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ABSTRACT 

FUNCTIONAL AND COMPARATIVE MORPHOLOGY OF THE NASAL CAVITY 

IN PHYLLOSTOMID BATS 

MAY 2014 

THOMAS P. EITING, B.S., THE UNIVERSITY OF TEXAS AT AUSTIN 

M.Sc., UNIVERSITY OF MICHIGAN, ANN ARBOR 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Elizabeth R. Dumont 

  

 The functional morphology and evolution of the nasal cavity is poorly understood. 

The New World Leaf-nosed bats of the family Phyllostomidae are an excellent group of 

mammals in which to study the evolution of the nose and nasal cavity. Phyllostomids 

span a wide dietary diversity, which is correlated both with the shape of the rostrum as 

well as with reliance on olfaction, one of the key functions mediated by the nose and the 

focus of my dissertation. How does dietary diversity relate to differences in the olfactory 

anatomy of phyllostomids?  

 I examined three neurological features thought to relate to olfactory capability, 

with my hypothesis being that fruit-and nectar-feeding bats rely more on olfaction than 

insect-feeders. I expected that fruit- and nectar-feeders would have relatively greater 

numbers of the three neuronal measures that I selected compared to insect-feeders. My 

results mostly supported this prediction, lending support to the basic idea that bats with 

different diets rely on olfaction to different degrees.  

 To sense odors in the environment, incoming air loaded with odorant molecules 

must make its way to the back of the nasal cavity, where the olfactory epithelium is 
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located. Do bats with different diets differ in terms of olfactory airflow? In this part of 

my dissertation, I first performed a computer modeling experiment that tested the 

hypothesis that the size of the olfactory recess (a key feature of many keen-smelling 

mammals) relates to differences in important aspects of olfactory airflow. I found that, all 

else being equal, a larger olfactory recess improves olfactory airflow. Next I performed a 

comparative study on six species of bats with different diets, expecting to find differences 

in patterns and rates of olfactory airflow. Instead I found relatively little variation in all of 

the measured parameters across the species I selected. These results suggest that the 

morphology of the nasal cavity may not be under strong selective pressure to 

accommodate different demands on the olfactory system. Investigating this idea more 

fully, and its consequences for the evolution of the nose and of the skull more broadly, 

would be an exciting avenue for future research.  
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CHAPTER 1 

DIET AND ITS RELATIONSHIP TO NEUROANATOMICAL DIFFERENCES IN 

THE OLFACTORY SYSTEM 

1.1 Abstract 

 Comparative studies are a common way to address large-scale questions in 

sensory biology. For studies that investigate olfactory abilities, the most commonly used 

metric is relative olfactory bulb size. Such studies have suggested that fruit- and nectar-

feeding bats utilize olfaction more than their insect-eating counterparts. However, recent 

work has called into question the broad-scale use of relative olfactory bulb size. In this 

paper I use three neuroanatomical measures with a more mechanistic link to olfactory 

function (number of olfactory sensory neurons (OSNs), number of mitral cells (MCs), 

and number of glomeruli) to ask how species with different diets may differ with respect 

to olfactory ability. I use phyllostomid bats as my study system because behavioral and 

physiological work has shown that fruit- and nectar-feeding bats rely on odors for 

detecting, localizing, and assessing potential foods, while insect-eating species do not. 

Therefore, I predicted that fruit- and nectar-feeding bats would have larger numbers of 

these three neuroanatomical measures than insect-eating species. In general, my results 

supported my predictions. I found that fruit-eaters had greater numbers of OSNs and 

glomeruli than insect-eaters, though I found no difference between groups in number of 

MCs. Interestingly, nectar-feeders tended to fall in the range of insect-eaters instead of 

fruit-eaters, though this finding could be the result of only having two nectar-feeders in 

my analysis. Finally, I examined the relationship between the three neuroanatomical 

variables and olfactory bulb volume, to determine if olfactory bulb size relates to these 
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three variables that have a more explicit link with olfactory function. I found that 

olfactory bulb size was related in an isometric fashion with all three neuroanatomical 

variables. These findings lend support to the notion that neuroanatomical measures can 

offer valuable insights into comparative olfactory abilities, and they suggest that the size 

of the olfactory bulb may be an informative parameter to use at the whole-organism level. 

 

1.2 Introduction 

 Olfaction plays a critical role in the lives of most mammals. It functions in food 

detection and discrimination, mother-offspring recognition, species discrimination, and 

mate choice. Mammals vary in their reliance on olfaction, with cetaceans having little to 

no olfactory ability and groups like canids relying a great deal on their sense of smell 

(Anisko, 1976; Pihlström, 2008). Comparative studies have often been used to investigate 

the evolutionary history of olfactory abilities across mammals. Most comparative studies 

examine neuroanatomical proxies for olfactory abilities and evaluate their relationship to 

potential selective pressures (e.g., Baron et al., 1983; Barton et al., 1995; Hutcheon et al., 

2002; Barton, 2006). The most common proxy for olfactory ability is the relative size of 

the olfactory bulb, which has been used in numerous studies of mammals to relate 

olfactory ability to foraging ecology, activity patterns, and sociality (e.g., Bhatnagar and 

Kallen, 1974; Gittleman, 1991; Barton et al., 1995; Hutcheon et al., 2002). One group of 

mammals for which investigations into olfactory function have been extensively studied 

is phyllostomid bats. This family of bats spans the greatest range of dietary diversity 

among any mammalian family, having members that consume fruit, nectar, arthropods, 

vertebrates, and even blood. Comparative studies have shown that bats feeding on fruit 
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and flowers have relatively larger olfactory bulbs compared to insect-feeders (Bhatnagar 

and Kallen, 1974; Hutcheon et al., 2002; Safi and Dechmann, 2005), suggesting that 

these bats use olfaction to different degrees while foraging. Behavioral work has 

provided further evidence for these ideas, showing that many fruit- and nectar-feeding 

bats employ olfaction to detect and localize fruit and flower odor sources (Thies et al., 

1998; von Helversen et al., 2000; Korine and Kalko, 2005). Physiological work has also 

shown that fruit-eaters can discriminate ripe fruits at very low odorant thresholds (Laska, 

1990). Insect-feeders, by contrast, generally use echolocation and vision when foraging 

rather than olfaction (Altringham and Fenton, 2003). Olfactory cues are thought to be less 

informative for these animals, because they hunt moving prey and often catch insects 

while in flight, and odors are generally too slow-moving to be of much use. Thus both 

comparative and behavioral work has supported the role for olfactory differences in 

foraging ecology among bats. 

 However, a growing body of evidence suggests that the commonly used metric of 

relative olfactory bulb size may not relate to discernible differences in specific olfactory 

functions (Laska et al., 2000; Laska et al., 2005; Smith and Bhatnagar, 2004; Joshi et al., 

2006; Sarko et al., 2009). Instead, these studies suggest that more direct measures of 

olfactory performance should be used when possible. For example, Joshi et al. (2006) 

found that, even though spider monkeys have much smaller relative olfactory brain 

structures compared to mice, these two species (monkeys and mice) show no appreciable 

difference in olfactory sensitivity among several odors. However, such physiological 

comparisons of olfactory performance are limited, because they test only a few odorants 
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at a time, and they can only be applied to species in captivity or that are easy to study in 

the field.  

 The difficulties both of using relative olfactory bulb size and of performing 

physiological comparisons on multiple species highlight a need to evaluate other metrics 

for comparative studies. Fortunately, there are several neuroanatomical measures of 

olfactory reliance (i.e. how much a species depends on olfaction) that have been 

suggested in the literature. For example, the sheer number of neurons is often taken as an 

informative measure of computational ability, both across the brain and within more 

specific regions of the brain (Herculano-Houzel et al., 2006; Herculano-Houzel et al., 

2007; Lent et al., 2012; Williams and Herrup, 1988). In the olfactory system, the two sets 

of neurons that are often investigated are the primary olfactory sensory neurons (OSNs) 

in the olfactory epithelium, and the mitral cells (MCs), which are the primary neurons 

within the olfactory bulb (Royet et al., 1998; Schoenfeld and Knott, 2004). Another 

structure of the olfactory bulb, the glomerulus, has been suggested to be the “functional 

unit” within the olfactory bulb, and thus could be related to a species’ olfactory ability 

(Allison and Warwick, 1949; Mombaerts et al., 1996; Royet et al., 1998; Cleland and 

Linster, 2005). Glomeruli are clustered regions of neuropil (regions of high density of 

axons and dendrites) in the olfactory bulb where the first synapse in olfactory processing 

occurs (between OSNs and MCs). Each odor seems to evoke responses in a unique set of 

glomeruli (Mombaerts et al. 1996), so having more glomeruli should allow an animal to 

distinguish among a larger set of odors.  

 Using phyllostomid bats I examine how these neuroanatomical measures may be 

used to study olfactory reliance in a comparative context. Our overarching hypothesis is 
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that fruit- and nectar-feeding bats rely more on olfactory cues when foraging compared to 

insect-eating bats. If true, I expect to find that fruit- and nectar-feeders have relatively 

more OSNs, mitral cells, and glomeruli compared to insect-eaters. I also place our 

findings in context of the long-established relationship between olfactory bulb size and 

diet in this group by testing whether the neuroanatomical measures used here relate to 

olfactory bulb size. Finally, I discuss the implications of our findings for understanding 

olfactory evolution in this diverse group of mammals. 

 

1.3 Materials and Methods 

 I sampled adults from 12 species of New World leaf-nosed bats (Family 

Phyllostomidae). The species that I included consume either fruit, nectar, or insects (see 

Appendix 1; (Ferrarezzi and Gimenez, 1996; Dumont et al., 2012). All specimens were 

preserved in 70% ethanol in museum fluid collections (see Appendix 1). I removed the 

heads, decalcified them using a formic acid-sodium citrate solution, and tested for 

decalcification using an ammonium oxalate solution. Decalcification took between nine 

and 30 days, with larger specimens requiring more time. After decalcification, bats were 

dehydrated through a graded series of alcohol, cleared using Xylene or Histoclear 

(National Diagnostics), and embedded in Paraplast X-TRA (Fisher Scientific). Specimens 

were sectioned in the coronal plane rostrally to caudally at nominally 10 µm increments 

on a rotary microtome (American Optical at UMass or Microm HM 315 at SRU). Every 

5
th 

section was mounted on a glass slide until the end of the olfactory epithelium was 

reached; from this point back to the choana, every 10
th

 section was mounted. Sections 

were stained with hematoxylin and eosin. Intervening sections were mounted to 
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supplement the initial sampling as needed and stained with Gomori trichrome or thionine. 

