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ABSTRACT

ENTITY-BASED ENRICHMENT FOR INFORMATION
EXTRACTION AND RETRIEVAL

MAY 2014

JEFFREY DALTON

B.Sc., UNION COLLEGE

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor James Allan

The goal of this work is to leverage cross-document entity relationships for improved

understanding of queries and documents. We define an entity to be a thing or concept that

exists in the world, such as a politician, a battle, a film, or a color. Entity-based enrichment

(EBE) is a new expansion model for both queries and documents using features from similar

entity mentions in the document collection and external knowledge resources. It uses task-

specific features from entities beyond words that include: name aliases, fine-grained entity

types, categories, and relationships to other entities. EBE addresses the problem of sparse or

noisy local evidence due to multiple topics, implicit context, or informal writing.

With the ultimate goal of improving information retrieval effectiveness, we start from

unstructured text and through information extraction build up rich entity-based represen-

tations linked to external knowledge resources. We study the application of entity-based

enrichment to each step in the pipeline: 1) Named entity recognition, 2) Entity linking, and

viii



3) Ad hoc document retrieval. The empirical results for EBE in each of these tasks shows

significant improvements.

Our first application of entity-based enrichment is the task of detecting entities in named

entity recognition. We enrich the representation of observed words likely to represent entities.

We perform weighted feature copying of recognition features from similar tokens in the

corpus and external collections. The evaluation shows statistically significant improvements

on in-domain newswire accuracy and demonstrates that the models are more robust on

out-of-domain data.

In the second part of this work, we apply EBE to the task of entity linking. The proposed

entity linking method for disambiguating the detected mentions to entries in an external

knowledge base is based on information retrieval. The neighborhood relevance model, an

enrichment model, identifies salient associations between an entity mention and other entity

mentions in the document. The results show that the enrichment model outperforms other

context models and results in a system that is competitive with leading methods.

Using the constructed entity representation, the final task is ad hoc document retrieval.

We enrich the query representation with entity features. Retrieval is performed over docu-

ments annotated with entities linked to Wikipedia and Freebase from our system as well as

the publicly available Google FACC1 annotations. To effectively leverage linked entity fea-

tures, we extend dependency-based retrieval models to include structured attributes. We also

define a new query-specific entity context model which builds a model for disambiguated

entities from retrieved documents. Our results demonstrate significant improvements over

competitive query expansion baselines for several standard test collections.
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CHAPTER 1

INTRODUCTION

Word-based representation of documents in the field of information retrieval have proven

to be effective over diverse collections. In their simplest form, documents are modeled as

a bag-of-words, where each term is independent of other terms in the document. Beyond

bag-of-words models, recent efforts have focused on leveraging dependencies between

terms (METZLER and CROFT 2005) to model phrases and proximity. However, as search

applications evolve and become more complex, representing documents solely using words

is limited. Words alone do not support joins or provide structured relationships needed for

more complex inference. Entity-based representations combine both text and structured

entity attributes. The quantity and simplicity of text documents combined with entity

annotations supports more complex queries and cross-document inference.

One of the primary motivations of this thesis is to leverage newly available entity

knowledge bases to enhance the representation of documents and queries. The use of entities

in retrieval has a long history, which we describe in more detail in Chapter 2. But, the

availability of large-scale general purpose knowledge bases is a recent development. The

knowledge bases we focus on in this thesis, as well as others, gained prominence in the late

2000s. Many build on the success of Wikipedia and further expand the information from

it. These differ from previous knowledge bases because they focus on coverage of both

general concepts as well as named entities. The research in this thesis is enabled by these

resources. We expect the development of these and similar knowledge bases to evolve and

become more important, especially with recent efforts on improving automated methods for

knowledge base construction (SUCHANEK et al. 2013).
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The focus of this dissertation is understanding relationships across documents using

entities. We define an entity broadly to be a thing or concept that exists in the world, such

as a person, a battle, a film, or a color. Entities exist as mentions across documents and

in external knowledge resources. The goal of this work is to construct and utilize entity-

based representations to improve effectiveness for a variety of document analysis tasks in

information extraction and information retrieval.

The challenge we address in this thesis is how to augment text using entity representations

for a particular task, a process we refer to as entity enrichment. Entities are the basis for

enrichment because they are a unit of meaning shared across documents and in external

knowledge resources. Entity enrichment is a process that includes text expansion (SINGHAL

and PEREIRA 1999; TAO et al. 2006a), but focuses on structured feature expansion of local

observations from similar entity mentions in other documents and in external knowledge

base entries.

1.1 Entities in Retrieval

The recent popularity of question answering services such as IBM Watson and personal

assistants including Siri and Google Now are part of an increasing trend of search engines

returning answers to users. Answers are often an entity, an entity attribute, or a list of entities.

Entity results are retrieved from a wide variety of structured databases. Google incorporates

entity data from their Knowledge Graph and Google Plus. Yahoo! uses the Web Of Objects.

Bing returns Facebook and Satori entities. Facebook Graph Search performs retrieval over

its social graph. Semantic Web (BERNERS-LEE et al. 2001) search engines such as Swoogle

and Sindice search over structured data embedded in web documents, including data from

Linked Open Data (LOD) and DbPedia (AUER et al. 2007).

Many of these search systems use keyword or natural language interfaces and analyze

the query to infer latent entity structure. This includes identifying entities or their types,

which is one step in what is broadly referred to as ‘query understanding’. Entity-based
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query understanding has received significant recent attention. Aspects of research in this

area include: automatically extracting structured attributes from queries (LI et al. 2009),

extracting entity type classes (PASCA 2013), as well as mapping queries to entities in a

knowledge base (MEIJ 2010). For example, the questions given to the IBM Watson DeepQA

system, from “Jeopardy!” are automatically annotated with 2500 structured lexical answer

types such as country, film, company, or author (FERRUCCI et al. 2010).

Recently, some of this annotation data has been made publicly available. The Google

FACC1 data set (GABRILOVICH et al. 2013) is an open data set that includes queries (and

web documents) annotated with entities from the Freebase knowledge base. Research on

recognition and linking of entities in both documents and queries is an ongoing area of

research in both the retrieval and natural language processing communities, with the Entity

Recognition and Disambiguation (ERD) data challenge at SIGIR 20141.

Another trend driving increased use of entities in queries is interactive search interfaces

that use auto-completion. As users type keywords, entity auto-suggestions appear and

are added to the query, seamlessly subsuming keywords. For example, Facebook Graph

Search2 allows users to construct a structured query such as, [Photos of my family taken at

national parks] that defines a type of return object (images), a social relationship (family

member), and a place attribute (national park). The structured relationships between entities

in databases support retrieval using inference and second order relationships impossible

with text alone. For example the query [single malt scotch produced by distilleries founded

before 1900] specifies a relationship between a distillery, a date, and a product.

1http://web-ngram.research.microsoft.com/erd2014/

2https://www.facebook.com/notes/facebook-engineering/
under-the-hood-building-graph-search-beta/10151240856103920
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1.2 Beyond Entity Retrieval

Although search over only entities addresses many common needs, it does not include

the broader context of these entities in text. One of the primary goals of this thesis is to

effectively combine text and entity representations. A combined representation provides

cross-document links from shared entity mentions, structured elements from mentions

disambiguated to knowledge resources, as well as the scope and simplicity of text. We now

highlight some of the limitations of focusing only on structured retrieval of entities.

The first limitation of entity retrieval is that entity databases are limited in size and scope.

Entity databases vary widely in their freshness, accuracy of information, and completeness.

The largest publicly available knowledge base is Freebase (BOLLACKER et al. 2008). It is a

general purpose knowledge base containing 42 million entities and 2.3 billion facts3. Larger

proprietary extensions of this exist with hundreds of millions of entities4. However, even

for important relationships, a large fraction of important relationships are unknown: 68%

of people in Freebase do not have a profession, 71% do not have a place of birth, and 91%

do not have any education information (WEST et al. 2014). And although current general

purpose knowledge bases have evolved significantly, the schemas are largely manually

constructed. The result is that relevant entities or attributes may not exist (or be up to date)

in the database.

Second, current entity databases contain primarily structured attributes. The knowledge

bases focus primarily on encoding facts and relations to other entities. Most contain little

or no textual representation. While facts are useful, text narratives provide important

context for understanding relationships. The success of text knowledge resources, like

Wikipedia, demonstrates the utility of rich text representations. The consequence of this is

3According to freebase.com as of January 24th, 2014

4http://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.
html
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that information needs expressed as text may not match the entity, or the desired information

may not exist in the knowledge base alone.

Third, entity databases often attempt to encode a single objective ‘reality’. Their goal is

to represent a model of the world. However, for many topics the attributes or relationships

may be controversial, subjective, or widely disputed. As a result, entities may have missing

or incorrect information. In contrast, text collections contain subjective and opinionated

documents with wide coverage of diverse opinions.

Lastly, and most importantly, many information needs cannot be easily be mapped to

structured schemas in the knowledge base. Queries contain vague, abstract, or subjective

language. For example, “What is the best place to retire?”. In particular, information needs

often include a description of a process such as: “how can you...”, “factors that led to...”,

“what role does...”, “how did user experience change over time as a result of...”, etc... The

main source of information for these types of questions remains text.

As a result of this limitations, search over structured databases is not enough to satisfy

many information needs completely. Text documents continue to be the primary search

medium because they do not have these limitations. Text is the largest volume of information

available and being created. Although the meaningful size of the web is unknown, it contains

over 60 trillion pages 5 and there are over 500 million tweets per day 6. Many of these text

documents contain rich explanatory narratives. They include descriptions of events and

processes. Because there is no defined schema every aspect and topic is covered. And they

are often subjective, describing the author’s opinions or perspective. As a result, this thesis

focuses on enriching the representation of text with entity data.

5https://www.google.com/insidesearch/howsearchworks/thestory/

6http://www.sec.gov/Archives/edgar/data/1418091/000119312513390321/
d564001ds1.htm
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1.3 Opportunity of Entity Representations

Entity-based representations address two fundamental issues with current word-based

models: ambiguity and local uncertainty. Entity representations reduce ambiguity because

disambiguated entities represent semantic units that exist in the world. The second issue

is local uncertainty. Entities provide unambiguous cross-document links based on shared

mentions of real-world concepts. This is important because not all information may be

present in a single document. For an information need on [ferry sinkings with more than

100 people], one document may refer to a ferry sinking and another document may refer

to its transport capacity, the joint mention of the same ferry entity allows cross-document

inference.

The first issue that entity representations address is that words on their own are inherently

ambiguous. A word may be polysemous and have many meanings. For example, a crane

may refer to a bird, a type of construction equipment, a paper company, a welding company,

or other meanings. Even for a relatively unambiguous name such as [Amherst], it may

refer to a variety of entities and entity types including people [Jeffrey Amherst], locations

([Amherst, Massachusetts]), or organizations ([Amherst College]). Further, a word or name

mentioned on its own may be missing important context, for example that a reference to the

“Bounty” is a historical wooden ship. The result of this missing implicit information is the

well-known problem of “vocabulary mismatch” (FURNAS et al. 1987).

Entity representations address this problem because they contain mentions of things,

which are disambiguated to a knowledge base. This allows us to leverage text and structured

attributes from the entity data. These features include both words and structured attributes.

For example, the entity’s name (HMS Bounty), aliases (HM Armed Vessel Bounty), types

(/boats/ship, /tallships/replica), and word distribution (from the knowledge base description

or associated mentions), as well as other structured attributes relevant to the task. Some

of the structured attributes might include: gender, nationality, profession, geographical
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information (latitude, longitude), temporal attributes (such as birth and death), appearances

in a movie, category classifications, etc.

The second problem addressed by entity representations is that local context may not

provide sufficient information. In both information extraction and information retrieval,

inference is typically performed one sentence or one document at a time. Local independence

is a common assumption in most widely used information retrieval (ROBERTSON 1977) and

information extraction algorithms. This view asserts that the observations in a document,

D, are independent of those in other documents. However, this view is quite limiting. A

single document or sentence in isolation may have sparse local information. Examining

only local evidence leads to inconsistent labelling in information extraction and sub-optimal

ranking in retrieval. Entities provide a mechanism to induce fine-grained dependencies

based on shared mentions. Topically similar entity mentions provide links across sources.

As we show, these long-distance edges are useful sources of features for local expansion

and contextual weighting.

Entity-based enrichment has some of the following considerations:

1. For what task? (Document retrieval, question answering, in-document coreference,

entity linking)

2. Entities from what source? (A knowledge base, mentions within the collection,

mentions in external collections)

3. What types of features? (Words, aliases, fine-grained entity type, capitalization

features, etc.)

We examine a variety of tasks, sources of entity information, and feature representations

in this thesis.
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1.4 Text to Entity Representations

In order to leverage entity information, it is necessary to identify and resolve entity

mentions in text to a knowledge base. One means of adding entity data to text documents

is automatic information extraction. The task of ‘entity linking’ to a knowledge base has

recently received significant attention at the Text Analysis Conference (TAC) Knowledge

Base Population (KBP) Entity Linking Task (JI et al. 2011). In this task mentions of

traditional named entities (people, geo-political entities, and organizations) are linked to a

knowledge base derived from Wikipedia infoboxes. There is also increasing interest in more

general concept entities, with the task of ‘wikifying’ (RATINOV et al. 2011; HUANG et al.

2008; KAPTEIN et al. 2010) documents by linking them to Wikipedia.

Driven by increased search engine adoption, web content owners are increasingly

embedding structured entity data into text documents in machine readable format. Two

widely used schemes on the web are Facebook’s Open Graph Protocol7 and Schema.org 8. A

2012 study showed that 30% of web documents contain some form of embedded structured

data in RDFa or Microformats (MIKA and POTTER 2012). These structured attributes

and relationships are already being used by commercial search engines to improve result

presentation via rich snippets and support exploratory search through faceted browsing.

In 2013, Google released the publicly available FACC1 data set (GABRILOVICH et al.

2013) for the TREC ClueWeb09 and ClueWeb12 web collections. This data set contains

automatically extracted entity mentions from web documents that are linked to the Freebase

knowledge base (BOLLACKER et al. 2008). The FACC1 data set is the first openly available

web-scale collection of entity linked documents.

