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ABSTRACT 

NON-CANONICAL NOTCH SIGNALING DRIVES ACTIVATION AND 

DIFFERENTIATION OF CD4+ T CELLS 

MAY 2014 

ANUSHKA DONGRE, BS., UNIVERSITY OF MUMBAI, INDIA 

MS., UNIVERSITY OF MUMBAI, INDIA 

PhD., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Barbara A. Osborne 

      Cleavage of the Notch receptor via a γ-secretase, results in the release of the 

active intra-cellular domain of Notch that migrates to the nucleus and interacts 

with RBP-JΚ, resulting in the activation of downstream target genes. This canonical 

Notch signaling pathway has been documented to influence T-cell development 

and function. However, the mechanistic details underlying this process remain 

obscure. In addition to RBP-JΚ, the intra-cellular domain of Notch also interacts 

with other proteins in the cytoplasm and nucleus, giving rise to the possibility of an 

alternate, RBP-JΚ independent Notch pathway. However, the contribution of such 

RBP-JΚ independent, “non-canonical” Notch signaling in regulating peripheral T-

cell responses is unknown. We specifically demonstrate the requirement of Notch1 

for regulating signal strength and signaling events distal to the T-cell receptor in 

peripheral CD4+ T cells. By using mice with a conditional deletion in Notch1 or 

RBP-JΚ, we show that Notch1 regulates activation and proliferation of CD4+ T 

cells independently of RBP-JΚ. Furthermore, differentiation towards TH1 and iTreg 
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lineages is also Notch dependent but RBP-JΚ independent. Our data provide 

evidence that non-canonical regulation of these processes likely occurs through 

NF-ΚB. Additionally, we also provide evidence suggestive of cross-talk between 

Notch and the mTOR pathway. Notch1, but not RBP-JΚ, is required for 

phosphorylation of several substrates directly downstream of mTORC2. 

Collectively, these striking observations demonstrate that many of the cell intrinsic 

functions of Notch occur independently of RBP-JΚ. This reveals a previously 

unknown, novel role of non-canonical Notch signaling in regulating peripheral T-

cell responses.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 The Notch signaling pathway 

 

1.1.1 The Notch receptor and its ligands 

 

The Notch protein was first discovered in Drosophila melanogaster, when 

a loss-of-function mutation produced a “notched” wing phenotype (Morgan et 

al.,1917).  Mammals express four Notch receptors (Notch 1,2,3 and 4), which 

differ in the composition of their structural components (Fig 1.1A) (Baron, 2003). 

The Notch receptor consists of an extra-cellular domain, a trans-membrane 

domain and an intra-cellular domain. The extra-cellular domain is comprised of 

epidermal growth factor (EGF)-like repeats. Notch1 and Notch2 have 36 repeats 

while Notch3 and Notch4 have 34 and 29 respectively. The trans-membrane 

domain comprises of a cysteine rich lineage (LIN) domain that prevents ligand-

independent activation and a hetero-dimerization domain. The intra-cellular 

domain is cytosolic and is comprised of an RBP-JΚ - associated molecule domain 

(RAM) that binds the transcription factor RBP-JΚ, an ankyrin repeat domain 

(ANK) that mediates protein-protein interactions, two nuclear localization 

sequences (NLS), a transcriptional activation domain (TAD) and a proline-

glutamate-serine and threonine-rich domain (PEST) that regulates protein stability 
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and turn-over. The TAD domain is present only in Notch1 and Notch2 (Osborne 

and Minter, 2007). The Notch receptor can be activated by five different ligands 

that belong to two different families of proteins. These include Delta-like (DLL1, 

DLL3 and DLL4) and Jagged (Jagged1 and Jagged 2) ligands (Fig 1.1B) (Baron, 

2003). All ligands contain a conserved sequence Delta/Serrate/Lag2 (DSL) at the 

amino terminus, which is involved in receptor binding, followed by EGF-like 

repeats. Jagged ligands also contain an additional cysteine rich (CR) domain 

located close to the plasma membrane. The extra-cellular domain of the Notch 

receptor can be glycosylated by the Fringe glycosyltransferases (Manic fringe, 

Lunatic fringe, Radical fringe) (Radtke et al., 2010), which in turn dictate ligand 

binding.  Glycosylation by Fringes usually promotes binding of the Notch 

receptor to DLL ligands.  

 

1.1.2 Canonical Notch signaling 

 

Activation of the Notch pathway is a multi-step process that involves 

several proteolytic cleavage events (Fig 1.3). The Notch receptor in the 

endoplasmic reticulum transits to the golgi after fucosylation by O-

fucosyltransferase (Logeat, F et al., 2008). In the golgi, the newly synthesized 

Notch receptor is cleaved at the S1 site by a furin-like protease resulting in a non-

covalently linked , heterodimeric receptor. This mature form of the receptor is 

then expressed on the cell surface where it can bind to Notch ligands. Ligand 

binding presumably induces a conformational change that exposes the S2 site, 
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which is subsequently cleaved by an ADAM (a disintegrin and a 

metalloproteinase) protease. The receptor is then endocytosed following 

ubiquitylation of the intra-cellular domain. The final cleavage is then mediated by 

a γ-secretase at the S3 site (Mumm JS et al., 2000). This cleavage releases the 

active, intra-cellular domain of Notch (NIC), which translocates into the nucleus 

and interacts with its canonical-binding partner RBP-JΚ  (murine homolog) also 

called as CSL (CBF-1 in mammals, Suppressor of hairless in Drosophila 

melanogaster and Lag 1 in Caenorhabditis elegans). RBP-JΚ, is a transcriptional 

repressor. However, following binding to NIC, several co-activators such as 

MAML (Mastermind-like) and p300 are recruited to the NIC- RBP-JΚ complex. 

This results in conversion of RBP-JΚ from a repressor to an activator of 

transcription. Activation of RBP-JΚ leads to the transcription of several Notch 

target genes, such as those belonging to the Hes (Hairy/enhancer-of-split) or Hey 

(Hairy/enhancer-of-split related) families. Such RBP-JΚ dependent signaling is 

called canonical Notch signaling. 

 

1.1.3 Non-Canonical Notch signaling 

 

In addition to canonical Notch signaling described above, any Notch 

signaling that occurs independently of RBP-JΚ is defined as “non-canonical” 

Notch signaling. Recent reports in the literature suggest that NIC can interact with 

several proteins besides RBP-JΚ in the cytoplasm and nucleus (Minter et al., 

2005; Perumalsamy et al., 2009; Shin et al., 2006), suggesting an RBP-JΚ – 
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independent mechanism for propagation of Notch signals. Some of these 

alternative binding partners of NIC include (but are not limited to) NF-ĸB, PI3K, 

Akt, T-bet and GATA3. We have shown previously that Notch and NF-ĸB exist 

in a complex on the Ifn-γ promoter even in the absence of RBP-JΚ (Shin et al., 

2006; Cho et al., 2009). Additionally, all NF-ĸB binding sites contain within them 

a consensus binding sequence for RBP-JΚ, while the reverse may not be true 

(Minter and Osborne, 2012). Notch has also been shown to bind to PI3K and is 

required for the phosphorylation of Akt (Sade et al., 2004). Furthermore Notch 

exerts a protective, anti-apoptotic effect in an mTORC2-dependent but RBP-JΚ 

independent fashion in cell lines (Perumalsamy et al., 2009).  These data also 

imply a cytosolic function of NIC apart from its well-documented nuclear 

function. Evidence of non-canonical Notch signaling has also been observed 

during axon guidance as well as dorsal closure during embryonic development in 

Drosophila (Crowner et al., 2003; Zecchini et al., 1999)In addition, a cytosolic 

function of Notch is required for survival of neural stem cells (Androutsellis-

Theotokis et al., 2006). Non-canonical Notch signaling has recently been shown 

to influence the IL-6/JAK/STAT pathway in breast tumors in a fashion that 

requires NF-KB (Jin et al., 2013). Additionally, mammary tumor development has 

been shown to occur independently of RBP-JK.  
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1.1.4 Inhibitors of Notch signaling 

 

Pharmacological inhibition of Notch signaling is often accomplished by 

the use of γ-secretase inhibitors (GSI), which inhibit γ-secretase mediated 

cleavage at the S3 site and prevent the release of NIC.  γ-secretase is a multi-

protein protease complex that processes type I membrane proteins. Besides Notch, 

γ-secretase has 89 other substrates (Beel and Sanders, 2008). Hence GSIs are not 

always Notch-specific and may have several off-target effects. This drawback is 

often compensated by the use of Notch-sparing GSIs (NS-GSI) that inhibit all γ-

secretase substrates except Notch. 

 

1.2 Notch and T cells 

 

1.2.1 T cell activation and differentiation 

 

T Cell Receptor (TCR) mediated activation of peripheral T cells is a 

fundamental process of the adaptive immune system. Activation of CD4+ T cells 

is accomplished by binding of an antigen to the TCR presented by an MHC Class 

II molecule on the antigen-presenting cell. A co-stimulatory signal between B7 

(CD80/CD86) on the antigen presenting cell and CD28 on the T cell stimulates 

the onset of multiple downstream signaling events, which result in T cell 

activation and proliferation (Fig 1.4). Helper T cells can differentiate into several 

different lineages (TH1, TH2, TH17, TH9, T-reg, Tfh) depending on the cytokine 
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milieu (Fig 1.4). IL-12 and IFN- γ polarize CD4+ T cells towards the TH1 

phenotype. TH1 cells express the lineage specific transcription factor T-bet, 

secrete the signature cytokine IFN-γ, and provide protection against intra-cellular 

pathogens (Szabo et al., 2002). TH2 cells, which are induced by IL-4, are 

primarily involved in asthma and allergies, and protect against extra-cellular 

parasites. They require the transcription factor GATA3 to secrete IL-4, IL-5 and 

IL-13 (Zheng and Flavell, 1997). Il-6 and TGF-β generate TH17 cells, which 

provide protection against nematodes and fungal infections, secrete signature 

cytokines IL-17 and IL-23 and express ROR-γt (Langrish et al., 2005; Murphy et 

al., 2003; Yang et al., 2008). iT-regs which are also induced by TGF-β, are 

characterized by the expression of FoxP3 and exhibit immuno-suppressive 

functions (Chen et al., 2003; Fu et al., 2004; Rao et al., 2005).   

 

1.2.2 The role of Notch in T cell function. 

 

Notch signaling is plays a critical role in specification of the T cell fate. 

Deletion of Notch in developing thymocytes abrogates the production of T cells at 

the expense of B cells (Pui et al., 1999)On the other hand, over-expression of 

Notch in bone-marrow progenitors elicits the onset of T cell leukemia (Radtke et 

al., 1999). Apart from its role in thymocyte development, several studies have 

demonstrated a role of Notch in regulating peripheral T cell function. We have 

shown that activation of peripheral T cells with anti-CD3ε and anti-CD28 triggers 

activation of the Notch pathway (Adler et al., 2003; Palaga et al., 2003) and its 
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inhibition via GSI treatment abrogates activation, proliferation and IFN- γ 

production by peripheral T cells (Palaga et al., 2003). Additionally, Notch is also 

required for IL-2 secretion and expression of the high affinity IL-2 receptor, 

CD25 (Adler et al., 2003).  

The role of Notch activation in regulating helper T cell differentiation is 

controversial. Notch signaling has been shown to regulate differentiation towards 

TH1, TH2, TH17 and iTreg lineages.  Pharmacological inhibition of Notch using 

GSIs dampens the ability to adopt a TH1 fate (but not TH2) by attenuating the 

expression of T-bet (Minter et al., 2005). However, inhibition of signaling 

downstream of RBP-JΚ dampens the ability to adopt a TH2 fate in vivo by 

regulating the expression of IL-4 and GATA3 while preserving a TH1 phenotype. 

(Amsen et al., 2007; Fang et al., 2007)Another study showed that mice lacking 

Notch signaling were unable to mount a protective TH2 response to Trichuris 

muris, but effectively mounted a TH1 response against Leishmania major in vivo 

(Tu et al., 2005). We have also shown that inhibition of Notch activation 

attenuates the adoption of a TH17 cell fate (Keerthivasan et al., 2011) and also 

impairs the induction of regulatory T cells by influencing the expression of FoxP3 

(Samon et al., 2008). Additionally, Notch ligands can also influence instruction of 

helper T cell fates (Radtke et al., 2010). Thus, while several studies have 

demonstrated a role for Notch in specification of several helper T cell fates, a 

clear understanding of these pleiotropic effects of Notch is lacking. 
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1.3 NF-ĸB 

 

1.3.1 The NF-ĸB pathway 

 

NF-ĸB is a transcription factor that allows cells to respond to extra-

cellular stimuli such as stress, DNA damage and cytokines (Hoffmann and 

Baltimore, 2006). In the context of T cells, NF-ĸB has been implied in regulating 

T cell activation, proliferation and differentiation (Vallabhapurapu and Karin, 

2009)The NF-ĸB family of transcription factors consist of five members – Rel A, 

Rel B, c-Rel, p50 and p52, the later two being mature forms generated after 

processing of larger precursors p105 and p100 respectively (Fig 1.5A). All 

members contain a Rel homology domain at the N-terminus responsible for homo 

and hetero-dimerization and sequence specific DNA binding (Gilmore, 2006). 

Furthermore, Rel A, Rel B and c-Rel have an additional transcriptional activation 

domain. NF-ĸB exists as a homo or hetero-dimer that is sequestered in the 

cytoplasm by its association with the Inhibitor of ĸB (IĸB). Upon receiving an 

activation signal, the IĸB kinase (IKK) phosphorylates IĸB, leading to its 

subsequent ubiquitylation and proteasomal degradation. This releases NF-ĸB 

dimers, which migrate to the nucleus and gain access to transcriptional machinery 

(Fig 1.5B). 
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1.3.2 Inhibitors of the NF-ĸB pathway 

 

Several pharmacological inhibitors have been employed to inhibit 

activation of the NF-ĸB pathway. One of these includes the compound 

Dehydroxymethyl-epoxyquinomicin (DHMEQ). DHMEQ is a new NF-ĸB 

inhibitor that is a 5-dehydroxymethyl derivative of a novel compound 

epoxyquinomicin (Matsumoto et al., 2009). DHMEQ prevents nuclear 

translocation of NF-ĸB by sequestering it in the cytoplasm. To this end, it has 

been used to block NF-ĸB activity in different types of solid tumors, malignant 

cells and T cells (Horie et al., 2006) 

 

1.3.3 NF-ĸB and T cell function 

 

Activation of T cells via the TCR can trigger the activation of NF-ĸB. 

Following T cell activation, the scaffolding molecules Bcl-10, CARMA1 and 

Malt1 recruit and induce the activity of IKK, which in turn activates NF-ĸB by 

phosphorylation and subsequent degradation of IĸB. NF-ĸB is critical for T cell 

activation as it is primarily thought to regulate survival and proliferative signals 

downstream of the TCR (Vallabhapurapu and Karin, 2009)NF-ĸB controls the 

expression of IL-2, the high affinity receptor for IL-2, IL-2Rα and IFN-γ 

(Vallabhapurapu and Karin, 2009). Additionally, NF-ĸB has also been 

documented to instruct acquisition of helper T cell fate. Mice lacking p50 were 

unable to mount airway inflammation due to downregulation of GATA3 but were 
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unimpaired in their ability to express T-bet. Conversely, mice lacking c-Rel had a 

defect in T-bet expression and secretion of IFN-γ(Das et al., 2001).  Thus 

different NF-ĸB sub-units may have unique roles in specification of particular 

helper T cell fates. 

 

1.3.4 Cross talk between the Notch and NF-ĸB pathways in T cells. 

 

Several studies have demonstrated cross-talk between the Notch and NF-

ĸB pathways. One study demonstrated that activation of the Notch pathway via 

Jagged1, induces maturation of keratinocytes via NF-ĸB (Nickoloff et al., 2002). 

We have demonstrated that inhibition of Notch activation via GSIs reduces NF-

ĸB activity in peripheral T cells (Palaga et al., 2003).  Furthermore, constitutive 

NF-ĸB activity is observed in Notch3 transgenic mice (Barbarulo et al., 2011; 

Vacca et al., 2006)Furthermore, Notch has been shown to physically interact with 

NF-ĸB and regulate its activity by sustaining its nuclear localization (Shin et al., 

2006). Specifically, N1IC could be immuno-precipitated with p50 and c-Rel. 

Furthermore, complexes of N1IC and NF-ĸB were also found on the Ifn-γ 

promoter suggesting that Notch may regulate the expression of IFN- γ via NF-ĸB 

(Shin et al., 2006). In addition to CD4+ T cells, cross-talk between the two 

pathways has also been observed in CD8+ T cells. Notch could be complexed with 

NF-ĸB from the promoters of EOMES, perforin and granzyme B and this 

interaction was abolished after GSI treatment (Cho et al., 2009). 
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1.4 mTOR 

 

1.4.1 The mTOR pathway 

 

The mechanistic target of Rapamycin (mTOR) functions as an 

environmental sensor that integrates several extrinsic stimuli to ultimately 

regulate cell growth and metabolism. mTOR was discovered during genetic 

experiments in yeast and mammals as a target of the macrolide Rapamycin 

(Sabatini et al., 1994) and belongs to the phosphoinositide 3- kinase (PI3K) 

family. mTOR can exist in two different complexes – mTORC1 and mTORC2 

depending on the association of mTOR with unique proteins (Fig 1.6). In the 

mTORC1 complex, mTOR associates with the regulatory associated protein of 

mTOR (RAPTOR) in addition to mLST8, Deptor and Pras40. In the mTORC2 

complex, mTOR associates with the Rapamycin insensitive companion of TOR 

(RICTOR) along with PROTOR, mSIN1, mLST8 and Deptor (Fig 1.6). RAPTOR 

containing mTORC1 is sensitive to Rapamycin. In contrast, RICTOR containing 

mTORC2 is insensitive to Rapamycin, although recent studies have demonstrated 

that prolonged treatment with Rapamycin can make it sensitive as well well 

(Zoncu et al., 2011).   

mTORC1 is activated by several different stimuli such as nutrients, amino 

acids, growth factors, stress and changing energy requirements. Activation of 

mTORC1 is mediated by its association with Ras homologue enriched in brain 

(RHEB) in its GTP bound form (Fig 1.7).  RHEB is an essential activator of 
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mTORC1 and is controlled by growth factor inputs (Laplante and Sabatini, 2009). 

Upon activation, mTORC1 phosphorylates its downstream substrates - S6 kinase 

1 (S6K1) and eLF4e binding protein 1 (4E-BP1), which associate with mRNAs 

and control the rate of protein synthesis (Ma and Blenis, 2009). In contrast to 

mTORC1, the upstream regulators of mTORC2 are incompletely defined. 

However, upon activation, mTORC2 phosphorylates the AGC family of kinases. 

These include phosphorylation of residue S473 in the hydrophobic motif of Akt, 

the Protein kinase C (PKC) family of kinases and the SGK1 kinase. Of these, 

phosphorylation of residue S473 of Akt is thought to be mediated exclusively by 

mTORC2. This phosphorylation event is one way in which the mTOR pathway 

merges with the PI3K pathway (Fig 1.7).  

The PI3K pathway is activated by several growth factors leading to the 

phosphorylation of the cognate growth factor receptors creating a docking site for 

PI3K. PI3K then converts phosphatidylinositol – 4,5-biphosphate (PIP2) to 

phosphatidylinositol – 3,4,5-triphosphate (PIP3). Akt contains a pleckstrin 

homology domain to which PIP3 can bind. Activation of Akt is accomplished by 

phosphorylation at S473 by mTORC2 and T308 by PDK1. Activated Akt then 

activates several downstream substrates, which regulate cell survival, growth and 

metabolism.  In addition, Akt can also feedback onto the mTOR pathway by 

phosphorylating the tuberous sclerosis complex TSC1/TSC2, which normally 

represses mTORC1 by converting RHEB-GTP to an inactive RHEB-GDP bound 

form. Phosphorylation of TSC1/TSC2 by Akt inactivates the complex. Inactive 

TSC1/TSC2 can no longer convert RHEB to its inactive GDP associated state, 
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ultimately leading to the activation of mTORC1 (Fig 1.7) (Laplante and Sabatini, 

2009).  

