give a brief example to illustrate these results.

Example 6.2.4. Consider the polynomial T 3
3 (x)− t. By Corollary 6.2.2, the Newton polygon of

T 3
3 (x) is dictated by the points whose abscissa are powers of 3. From here, the Newton polygon

of T 3
3 (x)− t is easily obtained. See Figure 9.

1 3 9 27

1

2

3

4

5

0 1 3 9 27

1

2

3

4

5

0

Figure 9: The Newton polygon of T 3
3 (x) (left) and the Newton polygon of T 3

3 (x) − 24 (right) at
3. The 3-adic valuations of the other coefficients are marked in gray.

Now that we have determined the Newton polygon in the case where t ≡ 0 (mod `), we move

on to the case where t 6≡ ±2 (mod `2). We begin by establishing the φ-development of Φ, where

φ(x) = x − t. Writing Φ(x) = Φ(φ(x) + t) and using the expression for Td in Proposition 2.2.1

(1), we have

Tn` (φ+ t)− t = −t+

b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k
(φ+ t)`

n−2k

= −t+

b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k

`n−2k∑
i=0

(
`n − 2k

i

)
t`

n−2k−iφi

= −t+

`n∑
i=0

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi
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= −t+

b`n/2c∑
k=0

(−1)k
(
`n − k
k

)
`n

`n − k
t`

n−2k

+

`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi

= Tn` (t)− t+

`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi

= Φ(t) +

`n∑
i=1

b(`n−i)/2c∑
k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
`n

`n − k
t`

n−2k−iφi. (6.1)

For ease, we will let

bi := `n
b `

n−i
2 c∑

k=0

(−1)k
(
`n − k
k

)(
`n − 2k

i

)
t`

n−2k−i

`n − k

denote the coefficient of φi for 1 ≤ i ≤ `n.

Lemma 6.2.5. For positive integers a, b, and c satisfying 0 ≤ b ≤ a−c
2 , the binomial coefficients

satisfy the following relationship:(
a− b
b

)(
a− 2b

c

)
=

(
a− b− c

b

)(
a− b
c

)
.

Proof. (
a− b
b

)(
a− 2b

c

)
=

(a− b)!
b!(a− 2b!)

· (a− 2b)!

c!(a− 2b− c)!
=

(a− b)!
c!(a− b− c)!

· (a− b− c)!
b!(a− 2b− c)!

=

(
a− b− c

b

)(
a− b
c

)
.

We use this lemma to rewrite bi in the following way.

bi =

b `
n−i
2 c∑

k=0

(−1)k
`n

`n − k

(
`n − k
k

)(
`n − 2k

i

)
t`

n−2k−i

=
`n

i

b `
n−i
2 c∑

k=0

(−1)k
(
`n − i− k

k

)(
`n − k − 1

i− 1

)
t`

n−2k−i.

This new expression simplifies the `-adic expansions of the numbers in the binomial coefficients,

which set us up nicely to apply Lemma 4.3.2 for computing the `-adic valuations of these numbers.

Lemma 6.2.6. Let ` be an odd prime. If x 6= ±2 mod `, then U`−1(x) = ±1 mod `.

52



Proof. Let x ∈ F` and x 6= ±2. Set α = x+
√
x2−4
2 ∈ F`2 and β = x−

√
x2−4
2 ∈ F`2 . From

Proposition 2.2.1 (2), we have

Ud(x) =

(
x+
√
x2 − 4

)d+1 −
(
x−
√
x2 − 4

)d+1

2d+1
√
x2 − 4

.

Recall that the Frobenius map on F`2 fixes F` and acts by conjugation away from F`. Hence, if
√
x2 − 4 ∈ F`, then α` = α, β` = β, and

U`−1(x) =
α− β√
x2 − 4

= 1 mod `.

Otherwise, if
√
x2 − 4 6∈ F`, then α` = β, β` = α, and

U`−1(x) =
β − α√
x2 − 4

= −1 mod `.

Theorem 6.2.7. Suppose that t 6≡ ±2 (mod `2), Φ(t) ≡ 0 (mod `2), and let i be an integer

satisfying `m ≤ i < `m+1 and m < n. Then ν`(bi) ≥ n−m with equality if i = `m.

Proof. Assume first that i = `m + ε for some integer 0 < ε < (` − 1)`m. We show that ν`(bi) ≥

n−m. Note that(
`n − k − 1

`m + ε− 1

)
=

(`n − k − 1)!

(`m + ε)!(`n − `m − k − ε)!

=
(`n − k − 1)!

`m(`m − 1)!(`n − `m − k)!

`m!ε!

(`m + ε)!

(`n − `m − k)!

ε!(`n − `m − k − ε)!

=

(
`n−k−1
`m−1

)(
`n−`m−k

ε

)(
`m+ε
`m

) .

Hence,

bi =
`n

`m + ε

b `
n−i
2 c∑

k=0

(−1)k
(
`n − i− k

k

)(
`n − k − 1

`m + ε− 1

)
t`

n−2k−i

=
`n−m(
`m+ε
`m

) b `
n−i
2 c∑

k=0

(−1)k
(
`n − i− k

k

)(
`n − k − 1

`m − 1

)(
`n − `m − k

ε

)
t`

n−2k−i.