In this work, we start from unstructured text documents and through information ex-

traction build up increasingly sophisticated entity-based representations. At each step

7http://ogp.me/

8http://schema.org/

8



in the information extraction process we leverage our enrichment framework to leverage

cross-document evidence from similar entities.

1.5 Entity-based Enrichment

The entity enrichment framework we describe in this dissertation is general enough to

handle both diverse types of enrichment targets as well as different types of entities and their

representation. Enrichment can be performed on words, entity mentions, documents, or even

queries. Because of the rich structured attributes available in external knowledge sources, a

significant focus of this thesis is on detecting, linking, and exploiting entity mentions that

are linkable to these knowledge bases.

Our enrichment framework models cross-document dependencies in text documents

based upon shared mentions of related entities. It builds a local context model and uses

information retrieval as a mechanism to identify topically similar entity sources and their

associated entity mentions. Entity enrichment differs from other cross-document entity

models that treat all mentions of entities across documents equally, ignoring their similarity

to another. This is important because even if two documents refer to the same real-world

entity they may refer to different aspects of it. Lastly, retrieval is a highly scalable mechanism

that allows us to identify similar entity mentions from unlabeled text documents in large

external sources, such as the Web.

The enrichment process is related to other relevance feedback models, including rele-

vance modeling (LAVRENKO and CROFT 2001) and latent concept expansion (METZLER

and CROFT 2007; LANG et al. 2010). In these models the representation of the local query

model is expanded using words and concepts from retrieved documents. In contrast to these

approaches, our enrichment process is used to expand either document or query represen-

tations. It is focused on leveraging features from topically similar entity mentions. These

features may include words, but are task-specific depending upon the document analysis
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task. And because these entities may be disambiguated to a knowledge base we can leverage

structured attributes from these mentions.

Entity Enrichment expands the feature representation of a local model with features

from topically similar entity mentions in the document collection or external knowledge

base. The enrichment process consists of several important steps which vary for each task

and collection. The steps in entity-based enrichment are: 1) enrichment triggering, 2)

target model generation, 3) mention retrieval, 4) mention feature extraction, and 5) feature

aggregation. We now briefly describe this process for each of the tasks we study in this

thesis.

1.6 Tasks

In this thesis we study applications of entity-based enrichment to three extraction and

retrieval tasks: 1) Named Entity Recognition, 2) Entity Linking, and 3) Ad hoc Document

Retrieval. These tasks build upon one another in levels of understanding documents through

entities. The first task detects entity mentions, the second links entity mentions to external

knowledge resources, and finally the third leverages the disambiguated mentions to improve

retrieval effectiveness. We show how task-specific entity features are used for each of these

tasks. We now provide an overview of enrichment in these tasks.

1.6.1 Named Entity Recognition

Named entity recognition is a pattern recognition task that assigns categorical entity

labels (person, organization, location, miscellaneous) to a sequence of observed words.

The goal is to infer a hidden label y from the observed token sequence x. The enrichment

target in this task is the feature representation of each observed token, xi. For mention

retrieval, a query, QT is generated from the words in the sentence and sentence retrieval is

performed on the text collection. Entity recognition features, such as such as adjacent words,

part of speech tags, and Wikipedia gazetteer matches are extracted from string identical
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observations in the retrieved sentences. The features are aggregated as we describe in more

detail in Chapter 4. The result is both a local feature representation and one from similar

mentions in other sources. We show that incorporating these non-local features results in

entity recognition models that are more effective and more robust than local models. After

entities are detected and classified, another further step is to disambiguate them.

1.6.2 Entity linking

Entity Linking is the task of disambiguating entity mentions, m ∈MD, in documents to

entities, e ∈ E, that exist in a knowledge base. For example, the mention “Arran Distillery”

should match its corresponding entity, [Arran distillery] in Wikipedia. We model this as a

retrieval task, where entities are ranked for each entity mention. A key factor in this process

is identifying disambiguating context for the entity mention. For this task each mention m

is a target for enrichment. Because the entire local document is the context, a fundamental

problem here is defining the mention’s relationship to other entity mentions and words in

the document. The main enrichment feature in linking is the strength of association, which

we refer to as the salience, ρ, for words and entities in the contextual neighborhood of the

target mention. This feature is used to generate expansion queries for retrieving entities in

the knowledge base. Once entities have been detected and disambiguated, the next step is to

leverage the disambiguated mentions to improve the effectiveness of other tasks.

1.6.3 Document Retrieval

The last task we explore in this thesis is entity-based enrichment models for ad hoc

document retrieval. Our work addresses two fundamental research areas using entities

for ad hoc retrieval. The first is the representation of both queries and documents with

linked entities. What entity features, if any, improve retrieval effectiveness? The second is

inferring latent entity-based query features for an information need. Linked entities provide

a wealth of rich features that could be used for representation. These include both text as

well as structured data. Some of the important attributes that we experiment with include:
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fine-grained type information (athlete, museum, restaurant), category classifications, and

associations to other entities. To model the context of linked entities we introduce novel

query-specific entity context models extracted from snippets in the feedback documents

surrounding the entity’s annotations.

1.7 Contributions

In this thesis we address the task of enriching the local representation using features from

topically similar entity mentions across documents and in structured knowledge sources.

Starting from text we build up increasingly sophisticated entity-based representations by

automatically detecting and disambiguating entity mentions to external knowledge resources.

We leverage the context and structured attributes from disambiguated entities to improve ad

hoc document retrieval. We now detail the main contributions of this dissertation:

1. We introduce a new expansion model, entity enrichment which performs feature

expansion using topically similar entity mentions. Unlike existing methods which

perform expansion at the document level using words, our model expands the local

feature representation using task-specific features from similar entity mentions across

documents.

2. We empirically demonstrate the effectiveness of entity-based enrichment for

named entity recognition, named entity linking, and ad hoc document retrieval

tasks. We show that enrichment significantly improves the effectiveness over existing

techniques for both information extraction and retrieval tasks. The results show a 6.8%

error reduction on news wire and a 19.9% error reduction on out-of-domain book data

for named entity recognition, up to a 16.4% improvement in mean reciprocal rank for

entity linking, and gains up to 32.3% in mean average precision for ad hoc document

retrieval.
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3. We define a new query-specific entity context model that models the feature

context of an entity using retrieved documents. Existing entity context models are

built globally across a collection. Previous local models (XU and CROFT 1996) use

word and phrase features from noun phrases that are not disambiguated for expansion.

We introduce a new query-specific entity model that includes both words, phrases,

and features from disambiguated entity mentions. For the task of retrieval, we show

that these models provide an effective mechanism for identifying the relevance of

entities and as a source of expansion features.

4. We extend existing dependency models to include entity-based features that

model dependencies between text and different types of entity features. Exist-

ing query expansion techniques (METZLER and CROFT 2007) model dependencies

derived from words, including phrase and proximity concepts. We propose a feature

expansion model that models dependencies between text and structured entity fea-

tures including: entities, fine-grained types, categories, and entity associations. For

example a dependency between a a type of entity and a word: (/boats/ship sinking) or

(/government/politician scandal).

5. We present the first known experimental results using entity linked documents

and queries for ad hoc document retrieval. We experiment using linked entities

for newswire and web test collections. We use documents annotated with linked

entities provided by the KB Bridge entity linking system and the openly available

FACC1 entity annotations by Google for web data. For a subset of these collections

we also experiment with entity linked queries. We compare models incorporating

entity features with state-of-the-art word-based models. Compared with competitive

query expansion baselines, the sequential dependence model with relevance modeling

expansion on Wikipedia and the collection, there is an improvement of 16.4% and

11.5% in MAP on Robust04 and a 14.1% and 32.8% improvement in NDCG@20 for
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ClueWeb12. For ClueWeb09, where results do not significantly improve, we perform

an error analysis and identify several important underlying causes for this behavior.

1.7.1 Outline

• Chapter 2 surveys related work, and provides background used in the entity-enrichment

model.

• Chapter 3 describes the data collections, evaluation methods, and metrics used in this

dissertation.

• Chapter 4 introduces the entity enrichment model (Contribution 1) used for each of

the tasks described in this thesis.

• Chapter 5 presents enrichment applied to the task of named entity recognition. It

presents experiments evaluating the utility of leveraging cross-document features from

similar entity mentions for newswire and book collections (Contribution 2).

• Chapter 6 presents enrichment applied to the task of entity linking. It details an inves-

tigation of a retrieval-based approach for linking mentions to an external knowledge

base. This chapter is the second application of the enrichment model for identifying

disambiguating context for entity linking. It presents empirical results investigating

the effectiveness of various contextual components (Contribution 2).

• Chapter 7 investigates entity-based feature expansion for ad hoc document. It explores

structured expansion on queries incorporating feature dependencies (Contribution 4).

One source of expansion is query-specific entity context models (Contribution 3). It

presents the first results evaluating the effectiveness of features from linked entities

for document retrieval (Contribution 2 and Contribution 5).

• Chapter 8 summarizes the contributions made in this thesis and discusses possible

future research directions in the area.

14



CHAPTER 2

BACKGROUND

In this chapter, we describe the background and related work. Entity-based enrichment

incorporates several different threads of research in information retrieval. Entity enrichment

is a type of structured expansion of the local representation using entities. It is related to

previous work on query and document expansion that expand the local representation by

adding new words and re-weighting existing ones. The enrichment model in this thesis

focuses on entities, particularly those disambiguated to an external knowledge base. This is

related to previous work using structured concept vocabularies in retrieval. It is also related

to previous work on disambiguating word senses for information retrieval.

We conclude this chapter with a description of the retrieval models we build upon

throughout this thesis. Graphical Models (KOLLER and FRIEDMAN 2009) are used in

both information extraction and information retrieval tasks. As a result, we use them as a

common representation for the models described in this work. For retrieval, one of the main

models we use is the Markov Random Field (MRF) retrieval framework both for modeling

dependencies in both the original and expansion queries.

The related work presented here is relevant to the enrichment framework overall. We

also present other related work in the corresponding chapters as needed.

2.1 Query Expansion

Query expansion is a type of query transformation where the original query is augmented

by adding terms and possibly reweighting terms. Expansion is used to address the problem

of vocabulary mismatch (FURNAS et al. 1987) between the query and documents. Query
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expansion has a long history in information retrieval (ROCCHIO 1971; CROFT and HARPER

1979; SALTON and BUCKLEY 1990). These include global approaches, which leverage

collection-wide term clusters based on word co-occurrences (JONES and BARBER 1971). An

alternative approach is a query-specific approach that uses top-ranked retrieved documents

for local feedback (ATTAR and FRAENKEL 1977; CROFT and HARPER 1979; BUCKLEY

). These techniques are referred to as relevance feedback and pseudo relevance feedback

(PRF). Pseudo relevance feedback is an unsupervised automatic expansion technique that

leverages evidence in the top retrieved documents. Harper and Croft (1979) use pseudo

relevance feedback to reweight the original query terms. We use a similar approach in this

thesis to reweight relationships between entities for entity linking in Chapter 6.

Pseudo relevance feedback is am area of research that has received significant attention

(LAVRENKO and CROFT 2001; DIAZ and METZLER 2006; LV and ZHAI 2010; ZHAI

and LAFFERTY 2001; BENDERSKY et al. 2012). One widely used expansion model is the

relevance model (LAVRENKO and CROFT 2001). It is a pseudo-relevance feedback approach

that uses retrieved documents to estimate the query topic. Relevant words are extracted and

used in combination with the original query (RM3). Throughout this thesis we use this as

our baseline text-based expansion model.

Another feedback model that incorporates term dependencies in addition to words is

the latent concept expansion (LCE) model proposed by Metzler and Croft (2007). It builds

upon the Markov Random Field retrieval framework (METZLER and CROFT 2005) and

introduces the idea of using arbitrary features for expansion. However, in their experiments

they use only unigram text features because they find others do not significantly improve

retrieval effectiveness. The use of named entities as expansion concepts was examined

by Abdul-Jaleel et al. (JALEEL et al. 2005), who experimented with named entities as

expansion terms for the TREC HARD task, but the results were inconclusive. They used

uniform weighting of entities, and highlight the potential need for more effective weighting

methods. In this thesis, we use entities and features derived from entities as conceptual units,
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which goes beyond the previously used word, phrase, and proximity concepts previously

proposed. In Chapter 7 we also also extend the work to incorporate dependencies between

words, mentions of entities, and features of linked entities. Unlike their work, the evaluation

we perform shows significant improvements in retrieval effectiveness from these concepts.

The Phrasefinder (JING and CROFT 1994) approach performs query expansion using

words or phrases by building a global context model from the source collection. The context

of a word is an aggregation of word co-occurrence counts within a paragraph. This constructs

a pseudo-document for a phrase that can be indexed. The user query is then issued against

this index to find related phrases. They find that noun phrases were the most effective for

expansion. It is outperformed by methods (XU and CROFT 1996) that build contextual

models of noun phrases specific to the query from retrieved documents. As a result, in this

thesis we focus on local models derived from similar entity mentions.

Another related pseudo relevance feedback model using expansion ‘concepts’ is Local

Concept Analysis from Xu and Croft (1996, 2000). Local context analysis identifies

expansion ‘concepts’, nouns and noun phrases, from top retrieved documents. It uses

unigrams and phrase word features based on co-occurrences near query terms in top ranked

documents. The contribution of words versus phrase concepts was not evaluated. The

examples show that many of the expansion terms appear to be single words. In contrast, this

work focuses on entities, predominantly named entities. One key difference in this work is

that we leverage disambiguated entity mentions linked to a knowledge base. Instead of the

terms themselves, we extract features from the mentions.

Wikipedia as a source of world knowledge has been demonstrated to improve a variety

of tasks, including retrieval. It has been demonstrated to improve retrieval effectiveness

when used as an external source of terms for query expansion (DIAZ and METZLER 2006;

BENDERSKY et al. 2012; XU et al. 2009). All of these previous methods treat Wikipedia as

a text corpus. Some leverage superficial metadata, such as redirects. In contrast, this work

uses Wikipedia as a knowledge base of entities. We link text documents to Wikipedia and use
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entity features from it for feature expansion. In related work, Meij et al. (2009, 2010) map

search engine queries to DbPedia using supervised machine learning and use the concepts for

query expansion, showing small improvements in effectiveness and improved result diversity.