 

1.4.2 Inhibitors of mTOR pathway 

 

In addition to Rapamycin, which can individually target Raptor and in 

some cases Rictor, several new pharmacological inhibitors have been designed to 

inhibit the activity of mTOR itself. One of these is Pp242, an ATP competitive 

inhibitor of mTOR. Pp242 showed a better therapeutic response than Rapamycin 

in a mouse model of leukemia (Janes NR et al., 2010). Pp242 is also more 

selective towards mTOR compared to other PI3K family kinases. Another small 

molecule catalytic inhibitor of mTOR is Ku-0063794. This inhibitor suppresses 

the activity of mTOR but preserves the activity of 76 other protein and lipid 

kinases, making it even more specific than Pp242 Pp242 (Garcia Martiner JM et 

al., 2009). While these inhibitors efficiently suppress mTOR activity and 

phosphorylation of the downstream substrates of mTORC1 and mTORC2, they 

do not suppress phosphorylation of Akt –T308 that is mediated by the PDK1 

kinase in certain cells (Zoncu et al., 2011). Thus it is likely that Akt may retain 

partial activity in these circumstances. 
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1.4.3 mTOR and T cell function 

 

Several recent studies have outlined a role for mTOR in regulating T cell 

function. Activation of T cells accompanied by co-stimulation activates the PI3K 

and mTOR pathways. Consistent with its role as a regulator of metabolism, 

TSC1/TSC2 mediated control of mTOR enforces quiescence of thymocytes by 

regulating cell size, cell cycle entry and metabolic machinery (Chi et al., 2012).. 

mTOR may also be partially involved in regulating peripheral T cell function as 

mTOR deficient T cells have delayed proliferative capacity, although they do not 

exhibit any defect in the expression of activation markers or secretion of IL-2 

(Delgoffe et al., 2011).  

Furthermore, the mTOR pathway has also been shown to regulate helper T 

cell differentiation. One study showed that mTOR is required for acquisition of 

TH1, TH2 and TH17 fate but represses regulatory T cells, as CD4+ T cells deleted 

for mTOR showed a spontaneous up-regulation of FoxP3 positive cells but were 

impaired in their ability to differentiate to TH1, TH2 and TH17 cells. This was 

attributed to a defect in up-regulation of lineage associated transcription factors.  

Deletion of either mTORC1 or mTORC2 individually, also affects helper T cell 

differentiation. mTORC2 is thought to regulate TH1 fate via Akt and TH2 fate via 

PKCθ (Lee et al., 2010). Another study also demonstrated that Rictor deficient 

CD4+ T cells were unable to polarize to TH2 cells due to enhanced expression of 

the suppressor for cytokine signaling (SOCS5) (Delgoffe et al., 2011). This study 

also demonstrated that mTORC1 was required for TH1 and TH17 cell fates but 
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repressed TH2 fate since inhibition of mTORC1 activity by deletion of RHEB, 

dampened TH1 and TH17 responses but enhanced the number of GATA3 positive 

cells. (Delgoffe et al., 2011). Thus, although an understanding of the precise 

mechanism underlying the regulation of T cell differentiation by mTOR is 

lacking, several studies firmly implicate mTOR in this process.  

 

1.4.4 Cross-talk between Notch and mTOR  

 

A few studies have demonstrated that the Notch pathway impinges on the 

mTOR/PI3K pathway (Ciofani and Zuniga-Pflucker, 2005; Lee et al., 2012; 

Perumalsamy et al., 2009). One study demonstrated that NIC physically interacts 

with PI3K and p56Lck  and protects a T cell hybridoma cell line from apoptosis by 

enhancing mTORC2 mediated phosphorylation of Akt (Sade et al., 2004). 

Evidence of cross-talk between the two pathways in thymocytes, was first 

demonstrated by Ciofani and colleagues who showed that Notch promotes 

survival of pre-T cells at the β-selection checkpoint by regulating glucose 

metabolism. DN3 thymocytes cultured on OP9 cells expressing the Notch ligand 

DLL1, had greater cell size, phosphorylation of Akt-S473 and higher glycolytic 

rate compared to thymocytes that lacked on-going Notch signals. Furthermore, 

this increase in metabolism was dependent on PI3K/Akt (Ciofani et al., 2005). 

Finally, a recent study showed that inspite of on-going Notch signaling, Rictor 

deficient thymocytes were unable to grow, proliferate or differentiate, suggesting 

that Notch may relay its signals via mTORC2 (Lee et al., 2012). However, while 
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these studies imply cross-talk between the two pathways, whether these parallels 

can also be drawn in peripheral T cells is unknown. 

 

1.5 Specific Aims and Hypothesis 

 

Activation of T cells by cross-linking the TCR, triggers the generation of 

N1IC.  However, the precise mechanism that leads to the generation of N1IC 

downstream of the TCR is obscure. Whether such Notch activation requires 

activation by Notch ligands, or whether it is a ligand independent process is 

unknown. Not only have Notch ligands been shown to activate Notch, but some 

have also been suggested to influence specification of helper T cells (Amsen et 

al., 2004). However, whether Notch ligands are able to instruct helper T cell 

differentiation by altering the levels of Notch itself is unanswered. Thus, the First 

Aim of this study is to determine whether Notch ligands influence Notch 

activation and peripheral T cell function. 

N1IC generated downstream of the TCR, plays a crucial role in regulating 

peripheral T cell function, since inhibition of Notch activation via GSIs dampens 

activation and proliferation of T cells as well as decreases their ability to produce 

IFN- γ (Adler et al., 2003; Palaga et al., 2003). However, GSIs have two 

drawbacks. Firstly, they inhibit all isoforms of the Notch receptor, making it 

unclear to determine which specific Notch receptor is required for T cell activity. 

Secondly, they have multiple targets besides Notch. Hence, whether the observed 
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effects of GSIs on T cell function are indeed due to inhibition of Notch activation, 

or simply an off-target effect of GSIs, is obscure.  

In addition to regulating activation of T cells, Notch is also required for 

regulating helper T cell differentiation. We have shown that GSI treatment 

abrogates the ability of cells to become TH1 by down-regulating the expression of 

the transcription factor T-bet, suggesting that Notch is required for acquisition of 

TH1 fate (Maekawa et al., 2003; Minter et al., 2005). However other studies have 

shown that inhibition of canonical Notch signaling by using dnMAML, inhibits 

the acquisition of TH2 fate in vivo, suggesting that Notch regulates TH2 fate but is 

dispensable for TH1 fate (Amsen et al., 2007; Fang et al., 2007; Tu et al., 2005). 

Whether these differences can be attributed to the different approaches used to 

inhibit Notch signaling is unknown. This coupled with the fact that N1IC can 

interact with partners besides RBP-JK, suggests that Notch may regulate some 

processes in a “non-canonical” fashion. However, the precise contribution of such 

“non-canonical” Notch signaling in regulating peripheral T cell responses is 

unknown. Importantly, whether such non-canonical signaling can indeed 

reconcile different results obtained by inhibiting different components of the 

Notch pathway, requires further investigation. Thus, the Second Aim of this study 

is to determine the contribution of canonical and non-canonical Notch signaling in 

regulating the activation and differentiation of peripheral CD4+ T cells.  

Finally, while several studies have implied an alternate, RBP-JK- 

independent route for Notch to relay its signals, the precise mechanism underlying 

such non-canonical Notch signaling is obscure. While several studies have 
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demonstrated a physical interaction of Notch with components of the NF-ĸB and 

mTOR pathways, the precise mechanism and functional consequences of these 

interactions in peripheral T cells remains to be determined. Thus, the Third Aim 

of this study to address whether non-canonical Notch signaling, involves cross-

talk of Notch with the NF-ĸB and mTOR pathways. 

Hence, my hypothesis is that Notch ligands influence the generation of NIC 

downstream of the TCR. This N1IC regulates T cell activation and differentiation 

in a manner that likely involves RBP-JK- independent, non-canonical Notch 

signaling. Such non-canonical signaling involves interaction with the NF-ĸB and 

mTOR pathways. 

I plan to address my hypothesis and fulfill the aims of this study by 

pursuing the following three specific aims: 

Specific Aim 1: Determine the role of Notch ligands in triggering N1IC 

downstream of the TCR and influencing peripheral T cell function. 

Specific Aim 2: Determine the contribution of canonical and non-canonical 

Notch signaling in regulating activation and differentiation of peripheral CD4+ T 

cells. 

Specific Aim 3: Determine how Notch interacts with the mTOR pathway 

With respect to the expected outcome, the work proposed in Aims 1, 2 and 

3 is likely to identify the contribution of Notch ligands in the generation of N1IC 

downstream of the TCR, whether this N1IC controls peripheral T cell function in 

an RBP-JK-independent function and the precise mechanism underlying such 

RBP-JK-independent function of Notch. This is likely to have an important 
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positive impact, because the knowledge gleaned from this study will likely 

reconcile differences about the precise role of Notch signaling in T cell function 

by outlining an alternative route for Notch to propagate its signals. Furthermore, 

this study will also provide an insight into how Notch exerts its pleiotropic effects 

by cross-talking with other pathways that are also activated downstream of the 

TCR. 
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(Adapted from Osborne et al., 2007) 

 
Fig 1.1 The Notch receptor and its ligands 
 
(A) Structural representation of Notch receptors –Notch1-4. All receptors contain 
an extracellular domain with EGF-like repeats, the LIN domain for 
heterodimerization, RAM domain and ankyrin repeats for binding proteins and 
PEST domain for protein degradation. Notch3 and Notch4 lack a transcriptional 
activation domain (TAD). (B) Structural representation of Notch ligands. All 
ligands contain EGF-like repeats and a conserved DSL requence. Jagged ligands 
have an additional cysteine rich (CR) domain. 
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(Adapted from Osborne et al., 2007) 

 
Fig 1.2 The Canonical Notch pathway 
 
After fucosylation in the ER, Notch transits into the golgi where it is cleaved at 
the S1 site by a furin-like protease. This leads to the expression of a non-
covalently linked hetero-dimeric receptor on the cell surface. Following ligand 
binding, a second cleavage at the S2 site by an ADAM protease leading to the 
shedding of the extra-cellular domain. Following ubiquitylation, the rest of the 
receptor is endocytosed and cleavaed at the S3 site by a γ-secretase. This releases 
the intra-cellular, active domain of Notch, which migrates into the nucleus and 
interacts with CSL/ RBP-JΚ, previously associated with co-repressors (CoR). 
Recruitment of co-activators (CoA) converts CSL to an activator of transcription 
leading to transcription of target genes. 
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(Adapted from Minter et al., 2013) 

 
Fig 1.3 Non-Canonical Notch signaling 
 
Intra-cellular Notch (NIC) can interact with several other proteins besides RBP-JΚ  
in the cytoplasm and nucleus. Non-canonical, non-nuclear binding partners of NIC 
include Akt and mitofusins (Mfn) located on the mitochondria. Non-canonical, 
nuclear partners of NIC include the p50 and/or c-Rel subunits of NF-ĸB.  
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Fig 1.4 Activation and differentiation of helper T cells 
 
T cells are activated after receiving two signals. Firstly, a peptide (P) presented by 
an MHC-II molecule by the antigen-presenting cell (APC), binds to the T cell 
receptor (TCR). The second co-stimulatory signal involves binding of B7 on the 
APC to CD28 on the T cell. Once activated helper T cells can differentiate into at 
least four distinct lineages depending on the cytokines present at the time of 
activation. Each helper T cell expresses a lineage – specific transcription factor 
and secretes a cohort of signature cytokines. 
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(Adapted from Gilmore, 2006) 

 
Fig 1.5 The NF-ĸB pathway 

(A) Structural representation of the NF-ĸB family of transcription factors. All 
members contain a conserved Rel homology domain. Rel A, Rel B and c-Rel have 
a transcriptional activation domain. p50 and p52 contain an ankyrin repear rich 
domain. (B) Activation of the NF-ĸB pathway downstream of the TCR. 
Activation of T cells by anti-CD3 and anti-CD28 activates IKK, which 
phosphorylates IĸB triggering its degradation by the proteasome. This releases 
NF-ĸB, which migrates into the nucleus and mediates transcription. 
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(Adapted from Zoncu R., et al 2012) 

 
Fig 1.6 Composition of mTORC1 and mTORC2 

In the mTORC1 complex, mTOR associates with RAPTOR along with DEPTOR 
and mLST8 which function as negative and positive regulators respectively. 
PRAS40 also acts as a negative regulator. In the mTORC2 complex, mTOR 
associates with RICTOR. In addition to DEPTOR and mLST8, mTORC2 also 
contains mSIN1 and PROTOR which help in complex assembly and targeting 
mTORC2 to membranes. 
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(Adapted from Zoncu R., et al 2012) 

 
 

Fig 1.7 The PI3K/mTOR pathway 

After activation of T cells via the TCR, the PI3K gets activated. This 
phosphorylates PIP2 to PIP3. Akt binds to PIP3 via its pleckstrin homology 
domains. Akt is phosphorylated at residue S473 by mTORC2 and at residue T308 
by PDK1. Active Akt phosphorylates multiple downstream substrates, one of 
which is TSC1/TSC2, which normally converts RHEB-GTP to its inactive GDP 
bound form. Phosphorylation by Akt inactivates TSC1/TSC2 such that it can no 
longer inactivate RHEB. GTP-bound RHEB activates mTORC1, which 
phosphorylates its downstream substrates, S6K1 and 4E-BP1. 
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CHAPTER 2 

 

THE ROLE OF NOTCH LIGANDS DURING T CELL ACTIVATION AND 

DIFFERENTIATION 

 

2.1 Introduction 

 

Activation of T cells via the T cell receptor leads to the generation of N1IC 

in peripheral T cells (Palaga et al., 2003, Adler et al., 2003). Since cross-linking 

the TCR along with a co-stimulatory signal is sufficient to activate Notch in the 

absence of Notch ligands, a longstanding question has been how such Notch 

activation is accomplished. Most importantly, whether such activation is a ligand 

dependent or independent process is unanswered. One possible explanation for 

the generation of N1IC in activated T cells is that stimulation via the TCR could 

also induce the expression of Notch ligands on the surface of T cells. In such a 

scenario, Notch ligands on one cell could engage the Notch receptor on a 

neighboring cell triggering activation of the Notch pathway.  In fact, Notch 

ligands are up-regulated on antigen presenting cells (APC) such as dendritic cells 

following activation (Amsen et al., 2004). In addition, differential up-regulation 

of Notch ligands is observed after activation of antigen presenting cells with 

specific helper-T cell inducing stimuli. While activation with TH1 inducing 

antigens such as LPS preferentially up-regulates DLL ligands on the surface of 

APCs, activation with TH2 inducing stimuli such as cholera toxin and 
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prostaglandin E2 leads to the expression of Jagged ligands (Amsen et al., 2004; 

Sun et al., 2008; Worsley et al., 2008). However, whether this trend is also 

observed in peripheral T cells is unknown.  

Not only do T cells express N1IC after activation, but polarizing conditions 

influence the amount of N1IC that is generated. While TH1 cells express greater 

amounts of N1IC in comparison to TH2 cells (Minter et al., 2005), RBP-Jk 

expression is thought to be greater in TH2 cells (Amsen et al., 2004), suggesting a 

bi-potent ability of Notch in regulating TH1 and TH2 lineage commitment. Notch 

ligands have been thought to influence this ability of Notch to regulate such 

lineage decisions. Engagement of the Notch receptor with DLL ligands has been 

shown to induce the expression of T-bet and IFN-γ in vitro and in vivo (Maekwa 

et al., 2003, Amsen et al., 2004, Sun et al., 2008). Conversely, some studies have 

shown that activation of T cells with APCs in the presence of Jagged1 induces the 

production of IL-4 in vitro (Amsen et al., 2004). However, the ability of Jagged 

ligands to induce Th2 responses in vivo has been speculative with some groups 

suggesting no overt effect in the presence of Jagged (Krawczyk et al., 2008, 

Worsley et al., 2008) and others suggesting a strong requirement of Jagged 1 for 

IL-4 production during an allergic airway response (Okamoto et al., 2009). Thus a 

clear understanding of precisely how different Notch ligands influence T cell 

differentiation is lacking. Furthermore, whether Notch ligands themselves 

influence the production of N1IC downstream of the TCR is obscure. We put forth 

the hypothesis that while DLL ligands may activate Notch, Jagged ligands either 

do not activate or suppress notch activation (Fig 2.1). This may form the 
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molecular basis of Notch on TH1 and TH2 decisions. Our data demonstrate that 

Notch ligands are expressed on T cells 12-48 hrs after TCR stimulation 

irrespective of polarizing conditions. Additionally, DLL1 ligands favor Notch 

activation and IFN-γ production under pre-existing TH1 conditions. 

 

2.2 Results 

 

2.2.1 TH1 conditions favor Notch activation. 

 

Several studies have highlighted the importance of Notch1 in regulating 

differentiation of helper T cells towards TH1, TH2, iTreg and TH17 lineages 

(Amsen et al., 2004; Keerthivasan et al., 2011; Minter et al., 2005; Samon et al., 

2008). However, polarizing conditions themselves can influence the expression of 

N1IC downstream of the TCR. To confirm whether expression of N1IC is indeed 

different under TH1 versus TH2 conditions, we activated CD4+ T cells in vitro 

under polarizing conditions that favor the development of either TH1 or TH2 cells 

and assayed the expression of N1IC under each of these conditions over time by 

Western Blotting (Fig 2.2A,B) and flow cytometry (Fig 2.2C,D).  While both TH1 

and TH2 cells expressed N1IC, the amount of N1IC was higher under TH1 

polarizing conditions (Fig 2.2A,C). These results concur with our previous 

observations (Minter et al., 2005) confirming preferential activation of Notch1 

under TH1 polarizing conditions. 
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2.2.2 Expression of Notch ligands on CD4+ T cells 

 

            While it is known that activation of peripheral T cells requires Notch 

(Palaga et al., 2003, Adler et al., 2003), the mechanism that leads to the activation 

of Notch in T cells is largely unknown. Whether TCR mediated activation of 

Notch requires engagement of the Notch receptor by its cognate ligands, or 

whether such activation is a ligand independent process is obscure. To address 

whether CD4+ T cells express Notch ligands after stimulation via the TCR in 

addition to expressing N1IC, we determined the expression of DLL1 and Jagged1 

on N1IC positive T-cells over time. Furthermore, to determine if polarizing 

conditions differentially influence the expression of these ligands, we looked at 

ligand expression in cells polarized to TH1 and TH2 cell fates. We observed that a 

very small percentage of cells expressed both DLL1 and Jagged ligands upto 6 hrs 

after activation (Fig 2.3A,B). A large proportion of ligand positive cells were 

observed 12 hrs and 48 hrs after activation (Fig 2.3A,B). Additionally, 

comparable levels of DLL1 and Jagged1 positive CD4+ T cells were observed 

under TH1 and TH2 conditions. Cytokine levels were determined at each time 

point to ensure that cells were polarized to their respective fates (Fig 2.3C,D). 

Thus, these data show that CD4+T cells express Notch ligands maximally at 12 

hrs and 48 hrs after activation and polarizing conditions do not influence such 

ligand expression. 
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2.2.3 DLL1 favors Notch activation 

 

            To determine if DLL and Jagged ligands differ in their ability to generate 

N1IC post activation via the TCR, we stimulated CD4+ T cells under TH1 and TH2 

conditions over time as described above. Since we observed maximal expression 

of DLL1 and Jagged1 on the surface of CD4+ T cells 12-48hrs after activation, we 

gated on these ligand positive cells at the indicated time points and looked at N1IC 

expression in these gated populations (Fig 2.4A). We observed that irrespective of 

the polarizing condition, CD4+ T cells that expressed DLL1 on their surface also 

expressed higher amounts of N1IC at 12 and 48hrs in comparison to those that 

expressed Jagged1, suggesting that DLL1 may favor the generation of N1IC in 

activated T cells. To confirm this observation, we stimulated D0.11.10 TCR 

transgenic CD4+ T cells with Chinese Hamster Ovary – antigen presenting cells 

(CHO-APC) expressing either DLL1, Jagged1 or an empty vector (EV) pulsed 

with ova peptide under non-polarized (NP), TH1 or TH2 conditions (Fig 2.5A). We 

observed CD4+ T cells stimulated with CHO-APCs expressing DLL1 generated 

the most amount of N1IC in comparison to those stimulated with CHO-APCs that 

expressed Jagged1 or the empty vector control irrespective of the polarizing 

condition (Fig 2.5B,C). Additionally, the amount of N1IC expressed by CD4+ T 

cells was augmented even further under TH1 conditions (Fig 2.5B,C). 

