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ABSTRACT 

SUSTAINABILITY-BASED PRODUCT DESIGN IN A DECISION SUPPORT SEMANTIC 
FRAMEWORK 

MAY 2014 
 

DOUGLAS C. EDDY, B.S.M.E., UNION COLLEGE 
 

M.S.M.E., WESTERN NEW ENGLAND UNIVERSITY 
 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 
 

Directed by: Professor Sundar Krishnamurty 
 

The design of products for sustainability involves holistic consideration of a complex 

diversity of objectives and requirements over a product’s life cycle related to the environment, 

economics, and the stakeholders in society.  These objectives may only be considered effectively 

when they are represented transparently to design participants early in a design process.  Life 

Cycle Assessment (LCA) provides a credible prescription to account for environmental impacts.  

However, LCA methods are time consuming to use and are intended to assess the impacts of a 

completely defined design.  Thus, more capable methods are needed to efficiently identify more 

sustainable design concepts.   

To this end, this work introduces a fundamental approach to formulate models for 

normative decision analysis to accurately account for these multiple objectives.  Salient features 

of this novel approach include the direct accounting of the LCA formulations via mathematical 

relationships and their integration with derived expressions for compatible life cycle cost models, 

as well as a methodical approach to account for significant sources of uncertainty.  Here, a 

semantic ontological framework integrates the information associated with decision criteria with 

that of the standards and regulations applicable to a design situation.   Since this framework 

shares the context and meaning of this information and design rationale across domains of 

knowledge transparently among design participants, this approach can influence a design toward 

sustainability considerations while the design complies with regulations and standards.  
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Hypothetical equivalents and inequivalents method is represented and deployed to consistently 

model a designer’s preferences among the criteria.   

Material selection is a very significant factor for the optimal concept selection of a 

product’s components.  A new method is detailed to estimate the impacts of material alternatives 

across an entire design space.  Here, a new surrogate model construction technique, which is 

much more efficient than the construction of complete LCA models, can prune the design space 

with adequate robustness for near optimal concept selection.  This new technique introduces a 

feasible approximation of a Latin Hypercube design at the first of two sampling stages to 

overcome the issues with sampling from discrete data sets of material property variables.   
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CHAPTER 1 

BACKGROUND AND MOTIVATION  

Product lifecycles account for a significant proportion of the total consumption of the 

planet’s constrained environmental, non-renewable, and economic resources.  While these 

product lifecycles are becoming shorter, the diversity of products is becoming larger.  Thus, 

significant improvements in the optimal design of products for sustainability will reduce the load 

on the environment, economy, and society.  The design of products for sustainability is a complex 

issue that involves several different topic areas. .  It has been shown that significant advances 

toward sustainable product design can be gained by appropriate improvements in lifecycle design 

processes [1].  Existing approaches to supporting sustainable product design tend to be focused 

on the later stages of product development, focusing on assessment of environmental impact costs 

after a design is selected, but not to include the early stages of design decision making.  Support 

for more sustainable decisions during the conceptual design stages can lead to numerous 

advantages for enterprises.  Prior research by Bras [2] finds that enterprises that focus on the 

triple bottom line objectives of the environment and society in addition to the economic 

dimensions realize additional value added returns.  By focusing on triple bottom line objectives 

during product design, the people, planet, and profits are likely to be preserved for a longer period 

of time and a new paradigm for the competitive design of products is likely to be established.   

A recent NIST (National Institute of Standards and Technology) workshop on sustainable 

manufacturing [3] addresses the industry needs and identifies the needs for better decision 

support tools, strong mathematical models to support the decision making systems, a method that 

will allow smaller companies to use LCA, and interoperable information models and standards to 

support a complete system. As detailed in the workshop, the critical challenges to developing and 

implementing a comprehensive methodology for sustainable product design include a structured 

design decision approach to simultaneously examine the economic, environmental, ethical and 

social issues associated with the lifecycle product design process, as well as a formal knowledge 
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representation framework to seamlessly capture and propagate information throughout the design 

process. Along these lines, NIST offers the most comprehensive approach by emphasizing the 

need for a Triple Bottom Line (TBL) assessment method of significant impacts [4].  This means 

that impacts on people, the planet, or profit should be considered.  In doing so, the environment, 

the economy, and social welfare considerations that effect the population can not only be 

preserved over a long period of time, but it will also lead to a new paradigm for competitive 

product design. From the industry side, there is also a growing recognition that the minimization 

of the environmental impacts typically involves Life Cycle Impact Assessment (LCIA) methods 

to determine the specific inputs and outputs of environmental impact components.  Ecoinvent, the 

world's leading supplier of consistent and transparent lifecycle inventory (LCI) data of known 

quality provides data implemented within sixteen different established methods [5].  Accordingly, 

software tools have been developed to automate the lifecycle assessment (LCA) process.  For 

example, the software provided by Gabi and SimaPro [6] determine the environmental impacts of 

a specific product design.  However, these software solutions lack consideration of the economic 

and society related objectives.  More importantly, no such software solutions exist to enable 

sustainable product design, which requires a methodical multicriteria decision making 

methodology and a framework for its implementation with systematic knowledge representation.  

It is then apparent that such a development will require fundamental research in two key 

areas: 1) A rational multicriteria decision making method for sustainable design to account for the 

different social, economic, and environmental considerations, and the developed method should 

be able to account for the uncertainties in the available data and the related assumptions.  2) The 

design information and knowledge necessary for design may come from across multiple 

organizations, companies, and countries. The study of engineering design as an iterative decision-

making procedure in recent years has led to utilization of the concepts from decision analysis to 

solve engineering design problems [7]. Normative decision analysis principles provide valuable 

insights in advancing the state of knowledge on rational design decisions and enable a better 
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understanding of their consequences from an overall design perspective. From a practical point of 

view, decision-based design offers a formal strategy to reduce the multiple attributes in an 

engineering design problem to a single overall utility function in a probabilistic sense, which 

reflects the designer’s intent and preferences under conditions of uncertainty [8]. Thurston and 

her associates had postulated a multi-attribute decision model for sustainable design and proposed 

a methodology for preference aggregation [9,10].  However, in spite of its proven track-record in 

other domains, the use of normative Multiple-Criteria Decision Making (MCDM) methods has 

been limited in sustainability studies. Specifically, there has been no detailed study on the 

development of decision-based design techniques to enable preference modeling and decision 

making under uncertainty.  Further, measuring and ensuring consistent preferences is a critical 

issue that has not received full theoretical treatment in the literature. If multiple decision makers 

are expressing their preferences, being able to aggregate these preferences using a sound and 

rational method is needed.  The efforts to develop such methods in the area of decision making in 

sustainable design have been compounded by a lack of standards for handling material and 

energy data at different phases of the designed product’s life cycle.  

A review by Ramani et al. [11] reinforces this assertion as it applies to facilitating the 

early stages of sustainable product design, including the representation of the LCA measures and 

their uncertainties. In a subsequent work, Ramani and associates propose the use of an 

information gap method for estimating the effects of the LCA uncertainties during product 

redesign [12]. How environmental knowledge modeling can further enhance the capabilities of 

sustainable product design and manufacturing has been detailed in a recent NIST study [13].  

Along these lines, Dr. Kim and his associates have articulated the need to develop a semantic 

information model for lifecycle product design [14].  These studies recognize that design 

information and knowledge necessary for decision-based design may come from across multiple 

organizations, companies, and countries. Integrating distributed engineering information that 

allows decision makers to easily access and understand it is essential for making well informed 
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decisions. Therefore, appropriate models and simulation tools are necessary to predict results and 

optimize decision making in sustainable product design.  Semantic information models that 

accurately represent all sustainability factors across all of the life cycle stages are crucial to 

enable decision making throughout the lifecycle design process. Such a model represents the 

integration of all relevant factors across the life cycle stages, as well as design solutions found 

from integrated optimization. The resulting knowledge management approach can enable 

documenting and seamlessly integrating distributed design knowledge during the evaluation of 

design alternatives. Such an approach should take advantage of emerging Semantic Web 

technologies to improve collaboration through increased understanding of content and 

representation of sustainability-related knowledge in a manner that is easily shareable and 

distributable.  
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CHAPTER 2 

SUSTAINABILITY-BASED PRODUCT DESIGN  

Addressing the above challenges, this research focuses on the identification and 

development of a decision support system for sustainable product design to reduce the 

multiple attributes to a single overall utility function in a probabilistic sense, which 

reflects the designer’s intent and preferences under conditions of uncertainty. To facilitate 

consistency of design information at all stages of the product’s life cycle analysis and to 

enable methodical comparison of the design alternatives, this work also develops a 

semantic web-based, collaborative approach for our decision-based design strategy. Here, 

this work extends the e-Design framework at UMass-Amherst [15-25] by integrating 

sustainable product design information within the semantic web to support knowledge 

management and information sharing throughout the entire design process.  Here, the 

mathematical representation of the product design for sustainability can be framed as a 

multi-attribute optimization problem using Hypothetical Equivalents and Inequivalents 

Method (HEIM), which is a normative decision-based design method. The following 

sections highlight the main components of sustainable product design, and detail the key 

elements of this research.  Most of the following six subsections appear in the published 

work1 by Eddy et al. [46].   

 

2.1. Life Cycle Assessment:  Accounting for Life Cycle Inventory (LCI) 

In a sustainable design process, the associated quantities of each environmental 

emission are obtained from established LCI data for each life cycle stage of each product 

component. The product lifecycle is normally comprised of five separate stages. All of 
                                                      

1 Reprinted by permission of the publisher (Taylor & Francis Ltd.)  
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the raw materials are first extracted and formed into the usable stock configuration.  Next, 

the parts are manufactured and assembled as specified.  Each of the parts and their 

materials emit their own set of environmental parameters, such as the grams of carbon 

dioxide, methane, or other substances emitted, during these first two stages.  The finished 

product is transported to its point of use destination.  The product is utilized in the 

intended fashion by the end user over the course of its lifetime.  When the product is no 

longer usable or needed by the customer, it is either disposed of or recycled for future 

use.  The end of life stage could lead to any of a number of scenarios depending upon 

what the product and its components are.  Some products are disposed of in a landfill.  

Some products are designed for reuse in the next product generation by disassembly or 

modification in a modular fashion.  In some cases, the parts of certain material types 

could be incinerated to form a recycled raw material for future manufacturing of other 

products.   

The knowledge base of LCI data for each life cycle stage has been expanding over 

the recent years for greater transparency and accuracy as more information about 

environmental emissions becomes available for various materials, manufacturing 

processes, etc. The data and the means of applying it to determine environmental impacts 

have evolved from that originally prescribed by Wenzel et al. [26] in their book, which 

formally introduced the EDIP (Environmental Design of Industrial Products) program. 

More recently, the U.S. EPA developed TRACI (The Tool for the Reduction and 

Assessment of Chemical and other environmental Impacts) to implement a framework for 

decision making by characterizing the impacts determined from LCI data [27].  Our 

method uses the available current guidelines derived from TRACI and EDIP to express 
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the environmental parameters of chemicals emitted or resources depleted by a process in 

terms of the resulting specific environmental impacts.   

 

2.2. Life Cycle Assessment (LCA) Strategies 

The LCA process converts the environmental emissions determined from LCI data 

at all the lifecycle stages into environmental impacts over the complete product lifecycle. 

Environmental impact categories usually include: global warming, acidification, 

eutrophication, photochemical smog, ozone depletion, toxicity, and resource depletion. 

ISO 14040 calls for the LCIA (Life Cycle Impact Assessment) step to follow the 

inventory analysis step in an LCA process [28]. LCIA methods determine the specific 

inputs and outputs of environmental impact components.  

 After identifying the impact categories, ISO 14042 mandates that an LCIA 

process involves classification followed by characterization [29].  Classification 

establishes which emission quantities from LCI contribute to each impact category. Each 

emission parameter can contribute to more than one impact and each impact is often 

comprised of more than one parameter. Thus, characterization determines the relative 

impact of each parameter within each impact category. The inventory data is multiplied 

by the characterization factor to find each impact indicator.  Each specific impact is the 

sum of all the indicators in that impact category. Tools with access to the ecoinvent 

database usually have both LCI data and the resulting characterization factors for 

application of the LCIA methods [5].  Tools such as the SimaPro software access the 

ecoinvent database [30].   

Uncertainty in the LCI data warrants consideration. The ecoinvent database 

introduction document [31] provides simplified estimates of the geometric standard 
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deviation of the various environmental parameters. The uncertainty combined with the 

number of impact categories to compare pose significant challenges to finding the 

optimal alternative. A procedure was developed to simplify the comparison of the various 

environmental impacts [26,29]. This procedure employs the steps of normalizing, 

grouping, and weighting the impacts. All impacts are normalized to have the same units. 

Next, impacts are grouped into categories which allow direct comparisons of the 

contained impacts to each other. Finally, weights are applied to each impact based on the 

level of importance relative to each other. This helps to simplify the MCDM process. It 

should be noted that the data for our NASDOP methodology can thus directly be 

estimated from established databases.  

 

2.3. Inclusion of the Cost Attribute 

 The triple bottom line objective mentioned earlier requires us to include more 

than just the environmental impacts in our MCDM optimization method. EIO – LCA 

(Economic Input-Output Life Cycle Assessment), developed at Carnegie Mellon, uses 

economic data on the aggregate level of the different sectors to estimate the dominant 

LCA impacts [32]. Here, correlations between economic and environmental data can 

overcome LCI data acquisition difficulties when a less accurate result may still be useful. 

Upon examination of the inclusion of LCC (Life Cycle Costing) with an LCA analysis, 

Schmidt [33] warns that uncertainties are higher in LCC than in LCA due to the effect of 

future costs and discounting rates over a product lifecycle, especially for end of life 

considerations. SimaPro documentation [30] identifies several challenges that have 

prevented the inclusion of cost information with LCA evaluations done by software. Such 

challenges include: the accuracy of discount rate determination, the accuracy of including 
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allocated overhead costs, and the accuracy requirements are more critical to an enterprise 

for cost, revenue, and profit. Alternatively, the software estimates liability costs due to 

noncompliance or a resulting loss of goodwill. The method presented in Chapter 5 

addresses these challenges while including LCC and LCA attributes together in the same 

MCDM model to optimize toward the triple bottom line objective for sustainability.  

 

2.4. Conceptual Design Strategies 

The process to formulate the appropriate MCDM model for optimization during 

the conceptual design stage involves another key challenge. Formulation of this model 

needs to facilitate the identification of representative potential design alternatives. One 

approach to provide such guidance during conceptual design is the function impact 

matrix method, proposed by Devanathan et al. [34].  This method examines each category 

of a new product design to relate the functions to corresponding environmental impacts. 

Zhao et al. [35] address the marketing aspects of sustainable product design in terms of 

the need to align functionality with the voice of the customer as an important part of 

conceptual design beyond simply informing the design decision methodology. An 

extension of the traditional design process for DfE (Design for Environment) was 

proposed by Nielson and Wenzel [36].  Here, the LCA process is applied to a baseline 

design to find the most significant environmental impacts. Potential alternatives to the 

baseline design are identified and compared. The optimal among the design alternatives 

is selected to which the design details are developed. Since the alternatives are conceived 

of during conceptual design, the need to perform subsequent iterations of the design 

process may be revealed as the design details are developed. The review by Ramani et al. 

[11] asserted that few quantitative tools exist to use for DfE during conceptual design. 
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The main problems were identified as the cost of LCA and the lack of LCI data for new 

designs. The early design stages offer the greatest flexibility to make design 

improvements. Reap et al. [37,38] further expand upon a number of issues that can limit 

the practical use of both LCI data and LCA methods.  Such issues include the accurate 

representation of uncertainty, the inclusion of LCC and social impacts for sustainable 

decision making, and the allocation of environmental flows to the appropriate process. 

The goal of this work is to address many of these challenging areas comprehensively 

through the development of needed methodologies.  To this end, several pertinent 

research questions are formulated from the current challenges.  First, how can 

sustainability objectives be considered efficiently at the conceptual early design stages 

without significant loss of either credible modeling of the physical reality or 

consideration of an entire design space?  Furthermore, what method based on reasonable 

assumptions can be derived to simplify the high fidelity modeling of LCA for early 

design efficiency?  Next, when and how can standards, or regulations, be modeled as 

constraints in a constrained optimization model without sacrificing the mathematical 

rigor of the normative construction of a multi-criteria decision making problem?  Finally, 

when can modeling of an entire design space reveal more optimal solutions that do not 

currently exist, such as the requirements for a new material that does not exist yet?  

To address these important research questions, the relevant work is presented in 

Chapters 5 through 7.  The following two chapters identify the bases on which these 

works were developed.   
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CHAPTER 3 

NORMATIVE DECISION ANALYSIS 

3.1.  Problem Formulation 

Our method is based on the fundamentals of normative decision analysis [7]. Dr. Howard’s 

work [39-41] formed the fundamental basis of its use for systems engineering. These normative 

techniques use expected utility theory, which consists of the three main components of options, 

expectations and value. Here, the decision rule requires the preferred option be that with the 

expectation of the highest value, or utility. The premise is that real-valued functions can represent 

the preference structure, which can determine the maximum, or most desirable, utility value of a 

design by using a normative analytical method [42].  The technique has the five major steps [42] 

of: (1) identification of the significant design attributes and generation of the design alternatives 

(2) verification of relevant attribute independence conditions (3) evaluation of the single-attribute 

utility (SAU) functions and the preferences of each relative to each other (4) aggregation of the 

SAU function into a single multi-attribute utility (MAU) function, which represents the complete 

system (5) selection of the alternative with the highest MAU value by rank ordering the 

alternatives.   

In other words, each attribute or objective has a normalized utility value ranging from 0 to 1 

corresponding to the worst possible attribute value and the best possible value, respectively.  The 

preference structure of each monotonic SAU function can be established by articulation of the 

certainty equivalent, at which value a decision maker is indifferent to a lottery between the best 

and worst possible values [7].  The MAU function for each alternative consists of a linear 

function with a computed value equal to the sum of the products of every attribute’s utility value 

and the attribute’s preference weight value. The sum of all attribute weight values is equal to 1. 

The method by which each attribute’s weight is determined to accurately model the preference of 

a decision maker is summarized in the following section.  
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3.2. HEIM - Hypothetical Equivalents and Inequivalents Method: 

Execution of this solution is best accomplished by an accurate and computationally efficient 

decision model. HEIM (Hypothetical Equivalents and Inequivalents Method) was developed for 

such cases that involve selection from among multiple attributes having various advantages and 

disadvantages. The advantages of HEIM were demonstrated in the selection of the optimal 

aircraft for an entire airline fleet given the tradeoffs of the maximum speed, the maximum 

nonstop cruise range, and the number of passengers that may be seated [43,44].  This method has 

the capability of consistently modeling the preferences expressed to detect any rank reversal 

issues. Here, hypothetical alternatives are assigned standardized and normalized utility values for 

each attribute. This way, the complete design space is represented by an experimental design to 

minimize computation.  

A prior study [45] deployed a three level L9 orthogonal array to solve a design problem with 

three attributes. The standard utility values in each cell correspond to the normalized most 

desirable, least desirable, and mid-level of desirability for each single attribute. Thus, the attribute 

values at each standard level correspond to single attribute utility values of 1 (most desirable 

outcome), 0 (least desirable outcome), and 0.5. The 0.5 utility values correspond to the risk 

preferences expressed by the decision maker for each individual attribute. In this case, ranking of 

the nine hypothetical alternatives by a decision maker could establish the decision maker’s 

preferences for the formulation of the MAU function. Table 1 shows the construction of the three 

level L9 orthogonal array that is used to solve for the three weights of a three attribute design 

selection problem. The three level L9 orthogonal array, with nine hypothetical alternatives, was 

selected for a three-attribute problem to completely define the attribute space with order and 

balance [45] while also minimizing the number of hypothetical alternatives needed. Here, we see 

that each hypothetical alternative has a MAU value that is a function of the three weights. When a 

decision maker ranks these nine hypothetical alternatives, inequality constraint equations are 

established for each comparison. For example, if hypothetical alternative C were preferred to 
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hypothetical alternative B, then it must also be true that w1 + w2 + 0.5w3 > 0.5w1 + 0.5w2 + w3. 

Since the sum of the weights must equal 1, HEIM determines the weights by solving the 

optimization problem of: 

 

                                               Minimize    
2

1
( ) 1

n

i
i

f x w
=

 = − 
 

∑                                            (1)                   

 
     Subject to the 

                                                 constraints of:        ( ) 0g x ≤ ,                                                (2) 
 

 

where x is the vector of attribute weights, n is the number of attributes, and wi is the weight of 

attribute i [45]. It should be noted that HEIM procedure also enables a consistency check of the 

designer’s stated preferences for the avoidance of rank reversal issues. The effectiveness of 

HEIM to optimize traditional engineering design solutions was demonstrated in prior research 

[45].  Thus, our new method needs to effectively simplify a sustainable design formulation into a 

form to which HEIM or other normative methods may be applied effectively and efficiently.  

 

Table 1: Hypothetical alternatives using an L9 orthogonal array [45] 

Hypothetical 
alternative Attribute 1 Attribute 2 Attribute 3 

Value of 
alternative 

A 0 0 0 0 

B 0.5 0.5 1 0.5w1+0.5w2+w3 

C 1 1 0.5 w1+w2+0.5w3 

D 0 0.5 0.5 0.5w2+0.5w3 

E 0.5 1 0 0.5w1+w2 

F 1 0 1 w1+w3 

G 0 1 1 w2+w3 

H 0.5 0 0.5 0.5w1+0.5w3 

I 1 0.5 0 w1+0.5w2 
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CHAPTER 4 

A SEMANTIC FRAMEWORK FOR SUSTAINABLE PRODUCT DESIGN 

Representation of such a method is best accomplished with a collaborative Web-based 

environment for improving communication by 

formally defining a platform for documentation 

and sharing of engineering design knowledge 

throughout the entire design process [15-25]. The 

research group at UMass –Amherst’s Center for e-

Design established an e-Design framework 

through an ontological structure to concisely 

define a set of individual engineering concepts. A 

library of modular ontologies for engineering 

design has been developed and a customized 

ontological knowledge-base has been established 

to enable linking of the modular ontologies 

together in a semantic web environment. The set 

of modular ontologies linked together create a 

flexible, yet consistent, product development 

knowledge-base.  

The resulting e-Design infrastructure 

uniquely enables the information stored within the 

knowledge-base to be readily inspectable and 

computable, thus allowing for design tools that 

reason on the information to assist designers and 

automate design processes. This ontological 
Figure 1:  Decision Support Class 
Hierarchy 
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knowledge-base can be used to prompt engineers to document important product development 

information, increase understanding of the design process, provide a means to intuitively retrieve 

information, and seamlessly access distributed information. The ontologies were developed in 

OWL format and created with appropriate class structures with relevant properties to build upon 

for a range of concepts in sustainable product design. Key concepts in the decision support 

system for the sustainable product design ontology include semantic information from design 

alternatives to decisions to methods used to LCA features etc. For example, Figure 1 shows the 

resulting class hierarchy in the ontological decision support system and Table 2 shows the generic 

information that can be captured for the decision class. 

 

Table 2:  Semantic information for the decision class 

 

Property Type Description 

has evaluation method Object Specifies the decision method used to make the decision 

for issue Object Specifies the issue being addressed 
has evaluation Object Specifies the evaluation information used in this decision 

selected alternative Object Specifies the alternative chosen to resolve the issue 

decision summary Data Text that provides a brief summary of the decision made 

tradeoff considered Object 
Specifies a tradeoff that was involved in this decision. The tradeoff 
must occur between objective parameters identified in the 
preference model 

has evaluation method Object Specifies the specific evaluation method used 

decision outcome Data 
Qualitative evaluation of how well the selected alternative 
addressed the issue 

comment Data 
States any additional thoughts that the decision maker considers 
relevant and important 
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CHAPTER 5 

NASDOP: NORMATIVE DECISION ANALYSIS METHOD FOR THE 
SUSTAINABILITY-BASED DESIGN OF PRODUCTS 

 
This chapter presents the published work2 by Eddy et al. [46].  The work introduces a novel 

fundamental methodology to consider quantified utility maximization of environmental and 

economic attributes based on the stated preferences of a designer over a complete product life 

cycle.  In this approach, actual measurable flows of the environmental and economic factors are 

determined, along with their uncertainties.  The architecture of this NASDOP method is 

constructed within a normative decision-based framework to enable consistent modeling of the 

mean expected and worst case resulting attribute values and their corresponding single-attribute 

utility (SAU) functions and composite multi-attribute utility (MAU) functions of discrete 

alternative design instances.  The following sections describe the components of this architecture, 

which is illustrated in the final sections of this chapter by the results of an actual case study.   

