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ABSTRACT
SUSTAINABILITY-BASED PRODUCT DESIGN IN A DECISION SUPPORT SEMANTIC
FRAMEWORK
MAY 2014
DOUGLAS C. EDDY, B.S.M.E., UNION COLLEGE
M.S.M.E., WESTERN NEW ENGLAND UNIVERSITY
Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST
Directed by: Professor Sundar Krishnamurty

The design of products for sustainability involves holistic consideration of a complex
diversity of objectives and requirements over a product’s life cycle related to the environment,
economics, and the stakeholders in society. These objectives may only be considered effectively
when they are represented transparently to design participants early in a design process. Life
Cycle Assessment (LCA) provides a credible prescription to account for environmental impacts.
However, LCA methods are time consuming to use and are intended to assess the impacts of a
completely defined design. Thus, more capable methods are needed to efficiently identify more
sustainable design concepts.

To this end, this work introduces a fundamental approach to formulate models for
normative decision analysis to accurately account for these multiple objectives. Salient features
of this novel approach include the direct accounting of the LCA formulations via mathematical
relationships and their integration with derived expressions for compatible life cycle cost models,
as well as a methodical approach to account for significant sources of uncertainty. Here, a
semantic ontological framework integrates the information associated with decision criteria with
that of the standards and regulations applicable to a design situation. Since this framework
shares the context and meaning of this information and design rationale across domains of
knowledge transparently among design participants, this approach can influence a design toward

sustainability considerations while the design complies with regulations and standards.
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Hypothetical equivalents and inequivalents method is represented and deployed to consistently
model a designer’s preferences among the criteria.

Material selection is a very significant factor for the optimal concept selection of a
product’s components. A new method is detailed to estimate the impacts of material alternatives
across an entire design space. Here, a new surrogate model construction technique, which is
much more efficient than the construction of complete LCA models, can prune the design space
with adequate robustness for near optimal concept selection. This new technique introduces a

feasible approximation of a Latin Hypercube design at the first of two sampling stages to

overcome the issues with sampling from discrete data sets of material property variables.
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CHAPTER 1
BACKGROUND AND MOTIVATION

Product lifecycles account for a significant proportion of the total consumption of the
planet’s constrained environmental, non-renewable, and economic resources. While these
product lifecycles are becoming shorter, the diversity of products is becoming larger. Thus,
significant improvements in the optimal design of products for sustainability will reduce the load
on the environment, economy, and society. The design of products for sustainability is a complex
issue that involves several different topic areas. . It has been shown that significant advances
toward sustainable product design can be gained by appropriate improvements in lifecycle design
processes [1]. Existing approaches to supporting sustainable product design tend to be focused
on the later stages of product development, focusing on assessment of environmental impact costs
after a design is selected, but not to include the early stages of design decision making. Support
for more sustainable decisions during the conceptual design stages can lead to numerous
advantages for enterprises. Prior research by Bras [2] finds that enterprises that focus on the
triple bottom line objectives of the environment and society in addition to the economic
dimensions realize additional value added returns. By focusing on triple bottom line objectives
during product design, the people, planet, and profits are likely to be preserved for a longer period
of time and a new paradigm for the competitive design of products is likely to be established.

A recent NIST (National Institute of Standards and Technology) workshop on sustainable
manufacturing [3] addresses the industry needs and identifies the needs for better decision
support tools, strong mathematical models to support the decision making systems, a method that
will allow smaller companies to use LCA, and interoperable information models and standards to
support a complete system. As detailed in the workshop, the critical challenges to developing and
implementing a comprehensive methodology for sustainable product design include a structured
design decision approach to simultaneously examine the economic, environmental, ethical and

social issues associated with the lifecycle product design process, as well as a formal knowledge



representation framework to seamlessly capture and propagate information throughout the design
process. Along these lines, NIST offers the most comprehensive approach by emphasizing the
need for a Triple Bottom Line (TBL) assessment method of significant impacts [4]. This means
that impacts on people, the planet, or profit should be considered. In doing so, the environment,
the economy, and social welfare considerations that effect the population can not only be
preserved over a long period of time, but it will also lead to a new paradigm for competitive
product design. From the industry side, there is also a growing recognition that the minimization
of the environmental impacts typically involves Life Cycle Impact Assessment (LCIA) methods
to determine the specific inputs and outputs of environmental impact components. Ecoinvent, the
world's leading supplier of consistent and transparent lifecycle inventory (LCI) data of known
quality provides data implemented within sixteen different established methods [5]. Accordingly,
software tools have been developed to automate the lifecycle assessment (LCA) process. For
example, the software provided by Gabi and SimaPro [6] determine the environmental impacts of
a specific product design. However, these software solutions lack consideration of the economic
and society related objectives. More importantly, no such software solutions exist to enable
sustainable product design, which requires a methodical multicriteria decision making
methodology and a framework for its implementation with systematic knowledge representation.
It is then apparent that such a development will require fundamental research in two key
areas: 1) A rational multicriteria decision making method for sustainable design to account for the
different social, economic, and environmental considerations, and the developed method should
be able to account for the uncertainties in the available data and the related assumptions. 2) The
design information and knowledge necessary for design may come from across multiple
organizations, companies, and countries. The study of engineering design as an iterative decision-
making procedure in recent years has led to utilization of the concepts from decision analysis to
solve engineering design problems [7]. Normative decision analysis principles provide valuable

insights in advancing the state of knowledge on rational design decisions and enable a better



understanding of their consequences from an overall design perspective. From a practical point of
view, decision-based design offers a formal strategy to reduce the multiple attributes in an
engineering design problem to a single overall utility function in a probabilistic sense, which
reflects the designer’s intent and preferences under conditions of uncertainty [8]. Thurston and
her associates had postulated a multi-attribute decision model for sustainable design and proposed
a methodology for preference aggregation [9,10]. However, in spite of its proven track-record in
other domains, the use of normative Multiple-Criteria Decision Making (MCDM) methods has
been limited in sustainability studies. Specifically, there has been no detailed study on the
development of decision-based design techniques to enable preference modeling and decision
making under uncertainty. Further, measuring and ensuring consistent preferences is a critical
issue that has not received full theoretical treatment in the literature. If multiple decision makers
are expressing their preferences, being able to aggregate these preferences using a sound and
rational method is needed. The efforts to develop such methods in the area of decision making in
sustainable design have been compounded by a lack of standards for handling material and
energy data at different phases of the designed product’s life cycle.

A review by Ramani et al. [11] reinforces this assertion as it applies to facilitating the
early stages of sustainable product design, including the representation of the LCA measures and
their uncertainties. In a subsequent work, Ramani and associates propose the use of an
information gap method for estimating the effects of the LCA uncertainties during product
redesign [12]. How environmental knowledge modeling can further enhance the capabilities of
sustainable product design and manufacturing has been detailed in a recent NIST study [13].
Along these lines, Dr. Kim and his associates have articulated the need to develop a semantic
information model for lifecycle product design [14]. These studies recognize that design
information and knowledge necessary for decision-based design may come from across multiple
organizations, companies, and countries. Integrating distributed engineering information that

allows decision makers to easily access and understand it is essential for making well informed



decisions. Therefore, appropriate models and simulation tools are necessary to predict results and
optimize decision making in sustainable product design. Semantic information models that
accurately represent all sustainability factors across all of the life cycle stages are crucial to
enable decision making throughout the lifecycle design process. Such a model represents the
integration of all relevant factors across the life cycle stages, as well as design solutions found
from integrated optimization. The resulting knowledge management approach can enable
documenting and seamlessly integrating distributed design knowledge during the evaluation of
design alternatives. Such an approach should take advantage of emerging Semantic Web
technologies to improve collaboration through increased understanding of content and
representation of sustainability-related knowledge in a manner that is easily shareable and

distributable.



CHAPTER 2
SUSTAINABILITY-BASED PRODUCT DESIGN

Addressing the above challenges, this research focuses on the identification and
development of a decision support system for sustainable product design to reduce the
multiple attributes to a single overall utility function in a probabilistic sense, which
reflects the designer’s intent and preferences under conditions of uncertainty. To facilitate
consistency of design information at all stages of the product’s life cycle analysis and to
enable methodical comparison of the design alternatives, this work also develops a
semantic web-based, collaborative approach for our decision-based design strategy. Here,
this work extends the e-Design framework at UMass-Amherst [15-25] by integrating
sustainable product design information within the semantic web to support knowledge
management and information sharing throughout the entire design process. Here, the
mathematical representation of the product design for sustainability can be framed as a
multi-attribute optimization problem using Hypothetical Equivalents and Inequivalents
Method (HEIM), which is a normative decision-based design method. The following
sections highlight the main components of sustainable product design, and detail the key
elements of this research. Most of the following six subsections appear in the published

work® by Eddy et al. [46].

2.1.  Life Cycle Assessment: Accounting for Life Cycle Inventory (LCI)

In a sustainable design process, the associated quantities of each environmental
emission are obtained from established LCI data for each life cycle stage of each product

component. The product lifecycle is normally comprised of five separate stages. All of

! Reprinted by permission of the publisher (Taylor & Francis Ltd.)



the raw materials are first extracted and formed into the usable stock configuration. Next,
the parts are manufactured and assembled as specified. Each of the parts and their
materials emit their own set of environmental parameters, such as the grams of carbon
dioxide, methane, or other substances emitted, during these first two stages. The finished
product is transported to its point of use destination. The product is utilized in the
intended fashion by the end user over the course of its lifetime. When the product is no
longer usable or needed by the customer, it is either disposed of or recycled for future
use. The end of life stage could lead to any of a number of scenarios depending upon
what the product and its components are. Some products are disposed of in a landfill.
Some products are designed for reuse in the next product generation by disassembly or
modification in a modular fashion. In some cases, the parts of certain material types
could be incinerated to form a recycled raw material for future manufacturing of other
products.

The knowledge base of LCI data for each life cycle stage has been expanding over
the recent years for greater transparency and accuracy as more information about
environmental emissions becomes available for various materials, manufacturing
processes, etc. The data and the means of applying it to determine environmental impacts
have evolved from that originally prescribed by Wenzel et al. [26] in their book, which
formally introduced the EDIP (Environmental Design of Industrial Products) program.
More recently, the U.S. EPA developed TRACI (The Tool for the Reduction and
Assessment of Chemical and other environmental Impacts) to implement a framework for
decision making by characterizing the impacts determined from LCI data [27]. Our

method uses the available current guidelines derived from TRACI and EDIP to express



the environmental parameters of chemicals emitted or resources depleted by a process in

terms of the resulting specific environmental impacts.

2.2.  Life Cycle Assessment (LCA) Strategies

The LCA process converts the environmental emissions determined from LCI data
at all the lifecycle stages into environmental impacts over the complete product lifecycle.
Environmental impact categories usually include: global warming, acidification,
eutrophication, photochemical smog, ozone depletion, toxicity, and resource depletion.
ISO 14040 calls for the LCIA (Life Cycle Impact Assessment) step to follow the
inventory analysis step in an LCA process [28]. LCIA methods determine the specific
inputs and outputs of environmental impact components.

After identifying the impact categories, ISO 14042 mandates that an LCIA
process involves classification followed by characterization [29]. Classification
establishes which emission quantities from LCI contribute to each impact category. Each
emission parameter can contribute to more than one impact and each impact is often
comprised of more than one parameter. Thus, characterization determines the relative
impact of each parameter within each impact category. The inventory data is multiplied
by the characterization factor to find each impact indicator. Each specific impact is the
sum of all the indicators in that impact category. Tools with access to the ecoinvent
database usually have both LCI data and the resulting characterization factors for
application of the LCIA methods [5]. Tools such as the SimaPro software access the
ecoinvent database [30].

Uncertainty in the LCI data warrants consideration. The ecoinvent database

introduction document [31] provides simplified estimates of the geometric standard



deviation of the various environmental parameters. The uncertainty combined with the
number of impact categories to compare pose significant challenges to finding the
optimal alternative. A procedure was developed to simplify the comparison of the various
environmental impacts [26,29]. This procedure employs the steps of normalizing,
grouping, and weighting the impacts. All impacts are normalized to have the same units.
Next, impacts are grouped into categories which allow direct comparisons of the
contained impacts to each other. Finally, weights are applied to each impact based on the
level of importance relative to each other. This helps to simplify the MCDM process. It
should be noted that the data for our NASDOP methodology can thus directly be

estimated from established databases.

2.3. Inclusion of the Cost Attribute

The triple bottom line objective mentioned earlier requires us to include more
than just the environmental impacts in our MCDM optimization method. EIO — LCA
(Economic Input-Output Life Cycle Assessment), developed at Carnegie Mellon, uses
economic data on the aggregate level of the different sectors to estimate the dominant
LCA impacts [32]. Here, correlations between economic and environmental data can
overcome LCI data acquisition difficulties when a less accurate result may still be useful.
Upon examination of the inclusion of LCC (Life Cycle Costing) with an LCA analysis,
Schmidt [33] warns that uncertainties are higher in LCC than in LCA due to the effect of
future costs and discounting rates over a product lifecycle, especially for end of life
considerations. SimaPro documentation [30] identifies several challenges that have
prevented the inclusion of cost information with LCA evaluations done by software. Such

challenges include: the accuracy of discount rate determination, the accuracy of including



allocated overhead costs, and the accuracy requirements are more critical to an enterprise
for cost, revenue, and profit. Alternatively, the software estimates liability costs due to
noncompliance or a resulting loss of goodwill. The method presented in Chapter 5
addresses these challenges while including LCC and LCA attributes together in the same

MCDM model to optimize toward the triple bottom line objective for sustainability.

2.4, Conceptual Design Strategies

The process to formulate the appropriate MCDM model for optimization during
the conceptual design stage involves another key challenge. Formulation of this model
needs to facilitate the identification of representative potential design alternatives. One
approach to provide such guidance during conceptual design is the function impact
matrix method, proposed by Devanathan et al. [34]. This method examines each category
of a new product design to relate the functions to corresponding environmental impacts.
Zhao et al. [35] address the marketing aspects of sustainable product design in terms of
the need to align functionality with the voice of the customer as an important part of
conceptual design beyond simply informing the design decision methodology. An
extension of the traditional design process for DfE (Design for Environment) was
proposed by Nielson and Wenzel [36]. Here, the LCA process is applied to a baseline
design to find the most significant environmental impacts. Potential alternatives to the
baseline design are identified and compared. The optimal among the design alternatives
is selected to which the design details are developed. Since the alternatives are conceived
of during conceptual design, the need to perform subsequent iterations of the design
process may be revealed as the design details are developed. The review by Ramani et al.

[11] asserted that few quantitative tools exist to use for DfE during conceptual design.



The main problems were identified as the cost of LCA and the lack of LCI data for new
designs. The early design stages offer the greatest flexibility to make design
improvements. Reap et al. [37,38] further expand upon a number of issues that can limit
the practical use of both LCI data and LCA methods. Such issues include the accurate
representation of uncertainty, the inclusion of LCC and social impacts for sustainable
decision making, and the allocation of environmental flows to the appropriate process.
The goal of this work is to address many of these challenging areas comprehensively
through the development of needed methodologies. To this end, several pertinent
research questions are formulated from the current challenges. First, how can
sustainability objectives be considered efficiently at the conceptual early design stages
without significant loss of either credible modeling of the physical reality or
consideration of an entire design space? Furthermore, what method based on reasonable
assumptions can be derived to simplify the high fidelity modeling of LCA for early
design efficiency? Next, when and how can standards, or regulations, be modeled as
constraints in a constrained optimization model without sacrificing the mathematical
rigor of the normative construction of a multi-criteria decision making problem? Finally,
when can modeling of an entire design space reveal more optimal solutions that do not
currently exist, such as the requirements for a new material that does not exist yet?

To address these important research questions, the relevant work is presented in
Chapters 5 through 7. The following two chapters identify the bases on which these

works were developed.
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CHAPTER 3
NORMATIVE DECISION ANALYSIS
3.1. Problem Formulation

Our method is based on the fundamentals of normative decision analysis [7]. Dr. Howard’s
work [39-41] formed the fundamental basis of its use for systems engineering. These normative
techniques use expected utility theory, which consists of the three main components of options,
expectations and value. Here, the decision rule requires the preferred option be that with the
expectation of the highest value, or utility. The premise is that real-valued functions can represent
the preference structure, which can determine the maximum, or most desirable, utility value of a
design by using a normative analytical method [42]. The technique has the five major steps [42]
of: (1) identification of the significant design attributes and generation of the design alternatives
(2) verification of relevant attribute independence conditions (3) evaluation of the single-attribute
utility (SAU) functions and the preferences of each relative to each other (4) aggregation of the
SAU function into a single multi-attribute utility (MAU) function, which represents the complete
system (5) selection of the alternative with the highest MAU value by rank ordering the
alternatives.

In other words, each attribute or objective has a normalized utility value ranging from 0 to 1
corresponding to the worst possible attribute value and the best possible value, respectively. The
preference structure of each monotonic SAU function can be established by articulation of the
certainty equivalent, at which value a decision maker is indifferent to a lottery between the best
and worst possible values [7]. The MAU function for each alternative consists of a linear
function with a computed value equal to the sum of the products of every attribute’s utility value
and the attribute’s preference weight value. The sum of all attribute weight values is equal to 1.
The method by which each attribute’s weight is determined to accurately model the preference of

a decision maker is summarized in the following section.
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3.2. HEIM - Hypothetical Equivalents and Inequivalents Method:

Execution of this solution is best accomplished by an accurate and computationally efficient
decision model. HEIM (Hypothetical Equivalents and Inequivalents Method) was developed for
such cases that involve selection from among multiple attributes having various advantages and
disadvantages. The advantages of HEIM were demonstrated in the selection of the optimal
aircraft for an entire airline fleet given the tradeoffs of the maximum speed, the maximum
nonstop cruise range, and the number of passengers that may be seated [43,44]. This method has
the capability of consistently modeling the preferences expressed to detect any rank reversal
issues. Here, hypothetical alternatives are assigned standardized and normalized utility values for
each attribute. This way, the complete design space is represented by an experimental design to
minimize computation.

A prior study [45] deployed a three level Lg orthogonal array to solve a design problem with
three attributes. The standard utility values in each cell correspond to the normalized most
desirable, least desirable, and mid-level of desirability for each single attribute. Thus, the attribute
values at each standard level correspond to single attribute utility values of 1 (most desirable
outcome), 0 (least desirable outcome), and 0.5. The 0.5 utility values correspond to the risk
preferences expressed by the decision maker for each individual attribute. In this case, ranking of
the nine hypothetical alternatives by a decision maker could establish the decision maker’s
preferences for the formulation of the MAU function. Table 1 shows the construction of the three
level Lo orthogonal array that is used to solve for the three weights of a three attribute design
selection problem. The three level Ly orthogonal array, with nine hypothetical alternatives, was
selected for a three-attribute problem to completely define the attribute space with order and
balance [45] while also minimizing the number of hypothetical alternatives needed. Here, we see
that each hypothetical alternative has a MAU value that is a function of the three weights. When a
decision maker ranks these nine hypothetical alternatives, inequality constraint equations are

established for each comparison. For example, if hypothetical alternative C were preferred to

12



hypothetical alternative B, then it must also be true that w; + w, + 0.5w3 > 0.5w; + 0.5w, + ws.

Since the sum of the weights must equal 1, HEIM determines the weights by solving the

optimization problem of:

Minimize f(X) = (1—anwi)

Subject to the
constraints of:

g(x)<0,

(1)

)

where X is the vector of attribute weights, n is the number of attributes, and w; is the weight of

attribute i [45]. 1t should be noted that HEIM procedure also enables a consistency check of the

designer’s stated preferences for the avoidance of rank reversal issues. The effectiveness of

HEIM to optimize traditional engineering design solutions was demonstrated in prior research

[45]. Thus, our new method needs to effectively simplify a sustainable design formulation into a

form to which HEIM or other normative methods may be applied effectively and efficiently.

Table 1: Hypothetical alternatives using an Ly orthogonal array [45]

Hypothetical Value of
alternative Attribute 1 Attribute 2 Attribute 3 alternative
A 0 0 0 0

B 05 0.5 1 0.5w1+0.5w2+w3
C 1 1 0.5 wl+w2+0.5w3
D 0 0.5 05 0.5w2+0.5w3
E 05 1 0 0.5wl+w2

F 1 0 1 wl+w3

G 0 1 1 w2+w3

H 0.5 0 0.5 0.5w1+0.5w3

I 1 0.5 0 w1+0.5w2

13




CHAPTER 4

A SEMANTIC FRAMEWORK FOR SUSTAINABLE PRODUCT DESIGN

Representation of such a method is best accomplished with a collaborative Web-based

environment for improving communication by
formally defining a platform for documentation
and sharing of engineering design knowledge
throughout the entire design process [15-25]. The
research group at UMass —Amherst’s Center for e-
Design established an e-Design framework
through an ontological structure to concisely
define a set of individual engineering concepts. A
library of modular ontologies for engineering
design has been developed and a customized
ontological knowledge-base has been established
to enable linking of the modular ontologies
together in a semantic web environment. The set
of modular ontologies linked together create a
flexible, yet consistent, product development
knowledge-base.

The resulting e-Design infrastructure
uniquely enables the information stored within the
knowledge-base to be readily inspectable and
computable, thus allowing for design tools that
reason on the information to assist designers and

automate design processes. This ontological
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knowledge-base can be used to prompt engineers to document important product development

information, increase understanding of the design process, provide a means to intuitively retrieve

information, and seamlessly access distributed information. The ontologies were developed in

OWL format and created with appropriate class structures with relevant properties to build upon

for a range of concepts in sustainable product design. Key concepts in the decision support

system for the sustainable product design ontology include semantic information from design

alternatives to decisions to methods used to LCA features etc. For example, Figure 1 shows the

resulting class hierarchy in the ontological decision support system and Table 2 shows the generic

information that can be captured for the decision class.

Table 2: Semantic information for the decision class

Property Type Description
has evaluation method Object Specifies the decision method used to make the decision
for issue Object Specifies the issue being addressed
has evaluation Object Specifies the evaluation information used in this decision
selected alternative Object Specifies the alternative chosen to resolve the issue
decision summary Data  Text that provides a brief summary of the decision made
Specifies a tradeoff that was involved in this decision. The tradeoff
tradeoff considered Object must occur between objective parameters identified in the
preference model
has evaluation method Object Specifies the specific evaluation method used
. Qualitative evaluation of how well the selected alternative
decision outcome Data .
addressed the issue
States any additional thoughts that the decision maker considers
comment Data

relevant and important
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CHAPTER 5

NASDOP: NORMATIVE DECISION ANALYSIS METHOD FOR THE
SUSTAINABILITY-BASED DESIGN OF PRODUCTS

This chapter presents the published work? by Eddy et al. [46]. The work introduces a novel
fundamental methodology to consider quantified utility maximization of environmental and
economic attributes based on the stated preferences of a designer over a complete product life
cycle. In this approach, actual measurable flows of the environmental and economic factors are
determined, along with their uncertainties. The architecture of this NASDOP method is
constructed within a normative decision-based framework to enable consistent modeling of the
mean expected and worst case resulting attribute values and their corresponding single-attribute
utility (SAU) functions and composite multi-attribute utility (MAU) functions of discrete
alternative design instances. The following sections describe the components of this architecture,

which is illustrated in the final sections of this chapter by the results of an actual case study.

5.1. NASDOP Architecture

Figure 2 below outlines the NASDOP (Normative decision Analysis method for the
Sustainability-based Design of Products) design process including life cycle assessment and the
associated costs. First, we illustrate the use of NASDOP during the early stages of conceptual
design. Here, various potential design goals and alternatives are established for comparison. For
each design alternative, including a baseline design, LCA and LCC are used to account for all
environmental and cost flows to determine the resulting environmental and cost attributes. Since
the uncertainty in environmental and cost data is significant, it is important to also account for the
uncertainties and represent the variability in the analysis. Then, HEIM is executed to find the
weights of the attributes based on the stated preferences of the decision maker. Next, the MAU

values are computed for each design alternative and the alternative with the greatest MAU value

2 Reprinted by permission of the publisher (Taylor & Francis Ltd.)
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is chosen. The following sections detail the various steps and highlight the unique aspects of

NASDOP.