Balog et al. (2011) integrate term-based and category-based query representations for entity

retrieval and find that category-based feedback is more effective than term feedback with

both pseudo-relevance feedback and relevance feedback. All of these representations focus

on models of the query rather than the document representation.

2.2 Document Expansion

In this thesis we enrich document feature representations as well queries. For information

extraction tasks a query is not generally available. Enrichment on documents is closely

related to previous work on document expansion. Similar to query expansion, document

expansion adds terms or term weights to the representation of a document.

Document expansion models attempt to solve sparsity and insufficient sampling prob-

lems, particularly for short documents. Document expansion identifies similar documents

based on similar word usage (BLAIR 1979) as well as similar structural citation patterns

(CROFT et al. 1989). Liu and Croft (2004) propose cluster based language models to

smooth a document model. Tao et al. (2006b) define a document neighborhood using cosine

similarity, and use this to construct an enlarged document mode. Mei et al. (2008) propose

an optimization framework for smoothing language models on graph structures, with the

goals of providing fidelity and smoothness. Diaz (2008) proposes a query-specific model

that regularizes retrieval scores based upon document similarity.

For tweets, Efron et al. (2012) perform document expansion using the relevance mod-

eling framework, treating the tweet as a query and interpolating the document language

model with retrieved documents. One key finding of their work for microblog retrieval is

that expanding the query performs poorly, but expanding the documents results in consistent

effectiveness improvements.
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Singhal and Pereira (1999) perform document expansion for speech retrieval over audio

transcribed from automatic speech recognition (ASR). They find that document expansion

is very effective in improving poor transcriptions. They perform expansion using Rocchio’s

method (ROCCHIO 1971) on the 10 closest documents. They issue the entire ASR document

as a query against a collection of newswire documents to find the nearest neighbors. They

find that there are significant gains from reweighting the terms (17%) in the document and

from adding new terms (6%) for short queries.

Metzler et al. (2009) and Yi and Allan (2010) propose methods for overcoming anchor

text sparsity in web search by enriching the document representation with text that is

aggregated across the hyperlink graph based on shared links and content similarity.

All of these methods perform document expansion using words. In contrast, in our work

we enrich document representations with task-specific features including words, but more

importantly with other semantic features. Instead of clustering documents, we focus on

identifying similar entity mentions. Expansion is performed from these mentions rather than

the document overall. This is a more fine-grained expansion approach than previous models.

2.3 Word Sense Disambiguation

Because words are ambiguous there have been efforts to represent documents using

other types of representations. The first area of research is Word Sense Disambiguation

(WSD) which indexes disambiguated sense of individual words.

Work on indexing word senses in information retrieval received significant attention in

the late 1980s and 1990s. Krovetz and Croft (1989, 1992) studied word sense disambiguation

in the context of retrieval. They find that lexical ambiguity is not a significant problem

in documents when there is a match to multiple query words. They highlight that a more

important factor may be particular relationships between words. Voorhees studied this

problem where each noun was disambiguated to Wordnet (VOORHEES 1999). On their own,

they found that using senses degraded retrieval effectiveness because of an increased number
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of mismatches between query terms and documents. Sanderson found that disambiguation

accuracy of at least 90% was needed to avoid hurting effectiveness (SANDERSON 1994).

Mihalcea and Moldovan (2000) find modest improvements using disambiguated word senses

and find that only 55% of words can be disambiguated. One well-documented issue with

WordNet is its coverage, particularly for proper names (SCHÜTZE and PEDERSEN 1995).

In contrast to these approaches which focus on disambiguating words, we focus on

entities. These entities may be disambiguated to a knowledge base. Using entities instead

of words is important because they form units of meaning used across documents. They

have attributes and structured relationships to other entities in the knowledge base and other

documents. Beyond decreased ambiguity, entities provide richer representations than simply

words. For example, they may be linked to specific geographic and temporal scope. Similar

to previous work on WSD, the ability to detect and disambiguate entities correctly is one

factor limiting their utility for retrieval applications. As we show in Chapter 7 there remain

significant mismatch and detection gaps in current entity detection and linking systems. For

this reason, this thesis combines both text and entity-based representations.

2.4 Controlled Vocabulary Representations

The use of structured knowledge resources has a long history in the field of information

retrieval and before that in library science. Early work in digital systems is an extension of

library science where works are classified using index terms from controlled vocabularies,

like the Universal Decimal Classification, by professional librarians. For example, docu-

ments were indexed using physical punch cards or metal plates and retrieved using rods

which found cards with holes in the correct locations (JOYCE and NEEDHAM 1958).

2.4.1 Structured Classification

In the era of digital systems, the use of manually assigned index terms as a means

of representing documents continued. Early work using these in digital domains in the
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1950s include Uniterms, Zatacoding, and thesaurii (LUHN 1957; JOYCE and NEEDHAM

1958; SALTON 1968) to assign index terms to documents. This continued in specialized

domains. In the 1960s the first computerized medical library systems adopted these methods.

The Medical Literature Analysis and Retrieval System (MEDLARS) from the National

Library of Medicine created the Medical Subject Heading (MESH) controlled vocabulary

(LIPSCOMB 2000). These systems continue to be used today for search today, including in

the MEDLINE and PubMED collections and have evolved to include other vocabularies,

such as the Unified Medical Language System (UMLS) metathesauraus. Lin and Demner-

Fushman (2006) demonstrate that combining these structured concept vocabularies with

text for search in the domain of clinical medicine results in significant retrieval effectiveness

gains.

The use of manual topical classification of content continued with the advent of the

Internet. Manually curated web directories became popular in the 1990s and included the

Yahoo! directory and the Open Directory Project (ODP). Gauch et al. (2003) map documents

to topic models derived from the Open Directory Project (ODP), where documents are

categorized via text classification. Wei and Croft (2007) evaluate ODP category models for

retrieval and find that they improve queries that lack a clear topic, but are outperformed by

relevance models when the topic is specific and clear. They hypothesize that the categories

may be too broad for some information needs.

However, using manually assigned index terms as the primary means of document

representation has been repeatedly demonstrated to be inferior to full-text retrieval. The use

of full-text versus index terms as a means of document representation was the focus of the

early Cranfield experiments (CLEVERDON 1991). It was also studied in medicine using

the SMART system comparing it to MEDLARS (SALTON 1972). On the web, the rise of

full-text search engines including Google and Bing have replaced directories.
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Two other controlled vocabularies that have been widely used are Cyc and Wordnet.

Cyc1 is a machine readable ontology of commonsense knowledge (LENAT 1995). It has

been used in question answering, but had minimal impact (CHU-CARROLL et al. 2003)

because of lack of scope. Wordnet (MILLER 1995) is a lexical database of English which

arranges words into equivalence classes, called synsets which represents the sense of a

word. It also models relationships between synsets. Wordnet has been used by a variety of

researchers to perform ‘semantic indexing’, based on word senses. It suffers from similar

gaps in coverage. Wordnet focuses on words, but does not include named entities.

The rise of user-generated content in the early 2000s, including Flickr and Delicious,

gave raise to informal user generated ‘tags’ as a form of ‘folksonomy’ (GOLDER and

HUBERMAN 2006), an informal ontology. These methods and earlier ones assign document-

level metadata ‘tags’ consisting of index terms from structured vocabularies. In contrast, we

focus on annotations at the level of individual mentions that occur within documents.

2.4.2 Wikipedia

Wikipedia has been used as means of representing documents for a variety of NLP tasks,

which is sometimes referred to as Explicit Semantic Analsysis (ESA). Explicit Semantic

Analsysis represents each word as a vector of the most relevant Wikipedia articles. It

has been shown to improve text categorization (GABRILOVICH and MARKOVITCH 2006),

semantic relatedness (GABRILOVICH and MARKOVITCH 2007), and document clustering

(GABRILOVICH and MARKOVITCH 2007). For retrieval, Egozi et al. (2008) use ESA

concepts to augment the traditional word based document representations. They evaluate on

one small collection, TREC-8, and show some improvements (EGOZI et al. 2008), between

4-15%. They use pseudo-relevance feedback from ESA-annotated text documents to identify

concepts and also experiment with fusing text and concept-based scores. One issue with ESA

representations is because mapping is done at the word level, the semantics of phrases and

1http://www.opencyc.org
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larger entities may be lost. In contrast, in this work we focus not on words, but on identified

entities as units of representation which we detect and optionally link to a knowledge base.

In contrast to representing a document as a vector of Wikipedia concepts, we leverage the

associated entity representation of entities from the knowledge in the form of their text and

structured metadata to enrich the original document representation.

2.4.3 Implicit Topics

Another mechanism for addressing the underlying issues of sparsity and ambiguity

in local representations is a different representation of documents. Implicit concepts are

typically lower dimensional representations of observed terms. Previous work using them

includes latent semantic indexing (DUMAIS 1995), probabilistic latent semantic analysis

(HOFMANN 2001), and latent dirichlet allocation (BLEI et al. 2003; WEI and CROFT 2006),

and restricted boltzmann machines (WELLING et al. 2004). For retrieval, the use of topic

modeling was examined recently by Yi and Allan (2009). They found that topic models did

not perform well and was outperformed by relevance modeling (LAVRENKO and CROFT

2001). They found only small improvements when topic models were combined with

relevance modeling. The reason for this is that the lower dimensional representations rarely

match the granularity of users’ information needs. In contrast, we focus on explicit entity

concepts because these are finer-grained units of representation that people have deemed

noteworthy by creating a knowledge base entry with facts and relationships.

2.5 Entities in Retrieval

The research area of retrieving entities as well as using named entities has received

significant attention. It has been studied at a variety of venues. The TREC entity retrieval

track (BALOG et al. 2011) focused on entity-oriented search tasks and ran from 2009 through

2011. The tasks include related entity finding, e.g. airlines that use the Boeing 747 airplane,

from both webpages as well as Linked Open Data (LOD) collections. Similarly, the INEX

23



entity ranking (DEMARTINI et al. 2010) track focused on retrieving entities from Wikipedia,

e.g. art museums in the Netherlands. The INEX Linked Data track (WANG et al. 2011) also

focused on Wikipedia, but also explored retrieval and ranking over additional structured data

in RDF format. Retrieving entities has also been the focus of several workshops, including

the Workshop on Entity Oriented and Semantic Search (BLANCO et al. 2011; BALOG

et al. 2012) and the Semantic Search Workshop (TRAN et al. 2010; TRAN et al. 2011).

In SemSearch 2010 we examined the retrieval models that we use in this work and found

that they were an effective technique on structured RDF entity data as well (DALTON and

HUSTON 2010).

The TREC Enterprise Track (CRASWELL et al. 2005; BALOG et al. 2008) ran from 2005

through 2008 and includes the expert search task, with the goal of ranking people within

an organization who are subject experts in a particular field. One widely used approach

for modeling people is building a profile of the entity from the text (PETKOVA and CROFT

2007) and by exploiting relationships between the relevance of documents and the people

mentioned within them (BALOG and DE RIJKE 2008).

Topic Detection and Tracking (TDT) (CONNELL et al. 2004) is a research program

that ran for seven years from 1998 through 2004. The program investigated methods

for organizing news articles as they arrive in a stream. The tasks include identifying the

appearance of an event and tracking their evolution over time. There were several approaches

leveraging entities to model events. Kumaran and Allan (2004) study New Event Detection

(NED) and utilize detected named entity strings as a representation of a document. They

highlight the importance of entity representations, but focus only on the word representation

of entities. Similarly, entities were also shown to be effective document representation for

Story Link Detection (SLD) (SHAH et al. 2006). We similarly find entities to be an effective

feature in representing local context. Beyond the names of the entities themselves, we focus

on detecting and leveraging entities that exist in structured and semi-structured knowledge

bases.
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The TREC Knowledge Base Acceleration (KBA) track (FRANK et al. 2012) is another

news stream filtering track, focused on entities. In this task, entities are the primary unit of

interest and the tasks for the track involve identifying “vital” documents with timely and

new information to update a knowledge base entry. A second task focuses on streaming

slot filling, where the goal is to fill in attributes of an entity, such as aliases or a birth date.

Although it is not the main focus of this work, we have applied the entity context modeling

and entity linking approaches used in this thesis to this task (DALTON and DIETZ 2012).

In contrast, we focus on document retrieval leveraging automatic entity annotations.

Exploiting entity links and other types of semantic annotations is an open area of research.

The workshop on Exploiting Semantic Annotations in Information Retrieval (ESAIR)

(BENNETT et al. 2013; KAMPS et al. 2012; KAMPS et al. 2011) has run over the last five

years, and highlights the need for continued research in this area.

As part of the TIPSTER project and TREC-2 conference, the INQUERY retrieval system

incorporated basic entity information (CALLAN et al. 1994). Entity mentions are recognized

using sequences of capitalized words. Then gazeteers are used to classify entities as company

names, U.S. cities, and countries. of companies and foreign countries were identified using

capitalized sequences of words classified using simple gazetteers. They demonstrate small

improvements in precision by careful use of these entity concepts.

2.6 Graphical models for IR

Graphical models (KOLLER and FRIEDMAN 2009), such as Markov Random Fields

(MRF) (METZLER and CROFT 2005), are a popular tool in both information extraction

and information retrieval. After casting data and quantities of interest as random variables,

dependencies between two (or more) variables are encoded by factor functions φ that assign

a non-negative score to each combination of variable settings. Factors φ are often expressed

by a log-linear function of a feature vector. The joint configuration of all variables is scored

by the likelihood function L, which is represented by the normalized product over scores
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of all factor functions for the given variable settings. We distinguish notationally between

random variables in upper case (e.g. E) and possible assignments (e) in lower case. We

denote count statistics of a configuration e in a sequence as ei.