 

5.1. NASDOP Architecture 

Figure 2 below outlines the NASDOP (Normative decision Analysis method for the 

Sustainability-based Design of Products) design process including life cycle assessment and the 

associated costs. First, we illustrate the use of NASDOP during the early stages of conceptual 

design. Here, various potential design goals and alternatives are established for comparison. For 

each design alternative, including a baseline design, LCA and LCC are used to account for all 

environmental and cost flows to determine the resulting environmental and cost attributes. Since 

the uncertainty in environmental and cost data is significant, it is important to also account for the 

uncertainties and represent the variability in the analysis. Then, HEIM is executed to find the 

weights of the attributes based on the stated preferences of the decision maker. Next, the MAU 

values are computed for each design alternative and the alternative with the greatest MAU value 
                                                      
2 Reprinted by permission of the publisher (Taylor & Francis Ltd.) 
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is chosen. The following sections detail the various steps and highlight the unique aspects of 

NASDOP. 

 

5.1.1. Identify Design Alternatives and State Assumptions  

The alternatives, at the initial three stages shown in Figure 2, would be based on 

assumptions regarding the results. Here, for illustrative purposes, design alternatives are 

identified for comparison to each other to show how the methodology evaluates different designs 

quantitatively. This method is further developed as described in Chapter 7 to determine optimal 

solutions using surrogate modeling that can search the entire design space for a global optimal 

point in the feasible region given the weights determined by HEIM to find that single optimal 

point on the Pareto optimal solution set.  

 
 
 
 
Figure 2:  Design process for sustainability using NASDOP    

 

Feasibility constraints may depend upon other design goals. For example, a design would 

need to satisfy certain functional and reliability requirements in addition to the optimization of the 

sustainability objectives. The best of these alternatives in this illustration is selected during the 

MCDM analysis. As the design process progresses, the selected alternative is developed by more 

detailed engineering analysis. The increased knowledge about the solution may validate all of the 

original assumptions made during the conceptual design, but it could also reveal that one or more 

of the original requirements cannot be met. If an assumption is not met, the design process 

requires an additional iteration. Table 3 illustrates an example of assumptions that may be made 

about alternatives to compare during conceptual design for the sustainable design of some 
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product. Of course, the assumptions and goals or any feasibility constraints will vary depending 

upon what product is being designed. This method could be equally applicable to a different set 

of constraints for different products and different specifications.  

 
 
Table 3:  Possible assumptions for alternatives   

 

Alternative 
# Description of Strategy Specific Design Goal 

X1 Weight reduction  
[47,48] 15 % reduction of all component weights 

X2 Use recycled material  
[47,48] 100 % recycling at the fifth lifecycle stage 

X3 Reduce the energy content 
[47,48] 18 % reduction in manufacturing impacts and 

12 % reduction in raw materials' impact 
X4 Low toxicity 35 % reduction of all impacts except for 

resources depletion and cost 

X5 Less nonrenewable resources 
50 % more recycling at the fifth stage; natural 
gas effects on the greenhouse gas impact and 
all of the impacts due to resources consumed 

are both cut in half 

X6 
Modify for more energy efficient 

use 
[47,48] 

1/3 less energy during the product use stage 
but adds 2 % to all material and 

manufacturing impacts due to additional 
components 

X7 Manufacturing impact reduction 25 % reduction in manufacturing stage 
impacts 

  
Representation of the goals in the third column of Table 3 requires modification to the 

baseline calculations for each alternative of the various objective attributes. One such attribute is 

the cost. The NASDOP enables systematic accounting for the economic impacts as well as the 

environmental impacts of any product design.  

 

5.1.2. Account for Flows 

Flows to be considered for environmental considerations consist of material emissions as 

well as energy and resource consumption.  The flows for economic considerations pertain to 
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monetary costs throughout the lifecycle of the product. Although the data source and type is very 

different for LCI and LCC, we can show that the formulations used to compute the LCC impact at 

each stage are very similar to that used during the LCA process to find the environmental 

impacts. Furthermore, the LCC function conveniently depends upon the same independent 

variables as do the LCA impact functions, aside from the different data source. LCC is actually 

simpler and requires less computation than LCA in that it depends upon only a single monetary 

parameter instead of nearly a dozen (or more for some products) LCI parameters that describe 

multiple sources of emissions. Thus, classification, grouping, and characterization are not 

necessary to compute LCC impacts whereas LCA impact computations require all of these 

additional steps. Furthermore, the derived expressions to calculate the lifecycle cost are directly 

compatible with the formulas previously deduced to calculate the LCA impacts [48].  The 

expressions that we derived to calculate the lifecycle costs at each of the five product lifecycle 

stages are shown in the following equations. The proposed method would be equally applicable if 

additional factors were included such as different percentages for end of life dispositions or 

greater detail from the sources of cost allocations.   

Equation (3) formulates the life cycle costs for the first stage of raw material extraction.  

The cost per unit is given by                                  

     
( )1

1
1

n parts
i i

i

−

=

α Λ
ϕ =

γ∑                       (3) 

  
where 𝛼𝑖1 is material cost per gram of part i, 𝛬𝑖 is weight in grams of part i, and 𝛾 is the mass 

inclusion factor of parts considered.  This is the weight percentage of the total weight represented 

by those parts included in the computations.  Equation (4) formulates the life cycle costs for the 

second stage of manufacturing.  The cost per unit for that stage is given by  
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( )2 2
2

1

n parts
i i

i i Assemblyparts
kW kW

−

=

α Ω  α Ω ϕ = +   γ   
∑                         (4) 

 
where 𝛼𝑖2 is the cost per hour to manufacture part i, 𝛼2 is the cost per hour to assemble all 

manufactured parts together, 𝛺𝑖 is the kilowatt-hours consumed to manufacture part i, 𝛾 is the 

mass inclusion factor of the parts considered, and kWi is the kilowatt demand of the 

manufacturing process.  Equation (5) formulates the costs for the third stage of distribution.  The 

cost per unit due to distribution is given by 

                                                               3 3φ = α  Δ  θ                                                                (5) 

where 𝛼3 is the cost per ton of product weight per km traveled, 𝛥 is the km travelled, and 𝜃 is the 

product weight in tons.  Equation (6) formulates the costs for the fourth stage of product use for a 

case where energy consumption is the main cost incurred.  The costs per unit during such a 

product use scenario is given by 

                                                     ( )4 4 4φ α  Φ  β     N  = +                                                    (6) 

where 𝛼4 is the cost per kilowatt-hour, 𝛷 is the kilowatt-hour per use, N is the number of uses per 

product lifetime, and 𝛽4 is any additional cost per use, which is product dependent.  Equation (7) 

formulates the costs for the final life cycle stage of end of life disposition.  The costs per unit due 

to end of life processes is given by 
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where 𝛼𝑖𝑘5 is the net cost of disposal or reuse per kg of weight of part i with kth end of life option, 

which can be negative for a net positive reuse cost avoidance, 𝛬𝑖 is the weight of part i in kilograms, 

𝛱𝑖𝑘 is the per cent rate of ith part with kth end of life option.  For the landfill part end of life 

scenario, k is equal to one.  For incineration part end of life scenario, k is equal to two.  For 
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recycling part end of life scenario, k is equal to three.  Here, the following scenarios are assumed:  

Metals are 60% recycled and 40% incinerated.  Cardboard packaging is 50% recycled and 50% 

landfill.  Plastic is 70% landfill and 30% incinerated [48].  Equation (8) shows the Life Cycle 

Cost (LCC) objective function to minimize and is given by 

                                                                       

5

cost
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= ϕ∑                                                               (8) 

 
5.1.3. Account for Uncertainties 

Having computed the mean values of the environmental and cost impacts, it is equally 

important to account for any significant variability in the values. As mentioned previously, levels 

of uncertainty are significant in both environmental and economic lifecycle computations. In 

order to accurately compare the various design alternatives, we ought to account for any 

significant sources of uncertainty. The existence of uncertainty means that actual values range 

probabilistically between minimum and maximum values. The data input to calculations is a 

significant source of uncertainty for both environmental impacts [31] and also for economic 

impact due to price volatility [49].  Some additional uncertainty may also result from the accuracy 

of characterization, normalization, and weighting factors under various situations. A prior study 

shows that LCI data is the most significant source of the uncertainty and newer LCIA methods of 

applying the weighting factors, such as Eco-indicator 99, have less uncertainty than does the 

earlier adopted EDIP method [50].  Additional sources of uncertainty could also affect the 

lifecycle cost as described previously. Here, we assume that the data sources account for the most 

significant amount of uncertainty. The ecoinvent database introduction document [31] provides a 

simplified source of information to account for the most significant source of uncertainty. Here, 

other data quality issues such as reliability, completeness, and temporal and geographic 

variability are accounted for by a discrete range of additional uncertainty factors, which may also 

contribute to account for any of the other uncertainty sources. This way, a composite geometric 
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standard deviation is determined to account for the multiple uncertainty sources. This also has 

relevance to cost uncertainty. However, note that the data quality uncertainty of cost is more 

dependent upon the maturity of the cost information within an enterprise, whereas data quality 

uncertainty of environmental parameters depends more so upon the development of the applicable 

LCI data and LCA factors according to the ISO 14042 guidelines, which is often provided by a  

 

Table 4:  Geometric standard deviations of data uncertainty 

Environmental 
Parameter (or cost) 

Basic Uncertainty 
Factor   

[31] 

GSD (Geometric 
Standard Deviation) (d)   

[31] 
CO2 1.05 1.13 (b) 
NO x 1.5 1.26 (b) 

Methane 1.5 1.26 (b) 
CO 5.0 2.26 (b) 
SO2 1.05 1.13 (b) 
VOC 1.5 1.26 (b) 

Resource depletion 1.75 est. 1.35 est.  (b) 
Monetary Cost 1.15 (a) 1.68 (c) 

 
a – This is calculated from the example of the price uncertainty of an annual fuel price standard deviation 
of +/-7.75% and assuming a 4 year average product lifetime and normally distributed geometric Brownian 
Motion [49].  This number changes from 1.15 to 1.30 if the product lifespan is 15 years.  
b – This assumes middle data quality level for LCA. 
c - This assumes below mid-level data quality for cost until a verified data source is found or established 
over time.   
 
d – The formula for Geometric Standard Deviation (GSD) is given by               

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 22 2 2
1 2 3 4 5 6ln ln ln ln ln ln lnexp bU U U U U U UGSD + + + + + +=                     (9) 

where U1 is the uncertainty factor of reliability, U2 is the uncertainty factor of completeness, U3 is the 
uncertainty factor of temporal correlation, U4 is the uncertainty factor of geographic correlation, U5 is the 
uncertainty factor of other technological correlation, U6 is the uncertainty factor of sample size, and Ub is 
the basic uncertainty factor.  [31] 
 
 
third party source. Environmental data has been found to be log-normally distributed [31]. Table 

4 shows a summary of the resulting quantitative measures that allow us to represent all relevant 

uncertainties as given by log-normally distributed data [31].  Here, we assume that data has an 

average or middle level of environmental data quality. Each mean expected value given by LCI 
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data combined with the calculated geometric standard deviation given in Table 4 provides enough 

information to calculate the standard deviation and the resulting 95% confidence interval upper 

and lower limits of each environmental parameter. Thus, the upper and lower limits of the 95% 

confidence interval can be calculated for each environmental impact as well as for the lifecycle 

cost. This information is needed to determine the highest and lowest possible outcomes for each 

attribute value in the MCDM model. Now that each attribute value for each alternative is 

calculated, both in terms of its expected values and probabilistic distributions, this information 

can be deployed within a decision model to identify the best of the alternatives. 

 

5.1.4. Execute HEIM and Select the Best Alternative 

Table 5 shows the sustainable product design optimization problem expressed in a structure 

consistent with the principles of normative decision analysis. Here, multiple attributes are listed 

that include the main environmental impacts and lifecycle cost. This allows comparison of a 

number of possible design alternatives to find the best of the identified alternative choices with 

the maximum MAU value. Thus, the solution of the multi-attribute problem involves the 

optimization of the composite function of all attributes subject to the compliance constraints.  

Each attribute value for each design alternative, Xj, depends upon the data values associated with 

the set of independent design variables, xi, that comprise a given alternative. The objective 

functions f1(x) to f6(x) are equivalent to the environmental impacts, which are solved by applying 

the LCA process over all of the five life cycle stages. Each environmental impact is the linear 

sum of the products of each for related emission load and its characterization factor for that 

impact. Emission loads are calculated from LCI data corresponding to the design variables using 

the pertinent formula at each life cycle stage.  

Having calculated all of the high, low, and mean values of the 95% confidence interval for 

each objective function, the formulation may be simplified by the way of minimizing the number 

of objective functions that need to be included in our MCDM model.  To this end, we use the 
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LCA steps of normalizing, grouping, and weighting described previously [26,29] to directly 

compare the attributes of environmental impacts to each other. Initially, each impact is expressed 

in units of a kilogram equivalent quantity of a certain chemical compound. Since each impact is 

measured by a different chemical equivalent, normalization converts all impacts into the same 

units. The normalized unit of milli-person-equivalent (mPE) is obtained for each impact by 

multiplying the kilogram equivalent value by the appropriate scaling constant used in prior case 

study examples [26].  Both environmental impacts and kilogram equivalent values of 

nonrenewable resources consumed may be expressed in mPE units. However, environmental 

impacts and resources depleted cannot be compared directly at the weighting step of LCA and 

must be grouped separately. Once they are grouped separately, the groups themselves can then be 

subsequently studied and evaluated as a MCDM process using HEIM. As mentioned previously, 

each impact must be weighted based on its relative importance to allow direct comparison to the 

other impacts. The scaling constants to convert to weighted units of milli-people equivalents 

targeted (mPET) for environmental impacts and milli-person-reserves (mPR) for resource 

consumption are taken from those used in prior case study examples [26].  From the sustainability 

perspective, an attribute with a significantly higher mPET or mPR value for any other attribute 

under consideration in the group will present the greatest priority for minimization among all 

attributes in its group. From the discussion, it can be concluded that a typical design for 

sustainability problem will have three major attributes, namely, the cost, environmental impact, 

and nonrenewable resource consumption. However, there can be several sub-attributes within the 

environmental impact and resource consumption attribute groups as well. The preference among 

the three major attributes is modeled using HEIM as shown in Section 3.2.  The development of 

the decision model and the considerations for inclusion of attributes are illustrated with the aid of 

an actual case study to which the NASDOP is applied. 
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Table 5.  Mathematical model for sustainable product design   

Maximize: 
  𝜴 =  {(𝒇𝟏(𝒙), … ,𝒇𝒑(𝒙))}, where 𝒙 = (𝒙𝟏, … ,𝒙𝒏) 
 
Representative independent design variables: 
  𝒙𝟏 … = Material types;   𝒙𝟐 … = Manufacturing processes employed 
  𝒙𝟑 = Mode of Distribution employed;   𝒙𝟒 = Functional Priority 
  𝒙𝟓 = End of Life (EOL) Disposition;   𝒙𝟔 … = Part Volume (due to the geometry of the part) 
 
  Subject to: 
  𝒈𝒌(𝒙) ≤ 𝟎       ∀𝐤      Compliance constraints 
 
  Select outcome from alternative set: 
 𝑿 = {𝑿𝟏,𝑿𝟐,𝑿𝟑, … ,𝑿𝒎} 
 
  Representative attributes to minimize: 
  𝒇𝟏(𝒙�) = Global Warming Potential (GWP) = kg 𝑪𝑶𝟐 eq 
  𝒇𝟐(𝒙�) = Acidification = kg 𝑺𝑶𝟐 eq 
 𝒇𝟑(𝒙�) = Eutrophication = kg 𝑵𝑶𝟐 eq 
  𝒇𝟒(𝒙�) = Photochemical Smog (ozone formation) = kg 𝑪𝟐𝑯𝟒 eq 
  𝒇𝟓(𝒙�) = Stratispheric Ozone Depletion = kg 𝑪𝑭𝑪 − 𝟏𝟏 eq 
  𝒇𝟔(𝒙�) = Terrestrial Toxicity = LC50 eq    [29] 
  𝒇𝟕(𝒙�) = Aquatic Toxicity = LC50 eq    [29] 
  𝒇𝟖(𝒙�) = Human Health = LC50 eq    [29] 
  𝒇𝟗(𝒙�) … = Resource Depletion = kg natural resources consumed eq 
  𝒇𝟏𝟎(𝒙�) = Cost = USD   
 

5.2. Case Study: Charcoal Grill 

For illustrative purposes, the NASDOP approach is applied to the charcoal grill study used 

by Choi et al. [47,48].  Since Choi et al. [47,48] employed a descriptive method using AHP (the 

analytic hierarchy process), it provides a baseline case study to test our methodology. For this 

problem, the mean values are generated using the LCA methods described previously. Here, 

environmental loads for each of the six most significant parts in the charcoal grill are determined 

during the raw material extraction, manufacturing, and end of life stages of the product lifecycle. 

In addition, environmental loads are determined for the assembly of the complete product, for its 

distribution assumed average distance to a point of use, and for all uses of burning the charcoal 

briquettes over the course of the product’s lifetime. Each environmental load is composed of all 

significant environmental emissions or non-renewable resources depleted during the operation. 
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Each environmental emissions load is calculated from the LCI data provided in the original study 

[47,48] with a mass inclusion factor to estimate the effect of all of the parts. The environmental 

impacts are next calculated as the linear sum of the products of each related emissions load and 

its characterization factor for that impact. The resulting mean values obtained for the eight 

significant environmental impacts agree closely with those published by Choi et al. [47,48]. From 

here, the NASDOP design approach is introduced to develop the decision model based on HEIM. 

The following sections detail the systematic development of rigorous mathematical models, as 

well as the methodical comparison of design alternatives to optimize for sustainability, while 

considering uncertainty in the economic and environmental data.    

 

5.2.1. Potential Design Alternatives and Estimation of Flows and Uncertainties  

Beyond the calculation of the baseline mean values, the NASDOP proceeds with the 

potential design alternatives and the calculation of flows and uncertainties for each design 

alternative goal. As stated in section 5.1.1, such alternatives can be identified according to the 

strategic goals specified back in Table 3. In this case, a decision matrix can be constructed with 

rows consisting of the complete alternative set and nine columns corresponding to the attributes 

under consideration. These nine attributes include one column for the cost, four sub-columns for 

the four different environmental impacts, and four sub-columns for the four different 

nonrenewable resources being consumed. Each of these columns has three sub-columns to also 

include the low and high values of each range covering the 95% confidence interval based on 

uncertainty. All resulting rows and columns with their calculated values in each cell are shown in 

Table A.1 of the Appendix.  Once the calculations are completed to map design alternatives and 

design attributes,   the attributes are normalized to have the same units with the exception of the 

cost attribute.  
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Figure 3:  High and low values of environmental impacts weighted for direct comparisons 

 

5.2.2. HEIM Results 

The grouping and weighting procedures of LCA allow direct comparison of the four 

environmental impact sub-attributes to each other and a similar comparison of the four sub-

attributes within the resource consumption grouping. Figure 3 shows the high and low weighted 

values of the four different environmental impacts. This illustration shows that some of these sub-

attributes are more significant than others. The attributes have now been weighted using the LCA 

process based on their importance or severity relative to each other. These weights were 

determined by LCA development experts [26] based on the relative severity of each impact to the 

planet’s sustainability.  Recall that impacts are compared directly to each other based on the 

Eutrophication Min     f3
Eutrophication Max     f3

Acidification Min      f2
Acidification Max     f2

Photochemical ozone Min…
Photochemical Ozone Max…

GHG Min    f1
GHG Max    f1

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0
Ba

se
lin

e 
m

ea
n…

X1
 - 

W
ei

gh
t…

X2
 - 

Re
cy

cl
ed

…

X3
 - 

Re
du

ce
d…

X4
 - 

Lo
w

 to
xi

ci
ty

X5
 - 

Re
ne

w
ab

le
…

X6
 - 

Ef
fic

ie
nt

 U
se

X7
 - 

Su
st

ai
na

bl
e…

mPE
T 

Attributes 

Alternative Set 



 

28 

measure of milli-people equivalents targeted (mPET). By the definition of sustainability, we will 

be most interested in reducing the impact that always has a higher value to a level that is closer to 

the value of the next most significant attribute. Figure 4 shows a similar weighted grouping for 

the depletion of nonrenewable resources.   

 
   

 
 
Figure 4:  Nonrenewable resource consumption weighted for direct comparisons  
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The deployment of the weighting and grouping procedures from the LCA process generates 

the three-attribute model to execute within HEIM as described in Section 3.2. This construction is 

shown by the L9 orthogonal array in Table 6. Here, we focus only on comparing the preferences 

among the three main groups by ranking the nine different hypothetical alternatives based on a 

decision maker’s preference. A solution for such a three-attribute problem using HEIM was 

demonstrated in prior work [45].  The values shown in Table 6 correspond to the best (at u=1), 

worst (at u=0), and the certainty equivalent (at u=0.5) values. Here, the best and worst values 

represent the limits of the 95% confidence interval for the most critical attribute in the attribute 

group. Table 6 reveals that our first attempt to rank these hypothetical alternatives resulted in  

 

Table 6: Hypothetical alternatives set up for the three-attribute case 

Hypothetical 
Alternative 

Critical 
Environmental 

Impact              
[mPET]                                   

f1       

Critical Non-
renewable 
Resource 
Depletion  

[mPR]                                           
f2            

Monetary 
Life Cycle 

Cost          
[USD]                                      

f3              

Possible 
Alternative 
Rank First 
Attempt 

Corrected 
Alternative 

Rank 

A 33.7 18.4 743 9 9 
B 24.9 13.8 50 2 3 
C 11.3 2.71 383 1 1 
D 33.7 13.8 383 8 8 
E 24.9 2.71 743 6 6 

F 11.3 18.4 50 3 2 

G 33.7 2.71 50 7 7 
H  24.9 18.4 383 4 5 
I 11.3 13.8 743 5 4 

 
 

infeasible ranks of alternatives B and H. These rankings were not feasible, because the constraints 

imposed by such a ranking priority allow for no possible solution for the weights to use in a MAU 

function that will satisfy such a ranking of B and H. This was corrected by a ranking adjustment 

of these hypothetical alternatives as shown in the final column. The solution for the attributes’ 
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weights given the preference defined by this ranking is {0.571, 0.143, 0.286}. Different decision 

makers may state different preferences during this process. This solution for the weights will be 

used to solve for the MAU values for each design alternative as described in the remainder of this 

section. 

Since sub-attributes within the groups have already been weighted based on severity relative 

to each other, to optimize for sustainability, we may prioritize the reduction of the most 

significant impact value in each group. However, the uncertainty poses a challenging question to 

determine which impact has the highest value and whether we should compare the impacts based 

on their expected values or the values on the upper limit of their 95% confidence intervals. One 

approach could be to find the optimal alternative for both scenarios and see if the selected 

alternative is the same in both cases.  

Tables 7 and 8 show the results of both approaches for this case. To obtain the utility values 

for each attribute in each alternative, we first had to establish the designer’s preference for each 

attribute independently based on the risk preference for that single attribute. In this case, we 

assumed slightly risk prone decision making for monetary cost and risk aversion tendencies for 

decisions involving all of the environmental attributes. This can be seen in Table 6. The certainty 

equivalent (at u=0.5) values in all three attribute columns are not the average of the two extreme 

values. Each SAU function defined by the best, worst, and certainty equivalent values is used to 

find the utility value for each attribute value as shown in Tables 7 and 8. Note that the design 

process is equally valid and applicable for any and all preference sets as indicated by the 

designer. It is interesting that the two different approaches presented in Tables 7 and 8 resulted in 

the selection of two different design alternative goals. The approach shown in Table 7 does not 

consider the potential variations due to uncertainty and merely considers the expected values. 

When this approach of disregarding the uncertainty is used the design goal of choice with these 

stated preferences becomes the design of a product that consumes less energy during use. 