By Lemma 4.3.1, ν`
(
`m+ε
`m

)
= 0 since `m + ε requires no carries in base `. Furthermore, the

summation evaluates to an integer, so its valuation is non-negative. Thus ν`(bi) ≥ n−m.

Assume now that i = `m, and consider

b`m = `n−m

`n−`m

2∑
k=0

(−1)k
(
`n − `m − k

k

)(
`n − k − 1

`m − 1

)
t`

n−`m−2k. (6.2)
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To show that ν`(b`m) = n−m, we show that `m−nb`m is relatively prime to `. It suffices to sum

over the terms that are relatively prime to ` and show that the sum of these terms is not divisible

by `. We write the following numbers in their base-` expansions.

k =

n−1∑
j=0

kj`
j ; `m − 1 =

m−1∑
j=0

(`− 1)`j ; `n − k − 1 =

n−1∑
j=0

(`− kj − 1)`j .

By Lemma 4.3.2, the second binomial coefficient in Equation (6.2) satisfies(
`n − k − 1

`m − 1

)
≡
(
`− k0 − 1

`− 1

)
· · ·
(
`− km−1 − 1

`− 1

)(
`− km − 1

0

)
· · ·
(
`− kn−1 − 1

0

)
(mod `)

≡


1 (mod `) if k0 = · · · = km−1 = 0

0 (mod `) otherwise.

That is,
(
`n−k−1
`m−1

)
is relatively prime to ` if and only if `m | k. Since we are only interested in the

terms that are relatively prime to `, we continue with the additional assumption that `m divides

k. Now, the base-` expansion of `n − `m − k is

`n − `m − k =

n−1∑
j=m

(`− kj − 1)`j .

Applying Lemma 4.3.2 to the first binomial coefficient in Equation (6.2), we see that(
`n − `m − k

k

)
≡
(
`− km − 1

km

)
· · ·
(
`− kn−1 − 1

kn−1

)
(mod `),

which is nonzero if and only if 0 ≤ kj ≤ (`− 1)/2 for each j = m,m+ 1, . . . , n− 1. We have the

following:

`m−nb`m =

`n−`m

2∑
k=0

(−1)k
(
`n − `m − k

k

)(
`n − k − 1

`m − 1

)
t`

n−`m−2k

≡

`n−`m

2∑
k=0

(−1)k
(
`− km − 1

km

)
· · ·
(
`− kn−1 − 1

kn−1

)
t`

n−`m−2k

≡
n−1∏
j=m

`−1
2∑

kj=0

(−1)kj
(
`− kj − 1

kj

)
t`−2kj−1

≡ (U`−1(t))n−m ≡ ±1 (mod `).

The second to last step takes advantage of the fact that t`
n−`m ≡ t`−1 ≡ 1 (mod `), and the final

step follows from Proposition 2.2.1 (1) and Lemma 6.2.6. This concludes the proof.

Remark 6.2.8. We note that Theorem 6.2.7 assumes that t 6≡ ±2 (mod `2), yet in the proof

we apply Lemma 6.2.6, which requires that t 6≡ ±2 (mod `). However, since we are assuming
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that Φ(t) ≡ 0 (mod `2), these conditions are equivalent thanks to Corollary 6.1.4. Specifically, if

t ≡ ±2 (mod `2) and T`(t)− t ≡ 0 (mod `2), then t ≡ ±2 (mod `).

Remark 6.2.9. We note that in this case, an alternative method for obtaining the φ-development

is given by the Taylor expansion formula:

Φ(x) = Φ(t) + Φ′(t)φ(x) +
1

2
Φ′′(t)φ(x)2 + · · ·+ 1

`n!
Φ(`n)(t)φ(x)`

n

.

In fact, Theorem 6.2.7 subsumes Proposition 6.2.1 as it includes the case t ≡ 0 (mod `), and

we see that, except for the constant term, the `-adic valuations of the coefficients of Tn` (x) are

invariant under the shift Tn` (x) 7→ Tn` (x− t) whenever Φ(t) ≡ 0 (mod `2) and t 6≡ ±2 (mod `2).

Similar to Corollary 6.2.3, we only need to consider the `-adic valuation of Φ(t) (see Equation

(6.1)) to obtain the φ-Newton polygon of Φ.

Corollary 6.2.10. Suppose t 6≡ ±2 (mod `2). Let v = ν`(Φ(t)), and let Sm denote the edge from

(`m−1, n −m + 1) to (`m, n −m) and S′ to be the edge from (0, v) to (`n−v+1, v − 1). Then the

φ-Newton polygon of Φ is

Nφ(Φ) = S′ + Sn−v+2 + · · ·+ Sn.

Proof. The proof is the same as in Corollary 6.2.3.

Theorem 6.2.11. Suppose t 6≡ ±2 (mod `2), and set v = ν`(Φ(t)). Then

ind`(Φ) =

min{v−1,n}∑
i=1

`n−i.