5.1.1. ldentify Design Alternatives and State Assumptions

The alternatives, at the initial three stages shown in Figure 2, would be based on
assumptions regarding the results. Here, for illustrative purposes, design alternatives are
identified for comparison to each other to show how the methodology evaluates different designs
quantitatively. This method is further developed as described in Chapter 7 to determine optimal
solutions using surrogate modeling that can search the entire design space for a global optimal
point in the feasible region given the weights determined by HEIM to find that single optimal

point on the Pareto optimal solution set.

Account for Select the
flows and Execute HEIM best

Identify
design
alternatives

1

Figure 2: Design process for sustainability using NASDOP

State If goals are

not met...

Set design

goals assumptions

uncertainties alternative

Feasibility constraints may depend upon other design goals. For example, a design would
need to satisfy certain functional and reliability requirements in addition to the optimization of the
sustainability objectives. The best of these alternatives in this illustration is selected during the
MCDM analysis. As the design process progresses, the selected alternative is developed by more
detailed engineering analysis. The increased knowledge about the solution may validate all of the
original assumptions made during the conceptual design, but it could also reveal that one or more
of the original requirements cannot be met. If an assumption is not met, the design process
requires an additional iteration. Table 3 illustrates an example of assumptions that may be made

about alternatives to compare during conceptual design for the sustainable design of some
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product. Of course, the assumptions and goals or any feasibility constraints will vary depending

upon what product is being designed. This method could be equally applicable to a different set

of constraints for different products and different specifications.

Table 3: Possible assumptions for alternatives

AIter;atlve Description of Strategy Specific Design Goal
X1 Weight reduction 15 % reduction of all component weights
[47,48]
X2 Use recac;efsanatenal 100 % recycling at the fifth lifecycle stage
X3 Reduce the energy content
[47,48] 18 % reduction in manufacturing impacts and
12 % reduction in raw materials' impact
X4 Low toxicity 35 % reduction of all impacts except for
resources depletion and cost
50 % more recycling at the fifth stage; natural
X5 Less nonrenewable resources gas effects on the greenhouse gas impact and
all of the impacts due to resources consumed
are both cut in half
Modify for more energy efficient | 1/3 less energy during the product use stage
X6 use but adds 2 % to all material and
[47,48] manufacturing impacts due to additional
components
X7 Manufacturing impact reduction 25 % reduction in manufacturing stage
impacts

Representation of the goals in the third column of Table 3 requires modification to the

baseline calculations for each alternative of the various objective attributes. One such attribute is

the cost. The NASDOP enables systematic accounting for the economic impacts as well as the

environmental impacts of any product design.

5.1.2. Account for Flows

Flows to be considered for environmental considerations consist of material emissions as

well as energy and resource consumption. The flows for economic considerations pertain to
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monetary costs throughout the lifecycle of the product. Although the data source and type is very
different for LCI and LCC, we can show that the formulations used to compute the LCC impact at
each stage are very similar to that used during the LCA process to find the environmental
impacts. Furthermore, the LCC function conveniently depends upon the same independent
variables as do the LCA impact functions, aside from the different data source. LCC is actually
simpler and requires less computation than LCA in that it depends upon only a single monetary
parameter instead of nearly a dozen (or more for some products) LCI parameters that describe
multiple sources of emissions. Thus, classification, grouping, and characterization are not
necessary to compute LCC impacts whereas LCA impact computations require all of these
additional steps. Furthermore, the derived expressions to calculate the lifecycle cost are directly
compatible with the formulas previously deduced to calculate the LCA impacts [48]. The
expressions that we derived to calculate the lifecycle costs at each of the five product lifecycle
stages are shown in the following equations. The proposed method would be equally applicable if
additional factors were included such as different percentages for end of life dispositions or
greater detail from the sources of cost allocations.

Equation (3) formulates the life cycle costs for the first stage of raw material extraction.

The cost per unit is given by

n— parts (ailAi )

¢, = Z

i=1 Y ®)

where a;; is material cost per gram of part i, A; is weight in grams of part i, and y is the mass
inclusion factor of parts considered. This is the weight percentage of the total weight represented
by those parts included in the computations. Equation (4) formulates the life cycle costs for the

second stage of manufacturing. The cost per unit for that stage is given by
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where a;, is the cost per hour to manufacture part i, a, is the cost per hour to assemble all
manufactured parts together, £2; is the kilowatt-hours consumed to manufacture part i, y is the
mass inclusion factor of the parts considered, and kWi, is the kilowatt demand of the
manufacturing process. Equation (5) formulates the costs for the third stage of distribution. The

cost per unit due to distribution is given by
where a5 is the cost per ton of product weight per km traveled, 4 is the km travelled, and & is the
product weight in tons. Equation (6) formulates the costs for the fourth stage of product use for a

case where energy consumption is the main cost incurred. The costs per unit during such a

product use scenario is given by

(p4=((x4CD+ B4) N (6)
where a, is the cost per kilowatt-hour, @ is the kilowatt-hour per use, N is the number of uses per
product lifetime, and £, is any additional cost per use, which is product dependent. Equation (7)

formulates the costs for the final life cycle stage of end of life disposition. The costs per unit due

to end of life processes is given by

n-parts / 3

¢s = Z I o5 1A,
1

i=1 k= (7)
where «a;;5 is the net cost of disposal or reuse per kg of weight of part i with kth end of life option,
which can be negative for a net positive reuse cost avoidance, 4; is the weight of part i in kilograms,

I;;, is the per cent rate of ith part with kth end of life option. For the landfill part end of life

scenario, k is equal to one. For incineration part end of life scenario, k is equal to two. For
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recycling part end of life scenario, k is equal to three. Here, the following scenarios are assumed:
Metals are 60% recycled and 40% incinerated. Cardboard packaging is 50% recycled and 50%
landfill. Plastic is 70% landfill and 30% incinerated [48]. Equation (8) shows the Life Cycle

Cost (LCC) objective function to minimize and is given by
fcost = Z (Pi (8)

5.1.3. Account for Uncertainties

Having computed the mean values of the environmental and cost impacts, it is equally
important to account for any significant variability in the values. As mentioned previously, levels
of uncertainty are significant in both environmental and economic lifecycle computations. In
order to accurately compare the various design alternatives, we ought to account for any
significant sources of uncertainty. The existence of uncertainty means that actual values range
probabilistically between minimum and maximum values. The data input to calculations is a
significant source of uncertainty for both environmental impacts [31] and also for economic
impact due to price volatility [49]. Some additional uncertainty may also result from the accuracy
of characterization, normalization, and weighting factors under various situations. A prior study
shows that LCI data is the most significant source of the uncertainty and newer LCIA methods of
applying the weighting factors, such as Eco-indicator 99, have less uncertainty than does the
earlier adopted EDIP method [50]. Additional sources of uncertainty could also affect the
lifecycle cost as described previously. Here, we assume that the data sources account for the most
significant amount of uncertainty. The ecoinvent database introduction document [31] provides a
simplified source of information to account for the most significant source of uncertainty. Here,
other data quality issues such as reliability, completeness, and temporal and geographic
variability are accounted for by a discrete range of additional uncertainty factors, which may also

contribute to account for any of the other uncertainty sources. This way, a composite geometric
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standard deviation is determined to account for the multiple uncertainty sources. This also has
relevance to cost uncertainty. However, note that the data quality uncertainty of cost is more
dependent upon the maturity of the cost information within an enterprise, whereas data quality
uncertainty of environmental parameters depends more so upon the development of the applicable

LCI data and LCA factors according to the ISO 14042 guidelines, which is often provided by a

Table 4: Geometric standard deviations of data uncertainty

Environmental Basic Uncertainty GSD (Geome_tric
Parameter (or cost) Factor Standard Deviation) (d)
[31] [31]
CO2 1.05 1.13 (b)
NO x 1.5 1.26 (b)
Methane 1.5 1.26 (b)
CO 5.0 2.26 (b)
SO2 1.05 1.13 (b)
VOC 1.5 1.26 (b)
Resource depletion 1.75 est. 1.35est. (b)
Monetary Cost 1.15 (@) 1.68 (c)

a — This is calculated from the example of the price uncertainty of an annual fuel price standard deviation
of +/-7.75% and assuming a 4 year average product lifetime and normally distributed geometric Brownian
Motion [49]. This number changes from 1.15 to 1.30 if the product lifespan is 15 years.

b — This assumes middle data quality level for LCA.

¢ - This assumes below mid-level data quality for cost until a verified data source is found or established
over time.

d — The formula for Geometric Standard Deviation (GSD) is given by
GSD = \/exp\/(ln(ul))z+(In(U2))2+(In(U3))2+(In(U4))2+(In(U5))2+(In(U6))2+(In(Ub))2

where U is the uncertainty factor of reliability, U, is the uncertainty factor of completeness, Us is the
uncertainty factor of temporal correlation, U, is the uncertainty factor of geographic correlation, Us is the
uncertainty factor of other technological correlation, U is the uncertainty factor of sample size, and Uy, is
the basic uncertainty factor. [31]

©)

third party source. Environmental data has been found to be log-normally distributed [31]. Table
4 shows a summary of the resulting quantitative measures that allow us to represent all relevant
uncertainties as given by log-normally distributed data [31]. Here, we assume that data has an

average or middle level of environmental data quality. Each mean expected value given by LCI
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data combined with the calculated geometric standard deviation given in Table 4 provides enough
information to calculate the standard deviation and the resulting 95% confidence interval upper
and lower limits of each environmental parameter. Thus, the upper and lower limits of the 95%
confidence interval can be calculated for each environmental impact as well as for the lifecycle
cost. This information is needed to determine the highest and lowest possible outcomes for each
attribute value in the MCDM model. Now that each attribute value for each alternative is
calculated, both in terms of its expected values and probabilistic distributions, this information

can be deployed within a decision model to identify the best of the alternatives.

5.1.4. Execute HEIM and Select the Best Alternative

Table 5 shows the sustainable product design optimization problem expressed in a structure
consistent with the principles of normative decision analysis. Here, multiple attributes are listed
that include the main environmental impacts and lifecycle cost. This allows comparison of a
number of possible design alternatives to find the best of the identified alternative choices with
the maximum MAU value. Thus, the solution of the multi-attribute problem involves the
optimization of the composite function of all attributes subject to the compliance constraints.
Each attribute value for each design alternative, X; depends upon the data values associated with
the set of independent design variables, x;, that comprise a given alternative. The objective
functions f1(x) to fs(x) are equivalent to the environmental impacts, which are solved by applying
the LCA process over all of the five life cycle stages. Each environmental impact is the linear
sum of the products of each for related emission load and its characterization factor for that
impact. Emission loads are calculated from LCI data corresponding to the design variables using
the pertinent formula at each life cycle stage.

Having calculated all of the high, low, and mean values of the 95% confidence interval for
each objective function, the formulation may be simplified by the way of minimizing the number

of objective functions that need to be included in our MCDM model. To this end, we use the
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LCA steps of normalizing, grouping, and weighting described previously [26,29] to directly
compare the attributes of environmental impacts to each other. Initially, each impact is expressed
in units of a kilogram equivalent quantity of a certain chemical compound. Since each impact is
measured by a different chemical equivalent, normalization converts all impacts into the same
units. The normalized unit of milli-person-equivalent (mPE) is obtained for each impact by
multiplying the kilogram equivalent value by the appropriate scaling constant used in prior case
study examples [26]. Both environmental impacts and kilogram equivalent values of
nonrenewable resources consumed may be expressed in mPE units. However, environmental
impacts and resources depleted cannot be compared directly at the weighting step of LCA and
must be grouped separately. Once they are grouped separately, the groups themselves can then be
subsequently studied and evaluated as a MCDM process using HEIM. As mentioned previously,
each impact must be weighted based on its relative importance to allow direct comparison to the
other impacts. The scaling constants to convert to weighted units of milli-people equivalents
targeted (mPET) for environmental impacts and milli-person-reserves (mPR) for resource
consumption are taken from those used in prior case study examples [26]. From the sustainability
perspective, an attribute with a significantly higher mPET or mPR value for any other attribute
under consideration in the group will present the greatest priority for minimization among all
attributes in its group. From the discussion, it can be concluded that a typical design for
sustainability problem will have three major attributes, namely, the cost, environmental impact,
and nonrenewable resource consumption. However, there can be several sub-attributes within the
environmental impact and resource consumption attribute groups as well. The preference among
the three major attributes is modeled using HEIM as shown in Section 3.2. The development of
the decision model and the considerations for inclusion of attributes are illustrated with the aid of

an actual case study to which the NASDOP is applied.
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Table 5. Mathematical model for sustainable product design

Maximize:

2= {(f1(®), ..., fp(x))}, where X = (xy, ..., x)

Representative independent design variables:

x1 ... = Material types; x, ... = Manufacturing processes employed

x3 = Mode of Distribution employed; x, = Functional Priority

x5 = End of Life (EOL) Disposition; x ... = Part Volume (due to the geometry of the part)

Subject to:
gix(X) <0 vk Compliance constraints

Select outcome from alternative set:
X = {Xl,Xz,Xg, ,Xm}

Representative attributes to minimize:

f1(x) = Global Warming Potential (GWP) = kg €0, eq

f2(x) = Acidification = kg S0, eq

f3(x) = Eutrophication = kg NO, eq

f4(x) = Photochemical Smog (ozone formation) = kg C, H, eq
f5(x) = Stratispheric Ozone Depletion = kg CFC — 11 eq
fe(X) = Terrestrial Toxicity =LCsy eq [29]

f7(x) = Aquatic Toxicity = LCso eq [29]

fg(x¥) = Human Health = LCs eq [29]

fo(X) ... = Resource Depletion = kg natural resources consumed eq
flO(Y) = Cost = USD

5.2. Case Study: Charcoal Grill

For illustrative purposes, the NASDOP approach is applied to the charcoal grill study used
by Choi et al. [47,48]. Since Choi et al. [47,48] employed a descriptive method using AHP (the
analytic hierarchy process), it provides a baseline case study to test our methodology. For this
problem, the mean values are generated using the LCA methods described previously. Here,
environmental loads for each of the six most significant parts in the charcoal grill are determined
during the raw material extraction, manufacturing, and end of life stages of the product lifecycle.
In addition, environmental loads are determined for the assembly of the complete product, for its
distribution assumed average distance to a point of use, and for all uses of burning the charcoal
briquettes over the course of the product’s lifetime. Each environmental load is composed of all

significant environmental emissions or non-renewable resources depleted during the operation.
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Each environmental emissions load is calculated from the LCI data provided in the original study
[47,48] with a mass inclusion factor to estimate the effect of all of the parts. The environmental
impacts are next calculated as the linear sum of the products of each related emissions load and
its characterization factor for that impact. The resulting mean values obtained for the eight
significant environmental impacts agree closely with those published by Choi et al. [47,48]. From
here, the NASDOP design approach is introduced to develop the decision model based on HEIM.
The following sections detail the systematic development of rigorous mathematical models, as
well as the methodical comparison of design alternatives to optimize for sustainability, while

considering uncertainty in the economic and environmental data.

5.2.1. Potential Design Alternatives and Estimation of Flows and Uncertainties

Beyond the calculation of the baseline mean values, the NASDOP proceeds with the
potential design alternatives and the calculation of flows and uncertainties for each design
alternative goal. As stated in section 5.1.1, such alternatives can be identified according to the
strategic goals specified back in Table 3. In this case, a decision matrix can be constructed with
rows consisting of the complete alternative set and nine columns corresponding to the attributes
under consideration. These nine attributes include one column for the cost, four sub-columns for
the four different environmental impacts, and four sub-columns for the four different
nonrenewable resources being consumed. Each of these columns has three sub-columns to also
include the low and high values of each range covering the 95% confidence interval based on
uncertainty. All resulting rows and columns with their calculated values in each cell are shown in
Table A.1 of the Appendix. Once the calculations are completed to map design alternatives and
design attributes, the attributes are normalized to have the same units with the exception of the

cost attribute.
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Figure 3: High and low values of environmental impacts weighted for direct comparisons

5.2.2. HEIM Results

The grouping and weighting procedures of LCA allow direct comparison of the four
environmental impact sub-attributes to each other and a similar comparison of the four sub-
attributes within the resource consumption grouping. Figure 3 shows the high and low weighted
values of the four different environmental impacts. This illustration shows that some of these sub-
attributes are more significant than others. The attributes have now been weighted using the LCA
process based on their importance or severity relative to each other. These weights were
determined by LCA development experts [26] based on the relative severity of each impact to the

planet’s sustainability. Recall that impacts are compared directly to each other based on the
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measure of milli-people equivalents targeted (mPET). By the definition of sustainability, we will
be most interested in reducing the impact that always has a higher value to a level that is closer to
the value of the next most significant attribute. Figure 4 shows a similar weighted grouping for

the depletion of nonrenewable resources.
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Figure 4: Nonrenewable resource consumption weighted for direct comparisons
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The deployment of the weighting and grouping procedures from the LCA process generates

the three-attribute model to execute within HEIM as described in Section 3.2. This construction is

shown by the Ly orthogonal array in Table 6. Here, we focus only on comparing the preferences

among the three main groups by ranking the nine different hypothetical alternatives based on a

decision maker’s preference. A solution for such a three-attribute problem using HEIM was

demonstrated in prior work [45]. The values shown in Table 6 correspond to the best (at u=1),

worst (at u=0), and the certainty equivalent (at u=0.5) values. Here, the best and worst values

represent the limits of the 95% confidence interval for the most critical attribute in the attribute

group. Table 6 reveals that our first attempt to rank these hypothetical alternatives resulted in

Table 6: Hypothetical alternatives set up for the three-attribute case

Critical Non-

Critical Monetary .
. renewable . Possible
. Environmental Life Cycle . Corrected
Hypothetical Resource Alternative .
X Impact . Cost . Alternative
Alternative Depletion Rank First
[mPET] [USD] Rank
[mPR] Attempt
fi 3
2
A 33.7 18.4 743 9 9
B 24.9 13.8 50 2 3
C 11.3 2.71 383 1 1
D 33.7 13.8 383 8 8
E 24.9 2.71 743 6 6
F 11.3 18.4 50 3 2
G 33.7 2.71 50 7 I
H 24.9 18.4 383 4 5
| 11.3 13.8 743 5 4

infeasible ranks of alternatives B and H. These rankings were not feasible, because the constraints

imposed by such a ranking priority allow for no possible solution for the weights to use in a MAU

function that will satisfy such a ranking of B and H. This was corrected by a ranking adjustment

of these hypothetical alternatives as shown in the final column. The solution for the attributes’
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weights given the preference defined by this ranking is {0.571, 0.143, 0.286}. Different decision
makers may state different preferences during this process. This solution for the weights will be
used to solve for the MAU values for each design alternative as described in the remainder of this
section.

Since sub-attributes within the groups have already been weighted based on severity relative
to each other, to optimize for sustainability, we may prioritize the reduction of the most
significant impact value in each group. However, the uncertainty poses a challenging question to
determine which impact has the highest value and whether we should compare the impacts based
on their expected values or the values on the upper limit of their 95% confidence intervals. One
approach could be to find the optimal alternative for both scenarios and see if the selected
alternative is the same in both cases.

Tables 7 and 8 show the results of both approaches for this case. To obtain the utility values
for each attribute in each alternative, we first had to establish the designer’s preference for each
attribute independently based on the risk preference for that single attribute. In this case, we
assumed slightly risk prone decision making for monetary cost and risk aversion tendencies for
decisions involving all of the environmental attributes. This can be seen in Table 6. The certainty
equivalent (at u=0.5) values in all three attribute columns are not the average of the two extreme
values. Each SAU function defined by the best, worst, and certainty equivalent values is used to
find the utility value for each attribute value as shown in Tables 7 and 8. Note that the design
process is equally valid and applicable for any and all preference sets as indicated by the
designer. It is interesting that the two different approaches presented in Tables 7 and 8 resulted in
the selection of two different design alternative goals. The approach shown in Table 7 does not
consider the potential variations due to uncertainty and merely considers the expected values.
When this approach of disregarding the uncertainty is used the design goal of choice with these
stated preferences becomes the design of a product that consumes less energy during use.

However, Table 8 shows that the design alternative of choice changes to the goal of designing a
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Table 7: Design alternative selection based on the mean expected values

Expected mean values Expected mean utility values, u
Environmental Non-renewable
impacts resource depletion Monetary Non-
. . i Total utilit
Design alternatives [MPET] [mPR] cost En\{lronmental renewable | Monetary y
fl 2 impacts resource cost value, U
[USD] .
— . fl depletion f3
Value | Critical |, I Critical 3 P
attribute attribute
Baseline mean values| 21.3 GHG 10.35 | Natural gas 246 0.661 0.735 0.701 0.683
X1 - Weight
. g 19.9 GHG 9.01 | Natural gas 240 0.717 0.801 0.710 0.727
reduction
X2- Recycled 21.2 GHG 10.28 | Natural gas 225 0.665 0.738 0.732 0.695
material
X3 - Reduced ener
% 20.1 GHG 9.25 | Natural gas 232 0.709 0.790 0.722 0.724
content
X4 - Low toxicity 20.6 GHG 10.35 | Natural gas 246 0.689 0.735 0.701 0.699
X5 - Renewable
17.1 GHG 5.17 | Natural gas 233 0.689 0.940 0.720 0.734
resources
X6 - Efficient use 19.1 GHG 10.54 | Natural gas 207 0.748 0.724 0.759 0.748
X7 - Sustainable
X 21.3 GHG 10.35 | Natural gas 234 0.661 0.735 0.719 0.688
manufacturing
Max U = 0.748

Table 8: Design alternative selection based on the high limits of the confidence interval

High limit values of 95% CI High limit utiltiy values, u, of 95% Cl
; . Non-renewable
Environmental impacts A I Non-
onetar: ) ili
Bt i [MPET] [MPR] cost Y| Environmental | renewable | Monetary Tote:l utility
fl 0 [USD] impacts resource cost value, U
" " fl depletion f3
Valle Critical Valle Critical 3 P
attribute attribute
Baseline mean values| 33.7 GHG 18.03 | Natural gas 743 0.000 0.049 0.000 0.007
X1 - Weight
. 9 29.2 GHG 13.68 | Natural gas 724 0.279 0.514 0.025 0.240
reduction
X2- Recycled 337 GHG 18.03 | Naturalgas| 722 0.000 0.049 0.023 0.014
material
X3 - Reduced energy |, o GHG 1612 | Naturalgas| 702 0.124 0.284 0.055 0.127
content
X4 - Low toxicity 32.7 GHG 18.03 | Natural gas 743 0.066 0.049 0.000 0.045
X5 - Renewable | ¢, | Photochemical | g | \ovialgas | 730 0.414 0.801 0.017 0.356
resources ozone
X6 - Efficientuse | 30.3 GHG 18.38 | Naturalgas| 632 0.215 0.000 0.150 0.166
X7 - Sustainable
: 337 GHG 18.03 | Naturalgas| 710 0.000 0.049 0.044 0.020
manufacturing
Max U = 0.356
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product that uses less non-renewable resources during its life cycle when the focus of concern
shifts to mitigation of the worst case scenario possibility. Thus, the effects of uncertainty can
directly influence the selected design alternative as can changes in the preferences stated by the

decision maker.

5.3. NASDOP Discussion

The results show that NASDOP offers an effective and comprehensive methodology to
design for sustainability in a manner consistent with the principles of the triple bottom line. To
further examine its effectiveness, we considered quantifiable triple bottom line objectives and a
mathematical model suitable for a normative solution. As detailed below, we were able to directly
integrate the information from LCA as required by ISO 14042, account for all significant
uncertainty, develop a mathematical preference-consistent decision support model from the entire
design process perspective, including conceptual design.