However, Table 8 shows that the design alternative of choice changes to the goal of designing a  
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Table 7:  Design alternative selection based on the mean expected values 
 

 
 
Table 8:  Design alternative selection based on the high limits of the confidence interval 
 

 
 
 

Value
Critical 
attribute Value

Critical 
attribute

21.3 GHG 10.35 Natural gas 246 0.661 0.735 0.701 0.683

19.9 GHG 9.01 Natural gas 240 0.717 0.801 0.710 0.727

21.2 GHG 10.28 Natural gas 225 0.665 0.738 0.732 0.695

20.1 GHG 9.25 Natural gas 232 0.709 0.790 0.722 0.724

20.6 GHG 10.35 Natural gas 246 0.689 0.735 0.701 0.699

17.1 GHG 5.17 Natural gas 233 0.689 0.940 0.720 0.734

19.1 GHG 10.54 Natural gas 207 0.748 0.724 0.759 0.748

21.3 GHG 10.35 Natural gas 234 0.661 0.735 0.719 0.688

Max U = 0.748

Total utility 
value, UDesign alternatives

Environmental 
impacts                                  
[mPET]                                               

f1      

Non-renewable 
resource depletion                                                                                                                

[mPR]                                                                    
f2           

Expected mean values Expected mean utility values, u

Environmental 
impacts                          

f1      

Non-
renewable 
resource 
depletion                          

f2           

Monetary 
cost                      
f3             

Monetary 
cost                                                                

[USD]                        
f3             

Baseline mean values
X1 - Weight 

reduction
X2 - Recycled 

material
X3 - Reduced energy 

content
X4 - Low toxicity

X5 - Renewable 
resources

X6 - Efficient use
X7 - Sustainable 
manufacturing

Value
Critical 
attribute Value

Critical 
attribute

33.7 GHG 18.03 Natural gas 743 0.000 0.049 0.000 0.007

29.2 GHG 13.68 Natural gas 724 0.279 0.514 0.025 0.240

33.7 GHG 18.03 Natural gas 722 0.000 0.049 0.023 0.014

31.8 GHG 16.12 Natural gas 702 0.124 0.284 0.055 0.127

32.7 GHG 18.03 Natural gas 743 0.066 0.049 0.000 0.045

26.7 Photochemical 
ozone

9.01 Natural gas 730 0.414 0.801 0.017 0.356

30.3 GHG 18.38 Natural gas 632 0.215 0.000 0.150 0.166

33.7 GHG 18.03 Natural gas 710 0.000 0.049 0.044 0.020

Max U = 0.356

Total utility 
value, U

Non-
renewable 
resource 
depletion                          

f2           

Monetary 
cost                      
f3             

Baseline mean values

Design alternatives

High limit values of 95% CI High limit utiltiy values, u, of 95% CI

X2 - Recycled 
material

X3 - Reduced energy 
content

Monetary 
cost                                

[USD]                        
f3             

Environmental 
impacts                          

f1      

Environmental impacts                                         
[mPET]                                               

f1      

Non-renewable 
resource depletion                                                                                                                

[mPR]                                                                    
f2           

X4 - Low toxicity

X5 - Renewable 
resources

X6 - Efficient use
X7 - Sustainable 
manufacturing

X1 - Weight 
reduction
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product that uses less non-renewable resources during its life cycle when the focus of concern 

shifts to mitigation of the worst case scenario possibility. Thus, the effects of uncertainty can 

directly influence the selected design alternative as can changes in the preferences stated by the 

decision maker. 

 

5.3. NASDOP Discussion 

The results show that NASDOP offers an effective and comprehensive methodology to 

design for sustainability in a manner consistent with the principles of the triple bottom line. To 

further examine its effectiveness, we considered quantifiable triple bottom line objectives and a 

mathematical model suitable for a normative solution. As detailed below, we were able to directly 

integrate the information from LCA as required by ISO 14042, account for all significant 

uncertainty, develop a mathematical preference-consistent decision support model from the entire 

design process perspective, including conceptual design.  

The triple bottom line objectives include any and all impacts on the environment, economy, 

and society. Our method accounts for such effects on the environment and the economy. Future 

work can also examine societal considerations, which are not quantified as seamlessly. Chapter 7 

provides an approach to express such metrics as they relate to performance objectives of 

importance to stakeholders and customers.  The development of usable metrics to represent the 

most important societal considerations remains a topic of research. One such metric, which was 

represented quantitatively in the case studies by Wenzel et al. [26], accounts for the impacts of 

the probability of work place injuries during the processes involved in a product lifecycle. Ideally, 

the objectives should both accurately account for the metric and depend functionally upon the 

same independent variables as much as possible. The formulas that we deduced to compute the 

LCC impacts, which are presented in section 5.1.2 of this chapter, meet both of these goals. This 

way, the cost and environmental impact criteria fit efficiently and effectively within the same 

MCDM mathematical model. Cost from the perspective of a customer is traced throughout the 
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product lifecycle by our model in a manner similar to that of the LCA treatment of the 

environmental impacts from the perspective of a stakeholder. The significance of data uncertainty 

is another commonality between the costs and environmental impacts. While the nature and level 

of these uncertainties may differ, each may be estimated by some probability function. Future 

work can focus upon finding the most accurate ways to represent the uncertainties. The work 

presented here considered the three-attribute model, focusing on the main impacts from 

nonrenewable resource consumption, environmental impacts, and cost over a product lifecycle. 

As such, the sub-attributes within nonrenewable resource consumption and environmental impact 

categories were grouped together. Future work can closely examine the comparison between the 

LCA grouping approach used here to simplify a design problem to a three-attribute HEIM model 

and the alternative of comparing all of the attributes within a larger HEIM model instead to 

consider the relative preferences among all attributes based on the type of product being 

designed. Such future work can also examine the effectiveness of the process to check for 

preference consistency within HEIM for each of these possible approaches.  

In recent years, normative methods have proven successful for MCDM within the design 

process. Thus, the challenge to introduce MCDM at the conceptual design stages may be met by 

following a prescribed blueprint [7,8,,10,42,45].  Therein lies a solution to the identified 

challenge of implementing product design for sustainability at the conceptual design stages. This 

work shows that the normative method is equally applicable at the conceptual design stage when 

a baseline design is available for comparison. The work described in Chapter 7 builds on this 

work to identify the means to solve for the feasible preferred target point on the optimal design 

solution space. Moreover, our current study shows that as more specific design concepts are 

developed in greater detail, the application of engineering analysis or LCA could generate more 

accurate computations of each objective function in the design decision model. Thus, greater 

transparency of the environmental and economic impacts at each product lifecycle stage could 

improve understanding of the details of the effects by design engineers. Furthermore, adoption of 
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this method may coincide with the trend toward the further development over time of the LCI 

database and LCA methods toward increasingly greater comprehensiveness and accuracy.  This 

chapter described the foundation methodology of NASDOP that was built upon by the work 

described in Chapter 7 to address many of these issues.  NASDOP is a decision methodology for 

the sustainability-based design of products.  The execution of such a decision generates 

information about its rationale and justification.  Thus, an information model is needed to capture 

and communicate such information to all design participants.  This topic is covered in the 

following chapter.   
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CHAPTER 6 

IASDOP:  AN INTEGRATED APPROACH TO INFORMATION MODELING FOR THE 
SUSTAINABLE DESIGN OF PRODUCTS 

 
This chapter presents the published work3 by Eddy et al. [51].  Here, Design 

considerations are most effective when brought into a design process as early as possible, when 

design flexibility is normally greater in that the impact of any design change is mitigated. In their 

review, Ramani et al. [11] assert that early design considerations are even more important with 

the emergence of sustainable design. Sustainable product design can significantly affect the 

environment, economy, and societal well-being in a number of positive ways. In spite of the need, 

integration of sustainability considerations has progressed slowly. An ASME survey [552] 

supports the notion that design engineers are motivated to comply with current sustainability 

standards. The survey finds strongest sustainability interest among engineers to reduce energy 

and emissions. The survey also shows that organizations are most interested in compliance with 

regulatory requirements, and are most likely to only consider green methods that are cost 

competitive.  

To support these current thrusts, this chapter proposes that sustainable design can be 

facilitated by introducing the guidelines provided by sustainability standards into early decision 

making criteria. The review by Ramani et al. [11] also identifies some challenges with the early 

design stage adoption of the needed sustainability considerations. Included among these 

considerations are support for decision making over an entire product lifecycle and modeling the 

information in an interoperable manner. To this end, this work explores the integration of 

guidelines for standards with the authors’ earlier work in decision making for sustainability.  

The prior chapter [46] introduced a normative decision analysis method for the 

sustainability-based design of products (NASDOP). NASDOP deploys (Life Cycle Assessment) 

                                                      
3 Reprinted by permission of both the publisher American Society of Mechanical 

Engineers (ASME) and the copyright owner National Institute of Standards and Technology 
(NIST) 
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LCA mathematical models with compatible (Life Cycle Costing) LCC models to consider both 

environmental and economic objectives during the evaluation of design alternatives. This work 

builds upon the prior work [46] in an important way. It provides a framework in which 

information pertaining to any applicable standards and regulations (henceforth only referred to as 

standards) is revealed transparently. Consequently, this information may influence the decision 

making process by highlighting criteria and constraints for consideration while also informing the 

decision maker during the articulation of preferences among the criteria considered.  

A design process for sustainability often requires a comprehensive and holistic 

consideration of several distinct knowledge domains. Such an approach, if seamless, should 

improve upon the efficiency and effectiveness of a traditional design process that considers 

individual domains in a compartmentalized manner. However, integration of the major domains 

of a design process remains a topic of research. The work in this paper presents a novel approach 

to integrate the information models of four main domains to an extent not done in any known 

previous works. (Figure 5): Engineering Design, Sustainability Standards, Normative multi-

criteria decision making, and LCA. The integration of all four of these domains will enable 

sharing of information in real time.  

Section 6.2 details the key features of the new framework and its architecture. In Section 

6.3, an illustrative case study is applied to demonstrate the framework’s use in a design process. 

The final section discusses the results of this work. The next section summarizes prior works that 

have achieved some level of integration between two or more of the four domains of interest.  

 

6.1. Related Works 

First, this section looks at the relationship between LCA and other sustainability 

standards, indicators and metrics. An earlier approach established groups of key metrics 

represented within tools to serve as building blocks for the use of LCA [53], but it is not clear that 

the metrics used come from any established standards. More recently, a tool was developed to 
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combine site dependent data from LCA with environmental performance indicators to support 

decisions by aggregating output data into a comprehensible index [54]. A study to support 

considerations within an enterprise examined the use of LCA data aggregated into a performance 

index with that of other indicators and metrics, such as those related to compliance or eco-

efficiency measures [55]. One of the more comprehensive descriptions of all such information 

pertaining to the multiple product sectors, and the relationships among standards, indicators, 

metrics, tools, and criteria, such as LCA criteria, is available at the website of the National Center 

for Manufacturing Sciences (NCMS) for Sustainability Project Initiative (SPI) projects [56]. 

Therefore, this work uses the content of this work to create a categorized library represented by 

the related information model described in the following section. 

Prior work related to the modeling of sustainability metrics, standards, and indicators 

within ontological frameworks is also of interest. Yang and Song [57] constructed an ontological 

framework to represent LCA and LCC parameter inputs to use with criteria defined by 

sustainability metrics for the potential evaluation of alternatives within a design process for 

sustainability. A National Institute of Standards and Technology (NIST) workshop with industry 

[3] proposed that further harmonization and consolidation is needed between regulations, 

standards, and metrics. In response, researchers from NIST proposed use of the Zachman 

framework [58] to organize information from sustainability standards to facilitate modeling of the 

content within semantic frameworks such as ontologies.  Such a means to organize the 

information is helpful due to the large number of standards and metrics and the redundancies and 

gaps between them. Researchers at NIST built upon this work by introducing a method to reason 

upon such information within an ontology to determine where such gaps and overlaps in 

sustainability standards exist [59].  With this methodology, overlaps can be found where similar 

concepts appear in different standards, and gaps reflect divergence of the concepts in different 

standards. Here, ontological information models of different standards are mapped to each other. 

This mapping process involves setting classes and properties equivalent to others whenever 
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possible. Such equivalencies are considered overlaps and the lack of equivalence was defined as a 

gap [59]. Reasoning may be done within the resulting ontology to determine which standards 

apply to specific products. Furthermore, an inconsistency of a specific product instance with a 

property value restriction imposed by the standards can indicate the lack of compliance of that 

product design.  

 

Figure 5:  Desired state of information models for a design 

 

Current literature [21,60-63] also emphasizes the importance of information modeling 

and its knowledge management pertaining to engineering design processes. The use of semantic 

web compatible ontologies has been shown to facilitate collaboration during distributed design 

and inform design decision making early in a design process, while also supporting 

interoperability of software tools deployed throughout the process. One such recent 

comprehensive review [60] highlighted the importance for the development of ontological 
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frameworks to capture design related knowledge in a flexible and robust manner and to also 

capture design rationale to support decision making early in a design process.  

From a perspective of a design process for products, an ontological framework was 

constructed at the University of Massachusetts at Amherst to facilitate the documentation of 

design rationale for distributed design throughout an entire traditional design process [17-19,21]. 

As a result, the information is dynamically linked between the domains that comprise a design 

process. The hyperlinks of these ontologies may be imported for public use from [20] into 

software such as Protégé [65]. Future developments are planned to improve upon the visual 

format for sharing information by use of software such as OntoWiki [66]. Additional modules in 

the framework support the modeling of information for decision making with a Decision Support 

Ontology and with Decision Method Ontologies [16,67], which represent various methods to 

evaluate design alternatives having various attribute values.  

The Decision Support Ontology and Decision Method Ontologies are aligned with the 

principles of Decision-Based Design, and as a result, can benefit a design process, especially 

when tradeoffs between conflicting objectives need to be considered for multi-criteria decision 

making. Decision-Based Design is based on some fundamental principles as defined by Hazelrigg 

[68]. Normative methods based on utility theory, which evaluate alternatives based on the 

maximization of utility, were developed for applications that require a certain degree of 

mathematical rigor [7,8,10,44]. One such method is hypothetical equivalents and inequivalents 

method (HEIM) [44,45], in which the optimal set of weights among multiple criteria is calculated 

based on the strength of preference expressed by a decision maker during the ranking of 

hypothetical alternatives. The resulting set of weights is used to compute the multi-attribute utility 

(MAU) value of any design alternative.   

The integration between the domains of normative multi-criteria decision making and 

sustainable design has been limited despite the need. The often conflicting objectives of the triple 

bottom line for sustainability infer that multi-criteria decision making methods are well suited to 
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selecting optimal design solutions for sustainability. However, the introduction of usable 

normative methods to date has been limited. Thurston and her associates provided a constrained 

optimization methodology for sustainable product solutions [9,10]. More recently, HEIM was 

used to model the preferences of the decision maker in NASDOP [46]. Here, the uncertainties in 

the data from environmental emissions and costs were taken into account. For all of these 

reasons, the new ontological framework, introduced in this work, integrates the information used 

in this NASDOP methodology with this framework that includes the Decision Support Ontology 

and a Decision Method Ontology for HEIM.  

 

Figure 6:  Modular building blocks of the information model for sustainable product design  

 

The literature review, described in this section, alludes to the limited level of integration 

of information across domains in current design processes from the sustainability perspective. 

However, it can also be seen that these four main domains are all related to each other, and 

therefore, should not be modeled in isolation if the goal is to inform all participants in a design 

process. The work described in the next section provides such an integrated framework that 

dynamically links the information upon entry across these domains in a complete system. 

 

6.2. IASDOP Architecture Framework 

Here, the Integrated Approach for the Sustainable Design of Products (IASDOP) is 

described. Figure 6 illustrates the modular construction of the framework. The objects within 
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these domains are dynamically linked appropriately by the relationships between them as shown 

and described in the following sections. The ontology file is available to import and use from its 

webpage [69]. The following sections highlight some of the key features obtained by this 

construction.   

 

6.2.1. Standard Fit within a Standards Library 

Standard compliance has been identified as an important consideration in the design 

process for an enterprise [52]. The current process available to an enterprise to find a specific 

applicable requirement is inefficient at best due to the large number of standards and the 

corresponding missing and redundant information involved [3]. Selection of the appropriate 

standard depends greatly upon the product being designed. This suggests advantages with 

associations between standards and product sectors or the specific products within sectors. The 

Sustainable Standards Guide [56] highlights the content pertaining to the top level standards, 

product sectors, and also, criteria that may be used to measure sustainability objectives.  

Figure 7 shows the upper level taxonomy comprised of the sustainability categories and 

the relationships linking these main categories of standards, products, and criteria. Relationships 

are shown graphically as arc types in these figures from within Protégé. Included in this 

taxonomy is a categorized library of sustainability standards without exhaustive detail of the 

information in each standard, which would likely change over time and require updating. This 

way, the specific standards applicable to a given product may be instantiated anytime a design 

instance is developed. There is also always a possibility that a current or potential standard 

applicable to a certain product does not have a standard within the library. Such circumstances are 

attended to in Section 6.2.3.  
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Figure 7:  Relationships in the Sustainability Categories ontology 
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Figure 8:  Relationships of the Zachman framework deployed 
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6.2.2. Relationships to the Zachman Framework 

Standards can be complex and it can often be cumbersome to find the information sought. 

Researchers at NIST proposed use of the Zachman framework [58] to break down the information 

in a standard into an organized structure. To facilitate creation of the standards information 

models, this work deploys the prescribed ontological structure of the Zachman framework into an 

ontological framework module. Figure 8 shows such relationships of the prescribed matrix within 

the ontological framework. The class “Cells” consists of thirty-six possible categories, each 

corresponding to one of six different rows and columns. The top level relationships are also 

shown in Figure 8. Here, the top level row related to the context or objective scope of a standard 

is shown. Section 6.2.3 describes the key advantages that result from this ontological framework.     

 

6.2.3. Revealing Gaps and Overlaps between Standards 

The ontological framework can be especially useful for establishing dynamic 

relationships between standards and products to which they apply. Researchers at NIST suggest 

use of the relationships on the top context level of the Zachman framework to identify such gaps 

and overlaps [59]. The method to detect and model gaps and overlaps within an ontology may be 

deployed when all pertinent information is modeled in the ontologies for the standards being 

compared. Such an approach may be practical when a defined and limited scope of standards 

apply to the design endeavors of an enterprise. Here, this work aims to provide a generic 

framework that could be used in any design process. Thus, a library and information models more 

limited in their depth and scope of represented knowledge is used.  

There are two different ways that such a generic framework can be used during a design 

process with potential effectiveness. Information models can be created for any applicable 

standards using the previously prescribed methods [58,59]. Alternatively, information may be 

entered as it is sought during a design process. Thus, this framework supports introducing the 
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Figure 9:  Relationships to constraints in a design process 

 

guidelines and information provided by sustainability standards into a sustainable design process. 

This approach extends the definition of gaps introduced earlier [59] to include any requirement 

not yet specified in the existing standards library. Naturally, the depth of the standards’ 

information models will determine the formalism and the extent of potential automation of these 

entries.   
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6.2.4. Revealing Constraints from Standards 

From a design process perspective, an ultimate goal in modeling this knowledge which 

relates the standards and products is to define the applicable constraints for a given design 

situation. Survey information indicates that this is not usually a trivial task although rather 

important [3,52]. The diagram in Figure 9 shows an example of how such relationships may be 

established within this framework. Here, the constraints imposed by the standards are revealed for 

a product. Furthermore, these constraints are revealed in the engineering model along with other 

physical constraints related to the design. Thus, information models from standards inform the 

design model of any compliance related requirements. The example in Figure 5 depicts the case 

of a quantified regulatory limit. Depending upon the standard, some such constraints from 

standards may support mathematical modeling within constrained optimization programs, while 

others may be more qualitative and only applicable within information models.  

 

6.2.5. The Integrated Framework 

Other than the need to reveal the important constraints, a designer would also need to use 

this information within a decision model that reveals the rationale for selection of the most 

sustainable alternative. Here, other information models are integrated with those related to 

sustainability standards.  

 

6.2.5.1. Three Information Models Combined 

Figure 10 shows the class hierarchy of the taxonomy for sustainability criteria, which 

includes categories for LCA and LCC. Section 6.1 discussed some of the benefits of using multi-

criteria decision making principles to design for sustainability. Efficiency and effectiveness of the 

early design stages should improve when all such criteria are considered together simultaneously 

in the same model rather than iteratively. To this end, ontological frameworks are integrated 

among sustainability, engineering design, and multi-criteria decision making (MCDM) domains. 
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Figure 10:  Criteria including LCA and LCC 

 

Here, advantages are combined from an existing e-Design framework that captures and 

communicates information from a traditional design process [17], informs design model 

construction for decisions, and reveals decision rationale [16,67].  Such decisions should be made 

based on information pertaining to evaluation of the design option whose expectation has the 

highest value [68]. Such information can be defined concisely within the Decision Support 

Ontology combined with a given situation’s most suitable Decision Method Ontology. Here, a 

Decision Method Ontology is introduced to represent the methodology for modeling the 

preferences among different criteria by using HEIM. HEIM has been implemented effectively in 

a sustainable design situation [46]. Furthermore, the units ontology from NASA [70] is integrated 

within this framework to verify that consistent units are used appropriately. Figure 11 shows the 
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mapping relationships between a design alternative instantiated in the Decision Support Ontology 

and the information in the new LCA ontology. The “has_working_solution” relationship in the 

Decision Support Ontology allows for the input of the information models of all criteria.   

 

6.2.5.2. Products, Standards, and Criteria Relationships 

Since each design situation will apply to a specific product, a design instance consists of 

a unique set of applicable criteria and standards. Figure 7 shows how this framework directly 

associates the relationships between a product and its standards and criteria. In doing so, 

information about the critical elements of the decision model is revealed transparently. 

Furthermore, this could aid the repository development of consolidated standards and criteria in 

the context of the products to which they are most applicable.   

 

6.2.5.3. Common Ontology for Constraints and Criteria 

Constrained design optimization methods provide the means to consider criteria and 

constraints simultaneously. The approach of this work advocates modeling information from 

standard requirements as constraints. Even in cases when such requirements cannot be expressed 

in the same mathematical model for optimization, the information model can reveal such 

constraints transparently to alert designers of the need for compliance verification by deployment 

of the semantic reasoning method [59] described in Section 6.1. Section 6.1 also points out that in 

spite of the need to combine sustainability standards with objectives such as the minimization of 

environmental impacts; such prior work has been very limited.  

In recent years, LCA has evolved into a prescribed method to measure value in terms of 

environmental impacts. LCA determines impact criteria based on standards of ISO 14040-14044, 

TRACI  , and others. A number of different LCA methods were developed to characterize, group, 

normalize, and weight the impacts for assessment. This framework uses the EDIP 2003 method 
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Figure 11:  LCA module construction 
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within SimaPro for consistency with the NASDOP methodology that was developed to deploy 

multi-criteria decision making for sustainable product design [46]. Relationships between 

modules in the framework provide the connection of resulting environmental impact information 

to information about the evaluation of design alternatives that inform the decision making process 

in the Decision Support Ontology.  Figure 11 shows the representation framework for established 

LCA methodology. The context of criteria shown in Figure 10 indicates that multiple criteria 

related to sustainability could be involved in a model. 

 

6.2.6. The Integrated Design Process 

Due to the integration of the framework, the rationale of the design situation and the 

applicable standards combine to inform the pertinent optimization model. From there, the optimal 

design alternative can be identified in parallel with the inspection of compliance to any applicable 

standards. Since every product design is different, this IASDOP framework is constructed with 

the flexibility to accommodate a wide array of design situations. The following section describes 

the use of the fully integrated IASDOP framework and the enabled design process in one such 

actual design case study. This case study illustrates how these presented advantages of IASDOP 

specifically contribute to a successful design.  

 

Figure 12:  Specific contributions of IASDOP to a successful design process for sustainability 
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6.3. CASE STUDY: Sustainability of Brake Disk Rotor and Pads 

This case study has been divided into five sections.   Figure 12 shows the specific 

contributions corresponding to Sections 6.3.2 thru 6.3.6. This outline specifies and illustrates 

improvements to a design process by the support of sustainability considerations.  

 

6.3.1. Brake Disk Rotor and Pads 

 This case study uses IASDOP to capture and communicate information about the utility 

evaluation for the optimal set of automotive brake disk rotor and companion pair of caliper pads. 

In this case, it is assumed that a five year life of these parts is desired along with other 

assumptions reasonable for a typical midsized passenger automobile. Mathematical models were 

constructed based on conventional engineering formulations [71] to estimate results. Here, it is 

assumed that consumers desire the performance objective of minimizing the vehicle stopping 

distance subject to the performance constraints of adequate heat dissipation, a temperature limited 

to less than 77 degrees C, and adequate rotor and pad thickness remaining at the end of five years 

of typical use.  

 

6.3.2. Problem Definition: Information Modeling for Sustainability 

 Some research provides engineering data for the most common rotor materials [72], and 

more general information is available regarding caliper pad material options. Thus, each possible 

material combination may reasonably represent a design alternative. Independent variables 

consist of the geometry of the parts, which in this case is limited to the initial thickness of the 

rotor and pads and the percentage of the rotor that is solid. Most rotors have hollowed fins to 

increase convective cooling. Other than material type, the weight of the parts is the most 

significant factor for the minimization of the impacts given by both LCA and LCC. Stopping 

distance was found to be independent of weight and geometry whenever all performance 

constraints are satisfied. These performance constraints, such as assuring that the brake materials 
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dissipate heat quickly enough and do not wear too thin during the product life, are different from 

constraints imposed by sustainability standards, which will be explained shortly. In the interest of 

optimizing for sustainability considerations, the weight for each material combination alternative 

was optimized. Here, the optimal geometry of the parts was determined for each alternative. 