 Furthermore, such a DLL1 mediated increase in N1IC was paralleled by a 

concomitant increase in IFN-γ production under TH1 conditions (Fig 2,5D). 

Conversely, no overt differential effect of either ligand was observed on IL-4 
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production by TH2 cells (Fig 2.5E). Hence, these results suggest that activation of 

CD4+ T cells in the presence of DLL1 favors N1IC production in comparison to 

activation in the presence of Jagged1. Furthermore, such bias towards generation 

of N1IC is enhanced even further under TH1 conditions. Thus activation in the 

presence of DLL1 results in higher levels of N1IC that may eventually push cells 

towards adopting a TH1 fate. 

 

2.2.4 Notch ligands do not influence T cell activation 

 

            Since we observed increased expression of N1IC and enhanced TH1 

polarization in T cells stimulated in the presence DLL1, we wanted to determine 

whether various Notch ligands also influence T cell activation differentially. To 

address this question, we activated CD4+ T cells from D0.11.10 mice with peptide 

pulsed CHO-APCs expressing the different ligands and determined the expression 

of T cell activation markers.  While CD4+ T cells stimulated in the presence of 

DLL1 or Jagged1 expressed higher levels of CD25 and CD69 in comparison to 

those stimulated by CHO-APCs expressing neither of the two (empty vector), 

both DLL1 and Jagged1 expressing CHO-APCs stimulated T cells comparably 

(Fig 2.6A,B). Additionally, T-cells stimulated by all CHO-APCs secreted similar 

levels of IL-2 (Fig 2.6C). Thus while Notch ligands differentially influence the 

generation of N1IC and acquisition of helper T cell fate, their effect on T cell 

activation is comparable. 
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2.3 Discussion 

 

            The mechanism of generation of N1IC in peripheral T cells and the 

eventual consequence of N1IC on regulating helper T cell fate decisions has been 

obscure. While some studies have implied a requirement of Notch for TH1 

decisions (Minter et al., 2005; Maekwa et al., 2003), others have suggested an 

indispensable role of Notch in regulating TH2 decisions (Amsen et al., 2004; 

Amsen et al., 2007; Fang et al., 2007). In this study, we confirm that not only is 

N1IC generated in activated T cells, but its expression is greater under TH1 

polarizing conditions. These data concur with our previous data, which showed a 

similar preferential generation of Notch in TH1 cells and a subsequent requirement 

of Notch for regulating TH1 but not TH2 cell fate by induction of T-bet (Minter et 

al., 2005).  

To probe into the mechanism behind activation of Notch downstream of 

the TCR, we determined the expression of Notch ligands on the surface of CD4+ 

T cells under TH1 and TH2 conditions. Interestingly, we observed that minimal 

expression of surface ligands was observed until 12hrs after activation. However, 

CD4+ T cells start expressing both DLL1 and Jagged1 at approximately the same 

time as they express N1IC . Thus it is unclear whether Notch activation drives the 

expression of Notch ligands which in turn sustain more Notch activation, or 

whether basal levels of Notch ligands synergize with TCR signals to activate 

Notch. Addressing these questions will require a sequential deletion of Notch 

ligands either individually or in combination. Furthermore, polarizing conditions 
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did not preferentially induce the expression of either ligand. While TH1 and TH2 

inducing stimuli have been shown to upregulate the expression of DLL and 

Jagged ligands respectively on the surface of APCs, our data show that the same 

cannot be observed in peripheral CD4+ T cells (Amsen et al., 2004; Sun et al., 

2008; Krawczyk et al., 2008; Worsley et al., 2008).  

            In spite of the above, an interesting observation from these experiments 

was that CD4+ T cells that expressed DLL1 on their surface, also expressed larger 

amounts of N1IC in comparison to those cell that expressed Jagged1 on their 

surface. These data suggested that Notch ligands influenced the amount of N1IC 

generated after TCR stimulation, which could eventually influence lineage 

decisions. Supporting this notion, several studies have suggested that Notch 

ligands can in fact regulate the instruction of helper T cell fates. DLL1 and 3 can 

induce TH1 polarization at least partially via T-bet (Maekwa et al., 2003; Amsen 

et al., 2004; Skokos et al., 2007; Sun et al., 2008) and Jagged can induce a TH2 

fate (Amsen et al., 2004; Okamoto et al., 2008). However a recent study by Ong 

et al showed that Notch ligands cannot instruct helper T cell fate specification on 

their own but in fact act to augment pre-existing polarizing conditions. We 

adopted a similar strategy used by Ong and colleagues, to determine if different 

Notch ligands influence the generation of N1IC and thereby regulate cell fate. We 

observed that CHO cells expressing DLL1 generated significantly higher levels of 

N1IC in comparison to those expressing Jagged1 or no ligand at all. In fact, even 

basal levels of N1IC were augmented in un-stimulated cells in the presence of 

DLL1. Additionally, DLL1 augmented the production of IFN-γ under pre-existing 
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TH1 conditions. Thus our data support a role for DLL1-Notch signaling in 

augmenting TH1 polarization. 

            Since N1IC is crucial for regulating activation and proliferation of CD4+ T 

cells and we observed greater amounts of N1IC in the presence of DLL1, we 

determined whether DLL1 could also prime T cells better than Jagged1. We 

observed that activating T cells in the presence of Notch ligands augmented the 

expression of CD25 and CD69, however both DLL1 and Jagged1 ligands were 

just as efficient in activating CD4+ T cells.  

            In conclusion our data demonstrate that Notch ligands differ in their 

ability to activate N1IC and instruct specification of helper T cell fates. Further 

experiments are required to decipher the precise molecular mechanism(s) 

underlying such differences. 
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Fig 2.1 A Model suggesting differential activation of Notch by its Ligands 
 
DLL1/4 ligands activate the Notch receptor leading to the generation of N1IC that 
migrates into the nuclear and interacts with CSL or NF-κB. Jagged ligands do not 
activate the Notch receptor preventing downstream transcriptional events. 
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Fig 2.2 TH1 conditions favor Notch activation.  
 
CD4+ T cells from C57Bl/6 mice were differentiated under TH1 or TH2 inducing 
conditions and activated with plate bound anti-CD3ε and anti-CD28. Cells were 
harvested at the indicated time points. Some cells were used to make lysates for 
western blotting. Some cells were used for detecting N1IC by flow cytometry. (A) 
Western Blot for N1IC and Total Notch. Data represent three independent 
experiments (B) Integrated density of N1IC normalized to total Notch obtained 
from the Western Blot. (C) Histogram for N1IC. n = 3. (D) Mean Fluorescent 
Intensity (MFI) of N1IC obtained by flow cytometry. n = 3. Data represent the 
mean ± SEM. * p < 0.05, *** p < 0.001, ns - not significant. 
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Fig 2.3 Expression of Notch ligands on CD4+ T cells 
 
CD4+ T cells from C57Bl/6 mice were differentiated under TH1 or TH2 inducing 
conditions and activated with plate bound anti-CD3ε and anti-CD28. Cells were 
harvested at the indicated time points and analyzed by flow cytometry for the 
surface expression of DLL1 and Jagged1 after gating on N1IC positive cells. 
Supernatants were used for detecting cytokines by an ELISA. (A,B) Percentage of 
DLL1+ and Jagged+ cells under (A) TH1 and (B) TH2 conditions. (C) IFN- γ and 
(D) IL-4 production measured by ELISA. Data represent the mean ± SEM. n = 3-
5 
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Fig 2.4 Expression of N1IC in ligand positive cells 
 
(A) Schematic representation of experimental design. CD4+ T cells from C57Bl/6 
mice were differentiated under TH1 or TH2 inducing conditions and activated with 
plate bound anti-CD3ε and anti-CD28. Cells were harvested at the indicated times 
and surface stained for DLL1 or Jagged1 and intra-cellular stained for N1IC. N1IC 

expression was determined after gating on DLL1+ or Jagged1+ cells. (B) 
Histograms for N1IC in gated populations. Data represent three independent 
experiments. 
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Fig 2.5 DLL1 favors Notch activation and IFN-γ production 

(A) Schematic representation of experimental design. Adapted from Ong et al., 
2008. CHO-DLL1, CHO-Jag1 and CHO-EV cells were treated with Mitomycin C 
for 40 mins and mixed with CD4+ T cells isolated from DO.11.10 mice in the 
presence and absence of ova peptide under TH1, TH2 or Non Polarizing (NP) 
conditions. CD4+ T cells were harvested after 48hrs and analyzed for intra-
cellular Notch1 expression after gating on DO.11.10 TCR+ cells. (B) MFI for 
N1IC obtained by flow cytometry. (C) Histogram for N1IC . (D,E) CD4+ T cells 
were harvested after 96 hrs and restimulated with plate bound anti-CD3ε. 
Supernatants were used for detecting (D) IFN- γ and (E) IL-4 production by an 
ELISA. Data represent the mean ± SEM. * p < 0.05, ** p < 0.005, *** p < 0.001, 
ns - not significant. 
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Fig 2.6 Notch ligands do not influence T cell activation 

CHO-DLL1, CHO-Jag1 and CHO-EV cells were treated with Mitomycin C for 40 
mins and mixed with CD4+ T cells isolated from DO.11.10 mice in the presence 
and absence of ova peptide. CD4+ T cells were harvested after 48hrs and analyzed 
for surface expression of CD25 and CD69 after gating on DO.11.10 TCR+ cells. 
(A,B) MFI of (A) CD25 and (B) CD69 obtained by flow cytometry. (C) 
Supernatants were used for detecting IL-2 by and ELISA. Data represent the 
mean ± SEM. n = 3. 
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CHAPTER 3 

 

NON-CANONICAL NOTCH SIGNALING REGULATES ACTIVATION 

AND DIFFERENTIATION OF PERIPHERAL CD4+ T CELLS 

 

3.1 Introduction 

 

Ligation of the TCR accompanied by co-stimulation, generates intra-

cellular Notch in CD4+ T cells while inhibition of Notch activation with γ-

secretase inhibitors (GSI) decreases T cell activation as well as proliferation 

(Adler et al., 2003; Palaga et al., 2003). Since GSIs have multiple substrates and 

inhibit all Notch receptors (Beel and Sanders, 2008), whether such a decrease in T 

cell activation is precisely due to Notch1, or a GSI induced effect, requires further 

investigation. Additionally, precisely where in the TCR signaling cascade Notch 

exerts influence remains to be determined. Several studies using various 

approaches to inhibit Notch activity have reported conflicting functions of Notch 

in regulating T cell activation as well as differentiation. Notch signaling has been 

shown to regulate differentiation towards TH1, TH2, TH17 and iTreg lineages 

(Amsen et al., 2004; Keerthivasan et al., 2011; Minter et al., 2005; Samon et al., 

2008). Pharmacological inhibition of Notch using GSIs dampens the ability to 

adopt a TH1 fate by attenuating the expression of T-bet (Minter et al., 2005). 

However, inhibition of signaling downstream of RBP-JΚ via genetic deletion or 

by using dominant negative MAML inhibits adoption of a TH2 fate in vivo while 
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preserving a TH1 phenotype (Amsen et al., 2007; Fang et al., 2007; Tu et al., 

2005). Given the ability of intra-cellular Notch to interact with proteins 

independently of RBP-JΚ, whether such disparate results could be attributed to an 

RBP-JΚ independent function of Notch is unknown.  Furthermore, whether 

canonical and non-canonical signaling affects T cell activation and differentiation 

processes differently requires further investigation. 

We report that Notch is required for controlling signaling events distal to 

the T-cell receptor and also acts as a critical regulator of TCR signal strength. We 

also show that activation and proliferation of peripheral CD4+ T-cells specifically 

requires Notch1 but not RBP-JΚ since conditional deletion of Notch1 impaired 

these processes while conditional deletion of RBP-JΚ had no effect.  Such non-

canonical, RBP-JΚ independent regulation of these processes likely occurs via NF-

ĸB.  Conditional deletion of Notch1 also impaired polarization towards TH1 and 

induction of regulatory T cells in vitro.  Nevertheless, RBP-JΚ deficiency did not 

impair TH1 or iTreg cell fate in vitro once again supporting a novel role of non-

canonical Notch signaling in controlling differentiation towards these lineages.  In 

vitro polarization towards TH2 was not affected in the absence of either Notch1 or 

RBP-JΚ. Our in vitro observations demonstrate a cell intrinsic function of RBP-JΚ 

independent Notch signaling in regulating peripheral T cell responses. Such non-

canonical regulation of these processes may serve to explain some of the 

differential, pleiotropic effects of Notch. 
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3.2 Results 

 

3.2.1 Notch is required for distal TCR signaling events 

 

Activation of T-cells via the TCR accompanied by co-stimulation leads to 

the production of the active, intra-cellular domain of Notch1 (N1IC) and its 

inhibition via γ-secretase inhibitors (GSI), decreases activation and proliferation 

of T cells (Adler et al., 2003; Palaga et al., 2003). While Notch has been 

demonstrated to regulate the expression of T-cell activation, precisely where 

Notch exerts its influence downstream of the TCR is obscure. Furthermore, 

whether Notch is required for regulating signaling events proximal or distal to the 

TCR is unclear.  To address these questions, we determined the kinetics of Notch 

activation over time and asked how inhibition of Notch activation via GSI 

treatment influences downstream TCR signaling events at early and late time 

points after stimulation. We detected N1IC in CD4+ T cells activated with plate 

bound Anti CD3 and Anti CD28 4 hrs. after activation and the amount of N1IC 

increased over time (Fig 3.1A). This increase was abrogated after GSI treatment 

(Fig 3.1A).  Inhibition of Notch activation did not alter proximal signaling events 

as evidenced by intact phosphorylation of Zap 70 even in GSI treated cells (Fig 

3.1B).  On the contrary, GSI treatment significantly decreased distal TCR 

signaling events such as the expression of activation markers CD25, CD69, IL-2 

and IFN-γ (Fig 3.1C-F)). This decrease was most prominent close to 48 hrs after 
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TCR stimulation suggesting that Notch activation is critical for signaling events 

distal to the TCR, but could be dispensable for proximal events. 

 

3.2.2 Notch as a regulator of signal strength 

 

A possible role of Notch as a regulator of signal strength has been 

observed in thymocytes since constitutive expression of N1IC in DP thymocytes 

prevented their maturation into single positive CD4+ and CD8+ T cells by 

interfering with TCR signal strength (Izon et al., 2001). However, whether Notch 

can influence the strength of TCR signaling in peripheral CD4+ T cells is 

unknown. Given the importance of Notch signaling in regulating activation, we 

asked whether it also influenced the threshold of signaling via the TCR. Since 

ligation of the TCR accompanied by co-stimulation was sufficient for the 

expression of N1IC, we first determined if altering signal strength could also 

influence the generation of N1IC. We stimulated CD4+ T cells with increasing 

concentrations of Anti-CD3 keeping the amount of Anti-CD28 constant. 

Increasing signal strength resulted in a corresponding increase in the amount of 

N1IC expression (Fig 3.2A).  This was also accompanied by an increase in the 

percentage of cells expressing N1IC and this increase could be inhibited after GSI 

treatment (Fig 3.2B). To determine if Notch is required for regulating signal 

strength, we stimulated cells with increasing amounts of Anti-CD3 after inhibiting 

Notch activation via GSI treatment. While DMSO treated cells secreted higher 

levels of IL-2 with increasing signal strength, GSI treated cells secreted 
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significantly low amounts of IL-2 even at the highest signal strength of 10 μg/ml 

Anti-CD3 (Fig 3.2C) suggesting that Notch influenced the threshold of signaling 

via the TCR.  

To confirm this observation, we stimulated D0.11.10 TCR transgenic 

CD4+ T cells with antigen presenting cells pulsed with increasing concentrations 

of ova-peptide. Once again, increasing antigen concentrations lead to a dose-

dependent increase in the amount of N1IC as well as the percentage of N1IC 

positive cells (Fig 3.2D,E). This increase could be blocked after GSI treatment 

(Fig 3.2E). In addition to N1IC, increasing signal strength also led to an increase in 

IL-2. However in the absence of Notch activation, even high concentrations of 

ova-peptide were not sufficient for maximal IL-2 production. (Fig 3.2F) These 

data demonstrate that not only can the levels of N1IC be influenced by the amount 

of signal via the TCR, but also Notch itself can regulate signal strength by 

decreasing the threshold of signaling.  In addition to Notch, the cell cycle 

regulator c-Myc is also influenced by TCR signal strength as strong peptide 

agonists cause a greater induction and nuclear translocation of c-Myc in T-cells 

(Guy et al., 2013). c-Myc is a downstream target of Notch and is suspected to be 

important in thymocyte development and T-cell function (Douglas et al., 2001; 

Guy et al., 2013; Lindsten et al., 1988; Nie et al., 2012). Thus, we asked whether 

or not the regulation of c-Myc in response to signal strength was Notch 

dependent. We first confirmed Notch dependency of c-Myc in T cells. In 

concurrence with previous reports, we observed that phosphorylated and total c-

Myc had a biphasic appearance in T cells and peaked at 4hrs and 24hrs after TCR 
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stimulation (Nie et al., 2012). However in addition to these results, we also 

observed that inhibition of Notch activation abrogated both phosphorylated and 

total c-Myc with the most prominent reduction at 48hrs post stimulation (Fig 

3.2G, H). Additionally, increasing signal strength lead to an increase in the 

expression of c-Myc, which was abrogated in the absence of Notch activation (Fig 

3.2I). Thus, these data show that Notch is required for sustained c-Myc induction 

in peripheral CD4+ T-cells. Furthermore, the induction of c-Myc in response to 

signal strength is Notch dependent. 