Proof. It is easy to verify that each side of the φ-Newton polygon given in Corollary 6.2.10 has

length 1. Hence every residual polynomial attached to the polygon has degree 1, and it follows

that Φ is `-regular. By Theorem 4.2.2, the `-adic valuation of the index is equal to the number

of points with integral coordinates under the polygon. The lattice points are arranged into rows

whose lengths are decreasing powers of `, giving the formula for ind`(Φ).

Remark 6.2.12. We note that ν`(Φ(t)) ≥ 1 since Φ(t) is the constant term in the φ-development

of Φ, and Φ(x) ≡ (x − t)`n ≡ φ(x)`
n

(mod `). Hence if Φ(t) 6≡ 0 (mod `2), then ν`(Φ(t)) = 1,

and the φ-Newton polygon of Φ is one-sided with vertices (0, 1) and (`n, 0). There are no lattice

points on or under this side, so by Theorem 4.2.2, we have ind`(Φ) = 0. We have thus recovered

the condition in Theorem 6.1.2 that ` | ind(Φ) if and only if Φ(t) ≡ 0 (mod `2).
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Figure 10: Left: the φ-Newton polygon for T 3
3 (x) − 24. We have ind3(T 3

3 (x) − 24) = 9. Right:
the φ-Newton polygon for T 3

3 (x)− 81. It follows that ind3(T 3
3 (x)− 81) = 13.

We illustrate Theorem 6.2.11 with an example.

Example 6.2.13. Consider the polynomial T 3
3 (x) − t. From Corollary 6.2.10, we see that the

sides of the polygon are length 1, meaning that each side does not intersect any integral lattice

points other than its endpoints. The points with integral coordinates on or under the polygon

are arranged into rows whose lengths are decreasing powers of 3. See Figure 10.

6.3 The multiplicity of p

As in the previous section, we maintain the assumption that ` is an odd prime and t 6≡ ±2

(mod `2). Moreover, we assume that p is an odd prime different from ` for which t ≡ ±2 (mod p2).

By Theorem 6.1.2, the condition t ≡ ±2 (mod p2) is the necessary and sufficient condition for

which p | ind(Φ). In this section, we compute indp(Φ), again using Theorem 4.2.2, completing

the proof of Theorem 1.2.2. In the previous section, we found that the `-regularity of Φ comes

immediately from the shape of the φ-Newton polygon. In this case, there is no guarantee that Φ

is p-regular. However by taking appropriate lifts of the irreducible factors of Φ, we find that the

lower bound given by Theorem 4.2.2 meets the upper bound provided by p-adic valuation of DΦ,

giving the result. Consider the following example.

Example 6.3.1. Let t0 = 29284, and consider the polynomial T5(x) − t0. We have chosen the

constant term so that t0 − 2 and t0 + 2 are not square-free:

t0 − 2 = 2 · 32 · 1627 and t0 + 2 = 2 · 114,

By Theorem 6.1.2, the primes 3 and 11 divide ind(T5(x)− t0), and 5 does not. We have

T5(x)− t0 ≡ (x+ 2)(x2 − x− 1)2 (mod 3), and
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Figure 11: φ-Newton polygons associated to T5(x)− t0 in Example 6.3.1.

T5(x)− t0 ≡ (x− 2)(x− 3)2(x+ 4)2 (mod 11).

Take

φ3,1(x) = x+ 2, φ3,2(x) = x2 − x− 1,

φ11,1(x) = x− 2, φ11,2(x) = x− 4029, φ11,3(x) = x+ 4030,

as lifts of the irreducible factors of T5(x) − t0 modulo 3 and 11. Each lift φ is chosen so as to

“maximize” the valuation of the constant term in the φ-development. The φ-developments of

T5(x)− t0 are

T5(x)− t0 = −29286 + 25φ3,1(x)− 50φ3,1(x)2 + 35φ3,1(x)3 − 10φ3,1(x)4 + φ5,1(x)5,

T5(x)− t0 = −29286 + (x+ 2)φ3,2(x)2,

T5(x)− t0 = −29282 + 25φ11,1(x) + 50φ11,1(x)2 + 35φ11,1(x)3 + 10φ11,1(x)4 + φ11,1(x)5,

T5(x)− t0 = 1061661829395540065 + 1317525391163795φ11,2(x) + 654021103455φ11,2(x)2

+ 162328405φ11,2(x)3 + 20145φ11,2(x)4 + φ11,2(x)5,

T5(x)− t0 = −1062980008970214434 + 1318833920436505φ11,3(x)− 654508209550φ11,3(x)2

+ 162408995φ11,3(x)3 − 20150φ11,3(x)4 + φ11,3(x)5.

From the φ-Newton polygons (Figure 11), we see that the factors φ3,1 and φ11,1 do not contribute

to the index since there are no lattice points on or under their polygons. Let Rφ denote the
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residual polynomial attached to φ. The residual polynomials attached to the other factors are

Rφ3,2(y) = (θ3,2 − 1)y2 + 1, where θ3,2 is a root of φ3,2,

Rφ11,2
(y) = 5y2 + 5y − 2, and Rφ11,3

(y) = 3y2 − 3y − 2.

