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ABSTRACT

A PROPORTIONALITY-BASED APPROACH
TO SEARCH RESULT DIVERSIFICATION

MAY 2014

VAN B. DANG

B.Sc., UNIVERSITY OF SCIENCE, HO CHI MINH CITY, VIETNAM

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor W. Bruce Croft

Search result diversification addresses the problem of queries with unclear in-

formation needs. The aim of using diversification techniques is to find a ranking of

documents that covers multiple possible interpretations, aspects, or topics for a given

query. By explicitly providing diversity in search results, this approach can increase

the likelihood that users will find documents relevant to their specific intent, thereby

improving effectiveness.

This dissertation introduces a new perspective on diversity: diversity by propor-

tionality. We consider a result list more diverse, with respect to some set of topics

related to the query, when the ratio between the number of relevant documents it

provides for each of these topics matches more closely with the topic popularity dis-

tribution. Consequently, we derive an effectiveness measure based on proportionality

and propose a new framework for optimizing proportionality in search results, which

we show to be more effective than existing techniques.
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Diversification would be impractical without the ability to automatically infer

the set of topics associated with the user queries. Therefore, we study cluster-based

techniques for generating these topics from publicly available data sources.

Based on the challenges that we observe with topic generation, we present a sim-

plified term-based representation for query topics. Specifically, we propose to identify

for each query a single set of terms that describes its topics. This set is provided

to a diversification technique which in effect treats each of the terms as a topic to

determine coverage in the search results. We call this approach term level diversifica-

tion and we show that it can promote diversity with respect to the topics underlying

the input terms. This simplifies the task of finding a set of query topics, which has

proven difficult, to finding only a set of terms. We also present a technique as well as

several data sources for generating these terms effectively.
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CHAPTER 1

INTRODUCTION

User queries do not always clearly represent the actual information needs. Existing

research estimated that 16% of the queries submitted to search engines are ambiguous

with multiple possible interpretations (R. Song et al., 2007; Clough et al., 2009). For

example, people searching for “TREC” might be looking for the Text Retrieval Con-

ference, Texas Real Estate Commission or Tropical Research and Education Center.

Even when different users share a common interpretation, their information needs

might still be different (Clarke et al., 2008). While one user may be interested in

publications at the TREC conference, others might want to know about different

tracks being organized at this conference. It is unclear which of these two aspects a

particular user is interested in.

Traditional relevance-based retrieval models (Robertson & Walker, 1994; Ponte &

Croft, 1998; Liu, 2009) do not take into account such diversity in user information

needs. Instead, they assume that there is a single implicit topic associated with all

relevant documents for each query. Thus, their objective is to retrieve documents

that are potentially relevant to this topic. Document relevance can be modeled using

various signals ranging from simple textual matches between documents and queries

(Robertson & Walker, 1994; Ponte & Croft, 1998) to more complicated user behavior

(Agichtein et al., 2006). Regardless, these models have a high risk of retrieving a

ranking with no or insufficient coverage for the topics that the user desires due to its

single-topic assumption.
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Search result diversification was introduced to address this short-coming. These

techniques attempt to return a ranking of documents that covers multiple topics of the

query. Topics denote the multiple possible information needs, intents, interpretations

or aspects associated with a given query. By explicitly representing and providing

diversity in the result list, these models can increase the likelihood that users will

find documents relevant to their specific intent and thereby improve effectiveness.

Intuitively, a diverse result list is one that can address the diverse information

needs underlying the user queries effectively. How to quantify such notion, however,

is unclear. Therefore, researchers make reasonable interpretations about what makes

a diverse ranking effective. They mostly rely on the notion of novelty and redundancy.

These are derived from the understanding of user behaviours in a web search envi-

ronment, known as the cascade model (Craswell et al., 2008). Users are assumed to

examine the result list top down and eventually stop reading because either they have

found what they need or they have run out of patience. Therefore, a document at

any rank providing the same information as those at earlier ranks is considered redun-

dant. Likewise, a novel document is one that provides information that has not been

covered by any of the previous documents. A ranked list is considered more diverse if

it contains more novelty, or equivalently, less redundancy. Enforcing maximal novelty

at every position in the ranking ensures coverage for more topics. It also induces a

document ordering where documents from more topics are surfaced to higher ranks,

reducing the user effort involved in finding them. The relative popularity of the query

topics must also be considered. The main idea is that the best document for the more

popular topics should be presented before those for the less popular topics, and that

there should be more documents for topics that are more popular.

Consequently, the task of finding a diverse ranking of documents, with respect to

the topics of the query, has been studied primarily from this perspective of maximizing

novelty. Maximizing coverage alone has been shown to be NP-hard (Agrawal et al.,
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2009). As a result, existing models (Carbonell & Goldstein, 1998; Zhai et al., 2003;

Agrawal et al., 2009; Carterette & Chandar, 2009; Santos et al., 2010a) are all greedy

approximations. They construct the ranking by iteratively selecting documents from

some pool of candidate documents. At each iteration, they pick the document with

maximal novelty with respect to those that have been selected for earlier ranks. Sim-

ilarly, evaluation measures (Clarke et al., 2008; Clarke, Kolla, & Vechtomova, 2009;

Chapelle et al., 2009) also focus on penalizing result lists with high redundancy. We

will discuss these techniques and measures as well as their differences in more detail

in Chapter 2.

Although the novelty approach considers the popularity of query topics, it does not

explicitly maintain a ratio of documents to present for each topic. In this dissertation,

we propose a new perspective on diversity which enforces this ratio. We call this

diversity by proportionality. It means that we want the ratio of documents returned

for each topic to match the relative topic popularity as closely as possible. Consider

an example scenario where we have to return ten documents for the query “TREC”,

which we assume to have two topics, the TREC conference and Texas Real Estate,

whose popularity is 80% and 20% respectively. We hypothesize that a result list

with eight documents about the conference and two documents about real estate is

more representative of the overall interest in these topics, thus more effective, than a

list with five documents for each topics. Proportionality naturally implies coverage.

Enforcing maximal proportionality at every position in the result list helps surface

documents for more topics, which has the same effect as promoting novelty. It also

guarantees that the more popular topic will be represented before less popular topics.

Under this perspective, we propose a measure for proportionality as well as a model

that can provide a proportional ranking of documents with respect to a set of query

topics and their popularity. Our experimental results have shown that document
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rankings provided by our technique not only have higher proportionality but also

lower redundancy compared to existing methods.

We have been discussing diversification with respect to a set of query topics with-

out mentioning where these topics come from. The success of diversification tech-

niques has been observed mostly with topics that are readily available. For example,

the related searches or suggested queries that commercial search engines provide for a

query can be used to represent its topics. While their effectiveness for diversification

has been confirmed (Santos et al., 2010a), how to generate these topics is unclear.

Alternatively, the Open Directory Project (ODP) taxonomy, a human-edited hier-

archy of categories that aims to describe the web has also been used as a source of

topics (Agrawal et al., 2009). Each query is classified to one or several categories

in this taxonomy using a random walk algorithm (Fuxman et al., 2008). These cat-

egory descriptions are then used for diversification. While ODP provides topics of

high quality, because they are created by human editors, it potentially has a coverage

issue. Enriching such a resource could be expensive.

Generating a set of topics for a query automatically, on the other hand, has had

rather limited success. Although there have been several attempts to do this, their

effectiveness for diversifying web search results has yet been fully evaluated. For

example, Carterette and Chandar (2009) apply Latent Dirichlet Allocation (Blei et

al., 2003) on a set documents retrieved for a query to recover its topics. Alternatively,

they also cluster these documents with k-nearest neighbor and use a language model

estimated from each cluster to represent a topic. Although their methods have proven

useful, their evaluation is done only on a small newswire collection. Although there

are more recent studies focusing on web corpora (Dou et al., 2011; Zheng et al., 2011)

which achieve promising results, their success is often tied to certain parameter values

chosen manually for the model. If these values are identified automatically, via cross

validation for instance, it is unclear how that affects the performance.
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In this dissertation, we propose a technique for automatically inferring the topics

for any user query from publicly available resources. In particular, we consider each

related query, or reformulation, a possible representation of a query topic. We study

different clustering techniques for grouping topically similar reformulations together

to form a detailed description for each of the query aspects. Our results indicate that

many of the generated reformulations correspond to the true query topics identified

by human judges. Furthermore, our clusters are topically consistent and effective for

diversification.

Since human usually describes a topic with a coherent group of terms, existing

techniques for topic generation model topics as groups of terms (Dou et al., 2011;

Zheng et al., 2011) or distributions of terms (Carterette & Chandar, 2009; He et al.,

2012). Because this approach has not been entirely fruitful, we propose a less strict

topic representation in which we directly model terms without their topical grouping.

What this means is that instead of generating a set of two topics for the query TREC

– trec conference and texas real estate commission – we only attempt to find a limited

set of terms such as: trec, conference, texas, real, estate and commission. Each term

will be treated as a topic and the term set is provided as input to existing techniques

for diversification as though they were a conventional topic set.

We demonstrate, using a ground-truth set of query topics, that diversification

with our term-based representation, which we call term level diversification, can be

as effective as its topic-based counter part. The reason that this works lies in the

nature of the diversification methods, which we will elaborate later on. We then show

that these terms can be generated automatically using a relatively simple existing

method proposed by Lawrie and Croft (2003) for document summarization. These

automatically generated terms are substantially more effective for diversification than

the full topic structures generated by existing methods.
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The key point of our term level approach is that the term set must contain terms

that can describe multiple topics of the query. As such, finding these terms is a di-

versification problem by itself. Therefore, we apply existing document diversification

techniques, as well as our proposed proportionality method, to this term diversifica-

tion problem and investigate their effectiveness.

1.1 Contributions

The contributions of this thesis are as follows.

1. We introduce a different perspective on diversity in search results: diversity by

proportionality. We consider a result list most diverse, with respect to some

set of topics related to the query, when the number of documents it provides

on each topic is proportional to the relative popularity among these topics.

This is in contrast with the existing view, which focuses on promoting novelty

in the result ranking. Consequently, we propose an effectiveness measure for

proportionality called Cumulative Proportionality.

2. We propose a framework for optimizing proportionality for search result di-

versification. We demonstrate that our method is more effective than the top

performing approach in the current literature not only according to our propor-

tionality measure, but also using several standard redundancy-based metrics.

3. We propose a cluster-based method to automatically infer query topics from

publicly available resources: anchor text and the Microsoft N-gram service. We

compare the effectiveness of different clustering techniques as well as similarity

measures.

4. We introduce a term-based representation of query aspects for diversification.

Instead of modeling a set of aspects, each of which is a group or a distribution of

terms, we directly model terms without their topical grouping. This effectively
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reduces the key problem of recovering a set of topics to finding a set of terms,

which is potentially a simpler problem.

5. We show that this term set can be generated automatically and effectively us-

ing an existing technique for document summarization (Lawrie & Croft, 2003).

Since finding these terms is also a diversification problem, we also apply sev-

eral techniques that have been proposed for diversifying documents to diversify

terms. Furthermore, we explore the use of multiple resources including retrieved

documents, wikipedia, freebase, anchor text and query logs in this term gener-

ation process.

1.2 Dissertation Outline

In Chapter 2, we survey the related work on search result diversification. This

includes retrieval techniques, topic generation methods, and evaluation measures.

We will also discuss the standard TREC dataset, which is the basis of our empirical

evaluation.

In Chapter 3, we first introduce our proportionality perspective on diversification.

We then derive our measure for it, which we call Cumulative Proportionality (CPR).

In addition, we present our framework for maximizing proportionality in search re-

sults.

In Chapter 4, we study the correlation between CPR and existing diversity mea-

sures which are based on the notion of redundancy. We then present the results

of retrieval experiments with our proportionality framework for diversification. We

compare it with existing approaches using both our proportionality measure and a

variety of standard redundancy-based metrics.

In Chapter 5, we describe how anchor text and the Microsoft N-gram service, both

of which are publicly available, can be used to infer query topics for diversification.
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We then describe our technique, which leverages these two sources, in more detail

and then evaluate it.

In Chapter 6, we first present the intuition behind our term level diversification

approach and explain how it works. We then present the document summarization

technique (Lawrie & Croft, 2003) that we use to automatically generate these terms.

After that, we explain how term generation can be considered a diversification prob-

lem itself and the connection between this summarization technique and document

diversification methods. Finally, we present the sources of information that can be

used for term generation.

In Chapter 7, we evaluate our term level approach to search result diversification

using both human-created terms that describe a set of ground-truth query topics as

well as terms that are generated automatically. We compare our approach to the

conventional topic level method. We also study the effectiveness for term generation

of the document diversification techniques as well as the resources we explorer in the

previous chapter.

Finally, in Chapter 8, we summarize the findings of this dissertation and address

some promising future directions.
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CHAPTER 2

BACKGROUND AND RELATED WORK

One important theoretical statement about retrieval effectiveness is known as the

Probabilistic Ranking Principle (PRP) (Robertson, 1997). It states that a ranking is

most effective when its documents are presented in order of decreasing probability of

relevance to the user who submitted the query. This implies the document indepen-

dence assumption: the relevance of a document is independent of other documents in

the ranking.

The PRP does not specify the notion of relevance. Instead, it is up to specific

retrieval models to interpret and estimate it. The common interpretation shared by

many models is that there is a single implicit topic underlying all relevant documents

for each user query. The objective is thus to score all documents in the collection

independently using some estimate of their relevance to this topic and rank them

by this score. This interpretation leads to several standard models such as BM25

(Robertson & Walker, 1994) and Query Likelihood (Ponte & Croft, 1998), which

estimate relevance based on how well the document text matches the query terms.

Additional evidence beyond textual matching (i.e. user behaviours (Agichtein et al.,

2006)) can also be incorporated to improve the reliability of this estimate via the

learning to rank framework (Liu, 2009).

Regardless of how relevance is estimated, these methods have two limitations.

Firstly, the single-topic assumption is unrealistic. In practice, user information needs

are seldom clear based on the initial query that they specify. Existing research esti-

mated that 16% of web queries are ambiguous with multiple possible interpretations
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(R. Song et al., 2007; Clough et al., 2009). This means that, search results should

allow for coverage of multiple topics.

Secondly, the document independence assumption is not realistic. If a user finds

a document in the ranking relevant, all lower-ranked documents providing the same

information will become less valuable to this user. This has been recognized for a

long time (Goffman, 1964) and recently been confirmed by the cascade model of user

behavior (Craswell et al., 2008). This model suggests that users typically examine the

result list from top to bottom and the probability that they click on each document

decreases as they click on documents at earlier ranks.

Due to these two assumptions, it is entirely possible that traditional retrieval

models generate a result list with too many documents on one topic while leaving

others uncovered. This results in a high risk of having no or insufficient coverage

for the topics in which the users are interested. To reduce this risk, one has to

promote topical diversity in the search results. This task is known as search result

diversification.

We start this chapter by explaining the current notion of topical diversity in

search results, which we will refer to as diversity for brevity. We then survey existing

techniques for search result diversification. After that, we provide a brief description

of related work for automatically inferring query topics. Next, we explain the standard

diversity evaluation process including datasets and effectiveness measures. Finally,

we briefly discuss related work on non-topical search result diversification as well as

other related areas.

2.1 Diversity and Search Result Diversification

Diversity is a generic concept that appears in many areas. For example, diversity

among university students often indicates the range of countries or cultures from
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which the students come. In ecology, diversity reflects the distribution of plants or

animals across species.

Diversity in search results refers to how well these results address the diverse

information needs, topics, or aspects underlying the user query. Intuitively, this

might involve several factors. Firstly, how many topics or aspects should be covered?

Secondly, how many documents should be retrieved for each topic? Additionally, how

should these documents be ordered? Some of these questions are easier to answer than

others. For example, while we certainly want to have coverage for more query topics,

there might not be a “right” answer to how many documents from different topics

should be interleaved or how they should be ordered.

As a result, one needs to make reasonable interpretations about what makes a di-

verse ranking effective. One interpretation is based on the notion of coverage (Agrawal

et al., 2009; Carterette & Chandar, 2009). This view ignores the order of documents

in the search results. It assumes that if a search engine returns 10 documents to the

users, they will examine all of them. As a result, an effective diverse ranking is one

that has at least one document for each of the query topics.

Another interpretation of diversity, which take into account document ordering, is

based on novelty and redundancy (Clarke et al., 2008; Clarke, Kolla, & Vechtomova,

2009; Chapelle et al., 2009). This is derived from the cascade model of user behavior

(Craswell et al., 2008). Since users are believed to examine the result lists from

the top down, a document at any rank providing the same information as those at

earlier ranks can be considered redundant. Likewise, a novel document is one that

provides information that has not been covered by any of the previous documents.

The novelty of a ranking is accumulated from the novelty of its documents in a

rank-dependent fashion. A result list with maximal novelty (or equivalently, minimal

redundancy), which loosely implies maximal novelty at every rank, is considered more

effectively diverse. It is important to point out that novelty subsumes coverage. If
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we put together a ranking from all documents in the collection, the result ranking

with maximal novelty naturally has maximal coverage. Briefly put, a result list with

maximal novelty is a ranking with maximal coverage (with respect to the query topics)

in which the documents are ordered in such a way that minimizes the average rank

where all users will find a result that is useful to them.

As a result, diversification has been studied from the perspective of maximizing

novelty, or equivalently, minimizing redundancy (Carbonell & Goldstein, 1998; Zhai

et al., 2003; Santos et al., 2010a). As we shall see later, even the techniques that

emphasize coverage (Agrawal et al., 2009; Carterette & Chandar, 2009) achieve their

goal by promoting novelty.

Searching through the entire document collection for a ranking of documents that

maximizes some utility, however, is impractically expensive. It is also unnecessary

since many documents will not be relevant to the user information needs. As a result,

diversification is performed using re-ranking. First, a relevance-based retrieval model

(e.g. Query Likelihood (Ponte & Croft, 1998)) is used to obtain an initial ranking

of documents that are potentially relevant to some of the topics underlying the user

query. This ranking is then re-ordered to maximize either coverage or novelty with

respect to some set of topics associated with this query.

Formally, let T = {t1, t2, ..., tn} indicate the set of topics underlying the query

q. Let R = {d1, d2, ..., dm} be the initial ranking of documents retrieved for q. The

diversification task is to select and rank k documents (k ≤ m) from R to form a

diverse ranked list S that maximizes novelty with respect to T .

2.2 Diversification Techniques

One of the effectiveness criteria of a diverse ranking is topic coverage. Unfortu-

nately, even if we ignore document ordering, finding a document set with maximal

coverage is NP-hard. This can be proved by showing that this task is equivalent to
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the maximum coverage problem, a known NP-hard problem (Agrawal et al., 2009).

Since the greedy approach has been proven to achieve the best approximation factor

for the maximum coverage problem (Nemhauser et al., 1978; Feige, 1998), all diver-

sification techniques – coverage-based and novelty-based alike, are polynomial-time

greedy algorithms as outlined in Algorithm 1. This greedy framework iteratively se-

lects documents in R to put into S. At each iteration, it chooses the document d∗

such that S ∪ {d∗} has maximum utility f(q, d, S), which can be coverage or novelty.

Interestingly, although the coverage view of diversity does not take into account

the order among documents, the techniques derived from it conveniently provide this

ordering due to their greedy nature. One can see from Algorithm 1 that what they do

can be explained as promoting coverage of new topics (with respect to the documents

selected earlier) at every rank. This makes the coverage-based approach (Agrawal

et al., 2009; Carterette & Chandar, 2009) virtually identical to the novelty-based

one (Carbonell & Goldstein, 1998; Zhai et al., 2003; Santos et al., 2010a) in terms

of optimization objective since promoting coverage for new topics is equivalent to

promoting novelty.

Algorithm 1 The greedy approach to search result diversification

1: procedure Diversify(q, R)
2: S ← ∅
3: while |S| < Min(k, |R|) do
4: d∗ ← argmaxd∈R f(q, d, S)
5: S ← S ∪ {d∗}
6: R← R \ {d∗}
7: end while
8: return S
9: end procedure

Although the utility function function f(q, d, S) can be referred to more specifi-

cally as the novelty function, we will retain the term utility function for the following

reason. In an ideal world where all documents in R are relevant, this utility can be

solely the novelty of each document with respect to those that have been selected
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earlier. In practice, however, this ranking usually contains several non-relevant docu-

ments as well. Favoring novel documents alone likely ends up promoting non-relevant

documents since they usually provide “novel” information compared to the relevant

ones. As a result, this utility function f(q, d, S) usually captures both the relevance

of each candidate document to the query and its novelty. How to estimate novelty as

well as how to combine it with relevance is where existing methods differ.

How existing methods estimate novelty is determined primarily by whether or not

they explicitly represent the query topics in their model. As a result, they are often

categorized as being implicit or explicit.

2.2.1 The Implicit Approach

As the name implies, this approach does not explicitly represent query topics

within their models. Instead, it assumes each document has its own latent topics,

reflected by its vocabulary. Novelty is promoted by selecting the document at each

iteration that uses the most different vocabulary compared to those selected earlier,

as given by some similarity measures.

The pioneer technique in this area is known as Maximal Marginal Relevance

(MMR) (Carbonell & Goldstein, 1998). This technique was originally proposed to

reduce redundancy in document rankings as well as in text summarization and has

become the canonical baseline for diversification since then. Using the greedy frame-

work, it scores each candidate document by its relevance to the user query discounted

by its maximum similarity with respect to the documents that have been selected

earlier:

fMMR(q, d, S) = λR(d, q)− (1− λ) max
dj∈S

Sim(d, dj)

whereR(d, q) indicates how relevant d is to q and Sim(d, dj) is the document similarity

function. While cosine was used in the original paper, any other measures should be

applicable.
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Motivated by the idea of MMR, Zhai et al. (2003) propose to model novelty, which

they described as dependent relevance, using the language modeling approach:

fLM(q, d, S) = R(d, q)(1− λ− P (d|S))

where R(d, q) could be any probabilistic relevance estimate (such as query likelihood

(Ponte & Croft, 1998)) and P (d|S) is an estimate of the probability that the words

in d come from the language model of the documents in S. Lower P (d|S) indicates

more novelty.

Inspired by the portfolio theory in finance (Markowitz, 1952), Wang and Zhu

(2009) proposed a coverage-based approach to maximize the expected relevance of

a ranking, i.e. the average estimated relevance score of its documents, at a speci-

fied variance 1. Documents with similar vocabulary usually have similar relevance

estimate. Therefore, having a certain degree of variance in the ranking promotes

documents with different vocabulary, thereby increasing novelty. This objective is

achieved by the same greedy approach that is very similar to MMR except that doc-

ument similarity is modeled by Pearson’s correlation.

Chen and Karger (2006) used a similar utility function as that of Zhai et al. (2003)

except for the novelty estimate. Instead of comparing each candidate document d with

those in S, this approach models d’s novelty as the probability that d is relevant to

the user information need conditioned on the fact that those in S are assumed to be

non-relevant. They show that this maximizes the probability that there is at least

one document in the result ranking that is useful to the user. Note that this method

achieves diversity as an “unplanned” effect and has not been formally evaluated using

standard redundancy measures.

1A similar approach is introduced independently by Rafiei et al. (2010)
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2.2.2 The Explicit Approach

Intuitively, the relative popularity of query topics should have some effect on how

search engines order their result documents. The implicit approach, however, has very

little control over which topics of the query to present in the results, which is decided

entirely by the document similarity measure being used. Therefore, it is unclear how

the relative topic popularity can be incorporated into such models.

The explicit approach was proposed to address these short comings. It explicitly

maintains a set of query aspects and their importance or popularity, and attempts

to return documents for each of these aspects, ordered in a way that maximizes

novelty (Carterette & Chandar, 2009; Agrawal et al., 2009; Santos et al., 2010a).

The difference between existing techniques in this class is also in the way they model

novelty and combine it with relevance.

It is important to note that these techniques assume that the set of topics T =

{t1, t2, ..., tn} is available for the user query q. We treat the task of generating these

topics as a separate problem which we will discuss later in Section 2.4.

Agrawal et al. (2009) used the Open Directory Project (ODP) taxonomy to model

query topics. Each query q is mapped to a small set of topics T in this taxonomy using

a random walk algorithm (Fuxman et al., 2008), which also provides a distribution

specifying the probability P (t|q) that q belongs to each of the topics t ∈ T . Their

diversification technique, IA-Select, defines f(q, d, S) as follows:

f(q, d, S)IA−Select =
∑
t∈T

P (d|t)× P (t|q)×
∏
dj∈S

(1− P (dj|t))

where P (d|t) is some probabilistic estimate of the relevance of d to the topic t.

f(q, d, S) denotes the marginal utility of d, which is interpreted as the probability

that that d satisfies the user where all of the documents that come before it fail to

do so. The objective of this greedy approach can be explained in different ways.
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From the user modeling perspective, if a user examines the document at position

i, it means all i−1 documents IA-Select provided so far are on the wrong topics with

respect to this user. As a result, the document to put in this i-th position should be

the one that has the most potential for satisfying this user conditioned on the fact

that all previous i− 1 documents did not.

Operationally, it could be explained as follows. Let P̄ (S|t) =
∏

dj∈S(1− P (dj|t)),

which indicates the probability that all documents in S fail to satisfy the topic ti.

Note that P̄ (S|ti) decreases as any document d is put into S since every document

is relevant to t with some probability. The exact amount it is decreased depends on

the relevance of d. At any iteration, more documents in S that are more relevant

to t means lower P̄ (S|t). Therefore, P̄ (S|t) can be regarded as an indicator of how

well the topic t is currently covered, or satisfied, by S – higher values means less well

covered. As a result, by selecting the document d∗ with maximum f(q, d, S) at every

step of the greedy framework, IA-Select favors those documents that can satisfy the

topics that have not been well satisfied. This is how novelty is promoted.

Following a different line of reasoning, Santos et al. (2010a) arrived at the same

objective function. They further interpolate it with the relevance of the candidate

document with the query:

f(q, d, S)xQuAD = (1− λ)P (d|q)) + λ
∑
t∈T

P (d|t)× P (t|q)×
∏
dj∈S

(1− P (dj|t))

The main difference between xQuAD and IA-Select is their assumption about query

topics. While Agrawal et al. (2009) uses ODP to represent query topics , Santos et

al. (2010a) consider the related queries obtained from commercial search engines for

each query as its topics. This essentially determines how P (d|t) is estimated. As far

as diversification techniques are concerned, however, they are very similar.

Carterette and Chandar (2009) proposed a probabilistic set-based technique that

is similar to IA-Select in the objective of maximizing topic coverage in the result
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ranking. Their derivation, however, leads a different utility function:

f(q, d, S)Set =
∏
t∈T

1− (1− P (d|t))
∏
dj∈S

(1− P (dj|t))


This utility aims to capture the probability that S ∪ {d} contains at least one docu-

ment for each of the query topic. Maximizing this utility ensures that their method

always selects the document for the topics that have not been (well) covered by those

currently in S. In other words, it promotes novelty at every position in the result

ranking.