The triple bottom line objectives include any and all impacts on the environment, economy,
and society. Our method accounts for such effects on the environment and the economy. Future
work can also examine societal considerations, which are not quantified as seamlessly. Chapter 7
provides an approach to express such metrics as they relate to performance objectives of
importance to stakeholders and customers. The development of usable metrics to represent the
most important societal considerations remains a topic of research. One such metric, which was
represented quantitatively in the case studies by Wenzel et al. [26], accounts for the impacts of
the probability of work place injuries during the processes involved in a product lifecycle. Ideally,
the objectives should both accurately account for the metric and depend functionally upon the
same independent variables as much as possible. The formulas that we deduced to compute the
LCC impacts, which are presented in section 5.1.2 of this chapter, meet both of these goals. This
way, the cost and environmental impact criteria fit efficiently and effectively within the same

MCDM mathematical model. Cost from the perspective of a customer is traced throughout the
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product lifecycle by our model in a manner similar to that of the LCA treatment of the
environmental impacts from the perspective of a stakeholder. The significance of data uncertainty
is another commonality between the costs and environmental impacts. While the nature and level
of these uncertainties may differ, each may be estimated by some probability function. Future
work can focus upon finding the most accurate ways to represent the uncertainties. The work
presented here considered the three-attribute model, focusing on the main impacts from
nonrenewable resource consumption, environmental impacts, and cost over a product lifecycle.
As such, the sub-attributes within nonrenewable resource consumption and environmental impact
categories were grouped together. Future work can closely examine the comparison between the
LCA grouping approach used here to simplify a design problem to a three-attribute HEIM model
and the alternative of comparing all of the attributes within a larger HEIM model instead to
consider the relative preferences among all attributes based on the type of product being
designed. Such future work can also examine the effectiveness of the process to check for
preference consistency within HEIM for each of these possible approaches.

In recent years, normative methods have proven successful for MCDM within the design
process. Thus, the challenge to introduce MCDM at the conceptual design stages may be met by
following a prescribed blueprint [7,8,,10,42,45]. Therein lies a solution to the identified
challenge of implementing product design for sustainability at the conceptual design stages. This
work shows that the normative method is equally applicable at the conceptual design stage when
a baseline design is available for comparison. The work described in Chapter 7 builds on this
work to identify the means to solve for the feasible preferred target point on the optimal design
solution space. Moreover, our current study shows that as more specific design concepts are
developed in greater detail, the application of engineering analysis or LCA could generate more
accurate computations of each objective function in the design decision model. Thus, greater
transparency of the environmental and economic impacts at each product lifecycle stage could

improve understanding of the details of the effects by design engineers. Furthermore, adoption of
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this method may coincide with the trend toward the further development over time of the LCI
database and LCA methods toward increasingly greater comprehensiveness and accuracy. This
chapter described the foundation methodology of NASDOP that was built upon by the work
described in Chapter 7 to address many of these issues. NASDOP is a decision methodology for
the sustainability-based design of products. The execution of such a decision generates
information about its rationale and justification. Thus, an information model is needed to capture
and communicate such information to all design participants. This topic is covered in the

following chapter.
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CHAPTER 6

IASDOP: AN INTEGRATED APPROACH TO INFORMATION MODELING FOR THE
SUSTAINABLE DESIGN OF PRODUCTS

This chapter presents the published work® by Eddy et al. [51]. Here, Design
considerations are most effective when brought into a design process as early as possible, when
design flexibility is normally greater in that the impact of any design change is mitigated. In their
review, Ramani et al. [11] assert that early design considerations are even more important with
the emergence of sustainable design. Sustainable product design can significantly affect the
environment, economy, and societal well-being in a number of positive ways. In spite of the need,
integration of sustainability considerations has progressed slowly. An ASME survey [552]
supports the notion that design engineers are motivated to comply with current sustainability
standards. The survey finds strongest sustainability interest among engineers to reduce energy
and emissions. The survey also shows that organizations are most interested in compliance with
regulatory requirements, and are most likely to only consider green methods that are cost
competitive.

To support these current thrusts, this chapter proposes that sustainable design can be
facilitated by introducing the guidelines provided by sustainability standards into early decision
making criteria. The review by Ramani et al. [11] also identifies some challenges with the early
design stage adoption of the needed sustainability considerations. Included among these
considerations are support for decision making over an entire product lifecycle and modeling the
information in an interoperable manner. To this end, this work explores the integration of
guidelines for standards with the authors’ earlier work in decision making for sustainability.

The prior chapter [46] introduced a normative decision analysis method for the

sustainability-based design of products (NASDOP). NASDOP deploys (Life Cycle Assessment)

* Reprinted by permission of both the publisher American Society of Mechanical
Engineers (ASME) and the copyright owner National Institute of Standards and Technology
(NIST)
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LCA mathematical models with compatible (Life Cycle Costing) LCC models to consider both
environmental and economic objectives during the evaluation of design alternatives. This work
builds upon the prior work [46] in an important way. It provides a framework in which
information pertaining to any applicable standards and regulations (henceforth only referred to as
standards) is revealed transparently. Consequently, this information may influence the decision
making process by highlighting criteria and constraints for consideration while also informing the
decision maker during the articulation of preferences among the criteria considered.

A design process for sustainability often requires a comprehensive and holistic
consideration of several distinct knowledge domains. Such an approach, if seamless, should
improve upon the efficiency and effectiveness of a traditional design process that considers
individual domains in a compartmentalized manner. However, integration of the major domains
of a design process remains a topic of research. The work in this paper presents a novel approach
to integrate the information models of four main domains to an extent not done in any known
previous works. (Figure 5): Engineering Design, Sustainability Standards, Normative multi-
criteria decision making, and LCA. The integration of all four of these domains will enable
sharing of information in real time.

Section 6.2 details the key features of the new framework and its architecture. In Section
6.3, an illustrative case study is applied to demonstrate the framework’s use in a design process.
The final section discusses the results of this work. The next section summarizes prior works that

have achieved some level of integration between two or more of the four domains of interest.

6.1. Related Works

First, this section looks at the relationship between LCA and other sustainability
standards, indicators and metrics. An earlier approach established groups of key metrics
represented within tools to serve as building blocks for the use of LCA [53], but it is not clear that

the metrics used come from any established standards. More recently, a tool was developed to
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combine site dependent data from LCA with environmental performance indicators to support
decisions by aggregating output data into a comprehensible index [54]. A study to support
considerations within an enterprise examined the use of LCA data aggregated into a performance
index with that of other indicators and metrics, such as those related to compliance or eco-
efficiency measures [55]. One of the more comprehensive descriptions of all such information
pertaining to the multiple product sectors, and the relationships among standards, indicators,
metrics, tools, and criteria, such as LCA criteria, is available at the website of the National Center
for Manufacturing Sciences (NCMS) for Sustainability Project Initiative (SPI) projects [56].
Therefore, this work uses the content of this work to create a categorized library represented by
the related information model described in the following section.

Prior work related to the modeling of sustainability metrics, standards, and indicators
within ontological frameworks is also of interest. Yang and Song [57] constructed an ontological
framework to represent LCA and LCC parameter inputs to use with criteria defined by
sustainability metrics for the potential evaluation of alternatives within a design process for
sustainability. A National Institute of Standards and Technology (NIST) workshop with industry
[3] proposed that further harmonization and consolidation is needed between regulations,
standards, and metrics. In response, researchers from NIST proposed use of the Zachman
framework [58] to organize information from sustainability standards to facilitate modeling of the
content within semantic frameworks such as ontologies. Such a means to organize the
information is helpful due to the large number of standards and metrics and the redundancies and
gaps between them. Researchers at NIST built upon this work by introducing a method to reason
upon such information within an ontology to determine where such gaps and overlaps in
sustainability standards exist [59]. With this methodology, overlaps can be found where similar
concepts appear in different standards, and gaps reflect divergence of the concepts in different
standards. Here, ontological information models of different standards are mapped to each other.

This mapping process involves setting classes and properties equivalent to others whenever
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possible. Such equivalencies are considered overlaps and the lack of equivalence was defined as a
gap [59]. Reasoning may be done within the resulting ontology to determine which standards
apply to specific products. Furthermore, an inconsistency of a specific product instance with a
property value restriction imposed by the standards can indicate the lack of compliance of that

product design.

Intersection of
information
addressed by this
new integrated
framework

Figure 5: Desired state of information models for a design

Current literature [21,60-63] also emphasizes the importance of information modeling
and its knowledge management pertaining to engineering design processes. The use of semantic
web compatible ontologies has been shown to facilitate collaboration during distributed design
and inform design decision making early in a design process, while also supporting
interoperability of software tools deployed throughout the process. One such recent

comprehensive review [60] highlighted the importance for the development of ontological
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frameworks to capture design related knowledge in a flexible and robust manner and to also
capture design rationale to support decision making early in a design process.

From a perspective of a design process for products, an ontological framework was
constructed at the University of Massachusetts at Amherst to facilitate the documentation of
design rationale for distributed design throughout an entire traditional design process [17-19,21].
As a result, the information is dynamically linked between the domains that comprise a design
process. The hyperlinks of these ontologies may be imported for public use from [20] into
software such as Protégé [65]. Future developments are planned to improve upon the visual
format for sharing information by use of software such as OntoWiki [66]. Additional modules in
the framework support the modeling of information for decision making with a Decision Support
Ontology and with Decision Method Ontologies [16,67], which represent various methods to
evaluate design alternatives having various attribute values.

The Decision Support Ontology and Decision Method Ontologies are aligned with the
principles of Decision-Based Design, and as a result, can benefit a design process, especially
when tradeoffs between conflicting objectives need to be considered for multi-criteria decision
making. Decision-Based Design is based on some fundamental principles as defined by Hazelrigg
[68]. Normative methods based on utility theory, which evaluate alternatives based on the
maximization of utility, were developed for applications that require a certain degree of
mathematical rigor [7,8,10,44]. One such method is hypothetical equivalents and inequivalents
method (HEIM) [44,45], in which the optimal set of weights among multiple criteria is calculated
based on the strength of preference expressed by a decision maker during the ranking of
hypothetical alternatives. The resulting set of weights is used to compute the multi-attribute utility
(MAU) value of any design alternative.

The integration between the domains of normative multi-criteria decision making and
sustainable design has been limited despite the need. The often conflicting objectives of the triple

bottom line for sustainability infer that multi-criteria decision making methods are well suited to
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selecting optimal design solutions for sustainability. However, the introduction of usable
normative methods to date has been limited. Thurston and her associates provided a constrained
optimization methodology for sustainable product solutions [9,10]. More recently, HEIM was
used to model the preferences of the decision maker in NASDOP [46]. Here, the uncertainties in
the data from environmental emissions and costs were taken into account. For all of these
reasons, the new ontological framework, introduced in this work, integrates the information used

in this NASDOP methodology with this framework that includes the Decision Support Ontology

and a Decision Method Ontology for HEIM.

Gaps and Standards | Product | Tools Sustainability HEIM
Overlaps Library Sectors | Library Criteria cidiizlis
Zachman G e B e Decision Components | Materials odI Engineering
Framework Method eI Analysis
. . Decision
Sustainability Framework Performance Model
Integrated Model

Figure 6: Modular building blocks of the information model for sustainable product design

The literature review, described in this section, alludes to the limited level of integration
of information across domains in current design processes from the sustainability perspective.
However, it can also be seen that these four main domains are all related to each other, and
therefore, should not be modeled in isolation if the goal is to inform all participants in a design
process. The work described in the next section provides such an integrated framework that

dynamically links the information upon entry across these domains in a complete system.

6.2. IASDOP Architecture Framework
Here, the Integrated Approach for the Sustainable Design of Products (IASDOP) is

described. Figure 6 illustrates the modular construction of the framework. The objects within
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these domains are dynamically linked appropriately by the relationships between them as shown
and described in the following sections. The ontology file is available to import and use from its
webpage [69]. The following sections highlight some of the key features obtained by this

construction.

6.2.1. Standard Fit within a Standards Library

Standard compliance has been identified as an important consideration in the design
process for an enterprise [52]. The current process available to an enterprise to find a specific
applicable requirement is inefficient at best due to the large number of standards and the
corresponding missing and redundant information involved [3]. Selection of the appropriate
standard depends greatly upon the product being designed. This suggests advantages with
associations between standards and product sectors or the specific products within sectors. The
Sustainable Standards Guide [56] highlights the content pertaining to the top level standards,
product sectors, and also, criteria that may be used to measure sustainability objectives.

Figure 7 shows the upper level taxonomy comprised of the sustainability categories and
the relationships linking these main categories of standards, products, and criteria. Relationships
are shown graphically as arc types in these figures from within Protégé. Included in this
taxonomy is a categorized library of sustainability standards without exhaustive detail of the
information in each standard, which would likely change over time and require updating. This
way, the specific standards applicable to a given product may be instantiated anytime a design
instance is developed. There is also always a possibility that a current or potential standard
applicable to a certain product does not have a standard within the library. Such circumstances are

attended to in Section 6.2.3.
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6.2.2. Relationships to the Zachman Framework

Standards can be complex and it can often be cumbersome to find the information sought.
Researchers at NIST proposed use of the Zachman framework [58] to break down the information
in a standard into an organized structure. To facilitate creation of the standards information
models, this work deploys the prescribed ontological structure of the Zachman framework into an
ontological framework module. Figure 8 shows such relationships of the prescribed matrix within
the ontological framework. The class “Cells” consists of thirty-six possible categories, each
corresponding to one of six different rows and columns. The top level relationships are also
shown in Figure 8. Here, the top level row related to the context or objective scope of a standard

is shown. Section 6.2.3 describes the key advantages that result from this ontological framework.

6.2.3. Revealing Gaps and Overlaps between Standards

The ontological framework can be especially useful for establishing dynamic
relationships between standards and products to which they apply. Researchers at NIST suggest
use of the relationships on the top context level of the Zachman framework to identify such gaps
and overlaps [59]. The method to detect and model gaps and overlaps within an ontology may be
deployed when all pertinent information is modeled in the ontologies for the standards being
compared. Such an approach may be practical when a defined and limited scope of standards
apply to the design endeavors of an enterprise. Here, this work aims to provide a generic
framework that could be used in any design process. Thus, a library and information models more
limited in their depth and scope of represented knowledge is used.

There are two different ways that such a generic framework can be used during a design
process with potential effectiveness. Information models can be created for any applicable
standards using the previously prescribed methods [58,59]. Alternatively, information may be

entered as it is sought during a design process. Thus, this framework supports introducing the
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Figure 9: Relationships to constraints in a design process

guidelines and information provided by sustainability standards into a sustainable design process.

This approach extends the definition of gaps introduced earlier [59] to include any requirement

not yet specified in the existing standards library. Naturally, the depth of the standards’

information models will determine the formalism and the extent of potential automation of these

entries.
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6.2.4. Revealing Constraints from Standards

From a design process perspective, an ultimate goal in modeling this knowledge which
relates the standards and products is to define the applicable constraints for a given design
situation. Survey information indicates that this is not usually a trivial task although rather
important [3,52]. The diagram in Figure 9 shows an example of how such relationships may be
established within this framework. Here, the constraints imposed by the standards are revealed for
a product. Furthermore, these constraints are revealed in the engineering model along with other
physical constraints related to the design. Thus, information models from standards inform the
design model of any compliance related requirements. The example in Figure 5 depicts the case
of a quantified regulatory limit. Depending upon the standard, some such constraints from
standards may support mathematical modeling within constrained optimization programs, while

others may be more qualitative and only applicable within information models.

6.2.5. The Integrated Framework

Other than the need to reveal the important constraints, a designer would also need to use
this information within a decision model that reveals the rationale for selection of the most
sustainable alternative. Here, other information models are integrated with those related to

sustainability standards.

6.2.5.1. Three Information Models Combined

Figure 10 shows the class hierarchy of the taxonomy for sustainability criteria, which
includes categories for LCA and LCC. Section 6.1 discussed some of the benefits of using multi-
criteria decision making principles to design for sustainability. Efficiency and effectiveness of the
early design stages should improve when all such criteria are considered together simultaneously
in the same model rather than iteratively. To this end, ontological frameworks are integrated

among sustainability, engineering design, and multi-criteria decision making (MCDM) domains.
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Figure 10: Criteria including LCA and LCC

Here, advantages are combined from an existing e-Design framework that captures and
communicates information from a traditional design process [17], informs design model
construction for decisions, and reveals decision rationale [16,67]. Such decisions should be made
based on information pertaining to evaluation of the design option whose expectation has the
highest value [68]. Such information can be defined concisely within the Decision Support
Ontology combined with a given situation’s most suitable Decision Method Ontology. Here, a
Decision Method Ontology is introduced to represent the methodology for modeling the
preferences among different criteria by using HEIM. HEIM has been implemented effectively in
a sustainable design situation [46]. Furthermore, the units ontology from NASA [70] is integrated

within this framework to verify that consistent units are used appropriately. Figure 11 shows the
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mapping relationships between a design alternative instantiated in the Decision Support Ontology
and the information in the new LCA ontology. The “has_working_solution” relationship in the

Decision Support Ontology allows for the input of the information models of all criteria.

6.2.5.2. Products, Standards, and Criteria Relationships

Since each design situation will apply to a specific product, a design instance consists of
a unique set of applicable criteria and standards. Figure 7 shows how this framework directly
associates the relationships between a product and its standards and criteria. In doing so,
information about the critical elements of the decision model is revealed transparently.
Furthermore, this could aid the repository development of consolidated standards and criteria in

the context of the products to which they are most applicable.

6.2.5.3. Common Ontology for Constraints and Criteria

Constrained design optimization methods provide the means to consider criteria and
constraints simultaneously. The approach of this work advocates modeling information from
standard requirements as constraints. Even in cases when such requirements cannot be expressed
in the same mathematical model for optimization, the information model can reveal such
constraints transparently to alert designers of the need for compliance verification by deployment
of the semantic reasoning method [59] described in Section 6.1. Section 6.1 also points out that in
spite of the need to combine sustainability standards with objectives such as the minimization of
environmental impacts; such prior work has been very limited.

In recent years, LCA has evolved into a prescribed method to measure value in terms of
environmental impacts. LCA determines impact criteria based on standards of 1SO 14040-14044,
TRACI , and others. A number of different LCA methods were developed to characterize, group,

normalize, and weight the impacts for assessment. This framework uses the EDIP 2003 method
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within SimaPro for consistency with the NASDOP methodology that was developed to deploy
multi-criteria decision making for sustainable product design [46]. Relationships between
modules in the framework provide the connection of resulting environmental impact information
to information about the evaluation of design alternatives that inform the decision making process

in the Decision Support Ontology. Figure 11 shows the representation framework for established

LCA methodology. The context of criteria shown in Figure 10 indicates that multiple criteria

related to sustainability could be involved in a model.

6.2.6. The Integrated Design Process

Due to the integration of the framework, the rationale of the design situation and the

applicable standards combine to inform the pertinent optimization model. From there, the optimal

design alternative can be identified in parallel with the inspection of compliance to any applicable

standards. Since every product design is different, this IASDOP framework is constructed with

the flexibility to accommodate a wide array of design situations. The following section describes

the use of the fully integrated IASDOP framework and the enabled design process in one such

actual design case study. This case study illustrates how these presented advantages of IASDOP

specifically contribute to a successful design.

IASDOP as a Problem Solving Tool

Problem Definition | [, Cun_s t_ra"_'t [ | Problem Formulation | [*, Problem Solving Decision Making
" | Identification | /
L,
4‘%0:&%,00 Information Modeling for Integrated Constraint Ontimization S " Data Import / Export for Sustainability-based
po"’b@: Sustainability Mechanisms ptimization Suppor Tool Support Decision Support
% IASDOP provides
2 “’.f(u.o IASDOP provides an IASDOP incorporates The explicitly structured decision support
SJO%.G Op extensive base for IASDOP demonstrates several well-known information captured by through combined
J%Orf s defining and managing how te incorporate optimization technigues IASDOP can be exported decision-guidance
key terms in concepts of external standards and into its framework. The through OWL and XML frameworks.
Design, Optimization, regulations into early framework inherently in a computable means. The framework is
and Decision Support. It design-time decision guides problem Tool support would structured so as to
also supports integration making. formulation through its require additional specifically support
with LCA Data. strucure. translation. MCDM for
sustainability.
Figure 12: Specific contributions of IASDOP to a successful design process for sustainability
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6.3. CASE STUDY: Sustainability of Brake Disk Rotor and Pads
This case study has been divided into five sections. Figure 12 shows the specific
contributions corresponding to Sections 6.3.2 thru 6.3.6. This outline specifies and illustrates

improvements to a design process by the support of sustainability considerations.

6.3.1. Brake Disk Rotor and Pads

This case study uses IASDOP to capture and communicate information about the utility
evaluation for the optimal set of automotive brake disk rotor and companion pair of caliper pads.
In this case, it is assumed that a five year life of these parts is desired along with other
assumptions reasonable for a typical midsized passenger automobile. Mathematical models were
constructed based on conventional engineering formulations [71] to estimate results. Here, it is
assumed that consumers desire the performance objective of minimizing the vehicle stopping
distance subject to the performance constraints of adequate heat dissipation, a temperature limited
to less than 77 degrees C, and adequate rotor and pad thickness remaining at the end of five years

of typical use.

6.3.2. Problem Definition: Information Modeling for Sustainability

Some research provides engineering data for the most common rotor materials [72], and
more general information is available regarding caliper pad material options. Thus, each possible
material combination may reasonably represent a design alternative. Independent variables
consist of the geometry of the parts, which in this case is limited to the initial thickness of the
rotor and pads and the percentage of the rotor that is solid. Most rotors have hollowed fins to
increase convective cooling. Other than material type, the weight of the parts is the most
significant factor for the minimization of the impacts given by both LCA and LCC. Stopping
distance was found to be independent of weight and geometry whenever all performance

constraints are satisfied. These performance constraints, such as assuring that the brake materials
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dissipate heat quickly enough and do not wear too thin during the product life, are different from
constraints imposed by sustainability standards, which will be explained shortly. In the interest of
optimizing for sustainability considerations, the weight for each material combination alternative
was optimized. Here, the optimal geometry of the parts was determined for each alternative.
Models to generate solutions were developed within Parametric Technology Corporation’s
MathCAD software [73]. Optimization capabilities of Phoenix Integration’s ModelCenter
software [74] with their MathCAD plugin were deployed to optimize the mass for each design
alternative subject to the performance constraints.

LCA results were estimated using SimaPro software [75] based on some reasonable
assumptions given the data available for each of the common material combinations. LCC was
estimated from available generic searches for cost data. The information mentioned here was
modeled appropriately in the IASDOP framework. Section 6.1 discussed the need to satisfy the
triple bottom line multiple objectives for sustainability of preserving the environment, the
economy, and the interests of the stakeholders in society. Thus, optimization was done among the
three main objectives of minimization of vehicle stopping distance, as well as the minimization of
environmental and cost impacts over the product’s life cycle. Table 9 highlights the information

model created to represent these three main objectives and their associated variables.