Models to generate solutions were developed within Parametric Technology Corporation’s 

MathCAD software [73]. Optimization capabilities of Phoenix Integration’s ModelCenter 

software [74] with their MathCAD plugin were deployed to optimize the mass for each design 

alternative subject to the performance constraints.  

LCA results were estimated using SimaPro software [75] based on some reasonable 

assumptions given the data available for each of the common material combinations. LCC was 

estimated from available generic searches for cost data. The information mentioned here was 

modeled appropriately in the IASDOP framework. Section 6.1 discussed the need to satisfy the 

triple bottom line multiple objectives for sustainability of preserving the environment, the 

economy, and the interests of the stakeholders in society. Thus, optimization was done among the 

three main objectives of minimization of vehicle stopping distance, as well as the minimization of 

environmental and cost impacts over the product’s life cycle. Table 9 highlights the information 

model created to represent these three main objectives and their associated variables. 

 

6.3.3. Constraint Identification: Integrated Constraint Mechanisms  

The first step involved a search to find the specific standards and regulations that apply to the 

design situation. A general web search for those applicable to this product design reveals three 

potentially consequential regulations, which all pertain to material selection in this design 

process. Brake caliper pads were often made from asbestos material in the past, later raising 

human health and safety concerns [76]. Related standards were documented as instances within 

the framework of categorized standards. It is also possible for a standard of concern to not yet be 

modeled in the framework. Standards may be most applicable to certain product groups, such as 
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limits on copper content to 0.5 % in these brake disk parts due to concerns about the cause of 

some toxic substances in water. The application of some standards to a certain product may 

require more investigation. For example, disk brakes emit dust during operation, and silica 

 

Table 9:  Main design criteria and their independent variables 

Subject Instance in 
"Objective_Function" Class 

Relationship in 
"Objective_Function" Class Object Instance or Value 

Comparative_cost 

goal minimize 

used_in_model 
Brake_disk_and_pad_performa
nce 

has_unit Currency_units_USD 

has_objective_parameter 
Variable_massPercentDisk 
Variable_tDisk 
Variable_tPad 

considered_in 
evaluation_to_Maximize_MAU
_utility_value 

Greatest_environmental_impact 

goal minimize 

used_in_model 
Brake_disk_and_pad_performa
nce 

has_unit Equivalent_units_Pt 

has_objective_parameter 
Variable_massPercentDisk 
Variable_tDisk 
Variable_tPad 

considered_in 
evaluation_to_Maximize_MAU
_utility_value 

Stop_distance 

goal minimize 

used_in_model 
Brake_disk_and_pad_performa
nce 

has_unit meter 

has_objective_parameter 
Variable_massPercentDisk 
Variable_tDisk 
Variable_tPad 

considered_in 
evaluation_to_Maximize_MAU
_utility_value 

Minimize_weight 

goal minimize 

used_in_model 
Brake_disk_and_pad_performa
nce 

has_unit kilogram 

has_objective_parameter 
Variable_massPercentDisk 
Variable_tDisk 
Variable_tPad 

considered_in 
evaluation_to_Maximize_MAU
_utility_value 
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Figure 13:  Modeling of a constraint imposed by sustainability standards 
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dust concentrations are limited for health reasons [77]. These various standards were modeled in 

relation to the design instance of this specific product within the integrated framework. This was 

accomplished by the use of the framework as described in Sections 6.2.1 to 6.2.5.  Figure 13 

shows the constraint imposed by the sustainability standards related to copper content in a 

common engineering design model. Thus, sustainability standards are informing the design model 

as Section 6.2.4 emphasizes. 

 

6.3.4. Problem Formulation: Optimization Support  

 The framework allows modeling of sustainability standards and criteria within a shared 

configuration. Any relationships between standards and criteria can extend to modeling of design 

information in that constraints can influence design criteria. Furthermore, constraints and criteria 

can potentially be modeled in the same design optimization formulation if they can be expressed 

as mathematical functions with the same independent variables. Current standards usually are not 

expressed in such a mathematical format. However, such sustainability constraints and criteria 

may be included in the same information model as highlighted in prior figures and sections.  

Section 6.2.5 highlights the integration of information models for sustainability, 

engineering design, and multi-criteria decision making. Use of this framework initially to identify 

the standards and regulations transparently can lead to identification of criteria related to 

minimization of critical environmental impacts. This is done by using the ontological module for 

LCA, which is built into the sustainability criteria category of the framework. Figure 14 shows 

this case study within the LCA module of the framework. 

 

6.3.5. Problem Solving: Data Import / Export for Tool Support  

This case study illustrates that this decision making process, which is outlined in Figure 

12, of selecting the optimal design alternative combines several considerations simultaneously. 

The information is integrated among the four domains shown back in Figure 5 by dynamically  
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Figure 14: Use of information from LCA to compare impact results among alternatives 
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Figure 15:  Results of the most preferred design alternative – baseline for comparison 

Best alternative 
with the highest 
MAU value 

Copper content during 
the product lifecycle 

Greatest 
environmental 
impact of this 
alternative in 
Pt units 

Geometry 
related 

Material related 



 

58 

 

Figure 16:  Results of an alternative with some copper content in the caliper pads 

MAU value 
decreased from 
baseline 

Copper content increased by a 
factor of 2.85 from baseline 

Environmental 
impact 
increased by a 
factor of 2.07 
from baseline 



 

59 

 

Figure 17:  Results of an alternative with increased content of both copper and silicon in the rotor 

 

MAU value 
decreased more 
from baseline 

Copper content increased by 
a factor of 10.1 from baseline 

Environment
al impact 
increased by 
a factor of 
7.13 from 
baseline 
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linking information across domains by the relationships set up in the ontological framework. Not 

only is this study looking at three different attributes in multi-criteria decision making, but it also 

reveals three different standards or regulations that should be met. It is assumed that caliper pads 

made from asbestos should not be considered due to the obvious health risks. The information in 

this model reveals that rationale. The means to comply with the standards that limit copper and 

silica content is not quite so obvious. Since LCA is assessed for each material combination 

alternative anyways, perhaps that information can help.  

Figures 15-17 illustrate this by showing the specific results for both LCA and multi-

criteria decision making side by side for three of the alternatives. The instantiated ontology is 

shown from OntoWiki software [66] in these three figures. Figure 15 represents the results of the 

best feasible choice, which was evaluated to have the highest multi-attribute utility (MAU) value. 

Here, instance locations of the optimal design geometry and material are shown and specifics 

would be revealed by simply double clicking on such desired instance links in the ontology. 

SimaPro generates estimates of all the main environmental impact groups, but usually one 

specific impact exceeds all the others. For this alternative, human toxicity in water content has the 

greatest impact. This material combination is a grey cast iron rotor with steel caliper pads. 

Assumptions are made during LCA and LCC, because the data is not always available for the 

exact materials and processes involved in the life cycle of every product design. Regular cast iron 

and steel materials may have less impact and cost than many other materials that may require 

more processing during the material extraction. This best choice is based on the preferences 

expressed in the HEIM information model. Use of the integrated framework allows dynamic 

linking of the information across the domains.  

 

6.3.6. Decision Making: Sustainability-based Decision Support  

The inventory of copper and silicon emitted during the life cycle can also be inspected. 

Most of the emitted mass in these instances flows to the water rather than the air or soil. Thus, the 



 

61 

standard for copper is more likely to apply than the standard for silica dust in the air in this case. 

Figures 15-17 also show the emissions to water of copper and silicon for the three alternatives 

illustrated. Figure 16 shows results for a grey cast iron rotor and a copper fiber composite caliper 

pad material.  The copper fiber material is not likely to meet the standard for sale in the states of 

California or Washington. It is interesting that the standard is based on the copper mass 

percentage of the material, but the information shown regarding the copper emissions to water 

may actually be more reflective of the impacts of concern. Either way, it is evident that both the 

human toxicity in water and the copper emissions to water are both nearly doubled or tripled 

when the alternative changes to the copper fiber material for the pads. Figure 17 assesses a rotor 

made from a 20 % SiC reinforced Al-Cu alloy (AMC 2) instead of the grey cast iron rotor shown 

in Figure 15. As a result, eutrophication of the water exceeds the human toxicity in the water as 

the most significant impact, and the impact approaches ten times more significant. It is interesting 

that the copper emissions to the water are also about ten times greater. Thus, there is some 

consistent correlation between the standards and the LCA criteria in this case. This shows that 

some understanding of relationships between standards and critical impacts can be gained early in 

a design process by the use of this framework. The resulting multi-attribute utility (MAU) values 

shown in Figures 15-17 reveal the rank of these alternatives from best to worst.  

 

6.4. Discussion of Results for IASDOP 

The main objective of this work was to support informed design decisions for sustainable 

product design objectives through the early integration of sustainability standards and criteria. A 

successful result will ease the adoption of the pertinent standards and regulations and also 

influence a design toward the objectives related to sustainability. This work integrated 

information models from the four domains shown in Figure 5 to demonstrate how such 

integration can benefit a design process for sustainability.  
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In traditional engineering design, requirements introduce constraints, which can influence 

criteria. Design involves a decision, among alternatives, that best satisfies the criteria, which 

define the issues. The decision may introduce more or new constraints for subsequent design 

iterations. A design process generates information, which can best be represented by information 

models accessible by all design participants. The findings in this work support the use of such 

established principles for sustainability considerations.  

Furthermore, the case examined shows that some consistencies can be revealed between 

applicable regulations modeled by standards and environmental impacts determined by LCA. The 

process enabled by the IASDOP framework was shown to allow parallel inspection of 

information related to standards and design alternative selection. This work began with the 

premise that sustainability standards and regulations may be aligned with the triple bottom line 

objectives of sustainability. Although this may or may not be true depending upon the standard, a 

framework is provided in which the information is connected by the relationships. This 

connection should be evident in all cases. Although compliance with standards and regulations 

could require further validation, the intent shown in the information about the standards does 

have some alignment with the triple bottom line criteria in the case observed. Thus, efficiency 

and effectiveness may be improved by the use of this framework in many other cases as well. 

Since instantiation of the design information does involve some time and resources, design teams 

should evaluate the expected cost and benefits of using this method on a case by case basis. An 

additional benefit of the instantiation could be realized by the capability to query the information 

based on its context and meaning. Future work may investigate possible use of the reasoning and 

rules capabilities of the ontologies to identify any further potential to improve decision making.  

Any such method becomes much more useful when the benefits can be realized as early 

in a design process as possible. The case presented here shows one example in which a 

sustainable design may depend exclusively upon the independent variables of the material and 

geometry of the components for their given use. Thus, the method deployed could be 
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implemented at the early stages of conceptual design in some cases.  The following chapter looks 

at full design space exploration that may involve response surface modeling from known data and 

the construction of surrogate models. The successful construction of reliable solution models that 

depend exclusively upon the geometry and material of the components should significantly aid 

the adoption of the methodology as early in a design process as possible.  
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CHAPTER 7 

MASSDOP:  A ROBUST SURROGATE MODELING APPROACH FOR MATERIAL 
SELECTION IN SUSTAINABLE DESIGN OF PRODUCTS  

 
The selection of the optimal material, while considering objectives for sustainable design 

comprehensively early in a design process, can significantly improve the overall impacts of 

products4.  Ljungberg argued that material selection is one of the most important factors that 

affect the quest to achieve more sustainable products [79]. Life Cycle Assessment (LCA) has 

evolved in recent years to be regarded as a credible, high fidelity measure of environmental 

impacts and the associated effects of any materials or processes during a product’s life cycle [80]. 

Other researchers found LCA, in its current form, to be unsuitable for use by designers at the 

early stages of a product design [81]. A recent review paper [11] and the recent National Institute 

of Standards and Technology (NIST) workshop on sustainability [3] both identified the need for 

efficient early design stage adoption of sustainability objectives. In many cases encountered in 

engineering design, high fidelity models are neither practical nor cost effective to construct, and 

approximate or surrogate model construction of the design space becomes necessary to enable 

early design stage efficiency [82,83].   

However, very few implementations exist of surrogate model solutions for sustainable 

product design. Even more surprising is the lack of prescribed metamodeling techniques for 

optimal material selection for engineering problems in general.  A surrogate model may also be 

referred to as a response model or metamodel, or a model of a model, that substitutes for another 

high fidelity, physics-based model by merely interpolating discrete input and output points of data 

to statistically approximate the input output function experimentally independent of the 

underlying physical laws [84].  Hazelrigg [85] distinguishes between descriptive and predictive 

models for engineering design, and advocates for the use of predictive models during early design 
                                                      

4 Public access is conditional upon pending permission to reprint by the potential 
publisher as of the time of this writing (American Society of Mechanical Engineers).  Access of 
this dissertation was made conditional upon reprint permission being granted after paper [78] 
publication by ASME.   
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stages that allow for reasonable assumptions and uncertainties while focusing on the needed 

resolution between discrete alternatives for correct decision making.  Descriptive models, that 

lack modeling error, should be used where more precise representations are needed of the 

physical system behavior for more detailed engineering analysis.   

The use of metamodels for sustainable design remains a topic of research. Zhou et al. 

[86] proposed a notable possible approach to address both of the research gaps of a lack of 

surrogate modeling techniques for sustainable design and the lack of such techniques for optimal 

material selection.  Their method integrates artificial neural networks (ANN) with genetic 

algorithms (GAs) for optimal material selection in consideration of mechanical, economic, and 

environmental properties.  Sousa et al. [87] developed an ANN surrogate modeling method to 

better streamline the LCA process and define some product groupings.  More recently, Sousa and 

Wallace [88] used these groupings to develop a product classification system by deployment of 

learning surrogate models constructed from the groupings.   

This chapter advocates use of the mathematical rigor of a normative approach for 

sustainable design. Hazelrigg [89] also asserts that a model needs to find local optimal designs 

and also determine which of the local neighborhoods has the global optimal solution, and in doing 

so the model is only valid when it supports its conclusion that the outcome most desired by the 

decision maker is the optimal.  Here, when a normative approach is used, the response output of a 

surrogate model should approximate a given single attribute utility (SAU) function and/or a 

composite multi-attribute utility (MAU) function.  This work builds on prior work that provides 

such a foundation methodology for sustainable product design [46].  This prior work includes the 

normative computation infrastructure to determine SAU and MAU value responses for sample 

data locations of the pertinent attributes over a product lifecycle.   

One of the major challenges concerns the number of additional design variables related to 

sustainability, many of which are material related.  Even material related mechanical property 

variables are numerous including yield strength, modulus, shear modulus, Poisson’s ratio, mass 
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density, coefficient of thermal expansion, etc. Material selection becomes more important when 

sustainability is considered.  The challenges in this area were exposed in prior work.  Rydh and 

Sun [90] attempted to define seventeen material groups to estimate Life Cycle Inventory (LCI) 

data based on weakly correlated relationships between material properties and environmental 

impacts.  A wide variety of environmental emissions parameters affect the impact attributes 

during various life cycle stages.  Thus, a robust method is needed to mitigate the effects of 

numerous design variables and construct a surrogate model with adequate efficiency and valid 

resolution for optimal alternative selection.  

To this end, the following sections introduce such a novel approach and a new 

methodology for a robust surrogate modeling approach for material selection in sustainable 

design of products (MASSDOP). The next section discusses important issues related to a 

product’s life cycle. Section 7.2 prescribes a fundamental foundation to formulate a problem by 

representing the entire design space. Section 7.3 introduces a mapping methodology for 

modeling. Section 7.4 provides novel surrogate model construction and testing techniques for 

material selection. Section 7.5 addresses issues related to optimization of a constructed surrogate 

model. Section 7.6 demonstrates how the entire methodology can be used with a case study 

example of the design of a disc brake for an automobile. Section 7.7 discusses the results in the 

context of the challenges that this work aims to address.   

 

7.1. The Product Life Cycle  

The fundamental first step is to identify the significant life cycle processes that must be 

considered.  A holistic approach to design for sustainability needs to consider all attributes over 

the complete life cycle of the product. However, the significance of the effects at various life 

cycle stages indicates that various product life stages should be considered at the most appropriate 

time in a design process. For example, the intended use of a product should be considered at the 

earliest design stages. Aside from any major localization issues, decisions regarding the mode of 
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distribution of the product and its components throughout the supply chain may often be best to 

decide later in a design process. The following subsections address the most appropriate design 

stages to consider the costs and environmental impacts from each of the five main product life 

cycle stages. These five main stages include materials extraction, components and product 

manufacturing, product distribution, product use, and end of life disposition of the product and its 

components.  

 

7.1.1.  Product use stage issues 

Identification of the functional use of a product could have the most significant effect on 

the resulting performance, cost, and environmental impacts. Such alternatives should be carefully 

considered during the early design stages, which offer the greatest design flexibility. To this end, 

prior published approaches [34,91] provide the means to map various functions and associated 

forms to associated environmental impacts. However, such approaches have limited accuracy to 

which the environmental impacts can be determined. Other work [92] focuses on the abstract 

relationships of affordances, rather than functions, to environmental impacts.  

This paper focuses more closely and more precisely on the impacts of the main 

components for a previously determined intended use and general form of the product to achieve 

that function. This approach should complement the prior approaches and round out the suite of 

methods available to engineers comprehensively. Once one can presume that all design 

alternatives in a design space have the same prescribed general form and function, impacts during 

the product use life cycle stage reduce to any differences such as more or less energy consumed 

due to different mass, inertia, thermal conductivity, etc., or more or less consumable parts used 

per year [87]. The significance of such differences would be problem specific. The next 

subsection discusses the remaining life cycle stages of material extraction, manufacturing, and 

end of life disposition. A more general approach could be applicable to these three product life 

cycle stages.   
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7.1.2. Identification of significance for early design efficiency 

The early stages of conceptual design can benefit from approximation models and 

methods that efficiently identify the optimal concept to proceed with. To this end, the approach 

described by this paper focuses on the most significant and the least complex contributions to 

environmental impacts. All life cycle stages can be modeled by using the Life Cycle Assessment 

(LCA) process [28,29]. Software tools such as SimaPro [30] or GaBi [93] automate the 

computational mapping of any life cycle processes to the resulting environmental impacts. Such 

impacts are grouped categorically, normalized to have equivalent units of Ecopoints [Pt], and 

weighted based on severity to sum together in a single equation all using one of several viable 

methods [94].  

Processes related to the initial stage of material extraction and the final stage of end of 

life disposition of product components may be entered on a simple mass unit basis. The work 

presented in this paper includes the LCA modeling of all processes involved in the production 

and end of life disposition of one kilogram of seventy-eight different materials for which the 

pertinent information and data exists. Thus, a design set of alternatives can reduce to selection 

from among various material choices and their associated weights or volumes. The manufacturing 

life cycle stage is also an important stage to consider. The key question becomes when the 

appropriate time in the design process to consider such impacts is.  

 

7.1.2.1. Appropriate design stage to consider manufacturing impacts 

The key point to consider is whether or not consideration of manufacturing impacts is 

likely to have a significant effect on which material alternative is most optimal. The graph in 

Figure 18 shows, by an example of the case of machining steel or aluminum to half its mass, that 

the processes related to material acquisition and disposal are generally much more significant to 

environmental impacts than are those due to such a manufacturing process. This does not mean 
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that impacts during manufacturing are not significant, because they indeed are. However, the 

results shown in Figure 18 indicate that they are not nearly as likely to affect the material selected 

as the material type itself would. Identification of the manufacturing process alternatives can be 

relatively complex. Furthermore, modeling of all manufacturing processes alternatives for every 

material alternative in LCA computational models can be time consuming. However, differences 

in cost among alternatives can be more significant than environmental impact differences during 

the manufacturing stage. Many organizations have developed their own efficient and reliable cost 

estimation standards to facilitate concept selection during the early design stages. Here, more 

established Design for Manufacturability (DFM) approaches [95] can be used.  

 

Figure 18:  Example of impacts during a manufacturing stage 

 

Sustainable Manufacturing is certainly also an important consideration during a design 

process [3,96] and an emerging topic of research [97,98]. However, for the purposes of selection 

of the optimal main components during the early design stages, it can be most efficient to exclude 

the manufacturing stage from the metamodels of environmental impact attributes at the 

conceptual design stage, and instead, include fewer and more viable options at later design 

iterations. By doing so, the environmental impact metamodels reduce to a design space of all 
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potential material alternatives. It becomes necessary to identify a unit basis on which all such data 

points can be modeled together.  

 

7.1.3. Consistent modeling to represent units in a design space 

An LCA process begins with the first step of identification of the goal and scope of a 

process [29]. Here, it becomes convenient to model material alternatives for comparison on a per 

kilogram mass unit basis, because the extraction and end of life stages can be modeled as such in 

an LCA simulation. Furthermore, mass density properties are usually available for most materials 

and conversion to volume units can be done for all data points. This allows for a convenient 

consideration of the geometry of components as well as the material. It can be especially 

convenient when a component design is constrained by space to have approximately the same 

solid volume for all material alternatives. Even when that is not the case, the engineer could 

provide relative estimates of the percentage differences in volume for the various materials. This 

is only possible when the mapping of inputs to outputs has the same linearly scalable relationship 

for all material alternatives. Prior research of the computational structure of LCA [99] indicates 

that this should be the case given several assumptions that will likely hold for this situation. This 

linear scaled relationship was confirmed by testing a large set of materials at various quantities of 

mass.  

 

7.1.3.1. Consideration of composite materials and sets of components 

Products today are often made from composite materials, which are a composition of two 

or more materials that may have representative data available.  The additional advantage of using 

a data set expressed on a mass or volume unit basis for composites offers the means to expand the 

data set to include linear combinations of the impacts from the materials and their associated 

mass or volume fractions. Equation (10) shows the specific computation for the cell of each data 
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point in the data set of a design space. An entry for a design alternative, i, in the design space is 

given by 

                                                 
1

Λ
p

ij jl ik i
k i

DS EIP VE
=

 
=  

 
∑                                         (10) 

where j is one of fourteen different environmental parameters, k represents each of the materials 

in a composite, l is a material type that can be selected from among seventy-two different 

materials in a database, EIPjl is the environmental impact parameter of a selected material l, Λ ik is 

the volume percentage of each material in a composite, and VEi is the volume estimated fraction 

that a total composite is of a baseline.   

The size of the design space becomes virtually unlimited given the wide array of potential 

materials. The information derived to compute the relative quantities of volume or mass is reused 

to compute factors of the life cycle cost attribute, because the mass of a part is also a significant 

factor of both the material cost and the manufacturing cost. Later sections show how this data can 

be used to create metamodels to identify optimal points where some potential unforeseen 

solutions could exist. The following subsection describes possible sources of the seed data that 

determine the values of the impacts in Equation (10).  

 

7.1.3.2. Sources of environmental data 

Data is available for the life cycle processes of a wide array of materials from sources 

such as ecoinvent [5]. Such databases are constantly expanding, but are not an exhaustive 

compilation of all data for every material. Ecoinvent is available to use as an independent source5 

of information regarding material, energy, waste, and emissions flows that result from various 

processes in a product life cycle. Ecoinvent and other databases can also be included with 

simulation software such as SimaPro [30] or GaBi [93]. Results presented in this paper were 

                                                      
5 http://www.ecoinvent.org/database/ 

http://www.ecoinvent.org/database/
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obtained by the use of ecoinvent data within SimaPro software. The purpose of this paper is to 

prescribe a methodology to use such data. It is recommended that a user obtain such access to the 

associated data for the most accurate and robust results. The following section outlines the steps 

to initiate the use of the methodology.  

 

7.2. Rationale for Problem Formulation 

Section 7.1.2 summarized both the credible LCA modeling approaches that have been 

developed by domain experts in recent years and the most significant associated considerations 

during the early stages of product design. An LCA model maps the flows of any substances that 

result from the processes that occur during any defined portion of a product life cycle. The prior 

section reduced the model considered by this approach to the selection of a single variable of the  
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Figure 19:  Mapping of the LCA process from the material selection perspective 
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material type of the main components and its associated mass or solid volume quantity. However, 

Figure 19 shows that each material option has a set of numerous contributing processes and many 

corresponding substances emitted. The mapping of the LCA process computes the resulting 

environmental impacts on the planet, humans, and other species. However, the specific groups of 

environmental impacts and the corresponding computational structures vary depending upon 

which Life Cycle Impact Assessment (LCIA) method is selected. The following subsection 

identifies several of the most widely used methods and some of the relative advantages of these 

various methods. 