2.6.1 Log-linear Models

Dependencies between two (or more) variables (e.g. queries and documents) are encoded

by factor functions that assign a non-negative score to each combination of variable settings.

Factor functions (or similarity function) between two variables are indicated by φ (e.g.

φ(Q,W )) which is assumed to be of log-linear form. This means that φ is determined by an

inner product of weight vector θ and feature vector f in log-space.

2.6.2 Retrieval Models

The query likelihood (QL) retrieval model can be represented as a factor between a

query consisting of multiple query words, and a document represented as a bag of words as

φ(Q,D) =
∏
wi∈Q

φ(wi, D)

.

The feature function used to match words, W , to a document is a Dirichlet smoothed

probability:

φ(W,D) = log
#(W,D) + µ#(W,C)

|C|

|D|+ µ
(2.1)

Within this framework, we use the bag-of-words query likelihood model as well as more

recent models that capture term dependence.

One of the most widely used models that captures dependence relationships is the

sequential dependence model (SDM) (METZLER and CROFT 2005), which incorporates

word unigrams, adjacent word bigrams, and adjacent word proximity. The key dependencies
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it captures are adjacent terms. The score for these ordered bigrams (represented as the

function #1 from the Galago query langage) is:

log φo(qi, qi+1, d) = θo · #1(qi, qi+1)

and similarily for unordered bigrams within a window of eight terms (represented as the

function #uw8 in the Galago syntax) as:

log φu(qi, qi+1, d) = θu · #uw8(qi, qi+1)

.

We use the sequential dependence model for representing dependencies from different

kinds of feature vocabularies, such as entity identifiers or entity categories with appropriate

redefinition of the document length |D| and collection statistics.

2.6.3 Relevance Feedback

In both relevance modeling (LAVRENKO and CROFT 2001) and latent concept expansion

(METZLER and CROFT 2007) the query expansion formulation from top retrieved documents

is similar. Assuming that the retrieval score represents the probability of the document under

the query, e.g. p(D|Q), document-wise multinomial distributions over a vocabulary p(V |D)

are combined via a mixture model.

p(V |Q) =
∑
D∈C

p(V |D)p(D|Q) (2.2)

Hyperparameters of this approach are the number of expansion documents, number of

expansion features, and a balance parameter for weighting the original query against the

expanded query, which are further weighted according to P (V |Q).
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The document probability, p(D|Q) is typically derived from the retrieval score s(D)

by exponentiation and re-normalization over the domain of expansion documents, R. The

document specific distribution of features is derived under the multinomial assumption by

p(V |D) =
#(V ∈ D)∑
V ′ #(V ′ ∈ D)

.

The result distribution over the features, V , from the collection. It is focused on

documents which are topically related to the query. This is the framework that we use to

generate focused models for entity-enrichment. We describe this further in Chapter 4.
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CHAPTER 3

DATA

In the following chapters we will examine the task of entity-enrichment across three

different tasks: named entity recognition, entity linking to a knowledge base, and ad hoc

document retrieval. In this chapter we detail the experimental data used for each evaluation.

3.1 Named Entity Recognition Corpora

We use two test collections for evaluating our named entity recognition effectiveness.

Our primary data set is a standard corpora from the Conference on Natural Language

Learning (CoNLL) 2003 shared task. The second is the Deerfield Collection, a collection

we construct from publicly available scanned and OCRed books on topic of the history of

Deerfield, Massachusetts. Statistics for both test collections are shown in Table 3.1.

3.1.1 CoNLL 2003

The CoNLL 2003 English data set is a widely used collection created for the shared

task of the Seventh Conference on CoNLL, which focused on entity recognition. It consists

of news wire documents from the Reuters RCV1 TREC corpus from the year 1996. It is

Deerfield CoNLL Test
Tokens 10,050 46,435
Person 273 1617

Miscellaneous 98 702
Location 241 1668

Organization 49 1661

Table 3.1: NER collection statistics
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annotated with four types of named entities: persons (PER), locations (LOC), organizations

(ORG), and miscellaneous (MISC) entities. The data consists of three files: training, testa,

and testb. As is commonly done, we train on a combination of training and testa, and report

evaluation on the testb set. The combined training set (training and testa) contains 945

documents from August 1996 with 14,987 sentences and approximately 200,000 tokens.

The evaluation testb set contains 231 documents from December 1996 with 3,584 sentences

and approximately 46,000 tokens. We also note that documents in the collection are ordered

by their appearance in the news stream, reflecting a temporal ordering.

3.1.2 Deerfield Book Collection

We created a named entity test collection using public domain books relevant to the

history of the town of Deerfield, Massachusetts. The books are scanned by the Internet

Archive 1 and processed with OCR software to produce text. The Historic Deerfield

collection contains ten books with 3,311 pages, 98,444 sentences, 2.1 million tokens, and

over 60 thousand distinct words. It has diverse historical genres: biographies, encyclopedias,

and historical catalogues of artifacts. To create a evaluation set for NER, we randomly

sampled two pages from each book in the collection. The resulting test set contains 20

pages with 481 sentences and approximately 10 thousand tokens. The pages were manually

annotated with entities consistent with the CoNLL task. 2 The dataset contains 661 entity

mentions.

3.2 Entity Linking

We base our experimental evaluation on data from the TAC KBP English entity linking

competition from 2009 to 2012. The TAC data contains three elements: source documents,

1http://www.archive.org/details/texts

2The collection and judgments are publicly available at http://ciir.cs.umass.edu/˜jdalton/
deerfield
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Type Documents
Broadcast Conversation 17
Broadcast news 665
Conversation Telephone 1
Newswire 2,286,866
Web 1,490,595

Table 3.2: TAC Source Corpus

Entity Type Frequency
Person 114,523
Geopolitical 116,498
Organization 55,813
Unknown 531,907

Table 3.3: TAC Knowledge Base Types

Type 2009 2010 web 2010 eval 2011 2012
Person 627 500 741 750 919
Geopolitical 567 500 749 750 604
Organization 2710 500 750 750 706

Table 3.4: TAC Mention Types by Year
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entity mentions to link, and a target knowledge base. These resources were developed by

the Linguistic Data Consortium (LDC) for the evaluation (ELLIS et al. 2011).

The TAC source collection has evolved over time, adding new documents and mentions

each year. The documents are drawn from a variety of other existing test collections

including: ACE08, Gigaword, and GALE. For this work we use the TAC KBP 2012 English

corpus, which includes the documents and mentions from 2009 through 2012. The statistics

for the corpus are given in Table 3.2. It contains a heterogeneous mixture of content types

including newswire, web documents, and a small quantity of transcribed speech.

The TAC reference knowledge base contains 818,741 entries from an October 2008

dump of English Wikipedia. A breakdown of the knowledge base by type of entity is given

in Table 3.3. The knowledge base itself contains semistructured data in XML which was

extracted from the infoboxes.

The entity linking task requires systems to link named entity mentions of persons (PER),

organizations (ORG), and geopolitical entities (GPE) to the single coreferent entry in the

knowledge base. This implies that there is exactly one relevant entity from the knowledge

base for each target mention. If the mention does not have an entity in the knowledge base

the system should detect this, label the mention as “NIL”, and perform cross-document

coreference resolution to cluster the mention with other query mentions in the evaluation set.

For the years 2009-2011 the query mentions were detected using an English named entity

tagger. In 2012, annotators used a new annotation tool and were able to select arbitrary text

extents. A sample of the mentions in the corpus are manually selected by LDC annotators

as queries, with a bias towards highly confusable entity mentions including ambiguous

names, misspellings, nicknames, and common names. For 2010 through 2012 the goal

was to provide roughly an even distribution of the three entity types. The distribution of

these types across years is given in Table 3.4. One interesting note is that the 2009 data

contains a significantly larger number of mentions, with a significantly different proportion

of organizations. For the years 2010-2012, approximately 2/3 of the mentions are from
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newswire documents and 1/3 are from the web or informal documents. There is also roughly

a balanced proportion of “NIL” and “In-KB” mentions.

3.3 Ad Hoc Retrieval

The study of entity enrichment for ad hoc retrieval uses data from TREC 3 test collections

for the experiments. We use the Robust04, ClueWeb09, and ClueWeb12 collections. These

collections are from the 2004 Robust track and the Web track (from 2009-2013). Each

collection consists of a text documents, a set of topics, and relevance assessments for the

topics. A summary of the collections and topics used in this dissertation is shown in Table

3.5.

3.3.1 Documents

The definition of a document in TREC corpora varies widely. A document could be a

news article, a book, a web page, an academic publication, emails, and even tweets in the

microblog track. For the collections used in this dissertation, the documents are newswire

articles and web pages. Both types of documents are text with some semistructured elements

(such as a headline or title). The ClueWeb collections both contain two subcollections,

Category-A and Category-B. Category-A is the complete collection. Category-B is a subset

containing roughly 50 million documents, which is approximately 5-10% of the overall

collection. For ClueWeb09, the Category-B subcollection consists of the web pages with

the highest crawl priority (PageRank) pages as well as a snapshot of the English Wikipedia.

For the ClueWeb09 collection we employ the Waterloo spam classifications (CORMACK

et al. 2011) and filter the collection to documents that are in the 60th score percentile. For

ClueWeb12-B, the documents are a uniform 7% sample of the 733 million documents

created by taking every 14th document from the full Category-A set.

3http://trec.nist.gov/
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3.3.2 Topics

Each TREC collection comes with a corresponding set of topics which represent infor-

mation needs. An example of a topic is shown in Figure 3.1. Each topic has a short keyword

title and a longer description. Only the titles were used in the original TREC track and we

follow that convention. We use all 250 of the Robust04 topics as queries. The topics for

ClueWeb09 are from the 2009-2012 TREC web tracks. The topics for ClueWeb12 are from

the 2013 web track.

3.3.3 Relevance Assessments

For each topic the collection contains relevance assessments for a set of documents.

The relevance judgments are performed manually by TREC assessors. For the Robust04

collection, binary relevance judgments are provided (relevant or non-relevant). For the web

collection, the documents are rated on a graded relevance scale. The non-relevant grades

are: (-2, junk), (0, non-relevant), (1, relevant), (2, highly relevant), and (3, authoritative).

For binary relevance evaluation measures, we consider the first two (-2,0) to be non-relevant

and the others relevant.

3.3.4 Entity Annotations

We experiment using linked entities in these documents for retrieval. For this data, we

use two types of entity annotations. For the newswire collections, we create our own entity

annotations. For both ClueWeb collections we use the Google FACC1 entity annotations

(GABRILOVICH et al. 2013). The FACC1 dataset is the first publicly available web-scale

collection of entity linked documents.

For the Robust newswire collection, we use our own entity annotations. For analyzing

the documents, we use the NLP tools in the factorie (MCCALLUM et al. 2009) toolkit. We

use factorie to process the documents and perform tokenization, sentence segmentation,

named entity recognition, part-of-speech tagging, dependency parsing, and entity mention

finding. The mentions detected by Factorie are linked to Wikipedia using the entity linking
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Name Documents Topic Numbers
Robust04 528,155 301-450, 601-700

ClueWeb09-B 50,220,423 1-200
ClueWeb12-B 52,343,021 1-50
ClueWeb12-A 733,019,372 1-50

Table 3.5: Test Collections Statistics

described in Chapter 6. We note that these entity links are traditional named entities (people,

organization, and geo-political entities) used in the TAC KBP evaluation.

For the ClueWeb collections, we use the publicly available entity annotations link-

ing entities to the Freebase knowledge base provided by Google in the FACC1 dataset

(GABRILOVICH et al. 2013). The dataset contains automatically extracted entity mentions

that are linkable to the Freebase knowledge base (BOLLACKER et al. 2008). Freebase is a

publicly available general purpose knowledge base with over 42 million entities and over

2.3 billion facts.4 Summary statistics for the annotations of both ClueWeb collections are

shown in Table 3.6. An example annotation is shown in Figure 3.2. Google does not provide

details on how the mentions are detected or linked. Only entity mentions that are linkable to

the Freebase knowledge base with high precision are provided. The authors state that the

precision is believed to be 80-85% and recall is estimated to be 70-85%.

In addition to the document annotations, the Google FACC1 dataset provides explicit

entity annotations for the web track queries (2009-2012) for ClueWeb09. These are created

by entity linking text in description field. We also experiment with a revised version of

these annotations which improves recall and fixes several annotation errors. We discuss this

further in Chapter 7.

4As of January 27, 2014 according to Freebase.com
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<Id> 643
<Title> salmon dams pacific northwest
<Description> What harm have power dams in the pacific northwest

caused to salmon fisheries?

Figure 3.1: Example Robust Query

Collection Docs with Ann. #mentions avg / doc
ClueWeb09 340,451,982 5,107,067,522 15
ClueWeb12 456,498,584 6,133,750,307 13

Table 3.6: FACC1 ClueWeb Annotation Statistics

3.4 Evaluation

Each of the three tasks we study in this thesis uses its own evaluation measures. Common

across all of these are precision, recall, and accuracy. Precision is the fraction of relevant

(true positives) responses of all the responses returned:

P =
true positives

true positives + false positives

Recall is the fraction of relevant (true positive) responses of the total true results found

by the system:

R =
true positives

true positives + false negatives

Accuracy is the proportion of correct results:

A =
true positives + true negatives

true positives + false positives + true negatives + false negatives

Document Mention Start byte End byte Posterior Freebase ID
clueweb09-en0000-00-04720 FDA 21303 21306 0.9998 /m/032mx
clueweb09-en0000-00-00005 G e 9188 9196 1.0000 /m/03bnb

Figure 3.2: Example FACC1 Entity Annotations
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We now examine the evaluation measures for each task in more detail.

3.4.1 Named Entity Recognition

Named entity recognition is a sequence labeling task. In this thesis we follow the CoNLL

convention (KIM et al. 2003), were each entity is correct only if the identified entity exactly

matches the entity in the manual judgments.

We evaluate named entity recognition with the widely used F1 measure, the harmonic

mean of precision and recall. It is a widely used variant of the F-Measure (BLAIR 1979)

with β = 1. These measures are defined as:

Fβ =
(β2 + 1) ∗ P ∗R
β2 ∗ P +R

F1 =
2 ∗ P ∗R
P +R

For significance testing we use a random permutation test. To measure the difference

between two output sequences, we run a Monte-Carlo permutation test using 1000 samples.