6.3.3. Constraint Identification: Integrated Constraint Mechanisms

The first step involved a search to find the specific standards and regulations that apply to the
design situation. A general web search for those applicable to this product design reveals three
potentially consequential regulations, which all pertain to material selection in this design
process. Brake caliper pads were often made from asbestos material in the past, later raising
human health and safety concerns [76]. Related standards were documented as instances within
the framework of categorized standards. It is also possible for a standard of concern to not yet be

modeled in the framework. Standards may be most applicable to certain product groups, such as
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limits on copper content to 0.5 % in these brake disk parts due to concerns about the cause of
some toxic substances in water. The application of some standards to a certain product may

require more investigation. For example, disk brakes emit dust during operation, and silica

Table 9: Main design criteria and their independent variables

Subject Instance in
"Objective_Function' Class

Relationship in
""Objective_Function' Class

Object Instance or Value

Comparative_cost

goal

minimize

used in_model

Brake_disk_and_pad_performa
nce

has_unit

Currency _units_ USD

has_objective_parameter

Variable_massPercentDisk

Variable_tDisk

Variable tPad

evaluation_to_Maximize_ MAU

Greatest_environmental_impact

considered_in _utility value

goal minimize
Brake_disk_and_pad_performa

used_in_model nce

has_unit Equivalent_units_Pt

has_objective_parameter

Variable massPercentDisk

Variable tDisk

Variable tPad

evaluation_to_Maximize_ MAU

Stop_distance

considered_in _utility value

goal minimize
Brake_disk_and_pad_performa

used in_model nce

has_unit meter

has_objective_parameter

Variable_massPercentDisk

Variable tDisk

Variable tPad

evaluation_to_Maximize_ MAU

Minimize_weight

considered_in _utility value

goal minimize
Brake_disk_and_pad_performa

used in_model nce

has_unit kilogram

has_objective_parameter

Variable massPercentDisk

Variable tDisk

Variable tPad

considered_in

evaluation_to_Maximize_ MAU
_utility value
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dust concentrations are limited for health reasons [77]. These various standards were modeled in
relation to the design instance of this specific product within the integrated framework. This was
accomplished by the use of the framework as described in Sections 6.2.1 to 6.2.5. Figure 13
shows the constraint imposed by the sustainability standards related to copper content in a
common engineering design model. Thus, sustainability standards are informing the design model

as Section 6.2.4 emphasizes.

6.3.4. Problem Formulation: Optimization Support

The framework allows modeling of sustainability standards and criteria within a shared
configuration. Any relationships between standards and criteria can extend to modeling of design
information in that constraints can influence design criteria. Furthermore, constraints and criteria
can potentially be modeled in the same design optimization formulation if they can be expressed
as mathematical functions with the same independent variables. Current standards usually are not
expressed in such a mathematical format. However, such sustainability constraints and criteria
may be included in the same information model as highlighted in prior figures and sections.

Section 6.2.5 highlights the integration of information models for sustainability,
engineering design, and multi-criteria decision making. Use of this framework initially to identify
the standards and regulations transparently can lead to identification of criteria related to
minimization of critical environmental impacts. This is done by using the ontological module for
LCA, which is built into the sustainability criteria category of the framework. Figure 14 shows

this case study within the LCA module of the framework.

6.3.5. Problem Solving: Data Import / Export for Tool Support
This case study illustrates that this decision making process, which is outlined in Figure
12, of selecting the optimal design alternative combines several considerations simultaneously.

The information is integrated among the four domains shown back in Figure 5 by dynamically
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Figure 17: Results of an alternative with increased content of both copper and silicon in the rotor
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linking information across domains by the relationships set up in the ontological framework. Not
only is this study looking at three different attributes in multi-criteria decision making, but it also
reveals three different standards or regulations that should be met. It is assumed that caliper pads
made from asbestos should not be considered due to the obvious health risks. The information in
this model reveals that rationale. The means to comply with the standards that limit copper and
silica content is not quite so obvious. Since LCA is assessed for each material combination
alternative anyways, perhaps that information can help.

Figures 15-17 illustrate this by showing the specific results for both LCA and multi-
criteria decision making side by side for three of the alternatives. The instantiated ontology is
shown from OntoWiki software [66] in these three figures. Figure 15 represents the results of the
best feasible choice, which was evaluated to have the highest multi-attribute utility (MAU) value.
Here, instance locations of the optimal design geometry and material are shown and specifics
would be revealed by simply double clicking on such desired instance links in the ontology.
SimaPro generates estimates of all the main environmental impact groups, but usually one
specific impact exceeds all the others. For this alternative, human toxicity in water content has the
greatest impact. This material combination is a grey cast iron rotor with steel caliper pads.
Assumptions are made during LCA and LCC, because the data is not always available for the
exact materials and processes involved in the life cycle of every product design. Regular cast iron
and steel materials may have less impact and cost than many other materials that may require
more processing during the material extraction. This best choice is based on the preferences
expressed in the HEIM information model. Use of the integrated framework allows dynamic

linking of the information across the domains.

6.3.6. Decision Making: Sustainability-based Decision Support
The inventory of copper and silicon emitted during the life cycle can also be inspected.

Most of the emitted mass in these instances flows to the water rather than the air or soil. Thus, the
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standard for copper is more likely to apply than the standard for silica dust in the air in this case.
Figures 15-17 also show the emissions to water of copper and silicon for the three alternatives
illustrated. Figure 16 shows results for a grey cast iron rotor and a copper fiber composite caliper
pad material. The copper fiber material is not likely to meet the standard for sale in the states of
California or Washington. It is interesting that the standard is based on the copper mass
percentage of the material, but the information shown regarding the copper emissions to water
may actually be more reflective of the impacts of concern. Either way, it is evident that both the
human toxicity in water and the copper emissions to water are both nearly doubled or tripled
when the alternative changes to the copper fiber material for the pads. Figure 17 assesses a rotor
made from a 20 % SiC reinforced Al-Cu alloy (AMC 2) instead of the grey cast iron rotor shown
in Figure 15. As a result, eutrophication of the water exceeds the human toxicity in the water as
the most significant impact, and the impact approaches ten times more significant. It is interesting
that the copper emissions to the water are also about ten times greater. Thus, there is some
consistent correlation between the standards and the LCA criteria in this case. This shows that
some understanding of relationships between standards and critical impacts can be gained early in
a design process by the use of this framework. The resulting multi-attribute utility (MAU) values

shown in Figures 15-17 reveal the rank of these alternatives from best to worst.

6.4. Discussion of Results for IASDOP

The main objective of this work was to support informed design decisions for sustainable
product design objectives through the early integration of sustainability standards and criteria. A
successful result will ease the adoption of the pertinent standards and regulations and also
influence a design toward the objectives related to sustainability. This work integrated
information models from the four domains shown in Figure 5 to demonstrate how such

integration can benefit a design process for sustainability.
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In traditional engineering design, requirements introduce constraints, which can influence
criteria. Design involves a decision, among alternatives, that best satisfies the criteria, which
define the issues. The decision may introduce more or new constraints for subsequent design
iterations. A design process generates information, which can best be represented by information
models accessible by all design participants. The findings in this work support the use of such
established principles for sustainability considerations.

Furthermore, the case examined shows that some consistencies can be revealed between
applicable regulations modeled by standards and environmental impacts determined by LCA. The
process enabled by the IASDOP framework was shown to allow parallel inspection of
information related to standards and design alternative selection. This work began with the
premise that sustainability standards and regulations may be aligned with the triple bottom line
objectives of sustainability. Although this may or may not be true depending upon the standard, a
framework is provided in which the information is connected by the relationships. This
connection should be evident in all cases. Although compliance with standards and regulations
could require further validation, the intent shown in the information about the standards does
have some alignment with the triple bottom line criteria in the case observed. Thus, efficiency
and effectiveness may be improved by the use of this framework in many other cases as well.
Since instantiation of the design information does involve some time and resources, design teams
should evaluate the expected cost and benefits of using this method on a case by case basis. An
additional benefit of the instantiation could be realized by the capability to query the information
based on its context and meaning. Future work may investigate possible use of the reasoning and
rules capabilities of the ontologies to identify any further potential to improve decision making.

Any such method becomes much more useful when the benefits can be realized as early
in a design process as possible. The case presented here shows one example in which a
sustainable design may depend exclusively upon the independent variables of the material and

geometry of the components for their given use. Thus, the method deployed could be
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implemented at the early stages of conceptual design in some cases. The following chapter looks
at full design space exploration that may involve response surface modeling from known data and
the construction of surrogate models. The successful construction of reliable solution models that
depend exclusively upon the geometry and material of the components should significantly aid

the adoption of the methodology as early in a design process as possible.
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CHAPTER 7

MASSDOP: A ROBUST SURROGATE MODELING APPROACH FOR MATERIAL
SELECTION IN SUSTAINABLE DESIGN OF PRODUCTS

The selection of the optimal material, while considering objectives for sustainable design
comprehensively early in a design process, can significantly improve the overall impacts of
products®. Ljungberg argued that material selection is one of the most important factors that
affect the quest to achieve more sustainable products [79]. Life Cycle Assessment (LCA) has
evolved in recent years to be regarded as a credible, high fidelity measure of environmental
impacts and the associated effects of any materials or processes during a product’s life cycle [80].
Other researchers found LCA, in its current form, to be unsuitable for use by designers at the
early stages of a product design [81]. A recent review paper [11] and the recent National Institute
of Standards and Technology (NIST) workshop on sustainability [3] both identified the need for
efficient early design stage adoption of sustainability objectives. In many cases encountered in
engineering design, high fidelity models are neither practical nor cost effective to construct, and
approximate or surrogate model construction of the design space becomes necessary to enable
early design stage efficiency [82,83].

However, very few implementations exist of surrogate model solutions for sustainable
product design. Even more surprising is the lack of prescribed metamodeling techniques for
optimal material selection for engineering problems in general. A surrogate model may also be
referred to as a response model or metamodel, or a model of a model, that substitutes for another
high fidelity, physics-based model by merely interpolating discrete input and output points of data
to statistically approximate the input output function experimentally independent of the
underlying physical laws [84]. Hazelrigg [85] distinguishes between descriptive and predictive

models for engineering design, and advocates for the use of predictive models during early design

* Public access is conditional upon pending permission to reprint by the potential
publisher as of the time of this writing (American Society of Mechanical Engineers). Access of
this dissertation was made conditional upon reprint permission being granted after paper [78]
publication by ASME.
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stages that allow for reasonable assumptions and uncertainties while focusing on the needed
resolution between discrete alternatives for correct decision making. Descriptive models, that
lack modeling error, should be used where more precise representations are needed of the
physical system behavior for more detailed engineering analysis.

The use of metamodels for sustainable design remains a topic of research. Zhou et al.
[86] proposed a notable possible approach to address both of the research gaps of a lack of
surrogate modeling techniques for sustainable design and the lack of such technigues for optimal
material selection. Their method integrates artificial neural networks (ANN) with genetic
algorithms (GAs) for optimal material selection in consideration of mechanical, economic, and
environmental properties. Sousa et al. [87] developed an ANN surrogate modeling method to
better streamline the LCA process and define some product groupings. More recently, Sousa and
Wallace [88] used these groupings to develop a product classification system by deployment of
learning surrogate models constructed from the groupings.

This chapter advocates use of the mathematical rigor of a normative approach for
sustainable design. Hazelrigg [89] also asserts that a model needs to find local optimal designs
and also determine which of the local neighborhoods has the global optimal solution, and in doing
so the model is only valid when it supports its conclusion that the outcome most desired by the
decision maker is the optimal. Here, when a normative approach is used, the response output of a
surrogate model should approximate a given single attribute utility (SAU) function and/or a
composite multi-attribute utility (MAU) function. This work builds on prior work that provides
such a foundation methodology for sustainable product design [46]. This prior work includes the
normative computation infrastructure to determine SAU and MAU value responses for sample
data locations of the pertinent attributes over a product lifecycle.

One of the major challenges concerns the number of additional design variables related to
sustainability, many of which are material related. Even material related mechanical property

variables are numerous including yield strength, modulus, shear modulus, Poisson’s ratio, mass
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density, coefficient of thermal expansion, etc. Material selection becomes more important when
sustainability is considered. The challenges in this area were exposed in prior work. Rydh and
Sun [90] attempted to define seventeen material groups to estimate Life Cycle Inventory (LCI)
data based on weakly correlated relationships between material properties and environmental
impacts. A wide variety of environmental emissions parameters affect the impact attributes
during various life cycle stages. Thus, a robust method is needed to mitigate the effects of
numerous design variables and construct a surrogate model with adequate efficiency and valid
resolution for optimal alternative selection.

To this end, the following sections introduce such a novel approach and a new
methodology for a robust surrogate modeling approach for material selection in sustainable
design of products (MASSDOP). The next section discusses important issues related to a
product’s life cycle. Section 7.2 prescribes a fundamental foundation to formulate a problem by
representing the entire design space. Section 7.3 introduces a mapping methodology for
modeling. Section 7.4 provides novel surrogate model construction and testing techniques for
material selection. Section 7.5 addresses issues related to optimization of a constructed surrogate
model. Section 7.6 demonstrates how the entire methodology can be used with a case study
example of the design of a disc brake for an automobile. Section 7.7 discusses the results in the

context of the challenges that this work aims to address.

7.1.  The Product Life Cycle

The fundamental first step is to identify the significant life cycle processes that must be
considered. A holistic approach to design for sustainability needs to consider all attributes over
the complete life cycle of the product. However, the significance of the effects at various life
cycle stages indicates that various product life stages should be considered at the most appropriate
time in a design process. For example, the intended use of a product should be considered at the

earliest design stages. Aside from any major localization issues, decisions regarding the mode of
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distribution of the product and its components throughout the supply chain may often be best to
decide later in a design process. The following subsections address the most appropriate design
stages to consider the costs and environmental impacts from each of the five main product life
cycle stages. These five main stages include materials extraction, components and product
manufacturing, product distribution, product use, and end of life disposition of the product and its

components.

7.1.1. Product use stage issues

Identification of the functional use of a product could have the most significant effect on
the resulting performance, cost, and environmental impacts. Such alternatives should be carefully
considered during the early design stages, which offer the greatest design flexibility. To this end,
prior published approaches [34,91] provide the means to map various functions and associated
forms to associated environmental impacts. However, such approaches have limited accuracy to
which the environmental impacts can be determined. Other work [92] focuses on the abstract
relationships of affordances, rather than functions, to environmental impacts.

This paper focuses more closely and more precisely on the impacts of the main
components for a previously determined intended use and general form of the product to achieve
that function. This approach should complement the prior approaches and round out the suite of
methods available to engineers comprehensively. Once one can presume that all design
alternatives in a design space have the same prescribed general form and function, impacts during
the product use life cycle stage reduce to any differences such as more or less energy consumed
due to different mass, inertia, thermal conductivity, etc., or more or less consumable parts used
per year [87]. The significance of such differences would be problem specific. The next
subsection discusses the remaining life cycle stages of material extraction, manufacturing, and
end of life disposition. A more general approach could be applicable to these three product life

cycle stages.
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7.1.2. Ildentification of significance for early design efficiency

The early stages of conceptual design can benefit from approximation models and
methods that efficiently identify the optimal concept to proceed with. To this end, the approach
described by this paper focuses on the most significant and the least complex contributions to
environmental impacts. All life cycle stages can be modeled by using the Life Cycle Assessment
(LCA) process [28,29]. Software tools such as SimaPro [30] or GaBi [93] automate the
computational mapping of any life cycle processes to the resulting environmental impacts. Such
impacts are grouped categorically, normalized to have equivalent units of Ecopoints [Pt], and
weighted based on severity to sum together in a single equation all using one of several viable
methods [94].

Processes related to the initial stage of material extraction and the final stage of end of
life disposition of product components may be entered on a simple mass unit basis. The work
presented in this paper includes the LCA modeling of all processes involved in the production
and end of life disposition of one kilogram of seventy-eight different materials for which the
pertinent information and data exists. Thus, a design set of alternatives can reduce to selection
from among various material choices and their associated weights or volumes. The manufacturing
life cycle stage is also an important stage to consider. The key question becomes when the

appropriate time in the design process to consider such impacts is.

7.1.2.1. Appropriate design stage to consider manufacturing impacts

The key point to consider is whether or not consideration of manufacturing impacts is
likely to have a significant effect on which material alternative is most optimal. The graph in
Figure 18 shows, by an example of the case of machining steel or aluminum to half its mass, that
the processes related to material acquisition and disposal are generally much more significant to

environmental impacts than are those due to such a manufacturing process. This does not mean
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that impacts during manufacturing are not significant, because they indeed are. However, the
results shown in Figure 18 indicate that they are not nearly as likely to affect the material selected
as the material type itself would. Identification of the manufacturing process alternatives can be
relatively complex. Furthermore, modeling of all manufacturing processes alternatives for every
material alternative in LCA computational models can be time consuming. However, differences
in cost among alternatives can be more significant than environmental impact differences during
the manufacturing stage. Many organizations have developed their own efficient and reliable cost
estimation standards to facilitate concept selection during the early design stages. Here, more

established Design for Manufacturability (DFM) approaches [95] can be used.
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Without manufacturing  Combined impacts with
half of 1 kg machined

Figure 18: Example of impacts during a manufacturing stage

Sustainable Manufacturing is certainly also an important consideration during a design
process [3,96] and an emerging topic of research [97,98]. However, for the purposes of selection
of the optimal main components during the early design stages, it can be most efficient to exclude
the manufacturing stage from the metamodels of environmental impact attributes at the
conceptual design stage, and instead, include fewer and more viable options at later design

iterations. By doing so, the environmental impact metamodels reduce to a design space of all
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potential material alternatives. It becomes necessary to identify a unit basis on which all such data

points can be modeled together.

7.1.3. Consistent modeling to represent units in a design space

An LCA process begins with the first step of identification of the goal and scope of a
process [29]. Here, it becomes convenient to model material alternatives for comparison on a per
kilogram mass unit basis, because the extraction and end of life stages can be modeled as such in
an LCA simulation. Furthermore, mass density properties are usually available for most materials
and conversion to volume units can be done for all data points. This allows for a convenient
consideration of the geometry of components as well as the material. It can be especially
convenient when a component design is constrained by space to have approximately the same
solid volume for all material alternatives. Even when that is not the case, the engineer could
provide relative estimates of the percentage differences in volume for the various materials. This
is only possible when the mapping of inputs to outputs has the same linearly scalable relationship
for all material alternatives. Prior research of the computational structure of LCA [99] indicates
that this should be the case given several assumptions that will likely hold for this situation. This
linear scaled relationship was confirmed by testing a large set of materials at various quantities of

mass.

7.1.3.1. Consideration of composite materials and sets of components

Products today are often made from composite materials, which are a composition of two
or more materials that may have representative data available. The additional advantage of using
a data set expressed on a mass or volume unit basis for composites offers the means to expand the
data set to include linear combinations of the impacts from the materials and their associated

mass or volume fractions. Equation (10) shows the specific computation for the cell of each data
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point in the data set of a design space. An entry for a design alternative, i, in the design space is

given by

p
DS, = kZ_;EIleAik VE,

(10)

where j is one of fourteen different environmental parameters, k represents each of the materials
in a composite, | is a material type that can be selected from among seventy-two different
materials in a database, EIP; is the environmental impact parameter of a selected material I, Aj is
the volume percentage of each material in a composite, and VE; is the volume estimated fraction
that a total composite is of a baseline.

The size of the design space becomes virtually unlimited given the wide array of potential
materials. The information derived to compute the relative quantities of volume or mass is reused
to compute factors of the life cycle cost attribute, because the mass of a part is also a significant
factor of both the material cost and the manufacturing cost. Later sections show how this data can
be used to create metamodels to identify optimal points where some potential unforeseen
solutions could exist. The following subsection describes possible sources of the seed data that

determine the values of the impacts in Equation (10).

7.1.3.2. Sources of environmental data

Data is available for the life cycle processes of a wide array of materials from sources
such as ecoinvent [5]. Such databases are constantly expanding, but are not an exhaustive
compilation of all data for every material. Ecoinvent is available to use as an independent source®
of information regarding material, energy, waste, and emissions flows that result from various
processes in a product life cycle. Ecoinvent and other databases can also be included with

simulation software such as SimaPro [30] or GaBi [93]. Results presented in this paper were

® http://www.ecoinvent.org/database/
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obtained by the use of ecoinvent data within SimaPro software. The purpose of this paper is to
prescribe a methodology to use such data. It is recommended that a user obtain such access to the
associated data for the most accurate and robust results. The following section outlines the steps

to initiate the use of the methodology.

7.2. Rationale for Problem Formulation

Section 7.1.2 summarized both the credible LCA modeling approaches that have been
developed by domain experts in recent years and the most significant associated considerations
during the early stages of product design. An LCA model maps the flows of any substances that
result from the processes that occur during any defined portion of a product life cycle. The prior

section reduced the model considered by this approach to the selection of a single variable of the
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Figure 19: Mapping of the LCA process from the material selection perspective
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material type of the main components and its associated mass or solid volume quantity. However,
Figure 19 shows that each material option has a set of numerous contributing processes and many
corresponding substances emitted. The mapping of the LCA process computes the resulting
environmental impacts on the planet, humans, and other species. However, the specific groups of
environmental impacts and the corresponding computational structures vary depending upon
which Life Cycle Impact Assessment (LCIA) method is selected. The following subsection
identifies several of the most widely used methods and some of the relative advantages of these

various methods.

7.2.1. Selection of a Life Cycle Impact Assessment (LCIA) method to represent

Seminal works by Wenzel and Hauschild [26,100] introduced a methodology for the
Environmental Design of Industrial Products (EDIP). This method uses a midpoint approach to
compute the magnitudes of various categories of environmental impacts from the substances
emitted and resources consumed throughout the product life cycle. Here, nineteen different
categories of environmental impacts were identified. Of these nineteen, fifteen of the impacts are
weighted for direct comparison to each other based on the relative severity to the planet, people,
and species. There is no such capability for the remaining impact categories of nonrenewable
resource consumption and three different forms of ecotoxicity. Other impact assessment methods
include CML2001 [101], Eco-indicator 99 [101], IMPACT 2002+ [102], ReCiPe [103], and
TRACI [104]. The approach of this paper focuses holistically on the mapping of factors to
environmental impact responses and the aggregation of the multiple impacts with other attributes.
The method described in this paper could represent any of these impact assessment methods. The

2003 version of EDIP was deployed to develop the method presented here.
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7.2.2. Environmental impacts as design attributes

Multi-criteria decision making (MCDM) methods were prescribed to evaluate design
alternatives for traditional design [7,8,10.43]. The Life Cycle Impact Assessment methods, which
are described in the prior section, model environmental impacts into a form that can be
represented as criteria in an MCDM model. Prior work introduced an approach to integrate LCA
models into such a framework for engineering design [46]. This work builds on that prior work
by introducing a method to represent an entire design space to select specific optimal sets of main
components of a product. This approach provides the mathematical rigor of MCDM methods to
the design of products for sustainability. The various environmental impact categories derived by
the different Life Cycle Impact Assessment methods pose some key questions about how

environmental criteria should be represented in an MCDM model.

7.2.2.1. Total environmental impact vs. most critical impact

Section 3.1 introduced the Environmental Design of Industrial Products (EDIP) of 2003.
Since fifteen of the nineteen environmental impact categories represented by the EDIP method
are weighted based on severity relative to each other, the weighted sum of these fifteen impacts
may be considered as a single important criteria, or as an objective to minimize. These impacts
are all expressed in the common units of Ecopoints [Pt], as Section 2.2 points out. The magnitude
of Ecopoints can often vary widely across this set of fifteen different impacts. Thus, those with
the highest magnitude could be considered those with the greatest priority for reduction. Such a
preference could also depend upon other considerations such as the typical profile of impacts for
that product family, or any differences in the severity profile of the geographic region where that
product is likely to be localized. The impact that has the greatest magnitude is likely to vary for
each design alternative. Thus, a single attribute of the most severe impact would likely be
difficult to represent by a single model due to the different mapping of the different impacts to

their factors. Utility theory provides a mathematically rigorous structure to formulate such
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preferences among multiple attributes and the risk preferences for each single attribute. Utility
theory has been successfully prescribed for and applied to traditional engineering design
problems with multiple objectives in recent years [45,105]. Thus, each environmental impact can
be modeled as an attribute in such a formulation.