 

7.2.1. Selection of a Life Cycle Impact Assessment (LCIA) method to represent 

Seminal works by Wenzel and Hauschild [26,100] introduced a methodology for the 

Environmental Design of Industrial Products (EDIP). This method uses a midpoint approach to 

compute the magnitudes of various categories of environmental impacts from the substances 

emitted and resources consumed throughout the product life cycle. Here, nineteen different 

categories of environmental impacts were identified. Of these nineteen, fifteen of the impacts are 

weighted for direct comparison to each other based on the relative severity to the planet, people, 

and species. There is no such capability for the remaining impact categories of nonrenewable 

resource consumption and three different forms of ecotoxicity. Other impact assessment methods 

include CML2001 [101], Eco-indicator 99 [101], IMPACT 2002+ [102], ReCiPe [103], and 

TRACI [104]. The approach of this paper focuses holistically on the mapping of factors to 

environmental impact responses and the aggregation of the multiple impacts with other attributes. 

The method described in this paper could represent any of these impact assessment methods. The 

2003 version of EDIP was deployed to develop the method presented here.  
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7.2.2. Environmental impacts as design attributes 

Multi-criteria decision making (MCDM) methods were prescribed to evaluate design 

alternatives for traditional design [7,8,10.43]. The Life Cycle Impact Assessment methods, which 

are described in the prior section, model environmental impacts into a form that can be 

represented as criteria in an MCDM model. Prior work introduced an approach to integrate LCA 

models into such a framework for engineering design [46]. This work builds on that prior work 

by introducing a method to represent an entire design space to select specific optimal sets of main 

components of a product. This approach provides the mathematical rigor of MCDM methods to 

the design of products for sustainability. The various environmental impact categories derived by 

the different Life Cycle Impact Assessment methods pose some key questions about how 

environmental criteria should be represented in an MCDM model.  

 

7.2.2.1. Total environmental impact vs. most critical impact 

Section 3.1 introduced the Environmental Design of Industrial Products (EDIP) of 2003. 

Since fifteen of the nineteen environmental impact categories represented by the EDIP method 

are weighted based on severity relative to each other, the weighted sum of these fifteen impacts 

may be considered as a single important criteria, or as an objective to minimize. These impacts 

are all expressed in the common units of Ecopoints [Pt], as Section 2.2 points out. The magnitude 

of Ecopoints can often vary widely across this set of fifteen different impacts. Thus, those with 

the highest magnitude could be considered those with the greatest priority for reduction. Such a 

preference could also depend upon other considerations such as the typical profile of impacts for 

that product family, or any differences in the severity profile of the geographic region where that 

product is likely to be localized. The impact that has the greatest magnitude is likely to vary for 

each design alternative. Thus, a single attribute of the most severe impact would likely be 

difficult to represent by a single model due to the different mapping of the different impacts to 

their factors. Utility theory provides a mathematically rigorous structure to formulate such 
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preferences among multiple attributes and the risk preferences for each single attribute. Utility 

theory has been successfully prescribed for and applied to traditional engineering design 

problems with multiple objectives in recent years [45,105]. Thus, each environmental impact can 

be modeled as an attribute in such a formulation.  

The remaining impacts of nonrenewable resource consumption and the three different 

forms of ecotoxicity would need to be aggregated as separate attributes. The EDIP method has no 

prescription to weigh these impacts based on severity relative either to each other or to the other 

fifteen impacts. However, these impacts can be represented as different attributes in a multi-

attribute utility formulation. Ecotoxicity may exist in the forms of either that which is acute in 

water, chronic in water, or chronic in soil. It may be difficult for a design engineer to express 

preferences among these three different forms of ecotoxicity. However, prior published historical 

data may help to inform the decision maker and perhaps suggest preferences for consideration 

and modification if necessary.  

Such historical data appears in the work of Kietzmann [100]. The data identifies 1990 

actual levels and desired political target levels in a region of study. From these values, the percent 

of reduction desired can be calculated. Here again, preferences can change in different locations 

and at different times. If one may assume for the purposes of product design that this percent of 

reduction desired is consistent with the relative preferences to minimize these three impacts, the 

percentages can be converted into a normalized set of weights for the multi-attribute utility 

formulation of ecotoxicity as shown in Table 10. These weight values should be adjusted as the 

values of actual and desired levels change over time. Here again, the purpose is to provide some 

baseline to model the preferences for engineering design and not to prescribe any new Life Cycle 

Impact Assessment method. Once such preferences are modeled, the model of the main 

environmental attribute would consist of the preference model among ecotoxicity, nonrenewable 

resources consumption, and the aggregation of the fifteen impacts that are weighted relative to 

each other based on severity. Since design for sustainability requires more than just the 
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environmental considerations, a model would need to be extended to include other categories of 

product attributes.   

 

Table 10:  Estimation of preference weights for an ecotoxicity attribute 

 

 

7.2.3. Life Cycle Cost and product performance attributes 

A sustainable design should consider any effects on the people, planet, and profit [2,4]. 

Examination of these effects across an entire design space should include a data set from a 

diverse array of potential material options. Environmental attributes of a given material are a 

function of a set of environmental properties or factors in the form of processes that contribute 

during the significant life cycle stages as Figure 19 indicates. Traditional engineering design 

deploys established physical relationships between defined performance attributes and a set of 

mechanical properties of the materials. Similarly, life cycle cost attributes are mapped from a set 

of cost parameters associated with a given material. Since performance attributes can be defined 

in terms of those objectives that are most important to customers of the product or any other 

stakeholders, this formulation supports the triple bottom line objectives of sustainability to 

maximize the benefits to the people, planet, and profit.  

Figure 20 shows the mathematical construction of such a multi-attribute utility 

formulation. Here, the construction of metamodels can expand the exploration of the entire design 

space. This process is covered more in depth in the following two sections. Initially, the design 

space can be represented by sets of data points associated with design alternatives, where each 

point includes all attributes and associated factors, or independent variables.  

Ecotoxicity 
category

Actual level in 1990 [100]                
[cu.meter/person/year]

Political target level desired  [100]               
[cu.meter/person/year]

% reduction  
of actual 
desired

Preference weights based 
on relative percent 
reduction desired

Water, acute 38000 15000 60.5% 0.329
Water, chronic 420000 170000 59.5% 0.323

Soil, chronic 120000 43000 64.2% 0.348
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7.2.3.1. The question of independence of the multiple attributes 

The attributes in a multi-attribute utility formulation should be independent from each 

other to facilitate the problem formulation [8,106,107]. A multi objective problem exists where, 

in some examples, such as a beam deflection problem, a tradeoff may exist between attributes 

[7,107] such as cost and strength. Such a situation can result in a Pareto optimal frontier, where 
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Figure 20:  Methodology for a Robust Surrogate Modeling Approach for Material Selection in 
Sustainable Design of Products (MASSDOP) 
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the optimal solution is at the intersection of that Pareto optimal curve and a vector that represents 

the weighted preferences among the attributes. Linear correlations and regression models or other 

metamodels can help to identify such relationships between attributes and also to identify which 

independent variables affect which of the attributes.  

The selection of an optimal material in such a model is more complex in that the optimal 

solution is a certain distance away from the closest solution for which a material or set of 

materials exists. Here, Euclidean Distance is a measure that could be used to find the shortest 

distance in the vector space of a given alternative to the optimal. This computation would also 

reveal which of the independent variables would need to change to find a new material that could 

be closer to the optimal solution than could be realized by looking at only the original design set.  

 

7.2.3.1.1. Mechanical properties relationship to environmental impacts 

The problem of material selection raises some questions to consider regarding the 

multiple attributes that represent sustainability. Performance attributes in traditional design for 

material selection usually depend upon various mechanical properties of the materials in a set of 

alternatives. A key question concerns whether these same mechanical properties can be used to 

map to attributes such as environmental impact. Table 11 compares the results of mapping 

mechanical properties to those of mapping the environmental properties of contributing processes 

during a life cycle with the goal of estimating the total environmental impact. This study 

considers a limited data set for one kilogram quantities of six different metals. The results show 

that there is potential to model impacts as a function of normalized values of the mechanical 

properties of materials. However, such models are likely to be less accurate than those which 

express impacts as a function of the contributing processes in the life cycle of the one kilogram of 

material. The importance of accuracy and the techniques for metamodel construction and the 

specific meanings of the independent variables that represent contributing processes will be 

covered in the following two sections. In a utility-based model, it becomes possible to model each 
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attribute as a function of the independent variables upon which an attribute is affected the most. 

Therefore, the following section describes a method to create more accurate relationships to 

model environmental impacts. 

 

Table 11:  Investigation of mapping environmental impact from mechanical property variables 

 

 

 

1 kg
Low 
alloy 
steel

300 
series 

stainless 
steel

Cast 
iron Aluminum Tin Copper

Total sum (Output response) = sum of all input variables Pt units 0.0101 0.0220 0.0122 0.0387 0.1007 0.1750
Remaining processes percentage of total impact 16.57% 21.79% 10.91% 21.73% 14.91% 1.45%
Prior cut off value 1.50% 1.20%
Maximum remaining processes value for 12% of total impact 0.0012 0.0026 0.0046 0.0121
New cut off value 0.57% 0.41%

Resulting surrogate model of environmental independent variables:
Y = 0.01214444 + -0.00185018*A + -1.890768*C*C + 
2428.74*H*H + 442.1518*A*C + -1138.47*A*F
Y Output values predicted by surrogate model 0.0101 0.0220 0.0122 0.0387 0.1007 0.1750
Error = Actual Y - Predicted Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
% Error 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Mechanical properties 
Yield strength  MatWeb MPa 711 458 428 69.6 14 222
Modulus of Elasticity MatWeb GPa 204 195 147 68.4 44.3 116
Poisson's ratio MatWeb 0.29 0.281 0.287 0.33 0.33 0.31
Weight density  MatWeb kg/m³ 7850 7830 7240 2700 7290 8930
Ultimate tensile strength MatWeb MPa 989 742 503 111 220 318
Shear modulus MatWeb GPa 79.8 77.9 58.1 25.9 15.6 44
Charpy impact MatWeb J  56.3 157 15.3
Brinell Hardness MatWeb 276 187 299 32.1 3.9
Machinability MatWeb % 59.8 39 20 20
Fatigue Strength MatWeb MPa 472 369 260 42.6 89.6
Specific heat MatWeb J/g-°C 0.475 0.497 0.506 0.901 0.256 0.385
Thermal conductivity MatWeb W/m-K 46.4 15.4 26.6 229 62 390

Resulting surrogate model of mechanical properties:

Y Output values predicted by surrogate model 0.0116 0.0027 0.0257 0.0529 0.0923 0.1733
Error = Actual Y - Predicted Y -0.0016 0.0193 -0.0136 -0.0142 0.0084 0.0017
% Error 16% 88% 112% 37% 8% 1%

(from 2nd order polynomial regression) depends upon 4 
independent variables

Y = 0.08601715 + -0.0009053282*Modulus of Elasticity*Specific heat + 3.667327E-08*Weight 
density*Thermal conductivity (from 2nd order polynomial regression)

Mechanical properties normalized linearly
Yield strength  MatWeb 1.00 0.64 0.59 0.08 0.00 0.30
Modulus of Elasticity MatWeb 1.00 0.94 0.64 0.15 0.00 0.45
Poisson's ratio MatWeb 0.18 0.00 0.12 1.00 1.00 0.59
Weight density  MatWeb 0.83 0.82 0.73 0.00 0.74 1.00
Ultimate tensile strength MatWeb 1.00 0.72 0.45 0.00 0.12 0.24
Shear modulus MatWeb 1.00 0.97 0.66 0.16 0.00 0.44
Specific heat MatWeb 0.34 0.37 0.39 1.00 0.00 0.20
Thermal conductivity MatWeb 0.08 0.00 0.03 0.57 0.12 1.00

Resulting surrogate model of normalized mechanical properties:

Y Output values predicted by surrogate model 0.0099 0.0211 0.0125 0.0388 0.1009 0.1749
Error = Actual Y - Predicted Y 0.0001 0.0009 -0.0003 -0.0002 -0.0002 0.0001
% Error 1.35% 4.15% 2.44% 0.41% 0.20% 0.04%

Y = 0.09459703 + 1.23379E-05*Specific heat + 0.1828472*Yield strength*Weight density + -0.699115*Yield strength*Specific heat + -
0.003823195*Weight density*Shear modulus + 0.06916236*Weight density*Thermal conductivity
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7.3. Mapping Input Factors to Attribute Outputs 

This section covers the process by which data sets can be formed to use for the surrogate 

model construction that is presented in the following section. The prior section summarized such 

a potential method to model performance attributes as a function of mechanical properties of 

materials as described in previous works pertaining to traditional engineering design [108]. 

Sections 7.1.3.1 and 7.2.3 summarized a similar process to construct life cycle cost models. 

Figure 19 illustrates the mapping of life cycle processes of a given material to their environmental 

impacts. This process is complicated more so in the case of environmental impacts than in the 

case of cost and performance attributes by the large number of factors upon which the 

environmental impacts depend. The following subsection addresses this issue by introducing a 

novel approach to mitigate this complication.  

 

7.3.1. The issue of dimensionality in Life Cycle Assessment (LCA) 

The Life Cycle Assessment (LCA) of any given product, component, or unit mass of 

material is composed of several hundred different process contributions, which are composed of 

several hundred different substances of varying quantities emitted during the various processes. 

However, a significant number of both the numerous processes and substances contribute 

relatively insignificant quantities to environmental impacts. Furthermore, all of the significant 

contributing processes were found to fit into a much smaller number of broader categories of 

processes. These two key topics are addressed specifically in the following two subsections.  

 

7.3.1.1. Factor significance tradeoff between dimensionality and model accuracy 

Any model that depends upon several hundred different variables would be difficult to 

work with. The question then concerns how many of the variables with low quantity can be added 

into a residual variable category called “Remaining processes”. One approach could be to find an 
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optimal cut off quantity under a certain percentage of the total. This cut off quantity could be 

based on keeping a percentage limit of the total for the sum of the remaining processes. The top 

portion of Table 11 shows that a limit of twelve per cent for the sum of the remaining processes, 

for six different materials in that data set, kept the remaining processes variable to a low level of 

significance in a metamodel constructed by second order polynomial regression. It is important to 

limit the significance of the remaining processes variable in any model, because it is a residual 

term. Significance of any residual term, such as error, could affect the accuracy and predictability 

of the model. However, if this residual term is reduced by too much, the number of variables 

could be too numerous to include for model construction and optimization. The construction of a 

meaningful model could also be compromised when there are fewer than three variables.  The 

specific heuristic that was used to establish the cutoff amount for each data point is shown in 

Figure 21. A maximum safe limiting target value of 11% of an attribute was estimated for the 

residual variable of the total remaining processes after the cut off operation. This estimate was  

R < 0.11Y?

R = Remaining 
processes 
variable;

Y = Total impact 
attribute

Decrease cut 
off %age 

No

Yes

N = number of 
processes 
variables;

C = number of 
consolidated 

variables

N < 5
or

C < 3?

Decrease cut 
off %age 

Proceed to 
variable 

consolidation 
procedure

No

Yes

 

Figure 21:  Process to include significant variables 
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obtained by the results of a limited empirical test to achieve one accurate model, as shown in the 

top of Table 11.The following subsection describes a process to address this issue of 

dimensionality. 

 

7.3.1.2. Consolidation of many factors 

The process described in the prior subsection reduces the number of variables from 

several hundred down to anywhere from several to about thirty depending upon the category of 

environmental impact and the material that the LCA computation is generated for. The larger 

number of variables could still be too difficult to use and the variables that appear as significant 

can change from one material to another. However, a close look at the description of processes in 

all cases reveals that all processes can consolidate into one of the dozen categories listed in Table 

12. These dozen variables are all one of three different types of flows in the life cycle processes: 

material production process flows, energy flows, and waste flows as shown in Figure 19. Thus, 

further reduction in the number of variables is achievable, but that would limit the amount of 

specific information compared to the dozen variables shown in Table 12.  

The method to obtain a usable data point to map these processes to their associated 

environmental impact for a given material is now simplified to a four step procedure. First, each 

process is identified by the variable letter A through L of the category into which it fits. Second, 

all processes are sorted to align the variable letters together. Third, the processes of all values 

with the same variable letter are summed to compute the total value of that independent variable. 

Fourth, sums are entered as the associated variable value. Figure 22 shows the succession of these 

process steps. Table 13 shows an actual example of how one of these data points was generated 

using this process. Contributing processes and substances can both be expressed in weighted units  
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Pi;

For i = 1,…,N

Pi = Aj?
Pi = Bj?

or…
Pi = Lj?

A = sum(Aj)

B = sum(Bj)

…

L = sum(Lj)
 

Figure 22:  Process to consolidate environmental parameters 

 

Table 12:  Descriptions of consolidated environmental variable categories 

 

 

of Ecopoints [Pt]for consistent comparisons. The value of the residual variable of remaining 

processes is labeled as R and was computed by the procedure described in the prior subsection. A 

final check should be done to add the Pt values of variables A through L together along with the  

Total sum (Output response) = sum of all input variables Y [5,30] Pt
Process Project Unit

Major input variables identified categorically for materials

Independent 
variable

Remaining processes R Pt
Final or raw material process /RER WITH US ELECTRICITY U A US-EI 2.2 Pt
Radioactive waste, in final repository for nuclear waste, or Uranium, enriched 3.8%, at USEC 
enrichment plant WITH US ELECTRICITY U

B US-EI 2.2 Pt

Disposal, sulfidic tailings, off-site/GLO WITH US ELECTRICITY U C US-EI 2.2 Pt

Disposal, spoil from coal mining, in surface landfill/GLO WITH US ELECTRICITY U D US-EI 2.2 Pt

Process-specific burdens, residual or inert material, or sanitary, landfill (including slag 
compartment), or municiple waste incineration/CH WITH US ELECTRICITY U

E US-EI 2.2 Pt

Disposal, sludge, remud, basic oxygen furnace wastes, average incineration residue, lead 
smelter slag, or hard coal ash, to residual material landfill WITH US ELECTRICITY U

F US-EI 2.2 Pt

Disposal, spoil from lignite mining, in surface landfill/GLO WITH US ELECTRICITY U G US-EI 2.2 Pt
Hard coal (or Lignite), or heavy (or light) fuel oil, or natural gas (inc. sweetening), or pellets 
burned in power plant, gas turbine (compressor station), or industrial furnace/WITH US 
ELECTRICITY U

H US-EI 2.2 Pt

Blasting/RER WITH US ELECTRICITY U I US-EI 2.2 Pt

Crude oil onshore or natural gas (inc. transported in pipeline, or sour gas in gas turbine), at 
production, or diesel burned in building machine or diesel-electric generating set, or 
transoceanic freight ship (or lorry operation)/WITH US ELECTRICITY U

J US-EI 2.2 Pt

Disposal, hazardous waste, 0% water, to underground deposit or hazardous waste incineration 
WITH US ELECTRICITY U

K US-EI 2.2 Pt

Disposal, municipal solid waste, 22.9% water, or inert material, 0% water, to sanitary or 
residual material landfill or municipal incineration WITH US ELECTRICITY U

L US-EI 2.2 Pt
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Table 13:  Example of the variable consolidation process implemented by sort and sum 

No Process Project Unit Total 
Variable 
category 

19 Silicon carbide, at plant/RER WITH US ELECTRICITY U US-EI 2.2 Pt 0.00099 A 

5 
Uranium, enriched 3.8%, at USEC enrichment plant/US 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.00027 B 

16 
Radioactive waste, in final repository for nuclear waste 
SF, HLW, and ILW/CH WITH US ELECTRICITY U US-EI 2.2 Pt 0.00059 B 

21 
Radioactive waste, in final repository for nuclear waste 
LLW/CH WITH US ELECTRICITY U US-EI 2.2 Pt 0.00131 B 

8 
Disposal, sulfidic tailings, off-site/GLO WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00029 C 

25 
Disposal, spoil from coal mining, in surface landfill/GLO 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.01046 D 

11 
Process-specific burdens, sanitary landfill/CH WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00036 E 

13 
Process-specific burdens, residual material landfill/CH 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.00046 E 

14 
Disposal, hard coal ash, 0% water, to residual material 
landfill/DE WITH US ELECTRICITY U US-EI 2.2 Pt 0.00049 F 

23 
Disposal, spoil from lignite mining, in surface landfill/GLO 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.00271 G 

4 
Hard coal, burned in power plant/SPP WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00024 H 

7 
Hard coal, burned in power plant/MRO WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00029 H 

9 
Hard coal, burned in power plant/WECC WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00035 H 

20 
Hard coal, burned in power plant/SERC WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00124 H 

22 
Hard coal, burned in power plant/RFC WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00154 H 

6 Blasting/RER WITH US ELECTRICITY U US-EI 2.2 Pt 0.00028 I 

1 
Natural gas, at consumer/RNA WITH US ELECTRICITY 
U US-EI 2.2 Pt 0.00021 J 

2 
Natural gas, sour, burned in production flare/MJ/GLO 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.00023 J 

3 
Operation, freight train, diesel/RER WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00024 J 

10 
Crude oil, at production onshore/RAF WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00036 J 

15 
Natural gas, at production/RNA WITH US ELECTRICITY 
U US-EI 2.2 Pt 0.00053 J 

17 
Crude oil, at production onshore/RU WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00059 J 

18 
Crude oil, at production onshore/RME WITH US 
ELECTRICITY U US-EI 2.2 Pt 0.00085 J 

12 
Disposal, inert material, 0% water, to sanitary landfill/CH 
WITH US ELECTRICITY U US-EI 2.2 Pt 0.00037 L 

24 
Disposal, hard coal ash from stove, 0% water, to sanitary 
landfill/CH WITH US ELECTRICITY U US-EI 2.2 Pt 0.00403 L 

  Remaining processes   Pt 0.00344 R 

  Total of all processes   Pt 0.03270 Y 

            

        Sum of variable   

        0.00217 B 

        0.00082 E 

        0.00367 H 

        0.00300 J 

        0.00440 L 
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value of R. The total sum should be equal to that environmental impact’s total value in Pt if the 

procedure was executed correctly. The scalability of the mapping of all these variables was 

confirmed by a test of one material. 

 

7.3.2.  Aggregation of attributes for Multi-Criteria Decision Making (MCDM) 

Section 7.2.2.1 described the nineteen different environmental impact categories and 

groupings for weighted comparisons as defined by the Environmental Design of Industrial 

Products (EDIP) [26]. Here, a decision maker should articulate the preferences among these 

nineteen attributes, and the preferences should be modeled consistently. Various utility-based 

methods have been prescribed to achieve consistent preference modeling [10,45,109]. The large 

number of nineteen attributes poses a challenge that remains a topic for further research. 

However, the fact that the EDIP method does provide weighting based on severity for fifteen of 

these nineteen impacts could help. The total impact of these fifteen is computed during the LCA 

process by using this weighting into an aggregated attribute named the Single Score [94]. Thus, 

the remainder of this paper will focus on the modeling of this single score attribute, because the 

procedure to create the model for any other environmental impact would be the same as is 

described in this section.  

However, an open question posed in Section 7.2.2.1 concerns a scenario in which a 

decision maker may prioritize minimization of the worst or highest magnitude environmental 

impact among the fifteen different impacts. Table 14 provides an initial view of model accuracy 

and predictability that may be expected when models are created for specific highest magnitude 

impacts. The table shows results from models constructed by both second order polynomial 

regression and Kriging method. This test indicated that the accuracies of the models are 

significantly better when specific impacts are modeled on their own instead of mixed with others. 

This suggests a limitation to consider when the goal is to minimize the highest magnitude 
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impacts. Alternatively, each impact could be modeled as a single attribute. Section 7.2.2.1 

suggests a method to aggregate the remaining four of nineteen impacts into a decision model.  

 

7.3.3. Representation of parametric uncertainty 

Uncertainty of environmental data is another important issue to take into account [38]. 

Ecoinvent provides a formulation to do so [5]. Software such as SimaPro is capable of estimating 

the uncertainty bands of all the impacts by executing Monte Carlo simulations based on the  

 

Table 14:  Initial model tests of highest magnitude environmental impacts 

 

Greatest 
impact Group

Number 
of 

materials 
in the 
group

Number of 
materials 
used for 
model 

construction

R-sq 
adjusted 

%age 
precision 
of model 
from PR

Significance 
of residual 
variable, R, 
in PR model 

equation

Number 
of 

variables 
in model

R-sq 
adjusted 

%age 
precision 
of model 

from 
Kriging

First test 
material for 

model 
validation

Error 
between 
first test 
material 
and PR 

model % 
of actual

Error 
between 
first test 
material 

and Kriging 
model % of 

actual

Second test 
material for 

model 
validation

Error 
between 
second 

test 
material 
and PR 

model % 

Error 
between 
second 

test 
material 

and 
Kriging 

Potential uses

Aquatic 
eutrophication 

EP(P)
29 11 100% Moderate 5 31.9% Brass 0.0% -0.2% Magnetite 0.0% 0.6%

Both models look 
very promising. 