 

3.2.3 Notch1 is required for activation and proliferation of CD4+ T cells 

 

Inhibition of Notch activation using GSIs has been demonstrated to 

abrogate activation and proliferation of CD4+ T cells (Adler et al., 2003; Palaga et 

al., 2003). However, GSIs inhibit all isoforms of Notch and have multiple 

substrates (Beel and Sanders, 2008). Hence, the specific role of Notch1 in 

controlling these processes requires further investigation. To determine the 

specific function of Notch1 in T cell activation and differentiation, we 

conditionally knocked-out Notch1 in peripheral T cells by crossing mice with 

loxp flanked Notch1 alleles, to mice expressing Cre recombinase under the 

control of the interferon responsive Mx promoter (Roderick et al., 2013). The 

Mx-Cre promoter enables acute deletion of Notch1 in peripheral T cells. Since 

Notch1 is required for development of T cells (Deftos et al., 2000; Radtke et al., 

1999; Wolfer et al., 2001), this deletion strategy enables cells to develop normally 
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in the presence of Notch, before its deletion in the periphery. Both Notch1 fl/fl Mx 

Cre +/- mice (abbreviated as cN1KO) and Notch1 fl/fl Mx Cre -/- mice (abbreviated 

as control) were injected with equivalent amounts of Poly I: Poly C and rested for 

3 weeks before use (Roderick et al., 2013). CD4+ T cells from cN1KO animals 

showed a significant decrease in Notch1 transcript as well as a marked reduction 

in the amount of N1IC expression. (Fig 3.3A,D)(Roderick et al., 2013). We also 

confirmed the expression of other Notch receptors in CD4+ T cells from control 

and cN1KO animals and observed an increase in the expression of Notch2 and 

Notch3 transcripts in the absence of Notch1 (Fig 3.3B,C). We could not detect 

Notch4 in cells from either control or cN1KO mice. In addition, both cN1KO and 

control mice expressed similar percentages of CD4+ and CD8+ peripheral T cells 

(Fig 3.3E,F)  

To investigate the specific contribution of Notch1 in influencing activation 

of peripheral T cells, CD4+ T cells from cN1KO or control animals were 

stimulated in vitro with anti-CD3ε and anti-CD28 and activation markers were 

observed by flow cytometry. cN1KO animals had a significantly lower percentage 

of cells expressing CD25 and CD69 (Fig. 3.4A,B,D,E). Furthermore, these cells 

expressed lower levels of both activation markers (Fig 3.4C,F). This decrease was 

accompanied by a significant reduction in the levels of IL-2 and IFN-γ secreted 

post-activation (Fig 3.4G, H). Whether CD4+ T cells from cN1KO animals were 

also impaired in their ability to proliferate was determined by measuring the 

incorporation of 3H-thymidine. Proliferative capability was significantly 

diminished in the absence of Notch1 and could not be rescued by adding 



 49 

exogenous IL-2 (Fig 3.4I).  To determine if the observed decrease in proliferation 

was due to enhanced apoptosis in the absence of Notch1, Annexin V positive cells 

from control or cN1KO animals were analyzed by flow cytometry. CD4+ T cells 

from cN1KO animals had only marginally more apoptosis 48 hrs after activation 

(Fig 3.5A,B). Since Notch1 was required for the activation and proliferation of 

CD4+ T cells, we asked whether it also influenced the threshold of signaling via 

the TCR. CD4+ cells from control and cN1KO animals were stimulated with 

increasing concentrations of anti-CD3ε accompanied by co-stimulation. While 

cells from control mice secreted higher levels of IL-2 with increasing signal 

strength, cells from cN1KO mice had low levels of IL-2 even at the highest signal 

strength of 0.2 μg/ml anti-CD3ε (Fig 3.4J). These results demonstrate that 

activation and proliferation of CD4+ T cells specifically requires Notch1. 

Furthermore, Notch1 also acts to decrease the threshold for signaling via the TCR. 

 

3.2.4 Notch1 is required for TH1 differentiation and production of iTregs in-

vitro 

 

Although Notch has been implicated in influencing differentiation of T 

cells, the precise role of Notch1 in favoring TH1 versus TH2 lineage decisions is 

unclear. To determine the precise role of Notch1 in helper T-cell differentiation, 

CD4+ T cells from control or cN1KO mice were polarized in vitro to TH1, TH2 or 

iTreg lineages. Absence of Notch1 impaired TH1 differentiation in vitro. CD4+ T 

cells from cN1KO mice had significantly fewer cells that stained positive for 
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intra-cellular IFN-γ (Fig 3.6A, B). Secreted IFN-γ was also reduced significantly 

in the absence of Notch1 (Fig 3.6C). This decrease was accompanied by a 

reduction in the amount of the master TH1 transcription factor T-bet (Fig 3.6D, E, 

F). In contrast, no marked effect was observed in TH2 differentiation. Although, 

the amount of GATA3 was reduced in the absence of Notch1 (Fig 3.6G, H, I), 

both control as well as cN1KO mice had similar percentages of CD4+ T cells that 

were positive for intra-cellular IL-4 (Fig 3.6A, B) and expressed comparable 

levels of secreted IL-4 (Fig 3.6C). Whether CD4+ T cells from cN1KO mice 

proliferated differently under different polarizing conditions, was determined by 

3H-thymidine uptake under non-polarized (NP), TH1 and TH2 conditions. 

Proliferative capability of CD4+ T cells from cN1KO mice was the same under 

different polarizing conditions (Fig 3.7), despite of differences in cytokine 

secretion. In addition to TH1, Notch1 deficiency significantly reduced induced T-

reg populations as observed by a significant decrease in the frequency of 

CD25+FoxP3+ cells in cN1KO animals (Fig 3.6J, K). These results show that 

Notch1 is required for TH1 and iTreg differentiation but is dispensable for TH2 cell 

fate acquisition in vitro. Furthermore, these data demonstrate an intrinsic role of 

Notch1 in regulating helper T cell differentiation. 
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3.2.5. Canonical Notch signaling is not required for activation and 

proliferation of CD4+ T cells 

 

Several studies have highlighted an emerging role of non-canonical Notch 

signaling in controlling helper T cell differentiation (Auderset et al., 2012; 

Perumalsamy et al., 2009). This is potentiated by interactions of the intra-cellular 

domain of Notch with other proteins besides RBP-Jĸ in the cytoplasm and 

nucleus. However, whether canonical and non-canonical Notch signaling differ in 

their ability to influence T cell activation and differentiation is not well defined. 

Hence, to determine the importance of RBP-Jĸ-dependent, canonical Notch 

signaling, we conditionally knocked out RBP-Jĸ in peripheral T cells by breeding 

mice carrying RBP-Jĸ loxp-flanked sites to mice expressing Cre recombinase 

under the control of the Mx promoter. CD4+ T cells from RBP-Jĸ fl/fl Mx Cre +/- 

mice (abbreviated as cRBP-Jĸ -KO) expressed substantially reduced transcript 

and protein levels of RBP-Jĸ in comparison to to CD4+ T cells from RBP-Jĸ fl/fl 

Mx Cre -/- mice. (Abbreviated as controls). (Fig 3.8A,B). Additionally, cRBP-Jĸ -

KO mice had significantly fewer peripheral CD4+ and CD8+ T cells in their 

spleens (Fig 3.8C,D). To determine how canonical Notch signaling influenced 

activation, CD4+ T cells from control and cRBP-Jĸ -KO mice were stimulated in 

vitro with anti-CD3ε and anti-CD28. Absence of RBP-Jĸ did not alter the 

production of intra-cellular Notch1 after TCR stimulation (Fig 3.9A, B, C). In 

contrast to impaired activation observed in the absence of Notch1, RBP-Jĸ 
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deficiency did not alter the activation of CD4+ T cells. On the contrary, CD4+ T 

cells from cRBP-Jĸ -KO animals produced marginally higher numbers of CD4+ T 

cells expressing activation the markers CD25 and CD69 and displayed slightly 

elevated amounts of each marker (Fig 3.9D-I). CD4+ T cells from both cRBP-Jĸ –

KO mice secreted IL-2 and IFN-γ just as efficiently as Controls. (Fig 3.9K, L). 

Proliferation of CD4+ T cells was unaffected by the absence of RBP-Jĸ 

irrespective of addition of recombinant IL-2 (Fig 3.9J). These results suggest that 

activation and proliferation of CD4+ T cells is not impaired in the absence of 

RBP-Jĸ. However, since these processes required Notch1, our data show that 

activation and proliferation occurs independently of canonical Notch signaling. 

 

3.2.6. Activation and Proliferation of CD4+ T cells is RBP-Jĸ-independent 

but Notch and NF-ĸB dependent 

 

To confirm that RBP-Jĸ-independent activation and proliferation was in 

fact Notch dependent but RBP-Jĸ-independent, we used the following strategies. 

We first inhibited activation of Notch in CD4+ T cells from cRBP-Jĸ-KO by 

treating these cells with GSI. To control for the off-target effects of GSIs we also 

treated cells with a Notch sparing GSI (NS-GSI) that inhibited all GSI substrates 

except Notch. GSI treatment of CD4+ T cells from cRBP-Jĸ-KO mice inhibited 

intra-cellular Notch (Fig 3.10A) and significantly reduced the expression of the 

activation markers CD25 and CD69 (Fig 3.10B,C). This was accompanied by a 

significant decrease in the cytokines IL-2 and IFN-γ (Fig 3.10D,E). Importantly, 
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NS-GSI treatment rescued Notch activation as well as CD25, CD69 and IL-2 (Fig 

3.10A-D). A partial rescue was observed with IFN-γ (Fig 3.10E). Furthermore, a 

decrease in proliferation of CD4+ T cells from cRBP-Jĸ-KO mice after GSI 

treatment was also rescued by the NS-GSI (Fig 3.10L.M).  These data suggest that 

while canonical Notch signaling is dispensable for the activation and proliferation 

of peripheral CD4+ T cells, these processes require intra-cellular Notch. The role 

of Notch and NF-ĸB in regulating T cell activation and differentiation processes 

has been well documented (Barbarulo et al., 2011; Palaga et al., 2003; Shin et al., 

2006; Vacca et al., 2006). Hence we asked whether these RBP-Jĸ -independent 

processes, were also dependent on NF-ĸB. This was determined by examining 

activation markers after inhibiting NF-ĸB in CD4+ T cells lacking RBP-Jĸ using 

DHMEQ . Although DHMEQ treatment did not alter the levels of N1IC (Fig 

3.10F), DHMEQ treated CD4+ T cells from cRBP-Jĸ-KO mice showed a 

significant reduction in the amounts of CD25, CD69, IL-2 and IFN-γ (Fig 3.10G-

J). Furthermore, DHMEQ treatment of CD4+ T cells from cRBP-Jĸ-KO animals 

significantly impaired proliferation (Fig 3.10K). These data show that activation 

and proliferation of CD4+ T cells is an RBP-Jĸ-independent but Notch dependent 

process. Furthermore, our data suggest that non-canonical Notch signaling may 

control these processes, at least in part through NF-ĸB. 
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3.2.7. RBP-Jĸ -deficiency does not alter CD4+ T cell differentiation in vitro 

 

Deletion of either Notch1 or RBP-Jĸ has been shown to have different 

outcomes on helper T cell differentiation, suggesting that acquisition of helper T 

cell fate may be differentially influenced by canonical and non-canonical Notch 

signaling.  Whether the absence of RBP-Jĸ influenced polarization of CD4+ T 

cells in vitro was determined by skewing cells from control or cRBP-Jĸ -KO 

animals towards TH1 and TH2 cell fates. While the number of cells secreting IFN-

γ was reduced in the CD4+ T cells from cRBP-Jĸ-KO mice (Fig 3.11A, B), the 

amount of IFN-γ secreted under TH1 conditions was unaffected (Fig 3.11C). 

Levels of T-bet remained unchanged in the absence of RBP-Jĸ in comparison to 

controls (Fig 3.11D, E, F). Similarly, RBP-Jĸ -deficiency did not alter 

polarization towards TH2. Although CD4+ T cells cells from RBP-Jĸ-KO animals 

had lower amounts of GATA-3 (Fig 3.11G, H, I) this decrease did not influence 

the number of IL-4 positive cells (Fig 3.11A, B) or the amount of secreted IL-4 

under TH2 conditions in vitro (Fig 3.11C). In addition to TH1 and TH2 phenotypes, 

the absence of RBP-Jĸ did not impair the ability to induce regulatory T- cells. The 

number of CD25+Foxp3+ cells was significantly increased in cRBP-Jĸ-KO 

animals (Fig 3.11J, K). These data show that differentiation of CD4+ T cells in 

vitro does not require canonical Notch signaling. 
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3.3 Discussion 

 

Several studies have demonstrated the generation of the active, 

intracellular domain of Notch in T cells stimulated via the TCR accompanied by 

co-stimulation (Adler et al., 2003; Palaga et al., 2003). In this report we address 

precisely where Notch exerts influence downstream of the TCR signaling 

cascade. We specifically outline the kinetics of Notch activation in peripheral T 

cells and suggest that Notch is most important for regulating signaling events 

distal to the TCR. We show that inhibition of Notch activation had no effect on 

phosphorylation of Zap70, a proximal TCR signaling event. However, GSI 

treatment effectively abolished the expression of T cell activation markers - 

CD25, CD69, IL-2 and IFN-γ, events that occur several hours following TCR 

stimulation. In addition, GSI treatment also abolished the expression of c-Myc 

most prominently at 14-48 hrs post TCR stimulation. While these data do not 

exclude a role of Notch in affecting other early TCR events besides 

phosphorylation of Zap70, they suggest that Notch has a very significant 

influence on distal events. Furthermore, our data also reveal a critical influence of 

Notch activation on TCR signal strength. We show that stimulating T cells with 

increasing concentrations of either anti-CD3ε or antigen pulsed APCs, increased 

the amount of N1IC in proportion to increasing signal strength. Although we did 

observe basal levels of N1IC expression in CD4+ T cells stimulated with CHO-

APCs in the absence of ova peptide, CHO-APCs express low levels of Jagged 1 

and likely contribute to the basal expression of N1IC. Most importantly, abrogating 
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Notch activation either via GSI treatment or conditional deletion significantly 

increased the threshold of signaling via the TCR. While Notch has been 

implicated in influencing strength of signal in thymocytes (Nie et al., 2012), our 

data demonstrate for the first time a role of Notch as a regulator of signal strength 

in peripheral CD4+ T cells. We also observed a concomitant increase in c-Myc in 

response to increasing signal. While a similar response has been recently 

documented in peripheral T cells, our data add to these data by showing that an 

increase in c-Myc in response to increasing signal strength is, in fact, Notch 

dependent.  These data also suggest that Notch may likely exert control over 

signal strength via c-Myc. However, further experimentation is required to 

investigate the precise mechanism that underlies Notch dependent regulation of 

signal strength. 

Many studies have implicated a role of Notch in regulating peripheral T 

cell responses using GSIs to inhibit Notch activity (Adler et al., 2003; Minter et 

al., 2005; Palaga et al., 2003). However, the use of GSIs obscures the specific 

contribution of Notch1 in regulating these processes. Here, we specifically 

address such concerns by conditionally deleting Notch1 using the Mx-Cre system, 

which produces “acute” deletion of Notch1 in peripheral T cells. CD4+ T cells 

from cN1KO animals showed a significant reduction in CD25, CD69, IL-2 and 

IFN-γ coupled with impaired proliferation that could not be rescued in the 

presence of exogenous IL-2. In addition, although CD4+ T cells from cN1KO 

animals expressed Notch2 and Notch3, it was not sufficient to rescue activation or 
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proliferation. Thus, our data show that activation and proliferation are in fact 

Notch dependent processes that specifically require Notch1. 

The precise function of Notch signaling in determining TH1 versus TH2 

lineage decisions remains controversial partially due to the disparate methods 

used to attenuate Notch signaling. In models of RBP-JK deletion, the generation of 

N1IC is preserved (Fig 3.9). This is particularly important since N1IC has also been 

documented to interact with other proteins besides RBP-JK (Minter et al., 2005; 

Perumalsamy et al., 2009; Shin et al., 2006). Therefore we reasoned that since 

Notch1 is known to interact with proteins other than RBP-JK, N1IC may be capable 

of functioning in an RBP-JK independent fashion and such “non-canonical” 

signaling could serve to reconcile existing differences about the precise role of 

Notch in influencing T cell differentiation. To this end, we generated mice with a 

conditional deletion of either Notch1 or RBP-JK and determined whether deleting 

different components of the Notch pathway produced distinct phenotypes.  

Furthermore, we specifically chose to study how the absence of Notch signaling 

affects T cell differentiation in vitro to delineate a cell intrinsic role of Notch in 

controlling effector T cell responses in contrast to previously used in vivo 

approaches which cannot distinguish between extrinsic and intrinsic effects. 

We show that conditionally deleting Notch1 attenuates TH1 responses in 

vitro as observed by a significant decrease in the percentage of cells secreting 

IFN-γ, the amount of secreted IFN-γ and the amount of T-bet expressed 

suggesting that Notch1 is in fact required for TH1 decisions. Another study has 

shown that deleting Notch1 under the control of a CD4 Cre promoter does not 
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dampen TH1 responses in vitro. We suggest that the differences between this study 

and ours may most likely be due to the different approaches used to delete Notch 

since deletion under the control of the CD4 Cre promoter, deletes Notch during 

thymic development. Apart from TH1, we also show that deletion of Notch1 

impaired the ability to generate induced regulatory T-cells. Inhibition of Notch via 

GSIs has also been shown to decrease iTreg populations, suggestive of a 

requirement for Notch1 in regulating these responses. Although we observed a 

decrease in both TH1 and iTreg populations in the absence of Notch1, we did not 

see any decrease in TH2 responses in vitro. We have shown previously that 

inhibition of Notch via GSIs under TH2 conditions does not alter IL-4 production 

(Minter et al., 2005). Corroborating these observations, another study showed that 

genetic deletion of presenilin, a component of the γ-secretase complex, did not 

alter TH2 responses in vitro (Ong et al., 2008). Our TH2 data concur with these 

reports suggesting that Notch1 is dispensable for intrinsic acquisition of a TH2 cell 

fate in vitro. 

To determine the contribution of RBP-JK dependent, canonical Notch 

signaling in regulating activation and differentiation of peripheral CD4+ T cells, 

we conditionally deleted RBP-JK once again under the control of the Mx promoter 

facilitating acute deletion. CD4+ T cells from cRBP-JK –KO animals expressed 

N1IC upon TCR stimulation. Strikingly, contrary to CD4+ T cells from cN1KO 

animals, CD4+ T cells from cRBP-JK –KO animals were not deficient in activation 

or proliferation and expressed all activation markers at identical levels to CD4+ T 

cells from control mice suggesting an RBP-JK independent role of Notch signaling 
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in regulating these processes. We confirmed this by showing that only after intra-

cellular Notch is inhibited in CD4+ T cells lacking RBP-JK, can activation and 

proliferation be decreased. Additionally, an NS-GSI could “rescue” activation and 

proliferation in the absence of RBP-JK. The NS-GSI only partially rescued IFN-γ. 

A possible explanation for this observation is that Notch may regulate IFN-γ 

production via an intermediary molecule, which is a GSI target and is hence not 

spared by the NS-GSI. While these data suggest only a partial requirement of N1IC 

for IFN-γ production, determining the precise molecular players that interact with 

Notch to regulate IFN-γ, requires further experimentation. Our data concur with 

previously reported observations that showed no overt effect of RBP-JK deletion 

on T cell activation or proliferation (Kopan and Ilagan, 2009; Ong et al., 2008; 

Tanigaki and Honjo, 2007; Tu et al., 2005). However, our study is the first to 

suggest that this is due to non-canonical Notch signaling as N1IC could 

compensate for the absence of RBP-JK. 

The mechanism by which non-canonical Notch signaling regulates 

activation, proliferation and differentiation requires further investigation. Our data 

along with that of others suggest NF-KB to be the most likely candidate 

(Barbarulo et al., 2011; Palaga et al., 2003; Shin et al., 2006; Vacca et al., 2006). 

Thus, to determine if some of the effects of non-canonical Notch signaling require 

NF-KB, we inhibited NF-KB in the absence of RBP-JK. DHMEQ treatment 

reduced nuclear translocation of c-Rel (Fig 3.12A,B). Inhibition of NF-KB did not 

alter the levels of intra-cellular Notch1, but still decreased the expression of 

CD25, CD69, IL-2 and IFN-γ in CD4+ cells from cRBP-JK-KO animals NF-KB 
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inhibition also attenuated proliferation in the absence of RBP-JK. Furthermore, 

attenuation of NF-KB in the absence of RBP-JK attenuated TH1 response in vitro 

since DHMEQ treatment reduced the expression of T-bet and IFN-γ in cells 

lacking RBP-JK  (Fig 3.12C, D), suggesting that RBP-JK independent but Notch1 

dependent regulation of these responses may require NF-KB. Additionally, 

inhibiting NF-KB significantly affected T-cell activation only at a distal time point 

of 48hrs and abolished the expression of c-Myc suggesting that Notch may 

require NF-KB to control these processes. (Fig 3.13). However, deciphering the 

precise mechanism of such NF-KB mediated non-canonical Notch signaling is an 

ongoing area of investigation that requires further experimentation. 