If α < 0.05 we conclude there is a significant difference between the systems.

3.4.2 Entity Linking

For entity linking, we evaluate both overall effectiveness as well as “In-KB”. For “In-

KB”, there is only one correct entity and the relevance is binary (0 or 1). We evaluate

this case as a ranked retrieval where there is one relevant result. For this, we can evaluate

precision at rank 1 (P@1) as well as mean reciprocal rank (MRR). The P@1 is the average

of the precision at rank 1 over a set of queries. The reciprocal rank measure is defined as

the reciprocal of the rank of the first relevant retrieved document. The mean reciprocal rank

is the average of the reciprocal ranks for a set of queries.

The primary evaluation measures for entity linking are based on the B-Cubed cluster

evaluation measures (BAGGA and BALDWIN 1998). B-Cubed is a coreference evaluation
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measure for scoring coreference clusters. It defines cluster precision and recall for each

entity, i, as:

Pi =
number of correct elements in the output chain containing entityi

number of elements in the output chain containing entityi

Ri =
number of correct elements in the output chain containing entityi

number of elements in the truth chain containing entityi

As formulated the chains must only be consistent within the collection. It does not

handle the case where the mentions have an identical grouping, but refer to different entities

in an external knowledge base. For entity linking in TAC, these measures were modified to

fix this issue. TAC refers to these measures plus variations, such as B-Cubed+. B-Cubed+

is the same as B-Cubed, but adds the constraint that the clusters must also be linked to the

same entry in the external knowledge base. B-Cubed also defines two options for weighting

elements in the evaluation: 1) cluster precision where each cluster is weighted equally and

within the cluster each query is weighted equally and 2) element-wise precision where each

query is weighted equally globally. Following the official TAC evaluation, we use the second

element-wise definition.

The primary evaluation measures for entity linking are macro-averaged accuracy (in the

absence of NIL clustering) and B-Cubed+ F1.

P =

∑
q∈Q Pi

|Q|

R =

∑
q∈QRi

|Q|
Given this formulation of cluster precision and recall the official evaluation uses F1, as

described previously.

3.4.3 Retrieval

Retrieval systems return a ranked list of results to users. There are evaluation measures

for both binary relevance as well as graded relevance assessments. One simple evaluation
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measure for binary relevance is precision at k (P@k), the precision up to the k-th result. For

a single query it is defined as:

P@k =

∑k
i=1 reli
|Q|

where reli is the graded relevance of the document retrieved at rank i. For precision is a

binary indicator, 0 if non-relevant and 1 if relevant. When computed over a set of topics, the

mean P@k is used. However, P@k on its own does not capture the nuances of the ranked

lists. It only examines the top k results. It is a set based measure that does not take into

account the positions of the relevant documents in the ranking up to position k. Because of

this, we also report results using average precision.

Average precision is a widely used retrieval evaluation measure. For a single query is

defined as:

AP (q) =

∑k
i=1 P@i ∗ reli
|R|

whereR is the set of all relevant documents for the topic. Average precision takes the average

of the P@k values for each change in recall, where a relevant document is retrieved. It can

be computed over the entire ranked list, but in practice it is computed up to a sufficiently

large value. In this thesis we follow a widely used convention and evaluate it for the top

1,000 documents. When AP is used over a collection of topics it is referred to as mean

average precision. It is defined as:

MAP =

∑
q∈QAP (q)

|Q|

The TREC web corpora we use contain graded relevance assessments and focus on web

retrieval. For these corpora, one of the widely used measures is normalized discounted

cumulative gain at a given rank cutoff k (nDCG@k). It is defined relative to an optimal

ranking.
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nDCG@k =

∑k
i=1

2reli−1
log2(i+2)

ZR
where ZR is the ideal gain computed from an ordering of the documents in decreasing order

of relevance.

Another graded relevance metric used for web evaluation is expected reciprocal rank

(ERR@k) proposed by Chapelle et al. (2009). ERR@k is inspired by the ‘cascade’ user

model which assumes that users scan down a ranked list in order searching for a document

which satisfies their information need. Expected reciprocal rank is the expected rank at

which the user stops searching. It defines the probability of a user being satisfied with the

i-th search result as:

Pi =
2reli − 1

2relmax

where relmax is the highest relevance grade. Using this definition, expected reciprocal rank

is computed as:

ERR@k =
k∑
i=1

Pi
i

k−1∏
j=1

(1− Pj)

This measure was demonstrated to correlate better with user behavior in web search than

nDCG@k and other metrics. The difference is particularly sharp for navigation and head

queries.

In order to compare the output of two retrieval systems, we need to compare whether

there is a statistically significant difference between them. To detect statistical significance

for entity linking and document retrieval we use the Students’s paired t-test. The test makes

the null hypothesis that the systems are identical. One known issue with this test is that

it assumes a normal distribution of the system scores. It has been shown to be unstable

for small numbers of queries (<50). The query sets we use in this thesis contain hundreds

or thousands of queries. Smucker (2007) performs a detailed comparison of how this
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significance testing method compares with others for the evaluation measures used in this

work. If α < 0.05 we conclude there is a significant difference between the retrieval systems.
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CHAPTER 4

ENTITY-BASED ENRICHMENT

The traveller of steady head will delight to stand on
Pocumtuck Rock sheer above Eagle Brook Plain ...
out beyond the Bars, Indian Hole Squaw Hole, Bars Long
Hill, the Grindstone, and Sugar Loaf, spread out in
Nonotuck Valley the meadows of Old Hatfield and older Hadley
finally the brother peaks of Mount Tom and Mount Holyoke
stop the way, picturesqure guardians of "Long tidal River,"
Quinetahacut.

Figure 4.1: Passage from Old Paths of the New England Border, pages 164,166.

In this chapter, we describe the framework for entity enrichment we use throughout this

thesis. To illustrate the enrichment process, we use a real example of entity recognition, the

task we study in Chapter 5. The local observation sequence, a sentence from a historical

book, is shown in Figure 4.1.

4.1 Terminology

We first define the terminology we use throughout this chapter and in the thesis overall.

A summary of the terms is given in Figure 4.2. First, we define an observation, which corre-

sponds to a representation of text as a sequence of observed variables, o ∈ O, o1o2...o|O|.

For each task we study in this work, and to generalize to other tasks, the definition of

the observed variables in the sequence varies. When we discuss enrichment for a task we

follow the naming convention used for observations in that community. For named entity

recognition, the observed variables are words, or tokens, x each of which corresponds to
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observation, o An observed variable in text. This is an abstraction which may refer to a
word, a mention, or a mention linked to an entity depending on the stage
in annotation.

mention, m A single occurrence of an entity in text, consisting of the name string
and other possible attributes.

entity, e A single thing or object in the world, which may occur as an entry in a
knowledge base.

linked mention, m An entity mention with additional attributes linking (disambiguating) it
to one or more entities, which may exist as entries in a knowledge base.

Figure 4.2: Glossary of terms

a single observed variable, o. For the others in this thesis, the observations include query

mentions for the task of entity linking and query observations for a search query in retrieval.

Based on local independence assumptions between variables (across sentences, docu-

ments, or queries) we refer to the observations in a particular sequence as ‘local’ observations.

Observation and mentions that occur in other text sources are ‘non-local’. The ‘non-local’

observations may be within a document or query, but more importantly also includes

observations from across text sources.

We focus on exploiting similarities between an observation and other similar entity

mentions across large collections of text sources and a knowledge base. We define the

topical similarity on an observation to other mentions with respect to a given query model

and local context model created from the ‘local’ observations. .

4.2 Overview

Entity enrichment is a process that performs structured feature expansion of local obser-

vations from topically similar entity mentions in other documents and external knowledge

resources. Entity enrichment can be performed at different levels of representation for any

target observation. A target for enrichment could be a document, word, entity mention,

user query, or other meaningful unit. The local observation, o may exist as part of a larger

local context: O, which may be a sequence of observations, . Each observation oi has an
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associated vector of local features, fLoc derived from oi and the other observations in O.

The result of enrichment is a new vector of non-local expansion features, fEn extracted

from similar entity mentions in external sources.

The enrichment process consists of several important steps which vary for each task

and collection. The steps in entity-based enrichment are: 1) enrichment triggering, 2)

target model generation, 3) mention retrieval, 4) mention feature extraction, and 5) feature

aggregation. In subsequent chapters, we instantiate this model for different tasks, with

different characteristics for each. We now describe each of these phases in more detail.

4.3 Enrichment Triggering

Because entity-based enrichment identifies topically related entity mentions from exter-

nal sources, there may be a significant cost to retrieving and analyzing the external data. As

a result, we introduce an optional filtering step to perform enrichment only for a subset of

observations. Enrichment triggering is the process of determining the observations for which

enrichment should be performed for a particular task. In the simplest case each observation

is enriched. However, for large sequences of observations, this may be infeasible and

unnecessary. Instead of enriching every observation, one option is to identify difficult or

ambiguous local observations for which enrichment would provide the greatest benefit.

To do this we define a binary decision function, g that determines whether to perform

enrichment for an observation oi.

g(oi) =

 1 if oi is enriched

0 if enrichment is not performed

The optimal decision function minimizes the overhead of enrichment and maximizes

improvement in task effectiveness. The correct balance of these factors depends on the

efficiency vs. effectiveness trade-offs of the application. Factors in designing the decision

function may include the ambiguity of the observation as well as the cost of enrichment.
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Enrichment is a form of external knowledge acquisition. The decision process for when

and how to acquire external knowledge for information extraction tasks was studied in the

context of resource-bounded information acquisition (RBIA) (KANANI and MCCALLUM

2012). In this framework, whether to perform resource-intensive actions is learned using

reinforcement learning. Because this step of the enrichment process has received significant

attention in other research, it is not our main focus. For this thesis we define simple

task-specific heuristics and focus on the other aspects of enrichment.

4.4 Target Model Generation

Given an observation, o for which enrichment is triggered, we refer to the observation

as an enrichment target, T . The first step in enriching the target observation is to extract a

local context model. The goal of this phase is to identify informative features from the local

context in O that are useful for identifying similar entity mentions.

The result of this phase is a model θT that contains features used for similarity compari-

son to identify relevant entity mentions. The components and construction of θT are highly

dependent on the enrichment task and information collection. Although θT varies depending

on the task, in this thesis it is often a multinomial distribution over words or entity mentions.

θT may include positional information so that dependencies that incorporate phrases and

proximity may be used.

<enrichment target> Hadley
<observations> The traveller...spread out in Nonotuck Valley the meadows of Old Hatfield
and older Hadley; finally the brother peaks of Mount Tom and
Mount Holyoke stop the way...Quinetahacut.
<word sequence> [The] [spread] [out] [in] [the] [meadows] [of]...[Quinetahacut]
<capitalized sequences> (The), (Pocumtuck Rock),... (Nonotuck Valley),... (Quinetahacut)

Figure 4.3: Example context model for the observed token ‘Hadley’ in entity recognition.

An example of local model generation for entity recognition is given in Figure 4.3. The

example shows the model for the ‘Hadley’ observation token. Because the observation

sequence in entity recognition is small, only a sentence, the model includes all of the
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#combine(
#sdm( Pocumtuck Rock )
#sdm( Eagle Brook Plain )
...
#sdm( Nonotuck Valley )
#sdm( Old Hatfield )
#sdm( Hadley )
#sdm( Mount Tom )
#sdm( Mount Holyoke )
#sdm( Long )
#sdm( River )
#require( #all(hadley) )

)

Figure 4.4: Example mention retrieval query constructed from the ‘Hadley’ context model

observed words. It also includes sequences of capitalized words, which are likely to be other

entities. Although not in the example, we observe that other features derived from the local

observations could be included, include features from part-of-speech tagging or dependency

parsing.

4.5 Mention Retrieval

The goal of mention retrieval is to identify text sources, D, containing entity mentions,

M that are similar to the enrichment target, T . In this step documents or knowledge base

entries are ranked by their similarity to the enrichment target. To do this, the model of the

target, θT , is used to generate a query, QT . One possible query generated from the model in

Figure 4.3 is shown in Figure 4.4.

The target Galago query shown in Figure 4.4 has several important features. First, it

uses the #sdm to indicate the sequential dependence model, which capture dependencies

between adjacent words in meaningful semantic units, namely the other capitalized word

sequences likely to be related entities. The local context is important because it focuses on

the relationship of the target, “Hadley”, to other geographical features in the region. The
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other words or features provide a topical focus of the context in which the target observation

occurs. Second, the query contains a requirement that retrieved sources contain a matching

observation, “Hadley”.

The query is used to retrieve and rank mention sources, d ∈ D, with similar mentions.

For the entity recognition example, sentence retrieval is performed. The output of this step

is a ranked list of text sources scored by the query model containing entity mentions from

which enrichment features are extracted. A sample of the top ten similar sentences is shown

in Figure 4.5. The next step is to extract features from the mentions in these sources.

4.6 Mention Feature Extraction

For each text source, d ∈ D letMd be the related mentions of the target Tmd. The set

of all related mentions from the sources isM =
⋃
d∈DMd. The enrichment features are

then extracted from the related entity mentions, m ∈ Md. Each task defines its own set

of real-valued feature functions, ψ(fk,m), for each feature, fk ∈ f . In the simple case,

ψ(fk,m) is a simple binary indicator function, for example to indicate the presence of a word

or match in an external knowledge resource. This feature extraction phase differs from other

related expansion models because features are extracted from individual entity mentions

related to the enrichment target rather than words or features from the document overall. The

type of relationship of the mentions to the target observation varies depending on the task,

from exact-word matching, partial or complete name matching, or simply co-occurrence.

As shown in the example query in Figure 4.4 for this task there is a requirement for the

observations to share the same (normalized) string value.