More recently, Zheng et al. (2012) proposed a family of coverage-based utility

functions that linearly combines the relevance of the document to the query and with

its novelty in a similar fashion as xQuAD. They show that some of these can improve

the novelty in the result ranking.

In summary, all of the above mentioned methods are very similar in that they all

employ a greedy framework that attempts to select the most novel document at every

step. In contrast, we introduce a new framework for diversification that is based

on maximizing proportionality. Though we only provide two instantiations of this

framework, further derivation is certainly possible. Our proportionality model also

assumes a set of query topics, which makes it an explicit approach.

It is worth noting that, while most of the above techniques are unsupervised,

there is some effort in applying machine learning to diversification as well. Yue and

Joachims (2008) propose to use structural SVM to predict how well a candidate set

of documents satisfies the query topics based on how well it covers the vocabulary in

the input ranking, which is assumed to have sufficient coverage for those topics. The

effectiveness of this approach, however, is unclear since it is only evaluated in the

ideal setting where the input ranking to be diversified does not contain non-relevant

documents. In addition, it requires expensive editorial judgment data (i.e. identifying
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query topics and judging which documents are relevant to which of these topics). To

avoid editorial judgment, online learning has also been considered where the models

are learned and updated on-the-fly as implicit feedback is collected from users (Raman

et al., 2011, 2012; Radlinski et al., 2008; Slivkins et al., 2010; Yue & Guestrin, 2011).

2.3 Automatic Generation of Query Topics

Compared to the implicit approach for diversification, the explicit approach offers

more control over which topics to cover in the search results. The effectiveness of the

explicit approach, however, has been observed primarily with topics that are either

created manually (e.g. ODP (Agrawal et al., 2009)) or obtained directly from related

queries provided by commercial search engines (Santos et al., 2010a). Although there

have been quite a few techniques for generating query topics automatically, not all of

them are designed with diversification effectiveness in mind. Therefore, the success of

the diversification techniques with topics that are generated automatically is rather

limited.

Carterette and Chandar (2009) propose to cluster a set of documents retrieved for

a query using k-nearest neighbor. They then construct a relevance model (Lavrenko

& Croft, 2001) from each cluster and use it to represent a query topic. Alternatively,

they also apply Latent Dirichlet Allocation (Blei et al., 2003) on the same set of

documents to obtain these topics. Their method has proven effective on a small

newswire collection. It is unclear if these results can be generalized to noisy web

collections.

Radlinski et al. (2010) seek topics from a search engine log. In particular, they

propose to cluster related queries in a large proprietary log and use each cluster to

represent a query topic. They show that this approach can provide topically consistent

clusters of queries. As a result, it was adopted for the topic development procedure

at TREC (Clarke, Craswell, & Soboroff, 2009; Clarke et al., 2010; Clarke, Craswell,
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Soboroff, & Voorhees, 2011; Clarke & Craswell, 2012). Human judges examined the

clusters for each user query and decided the topics in which searchers are interested.

They then manually created the description for each of these topics. Nevertheless,

the effectiveness of these generated clusters for diversification has yet to be confirmed.

Inspired by the work of Radlinski et al. (2010), we propose to cluster related

queries generated from anchor text and web ngrams. Both of these resources are

publicly available whereas query logs are not. We show that diversification with

topics generated using our method outperforms a standard relevance-based retrieval

model. Furthermore, He et al. (2012) show that combining topics generated using

our method and those generated from the retrieved documents and query logs further

improves diversification effectiveness.

Ma et al. (2010) present a technique that generates a diverse set of suggestions

for a given query by performing a diversified random walk on a click graph starting

from the input query. Alternatively, Y. Song et al. (2011) apply the learning to

rank approach to generate these suggestions that leverages not only click data but

also session information and retrieval results. Since these techniques are designed for

query suggestion, their effectiveness for diversification has not been studied.

Instead of relying on a single source of information, Dou et al. (2011) propose

to combine multiple sources. In particular, they extract and score anchor text and

queries from a search log that contain all of the query terms. The top ranked anchors

and queries are used as topics. Furthermore, they cluster documents initially retrieved

for the query based on key phrases in their snippets and use these clusters as additional

topics. Although their evaluation shows that diversifying search results using these

topics can improve diversity, the number of topics extracted from each of the sources

to be used is selected manually. It is thus unclear if these topics remain effective in

a fully automatic setting.
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To the best of our knowledge, only more recent methods show consistent improve-

ment over non-diversification retrieval baselines on web corpora. This includes the

technique by He et al. (2012) and the one by Santos et al. (2013). While the former

infers query topics from multiple sources of information using the regularized topic

modeling approach (Cai et al., 2008), the latter uses learning to rank to select related

queries from a query log. The difference between this work and that by Y. Song et

al. (2011) is in the features they use.

It can be seen that existing techniques represent a topic by a distribution of terms

(Carterette & Chandar, 2009), a query (Ma et al., 2010; Y. Song et al., 2011; Santos

et al., 2013), some anchor text (Dou et al., 2011), or a cluster of queries (Radlinski

et al., 2010). All of these can be regarded as a coherent group of terms. We argue

that while this representation has its advantage, such as being human readable, it

might not be necessary for diversification. In this dissertation, we experiment with a

simpler representation for a set of query topics. Instead of modeling this set with each

topic being a group of terms, we model these terms directly without their grouping

structure. We show that being able to identify the these topic terms, without their

topical grouping, is sufficient to improve diversity in search results. This effectively

reduces the task of finding a set of topics into finding an appropriate set of terms.

We then show how these terms can be generated effectively.

2.4 Diversity Evaluation

2.4.1 TREC Corpus

The Text REtrieval Conference (TREC) has created numerous reusable test col-

lections over the years for several retrieval tasks. These test corpora have been exten-

sively used by information retrieval researchers to evaluate their models and to ensure

the reproducibility of their experimental results published in academic conferences.
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The first test collection for diversity evaluation is developed for the aspect retrieval

task in the TREC 6-8 Interactive tracks (Over, 1997, 1998; Hersh & Over, 1999).

This corpus includes 20 queries, each of which is associated with a number of aspects.

Since these aspects are identified by human assessors, this corpus does not reflect

the genuine needs of real users who issue the query. This issue is then addressed in

the diversity task in the TREC Web tracks 2009-2012 (Clarke, Craswell, & Soboroff,

2009; Clarke et al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke &

Craswell, 2012), in which both the queries and their aspects are identified from a

search log, which reflects genuine user information needs.

In this dissertation, we use the TREC corpus developed for the diversity task in

the 2009-2012 Web tracks. The retrieval collection is ClueWeb09 category B, which

contains approximately 50 million web pages with highest crawled priority derived

from a large general English-language web corpus. This corpus is composed of 200

topics which represents the information needs that users might have given this web

collection. Each of these topics consists of (1) a short query intended to be used for

retrieval experiments, (2) a longer description describing this topic in more detail and

(3) a set of sub-topics corresponding to different interpretations, facets, or aspects the

query might have. On average, there are 4.12 sub-topics per query with a variance of

1.3. The smallest and largest number of sub-topics a query has is 2 and 8 respectively.

These sub-topics are identified from a query log in a semi-automatic fashion. For

each query, they find other queries that are likely to co-occur in the same session. The

same expansion step is run again to obtain an even larger set of related queries, which

might contain both on-topic and off-topic ones. After that, a graph is constructed

from these related queries where two nodes are connected if they have clicks on

the same URL. This helps filters out the off-topic queries. Finally, agglomerative

clustering is run on the graph. The result clusters were presented to human assessors

who then determined the set of sub-topics for this query and provided a description
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for each sub-topic. In this dissertation, we refer to these “sub-topics” as “topics” of

the query.

Each query is categorized as either “ambiguous” or “faceted”. “Ambiguous”

queries are those with multiple possible interpretations (their topics thus correspond

to different interpretations) and “faceted” queries are those whose intent is under-

specified (their topics denote different aspects). In general, all existing diversification

techniques can work without distinguishing the two types of queries. Similarly, we do

not differentiate between them. We treat both interpretations and facets of a query

as its topics.

To assess how effective a system is at providing a diverse result ranking for the 200

queries, this test collection also provides a set of documents that are manually judged

as either relevant or non-relevant to each of the query topics. The set of query topics

as well as the relevance judgments are used as the ground-truth for the purpose of

automatic evaluation. In the next section, we describe how evaluation is conducted

in more detail.

2.4.2 Diversity Measures

The novelty-based approach to diversity is clearly demonstrated through several

standard effectiveness metrics such as ERR-IA (Chapelle et al., 2009), α-NDCG

(Clarke et al., 2008), and NRBP (Clarke, Kolla, & Vechtomova, 2009). These mea-

sures have the same general form as follows:

Div.@k =
k∑
r=1

1

Discount(r)

∑
t∈T

pt ×Relevance(dr, t)×Redundancy(dr|d1, ..., dr−1)

where dr is the document at rank r in the ranking being measured, T is the set of

topics and pt is the importance of a topic t ∈ T . The general idea is that they give

a reward for every document in the list that is relevant to at least one of the topics,

weighted by the importance of the corresponding topics. Since a good ranking is
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one in which relevant documents are presented at earlier positions, the reward for

these documents are discounted by a function of their rank. To promote novelty, they

further discount this reward based on the redundancy of this document. Therefore,

a ranking with more novel (and relevant) documents at earlier ranks will receive a

higher effectiveness score.

The difference between these measures is in they way they compute relevance,

redundancy and the rank-dependent discount, which are determined by their inter-

pretations of what make a ranking effective.

ERR-IA (Expected Reciprocal Rank - Intent Aware) (Chapelle et al., 2009) measures

the expected (reciprocal) rank at which the user will find useful information. It is

computed as:

ERR-IA@k =
k∑
r=1

1

r

∑
t∈T

pt ×Rt
r ×

r−1∏
j=1

(1−Rt
j)

where Rt
j is the relevance of the j-th document to the topic t, which is calculated as:

Rt
j =

2Rj − 1

2Rmax

where Rmax is the highest scale of the graded relevance judgments. The redundancy

of a document that is relevant to some subset of topics T ′ ⊆ T is measured by the

the relevance of the documents before it to T ′.

α-NDCG (α− Normalized Discounted Cumulative Gain) (Clarke et al., 2008) ex-

tends the traditional NDCG measure (Järvelin & Kekäläinen, 2002), which accu-

mulates the reward for each relevant document discounted by its rank, by further

discounting this reward by the redundancy of the document being considered:

α-NDCG@k =
k∑
r=1

1

log2(r + 1)

∑
t∈T

J tr × (1− α)
∑r−1

j=1 J
t
j

where J tj is the binary relevance of the j-th document to the topic t and α ∈ (0, 1]

indicates the probability that the assessor is making a mistake by judging a document
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as relevant (to any of the topics). α is often set to 0.5 in TREC official evaluations.

Similar to ERR-IA, α-NDCG measures redundancy of a document by the relevance of

the documents that come before it in the ranking. Unlike ERR-IA, α-NDCG ignores

relative topic importance, which is its weakness. This is not an issue for evaluation

on the TREC corpus, however, since topics are assumed to be equally important.

NRBP (Novelty- and Rank-Bias Precision) (Clarke, Kolla, & Vechtomova, 2009)

extends the RBP metric (Moffat & Zobel, 2008) to measure the expected number of

relevant documents a user encounters when scanning the result list:

NRBP@k = N ×
k∑
r=1

βk−1
∑
i∈I

pi
|Ai|

∑
a∈A

Jar × (1− α)
∑r−1

j=1 J
a
j

where I is the set of interpretations the query has and Ai is the set of aspects under

the interpretation i. They attempt to address the general case where a query can

have multiple interpretations, each of which has several aspects. Their assumption

is that each user is only interested in one interpretation while many of the aspects

under this interpretation might be of interest. The rest is similar to α-NDCG. The

additional parameter βk indicates the probability that the user continues reading

after examining the k-th document. It is said to model user patience and is assumed

constant across k.

The three measures above are often referred to as the cascade measures since they

are derived from the cascade user model (Craswell et al., 2008). There are other

measures that were not designed with respect to this user model. Examples include

the family of intent aware measures (Agrawal et al., 2009). Each of them is a linear

combination of a traditional measure of relevance Λ (e.g. Λ could be NDCG (Järvelin

& Kekäläinen, 2002), MAP, etc.) computed independently for each of the query

topics:

Λ-IA@k =
∑
t∈T

ptΛt
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They are designed to address the case when queries are strictly ambiguous and a

user is never interested in more than one topic. Thus, it aims to capture the expected

relevance of the results across users. Another example is subtopic recall S-Recall (Zhai

et al., 2003), which is the fraction of query topics to which a result list contains at least

one relevant document. S-Recall, in fact, is equivalent to the instance recall measure

used in the aspect retrieval task in the TREC 6-8 Interactive tracks (Over, 1997,

1998; Hersh & Over, 1999). It is important to point out that although ERR-IA@k

fits mathematically into this family, it is a cascade measure. Alternatively to the

intent-aware family, Sakai and Song (2011) present a different way to extend the

traditional relevance measure that they call the D#-measure family.

Although there has been some effort to compare these measures (Clarke, Craswell,

Soboroff, & Ashkan, 2011; Ashkan & Clarke, 2011), it is found that many of them

have high correlation with user preferences and there is no significant difference in

their predictive power (Sanderson et al., 2010). As a result, the common practice

is to conduct evaluation using multiple measures, as has been done by the official

TREC evaluation for several years (Clarke, Craswell, & Soboroff, 2009; Clarke et

al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke & Craswell, 2012).

Another reason for this practice is that different measures capture different features

of the results. For example, while subtopic recall (Zhai et al., 2003) indicates the

topic coverage of a result list, intent aware precision (Agrawal et al., 2009) provides

more insight into how many relevant documents there are for each topic. ERR-IA

(Chapelle et al., 2009) reflects the ranking of documents within each topic as well as

an all-round diversity score.

In this dissertation, we propose a new measure which aims to capture the propor-

tionality in search results. It is intended to provide insights on a different aspect of

effectiveness. As such, we suggest using it with existing redundancy-based measures.
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Last but not least, the measures above are designed to capture diversity in a

ranked list, which is specific to the context of information retrieval. Therefore, they

are different from diversity measures in other areas, which are mainly set-based. For

instance, the Simpson index (Simpson, 1949) in ecology, which is the probability

that two individuals taken at random come from the same species, has no notion of

ranking.

2.5 Non-Topical Search Result Diversification

Instead of providing a document ranking with coverage for multiple query topics,

recent work has proposed to perform diversification with respect to other dimensions

of the queries that are non-topical. One of such dimensions is sentiment (Demartini,

2011; Kacimi & Gamper, 2011; Aktolga & Allan, 2013; Aktolga, 2014). Consider a

query with a controversial topic: “abortion”. It is likely that there will be people

who support it (positive), people who are against it (negative), and those who with

a neutral attitude towards it (neutral). Therefore, in response to such queries, search

engine should return results with coverage for all three sentiments. This will provide

the searchers with a better overview of the topic.

Another dimension for diversification is temporal (Keikha et al., 2012; Berberich

& Bedathur, 2004; Aktolga, 2014). Consider a query with an ambiguous temporal

profile (Jones & Diaz, 2007): “earthquakes in Turkey”. Since there have been several

earthquakes, providing search results with coverage for these events that happened at

different points of time is arguably more helpful to the users’ understanding on this

subject.

The primary focus of the work in this area is to point out that there are other

important dimensions (other than topical) that search result diversification should

take into account. As far as techniques are concerned, on the other hand, prior work

in sentiment and temporal diversification mostly employ methods that are proposed
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for topical diversification, which we have presented earlier in this chapter. In other

words, they also employ a greedy framework to select documents that are different

to those that have been selected in the previous iterations. The measures of the

difference between documents are based on their time (which can be the time when the

documents were published or when the events they describe occurred) or sentiments,

as opposed to the topics they describe.

2.6 Other Related Research Areas

Novelty and redundancy, which are fundamental to the current notion of diversity,

have been studied in other tasks. One of such tasks is the new event detection prob-

lem, which is a part of the Topic Detection and Tracking (TDT) initiative (Allan,

Carbonell, et al., 1998). The task is to find new events (or topics) in a stream of

events. An event is considered new if it is different to those before it in the stream.

Although this task is related to diversification in that a sub-stream that consists of

only new events is highly diverse, its focus is on finding these new events and not

on the diversity of the results. Therefore, some of the techniques (Allan, Papka, &

Lavrenko, 1998; Allan et al., 2001) are similar to those for diversification, but the

goals are ultimately different. In addition, many techniques for new event detection

(Allan, Papka, & Lavrenko, 1998; Allan et al., 2001) rely heavily on temporal clues

that are not guaranteed to be present in web documents. Furthermore, they do not

consider the popularity of the events while many diversification techniques take into

account the relative topic popularity (Agrawal et al., 2009; Santos et al., 2010a).

Another task that is also concerned with novelty is novel sentence detection, which

has been investigated at the TREC 2002-2004 novelty tracks (Harman, 2002; Soboroff

& Harman, 2003; Soboroff, 2004). Given a ranking of sentence-segmented documents

for a user query, a system’s task is to first identify and filter out the non-relevant

sentences. It then revisits the ranking consisting of the remaining sentences and
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discards those that do not contain any new information with respect to those at the

earlier ranks. Although this task is related to diversification, the notion of novelty

at the sentence level is at a much finer granularity than document-level novelty.

This brings different challenges (i.e., isolating relevant sentences is very difficult; and

a system’s ability to find novel sentences depends critically on how good it is at

identifying relevant sentences (Allan et al., 2003)) and thus different solutions to the

forefront.

It is worth noting that although this problem of finding a sentence ranking with

maximal novelty is formulated more or less as a filtering problem, there are approaches

that attempt to re-order the sentences in the input document list to provide a new

ranking with a higher degree of novelty (Larkey et al., 2002; Allan et al., 2003).

These techniques, in fact, were inspired by MMR (Carbonell & Goldstein, 1998).

Specifically, they iteratively select sentences that are different to those selected in

the previous iterations using various measures of differences. Since MMR has been

applied for diversification, these methods can be considered diversification techniques

as well.
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CHAPTER 3

DIVERSITY BY PROPORTIONALITY: AN
ELECTION-BASED APPROACH

3.1 Introduction

As mentioned in the first two chapters, the problem of finding a diverse ranked list

of documents has been investigated mainly from the perspective of promoting novelty

or penalizing redundancy. Existing techniques promote diversity by penalizing result

lists with too many documents on the same topic, reducing the redundancy of coverage

(Agrawal et al., 2009; Carterette & Chandar, 2009; Santos et al., 2010a). Similarly,

many standard effectiveness measures for diversity (Clarke et al., 2008; Clarke, Kolla,

& Vechtomova, 2009; Chapelle et al., 2009) are also based on this notion of novelty.

We approach the same task from a different perspective. We view the problem of

finding a good result list of any given size, with respect to the topics or aspects of

the query, as the task of finding a representative sample that reflects the overall user

interest in these topics. Using a simple (and well-worn) example, for a query “java”,

90% of the time people click on the web pages about programming language and

10% on documents about the island. We hypothesize that a result list containing ten

documents where only one of them was about the island would be more representative,

thus more effective, than a result list containing five documents on each topic.

Although it appears that promoting proportionality results in an abundant num-

ber of documents for the programming topic, we argue that this is necessary for two

reasons. First, consider the alternative where a system does not respect proportion-

ality. In the case that a query has more than ten topics, it is possible that the topic
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that most users care about is not covered in the top ten documents returned by this

system. Second, the users who are interested in the programming topic might be

looking for information on different sub-topics such as Java tutorials, advanced Java

programming and the differences between Java and C/C++. By providing sufficient

representation for this topic of programming, we enable the possibility to further di-

versify the results with respect to its sub-topics. Although we have not done this in

this dissertation, we believe that it will increase the likelihood of satisfying a larger

portion of the 90% of users whose interest is in Java programming.

This notion of proportionality of ours is independent of how user interest is mea-

sured. As an alternative to using click distribution, one can also think of the number

of documents on a topic in a retrieved set or collection as a reflection of user inter-

est. Consequently, we treat the problem of finding a diverse ranking of documents as

finding a proportional representation with respect to a distribution of user interest.

Finding a proportional representation is a critical part of most electoral processes.

The problem is to assign a set of seats in a parliament to members of competing

political parties in a way that the number of seats each party possesses is proportional

to the number of votes it has received. In other words, the members in the elected

parliament must be a proportional representation of these parties. If we view each

position in our ranked list as a “seat”, each topic of the query as a “party” and

the topic popularity as the “votes” for this “party”, the problem of diversification

becomes very similar to this seat allocation problem.

Based on the above analogy, we propose a novel technique for search result di-

versification. It is an adaptation of the Sainte-Laguë method, a standard technique

for finding proportional representations that is used in the official election in New

Zealand1. Generally, our technique starts with an empty ranked list of a certain size.

1http://www.elections.org.nz/voting/mmp/sainte-lague.html
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It sequentially visits each “seat” in the list and determines for each of them to which

topic it should be allocated in order to maintain proportionality. Then it selects

the best document for the selected topic to occupy this “seat”. In addition, we also

present a new effectiveness measure that captures proportionality in search results.

In the following sections, we will first formally describe our notion of proportion-

ality and how to measure it (Section 3.2). We then present our proportionality-based

framework for diversification (Section 3.3). In the next chapter, we demonstrate em-

pirically that our method is more effective than the top performing approach in the

diversity literature not only according to the proportionality measure but also us-

ing several standard novelty-based metrics including α-NDCG (Clarke et al., 2008),

ERR-IA (Clarke et al., 2008) and NRBP (Clarke, Kolla, & Vechtomova, 2009) that

existing work has been designed to optimize. This indicates that optimizing search

results for proportionality leads an diverse result list with low redundancy.

3.2 Proportionality

In this section, we will first explain the notion of proportionality in the context of

information retrieval. We then describe our effectiveness measure for it.

3.2.1 Definition of Proportionality

Let T = {t1, t2, ..., tn} indicate a set of topics for a query q and P = {pt|t ∈ T}

indicate the distribution of user interest over these topics. Additionally, let S be

some set of documents that are relevant to at least one of the query topics, and

P ′ = {rt|t ∈ T} denote a distribution where rt is the fraction of documents in S that

are relevant to the topic t. We define the proportionality of S with respect to T as

the similarity between its P ′ and P . S is considered perfectly proportional if and only

if P ′ is identical to P . As P ′ diverges from P , under some measure of divergence, S
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is considered less proportional. We will present a measure for divergence in the next

section.

Let us revisit the example in the previous section, in which the popularity of the

topic about “java” programming language is 90% and the popularity of the topic

about an island named “java” is 10%. Let {x, y} denote any set of documents with

x documents about programming and y documents about the island. In this case,

{9, 1} is perfectly proportional. Using a standard least square distance, while {8, 2}

is not perfectly proportional, it is more proportional than {7, 3}.

Let S now represent some ranking of documents and Sk represent the set of top

k documents of S. We define the proportionality of S as the average proportionality

of all Sk with k ∈ [1, |S|]. The idea is that a ranking is more proportional if the

set of documents it provides at every rank is more proportional. Enforcing high

proportionality at every rank helps surface relevant documents from different topics

at early positions in the result list, thereby reducing the user effort involved in finding

them, while making sure topics are represented sufficiently and in a reasonable order.

3.2.2 Effectiveness Measure

The notion of proportionality is frequently used in evaluating the outcome of

elections in which seats are assigned to members of competing political parties. This

problem can be stated as follows. We have a limited number of seats in the parliament

and a number of competing parties. Each party has its own members. Through

election campaigns, each party obtains a number of votes from people around the

country. The goal is to assign members of different parties to the seats such that the

number of seats each party gets is proportional to the votes it receives.

Several metrics have been proposed to measure such proportionality. Most of them

are based on the difference between the percentage of votes (P ) each party receives

and the percentage of seats it gets (P ′). Among those, the least square index (LSq)
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(Gallagher, 1991) is one of the standard metrics for measuring dis-proportionality

(divergence of P ′ from P ):

LSq =

√
1

2

∑
i

(vi − si)2 '
∑
i

(vi − si)2

where vi and si are the percentage of votes and the percentage of seats the i-th party

received. Let us illustrate this with an example in which we have ten seats and three

competing parties, namely A, B and C. Let us assume both A and B receive 50% of

the votes and C gets 0%. Clearly, the proportional assignment which provides A and

B each with five seats and C with none will result in LSq = 0. The value for LSq

will increase when the seat assignment becomes more disproportional.

We will now turn our attention to an example of the proportionality of a retrieved

set of ten documents for the query satellite, which we assume to have two topics:

satellite radio and satellite phone with equal popularity of 50%. Due to the possible

presence of non-relevant documents, we have to create a third “topic” to account

for non-relevant documents. As a result, proportionality requires this list to contain

five relevant documents for each of the two topics and zero documents for the non-

relevant “topic”. This situation seems to be very similar to the election described

above. Unfortunately, we cannot apply LSq to measure the dis-proportionality of

this result list due to two differences.

First, each member typically belongs to exactly one political party. As a result,

one party gets more seats than it should always indicates that some other party is

getting less than they deserve. A document, however, might be related to multiple

topics of a query. It then is possible that a topic can be “rewarded” with additional

documents while others still have as many relevant documents as they deserve. For

example, let us assume we have found nine documents for the query satellite in which

five of them are about phones and four of them are about radio. Although the tenth
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document should be about radio, it does not hurt to get one that is relevant to both

topics even though our results will then overly represent the phone topic slightly.

Second, it is undesirable for any party to get any more seats than it deserves.

This is not true in our case due to the presence of the non-relevant “topic”. Overly

representing an actually query topic is not as bad as overly representing the non-

relevant topic. Using the same example above, although selecting a document about

satellite phones as the tenth search result is not ideal, it is better than choosing a

non-relevant document.

Taking both differences into consideration, we argue that LSq, since is designed

for the seat allocation problem, puts too much penalty on overly representing query

topics. LSq fails to recognize that some of these situations do not create any unde-

sirable consequences in our setting, and thus should not be penalized. Therefore, we

propose a new metric, dis-proportionality at rank K, calculated as follows:

DP@K =
∑

topic t∈T

ct(vt − st)2 +
1

2
n2
NR (3.1)

where vt is the number of relevant documents that the topic t should have, st is the

number of relevant documents the system actually found for this topic, nNR is the

number of non-relevant documents this system retrieved, and

ct =

 1 vt ≥ st

0 otherwise

Formula (3.1) has two important properties. The first is that it penalizes a result set

for under-representing any topic of the query (st < vt) but not for over-representing

them (st > vt), which addresses the first issue associated with LSq. The second is that

while the over-representation of a query topic is not penalized, the over-representation

of the non-relevant “topic” (nNR > 0) is, which overcomes the second issue associated

with LSq.
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A perfectly disproportional set of documents in the context of information retrieval

would be a set with all non-relevant documents. Thus, Max-DP is given by:

Max-DP@K =
∑

topic t∈T

v2t +
1

2
K2

The last step is to derive our proportionality measure by normalizing the DP score

with Max-DP in order to make it comparable across queries:

PR@K = 1− DP@K

Max-DP@K

Following our definition of proportionality for a ranking, the Cumulative Propor-

tionality ( CPR) measure for rankings is calculated as follows:

CPR@K =
1

K

K∑
i=1

PR@i

Table 3.1 shows how CPR is calculated for two rankings R1 and R2 returned for

the query satellite with two topics – satellite radio and satellite phone – of equal

popularity. To compute CPR@1 for the ranking R1, notice that the right “number”

of documents for both topics is vradio = vphone = 0.5. Since the first document in this

ranking is about satellite phone, sphone = 1 and sradio = 0. It follows that PR@1=0.75.