To extend the contribution of non-canonical Notch signaling to helper T 

cell differentiation, we validated TH1, TH2 and iTreg responses in vitro in the 

absence of RBP-JK.  In stark contrast to CD4+ T cells from cN1KO animals which 

showed a markedly dampened TH1 response, CD4+ T cells from cRBP-JK-KO 

mice secreted IFN-γ and expressed T-bet just as efficiently as controls. These data 

once again showcase RBP-JK independent, but Notch1 dependent regulation of 

effector T cell responses in vitro.  A recent study has also suggested such RBP-JK 

independent Notch signaling in regulating TH1 responses in vivo by showing that 

CD4+ T cells lacking RBP-JK could mount a protective response to Leishmania 

major but those lacking both the Notch1 and Notch2 receptors could not 

(Auderset et al., 2012).  In addition to TH1, we observed an increase in the number 

of CD25+FoxP3+ double positive cells in the absence of RBP-JK suggesting that 

induction of regulatory T cells may also rely on non-canonical Notch signaling. 
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This observation was in contrast to a significant decrease of the same subset seen 

in the absence of Notch. These differences can be reconciled by the fact that 

cRBP-JK -KO mice continue to express elevated levels of N1IC. Since N1IC is 

required for T-reg lineage determination, an increase in N1IC expression in the 

absence of RBP-Jk, could be responsible for a significant increase in the 

regulatory T cell population. Additionally, since RBP-JK is a transcriptional 

repressor, deletion of RBP-JK could de-repress FoxP3, resulting in an increase in 

the number of CD25+FoxP3+ T-regs. Finally, we did not observe an effect of RBP-

JK deficiency on the secretion of TH2 cytokines in vitro. Our data do not support 

an intrinsic role for Notch1 signaling in TH2 responses. However, since Notch1 

acts upstream of IL-4 and Notch1 has been shown to regulate IL-4 secretion by 

NKT cells, we suggest that Notch1 regulates TH2 responses extrinsically and may 

instead regulate in vivo IL-4 production.  

In conclusion our in vitro approach resolves discrepancies about the role 

of Notch signaling in CD4+ T cell function by showing that Notch1 regulates T 

cell activation, proliferation and differentiation in a cell-intrinsic fashion. 

Importantly, our data demonstrate for the first time that RBP-JK independent, non-

canonical Notch signaling regulates activation, proliferation and acquisition of 

TH1 and iTreg fates in vitro. Such non-canonical Notch signaling most likely 

involves NF-KB. Evidence of non-canonical Notch signaling has been observed 

during axon guidance as well as dorsal closure during embryonic development in 

Drosophila (Crowner et al., 2003; Zecchini et al., 1999). In addition, a cytosolic 

function of Notch is required for survival of neural stem cells (Androutsellis-
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Theotokis et al., 2006). Non-canonical Notch signaling has recently been shown 

to influence the IL-6/JAK/STAT pathway in breast tumors in a fashion that 

requires NF-KB (Jin et al., 2013). Additionally, mammary tumor development has 

been shown to occur independently of RBP-JK. Further studies are required to 

delineate the precise molecular mechanisms underlying non-canonical Notch 

signaling however our data as well as others support a role for NF-KB in 

mediating non-canonical Notch signaling. 
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Figure 3.1. Notch is required for distal TCR signaling events 
 
Splenocytes from C57BL/6J mice were pretreated with DMSO or GSI and 
stimulated with plate bound anti-CD3ε and anti-CD28 for the indicated times. 
Cells were harvested and analyzed by flow cytometry after gating on CD4+ T 
cells.  Mean Fluorescent Intensity (MFI) values were plotted for (A) N1IC (C) 
CD25 (D) CD69. (E) IL-2 and (F) IFN-γ ELISA from supernatants of cells 
stimulated as described. (B) Western Blot for phosphorylated and Total Zap70. 
Splenocytes from C57BL/6J mice were pretreated with DMSO or GSI and 
stimulated with anti-CD3ε and anti-CD28 for the indicated time points. Data 
represent the mean ± SEM, n = 3. *, p < 0.05, ** p < 0.005, ***, p < 0.001. 
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Figure 3.2. Notch as a regulator of signal strength 

(A) Histogram for N1IC expressed in CD4+ T cells stimulated with the 
indicated concentrations of anti-CD3ε and 1 μg/ml of anti-CD28 for 48 hrs. (B-C) 
CD4+ T cells were pretreated with DMSO or GSI and activated with the indicated 
concentrations of anti-CD3ε and 1 μg/ml of anti-CD28 for 48 hrs. (B) Percentage 
of cells expressing N1IC as determined by flow cytometry. (C) IL-2 ELISA from 
supernatants. n = 3-5. (D-F) CD4+ T cells were isolated  from DO.11.10 – TCR 
transgenic mice and pretreated with DMSO or GSI prior to co-culture with CHO-
APCs expressing MHC-II and B7. They were pulsed with the indicated 
concentrations of ova peptide 323-339. Cells were harvested after 48 hrs and 
analyzed by flow cytometry after gating on D0.11.10 TCR positive CD4+ T cells. 
(D) Histogram for N1IC. (E) Percentage of cells expressing N1IC as determined by 
flow cytometry. n = 3. (F) IL-2 ELISA from supernatants. n = 3. (G-H) Western 
Blot for (G,H) phosphorylated and Total c-Myc. Splenocytes from C57BL/6J 
mice were pretreated with DMSO or GSI and stimulated with plate bound anti-
CD3ε and anti-CD28 for the indicated times. (H) Integrated density of 
phosphorylated and total c-Myc after normalizing with Actin. (I) Western Blot for 
c-Myc expressed in CD4+ T cells stimulated as described in (A). Data represent 
three independent experiments. Data represent the mean ± SEM, *, p < 0.05, ** p 
< 0.005, ***, p < 0.001. 
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Figure 3.3. Deletion of Notch1 in peripheral CD4+ T cells 
 
CD4+ T cells were isolated from control or cN1KO mice and stimulated with plate 
bound anti-CD3ε and anti-CD28. Cells were harvested after 48hrs. (A, B, C) 
RNA was isolated and reverse transcribed to cDNA. Expression of (A) Notch1 
(B) Notch2 and (C) Notch3 transcripts was determined by real time PCR and 
analyzed by the 2-ΔΔCT method. Results are presented as fold change in gene 
expression after normalization to actin and expressed relative to controls. (D) 
Histogram for N1IC expressed in stimulated CD4+ T cells from C57BL/6J wild 
type, control or cN1KO mice. Data represent at least 5 independent experiments. 
(E, F) Splenocytes from control and cN1KO mice were surface stained for CD4 
and CD8 and analyzed by flow cytometry. (E) Dot plots for CD4+ and CD8+ cells 
obtained by flow cytometry. Numbers in each quadrant represent % of cells. Data 
represent five independent experiments. (F) Percentage of CD4+ and CD8+ T cells 
obtained from the dot plots. n = 5. Data represent the mean ± SEM. * p < 0.05, ** 
p < 0.005, *** p < 0.001, ns - not significant. 

 
 
 
 
 



 66 

 

 
 

Figure 3.3. Notch1 is required for activation and proliferation of CD4+ T cells 
 
CD4+ T cells were isolated from Control or cN1KO mice and stimulated with 
plate bound anti-CD3ε and anti-CD28. Cells were harvested after 48hrs (3A-F, J) 
or at indicated times (3G-I). Cells were surface stained for CD4, CD25 and CD69 
and intra-cellular stained for N1IC and analyzed by flow cytometry. (A, D) Dot 
plots obtained after flow cytometry. Data are representative of four independent 
experiments. Numbers in each quadrant represent % of cells. (B) % of cells 
positive for CD25 and (E) CD69 obtained from dot plots in (A, D). n=4. (C, F) 
Histograms for CD25 and CD69 after gating on Notch negative cells from 
cN1KO mice. Data represent four independent experiments. (G) IL-2 and (H) 
IFN-γ ELISA from supernatants obtained from control and cN1KO mice 
stimulated as described above. n = 4. (I) Counts per minute (CPM) obtained after 
3H-thymidine uptake in CD4+ T cells from control and cN1KO mice stimulated as 
described above with and without rmIL-2 (20ng/ml). Data represent three 
independent experiments. (J) IL-2 ELISA from supernatants of CD4+ T cells from 
Control or cN1KO mice stimulated with the indicated concentrations of anti-
CD3ε and 1 μg/ml of anti-CD28 for 48 hrs. n=3-5. Data represent mean ± SEM.  
*, p < 0.05, ** p < 0.005. 
 
 
 
Figure 3.4. Notch1 is required for activation and proliferation of CD4+ T cells 
 
CD4+ T cells were isolated from Control or cN1KO mice and stimulated with 
plate bound anti-CD3ε and anti-CD28. Cells were harvested after 48hrs (3A-F, J) 
or at indicated times (3G-I). Cells were surface stained for CD4, CD25 and CD69 
and intra-cellular stained for N1IC and analyzed by flow cytometry. (A, D) Dot 
plots obtained after flow cytometry. Numbers in each quadrant represent % of 
cells. (B) % of cells positive for CD25 and (E) CD69 obtained from dot plots in 
(A, D). n=4. (C, F) Histograms for CD25 and CD69 after gating on Notch 
negative cells from cN1KO mice. (G) IL-2 and (H) IFN-γ ELISA from 
supernatants obtained from control and cN1KO mice stimulated as described 
above. n = 4. (I) Counts per minute (CPM) obtained after 3H-thymidine uptake in 
CD4+ T cells from control and cN1KO mice stimulated as described above with 
and without rmIL-2 (20ng/ml). (J) IL-2 ELISA from supernatants of CD4+ T cells 
from Control or cN1KO mice stimulated with the indicated concentrations of anti-
CD3ε and 1 μg/ml of anti-CD28 for 48 hrs. n=3-5. Data represent mean ± SEM.  
*, p < 0.05, ** p < 0.005. 
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 Figure 3.5 Apoptosis in the absence of Notch1 
 
(A, B) CD4+ T cells were isolated from control or cN1KO mice and stimulated 
with plate bound anti-CD3ε and anti-CD28. Cells were harvested after 48hrs. 
Histograms showing Annexin V expression obtained by flow cytometry, 
representative of 3 independent experiments. (B) % of Annexin V+ cells obtained 
by flow cytometry. n = 3 
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Figure 3.6 Notch1 is required for TH1 differentiation and production of 
iTregs in vitro 
 
CD4+ T cells from control and cN1KO mice were differentiated under TH1, TH2 or 
iTreg inducing conditions for 3 days followed by re-stimulation with plate bound 
anti-CD3ε. Cells were analyzed by flow cytometry. Supernatants were used for 
ELISA. (A) Dot plots obtained from flow cytometry showing intra-cellular 
staining for IFN- γ and IL-4. (B) % of IFN- γ or IL-4 positive cells determined by 
flow cytometry. n=3-5. (C) IFN- γ and IL-4 production under TH1 and TH2 
conditions respectively determined by an ELISA. Each data point represents one 
animal. (D, G) Dot plots showing intra-cellular staining for (D) T-bet and N1IC 

under TH1 conditions (G) or GATA3 and N1IC under TH2 conditions. (E, H) 
Percentage of double positive cells as determined by flow cytometry. n = 3-5. (F) 
Histograms for T-bet and (I) GATA3 expression under TH1 and TH2 conditions 
respectively. (J) Dot plots for CD25+ and FoxP3+ cells. (K) % of double positive 
cells determined by flow cytometry. n=3. Data represent mean ± SEM.  *, p < 
0.05, ** p < 0.005, ***, p < 0.001, ns – not significant.  
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Figure 3.7 Proliferation of CD4+ T cells from cN1KO mouse under different 
polarizing conditions 
 
 Counts per minute (CPM) obtained after 3H-thymidine uptake. CD4+ T cells were 
isolated from control or cN1KO mice and stimulated in with plate bound anti-
CD3ε and anti-CD28 under Non-Polarized (NP), TH1 and TH2 conditions for 
72hrs. Data represent three independent experiments. ns – not significant. 
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Figure 3.8 Deletion of RBPJK in peripheral CD4+ T cells 
 
 (A) RNA was isolated from CD4+ T cells from control and cRBPJK-KO mice and 
reverse transcribed to cDNA. Expression of RBPJK  transcript was determined by 
real time PCR and analyzed by the 2-ΔΔCT method. Results are presented as fold 
change in gene expression after normalization to actin and expressed relative to 
controls. (B) Western Blot for lysates obtained from CD4+ T cells from control 
and cRBPJK-KO mice. (C) Splenocytes from control and cRBPJK-KO mice were 
surface stained for CD4 and CD8 and analyzed by flow cytometry. Numbers in 
each quadrant represent % of cells. Data represent five independent experiments. 
(D) Percentage of CD4+ and CD8+ T cells. n = 5. Data represent the mean ± SEM, 
*, p < 0.05.  
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Figure 3.9 Canonical Notch signaling is not required for activation and 
proliferation of CD4+ T cells 
 
CD4+ T cells were isolated from control or cRBPJK-KO mice and stimulated with 
plate bound anti-CD3ε and anti-CD28. Cells were harvested after 48hrs (A-I) or 
at indicated times. (J-L). Cells were surface stained for CD4, CD25, CD69 and 
intra-cellular stained for N1IC and analyzed by flow cytometry. (A, D, G) Dot 
plots obtained from flow cytometry showing CD4+ T cells positive for (A) N1IC 
(D) CD25 and (G) CD69. Numbers in each quadrant represent % of cells. (B, E, 
H) Percentage of cells positive for (B) N1IC (E) CD25 and (H) CD69 obtained 
from dot plots. n=4. (C, F, I) Histograms for (C) N1IC (F) CD25 and (I) CD69. 
(J) Counts per minute (CPM) obtained after 3H-thymidine uptake in CD4+ T cells 
from control and cRBPJK-KO mice stimulated as described above with and 
without rmIL-2 (20ng/ml). (K) IL-2 and (L) IFN-γ ELISA from supernatants 
obtained from control and cRBPJK-KO mice stimulated as described above. n = 6. 
Data represent mean ± SEM, ns - not significant.  
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Fig 3.10 Activation and Proliferation of CD4+ T cells is RBPJK independent 
but Notch and NF-ĸB dependent. 
 
CD4+ T cells were isolated from cRBPJK-KO mice, pretreated with DMSO, GSI 
or NS-GSI (A-E, L-M) or DHMEQ (F-K) and stimulated with plate bound anti-
CD3ε and anti-CD28 for 24 hrs. Cells were surface stained for CD4, CD25 and 
CD69 and intra-cellular stained for N1IC and analyzed by flow cytometry. 
Supernatants were used to detect IL-2 and IFN-γ by an ELISA Mean Fluorescent 
Intensity (MFI) values were plotted for (A, F) N1IC (B, G) CD25 (C, H) CD69. n 
=3-5. Histograms to the right of (A-C) show expression of N1IC, CD25 and CD69. 
Data represent three independent experiments. (D, I) IL-2 and (E, J) IFN-γ as 
determined by an ELISA. (K) Counts per minute after tritiated thymidine uptake 
of cells treated with DMSO or DHMEQ. (L) Histograms representing a CFSE 
Proliferation Assay. CD4+ T cells from cRBPJK-KO mice pretreated with DMSO, 
GSI, NS-GSI were labeled with CFSE and activated with plate bound anti-CD3ε 
and anti-CD28 for 48 hrs followed by flow cytometry analysis. (M) Percentage of 
CFSE negative cells obtained by flow cytometryData represent mean ± SEM * p 
< 0.05, ** p < 0.005, *** p < 0.001, ns - not significant. 
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Figure 3.11 RBPJK deficiency does not alter CD4+  T cell differentiation in 
vitro 
 
CD4+ T cells from control and cRBPJK-KO mice were differentiated under TH1, 
TH2 or iTreg inducing condition for 3 days followed by re-stimulation with plate 
bound anti-CD3. Cells were analyzed by flow cytometry. Supernatants were used 
for ELISA. (A) Dot plots showing intra-cellular staining for IFN- γ and IL-4. (B) 
% of IFN- γ or IL-4 positive cells determined by flow cytometry. Numbers in 
each quadrant represent % of cells. n>3. (C) IFN- γ and IL-4 production under 
TH1 and TH2 conditions respectively determined by an ELISA. Each data point 
represents one animal. (D, G) Dot plots showing intra-cellular staining for (D) T-
bet and N1IC under TH1 conditions and (G) GATA3 and N1IC under TH2 
conditions. (E, H) Percentage of double positive cells determined by flow 
cytometry. n = 5. (F, I) Histograms for T-bet and GATA3 expression under TH1 
and TH2 conditions respectively. (J) Flow cytometry plots for CD25+ and FoxP3+ 
cells. (K) Percentage of double positive cells determined by flow cytometry. n= 3. 
Data represent mean ± SEM.  * p < 0.05,  ns - not significant.  
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Figure 3.12 TH1 polarization in the absence of RBPJK, is NF-ΚB dependent 
 
(A,B) CD4+ T cells isolated from cRBPJK-KO mice were pretreated with DMSO 
DHMEQ or GSI and stimulated in vitro for 48 hrs. Nuclear and cytoplasmic 
protein fractions were isolated and analyzed by western blotting for translocation 
of c-Rel. Actin and Histone deacetylase (HDAC) were used as loading controls 
for cytoplasmic (C) and nuclear (N) extracts respectively. (B) Integrated density 
of c-Rel after normalizing to HDAC. (C,D) CD4+ T cells isolated from cRBPJK-
KO mice were pretreated with DMSO or DHMEQ and differentiated in vitro 
under TH1 polarizing conditions for 24 hrs. Cells were analyzed by flow 
cytometry and supernatants were used for detecting cytokine levels by an ELISA. 
(C) IFN-γ detected by an ELISA. Each data point represents one animal. (D) 
Mean Fluorescent Intensity (MFI) of T-bet expressed in CD4+ T cells. n = 5. Data 
represent the mean ± SEM, *, p < 0.05. 
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Figure 3.13 Inhibition of NF-ΚB reduces activation and expression of c-Myc 
 
Splenocytes from C57BL/6J mice were pretreated with DMSO or DHMEQ and 
stimulated with plate bound anti-CD3ε and anti-CD28 for the indicated times. 
Cells were harvested and analyzed by flow cytometry after gating on CD4+ T 
cells. Supernatants were used for detecting cytokines by an ELISA. Mean 
Fluorescent Intensity (MFI) values were plotted for (A) N1IC (B) CD25 (C) CD69. 
(D) IL-2 and (E) IFN-γ as detected by an ELISA. n = 3-5 (F, G) Whole cell 
lysates were made at the indicated time points and analyzed by western blotting 
for the expression of (F) phosphorylated and (G) total c-Myc. Data represent the 
mean ± SEM, *, p < 0.05, ** p < 0.005, ***, p < 0.001. 
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Figure 3.14 Notch1 is not required for phosphorylation of Zap70 
 

While Notch1 was required for regulating signaling events distal to the 
TCR, it was dispensable for proximal events. Phosphorylation of Zap70 was 
unaffected in CD4+ T cells conditionally deleted for Notch1. 
 
(A)Western Blot for phosphorylated and total Zap70 (B) Integrated Density of 
Western Blot. Purified CD4+ T cells from Control and cN1KO mice were 
stimulated with soluble anti-CD3ε and anti-CD28 followed by cross-linking with 
anti-Hamster IgG for the indicated times. Lysates were made at each time point 
and used for detecting phospho-Zap70 (Y319) and total Zap70. Data represent 
two independent experiments. 
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Figure 3.15 Notch1 is required for T-bet and IFN-γ production in Non-
polarized cells 
 

To determine if the absence of Notch1 influenced the expression of IFN-γ 
and IL-4 even in the absence of polarizing cytokines, we determined the 
expression of each of these cytokines and their associated transcription factors in 
CD4+ T cells from control and cN1KO mice stimulated under non-polarizing 
conditions. Absence of Notch1 reduced the expression of IFN-γ and T-bet even in 
the absence of pre-existing TH1 conditions (Fig 3.15A-C), but was dispensable for 
IL-4 and GATA3 (Fig 3.15D-F). 