For each identified entity mention,m ∈Md we perform feature extraction. The result of

this process is a feature vector for each mention, fm. An example set of extracted features

for the task of named entity recognition is shown in Figure 4.6. The extracted features can

be from the entity mention itself or from its surrounding context, such as text or neighboring
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entity mentions. The result of this step is the set of scored mentions,fM, with extracted

features < m, p(d|QT ),fm > for all mentions,M.

4.7 Feature Aggregation

Given the extracted features from all the related mentions, fM with their extraction

source, the output of this step is an aggregation into a single aggregated feature representation

fEn. Aggregation of entity enrichment features is a two-step aggregation process. First,

features are aggregated for each mention source, d ∈ D. This is important because it

normalizes the contribution of individual sources so each source has equal contribution.

Otherwise, long sources with many related mentions might contribute disproportionately

to the feature weight. Next, the features for each source are combined, incorporating

their similarity to the enrichment target, T . The aggregation model for enrichment varies

depending on the type of features used for the task.

Many of the features used in this thesis represent feature counts. Consequently, we use

an aggregation model similar to those in the relevance modeling (LAVRENKO and CROFT

2001) framework.

First, the features from similar mentions in the source document,Md, are aggregated

with respect to all the similar mentions in the source. An example of this is shown in

Equation 4.1. Next, the feature values from individual sources are combined:

p(fk|d) =
∑

m∈Md
ψ(fk,m)

|Md|
(4.1)

The per-source feature values are also aggregated. This aggregation incorporates the

per-source value as well as the source similarity to the enrichment target as follows:

p(fk|QT ) =
∑
d∈D

p(fk|d)p(d|QT ) (4.2)
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The result of this aggregated feature representation across all sources and their entity

mentions, fEn. As in traditional relevance feedback techniques, a subset of the high

probability features may be used for enrichment.

4.8 Summary

In this chapter, we introduced a framework for entity enrichment, which performs

structured feature expansion of a local observation target. We outlined techniques for

triggering enrichment, constructing a local model describing the target, generating a query

model and retrieving similar entity mentions, extracting features, and finally aggregating

features across sources. In the following chapters we instantiate this model for three different

extraction and retrieval tasks.
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North is the winding river, broad meadows and the villages of Hadley, Hatfield, Whately,
with Sugar Loaf Mountain rising in the center of the valley.
<score> P(D|Q) = 0.20

About the middle of September Captain Appleton with his company were marching from
Deerfield to Hadley. In the neighborhood of Mount Sugar Loaf they stopped by a brook
to pick wild graphes that hung temptingly on the vines about them.
<score> P(D|Q) = 0.11

The broad meadows, and the village of Hadley, extending across the peninsular, from one
bank of the Connecticut to the other, and the view down the Connecticut and across the
meadows, here obtained, present to the beholder a scene of rural beauty rarely met with.
<score> P(D|Q) = 0.07

But it was a sad state of things here in the valley, with Deerfield, Northfield,
and Springfield destroyed and only Hadley and Northampton remaining.
<score> P(D|Q) = 0.5

But on the east and south-east you have Amherst and Belchertown, and the Pelham Hills;
on the south, the Holyoke and Tom Range; on the south-west, Northampton and Easthampton,
and Hadley, with their rich surrounding meadows; on the west, close beneath you, lies
quiet Hatfield,and a little farther north, the village of Whately; and behind them both
rise the hills that make the eastern border of the Hoosac Range.
<score> P(D|Q) = 0.03

There is good authority to believe, from records of the General Court in 1853,
and other authentic sources, that the name we have chosen is the old Indian
name of lladley, which then embraced what is now called Hadley, Amherst,
Granby, South Hadley, Sunderland, Hatfield and Whately, and of course included
this entire range of mountains.
<score> P(D|Q) = 0.02

Another branch, coming from Mount Boreas, unites with that from Pelham and the stream
passes obliquely across Amherst and Hadley and empties into the Connecticut at
the foot of Mount Holyoke.
<score> P(D|Q) = 0.02

From the Hotel are the drives to Mt Holyoke, Hockanum, Mt. Nonotuck, Mt. Tom,
Sugar Loaf, Mt. Toby, Amherst, Easthampton, Holyoke City, South Hadley, and Florence,
all places of interest in themselves.
<score> P(D|Q) = 0.02

In the earlier part of the 17th century the Indians dwelling in Western Massachusetts
near the Connecticut river belonged to four small tribes or clans, the Agawams, located
at Springfield and West Springfield, the Waranokes at Westfield, the Xonotucks or
Norwottucks at Northampton, Hadley and Hatfield, the Pocomtucks at Deerfield.
<score> P(D|Q) = 0.01

To the north is Hadley, and beyond, Mt. Toby and Sugar Loaf, capped in the distance
by the blue peaks of the Green Mountains.
<score> P(D|Q) = 0.01

Figure 4.5: Example retrieved passages for the ‘Hadley’ target.
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Mention source:
North is the winding river, broad meadows and the villages of Hadley, Hatfield, Whately,
with Sugar Loaf Mountain rising in the center of the valley.
<score> P(D|Q) = 0.20

ψ(f, m) Features:
prev_word2_villages, 1
prev_word1_of, 1
next_word1_hatfield, 1
next_word2_whately, 1
suffix_ey, 1
prefix_Ha, 1
token_category_LET-MIX, 1
prev_pos_IN, 1
cur_pos_NP, 1
next_pos_NP, 1
is_capitalized, 1
wiki_gaz_exact_location, 1
freebase_cat_city, 1

Figure 4.6: Subset of extracted entity recognition features fm from related mention.

prev_word2_villages, 0.27
prev_word2_deerfield, 0.11
prev_word2_easthampton, 0.03
prev_word2_amherst, 0.02
prev_word2_city, 0.02
...
prev_word1_of, 0.27
prev_word1_to, 0.11
prev_word1_called, 0.02
...
is_capitalized, 1.0
token_category_LET-MIX, 0.82
token_category_LET-CAP, 0.13
...
prev_pos_IN, 0.40
cur_pos_NP, 0.90
next_pos_NP, 0.50
next_pos_NP, 0.30
wiki_gaz_exact_location, 0.90
freebase_cat_city, 0.85
...

Figure 4.7: Sample aggregated feature values recognition features fEn.
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CHAPTER 5

NAMED ENTITY RECOGNITION

In this chapter, we describe entity enrichment for the task of named entity recognition.

Named entity recognition is a pattern recognition task that assigns categorical entity labels

(person, organization, location, miscellaneous) to a sequence of observed words. The goal is

to infer a hidden label y from the observed token sequence x. The enrichment target in this

task is the feature representation of each observed token, xi. 1

5.1 Introduction

Despite the increased application of Natural Language Processing (NLP) on queries and

documents to improve retrieval tasks, there is little work exploring the use of retrieval to

improve extraction tasks. In this chapter, we use entity-based enrichment to improve the

task of detecting and classifying named entities, commonly referred to as Named Entity

Recognition (NER). Beyond NER, the enrichment model described in this chapter could

also be used for similar sequence labeling tasks including part of speech tagging, syntactic

chunking, and others. In these problems, we are given an input sequence of observed

variables, x, which consists of a sequence of words in a text document. For each observed

variable, xi ∈ x the goal is to infer a corresponding output label.

In most statistical sequence models the decision about the output label of a given token

depends only on a small local window of adjacent text, typically a sentence. The local

context that an entity occurs in may not provide enough evidence to accurately infer the

1This chapter is partially based upon work published at the 20th ACM Conference on Information and
Knowledge Management (CIKM ’11) (DALTON et al. 2011).
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output label. This problem is exacerbated by tables, lists, and other structures containing

non-grammatical text with little or no contextual clues. The result of this is incorrect

and inconsistent entity labeling. To improve effectiveness for these tokens, we investigate

methods that leverage information from external or ‘non-local’ evidence, within and across

documents.

To address this issue, we use the enrichment framework described in Chapter 4. To better

estimate the features used to label a token. The enrichment framework used to expand the

feature representation has several important properties that make it attractive for handling

non-local dependencies in NLP tasks. First, in mention source retrieval, the local context of

the token is used to find similar sentences. As we show in our retrieval evaluation, using

local context is effective for ranking sentences, retrieving sentences with similar mentions

that have matching labels, even for ambiguous tokens. Second, the number of non-local

dependencies to similar mentions is controlled by varying the number of source sentences

retrieved. Third, unlike existing models for non-local dependencies the features extracted

from similar mentions are aggregated incorporating the similarity to the enrichment target.

The result is more effective tagging. Finally, the model is efficient, because the number of

non-local features from enrichment can be limited to only the most important or highest

probability features.

The idea of tying labels and features across tokens has been explored in previous

work modeling non-local dependencies, such the skip-chain CRF model (SUTTON and

MCCALLUM 2004). However, efforts to model non-local dependencies directly in the graph

structure result in complex graphical models with loopy graphs that require approximate

inference methods, such as Loopy BP and Gibbs sampling. The use of approximate inference

results in significantly slower performance (FINKEL et al. 2005). Consequently, these models

are not often used in practice.

Another approach to incorporating non-local dependencies is based on copying and

aggregating observed features (VILAIN et al. 2009; RATINOV and ROTH 2009). Copying
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features allows the use of simple linear models where efficient exact inference techniques

for training and decoding, such as the Viterbi algorithm, can be used. However, results using

this approach in the past have been mixed. The results of Villain et al. (2009) show that

feature copying improves the results on the CoNLL 2003 shared task, but not as much as

they expect. One cause of errors that they highlight is ambiguous tokens that refer to the

same entity but take on different labels depending on the context. For example, consider the

word China which in: “China beat out Finland in the match...” is an ORG and “The Beijing

Olympics took place in China.” where it is a LOC. Previous models treat all occurrences of

a token identically without consideration of the context. Our enrichment approach addresses

this problem by by modeling the similarity of expansion sentences to the enrichment target.

Another problem with many existing models (SUTTON and MCCALLUM 2004) is that

they only use non-local evidence within the same document. The result is that these models

do not improve effectiveness on tokens that occur infrequently within a document. To address

this problem the enrichment process we propose also utilizes features across documents.

The enrichment process can leverage large collections of unlabeled text documents, such as

the web, to improve effectiveness.

One of the stated design goals of NER systems is that they should be robust to unseen

text. However, state-of-the-art systems perform poorly when evaluated on out of domain

data. Liu et al. (2011) demonstrated that the effectiveness of the Stanford NER tagger

trained on CoNLL data drops to 45.8% F1 when tagging entities from Twitter microblog

documents. In our experiments, we find similar degradation in performance to 51% when

evaluated on out-of-domain book data, namely the Deerfield collection of historical books.

The behavior of these systems across on out of domain data results in a decrease in F1 score

of approximately 40%. Our experiments show that models incorporating enriched feature

representations are more robust than local models when evaluated on out of domain data.

The main contributions in this chapter are:

• describing an enrichment model for incorporating non-local dependencies;
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• demonstrating that entity-based enrichment outperforms previous models of feature

aggregation and consistently improves effectiveness;

• evaluating the effectiveness of varying mention source retrieval models to rank sen-

tences based on the likelihood that shared tokens have the same entity label;

• showing that enrichment using external unlabeled data results in more significant

improvement than using only labeled data; and

• demonstrating that models that utilize enriched features are more robust when evalu-

ated on out of domain data, outperforming a leading sequence tagging system.

5.2 Non-Local Dependencies in NER

Sequence labeling tasks in natural language processing often make strong local inde-

pendence assumptions. For example, many assume independence between observations

across sentences. Extraction is performed on each sequence independently and in isolation.

However, this results in incorrect and inconsistent labeling in information extraction tasks.

In many cases, modeling the relationships between extractions can improve effectiveness.

Several recent efforts have focused on adding non-local dependencies, mostly within a

single document, to penalize inconsistent labeling and enforce some degree of consistency.

Finkel et al. (2005) show that predictions for the same entity are inconsistent within the

same document and across the corpus. Sutton and McCallum (2004) use a skip-chain CRF

with loopy BP inference to enforce consistent decoding among string-identical tokens in

the same document. Finkel et al. (2005) penalizes inconsistent labeling within a document

using Gibbs sampling. Bunescu and Mooney (2004) use a Relational Markov Network

(RMN) to explicitly model long-distance dependencies and use loopy BP for inference. All

of these techniques employ approximate inference techniques. Instead, of encoding the

dependencies in the model, the enrichment model we propose avoids approximate inference,

performing exact inference on copied features. An important difference in our model is
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that instead of treating all dependencies equally, the enrichment framework incorporates the

similarity between the target and non-local observations.

Another approach to global inference is two-pass or stacked architectures. A token

which appears in an unindicative context in one sentence may appear in informative contexts

in other sentences. In a two pass model the predictions of a first-pass system are used

as global features in a second-pass model that “fixes up” the labeling (KRISHNAN and

MANNING 2006; RATINOV and ROTH 2009). The simplest version of this approach

enforces consistency in certain labelings by majority vote or other heuristics (MIKHEEV

1999). Other versions use nearest neighbor classification to incorporate predictions in other

parts of the document or corpus (LIU et al. 2011).

Bendersky et al.(2010) tag sparse and ungrammatical web search queries using labels

from top retrieved documents where instances are weighted using pseudo-relevance feedback.

This is a two-pass model that incorporates similarity to the target sequence, an entire query.

The structural annotation tasks they perform on queries include capitalization, part-of-speech

tags, and segmentation. Our work has several important differences. First, although the

enrichment framework we propose could be applied to detecting entities in queries, it

is not the focus of this chapter. Detecting entities in queries has been studied by others

(GUO et al. 2009). Similar to the enrichment model, the model incorporates evidence from

retrieved documents and incorporates similarity to the enrichment target. However, instead

of aggregating votes of label output, the enrichment method we propose copies low-level

tagging features. As we discuss below, feature aggregation has been demonstrated to be

more effective than vote aggregation for named entity recognition.

Two pass models fix mistakes, especially for frequent entities. The limitations of these

models were recently examined by Villain et al. (2009). They fail when the first pass

labels the instance incorrectly more often than correctly. Furthermore, for rare tokens the

prediction information remains sparse and there may only be weak evidence in each sentence

56



considered in isolation. Their results find that copying low-level features is more effective

than majority counts across several named entity recognition evaluation sets.