To compute PR@2, note that vradio = vphone = 1. Furthermore, sphone = sradio = 1

and nNR = 0 since there is one relevant for each topic and there are no non-relevant

documents. This set of two documents is perfectly proportional, thus PR@2=1. One

can proceed in a similar fashion and obtain CPR@5 = 0.94. Repeating the same

computation for the ranking R2 yields CPR@5 = 0.81. Although the two rankings

contain the same number of relevant documents for each topic, R1 has higher CPR@5

since it is more proportional at every rank.
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Table 3.1: CPR computation for two ranking R1 and R2. vradio and vphone indicate the
minimum number of documents the ranking must have for the phone and radio topic
respectively. sradio and sphone, on the other hand, indicate the number of documents
the ranking actually has on these two topics. nNR is the number of documents that
are not relevant to either topic

Rank Topic vradio sradio vphone sphone nNR DP M.-DP PR

R
1

1 phone 0.5 0 0.5 1 0 0.25 1 0.75
2 radio 1 1 1 1 0 0 4 1
3 radio 1.5 2 1.5 1 0 0.25 9 0.97
4 phone 2 2 2 2 0 0 16 1
5 non-relevant 2.5 2 2.5 2 1 1 25 0.96

CPR@5 = 0.94

R
2

1 phone 0.5 0 0.5 1 0 0.25 1 0.75
2 phone 1 0 1 2 0 1 4 0.75
3 non-relevant 1.5 0 1.5 2 1 2.75 9 0.69
4 radio 2 1 2 2 1 1.5 16 0.91
5 radio 2.5 2 2.5 2 1 1 25 0.96

CPR@5 = 0.81

3.3 A Proportionality Framework for Diversification

In this section, we first introduce the Sainte-Laguë method, a standard technique

for finding proportional representations that is used to solve the seat allocation prob-

lem described in Section 3.2.2. We then demonstrate the analogy between this and our

problem of proportionality-based diversification, which helps us derive our technique

from this method.

3.3.1 The Sainte-Laguë Method

This method considers all of the available seats iteratively. For each of them, it

computes a quotient for all of the parties based on the votes they receive and the

number of seats they have taken. This seat is then assigned to the party with the

largest quotient, which helps maintain the overall proportionality. We assume the

selected party will then assign one of its members to this seat. Finally, it increases

the number of seats assigned to the chosen party by one. The process repeats until all

seats are assigned. Pseudo code for this procedure is provided as Algorithm 2. In this
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procedure, P = {P1, P2, ..., Pn} is the set of parties and Mi = {m(i)
1 ,m

(i)
2 , ...,m

(i)
li
} is

the set of members of the party Pi. vi and si indicate the number of votes Pi receives

and the number of seats that have been assigned to Pi so far. Note that we assume

that |Mi| is larger than the total number of seats available.

Algorithm 2 The Sainte-Laguë method for seat allocation

1: si ← 0,∀i
2: for all available seats in the parliament do
3: for all parties Pi do
4: quotient[i] = vi

2si+1

5: end for
6: k ← arg maxi quotient[i]
7: m∗ ← the best member of Pk
8: Assign the current seat to m∗

9: Mk ←Mk \ {m∗}
10: sk ← sk + 1
11: end for

3.3.2 Diversity by Proportionality

3.3.2.1 Framework

Let q indicate the a query, T = {t1, t2, ..., tn} indicate the topics for q and pt

indicate the popularity of a topic t ∈ T . In addition, let R = {d1, d2, ..., dm} be the

ranked list of potentially relevant documents returned for q by some standard retrieval

models and P (d|t) indicate some estimate of the probability that the document d ∈ R

is relevant to the topic t ∈ T . The task is to select a subset of R to form a diverse

ranked list S of size k.

As mentioned earlier, existing techniques (Agrawal et al., 2009; Carterette &

Chandar, 2009; Santos et al., 2010a) generally favor an S with smaller redundancy.

Our idea, on the other hand, is to favor a ranking S with higher proportionality.

This objective is, in fact, very similar to that of the seat allocation problem above.

As a result, by substituting the notion of “party” for “topic” and “votes” (v) for
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“popularity” (p), we derive a general proportionality framework for diversification

directly from the procedure presented above, which is described in Algorithm 3.

This framework can be explained as follows. We start with a ranked list S with

k empty seats. For each of these seats, we compute the quotient qt for each topic

t following the Sainte-Laguë formula. We then assign this seat to the topic t∗ with

the largest quotient, which marks this seat as a place holder for a document about

the topic t∗. After that, we need to employ some mechanism to select the actual

document with respect to t∗ to fill this seat. Depending on that mechanism, we then

need to update the number of seats occupied by each of the topics t accordingly. This

process repeats until we get k documents for S or we are out of candidate documents.

The order in which each document is put into S determines its ranking. Assuming

each document selected for t is truly relevant to t, for each rank r ∈ [1, k], the Sainte-

Laguë method will select the document that maximizes the proportionality of the set

of top r documents in S, which makes S a highly proportional ranking by definition.

Different choices of document selection mechanisms, which subsequently determine

the choices of seat occupation update procedures, will result in different instantiations

of our framework. We now present two such instantiations.

Algorithm 3 A Proportionality Framework

1: si ← 0,∀i
2: for all available slots in the ranked list S do
3: for all topics t ∈ T do
4: qt = pt

2st+1
5: end for
6: t∗ ← arg maxt∈T qt
7: d∗ ← find the best document with respect to t∗ from R \ S
8: S ← S ∪ {d∗}
9: update st, ∀t accordingly

10: end for
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3.3.2.2 A Naive Adaptation

We first present a straightforward adaptation from the seat allocation problem

above. The Sainte-Laguë method assumes that each member belongs to exactly one

party. When a member is assigned to a certain seat, the entire seat is taken up.

Directly applying this technique to our context means assuming each document is

associated with a single topic. Therefore, we have to determine the topic for each of

the documents d ∈ R, which we assume to be the topic t ∈ T to which d is most

relevant:

arg max
t∈T

P (d|t)

As a result, we construct for each topic t a list of documents associated with it in

decreasing order of relevance, noted as Mt = {d(t)1 , d
(t)
2 , ..., d

(t)
|Mt|} . It follows naturally

that the best document for a topic t is the first in the list Mt. We refer to this native

adaptation as PM-1 and codify it in Algorithm 4.

Algorithm 4 PM-1

1: st ← 0, ∀t ∈ T
2: for all slots in the ranked list S do
3: for all topics t ∈ T do
4: qt = pt

2st+1
5: end for
6: t∗ ← arg maxt∈T qt
7: d∗ ← pop Mt∗

8: S ← S ∪ {d∗}
9: st∗ ← st∗ + 1

10: end for

3.3.2.3 A Realistic Interpretation

We now provide a more realistic interpretation of the Sainte-Laguë method, which

removes the naive assumption that a document can only be associated with a single

topic. Instead, we assume all documents d ∈ D are relevant to all topics t ∈ T , each

with a probability P (d|t). This interpretation, which we call PM-2, is described by

Algorithm 5.
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Algorithm 5 PM-2

1: st ← 0, ∀t ∈ T
2: for all slots in the ranked list S do
3: for all topics t ∈ T do
4: qt = pt

2st+1
5: end for
6: t∗ ← arg maxt∈T qt
7: d∗ ← argmaxd∈R λ× qt∗ × P (d|t∗) + (1− λ)

∑
t6=t∗ qt × P (dj |t)

8: S ← S ∪ {d∗}
9: R← R \ {d∗}

10: for all topics t ∈ T do
11: st ← st + P (d∗|t)∑

t′∈T P (d∗|t′)
12: Since d∗ is assumed relevant to all topics, each of these topics will take up a

certain “portion” of this seat
13: end for
14: end for

A first point to note is that PM-2 has a different mechanism for document selection.

Once a seat is given to the topic t∗ with the largest quotient, we need to assign to

this seat a document that is relevant to t∗. In the context of multi-topic documents,

however, among several documents all of which are relevant to t∗, it is sensible to

promote documents that are also relevant to other topics over those that are only

relevant to t∗. This is, after all, a general goal of diversification: we want to have

broader topic coverage so that more users to be able to find what they want. Our

proportionality approach has an additional goal: we want to return more documents

for the more popular topics. One way to achieve these goals is to score each document

based on its relevance to all topics, weighted by the quotient of each topic:

d∗ ← arg max
d∈R

qt∗ × P (d|t∗) +
∑
t6=t∗

qt × P (d|t) (3.2)

The problem with this formulation is that it does not put sufficient emphasis on cov-

ering t∗, which is required to maximize proportionality. It is possible that a document

that is relevant to other topics but not t∗ is selected over the ones that are relevant to
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t∗. For example, consider a query q which has six topics with equal popularity. Let

us assume that the first document selected d1 is relevant only to the first four topics:

• d1: P (d1|ti) = 0.3,∀i ∈ [1..4], P (d1|t5) = 0 and P (d1|t6) = 0 (2)

One can verify that the quotient for the four three topics is 0.11 and the quotient for

the fourth topic is 0.17. Thus, the next document to select should cover t4 and t5 to

maximize proportionality.

Now let us assume there are three candidate documents to choose for the second

position in S:

• d2: P (d2|t6) = 0.3, and P (d2|ti) = 0,∀i ∈ [1..5]

• d3: P (d3|t6) = 0.3, P (d3|t5) = 0.3, and P (d3|ti) = 0,∀i ∈ [1..4]

• d4: P (d4|ti) = 0.3,∀i ∈ [1..4], P (d1|t5) = 0 and P (d1|t6) = 0

Although it is hard to argue generally which of these candidates is the best choice

for users, d2 and d3 are clearly better for making the ranking S more proportional

since they t5 and/or t6. While d4 is relevant to many topics as well, choosing d4 does

not improve proportionality at all. Between d2 and d3, d3 is better since it provides

larger improvement in proportionality. Ideally, we need a scoring function that can

assign the highest score to d3.

Applying Formula (3.2), however, the score for d2 is 0.026, for d3 is 0.051 while the

score for d4 is 0.064. It will then choose d4 and fail to achieve maximal proportionality

although it is possible to do so. Consequently, PM-2 introduces the parameter λ to

2P (d|q) = 0.3 is a typical query likelihood score for a document d that is truely relevant to the
query q
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gain more assurance with regard to the goal that the chosen document must be

relevant to t∗:

d∗ ← arg max
d∈R

λ× qt∗ × P (d|t∗) + (1− λ)
∑
t6=t∗

qt × P (d|t) (3.3)

It is easy to verify that with λ = 0.8, d3 will receive a higher score than d4.

A second difference between PM-2 and PM-1 is that when a document d∗ is selected

for the current seat, since it is assumed to be relevant to all topics t ∈ T , each

topic occupies a certain “portion” of this seat as opposed to a single topic taking

up the entire seat as previously. Intuitively, the degree of occupation of the seat is

proportional to the normalized relevance to d∗:

st ← st +
P (d∗|t)∑
t′∈T P (d∗|t′)

where st is the “number”, which is now better regarded as “portion”, of seats occupied

by t.

PM-2 can be summarized as a two-step procedure as follows. For each of the k

seats in S, it first employs the Sainte-Laguë formula to determine which topic this

seat should go to in order to best maintain the proportionality. Then, it selects the

document that, in addition to being relevant to this topic, is relevant to other topics

as well. Finally, it updates the “portion” of seats in S occupied by each of the topics

t ∈ T according to how relevant it is to the selected document.

3.3.2.4 Connection to the Novelty-based Approach

Since our techniques rely on a set of query topics, they can be regarded as an

explicit method. This puts them in the same category as IA-Select (Agrawal et al.,

2009), the set-based approach (Carterette & Chandar, 2009) and xQuAD (Santos et

al., 2010a). At a glance, the main difference between our techniques and these is the
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optimization objective: proportionality or novelty. In this section, we compare these

two approaches in more details.

As surveyed in Chapter 2, the main difference among existing novelty-based tech-

niques is in the way they measure novelty. As a result, we will conduct this comparison

using a representative approach from the novelty-based category. We choose xQuAD

since it has been demonstrated to be among the most effective technique on the TREC

corpus that we use for our experiments.

xQuAD employs a greedy framework that iteratively selects documents from the

input ranking R to form the diverse ranking S. The scoring function is as follows:

d∗ ← arg max
d∈R

(1− λ)× P (d|q) + λ
∑
t∈T

P (d|t)× P (t|q)×
∏
dj∈S

(1− P (dj|t))

While the first component, P (d|q), captures the relevance of the candidate document

d to the query q, the second one measures the novelty of d based on the documents

that have been selected in the previous iterations. Let πt =
∏

dj∈S(1 − P (dj|t)). πt

can be interpreted as the probability that the topic t has not been covered by all

documents currently in S. xQuAD achieves novelty by promoting documents that are

relevant to the topics with lower probability of having been covered. The relative

importance of the query topics is captured by P (t|q). Without loss of generality, we

can use the topic popularity to represent its importance: P (t|q) = pt. If follows that

if we define τt = ptπt, xQuAD’s objective function can be rewritten as follows:

d∗ ← arg max
d∈R

(1− λ)× P (d|q) + λ
∑
t∈T

P (d|t)× τt

The algorithm for xQuAD is outlined in Algorithm 6 below.

It can be seen that PM-2 and xQuAD are similar in that they both greedily select one

document at a time. At each iteration, PM-2 computes the quotient qt for each topic t

and xQuAD computes τt with respect to both the topic popularity and the documents
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Algorithm 6 xQuAD

1: for all slots in the ranked list S do
2: for all topics t ∈ T do
3: πt =

∏
d∈S(1− P (d|t))

4: τt = ptπt
5: end for
6: d∗ ← argmaxd∈R (1− λ)× P (d|q) + λ

∑
t∈T P (d|t)× τt

7: S ← S ∪ {d∗}
8: R← R \ {d∗}
9: end for

in S. Although these two quantities are computed differently, they have very similar

semantics: they both indicate the importance for this topic t to be satisfied by the

current candidate in order to achieve their overall objective. They then score each

candidate based on their relevance to all topics weighted by qt or τt to promote multi-

topic documents. Intuitively, the two objectives – proportionality and novelty (or

redundancy) – are highly correlated. A novel candidate document that is relevant

to the topics that have not been well covered by S also makes S more proportional

and vice versa. As a result, the way PM-2 works can also be explained as promoting

novelty at every rank using a proportionality-based measure of novelty (since qt is

intended to maximize the proportionality of S). This choice of novelty measure is the

first difference between PM-2 and xQuAD.

The second difference is that PM-2 explicitly distinguishes between the topic with

highest qt and the rest whereas xQuAD does not. In fact, the objective function of

xQuAD has the same form as Formula (3.2). As we have shown in Section 3.3.2.3, this

means that it is entirely possible that xQuAD would pick a document that is relevant

to a handful of already well covered topics over those that provide coverage for fewer

topics but includes the most under-represented one. PM-2 with a large λ value, on

the other hand, would do the opposite due to its emphasis on proportionality. Note

that we make no claims regarding which behavior will lead to higher user satisfaction

but rather point out the difference in the behavior of the two approaches.
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Last but not least, xQuAD interpolates the estimated novelty of a document d

with its relevance to the query P (d|q) where our formulation of PM-2 does not. In a

perfect world where one can accurately determines that P (d|t) = 1 for those d that are

relevant to t and P (d|t) = 0 otherwise, P (d|q) would not be necessary. In practice,

however, the estimate of P (d|t) can be erroneous, which can cause the system to

return documents on the non-relevant topics. Integrating P (d|q) into the framework

can be seen as a a way to make up for this error. In principal, we could incorporate

P (d|q) into PM-2 in the same fashion but we choose not to. Instead, we assume the

component that estimates the relevance of a document to a query topic, P (d|t), has

taken P (d|q) into account. For example, one can use machine learning techniques

to estimate P (d|t), in which case P (d|q) can be conveniently used as an additional

feature to improve the accuracy of this estimate.

3.4 Summary

We have introduced a new perspective to search result diversification: diversity

by proportionality. Instead of quantifying diversity using the amount of novelty in

a result list, we consider this list more diverse if the ratio between the number of

documents it provides for each query topic matches more closely with the topic popu-

larity distribution. Based on this notion of proportionality, we derived an effectiveness

measure which we called Cumulative Proportionality (CPR). We also derived a frame-

work for optimizing proportionality in search results with two instantiations: PM-1

and PM-2. While PM-1 is a naive adaptation of the Sainte-Laguë method, it serves

as a basis to implement PM-2, a more practical adaptation that takes into account

the fact that a document might be related to multiple topics. In the next chapter,

we will compare CPR with the standard diversity measures as well as evaluate our

proportionality framework.
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CHAPTER 4

FRAMEWORK EVALUATION

In the previous chapter, we have introduced our proportionality approach to search

result diversification. This includes an effectiveness measure (CPR) and a propor-

tionality framework with two instantiations (PM-1 and PM-2). In this chapter, we

will first compare our proportionality measure with a variety of standard metrics for

diversity to study their consistency and more importantly, identify cases where they

disagree (Section 4.1).

Recall that diversification has been studied as a re-ranking process. A ranking of

documents that are potentially relevant to some of the query topics is first obtained

for this query using a relevance-based retrieval model. Diversification techniques,

including PM-1 and PM-2, are then used to reorder the documents in this ranking in

order to make it more diverse with respect to those topics. We evaluate our framework

in the following ways:

• In a controlled environment where we know the set of topics associated with

each query and that they are equally popular, can PM-1 and PM-2 diversify the

results given by the baseline retrieval models effectively?

• How effective are our techniques compared to existing work from both the pro-

portionality and novelty perspectives?

• Do the results depend on which baseline model is used? As more effective

baselines are employed, can these techniques still improve diversity?
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• How do these techniques perform in the case where some query topics are more

popular than others?

• In a practical setting where we do not know the query topics but have to infer

them, are these techniques still useful?

In the remaining of this chapter, we will first explain our experimental setup (Sec-

tion 4.2) and then answer each of these questions with extensive analyses (Section 4.3).

4.1 Comparison of Effectiveness Measures

In order to compare our proportionality measure CPR with existing measures for

diversity, we collect the runs submitted for the diversity task of TREC Web Track

2009-2012 (Clarke, Craswell, & Soboroff, 2009; Clarke et al., 2010; Clarke, Craswell,

Soboroff, & Voorhees, 2011; Clarke & Craswell, 2012). This includes 177 runs. We

then compare these runs when evaluated by our CPR measure and three standard

diversity measures: α-NDCG (Clarke et al., 2008), ERR-IA (Chapelle et al., 2009)

and NRBP (Clarke, Kolla, & Vechtomova, 2009). These are the cascade metrics

designed to quantify the amount of novelty or redundancy in a result ranking. For

additional analysis, we also compare the correlation between CPR and S-Recall (Zhai

et al., 2003) and Precision-IA (Agrawal et al., 2009), both of which are set-based

measures from the intent-aware family. Precision-IA computes the average precision

across all query topics and S-Recall is the fraction of query topics for which the

search results have at least one relevant document. Details about these measures can

be found in Chapter 2. As done in the official TREC evaluations, all measures are

computed using the top 20 retrieved documents from each run. Note that the TREC

dataset provides a set of ground-truth topics associated with each query without any

information about the popularity of these topics. In practice, these topics are often

assumed to be equally popular or important.
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4.1.1 Correlation with Existing Measures

Figure 4.1 shows that CPR has quite high correlation with all existing measures.

This can be explained as follows. Intuitively, having higher proportionality at every

rank is roughly equivalent to having higher novelty, which explains the correlation

with the three cascade measures. Furthermore, higher proportionality also indicates

having coverage for more topics as well as a considerable number of relevant docu-

ments evenly distributed across topics. This explains the correlation with S-Recall

and Precision-IA. Note that, although the correlation between CPR and the other

measures it quite high, it is lower than the correlation between the two existing mea-

sures α-NDCG and ERR-IA.

To quantify this correlation, we follow Clarke, Craswell, Soboroff, and Ashkan

(2011) and use Kendall’s τ , which is a well established rank correlation measure. Its

values range from −1 to +1 with +1 representing perfect agreement between two

rankings and −1 representing perfect disagreement. Prior work has used τ ≥ 0.9 to

indicate that two rankings are “equivalent” and τ ≤ 0.8 to indicate that there are

“noticeable differences” between them (Buckley & Voorhees, 2004).

Figure 4.1 indicates that Kendall’s τ value between CPR and the cascade measures

are quite high (τ value of 0.87, 0.83 and 0.79 for α-NDCG , ERR-IA and NRBP re-

spectively). Intuitively, a ranking with low S-Recall or low Precision-IA is ineffective.

It is not so surprising that different measures have strong agreement on such rankings.

It is more interesting to look into the rankings with high S-Recall and Precision-IA

since this is where the difference between measures is most obvious. Figure 4.2 shows

the correlation among measures together with their Kendall’s τ computed using the

35 runs where S-Recall is above 0.5 and Precision-IA is above 0.2. Generally, the

correlation is substantially lower.

Regarding the two set-based measures, the Kendall’s τ value between them and

CPR are rather low. This is also not surprising because these two measures ignore
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(a) CPR and α-NDCG (b) CPR and ERR-IA

(c) CPR and NRBP (d) CPR and S-Recall

(e) CPR and Precision-IA (f) α-NDCG and ERR-IA

Figure 4.1: Correlation between Cumulative Proportionality (CPR) and five standard
diversity measures: α-NDCG , ERR-IA, NRBP and S-Recall and Precision-IA.

50



Table 4.1: Discriminative power of CPR and standard diversity measures under the
Fisher’s randomization test with a significance level of 0.05.

Measure Discriminative Power

CPR @20 67.12%

α-NDCG @20 65.50%

ERR-IA @20 60.26%

NRBP @20 55.87%

S-Recall @20 59.19%

Precision-IA @20 66.07%

the order among documents. Therefore, in the remaining of this section, we will focus

on comparing CPR with the cascade measures.

4.1.2 Discriminative Power

Sakai and Song (2011) propose a simple method for assessing the discriminative

power of an effectiveness measure which was later used by Clarke, Craswell, Soboroff,

and Ashkan (2011) for comparing existing diversity measures. This method performs

a significance test between all pairs of retrieval runs under some evaluation measure.

The percentage of pairs whose difference is statistically significant at a predefined

level is considered the discriminative power of this measure. It expresses the degree

to which a metric can detect the differences between systems with high confidence.

Sakai and Song (2011) regards “high discriminative power as a necessary condition for

a good evaluation metric, not as a sufficient condition”. Table 4.1 presents the results

for all measures in which we use the Fisher’s randomization test with a significance

level of 0.05. It shows that CPR is the most discriminative metric.

4.1.3 Disagreement with Cascade Measures

CPR and all of the cascade metrics measure diversity as a combination of three

factors: topic coverage (as captured by S-Recall), the number of documents retrieved

for each topics (as captured by Precision-IA) and how these documents are ordered.

To understand the difference between them, we sort the runs for Web Track 2012 by
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(a) CPR and α-NDCG (b) CPR and ERR-IA

(c) CPR and NRBP (d) CPR and S-Recall

(e) CPR and Precision-IA (f) α-NDCG and ERR-IA

Figure 4.2: Correlation between Cumulative Proportionality (CPR) and five stan-
dard diversity measures: α-NDCG , ERR-IA, NRBP and S-Recall and Precision-IA
measured form the runs where S-Recall ≥ 0.5 and Precision-IA ≥ 0.2
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Figure 4.3: TREC 2012 diversity runs evaluated with different measures, sorted by
S-Recall values.

their S-Recall values and plot their effectiveness under these measures in Figure 4.3.

Scanning the plot from left to right, we examine the consecutive pairs of runs (note

that the run to the right always has higher S-Recall due to sorting) where CPR

disagrees with the cascade measures (i.e. one increases as the others decrease and

vice versa). An example of such a run pair is marked in Figure 4.3.

We will focus our analysis on the difference between CPR and α-NDCG . Our

findings will apply to the other two measures as well since α-NDCG highly correlates

with them. The example pair of runs shown in Figure 4.3 corresponds to an increase

in both S-Recall and Precision-IA. This suggests that the second run covers more

topics and has more relevant documents per topic. However, the value of α-NDCG

decreases. This means that the ordering of the documents in the second run must

be rather ineffective. This could mean that the relevant documents are not highly

ranked or the documents from the less popular topics are ranked higher than those

from the more popular ones. CPR, on the other hand, increases. This reveals the

difference between CPR and the cascade measures: CPR puts more emphasis on
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Table 4.2: Two pairs of rankings in which one achieves higher α-NDCG but lower
CPR than the other. The two rankings in each pair corresponds to the same query.
These results show that CPR puts more emphasis on result rankings with high topic
coverage and more relevant documents per topic than it does on having the most
effective document ordering. α-NDCG , as well as other cascade measures, puts more
emphasis on the last factor.

Rank Document Topic Document Topic

Pair #1: R1 achieves higher α-NDCG but lower CPR than R2

R1 R2

1 enwp00-06-18135 t2, t4 en0001-76-17061

2 en0104-87-33374 en0001-76-17975

3 en0104-87-33373 en0005-32-12986 t2, t4
4 en0078-80-03018 en0001-76-08393

5 en0104-87-33372 en0001-76-17979

6 enwp00-81-18242 t2, t4 en0001-76-17977

7 en0109-32-34673 en0001-76-17978

8 en0109-32-34829 enwp00-07-18161 t2, t4
9 en0019-27-20755 enwp00-13-18242 t2, t3, t4
10 en0019-27-20762 enwp00-81-18242 t2, t4

Pair #2: R3 achieves higher α-NDCG but lower CPR than R4

R3 R4

1 enwp01-80-20189 t1, t2, t3, t4 en0006-92-01649 t1, t2, t4
2 enwp01-57-19101 t1, t2, t3, t4 enwp01-66-20688 t1, t2, t3, t4
3 en0011-07-04255 enwp02-13-21042 t1, t2, t3, t4
4 enwp02-13-21042 t1, t2, t3, t4 enwp01-51-18348 t1, t2, t3, t4
5 en0007-45-09334 enwp01-57-19101 t1, t2, t3, t4
6 en0004-31-03561 t2 enwp03-03-01371 t1, t2, t3, t4
7 enwp03-03-01371 t1, t2, t3, t4 enwp01-80-20189 t1, t2, t3, t4
8 en0067-10-30480 enwp01-84-18808 t1, t2, t3, t4
9 en0006-92-01649 t1, t2, t4 enwp02-29-19446 t1, t2, t3, t4
10 en0071-39-26704 en0001-83-03341 t1

having coverage for more topics and more documents for all topics than on having

the most effective document ordering, while α-NDCG puts more emphasis on the

last factor. This can be seen more clearly from the two pairs of rankings (taken

from these two runs) presented in Table 4.2. This table shows that CPR prefers R2,

which has broader topic coverage and more relevant documents for each topics than

R1. α-NDCG , on the other hand, favors R1, whose first document is a relevant one.