 
CD4+ T cells from control and cN1KO animals were stimulated with plate bound 
anti-CD3ε and anti-CD28 for 72 hrs. Cells were used for detecting T-bet and 
GATA3 by flow cytometry and supernatants were used for detecting cytokines by 
an ELISA. (A,D) IFN-γ and IL-4 detected by ELISA. (B,E) Percentage of cells 
positive for (B) T-bet (E) GATA3. (E,F) Mean Fluorescent Intensity for (E) T-bet 
(F) GATA3. n = 1-6. Data represent the mean ± SEM, *, p < 0.05. ns- not 
significant. 
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Figure 3.16 Notch1 is not required for expression of c-Myc 
 
Since inhibition of Notch activation via GSI reduced the expression of 
phosphorylated and total c-Myc, we determined if these effects were Notch1 
specific by looking at the c-Myc expression in CD4+ T cells from cN1KO mice 
over time. We observed that absence of Notch1 did not alter phosphorylated or 
total-c-Myc. However, GSI treatment of CD4+ T cells lacking Notch1 reduced the 
expression of both these proteins. Thus, it is likely that c-Myc expression maybe 
regulated by another Notch family member or could be a GSI mediated effect. 
 
(A) Western Blot for phospho and total c-Myc. Splenocytes from control and 
cN1KO mice were pre-treated with DMSO or 50µM GSI and stimulated with 
plate bound anti-CD3ε and anti-CD28 for the indicated time points. Lysates were 
made at each time point and used for detecting phospho and total c-Myc by 
Western Blotting. (B, C) Integrated density for (B) phospho c-Myc (C) Total c-
Myc 
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Figure 3.17 Increased expression of c-Myc in response to signal strength is 
independent of Notch1 
 

To determine if the response of c-Myc to increasing signal strength was 
Notch1 dependent, we stimulated CD4+ T cells from control and cN1KO mice 
with increasing signal strength and determined the expression of c-Myc. While 
CD4+ T cells from control mice showed a dose dependent increase in N1IC with 
increasing signal strength, this was abolished in mice conditionally deleted for 
Notch1 (Fig 3.17A,B) However, CD4+ T cells lacking Notch1 continued to 
express c-Myc in response to increasing signal (Fig 3.17C,D). This suggested that 
the response of c-Myc to increasing signal strength may require another Notch 
member or co-operative actions of more than one Notch family members. 
 
CD4+ T cells from control and cN1KO mice were activated with the indicated 
concentrations of anti-CD3ε and 1µg/ml of anti-CD28 for 48hrs. Cells were 
harvested and used for detecting intra-cellular Notch1 by flow cytometry. Some 
cells were used to make lysates to detect total c-Myc by Western blotting. (A) 
Percentage of cells expressing N1IC (B) Mean Fluorescent Intensity for N1IC (C) 
Western Blot for c-Myc (D) Integrated density for c-Myc. 
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Figure 3.18 Characterization of cRBP-Jk-KO mice 
 

Both control and cRBP-Jk-KO mice were injected with equivalent 
amounts of Poly (I): Poly (C). However, at the end of the three-week resting 
period, only cRBP-Jk-KO mice showed phenotypic changes such as hair loss, dry 
skin, formation of blisters and splenomegaly (Fig 3.18A). Additionally, cRBP-Jk-
KO mice had a significantly greater percentage of splenic B-cells at the expense 
of T-cells compared to control mice (Fig 3.18B). The expression of several 
downstream target genes was also determined in CD4+ T cells from control and 
cRBP-Jk-KO animals. A clear increase in the transcript for T-bet and Hey was 
observed in stimulated cells lacking RBP-Jk compared to control cells, suggesting 
de-repression of these genes (Fig 3.18C). However, this de-repression was not 
constitutive since un-stimulated cells lacking RBP-Jk had basal levels of 
transcripts for all genes. Finally, cRBP-Jk-KO animals also had higher circulating 
levels of IL-12 and IFN-γ (Fig 3.18D), which may explain the robust TH1 
response observed in the absence of RBP-Jk. 
(A) Physical appearance of mice with the red arrows indicating dry skin and 
blisters. cRBP-Jk-KO mice also have splenomegaly compared to controls. (B) Dot 
plot representing the percentage of T and B cells present in spleens. (C) RT-PCR 
for the indicated target genes in CD4+ T cells from cRBP-Jk-KO and control mice 
that were either unstimulated or stimulated for 24 hrs with plate bound anti-CD3ε 
and anti-CD28. (D) Serum cytokine levels as detected by an ELISA. 
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Figure 3.19 Increased expression of IFN-γ and T-bet in the absence of RBP-
Jk in non-polarized cells 
 

To determine if the absence of RBP-Jk- influenced the expression of IFN-
γ and IL-4 even in the absence of polarizing cytokines, we determined the 
expression of each of these cytokines and their associated transcription factors in 
CD4+ T cells from control and cRBP-Jk-KO mice, stimulated under non-
polarizing conditions. Absence of RBP-Jk increased the expression of IFN-γ and 
T-bet even in the absence of pre-existing TH1 conditions (Fig 3.19A-C). 

 
CD4+ T cells from control and cRBP-Jk-KO animals were stimulated with plate 
bound anti-CD3ε and anti-CD28 for 72 hrs. Cells were used for detecting T-bet 
and GATA3 by flow cytometry and supernatants were used for detecting 
cytokines by an ELISA. (A,D) IFN-γ and IL-4 detected by ELISA. (B,E) 
Percentage of cells positive for (B) T-bet (E) GATA3. (E,F) Mean Fluorescent 
Intensity for (E) T-bet (F) GATA3. n = 1-6. Data represent the mean ± SEM, *, p 
< 0.05. ns- not significant. 
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Figure 3.20 RBP-Jk maybe required for expression of c-Myc at later time 
points 
 
We observed previously that the expression of phosphorylated and total c-Myc 
did not require Notch1. Hence to determine if c-myc expression required 
canonical Notch signaling, we determined the levels of phosphorylated and total 
c-Myc in CD4+ T cells from control and cRBP-Jk-KO at two different time points 
after stimulation. 48 hrs after activating via the TCR, CD4+ T cells from cRBP-
Jk-KO mice had substantially lower levels of both phosphorylated and total c-
Myc compared to cells from control mice. However, this difference was not 
observed 4 hrs after activation. Thus canonical Notch signaling may be 
dispensable for the first wave of c-Myc expression but maybe required for the 
second wave of c-Myc, distal to the TCR. 

 
(A) Western Blot for phospho and total c-Myc. Splenocytes from control and 
cRBP-Jk-KO mice were stimulated with plate bound anti-CD3ε and anti-CD28 
for the indicated time points. Lysates were made at each time point and used for 
detecting phospho and total c-Myc by Western Blotting.  
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Figure 3.21 Regulation of helper T cell fate by NF-ΚB 
 

To determine the contribution of NF-ΚB in regulating T cell fate, we 
treated CD4+ T cells with DHMEQ and asked how the absence of NF-ΚB 
activation affected polarization to TH1, TH2 and TH17 fates. We observed that 
inhibition of NF-ΚB significantly decreased the number of IFN-γ positive cells as 
well as the amount of secreted IFN-γ and IL-4 (Fig 3.21A-D). However, DHMEQ 
treatment did not significantly alter the percentage of IL-17 positive cells or the 
amount of secreted IL-17 (Fig 3.21 E,F). Additionally, DHMEQ treatment 
significantly decreased IL-2 secretion under all polarizing conditions. Thus these 
data imply that NF-ΚB is required for TH1 and TH2 cell fate specification but 
maybe dispensable for TH17. 
 
CD4+ T cells were pre-treated with DMSO or DHMEQ and stimulated with plate 
bound anti-CD3ε and anti-CD28 for 48 hrs. After harvesting cells were-re-
stimulated with or without DHMEQ (DHMEQ+DHMEQ - DHMEQ pre-treated 
and DHMEQ added during re-stimulation) in the presence and absence of Golgi 
Plug. Cells treated with Golgi Plug were used for detecting intra-cellular 
cytokines by flow cytometry. Supernatants from cells that did not receive Golgi 
Plug were used for detecting cytokine levels by an ELISA. (A,C,E) Dot plots 
representing the percentage of cells positive for the specified cytokines (B,D,F) 
ELISAs for (B) IFN-γ (D) IL-4 and (F) IL-17 (G-I) IL-2 ELISAs for cells 
polarized to (G) TH1 (H) TH17 

 



 84 

CHAPTER 4 

 

CROSS-TALK BETWEEN THE NOTCH AND mTOR PATHWAY 

 

4.1 Introduction 

 

Engagement of the T cell receptor stimulates the onset of a multitude of 

signal transduction pathways that play critical roles in regulating T cell function. 

Of these, the conserved Serine/Threonine kinase, mTOR (mechanistic target of 

Rapamycin) plays a central role as an environmental sensor that integrates 

extrinsic signals to regulate cellular growth and metabolism (Laplante et al., 

2009). mTOR exists in two distinct complexes that differ in their composition. In 

the mTORC1 complex, mTOR associates with RAPTOR (regulatory associated 

protein of mTOR) along with mLST8, Deptor and Pras40 (Laplante et al., 2009).  

Association of mTOR with RICTOR (Rapamycin insensitive companion of TOR) 

along with PROTOR, mSIN1, mLST8 and Deptor yields the mTORC2 complex 

(Laplante et al., 2009). mTORC1 can be activated by various stimuli such as 

amino acids, growth factors and nutrients leading to phosphorylation of its 

downstream substrates - S6 kinase 1 (S6K1) and eLF4e binding protein 1 (4E-

BP1), which associate with mRNAs and control the rate of protein synthesis (Ma 

and Blenis, 2009)In sharp contrast to mTORC1, the precise upstream regulator(s) 

of mTORC2 are only recently being discovered with one study implying 

mTORC2 activation by ribosomes (Zinzalla et al., 2011). Upon activation, 
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mTORC2 phosphorylates the AGC family of kinases some of which are 

controlled by the phosphoinositide 3 – kinase (PI3K) – Akt pathway. These 

include phosphorylation of the hydrophobic motif of Akt at S473, SGK1 and PKC 

(Guertin et al., 2006).  Recent studies have outlined a central role for mTOR 

during thymocyte differentiation as well as acquisition of helper T cell fate 

(Ciofani and Zuniga-Pflucker, 2005; Delgoffe et al., 2009; Lee et al., 2010; Lee et 

al., 2012)  

In addition to mTOR, the Notch pathway also plays a crucial role in 

regulating key processes during thymocyte development as well as peripheral T 

cell function (Radtke et al., 1999; Palaga et al., 2003). Notch promotes survival of 

pre-T cells at the Beta selection checkpoint by enhancing cell size, glucose uptake 

and metabolism via Akt (Ciofani et al, 2005).  Furthermore, mTORC2 and PDK1 

have been suggested to be important for relaying Notch derived trophic signals for 

regulating Akt during thymocyte differentiation (Lee et al., 2012; Kelly et al., 

2008). Additionally, Notch interacts with PI3K and exerts anti-apoptotic effects in 

a manner that requires mTORC2 but is independent of RBP-JΚ  (Sade et al., 2004; 

Perumalsamy et al., 2009).  While these observations imply cross-talk between 

the Notch and mTOR pathways, whether Notch also regulates the activity of 

mTOR in peripheral T cells is obscure.   Most importantly, while the downstream 

substrates of mTORC2 are well defined, the upstream regulators of mTORC2 in 

peripheral T cells are unknown. We have previously demonstrated that activation 

of T cells via anti-CD3ε and anti-CD28 in vitro generates N1IC in T cells (Palaga 

et al., 2003; Adler et al., 2003).  Given the requirement of mTORC2 for relaying 
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Notch induced signals in thymocytes, we ask whether N1IC generated in T cells is 

required for regulating the activity of mTOR in peripheral T cells. 

In this study, we demonstrate that Notch activation is required for 

regulating mTORC2 activity but is dispensable for mTORC1 activity since 

pharmacological inhibition as well as conditional deletion of Notch1 impaired 

phosphorylation of mTORC2 but not mTORC1 substrates. Such regulation of 

mTORC2 occurs via non-canonical Notch signaling. Additionally, we provide 

evidence that Notch1 controls the activity of mTORC2 by regulating the levels of 

eIF6. This likely involves cross-talk with the NF-ĸB pathway. Furthermore, 

Notch relays its signals through mTORC2 and mTOR to control IFN-γ and IL-2 

production. Thus, our data show for the first time in peripheral T cells that Notch 

acts upstream of mTOR. Most importantly, our data outline a mechanism 

underlying non-canonical function of Notch signaling and its regulation of 

mTORC2. 

 

4.2 Results 

 

4.2.1.  GSI treatment reduces mTORC2 activity 

 

To determine if Notch activation is required for mTORC2 activity, we asked 

how inhibition of Notch activation in CD4+ T cells affected the phosphorylation of 

its downstream targets. GSI treatment abrogated phosphorylation of - Akt at the 

hydrophobic motif S473, 60 mins after stimulating via the TCR (Fig 4.1A,B).  A 
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partial decrease in phosphorylation was observed at residue T450 (Fig 4.1A,B). In 

addition, GSI treatment also reduced phosphorylation of FOXO3a, a direct 

downstream target of Akt (Fig 4.1A,C). In sharp contrast, phosphorylation of Akt at 

residue T308, mediated by the PDK1 kinase, was unaffected after GSI treatment 

(Fig 4.1A,B). Similarly, GSI treatment did not reduce phosphorylation of the 

mTORC1 substrate S6K1 (Fig 4.1A,D). Thus, these data suggest that while Notch 

activation is required for mTORC2 activity, it likely is dispensable for mTORC1 

activity. Furthermore, Notch most likely acts upstream of mTORC2. 

 

4.2.2 Notch1 is required for mTORC2 activity 

 

Since GSIs have multiple substrates other than Notch and inhibit all 

isoforms of the Notch receptor, we asked if reduced phosphorylation of mTORC2 

substrates in the absence of Notch activation was uniquely due to Notch1 and not a 

GSI mediated effect. To address this question, we used to different approaches. 

Firstly, we treated cells with a NS-GSI. Treatment with NS-GSI did not affect 

phosphorylation of Akt at residues S473 and T450 (Fig 4.2A-C) suggesting that 

these phosphorylations were Notch specific. Secondly, to determine the 

contribution of Notch1 in regulating phosphorylation of mTORC1 and mTORC2 

targets, we isolated CD4+ T cells from mice with a conditional deletion in Notch1 

(cN1KO).  CD4+ T cells from cN1KO mice were smaller in size after activation via 

the TCR compared to CD4+ T cells from control or wild type mice (Fig 4.3A). 

Furthermore, CD4+ T cells from cN1KO mice had substantially reduced 
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phosphorylation of Akt at residue S473. (Fig 4.3B,C). However, deficiency of 

Notch1 did not affect the phosphorylation of Akt at T450, T308, FOXO3a or the 

mTORC1 target-S6K1 (Fig 4.3B-E). Collectively, these data show that Notch1 is 

required for phosphorylation of Akt at S473 but is not needed for phosphorylation 

of PDK1 or mTORC1 targets. Furthermore, these data also confirm that Notch1 

specifically controls mTORC2 mediated phosphorylation of Akt-S473 and this is 

not simply a GSI mediated effect.  

 

4.2.3.  Regulation of mTORC2 by Notch1 occurs independently of RBP-JΚ 

 

In addition to interacting with RBP-JΚ, N1IC has also been shown to interact 

with other proteins in the cytoplasm and nucleus, exerting some of its effects in a 

non-canonical fashion (Minter et al., 2012). Thus we asked whether canonical 

Notch signaling was required for phosphorylation of mTORC1 and mTORC2 

targets by isolating CD4+ T cells from mice with a conditional deletion in RBP-JΚ  

(cRBP-JΚ-KO).  Absence of RBP-JΚ did not alter phosphorylation of any of 

mTORC2 targets, nor did it alter phosphorylation of the PDK1 target T308 -Akt, or 

the Akt target FOXO3a (Fig 4.4A). Additionally, phosphorylation of the mTORC1 

target - pS6K1 Thr 389 was also unaffected by the absence of RBP-JΚ (Fig 4.4A). 

These results demonstrated that canonical Notch signaling was not required for 

regulating the activity of either mTORC1 or 2.  

To reconcile differences observed between phosphorylation of mTORC2 

targets in the absence of Notch1 versus RBP-JΚ, we determined whether CD4+ T 
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cells that lacked RBP-JΚ, express N1IC . We observed that CD4+ T cells from cRBP-

JΚ  - KO mice expressed N1IC after T cell activation just as efficiently as CD4+ T 

cells from control mice (Fig 3.9A,B). Thus we reasoned that phosphorylation of 

mTORC2 targets in the absence of RBP-JΚ was Notch dependent but RBP-JΚ 

independent. To confirm this, we inhibited Notch activation in CD4+ T cells lacking 

RBP-JΚ, by GSI treatment.  We observed that inhibition of Notch activation in the 

absence of RBP-JΚ, reduced phosphorylation of mTORC2 targets – residues S473-

Akt and partially reduced phosphorylation of T450-Akt (Fig 4.4A,B,C), but had no 

effect on the PDK1 target – T308-Akt or mTORC1 target T389-S6K1 (Fig 4.4F,D). 

In addition, phosphorylation of the Akt substrate FOXO3a-S253, was also modestly 

reduced (Fig 4.4A,E). These data confirm that regulation of mTORC2 function 

requires Notch activation but is independent of RBP-JΚ. 

 

4.2.4. Notch1 acts upstream of mTOR 

 

Our data showing a requirement of N1IC for the phosphorylation of 

mTORC2 targets suggested that Notch likely acts upstream of mTORC2. To 

confirm this, we determined if the absence of Rictor or Raptor altered the ability 

of CD4+ T cells to generate N1IC after stimulation via the TCR.  We isolated CD4+ 

T cells from mice in which Rictor or Raptor was deleted under the control of the 

tamoxifen-inducible UbiquitinC-CreERT2 promoter (Obtained from D. Sabatini 

and D. Lamming). These have been referred to as Rictor-KO or Raptor –KO 

respectively. CD4+ T cells from both KO mice had a substantial decrease in Rictor 
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or Raptor (Fig 4.5A,D). However, upon stimulation via the TCR, Rictor and 

Raptor-KO mice showed a similar percentage of cells expressing N1IC in 

comparison to CD4+ T cells obtained from wild type (WT) mice (Fig 4.5B,E). 

Additionally, deletion of either Rictor or Raptor did not influence the amount of 

N1IC generated post stimulation. These data suggested that Notch acts upstream of 

both mTORC1 and mTORC2 since deletion of either of these complexes did not 

influence Notch activation.  

Since the association of the central mTOR protein with either Rictor or 

Raptor forms mTORC1 or 2, we asked whether inhibition of mTOR activity itself 

could alter the generation of N1IC. We addressed this question by employing two 

frequently used pharmacological inhibitors of mTOR function – Pp242 and Ku-

0063794. Treatment of CD4+ T cells with 80 nm of Pp242 effectively abolished 

phosphorylation of Akt-S473 and reduced phosphorylation of pS6K1-Thr389 

while treatment with 1μM Ku-0063794 abrogated phosphorylation of both these 

residues confirming inhibition of mTOR activity (Fig 4.5G).  However, despite of 

mTOR inhibition, CD4+ T cells continued to express N1IC after stimulation via the 

TCR  (Fig 4.5H-K). Collectively, these results show that CD4+ T cells deficient 

for mTORC1, mTORC2 or functional mTOR, continue to express N1IC after 

stimulation via the TCR. Thus Notch acts upstream of the mTOR pathway. 
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4.2.5. Notch1 may regulate IFN-γ and IL-2 production via mTOR 

 

N1IC generated following activation via the TCR, plays a crucial role in 

regulating downstream signaling events such as the activation and proliferation of 

peripheral T cells. These include secretion of cytokines such as IL-2 and IFN-γ. 