Slides were cover-slipped with Permount in preparation for microscopic examination. 

 Microscopic analysis was performed on a light microscope (Eclipse E600, Nikon) 

with an automated stage (Biopoint 2, Ludl Electronic Products) and digital video camera 

(Optronics) attached to a computer. The nasal cavity, skeleton, and olfactory bulbs are 

approximately symmetric about the mid-sagittal plane, so I analyzed only the right side of 

these structures. For each sample I identified the first and last sections that contained any 

of the relevant tissue (i.e. olfactory epithelium, if looking at the nasal cavity, or the 

glomerular and mitral cell layers, if looking at the olfactory bulb). Olfactory epithelium 

(OE) is readily distinguished from other epithelial types lining the nasal cavity by a 

combination of traits, including its association with Bowman’s glands, the presence of 

non-motile cilia rather than kinocilia at the apical end, and a clear separation into three 

cell layers (Fig. 1.1). Supporting cells occupy the apical-most cell layer, and they are 

usually slightly larger and more oval in shape than the round sensory cells beneath them. 

Basal cells occupy the basal-most layer (immediately above the lamina propria), and they 

usually have irregular or flat shapes. For this study I considered all cells between the 

apical-most and basal-most layers as OSNs (i.e., excluding the supporting and basal cells 

themselves), and only counted these cells. Some work has suggested that counting 

dendritic knobs provides a good metric for counting functional OSNs (Farbman, 1992; 

Schoenfeld and Knott, 2004). However, our sections were relatively thick for this 

purpose. Although I may have somewhat overestimated the number of functional OSNs 

(as opposed to new OSNs that have yet to establish a synapse), this has been done 

consistently across the samples. By studying all OSNs, I assume a similar rate of synapse 
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formation across species. In the olfactory bulb, glomeruli are large bundles of neuropil at 

the periphery of the bulb and are easily identified (Fig. 1.2). Mitral cells lie deep to the 

glomeruli, occurring in a distinct mitral cell layer (MCL) between the external plexiform 

layer and the internal plexiform layer. Within the MCL mitral cells were easily 

distinguished from glial cells by their large size, light-staining nucleus, and presence of at 

least one dark-staining nucleolus (Price and Powell, 1970). 

 I carried out stereology using StereoInvestigator software (MBF Bioscience, 

Williston, VT, USA) and estimated the numbers of OSNs in the olfactory epithelium and 

mitral cells in the olfactory bulb using the optical fractionator technique (West et al., 

1991; Mouton, 2011). After determining the first and last sections that contained the 

structure of interest, I selected eight-to-12 intervening sections in a systematic-random 

fashion (i.e. random starting section with evenly-spaced sections thereafter) for 

stereological analysis (Gundersen and Jensen, 1987; Gundersen et al., 1999; Mouton, 

2011). I traced the outline of the olfactory epithelium or mitral cell layer in each slice at 

40x magnification using a Wacom computer screen that showed a live feed from the 

video camera. I next overlaid a randomly-oriented virtual grid to select sites at which 

cells (in the case of OSNs) or cell nuclei (in the case of mitral cells) would be counted at 

1000x with an optical disector probe. An optical disector probe is a virtual square box of 

known dimensions that is used to include or exclude cells with which it comes into 

contact. We excluded all cells that contacted three of the six planes of the probe (lower z-

axis, left y-axis, bottom x-axis) from our counts, and I only included cells if they came 

into focus within the disector probe. For the olfactory epithelium, I used an optical 

disector probe of 10 µm x 10 µm and a grid spacing of 100 µm x 100 µm, 125µm x 
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125µm, or 150µm x 150µm, depending on species. For the mitral cell layer, I used an 

optical disector probe of 25 µm x 25 µm or 40 µm x 40 µm and a grid spacing of 50 µm x 

50 µm, 60 µm x 60 µm, or 80 µm x 80 µm. All probes were 7 µm thick, and they all had 

a guard zone of 0.5 µm at the top (z-axis), to compensate for shearing effects caused by 

the microtome. To calculate the total number of OSNs, I multiplied the number of OSNs 

I counted by the inverse of the section sampling fraction, area sampling fraction, and 

thickness sampling fraction (Mouton, 2011). Probe dimensions, grid spacing, and inter-

section sampling rate were chosen to yield an estimated coefficient of error per specimen 

of less than 10%, calculated according to the revised quadratic approximation formula 

with a smoothness class parameter of one (m = 1; Gundersen et al., 1999). 

 I counted glomeruli using a combination of the physical disector probe and 

fractionator sampling. I determined the first and last sections that contained glomeruli. I 

again used systematic-random sampling to choose eight-to-12 sections through the 

glomerular region. For each of these “reference” sections, I outlined the glomerular layer 

and each individual glomerulus on the computer screen. I then chose the next section in 

sequence (separated by 50 µm) and lined up its glomerular layer with the tracing from the 

reference section. Glomeruli on the second section were marked if they did not overlap 

with the glomerular tracings from the reference section. The number of glomeruli that I 

counted was then multiplied by the ratio of sampled sections to total sections, giving the 

total number of glomeruli for the specimen. 

 My histologically-prepared samples resulted in differential shrinkage of the brains 

(including the olfactory bulbs) across species, so I was unable to use volumes of the brain 

or olfactory bulb from my prepared specimens. Instead, I collected values for olfactory 



9 

 

bulb volume and brain volume from the literature (see Appendix 1; (Baron et al., 1996). 

Baron et al. (1996) extracted brains from fresh-caught specimens, which were 

immediately fixed in Bouin’s solution. This protocol ensured minimum shrinkage, and 

subsequent measurements by these authors corrected for volumetric loss due to fixation 

(for further details, see Baron et al., 1996). 

 All statistical analyses accounted for phylogenetic relationships between species. I 

used Phylogenetic Generalized Least Squares (PGLS) in my analyses. First I tested for 

phylogenetic signal in my data (λ; Pagel, 1999). I found that λ differed significantly from 

0 but not from 1 in any of my variables, so I assumed Brownian motion in my PGLS 

models. In my first set of analyses, I examined whether dietary differences (categorical 

with 3 levels: Fruit, Insects, and Nectar) predict differences in three neuroanatomical 

variables (continuous; log OSN number, log mitral cell number, and log glomeruli 

number), with log brain volume as a covariate in each case. Second, I studied the 

relationship between log olfactory bulb (OB) volume (mm
3
) and my three log-

transformed neuronal variables by PGLS. In each case, the neuronal measure was the 

independent variable, and log OB volume was the dependent variable. All statistics were 

done in R 2.15.1 using the packages “ape,” “geiger,” “ade4,” and “phylosig” (Paradis et 

al., 2004; Harmon et al., 2008; Revell, 2010; R Core Team, 2012). All of my variables 

had a lambda value that differed significantly from 0 but not from 1, so I assumed 

Brownian motion in regression analyses. 
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1.4 Results 

 In my first set of analyses I examined the relationship between diet and three 

variables of functional interest: log OSN number, log mitral cell number, and log 

glomeruli number, with log brain volume a covariate in each case. I found that diet 

predicted differences both in log OSN number and log glomeruli number, but not for log 

mitral cell number (Table 1.1). In the case of log OSN number and log glomeruli number, 

the difference between the fruit-eating group and the other two dietary groups is driving 

the overall statistical significance (Fig. 1.3). 

 I also investigated how my three neuroanatomical variables (numbers of OSNs, 

mitral cells, and glomeruli) related to olfactory bulb volume. I used PGLS to analyze one 

each of my three predictor variables (log OSN number, log glomeruli number, and log 

mitral cell number) against log OB volume. All three variables significantly predicted log 

OB volume, and the confidence intervals in each case included 1, denoting isometry 

(Table 1.2; Fig. 1.4). 

 

1.5 Discussion 

 I found that fruit-eating phyllostomid bats have relatively more olfactory sensory 

neurons and more glomeruli than their insect-eating counterparts. However, they do not 

have more mitral cells compared to insect-eaters. In all three analyses nectar-feeders 

tended to fall in line with the insect-eaters more than the fruit-eaters, though with only 

two nectar-feeding species in my study it is difficult to make a more general statement 

with this trend.  
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 These findings thus corroborate the idea that bats with different diets rely on 

olfaction to varying degrees when foraging. Fruit-eating bats use olfaction for a host of 

foraging behaviors, including initially detecting fruit odors, following odor plumes, and 

distinguishing ripe from unripe fruits (Thies et al., 1998; von Helversen et al., 2000; 

Korine and Kalko, 2005). My work suggests that behavioral differences between these 

dietary groups may not be the only functionally relevant difference. Indeed, fruit-eating 

phyllostomids likely have an increased processing capability in their olfactory system for 

handling food odor cues. Therefore, there seem to be a confluence of behavioral, 

physiological, and neuronal factors that contribute to the ability of fruit-eating bats to 

utilize odors in foraging. 

 Surprisingly, I did not find a relationship between diet and the number of mitral 

cells. This finding could be due to the fact that mitral cells are not the only cell in the 

olfactory bulb responsible for transmitting signals. Other neurons, such as tufted cells, 

and various types of glia interact to form a dense network of connections within the 

olfactory bulb (Shepherd, 2003). Furthermore, odor processing involves a series of 

retrograde synapses, lateral inhibitors, and other modifying effects in addition to the 

routine downstream synaptic connections (Firestein, 2001). Thus it may be profitable to 

incorporate additional cell types and/or synaptic complexity when investigating 

comparative olfactory function. 

 As mentioned, the fact that I only had two nectar-feeders in my study limits my 

ability to make conclusive general statements. However, it is intriguing to note that these 

species tend to group with insect-eaters in every analysis. Though other comparative 

studies have shown that these animals to have relatively large olfactory bulbs, behavioral 
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studies have found that many nectar-feeders rely on vision and especially echolocation 

while foraging (von Helversen and von Helversen, 2003; von Helversen and Voigt, 

2002). More study, both behavioral and comparative, is clearly warranted.  