Similarly, α-NDCG favors R3 because the first document in this ranking covers one
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Table 4.3: Correlation between CPR and existing diversity measures in two cases:
when all topics are equally popular and when some topics are more popular than
others. The 35 runs are those with S-Recall ≥ 0.5 and Prec-IA ≥ 0.2

Correlation

Kendall’s τ
All 177 runs 35 runs with high

S-Recall and Precision-IA
Uniform Non-uniform Uniform Non-uniform

ERR-IA 0.83 0.85 0.74 0.77

NRBP 0.79 0.80 0.73 0.77

Precision-IA 0.76 0.76 0.68 0.67

additional topic compared to the one from R4. Meanwhile, CPR prefers R4 since it

has a much larger number of relevant documents per topic.

4.1.4 Non-uniform Popularity Distribution

To simulate the case where some topics are more popular than others, we follow

Sakai and Song (2011) by assuming the j-th topic of a query with n topics has the

popularity of 2n−j+1∑n
k=1 2

k . We re-evaluate all of the runs using this non-uniform popularity

distribution. Table 4.3 provides the Kendall’s τ values between CPR and the existing

measures. We do not consider α-NDCG and S-Recall since they do not take topic

popularity into account. Interestingly, the correlation between CPR and ERR-IA and

NRBP is now even higher than before. Table 4.4 presents an example of two rankings

where CPR and ERR-IA disagree under the uniform popularity distribution. While

CPR prefers R1, ERR-IA prefers R2. In the non-uniform case, since the topic t1 has

the highest popularity and t4 has the lowest, both measures come to an agreement that

R1 is more effective. Our explanation for this is that, among the cases where these

measures disagree, the main reason for this disagreement, as we presented earlier, is

their emphasis on document ordering. As the distribution becomes more skewed, the

optimal ordering becomes clearer (i.e., the popular topics should be presented earlier

in the ranking), leaving less room for disagreement.
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Table 4.4: Two rankings on which CPR and ERR-IA disagrees in the uniform case:
CPR prefers R1 while ERR-IA prefers R2. In the non-uniform case, however, they
both agree that R1 is more effective.

Rank Document Topic Document Topic

R1 R2

1 en0009-92-11626 en0007-26-27181 t4
2 en0009-75-18849 en0002-12-01817

3 en0009-92-11627 t1 en0002-12-01843

4 en0009-03-00665 t1, t3, t4 en0002-12-01846

5 en0085-43-06520 en0002-12-01815

6 en0005-47-05526 en0002-33-20829

7 en0021-64-25478 en0011-14-22813

8 en0082-31-10635 en0010-45-15999

9 en0024-67-12684 en0011-39-10739

10 en0024-67-12691 en0009-92-11627 t1

4.2 Experimental Setup

In this section, we describe the experimental setup for evaluating our proportion-

ality framework. The results will be presented in the next section.

4.2.1 Query and Retrieval Collection

Our query set consists of 200 queries with relevance judgments from the diversity

task of the TREC Web Track 2009-2012 (Clarke, Craswell, & Soboroff, 2009; Clarke et

al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke & Craswell, 2012). Our

evaluation is done on the ClueWeb09 Category B retrieval collection, which contains

approximately 50 million web pages in English. Details about this corpus have been

provided in Chapter 2. Both the queries and the collection are stemmed using the

Krovetz stemmer (Krovetz, 1993). In addition, we perform stopword removal only at

query time using a small stopword list.

4.2.2 Baseline Retrieval Model

To understand how diversification techniques are affected by the quality of the

initial rankings, we consider several models for retrieving them.
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4.2.2.1 Query Likelihood

Query likelihood (QL) (Ponte & Croft, 1998) is a well established bag-of-words

model. It assumes that there are no dependencies between the terms in the user

queries and ranks documents based on how likely they are to generate these terms.

Spam filtering is known to be an important component of web retrieval (Bendersky

et al., 2010). In addition, documents with too few stopwords are found to have poor

readability (Kanungo & Orr, 2009; Ntoulas et al., 2006). Therefore, we incorporate

both of these into our baseline ranking. We use the spam filtering technique described

by Cormack et al. (2011), which assigns a “spamminess” percentile S(d) to each

document d in the collection. Let σ(d) be the stopword to non-stopwords ratio in d

and PQL(d|q) indicate the score the query likelihood model assigns to the document

d. Following Bendersky et al. (2010), the final score of d is given by:

P (d|q) =

 PQL(d|q) if S(d) ≥ 60 and σ(d) ≥ 0.1

−∞ otherwise

4.2.2.2 Sequential Dependence Model

Metzler and Croft (2005) model term dependencies for effective retrieval using

a Markov random field (MRF). It models the joint distribution over a document

random variable and query term random variables. One can instantiate an MRF

model with respect to certain assumptions about the dependency among query terms

by defining a corresponding graph structure. Metzler and Croft (2005) provide three

such instantiations. In this dissertation, we adopt the sequential dependence variant

(SDM), which assumes dependency between every pair of adjacent query terms. The

SDM model has been used in many retrieval experiments and has been shown to achieve

a good balance between effectiveness and efficiency. Spam filtering and stopword to

non-stopword ratio are also integrated in a similar fashion as with query likelihood.

In our experiments, model parameters are determined via 5-fold cross validation.

57



4.2.2.3 Relevance Model

The Relevance Model (RM) (Lavrenko & Croft, 2001) is a pseudo-relevance feed-

back technique developed for the language modeling framework (Croft et al., 2009).

It first retrieves a set of potentially relevant documents for a given query, then ex-

pands this query with terms that highly co-occur with the query terms within these

pseudo-relevant documents. The expanded query is used to retrieve the final ranking.

In our experiments, SDM is used to retrieve the feedback documents. Similarly, model

parameters are determined via 5-fold cross validation, and spam filtering as well as

stopword to non-stopword ratio are also incorporated.

4.2.2.4 Learning to Rank with Coordinate Ascent

Unsupervised retrieval models such as query likelihood, sequential dependence

and relevance model make use of a very limited number of features such as term

frequency, inverse document frequency and document length. The combination of

these features is hard-coded into the retrieval model. In contrast, learning to rank

(LTR) approaches (Liu, 2009) allow retrieval systems to incorporate hundreds or

even thousands of arbitrarily defined features. Most importantly, these approaches

automatically learn the most effective combination of these features in the ranking

function based on the available training data. As a result, learning to rank approaches

have consistently outperformed the traditional models (Liu, 2009).

Learning to rank algorithms can be broadly classified into three approaches: point-

wise, pair-wise and list-wise. The point-wise approach attempts to accurately predict

the relevance label for individual documents. Pair-wise methods (Freund et al., 2003;

Burges et al., 2005, 2006) focus instead on the ability to rank relevant documents

higher than the non relevant. List-wise techniques (J. Xu & Li, 2007; Metzler &

Croft, 2007; Wu et al., 2010) take the entire ranked list as input and directly optimize
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a retrieval measure defined upon this list. Generally, the list-wise approach has been

demonstrated to be the most effective.

For our experiments, we use the list-wise technique proposed by Metzler and

Croft (2007) to learn a linear combination of features that maximizes Mean Average

Precision (MAP). We implement a variety of features used in previous work (Metzler

& Croft, 2005; Liu, 2009; McCreadie et al., 2011; Bendersky et al., 2011). Table 4.5

provides an overview of these features. Learning is done using coordinate ascent (CA),

a well-known technique for unconstrained optimization. It optimizes multivariate

objective functions by sequentially doing optimization in one dimension at a time. It

cycles through each parameter and optimizes over it while fixing all the others. Note

that in this dissertation, we use the term coordinate ascent, or CA, to refer to this

particular ranking technique rather than the general optimization method.

Similar to diversification, LTR is also applied in a two-stage fashion. Firstly, an

unsupervised retrieval model is used to retrieve a small set of highly ranked documents

from the entire document index. These retrieved documents, together with their

human-assigned relevance labels, are then used to train a learning to rank model at

the second stage. At run-time, in response to user queries, the unsupervised model

is used again to retrieve a small set of highly ranked documents, which are then re-

ranked by the trained ranker. Finally, the re-ranked results are presented to the user.

In our experiments, we use Relevance Model as the initial retrieval model since it is

a recall-oriented approach, which has been shown to be beneficial to LTR systems

(Dang et al., 2013).

Recall that the TREC corpus comes with relevance judgments for both the query

level (how relevant a document is to a query) and the topic level (whether or not a

document is relevant to a particular topic of the query). Our LTR system is trained

using the entire set of 200 queries with the associated query level judgments via 5-fold

cross validation.
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Table 4.5: The set of features we use to trained our learning to rank model.

Feature Document Section
TF, IDF, TF*IDF [Body, Anchor, Title, Whole page]
(min/max/sum/mean/var)
Number of covered query terms [Body, Anchor, Title, Whole page]
Document length [Body, Anchor, Title, Whole page]
BM25 Whole page
Query Likelihood [Body, Anchor, Title, Whole page]
(Two-stage/Dirichlet/JM smoothing)
Sequential Dependence [Body, Anchor, Title, Whole page]
(Two-stage/Dirichlet/JM smoothing)
URL Length/Depth
Number of in-links
PageRank
Stopwords fraction/coverage Whole page
Number of terms/Term entropy Whole page
Score from M∗

A Whole page

4.2.3 Diversity Models

We evaluate PM-2, the proportionality model we propose for search result diver-

sification. In addition, we will also present results obtained by PM-1 for comparison.

One baseline diversity model for comparison is MMR (Carbonell & Goldstein, 1998),

which is considered standard in the diversity literature. Since the explicit approach

for diversification is generally superior to the implicit approach, we also compare our

models to xQuAD, which has been demonstrated to outperform many others in this

class (Santos et al., 2010a).

4.2.4 Query Topics

Except for MMR, all of the methods under investigation assume the availability

of the query topics and their popularity. We first consider the official sub-topics

identified by TREC’s assessors for each of the queries as the topics. We provide these

topics to each system and evaluate their output by how well they cover these topics.

This simulates the situation where we know exactly what topics the query has and
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provides a controlled environment to study the effectiveness of different diversification

approaches. Since TREC’s judgment data does not specify the popularity of these

topics, we assume that they are equally popular, which is consistent with existing

work (Santos et al., 2010a, 2010b, 2011). To simulate the the case where some topics

are more popular than others, we follow Sakai and Song (2011) and assume that the

i-th topic of a query with n topics has the popularity of 2n−i+1∑n
j=1 2

j . The topic popularity

is used by both the systems and their evaluation accordingly.

In order to simulate more practical settings in which we do not know but have to

guess the topics of the query, we follow Santos et al. (2010a) by adopting suggestions

provided by a commercial search engine as topic representations. However, the search

engine is unable to provide suggestions for some of the queries in our set. As a result,

these experiments are conducted on the subset of 190 queries for which we can obtain

topic representations. Each system diversifies the baseline ranking with respect to

these suggestions and is evaluated by how well it covers the ground-truth TREC

topics. Both topic sets are assumed to have a uniform distribution of popularity.

It is worth noting that the topics obtained from the search engine do not com-

pletely align with the judged topics provided by TREC assessors. In other words,

there will be overlap between the two sets but there will also be generated topics

that are not in the judged set. We will refer to this problem as the misalignment

between different sets of topics and we do not attempt to assess the relevance of these

misaligned topics (those that are not in the judged set).

Recall that PM-1, PM-2 and xQuAD assume that P (d|t), the relevance of a document

d to a query topic t, is available. In our experiments, we treat each topic as a query

and use the query likelihood score for each document PQL(d|t) as the estimate of its

relevance. This means that for xQuAD, we simply substitute P (d|t) with PQL(d|t) in

its objective function. PM-1 and PM-2, on the other hand, further assume P (d|t) has

taken into account the relevance of this document to the query P (d|q). As a result,
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for these two models, we assign P (d|t) = P β
QLP (d|q)(1−β) where P (d|q) is given by the

baseline retrieval model which could be QL, SDM, RM or CA. Note that we do not do

this for xQuAD because its framework already takes P (d|q) into account.

4.2.5 Evaluation Metrics

We first report our results using our proportionality metric CPR. Since this metric

favors our models as they are designed to capture proportionality, we also report

the results using several standard metrics that were designed to evaluate existing

methods. This includes those used in the official evaluation of the diversity task at

TREC (Clarke et al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke &

Craswell, 2012): α-NDCG , ERR-IA, NRBP , S-Recall and Precision-IA. Unless stated

otherwise, all of these measures are computed using the top 20 documents that each

system returns. This is done to be consistent with the official TREC evaluation.

4.2.6 Parameter Settings

We use Lemur/Indri 1 to conduct the baseline query likelihood, sequential depen-

dence and relevance model run with the toolkit’s default parameter configuration. The

learning to rank system is trained using the RankLib package 2 also with its default

parameter settings. All of the diversification approaches under evaluation are applied

on the top K retrieved documents from each baseline. MMR, xQuAD and PM-2 have

the parameter λ to tune. We consider λ values in the range {0.05, 0.1, 0.15, ..., 1.0}.

For PM-1 and PM-2, we also consider the same range of values for β. Our 5-fold cross

validation enforces complete separation between tuning and testing.

1http://www.lemurproject.org

2http://sourceforge.net/p/lemur/wiki/RankLib/
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As for the parameter K, we tested K ∈ {50, 100, 500, 1000} and found that all

four models achieved their best at K = 50. Therefore, all results presented here use

K = 50.

4.3 Experimental Results

4.3.1 Diversification with Ground-truth Topics

In this section, we provide the set of ground-truth topics (TREC sub-topics) to all

diversification techniques. They diversify the results initially retrieved by a baseline

retrieval model for each query with respect to the corresponding ground-truth topics.

This provides a controlled environment to verify and compare the effectiveness of

different diversification techniques.

4.3.1.1 Proportionality Measure

Table 4.6 shows the CPR score at three cut-off points (5, 10 and 20) each technique

achieves under different baseline retrieval models (QL, SDM, RM, and CA). It also shows

the results for both the uniform case (where all topics for each query are considered

equally popular) and the non-uniform case (where some topics are more popular than

others). In addition, it provides the Win/Loss ratio – the number queries each system

improves and hurts respectively with respect to the initial rankings. The letters b, m,

x and p indicate statistically significant differences (p-value < 0.05) to the baseline,

MMR, xQuAD and PM-1 respectively.

We will first focus on the uniform case. Table 4.6 shows that while the results

with MMR are generally the same as the initial rankings, PM-1, PM-2 and xQuAD con-

sistently outperform the initial rankings across different cut-off points and baseline

retrieval techniques. Among the three diversification techniques, the improvement

PM-1 provides is not as large as PM-2 and xQuAD due to its naive assumption that

each document is related to only one topic. PM-2, by not making this assumption,
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consistently outperforms both PM-1 and xQuAD. In addition, PM-2 is also the most

robust method since it helps more queries and hurt fewer ones compared to other

techniques (except for the case with RM as the baseline in which xQuAD and PM-2

achieve a comparable Win/Loss ratio).

In the non-uniform case, we see a very similar trend but with some differences.

Firstly, the improvement each system provides over the baseline is less substantial.

This suggests that the fact that some topics are more popular than other makes the

task of diversification harder. This is understandable since it requires a stricter order

in which the topics have to presented in the search results. Secondly, the difference

between PM-2 and xQuAD becomes larger. This is most obvious with CPR@5. The av-

erage improvement PM-2 provides over xQuAD across four baselines in the uniform case

is 1.7%, which increases to 3% in the non-uniform case. In CPR@10 and CPR@20,

this improvement is 2.2% and 0.6% respectively in the uniform case and 2.9% and

2.7% in the non-uniform case. Similarly, PM-2 achieves the best Win/Loss ratio.

These results indicate that PM-2 is the most effective technique for maintaining

the proportionality of a result ranking, especially in the case where topics are not

equally popular. Notice that although xQuAD is designed to optimize for novelty,

it also performs well under our proportionality measure. This is because the two

objectives are correlated as demonstrated in Section 4.1. Thus, a method that does

well on one measure should do well on the other.

It is expected that the results provided by PM-2 would be more proportional than

those provided by xQuAD since our technique is designed to directly optimize for

proportionality. We will now evaluate the diversification techniques using standard

novelty-based measures.
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Table 4.6: Performance of all techniques in CPR at different cut-off points. Each
system diversifies the results provided by the baseline model with respect to the
TREC sub-topics. The Win/Loss ratio is with respect to CPR@20. The letters b, m,
x and p indicate statistically significant differences to the baseline, MMR, xQuAD and
PM-1 respectively (p-value < 0.05).

CPR@5 CPR@10 CPR@20 W/L

U
n
if
o
rm

QL

Base 0.4667 0.4981 0.5127
MMR 0.4646 (−0.44%) 0.4937 (−0.88%) 0.5077b (−0.98%) 53/86
xQuAD 0.5832b,m (+24.96%) 0.6008b,m (+20.63%) 0.5993b,m (+16.9%) 117/57
PM-1 0.5375xb,m (+15.17%) 0.5555xb,m (+11.54%) 0.5539xb,m (+8.03%) 99/75

PM-2 0.597p
b,m (+27.91%) 0.612x,p

b,m (+22.87%) 0.606p
b,m (+18.2%) 123/50

SDM

Base 0.5091 0.5349 0.5452
MMR 0.4949b (−2.78%) 0.5233b (−2.17%) 0.5382b (−1.28%) 39/110
xQuAD 0.5922b,m (+16.33%) 0.6095b,m (+13.95%) 0.608b,m (+11.53%) 111/66
PM-1 0.2955xb,m (−41.96%) 0.3143xb,m (−41.23%) 0.3554xb,m (−34.81%) 26/151

PM-2 0.602p
b,m (+18.25%) 0.6176p

b,m (+15.46%) 0.6141x,p
b,m (+12.65%) 118/58

RM

Base 0.5138 0.5395 0.5489
MMR 0.514 (+0.05%) 0.537 (−0.46%) 0.5469 (−0.36%) 59/85
xQuAD 0.5826b,m (+13.4%) 0.602b,m (+11.57%) 0.5982b,m (+8.98%) 100/73
PM-1 0.3215xb,m (−37.43%) 0.3383xb,m (−37.3%) 0.387xb,m (−29.49%) 30/144

PM-2 0.5943p
b,m (+15.67%) 0.6069p

b,m (+12.48%) 0.6019p
b,m (+9.65%) 99/74

CA

Base 0.5608 0.5814 0.5881
MMR 0.5615 (+0.12%) 0.5818 (+0.07%) 0.5882 (+0.02%) 38/48
xQuAD 0.6171b,m (+10.04%) 0.6316b,m (+8.63%) 0.6274b,m (+6.67%) 95/81
PM-1 0.3505xb,m (−37.51%) 0.3638xb,m (−37.42%) 0.4168xb,m (−29.13%) 30/142

PM-2 0.6224p
b,m (+10.97%) 0.6316p

b,m (+8.63%) 0.6278p
b,m (+6.75%) 104/74

N
o
n
-U

n
if
o
rm

QL

Base 0.4618 0.4912 0.505
MMR 0.4591 (−0.59%) 0.4856b (−1.14%) 0.4991b (−1.16%) 49/91
xQuAD 0.5628b,m (+21.87%) 0.5759b,m (+17.23%) 0.5729b,m (+13.46%) 104/72
PM-1 0.5463b,m (+18.3%) 0.5546b,m (+12.9%) 0.5469xb,m (+8.31%) 101/73

PM-2 0.5867x,p
b,m (+27.05%) 0.5975x,p

b,m (+21.64%) 0.5902x,p
b,m (+16.89%) 114/64

SDM

Base 0.5081 0.5313 0.5403
MMR 0.4937b (−2.82%) 0.5197b (−2.17%) 0.5331b (−1.32%) 41/108
xQuAD 0.571b,m (+12.38%) 0.5793b,m (+9.05%) 0.5794b,m (+7.25%) 108/70
PM-1 0.5432m (+6.92%) 0.5547xm (+4.42%) 0.5536x (+2.46%) 94/84
PM-2 0.5817p

b,m (+14.48%) 0.5975p
b,m (+12.47%) 0.5984x,p

b,m (+10.75%) 116/62

RM

Base 0.5152 0.5396 0.5463
MMR 0.5183 (+0.6%) 0.5386 (−0.19%) 0.546 (−0.05%) 67/73
xQuAD 0.5713b,m (+10.89%) 0.5826b,m (+7.97%) 0.5766b,m (+5.56%) 91/83
PM-1 0.5642b,m (+9.51%) 0.5718m (+5.96%) 0.5672 (+3.83%) 85/89
PM-2 0.586b,m (+13.75%) 0.5966p

b,m (+10.55%) 0.5912x,p
b,m (+8.23%) 104/63

CA

Base 0.5601 0.5809 0.586
MMR 0.558 (−0.38%) 0.5798 (−0.19%) 0.5852 (−0.15%) 51/67
xQuAD 0.6095b,m (+8.82%) 0.6198b,m (+6.7%) 0.6124b,m (+4.5%) 88/85
PM-1 0.6012m (+7.34%) 0.6079 (+4.65%) 0.6007 (+2.5%) 83/96
PM-2 0.6305x,p

b,m (+12.57%) 0.6353p
b,m (+9.36%) 0.6254p

b,m (+6.72%) 99/75
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4.3.1.2 Novelty-based Measures

Table 4.7 compares all techniques using standard novelty-based measures. Inter-

estingly, we see a very similar trend as in the previous case with a proportionality

measure. MMR is the least effective method due to its lack of awareness of the query

topics. PM-2, on the other hand, outperforms all other methods in almost all metrics

with statistically significant improvement in many cases. This is consistent across all

four baseline models. In addition, PM-2 is the most robust technique with the most

effective Win/Loss ratio.

Regarding uniform and non-uniform distribution of popularity, with respect to

Precision-IA, the improvement PM-2 provides over xQuAD is also substantially higher

in the non-uniform case (3.2% vs. 0.3%). This is, in fact, consistent with what we

observed with CPR. This can be explained by the fact that larger improvement in

CPR indicates that the result rankings have more relevant documents for the more

popular topics, which results in higher Precision-IA.

Examining ERR-IA and NRBP , however, we observe the opposite effect. PM-2

outperforms xQuAD by an average of 2.3% and 2.6% in ERR-IA and NRBP respec-

tively in the uniform case (across four baselines). These numbers go down to 2.1% and

2.3% when the distribution is not uniform. Combined with the fact that Precision-IA

is higher in the non-uniform case, this provides more evidence that ERR-IA puts

more emphasis on the document ranking, whereas CPR is concerned more with topic

coverage.

Given that PM-2 optimizes proportionality, it is very encouraging to see that PM-2

manages to outperform xQuAD in both cases using these measures of novelty. It

confirms the effectiveness of PM-2: this technique retrieves result rankings that are

not only more proportional but also less redundant compared to xQuAD, which is

designed to minimize redundancy.
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Table 4.7: Performance of all techniques in several standard redundancy-based mea-
sures. Each system diversifies the results provided by the baseline model with respect
to the TREC sub-topics. The Win/Loss ratio is with respect to α-NDCG. The letters
b, m, x and p indicate statistically significant differences to the baseline, MMR, xQuAD
and PM-1 respectively (p-value < 0.05).

α-NDCG ERR NRBP P-IA S-Recall W/L

U
n

if
or

m

QL

Base 0.4156 0.3054 0.2679 0.1897 0.6215
MMR 0.4109b 0.3018b 0.2641 0.1882 0.614 55/85
xQuAD 0.4936b,m 0.3743b,m 0.3395b,m 0.2208b,m 0.669b,m 121/53
PM-1 0.4567xb,m 0.3324xm 0.2906x 0.1893x 0.6702b,m 93/81

PM-2 0.5011p
b,m 0.3828p

b,m 0.3478p
b,m 0.2201pb,m 0.6745b,m 121/51

SDM

Base 0.4393 0.329 0.2933 0.214 0.6204
MMR 0.4343b 0.3226b 0.2847b 0.2106b 0.6272 43/105
xQuAD 0.5028b,m 0.3835b,m 0.3491b,m 0.2337b,m 0.6746b,m 108/69
PM-1 0.4604xm 0.3342x 0.2911x 0.1995xb,m 0.6716b,m 90/88

PM-2 0.5094p
b,m 0.3878p

b,m 0.3525p
b,m 0.2329pb,m 0.6787b,m 113/63

RM

Base 0.4406 0.3413 0.3106 0.221 0.5978
MMR 0.4407 0.3399 0.3083 0.2206 0.6035 61/79
xQuAD 0.49b,m 0.3767b,m 0.3438b,m 0.2283 0.6558b,m 104/69
PM-1 0.4659xb,m 0.3464x 0.3073x 0.2124x 0.6581b,m 80/92

PM-2 0.5023x,p
b,m 0.3878p

b,m 0.3563p
b,m 0.2299p 0.6669x

b,m 116/57

CA

Base 0.4824 0.3719 0.3406 0.2457 0.6539
MMR 0.4826 0.372 0.3407 0.2449b 0.6552 41/46
xQuAD 0.516b,m 0.3979 0.3647 0.2448 0.6779b 101/75
PM-1 0.4917x 0.3706x 0.3319x 0.225xb,m 0.6766b 88/91

PM-2 0.5257p
b,m 0.4089p

b,m 0.3763p
b,m 0.2472p 0.6851b,m 111/68

N
on

-U
n

if
or

m

QL

Base 0.4156 0.3329 0.0873 0.1897 0.6215
MMR 0.4109b 0.3288b 0.086 0.1882 0.614 55/85
xQuAD 0.464b,m 0.4057b,m 0.1129b,m 0.2123b,m 0.656b,m 104/72
PM-1 0.4562b,m 0.3841xb,m 0.105xb,m 0.1894x 0.6653b,m 96/79

PM-2 0.4903x,p
b,m 0.4183p

b,m 0.1166p
b,m 0.2179x,p

b,m 0.679x
b,m 114/64

SDM

Base 0.4393 0.362 0.0969 0.214 0.6204
MMR 0.4343b 0.355b 0.094b 0.2106b 0.6272 43/105
xQuAD 0.4802b,m 0.4128b,m 0.1159b,m 0.2271b,m 0.6703b,m 97/81
PM-1 0.4612xm 0.3846xm 0.1049x 0.1993xb 0.6742b,m 89/89
PM-2 0.4954x,p

b,m 0.4085pb,m 0.1144pb,m 0.2351x,p
b,m 0.6779b,m 110/68

RM

Base 0.4406 0.375 0.1027 0.221 0.5978
MMR 0.4407 0.3734 0.1014 0.2206 0.6035 61/79
xQuAD 0.4717b,m 0.4121b,m 0.1156m 0.2231 0.6525b,m 92/82
PM-1 0.4646 0.3991 0.1104 0.2079xb,m 0.6544b,m 86/88

PM-2 0.4937x,p
b,m 0.4177b,m 0.1178b,m 0.2297x,p 0.6646b,m 109/64

CA

Base 0.4824 0.4077 0.1138 0.2457 0.6539
MMR 0.4826 0.408 0.114 0.2449b 0.6552 41/46
xQuAD 0.4867 0.4226 0.1175 0.2373b 0.6619 92/81
PM-1 0.4922 0.4259 0.1182 0.2269b,m 0.6793b,m 90/90
PM-2 0.517x,p

b,m 0.443b,m 0.1237 0.246x,p 0.6723 106/72
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4.3.1.3 Comparative Analysis

Recall that there are three main differences between PM-2 and xQuAD:

(1) Although PM-2 is designed to optimize for proportionality, it can be regarded

as a novelty-based approach with a different approach to measuring document

novelty. xQuAD estimates the novelty of a document based on how well it satisfies

the topics that have low probability of having been satisfied, whereas PM-2

estimates novelty based on how proportional the the result set becomes if this

document is selected.