The residual polynomials Rφ3,2
and Rφ11,2

are separable, but Rφ11,3
is not. Hence T5(x) − t0 is

3-regular, but not 11-regular. In fact, it is not possible to find a lift of x− 4 for which T5(x)− t0

is 11-regular. By Theorem 4.2.2, we have

ind3(T5(x)− t0) = 2 and ind11(T5(x)− t0) ≥ 4.

But, by Proposition 3.4.1, we also have

ind11(T5(x)− t0) ≤ 1

2
ν11(DT5(x)−t0) = ν11(t20 − 4) = 4.

Thus ind(T5(x)− t0) = 32 · 114. This result is verified by PARI.

In this example, we see that there is a certain uniformity to the φ-Newton polygons provided

that we pick suitable lifts for each of the irreducible factors. Following Lemma 6.1.1, we write

Φ(x) ≡ (x± 2)φ1(x)2 · · ·φr(x)2 (mod p), (6.3)

where φi(x) are irreducible factors modulo p. We prove the following.

Proposition 6.3.2. Let p 6= ` be an odd prime such that t ≡ ±2 (mod p2). Then for each

irreducible factor φi in Equation (6.3), there exists a monic lift φ̂i of φi such that φ̂i ≡ φi

(mod p), and the φ̂i-polynomial is one-sided with vertices (0, νp(t
2 − 4)) and (2, 0). Hence

indφ̂i
(Φ) =

⌊
νp(t

2 − 4)

2

⌋
deg(φ̂i).

Moreover, the factor x± 2 does not contribute to indp(Φ), that is, ind(x±2)(Φ) = 0.

Consequently, if νp(t
2−4) is odd, then the residual polynomial associated with the φ̂i-polygon

is degree 1. Hence Φ is p-regular, and by Theorem 4.2.2,

indp(Φ) =

r∑
i=1

⌊
νp(t

2 − 4)

2

⌋
deg(φ̂i) =

⌊
νp(t

2 − 4)

2

⌋
`n − 1

2
.

If νp(t
2 − 4) is even, regularity is not guaranteed since the residual polynomial is degree 2, so at

best, we have from Theorem 4.2.2 that

indp(Φ) ≥
r∑
i=1

⌊
νp(t

2 − 4)

2

⌋
deg(φ̂i) =

νp(t
2 − 4)

2

`n − 1

2
.
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On the other hand, the valuation of the index is bounded by the p-adic valuation of DΦ. Namely

by Proposition 3.4.1

indp(Φ) ≤ 1

2
νp

(
(t2 − 4)(`n−1)/2

)
=
νp(t

2 − 4)

2

`n − 1

2
.

Thus we have derived the following result.

Corollary 6.3.3. If p 6= ` is an odd prime and t ≡ ±2 (mod p2), then

indp(Φ) =

⌊
νp(t

2 − 4)

2

⌋
`n − 1

2
.

Proof of Theorem 1.2.2. The multiplicity of each odd prime divisor of ind(Φ) are given by

Theorem 6.2.11 and Corollary 6.3.3. The formula for ∆K follows form Equation (1.1).

We conclude this section with the proof of Proposition 6.3.2.

Proof. (Proposition 6.3.2) From Lemma 6.1.1, Tn` (x)± 2 = (x± 2)τ(x)2 where

τ(x) ≡ φ1(x) · · ·φr(x) (mod p).

Since τ has no repeated roots modulo p, Hensel lifting ensures that there exist lifts φ̂1, . . . , φ̂r

such that

τ(x) ≡ φ̂1(x) · · · φ̂r(x) (mod pe)

for e arbitrarily large. Take e > νp(t
2− 4) (although e > νp(t

2− 4)/2 would be sufficient) and fix

a lift φ = φ̂i. Then the φ-development of Tn` (x)± 2 is

Tn` (x)± 2 = A0(x) +A1(x)φ(x) +A2(x)φ(x)2 + · · · .

Note that Tn` (x)± 2 = (x± 2)τ(x)2 ≡ (x± 2)φ̂1(x)2 · · · φ̂r(x)2 (mod pe), hence νp(A2) = 0 and

A0(x) +A1(x)φ(x) ≡ 0 (mod pe).

In particular, since φ is monic, νp(A0) ≥ νp(A1) ≥ e > νp(t
2 − 4). Thus the φ-development of Φ

is

Φ(x) = Tn` (x)− t = Tn` (x)− t+ t− t

= t− t+A0(x) +A1(x)φ(x) +A2(x)φ(x)2 + · · · ,

59



where νp(t− t+A0) = νp(t− t) = νp(t
2 − 4), νp(A1) > νp(t

2 − 4), and νp(A2) = 0, and therefore

φ̂1, . . . , φ̂r provide desired lifts.