 All three of the neuronal measures I used were related in an isometric fashion to 

olfactory bulb size. To the extent that my neuronal measures track olfactory functions, 

these results suggest that relative olfactory bulb size relates to at least some aspects of 

functional ability. My findings thus support the view that using olfactory bulb size as a 

proxy for olfactory ability or reliance is a reasonable generalization in comparative 

studies (Barton, 2006; Barton et al., 1995; Healy and Guilford, 1990). However, the value 

of using olfactory bulb size in this way is still up for debate. In a comparative 

neuroanatomical study of five insectivores, Sarko et al. (2009) found that olfactory bulb 

size increases more slowly than its number of neurons, thereby suggesting that olfactory 

bulb size should not be used as a proxy for neuron number. However, Sarko et al. (2009) 

did not include confidence intervals for the estimate of their scaling parameter, so a 

difference from isometry was not directly tested. Other work questioning the use of 

olfactory bulb size as a proxy for ability comes from physiological studies. These studies 

find that olfactory bulb size does not relate to differences between species in terms of the 

threshold response to various odors, or to discrimination between different odors (Laska 

et al., 2000; Laska et al., 2005; Hepper and Wells, 2012; Rizvanovic et al., 2013). Such 

studies are harder to make sense of, but they do point to the need for additional work that 

uses olfactory bulb size directly as an independent variable in physiological studies. 

Additionally, the importance of differences in olfactory bulb size may relate more to 
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whole-organism olfactory performance rather than being a predictor of specific 

differences in, for example, threshold responses to odorants. 

 My work highlights the need to continue investigating the assumptions underlying 

comparative olfactory research. To continue doing broad comparative studies, it is 

important to identify variables that are likely to be related to any of the numerous 

olfactory abilities. For example, perhaps the size of the olfactory genome relates to the 

diversity of odors that can be perceived. Larger numbers of olfactory genes presumably 

correspond to a more diverse array of olfactory receptor proteins in the olfactory 

epithelium. This, in turn, could increase the diversity of odors that could be sensed. 

Physiological work has shown that larger total number of olfactory receptor genes relates 

to an increase in a species ability to distinguish among structurally related odorants 

(Laska and Shepherd, 2007). Broad-scale studies have illustrated that different families of 

olfactory genes are linked with large differences in habitat types across mammals 

(Hayden et al., 2010), suggesting a role for different odors in niche specialization.  

 

1.6 Conclusions 

 Fruit-eating phyllostomid bats have greater numbers of olfactory sensory neurons 

and olfactory bulb glomeruli than do insect-eating phyllostomids, suggesting that fruit-

eating species may use olfaction in foraging more than their insect-eating counterparts. 

These neuronal measures also relate to olfactory bulb size in an isometric fashion, 

lending support to the idea that the olfactory bulb may be a valuable proxy for whole-

organism olfactory ability or reliance. Further comparative, physiological, and behavioral 

studies are needed to understand how neuroanatomical proxies for olfactory reliance 
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relate to behavioral or perceptual differences in olfactory performance. The three 

neuronal measures used here may prove to be fruitful variables for future research in 

comparative studies of olfaction. 
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Table 1.1 PGLS results of the effect of diet and brain volume 

on 3 neuroanatomical measures 

    

log OSN number d.f F value p 

diet 2 4.499 0.0491 

log brain volume (mm
3
) 1 29.315 0.0006 

log MC number    

diet 2 0.893 0.4467 

log brain volume (mm
3
) 1 3.58 0.0951 

log glomeruli number    

diet 2 6.5416 0.0207 

log brain volume (mm
3
) 1 4.0935 0.0777 
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Table 1.2 PGLS results of the effect of log OSN number, log MC number, and 

log glomeruli number on log olfactory bulb (OB) volume   

Variable slope S.E. t p 95% C.I. 

      

log OSN number 0.888 0.1 8.87 <0.001 0.692-1.084 

      

log MC number 1.605 0.653 2.46 0.034 0.326-2.884 

      

log glomeruli number 1.343 0.443 3.03 0.013 0.474-2.212 
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Figure 1.1 Enlarged view of olfactory epithelium (OE). This shows the division of the 

epithelium into three layers: Supporting Cells (SC), Olfactory Sensory Neurons (OSN), 

and Basal Cells (BC). Airspace (A) and the underlying lamina propria (LP) shown as 

reference. 
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Figure 1.2 Detailed view of the olfactory bulb in Monophyllus redmani. (a) Coronal 

section of the olfactory bulb, showing the glomeruli (G) (40x), (b) High-magnification 

image of the mitral cell layer in the olfactory bulb, showing the easily-distinguished 

mitral cells (MC) (1000x). 
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Figure 1.3 Scatterplots of neuroanatomical variables. (a) log olfactory sensory neuron 

(OSN) number against log brain volume, (b) log mitral cell (MC) number against log 

brain volume, and (c) log glomeruli number against log brain volume. Diet is indicated 

by color and shape of symbols: red squares = fruit-eaters, black triangles = nectar-

feeders, and blue circles = insect-eaters. Results from PGLS indicate that diet predicts 

differences in log OSN number and log glomeruli number, but not log MC number, when 

controlling for brain size. 
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Figure 1.4 Scatterplots of isometric relationships. (a) log olfactory bulb (OB) volume 

against log olfactory sensory neuron (OSN) number, (b) log OB volume against log 

mitral cell (MC) number, and (c) log OB volume against log glomeruli number. PGLS 

indicates that the slope of each line does not differ significantly from 1, thereby 

indicating isometry (see also Table 1.2).  
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CHAPTER 2 

THE ROLE OF THE OLFACTORY RECESS IN OLFACTORY AIRFLOW 

 

2.1 Abstract 

 The olfactory recess—a blind pocket at the back of the nasal airway—is thought 

to play an important role in mammalian olfaction by sequestering air outside of the main 

airstream, thus giving odorants time to re-circulate. Several studies have shown that 

species with large olfactory recesses tend to have a well-developed sense of smell. 

However, no study has investigated how the size of the olfactory recess relates to air 

circulation near the olfactory epithelium. Here I used a computer model of the nasal 

cavity from a bat to test the hypothesis that a larger olfactory recess improves olfactory 

airflow. I predicted that during inhalation, models with an enlarged olfactory recess 

would have slower rates of flow through the olfactory region (i.e. the olfactory recess 

plus airspace around the olfactory epithelium), while during exhalation these models 

would have little to no flow through the olfactory recess. To test these predictions I 

experimentally modified the size of the olfactory recess while holding the rest of the 

morphology constant. During inhalation I found that an enlarged olfactory recess resulted 

in lower rates of flow in the olfactory region. Upon exhalation, air flowed through the 

olfactory recess at a lower rate in the model with an enlarged olfactory recess. Taken 

together, these results indicate that an enlarged olfactory recess improves olfactory 

airflow during both inhalation and exhalation. These findings add to my growing 

understanding of how the morphology of the nasal cavity may relate to function in this 

understudied region of the skull. 
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2.2 Introduction 

 In mammals thought to have a keen sense of smell (macrosmatic mammals), 

much of the olfactory epithelium lines a cul-de-sac at the back of the nose called the 

olfactory (Moore, 1981; Smith and Rossie, 2008; Smith et al., in press) or ethmoturbinal 

recess (Maier, 1993). The olfactory recess has only one opening which allows it to 

sequester the air that is breathed in during inhalation and prevent it from washing out 

during exhalation. In this way, odorant-laden air that enters the olfactory recess has more 

time to circulate in the olfactory region and make contact with odor receptors (Yang et 

al., 2007). Having a well-developed olfactory recess thus likely improves olfactory 

performance in macrosmatic mammals (Craven et al., 2010; Yang et al., 2007). The 

development and extent of the olfactory recess varies considerably across mammals, from 

completely absent in, for example, hominoids and cetaceans (Moore, 1981; Smith et al., 

in press), to very large and well-developed in groups like canids (Craven et al., 2007). In 

this paper I examine the effects of the extent of the olfactory recess on the patterns and 

rates of olfactory airflow. 

 The olfactory recess forms as the caudodorsal extension of the nasal fossa and is 

separated from the ventral nasopharyngeal ducts by a fully-formed transverse lamina. The 

transverse lamina develops when the lateral walls of the vomer fuse to the medial 

projection of the lateral nasal wall (Smith and Rossie, 2008) (Fig. 1). The transverse 

lamina and other structures that bound the olfactory recess derive, in great part, from the 

mesenchymal condensation known as the pars posterior (De Beer, 1937; Moore, 1981; 

Smith and Rossie, 2008), so the variation in the development of these structures likely 

contributes to variation in the size of the olfactory recess across mammals. 
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 One clade of mammals that exhibits substantial variation in the extent of the 

olfactory recess is the New World leaf-nosed bats (Family Phyllostomidae). One way to 

quantify this difference is to calculate the percentage of olfactory epithelium contained 

within the olfactory recess. This parameter relates to the size of the olfactory recess 

because, in all species examined, virtually all of the olfactory recess is lined with 

olfactory epithelium. I have found that some species have less than 10% of their total 

olfactory epithelium located within the olfactory recess, while other species have a third 

or more of their olfactory epithelium located within the olfactory recess (Eiting et al., in 

review). In this study I examine the hypothesis that an enlarged olfactory recess improves 

olfactory airflow in phyllostomid bats. To examine this hypothesis, I generated a steady-

state model of airflow through the nasal passage of the short-tailed fruit bat, Carollia 

perspicillata (Linnaeus), and compared it to airflow predicted from models in which I 

artificially reduced and enlarged the olfactory recess. This species is common throughout 

much of the New World tropics, and it is often used in experimental and behavioral work, 

including previous work on olfactory sensitivity and discrimination (Laska, 1990a; 

Laska, 1990b; Thies et al., 1998). Carollia lies near the base of the radiation of frugivores 

within the phyllostomids, and it is morphologically intermediate between the long-nosed 

nectar feeding bats and the short- nosed canopy frugivores (Dumont et al., 2012; 

Freeman, 1988; Freeman, 2000). These two features make this species a well-suited 

model to study olfactory airflow. 