The remaining impacts of nonrenewable resource consumption and the three different
forms of ecotoxicity would need to be aggregated as separate attributes. The EDIP method has no
prescription to weigh these impacts based on severity relative either to each other or to the other
fifteen impacts. However, these impacts can be represented as different attributes in a multi-
attribute utility formulation. Ecotoxicity may exist in the forms of either that which is acute in
water, chronic in water, or chronic in soil. It may be difficult for a design engineer to express
preferences among these three different forms of ecotoxicity. However, prior published historical
data may help to inform the decision maker and perhaps suggest preferences for consideration
and modification if necessary.

Such historical data appears in the work of Kietzmann [100]. The data identifies 1990
actual levels and desired political target levels in a region of study. From these values, the percent
of reduction desired can be calculated. Here again, preferences can change in different locations
and at different times. If one may assume for the purposes of product design that this percent of
reduction desired is consistent with the relative preferences to minimize these three impacts, the
percentages can be converted into a normalized set of weights for the multi-attribute utility
formulation of ecotoxicity as shown in Table 10. These weight values should be adjusted as the
values of actual and desired levels change over time. Here again, the purpose is to provide some
baseline to model the preferences for engineering design and not to prescribe any new Life Cycle
Impact Assessment method. Once such preferences are modeled, the model of the main
environmental attribute would consist of the preference model among ecotoxicity, nonrenewable
resources consumption, and the aggregation of the fifteen impacts that are weighted relative to

each other based on severity. Since design for sustainability requires more than just the
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environmental considerations, a model would need to be extended to include other categories of

product attributes.

Table 10: Estimation of preference weights for an ecotoxicity attribute

Ecotoxicity Actual level in 1990 [100] | Political target level desired [100] % reduction Preference'welghts based
category [cu.meter/person/year] [cu.meter/person/year] of actual on relative percent
desired reduction desired
Water, acute 38000 15000 60.5% 0.329
Water, chronic 420000 170000 59.5% 0.323
Soil, chronic 120000 43000 64.2% 0.348

7.2.3. Life Cycle Cost and product performance attributes

A sustainable design should consider any effects on the people, planet, and profit [2,4].
Examination of these effects across an entire design space should include a data set from a
diverse array of potential material options. Environmental attributes of a given material are a
function of a set of environmental properties or factors in the form of processes that contribute
during the significant life cycle stages as Figure 19 indicates. Traditional engineering design
deploys established physical relationships between defined performance attributes and a set of
mechanical properties of the materials. Similarly, life cycle cost attributes are mapped from a set
of cost parameters associated with a given material. Since performance attributes can be defined
in terms of those objectives that are most important to customers of the product or any other
stakeholders, this formulation supports the triple bottom line objectives of sustainability to
maximize the benefits to the people, planet, and profit.

Figure 20 shows the mathematical construction of such a multi-attribute utility
formulation. Here, the construction of metamodels can expand the exploration of the entire design
space. This process is covered more in depth in the following two sections. Initially, the design
space can be represented by sets of data points associated with design alternatives, where each

point includes all attributes and associated factors, or independent variables.
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7.2.3.1. The question of independence of the multiple attributes

The attributes in a multi-attribute utility formulation should be independent from each
other to facilitate the problem formulation [8,106,107]. A multi objective problem exists where,
in some examples, such as a beam deflection problem, a tradeoff may exist between attributes

[7,107] such as cost and strength. Such a situation can result in a Pareto optimal frontier, where
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Figure 20: Methodology for a Robust Surrogate Modeling Approach for Material Selection in
Sustainable Design of Products (MASSDOP)

77



the optimal solution is at the intersection of that Pareto optimal curve and a vector that represents
the weighted preferences among the attributes. Linear correlations and regression models or other
metamodels can help to identify such relationships between attributes and also to identify which
independent variables affect which of the attributes.

The selection of an optimal material in such a model is more complex in that the optimal
solution is a certain distance away from the closest solution for which a material or set of
materials exists. Here, Euclidean Distance is a measure that could be used to find the shortest
distance in the vector space of a given alternative to the optimal. This computation would also
reveal which of the independent variables would need to change to find a new material that could

be closer to the optimal solution than could be realized by looking at only the original design set.

7.2.3.1.1. Mechanical properties relationship to environmental impacts

The problem of material selection raises some questions to consider regarding the
multiple attributes that represent sustainability. Performance attributes in traditional design for
material selection usually depend upon various mechanical properties of the materials in a set of
alternatives. A key question concerns whether these same mechanical properties can be used to
map to attributes such as environmental impact. Table 11 compares the results of mapping
mechanical properties to those of mapping the environmental properties of contributing processes
during a life cycle with the goal of estimating the total environmental impact. This study
considers a limited data set for one kilogram quantities of six different metals. The results show
that there is potential to model impacts as a function of normalized values of the mechanical
properties of materials. However, such models are likely to be less accurate than those which
express impacts as a function of the contributing processes in the life cycle of the one kilogram of
material. The importance of accuracy and the techniques for metamodel construction and the
specific meanings of the independent variables that represent contributing processes will be

covered in the following two sections. In a utility-based model, it becomes possible to model each
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attribute as a function of the independent variables upon which an attribute is affected the most.
Therefore, the following section describes a method to create more accurate relationships to

model environmental impacts.

Table 11: Investigation of mapping environmental impact from mechanical property variables

300
Low .
1kg alloy series .CaSt Aluminum  Tin  Copper
steel stainless iron
steel

Total sum (Output response) = sum of all input variables Pt units 0.0101 0.0220 0.0122 0.0387 0.1007 0.1750
Remaining processes percentage of total impact 16.57% 21.79% 10.91%  21.73%  14.91% 1.45%
Prior cut off value 1.50% 1.20%
Maximum remaining processes value for 12% of total impact 0.0012  0.0026 0.0046 0.0121
New cut off value 0.57% 0.41%
Resulting surrogate model of environmental independent variables:
Y =0.01214444 + -0.00185018*A + -1.890768*C*C + (from 2nd order polynomial regression) depends upon 4
2428.74*H*H + 442.1518*A*C + -1138.47*A*F independent variables
Y Output values predicted by surrogate model 0.0101 0.0220 0.0122 0.0387 0.1007 0.1750
Error = Actual Y - Predicted Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
% Error 0.00% 0.00%  0.00% 0.00% 0.00% 0.00%
Mechanical properties
Yield strength MatWeb MPa 711 458 428 69.6 14 222
Modulus of Elasticity MatWeb  GPa 204 195 147 68.4 44.3 116
Poisson's ratio MatWeb 0.29 0.281 0.287 0.33 0.33 0.31
Weight density MatWeb  kg/m3 7850 7830 7240 2700 7290 8930
Ultimate tensile strength MatWeb MPa 989 742 503 111 220 318
Shear modulus MatWeb GPa 79.8 77.9 58.1 259 15.6 44
Charpy impact MatWeb  J 56.3 157 15.3
Brinell Hardness MatWeb 276 187 299 321 3.9
Machinability MatWeb % 59.8 39 20 20
Fatigue Strength MatWeb MPa 472 369 260 42.6 89.6
Specific heat MatWeb J/g-°C 0.475 0.497 0.506 0.901 0.256 0.385
Thermal conductivity MatWeb W/m-K 46.4 15.4 26.6 229 62 390

Resulting surrogate model of mechanical properties:

Y =0.08601715 + -0.0009053282*Modulus of Elasticity*Specific heat + 3.667327E-08*Weight

density*Thermal conductivity (from 2nd order polynomial regression)

Y Output values predicted by surrogate model 0.0116 0.0027 0.0257 0.0529 0.0923 0.1733
Error = Actual Y - Predicted Y -0.0016 0.0193 -0.0136 -0.0142  0.0084 0.0017
% Error 16% 88%  112% 37% 8% 1%

Mechanical properties normalized linearly

Yield strength MatWeb 1.00 0.64 0.59 0.08 0.00 0.30
Modulus of Elasticity MatWeb 1.00 0.94 0.64 0.15 0.00 0.45
Poisson's ratio MatWeb 0.18 0.00 0.12 1.00 1.00 0.59
Weight density MatWeb 0.83 0.82 0.73 0.00 0.74 1.00
Ultimate tensile strength MatWeb 1.00 0.72 0.45 0.00 0.12 0.24
Shear modulus MatWeb 1.00 0.97 0.66 0.16 0.00 0.44
Specific heat MatWeb 0.34 0.37 0.39 1.00 0.00 0.20
Thermal conductivity MatWeb 0.08 0.00 0.03 0.57 0.12 1.00

Resulting surrogate model of normalized mechanical properties:
Y = 0.09459703 + 1.23379E-05*Specific heat + 0.1828472*Yield strength*Weight density + -0.699115*Yield strength*Specific heat + -
0.003823195*Weight density*Shear modulus + 0.06916236*Weight density*Thermal conductivity

Y Output values predicted by surrogate model 0.0099 0.0211 0.0125 0.0388 0.1009 0.1749
Error = Actual Y - Predicted Y 0.0001 0.0009 -0.0003 -0.0002 -0.0002 0.0001
% Error 1.35% 4.15% 2.44% 0.41% 0.20% 0.04%
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7.3. Mapping Input Factors to Attribute Outputs

This section covers the process by which data sets can be formed to use for the surrogate
model construction that is presented in the following section. The prior section summarized such
a potential method to model performance attributes as a function of mechanical properties of
materials as described in previous works pertaining to traditional engineering design [108].
Sections 7.1.3.1 and 7.2.3 summarized a similar process to construct life cycle cost models.
Figure 19 illustrates the mapping of life cycle processes of a given material to their environmental
impacts. This process is complicated more so in the case of environmental impacts than in the
case of cost and performance attributes by the large number of factors upon which the
environmental impacts depend. The following subsection addresses this issue by introducing a

novel approach to mitigate this complication.

7.3.1. The issue of dimensionality in Life Cycle Assessment (LCA)

The Life Cycle Assessment (LCA) of any given product, component, or unit mass of
material is composed of several hundred different process contributions, which are composed of
several hundred different substances of varying quantities emitted during the various processes.
However, a significant number of both the numerous processes and substances contribute
relatively insignificant quantities to environmental impacts. Furthermore, all of the significant
contributing processes were found to fit into a much smaller number of broader categories of

processes. These two key topics are addressed specifically in the following two subsections.

7.3.1.1. Factor significance tradeoff between dimensionality and model accuracy
Any model that depends upon several hundred different variables would be difficult to
work with. The question then concerns how many of the variables with low quantity can be added

into a residual variable category called “Remaining processes”. One approach could be to find an
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optimal cut off quantity under a certain percentage of the total. This cut off quantity could be
based on keeping a percentage limit of the total for the sum of the remaining processes. The top
portion of Table 11 shows that a limit of twelve per cent for the sum of the remaining processes,
for six different materials in that data set, kept the remaining processes variable to a low level of
significance in a metamodel constructed by second order polynomial regression. It is important to
limit the significance of the remaining processes variable in any model, because it is a residual
term. Significance of any residual term, such as error, could affect the accuracy and predictability
of the model. However, if this residual term is reduced by too much, the number of variables
could be too numerous to include for model construction and optimization. The construction of a
meaningful model could also be compromised when there are fewer than three variables. The
specific heuristic that was used to establish the cutoff amount for each data point is shown in
Figure 21. A maximum safe limiting target value of 11% of an attribute was estimated for the

residual variable of the total remaining processes after the cut off operation. This estimate was

R = Remaining
processes
variable;

Y = Total impact

attribute
J N = number of
processes
variables; N<5 No Proc_eebcli to
R <0.11Y? > > or varlf_al e_
Yes C = number of C<3? consolidation
consolidated procedure
No variables Yes i
A
Decrease cut Decrease cut
off %age off %age

Figure 21: Process to include significant variables
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obtained by the results of a limited empirical test to achieve one accurate model, as shown in the
top of Table 11.The following subsection describes a process to address this issue of

dimensionality.

7.3.1.2. Consolidation of many factors

The process described in the prior subsection reduces the number of variables from
several hundred down to anywhere from several to about thirty depending upon the category of
environmental impact and the material that the LCA computation is generated for. The larger
number of variables could still be too difficult to use and the variables that appear as significant
can change from one material to another. However, a close look at the description of processes in
all cases reveals that all processes can consolidate into one of the dozen categories listed in Table
12. These dozen variables are all one of three different types of flows in the life cycle processes:
material production process flows, energy flows, and waste flows as shown in Figure 19. Thus,
further reduction in the number of variables is achievable, but that would limit the amount of
specific information compared to the dozen variables shown in Table 12.

The method to obtain a usable data point to map these processes to their associated
environmental impact for a given material is now simplified to a four step procedure. First, each
process is identified by the variable letter A through L of the category into which it fits. Second,
all processes are sorted to align the variable letters together. Third, the processes of all values
with the same variable letter are summed to compute the total value of that independent variable.
Fourth, sums are entered as the associated variable value. Figure 22 shows the succession of these
process steps. Table 13 shows an actual example of how one of these data points was generated

using this process. Contributing processes and substances can both be expressed in weighted units
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A = sum(A)
_ Pi=A?
g or J g
Fori=1,...,N
e Pi=L?
L = sum(L;)
Figure 22: Process to consolidate environmental parameters
Table 12: Descriptions of consolidated environmental variable categories
Total sum (Output response) = sum of all input variables Y [5,30] Pt
Process Project Unit
Independent
Major input variables identified categorically for materials variable
R Pt
Final or raw material process /RER WITH US ELECTRICITY U A US-EI 2.2 Pt
B US-EI 2.2 Pt
Disposal, sulfidic tailings, off-site/GLO WITH US ELECTRICITY U C US-EI 2.2 Pt
Disposal, spoil from coal mining, in surface landfill/GLO WITH US ELECTRICITY U D US-El 2.2 Pt
Process-specific burdens, residual or inert material, or sanitary, landfill (including slag E US-E1 2.2 Pt
compartment), or municiple waste incineration/CH WITH US ELECTRICITY U '
Disposal, sludge, remud, basic oxygen furnace wastes, average incineration residue, lead P US-E1 2.2 Pt
smelter slag, or hard coal ash, to residual material landfill WITH US ELECTRICITY U '
G US-El 2.2 Pt

Hard coal (or Lignite), or heavy (or light) fuel oil, or natural gas (inc. sweetening), or pellets
burned in power plant, gas turbine (compressor station), or industrial furnace/WITH US H US-El 2.2 Pt
ELECTRICITY U

| US-El 2.2 Pt

Crude oil onshore or natural gas (inc. transported in pipeline, or sour gas in gas turbine), at
production, or diesel burned in building machine or diesel-electric generating set, or J US-El 2.2 Pt
transoceanic freight ship (or lorry operation)/WITH US ELECTRICITY U

Disposal, hazardous waste, 0% water, to underground deposit or hazardous waste incineration

WITH US ELECTRICITY U K US-El 2.2 Pt

Disposal, municipal solid waste, 22.9% water, or inert material, 0% water, to sanitary or

. . " e . L US-El 2.2 Pt
residual material landfill or municipal incineration WITH US ELECTRICITY U

of Ecopoints [Pt]for consistent comparisons. The value of the residual variable of remaining
processes is labeled as R and was computed by the procedure described in the prior subsection. A

final check should be done to add the Pt values of variables A through L together along with the
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Table 13: Example of the variable consolidation process implemented by sort and sum

Variable
No | Process Project Unit | Total category
19 | Silicon carbide, at plant/RER WITH US ELECTRICITY U US-El 2.2 Pt 0.00099 A
Uranium, enriched 3.8%, at USEC enrichment plant/US
5 | WITH US ELECTRICITY U US-El 2.2 Pt 0.00027 B
Radioactive waste, in final repository for nuclear waste
16 | SF, HLW, and ILW/CH WITH US ELECTRICITY U US-El 2.2 Pt 0.00059 B
Radioactive waste, in final repository for nuclear waste
21 | LLW/CH WITH US ELECTRICITY U US-El 2.2 Pt 0.00131 B
Disposal, sulfidic tailings, off-site/GLO WITH US
8 | ELECTRICITY U US-El 2.2 Pt 0.00029 C
Disposal, spoil from coal mining, in surface landfill/GLO
25 | WITH US ELECTRICITY U US-El 2.2 Pt 0.01046 D
Process-specific burdens, sanitary landfill/CH WITH US
11 | ELECTRICITY U US-El 2.2 Pt 0.00036 E
Process-specific burdens, residual material landfill/CH
13 | WITH US ELECTRICITY U US-El 2.2 Pt 0.00046 E
Disposal, hard coal ash, 0% water, to residual material
14 | landfil/DE WITH US ELECTRICITY U US-El 2.2 Pt 0.00049 F
Disposal, spoil from lignite mining, in surface landfill/GLO
23 | WITH US ELECTRICITY U US-El 2.2 Pt 0.00271 G
Hard coal, burned in power plant/SPP WITH US
4 | ELECTRICITY U US-El 2.2 Pt 0.00024 H
Hard coal, burned in power plant/MRO WITH US
7 | ELECTRICITY U US-El 2.2 Pt 0.00029 H
Hard coal, burned in power plant/WECC WITH US
9 | ELECTRICITY U US-El 2.2 Pt 0.00035 H
Hard coal, burned in power plant/SERC WITH US
20 | ELECTRICITY U US-El 2.2 Pt 0.00124 H
Hard coal, burned in power plant/RFC WITH US
22 | ELECTRICITY U US-El 2.2 Pt 0.00154 H
6 | Blasting/RER WITH US ELECTRICITY U US-El 2.2 Pt 0.00028 |
Natural gas, at consumer/RNA WITH US ELECTRICITY
1 ]U US-El 2.2 Pt 0.00021 J
Natural gas, sour, burned in production flare/MJ/GLO
2 | WITH US ELECTRICITY U US-El 2.2 Pt 0.00023 J
Operation, freight train, diesel/RER WITH US
3 | ELECTRICITY U US-El 2.2 Pt 0.00024 J
Crude oil, at production onshore/RAF WITH US
10 | ELECTRICITY U US-El 2.2 Pt 0.00036 J
Natural gas, at production/RNA WITH US ELECTRICITY
15 | U US-El 2.2 Pt 0.00053 J
Crude oil, at production onshore/RU WITH US
17 | ELECTRICITY U US-El 2.2 Pt 0.00059 J
Crude oil, at production onshore/RME WITH US
18 | ELECTRICITY U US-El 2.2 Pt 0.00085 J
Disposal, inert material, 0% water, to sanitary landfill/CH
12 | WITH US ELECTRICITY U US-El 2.2 Pt 0.00037 L
Disposal, hard coal ash from stove, 0% water, to sanitary
24 | landfill/lCH WITH US ELECTRICITY U US-El 2.2 Pt 0.00403
Remaining processes Pt 0.00344
Total of all processes Pt 0.03270
Sum of variable
0.00217 B
0.00082 E
0.00367 H
0.00300 J
0.00440 L
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value of R. The total sum should be equal to that environmental impact’s total value in Pt if the
procedure was executed correctly. The scalability of the mapping of all these variables was

confirmed by a test of one material.

7.3.2.  Aggregation of attributes for Multi-Criteria Decision Making (MCDM)

Section 7.2.2.1 described the nineteen different environmental impact categories and
groupings for weighted comparisons as defined by the Environmental Design of Industrial
Products (EDIP) [26]. Here, a decision maker should articulate the preferences among these
nineteen attributes, and the preferences should be modeled consistently. Various utility-based
methods have been prescribed to achieve consistent preference modeling [10,45,109]. The large
number of nineteen attributes poses a challenge that remains a topic for further research.
However, the fact that the EDIP method does provide weighting based on severity for fifteen of
these nineteen impacts could help. The total impact of these fifteen is computed during the LCA
process by using this weighting into an aggregated attribute named the Single Score [94]. Thus,
the remainder of this paper will focus on the modeling of this single score attribute, because the
procedure to create the model for any other environmental impact would be the same as is
described in this section.

However, an open question posed in Section 7.2.2.1 concerns a scenario in which a
decision maker may prioritize minimization of the worst or highest magnitude environmental
impact among the fifteen different impacts. Table 14 provides an initial view of model accuracy
and predictability that may be expected when models are created for specific highest magnitude
impacts. The table shows results from models constructed by both second order polynomial
regression and Kriging method. This test indicated that the accuracies of the models are
significantly better when specific impacts are modeled on their own instead of mixed with others.

This suggests a limitation to consider when the goal is to minimize the highest magnitude
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impacts. Alternatively, each impact could be modeled as a single attribute. Section 7.2.2.1

suggests a method to aggregate the remaining four of nineteen impacts into a decision model.

7.3.3. Representation of parametric uncertainty

Uncertainty of environmental data is another important issue to take into account [38].

Ecoinvent provides a formulation to do so [5]. Software such as SimaPro is capable of estimating

the uncertainty bands of all the impacts by executing Monte Carlo simulations based on the

Table 14: Initial model tests of highest magnitude environmental impacts

Surrogate Model Construction of Greatest Environmental Impacts for 1 kg Unit of Each Material Summary of Results

Res R-sq Error Error Error Error
Number | Numberof | i Significance adjusted | between | between between | between
. adjusted . Number Firsttest | . . Second test
of materials of residual %age R first test | first test , second | second
Greatest . %age R of . |material for i . |material for X
. materials| used for .| variable,R, | precision material | material test test Potential uses
impact Group | . precision | , variables model . model . K
in the model in PRmodel |, of model . and PR |andKriging| .. .. | material | material
. |of model ) in model validation validation
group | construction from PR equation from model % | model % of andPR | and
Kriging ofactual| actual model % | Kriging
Aquatic
Both models look
eutrophication| 29 11 100% | Moderate 5 31.9% Brass 0.0% -0.2% | Magnetite | 0.0% 0.6% .
very promising.
EP(P)
This may need
Human toxicit Moderate to HDPE some additiona|
i 21 7 100% . 4 88.4% Nylon 6 0.6% -28.0% 109.8% | 133.5% | segregation to
water High granulate )
model by material
group too.
Aside from the
outlier material,
Human toxicit the PR model
S This is the 3rd and 4th validation test for this attribute. Znc | 358% | 12% PVC | 4% | a50% | e meY
water be usable but with
a fairly high
variance.
Polyester
Human tosicit resin glass Polvstyrene This test adds 4
U 1| 100% | Moderate | 5 | 6750% | fiber | 374% | 09% | )" 1g6% | -02% | data pointsinto
water ) GPPS
reinforced the model.
hand lay up
Acidification 6 2
Ozone
formation 3 1 Greater model
ncertainty for
(e Low to Green Oriented thuis grou;l) isylikely
100% 6 24.80% 0.0% 1.3% trand 300% | -1.8%
Slagsandashes 1 1 * | moderate o | veneer 0 ’ stran 0 0 due to small
plywood board
Bulk waste 7 2 groups of more
0Ozone ) ) disparate data.
depletion
m s
uman'tomuty 5 2
air
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distributions of substances emitted during life cycle processes. Prior work [46] demonstrates that
accounting for uncertainty in both environmental and cost attributes can influence which
alternative is selected. Although mean values are presented in this paper, expected utility
formulations can provide effective methods to simultaneously consider both utility and
probabilistic uncertainties [44,110]. The best use of such methods for sustainability remains a
topic for further research. In addition to uncertainty in data, uncertainty in a surrogate model, or
approximate model, is another important consideration. The following section covers topics

related to the construction of the surrogate models.

7.4. Surrogate Model Construction

The first step in the construction of a surrogate model is to generate a set of data points
consisting of the values of all independent variables and their associated attributes or responses.
Such a data set was generated for the single score, or total environmental impact, of a diverse
array of seventy-two different materials by using the method introduced in the prior section. This
data set was extracted from the Life Cycle Assessment in units of Ecopoints [Pt] [30] per
kilogram of each of the materials. All values were converted to units of Pt per cubic meter by
multiplying by the mass density of each material as recommended in Section 7.1.3. With such a
significant number of data points, a portion of the data can be used to construct the surrogate
model while the remaining data can be used to test the predictability of the model. The following

subsection introduces a novel approach to identify a sample set.