We now show that ind(x±2)(Φ) = 0. The (x± 2)-development is given by Taylor’s expansion

centered at ±2:

Φ(x) = Φ(±2) + Φ′(±2)(x± 2) + · · ·

= Φ(±2) + `nU`n−1(±2)(x± 2) + · · · ,

where Ud denotes the degree-d Chebyshev polynomial of the second kind. By the recursion for-

mula in Proposition 2.2.1 (3), it is a straightforward induction to show that Ud(2) = d+ 1. More-

over, since U`n−1 is an even function (Proposition 2.2.1 (4)), it follows that νp(`
nU`n−1(±2)) =

νp(`
2n) = 0, and thus the (x± 2)-polygon is one-sided with vertices (0, νp(Φ(±2))) and (1, 0). We

conclude that ind(x±2)(Φ) = 0.

6.4 Integral basis

The Montes algorithm also provides an efficient method for determining an integral basis

for the ring of integers OK . In this section we summarize their procedure as it pertains to our

situation.

For this discussion we assume that Φ is regular with respect to every prime. Fix a prime p for

which Z[θ] is not maximal. Let φ̂i be a lift of an irreducible factor of Φ for which Φ is φ̂i-regular.

We define the quotients attached to the φ̂i-developement of Φ to be the polynomials

Φ(x) = φ̂i(x)qi,1(x) + ai,0(x)

qi,1(x) = φ̂i(x)qi,2(x) + ai,1(x)

...

qi,r−1(x) = φ̂i(x)qi,r(x) + ai,r−1(x)

qi,r(x) = ai,r(x).

Additionally, for 1 ≤ j ≤ r, we identify the points (j, yi,j) on the polygon Nφ̂i
(Φ).

Proposition 6.4.1. The collection {qi,j(θ)/pbyi,jc} contains a p-integral basis for OK .

Proof. This is a specialization of [10, Theorem 2.6].
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In Corollary 6.2.10, we determined the φ-polygon for Φ for certain values of t. Under these

same conditions, we determine a basis for the ring OK .

Proposition 6.4.2. Suppose that t − 2 and t + 2 are square-free, Φ(t) ≡ 0 (mod `2). Let v =

min{ν`(Φ(t))− 1, n}. Then a basis for OK is{
θ,
q`n−1(θ)

`
,
q`n−2(θ)

`2
, . . . ,

q`n−v (θ)

`v

}
.

Proof. Recall that Φ(x) = Tn` (x) − t ≡ (x − t)`
n

(mod `), so let φ(x) = x − t. In Corollary

6.2.10 we determined Nφ(Φ) and showed that Φ is `-regular. For each 1 ≤ j ≤ `n, the quotient

qj(x) is a monic polynomial of degree `n − j, and these quotients satisfy the recursion qj(x) =

φ(x)qj+1(x) + aj where q`n(x) = 1. By definition, ν`(aj) ≥ byjc. Hence if byj+1c = byjc, then

qj+1(θ)/`byj+1c ∈ OK implies that qj(θ)/`
byjc ∈ OK . It follows that

OK = Z

[
q`n(θ)

`by`nc
, . . . ,

q1(θ)

`by1c

]
= Z

[
θ,
q`n−1(θ)

`
,
q`n−2(θ)

`2
, . . . ,

q`n−v (θ)

`v

]
.

6.5 Dickson-(−1) extensions

Having done the calculations for the Chebyshev polynomials, we obtain the same results for

the Dickson-(−1) maps essentially for free. The coefficients of the Dickson-(−1) polynomials only

differ from the coefficients of the Chebyshev polynomials by a sign, and thus all the arguments in

the previous section can be adapted to the Dickson-(−1) case by simply removing the (−1)k at

every step, and replacing Ud with Ed where appropriate.

As before, let ` be an odd prime, and let t ∈ Z be chosen such that Dn
` (x)− t is irreducible for

each n ≥ 1. Moreover, we make the additional simplifying assumption that t is an odd integer.

This assumption will allow us to avoid any additional difficulties in dealing with the prime 2.

From Proposition 3.4.1, the primes that divide disc(Dn
` (x)− t) are the primes dividing t2 + 4 and

the prime `.

Lemma 6.5.1. We have Dn
` (x) − t ≡ (x − t)`n (mod `). For any odd prime p dividing t2 + 4,

we have Dn
` (x)− t ≡ (x− t)τ(x)2 (mod p) for some τ ∈ Fp[x].

Proof. The result may be obtained by applying the twist from Propositionprop:d prop (1) to

Lemma 6.1.1. This result may also be derived from the theory of the graphs (Theorem 3.1.8).
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Once again, Dedekind’s criterion (Theorem 4.1.1) gives conditions on t that yield monogenic

towers.

Theorem 6.5.2. Let ` be a prime and let K = Q(θ), where θ is a root of Dn
` (x)−t. If D`(t)−t 6≡ 0

(mod `2) and t2 + 4 is square-free, then K is monogenic, as [OK : Z[θ]] = 1.

Proof. The result can be obtained by mirroring the proof of Theorem 1.2.1. See Section 6.1.

Likewise, we can apply the Montes algorithm to obtain an explicit formula for the index.

Theorem 6.5.3. Let ` be an odd prime and K = Q(θ), where θ is a root of Dn
` (x) − t, t is an

odd integer, and t2 + 4 6≡ 0 (mod `2). Write t2 + 4 = A2B, where B is square-free. Then

ind(Dn
` (x)− t) = `EA(`n−1)/2, where E =

min{ν`(D`n (t)−t)−1,n}∑
i=1

`n−i.