 If an enlarged olfactory recess improves olfactory airflow, then at a given 

volumetric flow rate, I expect nasal passages with an enlarged olfactory recess to have 

lower rates of flow (i.e. volume of flow per unit time) through the olfactory region during 
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inhalation, which increases residence time of odorant molecules in the airspace above the 

olfactory mucosa (Craven et al., 2010; Yang et al., 2007). Long residence time is thought 

to improve absorption efficiency, meaning that proportionally more odorant molecules 

are absorbed in the mucus (Lawson et al., 2012). Second, I predict that models with an 

enlarged olfactory recess will have lower rates of airflow and less total airflow through 

the olfactory recess during exhalation. Lower rates of flow in the olfactory recess during 

exhalation would mean that air within the olfactory recess will “wash out” relatively 

slowly. Furthermore, less air moving through the olfactory recess during exhalation 

would suggest that proportionately less air is washed out of the olfactory recess with each 

breath cycle, giving odorants more time in the olfactory recess to be absorbed. 

 

2.3 Materials and Methods 

 I constructed an anatomically accurate 3D finite volume model of the right nasal 

airway of an adult fluid-preserved Carollia perspicillata (AMNH #261433) from a 

microCT scan (X-Tek HMX ST 225; 72 kV, 148 µA, voxel size: 2.425 x 10
-2

 mm). I 

used Mimics v. 15.01 (Materialise, Leuven, Belgium) and Geomagic Studio v. 12.0 (3D 

Systems, Rock Hill, SC, USA) to create a solid model of the airway from the raw stack of 

CT image slices. My relatively low energy CT scan allowed me to see the air-mucosa 

boundary throughout much of the scan. In areas where the mucosa could not reliably be 

distinguished from the surrounding airspace, I consulted slices from a histological 

preparation of this same specimen of Carollia (see details below), which allowed me to 

see the olfactory mucosa throughout the specimen. I matched the histology slices with the 

CT slices from the same locations, allowing me to modify the 3D model as needed. I 
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artificially elongated the nasopharyngeal meatus (posterior opening of the nasal cavity) of 

my model by ~1.1 mm, to ensure that the flow during exhalation was fully developed at 

the back of the airway. The model of the air space included approximately 625,000 4-

noded tetrahedral elements. I carried out a sensitivity study with twice the number of 

tetrahedra and found no appreciable differences in my results, so I used the 625k model 

in this study. To make the histological preparation of my specimen, the head was 

removed and decalcified in a solution of formic acid and sodium citrate. The specimen 

was then embedded in paraffin and sectioned on a rotary microtome at nominally 10 µm 

thickness in the coronal plane. 

 I mounted every 5th section and stained most slides with hematoxylin and eosin. 

Some intervening sections were also mounted and stained with Gomori trichrome or 

thionine. The histological preparations allowed me to examine the location and extent of 

the olfactory epithelium. I acquired photomicrographs of the sections and used ImageJ 

software to outline the olfactory epithelium in every 3rd section. I then calculated the 

amount of olfactory epithelium section-by-section and the cumulative rostro-caudal 

percentage of olfactory epithelium for the entire specimen. This process allowed me to 

calculate that 21.5% of all of the olfactory epithelium was located in the olfactory recess 

(beginning with the first coronal section with a complete transverse lamina) for this 

specimen. 

 I also used histological slides to map the olfactory epithelium onto the 3D models. 

This was done by creating a surface model (STL file) of the olfactory mucosa in 

Geomagic Studio based on photomicrographs of the histology slides. Anatomical 

landmarks in the slides were matched to the same landmarks in the original model of the 
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airway in Geomagic. Once completed, this new STL file of the olfactory mucosa was 

imported directly into the flow visualization software (Paraview v. 3.98.1, Kitware, Inc., 

Clifton Park, New York, USA). 

 To examine the effects of enlarging or shrinking the olfactory recess, I altered the 

length of the transverse lamina in the Carollia model. By lengthening the transverse 

lamina, I was able to create a model that had a proportionately larger olfactory recess. 

Similarly, shortening the transverse lamina produced a proportionately smaller olfactory 

recess. I altered the length of the transverse lamina in the model so that it enclosed an 

olfactory recess that contained the extremes of variation seen among phyllostomids (i.e. 

~7.5% and ~34% olfactory epithelium within the olfactory recess; Fig. 2.1). These 

alterations were performed by artificially shortening and lengthening the transverse 

lamina using the modeling software (Geomagic Studio and Mimics).  

 I assessed steadiness in flow by calculating the Womersley number, which is a 

value used to distinguish steady from unsteady flow in fluids (Loudon and Tordesillas, 

1998). For my study the Womersley number was less than one (0.38), meaning that I 

could assume steady flow. The Reynolds number for the nasal airway of Carollia is on 

the order of ~20, so I also assumed laminar flow. I applied the same volumetric flow rate 

to the models during both inhalation and exhalation. The flow rate was determined to be 

2.255 x 10
-2

 L/min, based on the allometric equation suggested by Craven et al. (2010): 

 

Qpeak = 1.43M
1.04

, (1) 
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where Qpeak is peak inspiratory flow rate, and M is the body mass (in grams). For my 

models, I used a value of 18.5 for M, which is the average body mass of male C. 

perspicillata in grams (Cloutier and Thomas, 1992). To apply this flow rate at the inlet 

(i.e. at the nostril during inhalation or at the choana during exhalation), I converted 

volumetric flow rate into fluid velocity assuming a constant inflow velocity, using the 

following equation: 

 

U = Q/A, (2) 

 

where U is the fluid velocity (in m/s), and A is the area of the inlet normal to the direction 

of  low. I used OpenFOAM 1.6-ext (www.openfoam.org) to solve steady-state solutions 

of inhalation and exhalation (see Appendix B for further details). In the presented 

simulations the velocity is 0.78 m/s during inhalation, and 0.29 m/s during exhalation. I 

applied a zero velocity gradient, constant pressure boundary at the outlet (i.e. at the 

choana during inhalation or at the nostril during exhalation). 

 My quantitative analyses were performed as follows. For my inhalation case I 

defined an identical subvolume in all three models that roughly matched the location of 

the olfactory epithelium (Fig. 2.2). For every cell in this subvolume, I extracted values for 

velocity magnitude, which were then used to calculate average airflow velocity. These 

average values were compared across the three models. I also calculated volumetric flow 

rate. First I selected an identical transverse slice in all three models that corresponded to 

the anterior-most beginning of the transverse lamina in the reduced olfactory recess 

model. Then I integrated flow velocity across the area of this slice to calculate volumetric 
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flow rate. I calculated volumetric flow rate for the exhalation case in the same manner 

and across the same slice. I also performed qualitative comparisons of flow passing 

through the olfactory recess by comparing flow patterns using streamlines (i.e. lines of 

flow tangential to the direction of flow). The streamlines were generated by “seeding” a 

sphere (radius 0.35 mm) of 500 points near the choana.  

 

2.4 Results 

 Flow patterns in my computational models for the case of inhaled air support the 

prediction that a reduced olfactory recess produces higher flow velocities in the olfactory 

region (Fig. 2.3). I found that airflow in the reduced olfactory recess subvolume was 28% 

faster on average than in the normal olfactory recess subvolume (11.56 x 10
-3

 m/s vs. 9.06 

x 10
-3

 m/s). Similarly, airflow in the normal olfactory recess subvolume was an average 

of 17% faster than in the enlarged olfactory recess subvolume (9.06 x 10
-3

 m/s vs. 7.74 x 

10
-3

 m/s). When comparing the reduced olfactory recess vs. the enlarged olfactory recess 

subvolumes, the average flow in the reduced olfactory recess subvolume was nearly 50% 

faster than in the enlarged olfactory recess subvolume (11.56 x 10
-3

 m/s vs. 7.74 x 10
-3

 

m/s). Higher flow velocities translate to higher rates of flow in these models. This can be 

seen in the slice shown in Figure 3, which corresponds approximately to the first slice 

anterior-posterior slice in which the olfactory recess appears. Flow rate into the olfactory 

recess at the level of the slice in Figure 3 was highest in the reduced olfactory recess 

model (6.49 x 10
-4

 L/min), moderate in the normal olfactory recess model (3.46 x 10
-4

 

L/min), and lowest in the enlarged olfactory recess model (1.27 x 10
-4

 L/min). 
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 Qualitative comparisons between the three models during exhalation show that 

more streamlines pass through the same coronal anterior-posterior slice in models with a 

reduced olfactory recess (Fig. 4). For my quantitative comparisons, I calculated average 

flow rates for air leaving the olfactory recess at the same anterior-posterior slice as in the 

streamline comparison. Average rates of flow out of the olfactory recess at this slice were 

highest in the model with the reduced olfactory recess (5.1 x 10
-4 

L/min), moderate in the 

model with the normal olfactory recess (2.25 x 10
-4

 L/min), and lowest in the model with 

the enlarged olfactory recess (6.6 x 10
-5

 L/min).  

 

2.5 Discussion 

 Computational studies of airflow in mammals have established that the olfactory 

recess is a region of the nasal fossa that is well-suited for olfaction (Craven et al., 2010; 

Yang et al., 2007; Zhao et al., 2006). A small fraction of air inhaled during 

breathing/sniffing bypasses the respiratory region of the nose by a dorsal conduit, and 

then slows down upon entering the convoluted olfactory region, which ends in the blind 

olfactory recess. This study is the first to modify the size of the olfactory recess in order 

to understand if and how much of an impact it has on altering olfactory airflow. I have 

demonstrated that the size of the olfactory recess contributes significantly to the flow 

patterns and rates of flow through the olfactory region. These results have implications 

for an improved understanding of the role that morphology plays in nasal airway 

function. The simulations of inspiratory airflow produced a steady increase in flow rates 

(which reduces molecule residence times) through the olfactory region in models with 

progressively reduced olfactory recesses. Comparing the extreme cases, the flow rate 
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through the olfactory region of these models was approximately 50% higher in the 

reduced olfactory recess model compared to the enlarged olfactory recess model. These 

results indirectly support the hypothesis that the size of the olfactory recess, which is 

determined by the extent of the transverse lamina, can play a significant role in 

improving residence time of odorants within the olfactory region. This increase in 

residence time is predicted to produce a greater fractional uptake of odorants from the 

total mass flow of odorants at the inlet. To further examine odorant absorption in 

Carollia, I would need to perform simulations of nasal odorant deposition. 