Human toxicity 
water

21 7 100%
Moderate to 

High
4 88.4% Nylon 6 0.6% -28.0%

HDPE 
granulate

109.8% 133.5%

This may need 
some additional 
segregation to 

model by material 
group too.  

Human toxicity 
water

Zinc -35.8% 1.2% PVC -4.1% -15.0%

Aside from the 
outlier material, 

the PR model may 
be usable but with 

a fairly high 
variance.

Human toxicity 
water

21 11 100% Moderate 5 67.50%

Polyester 
resin glass 

fiber 
reinforced 

hand lay up

-37.4% 0.9%
Polystyrene 

GPPS
-18.6% -0.2%

 This test adds 4 
data points into 

the model.

Acidification 6 2

Ozone 
formation 
(Human)

3 1

Slags and ashes 1 1

Bulk waste 7 2
Ozone 

depletion 
2 2

Human toxicity 
air

5 2

Greater model 
uncertainty for 

this group is likely 
due to small 

groups of more 
disparate data.  

This is the 3rd and 4th validation test for this attribute.

Green 
veneer 

plywood

Oriented 
strand 
board

100%
Low to 

moderate
6 24.80% 0.0% 1.3% 30.0% -1.8%

Surrogate Model Construction of Greatest Environmental Impacts for 1 kg Unit of Each Material Summary of Results
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distributions of substances emitted during life cycle processes. Prior work [46] demonstrates that 

accounting for uncertainty in both environmental and cost attributes can influence which 

alternative is selected. Although mean values are presented in this paper, expected utility 

formulations can provide effective methods to simultaneously consider both utility and 

probabilistic uncertainties [44,110]. The best use of such methods for sustainability remains a 

topic for further research. In addition to uncertainty in data, uncertainty in a surrogate model, or 

approximate model, is another important consideration. The following section covers topics 

related to the construction of the surrogate models.  

 

7.4. Surrogate Model Construction 

The first step in the construction of a surrogate model is to generate a set of data points 

consisting of the values of all independent variables and their associated attributes or responses. 

Such a data set was generated for the single score, or total environmental impact, of a diverse 

array of seventy-two different materials by using the method introduced in the prior section. This 

data set was extracted from the Life Cycle Assessment in units of Ecopoints [Pt] [30] per 

kilogram of each of the materials. All values were converted to units of Pt per cubic meter by 

multiplying by the mass density of each material as recommended in Section 7.1.3. With such a 

significant number of data points, a portion of the data can be used to construct the surrogate 

model while the remaining data can be used to test the predictability of the model. The following 

subsection introduces a novel approach to identify a sample set.  

 

7.4.1. Design space filling 

Data that represents material properties poses a unique challenge for the construction of a 

surrogate model. Data related to materials has a specific and discrete location that is too inflexible 

for most sampling approaches. Conventional methods such as orthogonal arrays, Hammersley 
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Sequence Sampling, Latin Hypercubes, and uniform designs [111,112] require strategic data 

locations that are uniform and balanced. The challenge is to find a way to approximate a viable 

space filling method to optimize model accuracy and robustness given the inherent limitations. 

Material selection could introduce some potential for groupings based on common characteristics 

within groups of materials. The following subsection highlights such an investigation.  

 

7.4.1.1. Potential for stratified sampling 

Ashby introduced charts [108] to identify groups of materials based on locations in a 

design space as defined by mechanical property values for traditional design. Figure 23 shows a 

similar grouping identified based on environmental properties. Here, four groups were segregated 

based on the single score, which is the third axis not shown here. A three dimensional chart 

would show four different bubbles in separate locations in that space. The interesting differences 

between the groups are the ranges of the percentage of the top two environmental impacts of the 

total impacts and the percentage that impacts from the end of life stage of the life cycle are of the 

 

 
 
Figure 23:  Materials stratified into groups with separate ranges of total environmental impact  
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Top 2 impacts 
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impacts 

Estimated End of Life % of Total 
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Polymers and other
materials with moderate
to low impacts

Wood-based and other
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Table 15:  List of materials to choose from in a data set 

Material extraction process for 1 kg of: Material extraction process for 1 kg of: 

Aluminium alloy, AlMg3, at plant Limestone, milled, packed, at plant 
Aluminium, primary, at plant Lithium, at plant 
Antimony, at refinery Magnesium, at plant 
Asbestos, crysotile type, at plant Magnesium-alloy, AZ91, at plant 
Bauxite, at mine Magnetite, at plant 
Brass, at plant MG-silicon, at plant 
Brick, at plant Mischmetal, primary, at plant 
Bronze, at plant Molybdenite, at plant 
Cadmium, primary, at plant Nickel, 99.5%, at plant 
Carbon black, at plant Nylon 6, at plant 
Cast iron, at plant Nylon 6, glass-filled, at plant 
Sanitary ceramics, at regional storage Nylon 66, at plant 
Charcoal, at plant Nylon 66, glass-filled, at plant 
Chromium steel 18/8, at plant Oriented strand board product 
Clay, at mine Palladium, primary, at refinery 
Cobalt, at plant Pig iron, at plant 
Cold rolled sheet, steel, at plant  Platinum, primary, at refinery 
Concrete block, at plant Plywood, at plywood plant 
Copper, primary, at refinery Polybutadiene, at plant 
Corrugated board, mixed fibre, single wall, at plant Polycarbonate, at plant 

Dry veneer, at plywood plant Glass fibre reinforced plastic, polyester resin, hand lay-up, at 
plant 

Epoxy resin, liquid, at plant Polypropylene resin, at plant  
Polystyrene, expandable, at plant Polystyrene, general purpose, GPPS, at plant 
Ferrite, at plant Polystyrene, high impact, HIPS, at plant 
Ferrochromium, high-carbon, 68% Cr, at plant Polyurethane, rigid foam, at plant 
Ferromanganese, high-coal, 74.5% Mn, at regional 
storage Polyvinylchloride, at regional storage 

Ferronickel, 25% Ni, at plant Rhodium, primary, at refinery 
Flat glass, uncoated, at plant Iron scrap, at plant 
Glass fibre, at plant Silicon carbide, at plant 
Gold, primary, at refinery Silicone product, at plant 
Graphite, at plant Silver, from combined gold-silver production, at refinery 
Green veneer, at plywood plant Steel, low-alloyed, at plant 
High density polyethylene resin, at plant  Synthetic rubber, at plant 
High impact polystyrene resin, at plant Tetrafluoroethylene, at plant 
Iron-nickel-chromium alloy, at plant Tin, at regional storage 
Dry rough lumber, at kiln Titanium zinc plate, without pre-weathering, at plant 
Laminated veneer lumber, at plant Uranium natural, at mine 
Linear low density polyethylene resin, at plant  Zinc, primary, at regional storage 
Lead, primary, at plant Zinc oxide, at plant 
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total impacts, shown as the two axes in Figure 23. This information could be useful to a decision 

maker when articulating the preferences among environmental impacts as explained in Section 

7.3.2. However, Table 16 compares, based on some random sampling, modeling of each group in 

isolation to modeling of four of the five groups consolidated into one main group. The groups are 

labeled A through D with A having the highest environmental impact and D the lowest. The  

 

Table 16:  Comparison of model construction with and without stratification 

 

Material 
Group

Number of 
materials 

in the 
group

Number of 
materials 
used for 
model 

construction

R-sq 
adjusted 

%age 
precisio

n of 
model 

from PR

Significance 
of residual 
variable, R, 
in PR model 

equation

Number 
of 

variables 
in model

R-sq 
adjusted 

%age 
precision 
of model 

from 
Kriging

First test 
material for 

model 
validation

Error 
between 
first test 
material 
and PR 

model % 
of actual

Error 
between 
first test 
material 

and 
Kriging 

model % 

Second test 
material for 

model validation

Error 
between 
second 

test 
material 
and PR 

model % 

Error 
between 
second 

test 
material 

and 
Kriging 

Potential uses

Very High 
Impact

6 5 100%
Moderately 

High
4 54.8% Palladium 1.1% 107.0% NA NA NA

PR model 
should be 

adequate to 
roughly 

estimate this 
suboptimal 

region.

A 23 10 100% Moderate 10 53.4% Zinc 5.8% 249.4% Brass 1.4% 58.8% PR model only

B 17 6 100% Moderate 6 81.1% Nylon 6 -23.5% 8.8%
Oriented strand 

board
62.5% -2.2%

Kriging model 
only

C 16 5 100% Moderate 5 9.7%
Polyvinylchloride 

PVC
-14.4% 2.1%

Kriging better 
so far, but the 

Rsq is a 
concern.

D 17 7 98.4% Very high 1 99.6% HDPE granulate NA -60.5%
Green veneer 

plywood
NA -47.4%

Not 
recommended

Groups B 
and C 

33 11 98.8% Very low 6 88.1% Nylon 6 -55.7% -17.0%
Polyvinylchloride 

PVC
4.5% 5.7%

Not as good as 
separated 

group models

Groups A, 
B, and C

56 21 100% Fairly low 11 41.3% Zinc -0.7% -1.4% Nylon 6 -93.0% 34.6%

Maybe better 
for Group A 

than for Group 
C

Groups A 
through D 

73 28 100% Very low 13 22.8% HDPE granulate 8.0% -23.3% Zinc -0.5% -5.1%

PR model looks 
best so far, and 

this single 
model may be 

the best overall.
Groups A 
through D 
combined 

on a 
volume 

unit basis 

73 28 100% Low 11 37.1% HDPE granulate 35.0% 3.0% Zinc -3.9% -3.1%

This scaling 
adjustment may 

have some 
effect on model 

accuracy.  

Surrogate Model Construction for Total Environmental Single Score for 1 kg Unit of Material Summary of Results
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results show that potential model accuracy should be better when the groups are modeled 

together. The population size of the data is significantly reduced when the stratified groups are 

modeled separately. One small group that was not included contained just six materials that all 

had unusually high impacts. That group was not included both for reasons of scalability and for 

the very low likelihood that such materials could ever be optimal for a sustainable design. Table 

15 shows the specific life cycle process of material extraction used to generate data for all of the 

seventy-eight different materials that could be selected to model a design space. The next 

subsection discusses potential options to select an initial sample set.  

 

7.4.1.2. Space Filling Sampling (SFS) 

Random sampling could have unpredictable results. One study compared the use of 

random sampling, stratified sampling, and Latin Hypercube [113]. All three approaches have 

some degree of randomness. A Latin Hypercube design requires space filling with data in specific 

cell locations, but the location within each cell is randomized. This study by McKay and 

associates [113] found Latin Hypercube to usually be at least as accurate for the examples studied 

in comparison to both random sampling and stratified sampling. Thus, Latin Hypercube becomes 

the most obvious choice for this situation of nonflexible data locations for material alternatives. 

Even with multiple generations of Latin Hypercube random locations within the cells, it is still 

very unlikely that locations can match exactly with data locations. Therefore, the resulting design 

is likely to be neither perfectly orthogonal nor perfectly rotatable. However, it is possible to find a 

Latin Hypercube design that minimizes the Euclidean distances between the design points and the 

closest data points. 

Several trials of executing this algorithm to find the minimum mean Euclidean distance 

among several runs from the data set of seven-two materials are shown in Table 17. These results 

reveal that most all of the designs generated with such material related data call for design points 

to be filled by replicated data points. That is why it becomes necessary to repeat the search 
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process for new data points. These trials revealed that the number of design points obtainable by 

this process is limited to usually not enough data to construct a surrogate model from. This is 

likely to be a real limitation in that there are no practical ways to increase the size of the cells to 

allow for more randomization. Husslage and associates [114] pointed out three possible ways to 

increase the cell sizes of a Latin Hypercube design of: increase in the population size, decrease in 

the number of variables, and decrease in the number of sample points. The decrease in the 

number of sample points would be the opposite of what is needed here. Population size is limited 

by the amount of data or design alternatives in the set. A decrease in the number of variables is 

possible, but information about specific assignable causes would be lost in doing so. Thus, there 

is a limit to the size of the initial sample set. However, this limitation could be acceptable,  

 

Table 17:  Best sample data identified by SFS 

Index numbers of materials identified 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 

30 6 2 40 40 
2 1 1 6 1 

22 22 2 1 40 
40 40 30 30 2 
44 6 30 44 40 
30 40 30 6 40 
40 2 40 40 30 
6 40 22 30 2 

40 40 22 44 40 
40 40 1 40 6 
22 2 6 44 40 
6 30 6 2 27 

30 6 40 44 44 
40 30 6 2 30 
44 40 30 40 1 
1 44 40 44 1 
2 30 39 6 30 
2 44 30 30 40 
6 44 2 40 2 

40 30 40 30 16 
6 1 1 6 30 

42 22 44 6 30 
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because prior studies [84,115-117] indicated that the best surrogate models could be constructed 

by a two stage process in some cases.  The next subsection introduces a second stage for this 

process. 

 

7.4.1.3. Sequential Infilling Sampling (SIS) 

Sequential infilling can improve the surrogate model accuracy and predictability, because 

it uses information from the original sample. Many of the prescribed approaches for sequential 

infilling require data selection at predefined locations with minimal deviations [82,85,118] and 

are thus not applicable to this situation of material selection. The study conducted by Jin and 

associates [115] provides a comparison among various potential methods that could be evaluated 

for suitability for this situation. This study identifies some SIS methods that are most applicable 

only to evenly spaced designs with the Kriging predictive modeling method, such as Maximum 

Entropy, Mean Squared Error, and Integrated Mean Squared Error. The study also identifies other 

SIS methods that are not limited to the predictive models, such as Maximin Distance, and new 

proposed methods of Maximin Scaled Distance, and cross-validation.  

This study by Jin and associates [115] compared these methods in six different examples. 

One of the examples is comparable to an environmental impact example in that it is nonlinear 

with a dozen variables. Maximin Distance outperformed cross-validation in four of the six 

examples, and Maximin Distance outperformed Maximin Scaled Distance in the nonlinear 

example with a dozen variables. Both Maximin Distance and cross-validation usually 

outperformed a one stage approach without any SIS. The advantage of cross-validation is the lack 

of a need for new sample points, but that advantage is not applicable in this case where there 

usually are not enough sample points from the first stage. Maximin Scaled Distance allows for 

weights to be applied to all variables. The results indicate that any advantage may be mitigated 

for a higher dimension example. Therefore, the remainder of this paper focuses on the use of an 
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SIS method of Maximin Distance. Maximin Distance prioritizes those data points that have the 

furthest Euclidean distance away from points already in the sample set.  

One important question concerns how much of the entire data set should be used to fill 

the sample set at this second stage and how much should remain to test the model. The first study 

in this work examines the total single score environmental impacts in Ecopoints per cubic meter 

for all seventy-two different materials in the generated data set. The Latin Hypercube process 

presented in the prior subsection identified fourteen data points to use for the original sample set. 

The chart in Table 18 shows the ordered list of the Maximin distances computed for the 

remaining data points. Although twenty-two more points would be needed to fill the sample set 

with half of the data, only the first nine points in this example have significantly greater distances 

than other points. When the size of the remaining sample set increased from the nine data points 

to the top twenty-two data points, the average absolute error of the resulting model dropped from 

8.7% (with four high leverage data points) to 3.8%. However, it is possible that a model with the  

 

Table 18:  Maximin distances for SIS prioritization 

Index numbers of materials in the remaining 
design space 

Mean Euclidean distance of the data point to 
points in the original sample set 

2 69.63 
24 53.96 
22 41.32 
17 6.97 
23 6.36 
21 1.60 
31 1.50 
8 1.26 
6 1.24 

32 1.19 
4 1.18 

58 1.18 
57 1.18 
54 1.17 
53 1.17 
14 1.17 
1 1.17 
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smaller number of sample points could have better prediction accuracy of the points that are not 

included in the model. Results will vary for different models of different data sets. Criteria for 

testing the models are covered more in depth in Section 7.4.3. The following subsection discusses 

potential methods to construct the surrogate models from the sample data sets created. 

 

7.4.2. Response surface modeling methods comparison 

Metamodel construction techniques have advanced in recent years especially for 

computer experiments that sample with little or no error and use predefined and uniform data 

locations [83-85,119,120]. Here again, the material selection situation is a different case. Kriging 

method uses information from the model to predict intermediate data location estimates. Kriging 

method improved model accuracy in some cases over second order polynomial regression where 

the number of variables was high [121,122]. Few studies have been done using Kriging in 

situations without uniform data locations.  

Second order polynomial regression should improve the model for optimization purposes 

compared to the first order linear model that was described in Section 7.3.1.2. The second order 

model, unlike the flat plane of a first order model, would emphasize the hill and valley optimal 

regions. However, since regression is a curve fitting approach, prior researchers have identified a 

potential issue with smoothing out the best (SOB) regions of a curve [89,123]. Therefore, this 

work compares the results of using both Kriging and second order polynomial regression methods 

for response surface modeling. For the example described at the end of the last subsection with a 

sample size of thirty-six points, the R-squared adjusted was 100% for the second order 

polynomial regression model compared to an R-squared adjusted of 28.64% for the Kriging 

model. For the same example with the sample size of twenty-three data points, the R-squared 

adjusted of the Kriging model improved to 98.40%, while the second order polynomial regression 

model stayed at 100%. Results are likely to vary between data sets and for different examples. So, 
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each model should be tested and evaluated individually. The following subsection covers testing 

criteria.  

 

7.4.3. Model testing 

A designer would need to evaluate whether or not a constructed approximate model is 

adequate to use to optimize for a given design situation. Research topics concern the accuracy of  

 

Table 19:  Original sample set after Latin Hypercube space filling sampling 

 

From 2nd order Polynomial Regression

  DATA                 Y                    YHAT                   RESIDUAL                  StdR         StuR
Residual % error

Absolute 
value of % 

error
Material Y

Data 
point

     1  0.1426823E+00003  0.1428457E+00003  -.1634086E+00000     -0.8381     -1. -1.63E-01 -0.1% 0.1% AlMg3 142.682 1
     2  0.9665366E+00004  0.9665327E+00004  0.3904724E-00001      0.2003      0.5 3.90E-02 0.0% 0.0% Antimony 9665.37 2
     3  0.3766261E+00003  0.3766122E+00003  0.1391075E-00001      0.0713      0.2 1.39E-02 0.0% 0.0% Cobalt 376.626 6
     4  0.1021553E+00004  0.1021585E+00004  -.3217021E-00001     -0.1650     -0.4 -3.22E-02 0.0% 0.0% Iron nickel-c  1021.55 16
     5  0.3149437E+00003  0.3149419E+00003  0.1824527E-00002      0.0094      0.0 1.82E-03 0.0% 0.0% Lead 314.944 18
     6  0.3809048E+00004  0.3809060E+00004  -.1201281E-00001     -0.0616     -0.2 -1.20E-02 0.0% 0.0% Uranium na 3809.05 22
     7  0.1720124E+00003  0.1719697E+00003  0.4269534E-00001      0.2190      0.5 4.27E-02 0.0% 0.0% 300 series st  172.012 27
     8  0.1044364E+00003  0.1042832E+00003  0.1532335E+00000      0.7859      1. 1.53E-01 0.1% 0.1% Aluminum 104.436 29
     9  0.7343848E+00003  0.7342995E+00003  0.8533886E-00001      0.4377      0.8 8.53E-02 0.0% 0.0% Tin 734.385 30
    10  0.7424525E+00004  0.7424570E+00004  -.4510647E-00001     -0.2313     -0. -4.51E-02 0.0% 0.0% Molybdenit 7424.53 39
    11  0.2980018E+00004  0.2980025E+00004  -.6820319E-00002     -0.0350     -0. -6.82E-03 0.0% 0.0% Nickel 2980.02 40
    12  0.6190798E+00003  0.6190817E+00003  -.1854778E-00002     -0.0095     -0. -1.85E-03 0.0% 0.0% Mischmetal 619.08 42
    13  0.1329016E+00003  0.1330059E+00003  -.1043142E+00000     -0.5350     -0 -1.04E-01 -0.1% 0.1% Magnesium  132.902 43
    14  0.1013786E+00003  0.1013490E+00003  0.2963721E-00001      0.1520      0. 2.96E-02 0.0% 0.0% Silicon carb 101.379 44

Mean = 0.0%
Std Dev = 0.0%

From Kriging

  DATA                 Y                    YHAT                      RESIDUAL               StdR
Residual % error

Absolute 
value of % 

error
Material Y

Data 
point

     1  0.1426823E+00003  0.1405466E+00003  -.2135731E+00001     -0.1872 -2.14E+00 -1.5% 1.5% AlMg3 142.682 1
     2  0.9665366E+00004  0.1255297E+00005  0.2887604E+00004      3.3044 2.89E+03 29.9% 29.9% Antimony 9665.37 2
     3  0.3766261E+00003  0.4220802E+00003  0.4545412E+00002     -0.1297 4.55E+01 12.1% 12.1% Cobalt 376.626 6
     4  0.1021553E+00004  0.1018564E+00004  -.2988678E+00001     -0.1883 -2.99E+00 -0.3% 0.3% Iron nickel-c  1021.55 16
     5  0.3149437E+00003  0.3087713E+00003  -.6172373E+00001     -0.1921 -6.17E+00 -2.0% 2.0% Lead 314.944 18
     6  0.3809048E+00004  0.4009645E+00004  0.2005971E+00003      0.0577 2.01E+02 5.3% 5.3% Uranium na 3809.05 22
     7  0.1720124E+00003  0.1800641E+00003  0.8051736E+00001     -0.1749 8.05E+00 4.7% 4.7% 300 series st  172.012 27
     8  0.1044364E+00003  0.9666658E+00002  -.7769823E+00001     -0.1940 -7.77E+00 -7.4% 7.4% Aluminum 104.436 29
     9  0.7343848E+00003  0.5985796E+00003  -.1358052E+00003     -0.3487 -1.36E+02 -18.5% 18.5% Tin 734.385 30
    10  0.7424525E+00004  0.6240122E+00004  -.1184403E+00004     -1.6158 -1.18E+03 -16.0% 16.0% Molybdenit 7424.53 39
    11  0.2980018E+00004  0.3317994E+00004  0.3379765E+00003      0.2237 3.38E+02 11.3% 11.3% Nickel 2980.02 40
    12  0.6190798E+00003  0.6153330E+00003  -.3746827E+00001     -0.1892 -3.75E+00 -0.6% 0.6% Mischmetal 619.08 42
    13  0.1329016E+00003  0.1346099E+00003  0.1708327E+00001     -0.1826 1.71E+00 1.3% 1.3% Magnesium  132.902 43
    14  0.1013786E+00003  0.1024939E+00003  0.1115299E+00001     -0.1833 1.12E+00 1.1% 1.1% Silicon carb 101.379 44

Mean = 8.0%
Std Dev = 8.7%

Y = 119.933 + 0.997418*C + 0.2280506*E + 0.01569349*R*R + -0.01026542*E*E + 0.003467568*I*I + 0.0168828*A*D + -0.01300526*C*F + 0.09502298*C*J + 
0.06335243*D*E + -0.3746707*E*G + -0.1384156*H*L
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the model, the reliability of the model, and how robust the model is to use for its intended purpose 

[89,120]. Model accuracy is measured by how close sample points that are included in the model 

are to the model itself. Model reliability or predictability is measured by how close any points 

that are not included in the model are to the model itself. The model robustness takes into account 

the resolution between rank adjacent alternatives identified by the model and the effect of all  

 

Table 20:  Model accuracy after the Maximin Distance sequential infilling sampling 

 

After Infilling with Maximin distance:

 DATA                 Y              YHAT          RESIDUAL        StdR        StuR
Residual % error