(2) PM-2 uses the parameter λ to put more emphasis on the fact that the document

selected at each iteration must be relevant to the most under-represented topic,

which is the key to maintain proportionality. xQuAD, on the other hand, does

not distinguish between the most under-represented topic and the others.

(3) The methods incorporate the relevance of the document to the query into their

framework differently. While xQuAD scores a candidate document by a linear

combination of its relevance and its novelty, PM-2 integrates this quantity into

the component that estimates novelty.

To understand how each of these factors affects their performance, we present

experiments with some variants of PM-2 as follows. We conduct a PM-2 run in which

we set λ = 0.5 instead of tuning it via cross-validation as we have done earlier. We

will refer to this run as PM-2[λ0.5] and the cross-validation run as just PM-2 as before.

The objective function of PM-2[λ0.5] can be rewritten as follows:

score(d) = 0.5× qt∗ × P (d|t∗) + 0.5
∑
t6=t∗

qt × P (d|t)

which is equivalent to:

score(d) =
∑
t∈T

qt × P (d|t)
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(a) CPR (b) ERR-IA

Figure 4.4: Comparison among the baseline CA, xQuAD, PM-2 and two of its variants:
PM-2[λ0.5] and PM-2(m)[λ0.5].

We then linearly combine this objective with the relevance of the document to the

query P (d|q):

score(m)(d) = (1− λ)× P (d|q) + λ
∑
t∈T

qt × P (d|t) (4.1)

We will refer to the PM-2 variant that uses the objective function given by Formula

(4.1) above as PM-2(m)[λ0.5].

Since the only difference between PM-2(m)[λ0.5] and xQuAD is the novelty estimate

(we have eliminated factor (2) and (3)), comparing their performance will tell us

whether (1) provides PM-2 with any advantage over xQuAD. Additionally, comparing

PM-2(m)[λ0.5] to PM-2[λ0.5] will reveal the impact of (3) because the only difference

between them is in the way P (d|q) is integrated in to their objective function. Finally,

the difference between PM-2[λ0.5] and PM-2 relates to the effect of factor (2).

Figure 4.4 (a) and (b) show that PM-2(m)[λ0.5] outperforms xQuAD in both CPR

and ERR-IA, which indicates that (1) has very positive impact on PM-2’s superiority.

In other words, choosing a document based on how proportional the result set becomes

is more effective than selecting one based on how well it covers the topics with low
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probability of having been covered. Not only does this make the final ranking more

proportional, it also reduces the amount of redundancy.

Furthermore, the fact that PM-2[λ0.5] beats PM-2(m)[λ0.5] in both measures means

that factor (3) indeed provides additional benefits to PM-2. This suggests to some

extent that it is better to incorporate P (d|q) directly into the estimation of P (d|t).

Regarding factor (2), however, we observe mixed results. While tuning λ improves

CPR somewhat (PM-2 > PM-2[λ0.5] in Figure 4.4 (a)), it hurts ERR-IA (PM-2 <

PM-2[λ0.5] in Figure 4.4 (b)). The value for λ selected via cross validation is λ∗ ≈ 0.56,

which indicates that PM-2 puts considerable emphasis on the fact that the document

selected at each iteration should cover the most under-represented topic at that point.

The fact that ERR-IA is better with λ = 0.5 suggests that this measure favors

documents that are relevant to multiple relatively well-covered topics than those that

are relevant only to the most under-represented topic.

4.3.1.4 Failure Analysis

The effectiveness of each model depends on two factors: the quality of the ini-

tial retrieved set of documents and the model’s power to select a diverse ranking of

documents from that pool. The latter factor is apparently affected by the accuracy

of the P (d|t) estimate. To understand which of these factors are responsible for the

cases that PM-2 fails to provide improvement, we look into the queries which PM-2

improves and hurts by at least 10% ERR-IA@20 . For each of these queries, we mea-

sure S-Recall@50 and Prec-IA@50 of the baseline ranking. This indicates how much

room there is for PM-2 to improve. We sort all queries in the order of increasing

S-Recall@50 and plot their Prec-IA@50 as well as ERR-IA@20 , which reflects the

diversity effectiveness of this baseline ranking. Figure 4.5 shows this plot for the case

where CA is used as the baseline. The results with other baselines are similar.
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(a) 80 queries improved by PM-2

(b) 46 queries hurt by PM-2

(c) 70 queries improved by xQuAD

(d) 49 queries hurt by xQuAD

Figure 4.5: S-Recall@50 and Prec-IA@50 evaluated using top 50 documents in the
baseline ranking provided by CA for each query. ERR-IA@20 is the diversity effec-
tiveness of this baseline ranking.
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Ideally, a diversification technique should improve the baseline rankings that are

ineffective while retaining those that are effective, instead of hurting them. Unfor-

tunately, Figure 4.5 (a) and (b) show that this is not the case with PM-2. While it

helps a large number of queries, it also hurts a handful of those for which CA retrieves

good result rankings (i.e. high ERR-IA@20 ). Since it is not necessary to have high

S-Recall@50 and Prec-IA@50 in order to keep an effective baseline ranking intact,

we argue that the reason that PM-2 fails is that query likelihood is not sufficiently

accurate for estimating how relevant a document is to each query topic. This applies

to xQuAD as well (see Figure 4.5 (c) and (d)). We believe that improving this estimate

will make PM-2 more competitive.

4.3.2 Diversification with Related Queries as Topics

In this section, we obtain from a commercial search engine a set of related queries

for each of queries in our dataset. Each technique then diversifies the search results

provided by a baseline model using these related queries as topics. The techniques

are evaluated based on how well they cover the TREC sub-topics, which we consider

ground-truth. Table 4.8 and Table 4.9 compare all techniques being studied using

CPR and the standard diversity measures respectively.

Overall, the performance of all techniques is lower than in the previous case due to

the mis-alignment between the generated topics and the ground-truth. Our findings,

on the other hand, are the same. PM-2 outperforms all other techniques in almost all

measures. This is also consistent across all baseline retrieval models. This confirms

the feasibility of diversification in general and the PM-2 technique in particular. In

practice, we often have to predict the topics underlying a user query and this predicted

set is not going be completely aligned with the user’s interests. Even with this

mis-alignment, PM-2 can still outperform other techniques in terms of making the
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Table 4.8: Performance of all techniques in CPR at different cut-off points. Each
system diversifies the results provided by the baseline model with respect to the
related queries obtained from a commercial search engines. The Win/Loss ratio is
with respect to CPR@20. The letters b, m, x and p indicate statistically significant
differences to the baseline, MMR, xQuAD and PM-1 respectively (p-value < 0.05).

CPR@5 CPR@10 CPR@20 W/L

U
n
if
o
rm

QL

Base 0.4642 0.4939 0.5076
MMR 0.4627 (−0.33%) 0.4903 (−0.73%) 0.5031b (−0.9%) 53/81
xQuAD 0.5105b,m (+9.98%) 0.5428b,m (+9.9%) 0.5486b,m (+8.08%) 93/70
PM-1 0.4215x (−9.18%) 0.4639x (−6.07%) 0.4891x (−3.64%) 74/98
PM-2 0.5055pb,m (+8.91%) 0.5446p

b,m (+10.26%) 0.5537p
b,m (+9.07%) 99/68

SDM

Base 0.5036 0.5302 0.5397
MMR 0.4895b (−2.82%) 0.5188b (−2.15%) 0.5331b (−1.22%) 38/105
xQuAD 0.5265m (+4.54%) 0.5586b,m (+5.36%) 0.5659b,m (+4.84%) 93/72
PM-1 0.2996xb,m (−40.51%) 0.3137xb,m (−40.83%) 0.3553xb,m (−34.17%) 18/149

PM-2 0.5294p
b,m (+5.12%) 0.5635p

b,m (+6.29%) 0.5733p
b,m (+6.22%) 100/60

RM

Base 0.5069 0.5334 0.5424
MMR 0.5079 (+0.19%) 0.5309 (−0.45%) 0.5404 (−0.35%) 57/81
xQuAD 0.5307 (+4.69%) 0.557m (+4.44%) 0.5641m (+4.0%) 88/74
PM-1 0.3148xb,m (−37.91%) 0.3295xb,m (−38.22%) 0.3685xb,m (−32.06%) 19/139

PM-2 0.5347p (+5.48%) 0.5632p
b,m (+5.6%) 0.5713p

b,m (+5.34%) 90/77

CA

Base 0.5535 0.5743 0.5813
MMR 0.5542 (+0.12%) 0.5749 (+0.09%) 0.5814 (+0.03%) 38/46
xQuAD 0.5401 (−2.42%) 0.5689 (−0.95%) 0.5799 (−0.23%) 80/89
PM-1 0.3513xb,m (−36.53%) 0.3648xb,m (−36.49%) 0.4151xb,m (−28.58%) 25/140

PM-2 0.56x,p (+1.18%) 0.5817p (+1.29%) 0.5863p (+0.87%) 85/84

results returned by traditional IR models more effective of satisfying the diverse user

information needs.

4.4 Summary

In this chapter, we have evaluated our proportionality approach to search re-

sults diversification. We demonstrated that, although our Cumulative Proportional-

ity measure (CPR) correlates rather well with existing novelty-based measures, there

are differences. Generally, the diversity effectiveness of a document ranking is a com-

bination of three factors: topic coverage, the number of relevant documents for each

topic and the order in which these documents are presented. Our analyses using

177 runs submitted to TREC Web Track 2009-2012 showed that the disagreement

between our measure and the existing ones is in the marginal cases where a ranking

is good in one criteria but bad in others. In particular, we found that CPR puts
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Table 4.9: Performance of all techniques in several standard redundancy-based mea-
sures. Each system diversifies the results provided by the baseline model with respect
to the related queries obtained from a commercial search engines. The Win/Loss ratio
is with respect to α-NDCG. The letters b, m, x and p indicate statistically significant
differences to the baseline, MMR, xQuAD and PM-1 respectively (p-value < 0.05).

α-NDCG ERR NRBP P-IA S-Recall W/L

U
n

if
or

m

QL

Base 0.4111 0.3025 0.2653 0.1844 0.6159
MMR 0.4064b 0.2991 0.2618 0.1825 0.6082 53/82
xQuAD 0.4402b,m 0.3256m 0.2861 0.1976b,m 0.6389b,m 91/73
PM-1 0.391x 0.2648xb,m 0.2151xb,m 0.1612xb,m 0.6482b,m 82/90

PM-2 0.4455p
b,m 0.3267p

b,m 0.2857pm 0.1982p
b,m 0.6509x

b,m 100/66

SDM

Base 0.4329 0.3233 0.2874 0.2077 0.6161
MMR 0.4279b 0.3168b 0.2786b 0.2046b 0.6231 43/100
xQuAD 0.4483m 0.329 0.2884 0.2163 0.642b,m 92/69
PM-1 0.4329m 0.3233m 0.2874m 0.2077m 0.6161x 0/0
PM-2 0.4587x,p

b,m 0.343x,p
b,m 0.3052x,p

b,m 0.2128 0.6417pb,m 97/64

RM

Base 0.4346 0.3368 0.3062 0.2128 0.5944
MMR 0.4354 0.3357 0.3042 0.2124 0.602 59/75
xQuAD 0.45 0.3404 0.3053 0.2146 0.6302b,m 90/67
PM-1 0.4153xb,m 0.3071xb,m 0.2673xb,m 0.1957xb,m 0.6084x 22/47

PM-2 0.4549p
b,m 0.3428p 0.3071p 0.217p 0.6343p

b,m 89/75

CA

Base 0.4753 0.3653 0.3336 0.2382 0.6508
MMR 0.4755 0.3655 0.3337 0.2373b 0.6521 40/45
xQuAD 0.478 0.371 0.3409 0.2321b,m 0.6453 98/65
PM-1 0.4779 0.373 0.3439 0.2314b,m 0.6416 98/66
PM-2 0.4849 0.3772 0.3469 0.2342 0.6548 102/63

more emphasis on the fact that a ranking should have broad topic coverage and more

relevant documents per topic whereas existing metrics gives higher reward to those

with lower topic coverage but present relevant documents at slightly higher positions.

Our results have also shown that our diversification method PM-2 consistently

provides significant improvement over four standard relevance-based retrieval models.

Additionally, with both manually and automatically generated query topics, PM-2

outperforms the top performing redundancy-based technique not only using CPR,

but also with several other standard redundancy-based measures. Furthermore, PM-2

is more effective at handling the case where topics are not equally popular. Our

results show that promoting proportionality will result in minimal redundancy, or

equivalently maximal novelty, as desired by the current diversity standards.
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CHAPTER 5

INFERRING QUERY TOPICS FROM
REFORMULATIONS USING CLUSTERING

5.1 Introduction

As introduced in the previous chapters, the explicit approach to search result

diversification (Agrawal et al., 2009; Carterette & Chandar, 2009; Santos et al., 2010a)

often assumes that the set of topics associated with the query is available. Generating

these topics automatically, on the other hand, has been less successful.

Notable work in this area includes that by Radlinski et al. (2010). To provide

topics for a query, they propose to cluster related queries, or reformulations, from a

large proprietary query log and use each group of queries to represent a topic. They

show that their method can provide reasonable clusters of queries. As a result, it was

used during topic development for TREC Web tracks (Clarke, Craswell, & Soboroff,

2009; Clarke et al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke &

Craswell, 2012), in which human judges examined the output for each query and

manually determined the set of probable topics as well as provided a descriptions for

each of these topics. Regardless, the effectiveness of this method for automatically

inferring query topics for diversification has yet to be confirmed.

Motivated by this work, we propose to cluster the reformulations for each user

query generated from publicly available resources, including anchor text and Mi-

crosoft Web N-Gram Services 1. Firstly, we show that many of the reformulations

we generate for TREC queries correspond very well with the topics that the human

1http://research.microsoft.com/en-us/collaboration/focus/cs/web-ngram.aspx
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judges identified. We then show that our approach can provide consistent topical

clusters of reformulations, and diversification based on these clusters outperforms the

standard relevance-based retrieval model.

Furthermore, He et al. (2012) show that the right combination of topics generated

using our method and those generated from the retrieved documents and query logs

can improve diversification effectiveness significantly.

The remainder of this chapter is organized as follows. Section 5.2 explains how we

generate reformulations for a query. Section 5.3 describes the clustering algorithms

and similarity measures that we study. Finally, Section 5.4 presents our evaluation

results.

5.2 Generating Reformulations

Even though many techniques have been proposed for query reformulation, most

of them aim to generate queries that are more effective for retrieval without changing

the original user intent (Jones et al., 2006; Dang & Croft, 2010). Their effectiveness

for providing reformulations that cover different query topics is thus unclear. Instead

of using these proposed techniques, we use a rather simple method for generating

reformulations from two publicly available resources: anchor text and web ngrams.

5.2.1 Anchor Text

Anchor text is known to be an effective feature for web search (Metzler et al.,

2009). Previous researchers have observed the similarity between anchor text and

queries (Eiron & McCurley, 2003; Dang & Croft, 2010). Therefore, we treat each

anchor text as a reformulation that can potentially represent a query topic.

The web collection from which we extract the anchor text is the English portion

of the ClueWeb-09 category A2. It contains 500 million pages in English that were

2http://boston.lti.cs.cmu.edu/Data/clueweb09/
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crawled from the web during early 2009. We extracted all pairs of anchor text and

associated urls from the web pages in this collection.

Web pages are connected to one another via links, each of which is associated with

some anchor text. A link is called internal if two connected pages are from the same

domain and external if they come from different domains. Since most of the internal

links are for navigation purposes, their associated anchor text is not very helpful.

Typical examples of such anchor text are “home” and “index”. As a result, we only

consider external links.

In order to reduce noise, we discarded anchors that contain non-English words

and those that contain navigation-triggered words such as “click”, “download” and

“subscribe”. We also removed anchors that contain only numbers and stop words.

Among the resulting anchors, we keep only those with frequency greater than 1 and

that are connected to at least two urls. The resulting anchor text collection contains

8, 215, 751 unique anchors.

For any given query, we use the top M most frequent anchor texts that contain

all of its terms as its reformulations.

5.2.2 Microsoft Web N-gram Services

The Microsoft Web N-gram Services provide smoothed n-gram models built from

document body, document title, anchor text and queries in the Bing query log. Each

model gives the probability P (u|n) of seeing an unigram u coming after an n-gram

n. For each query q, we obtain the top M unigrams u with largest P (u|q). Each

reformulation is formed by adding u to q.

We put all reformulations generated from the two sources above into a list L.

Since we aim to use each reformulation as a query topic, we keep only those with

reasonably high frequency. Ideally, we can obtain this frequency from query logs.

Because we rely only on publicly available resources, we approximate this frequency
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by the number of times all of the query terms co-occur within a window of size 10

in a web collection. This is done with the unordered window #uw10(...) operator

implemented in Indri. Finally, we order the reformulations in L by their frequency

and keep only the top M, which will be the candidates for clustering.

5.3 Clustering

The list of reformulated queries generated above are then clustered into groups,

each of which is considered a coarse representation of a query topic. The clustering

is based on a measure of query similarity.

5.3.1 Similarity Measures

We use two types of query similarity measures in this study. The first one is

based on relevance models (Lavrenko & Croft, 2001) and the second one is based on

co-occurrence in passages.

5.3.1.1 Relevance Models

Since the queries are short, computing their similarity based only on the query

words is not likely to be effective. Therefore, we expand each query with terms from

the documents that are potentially relevant to it. Specifically, we represent a query by

the relevance model (Lavrenko & Croft, 2001) estimated from the top K documents

returned by the Query Likelihood retrieval model (Ponte & Croft, 1998) for this query.

We choose Query Likelihood for simplicity, but other retrieval models could also be

used.

Formally, let R be the set of documents retrieved for the query q and PQL(d|q)

indicate the query likelihood score for a document d ∈ R. Let W denote the set

of non-stopword terms extracted from all documents in R. A relevance model is a
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distribution over all words in W . The probability that each term w ∈ W comes from

this model is given by:

Pq(w) =
∑
d∈R

P (w|d)PQL(d|q)

where P (w|d) is an estimate of the probability that w can be generated from d. The

idea is that a term that occurs frequently in highly ranked, and therefore probably

relevant, documents is better at describing the query intent.

The similarity of two reformulations r1 and r2 is based on the Kullback–Leibler

(KL) divergence between their relevance models Pr1(w) and Pr2(w). The KL diver-

gence of Q from P is given by:

DKL(P ||Q) =
∑
w

P (w) log
P (w)

Q(w)

To enforce symmetry, we calculate the similarity between these two reformulations as

follows:

simKL(r1, r2) =
1

2
(DKL (Pr1(w)||Pr2(w)) +DKL (Pr2(w)||Pr1(w)))

In addition, we also experiment with the cosine similarity measure as an alterna-

tive to KL divergence:

simcos(r1, r2) =

∑
w Pr1(w)Pr2(w)√∑

w P
2
r1

(w)
√∑

w P
2
r2

(w)

5.3.1.2 Co-occurrence At Passage Level

Since estimating relevance models for every reformulation is computationally ex-

pensive, we also examine a more efficient method based on passage analysis. The idea

is that two queries are more similar if they co-occur often in the same text passages.

Therefore, for every pair of reformulations ri and rj, we compute Ni and Nj – the
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number of passages in which each of them occurs, and N – the number of passages in

which they co-occur. The similarity between ri and rj is given by the Jaccard score:

sim(ri, rj) =
N

Ni +Nj −N

For efficiency reasons, we approximate N with the number of times that all terms

in both reformulation ri and rj co-occur within a window of size 20 in our document

index. If two reformulations have some terms in common, these shared terms only

need to occur once in this window. Ni is also approximated in a similar fashion.

5.3.2 Clustering Algorithms

We experiment with two clustering algorithms: K-Means and agglomerative clus-

tering.

5.3.2.1 K-Means Clustering

The algorithm initializes each of the K clusters with a random reformulation. It

then iteratively partitions all reformulations into K clusters in which each reformu-

lation is assigned to the cluster that is most similar to it. The similarity between a

query ri and a cluster Ck is the average similarity between this query and all queries

in the cluster:

sim(ri, Ck) =

∑
rj∈Ck

sim(ri, rj)

|Ck|

where sim(ri, rj) is the similarity measure between two reformulations as described

in Section 5.3.1. The algorithm terminates when the cluster assignment for reformu-

lations does not change.

5.3.2.2 Agglomerative Clustering

Agglomerative clustering has an advantage over K-Means in that we do not have

to specify the number of clusters beforehand. The standard algorithm treats each
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reformulation as a singleton cluster. It successively merges pairs of clusters that are

most similar to each other until some criteria are achieved. In our experiments, the

algorithm stops when the intra-cluster similarity (the average pair-wise similarity)

drops below a certain threshold τ . We use complete-link to compute the similarity

between two clusters Cl and Ck, which is the minimum pair-wise similarity between

the queries in these clusters:

sim(Cl, Ck) = min
ri∈Cl,rj∈Ck

sim(ri, rj)

5.4 Experiments

In our experiments, we use queries from TREC Web Track 2009 and 2010. This

query set contains 100 queries. Each query comes with an associated set of ground-

truth topics identified by TREC assessors. For each query, we generate reformulations

using the procedure described in Section 5.2. We evaluate the quality of these re-

formulations by judging how many of them correspond to the ground-truth topics.

Then, we examine the topical consistency in the clusters provided by different com-

binations of clustering algorithms and similarity measures. Finally, we use the set

of clusters generated for each query as its topic set for diversification and study its

effectiveness.

5.4.1 Data Preparation and Parameter Settings

We used ClueWeb-09 category B for estimating both the frequency of reformula-

tions and the co-occurrence statistics. The frequency of a reformulated query is the

number of times all of its terms co-occur within a windows of size 10. For passage

analysis, two reformulations are considered co-occurring if all of their terms co-occur

within a window of size 20. Regarding τ (the intra-cluster similarity threshold) and

K (the number of clusters for K-Means), we examined the clusters generated for a few

queries and choose the value that provides the best results: τ = 0.45 and K = 10.
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Last but not least, we set M = 100 (the number of reformulations) in all of our

experiments.

5.4.2 Quality of Reformulations

As mentioned earlier, we put all reformulations generated from different sources

together for each query and keep only the top 100 most frequent ones. Among these

reformulations, 15% are exclusively from the anchor text, 76% are exclusively from

the Web N-gram service and 9% are from both sources.

In this experiment, two graduate students independently judged each of those

100 reformulations to see if it corresponds to any actual topics of the query. A

reformulation is then labeled by the corresponding topic, or “none” if it does not

match with any of the topics. The agreement between our two judges is 94%.

A ground-truth topic of the query is considered covered if at least one of the

reformulations corresponds to it. Fig. 5.1 shows the percentage of topics (averaged

across all queries) covered by the top N of the 100 reformulations with N varying

from 10 to 100. In general, the reformulations covers on average about 60% of the

actual topics, which is promising considering these reformulations are acquired in a

very simple way. This suggests that publicly available resources are very useful for

identifying topics of queries.

It is worth noting that the reformulations that do not correspond to any of the

true topics are not necessarily incorrect. In fact, many of them represent valid in-

tents that were not identified by TREC assessors. We leave the evaluation of these

reformulations for future work.

5.4.3 Quality of Clusters

We now evaluate different combinations of clustering algorithms and similarity

measures used to group the reformulations we have generated. We expect the tech-

niques to be able to put reformulations with the same label into the same cluster.
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Figure 5.1: Quality of the generated reformulations in terms of how many of the
actual topics of the queries they cover.

Table 5.1: Quality of the automatically generated reformulations.

RM+Cos. RM+KL PS+JAC

Judge-1
Agglo. 0.64 0.67 0.76

K-Means 0.5 0.55 0.59

Judge-2
Agglo. 0.63 0.7 0.73

K-Means 0.48 0.55 0.57

To evaluate the quality of the generated clusters, we use the Rand index (RI), a

well-known cluster quality measure. It computes the percentage of decisions that are

correct and is calculated as follows:

RI =
TP + TN

TP + FP + FN + TN

where TP (true positive) is the number of pairs of reformulations with the same

labels that are put into the same cluster, TN (true negative) is the number of pairs

with different labels that are put into the same cluster, FN (false negative) is the

number of pairs with the same labels that are put into different clusters, and FP

(false positive) is the number of pairs with different labels that are put into the

same clusters. Reformulations with the label “none” are ignored in this computation
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since “none” is not a topic. Table 5.1 shows the RI score that different combinations

achieve.

The first thing we observe from Table 5.1 is that agglomerative clustering con-

sistently outperforms K-Means. The reason seems to be that K-Means forces every

reformulations to be in some cluster. This can result in unrelated reformulations be-

ing put into the same cluster. Once clusters contain many unrelated reformulations,

the centroids of those clusters are not very different from each other, making the clus-

ter assignment in the next iteration unreliable. Agglomerative clustering only merges

two clusters if they are very similar to each other, and has a lower chance of putting

reformulations into unrelated clusters.

Secondly, Table 5.1 shows that the similarity measure based on co-occurrence is

consistently better than those based on relevance models. It should be noted that

most of the reformulations, especially those generated from the Microsoft N-Gram

Services, are different to each other by only one word. The longer the original query,

the less impact the augmented word has on the relevance model. As a result, the

relevance models for these reformulations are more similar than they should be. The

similarity measure based on co-occurence, on the other hand, is not affected as much

by the length of the original query. Two reformulations are similar as long as their

augmented words co-occur with each other and with the original query. This gives the

co-occurrence-based measure an advantage. Tables 5.2 presents an example of clusters

generated by agglomerative clustering with the co-occurrence similarity measure for

the query “satellite”.