 On exhalation I saw that as the olfactory recess was enlarged (by elongating the 

transverse lamina), rates of flow declined. Air that is already in the olfactory recess 

would thus be pushed out slowly, potentially allowing more time for odorant deposition 

in this region. I also saw progressively fewer streamlines passing through the olfactory 

recess as it was enlarged. This predicts that less air is washed out of the olfactory recess 

as the transverse lamina increases in length. This, in turn, would suggest that odorant 

molecules, on average, have more time to be absorbed into the mucus overlying the 

olfactory epithelium, and thereby have a greater chance of coming into contact with 

olfactory receptors. A fully transient simulation would be needed to investigate the 

interplay between inhalation and exhalation, and the extent to which inhaled airstreams 

become entrained in the olfactory recess before being washed out by exhaled air currents. 

 If increasing the size of the olfactory recess improves odorant residence times, 

what prevents an animal from elongating the transverse lamina so much that the olfactory 

becomes nearly completely closed off? The explanation is likely multifaceted, 

encompassing both developmental and functional constraints. The olfactory recess 
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develops in concert with the rest of the nasal fossa, the midface, and the braincase. As a 

result, the size, position, and shape of the olfactory recess are probably limited by the 

developing forebrain, eyes, and dentition (Moore, 1981; Smith and Rossie, 2008; Smith 

et al., in press). In addition, the respiratory functions of the nasal fossa (e.g. water 

retention, filtering) depend on having a large surface area over which air currents must 

pass. All else being equal, an enlarged olfactory recess would decrease the area and 

volume available for respiration, especially in short-faced species (Van Valkenburgh et 

al., 2004; Smith et al., in press).  

  How can my results be understood in light of studies that have shown that 

increasing flow rate (including sniffing) actually improves olfactory performance, rather 

than reducing it (e.g. Tucker, 1963; Oka et al., 2009)? These studies reason, quite 

correctly, that high flow rates imply that more odorant molecules can pass over the 

olfactory mucosa within a given period of time, thereby enhancing the olfactory system’s 

ability to sense the odors.    

 The issue is resolved by focusing on the definition of olfactory performance. If 

the goal is to smell a ‘packet’ of odor that is highly localized, such as the odor trail of a 

plant or another bat, then processing more air (with higher flow rates) does not help the 

performance of the system. High flow rates in this case just add more air that does not 

contain the signal of interest. However, a low flow rate allows whatever odor exists in 

that packet of air to have the maximum time to trigger the sensory system. Put another 

way, the issue is one of temporal or spatial resolution (if the bat or the air is moving). If 

the odorant is distributed widely so that high flow rates can be assured of continually 

delivering air with more of the odorant, then a high flow rate might be an effective means 
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of sampling. However, many odor signals are not distributed evenly or continuously in 

the environment. A classic study by Mozell et al. (1984) found that for a given volume of 

inhaled air, increasing the flow rate has a negative influence on the olfactory response. 

This is because, if the goal is to process a localized “whiff” of odorant, then it is more 

effective to slow the packet of air down as much as possible and give the system as much 

time as possible to be activated. 

 Sniffing likely improves olfactory processing by combining benefits of both high 

flow rates initially and low or no flow later. The early sniff involves a large flow rate to 

rapidly access a large volume of air and as may odorant molecules as possible. The later 

sniff involves a quiescent period where the net flow rate is almost zero, which lets the 

system have as much time as possible to trigger the olfactory sensory neurons from the 

packet of air that has just been obtained. Though I simulated airflow at the predicted 

high-end of inspiratory flow rates, I have yet to simulate sniffing in an unsteady manner, 

which is required to more accurately capture patterns and rates of flow during a sniff. I 

hope to carry out such simulations in the future, which will aid in my understanding of 

how the dynamics of sniffing impact olfactory airflow. 

 

2.6 Conclusions 

 My study shows that variations in the size of the olfactory recess likely have 

significant functional consequences in groups that exhibit extensive variation in olfactory 

recess size, such as bats and primates (Cave, 1973; Moore, 1981; Smith et al., 2011; 

Smith et al., 2012; Smith et al., in press). This work also adds to the growing body of 

computational modeling studies that investigate the role of morphology in airway 
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function. This computational approach allowed me to assess the potential role of just one 

morphological variable in affecting nasal airflow. I found that relatively minor 

modifications to the extent of the olfactory recess can have rather dramatic effects on 

flow patterns and rates through the olfactory recess. How might other aspects of the 

morphology relate to differences in flow? How do these morphological differences affect 

other aspects of nasal airway function, such as respiration or echolocation? Developing 

methods to adequately address these and other similar questions should contribute 

fundamentally to my understanding of how this complex region of the skull works. 
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Figure 2.1 Lateral view of right nasal airway, with anterior towards the right. The two 

red lines correspond to the anterior-posterior location of the two labeled histology slides, 

which show the formation of the transverse lamina. In “A,” the transverse lamina (TL) 

has not formed, but the lateral extensions of the vomer/nasal septum have nearly reached 

the medial projection of the lateral wall of the airway (purple arrowheads). In “B,” the TL 

has formed from the merger of the lateral extension of the vomer/septum and the medial 

extension of the lateral wall (purple arrowhead). The black box surrounding the back 

~1/3 of the airway in the top left corresponds to the portion of the model shown in the 

bottom panel. This bottom panel illustrates the same parasagittal section roughly midway 

through the airway (i.e. parallel to the plane of the page), with each section coming from 

one of my three computational models. “Reduced OR” = model with transverse lamina 

reduced such that only ~7.5% of the total olfactory epithelium lies within the olfactory 

recess (OR). “Normal OR” = unmodified model of Carollia perspicillata, in which 

21.5% of olfactory epithelium lies within the olfactory recess. “Enlarged OR” = model 

with a lengthened transverse lamina such that ~33% of the total amount of olfactory 

epithelium lies within the olfactory recess. In all three slices, the yellow arrowhead points 

to the anterior extreme of the TL as found in the “Normal OR” model. 
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Figure 2.2 Comparison of the location of the olfactory epithelium (black in the top 

image) with the location of the subvolume used to calculate flow rates during inhalation 

(gray in the bottom image). Note the approximate overlap between the colored portions 

of each image. The subvolume in the bottom image was selected based not only on its 

approximation to the location of the OE, but also on ease and reproducibility of its 

selection.  
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Figure 2.3 Flow rates during inhalation in Carollia perspicillata. The top panel shows a 

lateral view of the whole airway, with anterior towards the right. Flow is in the direction 

of the black arrow. The location of the olfactory epithelium is shown in orange. Vertical 

bar shows the location of the first anterior-posterior slice with a complete transverse 

lamina (i.e. a fully sequestered olfactory recess). This slice forms the basis for 

comparisons in the bottom panel. “Reduced OR” = model with transverse lamina reduced 

such that only ~7.5% of the total olfactory epithelium lies within the olfactory recess. 

“Normal OR” = unmodified model of Carollia perspicillata, in which 21.5% of olfactory 

epithelium lies within the olfactory recess. “Enlarged OR” = model with a lengthened 

transverse lamina such that ~33% of the total amount of olfactory epithelium lies within 

the olfactory recess. “U magnitude” refers to the velocity magnitude in m/s. Note the 

higher flow rates in the reduced OR model, and the lower flow rates in the elongated OR 

model.  
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Figure 2.4 Flow patterns during exhalation in Carollia perspicillata. The top panel 

shows a lateral view of the whole airway, with anterior towards the right. Flow is in the 

direction of the black arrows. The bottom panel shows an oblique latero-posterior view; 

the grey area is a slice from the same anterior-posterior location across all three models at 

the beginning of the olfactory recess. “Reduced OR” = model with transverse lamina 

reduced such that only ~7.5% of the total olfactory epithelium lies within the olfactory 

recess. “Normal OR” = unmodified model of Carollia perspicillata, in which 21.5% of 

olfactory epithelium lies within the olfactory recess. “Enlarged OR” = model with a 

lengthened transverse lamina such that ~33% of the total amount of olfactory epithelium 

lies within the olfactory recess. “U magnitude” refers to the velocity magnitude in m/s. 

Note that progressively fewer streamlines pass through the slice in models with a longer 

transverse lamina (i.e. enlarged olfactory recess). Also note how the streamlines that do 

pass through the olfactory recess are on average slower (more blue in color) in the 

models with larger olfactory recesses.  
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CHAPTER 3 

PATTERNS AND RATES OF OLFACTORY AIRFLOW IN PHYLLOSTOMID 

BATS 

 

3.1 Abstract 

 The morphology of the nasal cavity in mammals with a good sense of smell 

includes features that are thought to improve olfactory airflow, such as a dorsal conduit 

that delivers odors quickly to the olfactory mucosa, an enlarged olfactory recess at the 

back of the airway, and a clear separation of the olfactory and respiratory regions of the 

nose. The link between these features and having a good sense of smell has been 

established by detailed functional examinations of only a handful of distantly related 

mammalian species. In this paper I provide the first detailed examination of olfactory 

airflow in a group of closely related species that nevertheless differ in their sense of 

smell. I study six species of phyllostomid bats that have different airway morphologies 

and foraging ecologies, which have been linked to differences in olfactory ability or 

reliance. I make qualitative and quantitative comparisons of the patterns and rates of 

airflow through the olfactory region during both inhalation and exhalation across these 

six species. Contrary to my expectations, I found no systematic differences among 

species in either the patterns of airflow through the airway or in rates of flow through the 

olfactory region. By and large, olfactory airflow seems to be conserved across species. 

My work suggests that a simple one-to-one mapping of form to function may not exist 

within the nasal cavity.  
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3.2 Introduction 

 Mammals that have a good sense of smell tend to have a suite of morphological 

features of their nasal cavity that are thought to be adaptations for improved olfactory 

abilities. These features include a narrow, dorsal conduit through their airway for 

olfactory airflow, an enlarged cavity (the olfactory recess) at the back of their nasal 

airway, and a clear separation of the olfactory region of the nose from the respiratory 

region (Negus, 1958; Moore, 1981; Craven et al., 2007). All of these features impact the 

way air flows through the nasal cavity. The dorsal conduit delivers inhaled odorant-laden 

air relatively quickly to the back of the nose, where most of the olfactory epithelium is 

located (Craven et al., 2010). I refer to this region as the “ethmoturbinate region,” 

because the ethmoturbinate bones, which are lined with olfactory mucosa, occupy this 

voluminous space. Once air reaches the ethmoturbinate region, it slows down 

dramatically, and it gradually courses ventrally and laterally, before exiting the airway at 

the back of the nose along with the respiratory air currents. Part of this ethmoturbinate 

region is comprised of the olfactory recess, which is a blind pocket at the back of the 

airway, the principal function of which may be isolating the inhaled, odorant-laden air 

from exhaled respiratory air currents, which would otherwise “wash out” freshly-inhaled 

odorants from the ethmoturbinate region (Zhao et al., 2006; Yang et al., 2007a; Craven et 

al., 2010; Eiting et al., in press).  