Moreover, ∆K = `n`
n−2EB(`n−1)/2.

Proof. The result can be obtained by mirroring the proof of Theorem 1.2.2. See Section 6.2 and

Section 6.3.
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C H A P T E R 7

GENERALIZED RIKUNA EXTENSIONS

Finally, we address the iterated extensions arising from generalized Rikuna polynomials rn(x, t; `).

As before, ` is an odd prime, and t is chosen so that rn(x, t; `) is irreducible for each n ≥ 1. Unlike

for the previous families of polynomials, Dedekind’s criterion only identifies a single case where

the generalized Rikuna polynomial admits a monogenic extension. We then apply the Montes

algorithm to compute the index for the case ` = 3.

7.1 Factorization results

Here we give two small, but useful, factorization results. We recall from Proposition 2.4.1 and

Proposition 2.4.2 that the generalized Rikuna polynomial is given by

rn(x, t; `) =
(t− ζ)(x− ζ−1)`

n − (t− ζ−1)(x− ζ)`
n

ζ−1 − ζ

and

rn(x, t; `) = x`
n

− `ntx`
n−1 +

`n∑
k=2

(−1)k
(
`n

k

)(
t Uk−1(ζ+)− Uk−2(ζ+)

)
x`

n−k,

where ζ is a primitive `-th root of unity, and ζ+ := ζ + ζ−1.

Lemma 7.1.1. Let a ⊂ OK be any ideal for which t = ζ mod a. Then rn(x, t; `) = (x − t)`n ∈

(OK/a)[x].

Proof. The result follows immediately from Proposition 2.4.1.

Note that if ` is an odd prime, then the ideal (`) is totally ramified in K = Q(ζ+).

Lemma 7.1.2. Let ` be an odd prime, and let l ⊂ OK be the prime ideal containing (`). Then

rn(x, t; `) = (x− 1)`
n ∈ (OK/l)[x].
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Proof. Note that ζ+ = 2 cos(2n/`), so by Proposition 2.2.1 (4),

U`n−1(ζ+) =
sin(2n`n−1)

sin(2n/`)
= 0, and U`n−2(ζ+) =

sin(2n`n−1 − 2n/`)

sin(2n/`)
= −1.

Combined with Proposition 2.4.2, we have

rn(x, t; `) = x`
n

− t U`n−1(ζ+) + U`n−2(ζ+) = x`
n

− 1 = (x− 1)`
n

∈ (OK/l)[x].

7.2 Monogenic extensions of degree 3

Unlike the previous families of maps, Dedekind’s criterion is unable to find monogenic towers

coming from the generalized Rikuna polynomials.

Theorem 7.2.1. Suppose t2−(ζ+ζ−1)t+1 ∈ p. Then ind rn(x, t; `) ∈ p if and only if rn(t, t; `) ∈

p2. Furthermore, ` | norm(ind rn(x, t; `)) in all cases except ` = 3, n = 1, and t 6≡ 1 (mod 3).

Proof. Suppose that t2 − (ζ + ζ−1) + 1 = (t− ζ)(t− ζ−1) ∈ p. Then t is a primitive `-th root of

unity modulo p, hence by Lemma 7.1.1, we have rn(x, t; `) = (x− t)`n ∈ (OK/p)[x]. Set

g(x) = x− t, h(x) = (x− t)`
n−1, and f(x) = β((x− t)`

n

− rn(x, t; `)),

where β is a uniformizer of p−1. By Theorem 4.1.1, ind rn(x, t; `) ∈ p if and only if t is a root of

f(x) modulo p. It follows that ind rn(x, t; `) ∈ p if and only if rn(t, t; `) ∈ p2.

To determine if ind rn(x, t; `) ∈ l, we have rn(x, t; `) = (x− 1)`
n ∈ (OK/l)[x] by Lemma 7.1.2,

and we set

g(x) = x− 1, h(x) = (x− 1)`
n−1, f(x) =

(x− 1)`
n − rn(x, t; `)

ζ + ζ−1
.

By Theorem 4.1.1, ind rn(x, t; `) ∈ l if and only if f(1) ≡ 0 (mod l). It is well known that

(1−ζ)`−1 = u` for some unit u ∈ Z[ζ], and taking complex conjugates, we have (1−ζ−1)`−1 = u∗`,

where ∗ denotes complex conjugation. Now using Proposition 2.4.1,

f(1) =
(t− ζ)(1− ζ−1)`

n − (t− ζ−1)(1− ζ)`
n

(ζ + ζ−1 − 2)(ζ−1 − ζ)

=
(t− ζ)(1− ζ−1)(1− ζ−1)`

n−1 − (t− ζ−1)(1− ζ)(1− ζ)`
n−1

(ζ + ζ−1 − 2)(ζ−1 − ζ)
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=
(t− ζ)(1− ζ−1)(1− ζ−1)(`−1)(`n−1+···+1) − (t− ζ−1)(1− ζ)(1− ζ)(`−1)(`n−1+···+1)

(ζ + ζ−1 − 2)(ζ−1 − ζ)

=
(t− ζ)(1− ζ−1)(u∗`)`

n−1+···+1 − (t− ζ−1)(1− ζ)(u`)`
n−1+···+1

(ζ + ζ−1 − 2)(ζ−1 − ζ)
.