7.4.1. Design space filling
Data that represents material properties poses a unique challenge for the construction of a
surrogate model. Data related to materials has a specific and discrete location that is too inflexible

for most sampling approaches. Conventional methods such as orthogonal arrays, Hammersley
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Sequence Sampling, Latin Hypercubes, and uniform designs [111,112] require strategic data
locations that are uniform and balanced. The challenge is to find a way to approximate a viable
space filling method to optimize model accuracy and robustness given the inherent limitations.
Material selection could introduce some potential for groupings based on common characteristics

within groups of materials. The following subsection highlights such an investigation.

7.4.1.1. Potential for stratified sampling

Ashby introduced charts [108] to identify groups of materials based on locations in a
design space as defined by mechanical property values for traditional design. Figure 23 shows a
similar grouping identified based on environmental properties. Here, four groups were segregated
based on the single score, which is the third axis not shown here. A three dimensional chart
would show four different bubbles in separate locations in that space. The interesting differences
between the groups are the ranges of the percentage of the top two environmental impacts of the

total impacts and the percentage that impacts from the end of life stage of the life cycle are of the

Clusters of material type groups , yictais and other high

120.0% impact materials
100.0%
>2S< X & M Diverse materials with
. 80.0% *— moderate to high
Top 2 impacts X )
%age of 15 total 60.0% X impacts
impacts >§<
40.0% Polymers and other
materials with moderate
20.0% '% to low impacts
oon I 0

0.0%  50.0% 100.0% 150.0% *Wood-based and other

low impact materials
Estimated End of Life % of Total

Figure 23: Materials stratified into groups with separate ranges of total environmental impact
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Table 15: List of materials to choose from in a data set

Material extraction process for 1 kg of:

Material extraction process for 1 kg of:

Aluminium alloy, AIMg3, at plant

Limestone, milled, packed, at plant

Aluminium, primary, at plant

Lithium, at plant

Antimony, at refinery

Magnesium, at plant

Asbestos, crysotile type, at plant

Magnesium-alloy, AZ91, at plant

Bauxite, at mine

Magnetite, at plant

Brass, at plant

MG-silicon, at plant

Brick, at plant

Mischmetal, primary, at plant

Bronze, at plant

Molybdenite, at plant

Cadmium, primary, at plant

Nickel, 99.5%, at plant

Carbon black, at plant

Nylon 6, at plant

Cast iron, at plant

Nylon 6, glass-filled, at plant

Sanitary ceramics, at regional storage

Nylon 66, at plant

Charcoal, at plant

Nylon 66, glass-filled, at plant

Chromium steel 18/8, at plant

Oriented strand board product

Clay, at mine

Palladium, primary, at refinery

Cobalt, at plant

Pig iron, at plant

Cold rolled sheet, steel, at plant

Platinum, primary, at refinery

Concrete block, at plant

Plywood, at plywood plant

Copper, primary, at refinery

Polybutadiene, at plant

Corrugated board, mixed fibre, single wall, at plant

Polycarbonate, at plant

Dry veneer, at plywood plant

Glass fibre reinforced plastic, polyester resin, hand lay-up, at
plant

Epoxy resin, liquid, at plant

Polypropylene resin, at plant

Polystyrene, expandable, at plant

Polystyrene, general purpose, GPPS, at plant

Ferrite, at plant

Polystyrene, high impact, HIPS, at plant

Ferrochromium, high-carbon, 68% Cr, at plant

Polyurethane, rigid foam, at plant

Ferromanganese, high-coal, 74.5% Mn, at regional
storage

Polyvinylchloride, at regional storage

Ferronickel, 25% Ni, at plant

Rhodium, primary, at refinery

Flat glass, uncoated, at plant

Iron scrap, at plant

Glass fibre, at plant

Silicon carbide, at plant

Gold, primary, at refinery

Silicone product, at plant

Graphite, at plant

Silver, from combined gold-silver production, at refinery

Green veneer, at plywood plant

Steel, low-alloyed, at plant

High density polyethylene resin, at plant

Synthetic rubber, at plant

High impact polystyrene resin, at plant

Tetrafluoroethylene, at plant

Iron-nickel-chromium alloy, at plant

Tin, at regional storage

Dry rough lumber, at kiln

Titanium zinc plate, without pre-weathering, at plant

Laminated veneer lumber, at plant

Uranium natural, at mine

Linear low density polyethylene resin, at plant

Zinc, primary, at regional storage

Lead, primary, at plant

Zinc oxide, at plant
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total impacts, shown as the two axes in Figure 23. This information could be useful to a decision

maker when articulating the preferences among environmental impacts as explained in Section

7.3.2. However, Table 16 compares, based on some random sampling, modeling of each group in

isolation to modeling of four of the five groups consolidated into one main group. The groups are

labeled A through D with A having the highest environmental impact and D the lowest. The

Table 16: Comparison of model construction with and without stratification

Surrogate Model Construction for Total Environmental Single Score for 1 kg Unit of Material Summary of Results
R-sq R-sq Error Error Error Error
Number of |adjusted| Significance adjusted . between| between between | between
Number of ) X Number First test . X
X . materials | %age | of residual %age . first test | first test | Secondtest | second | second
Material | materials o ) of b material for . i X 5
X used for | precisio | variable, R, . precision material | material | material for test test | Potential uses
Group in the . variables model o ) i
model nof |inPRmodel |, of model - andPR | and |model validation| material | material
group ) ) in model validation .
construction| model | equation from model %| Kriging andPR | and
from PR Kriging of actual| model % model % | Kriging
PR model
should be
adequate to
Very High Moderatel
/0 5 100% | VOUSFEY 4| sagw% | palladium | 11% | 107.0% NA NA | NA roughly
Impact High . )
estimate this
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A 23 10 100% | Moderate 10 53.4% Zinc 5.8% | 249.4% Brass 1.4% | 58.8% | PRmodel only
B 17 6 100% | Moderate | 6 | 811% | Nylone | -235% | 8w |Onenedstand g o | g | Kriging model
board only
Kriging better
Polyvinylchlorid
c 16 5| 100% | Moderate | 5 | 97% | VOO j4an | 21% so fr, but the
PVC Rsqisa
concern.
. Green veneer Not
D 17 7 98.4% | Very high 1 99.6% | HDPEgranulate | NA | -60.5% NA | -47.4%
plywood recommended
X . Not as good as
G B Pol Ichlorid
:‘:’z 33 11 98.8% | Verylow | 6 | 881% | Nylon6 | -55.7% | -17.0% °W'”P‘(ICC o9 450 | 57% | separated
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Maybe better
G A for G A
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C
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through D
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results show that potential model accuracy should be better when the groups are modeled
together. The population size of the data is significantly reduced when the stratified groups are
modeled separately. One small group that was not included contained just six materials that all
had unusually high impacts. That group was not included both for reasons of scalability and for
the very low likelihood that such materials could ever be optimal for a sustainable design. Table
15 shows the specific life cycle process of material extraction used to generate data for all of the
seventy-eight different materials that could be selected to model a design space. The next

subsection discusses potential options to select an initial sample set.

7.4.1.2. Space Filling Sampling (SFS)

Random sampling could have unpredictable results. One study compared the use of
random sampling, stratified sampling, and Latin Hypercube [113]. All three approaches have
some degree of randomness. A Latin Hypercube design requires space filling with data in specific
cell locations, but the location within each cell is randomized. This study by McKay and
associates [113] found Latin Hypercube to usually be at least as accurate for the examples studied
in comparison to both random sampling and stratified sampling. Thus, Latin Hypercube becomes
the most obvious choice for this situation of nonflexible data locations for material alternatives.
Even with multiple generations of Latin Hypercube random locations within the cells, it is still
very unlikely that locations can match exactly with data locations. Therefore, the resulting design
is likely to be neither perfectly orthogonal nor perfectly rotatable. However, it is possible to find a
Latin Hypercube design that minimizes the Euclidean distances between the design points and the
closest data points.

Several trials of executing this algorithm to find the minimum mean Euclidean distance
among several runs from the data set of seven-two materials are shown in Table 17. These results
reveal that most all of the designs generated with such material related data call for design points

to be filled by replicated data points. That is why it becomes necessary to repeat the search
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process for new data points. These trials revealed that the number of design points obtainable by
this process is limited to usually not enough data to construct a surrogate model from. This is
likely to be a real limitation in that there are no practical ways to increase the size of the cells to
allow for more randomization. Husslage and associates [114] pointed out three possible ways to
increase the cell sizes of a Latin Hypercube design of: increase in the population size, decrease in
the number of variables, and decrease in the number of sample points. The decrease in the
number of sample points would be the opposite of what is needed here. Population size is limited
by the amount of data or design alternatives in the set. A decrease in the number of variables is
possible, but information about specific assignable causes would be lost in doing so. Thus, there

is a limit to the size of the initial sample set. However, this limitation could be acceptable,

Table 17: Best sample data identified by SFS

Index numbers of materials identified

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
30 6 2 40 40
2 1 1 6 1
22 22 2 1 40
40 40 30 30 2
44 6 30 44 40
30 40 30 6 40
40 2 40 40 30
6 40 22 30 2
40 40 22 44 40
40 40 1 40 6
22 2 6 44 40
6 30 6 2 27
30 6 40 44 44
40 30 6 2 30
44 40 30 40 1
1 44 40 44 1
2 30 39 6 30
2 44 30 30 40
6 44 2 40 2
40 30 40 30 16
6 1 1 6 30
42 22 44 6 30
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because prior studies [84,115-117] indicated that the best surrogate models could be constructed
by a two stage process in some cases. The next subsection introduces a second stage for this

process.

7.4.1.3. Sequential Infilling Sampling (SIS)

Sequential infilling can improve the surrogate model accuracy and predictability, because
it uses information from the original sample. Many of the prescribed approaches for sequential
infilling require data selection at predefined locations with minimal deviations [82,85,118] and
are thus not applicable to this situation of material selection. The study conducted by Jin and
associates [115] provides a comparison among various potential methods that could be evaluated
for suitability for this situation. This study identifies some SIS methods that are most applicable
only to evenly spaced designs with the Kriging predictive modeling method, such as Maximum
Entropy, Mean Squared Error, and Integrated Mean Squared Error. The study also identifies other
SIS methods that are not limited to the predictive models, such as Maximin Distance, and new
proposed methods of Maximin Scaled Distance, and cross-validation.

This study by Jin and associates [115] compared these methods in six different examples.
One of the examples is comparable to an environmental impact example in that it is nonlinear
with a dozen variables. Maximin Distance outperformed cross-validation in four of the six
examples, and Maximin Distance outperformed Maximin Scaled Distance in the nonlinear
example with a dozen variables. Both Maximin Distance and cross-validation usually
outperformed a one stage approach without any SIS. The advantage of cross-validation is the lack
of a need for new sample points, but that advantage is not applicable in this case where there
usually are not enough sample points from the first stage. Maximin Scaled Distance allows for
weights to be applied to all variables. The results indicate that any advantage may be mitigated

for a higher dimension example. Therefore, the remainder of this paper focuses on the use of an
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SIS method of Maximin Distance. Maximin Distance prioritizes those data points that have the
furthest Euclidean distance away from points already in the sample set.

One important question concerns how much of the entire data set should be used to fill
the sample set at this second stage and how much should remain to test the model. The first study
in this work examines the total single score environmental impacts in Ecopoints per cubic meter
for all seventy-two different materials in the generated data set. The Latin Hypercube process
presented in the prior subsection identified fourteen data points to use for the original sample set.
The chart in Table 18 shows the ordered list of the Maximin distances computed for the
remaining data points. Although twenty-two more points would be needed to fill the sample set
with half of the data, only the first nine points in this example have significantly greater distances
than other points. When the size of the remaining sample set increased from the nine data points
to the top twenty-two data points, the average absolute error of the resulting model dropped from

8.7% (with four high leverage data points) to 3.8%. However, it is possible that a model with the

Table 18: Maximin distances for SIS prioritization

Index numbers of materials in the remaining | Mean Euclidean distance of the data point to
design space points in the original sample set
2 69.63
24 53.96
22 41.32
17 6.97
23 6.36
21 1.60
31 1.50
8 1.26
6 1.24
32 1.19
4 1.18
58 1.18
57 1.18
54 1.17
53 1.17
14 1.17
1 1.17
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smaller number of sample points could have better prediction accuracy of the points that are not
included in the model. Results will vary for different models of different data sets. Criteria for
testing the models are covered more in depth in Section 7.4.3. The following subsection discusses

potential methods to construct the surrogate models from the sample data sets created.

7.4.2. Response surface modeling methods comparison

Metamodel construction techniques have advanced in recent years especially for
computer experiments that sample with little or no error and use predefined and uniform data
locations [83-85,119,120]. Here again, the material selection situation is a different case. Kriging
method uses information from the model to predict intermediate data location estimates. Kriging
method improved model accuracy in some cases over second order polynomial regression where
the number of variables was high [121,122]. Few studies have been done using Kriging in
situations without uniform data locations.

Second order polynomial regression should improve the model for optimization purposes
compared to the first order linear model that was described in Section 7.3.1.2. The second order
model, unlike the flat plane of a first order model, would emphasize the hill and valley optimal
regions. However, since regression is a curve fitting approach, prior researchers have identified a
potential issue with smoothing out the best (SOB) regions of a curve [89,123]. Therefore, this
work compares the results of using both Kriging and second order polynomial regression methods
for response surface modeling. For the example described at the end of the last subsection with a
sample size of thirty-six points, the R-squared adjusted was 100% for the second order
polynomial regression model compared to an R-squared adjusted of 28.64% for the Kriging
model. For the same example with the sample size of twenty-three data points, the R-squared
adjusted of the Kriging model improved to 98.40%, while the second order polynomial regression

model stayed at 100%. Results are likely to vary between data sets and for different examples. So,
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each model should be tested and evaluated individually. The following subsection covers testing

criteria.

7.4.3. Model testing

A designer would need to evaluate whether or not a constructed approximate model is

adequate to use to optimize for a given design situation. Research topics concern the accuracy of

Table 19: Original sample set after Latin Hypercube space filling sampling

From 2nd order Polynomial Regression
Absolute

Residual % error value of % Material Y Da.ta

DATA Y YHAT RESIDUAL StdR  StuR error point
1 0.1426823E+00003 0.1428457E+00003 -.1634086E+00000 -0.8381 -1. -1.63E-01 -0.1% 0.1% AlMg3 142.682 1
2 0.9665366E+00004 0.9665327E+00004 0.3904724E-00001 0.2003 O.. 3.90E-02 0.0% 0.0%  Antimony 9665.37 2
3 0.3766261E+00003 0.3766122E+00003 0.1391075E-00001 0.0713 0. 1.39E-02 0.0% 0.0% Cobalt 376.626 6
4 0.1021553E+00004 0.1021585E+00004 -.3217021E-00001 -0.1650 -0. -3.22E-02 0.0% 0.0% Iron nickel- 1021.55 16
5 0.3149437E+00003 0.3149419E+00003 0.1824527E-00002 0.0094 O. 1.82E-03 0.0% 0.0% Lead 314.944 18
6 0.3809048E+00004 0.3809060E+00004 -.1201281E-00001 -0.0616 -0.. -1.20E-02  0.0% 0.0%  Uranium na 3809.05 22
7 0.1720124E+00003 0.1719697E+00003 0.4269534E-00001 0.2190 O. 4.27E-02  0.0% 0.0%  300seriess 172.012 27
8 0.1044364E+00003 0.1042832E+00003 0.1532335E+00000 0.7859 1. 1.53E-01 0.1% 0.1%  Aluminum 104.436 29
9 0.7343848E+00003 0.7342995E+00003 0.8533886E-00001 0.4377 0.  853E-02 0.0% 0.0% Tin 734.385 30
10 0.7424525E+00004 0.7424570E+00004 -.4510647E-00001 -0.2313 -0 -4.51E-02 0.0% 0.0%  Molybdenit 7424.53 39
11 0.2980018E+00004 0.2980025E+00004 -.6820319E-00002 -0.0350 -0  -6.82E-03  0.0% 0.0%  Nickel 2980.02 40
12 0.6190798E+00003 0.6190817E+00003 -.1854778E-00002 -0.0095 -0 -1.85E-03  0.0% 0.0%  Mischmetal 619.08 42
13 0.1329016E+00003 0.1330059E+00003 -.1043142E+00000 -0.5350 -C -1.04E-01 -0.1% 0.1%  Magnesium 132.902 43
14 0.1013786E+00003 0.1013490E+00003 0.2963721E-00001 0.1520 O 2.96E-02  0.0% 0.0%  Silicon carb 101.379 44

Mean= 0.0%

StdDev=  0.0%
Y =119.933 +0.997418*C + 0.2280506*E + 0.01569349*R*R + -0.01026542*E*E + 0.003467568*I*| + 0.0168828*A*D +-0.01300526*C*F + 0.09502298*C*) +
0.06335243*D*E +-0.3746707*E*G +-0.1384156*H*L

From Kriging
Absolute
. ) Data
Residual % error value of % Material Y R
DATA Y YHAT RESIDUAL StdR error point
1 0.1426823E+00003 0.1405466E+00003 -.2135731E+00001 -0.1872 -2.14E+00 -1.5% 1.5% AlMg3 142.682 1
2 0.9665366E+00004 0.1255297E+00005 0.2887604E+00004 3.3044 2.89E+03  29.9% 29.9% Antimony 9665.37 2
3 0.3766261E+00003 0.4220802E+00003 0.4545412E+00002 -0.1297 4.55E+01 12.1% 12.1% Cobalt 376.626 6
4 0.1021553E+00004 0.1018564E+00004 -.2988678E+00001 -0.1883 -2.99E+00 -0.3% 0.3%  Iron nickel- 1021.55 16
5 0.3149437E+00003 0.3087713E+00003 -.6172373E+00001 -0.1921 -6.17E+00  -2.0% 2.0% Lead 314.944 18
6 0.3809048E+00004 0.4009645E+00004 0.2005971E+00003 0.0577 2.01E+02  5.3% 5.3%  Uraniumna 3809.05 22
7 0.1720124E+00003 0.1800641E+00003 0.8051736E+00001 -0.1749 8.05E+00  4.7% 4.7%  300seriess 172.012 27
8 0.1044364E+00003 0.9666658E+00002 -.7769823E+00001 -0.1940 -7.77E+00 -7.4% 7.4%  Aluminum 104.436 29
9 0.7343848E+00003 0.5985796E+00003 -.1358052E+00003 -0.3487 -1.36E+02  -18.5% 18.5% Tin 734.385 30
10 0.7424525E+00004 0.6240122E+00004 -.1184403E+00004 -1.6158 -1.18E+03  -16.0% 16.0% Molybdenit 7424.53 39
11 0.2980018E+00004 0.3317994E+00004 0.3379765E+00003 0.2237 3.38E+02 11.3% 11.3%  Nickel 2980.02 40
12 0.6190798E+00003 0.6153330E+00003 -.3746827E+00001 -0.1892 -3.75E+00  -0.6% 0.6%  Mischmetal 619.08 42
13 0.1329016E+00003 0.1346099E+00003 0.1708327E+00001 -0.1826 1.71E+00 1.3% 1.3%  Magnesium 132.902 43
14 0.1013786E+00003 0.1024939E+00003 0.1115299E+00001 -0.1833 1.12E+00 1.1% 1.1%  Silicon carb 101.379 44
Mean= 8.0%

StdDev= 8.7%
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the model, the reliability of the model, and how robust the model is to use for its intended purpose

[89,120]. Model accuracy is measured by how close sample points that are included in the model

are to the model itself. Model reliability or predictability is measured by how close any points

that are not included in the model are to the model itself. The model robustness takes into account

the resolution between rank adjacent alternatives identified by the model and the effect of all

Table 20: Model accuracy after the Maximin Distance sequential infilling sampling

After Infilling with Maximin distance:

Residual % error
DATA Y YHAT RESIDUAL  StdR  StuR
2 0.9665366E+00004 0.9665366E+00004 0.4875838E-00003 0.0047 0.0280 4.88E-04 0.0%
39 0.7424525E+00004 0.7424526E+00004 -.1229936E-00002 -0.0118 -0.0701 -1.23E-03 0.0%
22 0.3809048E+00004 0.3809049E+00004 -.1098495E-00002 -0.0105 -0.0628 -1.10E-03 0.0%
31 0.1562633E+00004 0.1562632E+00004 0.1437907E-00002 0.0138 0.0697 1.44E-03 0.0%
18 0.3149437E+00003 0.3149433E+00003 0.4364565E-00003 0.0042 0.0082 4.36E-04 0.0%
44 0.1013786E+00003 0.1013788E+00003 -.1634298E-00003 -0.0016 -0.0094 -1.63E-04 0.0%
40 0.2980018E+00004 0.2980012E+00004 0.6493939E-00002 0.0621 0.3351 6.49E-03 0.0%
4 0.2641319E+00004 0.2641306E+00004 0.1277924E-00001 0.1222 0.2796  1.28E-02 0.0%
16 0.1021553E+00004 0.1021548E+00004 0.4958011E-00002 0.0474 0.1983 4.96E-03 0.0%
1 0.1426823E+00003 0.1426811E+00003 0.1235540E-00002 0.0118 0.0698 1.24E-03 0.0%
30 0.7343848E+00003 0.7343912E+00003 -.6440021E-00002 -0.0616 -0.3037 -6.44E-03 0.0%
42 0.6190798E+00003 0.6190742E+00003 0.5607343E-00002 0.0536 0.2695 5.61E-03 0.0%
33 0.2077479E+00004 0.2077501E+00004 -.2240740E-00001 -0.2143 -0.4374 -2.24E-02 0.0%
43 0.1329016E+00003 0.1329001E+00003 0.1537467E-00002 0.0147 0.0879 1.54E-03 0.0%
29 0.1044364E+00003 0.1044339E+00003 0.2496074E-00002 0.0239 0.1092 2.50E-03 0.0%
27 0.1720124E+00003 0.1720067E+00003 0.5741325E-00002  0.0549 0.1247 5.74E-03 0.0%
45 0.4809900E+00002 0.4809725E+00002 0.1752324E-00002 0.0168 0.0957 1.75E-03 0.0%
6 0.3766261E+00003 0.3766118E+00003 0.1431167E-00001 0.1369 0.4675 1.43E-02 0.0%
32 0.3862170E+00003 0.3861905E+00003 0.2654022E-00001 0.2538 0.7547 2.65E-02 0.0%
23 0.4418757E+00003 0.4419117E+00003 -.3599582E-00001 -0.3442 -0.7628 -3.60E-02 0.0%
28 0.8804123E+00002 0.8805512E+00002 -.1389175E-00001 -0.1329 -0.3083 -1.39E-02 0.0%
11 0.1410945E+00003 0.1411197E+00003 -.2516546E-00001 -0.2407 -0.4475 -2.52E-02 0.0%
46 0.9448632E+00001 0.9446555E+00001 0.2077061E-00002 0.0199 0.0279 2.08E-03 0.0%
9 0.2508595E+00002 0.2511637E+00002 -.3042402E-00001 -0.2910 -0.4015 -3.04E-02 -0.1%
3 0.2156056E+00001 0.2160119E+00001 -.4062730E-00002 -0.0389 -0.0405 -4.06E-03 -0.2%
19 0.2568233E+00001 0.2552282E+00001 0.1595070E-00001 0.1525 0.1836 1.60E-02 0.6%
17 0.1091261E+00001 0.1078484E+00001 0.1277671E-00001 0.1222 0.1313 1.28E-02 1.2%
37 0.2604455E+00001 0.2635406E+00001 -.3095083E-00001 -0.2960 -0.3549 -3.10E-02 -1.2%
68 0.2386153E+00001 0.2336531E+00001 0.4962249E-00001 0.4746  0.5535 4.96E-02 2.1%
67 0.1898363E+00001 0.1950679E+00001 -.5231564E-00001 -0.5003 -0.5225 -5.23E-02 -2.8%
62 0.4415654E+00001 0.4548318E+00001 -.1326643E+00000 -1.2687 -1.3469 -1.33E-01 -3.0%
38 0.1245942E+00001 0.1129600E+00001 0.1163424E+00000 1.1127 1.3871 1.16E-01 9.3%
71 0.2629080E+00000 0.2891486E+00000 -.2624060E-00001 -0.2510 -0.2738 -2.62E-02  -10.0%
70 0.2355338E+00001 0.2087884E+00001 0.2674543E+00000 2.5578 2.7732 2.67E-01 11.4%
72 0.7569090E+00000 0.8757189E+00000 -.1188099E+00000 -1.1362 -1.2283 -1.19E-01  -15.7%
7 0.5979600E-00001 0.1079745E+00000 -.4817851E-00001 -0.4608 -0.5010 -4.82E-02  -80.6%
Mean =
Std Dev =