Additionally, both Notch and mTORC2 have been demonstrated to be required 

for specification of TH1 fate and secretion of IFN-γ (Lee et al., 2012; Maekawa et 

al., 2003; Minter et al., 2005) by peripheral CD4+ T cells. However, whether 

Notch mediates control of peripheral T cell activation events via mTORC2 is 

unknown. Although mTORC2 is thought to be necessary for relaying Notch 

derived trophic signals in DN3 thymocytes, (Ciofani et al., 2005; Lee et al., 2012) 

whether mTORC2 is also required for propagating signaling events involving 

N1IC downstream of the TCR is unknown. Furthermore, the contribution of 

mTORC1 and the mTOR complex itself in relaying Notch induced signaling 

events remains obscure. We observed that CD4+ T cells from cN1KO mice that 

have reduced mTORC2 function are also deficient in secreting IFN-γ and IL-2 

after activation (Fig 4.6A,B). Furthermore, CD4+ T cells that lack Rictor, Raptor 

or mTOR continue to express N1IC after activation (Fig 4.5). Since N1IC is 

required for the production of IFN-γ and IL-2, we asked whether these CD4+ T 

cells, which expressed N1IC but lacked functional Rictor, Raptor or mTOR, could 

also secrete IFN-γ and IL-2 after activation. We observed that CD4+ T cells from 

Rictor KO mice were significantly impaired in their ability to secrete IFN-γ and 

IL-2 compared to CD4+ T cells from control mice (Fig 4.6B,E). On the contrary, 
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cells from Raptor KO mice had a partial reduction in IFN-γ and no significant 

difference in IL-2 compared cells from control mice (Fig 4.6B,E). Additionally, 

inhibition of mTOR function by two different inhibitors –Pp242 and Ku-0063794 

significantly impaired the ability of CD4+ T cells to secrete both these cytokines 

(Fig 4.6B,E). Therefore these results showed that despite the expression of N1IC 

after activation, CD4+ T cells that are deficient for either Rictor or functional 

mTOR are unable to secrete significant levels of IFN-γ and IL-2. Thus we 

propose that Notch regulates expression of these cytokines via mTORC2 and 

mTOR but does not require mTORC1. 

 

4.2.6. Notch1 is required for the expression of eIF6 

 

The precise upstream regulators of mTORC2 are obscure. A recent study 

suggested that mTORC2 is activated by association with the ribosome (Zinzalla et 

al., 2011). In fact, the ribosome anti-association factor eIF6 is required for 

ribosome assembly (Ceci et al., 2003). Importantly, eIF6 is a transcriptional target 

of Notch and is required for invasion and migration of ovarian cancer cell lines 

(Benelli et al., 2012). Since a direct relationship between Notch and mTOR has 

never been demonstrated in peripheral CD4+ T cells, we reasoned that Notch may 

control mTORC2 activity by regulating the levels of eIF6.  Thus we determined 

whether inhibition of Notch activation also reduced the levels of eIF6. GSI treated 

CD4+ T cells as well as CD4+ T cells obtained from cN1KO mice showed a 

substantial decrease in eIF6 (Fig 4.7A,B,C).  In contrast, CD4+ T cells from 
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cRBP-JΚ  - KO mice expressed marginally increased levels of eIF6 in comparison 

to controls. However, this increase was abolished after GSI treatment (Fig 

4.7A,D). These data demonstrate that RBP-JΚ independent Notch signaling may 

likely regulate mTORC2 via eIF6.  

 

4.2.7 Notch1 is required for the expression of Rictor and Raptor 

 

Since eIF6 is thought to be required for the assembly of mTORC2 with the 

ribosome and since the expression of eIF6 itself is reduced in the absence of 

Notch activation, we asked whether Notch signaling was also required for the 

expression of total Rictor and Raptor.  We observed that CD4+ T cells in which 

Notch activation was inhibited via GSI treatment or CD4+ T cells from cN1KO 

animals had substantially low levels of Rictor and modestly low levels of Raptor 

compared to DMSO treated cells or cells from control mice (Fig 4.8A,B,C,E,F). 

On the contrary CD4+ T cells from cRBP-JΚ-KO mice were unimpaired in their 

ability to express Rictor and Raptor (Fig 4.8A,D,G). These data suggest that N1IC 

is required for the expression of Rictor and at least partially required for raptor 

expression. Thus, Notch may regulate the activity of mTORC2 by regulating the 

total levels of eIF6 and Rictor. 

 

4.2.8 NF-ĸB is required for the expression of eIF6, Rictor and Raptor 

Notch has been shown to transcriptionally regulate the expression of eIF6 

(Benelli et al., 2012). However although we observed a decrease in eIF6 
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expression in the absence of Notch1, such a decrease was independent of RBP-JΚ. 

Since Notch has been demonstrated to interact with other transcription factors 

besides RBP-JΚ, we reasoned that interaction of Notch with these alternate 

transcription factors could control eIF6 expression. One of these alternate 

transcription factors that Notch has been shown to interact with is NF-ĸB (Shin et 

al., 2006). Thus we asked whether inhibiting the activity of NF-ĸB using 

DHMEQ influenced the expression of eIF6. We observed that DHMEQ treated 

CD4+ T cells had a substantial decrease in eIF6 expression (Fig 4.9A,D). This was 

accompanied by a decrease in total levels of Rictor and Raptor suggesting that 

NF-ĸB is required for the expression of all these proteins (Fig 4.9A-C).  

 

Discussion 

 

The mTORC2 kinase is the only known kinase to phosphorylate Akt at 

residue S473. Activated Akt executes several downstream functions, some of 

which involve cell proliferation, metabolism and apoptosis, making it a critical 

regulator of cell growth and survival. Despite this mTORC2-mediated regulation 

of Akt, the upstream regulator(s) of mTORC2 itself are largely unknown. In this 

study we show for the first time that Notch controls the expression and activity of 

mTORC2 (as determined by the ability of mTORC2 to phosphorylate its 

substrates) in peripheral CD4+ T cells. We show that pharmacological inhibition 

of Notch activation abrogates phosphorylation of two different mTORC2 

substrates – Akt-S473 and Akt-T450 as well as the direct downstream substrate of 
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Akt, FOXO3a. We confirmed these observations in CD4+ T cells conditionally 

deleted for Notch1. Although CD4+ T cells from cN1KO mice had almost no 

phosphorylation of Akt at S473, unlike GSI treatment, phosphorylation of Akt-

T450 and FOXO3a was unimpaired. Since GSIs inhibit all isoforms of the Notch 

receptor and have multiple substrates besides Notch, this discrepancy could be 

explained by the fact that mTORC2 -mediated phosphorylation of Akt at T450 

may require another Notch receptor or maybe a GSI mediated effect. However, 

treatment with a Notch sparing GSI did not alter phosphorylation of Akt T450 

(Fig 4.8) suggesting that another Notch receptor maybe involved in regulating 

phosphorylation of this residue.   

Additionally, we also observed that canonical Notch signaling did not alter 

phosphorylation of mTORC2 targets. This could be explained by the fact that 

CD4+ T cells from cRBP-JΚ  - KO animals continue to express N1IC after 

activation suggesting a Notch dependent but RBP-JΚ independent regulation of 

mTORC2. Supporting this notion, inhibition of Notch activation in CD4+ T cells 

deficient for RBP-JΚ reduced phosphorylation of Akt-S473, T450 and FOXO3a. 

We did not see any effect of Notch inhibition on mTORC1 targets suggesting that 

Notch maybe more important for regulation of mTORC2 but not mTORC1 

function. Thus our data show for the first time that Notch regulates the activity of 

mTORC2 in peripheral CD4+ T cells. Although a similar Notch-mTORC2 

association has been implied by several studies in DN3 thymocytes (Ciofani et al., 

2005; Lee et al., 2012), ours is the first to show cross-talk between the two 

pathways in peripheral CD4+ T cells. Furthermore, our data also demonstrate for 
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the first time an RBP-JΚ independent role of Notch-mediated regulation of 

mTORC2. Given the dispensability of RBP-JΚ in regulating mTORC2, it is 

possible that membrane bound or activated Notch may act as a scaffolding-like 

protein that stabilizes the mTORC2 complex, facilitating its function. Indeed, 

intra-cellular Notch has been shown to physically associate with PI3K and 

mTORC2 in cell lines (Perumalsamy et al., 2009; Sade et al., 2004). However, 

further experiments are required to address this possibility and determine whether 

Notch does in fact co-localize with mTORC2 and/or Akt in peripheral CD4+ T 

cells.   

To confirm whether Notch acts upstream of the mTOR pathway, we 

determined whether absence of either Rictor, Raptor or inhibition of mTOR 

activity influenced the ability of the TCR to trigger the activation of Notch upon 

stimulation. Interestingly, deletion of neither of the aforementioned proteins 

affected Notch activation suggesting that Notch does in fact act upstream of the 

mTOR pathway. Lee et al. have demonstrated a similar observation in a study 

where DN3 thymocytes lacking Rictor expressed Notch after co-culture with OP9 

cells expressing DLL1. They also went on to show that not only does Notch act 

upstream of mTORC2, but also mediates some of its functions through mTORC2 

since these Rictor deficient thymocytes were small, had impaired proliferative 

capacity and were also unable to differentiate into DP thymocytes inspite of 

ongoing DLL1-Notch signaling (Lee et al., 2012).  Thus, we determined whether 

Notch exerts some of its effects via mTORC2 in peripheral CD4+ T cells. We 

observed that Notch required mTORC2 and mTOR but not mTORC1 to regulate 



 97 

the production of IFN-γ and IL-2. Although our data imply that mTORC2 and 

mTOR relay some of the effects of Notch, additional experiments are required to 

determine if addition of active mTORC2 or Akt into CD4+ T cells from Rictor KO 

mice or in CD4+ T cells lacking Notch1 can rescue the production of these 

cytokines.  

The upstream regulators of mTORC2 are not defined. A recent study 

demonstrated that activation of mTORC2 can be accomplished by its association 

with the ribosome (Benelli et al., 2012). Interestingly, the ribosome anti-

association factor- eIF6, has been demonstrated to be a transcriptional Notch 

target in cancer cells. Supporting this observation, inhibition of Notch activation 

substantially decreased the levels of eIF6 suggesting that Notch may regulate the 

activity of mTORC2 through eIF6. While we observed a decrease in eIF6 in the 

absence of Notch1, we did not observe any difference in eIF6 expression after 

deletion of RBP-JΚ. Thus it is likely that Notch may exert transcriptional control 

over eIF6 by its association with transcription factors besides RBP-JΚ, such as 

NF-ĸB.  Indeed, inhibition of NF-ĸB reduced the levels of eIF6 suggesting that 

transcriptional regulation of eIF6 may require both Notch and NF-ĸB. However, 

further experiments are required to confirm precisely how Notch co-operates with 

NF-ĸB to control the expression of eIF6 and whether NF-ĸB binding sites exist 

upstream of the eIF6 promoter. 

In addition to eIF6, inhibition of Notch activation also impaired the 

expression of total Rictor and Raptor, although no change was observed in 

phosphorylation of mTORC1 targets. Thus, it maybe possible that a small amount 
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of Raptor may be sufficient for phosphorylation of downstream targets. In 

addition, inhibition of NF-ĸB activity also reduced the levels of Rictor and Raptor 

suggesting that Notch and NF-ĸB may co-operate to control the expression of 

both these proteins. However the precise molecular mechanism underlying such 

regulation requires further experimentation. 

Thus our data show for the first time that N1IC generated downstream of 

the TCR controls the activity of mTORC2 by regulating the expression of eIF6. 

Such regulation likely occurs via NF-ĸB. Additionally, our data also demonstrate 

that Notch may directly control the expression of both Rictor and Raptor via NF-

ĸB (Fig 4.10). In conclusion, our data identify Notch to be a novel regulator of 

mTORC2. Further experiments are required to elucidate the role of NF-ĸB in 

Notch mediated control of mTORC2. 

 

 

 

 

 



 99 

 
 
Fig 4.1 GSI treatment reduces mTORC2 activity 

(A) Western Blot for mTORC1 and mTORC2 targets. CD4+ T cells were isolated 
from C57Bl/6 mice and pre-treated with DMSO or 50µM GSI and activated with 
1µg/ml of soluble anti-CD3ε and anti-CD28 cross-linked with anti-Hamster IgG. 
Cells lysates were made after 60 mins of stimulation and analyzed for the 
expression of the indicated phosphorylated proteins by Western blot. Integrated 
density values were obtained after normalizing each phosphorylated protein to the 
corresponding total protein. (B-D)Bar graph showing integrated density values for 
(B) Akt phosphorylated at S473, T450, T308 (C) Phospho FOXO3a – S253 (D) 
Phospho –S6K1 at Thr389 and T421/S424. Data represent three independent 
experiments. 
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Fig 4.2 Treatment with a NS-GSI does not alter phosphorylation of Akt 
 
Western Blot for mTORC2 targets. CD4+ T cells were isolated from C57Bl/6 
mice and pre-treated with DMSO or 1 µM NS-GSI and activated with 1µg/ml of 
soluble anti-CD3ε and anti-CD28 cross-linked with anti-Hamster IgG. Cells 
lysates were made after 60 mins of stimulation and analyzed for the expression of 
the indicated phosphorylated proteins by Western blot. Integrated density values 
were obtained after normalizing (B) S473 and (C) T450 to total Akt. 
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Fig 4.3 Notch1 is required for mTORC2 activity 

(A) Histogram showing cell size as a  measure of Forward Scatter (FSC).  CD4+ T 
cells were isolated from wild type C57Bl/6, control and cN1KO mice and 
stimulated with plate bound anti-CD3ε and anti-CD28. Cells were harvested after 
48 hrs and analyzed by flow cytometry. (B)Western Blot for mTORC1 and 
mTORC2 targets. CD4+ T cells were isolated from control or cN1KO mice were 
activated with 1µg/ml of soluble anti-CD3ε and anti-CD28 cross-linked with anti-
Hamster IgG. Cells lysates were made after 60 mins of stimulation and analyzed 
for the expression of the indicated phosphorylated proteins by Western blot. 
Integrated density values were obtained after normalizing each phosphorylated 
protein to the corresponding total protein. (C-E) Bar graph showing integrated 
density values for (C) Akt phosphorylated at S473, T450, T308 (D) Phospho 
FOXO3a – S253 (E) Phospho –S6K1 at Thr389. Data represent three independent 
experiments. 
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Fig 4.4 Regulation of mTORC2 by Notch1 occurs independently of RBP-JΚ 

(A) Western Blot for mTORC1 and mTORC2 targets. CD4+ T cells were isolated 
from control or cRBP-JΚ-KO and pre-treated with DMSO or 50µM GSI and 
activated with 1µg/ml of soluble anti-CD3ε and anti-CD28 cross-linked with anti-
Hamster IgG. Cells lysates were made after 60 mins of stimulation and analyzed 
for the expression of the indicated phosphorylated proteins by Western blot. 
Integrated density values were obtained after normalizing each phosphorylated 
protein to the corresponding total protein. (B-F) Bar graph showing integrated 
density values for Akt phosphorylated at (B) S473, (C) T450, (D) T308 (E) 
Phospho FOXO3a – S253 (F) Phospho –S6K1 at Thr389. Data represent three 
independent experiments. 
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Fig 4.5 Notch1 acts upstream of mTOR 

(A-D) Expression of N1IC in the absence of Rictor or Raptor. Spleens from wild 
type, Rictor-KO or Raptor-KO animals were obtained from the laboratory of Dr. 
David Sabatini, Whitehead Institute for Biomedical Research. CD4+ T cells were 
isolated from these spleens and activated with plate bound anti-CD3ε and anti-
CD28. Cells were harvested after 48 hrs and split into two samples. One sample 
was used for detecting N1IC by flow cytometry. The other sample was used for 
making lysates for detecting Rictor or Raptor by Western blot. (A)Western Blot 
for (B) Rictor and (D) Raptor. (B-E) Percentage of cells positive for N1IC. n = 3. 
(C-F) Histograms for N1IC expression. (G) CD4+ T cells from C57Bl/6 mice were 
pretreated with DMSO, or 80 nm Pp242 or 1 µM Ku-0063764 and activated with 
1µg/ml of soluble anti-CD3ε and anti-CD28 cross-linked with anti-Hamster IgG. 
Cells lysates were made after 60 mins of stimulation and analyzed for the 
expression of the indicated phosphorylated proteins by Western blot. (H-K) CD4+ 
T cells from C57Bl/6 mice were pretreated with DMSO, or the indicated 
concentrations of Pp242 or Ku-0063764 and stimulated as described in (A). (H-J) 
Percentage of cells positive for N1IC. n = 3-5. (I-K) Histograms for N1IC 

expression. Data represent three independent experiments. 
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Fig 4.6 Notch may regulate IFN-γ and IL-2 production via mTOR 
 
CD4+ T cells were isolated from the spleens of (A,D) control and cN1KO mice 
(B,E) Wild type, Rictor-KO and Raptor-KO mice (C,F) C57Bl/6 mice pretreated 
with DMSO or the indicated concentrations of Pp242 or Ku, and stimulated with 
plate bound anti-CD3ε and anti-CD28. Cells were harvested after 48 hrs and 
supernatants were used to detect (A-C) IFN-γ or (D-F) IL-2 by an ELISA. n= 3-7. 
Data represent the mean ± SEM, *, p < 0.05, ** p < 0.005, ***, p < 0.001, ns- not 
significant. 
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Fig 4.7 Notch1 is required for the expression of eIF6 
 
(A) Western Blot for eIF6. CD4+ T cells were isolated from the spleens of  
C57Bl/6 mice and pretreated with DMSO or GSI or from control, cN1KO and 
cRBP-JΚ-KO mice and stimulated with plate bound anti-CD3ε and anti-CD28. 
Cells were harvested after 48 hrs and used for making lysates for detecting eIF6 
by western blot. (B-D) Integrated density plots for eIF6 after normalizing with 
actin. Data represent three independent experiments. 
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Fig 4.8 Notch1 is required for the expression of Rictor 
 
(A) Western Blot for Rictor and Raptor. CD4+ T cells were isolated from the 
spleens of C57Bl/6 mice and pretreated with DMSO or GSI or from control, 
cN1KO and cRBP-JΚ-KO mice and stimulated with plate bound anti-CD3ε and 
anti-CD28. Cells were harvested after 48 hrs and used for making lysates for 
detecting Rictor and Raptor by western blot. (B-D) Integrated density plots for 
Rictor after normalizing with actin. (E-G) Integrated density plots for Raptor after 
normalizing with actin. Data represent three independent experiments. 
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Fig 4.9 NF-ĸB is required for the expression of Rictor, Raptor and eIF6 
 
(A) Western Blot for eIF6. CD4+ T cells were isolated from the spleens of  
C57Bl/6 mice and pretreated with DMSO or DHMEQ and stimulated with plate 
bound anti-CD3ε and anti-CD28. Cells were harvested after 48 hrs and used for 
making lysates for detecting Rictor, Raptor and eIF6 by western blot. (B-D) 
Integrated density plots for (B) Rictor (C) Raptor (D) eIF6 after normalizing with 
actin. Data represent two independent experiments. 
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Fig 4.10 Model proposing Notch mediated regulation of mTORC2 
 
Activation of T cells via the T cell receptor activates PI3K, which converts PIP2 
to PIP3. Akt and PDK1 are recruited to the cell membrane. Akt gets 
phosphorylated at T308 by PDK1. Cross linking the TCR also activates N1IC, 
which may control the expression of eIF6 which can in turn facilitate assembly of 
mTORC2 with the ribosome and its subsequence activation leading to 
phosphorylation of Akt at S473. Additionally, N1IC may also regulate the levels of 
eIF6, Rictor and Raptor via NF-ĸB. 
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Fig 4.11 Glucose enhances N1IC production and T cell activation 
 

Glucose has been shown to regulate T cell activation and proliferation. 
Since these processes are Notch dependent, we determined whether glucose could 
also regulate the levels of N1IC generated after TCR activation. We observed that 
increasing glucose concentrations did in fact increase the amount of N1IC  (Fig 
4.10A) as well as the amount of activation markers expressed by CD4+ T cells 
(Fig 4.10C-D). 