Our work on feature enrichment is similar to previous to work on context aggregation,

which copies features across token instances. Ratinov and Roth (2009) aggregate features for

string-identical tokens within a fixed window size of 200, even across document boundaries.

The idea of entity enrichment is most closely related to that of Villain et al. (2009), who

copy “displaced features” across related tokens within the same document. Their method

uses information gain to copy only the most predictive features for related tokens. It requires

a pre-processing step over the entire corpus to identify these features over the corpus before

training or decoding. The model suffers from ambiguous token contexts, introducing noise.

In contrast, our enrichment framework incorporates sentence similarity to address issues of

ambiguous contexts. Instead of information gain, our aggregation model based on highest

probability features does not require a pass over the entire corpus, only a small subset of

sentences.

5.3 NER Approach

The methods we propose can be incorporated into a variety of models used to infer

output values in sequence labeling. For this work we incorporate our enrichment technique

with a state sequence model based on Conditional Random Fields (CRFs) (LAFFERTY et al.

2001). CRFs are a type of discriminatively trained undirected graphical model trained to

maximize the conditional probability of output labels given an input observation sequence.

Given an observed sequence of words x, the goal is to predict the values of the unobserved

random variables y, which are the corresponding output labels. In this work, we utilize a

linear-chain CRF with a first order Markov assumption made on hidden variables in the

graph where only adjacent vertices are connected by edges. Just as with first-order HMMs,

our model admits efficient inference using the forward-backward and Viterbi algorithms for

training and decoding.
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Feature
words = Wi−2, ... Wi+2

POS tags = oi−1, oi, oi+1

Wi capitalization patterns
Character Prefixes = Wi−1, Wi, Wi+1

Character Suffixes = Wi−1, Wi, Wi+1

Table 5.1: Baseline NER features

CRFs are the state-of-the-art in many sequence modeling tasks (PINTO et al. 2003;

LAFFERTY et al. 2001), and their effectiveness on NER tagging is competitive with the

best reported by the LBJ NER tagger (KRISHNAN and MANNING 2006; VILAIN et al.

2009; RATINOV and ROTH 2009). Unlike generative models like HMMs, CRFs do not

model the joint distribution p(x,y). Instead, they estimate p(y | x). The CRF framework

allows the flexibility to integrate arbitrary features, including enrichment-based features.

We train the CRF model using stochastic gradient descent (SGD). Our system is based on

the open-source package LingPipe,2. This baseline model corresponds roughly to the local

Viterbi model described by Finkel et al. (2005). This class of models is widely used because

of the models’ efficiency and simplicity.

The baseline local features used in the model include words within a window size of 4,

adjacent word character prefixes and suffixes, part of speech tags, and capitalization patterns.

The feature set is summarized in Table 5.1. For each of these features there is a binary

feature function fk(xi, x) that indicates the presence of the feature in the observed variables.

For example, to indicate that the token is a noun, fCUR POS=noun(xi, x). We also evaluate

models that incorporate external knowledge resources, such as Wikipedia gazetteers and

Brown word clusters (BROWN et al. 1992). These features are used by a leading NER

system, described by Ratinov et al. (2009). In Section 5.5 we evaluate the these models with

our proposed enrichment framework.

2http://www.alias-i.com/lingpipe
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Feature Description
notStop Feature indicating absence of xi in Lemur 418 stopword list
notBos Feature indicating xi is not the beginning of a sentence
isFirstCap Indicator if the first character of xi is capitalized
isCapOnly Indicator if the first character of xi is capitalized followed by lowercase (Aa+)

Table 5.2: Query trigger features

5.4 Entity-based Enrichment for NER

5.4.1 Enrichment Scope

Before exploring the different phases of enrichment for named entity recognition, we

first define several enrichment scopes and relate this to previous work. We define the local

observation sequence of tokens x to be a single sentence. Likewise the enrichment sources

for entity enrichment are sentences.

The source collection, C used for enrichment is an important factor in its effectiveness. It

determines the scope of the non-local dependencies and the amount of information available.

We now examine several corpus definitions and relate them to previous work.

Document The within document restriction defines the collection to be the sentences

that occur in the same document as x. In previous work this is the most commonly used

model (SUTTON and MCCALLUM 2004; FINKEL et al. 2005; VILAIN et al. 2009). It is

simple to implement because an entire document is typically available during labeling. Since

documents that mention the same entity multiple times are likely referring to the same entity,

there is strong evidence that the entity shares the same label. However, this definition does

not consider dependencies between occurrences across documents. This hurts recall and is

problematic for short documents and rare entities.

Fixed Token Window The fixed window definition restricts the retrieved sentences to

ones that occur within a specified range of tokens in relation to the observed token, xi. It can

be used within documents, and has also been used for cross-document context aggregation

by the LBJ NER tagger (RATINOV and ROTH 2009). The LBJ tagger uses a token window
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size of 200. The fixed window cross-document collection definition is an ad-hoc heuristic

developed based on the observation that documents close together in a newswire stream tend

to be topically related. While effective, the heuristic is highly specific to the CoNLL data

set and is unlikely to generalize to more general contexts. We include it in our experiments

for completeness.

Global The global corpus definition utilizes all sentences in the source collection. The

size and scope of the collection varies significantly. This definition supports dependencies

across all mentions in every document. It is particularly useful when labeling infrequent

entities.

External Beyond the source collection, other external sources of text are available. For

example, large newswire collections, millions of scanned books, and the web. These sources

vary widely in genre, topic, formality, and reliability.

5.4.2 Enrichment Triggering

Enrichment triggering is the process of determining the variables for which feature

expansion should be performed. For entity recognition, enrichment for each observed

variable xi in x is infeasible. Instead, we focus on enriching tokens that are likely to be

named entities. As described earlier in the enrichment framework, we define a binary

decision function, g that determines whether to generate a query, Q for each xi in x.

g(oi) =

 1 if xi is enriched

0 if enrichment is not performed

For our experiments we utilize several boolean combinations of the features in Table

5.2. For the data sets in these experiments the capitalization heuristics work well and have

been successfully used in previous work (SUTTON and MCCALLUM 2004; FINKEL et al.

2005). Beyond capitalization, very common stopword tokens represent a large number of

ambiguous observations, and queries generated from them are slower because they occur
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in a large fraction of sources. In addition, tokens that are short (one or two characters) or

all capitalized are likely abbreviations and are often ambiguous. Finding similar mentions

for these highly ambiguous mentions may be difficult. The capitalization of tokens at the

beginning of sentences are also ambiguous. To explore these options. we constructed several

heuristic combination of these features that we evaluate in Section 5.5. We find that these

simple heuristics are effective for our evaluation data sets, but other techniques may be

needed for other types of text collections, such as microblog posts.

5.4.3 Target Model Generation

In this section we outline several methods for constructing a model of of an enrichment

target, xi from the local observations in x. The goal is to generate a context model that

is likely to retrieve sentences with similar mentions that contain the target variable xi and

share the same output label. Because at this stage in enrichment we have only text features,

we focus on building a local textual model.

No context This model consists of only the current observed token, xi. In previous work

(RATINOV and ROTH 2009; SUTTON and MCCALLUM 2004; FINKEL et al. 2005) on

modeling non-local dependencies, this is the only model utilized.

Adjacent tokens Beyond the observation itself, this model makes a first order Markov

assumption and utilizes only adjacent tokens (xi−1, xi, xi+1). We include this because it is

an important feature used in NER classification.

All tokens All of the observed tokens in x are utilized in the model. This utilizes the

largest amount of local context information. However, it is also the most expensive to

execute because these models may be quite large, resulting in slower execution.

Capitalized Tokens Although other identified entities in the sentence have not yet been

detected, it is possible to observe a strong indicative feature, capitalization. In this context
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model, we approximate using other co-occurring entities by using tokens that have the first

character capitalized and the subsequent lowercase (Aa+). This captures likely entities and

excludes ambiguous abbreviations.

5.4.4 Mention Source Retrieval

The goal of mention source retrieval is to identify text sources, d ∈ C, containing entity

mentions,M that are similar to the enrichment target. In the previous section, we examined

the different elements of context used to model the target observation, xi. From this model,

we generate a query, QT , to retrieve sentences.

For retrieving similar sentences in NER, an important consideration is how the tokens are

normalized. This includes case folding, stemming or lemmatization, and stopword removal.

As we show in our experiments, in Section 5.5, features such as case sensitivity significantly

impact the effectiveness of retrieving similar mentions.

5.4.4.1 Exact match

The simplest baseline model we evaluate is boolean set-based retrieval using exact string

matching between the target observation and the source sequence. In this model, the query,

Q consists only of the observed token, xi. This model does not use any of the context in the

surrounding sentence.

p(d|Q) =

 1 if xi is in d

0 if xi is not in d

All sentences matching the query have the same uniform score. This is the method used in

previous feature aggregation models (SUTTON and MCCALLUM 2004; VILAIN et al. 2009).

For large collections the number of sentences retrieved can be very large, with thousands or

millions of matches.
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5.4.4.2 Unigram

The unigram model is equivalent to the Query Likelihood model that ranks documents

according to the probability of relevance using a bag of words assumption of term indepen-

dence. Using Dirichlet smoothing this is defined as:

log p(Q|d) =
|Q|∑
i=1

log
f(qi, d) + µ

cq,i
|C|

|d|+ µ
(5.1)

where f(qi, d) is the frequency of the query term in the sentence, cq,i is the number of times

a word occurs in a collection of documents, |C| is the number of words in the collection,

and µ is the smoothing parameter that is set empirically.

5.4.4.3 Term Dependence Models

To model dependencies between observations in the source model we generate Q using

the sequential dependence variant of the Markov Random Field IR model (METZLER and

CROFT 2005). It models dependencies between adjacent observations and includes phrases

and word proximity. We described the SDM model in relation to log-linear models in

Section 2.6.1. This model can specified using the Indri 3 query language as,

#weight( 0.8 #combine(United Arab Emirates)
0.15 #combine( #ow1(United Arab)
#ow1(Arab Emirates) )
0.05 #combine( #uw8(United Arab)
#uw8(Arab Emirates)) )

In this chapter the sequential dependence parameters are set according to those suggested by

Metzler and Croft (2005) which were shown to be stable across collections.

5.4.5 Mention Feature Extraction

Given the retrieved source sentences selected by a technique in 5.4.4, we extract entity

recognition features from these sources. We apply the same named entity recognition feature

3http://www.lemurproject.org/indri
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extraction used previously for the local model on all of the target sentences. As discussed

earlier in Section 5.3, each fk is a binary feature function used for the features in the CRF.

5.4.6 Feature Aggregation

We use the two-step aggregation model outlined in Section 4.6. We observe that for the

boolean exact match model all sentences have equal weight, so the enrichment features are

simply an average of the feature values across the collection where the observation exists.

We utilize the non-local enriched feature distribution in addition to the original local

features. We add the enriched features as new distinct feature functions in the model feature

space. This allows the model to learn separate weights for local and enriched features. We

then use the local inference methods for linear chain CRFs.

Adding features from enrichment approximately doubles the feature space used in the

model. Over large collections the number of features can become prohibitively expensive.

One technique is to mitigate this issues is to only select a subset of the highest probability

features for enrichment. Selecting a top-k most probable expansion features is commonly

done in pseudo-relevance feedback and applies here as well. Similarly, another method to

control the scope of the enrichment is to limit the number of feedback sources and use only

the top-k sentences for enrichment.

5.5 Experiments

In this section, we report experimental results utilizing our enrichment model. First,

we evaluate the mention source retrieval of various retrieval models. Second, we measure

the effectiveness of the enrichment features on NER labeling in the CoNLL03 shared task.

Third, we evaluate NER models that utilize external corpora as a source for enrichment

features. Finally, we assess the robustness of the models by labeling an out of domain

collection of scanned historical texts.
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Trigger # Queries TP FN FP TN Prec. Recall
isFirstCap 44906 33359 684 11547 158028 74.29 97.99
isFirstCap & notStop 41344 33273 768 8071 161504 80.48 97.74
isFirstCap & notStop & notBos 32552 27413 6628 5139 164438 84.21 80.53
CapOnly & notStop 33429 27912 6132 5517 164060 83.50 81.99
CapOnly & notStop & notBos 27240 24004 10040 3236 166341 88.12 70.51

Table 5.3: Query Trigger evaluation on the CoNLL training data. It compares boolean
combinations of the features from Table 5.2.

5.5.1 Enrichment Triggering Evaluation

In the section we evaluate the effectiveness of several combinations of query trigger

heuristics described in Section 5.4.2. Query triggering determines which observed variables

are expanded. Ideally, it would occur when expansion improves labeling effectiveness;

however, this is difficult to estimate directly. As a starting point, one heuristic we use is that

feature enrichment should be performed if and only if the token is part of a named entity.

This definition ensures that non-local entity information is considered in classification. The

triggering evaluation results are shown in Table 5.3.

From the results, we observe that the heuristic utilizing capitalized letters has high recall.

It captures all but 2% of entity tokens. The missing entity tokens are mostly stopwords that

are part of a longer entity string (e.g. for in the sequence [Center for Intelligent Information

Retrieval]), but has a significant number of false positives. The precision improves by

removing stopwords, which are expensive queries to execute and are ambiguous tokens.

The CapOnly heuristic excludes mixed and all-caps tokens which improves precision over

isFirstCap. Although recall is reduced significantly, manual inspection shows that many

of the missed tokens are abbreviations such as US, UN, and EU. CapOnly combined with

excluding stopwords reduces the number of queries by 19%, reducing the number of false

positives by half compared with the baseline isFirstCap. This is a significant savings in the

number of queries executed. Most of the remaining false positives are temporal expressions

such as month and days which are not labeled as named entities.
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Retrieval Zero Results MAP Mean Prec. Relevant sentences Returned sentences
Case Folding 2491 87.30 84.56 1,497,893 1,844,301
Case Sensitive 3112 90.57 88.35 1,161,370 1,297,002

Table 5.4: Evaluation of case normalization in retrieval using the Query Likelihood ranking
and no context for the 33,429 queries.