0.05660541*R*L +0.002324183*B*C +-0.000155864*C*G +0.2967796*E*K +-0.4580382*E*L + 0.0291983*F*)

Absolute
value of %

error

0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.0%
0.1%
0.2%
0.6%
1.2%
1.2%
2.1%
2.8%
3.0%
9.3%
10.0%
11.4%
15.7%
80.6%
3.8%
13.7%

Material

Antimony
Molybdenite
Uranium natur
Copper

Lead

Silicon carbide
Nickel

Bronze

Iron nickel-chr
AlMg3

Tin
Mischmetal
Brass
Magnesium-all
Aluminum
300 series stail
Carbon

Cobalt

Zinc

Titanium zinc p
Castiron
Ferronickel
Charcoal
Epoxy resin
Brick
Limestone

Kiln dried lumb
HDPE granulat:
Clay

Concrete block
Polybutadiene
Green veneer [
Asbestos (with
Scrap iron
Cold rolled she
Corrugated bo:

9665.366
7424.525
3809.048
1562.633
314.9437
101.3786
2980.018
2641.319
1021.553
142.6823
734.3848
619.0798
2077.479
132.9016
104.4364
172.0124
48.099
376.6261
386.217
441.8757
88.04123
141.0945
9.448632
25.08595
2.156056
2.568233
1.091261
2.604455
2.386153
1.898363
4.415654
1.245942
0.262908
2.355338
0.756909
0.059796

Y =0.05860287 +1.237871*R + 1.056571*A + 1.008596*C + 0.7801412*D +1.089715*E + 0.9841712*F + 0.6166319*G +2.383661*H + 0.7763125*L + -
0.004913406*R*R +-8.989214E-07*C*C +-0.007313005*E*E + 0.02540538*G*G +0.01208991**| +0.1854093*L*L + 0.007325138*R*D +-0.02496565*R*H +-

Data
point

39
2
31
18
44
40

16

30
42
33
43
29
27
45

32
23
28
11
46

19
17
37
68
67
62
38
71
70
72
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Table 21: Model predictability and robustness test

Yhat PR .
Residual
model

21.0253 3.19216
1.64257 0.09908
6.36742 -0.2199
7.35121 0.25672
2.52608 -0.3204
6.80192 -0.3961
8.27397 -2.1456
128.101 0.95016
26.034 1.29545
10.3047 2.77498
34.181 -0.2557
80.3126 -2.3442
13.8747  -1.609
6.71235 0.11133
8.29699 -0.6061
60.5247 -0.331
38.6013 -1.9587
19.7913 5.24172
17.3331 -2.2138
48.324 -2.9906
13.7786 -0.91
13.6577 -0.8504

4.51 -0.2863
21.9634 0.37598
12.5796 -0.9494
6.56019  -0.089
6.52119 -0.5812

24.3 2.69254
36.6571 2.36725
24,7372 0.42559
3.99239 -0.0847
30.5089 4.90078
39.7899 0.56287
2.62116 0.39422
175393 0.16692
2.02638 -0.1937

% error

13.2%
5.7%
-3.6%
3.4%
-14.5%
-6.2%
-35.0%
0.7%
4.7%
21.2%
-0.8%
-3.0%
-13.1%
1.6%
-7.9%
-0.5%
-5.3%
20.9%
-14.6%
-6.6%
-7.1%
-6.6%
-6.8%
1.7%
-8.2%
-1.4%
-9.8%
10.0%
6.1%
1.7%
-2.2%
13.8%
1.4%
13.1%
8.7%
-10.6%
Mean =
Std Dev =

Absolute
value of %
error

13.2%
5.7%
3.6%
3.4%

14.5%
6.2%

35.0%
0.7%
4.7%

21.2%
0.8%
3.0%

13.1%
1.6%
7.9%
0.5%
5.3%

20.9%

14.6%
6.6%
7.1%
6.6%
6.8%
1.7%
8.2%
1.4%
9.8%
10.0%
6.1%
1.7%
2.2%
13.8%
1.4%
13.1%
8.7%
10.6%
8.1%
7.2%

Since one material to the next differs by
will be within

22

Material

Ceramics

Dry veneer plywood
EPS

Glass

Graphite

HDPE

HIPS

Magnesium

Zinc Oxide

Synthetic rubber
Silicone

Low alloy steel

Nylon 6

Oriented strand boar¢
PVC

Lithium

Polyester resin glass f
MG-silicone
Polycarbonate
Ferrochromium
Nylon 66

Nylon 6 glass filled
Polyurethane rigid foz
Glass fiber

Nylon 66 glass filled
Polypropylene

Low Density Polyethy
Ferrite
Ferromanganese
Magnetite
Polystyrene GPPS
Pigiron

Cadmium

Laminated veneer lurr
Plywood

Bauxite

Model Accuracy:

Model Reliability:

24.22
1.742
6.147
7.608
2.206
6.406
6.128
129.1
27.33
13.08
33.93
71.97
12.27
6.824
7.691
60.19
36.64
25.03
15.12
45.33
12.87
12.81
4.224
22.34
11.63
6.471

5.94
26.99
39.02
25.16
3.908
35.41
40.35
3.015
1.921
1.833

Mean =
Std Dev

Mean =
Std Dev

Data
point

10
12
13
14
15
20
21
24
25
26
34
35
36
41
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
63
64
65
66
69

3.8%

13.7%

8.1%
7.2%

Yhat Kriging

17.8533173
1140857152
9.730113232
7.895543052
7.136587987
35.96002349
21.20274975
138.6348067
39.81150675
10.81536559
19.36287919
7490995175
14.68323896
14.44927275
9.185320242
33.87467147
68.49923885
15.87687217
20.49418917
72.07067265
22.89303594
27.72709295
3.695899812
23.76224165
26.63915301
27.97504616
27.78263929
29.76028209
41.35665996
24.92253387
5.803894098
55.53288585
4532173314
5.243689312
1713999966
6.280770391

Residual
Kriging

6.364192698
0.600796848
-3.58262023
-0.28761605
-4.93089999
-29.5541875
-15.0743538
-9.58330674
-12.4820667
2.264294406
14.56235081
3.058478252
-2.41755896
-7.62559975
-1.49444424
26.31904853
-31.8566689
9.156187828
-5.37485917
-26.7373326
-10.0244359

-14.919813
0.527824188
-1.42287165

-15.008993
-21.5038942
-21.8426163
-2.76774209
-2.33233996
0.240206126

-1.8961841
-20.1232058
-4.96899314
-2.22830831
0.206851034
-4.44812939

97% confidence that 32.8% is the most that any value will deviate from the model.

14.9%

materials of the actual optimum.

% error
Kriging

26.3%
34.5%
-58.3%
-3.8%
-223.6%
-461.4%
-246.0%
-7.4%
-45.7%
17.3%
42.9%
3.9%
-19.7%
-111.8%
-19.4%
43.7%
-86.9%
36.6%
-35.5%
-59.0%
-77.9%
-116.5%
12.5%
-6.4%
-129.1%
-332.3%
-367.7%
-10.3%
-6.0%
1.0%
-48.5%
-56.8%
-12.3%
-73.9%
10.8%
-242.7%
Mean =
Std Dev =

on average, there is 97% confidence that a material selected from this model

Absolute
value of %
error
Kriging

26.3%
34.5%
58.3%
3.8%
223.6%
461.4%
246.0%
7.4%
45.7%
17.3%
42.9%
3.9%
19.7%
111.8%
19.4%
43.7%
86.9%
36.6%
35.5%
59.0%
77.9%
116.5%
12.5%
6.4%
129.1%
332.3%
367.7%
10.3%
6.0%
1.0%
48.5%
56.8%
12.3%
73.9%
10.8%
242.7%
85.8%
113.3%

variability due to the accuracy and reliability measures. The following subsections illustrate all

three evaluations by following the same example introduced in the prior two subsections. Testing
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this example could be advantageous, because if a model is valid for a diverse array of materials
based on total environmental impact per unit volume, such an approach could be promising for
design problems that compare sets of composites and components by transformation of the data

set using Equation (10).

7.4.3.1. Model accuracy

Table 19 shows the comparative results of modeling with both second order polynomial
regression and Kriging method from the original data set of fourteen points identified by the Latin
Hypercube method. The average absolute error measure here also shows that the second order
polynomial regression is more accurate in this case. Also, a polynomial function is identified by
the regression method to clearly define the surrogate model. Table 20 shows the resulting model
and accuracy measure for the complete set of thirty-six data points identified after the Maximin
Distance sequential infilling sampling process. Both the mean and standard deviations were
calculated for the absolute error measures. The average absolute error (AAE) and its sample

standard deviation (S) were computed by the following two formulas.

1L A
AAE:a§|yi—yi|:X )
Zm:(xi_y)2
S: i=1
m-1 (12)

7.4.3.2. Model reliability

Table 21 shows the actual and predicted values of the remaining thirty-six materials that
are not included in the constructed model. Predicted values, labeled as YHAT, are calculated by
substitution of all variable values at a data point into the polynomial function that defines the

model. Results are shown here for the polynomial regression model and not the Kriging model
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due to significant difference in model accuracy for this example. The statistical information about
the model accuracy and reliability along with the resolution in the design space are all useful to

evaluate the model robustness. The next subsection highlights an evaluation approach.

7.4.3.3. Model uncertainty and robustness

Approaches were used to measure model robustness in a prior study [122]. Some
variability inherently exists in an approximate model, as the previous subsections demonstrate. A
model is robust only if the variability does not prevent the selection of an acceptable design
alternative. Thus, a high fidelity model is not necessary if an approximate model constructed from
known data is robust enough to select an alternative that is close enough to the optimal solution
[82,83]. A designer would need to decide both on a tolerance for how close is acceptable and on
the associated probability necessary for achieving that tolerance.

The statistical information computed in the two previous subsections enables the
calculation of the robustness capability of a model. From a robustness perspective, one should
consider the worst accuracy and the worst reliability at a given confidence level. The probability
that both worst case limits could be reached at the same time would be the product of the
probabilities for each individual occurrence. In other words, if a designer chose to remain within
one standard deviation of both the mean accuracy and the mean reliability, there would be a
15.87% chance of either limit being reached or a 2.52% chance of both limits being reached at the
same time.

The derivation of the expressions used to determine model robustness is as follows.
Given that event A is unacceptable model accuracy and event B is unacceptable model reliability,
events A and B are then statistically independent because any data point is either in the sample set
to test model accuracy or not in the sample set to test model reliability. No point, X, which is
expressed as average absolute error, can test for both events A and B. Thus probabilistically,

P(X(A) and x(B)) = P (x(A)) P(x(B)) (13)
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Here it is assumed that for a large enough sample size, n,

X = (14)
S=o (15)
Where a normal distribution of the data is assumed Z is the critical value for the normal

distribution, where

o S (16)
If it is assumed that the acceptable limit for both model accuracy and reliability are both one

standard deviation above the mean, from any cumulative standardized normal distribution table:

P(x = xu(A)) = P(Z(A) = 1) = P(x = xy(B)) = P(Z(B) = 1) = 0.8413 (17)
1-P(Z=1)=0.1587 (18)
P(xu(A) and x,(B)) = 0.1587% = 0.0252 (19)
Where,
Xu(A)= Ma T O p (20)
P(x=xu(A)) =P(Z(A)=1) =P(Hp T O ) (21)
xu(B)= Mg +Op (22)
P(x=xu(B)) =P(Z(B) =1) =P(Hp T O%p) (23)

For x,i(A) and x,(B) to both occur simultaneously at both limits where by previous definition,
XA and B error — Ha t 04 + lip + 0p (24)
Equation (24) computes the actual total error value at this suggested limit and equation (19)
computes the probability of occurrence of this suggested limit. Equation (19) shows that the
probability is 2.52% that this will happen, or 97.48% that this will not happen.
Between alternatives in a data set,
Xmax~Xmin

Resulotiong,, = Dy (25)
- avg
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where n is the total sample size.
The expected average number of alternatives displaced from the best alternative by using this

model with 97.48% confidence on average is:

XA and B error (26)
Resulotiongyg

# of alternatives displacedy,; =
For the example shown in Tables 20 and 21, the sum of the means and standard

deviations of the accuracy and reliability error values is a total of 32.8% error. Therefore, there is
a 97.48% confidence level that the error will be less than 32.8% when this model is used based on
the data used in this test. Next, a designer would need to calculate the average resolution between
alternatives. Here, one could simply rank order the seventy-two different alternatives and
calculate the average difference in the values between each of the adjacent pairs of alternatives.
For the example shown in Tables 20 and 21, this average percentage difference is 14.9%.
Therefore, a designer could be 97.48% confident of selecting an alternative inferior to the best by
no more than 2.2 places on average. In other words, it is very likely that an alternative in the top
three of the seventy-two material alternatives would be selected by using this model. If that

expectation is acceptable to the designer, this surrogate model could be used. The following

section describes how these models might be used in a design process.

7.5. Selection of the Optimal Design Concept

A specific problem should first be formulated. Equation (10) provided a way to convert
standard data into problem specific data sets from any information provided by a designer about a
problem. Here, the generation of a data set for the environmental attribute is computed directly
from Equation (10). Masses of the components can be computed by simply multiplying the part
volumes and the material mass densities. The masses will also be variables that the life cycle cost
attribute depends upon. The remaining cost data and data sets for performance attributes are

problem specific, and should be determined by a designer for a specific case. It is recommended
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to construct models for each of these single attributes separately at first based on the utility values

of the attribute. This is explained in the following subsection.

7.5.1. Single attribute optimization

Each attribute is a function of variables upon which a different attribute could also
depend. Tradeoffs could exist where a change in that variable could cause one attribute’s utility to
increase while another decreases [107]. Thus, it is important to optimize each attribute’s utility
model individually to observe the effect of all known and potential dependent variables. A check
of the linear correlation coefficient between variables and attributes could reveal dependencies. It
is recommended to include any variables that an attribute may depend upon in the model to best
observe relationships in a design situation accurately [124]. A utility function can introduce some
additional nonlinear effects beyond any that exist in a function of the attribute values as examples
in a prior work indicated [107]. Model accuracy and reliability could be lessened some in extreme
locations of the design space that are far away from data locations used to construct and test the
model due to the lack of ordered and balanced data locations for material selection. All single
attribute models should be compared side by side at the same optimal data point locations to
construct or visualize the Pareto optimal frontier [107] for the next step covered in the following

subsection.

7.5.2. Optimization of multiple attributes

Section 7.2.3.1 briefly discussed preference modeling methods that can identify a specific
optimal point on a Pareto optimal curve. The multi-attribute utility (MAU) function is a
composite linear combination of the single attribute values and their preference weights [125].
Therefore, the optimal solution predicted by a surrogate model of the MAU function should be
close to the composite linear combination of the values predicted by the single attribute utility

surrogate models. This is an important check. The goal is to find the maximum MAU value in the
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feasible region. Prior approaches were able to improve optimization with surrogate models by
clustering to find more accurate points in the optimal regions of interest [123]. However, the
optimal solution may not be located at a data point where a known material exists. Thus, it is
recommended to check the Euclidean distance between the optimal point or points and the known
data points. This would reveal not only the closest known solution, but also, a change in certain
data values that could result in a better solution than was originally realized. That would require a
search for a similar material or materials with the better properties, but this process would alert

the designer to any better potential possibilities.

7.5.3. Feasible region to comply with regulations

Many traditional design optimization problem formulations include constraints that
define the feasible and infeasible regions of a design space. The environmental considerations of
design for sustainability can introduce additional constraints to a problem in the form of standards
or regulations that require compliance. Previous work demonstrates a way to reveal such
information transparently for integration at the early design stages [51]. A key issue concerns the
degree to which such information can be represented as constraints in a constrained optimization
mathematical formulation. That would depend upon the mathematical alignment of a given
standard with an LCA computational structure. Thus, it is recommended to include standards as
mathematical limits in a constrained optimization problem when it is possible and practical to do
so. Otherwise, the best approach may be to red flag any data points or design regions of concern.
The next section demonstrates the application of the entire methodology in a practical example

design problem.

7.6. Case Study: Automobile Disc Brake
The following four subsections highlight the use of the new MASSDOP method in an

example of a design solution that is more capable as a result of the MASSDOP method
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deployment. This case study problem is the same example as the one used in the previous chapter

to demonstrate an information modeling methodology [51].

7.6.1. Background of Problem

Common performance objectives for the design of a set of rotor and caliper pads include
minimization of the vehicle stopping distance, minimization of mass needed to allow for wear
and also ensure acceptable life of the components, and adequate dissipation of heat as the
components are near the end their life. For this example, it was assumed that the desired life is
five years and that the temperature in the rotor and pads should never exceed 77 degrees C.
Results for specific design alternatives were calculated by using the conventional engineering
formulations [71]. Some information was obtained to estimate the specific values of rotor
material property parameters [72]. For illustrative purposes, the best reasonable values were
estimated of material property values.

This example provides a useful illustration of a practical design situation that involves
consideration of a variety of pure and composite materials. The example does show simultaneous
consideration of performance, environmental, and economic objectives. However, this example is
not a multi-objective problem in that it lacks tradeoffs among the various objectives. Such a
situation can occur in actual design applications. In this case, objectives such as minimizing
vehicle stopping distance, maximizing heat dissipation, and minimizing wear mass all depend
predominantly upon different design variables. Due to the large number of design variables in this
problem, variables common to all objectives such as mass density or initial thickness do not have
a consistent linear correlation among design alternatives. Thus, a change in such a common
design variable value does not necessarily cause one objective to improve while another worsens
in this example. Nevertheless, the following subsections illustrate the efficient and effective use

of the new MASSDOP method to formulate the solution of this problem.
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7.6.2. Problem Formulation

To simplify the illustration, a single performance objective of minimizing vehicle
stopping distance was used. That objective depends only upon the coefficient of friction between
the rotor and pad materials based on assumptions of reasonable operating conditions. From there,
adequate heat dissipation could be considered an additional constraint. The initial minimum solid
volume of the rotor and pads can simply be computed for each material combination alternative at
the given constraint values. For this example, the solid volume of the pad is proportional to the
pads’ initial thickness due to constant area, and the rotor’s solid volume is a function of the initial
rotor thickness and the solid volume percentage. Rotors are usually casted to a hollowed shape to
add a convection cooling feature. Life cycle assessment and life cycle costing formulations
indicate that minimization of mass for a given material would directly help to optimize both of
those objectives.

Table 22 shows the main specific alternatives identified by prior work [72] along with
pad alternatives found from general searches as used in an example in prior work [51]. Six
different possible rotor materials are labeled “A” through “F”, and eleven different potential pad
materials are labeled “1” through “11”. Every possible material combination is labeled by the
letter of the rotor followed by the number of the pads’ material. Material combinations flagged by
ared, or lighter, font in Table 22 are a concern based on regulations of copper content in two
states [126,127].

Some of the combinations were found to be infeasible for the given temperature limit and
heat dissipation and life requirements. Thus, there are a total of forty-six alternatives of material
combinations in the original design set [51]. From the derived information, estimates were made
for the percentage volume composition of each composite material. This information allowed
generation of the entire data set for the single score environmental impact by applying Equation

(10). Volume data was converted to mass for each alternative to generate the data set for the life
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cycle cost attribute. Additional data of molded pads cost per unit mass and rotor material cost per

unit mass were also estimated for each alternative to complete the life cycle cost data set.

Table 22: Matrix of material combination alternatives [51]

Rotor Materials

' 7.5% thC'and 2'0% SiC 20% Sic .