 The link between the morphology of the airway and olfactory airflow is based on 

detailed functional examinations of only a few species. These studies have tended to 

focus on extremes in terms of both anatomy and olfactory ability: mammals with a large, 

restricted olfactory region and a well-developed sense of smell on the one hand (e.g. 
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dogs, Craven et al. 2007, 2010; rats, Zhao et al., 2006; Yang et al., 2007a,b), and those 

with a small olfactory region and poorly-developed sense of smell on the other (e.g., 

humans, (Keyhani et al., 1997; Keyhani et al., 1995). To date, no study has attempted to 

use a group of closely related species to more precisely link differences in their apparent 

reliance on olfaction with differences in airway morphology and patterns of airflow. In 

this paper I attempt to make such a link, which may shed light on the functional and 

evolutionary relationship between morphological variation and olfactory ability in 

mammals. 

 I address this deficiency in my understanding by studying the anatomy and 

patterns of olfactory airflow in six species of the ecologically-diverse New World Leaf-

nosed Bats, which exhibit a broad range of dietary preferences that have been linked to 

differences in olfactory reliance. My sample includes two basal insectivorous species, 

Macrotus waterhousii and Mimon crenulatum, two nectar-feeding bats, Glossophaga 

soricina and Anoura caudifer, and two frugivores, Carollia perspicillata and Artibeus 

jamaicensis (Fig. 1). Comparative neurobiological studies have consistently demonstrated 

that fruit- and nectar-feeders have larger olfactory brain structures compared to 

insectivores of the same brain and body size (Barton et al., 1995; Hutcheon et al., 2002; 

Safi and Dechmann, 2005). This has led some authors to suggest that diet is a major 

driving force in the evolution of differently-sized olfactory regions (e.g. Hutcheon et al., 

2002). Behavioral studies support this suggestion. In fruit-eating bats like Artibeus and 

Carollia, olfactory cues are important in the detection and initial localization of food, and 

in distinguishing ripe from unripe fruit (Laska, 1990; Altringham and Fenton, 2003). The 

nectar-feeders Glossophaga and Anoura also appear to rely on olfactory cues to detect 
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localized food resources (von Helversen et al., 2000); indeed, the “chiropterophilly” 

floral syndrome includes characteristic odors (Knudsen and Tollsten, 1995; von 

Helversen and Voigt, 2002; Pettersson et al., 2004). However, these species generally 

switch to echolocation as they approach flowers (von Helversen and von Helversen, 

2003). Basal insectivores like Mimon and Macrotus likely do not use olfactory cues when 

foraging (Altringham and Fenton, 2003). This does not preclude them from using odors 

in social interactions. For example, the closely related basal insectivore Phyllostomus 

discolor uses odor in mother-pup recognition (Bloss, 1999).  

 The six species in my study also differ in terms of their nasal airway anatomy 

(Fig. 1). Fruit-eaters tend to have rostrum that has been anteriorly-posteriorly compressed 

relative to basal insectivores, which allows them to feed on hard fruits more easily than 

longer-snouted species (Freeman, 1988; Santana and Dumont, 2009; Dumont et al., 

2012). Nectar-feeders, on the other extreme, have an elongated rostrum (to varying 

degrees), which has had the effect of extending the anterior region of their nasal cavity 

(Fig. 3.1; Freeman, 2000). This variation in the morphology of the nasal cavity allows me 

to explicitly test the idea that differences in olfactory reliance during foraging are related 

to different patterns of olfactory airflow. Specifically, I predict that flow rates through the 

dorsal conduit will vary, with fruit- and nectar-feeders having higher flow rates compared 

to insect-feeders, to more rapidly deliver odorants to the ethmoturbinate region. I also 

predict that fruit- and nectar-feeders will have lower flow rates in the ethmoturbinate 

region compared to insect-eaters, because lower flow rates improve the efficiency of the 

olfactory system to absorb odorants (Mozell et al., 1984; Yang et al., 2007b). Finally, I 

predict that during exhalation, flow will bypass the olfactory recess and ethmoturbinate 
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region more in fruit- and nectar-feeders compared to insect-feeders, thereby increasing 

the amount of time odorant molecules are in contact with olfactory receptors lining the 

ethmoturbinate region. 

 

3.3 Materials and Methods 

 I constructed three-dimensional models of six species of bats from CT scans 

generated at the Harvard Center for Nanoscale Systems (Table 3.1). For each species I 

constructed a 3D Stereolithography (STL) file from the CT scans as follows (see Eiting et 

al., in press, for additional details). First, an image stack was brought into Mimics v. 16.0 

(Materalise, Leuven, Belgium). Once imported, I digitally isolated the airway by using a 

combination of thresholding and individual editing of slices, with the aid of histological 

preparations (see Eiting et al., in review, for details of the histological procedure). I 

converted the airway into an STL file for importing into Geomagic Studio v. 12.0 (3D 

Systems, Rock Hill, SC, USA), which I used to further refine the details of the model. 

This refinement was necessary because the fluid dynamics software requires a smooth 

mesh. 

 Once the STL file was sufficiently refined, I re-imported the surface model back 

into Mimics software, which I used to create a solid model of the airway. For each 

species, this solid model was comprised of approximately 625,000 4-noded tetrahedral 

elements (Table 3.1). My previous work (Chapter 2) has shown that grid-refinement does 

not substantially change results, so this number of bricks was judged to be sufficient. 

 The final, solid model was exported from Mimics as a MSH file, which was 

compatible with my computational fluid dynamics (CFD) software, OpenFOAM 1.6-ext 
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(www.openfoam.org). I used OpenFOAM to solve steady-state solutions of inhalation 

and exhalation (see Appendix B for further information). For each simulation, I applied a 

constant inflow velocity across the inlet (i.e. the naris during inhalation, and the choana 

during exhalation), and a zero velocity gradient, constant pressure boundary at the outlet 

(i.e. the choana during inhalation, and the naris during exhalation). Flow was judged to 

have reached a steady-state when the velocity residuals fell below 10
-6

. I scaled the 

volumetric flow rate in each species by applying the following allometric equation from 

Craven et al. (2010): 

 

Qpeak = 1.43M
1.04+/-0.03

, (1) 

 

 where Qpeak is peak inspiratory flow rate, and M is the body mass (in grams). Each 

value of Qpeak was converted to flow velocity by dividing it by the area of the inlet normal 

to the direction of flow. The final velocities applied during both inhalation and exhalation 

for all six models can be seen in Table 1. I performed a sensitivity analysis on flow rate 

by calculating volumetric flow rate according to the error in the exponent in equation (1); 

i.e. I calculated a high and low value of Qpeak by multiplying M by 1.07 and 1.01. The 

results were not appreciably different, so I only show the results from using an exponent 

of 1.04. 

 To address my hypotheses, I performed both qualitative and quantitative analyses 

of patterns and rates of flow using the visualization software Paraview v. 4.1.0 (Kitware, 

Inc., Clifton Park, New York, USA). I compared patterns of flow by studying the location 

of streamlines (i.e. lines of flow tangential to the direction of flow) for each simulation. I 
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visualized streamlines by coloring them according to magnitude of the flow velocity. It 

was necessary to scale the streamline colors to a maximum of 0.3 m/s to achieve a 

dispersion of colors. In reality, the maximum flow rates (which occurred near the naris 

and the choana) were roughly an order of magnitude higher than shown in my figures. 

 In support of my qualitative results, I also compared inhalation flow velocities in 

the ethmoturbinate region as follows. First, I selected a region in each model that closely 

approximated the boundary of the ethmoturbinate region. I did this by selecting the first 

anterior-posterior slice in which I saw a lateral expansion of the nasal airway, and then 

expanding my selection by including the folded regions interdigitating between 

ethmoturbinates. I used the pattern of streamlines during inhalation to aid in my selection 

of parts of the airway to include; areas that were predicted to transmit only respiratory 

flow were excluded from the selection. Once the ethmoturbinate volume for each species 

was selected, I calculated the average flow velocity by integrating flow velocity in each 

brick over the selected volume. For each species, I performed this step a minimum of 

three times, to assure that my selection procedures and calculations were repeatable. I 

found variation on the order of 10%, so I report values rounded off to accommodate this 

uncertainty. 

 

3.4 Results 

 Patterns of flow during inhalation in all species show that most air passes 

ventrally through the nasal airway, en route to the nasopharyngeal duct (Fig. 3.2). Air that 

enters the naris dorsally tends to flow via a dorsal conduit to the rear of the nasal cavity 

(i.e. the ethmoturbinate region), where most of the olfactory epithelium is located. 
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Compared to the ethmoturbinate region, flow along the dorsal conduit tends to be faster. 

Once air from the dorsal conduit reaches the ethmoturbinate region, it slows down 

substantially. As it does so, it migrates ventrally and laterally (Fig. 3.3), before passing 

over the transverse lamina and then exiting the airway at the choana, along with the rest 

of the non-olfactory inhaled air. 

 I also calculated average flow velocity over the volume of the nasal airway that 

encompassed the ethmoturbinate region. Calculated flow velocities in this region were in 

the range of 1.03 x 10
-2

 m/s to 1.53 x 10
-2

 m/s (Fig. 3.4a). There are no dramatic 

differences among the dietary groups, though nectar-feeders do seem to have slightly 

higher flow rates in the ethmoturbinate region compared to the fruit-eaters. I also 

standardized flow rates by dividing flow speeds in the ethmoturbinate region by the 

inhaled flow speed that was applied at the inlet (i.e. naris). Doing so provided me with a 

velocity-independent metric for how much the air passing through the ethmoturbinate 

region slows down compared to inhaled flow speeds. Fig. 4b shows that the flow speed in 

the ethmoturbinate region is on the order of ~1% of the flow speed at the naris; in other 

words, airflow passes through the olfactory region at only ~1% of the speed with which it 

enters the nose at the naris. Nectar feeders seem to perform slightly more poorly as 

judged from this metric, though only by a factor of about four (2.35% in Anoura 

geoffroyi vs. 0.58% in Artibeus jamaicensis). 