Note that the numerator is divisible by `, hence the l-adic valuation of the numerator is, in general,

much larger than the l-adic valuation of the denominator, which is 1. In particular, if n > 1, then

f(1) ≡ 0 (mod l), regardless of `. The only exception is when ` = 3 and n = 1. In this case the

base field is Q, and f(x) = (t − 1)x2 + (t + 2)x. From here, it is straightforward to show that

f(1) ≡ 0 (mod 3) if and only if t ≡ 1 (mod 3).

Remark 7.2.2. Even though ind(rn(x, t; `)) 6= 1 (with one exception), this does not exclude the

possibility that these extensions are monogenic.

7.3 Shanks’ specialization: ` = 3

In this section, we examine extensions of Q generated by roots of the generalized Rikuna

polynomial for the prime ` = 3. Unless otherwise noted, we set rn(x, t) := rn(x, t; 3) throughout

this section. From the discriminant formula in Propositoin 3.4.1, we know that the only primes

that could divide the index are 3 and the primes dividing t2 + t + 1. As with the Chebyshev

polynomials, we apply the Montes algorithm in two steps: first to compute the 3-adic valuation

of ind(rn(x, t)), and then to compute the p-adic valuation for the primes p dividing t2 + t+ 1.

7.3.1 Index calculation: p = 3

Let un := Un(1). From Proposition 2.4.2,

rn(x, t) =

3n∑
k=0

(
3n

k

)(
tuk+2 + uk+1

)
x3n−k =

3n∑
k=0

(
3n

k

)(
tuk+2 − uk

)
xk. (7.1)

Recall that rn(x, t) ≡ (x − 1)3n

(mod 3). We use Taylor expansion to determine the (x − 1)-

development of rn(x, t). Namely,

rn(x, t) =

3n∑
m=0

r
(m)
n (1, t)

m!
(x− 1)m,
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where r
(m)
n (x, t) denotes the m-th derivative of rn(x, t) with respect to x. By Equation (7.1), it

is a straight-forward computation to show that

r(m)
n (x, t) =

3n−m∑
k=0

(
3n

k +m

)
(k +m)!

k!

(
tuk+m+2 − uk+m

)
xk

=
3n!

(3n −m)!

3n−m∑
k=0

(
3n −m
k

)(
tuk+m+2 − uk+m

)
xk.

The coefficients in this expression are given by two known sequences of values (A057681, A057083).

Namely,

−
3n−m∑
k=0

(
3n −m
k

)
uk+m =

b 3
n−m+1

3 c∑
k=0

(−1)k
(

3n −m+ 1

3k

)
=



(−27)d if e ≡ 0 (mod 6)

(−27)d if e ≡ 1 (mod 6)

0 if e ≡ 2 (mod 6)

−3(−27)d if e ≡ 3 (mod 6)

−9(−27)d if e ≡ 4 (mod 6)

−18(−27)d if e ≡ 5 (mod 6),

3n−m∑
k=0

(
3n −m
k

)
uk+m+2 =

b 3
n−m−1

3 c∑
k=0

(−1)k+1

(
3n −m+ 1

3k + 2

)
=



0 if e ≡ 0 (mod 6)

−(−27)d if e ≡ 1 (mod 6)

−3(−27)d if e ≡ 2 (mod 6)

−6(−27)d if e ≡ 3 (mod 6)

−9(−27)d if e ≡ 4 (mod 6)

−9(−27)d if e ≡ 5 (mod 6).

where 3n −m = 6d+ e. Thus setting

an,m =

(
3n

m

) 3n−m∑
k=0

(
3n −m
k

)(
tuk+m+2 − uk+m

)
,

we have

an,m = (−1)n+bm/6c
(

3n

m

)
3b(3

n−m)/2cbm(t), (7.2)

66



where

bm(t) =



2t+ 1 if m ≡ 0 (mod 6)

t if m ≡ 1 (mod 6)

t− 1 if m ≡ 2 (mod 6)

−1 if m ≡ 3 (mod 6)

−(t+ 2) if m ≡ 4 (mod 6)

−(t+ 1) if m ≡ 5 (mod 6).

Now by Taylor’s formula, we have

rn(x, t) =

3n∑
m=0

r
(m)
n (1, t)

m!
(x− 1)m =

3n∑
m=0

an,m(x− 1)m.

From equation (7.2), we see that

ν3(an,0) =
3n − 1

2
+ ν3(2t+ 1), ν3(an,3n) = 0, and (7.3)

ν3(an,m) ≥ 3n −m+ 1

2
for 0 < m < 3n.

Theorem 7.3.1. If t 6≡ 1 (mod 3), then ind3 rn(x, t) = (3n − 1)(3n − 3)/4.

Proof. By Equations (7.3), the (x − 1)-polygon is one-sided of slope (1 − 3n)/(2 · 3n), so the

associated residual polynomial is degree 1. By Montes, the 3-adic valuation of the index is equal

to the number of lattice points under the polygon.