Absolute 
value of % 

error
Material Y Data 

point

     2  0.9665366E+00004  0.9665366E+00004  0.4875838E-00003      0.0047      0.0280 4.88E-04 0.0% 0.0% Antimony 9665.366 2
    39  0.7424525E+00004  0.7424526E+00004  -.1229936E-00002     -0.0118     -0.0701 -1.23E-03 0.0% 0.0% Molybdenite 7424.525 39
    22  0.3809048E+00004  0.3809049E+00004  -.1098495E-00002     -0.0105     -0.0628 -1.10E-03 0.0% 0.0% Uranium natura 3809.048 22
    31  0.1562633E+00004  0.1562632E+00004  0.1437907E-00002      0.0138      0.0697 1.44E-03 0.0% 0.0% Copper 1562.633 31
    18  0.3149437E+00003  0.3149433E+00003  0.4364565E-00003      0.0042      0.0082 4.36E-04 0.0% 0.0% Lead 314.9437 18
    44  0.1013786E+00003  0.1013788E+00003  -.1634298E-00003     -0.0016     -0.0094 -1.63E-04 0.0% 0.0% Silicon carbide 101.3786 44
    40  0.2980018E+00004  0.2980012E+00004  0.6493939E-00002      0.0621      0.3351 6.49E-03 0.0% 0.0% Nickel 2980.018 40
     4  0.2641319E+00004  0.2641306E+00004  0.1277924E-00001      0.1222      0.2796 1.28E-02 0.0% 0.0% Bronze 2641.319 4
    16  0.1021553E+00004  0.1021548E+00004  0.4958011E-00002      0.0474      0.1983 4.96E-03 0.0% 0.0% Iron nickel-chro  1021.553 16
     1  0.1426823E+00003  0.1426811E+00003  0.1235540E-00002      0.0118      0.0698 1.24E-03 0.0% 0.0% AlMg3 142.6823 1
    30  0.7343848E+00003  0.7343912E+00003  -.6440021E-00002     -0.0616     -0.3037 -6.44E-03 0.0% 0.0% Tin 734.3848 30
    42  0.6190798E+00003  0.6190742E+00003  0.5607343E-00002      0.0536      0.2695 5.61E-03 0.0% 0.0% Mischmetal 619.0798 42
    33  0.2077479E+00004  0.2077501E+00004  -.2240740E-00001     -0.2143     -0.4374 -2.24E-02 0.0% 0.0% Brass 2077.479 33
    43  0.1329016E+00003  0.1329001E+00003  0.1537467E-00002      0.0147      0.0879 1.54E-03 0.0% 0.0% Magnesium-allo  132.9016 43
    29  0.1044364E+00003  0.1044339E+00003  0.2496074E-00002      0.0239      0.1092 2.50E-03 0.0% 0.0% Aluminum 104.4364 29
    27  0.1720124E+00003  0.1720067E+00003  0.5741325E-00002      0.0549      0.1247 5.74E-03 0.0% 0.0% 300 series stain  172.0124 27
    45  0.4809900E+00002  0.4809725E+00002  0.1752324E-00002      0.0168      0.0957 1.75E-03 0.0% 0.0% Carbon 48.099 45
     6  0.3766261E+00003  0.3766118E+00003  0.1431167E-00001      0.1369      0.4675 1.43E-02 0.0% 0.0% Cobalt 376.6261 6
    32  0.3862170E+00003  0.3861905E+00003  0.2654022E-00001      0.2538      0.7547 2.65E-02 0.0% 0.0% Zinc 386.217 32
    23  0.4418757E+00003  0.4419117E+00003  -.3599582E-00001     -0.3442     -0.7628 -3.60E-02 0.0% 0.0% Titanium zinc p 441.8757 23
    28  0.8804123E+00002  0.8805512E+00002  -.1389175E-00001     -0.1329     -0.3083 -1.39E-02 0.0% 0.0% Cast iron 88.04123 28
    11  0.1410945E+00003  0.1411197E+00003  -.2516546E-00001     -0.2407     -0.4475 -2.52E-02 0.0% 0.0% Ferronickel 141.0945 11
    46  0.9448632E+00001  0.9446555E+00001  0.2077061E-00002      0.0199      0.0279 2.08E-03 0.0% 0.0% Charcoal 9.448632 46
     9  0.2508595E+00002  0.2511637E+00002  -.3042402E-00001     -0.2910     -0.4015 -3.04E-02 -0.1% 0.1% Epoxy resin 25.08595 9
     3  0.2156056E+00001  0.2160119E+00001  -.4062730E-00002     -0.0389     -0.0405 -4.06E-03 -0.2% 0.2% Brick 2.156056 3
    19  0.2568233E+00001  0.2552282E+00001  0.1595070E-00001      0.1525      0.1836 1.60E-02 0.6% 0.6% Limestone 2.568233 19
    17  0.1091261E+00001  0.1078484E+00001  0.1277671E-00001      0.1222      0.1313 1.28E-02 1.2% 1.2% Kiln dried lumb 1.091261 17
    37  0.2604455E+00001  0.2635406E+00001  -.3095083E-00001     -0.2960     -0.3549 -3.10E-02 -1.2% 1.2% HDPE granulate 2.604455 37
    68  0.2386153E+00001  0.2336531E+00001  0.4962249E-00001      0.4746      0.5535 4.96E-02 2.1% 2.1% Clay 2.386153 68
    67  0.1898363E+00001  0.1950679E+00001  -.5231564E-00001     -0.5003     -0.5225 -5.23E-02 -2.8% 2.8% Concrete block 1.898363 67
    62  0.4415654E+00001  0.4548318E+00001  -.1326643E+00000     -1.2687     -1.3469 -1.33E-01 -3.0% 3.0% Polybutadiene 4.415654 62
    38  0.1245942E+00001  0.1129600E+00001  0.1163424E+00000      1.1127      1.3871 1.16E-01 9.3% 9.3% Green veneer p 1.245942 38
    71  0.2629080E+00000  0.2891486E+00000  -.2624060E-00001     -0.2510     -0.2738 -2.62E-02 -10.0% 10.0% Asbestos (with   0.262908 71
    70  0.2355338E+00001  0.2087884E+00001  0.2674543E+00000      2.5578      2.7732 2.67E-01 11.4% 11.4% Scrap iron 2.355338 70
    72  0.7569090E+00000  0.8757189E+00000  -.1188099E+00000     -1.1362     -1.2283 -1.19E-01 -15.7% 15.7% Cold rolled shee  0.756909 72
     7  0.5979600E-00001  0.1079745E+00000  -.4817851E-00001     -0.4608     -0.5010 -4.82E-02 -80.6% 80.6% Corrugated boa 0.059796 7

Mean = 3.8%
Std Dev = 13.7%

Y = 0.05860287 + 1.237871*R + 1.056571*A + 1.008596*C + 0.7801412*D + 1.089715*E + 0.9841712*F + 0.6166319*G + 2.383661*H + 0.7763125*L + -
0.004913406*R*R + -8.989214E-07*C*C + -0.007313005*E*E + 0.02540538*G*G + 0.01208991*I*I + 0.1854093*L*L + 0.007325138*R*D + -0.02496565*R*H + -
0.05660541*R*L + 0.002324183*B*C + -0.000155864*C*G + 0.2967796*E*K + -0.4580382*E*L + 0.0291983*F*J
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Table 21:  Model predictability and robustness test 

 
 

variability due to the accuracy and reliability measures. The following subsections illustrate all 

three evaluations by following the same example introduced in the prior two subsections. Testing 

Yhat PR 
model Residual % error

Absolute 
value of % 

error
Material Y

Data 
point Yhat Kriging

Residual 
Kriging

% error 
Kriging

Absolute 
value of % 

error 
Kriging

21.0253 3.19216 13.2% 13.2% Ceramics 24.22 5 17.8533173 6.364192698 26.3% 26.3%
1.64257 0.09908 5.7% 5.7% Dry veneer plywood 1.742 8 1.140857152 0.600796848 34.5% 34.5%
6.36742 -0.2199 -3.6% 3.6% EPS 6.147 10 9.730113232 -3.58262023 -58.3% 58.3%
7.35121 0.25672 3.4% 3.4% Glass 7.608 12 7.895543052 -0.28761605 -3.8% 3.8%
2.52608 -0.3204 -14.5% 14.5% Graphite 2.206 13 7.136587987 -4.93089999 -223.6% 223.6%
6.80192 -0.3961 -6.2% 6.2% HDPE 6.406 14 35.96002349 -29.5541875 -461.4% 461.4%
8.27397 -2.1456 -35.0% 35.0% HIPS 6.128 15 21.20274975 -15.0743538 -246.0% 246.0%
128.101 0.95016 0.7% 0.7% Magnesium 129.1 20 138.6348067 -9.58330674 -7.4% 7.4%

26.034 1.29545 4.7% 4.7% Zinc Oxide 27.33 21 39.81150675 -12.4820667 -45.7% 45.7%
10.3047 2.77498 21.2% 21.2% Synthetic rubber 13.08 24 10.81536559 2.264294406 17.3% 17.3%

34.181 -0.2557 -0.8% 0.8% Silicone 33.93 25 19.36287919 14.56235081 42.9% 42.9%
80.3126 -2.3442 -3.0% 3.0% Low alloy steel 77.97 26 74.90995175 3.058478252 3.9% 3.9%
13.8747 -1.609 -13.1% 13.1% Nylon 6 12.27 34 14.68323896 -2.41755896 -19.7% 19.7%
6.71235 0.11133 1.6% 1.6% Oriented strand board 6.824 35 14.44927275 -7.62559975 -111.8% 111.8%
8.29699 -0.6061 -7.9% 7.9% PVC 7.691 36 9.185320242 -1.49444424 -19.4% 19.4%
60.5247 -0.331 -0.5% 0.5% Lithium 60.19 41 33.87467147 26.31904853 43.7% 43.7%
38.6013 -1.9587 -5.3% 5.3% Polyester resin glass f     36.64 47 68.49923885 -31.8566689 -86.9% 86.9%
19.7913 5.24172 20.9% 20.9% MG-silicone 25.03 48 15.87687217 9.156187828 36.6% 36.6%
17.3331 -2.2138 -14.6% 14.6% Polycarbonate 15.12 49 20.49418917 -5.37485917 -35.5% 35.5%

48.324 -2.9906 -6.6% 6.6% Ferrochromium 45.33 50 72.07067265 -26.7373326 -59.0% 59.0%
13.7786 -0.91 -7.1% 7.1% Nylon 66 12.87 51 22.89303594 -10.0244359 -77.9% 77.9%
13.6577 -0.8504 -6.6% 6.6% Nylon 6 glass filled 12.81 52 27.72709295 -14.919813 -116.5% 116.5%

4.51 -0.2863 -6.8% 6.8% Polyurethane rigid foa 4.224 53 3.695899812 0.527824188 12.5% 12.5%
21.9634 0.37598 1.7% 1.7% Glass fiber 22.34 54 23.76224165 -1.42287165 -6.4% 6.4%
12.5796 -0.9494 -8.2% 8.2% Nylon 66 glass filled 11.63 55 26.63915301 -15.008993 -129.1% 129.1%
6.56019 -0.089 -1.4% 1.4% Polypropylene 6.471 56 27.97504616 -21.5038942 -332.3% 332.3%
6.52119 -0.5812 -9.8% 9.8% Low Density Polyethyl 5.94 57 27.78263929 -21.8426163 -367.7% 367.7%

24.3 2.69254 10.0% 10.0% Ferrite 26.99 58 29.76028209 -2.76774209 -10.3% 10.3%
36.6571 2.36725 6.1% 6.1% Ferromanganese 39.02 59 41.35665996 -2.33233996 -6.0% 6.0%
24.7372 0.42559 1.7% 1.7% Magnetite 25.16 60 24.92253387 0.240206126 1.0% 1.0%
3.99239 -0.0847 -2.2% 2.2% Polystyrene GPPS 3.908 61 5.803894098 -1.8961841 -48.5% 48.5%
30.5089 4.90078 13.8% 13.8% Pig iron 35.41 63 55.53288585 -20.1232058 -56.8% 56.8%
39.7899 0.56287 1.4% 1.4% Cadmium 40.35 64 45.32173314 -4.96899314 -12.3% 12.3%
2.62116 0.39422 13.1% 13.1% Laminated veneer lum 3.015 65 5.243689312 -2.22830831 -73.9% 73.9%
1.75393 0.16692 8.7% 8.7% Plywood 1.921 66 1.713999966 0.206851034 10.8% 10.8%
2.02638 -0.1937 -10.6% 10.6% Bauxite 1.833 69 6.280770391 -4.44812939 -242.7% 242.7%

Mean = 8.1% Mean = 85.8%
Std Dev = 7.2% Std Dev = 113.3%

Model Accuracy: Mean = 3.8%
Std Dev  13.7%

Model Reliability: Mean = 8.1%
Std Dev 7.2%

97% confidence that 32.8% is the most that any value will deviate from the model.  

14.9% on average, there is 97% confidence that a material selected from this model 
will be within 2.2 materials of the actual optimum.  

Since one material to the next differs by 
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this example could be advantageous, because if a model is valid for a diverse array of materials 

based on total environmental impact per unit volume, such an approach could be promising for 

design problems that compare sets of composites and components by transformation of the data 

set using Equation (10). 

 

7.4.3.1. Model accuracy 

Table 19 shows the comparative results of modeling with both second order polynomial 

regression and Kriging method from the original data set of fourteen points identified by the Latin 

Hypercube method. The average absolute error measure here also shows that the second order 

polynomial regression is more accurate in this case. Also, a polynomial function is identified by 

the regression method to clearly define the surrogate model. Table 20 shows the resulting model  

and accuracy measure for the complete set of thirty-six data points identified after the Maximin 

Distance sequential infilling sampling process. Both the mean and standard deviations were 

calculated for the absolute error measures.  The average absolute error (AAE) and its sample 

standard deviation (S) were computed by the following two formulas.  
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7.4.3.2. Model reliability 

Table 21 shows the actual and predicted values of the remaining thirty-six materials that 

are not included in the constructed model. Predicted values, labeled as YHAT, are calculated by 

substitution of all variable values at a data point into the polynomial function that defines the 

model. Results are shown here for the polynomial regression model and not the Kriging model 
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due to significant difference in model accuracy for this example. The statistical information about 

the model accuracy and reliability along with the resolution in the design space are all useful to 

evaluate the model robustness. The next subsection highlights an evaluation approach. 

 

7.4.3.3. Model uncertainty and robustness 

Approaches were used to measure model robustness in a prior study [122]. Some 

variability inherently exists in an approximate model, as the previous subsections demonstrate. A 

model is robust only if the variability does not prevent the selection of an acceptable design 

alternative. Thus, a high fidelity model is not necessary if an approximate model constructed from 

known data is robust enough to select an alternative that is close enough to the optimal solution 

[82,83]. A designer would need to decide both on a tolerance for how close is acceptable and on 

the associated probability necessary for achieving that tolerance.  

The statistical information computed in the two previous subsections enables the 

calculation of the robustness capability of a model. From a robustness perspective, one should 

consider the worst accuracy and the worst reliability at a given confidence level. The probability 

that both worst case limits could be reached at the same time would be the product of the 

probabilities for each individual occurrence. In other words, if a designer chose to remain within 

one standard deviation of both the mean accuracy and the mean reliability, there would be a 

15.87% chance of either limit being reached or a 2.52% chance of both limits being reached at the 

same time.  

The derivation of the expressions used to determine model robustness is as follows.  

Given that event A is unacceptable model accuracy and event B is unacceptable model reliability, 

events A and B are then statistically independent because any data point is either in the sample set 

to test model accuracy or not in the sample set to test model reliability.  No point, x, which is 

expressed as average absolute error, can test for both events A and B.  Thus probabilistically, 

                                                  P(x(A) and x(B)) = P (x(A))  P(x(B))                                        (13) 
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Here it is assumed that for a large enough sample size, n, 

                                                                             X µ≈                                                                    (14) 

                                                                                   𝑆 ≈ 𝜎                                                                        (15) 

Where a normal distribution of the data is assumed Z is the critical value for the normal 

distribution, where 

                                                          
x x XZ

S
µ

σ
− −

= ≈                                                 (16) 

If it is assumed that the acceptable limit for both model accuracy and reliability are both one 

standard deviation above the mean, from any cumulative standardized normal distribution table: 

                          P(x = xul(A)) = P(Z(A) = 1) = P(x = xul(B)) = P(Z(B) = 1) = 0.8413                (17) 

                                                             1 – P(Z = 1) = 0.1587                                                      (18) 
  

                                                 P(xul(A) and xul(B)) = 0.15872 = 0.0252                                     (19) 
 
Where,   

                                                               xul(A) = A Aµ σ+                                                 (20) 

                                            P(x = xul(A)) = P(Z(A) = 1) = P( A Aµ σ+ )                                (21) 

                                                                 xul(B) = B Bµ σ+                                                   (22) 

                                             P(x = xul(B)) = P(Z(B) = 1) = P( B Bµ σ+ )                                 (23) 

 
For xul(A) and xul(B) to both occur simultaneously at both limits where by previous definition,  

                                                    𝑥𝐴 𝑎𝑛𝑑 𝐵 𝑒𝑟𝑟𝑜𝑟 = 𝜇𝐴 + 𝜎𝐴 + 𝜇𝐵 + 𝜎𝐵                                        (24) 

Equation (24) computes the actual total error value at this suggested limit and equation (19) 

computes the probability of occurrence of this suggested limit.  Equation (19) shows that the 

probability is 2.52% that this will happen, or 97.48% that this will not happen.   

Between alternatives in a data set, 

                                                        𝑅𝑒𝑠𝑢𝑙𝑜𝑡𝑖𝑜𝑛𝑎𝑣𝑔 = 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
(𝑛−1)𝑥𝑎𝑣𝑔

                                                (25) 
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where 𝑛 is the total sample size.  

The expected average number of alternatives displaced from the best alternative by using this 

model with 97.48% confidence on average is: 

                                       # 𝑜𝑓 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑𝑎𝑣𝑔 = 𝑥𝐴 𝑎𝑛𝑑 𝐵 𝑒𝑟𝑟𝑜𝑟
𝑅𝑒𝑠𝑢𝑙𝑜𝑡𝑖𝑜𝑛𝑎𝑣𝑔

                               (26) 

For the example shown in Tables 20 and 21, the sum of the means and standard 

deviations of the accuracy and reliability error values is a total of 32.8% error. Therefore, there is 

a 97.48% confidence level that the error will be less than 32.8% when this model is used based on 

the data used in this test. Next, a designer would need to calculate the average resolution between 

alternatives. Here, one could simply rank order the seventy-two different alternatives and 

calculate the average difference in the values between each of the adjacent pairs of alternatives. 

For the example shown in Tables 20 and 21, this average percentage difference is 14.9%. 

Therefore, a designer could be 97.48% confident of selecting an alternative inferior to the best by 

no more than 2.2 places on average. In other words, it is very likely that an alternative in the top 

three of the seventy-two material alternatives would be selected by using this model. If that 

expectation is acceptable to the designer, this surrogate model could be used. The following 

section describes how these models might be used in a design process.   

 

7.5. Selection of the Optimal Design Concept  

A specific problem should first be formulated. Equation (10) provided a way to convert 

standard data into problem specific data sets from any information provided by a designer about a 

problem. Here, the generation of a data set for the environmental attribute is computed directly 

from Equation (10). Masses of the components can be computed by simply multiplying the part 

volumes and the material mass densities. The masses will also be variables that the life cycle cost 

attribute depends upon. The remaining cost data and data sets for performance attributes are 

problem specific, and should be determined by a designer for a specific case. It is recommended 
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to construct models for each of these single attributes separately at first based on the utility values 

of the attribute. This is explained in the following subsection.  

 

7.5.1. Single attribute optimization 

Each attribute is a function of variables upon which a different attribute could also 

depend. Tradeoffs could exist where a change in that variable could cause one attribute’s utility to 

increase while another decreases [107]. Thus, it is important to optimize each attribute’s utility 

model individually to observe the effect of all known and potential dependent variables. A check 

of the linear correlation coefficient between variables and attributes could reveal dependencies. It 

is recommended to include any variables that an attribute may depend upon in the model to best 

observe relationships in a design situation accurately [124]. A utility function can introduce some 

additional nonlinear effects beyond any that exist in a function of the attribute values as examples 

in a prior work indicated [107]. Model accuracy and reliability could be lessened some in extreme 

locations of the design space that are far away from data locations used to construct and test the 

model due to the lack of ordered and balanced data locations for material selection. All single 

attribute models should be compared side by side at the same optimal data point locations to 

construct or visualize the Pareto optimal frontier [107] for the next step covered in the following 

subsection.  

 

7.5.2. Optimization of multiple attributes 

Section 7.2.3.1 briefly discussed preference modeling methods that can identify a specific 

optimal point on a Pareto optimal curve. The multi-attribute utility (MAU) function is a 

composite linear combination of the single attribute values and their preference weights [125]. 

Therefore, the optimal solution predicted by a surrogate model of the MAU function should be 

close to the composite linear combination of the values predicted by the single attribute utility 

surrogate models. This is an important check. The goal is to find the maximum MAU value in the 
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feasible region. Prior approaches were able to improve optimization with surrogate models by 

clustering to find more accurate points in the optimal regions of interest [123]. However, the 

optimal solution may not be located at a data point where a known material exists. Thus, it is 

recommended to check the Euclidean distance between the optimal point or points and the known 

data points. This would reveal not only the closest known solution, but also, a change in certain 

data values that could result in a better solution than was originally realized. That would require a 

search for a similar material or materials with the better properties, but this process would alert 

the designer to any better potential possibilities.  

 

7.5.3. Feasible region to comply with regulations 

Many traditional design optimization problem formulations include constraints that 

define the feasible and infeasible regions of a design space. The environmental considerations of 

design for sustainability can introduce additional constraints to a problem in the form of standards 

or regulations that require compliance. Previous work demonstrates a way to reveal such 

information transparently for integration at the early design stages [51]. A key issue concerns the 

degree to which such information can be represented as constraints in a constrained optimization 

mathematical formulation. That would depend upon the mathematical alignment of a given 

standard with an LCA computational structure. Thus, it is recommended to include standards as 

mathematical limits in a constrained optimization problem when it is possible and practical to do 

so. Otherwise, the best approach may be to red flag any data points or design regions of concern. 

The next section demonstrates the application of the entire methodology in a practical example 

design problem.  

 

7.6. Case Study:  Automobile Disc Brake 

The following four subsections highlight the use of the new MASSDOP method in an 

example of a design solution that is more capable as a result of the MASSDOP method 
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deployment.  This case study problem is the same example as the one used in the previous chapter 

to demonstrate an information modeling methodology [51].   

 

7.6.1. Background of Problem  

Common performance objectives for the design of a set of rotor and caliper pads include 

minimization of the vehicle stopping distance, minimization of mass needed to allow for wear 

and also ensure acceptable life of the components, and adequate dissipation of heat as the 

components are near the end their life. For this example, it was assumed that the desired life is 

five years and that the temperature in the rotor and pads should never exceed 77 degrees C. 

Results for specific design alternatives were calculated by using the conventional engineering 

formulations [71]. Some information was obtained to estimate the specific values of rotor 

material property parameters [72]. For illustrative purposes, the best reasonable values were 

estimated of material property values.  

This example provides a useful illustration of a practical design situation that involves 

consideration of a variety of pure and composite materials. The example does show simultaneous 

consideration of performance, environmental, and economic objectives. However, this example is 

not a multi-objective problem in that it lacks tradeoffs among the various objectives. Such a 

situation can occur in actual design applications. In this case, objectives such as minimizing 

vehicle stopping distance, maximizing heat dissipation, and minimizing wear mass all depend 

predominantly upon different design variables. Due to the large number of design variables in this 

problem, variables common to all objectives such as mass density or initial thickness do not have 

a consistent linear correlation among design alternatives. Thus, a change in such a common 

design variable value does not necessarily cause one objective to improve while another worsens 

in this example. Nevertheless, the following subsections illustrate the efficient and effective use 

of the new MASSDOP method to formulate the solution of this problem.  
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7.6.2. Problem Formulation 

To simplify the illustration, a single performance objective of minimizing vehicle 

stopping distance was used. That objective depends only upon the coefficient of friction between 

the rotor and pad materials based on assumptions of reasonable operating conditions. From there, 

adequate heat dissipation could be considered an additional constraint. The initial minimum solid 

volume of the rotor and pads can simply be computed for each material combination alternative at 

the given constraint values. For this example, the solid volume of the pad is proportional to the 

pads’ initial thickness due to constant area, and the rotor’s solid volume is a function of the initial 

rotor thickness and the solid volume percentage. Rotors are usually casted to a hollowed shape to 

add a convection cooling feature. Life cycle assessment and life cycle costing formulations 

indicate that minimization of mass for a given material would directly help to optimize both of 

those objectives.  

Table 22 shows the main specific alternatives identified by prior work [72] along with 

pad alternatives found from general searches as used in an example in prior work [51]. Six 

different possible rotor materials are labeled “A” through “F”, and eleven different potential pad 

materials are labeled “1” through “11”. Every possible material combination is labeled by the 

letter of the rotor followed by the number of the pads’ material. Material combinations flagged by 

a red, or lighter, font in Table 22 are a concern based on regulations of copper content in two 

states [126,127].  

Some of the combinations were found to be infeasible for the given temperature limit and 

heat dissipation and life requirements. Thus, there are a total of forty-six alternatives of material 

combinations in the original design set [51]. From the derived information, estimates were made 

for the percentage volume composition of each composite material. This information allowed 

generation of the entire data set for the single score environmental impact by applying Equation 

(10). Volume data was converted to mass for each alternative to generate the data set for the life 
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cycle cost attribute. Additional data of molded pads cost per unit mass and rotor material cost per 

unit mass were also estimated for each alternative to complete the life cycle cost data set.  