5.4.4 Diversification Effectiveness

We now investigate the effectiveness for diversification of the clusters generated

using agglomerative clustering with the co-occurrence-based similarity measure. We

treat the clusters generated for each of the 100 queries as the potential topics. We
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Table 5.2: Example of clusters generated by agglomerative clustering for the query
“satellite”

{satellite tv; satellite tv vs cable; satellite network}
{satellite radio; sirius satellite radio; xm satellite radio}

{satellite image; google maps satellite}
{satellite internet}

{weather satellite; satellite climate}
{satellite technology; satellite development}

{satellite broadband}

then discard all clusters with only one reformulation, which we assume to be very

infrequent topics and thus should be ignored. This leaves some queries with only

one remaining cluster, which is not interesting for diversification. Consequently, we

only consider a subset of 77 queries for which our techniques can provide at least two

clusters.

The retrieval collection, experimental setup and evaluation measures in these ex-

periments are very similar those used in our previous experiments in which we evaluate

our proportionality models (see Chapter 4 for details). In brief, for each of the 77

queries, we use Query Likelihood (Ponte & Croft, 1998) to retrieve an initial ranking

of documents from the ClueWeb-09 category B document index. The set of associ-

ated clusters is provided as input to a diversification system. This system re-orders

the input ranking to make it more diverse with respect to these topic clusters. We

evaluate the final rankings by how well they cover the ground-truth topics using a va-

riety of diversity measures. For the diversification techniques, we used xQuAD (Santos

et al., 2010a), PM-1 and PM-2. All model parameters are selected via 2−fold cross

validation.

These diversification techniques assume that the estimate of how relevant a doc-

ument is to a topic is available. Each of our topics is a cluster of queries. One can

certainly estimate the relevance of a document to a cluster using the average of its

relevance to each of the query in this cluster. However, this requires running mul-
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Table 5.3: The effectiveness of our topics for diversification. No statistical significance
is observed with respect to the baseline Query Likelihood.

CPR α-NDCG ERR-IA Prec-IA S-Recall NRBP

Query-likelihood 0.3669 0.2637 0.1644 0.1113 0.4107 0.1332

xQuAD 0.3598 0.2601 0.1620 0.1169 0.4052 0.1299

PM-1 0.3943 0.2944 0.1961 0.1306 0.4189 0.1685

PM-2 0.3703 0.2828 0.1888 0.1157 0.4010 0.1641

tiple queries over the index. For simplicity and efficiency, we estimate it differently

as follows. We concatenate all queries in each cluster to form a “document”, from

which we construct a unigram language model. Finally, we use Indri’s weighted query

representation of this model as the topic description. The relevance of a document

to a cluster is its query likelihood score with respect to the corresponding weighted

query. We consider all topics to be equally popular.

The results are presented in Table 5.3. Although the performance of xQuAD is

lower than the baseline, both PM-1 and PM-2 manage to provide improvement with

nearly all measures. While no statistically significant differences are observed between

these techniques and the baseline, the results still suggest that the topics generated

with our technique can be beneficial.

Interestingly, PM-1 is the best performing approach despite its naive assumption

that a document only belongs to one topic. We believe the reason is as follows. Recall

that only a portion of the topics we generated are in the ground-truth set. We will

refer to those that are not in this set as the misaligned topics. Due to our evaluation

setup, a system is penalized if it promotes documents for these misaligned topics,

even if they represent valid user intents. PM-2 and xQuAD generally favor documents

that are relevant to multiple topics. It is possible that they select a document that is

relevant to multiple misaligned topics over those that are relevant to a single ground-

truth aspect. PM-1, on the other hand, scores a document based solely on how well it

covers the most under-represented topic. At the iteration where a ground-truth topic
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is the most under-represented, PM-1 always selects the best document for this topic

regardless of its relevance to others. Thus, PM-1 is less affected by the misalignment

problem.

5.5 Summary

In this chapter, we have shown that reformulations for queries obtained from pub-

licly available resources such as anchor text and Microsoft Web N-Gram Services can

provide coverage for a broad range of query topics. We tested different combinations

of clustering algorithms and query similarity measures for grouping the reformula-

tions that are topically related. We found that agglomerative clustering consistently

outperforms K-Means and the similarity measure based on co-occurence is not only

more efficient but also more effective than the similarity that is based on relevance

models. Additionally, we demonstrated that the sets of clusters generated by this

combination are topically consistent and effective for diversification.
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CHAPTER 6

TERM LEVEL SEARCH RESULT DIVERSIFICATION

6.1 Introduction

We have described previous research on techniques for generating query topics for

diversification. Carterette and Chandar (2009) applied Latent Dirichlet Allocation

(Blei et al., 2003) on a set of documents retrieved for a query to learn its topics. The

same authors also used the k-nearest neighbor algorithm to cluster the same set of

documents and use the relevance model (Lavrenko & Croft, 2001) estimated from

each resulting cluster to represent a topic. Instead of using retrieved documents as

the source for topic extraction, Radlinski et al. (2010) proposed using query logs.

Their method clusters related queries in a large proprietary log and uses each cluster

to represent a query topic. We described a similar query clustering technique in

Chapter 5 that uses anchor text and web n-grams instead of query logs. Dou et al.

(2011) combined multiple sources of information to form topics including clusters of

documents, anchor text and query logs.

The success of these techniques, however, has been quite limited. Carterette and

Chandar (2009) evaluate their methods on a small newswire collection. It is unclear if

these results can be generalized to noisy web collections. The technique by Radlinski

et al. (2010) is demonstrated to provide topically consistent clusters of queries, but

these clusters have not been evaluated for diversification effectiveness. Although Dou

et al. (2011) show that their generated topics are beneficial to the diversification of web

documents, their evaluation is done using a small number of queries. Furthermore,

they report the results on the same data that was used to tune the model parameters.
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Figure 6.1: Two different levels for diversification: topic level and term level.

It is thus unclear how well their optimal values can generalize. To the best of our

knowledge, only the most recent methods show consistent improvement over non-

diversification retrieval baselines on web corpora. This includes the techniques by He

et al. (2012) and Santos et al. (2013). He et al. (2012)’s approach infers query topics

from multiple sources of information using a regularized topic modeling approach (Cai

et al., 2008), while Santos et al. (2013) use learning to rank to select related queries

from a query log.

Human descriptions or labels for topics usually take the form of a coherent group of

terms. Fig. 6.1 shows an example TREC query, joints, with the description provided

by TREC assessors for two of its topics: treat join pain and woodwork joint type1. Our

experiments in Chapter 4 have shown that using these human-created descriptions,

PM-2 can effectively diversify the result rankings.

The existing work in topic generation can be seen as attempts to generate substi-

tutes for these concise descriptions. A distribution of terms (Carterette & Chandar,

2009), as a matter of fact, is a very coarse substitute. Although anchor text and

queries are more succinct and thus are potentially better topic representation, identi-

fying those that represent a particular topic (Radlinski et al., 2010; Dou et al., 2011;

Santos et al., 2013) can be challenging, not to mention they might not exist for all

1 We only show the keywords for brevity. The full descriptions for these two topics are joint pain
and how to treat it and different types of joints used in woodworking.
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topics. Based on the limited success with these methods, we argue that generating

for each query a set of concise topic descriptions, each of which is a coherent group

of terms, is very difficult.

Instead of creating another technique that attempts to generate such descriptions,

we question the necessity of this representation for improving diversity in search

results. Our hypothesis is that being able to identify the important terms that make

up these topics will be sufficient to achieve improvement in diversity. Our intuition

is based on the nature of existing diversification techniques such as PM-2 and xQuAD

that favor documents that are relevant to multiple topics. As an example, we could

provide PM-2 with a set of terms including treat , joint , pain, woodwork , and type

as though each term was a topic. A document about treat join pain should contain

many occurrences of these words and would have a high “relevance” for each term.

Similarly, a document about woodwork joint type should appear relevant to woodwork ,

joint and type. Given this, PM-2 should select these two documents over those that

provide general information about a particular type of joint in human body, which

would only appear relevant to the term joint . In other words, we believe that using

this set of five terms as the “topics” would be sufficient for existing techniques to

promote diversity with respect to the two higher-level topics.

Consequently, we experiment with this simpler term-based representation for a

set of query topics. Instead of modeling each topic as a group of terms, we use these

terms directly without their grouping structure (Section 6.2). This means that for

the query joint , we will model all of its topics using a set of five terms: treat , joint ,

pain, woodwork and type, as shown in Fig. 6.1. This set of terms is provided as input

to a diversification system which treats each of them as a topic. We refer to this

approach as term level search result diversification.

In the next chapter, we demonstrate empirically that when we know the ground-

truth set of topics associated with the query, diversifying a result ranking using just
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the terms from these topics can significantly improve topical diversity. In fact, our

approach is quite competitive to using the set of topics itself. This shows that while

the grouping structure, assuming that it can be accurately identified, can provide some

additional benefit to diversification compared to just having the terms, the terms are

sufficient to improve diversity in the final ranking. This simplifies the task of finding

a set of topics, which has proven difficult, into finding an appropriate set of terms.

Therefore, instead of trying to generate a precise description for each of the query

topics, we only need to identify a set of terms that provide good coverage for these

topics. This is, in fact, the main task for term-based multi-document summarization

(Sanderson & Croft, 1999; Lawrie et al., 2001; Lawrie & Croft, 2003).

Consequently, we propose to use DSPApprox, a greedy algorithm from the docu-

ment summarization literature for identifying terms for diversification from the initial

ranking of documents (Lawrie & Croft, 2003) (Section 6.3). Our results show that

this relatively simple method significantly outperforms many existing approaches for

estimating the full topic structure from the same data on a wide ranges of both rele-

vance and diversity measures. To the best of our knowledge, at the time our approach

was introduced, it was the first to provide statistically significant improvement over

standard relevance-based retrieval models in terms of both relevance and diversity

measures, without relying on any external data source or manually created topic set.

Interestingly, finding a set of terms is, in fact, a diversification problem by itself.

We show the connection between the term generation problem and the document

diversification problem as well as analyze the similarity and differences betweeen

DSPApprox and existing document diversification techniques (Section 6.3). This en-

ables the application of those existing methods to the task of generating a diverse set

of terms that are beneficial to document diversification.

The last part of this chapter explores several sources of information from which

we can extract highly descriptive terms (Section 6.3.2).
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6.2 Term Level Search Result Diversification

In this section, we first summarize the problem of diversification at the topic level,

which has been formally described in Chapter 3. We then introduce our term level

approach and provide some intuition for why one can expect it to promote topical

diversity in search results.

6.2.1 Topic Level Diversification

Let q indicate a user query and T = {t1, t2, ..., tn} indicate the set of topics for

q. Let W = {w1, w2, ..., wn} denote the weights for each of the topics t ∈ T . These

weights can be interpreted as the importance or popularity of each topic. In addition,

let R = {d1, d2, ..., dm} indicate a ranked list of documents initially retrieved for q

and P (d|t) denote some probabilistic estimate of d’s relevance to a topic t. The task

of topic level diversification is to select a subset of R using {T,W, P (d|t)} to form a

diverse ranked list S of size k.

It is worth noting that the representation of the topics T = {t1, t2, ..., tn} will

determine the relevance measure P (d|t). For example, if T is a set of short textual

descriptions (e.g. queries), P (d|t) is often the relevance score of d to t given by some

retrieval models. In this work, we assume that each true topic of the query can be

represented as a set of terms, which we will refer to as topic terms. From this moment

on, we will use the word “topic” to refer to this particular representation, and “topic

terms” (or “terms” for short when there is no confusion) to refer to the words that

make up a topic.

6.2.2 Term Level Diversification

We will reuse the example query in Fig. 6.1 to explain the idea of term level di-

versification. We assume that the query joint has two topics: treat join pain and

woodwork joint type. Our experiments in Chapter 4 have shown that if we can cor-

rectly represent these query topics, PM-2 can effectively diversify the result rankings.
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Generating topic descriptions that are as concise as treat join pain and woodwork

joint type, however, is extremely difficult. Identifying the individual topic terms –

treat , joint , pain, woodwork , and type– on the other hand, is a relatively well studied

problem in the area of multi-document summarization.

Assuming we can identify these terms, our term level approach will use them with

diversification techniques such as PM-2, which essentially treats each of these terms as

a topic and perform diversification with respect to these “topics”. Using our example,

this means that we give the five terms – treat , joint , pain, woodwork , and type– to

PM-2. A natural question to ask is, what would the result ranking looks like? As far

as topical diversification is concerned, how can one expect the search results to be

diverse with respect to the two topics when PM-2 only uses a set of terms? In the

remainder of this section, we first present a formal statement of this problem as well

as our assumptions, and then answer these questions.

6.2.2.1 Problem Statement

Diversification at the term level is very similar to the topic level. Let ti =

{t1i , t2i , ..., t
|ti|
i } be the set of terms for topic ti. Instead of diversifying R using

the set of topics T = {t1, t2, ..., tn}, we propose to perform diversification using

T ′ = {t11, t21, ..., t
|t1|
1 , ..., t1n, t

2
n, ..., t

|tn|
n }, in effect treating each tji as a topic. Conse-

quently, any technique that has been proposed for topic level diversification can be

use to perform term level diversification.

6.2.2.2 Assumptions

Our approach makes a few assumptions. First, any given set of topic terms is

assumed to have an underlying set of latent topics. For example, the set of treat ,

joint , pain, woodwork , and type has at least two latent topics: treat join pain and

woodwork joint type.
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Second, if a document is highly relevant to a topic, it is highly relevant to all of

the corresponding topic terms (which means it will contain many instances of those

words). For instance, a document is considered highly relevant to treat , joint and

pain if it is relevant to the treat join pain topic.

Last but not least, if a document is more relevant to a topic ti than it is to tj, it

is more relevant to the terms that make up ti than those representing tj. This means

that if a document is more relevant to treat join pain than it is to woodwork joint

type, it is also more relevant to treat and pain than it is to woodwork and type. We

ignore the common term (joint) between topics for the ease of explanation.

6.2.2.3 How It Works

Consider an initial ranking R with three documents. While d1 and d2 are relevant

to treat join pain and woodwork joint type respectively, d3 provides general information

about a particular type of joint in human body (e.g. elbow joint), thus is not relevant

to the user’ information needs. Under our assumptions, d3 is highly relevant only to

joint . While both d1 and d2 are also relevant to joint , d1 is substantially more relevant

to treat and pain than it is to woodwork and type, and d2 will be more relevant to

the latter two. This is visualized in Figure 6.2.

We will now explain how PM-2 works with this set of five topic terms as “topics”.

Recall that at each iteration, PM-2 computes a quotient for each term. Assuming the

terms have equal weight, it is easy to verify that in the first iteration, the quotient

for all five terms is 0.2. Setting λ = 0.5 for simplicity, each of the three candidate

documents will be scored by:

score(d) =
∑
t∈T

qtP (d|t) (6.1)

where T is now the set of topic terms. The summation indicates the key property

of PM-2 (and many other diversification techniques): it favors documents that are
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Figure 6.2: The relevance between each candidate documents to each of the topic
terms being used for diversification.

relevant to multiple “topics”. Since d1 and d2 are relevant to three terms while d3

is only relevant to joint , d1 and d2 will receive a higher score. Regardless which

document (d1 or d2) is selected, the other will be chosen in the next iteration over

d3 for the same reason. Interestingly, although PM-2 only takes as input a set of

topic terms, it manages to return relevant documents for both underlying topics due

to its tendency to promote multi-topic documents. This suggests that diversifying a

result ranking using a set of terms can improve diversity with respect to the topics

underlying these terms.

Notice in the example above the presence of a third latent topic that is not relevant

to the user’s intents: general information about elbow joints. PM-2 is able to avoid

choosing d3 because this topic is represented only by one term in the set given to

PM-2 (joint) while each of the two query topics consists of three terms. This indicates

the necessary condition for a query topic to be covered in the results: it must have

sufficient presence in the set of topic terms provided to the diversification system.

It is worth noting that this description provides an intuition of what the result

ranking generated by our approach looks like, and how it accounts for diversity with

respect to the query topics given that it only takes as input a set of terms. For
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the ease of explanation, we used a rather restricted setting where each document is

assumed to belong to one topic and λ is set to 0.5 for PM-2. In practice, documents

are multi-topics and model parameters are tuned in some way. Although we believe

our reasoning should generalize at least to some extent, it is extremely difficult to

support this claim analytically. Thus, we will rely on empirical evaluation to verify

the validity of our approach.

6.2.2.4 Choice of P (d|t)

As mentioned earlier, diversification techniques assume {T,W, P (d|t)} as inputs

and the choice of T will determine P (d|t). An obvious choice for P (d|t) for term level

diversification is P (tki |d), the probability that the document d generates the topic

term tki . This is, however, highly problematic. At the term level, in addition to those

“true” query topics that are now latent, there are also “false” latent topics formed

by the wrong combinations of terms. Using the five example terms treat , joint , pain,

woodwork and type, pain caused by woodworking can be one of these “false” topics.

In the context where we identify topic terms for a query automatically, some of them

might be generic and ineffective. As the number of bad terms increases, the number of

“false” topics will grow exponentially. Combined with the fact that there are likely to

be many non-relevant documents in the baseline ranking, term diversification under

the effects of these “false” topics could end up promoting non-relevant documents.

Assuming any document that is relevant to a true query topic should be relevant

to the query itself, we propose to incorporate the relevance of a document to the query

into the estimation of P (d|t). Let {q1, q2, ..., qn} be the set of terms of the query q.

P (d|tki ) is estimated as follows:

P (d|tki ) ' (P (tki |d)P (q|d))
1

|tk
i
|+|q| = (P (tki |d)

∏
qj∈q

P (qj|d))
1

|tk
i
|+|q|
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which is essentially the Query Likelihood score (Ponte & Croft, 1998) for ranking d

with respect to the query {tki , q1, q2, ..., qn} normalized by the query length to avoid

biased towards terms with fewer words (i.e. terms can include both unigrams or

phrases). In the case where all terms have the same length, the normalization is

certainly not necessary.

6.3 Automatic Extraction of Topic Terms

In this section, we present how DSPApprox, an algorithm proposed by Lawrie and

Croft (2003) for hierarchical multi-document summarization, can be used to extract

a diverse set of topic terms for our diversification approach. We then explain why the

task of term generation can be considered a diversification problem. Next, we analyze

the similarity and differences between DSPApprox and existing document diversifica-

tion techniques, which enables the possibility of using these existing techniques for

effective term generation.

6.3.1 DSPApprox

The goal of DSPApprox is to select from a collection of documents a small set of

highly representative terms that best summarize the topics covered by the documents.

This algorithm is applied recursively, resulting in an hierarchical structure of topic

terms.

Since the documents in an initial ranking retrieved for a query have high proba-

bility of being relevant to some of this query’s topics, we consider these documents

a valuable source for extracting terms that can represent those query topics. As a

result, we apply DSPApprox on these documents. There are other potential sources

for topic term extraction as well, which we will describe in the next section. Since we

only need a single diverse set of topic terms, we only use this algorithm to generate

a single level instead of a hierarchy of terms.
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The algorithm first identifies a set of vocabulary words from the collection of

documents, from which it forms a set of more specific topic terms. It then measures

for these terms their topicality and how well they predict the occurrences of other

terms. Finally, it greedily selects a subset of topic terms, aiming to maximize both

their topicality and their coverage of the vocabulary.

Vocabulary Identification. We consider as vocabulary all terms that (1) appear

in at least two documents, (2) have at least two characters and (3) are not numbers.

In our experiments, we test two types of terms separately: unigrams and phrases.

We use a very simple method for phrase extraction. We scan through the words

in each document from the beginning to the end. For each word wi, we select the

longest consecutive sequence p = {wi, wi+1, ..., wk} such that p matches the title of a

Wikipedia page and p ∪ {wk+1} does not. p is then selected as a vocabulary phrase

and the process repeats at wk+1.

Topic Term Identification. All vocabulary terms that co-occur with any of the

query terms within a proximity window of size w are selected as topic terms.

Topicality and Predictiveness. The topicality of a term measures how informative

it is at describing the set of documents. To compute topicality, a relevance model

PR(t|q) (Lavrenko & Croft, 2001) is first estimated from the initial set of documents

R:

PR(t|q) =
∑
di∈R

P (t|di)P (di|q)

where P (t|d) is the probability that di generates the term t and P (di|q) is relevance

of di to the query. The topicality TP (t) of a term t is estimated as its contribution

to the Kullback–Leibler divergence between this relevance model and the language

model for the entire retrieval collection Pc(t):

TP (t) = PR(t|q)log2
PR(t|q)
Pc(t)
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Table 6.1: Example output of DSPApprox for the query “joints” (topic number 82). Some
of the original TREC subtopics for this query are also provided for comparison.

TREC Sub-topic DSPApprox[Unigram] DSPApprox[Phrase]

1) joints in human body
spine elbow joint
articulate knee joint

2) woodworking joints types
miter miter joint
planter miter box

3) treat joint pain
symptom joint pain
grease joint anti inflammatory

It is equivalently t’s contribution to the clarity score of the query q (Cronen-Townsend

et al., 2002).

Predictiveness, on the other hand, measures how much the occurrence of a term

predicts the occurrences of others. Let Pw(t|v) indicate the probability that a term t

occurs within a window of size w of another term v and Vt indicate the set all such v

with respect to t. The predictiveness of t is estimated as follows:

PR(t) =
1

Z

∑
v∈Vt

Pw(t|v) (6.2)

where Z is some normalization factor. We set it to the size of the vocabulary.

Greedy Algorithm. Pseudo-code for this algorithm is presented as Algorithm 7. It

iteratively selects terms from the candidate topic term set T . The utility of each term

is the product of its topicality and predictiveness. At each step, the algorithm selects

the topic term t∗ ∈ T with maximum utility. Then, it decreases the predictiveness

of other topic terms that predict the same vocabulary. This makes sure topic terms

that cover the uncovered part of the vocabulary will emerge for selection in the next

iteration. The algorithm stops once the utility of all candidate topic terms reaches

0, indicating that all vocabulary has been covered. Some example topic terms (both

unigrams and phrases) generated by DSPApprox for the query joints are shown in

Table 6.1.
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Algorithm 7 DSPApprox for identifying topic terms.

1: V = {v1, v2, ..., vn}: the set of vocabulary
2: T = {t1, t2, ..., tm}: the set of candidate topic terms
3: Vt: set of vocabulary words occurring within a window to t
4: Pw(t|v): co-occurrence (within window of size w) statistics
5: Compute topicality TP (t), ∀t ∈ T
6: Compute predictiveness PR(t), ∀t ∈ T
7: S : the output diverse set of topic terms
8: PREDV : vocabulary that has been predicted by S
9: S ← ∅

10: PREDV ← ∅
11: while PREDV ⊂ V and |T | > 0 do
12: t∗ ← arg maxt∈T TP (t)× PR(t)
13: S ← S ∪ t∗
14: T ← T \ {t∗}
15: for all v ∈ Vt∗ ∩ PREDV do
16: for all t ∈ T do
17: PR(t)← PR(t)− Pw(t|v)
18: end for
19: end for
20: PREDV = PREDV ∪ Vt∗
21: end while

6.3.2 Topic Term Extraction as a Diversification Problem

Interestingly, generating a set of topic terms as done by DSPApprox can be con-

sidered a diversification problem. Similar to diversifying a result ranking to provide

better coverage for multiple query topics, DSPApprox diversifies a set of topic terms

to provide better coverage for a set of vocabulary words. Document diversification

techniques such as PM-2 and xQuAD greedily selects the documents that are relevant

to the query and can provide coverage for the topics that those selected previously fail

to provide. DSPApprox iteratively selects the topic terms that are highly topical and

can predict the occurrences of the part of the vocabulary that have not been covered

by the terms selected earlier. This suggests that document diversification methods

could be used to generate a diverse set of topic terms from some given source of

information, which can then be used to perform document diversification.

So, what is the difference between DSPApprox and techniques such as PM-2 and

xQuAD? To answer this question, let us revisit how they work. Recall that DSPApprox

100



Algorithm 8 DSPApprox for identifying topic terms.

1: S : the output diverse set of topic terms
2: S ← ∅
3: while |T | > 0 do
4: t∗ ← arg maxt∈T

∑
v∈Vt TP (t)× P (t|v)

5: S ← S ∪ t∗
6: T ← T \ {t∗}
7: Vt ← Vt \ Vt∗ ,∀t ∈ T
8: end while

assumes that all vocabulary words have equal weight and computes the predictiveness

of each topic term t as the sum
∑

v∈Vt P (t|v) (Formula (6.2)). At each iteration, after

a topic term t∗ is selected and put into the result set S, the predictiveness of each of

the remaining topic terms t is reduced by an amount equal to
∑

v∈V ∗t ∩PREDV
Pw(t|v)

where V ∗t ∩ PREDV indicates the set of vocabulary words that the term t∗ predicts

(i.e., P (t∗|v) > 0) while those in S do not.

This procedure can be explained a bit differently, as shown in Algorithm 8. At

each iteration, DSPApprox selects the best term using the following objective function:

t∗ ← arg max
t∈T

∑
v∈Vt

TP (t)× P (t|v)

Then, after a term t∗ is chosen and put into the result set S, all vocabulary words

from Ct∗ are removed from consideration:

Vt ← Vt \ Vt∗ ,∀t ∈ T \ S

The process then repeats until termination.

Let us now revisit PM-2 with λ = 0.5, whose objective function is as follows:

d∗ ← arg max
d∈R

∑
t∈T

qt × P (d|t)
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Recall that PM-2 assumes that P (d|t) has taken P (d|q) into account. For simplicity,

let us assume that this is done by multiplying these two quantities:

d∗ ← arg max
d∈R

∑
t∈T

qt × P (d|q)× P (d|t)

Applying PM-2 to the topic term diversification problem by substituting the notion of

topic t with vocabulary v, document d with topic term t, P (d|q) for topicality TP (t)

and P (d|t) with predictiveness P (t|v), this function can be rewritten as:

t∗ ← arg max
t∈T

∑
v∈Vt

qv × TP (t)× P (t|v)

Note that the quotient qv of a vocabulary word gets smaller as the number of selected

topic terms t ∈ S that predicts v increases.

The difference between DSPApprox and PM-2 is now rather obvious: after a topic

term t∗ is selected, while PM-2 downweights the vocabulary words that t∗ predicts

by some amount, DSPApprox completely disregards these words in future iterations.

One can verify easily that xQuAD and DSPApprox have the same difference. Therefore,

document diversification methods can be seen as more lenient with discounting the

importance of the topics that have been covered to some extent, whereas DSPApprox

is substantially more aggressive.