GCI (Grey cast| Ti-alloy 7.5% wt TiC reinforced . Ceramic

i . . X reinforced Al-Cu X

iron) (Ti-6Al-4V) reinforced Al-composite alloy (AMC 2) composite
Ti-composite (TMC) (AMC1)

semi-metallic Al B1 C1 D1 E1 F1
ceramic compounds A2 B2 C2 D2 E2 F2
| mineral (synthetic silicate) fibers A3 B3 C3 D3 E3 F3
0 aramid Nomex fibers A4 B4 C4 D4 E4 F4
‘dj Kevlar fibers A5 B5 C5 D5 ES F5
© Twaron fibers A6 B6 C6 D6 E6 F6
2 PAN A7 B7 c7 D7 E7 F7
E chopped glass A8 B8 C8 D8 E8 F8
o steel A9 B9 &) D9 E9 F9
copper fibers A10 B10 C10 D10 E10 F10
other plastics All B11 C11 D11 E11 F11

Concern of greater than 0.5% Copper content

7.6.3. Surrogate Model Construction and Testing

If the goal of this design project were simply to select the best known design alternative,
then a surrogate model would not need to be constructed. The design alternative with the greatest
multi-attribute utility (MAU) value for a given stated preference among the attributes would be
the optimal design concept to proceed with for this given set of alternatives. However, if a
designer needs to view an entire design space to find whether or not any potentially more optimal
solutions exist, surrogate models of each individual attribute and the composite MAU response
can facilitate such an investigation. Traditionally, single attribute response variables are labeled
as “u” followed by an attribute subscript number and the MAU variable is labeled as “U”. For this
example, it was assumed that a designer’s preference is represented by the vector of preference
weights previously assumed [111] of {0.214,0.429,0.357} with a first attribute of performance,

second attribute of cost, and third of environmental impact.
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Table 23: Results from testing the constructed surrogate model for multiple attribute utility

(MAU) values
Polynomial Regression hadan  R-Sq(adj) = 100.00%
MAU = 2.531906 + -1.087753*Inverse of Coefficient of Friction + -0.006607899*B + -0.006222348*| + 0.1701313*Inverse of Coefficient of
Friction*Inverse of Coefficient of Friction + -0.0004935422*Rotor raw material cost only in USD/kg*Rotor raw material cost only in USD/kg + -
0.00187399*Disk mass in kg*J + -0.0003781217*Pads cost in USD/kg includes molding*F + 0.002449867*Rotor raw material cost only in USD/kg*H + -
0.003641434*Rotor raw material cost only in USD/kg*| + -8.202102E-06*C*D + -0.001039736*I*K
Absolute
. . Data
Residual %error value of Alternative # Y A
DATA % YHAT  RESIDUAL  StdR  StuR % error point
1 0.8970000E+00000 0.8971903E+00000 -.1903208E-00003 -0.2888 -0.3561 -1.90E-04  0.0% 0.0% Al 0.897 1
4 0.8220000E+00000 0.8234002E+00000 -.1400155E-00002 -2.1248 -2.2969 -1.40E-03 -0.2% 0.2% A4 0.822 4
5 0.8310000E+00000 0.8303853E+00000 0.6146645E-00003 0.9328 1.0828 6.15E-04 0.1% 0.1% A5 0.831 5
6 0.8240000E+00000 0.8241103E+00000 -.1102651E-00003 -0.1673 -0.1810 -1.10E-04  0.0% 0.0% A6 0.824 6
7 0.8250000E+00000 0.8241691E+00000 0.8309013E-00003 1.2609 1.3699 8.31E-04 0.1% 0.1% A7 0.825 7
8 0.8860000E+00000 0.8857044E+00000 0.2956058E-00003  0.4486 0.9158 2.96E-04 0.0% 0.0% A8 0.886 8
11 0.8210000E+00000 0.8210933E+00000 -.9332981E-00004 -0.1416 -0.1717 -9.33E-05 0.0% 0.0% All 0.821 11
15 0.3600000E+00000 0.3601409E+00000 -.1409355E-00003 -0.2139 -0.3538 -1.41E-04 0.0% 0.0% c5 0.360 15
16 0.3620000E+00000 0.3616421E+00000 0.3579375E-00003 0.5432 0.6654 3.58E-04 0.1% 0.1% c6 0.362 16
17 0.3630000E+00000 0.3632000E+00000 -.2000006E-00003 -0.3035 -0.4093 -2.00E-04 -0.1% 0.1% Cc7 0.363 17
22 0.5480000E+00000 0.5477250E+00000 0.2750279E-00003 0.4174 0.7689 2.75E-04 0.1% 0.1% D1 0.548 22
25 0.5950000E+00000 0.5957393E+00000 -.7392883E-00003 -1.1219 -1.3667 -7.39E-04 -0.1% 0.1% D4 0.595 25
26 0.6640000E+00000 0.6632244E+00000 0.7755660E-00003 1.1770  1.4048 7.76E-04  0.1% 0.1% D5 0.664 26
27 0.5970000E+00000 0.5969606E+00000 0.3935637E-00004 0.0597 0.0736 3.94E-05 0.0% 0.0% D6 0.597 27
29 0.6940000E+00000 0.6941293E+00000 -.1292781E-00003 -0.1962 -0.4052 -1.29E-04  0.0% 0.0% D8 0.694 29
30 0.6240000E+00000 0.6239909E+00000 0.9066528E-00005 0.0138 0.0451 9.07E-06  0.0% 0.0% D9 0.624 30
31 0.6490000E+00000 0.6491113E+00000 -.1113232E-00003 -0.1689 -0.4512 -1.11E-04  0.0% 0.0% D10 0.649 31
33 0.7380000E+00000 0.7381526E+00000 -.1525629E-00003 -0.2315 -0.4825 -1.53E-04 0.0% 0.0% E1 0.738 33
34 0.6370000E+00000 0.6370919E+00000 -.9186573E-00004 -0.1394 -0.1838 -9.19-05 0.0% 0.0% E2 0.637 34
35 0.7060000E+00000 0.7058911E+00000 0.1088663E-00003 0.1652 0.2535 1.09E-04 0.0% 0.0% E3 0.706 35
36 0.6100000E+00000 0.6097384E+00000 0.2616396E-00003 0.3971 0.5476 2.62E-04 0.0% 0.0% E4 0.610 36
38 0.6130000E+00000 0.6132208E+00000 -.2208171E-00003 -0.3351 -0.3882 -2.21E-04  0.0% 0.0% E6 0.613 38
42 0.5640000E+00000 0.5639885E+00000 0.1151016E-00004 0.0175 0.0354 1.15E-05 0.0% 0.0% E10 0.564 42
Mean= 0.0%
StdDev= 0.0%
For the data points not included in the PR model:
Absolute
. . Data
YHAT Residual % error value of Alternative # Y point
% error
0.927 -6.09E-03 -0.7% 0.7% A9 0.933 9
0.820 -1.41E-02 -1.7% 1.7% A3 0.834 3
0.860 3.35E-02 4.1% 4.1% F9 0.826 45
0.844 1.99E-02 2.4% 2.4% Al0 0.824 10
0.811 -7.37€-03 -0.9% 0.9% A2 0.818 2
0.781 2.12E-02 2.8% 2.8% F1 0.760 44
0.756 -2.51E-03 -0.3% 0.3% E8 0.759 40
0.776 2.01E-02 2.7% 2.7% F10 0.756 46
0.724 -5.56E-03 -0.8% 0.8% E1l 0.730 43
0.711 -1.25€-03 -0.2% 0.2% E5 0.712 37
0.699 -4.60E-03 -0.7% 0.7% D11 0.704 32
0.683 -1.15E-02 -1.7% 1.7% D3 0.694 24
0.668 4.62E-03 0.7% 0.7% D2 0.663 23
0.599 -2.03E-02 -3.3% 3.3% E9 0.619 41
0.615 8.63E-04 0.1% 0.1% E7 0.614 39
0.597 -6.68E-04 -0.1% 0.1% D7 0.598 28
0.233 4.56E-02 24.3% 24.3% co 0.187 19
0.217 3.45E-02 18.9% 18.9% Cc8 0.183 18
0.202 2.52E-02 14.3% 14.3% c4 0.177 14
0.213 4.06E-02 23.6% 23.6% C1 0.172 12
0.139 5.17E-03 3.9% 3.9% c3 0.134 13
0.181 5.43E-02 42.9% 42.9% c11 0.127 21
0.045 6.65E-03 17.3% 17.3% C10 0.038 20
Mean= 7.3%
StdDev= 11.1%
If low Y values are excluded Mean= 1.4%
StdDev= 1.2%
Resolution= 3.3%
Throughout this design set, if low Y values are excluded, there is a 97% confidence on average of being within
0.82 alternatives of the best value.
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Table 23 shows the surrogate model constructed for this specific design example by
applying the methods introduced in Section 5. Here, it is evident that the Latin Hypercube space
filling followed by the Maximin Distance sequential infilling resulted in a model accuracy
withnegligible error. The bottom portion of Table 23 illustrates the test for model predictability
by comparison of actual responses to those predicted by the model constructed by the sampling
stages. These results show a significant difference between the model reliability predicted by all
data points and that predicted when only those points in the neighborhood of optimal response
values (U > 0.5) are included in the absolute percent error computation. If a designer can assume
that data points with small MAU values can be ignored, the expected model robustness would
improve. The 97% confidence level would then improve on average from an alternative selected
in the top seven to the top two of the forty-six alternatives in this design set. The following
subsection illustrates a methodical approach to mitigate any risk involved in making such an

assumption.

7.6.4. Search for the Optimal Solution in an Entire Design Space

In the prior subsection, the expected differences between actual and predicted MAU
values in an alternative set were investigated. Figure 24 shows the actual utility values of each
single attribute and of the composite multi-attribute utility plotted by the bottom four curves in
the legend. Section 7.5 described a method that could be used to find the global optimal point(s)
in the design space by using an acceptable surrogate model. In this example, the lack of any
tradeoff among the attributes, evidenced by Figure 24, poses some challenges with finding a
single optimum point. In this case, the genetic algorithm was used to search globally for potential
optimal solutions. Several hundred of the final iterations identified predicted MAU values over
0.95.

As Section 7.5.2 points out, the optimal point(s) may not be located near were an actual

material exists. For a case such as this one, it is recommended to find optimal points with a
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Euclidean distance as close to a known alternative as possible. In Figure 24, the corresponding
alternatives are shown on the horizontal axis from left to right ordered by shortest Euclidean
distance to a predicted target optimal point. Section 7.5 warns of the potential accuracy issue with
predicted optimal points on the outskirts of a design space away from the limited design set of
discrete material-related data locations that were available to construct the surrogate model. Thus,

Figure 24 shows a significant difference between the actual and predicted MAU values of the

Optimization Results - Brake Disc
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Figure 24: Results from optimization of a brake disc design

target points. The mean difference is 27% with an 11.5% standard deviation, which is
significantly higher than that found in the prior subsection. However, Figure 24 shows that

alternative A9 has a MAU value that exceeds any of the actual target points.
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It is notable that this is the same concept that would have been selected without a
surrogate model. This suggests that surrogate modeling could be as effective in some cases as
full computations of the MAU values of each alternative without the efforts of the full
computations. Furthermore, it would be difficult to confirm the superiority to other potential
solutions without any surrogate model. If hypothetically the results showed that a different
potential better solution did exist, a designer could easily compare the values of all the design
variables between the target point and the closest alternative in the design set. This would show a
designer how a search for materials with slightly different specific properties could improve the
design. Furthermore, this problem was solved both before [51] and after this new MASSDOP
method was developed. In addition to a view of the entire design space not previously realized,
the design process with MASSDOP took only about 25% of the time to execute compared to a
prior less efficient method of modeling a complete Life Cycle Assessment for every design
alternative. The new MASSDOP method as deployed in this example could be extendable to

other practical engineering design problems.

7.7. MASSDOP Discussion

This work addressed several main objectives. First, the investigation concerned the
efficient and effective integration of credible Life Cycle Assessment (LCA) computations into the
early stages of a design process along with traditional design objectives to represent all significant
and pertinent life cycle stages. Second, the work addressed the challenge of the construction of
usable surrogate models to identify optimal solutions that consider multiple objectives that
include LCA across an entire design space beyond a mere set of known design alternatives. Third,
the construction of usable surrogate models for material selection involves the additional
challenge of using data points in the design space that are not in desirable locations for traditional
design space filling sampling techniques. Fourth, it was necessary to demonstrate the effective

and efficient deployment of the new MASSDOP method in a practical and realistic design
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example. This section discusses the results of this work in the context of these established
objectives.

Traditional use of LCA methods enables an accurate evaluation of the environmental
impacts of a specific product design. However, such accurate methods are difficult to use
efficiently to compare design concepts during early design stages. Approximate methods have
been prescribed for the purposes of efficient concept selection in traditional product design. This
work focused on significant factors to enable efficient identification of concepts. It is also
important to account for all objectives over an entire product life cycle. Since other works
introduced methods to account for the life cycle stage of product use [34,91,92], some design
situations may ideally involve the use of a combination of the other works with this one. Thus,
this work focused on the accounting of all other stages of significance with more accurate
computations of the impacts from LCA. That approach was described in Section 7.1.
Investigation indicated that material selection is the most significant factor beyond the basic form
and function associated with a product’s use. Since environmental impacts are output responses
and material selected is a single variable with a set of parameters associated with each alternative,
the challenge involved identification of a usable set of significant environmental parameters from
the high number of parameters associated with each environmental impact. Section 7.2 covered
the rationale for a foundation of the methodical approach described in Section 7.3 to address this
issue.

Section 7.3 also prescribed a technique to map input parameters to output responses that
is essential for surrogate model construction as described in Section 7.4. The use of approximate,
or surrogate, modeling can be ideal to efficiently streamline the complex computational structure
of both Life Cycle Assessment (LCA) and traditional physics-based formulations of predictive
product performance. Section 7.3 also identified two important topic areas in need of further
research. Both the impacts predicted by LCA and performance objectives can involve multiple

attributes that require some aggregation. A key further research topic involves various approaches
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to group the attributes and to model the preferences among the attributes in the groups. Here,
tradeoffs can exist both among performance or environmental objectives and also between the
overall objectives of minimizing cost and environmental impact and maximizing performance
objectives. Although the case study presented here does not happen to exhibit such tradeoffs, it
does provide a useful demonstration of how the new MASSDOP method can be deployed in a
practical engineering design problem. Other future examples could exhibit tradeoffs between
objectives such as environmental impact and the deflection or stability of a component. The
second important topic area that could benefit from further research concerns the representation
of parametric uncertainty. Although only mean values of all parameters were presented in this
work, prior work demonstrated that consideration of uncertainty can influence the selected design
concept [46].

One of the key contributions of this work was the development of a method to construct
surrogate models that can consider all objectives in the decision model efficiently and effectively
for concept selection. Section 7.4 described this new method in depth. This development included
the investigation of possible space filling sampling (SFS) and sequential infilling sampling (SIS)
two stage approaches to adapt and deploy in ways that address the unique challenges of material
selection. Useful examples were presented in both Section 7.4 and Section 7.6, where an actual
case study of a product design was demonstrated. Here, the issues of model accuracy, reliability,
and robustness were addressed given any limitations posed by the dimensionality and sample size
of a data set. Section 7.5 explained how usable models of an entire design space can identify
optimal solutions that consider all the objectives. With this approach, better solutions may
possibly be identified efficiently beyond simply selecting the best alternative from among a set of
the previously known alternatives as the case study demonstrated in Section 7.6. Furthermore, in
this example, the same results were obtained both with and without the surrogate model, which
suggests that this MASSDOP approach could significantly reduce computational efforts without

sacrifice in effective concept selection in some cases.
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CHAPTER 8
CONCLUSIONS

The overall goal of this dissertation was to address three main barriers to the design of
products for sustainability that the prior works had not been able to resolve. First, Life Cycle
Assessment (LCA) models in their current forms that conform to 1ISO 14040-14044 are not suited
to early design due to complexity, too many variables, and the lack of holistic consideration of
cost and other criteria over a product’s life cycle. This work addressed that challenge by the
unique contribution of a normative decision analysis-based formulation to accurately account for
all significant input flows. Salient features of this approach include a systematic representation to
propagate uncertainties, as well as a preference based multi-attribute modeling to simultaneously
account for a product’s performance along with environmental and cost impacts over the
product’s life cycle. Second, standards information related to compliance is not well aligned with
information about environmental impacts as predicted by LCA to facilitate decision making
during early design stages. That research challenge was addressed by the salient features of a
novel ontological framework that: represents both the objectives that pertain to sustainable
design and the applicable sustainability standards and regulations, and integrates different
domains of information by the semantic relationships between taxonomies to enable decision
making informed in real time. Third, material selection is both a significant factor in sustainable
design and also not conducive to more efficient and robust surrogate model construction due to
the inflexible discrete locations of material related data points and the dimensionality of the data.
This difficult research challenge was resolved by the combination of several new salient features.
Manageable dimensionality of LCA was achieved with a minimal loss of the important
information by the consolidation of significant factors into categorized groups. A streamlined
process that avoids the construction of full LCA facilitates enhanced efficiency. A unique
formulation was developed to combine efficiency of use with a mathematically rigorous

representation of any pertinent objectives across an entire design space. In order to resolve the
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important issue of robust surrogate model construction for material selection, an adapted two
stage sampling approach was introduced based on a feasible approximation of a Latin Hypercube
design at the first stage.

The development of these salient features revealed a number of important outcomes.
First, the NASDOP method for normative decision analysis, detailed in Chapter 5, provides the
foundation on which all methods were developed. The contributions of NASDOP include several
more specific salient features. The capabilities of LCA are concisely defined to accurately
represent the material and energy flows and their resulting set of environmental impacts or
attributes. Expressions were derived to formulate the associated cost flows for the same set of
processes over the complete life cycle of a product unit. Thus, the normative approach allowed
consistent modeling of environmental and economic attributes in an accurate mathematical
representation. Such an approach was previously shown to facilitate problem formulation at the
conceptual design stages for traditional engineering problems. Chapter 5 shows the potential for
similar applicability when all sustainability criteria are considered. All attributes in these
relationships depend upon parametric data of the associated material flows, substance emissions,
or cost flows. This data is available from published sources of information, but has significant
uncertainty. Thus, the method to account for all parametric data included a reasonable approach
to account for the uncertainty of all significant data sources. The normative formulation included
the deployment of hypothetical equivalents and inequivalents method (HEIM) to model the
preferences of a designer consistently in a multi-criteria decision making (MCDM) formulation.

This formulation enables the direct comparison of humerous strategic alternatives at the
early stages of conceptual design from the design for sustainability perspective. The limitations of
a method that only identifies a best potential strategic direction are addressed by the work in
Chapter 7. However, such an approach can be very useful for many practical examples such as a
redesign for the next generation of a mature and well defined product design. Here, an informed

strategic direction could be established at the early stages of redesign. More specific details can
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evolve as the design process progresses to inform subsequent design iterations. Since a design
process generates information, some information model is needed to represent the pertinent
knowledge in some organized fashion. This is especially important when the knowledge related
to decisions that must be made is complex. Thus, it is important to capture and communicate the
design knowledge on which these decisions about the design direction are based. The work in
Chapter 6 provides such an approach along with the needed ontological framework.

The work described in Chapter 6 addresses the need to model the design for sustainability
related information and rationale transparently for distributed design based on the context and
meaning of the design knowledge. Since information related to compliance with standards and
regulations is often decoupled from the information related to environmental objectives as
prescribed by LCA, an interoperable ontological framework for engineering design and decision-
based design was extended to include the domains of standards and LCA, as represented by
NASDOP. Here, these different domains of sustainable design knowledge are linked by the
relationships between objects in the different domains. Since the applicable standards and criteria
are populated within the same information model in real time, the standards may be adopted more
easily early on while the design may also be influenced more toward the triple bottom line
objectives of preserving the environment, economic gains, and the interests of affected
stakeholders in society. Due to the resulting parallel inspection capabilities to compare
information from LCA instances along with the standards as represented by constraints to that of
associated specific design alternatives, the resulting information model for the case studied
revealed some interesting correlations between standards related measures and the corresponding
measures related to environmental objectives in that example. The extent to which such
constraints can be included in a mathematical model is examined more closely in Chapter 7.
Those results show that such capability depends upon the degree of alignment between standards
and impacts as predicted by LCA. The example studied could only model constraints as red

flagged alternatives in the data set shown. If the standard applied to its actual intent of limiting
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copper emissions to water instead of to the percentage of copper content in the components, then
such a constraint might actually be modeled in constrained mathematical optimization
expressions. The approach shown in Chapters 6 and 7 illustrates how the information modeling
can at least reveal these constraints in real time despite any such disconnects between standards
and LCA.

In Chapter 7, the method was introduced to consider all design alternatives of
components throughout an entire design space to enable optimal concept selection beyond a
limited set of predefined alternatives. Here, the approach focused on material selection due to the
significance of that factor from both the sustainability and product performance perspectives. A
technique was developed to both streamline the Life Cycle Assessment (LCA) model
construction for viable material alternatives and simplify model dimensionality by the
consolidation of factors. This enabled the construction of robust surrogate models of the
environmental objectives in a rigorous representation with other traditional design objectives. The
novel feasible approximation sampling approach addressed the unique challenges posed by rigid
data locations of material parameters. Robust results were achieved by use of the adapted Latin
Hypercube approach at the first of two sampling stages. The case study example could be
designed for sustainability in about one quarter of the time compared to the prior approach of
setting up complete LCA models for each design alternative. Furthermore, the same design
alternative was selected with either approach, which suggests that the more efficient surrogate

modeling approach could be just as effective in similar instances.

8.1. Future Work

Future work could advance and build on this work in several important ways. Chapter 5
revealed the significance of parametric uncertainty in concept selection. More accurate and
efficient methods need to be developed to account for these uncertainties in the MASSDOP

formulations. Here, expected utility functions could replace mean values if the associated
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calculations can be done efficiently enough. Another area pertains to a more diverse selection of
case study examples to illustrate the application of MASSDOP. While the brake disc example
shows great promise for practical use of the method, that example does not have tradeoffs
between the different objectives to illustrate the application in a multi-criteria decision making
(MCDM) problem. More examples could better illustrate tradeoffs between environmental,
performance, and economic objectives and the importance of modeling the preferences among
these often conflicting objectives. The information related to such decisions in these future
examples could also be entered as new design instances in the ontological framework that was
presented in Chapter 6 to show how related information is captured and communicated early in a
distributed design situation. This may also reveal ways that the ontological framework could be
modified or extended to maximize the effectiveness in all scenarios. Capstone design projects at
universities provide such opportunities. The capabilities of semantic searching for information
and the use of reasoning and rules could be utilized to further support decision making in some
cases.

In support of examples that best illustrate multi-objective problems, methods are needed
for the efficient and effective aggregation of multiple attributes within each objective. Chapter 7
explained how this needs to be addressed in the situation of numerous environmental impacts to
consider. This could also be an important issue in some cases that may have multiple
performance or economic objectives. Finally, the accuracy, predictability, and robustness of
surrogate models depend upon statistics. Chapter 7 showed two example surrogate models with
favorable robustness that have a sufficiently large number of data points, or sample size. This is
an efficiency issue common to the selection of data sets. It is possible to have not enough data to
construct a robust surrogate model, but it is also possible to sacrifice efficiency sought by the use
of surrogate modeling if the sample size is too large. Dimensionality and the correlation of
variables to responses can affect the optimal sample size of a given problem. Further research in

this area should help MASSDOP to be used optimally. Overall, an ideal goal may be to achieve
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enough efficiency to mitigate the time invested in using these methods to justify the benefits of

more sustainable designs in as many cases as possible.
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APPENDIX

DATA TABLE FOR CHARCOAL GRILL CASE STUDY

Its from LCA and LCC

: Calculation resu

Table A.1

Photochemical

GHG Acidification | Eutrophication Ozone Coal Crude oil Iron Natural gas Cost
, , fl f2 f3 formation f5 f6 f1 f8 f9
Design Alternatives 3
kg CO2eq kgSO2eq kgNO2 eq kg C2H4 eq kgeq kgeq kgeq kgeq usD
Baseline mean values 958 | 1507|2382 3.45 | 4.61| 6.05|0.83 | 1.38| 2.14 [027| 1.17 |3.81] 2.0 | 39| 69 | 1.06|2.04|356|1.23|389| 7.6 | 54 | 103|180 70 | 246 | 743
X1- Weight reduction | 845 | 1403 |2065| 3.21 | 4.43|5.62|0.73| 1.28 | 1.89 | 0.26| 1.15 |3.76| 2.0 | 3.9 | 6.6 | 0.91|1.87|3.04{0.68|3.32| 58 | 41| 9.0 | 13.7| 69 | 240 | 724
X2 - Recycled material | 958 | 1500|2382 3.45| 459 | 6.05| 0.83 | 1.36| 2.14 | 0.27| 117 |3.81| 2.0 | 3.9 | 69 | 1.06 | 2.04|356|1.23|345| 7.6 | 54 | 10.3|18.0| 50 | 225 | 722
X3 - Reduced energy content | 910 | 1424|2245| 3.35 | 447|588 0.79| 132 | 2.05 [0.26| 1.16 |3.79] 2.0 | 3.9 | 6.8 | 1.00|1.92|3.35[0.99|3.43| 6.8 | 48 | 9.2 | 16.1| 65 | 232 | 702
X4 - Low toxicity 920 | 1458|2315|3.21 [ 4.29| 562|074 1.23 | 1.91 [0.26| 1.14 |3.76| 2.0 | 39| 6.9 | 1.06 | 2.04 | 3.56| 1.233.89| 7.6 | 54 | 10.3|18.0| 70 | 246 | 743
X5 - Renewable resources | 800 |1207|1861|3.43 | 459 | 6.04 | 0.81|1.37| 2.14 | 0.27| 1.17 |3.81| 1.0 | 2.0 | 3.4 {053|1.02| 178|033 |178| 3.7 | 27| 52| 90| 58 | 233 | 730
X6 - Efficient Use 845 | 1348|2141| 2.85|3.82 | 5.04| 0.74| 1.23 | 1.92 [0.22| 091 |2.93| 16 | 3.1 | 55|0.98|1.88|3.28|125(3.93| 7.7 | 55| 10.5| 184 | 57 | 207 | 632
X7 - Sustainable
) 957 | 1506|2380 3.44 | 4.60 | 6.04| 0.83 | 1.37 | 2.14 [0.27| 1.17 |381| 2.0 | 39| 6.9 | 1.06 | 2.04 | 3.56| 1.233.89| 7.6 | 54 | 10.3|18.0| 66 | 234 | 710
manufacturing
Expected range for 800 | 1419|2382| 2.85 | 4.43 | 6.05| 0.73 | 1.32 2.14 [0.22| 1.13 |3.81| 1.0 | 3.6 | 6.9 | 0.53 | 1.86|3.56| 033 |3.45| 7.7 | 2.7 | 9.4 | 184 | 50 | 233 | 743
alternatives given
uncertainty Low [Mean| High| Low |Mean| High | Low [Mean| High | Low | Mean | High| Low |Mean| High | Low |Mean| High | Low (Mean| High | Low |Mean| High | Low [Mean| High
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