 

Table 22:  Matrix of material combination alternatives [51] 

 

 
7.6.3. Surrogate Model Construction and Testing 

If the goal of this design project were simply to select the best known design alternative, 

then a surrogate model would not need to be constructed. The design alternative with the greatest 

multi-attribute utility (MAU) value for a given stated preference among the attributes would be 

the optimal design concept to proceed with for this given set of alternatives. However, if a 

designer needs to view an entire design space to find whether or not any potentially more optimal 

solutions exist, surrogate models of each individual attribute and the composite MAU response 

can facilitate such an investigation. Traditionally, single attribute response variables are labeled 

as “u” followed by an attribute subscript number and the MAU variable is labeled as “U”. For this 

example, it was assumed that a designer’s preference is represented by the vector of preference 

weights previously assumed [111] of {0.214,0.429,0.357} with a first attribute of performance, 

second attribute of cost, and third of environmental impact.  

 

A1 B1 C1 D1 E1 F1
A2 B2 C2 D2 E2 F2
A3 B3 C3 D3 E3 F3
A4 B4 C4 D4 E4 F4
A5 B5 C5 D5 E5 F5
A6 B6 C6 D6 E6 F6
A7 B7 C7 D7 E7 F7
A8 B8 C8 D8 E8 F8
A9 B9 C9 D9 E9 F9

A10 B10 C10 D10 E10 F10
A11 B11 C11 D11 E11 F11

Concern of greater than 0.5% Copper content

PAN 
chopped glass

semi-metallic
ceramic compounds

Rotor Materials

GCI (Grey cast 
iron)

steel
copper fibers
other plastics

Ti-alloy                            
(Ti-6Al-4V)

7.5% wt WC and 
7.5% wt TiC 
reinforced                     

Ti-composite    (TMC)

20% SiC 
reinforced                              

Al-composite     
(AMC 1)

20% SiC 
reinforced Al-Cu 

alloy (AMC 2)

Ceramic 
composite

Pa
d 

M
at

er
ia

ls mineral (synthetic silicate) fibers
aramid Nomex fibers

Kevlar fibers
Twaron fibers
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Table 23:  Results from testing the constructed surrogate model for multiple attribute utility 
(MAU) values  
 

 
 

Polynomial Regression had an R-Sq(adj)  =          100.00%

 DATA                 Y              YHAT          RESIDUAL        StdR        StuR
Residual % error

Absolute 
value of 
% error

Alternative # Y
Data 
point

     1  0.8970000E+00000  0.8971903E+00000  -.1903208E-00003     -0.2888     -0.3561 -1.90E-04 0.0% 0.0% A1 0.897 1
     4  0.8220000E+00000  0.8234002E+00000  -.1400155E-00002     -2.1248     -2.2969 -1.40E-03 -0.2% 0.2% A4 0.822 4
     5  0.8310000E+00000  0.8303853E+00000  0.6146645E-00003      0.9328      1.0828 6.15E-04 0.1% 0.1% A5 0.831 5
     6  0.8240000E+00000  0.8241103E+00000  -.1102651E-00003     -0.1673     -0.1810 -1.10E-04 0.0% 0.0% A6 0.824 6
     7  0.8250000E+00000  0.8241691E+00000  0.8309013E-00003      1.2609      1.3699 8.31E-04 0.1% 0.1% A7 0.825 7
     8  0.8860000E+00000  0.8857044E+00000  0.2956058E-00003      0.4486      0.9158 2.96E-04 0.0% 0.0% A8 0.886 8
    11  0.8210000E+00000  0.8210933E+00000  -.9332981E-00004     -0.1416     -0.1717 -9.33E-05 0.0% 0.0% A11 0.821 11
    15  0.3600000E+00000  0.3601409E+00000  -.1409355E-00003     -0.2139     -0.3538 -1.41E-04 0.0% 0.0% C5 0.360 15
    16  0.3620000E+00000  0.3616421E+00000  0.3579375E-00003      0.5432      0.6654 3.58E-04 0.1% 0.1% C6 0.362 16
    17  0.3630000E+00000  0.3632000E+00000  -.2000006E-00003     -0.3035     -0.4093 -2.00E-04 -0.1% 0.1% C7 0.363 17
    22  0.5480000E+00000  0.5477250E+00000  0.2750279E-00003      0.4174      0.7689 2.75E-04 0.1% 0.1% D1 0.548 22
    25  0.5950000E+00000  0.5957393E+00000  -.7392883E-00003     -1.1219     -1.3667 -7.39E-04 -0.1% 0.1% D4 0.595 25
    26  0.6640000E+00000  0.6632244E+00000  0.7755660E-00003      1.1770      1.4048 7.76E-04 0.1% 0.1% D5 0.664 26
    27  0.5970000E+00000  0.5969606E+00000  0.3935637E-00004      0.0597      0.0736 3.94E-05 0.0% 0.0% D6 0.597 27
    29  0.6940000E+00000  0.6941293E+00000  -.1292781E-00003     -0.1962     -0.4052 -1.29E-04 0.0% 0.0% D8 0.694 29
    30  0.6240000E+00000  0.6239909E+00000  0.9066528E-00005      0.0138      0.0451 9.07E-06 0.0% 0.0% D9 0.624 30
    31  0.6490000E+00000  0.6491113E+00000  -.1113232E-00003     -0.1689     -0.4512 -1.11E-04 0.0% 0.0% D10 0.649 31
    33  0.7380000E+00000  0.7381526E+00000  -.1525629E-00003     -0.2315     -0.4825 -1.53E-04 0.0% 0.0% E1 0.738 33
    34  0.6370000E+00000  0.6370919E+00000  -.9186573E-00004     -0.1394     -0.1838 -9.19E-05 0.0% 0.0% E2 0.637 34
    35  0.7060000E+00000  0.7058911E+00000  0.1088663E-00003      0.1652      0.2535 1.09E-04 0.0% 0.0% E3 0.706 35
    36  0.6100000E+00000  0.6097384E+00000  0.2616396E-00003      0.3971      0.5476 2.62E-04 0.0% 0.0% E4 0.610 36
    38  0.6130000E+00000  0.6132208E+00000  -.2208171E-00003     -0.3351     -0.3882 -2.21E-04 0.0% 0.0% E6 0.613 38
    42  0.5640000E+00000  0.5639885E+00000  0.1151016E-00004      0.0175      0.0354 1.15E-05 0.0% 0.0% E10 0.564 42

Mean = 0.0%
Std Dev = 0.0%

For the data points not included in the PR model:

YHAT Residual % error
Absolute 
value of 
% error

Alternative # Y
Data 
point

0.927 -6.09E-03 -0.7% 0.7% A9 0.933 9
0.820 -1.41E-02 -1.7% 1.7% A3 0.834 3
0.860 3.35E-02 4.1% 4.1% F9 0.826 45
0.844 1.99E-02 2.4% 2.4% A10 0.824 10
0.811 -7.37E-03 -0.9% 0.9% A2 0.818 2
0.781 2.12E-02 2.8% 2.8% F1 0.760 44
0.756 -2.51E-03 -0.3% 0.3% E8 0.759 40
0.776 2.01E-02 2.7% 2.7% F10 0.756 46
0.724 -5.56E-03 -0.8% 0.8% E11 0.730 43
0.711 -1.25E-03 -0.2% 0.2% E5 0.712 37
0.699 -4.60E-03 -0.7% 0.7% D11 0.704 32
0.683 -1.15E-02 -1.7% 1.7% D3 0.694 24
0.668 4.62E-03 0.7% 0.7% D2 0.663 23
0.599 -2.03E-02 -3.3% 3.3% E9 0.619 41
0.615 8.63E-04 0.1% 0.1% E7 0.614 39
0.597 -6.68E-04 -0.1% 0.1% D7 0.598 28
0.233 4.56E-02 24.3% 24.3% C9 0.187 19
0.217 3.45E-02 18.9% 18.9% C8 0.183 18
0.202 2.52E-02 14.3% 14.3% C4 0.177 14
0.213 4.06E-02 23.6% 23.6% C1 0.172 12
0.139 5.17E-03 3.9% 3.9% C3 0.134 13
0.181 5.43E-02 42.9% 42.9% C11 0.127 21
0.045 6.65E-03 17.3% 17.3% C10 0.038 20

Mean = 7.3%
Std Dev = 11.1%

If low Y values are excluded, Mean = 1.4%
Std Dev = 1.2%

3.3%

there is a 97% confidence on average of being within 
0.82 alternatives of the best value.  

Resolution =

MAU = 2.531906 + -1.087753*Inverse of Coefficient of Friction + -0.006607899*B + -0.006222348*I + 0.1701313*Inverse of Coefficient of 
Friction*Inverse of Coefficient of Friction + -0.0004935422*Rotor raw material cost only in USD/kg*Rotor raw material cost only in USD/kg + -
0.00187399*Disk mass in kg*J + -0.0003781217*Pads cost in USD/kg includes molding*F + 0.002449867*Rotor raw material cost only in USD/kg*H + -
0.003641434*Rotor raw material cost only in USD/kg*I + -8.202102E-06*C*D + -0.001039736*I*K

Throughout this design set, if low Y values are excluded,
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Table 23 shows the surrogate model constructed for this specific design example by 

applying the methods introduced in Section 5. Here, it is evident that the Latin Hypercube space 

filling followed by the Maximin Distance sequential infilling resulted in a model accuracy 

withnegligible error. The bottom portion of Table 23 illustrates the test for model predictability 

by comparison of actual responses to those predicted by the model constructed by the sampling  

stages. These results show a significant difference between the model reliability predicted by all 

data points and that predicted when only those points in the neighborhood of optimal response 

values (U > 0.5) are included in the absolute percent error computation. If a designer can assume 

that data points with small MAU values can be ignored, the expected model robustness would 

improve. The 97% confidence level would then improve on average from an alternative selected 

in the top seven to the top two of the forty-six alternatives in this design set. The following 

subsection illustrates a methodical approach to mitigate any risk involved in making such an 

assumption. 

 

7.6.4. Search for the Optimal Solution in an Entire Design Space 

In the prior subsection, the expected differences between actual and predicted MAU 

values in an alternative set were investigated. Figure 24 shows the actual utility values of each 

single attribute and of the composite multi-attribute utility plotted by the bottom four curves in 

the legend. Section 7.5 described a method that could be used to find the global optimal point(s) 

in the design space by using an acceptable surrogate model. In this example, the lack of any 

tradeoff among the attributes, evidenced by Figure 24, poses some challenges with finding a 

single optimum point. In this case, the genetic algorithm was used to search globally for potential 

optimal solutions. Several hundred of the final iterations identified predicted MAU values over 

0.95.  

As Section 7.5.2 points out, the optimal point(s) may not be located near were an actual 

material exists. For a case such as this one, it is recommended to find optimal points with a 
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Euclidean distance as close to a known alternative as possible. In Figure 24, the corresponding 

alternatives are shown on the horizontal axis from left to right ordered by shortest Euclidean 

distance to a predicted target optimal point. Section 7.5 warns of the potential accuracy issue with 

predicted optimal points on the outskirts of a design space away from the limited design set of 

discrete material-related data locations that were available to construct the surrogate model. Thus, 

Figure 24 shows a significant difference between the actual and predicted MAU values of the  

 

 
 
Figure 24:  Results from optimization of a brake disc design 

 

target points. The mean difference is 27% with an 11.5% standard deviation, which is 

significantly higher than that found in the prior subsection. However, Figure 24 shows that 

alternative A9 has a MAU value that exceeds any of the actual target points.  
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It is notable that this is the same concept that would have been selected without a 

surrogate model.  This suggests that surrogate modeling could be as effective in some cases as 

full computations of the MAU values of each alternative without the efforts of the full 

computations.  Furthermore, it would be difficult to confirm the superiority to other potential 

solutions without any surrogate model. If hypothetically the results showed that a different 

potential better solution did exist, a designer could easily compare the values of all the design 

variables between the target point and the closest alternative in the design set. This would show a 

designer how a search for materials with slightly different specific properties could improve the 

design. Furthermore, this problem was solved both before [51] and after this new MASSDOP 

method was developed. In addition to a view of the entire design space not previously realized, 

the design process with MASSDOP took only about 25% of the time to execute compared to a 

prior less efficient method of modeling a complete Life Cycle Assessment for every design 

alternative. The new MASSDOP method as deployed in this example could be extendable to 

other practical engineering design problems.  

 

7.7. MASSDOP Discussion 

This work addressed several main objectives. First, the investigation concerned the 

efficient and effective integration of credible Life Cycle Assessment (LCA) computations into the 

early stages of a design process along with traditional design objectives to represent all significant 

and pertinent life cycle stages. Second, the work addressed the challenge of the construction of 

usable surrogate models to identify optimal solutions that consider multiple objectives that 

include LCA across an entire design space beyond a mere set of known design alternatives. Third, 

the construction of usable surrogate models for material selection involves the additional 

challenge of using data points in the design space that are not in desirable locations for traditional 

design space filling sampling techniques. Fourth, it was necessary to demonstrate the effective 

and efficient deployment of the new MASSDOP method in a practical and realistic design 
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example. This section discusses the results of this work in the context of these established 

objectives.  

Traditional use of LCA methods enables an accurate evaluation of the environmental 

impacts of a specific product design. However, such accurate methods are difficult to use 

efficiently to compare design concepts during early design stages. Approximate methods have 

been prescribed for the purposes of efficient concept selection in traditional product design. This 

work focused on significant factors to enable efficient identification of concepts. It is also 

important to account for all objectives over an entire product life cycle. Since other works 

introduced methods to account for the life cycle stage of product use [34,91,92], some design 

situations may ideally involve the use of a combination of the other works with this one. Thus, 

this work focused on the accounting of all other stages of significance with more accurate 

computations of the impacts from LCA. That approach was described in Section 7.1. 

Investigation indicated that material selection is the most significant factor beyond the basic form 

and function associated with a product’s use. Since environmental impacts are output responses 

and material selected is a single variable with a set of parameters associated with each alternative, 

the challenge involved identification of a usable set of significant environmental parameters from 

the high number of parameters associated with each environmental impact. Section 7.2 covered 

the rationale for a foundation of the methodical approach described in Section 7.3 to address this 

issue.  

Section 7.3 also prescribed a technique to map input parameters to output responses that 

is essential for surrogate model construction as described in Section 7.4. The use of approximate, 

or surrogate, modeling can be ideal to efficiently streamline the complex computational structure 

of both Life Cycle Assessment (LCA) and traditional physics-based formulations of predictive 

product performance. Section 7.3 also identified two important topic areas in need of further 

research. Both the impacts predicted by LCA and performance objectives can involve multiple 

attributes that require some aggregation. A key further research topic involves various approaches 
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to group the attributes and to model the preferences among the attributes in the groups. Here, 

tradeoffs can exist both among performance or environmental objectives and also between the 

overall objectives of minimizing cost and environmental impact and maximizing performance 

objectives. Although the case study presented here does not happen to exhibit such tradeoffs, it 

does provide a useful demonstration of how the new MASSDOP method can be deployed in a 

practical engineering design problem. Other future examples could exhibit tradeoffs between 

objectives such as environmental impact and the deflection or stability of a component. The 

second important topic area that could benefit from further research concerns the representation 

of parametric uncertainty. Although only mean values of all parameters were presented in this 

work, prior work demonstrated that consideration of uncertainty can influence the selected design 

concept [46].  

One of the key contributions of this work was the development of a method to construct 

surrogate models that can consider all objectives in the decision model efficiently and effectively 

for concept selection. Section 7.4 described this new method in depth. This development included 

the investigation of possible space filling sampling (SFS) and sequential infilling sampling (SIS) 

two stage approaches to adapt and deploy in ways that address the unique challenges of material 

selection. Useful examples were presented in both Section 7.4 and Section 7.6, where an actual 

case study of a product design was demonstrated. Here, the issues of model accuracy, reliability, 

and robustness were addressed given any limitations posed by the dimensionality and sample size 

of a data set. Section 7.5 explained how usable models of an entire design space can identify 

optimal solutions that consider all the objectives. With this approach, better solutions may 

possibly be identified efficiently beyond simply selecting the best alternative from among a set of 

the previously known alternatives as the case study demonstrated in Section 7.6.  Furthermore, in 

this example, the same results were obtained both with and without the surrogate model, which 

suggests that this MASSDOP approach could significantly reduce computational efforts without 

sacrifice in effective concept selection in some cases.    
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CHAPTER 8 

CONCLUSIONS 

The overall goal of this dissertation was to address three main barriers to the design of 

products for sustainability that the prior works had not been able to resolve.  First, Life Cycle 

Assessment (LCA) models in their current forms that conform to ISO 14040-14044 are not suited 

to early design due to complexity, too many variables, and the lack of holistic consideration of 

cost and other criteria over a product’s life cycle.  This work addressed that challenge by the 

unique contribution of a normative decision analysis-based formulation to accurately account for 

all significant input flows. Salient features of this approach include a systematic representation to 

propagate uncertainties, as well as a preference based multi-attribute modeling to simultaneously 

account for a product’s performance along with environmental and cost impacts over the 

product’s life cycle.  Second, standards information related to compliance is not well aligned with 

information about environmental impacts as predicted by LCA to facilitate decision making 

during early design stages.  That research challenge was addressed by the salient features of a 

novel ontological framework that:  represents both the objectives that pertain to sustainable 

design and the applicable sustainability standards and regulations, and integrates different 

domains of information by the semantic relationships between taxonomies to enable decision 

making informed in real time.  Third, material selection is both a significant factor in sustainable 

design and also not conducive to more efficient and robust surrogate model construction due to 

the inflexible discrete locations of material related data points and the dimensionality of the data.  

This difficult research challenge was resolved by the combination of several new salient features.  

Manageable dimensionality of LCA was achieved with a minimal loss of the important 

information by the consolidation of significant factors into categorized groups.  A streamlined 

process that avoids the construction of full LCA facilitates enhanced efficiency.  A unique 

formulation was developed to combine efficiency of use with a mathematically rigorous 

representation of any pertinent objectives across an entire design space.  In order to resolve the 
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important issue of robust surrogate model construction for material selection, an adapted two 

stage sampling approach was introduced based on a feasible approximation of a Latin Hypercube 

design at the first stage.  

The development of these salient features revealed a number of important outcomes.  

First, the NASDOP method for normative decision analysis, detailed in Chapter 5, provides the 

foundation on which all methods were developed.  The contributions of NASDOP include several 

more specific salient features.  The capabilities of LCA are concisely defined to accurately 

represent the material and energy flows and their resulting set of environmental impacts or 

attributes.  Expressions were derived to formulate the associated cost flows for the same set of 

processes over the complete life cycle of a product unit.   Thus, the normative approach allowed 

consistent modeling of environmental and economic attributes in an accurate mathematical 

representation.  Such an approach was previously shown to facilitate problem formulation at the 

conceptual design stages for traditional engineering problems.  Chapter 5 shows the potential for 

similar applicability when all sustainability criteria are considered.  All attributes in these 

relationships depend upon parametric data of the associated material flows, substance emissions, 

or cost flows.  This data is available from published sources of information, but has significant 

uncertainty.  Thus, the method to account for all parametric data included a reasonable approach 

to account for the uncertainty of all significant data sources.  The normative formulation included 

the deployment of hypothetical equivalents and inequivalents method (HEIM) to model the 

preferences of a designer consistently in a multi-criteria decision making (MCDM) formulation.   

This formulation enables the direct comparison of numerous strategic alternatives at the 

early stages of conceptual design from the design for sustainability perspective. The limitations of 

a method that only identifies a best potential strategic direction are addressed by the work in 

Chapter 7.  However, such an approach can be very useful for many practical examples such as a 

redesign for the next generation of a mature and well defined product design.  Here, an informed 

strategic direction could be established at the early stages of redesign.  More specific details can 
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evolve as the design process progresses to inform subsequent design iterations.  Since a design 

process generates information, some information model is needed to represent the pertinent 

knowledge in some organized fashion.  This is especially important when the knowledge related 

to decisions that must be made is complex.  Thus, it is important to capture and communicate the 

design knowledge on which these decisions about the design direction are based.   The work in 

Chapter 6 provides such an approach along with the needed ontological framework.   

The work described in Chapter 6 addresses the need to model the design for sustainability 

related information and rationale transparently for distributed design based on the context and 

meaning of the design knowledge.  Since information related to compliance with standards and 

regulations is often decoupled from the information related to environmental objectives as 

prescribed by LCA, an interoperable ontological framework for engineering design and decision-

based design was extended to include the domains of standards and LCA, as represented by 

NASDOP.  Here, these different domains of sustainable design knowledge are linked by the 

relationships between objects in the different domains.  Since the applicable standards and criteria 

are populated within the same information model in real time, the standards may be adopted more 

easily early on while the design may also be influenced more toward the triple bottom line 

objectives of preserving the environment, economic gains, and the interests of affected 

stakeholders in society.  Due to the resulting parallel inspection capabilities to compare 

information from LCA instances along with the standards as represented by constraints to that of 

associated specific design alternatives, the resulting information model for the case studied 

revealed some interesting correlations between standards related measures and the corresponding 

measures related to environmental objectives in that example.  The extent to which such 

constraints can be included in a mathematical model is examined more closely in Chapter 7.  

Those results show that such capability depends upon the degree of alignment between standards 

and impacts as predicted by LCA.  The example studied could only model constraints as red 

flagged alternatives in the data set shown.  If the standard applied to its actual intent of limiting 
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copper emissions to water instead of to the percentage of copper content in the components, then 

such a constraint might actually be modeled in constrained mathematical optimization 

expressions.  The approach shown in Chapters 6 and 7 illustrates how the information modeling 

can at least reveal these constraints in real time despite any such disconnects between standards 

and LCA.   

In Chapter 7, the method was introduced to consider all design alternatives of 

components throughout an entire design space to enable optimal concept selection beyond a 

limited set of predefined alternatives.  Here, the approach focused on material selection due to the 

significance of that factor from both the sustainability and product performance perspectives.  A 

technique was developed to both streamline the Life Cycle Assessment (LCA) model 

construction for viable material alternatives and simplify model dimensionality by the 

consolidation of factors. This enabled the construction of robust surrogate models of the 

environmental objectives in a rigorous representation with other traditional design objectives. The 

novel feasible approximation sampling approach addressed the unique challenges posed by rigid 

data locations of material parameters. Robust results were achieved by use of the adapted Latin 

Hypercube approach at the first of two sampling stages.  The case study example could be 

designed for sustainability in about one quarter of the time compared to the prior approach of 

setting up complete LCA models for each design alternative.  Furthermore, the same design 

alternative was selected with either approach, which suggests that the more efficient surrogate 

modeling approach could be just as effective in similar instances.   

 

8.1. Future Work 

Future work could advance and build on this work in several important ways.  Chapter 5 

revealed the significance of parametric uncertainty in concept selection.  More accurate and 

efficient methods need to be developed to account for these uncertainties in the MASSDOP 

formulations.  Here, expected utility functions could replace mean values if the associated 
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calculations can be done efficiently enough.  Another area pertains to a more diverse selection of 

case study examples to illustrate the application of MASSDOP.  While the brake disc example 

shows great promise for practical use of the method, that example does not have tradeoffs 

between the different objectives to illustrate the application in a multi-criteria decision making 

(MCDM) problem.  More examples could better illustrate tradeoffs between environmental, 

performance, and economic objectives and the importance of modeling the preferences among 

these often conflicting objectives.  The information related to such decisions in these future 

examples could also be entered as new design instances in the ontological framework that was 

presented in Chapter 6 to show how related information is captured and communicated early in a 

distributed design situation.  This may also reveal ways that the ontological framework could be 

modified or extended to maximize the effectiveness in all scenarios.  Capstone design projects at 

universities provide such opportunities.   The capabilities of semantic searching for information 

and the use of reasoning and rules could be utilized to further support decision making in some 

cases.   

In support of examples that best illustrate multi-objective problems, methods are needed 

for the efficient and effective aggregation of multiple attributes within each objective.  Chapter 7 

explained how this needs to be addressed in the situation of numerous environmental impacts to 

consider.  This could also be an important issue in some cases that may have multiple 

performance or economic objectives.  Finally, the accuracy, predictability, and robustness of 

surrogate models depend upon statistics.  Chapter 7 showed two example surrogate models with 

favorable robustness that have a sufficiently large number of data points, or sample size.  This is 

an efficiency issue common to the selection of data sets.  It is possible to have not enough data to 

construct a robust surrogate model, but it is also possible to sacrifice efficiency sought by the use 

of surrogate modeling if the sample size is too large.  Dimensionality and the correlation of 

variables to responses can affect the optimal sample size of a given problem.  Further research in 

this area should help MASSDOP to be used optimally.  Overall, an ideal goal may be to achieve 
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enough efficiency to mitigate the time invested in using these methods to justify the benefits of 

more sustainable designs in as many cases as possible.   
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APPENDIX 
 

DATA TABLE FOR CHARCOAL GRILL CASE STUDY 

   Table A.1:  Calculation results from LCA and LCC  
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