 
CD4+ T cells from wild type C57Bl/6 mice were stimulated with plate bound α-
CD3ε and α-CD28 in glucose free RPMI containing increasing concentrations of 
glucose. Cells were harvested after 24 hrs and stained by flow cytometry. Mean 
Fluorescent Intensity (MFI) values were plotted for (A) Intra-cellular Notch (B) 
CD25 (C) CD69 (D) Supernatants were used for an IL-2 ELISA. 
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Fig 4.12 Enhanced T cell activation in the presence of Glucose requires 
activated Notch 
 

To determine whether glucose induced activation of T cells was Notch 
dependent, we inhibited Notch activation via GSI treatment and asked whether T 
cells could respond to increasing concentrations of Glucose in the absence of 
Notch activation. We observed that GSI treatment significantly reduced the 
amount of N1IC  (Fig 4.11A). Additionally, GSI treatment significantly reduced 
the expression of CD25, CD69 as well as levels of IL-2 even in the presence of 
glucose (Fig 4.11B-D). Thus glucose-induced activation of T cells requires Notch 
activation, as high concentrations of glucose cannot rescue activation in the 
absence of Notch signaling. 

 
CD4+ T cells from wild type C57Bl/6 mice were pretreated with DMSO or GSI 
and stimulated with plate bound α-CD3ε and α-CD28 in glucose free RPMI 
containing increasing concentrations of glucose. Cells were harvested after 24 hrs 
and stained by flow cytometry. Mean Fluorescent Intensity (MFI) values were 
plotted for (A) Intra-cellular Notch (B) CD25 (C) CD69 (D) Supernatants were 
used for an IL-2 ELISA. 
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Fig 4.13 Enhanced T cell activation in the presence of Glucose requires 
activated Notch1 
 

 To determine whether glucose induced activation of T cells was Notch1 
dependent and not a GSI effect, we activated T cells from control and cN1KO 
animals with increasing concentrations of Glucose. We observed that CD4+ T 
cells from cN1KO animals expressed significantly lower levels of N1IC compared 
to cells from control mice (Fig 4.12A). Additionally, these cells also expressed 
significantly lower levels of CD25, CD69 and IL-2 even in the presence of 
glucose (Fig 4.12B-D). Thus glucose-induced activation of T cells specifically 
requires Notch1. 
 
CD4+ T cells from control and cN1KO animals were stimulated with plate bound 
α-CD3ε and α-CD28 in glucose free RPMI containing increasing concentrations 
of glucose. Cells were harvested after 24 hrs and stained by flow cytometry. Mean 
Fluorescent Intensity (MFI) values were plotted for (A) Intra-cellular Notch (B) 
CD25 (C) CD69 (D) Supernatants were used for an IL-2 ELISA. 
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Fig 4.14 Rictor is required for acquisition of TH1 and TH2 fate 
 

To confirm the contribution of mTORC2 in regulating helper T cell 
differentiation, we determined whether CD4+ T cells that lacked Rictor could 
differentiate to the TH1 and TH2 fate. We observed that in the absence of Rictor, 
polarization to both these lineages was abrogated confirming that Rictor does 
indeed control specification of helper T cells to both these lineages. 
 
CD4+ T cells from control or Rictor-KO mice were stimulated with plate bound 
α-CD3ε and α-CD28 under TH1 or TH2 conditions. Cells were harvested after 72 
hrs and cytokines in the supernatants were used to detect (A) IFN-γ and (B) IL-4 
by an ELISA. 
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The function of Notch in regulating activation and differentiation of 

peripheral CD4+ T cells has been well defined (Radtke et al., 2010). In this study 

we specifically demonstrate the requirement of non-canonical Notch signaling for 

regulating activation of CD4+ T cells as well as their differentiation to the TH1 

and iTreg lineages. We also underline the mechanism of such non-canonical 

Notch signaling by showing cross-talk with the NF-ĸB and mTOR pathways. 

Although it was known that ligation of the TCR triggers generation of N1IC in 

peripheral T cells, the mechanism of such Notch activation remained obscure. In 

this study we demonstrate that Notch ligands are expressed on CD4+ T cells only 

12 hrs after activation of the TCR, which is also the same time at which N1IC is 

detected. Thus it is likely that Notch generated downstream of the TCR may 

control the expression of Notch ligands, which could in turn support more Notch 

activation. It may also be possible that that activation of Notch downstream of the 

TCR, could be ligand in-dependent. Determining the precise role of Notch ligands 

on triggering Notch activation would require a sequential deletion of each ligand 

either individually or in combination. While our data do not support a role for 

ligand-dependent Notch activation, our data show that Notch ligands can indeed 

influence the amount of N1IC generated downstream of the TCR.  DLL1 ligands 

enhanced N1IC production. Furthermore this increase was paralleled by a 
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concomitant increase in the production of IFN-γ under TH1 conditions. Thus our 

data suggest that Notch ligands could be one way in which Notch dictates TH1 

versus TH2 fates. 

Another mechanism by which Notch exerts differential effects on helper T 

cell differentiation involves the use of an alternate, RBP-JΚ independent pathway.  

Our data suggest that NF-ĸB and mTOR relay non-canonical, cytosolic, Notch 

signals.  We show that inhibition of NF-ĸB via DHMEQ treatment can dampen 

activation as well as differentiation to TH1 fate in the absence of RBP-JΚ. A more 

specific approach to determine the contribution of NF-ĸB to these processes 

would be to breed cN1KO animals to animals over-expressing IKK and 

determining if constitutive activation of NF-ĸB can rescue the defect in activation 

and differentiation seen in the absence of Notch1.  Furthermore, to determine if 

decreased activation and differentiation seen in the absence of Notch1 is directly 

dependent on Akt/mTORC2, one could determine if constitutively active Akt can 

rescue the small cell size, dampened activation and differentiation observed in the 

absence of Notch1. 

To determine the precise interplay between Notch, NF-ĸB and 

components of the mTOR pathway, it would be useful to determine if NF-ĸB 

and/or RBP-JΚ binding sites can be found upstream of the eIF6, Rictor and Raptor 

promoters. More importantly, it would also be insightful to see if complexes of 

N1IC and NF-ĸB can be co-immunoprecipitated from these promoters. If these 

complexes can be found even in the absence of RBP-JΚ binding sites, then such 
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observations would strengthen the role of NF-ĸB – dependent, non-canonical 

Notch signaling.  

In conclusion, our data suggest that the pleiotropic effects of Notch are 

due its ability to propagate its signals by interaction with several other RBP-JΚ 

independent pathways. These observations have an important positive impact for 

therapeutic targeting of the pathway, because manipulation of different 

components of the Notch pathway can have radically different outcomes 
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CHAPTER 6 

 

MATERIALS AND METHODS 

 

6.1 Materials 

 

6.1.1 Mice 

 

All animals were housed in animal facilities as per the guidelines 

approved by the Institutional Animal Care and Use Committee at the University 

of Massachusetts-Amherst.  C57BL/6J mice and BALB/c-Tg (DO11.10)10Loh/J 

were purchased from the Jackson Laboratory (Bar Harbor, ME). cN1KO and 

cRBP-JK-KO mice were generated by breeding Notch1fl/fl (notch1tm2Rko/GridJ) or 

Rbp-jk
fl/fl (Rbpj tm1Hon) mice to mx1Cre+/- (B6.Cg-Tg(mx1-cre)1Cgn/J) mice from 

the Jackson Laboratory (Bar Harbor, ME). All mice - Notch1 fl/fl x Mx Cre +/- 

mice (cN1KO), Notch1 fl/fl x Mx Cre -/- (Control), RBP-Jĸ fl/fl x Mx Cre +/- 

(cRBP-Jĸ -KO) and RBP-Jĸ fl/fl x Mx Cre -/- (Control) were injected with 12-15 

μg/g body weight of Poly I:Poly C (GE Healthcare, Imgenex) every other day for 

5 days. Animals were sacrificed after a 3-week resting period. Spleens from 

Rictor – KO, Raptor – KO and their corresponding control mice were obtained 

from Dudley Lamming and David Sabatini, Whitehead Institute for Biomedical 

Research, Cambridge, MA. Mice aged 7-12 weeks were used for all experiments 
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6.1.2 Media 

 

Cells were activated in a half and half mixture of RPMI and DMEM 

(Lonza) supplemented with 10% Fetal Bovine Serum (GIBCO), L-Glutamine, 

Na-pyruvate and Penicillin/Streptomycin (Lonza). 

 

6.1.3 Antibodies 

 

The following antibodies were used for Western blots. Primary 

Antibodies: anti-RBPSUH, anti-phospho Zap 70 (Y319), anti-Zap70, anti-HDAC, 

anti-phospho Akt (S473), anti-phospho Akt (T450), anti-phospho Akt (T308), 

anti-Akt, anti- phospho FOXO3a (S253), anti-FOXO3a, anti- phospho p70S6K1 

(Thr389), anti phospho p70S6K1 (T421/S424), anti p70S6K1, anti-eIF6, anti-

Rictor, anti-Raptor (Cell signaling), anti-cRel (Santa Cruz Biotechnology) anti-

Actin (Sigma), anti-cMyc (9E10) was obtained from Dr. Dominique Alfandari. 

Secondary Antibodies: anti-Rabbit-HRP, anti-Mouse-HRP (Amersham). The 

following antibodies were used for flow cytometry. CD25-APC, CD69-FITC, 

anti-Human/Mouse Notch1-PE, anti-Human/Mouse T-bet PE-Cy7, anti-

Human/Mouse GATA-3 eFluor 660, anti-Mouse/Rat FoxP3 Alexa 488, anti-

Mouse DLL1 Alexa Fluor 488 (eBioscience), CD4-PerCP, Streptavidin PerCP, 

anti-Mouse IFN-γ FITC, anti-Mouse IL-4 PE, anti-CD3ε, anti-CD28 (BD 

Pharmingen), Rat Jagged1 Antibody, Donkey anti-goat IgG-APC (R&D systems), 

purified anti-mouse DLL4 (BioLegend), Jagged1 antibody (GeneTex, Inc.). PE 
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Annexin V Apoptosis Detection Kit I was from BD Pharmingen. The following 

antibodies were used for the ELISA assay. Capture antibodies purified rat anti-

mouse IL-2, purified rat anti-mouse IFN-γ, purified rat anti-mouse IL-4, as well 

as detection antibodies biotin rat anti-mouse IL-2, biotin rat anti-mouse IFN-γ, 

biotin rat anti-mouse IL-4, Streptavidin HRP. 

 

6.1.4 Chemical Reagents and Commercial kits 

 

The γ-secretase inhibitor z-IL-CHO and DHMEQ were synthesized by 

Abdul H. Fauq. The Notch sparing GSI JLK-6 was from Tocris Bioscience.  

Recombinant IL-2, IFN-γ and IL-4 standards and the TMB Substrate reagent were 

from BD Pharmingen. Nucleur and cytoplasmic protein extraction kit, BCA assay 

reagents and Halt TM Phosphatase Inhibitor Cocktail were from Thermo Scientific. 

30% Acrylamide was from BioRad. ECL reagents were from Amersham. The 

FoxP3 kit for intra-cellular staining was from eBioscience. Intra-cellular 

cytokines were detected by using the kit for intra-cellular cytokine staining from 

BD Pharmingen. The Cell Trace CFSE staining kit was from Life Technologies. 

Mitomycin C was from Sigma. Ova peptide 323-339 was from GenScript.  

Reagents for polarization - recombinant IL-12, recombinant IL-4, anti-mouse 

NA/LE IFN-γ and anti-mouse NA/LE IL-4 were from BD Pharmingen. Poly 

(I):Poly (C) was from Amersham, Imgenex and Invivogen. Inhibitors for mTOR – 

Pp242 and Ku-0063794 were from Selleckchem. Tritiated thymidine used for 

proliferation assays was from Perkin Elmer. 
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6.2 Methods 

 

6.2.1 T cell isolation and in vitro polarization assays 

 

CD4+ T cells were isolated by magnetic separation using anti-CD4 

magnetic particles (BD Pharmingen). Cells were activated in vitro by plating 3 x 

106 cells/ml on each well of a 12-well plate pre-coated with anti-CD3ε and anti-

CD28 purified from 145-2c11 and 37N hybridoma cell lines respectively and 

cross-linked with anti-Hamster IgG (Sigma). Cells were activated in a half and 

half mixture of RPMI and DMEM (Lonza) supplemented with 10% Fetal Bovine 

Serum (GIBCO), L-Glutamine, Na-pyruvate and Penicillin/Streptomycin (Lonza). 

The following conditions were used for polarization. TH1: 10 μg/ml anti-IL-4 and 

1 ng/ml recombinant mouse IL-12 (BD Pharmingen). TH2: 10 μg/ml anti-IFN-γ 

and 1 ng/ml of recombinant mouse IL-4 (BD Pharmingen). Cells were harvested 

after 72 hrs of stimulation and re-stimulated with plate bound anti-CD3ε in the 

presence or absence of Golgi Plug (IFN-γ) or Golgi Stop (IL-4). Cells were 

harvested after 5hrs and used for detection of intra-cellular cytokines by flow 

cytometery. Supernatants from cells stimulated without Golgi Plug or Stop were 

used for detecting cytokine levels by ELISA. 
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6.2.2 Proliferation Assays 

 

For thymidine uptake assays, 3 x 105 cells/ml were activated in 96-well 

plates pre-coated with anti-CD3ε and anti-CD28 in the presence or absence of 20 

ng/ml recombinant mouse IL-2 (BD Pharmingen). Cells were pulsed with 3H-

thymidine (Perkin Elmer) at a final concentration of 1μci/rxn in the final 16 hours 

of activation. Cells were harvested on a mash harvester into scintillation vials. 

Counts per minute were obtained on a scintillation counter (Beckman). For CFSE 

assays, CD4+ T cells were labeled with 1μM CFSE using the manufacturer’s 

protocol. Cells were stimulated for 48 hrs before analysis by flow cytometry. 

 

6.2.3 Drug Treatments 

 

For drug treatments, CD4+ T cells were pretreated with 50 μM of the GSI 

z-IL-CHO, 5 μM NS-GSI JLK-6, 1.5 μM of DHMEQ, 80nm and 160nm Pp242, 1 

μM and 5 μM of Ku-0063794 at 37oC for 30 minutes before activation. 

 

6.2.4 Co-culture experiments using CHO-APCs 

 

Chinese Hamster Ovary - Antigen presenting cells (CHO-APCs) 

expressing DLL1, Jagged1 or Empty vector were fixed by treating with 

Mitomycin C at 37oC for 45 mins. 6 x 105 cells/ml of CHO-APCs were pulsed 

with the indicated concentrations of Ova peptide 323-339 for strength of signal 
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assays, or 2.5 μg/ml ova-peptide for activation and differentiation experiments. 

CD4+ T cells were isolated from spleens of BALB/c-Tg(DO11.10)10Loh/J and 

mixed with peptide pulsed APCs at 2.5 x 106 cells/ml in each well of a 12 well 

plate. For polarization experiments, polarizing reagents were added as described 

in section 6.2.1. Cells were harvested after 48 hrs for strength of signal assays and 

for detection of activation markers. Cells were harvested after 96 hrs for 

differentiation assays and re-stimulated with plate-bound anti- anti-CD3ε for 5 

hrs. Cells were analyzed by flow cytometry after gating on CD4+ T cells 

expressing the DO.11.10 TCR. Supernatants were used for detection of cytokines 

by an ELISA 

 

6.2.5 Strength of signal assays 

 

CD4+ T cells were isolated from the spleens of C57BL/6J as described and 

stimulated with the indicated concentrations of commercial anti-CD3ε and 1 

μg/ml of commercial anti-CD28 for 48 hrs. Cells were analyzed by flow 

cytometry and IL-2 was detected in the supernatants by an ELISA. For strength of 

signal experiments using CHO-APCs, co-culture experiments were performed. 

Empty vector Chinese Hamster Ovary – Antigen presenting cells (CHO-APCs) 

were fixed by treating with Mitomycin C at 37oC for 45 mins. 6 x 105 cells/ml of 

CHO-APCs were pulsed with the indicated concentrations of Ova peptide 323-

339. CD4+ T cells were isolated from spleens of BALB/c-Tg(DO11.10)10Loh/J 

and mixed with peptide pulsed APCs at 2.5 x 106 cells/ml in each well of a 12 
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well plate. Cells were harvested after 48 hrs and analyzed by flow cytometry after 

gating on CD4+ T cells expressing the DO.11.10 TCR. Supernatants were used for 

detection of IL-2 by an ELISA 

 

6.2.6 Stimulating T cells for detection of phosphorylated proteins 

 

CD4+ T cells were adjusted to a final concentration of 3 x 106 cells/ml and 

aliquoted into 1ml eppendorf tubes. (2-3 tubes were used for each condition. 

Example: for lysates made from control and KO mice, 3 individual tubes of cells 

were used for control and KO mice respectively).   1 μg/ml of commercial anti-

CD3ε and 1 μg/ml of commercial anti-CD28 were added to each tube containing 

1 ml of cells. Cells were mixed with the antibody by end over end rotation for a 

few minutes and incubated on ice for 15 mins. 4.5 μg/ml of cross-linking anti-

Hamster IgG was added to each tube. Once again, this was suspended by end over 

end rotation followed by incubation on ice for 15 mins. Cells were stimulated in a 

water bath at 37C for 45 mins. Cells were immediately transferred on ice at the 

end of 45 mins and centrifuged at 3000rpm for 5 mins. All cells for the same 

condition were then pooled into a single tube, washed with PBS and re-suspended 

in 40 μl of RIPA buffer containing Pefabloc and 1X phosphatase inhibitor 

cocktail. 
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6.2.7 Western Blot 

 

Whole cell lysates were made in RIPA buffer (150mM NaCl, 1% IgeCal-

CA 360, 0.1% SDS, 50mM Tris, pH-8.0, 0.5% Sodium deoxycholate). 

Cytoplasmic and nucleur proteins were extracted as per the manufacturer’s 

instructions (Thermo Scientific). Lysates were resolved on an SDS-PAGE gel. 

Protein was a transferred on a nitro-cellulose membrane and blocked in Blotto 

(5% milk powder, 0.2% Tween-20 in PBS). Membranes were probed over-night 

with primary antibody. Membranes were washed and incubated with horse-radish 

peroxidase (HRP) labeled secondary antibody. Membranes were developed using 

ECL reagents. 

 

6.2.8 Flow cytometry 

 
Surface staining was performed in PBS with 1% BSA. Intra-cellular 

staining was performed for detection of intra-cellular Notch1, T-bet, GATA3 and 

FoxP3 using the FoxP3 staining buffer set. For detection of intra-cellular 

cytokines, cells were harvested at indicated time points and re-stimulated with 

plate bound anti-CD3ε in the presence of Golgi Plug (IFN-γ) or Golgi Stop (IL-4) 

(BD Pharmingen) for 5 hrs. Intra-cellular cytokine staining was performed using 

the BD Cytofix/CytoPerm plus kit. Flow cytometry data was acquired on a FACS 

LSR II (BD) and analyzed using FlowJo software (Trestar) after gating on CD4+ 

T cells or as indicated. 

 



 124 

6.2.9 Statistical Analysis 

 

All data are represented as mean +/- SEM. Statistical Analysis was 

performed using GraphPad Prism 5 software. P values were calculated using an 

unpaired two-tailed student’s t test. 
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Table 6.1 Primers used for qRT-PCR 

 

 

SYMBOL 

 

  5 / PRIMER SEQUENCE 

 

     3 / PRIMER SEQUENCE 

Actb GGCTGTATTCCCCTCCATCG CCAGTTGGTAACAATGCCATGT 

Rbpj ATGCCCTCCGGTTTTCCTC GGACAAGCCCTCCGAGTAGT 

Notch1 CCCTTGCTCTGCCTAACGC GGAGTCCTGGCATCGTTGG 

Notch2 ATGTGGACGAGTGTCTGTTGC GGAAGCATAGGCACAGTCATC 

Notch3 TGCCAGAGTTCAGTGGTGG CACAGGCAAATCGGCCATC 

Ifng ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC 

Tbox21 CCAGGAAGTTTCATTTGGGAAGC ACGTGTGTGTTAGAAGCACTG 

Hes5 AGTCCCAAGGAGAAAAACCGA GCTGTGTTTCAGGTAGCTGAC 

c-Myc GGACAGTGTTCTCTGCC CGTCGCAGATGAAATAGG 
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