Note that for even values of m, the 3-adic valuation of an,m can be made arbitrarily large

by taking appropriate values of t congruent to 1 modulo 3. For the same values of t, the 3-adic

valuation of an,m, where m is odd, remains unchanged. Hence, as t varies, the (x− 1)-polygon is

dictated by the vertices at odd ordinates. In fact, it is enough to consider the ordinates that are

powers of 3.

Proposition 7.3.2. If t ≡ 1 (mod 3), then the (x−1)-polygon is the lower convex hull of the set

of points {(
0, ν3(an,0)

)}
∪
{(

3k,
3n − 3k

2
+ n− k

)
: 1 ≤ k ≤ n

}
.

Proof. It is a simple exercise to show that ν3

(
3n

m

)
= n − ν3(m). It follows from Equation (7.2)

that for odd m,

ν3(an,m) =
3n −m

2
+ n− ν3(m).

67



Now for 3k < m < 3k+1, it is easy to verify that the point (m, ν3(an,m)) lies strictly above the

line segment joining (3k, ν3(an,3k)) and (3k+1, ν3(an,3k+1)).

Theorem 7.3.3. Suppose t ≡ 1 (mod 3). Set V = min{ν3(an,0)− 3n+1
2 , n}. Then

ind3 rn(x, t) =
(3n − 3)(3n + 1)

4
+
V

2
+ 1 +

1

2

V−1∑
k=0

3n−k.

Proof. Let N denote the (x − 1)-polygon determined in Proposition 7.3.2. The polygon N is

composed of V sides, and the length of each side is at most 3. The residual polynomials associated

to each side is y ± 1, y2 ± 1, and y3 ± y ± 1, depending on the length of the side. Regardless,

each residual polynomial is separable over F3, hence rn(x, t) is `-regular. By Theorem 4.2.2 we

are left to count the number of lattice points on or under the polygon. The number of lattice

points inside the region bounded by N in the first quadrant can be determined by Pick’s Theorem

(Lemma 4.3.3), which states that the number of lattice points I in the interior of the region is

given by

I = A−B/2 + 1,

where A is the area of the region, and B is the number of lattice points on the boundary of the

region. The region A can be broken up into V + 1 triangles, where the area of the first triangle

is 3n(3n + 1)/4, and the area of each successive triangle is 3n−i/2 for i = 1, . . . , V . The number

of points on the boundary is given by

B = # {lattice points on x and y axes}+ # {lattice points on the polygon}

= 3n +
3n + 1

2
+ V + 1 + 2V

=
3(3n + 2V + 1)

2
.

68



1 2 3 6 9 18 27

5

10

15

V = 0

V = 1

V = 2

V = 3

7.3.2 Index calculation: p 6= 3

Recall that if p | t2 + t+ 1, then rn(x, t) ≡ (x− t)3n

(mod p). Once again, we may use Taylor

expansion to determine the (x− t)-development:

rn(x, t) =

3n∑
m=0

an,m(x− t)m, where an,m =
r

(m)
n (t)

m!
.

By Proposition 2.4.1, it follows that

r(m)
n (t, t) =

3n!

(3n −m)!

(t− ζ)(t− ζ−1)3n−m − (t− ζ−1)(t− ζ)3n−m

ζ−1 − ζ
.

Hence for 0 ≤ m < 3n,

an,m =

(
3n

m

)
(t2 + t+ 1)

(t− ζ−1)3n−m−1 − (t− ζ)3n−m−1

ζ−1 − ζ
,

and νp(an,m) ≥ νp(t2 + t+ 1). In fact,

νp(am,n) = νp

(
3n

m

)
+ νp(t

2 + t+ 1)

since t ≡ ζ±1 (mod p) and

(t− ζ−1)3n−m−1 − (t− ζ)3n−m−1

ζ−1 − ζ
≡ ±(ζ−1 − ζ)3n−m−2 ≡ ±

√
−3

3n−m−2
(mod p).

It follows that the (x− t)-polygon is one sided with vertices (0, νp(an,0)) and (3n, 0).
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Theorem 7.3.4. Suppose p | t2 + t+ 1. Then

indp rn(x, t) =


(3n−1)(νp(t2+t+1)−1)

2 + 1 if νp(t
2 + t+ 1) ≡ 0 (mod 3)

(3n−1)(νp(t2+t+1)−1)
2 otherwise.

Proof. If νp(t
2 + t + 1) 6≡ 0 (mod 3), then the residual polynomial is degree one. By Theorem

4.2.2, the index is equal to the number of lattice points under the polygon. If νp(t
2 + t+ 1) ≡ 0

(mod 3), the residual polynomial has the form y3 + c, where c is a constant relative prime to p.

The discriminant of this polynomial is −27c2, hence this polynomial is separable over Fp. By

Theorem 4.2.2, the index is given by the number of lattice points under the polygon, plus the two

lattice points on the polygon.

Theorem 1.2.3 now follows from Theorems 7.3.1, 7.3.3, and 7.3.4.
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23(3):667–696, 2011.
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