In the context of search result diversification, one cannot estimate the relevance

of a document to each topic with perfect accuracy P (d|t). Ignoring a topic t as soon

as a document with P (d|t) > 0 is selected can be disastrous. This approach will also

fail to provide proportional result rankings. The aggressive nature of DSPApprox, as

a result, makes it inapplicable for this task. The effectiveness of techniques such as

PM-2 and xQuAD for generating a diverse set of topic terms, on the other hand, remains

to be seen. As a result, we will empirically evaluate their applicability to this task.
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6.4 Information Sources for Term Extraction

The DSPApprox technique described above was proposed for summarizing a set

of documents. Naturally, we will first apply it to the ranking of documents initially

retrieved for the query. Diversification techniques are then employed to diversify this

same document ranking with respect to the set of topic terms DSPApprox provides.

Beside the initial ranked documents, there are other sources of information that

can be potentially beneficial for the term extraction process. In this dissertation, we

consider query logs, anchor text, Wikipedia, and Freebase as possible information

sources.

6.4.1 Query Logs

User queries extracted from search logs have been proven valuable for identifying

user intents (Radlinski et al., 2008). Therefore, we consider query logs as a source

for finding topic terms. Specifically, we use both the AOL and the MSN query logs.

The AOL log has approximately 36 million queries while the MSN log has about 15

million. These logs are used as follows. For a given query, we obtain the top K most

relevant queries from each log using some standard retrieval model. These queries are

treated as a “document” set on which we run DSPApprox to acquire the topic terms.

6.4.2 Anchor Text

In Chapter 5, we have shown how anchor text can be used to infer query topics.

In addition, prior research has recognized the similarity between anchor text and user

queries (Eiron & McCurley, 2003). More recently, Dang and Croft (2010) found that

anchor text can be used to effectively simulate these queries for the task of query re-

formulation. This makes anchor text another potentially useful source for identifying

topic terms. These terms are generated for each query by running DSPApprox on the

top K retrieved anchor texts for this query.
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6.4.3 Wikipedia

Wikipedia has proven to be a very reliable source for effective query expansion

(Y. Xu et al., 2009). In fact, Bendersky et al. (2012) has demonstrated that, com-

pared to the expansion terms provided by the retrieval collection, those obtained from

Wikipedia usually describe different aspects of the query, thus combining them im-

proves diversity in the result rankings. Consequently, we also apply DSPApprox on the

top K documents retrieved from Wikipedia to extract topic terms for diversification.

6.4.4 Freebase

Freebase (Bollacker et al., 2008)2 is a large publicly available knowledge base that

contains rich structured information about real world entities and the facts associated

with them. It is designed to provide coverage for highly diverse and heterogeneous

data. For example, one of the TREC queries in our test set is “defender”. Two of

the topics associated with this query, as identified by TREC assessors, are “Windows

Defender”, the anti-spyware program, and “Land Rover Defender”, the sport-utility

vehicle. Both “Windows Defender” and “Land Rover Defender” are entities in Free-

base. This makes it a potentially valuable source for the extraction of topic terms.

Each entity in Freebase has a name (e.g. “Windows Defender”), a longer descrip-

tion and a variety of other attributes, together with its relationship to other entities.

In this work, we use only the description of each entity. In particular, we retrieve the

top K descriptions that are most relevant to the query for extraction.

For all four resources above, we use Query Likelihood as the retrieval model.

Furthermore, we only retrieve those “documents” that contain all of the query words

to ensure the quality of the extracted terms.

2http://www.freebase.com/
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6.5 Summary

We have introduced a new approach to topical diversification: diversification at

the term level. Existing work models a set of topics for a query, where each topic

is a group of terms. While this representation is intuitive and beneficial, it makes

the task of generating query topics automatically very difficult. Instead, we propose

to model the topic terms directly. Our hypothesis is that being able to identify the

important topic terms, which is a relatively well studied problem in the document

summarization literature, is sufficient for improving diversity in a result ranking. We

have also provided an intuitive justification for the fact that although our approach

only takes as input a set of topic terms, it can account for the diversity with respect

to the topics underlying these terms. We will empirically evaluate the validity of our

approach in the next chapter.

Our term level approach to diversification effectively reduces the task of finding

a set of query topics, which has proven difficult, into finding a set of topic terms.

Consequently, we propose to use DSPApprox, a greedy algorithm from the literature

of multi-document summarization (Lawrie & Croft, 2003) to identify a diverse set of

terms (unigrams and phrases). Furthermore, we have shown that DSPApprox is indeed

a diversification algorithm itself. We also presented our analyses of the similarity

between DSPApprox and existing document diversification methods, which enables

the use of these existing techniques for term generation. Last but not least, we have

explored several sources of data for finding effective topic terms. In the next chapter,

we will compare the effectiveness for search result diversification of the topic terms

generated using these techniques with the topics generated by existing work as well

as the benefits of those information sources.
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CHAPTER 7

EVALUATION OF TERM LEVEL DIVERSIFICATION

In the previous chapter, we introduced our term level approach to search result

diversification. Instead of inferring a set of latent topics for each query, each of

which is represented by a group of terms, we extract these terms directly. This set of

topic terms is provided to a diversification technique which treats each of them as a

topic to determine coverage in the ranked list. We then presented how DSPApprox, a

technique proposed for document summarization (Lawrie & Croft, 2003), can be used

to generate these topic terms automatically. In addition, we showed that document

diversification methods can be used for the task of term generation since it is also

a diversification problem. Finally, we described alternative information sources from

which we can extract effective topic terms.

In this chapter, we evaluate this approach and the associated techniques with the

aim of answering the following questions:

• In a controlled environment where we have the set of concise descriptions for

the ground-truth topics associated with each query, can using only the terms

from these descriptions for diversification improve diversity in the final result

ranking? This provides insight into the effectiveness of our term level approach.

• How does the term level approach to diversity compare with the conventional

topic level approach? (i.e. using the ground-truth topics as done in Chapter 4)

• In the more realistic situation where topic terms have to be generated automat-

ically, can the terms provided by DSPApprox help diversification? Furthermore,
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how does this approach compare to the topics generated using existing tech-

niques? Not only will this help us understand the effectiveness of the terms

DSPApprox generates, it provides a practical comparison between diversification

at the term level and the topic level.

• Since document diversification techniques can be used to generate a diverse set

of terms, how effective are they compared to DSPApprox?

• Among the sources that we investigate (documents in the initial rankings, the

AOL and MSN query logs, anchor text, Freebase, and Wikipedia pages), which

of them are useful? Does combining terms from these sources provide any

additional benefits?

• Regarding all of the questions above, do the results depend on which retrieval

model is used to generate the initial ranking of documents?

We will first explain our experimental setup in Section 7.1 and then answer each of

these questions with extensive analyses in the following sections.

7.1 Experimental Setup

Our setup for retrieval experiments is the same as in previous chapters. We use

ClueWeb-09 category B as the retrieval collection. Our query set consists of 200

queries from Web Track 2009-2012 (Clarke, Craswell, & Soboroff, 2009; Clarke et

al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke & Craswell, 2012).

The collection is stemmed using the Krovetz stemmer (Krovetz, 1993). Stopword

removal is only performed on the query using a small stopword list. A diversification

system works by first using a relevance-based retrieval model to obtain an initial

ranking of documents for each query. It then re-orders the top 50 documents in this

ranking to provide a more diverse result list. We consider four models for the first

pass retrieval: Query Likelihood (QL) (Ponte & Croft, 1998), Sequential Dependence
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Model (SDM) (Metzler & Croft, 2005), Relevance Model (RM) (Lavrenko & Croft,

2001) and Coordinate Ascent (CA) (Metzler & Croft, 2007). Following Bendersky et

al. (2010), spam filtering and the stop-word to nonstop-word ratio is incorporated as

follows:

P (d|q) =

 PM(d|q) if S(d) ≥ 60 and σ(d) ≥ 0.1

0 otherwise

where P (d|q) is the final relevance score for document d, PM(d|q) is the retrieval score

a baseline model M assigns to document d, S(d) indicates the confidence that d is

not a spam page (Cormack et al., 2011) and σ(d) is the stopword-to-non-stopword

ratio.

For diversification techniques, we employ xQuAD (Santos et al., 2010a), an effec-

tive redundancy-based technique, and our proportionality model PM-2. These two

techniques assume that the estimate of a document relevance to a topic, P (d|t), is

available. For the topic level approach, we treat the description of a topic t as a query

and use the query likelihood score PQL(d|t) as the relevance of d to this topic. For the

term level approach, P (d|t) is estimated as described in Chapter 6, which we restate

for convenience:

P (d|t) '

P (t|d)
∏
qj∈q

P (qj|d)

 1
|t|+|q|

where P (t|d) is the probability that the document d generates the term t, qj ∈ q

is a term in the query. For PM-2, for both the topic level and term level approach,

we combine P (d|t) with the relevance of each document to the query P (d|q) in a

weighted manner as before. We do not do this for xQuAD, whose framework already

takes P (d|q) into account. Regarding model parameters, all of them are selected via

5-fold cross-validation to maximize α-NDCG@20, which is one of the measures we

use in our evaluations. We use Fisher’s randomization test for statistical significance

testing.

108



In addition to α-NDCG , all systems are evaluated using a variety of other standard

diversity measures, including ERR-IA, NRBP , S-Recall and Precision-IA, our pro-

portionality measure CPR, and two traditional relevance measures NDCG and ERR.

Each metric is computed using the top 20 retrieved documents from each ranking to

be consistent with the official TREC evaluations (Clarke, Craswell, & Soboroff, 2009;

Clarke et al., 2010; Clarke, Craswell, Soboroff, & Voorhees, 2011; Clarke & Craswell,

2012).

7.2 Effectiveness of Term Level Diversification

In this section, we first evaluate the effectiveness of our term level diversification

approach. Each of the 200 queries is associated with a set of ground-truth topics

identified by TREC assessors. Thus, each of these topic descriptions can be considered

an optimal group of terms. We then discard this grouping structure and put all of

the resulting unigram terms into a set for each query. We provide the topic set and

the corresponding term set to the same diversification technique and evaluate the

diversity in the result ranking. The diversity effectiveness of a retrieval run indicates

the quality of the input set of topics and terms.

In addition, we have demonstrated earlier that related queries provided by a com-

mercial search engine are quite effective for diversification, which is consistent with

prior work (Santos et al., 2010a). These queries too can be considered good under-

lying topics for the original query. As a result, we also use the set of related queries

and the corresponding set of terms to evaluate our term level approach. It is worth

noting that the query set in this experiments only contains 190 out of the 200 queries

for which the search engine provides at least two suggestions.

We first present our results and analyses in the case where Query Likelihood (QL) is

used to retrieve the initial ranking. We will then discuss the case where we substitute
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QL with the three more effective models: Sequential Dependence (SDM), Relevance

Models (RM) and Coordinate Ascent (CA).

7.2.1 Query Likelihood (QL)

Table 7.1 compares our term level diversification approach to the topic level al-

ternative using both topic sets and both diversification techniques. The first thing

to notice is that the topic level approach, using both PM-2 and xQuAD, significantly

outperforms the baseline in all metrics, even with automatically generated topics.

This confirms the effectiveness of both of these frameworks at providing results that

are not only more relevant but also more diverse.

Interestingly, our term level approach also significantly outperforms the initial

ranking in all measures. These results are consistent across both diversification tech-

niques and topic sets. This confirms our intuition that identifying the right topic

terms alone (without the grouping structure) is sufficient to improve both relevance

and diversity with respect to the underlying topics. This has a very practical impli-

cation: it simplifies the task of generating a set of topics for each query to finding a

set of terms.

This table also shows that the term-based approach maintains a comparable level

of performance to the topic-based one. Their differences are not statistically signifi-

cant across most of the measures. In fact, in the experiment with the ground-truth

topics and terms, our approach is even slightly more robust: it helps more queries

and hurts fewer. As we pointed out in Chapter 6, our approach may accidentally pro-

motes documents for the “false” topics that correspond to the wrong combinations of

terms. The fact that it achieves comparable performance to the topic level techniques

indicates that this issue does have an impact on performance, but it is quite small.
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We notice, however, that some of the query topics are different from the query

itself by only one term. For example, the topics for the query “south africa” include

“history of south africa” and “maps of south africa”. Compared to the query, both

of these topics only have one additional content-bearing term, which is “history” and

“maps” respectively. Recall that our approach estimates the relevance of a document

to a term by the geometric mean of the probability that this document generates

this term and all of the query terms. For example, the relevance of d to “history” is

estimated as follows:

P (d|history) ' (P (history|d)× P (south|d)× P (africa|d))
1
3

which is equivalent to the way the topic level approach estimates the relevance of

this document d to the topic of “history of south africa”. As a result, it is possible

that term level diversification is competitive with the topic level alternative because

of queries like this. We are interested in seeing whether our approach can return

relevant documents for the topics whose description is very different from the query.

To investigate this issue, we use the notion of key term to indicate the number

of non-stopword terms in a query topic that are different from the query text. To

quantify the impact the number of key terms has on our approach, we plot the number

of topics where each approach is able to provide at least one relevant document against

the number of key terms for these topics. In addition, we also plot the actual number

of relevant documents retrieved for each topic against the number of key terms it

contains. These plots are presented by Fig. 7.1 (a) and (b) respectively. Note that

we only show the plots for PM-2 because the analysis with xQuAD is very similar.

Fig. 7.1 reveals that that not only is our approach comparable with its topic coun-

terpart on the topics with a single key term, it also remains competitive consistently

across different numbers of key terms. In fact, our approach manages to cover more

topics with 3 and 7 key terms than the topic-based system. This confirms the fact
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(a) The total number of topics covered with respect to their number of key terms.

(b) The total number of relevant documents retrieved across all topics with respect to the number
of key terms of these topics.

Figure 7.1: The total number of topics covered and the total number of relevant
documents retrieved for all queries by each approach with respect to the number of
key terms of each topic.
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that PM-2 and xQuAD can take as input a set of terms and retrieve relevant documents

for the topics underlying these terms.

In summary, our experiments show that PM-2 and xQuAD, although designed for

topic level diversification, are capable of operating at the term level. In other words,

they can take a set of topic terms and return documents for the latent topics under-

lying these terms. As a result, being able to identify an effective set of topic terms

that span multiple topics is sufficient to improve diversity in the result rankings.

The grouping structure indeed does provide additional benefits for diversification.

However, given that such effective topical structures are very difficult to generate

automatically, we argue that these benefits appear to be rather small.

7.2.2 SDM, RM and CA

Table 7.2 shows the effectiveness of our term level approach, with the ground-truth

topic terms, when we use SDM, RM and CA to retrieve the initial ranking of documents.

With SDM, this table shows a very similar trend to the previous results: our term

level approach consistently outperforms the baseline in all relevance and diversity

measures. This improvement is statistically significant in many cases. It is consistent

across both diversification techniques. This further confirms that finding the right

topic terms is sufficient to improve both relevance and diversity in the search results.

A part of this trend then carries over to the case with RM. Both PM-2 and xQuAD

provide substantial and significant improvements in all of the diversity measures.

Their improvement on the relevance measures, however, is not as consistent. While

PM-2 and xQuAD achieve slightly higher ERR than RM, their NDCG is slightly lower.

Regardless, these topic terms consistently improve diversity.
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In the case of CA, we observe that PM-2 and xQuAD can still improve diversity with

respect to most of the measures. Nevertheless, both of them hurt relevance. This

can be explained by the fact CA models the relevance of a document to a query using

about 100 features. The combination of these features that maximizes the relevance

of the document ranking was learned from the training data in a supervised fashion.

Our diversification systems, on the other hand, use Query Likelihood to determines

the relevance of a document to each topic. It is thus reasonable that re-ordering

the documents in a ranking that is highly optimized for relevance based on several

query likelihood estimates result in a ranking with a lower degree relevance. The

fact that PM-2 and xQuAD hurt relevance yet help diversity, in fact, provides strong

evidence that the term level approach indeed can promote diversity with respect to

query topics that underly the input set of terms. This is especially clear with the fact

that both PM-2[Term] and xQuAD[Term] achieve higher S-Recall than CA.

Comparing our approach to the topic level technique, however, the difference in

their performance is more significant in the case with SDM, RM and CA than with QL.

This shows that correctly identifying the grouping structure between topic terms can

indeed significantly improve performance. However, it is important to note that in

practice, it is extremely difficult to generate topics that are as concise and accurate

as these ground-truth topics. To the best of our knowledge, none of the existing

techniques for topic generation have achieved this level of performance. In the next

section, we will compare the effectiveness of the topics and terms that are generated

automatically.

Regarding the topics and terms from the related queries, whose results are pre-

sented in Table 7.3, we observe a similar trend as well, although to a lesser extent.

The improvement both approaches provide to the baseline is smaller and less con-

sistent compared to using the ground-truth set. We believe that this is due to the

mis-alignment issue where some of the related queries do not match up with the
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ground-truth topics. The performance differences between the topic and term level

techniques are also smaller.

In summary, our results have demonstrated that having the topic terms alone is

sufficient for improving diversity effectiveness. This is consistent across two diver-

sification techniques and four retrieval models for generating the initial document

rankings. This shows that our term level approach to diversification is indeed effec-

tive.

7.3 Effectiveness of Generated Topic Terms

We will now study the practicality of our term level approach by investigating

whether diversifying a document ranking with the topic terms that are generated

automatically can improve diversity. For this purpose, we will use the topic terms

generated using DSPApprox from the documents in the initial ranking. Specifically,

we compare the effectiveness of these terms to that of the topics generated from the

same set of documents using two existing techniques. This provides a comparison

between our term level approach to the conventional topic level method in a practical

setting where the ground-truth data is not available. After that, we examine the

applicability of PM-2 and xQuAD, two effective document diversification techniques, to

the task of generating a diverse set of topic terms and compare them to DSPApprox.

7.3.1 DSPApprox

We employ DSPApprox to generate unigrams and phrases separately as topic terms.

The total number of unigrams and phrases the algorithm returns are approximately

100 and 500 respectively. Since using too many terms is inefficient and unlikely to be

effective, we use a parameter T to control the number of terms used for diversification.
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The second parameter is w, which determines the size of the window in which

(1) a term has to co-occur with at least one query term in order to be considered a

candidate topic term, and (2) prediction boundary: a term cannot predict terms that

are more than w words away. We set w = 20 based on our prior experiments (Dang

& Croft, 2013) and tune T ∈ {5, 10, 20, 40, 60, 80, 100} via 5-fold cross-validation.

We consider three baselines for comparison.

Baseline 1. Our first baseline was the technique proposed by Carterette and Chandar

(2009). It applies LDA (Blei et al., 2003) on the initially retrieved documents and uses

the resulting LDA topics for diversification. The process that generates these topics

also provides an estimate of how relevant each document is to each of these topics,

which can be used as the P (d|t) component in both PM-2 and xQuAD. Each LDA topic

is essentially a distribution of terms. Another way to estimate P (d|t) is thus to treat

this distribution as a weighted query and set P (d|t) to the query likelihood score of

the document with respect to this query. We will report the results using the latter

estimate of P (d|t) since we found it to be more effective. This technique has two

parameters that need tuning. The first parameter is the number of latent topics c.

We consider c ∈ {2, 5, 10}. The second parameter is the number of the most highly

weighted terms T from each topic we use to form the weighted query. We consider

w ∈ {5, 10, 50}. We use the multi-threaded implementation of LDA that is publicly

available 1.

Baseline 2. Our second baseline technique, also proposed by Carterette and Chandar

(2009), applies k-nearest neighbor (KNN) to cluster the retrieved documents. After

that, it estimates a relevance model (Lavrenko & Croft, 2001) from each of the clusters

and use it as a topic model. Similarly, P (d|t) is estimated as the query likelihood

score of the document to the weighted query constructed from the T most highly

1https://sites.google.com/site/rameshnallapati/software
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weighted terms from each relevance model. Its parameters include k ∈ {2, 5, 10} and

T ∈ {5, 10, 20}, which are the number of nearest neighbors and the number of top

terms from the relevance model to be used to form the query respectively.

Baseline 3. MMR (Carbonell & Goldstein, 1998) has become a canonical baseline

in the diversity literature. Though it does not explicitly model topics, it fits into

the class of algorithms that relies solely on the set of documents. It greedily selects

documents from the initial ranking with the following objective function:

d∗ ← arg max
d∈R

λR(d, q)− (1− λ) max
dj∈S

Sim(d, dj)

where R(d, q) is the relevance of the document d to the query q which can be acquired

directly from the baseline ranking and Sim(d, dj) is the cosine similarity between the

two documents.

All parameters associated with the three baselines are determined using 5-fold

cross validation. Topics and terms are extracted from the top 100 documents in the

initial rankings. We first present our results and analyses for the case where QL is

used to retrieve the initial rankings. After that, we will discuss the case with SDM,

RM, and CA.

7.3.1.1 Results with Query Likelihood (QL)

Table 7.4 presents the comparison between the techniques mentioned above. The

letters b, m, k and l indicate statistically significant differences (p-value < 0.05) to

query-likelihood, MMR, KNN and LDA respectively. Among the techniques under investi-

gation, MMR hurts more queries than it helps and thus fails to provide any improvement

over the baseline. The two topic level techniques, LDA and KNN, using either PM-2 or

xQuAD for diversification, increase performance in some measures (e.g. NRBP) but

decrease the performance in other measures (e.g. α-NDCG and CPR). They fail to

provide consistent improvement overall. Furthermore, the difference between their
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performance and that of the initial ranking is very small and not statistically signifi-

cant.

In contrast, both the unigrams and phrases generated using DSPApprox, when used

by both PM-2 and xQuAD, substantially outperform all other systems under comparison

in almost all measures. Statistically significant differences are observed in many cases.

This confirms the effectiveness of our term level approach as well as DSPApprox at

generating very effective sets of topic terms. Between unigrams and phrases, the

former appears to be slightly more robust by improving more queries and hurting

fewer, but the latter manages to retrieve more relevant results.

Table 7.5 presents two example topics provided by LDA and KNN and the terms

provided by DSP[U] for the query “sat”. Two of the ground-truth topics for this

query include typical good range of SAT scores and information on test preparation

materials and courses for sat. We examined the top 30 terms from these topics and

manually selected all of the terms that we believe are useful. For readability, we

present these terms in bold and before the less useful ones. The bolded terms for

DSP[U] are selected in the same manner. This table shows the first topic provided

by KNN and LDA is indeed very reasonable. The second one, however, is not. This

is the general problem with clustering where the number of clusters is specified in

advance. The non-relevant documents in the initial ranking usually produce one or

more non-relevant clusters, which hurts diversification. Furthermore, even the topics

with the effective terms contain unrelated words. This might also have a negative

impact on diversity.
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Table 7.5: Topics extracted by KNN and LDA and terms extracted by DSPApprox for
the query “sat”. Two of the ground-truth topics of this query are typical good range
of SAT scores and information on test preparation materials and courses for sat.

KNN LDA DSP[U]

Topic 1 Topic 2 Topic 1 Topic 2 Terms
test vegan test pm college take
prep potluck vocabulary jazz test july
score 6pm prep open vocabulary potluck
guide 10pm score fri prep vegan
preparation northridge preparation 2006 book satisfy
college tour satisfy rev course april
grenadines dec dissatisfy aug exam june
vincent los answer thu essay february
mahalo 2009 question tue min march
grenada fri neutral karaoke score january

The terms generated by DSP[U] provides good coverage for the first ground-truth

topic and might slightly cover the second (“min” and “score”). As we have demon-

strated earlier, PM-2 and xQuAD are able to take a set of topic terms as input and

return documents for the underlying topics, each of which corresponds to a certain

combination of those terms. The fact that DSPApprox significantly outperforms both

the baseline ranking and the two topic-based systems further supports this claim as

well as confirming the effectiveness of DSPApprox.

Although DSPApprox also generates off-topic terms, the superiority of both DSP[U]

and DSP[P] suggests that the effect of these terms on our approach is not as significant

as it is on the topic level alternative. This may be due to the fact that they are not

clustered with the on-topic terms, thus they do not interfere as much with these terms

in representing the underlying topics. We will study their effect in Section 7.3.1.3.

7.3.1.2 Improvement Analysis

We focus our analysis on the DSPApprox results using PM-2. Our findings apply

to xQuAD as well. As can be seen from Table 7.4, DSPApprox significantly improves
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the baseline ranking in all diversity measures except S-Recall . Specifically, DSP[U]

increases S-Recall slightly while DSP[P] decreases it. Our investigation suggests that

not only do DSP[U] and QL cover about the same number of topics, they cover almost

the same set of topics (98% overlap). This indicates that the improvement made by

DSPApprox comes from better per topic coverage, which refers to both more relevant

documents for each of the covered topics as well as better ranking of these documents.

Quantitative analysis of the effect of better per topic coverage on performance is pro-

vided in Table 7.6. WIN and LOSS indicate the set of queries where DSPApprox

helps and hurts α-NDCG compared to QL. %∆P denotes the relative performance

difference in α-NDCG . S.Rec ↑ indicates the subset of WIN where S-Recall is also

improved and REST indicates the remaining of the set. Similarly, S.Rec ↓ indicates

the subset of LOSS where S-Recall is also lower and REST indicates the remaining.

The performance difference between DSPApprox and QL in the REST set indicates

the contribution of better within topic coverage to the overall improvement brought

by DSPApprox. It can be seen that 62.14% and 69.96% of the improvement provided

by DSP[U] and DSP[P] respectively comes from having better within topic cover-

age. Similarly, 57.06% and 53.89% of the decrease in α-NDCG caused by these two

systems are also attributed to per topic coverage. Since the percentage decrease in α-

NDCG is significantly lower than the percentage improved, both DSP[U] and DSP[P]

outperform QL overall. It is important to point out the performance differences in

the S.Rec ↑ and S.Rec ↓ segments do not indicate the effect of having broader topic

coverage alone but also that of per topic coverage.

Table 7.6 also demonstrates that DSP[U] improves and hurts S-Recall for roughly

the same number of queries, which accounts for the slight overall improvement in

S-Recall . DSP[P], on the other hand, hurts more queries than it helps with respect

to S-Recall . This explains the overall decrease in this measure.
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Table 7.6: Contribution of within topic coverage to the overall improvement in α-
NDCG . Within topic coverage refers to both having more relevant documents for
each of the covered topics and better ranking of these documents. WIN and LOSS
indicate the sets of queries whose α-NDCG DSPApprox (abbreviated as DSP) improves
and hurts respectively. S.Rec ↑ is the subset of WIN on which subtopic recall is also
improved and REST is its complement. S.Rec ↓ is the subset of LOSS on which
subtopic recall is also lowered and REST is its complement. ∆P is the relative
difference in α-NDCG between DSPApprox and QL. [U] and [P] indicate terms and
phrases respectively.

%∆P #q Contribution to %∆P

DSP[U]

WIN +19.54%
S.Rec ↑ 16 +37.86%
REST 84 +62.14%

LOST −11.25%
S.Rec ↓ 14 −42.94%
REST 51 −57.06%

DSP[P]

WIN +26.27%
S.Rec ↑ 16 +30.04%
REST 74 +69.96%

LOST −16.76%
S.Rec ↓ 23 −46,11%
REST 57 −53.89%

The analyses above suggest that the terms provided by DSPApprox, though unable

to provide much broader coverage for the query topics, correctly represent most of

those covered by QL. Consequently, they help surface more documents on these top-

ics, significantly improving diversity according to CPR, all three cascade measures,

Precision-IA, as well as both relevance metrics.