 During exhalation in all species, most air again bypasses the ethmoturbinate 

region on its way through the main airway (Fig. 3.5). However, in all six species my 

simulations predict that some flow passes through the ethmoturbinate region before 

exiting at the naris. As during inhalation, exhaled air that passes through the 
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ethmoturbinate region tends to be much slower than air passing through other parts of the 

nasal airway. 

 

3.5 Discussion 

 Despite their morphological and dietary differences, the general patterns and rates 

of airflow during inhalation are very similar for all six species in my study (Fig. 3.2). 

They all have a dorsal conduit through which inhaled air flows before reaching the 

convoluted ethmoturbinate region, where flow speeds decrease substantially. I do not find 

noticeable variation across species in the rates of flow through this dorsal conduit. From 

here, air tends to enter the ethmoturbinate region medially (Figs. 3.2, 3.3). Once within 

the ethmoturbinate complex, air passes laterally and ventrally, before finally meeting up 

with the respiratory flow and exiting via the choana. The quantitative results confirm 

these findings. Rates of flow in the ethmoturbinate region do not vary substantially 

among the six species, ranging only across a factor of 1.5. Even though the flow speed in 

this region is highest in the nectar-feeding species and lowest in the fruit-eaters, it is not 

clear whether this variation is meaningful. The flow speeds I see in this region are similar 

to those seen in rodents (Yang et al., 2007a), suggesting that an optima or range of 

optima may exist for flow speeds that successfully deliver odorants to olfactory receptors. 

It is important to point out that flow is primarily delivered by advecting air currents 

before odorants diffuse out of suspension, meaning that it might be better to analyze flow 

speeds along specific flow paths (perhaps by analyzing velocity along individual 

streamlines). Unfortunately, such an analysis is practically infeasible given current 

modeling technique and computational power. 
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 The patterns of airflow during inhalation seen across all six bat species are very 

similar to those observed in dogs and rats, suggesting common functional demands for 

olfactory airflow and performance across a broad array of mammals. During exhalation, 

however, these bats differ from rodents and dogs, in which exhaled airflow bypasses the 

olfactory recess en route to leaving via the naris. Rather, in all six species of bats, my 

models predict that some air passes through the olfactory recess before being finally 

exhaled. This is especially surprising in species like Mimon crenulatum and Carollia 

perspicillata, which have fairly large olfactory recesses with as much as a third of all of 

their olfactory epithelium located within it (Eiting et al., in review). The implication of 

this finding is that the primary function of the olfactory recess in these phyllostomid bats 

may not be to sequester recently-inhaled air from expiratory air currents. Instead, the 

olfactory recess may function to expand the surface area available for olfactory 

epithelium and slow down inhaled air to improve odorant absorption across the olfactory 

epithelium. Some computational support for this idea was found by Eiting et al. (in 

press), who showed in an experimental modeling study that, all else being equal, a larger 

olfactory recess produces lower rates of flow through this region during exhalation.  

 The suggestion that the olfactory recess functions to reduce airflow speeds is 

tentative because the effect that lowering flow speed on odorant transport and deposition 

may be context-dependent. Studies have fairly consistently shown that higher flow rates 

produce greater total odorant absorption by the olfactory epithelium; faster flow means 

more odorant particles are absorbed per unit time (Yang et al., 2007b; Lawson et al., 

2012). This could be beneficial to species that are trying to detect environmental odorants 

in low concentrations. For example, the bat Carollia perspicillata is known to increase its 
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sniffing frequency (and thus its flow rate) when sampling odorants just above threshold 

concentration, compared to air containing sub-threshold levels of odorants (Laska, 1990). 

A similar result is also found in the rat (Youngentob et al., 1987). However, higher flow 

rates also produce less relative odorant absorption. In other words, as flow rate increases, 

a smaller fraction of suspended odorant molecules is absorbed by the olfactory 

epithelium. This might not be a problem if an animal is trying to detect strong odors, but 

if a species is for some reason trying to maximize discrimination of odorants, or if 

odorants are present sporadically or in a finite quantity, improving the absorption 

efficiency (i.e. relative odorant flux) may be important, and lower flow rates may be 

expected. 

 It has long been known that odorants with different solubilities are deposited 

along different regions of the olfactory mucosa (Moulton, 1976; Mozell, 1966; Yang et 

al., 2007b; Lawson et al., 2012). This separation of odorants along the path of flow 

matches to a first approximation the location of the relevant olfactory receptors that are 

expressed within the olfactory epithelium (Ressler et al., 1993; Schoenfeld and Cleland, 

2006). Performing transient analyses of odorant deposition would be an informative way 

to examine the generality of the hypothesized link between the “inherent” pattern of 

olfactory gene expression and the “imposed” pattern of odorant delivery by inhaled air 

(terminology after Moulton, 1976). Such analyses would also allow me to generate 

hypotheses about the location and relative abundance of particular types of olfactory gene 

receptors expressed throughout the epithelium, and the possible link with ecologically-

relevant odors. 
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 My results also add to the growing body of work that shows functional similarity 

can occur despite morphological variability (so called many-to-one mapping, Alfaro et 

al., 2004; Wainwright et al., 2005). In the four bar linkage system of fish jaws, for 

instance, functional equivalence (in terms of kinematic transmission) can be produced 

from a variety of morphologically-distinct phenotypes (Hulsey and Wainwright, 2002). 

The consequences for this many-to-one mapping of form onto function include a reduced 

ability to infer function from morphology and the possibility for lineages to explore 

alternate routes to diversity—both morphological and functional (Wainwright et al., 

2005). Despite the extensive variation in the shapes of the nasal passages in phyllostomid 

bats, the patterns and rates of airflow across the clade appear very similar (Figs. 3.2-3.5). 

These results suggest that olfactory airflow and its relationship to the morphology of the 

nasal airways may be another case of many-to-one mapping in the vertebrate cranium. If 

true, the morphology of the airway may not be under strong selection pressure to change 

with shifting functional demands. It could also be the case that the relatively invariant 

patterns and rates of flow that I see are the result of phylogenetic effects. In this scenario, 

ancestral phyllostomids may have had a morphology already well-suited for olfaction, 

perhaps because of the emphasis that bats (and mammals in general) place on olfaction to 

mediate communication (Anisko, 1976). Using olfaction to aid in foraging for may have 

been a relatively easy addition to species that already rely on olfaction for other 

functions. A third explanation for the patterns I see may be that the nose and nasal cavity 

are developmentally constrained by the numerous structures of the cranium, such as the 

brain, dentition, and eyes. The nasal cavity of phyllosomid bats also transmits 

echolocation calls, which may act as an additional agent of selection on the morphology 
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of the nasal cavity (Pedersen, 1993; Pedersen, 1995). Disentangling these various 

explanations would be an exciting avenue for future research.  

 

3.6 Conclusions 

 Despite extensive morphological differences in the nasal cavity of six 

phyllostomid bats, I do not find substantial functional differences in the patterns and rates 

of olfactory airflow during inhalation or exhalation. Dietary differences between these 

species suggested that variation in olfactory airflow may have been expected, so my 

finding in light of this expectation was suprising. Instead, my work suggests that 

morphology is decoupled from olfactory function in the nasal cavity, thereby hinting at 

alternative explanations for the morphological variation seen in these species. Such 

factors could include relaxed selection, phylogenetic relationships, or developmental 

constraints. Investigating these and other factors would be a valuable addition to our 

understanding of the mammalian nasal cavity.  
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Table 3.1 Details of the specimens and scanning & model parameters used in this study. 

 

Species AMNH 

# 

Pixel size 

(µm) 

# Bricks in 

Final Model 

Average Body 

Mass (g) 

Diet
f 

Macrotus waterhousii 275472 19.9 622448 16
a 

I 

Mimon crenulatum 267888 18.2 636550 14.5
b 

I 

Anoura geoffroyi 199538 24.3 616119 12.8
c 

N 

Glossophaga soricina 260965 19 622685 10
d 

N 

Carollia perspicillata 261433 24.3 623269 18.5
e 

F 

Artibeus jamaicensis 267998 26.7 633591 48
b 

F 
a
Hosken, 1997      

b
Santana and Dumont, 2009     

c
Ortega and Alarcón-D., 2008     

d
Alvarez et al., 1991      

e
Cloutier and Thomas, 1992     

f
Ferrarezi and Gimenez, 1996     
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Figure 3.1 Phylogenetic relationships of the six species of bats used in my study, 

together with a lateral view of the right nasal airway for each species. 3D models are 

scaled to the same height, to give a sense of the dimensions of the airway regardless of 

size. Names of taxa are color-coded to reflect diet: orange = insects, maroon = nectar, 

lavender = fruit. ant. = anterior, C = choana, DM = dorsal meatus, ET = ethmoturbinate 

region, MS = maxillary sinus, N = naris, ND = nasopharyngeal duct, OR = olfactory 

recess.  
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Figure 3.2 Lateral view of right nasal cavity showing patterns and rates of airflow during 

inhalation. Flow paths are shown as streamlines, and rates of flow are shown in color. 

Inhaled air was forced through the naris (N) in the direction of the large blue arrow. 

Streamlines are scaled to the same velocity magnitude in all six models. Note in general 

how a dorsal meatus (DM) of relatively high flow speeds delivers air to the more 

posterior ethmoturbinate region (ET), where flow speeds tend to be lower. After passing 

through the ethmoturbinate region, flow passes over the transverse lamina (TL) and exits 

at the choana (C). ant. = anterior.  
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Figure 3.3 Dorsal view of right nasal cavity showing patterns and rates of airflow during 

inhalation. Flow paths are shown as streamlines, and rates of flow are shown in color. 

Inhaled air was forced through the naris (N) in the direction of the large blue arrow. 

Streamlines are scaled to the same velocity magnitude in all six models. Note the lateral 

streamlines (LS) that migrate ventrally and laterally before exiting at the choana (C). c.f. 