The fact that diversification with both unigrams and phrases given by DSPApprox

significantly improves the relevance of the results (NDCG and ERR) is very inter-

esting. Our approach, in fact, is very similar to pseudo-relevance feedback. The

difference is that traditional relevance feedback uses the extracted terms to update

the query model to retrieve new documents. Our approach, on the other hand, only

attempts to re-order the input ranking, pushing more relevant documents to earlier

ranks. As such, diversification can be considered a precision-driven framework for

relevance feedback.

125



7.3.1.3 Failure Analysis

As mentioned above, DSP[U] does not provide significant improvement in S-Recall .

In fact, DSP[P] hurts S-Recall . Our analysis shows that DSP[U] and QL cover almost

the same set of topics (98% overlap). This high percentage of overlap suggests that the

terms generated by DSPApprox are biased towards topics covered by the top ranked

documents in the initial ranking.

We believe the cause of this bias is the way DSPApprox computes topicality. We

observe that the topicality of a term is relatively proportional to the relevance model

probability (Lavrenko & Croft, 2001) estimated from the initially retrieved docu-

ments. This model usually assigns higher probabilities to frequent terms from higher

ranked documents since they are assumed to be more relevant. If a document at a

very low position covers topics that are different from those at early ranks, chances are

their topic terms do not appear in these documents with high frequency. Therefore,

their chance to be included in the resulting set of terms is relatively small, causing

these topics to be excluded from the coverage of the final set. This is the main reason

why subtopic recall was not improved.

We have also found two other causes of failure which are due to the combined effect

of several factors. First, there is the “false topic” issue due to arbitrary combinations

of the extracted terms that we have discussed earlier. This is a general problem

with our term level approach. Table 7.7 shows some example terms extracted by

DSPApprox for the query “kenmore gas water heater”. It turns out that the doc-

uments that mention gas water heaters manufactured by Kenmore also mention a

variety of other electric appliances. In addition to these relevant documents, Query

Likelihood also returns several non-relevant documents about water heater from other

manufacturers and other appliances by Kenmore. As a result, while DSPApprox found

some good terms that align effectively with the ground-truth topics such as “man-

ual”, “tankless” and “steam” (see Table 7.7), it also returns off-topic terms such as
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“electric”, “appliances” and “refrigerators”. One of the possible “false topics” that

arises is “kenmore refrigerators”. When PM-2 attempts to diversify this ranking with

respect to those terms, it promotes the non-relevant documents that mention both

“kenmore refrigerators” and “aquastar gas water heater”. The reason is that the

former phrase makes this non-relevant document appear highly relevant to the “false

topic” while the latter makes this non-relevant document appear somewhat relevant

to the query.

Table 7.7: Some example outputs of DSPApprox for the query “kenmore gas water heater”.
Important terms from the original TREC subtopics for this query are also provided.

TREC Sub-topic DSPApprox

1) reviews

2) owner manuals manual

3) features, energy consumption tankless
and safety steam

electric

appliances

refrigerators

The second cause of failure is due to the fact that the non-relevant documents re-

trieved by Query Likelihood are consistently on the wrong topics. For example, for the

query “adobe indian house”, in addition to the relevant documents, QL also returned

quite a few documents about “adobe pdf”. Although DSPApprox manages to extract

good terms from the relevant documents, the non-relevant ones cause DSPApprox to

generate terms such as “acrobat” and “pdf”. As a result, PM-2 promotes documents

for this non-relevant topic. Example terms are presented in Table 7.8.

7.3.1.4 Results with SDM, RM and CA

Table 7.9 and Table 7.10 compare the term level approach and topic level alter-

native with SDM, RM and CA as the baseline retrieval models. Overall, although the

performance difference between systems is smaller, the trend is similar to the case with

QL as the initial retrieval model. Diversification using the set of topic terms generated
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Table 7.8: Some example outputs of DSPApprox for the query “adobe indian house”. Im-
portant terms from the original TREC subtopics for this query are also provided.

TREC Sub-topic DSPApprox

1) How to build build

2) Indian tribes that used adobe houses
pueblo
tribe

3) books, videos about adobe building

acrobat

pdf

by DSPApprox can improve both relevance and diversity in most cases compared the

baseline ranking regardless of what model being used.

Between the topic level and our term level approach, our approach with PM-2

as the diversification technique (both DSP[U] and DSP[P]) consistently outperforms

both KNN and LDA in both CPR and all three cascade diversity measures. Although

this improvement is only statistically significant in a few cases, it is consistent across

SDM, RM and CA. In addition, DSP[U] consistently achieves higher S-Recall than the two

topic level methods. This further supports our claims. Firstly, having the right set

of topic terms, which we can generate automatically, is sufficient to improve diversity

with respect to the underlying topics. Secondly, it is very difficult to generate accurate

topic structures that are beneficial to diversification. A similar trend can be seen with

xQuAD, although it is less consistent.

The benefits of using phrases appear to be larger with more effective initial rank-

ings. Both with SDM and CA, DSP[P] using either PM-2 or xQuAD is the top performing

approach with respect to all three cascade diversity measures as well as the relevance

measures.
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7.3.2 Term Generation with Document Diversification Methods

We now evaluate the effectiveness of PM-2 and xQuAD for generating a diverse

set of topic terms. Recall that this term generation task is also a diversification

problem. Instead of generating a ranking of documents with coverage for multiple

topics, the aim is to select a set of topic terms that can predict the occurrence of a large

proportion of the vocabulary associated with some set of latent topics. Consequently,

PM-2 and xQuAD can be applied straight-forwardly, as described in Chapter 6. To

ensure fair comparison between PM-2, xQuAD and DSPApprox, we set λ = 0.5 for both

PM-2 and xQuAD.

The comparison is done as follows. We first use DSPApprox to extract a set of

unigram topic terms from the initial ranking of documents as we did earlier. We

then provide the same set of vocabulary v ∈ V , candidate topic terms t ∈ T , their

topicality TP (t) and the predictiveness statistics P (t|v) to PM-2 and xQuAD. These

techniques will then generate their own set of topic terms. Each of these sets are then

provided to PM-2 to diversify the initial ranking of documents retrieved by each of

the four standard models: QL, SDM, RM and CA.

The results are presented in Table 7.11. It shows that although the terms gener-

ated using PM-2 and xQuAD can provide some improvement over the initial rankings,

they are not consistent. Furthermore, they are not as effective as those provided by

DSPApprox. Recall that the difference between these techniques is as follows. Af-

ter a topic term is selected, PM-2 and xQuAD downweight the vocabulary words that

are covered (or predicted) by this term by some amount specified as part of their

objective function. In the next iteration, the value of those remaining topic terms

that predict these same vocabulary will thus be discounted. DSPApprox, on the other

hand, completely disregards these vocabulary words in future iterations. As a result,

DSPApprox can be considered more aggressive in the treatment of vocabulary that

has been somewhat covered.
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Let us revisit the objective function of PM-2 (λ = 0.5):

t∗ ← arg max
t∈T

∑
v∈Vt

qv × TP (t)× P (t|v)

where qv is the quotient of the vocabulary v (i.e., its weight), which is computed as:

qv =
1

2
(∑

t∈S
P (t|v)∑

v′∈V P (t|v′)

)
+ 1

where S is the set of selected topic terms at the current iteration. After a topic

term is selected (i.e., added to S) that covers a vocabulary v, the quotient qv will

become lower in the next iteration. However, given that our vocabulary set typically

consists of thousands of words, the amount of quotient decreased from one iteration

to the next for v is very small. As a result, in the event that most of the vocabulary

is from one latent topic while less is from another topic, it is possible that PM-2

keeps selecting the topic terms that predict the vocabulary of this dominating topic,

leaving the vocabulary of the other topic uncovered. One can verify that this can also

happen to xQuAD. We argue that this is why PM-2 and xQuAD do not work as well as

DSPApprox.

To verify if this is true, we introduce two variants of PM-2 for term generation,

which involves a more aggressive downweighting function: PM-2L (linear discounting)

and PM-2E (exponential discounting). Their formula for computing the quotient is as

follows:

q(PM−2L)v =
1

2|Sv|
(∑

t∈S
P (t|v)∑

v′∈V P (t|v′)

)
+ 1

q(PM−2E)
v =

1

2e|Sv |
(∑

t∈S
P (t|v)∑

v′∈V P (t|v′)

)
+ 1

where |Sv| is the number of topic terms in S such that P (t|v) > 0 (i.e., t covers v

to some extent). This is based on the fact that DSPApprox disregards a vocabulary

word v in future iterations as soon as a topic term t with P (t|v) > 0 is selected.
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Figure 7.2 compares the terms provided by PM-2L and PM-2E with the original

PM-2. We also show the results with the terms generated using DSPApprox and

xQuAD for comparison. They are evaluated based on their effectiveness for document

diversification measured using α-NDCG . It is clear that with respect to PM-2, having

a more aggressive downweighting function increases the diversity among the selected

topic terms. It also appears exponential downweighting is more effective overall.

Regardless, both PM-2L and PM-2E are still not as good as DSPApprox, which ignores

a vocabulary as soon as it has been predicted instead of downweighting it.

7.4 Results with Terms Extracted from External Sources

In this section, we evaluate the effectiveness of the five external sources of in-

formation, the AOL log (AOL), the MSN log (MSN), anchor text (Anchor), Freebase

(Freebase) and Wikipedia (Wiki), for providing useful terms that are beneficial to

diversification. In addition to using the topic terms from each resource separately, we

test a system that combines the top T terms from each of the four resources (All).

We will also compare their effectiveness with that of the retrieved documents (RDOC),

which we have discussed in the previous section. Recall that with the external re-

sources, we only retrieve the “documents” (which are queries in the case with query

logs, entity descriptions in the case with Freebase, etc.) that contain all of the query

terms. As a result, each resource does not provide documents for all 200 queries.

For comparison, we use the subset of queries where all of them can provide at least

two documents, on which we can apply DSPApprox to obtain the topic terms. The

resulting subset consists of 98 queries. The parameter T , which is the number of

topic terms used by each system under comparison, as well as all parameters of the

diversification techniques being used are tuned via 5-fold cross-validation.
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(a) Initial rankings retrieved using QL (b) Initial rankings retrieved using SDM.

(c) Initial rankings retrieved using RM. (d) Initial rankings retrieved using CA.

Figure 7.2: Comparison of diversification effectiveness among the topic terms provided
by PM-2 and its two variants with more aggressive down-weighting strategy: PM-2L

and PM-2E. In addition, we also show the performance of the terms extracted using
DSPApprox and xQuAD as well as the initial rankings for comparison. It can be seen
that discounting the vocabulary words more heavily once a topic term predicting it
is selected is always more effective.

Table 7.12 and Table 7.13 compare the effectiveness of these five sources with

QL and SDM as the initial retrieval models respectively. Similarly, Table 7.14 and

Table 7.15 presents the same comparison but for the case with RM and CA. We will

focus our discussion on the results with PM-2 since it usually achieves better results

than xQuAD.

These tables show that, across four models used for retrieving the initial rankings,

the terms extracted from Freebase provide the largest performance gain over these

baseline rankings in CPR and all three cascade diversity measures. These improve-
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ments are statistically significant in several cases. They also improve relevance as

well, except in the case of CA. We have explained this in the previous section. CA is

highly optimized for the relevance of the document rankings using about 100 features.

Thus diversifying these rankings based on the query likelihood estimates for P (d|t)

(where t is a unigram term) is not ideal. In Chapter 8, we will discuss other types

of terms that can help improve these estimates. In addition, the approach based on

Freebase outperforms those that use any other resources overall. This confirms the

benefits of using a human-edited knowledge base.

AOL, Wiki and RDOC also improve over the initial rankings in almost all measures

across QL, SDM and RM. These improvements are statistically significant in some cases

(mostly with QL). Regarding S-Recall , while the documents obtained from both the

retrieval collection and Wikipedia provide no or slight increase in S-Recall compared

to the initial ranking, AOL (and Freebase) improves S-Recall substantially. We believe

that this is because the queries and entity descriptions are shorter than the web

documents, which makes the extraction of the right topic terms easier. We rule out

the reason that the AOL log provides broader coverage for the query topics because

we found that the top 50 documents from the initial rankings provide quite broad

coverage as well.

Although MSN also provides some improvements, they are not very consistent. The

terms generated using MSN help in the case of QL and RM but not in the case of SDM.

Our analyses suggest that DSPApprox seems to extract more off-topic terms from MSN

than from the other sources, which potentially leads to a larger number of “false

topics”. As a result, diversification depends more on the documents in the initial

rankings (i.e., which “false topics” they happen to match).

Anchor text, on the other hand, is unable to provide improvements over the initial

rankings. The reason is that it happens to cover topics that are very different from the

ground-truth. For example, the ground-truth topics of the query “titan” includes the
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“Tennessee Titans” football team and a “Nissan truck” model. While most sources

provide coverage for these two topics, Anchor provides terms such as “teen”, “raven”

and “cyborg”. This suggests that Anchor covers the topic of Teen Titan, which is a

comic, and “raven” and “cyborg” are two of the characters in it. Therefore, Anchor

indeed provides useful terms. It was penalized simply because our evaluation strategy

is based on a predefined topic set. This suggests the potential for combining multiple

resources since each of them might cover different topics.

Combining terms (All) from all resources does not provide an advantage over

using Freebase alone with respect to the cascade measures. This is perhaps caused

by the terms from Anchor. However, All consistently improves S-Recall across QL,

SDM, RM and CA. In fact, S-Recall provided by All is statistically significantly better

than both SDM and RM, which none of the resources individually can achieve. We

believe that the reason it is not as good as using Freebase alone regarding the three

cascade measures is because of the off-topic terms DSPApprox provides. Recall that we

combine these resources simply by merging top T terms from each of them together.

As a result, the number of off-topic terms in the combined approach All is quite high.

Note that while All is not as effective as Freebase regarding the cascade measures

and the two relevance measures, it is still substantially better than QL, SDM, RM and

slightly better than CA. This is very promising considering that the way we combine

these resources are very simplistic. We will discuss better methods for combining

multiple sources in the last chapter.
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7.5 Summary

In this chapter, we have demonstrated the effectiveness of our term level approach

to diversification. We show, using both the TREC sub-topics and the related queries

from a commercial search engine, that diversifying a result ranking with respect to a

set of topic terms can promote diversity with respect to the topics underlying these

terms. In other words, term level diversification can be considered diversification with

respect to the underlying latent topics.

This effectively reduces the task of finding a set of query topics, which has proven

difficult, to finding a set of terms. Consequently, we show that such topic terms can

be extracted automatically and effectively using DSPApprox (Lawrie & Croft, 2003),

a technique previously proposed for document summarization.

The mechanism used by DSPApprox reveals that generating topic terms is, in fact,

a diversification problem by itself. Although this suggests that existing techniques for

document diversification such as PM-2 and xQuAD can be applied, this turns out not

to be the case, at least not directly. The reason is because these techniques typically

downweight a topic as a document on this topic is selected. In the context of term

generation where “topics” correspond to vocabulary and “documents” correspond

to topic terms, there are thousands of vocabulary words for which a result set of

topic terms should provide coverage. This lenient nature of downweighting is not

sufficient to ensure the next topic term to be selected will cover a different part

of the vocabulary. On the other hand, the aggressive nature of DSPApprox, which

completely ignores all vocabulary as soon as a topic term covering them is selected,

has been shown to be very successful.

Finally, we show that documents in the initial rankings, query logs, anchor text,

Freebase and Wikipedia pages are valuable sources for extracting topic terms. Each of

them individually can provide effective terms for diversification. Among these, Free-
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base provides the largest performance gain in both diversity and relevance measures.

Combining them further improves topic coverage in the search results.
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CHAPTER 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

In this thesis, we introduced a new perspective to search result diversification: di-

versity by proportionality. Instead of quantifying diversity by the amount of novelty

in a result ranking, we consider a list more diverse if the ratio between the number of

documents it provides for each query topic matches more closely with the topic pop-

ularity distribution. Based on this perspective, we derived an effectiveness measure

called Cumulative Proportionality (CPR) and a framework for optimizing propor-

tionality in search results with two instantiations: PM-1 and PM-2. While PM-1 is a

simple adaptation of the Sainte-Laguë method used for promoting proportionality in

elections, it serves as a basis for PM-2, a practical adaptation that takes into account

the fact that a document might be related to multiple topics.

Regarding our CPR measure, we found that it correlates well with existing diver-

sity measures that are based on novelty and redundancy. The reason is that enforcing

proportionality at every ranks helps surface relevant documents for more topics at

early positions in the list, thereby increasing novelty and equivalently decreasing re-

dundancy.

Despite the correlation, CPR is different to those measures in the following way.

The effectiveness of a diverse ranking comprises of three factors: the number of top-

ics for which it can provide at least one relevant document, the number of relevant

documents it contains for each topic (which implies the number of non-relevant doc-

uments) and the positions of these relevant documents in this ranking. Among the
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rankings that are only effective with respect to one or two out of the three criteria,

existing measures prefer those in which the relevant documents (to any of the topics)

are highly ranked even though the overall topic coverage is low and there are only

a few such relevant documents. CPR, on the other hand, favors the result lists in

which the relevant documents might not appear in the highest positions but there is

coverage for a larger number of topics as well as more relevant documents per topic

(which reflects higher proportionality to some extent).

We demonstrated, using the set of ground-truth topics as well as the related queries

obtained from a commercial search engine, that PM-2 outperforms xQuAD, a top per-

forming redundancy-based diversification technique, with respect to both CPR and

a variety of redundancy-based diversity measures which xQuAD was designed to opti-

mize. The improvement provided by PM-2 is consistent across four standard baseline

retrieval models – Query Likelihood (Ponte & Croft, 1998), Sequential Dependence

Model (Metzler & Croft, 2005), Relevance Model (Lavrenko & Croft, 2001) and a

learning to rank model trained using Coordinate Ascent (Metzler & Croft, 2007).

Recall that xQuAD measures the novelty of a document based on the marginal

probability that it covers the topics with low probability of having been covered by

those selected earlier. PM-2, on the other hand, scores a document based on how

proportional the resulting set of documents becomes if this document is selected,

which loosely models its novelty. As a result, PM-2 can be considered a redundancy

minimization technique. Our analyses have shown that this proportionality-based

novelty measure is one of the factors that makes PM-2 better.

Since diversification is not practical without the ability to automatically infer the

topics associated with the user queries, we address the problem of topic generation.

We have shown that reformulations for queries obtained from two publicly available

resources, anchor text and Microsoft Web N-Gram Services, can provide coverage

for a broad range of query topics. We experimented with two clustering algorithms
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and two query similarity measures for grouping the reformulations that are topically

related. We found that agglomerative clustering using the similarity measure based

on co-occurence provides the most topically consistent clusters. Furthermore, our

retrieval experiments have shown that these clusters, each of which is assumed to

represent a query topic, are also effective for diversification.

We observed that modeling for each query a set of topics where each topic is a

group of terms makes the task of topic generation very difficult. Consequently, we

proposed to identify for each query a set of terms that describe these topics. These

terms are then provided to existing diversification techniques that treat each of them

as a topic for which they aim to provide coverage. This approach is called term

level diversification. Our hypothesis is that diversification using a set of terms can

promote diversity with respect to the latent topics underlying these terms, and thus

being able to identify the important topic terms related to the true query topics

is sufficient for improving diversity in a result ranking. This was confirmed by our

retrieval experiments using the set ground-truth topics and the corresponding set of

terms as well as the related queries from a commercial search engine.

Our term level approach to diversification effectively reduces the task of finding

a set of query topics, which has proven difficult, into finding a set of topic terms.

Consequently, we used DSPApprox, a greedy algorithm from the literature of multi-

document summarization (Lawrie & Croft, 2003) to identify a diverse set of terms

(unigrams and phrases). Our results indicated that the term level approach using

these terms achieves significantly better results compared to the topic level coun-

terpart using topics that are generated automatically by two existing cluster-based

techniques.

Interestingly, we showed that DSPApprox is itself a diversification algorithm. Al-

though this suggests that existing techniques for document diversification such as

PM-2 and xQuAD can be used to generate effective topic terms, this turned out not to
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be the case, at least not directly. Our analyses of the similarity between DSPApprox

and these methods demonstrated that document diversification techniques are too

lenient in penalizing redundancy. They typically downweight a topic each time a

document on this topic is selected. In the context of term generation where “top-

ics” correspond to vocabulary and “documents” correspond to topic terms, there are

thousands of vocabulary words for which a result set of topic terms should provide

coverage. This lenient downweighting is not sufficient to ensure the next topic term

to be selected will cover a different part of the vocabulary. On the other hand, the ag-

gressive nature of DSPApprox, which completely ignores a subset of the vocabulary as

soon as a topic term covering them is selected, has been shown to be very successful.

Finally, we explored several sources of information for generating topic terms.

This includes documents in the initial rankings, query logs, anchor text, Freebase

and Wikipedia pages. We have shown that each of them individually can provide ef-

fective terms for diversification. Among these resources, Freebase provides the largest

performance gain in both diversity and relevance measures. Combining them helps

lead to broader topic coverage.

8.2 Future Work

As mentioned before, the failure with PM-2 that we observed is due the fact that

we use Query Likelihood to estimate the relevance between a candidate document

to the query topics (P (d|t)). We intend to apply the learning to rank framework to

estimate P (d|t). We believe that this will substantially improve both the diversity

and relevance in the final ranking.

An interesting direction is to extend PM-2 to work in the multi-level diversification

setting. Ideally, if the result list for the query “java” should contain nine documents

related to the programming language, we should consider diversifying these nine doc-

uments as well to account for different sub-topics within programming.
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Recall that our diversification experiments are conducted on top of the initial

rankings retrieved using different relevance-based models. Among these, the ini-

tial rankings that are obtained using the learning to rank approach outperforms all

other non-learning baselines (Query Likelihood, Sequential Dependency and Rele-

vance Model) for all diversity measures. It is important to point out that the learning

to rank approach, in fact, does not promote diversity. It is optimized to retrieve more

relevant results, which naturally increases the chance of covering more topics, thereby

improving diversity.

Yue and Joachims (2008) propose a learning framework that truly optimizes for

diversity. As opposed to the learning to rank approach which takes as input a doc-

ument and outputs its relevance estimate, this framework aims to learn a function

fw(S,R) = wTΦ(S,R) which takes as input a set of document S and outputs its

coverage with respect to the set of topics in target document set R. The feature set

Φ(S,R) describes how well S covers the vocabulary in R. The model parameter w is

learned from training data using structural SVM. At run time, this model is applied

in the same greedy fashion. It iteratively selects a document from the input ranking R

to put into the output (diverse) ranking S. At each iteration, it selects the candidate

documents d with maximum fw(S ∪ d,R).

Although Yue and Joachims (2008) focus on the coverage of the result ranking,

it is possible to incorporate other features. The limitation of this framework, on the

other hand, is that of the implicit approach: it does not model query topics, thus

cannot take into account topic popularity. We will explore the possibility of inte-

grating proportionality into this framework in the future. The benefits of a learning

framework is that we can incorporated arbitrarily defined features, such as the topics

generated from multiple sources. However, this poses a major challenge to the notion

of proportionality, which by definition is with respect to a single set of query topics. If

one can clearly define what proportionality means in this case, this potentially helps
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with multi-dimension diversification well (i.e., the search results provide coverage for

not for only multiple topics but also for multiple sentiments per topic).

Although it is unclear how this learning framework could be used to optimize

for proportionality, it can be used to generate topic terms. DSPApprox, PM-2 and

xQuAD all employ their own heuristic combination of topicality and predictiveness.

These two features can be incorporated into the feature set Φ(S,R) easily where S

is now the set of topic terms. Any other potentially useful features could be added

as well. In fact, predictiveness itself can be modeled using multiple features, each

of which corresponds to a different subset of the vocabulary in R. For example, we

could have one feature indicating how well S predicts the entire set of vocabulary

and another indicating how well S predicts the set of vocabulary that occurs at least

five times in R. In addition, the co-occurrence statistics between a topic term and

a vocabulary word estimated from multiple sources of information could be added

as separate features. The idea is that a topic term that consistently predicts a set

of vocabulary words across different data sources should be a good topic term. The

burstiness of a term can potentially be a useful as well since terms that occur very

frequently only in a few documents should be highly topical. A major challenge is

how we construct the training data. We can start with treating the terms from the

ground-truth topics as the optimal set of topic terms.

Regarding the types of terms used for diversification, we have experimented with

unigrams and phrases. As shown in Chapter 4, as we use more effective models to

retrieve the initial ranking for diversification, phrases usually perform slightly better

than unigrams for all three cascade measures as well as the traditional relevance

measures. This is very promising given that the method we used to extract phrases

are very simplistic. In the future, we want to study whether using more sophisticated

NLP techniques for phrase extraction can further improve diversity effectiveness.
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In addition to unigrams and phrases, we plan to consider anchor text as a “term”.

Recall that the basis of our term level approach is that existing diversification tech-

niques can take as input a set of terms and provide a diverse ranking with respect

to the latent topics underlying these terms. This is because these techniques favor

documents that are “relevant” to multiple terms. Intuitively, a latent topic will have

a higher chance of being covered in the result ranking if it is represented by a suffi-

cient number of terms in the input set. Our results in Chapter 5 have shown that we

can generate topically consistent clusters of anchor text. This indicates that we can

obtain a sufficient number of anchor texts for each topic. It would be interesting to

see if disregarding the cluster structure and using all of the reformulations as a set

of terms for diversification can improve diversity. Furthermore, how is this approach

compared to using the clusters for diversification as we have done earlier? Each clus-

ter likely has outliers, which might affect the estimate of P (d|t). We suspect that

not using the cluster structures is more effective (which will further demonstrate the

effectiveness of our term level approach) since it is less likely that there is a sufficient

number of outliers that consistently represent some outlying topic. This might raise

the question why we need clustering in the first place. We suspect that clustering is

necessary since it helps filter out as many unrelated reformulations as possible. Fur-

thermore, the clusters might provide a basis to estimate the popularity of the query

topics.

Note that we can also consider the queries in search logs and the entities in Free-

base as terms. Compared to using unigrams, using phrases, anchor text and entities

as terms have the advantage of containing more text, which helps the P (d|t) estimate

(i.e., one can use proximity features which are not available with unigram terms).

At the moment, the topic terms provided to both PM-2 and xQuAD for diversifica-

tion are assumed to have equal weights. This is because it is unclear how the weight

of these terms reflects the popularity of the underlying topics. In the future, we will
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experiment with weighting these topic terms by their frequency estimated from some

collection (e.g., retrieval collection, query logs, Wikipedia, etc.). Comparing the ratio

between the number of relevant documents returned for each of the query topics in

this case to the case with uniform term weighting might shed some light on how term

weighting reflects the topic popularity.
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