Figure 3.2. ant. = anterior. 
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Figure 3.4 Flow velocities during inhalation. (a) Average flow velocity in the 

ethmoturbinate region across six species of bats. (b) Relative flow velocity in the 

ethmoturbinate region (i.e. ethmoturbinate velocity divided by velocity at the inlet) across 

six species of bats, expressed as a percentage. In both plots, species are enclosed within a 

box that is color-coded according to diet as in Figure 3.1.  
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Figure 3.5 Lateral view of the right nasal cavity showing patterns and rates of airflow 

during exhalation. The paths of flow are indicated by streamlines, and rates of flow are 

indicated by color. Exhaled air was forced through the nasopharyngeal duct at the 

location of the large blue arrows. Streamlines are scaled to the same velocity magnitude 

in all six models. Note in general how streamlines pass through the 

olfactory/ethmoturbinate region (ET), suggesting that this region is not isolated from 

expiratory airflow. Labels as in Figure 3.2. 
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APPENDIX A 

PRIMARY DATA FOR 12 SPECIES OF BATS USED IN CHAPTER 1 
 

# OSNs = number of olfactory sensory neurons, # MCs = number of mitral cells, OB volume = volume of olfactory bulb,

Diet categories: F = fruit-eater, I = insect-eater, N = nectar-feeder

Species n # OSNs # MCs # Glomeruli Specimen Numbers n OB Volume (mm
3
)
a

Brain Volume (mm
3
)
a

Diet
b

Anoura geoffroyi 2 3.2E+06 1.3E+04 318 AMNH 199538, KPB 95P002
d

3 9.1 279.2 N

Artibeus cinereus 1 6.2E+06 1.0E+04 632 AMNH 265585 3 9.45 221.75 F

Artibeus jamaicensis 2 1.4E+07 1.4E+04 697 AMNH 267998, 268528 3 19.35 481.25 F

Carollia perspicillata 2 7.2E+06 1.7E+04 533 AMNH 261433, 261453 3 13.15 258.5 F

Glossophaga soricina 2 2.8E+06 1.0E+04 312 AMNH 260958, 260965 3 5.75 187.4 N

Lophostoma silvicola 1 2.9E+06 9.1E+03 268 AMNH 267422 1 7.3 356.7 I

Micronycteris microtis
c

1 3.5E+06 8.1E+03 308 AMNH 143773 3 5.15 129.4 I

Mimon crenulatum 1 2.1E+06 1.2E+04 346 AMNH 267888 2 3.65 153.65 I

Phyllostomus hastatus 1 1.2E+07 1.5E+04 590 AMNH 48360 3 21.4 719.25 I

Sturnira lilium 2 6.5E+06 1.1E+04 622 AMNH 189885, 189946 3 14.2 292 F

Trachops cirrhosus 1 5.1E+06 9.8E+03 303 AMNH 235555 2 11.75 474.6 I

Uroderma bilobatum 2 6.6E+06 1.3E+04 594 AMNH 260209, UM 3034 3 14.35 290.05 F

a: Data from Baron et al. (1996)

b: Data from Ferrerezi and Gimenez (1996)

c: OB vol. and Brain vol. from Micronycteris megalotis ; M. microtis was formerly a subspecies of M. megalotis;  AMNH specimens were originally

    M. megalotis microtis ; data from Baron et al. (1996) do not provide subspecies

d: specimen from the collection of Kunwar P Bhatnagar and curated by TDS; see Bhatnagar and Smith (2007) for details on histological procedures
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APPENDIX B 

ADDITIONAL DETAILS ON CREATING AND USING BIOMECHANICAL 

MODELS FROM CHAPTERS 2 AND 3 

 

B.1. Running Analyses in OpenFOAM 

 I performed all analyses in OpenFOAM v. 1.6-ext (www.openfoam.org), running 

on the parallel cluster “Cyclops,” which is housed in the College of Engineering at the 

University of Massachusetts. In the OpenFOAM system, analyses are run as a series of 

“cases,” where each case has its own subdirectory. I performed analyses as follows. First, 

solid models of the airspace of the right nasal cavity, consisting of approximately 

625,000 4-noded tetrahedral elements (depending on the species; see Table 3.1), were 

exported as Fluent MSH files from the modeling software Mimics. I then imported the 

models to my personal user directory on Cyclops (specifically, to my “run” subdirectory), 

where I converted them from Fluent mesh format to OpenFOAM format (using the 

command “FluentMeshToFoam,” sometimes including the addendum, “ -scale 0.001,” to 

convert the mesh from millimeters to meters, as needed). Once converted, I ran the utility 

“checkMesh” to ensure the sizes of elements was correct, to identify severely non-

orthogonal elements, and to check that the maximum skewness was below ~8-10.I set up 

the rest of the “case” folder by seeding it with subfolders devoted to calculations used in 

the CFD solutions (“system”), to specifying the mesh and physical properties of the 

system (“constant”), and to the temporal nature of the calculation, which represents the 

initial conditions (“0”).  
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 All of my cases were solved by using the “icoFoam” solver, so this determined 

which files to include in my analyses, and the content of those files. I set kinematic 

viscosity to 1.6 x 10
-5

 m
2
/s. Please consult the user guide on www.openfoam.org for 

additional details on the content of the files within each of the subdirectories. Each model 

had three boundary fields, which were “inlet,” “outlet,” and “wall.” I applied different 

boundary conditions (in the “0” directory) to each of these three fields. In my simulations 

forced air through the inlet by specifying velocity at the naris during inhalation or at the 

choana during exhalation. Thus, my velocity file had a fixed uniform value at the inlet 

and at the wall (which was always uniform zero to indicate no air moving through the 

wall.) The outlet was always set to zero gradient. For the pressure file, both the inlet and 

the wall were set to zero gradient, while the outlet was set to uniform zero. An example 

velocity file looks as follows (using the values for inhalation in Artibeus jamaicensis; 

pressure files look very similar):  
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/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  1.6-ext                               | 

|   \\  /    A nd           | Revision: 1745                                  | 

|    \\/     M anipulation  | Web:      http://www.OpenFOAM.org               | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       volVectorField; 

    location    "0"; 

    object      U; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

dimensions      [0 1 -1 0 0 0 0]; 

 

internalField   uniform (1.64 0 0); 

 

boundaryField 

{ 

    wall 

    { 

        type            fixedValue; 

        value           uniform (0 0 0); 

    } 

    inlet 

    { 

        type            fixedValue; 

        value           uniform (1.64 0 0); 

    } 

    outlet 

    { 

        type            zeroGradient; 

    } 

} 

 

 

// ************************************************************************* // 

 

  All of the simulations I performed were of steady-state airflow. In order for the 

solution to reach steady-state, I allowed each simulation to run until the maximum 

velocity of the system did not change appreciably after many time steps (usually several 

hundred), and the initial velocity residuals were on the order of 1 x 10
-4

. Convergence 

judged in this manner was usually achieved in the range of 2000 – 10,000 time steps. 

Minimum time step was set so that the CFL number was much less than 1, and usually 

resulted in a time step of 1 x 10
-6

 s. Here is a sample of the “controlDict” file from the 
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inhale case for Artibeus jamaicensis, showing time control and several other parameters 

necessary to run a successful case: 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    object      controlDict; 

} 

 

application icoFoam; 

 

startFrom       latestTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         0.02; 

 

deltaT          0.000001; 

 

writeControl    timeStep; 

 

writeInterval   1000; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  6; 

 

writeCompression uncompressed; 

 

timeFormat      general; 

 

timePrecision   6; 

 

runTimeModifiable yes; 

  

 Once all of the files in the subdirectories were ready, I split all of the folders and 

files into 32 components to prepare for parallel processing. I used the method “scotch” to 

break-up the files, which was carried out by running the command “decomposePar” from 

Cyclops.  I included one additional file, “runfile,” in the directory for each particular 

case. In this file I included all of the information necessary to run the solver using the 

Portable Batch System. This file includes necessary commands for  how many processors 



62 

 

to use, how much clock time is needed, where to save the output, and what processor to 

use. Here is an example runfile, again using the case of Artibeus jamaicensis inhalation: 

#!/bin/bash 

### PBS script for CYCLOPS - GENERIC 

### MBM 7.1.09 

##################################################### 

### Queue name 

#PBS -q standard 

### Job name 

#PBS -N artibeus-inhale01 

### Output and Error file names ... uncomment if not 

### using execname > outputfile & option 

###PBS -e error.info 

###PBS -o code.info 

### Join output and error files 

#PBS -j oe 

### Specify the number of nodes (nodes) and 

### the number of processors / cores to use 

### per node (ppn) 

#PBS -l nodes=8:ppn=4:top64 

### where region=long or top64 (see doc) 

### Specify how much wall clock time is needed 

#PBS -l walltime=24:00:00 

##################################################### 

### This job's working directory 

echo Working directory is $PBS_O_WORKDIR 

cd $PBS_O_WORKDIR 

echo Running on host `hostname` 

echo Time is `date` 

echo Directory is `pwd` 

echo This jobs runs on the following processors: 

echo `cat $PBS_NODEFILE` 

 

### Define number of processors 

NPROCS=`wc -l < $PBS_NODEFILE` 

echo This job has allocated $NPROCS cores 

 

### Run the parallel MPI executable 

mpiexec-pbs icoFoam -parallel > logfile-artibeus-inh01 

 

 After the simulation reached convergence, I stitched back together the 32 separate 

subfolders for each processer using the command, “reconstructPar.” Then, I converted the 

solution to VTK format with the command, “foamToVTK.” Once completed, I copied all 

files to a local directory for post-processing and visualization using Paraview. Paraview 

is a user-friendly program for which many tutorials and helpful instructional materials 

have been written, so I will not go into further detail on it here.  
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B.2. Grid Refinement 

 To assess sensitivity of the simulation results to the size of grid elements, I 

performed a very basic grid refinement study on the inhalation condition of the model of 

Carollia perspicillata. After generating a solid mesh in Mimics, I doubled and 

quadrupled the number of tetrahedral elements by reducing the maximum length of a 

tetrahedral, thereby forcing there to be more bricks populating the model. After 

generating 2X and 4X refined models, I performed all of the same steps for running a 

model as in the case for the unrefined model (see section B.1). During post-processing I 

calculated maximum and average velocities for my domain, and I also examined 

streamlines scaled to the same velocity magnitude, to assess for differences in the 

patterns of airflow. The results from this study indicated the refining the grid beyond my 

initial ~625,000 number of bricks did not have a noticeable effect. Velocity values did 

not differ between the models, and neither did the patterns of airflow. These results led 

me to just consider the ~625,000-brick models for all subsequent analyses.
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