Retrieval MAP
CaseFold QL NoContext 87.30
CaseFold QL Adjacent 90.10
CaseFold QL All 91.14
CaseFold SD Capitalized 91.43
CaseFold SD All 91.70
CaseSens QL NoContext 90.57
CaseSens QL Adjacent 92.63
CaseSens QL All 93.50
CaseSens SD Capitalized 93.55
CaseSens SD All 93.92

Table 5.5: Evaluation of sentence retrieval using Mean Average Precision (in %). Various
combinations of case sensitivity, retrieval model, and query generation method are evaluated.
QL indicates Query Likelihood retrieval, SD indicates Sequential Dependence. The last
word indicates the query generation method from Section 5.4.3.

The addition of the restriction to exclude tokens at the beginning of sentences, notBos,

where virtually all tokens are capitalized, improved precision but resulted in a significant

reduction in recall. Furthermore, capitalized tokens at the beginning of sentences are often

ambiguous and enrichment can improve effectiveness by providing more features in less

ambiguous contexts. We found tagging effectiveness improved by enriching these tokens.

We utilize the CapOnly & notStop combination for the remaining experiments. It is

simple and provides a satisfactory trade-off between efficiency and recall.

5.5.2 Source Retrieval Effectiveness

For enrichment the effectiveness of the source retrieval phase is an important factor in

enrichment effectiveness because the features are weighted by the model probabilities. We

therefore evaluate various retrieval methods to determine which is the most effective. For
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Approach LOC MISC ORG PER ALL
Baseline 87.02 73.19 78.37 84.53 82.16
Stanford 86.11 77.78 78.50 85.39 82.62
Baseline + Brown 88.79 74.23 79.15 89.73 84.53
Stanford DistSim 89.64 77.35 81.08 90.63 85.88
Baseline + Brown + Wiki 89.59 74.48 81.49 91.91 86.08

Table 5.6: Phrase level F1 scores for base NER models described in Section 5.3 compared
with the Stanford NER tagger on the CoNLL 2003 Named Entity Recognition test (b) set.

evaluation purposes a retrieved sentence, d, is defined to be relevant for a source query Qxi

for variable xi as follows:

Rel(d) =

 1 if ∃xi ∈ d s.t. xi = xj and yi = yj

0 Otherwise

where xj and yj are the corresponding variables contained in in d. The above definition

states that a sentence is relevant only if it contains a string-identical observed variable where

the output labels have the same entity class.

The CoNLL newswire documents are indexed using the open-source Galago 4 retrieval

system. The documents are split into sentences using the boundaries provided and indexed

to create a sentence level index. We perform stopping using the Lemur 418 stopword list and

stemming using the Porter stemmer. Default Dirichlet smoothing was used with µ=2500.

For evaluation, the set of 33429 queries resulting from the query triggering method selected

in Section 5.5.1 is used. The search index is loaded into memory for fast retrieval during

tagging.

We first examine the impact of case folding on effectiveness. As previously discussed,

capitalization is an important feature that strongly indicates a token is an entity. To utilize

this we test case-folded and case sensitive retrieval. The results are shown in Table 5.4. As

expected, case sensitive matching improves precision but decreases recall. The number of

4http://www.galagosearch.org/
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relevant sentences retrieved decreases by approximately 20%. The number of queries with

no results increases by 25%. It is notable that both models have very high MAP scores.

The high MAP score indicates that most tokens in the CoNLL dataset are not ambiguous.

Given the large number of sentences, the improvement in precision of case sensitive is more

valuable than the decrease in recall.

Next, varying combinations of retrieval models described in Section 5.4.4 and context

model generation in Section 5.4.3 are tested. The results of the evaluation on Mean Average

Precision (MAP) are shown in in Table 5.5. The table shows that case sensitive retrieval

results in consistent effectiveness improvements across all models. Using the entire sentence

as context model performs the best. The target model using the capitalized words in the

sentence performs only slightly worse than using all of the words in the sentence. This is

significant because these queries are significantly more efficient to execute because they

contain fewer terms that occur less frequently in the collection.

The best performing combination is the sequential dependence model using all words in

the source sentence as the context model. As shown later in Section 5.5.3.3, this model also

performs the best for NER feature expansion. This indicates that the relevance evaluation

correlates with real NER improvements in the final combined system.

5.5.3 CoNLL NER Evaluation

In this section we measure the impact of adding non-local feature from enrichment to

our baseline CRF model. We begin by evaluating the local baseline CRF models. Then, for

comparison with previous work we evaluate features from exact match boolean retrieval.

Finally, we evaluate effectiveness of enrichment models that incorporate more advanced

mention source retrieval and ranking techniques.

5.5.3.1 Local NER Models

We now evaluate the baseline local tagging models. Table 5.6 shows NER systems and

feature combinations using only local features on the CoNLL named entity recognition task.
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Approach F1 Error Red.
Local (baseline) 82.16
FixedWindow 84.55* 13.4%
Global 83.86* 9.5%
Local (Brown + Wiki) 86.08
FixedWindow 86.44* 2.6%
Global 86.11 0.2%

Table 5.7: F1 scores on CoNLL for feature enrichment using exact string matching for
varying corpus scopes described in Section 5.4.3. The top is the baseline model with features
from Table 5.1. The bottom results are for a stronger model with Brown clusters and
Wikipedia features. Statistically significant over local models where indicated with a * with
p ≤ .05.

Approach F1 Error Red
Local (Brown + Wiki) 86.08
QL Capitalized 86.36* 2.0%
QL All 86.47* 2.8%
SD Capitalized 86.28 1.4%
SD All 86.60* 3.7%

Table 5.8: CoNLL F1 scores for feature enrichment using ranked source retrieval with the
Global retrieval scope. (QL) indicates Query Likelihood and (SD) indicates Sequential
Dependence retrieval models. The query context models used two variations: Capitalized
includes only capitalized tokens, All has all tokens excluding stopwords. Significant
differences over the local model with p ≤ .05 are indicated with by *.
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Approach F1 % Err Red
Local (Baseline) 49.86
Win200 51.41 3.1%
Global 55.36* 11.0%
Local (Brown+Wiki) 51.58
Win200 51.06 -1.1%
Global 51.97 0.8%

Table 5.9: F1 scores of the NER model trained on CoNLL and evaluated on the Deerfield
collection. The results show local systems and unweighted feature enrichment with varying
collection scopes. The top is a tagger model with baseline features. The bottom is a stronger
baseline model with word clustering and Wikipedia features. The differences are statistically
significant with local models where indicated with a * with p ≤ .05.

We compare the effectiveness of the our baseline tagger with the the Stanford NER system5.

The base CRF model performance is comparable to the out-of-the-box Stanford system.

Although these models are widely used for their efficiency, they are not state-of-the-art.

To the baseline system we add features from external knowledge sources. In particular,

gazetteers from Wikipedia and Brown word cluster information. These resources are bundled

with the freely available Illinois LBJ Named Entity tagger 6. Consistent with the findings of

Ratinov et al. (2009), the external knowledge resources provide significant improvement

over the baseline model. These local NER models are the baselines we use to assess the

impact of entity-based enrichment.

5.5.3.2 Exact Match Feature Enrichment

Next, we present the results of cross-document feature enrichment using sentences with

string-identical tokens. Table 5.7 shows that enrichment provides consistent improvements

over the local models. The FixedWindow expansion corresponds to the context aggregation

method used by the LBJ tagger (RATINOV and ROTH 2009).

5http://nlp.stanford.edu/software/CRF-NER.shtml

6http://cogcomp.cs.illinois.edu/page/software_view/4
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Approach LOC MISC ORG PER ALL % Error Red
ExactMatch 53.43 57.29 18.90 55.97 51.97
LBJ (Win 200) 62.10 57.31 11.84 67.12 58.05 12.7%
QL All 64.62 53.47 23.64 63.79 59.31 15.3%
SD All 64.40 58.42 21.71 65.89 60.15* 17.0%

Table 5.10: F1 scores for CoNLL models evaluated on the Deerfield collection. The table
compares global ranked feature enrichment models compared with baseline exact string
matching. We compare against the state-of-the-art LBJ NER model that uses Fixed Window
feature aggregation. All differences are statistically significant over the baseline ExactMatch
model with a with p ≤ .05, a * indicates significance over LBJ.

For the baseline retrieval system, the FixedWindow expansion method provides a 13.4%

reduction in F1 error on the CoNLL dataset. The global enrichment model using all sentences

in the collection provides a smaller 9.5% reduction. FixedWindow outperforms unweighted

global feature enrichment. FixedWindow restricts the sentences to match those near the

source sentence in the news stream. It exploits temporal (and therefore topical) locality in

the CoNLL dataset. It does not perform well on collections that do not have this property,

as we show later in the Deerfield evaluation. Neither aggregation method applied to the

baseline model outperforms a stronger local model that uses Brown word clustering and

Wikipedia gazetteers.

The results of adding exact match enrichment features to a stronger model incorporating

Brown and Wikipedia is shown in the bottom of Table 5.7 there is a small, but significant

improvement using the FixedWindow model. The expansion with the global retrieval over

all sentences provides no significant benefit. The unweighted global aggregation has less

topical cohesion and the unweighted enrichment contains more noise. The exact match

model acts as a global prior for a token. This can be problematic for ambiguous tokens. We

now explore the use of enrichment models using stronger source retrieval models, those that

utilize local sentence context to address the problem of ambiguity.
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Approach F1 Error Red.
CoNLL SD AllTokens 86.60
CoNLL QL AllTokens + Ext100 86.66 0.4%
CoNLL SD AllTokens + Ext50 87.01* 3.1%
Deerfield SD AllTokens 60.15
Deerfield QL AllTokens + Ext100 60.07 -0.2%
Deerfield SD AllTokens + Ext50 61.22* 2.7%

Table 5.11: F1 scores for external feature enrichment including a 50k document subset of the
RCV1 reuters news collection. Ext100 indicates 100 feedback sentences, Ext50 indicates 50
sentences. A * indicates significance over non-external model with p ≤ .05.

Approach F1 Score Error Red.
CoNLL Best Local 86.08
CoNLL Expansion 86.60 3.7%
CoNLL Expansion + External 87.01 6.7%
Deerfield Best Local 51.58
Deerfield Expansion 60.15 17.7%
Deerfield Expansion + External 61.22 19.9%

Table 5.12: Summary Table comparing the F1 score of the strongest models in each category,
a purely local model incorporating word clustering and gazetteers, a model using ranked
feature enrichment models, and enrichment including an external corpus. All results are
statistically significant with p ≤ .05.

5.5.3.3 Ranked Feature Enrichment

The results for feature enrichment from ranked retrieval are shown in Table 5.8. Because

the corpus is small all sentences are used for enrichment. Unlike the exact match based en-

richment, the results show that ranked enrichment models result in significant improvement

over the strongest local NER model. The SD AllTok combination provides a 3.7% reduction

in error over the best performing local model.

The models with the AllTok context outperform models using only capitalized tokens.

The Sequential Dependence model provides a small improvement over Query Likelihood.

The models using AllTokens outperform the exact match model with the 200 token fixed

window described in the previous section.
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5.5.4 Deerfield Evaluation

In this section we evaluate the robustness of the models trained on newswire by evaluating

them on the collection of scanned books described in Section 3.1.2. For the Global retrieval

scope all the sentences in the 20 books are indexed. Sentence splitting is performed using

the OpenNLP MaxEnt classifier.

The results for the evaluation on the Deerfield dataset are shown in Table 5.9. The

results show that the F1 score of the tagger drops by approximately 40% compared with

the CoNLL results. We investigated the errors and found that many of errors are due to

sparsity in the book domain. A significant number of the entities in the book collection are

not present in the newswire training collection. Our error analysis finds location entities are

often confused for people. Investigating the feature values for these errors, we found that

for unseen tokens the tagger relies heavily on the class prior, which is biased towards person

labels in the newswire data. We now show the impact of feature enrichment on addressing

these problems.

5.5.4.1 Exact Match Enrichment

Table 5.9 shows that expansion using Fixed Window of 200 tokens does not improve

effectiveness significantly. The Global scope outperforms the Fixed Window method when

applied to the baseline model.

It is curious that global enrichment model does not significantly improve the stronger

local model that incorporates Wikipedia based gazetteers. In fact, the model performs

worse than enrichment with to a weaker recognition model. We believe this is due to the

phenomena of model undertraining (SUTTON et al. 2006) where the strong Wikipedia

features in the newswire domain result in the model underweighting for token and context

features.
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5.5.4.2 Ranked Feature Enrichment

The results for ranked feature enrichment models are shown in Table 5.10. The enrich-

ment models using ranked source retrieval result in very substantial improvements in NER

effectiveness. The Sequential Dependence model using a query generated from the entire

sentence results in a 17% reduction in error. It outperforms the LBJ Layer 1 model which is

currently the best performing NER tagger on newswire data. The evaluation indicates that

feature enrichment results in a model that is more robust across domains than local models.

The improvement in model effectiveness from enrichment does not address OCR errors.

We only copy features for identical observed tokens. Relaxing this constraint to copy fea-

tures for similar strings could potentially improve accuracy further for these tokens, which

is an area for future work.

5.5.5 Enrichment using External Collections

Enrichment can also be used to improve NER effectiveness using unlabeled data from

external collections. The previous experiments utilize small text collections used in NER

evaluation. The labeled CoNLL data contains less than 20 thousand sentences. We now

explore enrichment models that use features from larger external collections of text.

5.5.5.1 Reuters RCV1 subset

As an external source for feature enrichment we use a subset of the Reuters RCV1

collection (LEWIS et al. 2004). RCV1 consists of Reuters newswire data collected in 1996

and 1997. It contains documents from the same source and time period as the CoNLL data

set. We use the first 50,000 documents of the collection. The RCV1 subset contains 931,822

sentences and 20.5 million words.
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5.5.5.2 Evaluation

In previous experiments all of the sentences in the collection were used without a

retrieval cutoff because of their limited size. For these experiments, enrichment is performed

using only a subset of the top ranked sentences. We experiment with the number of retrieved

sentences and report results using the top 50 and 100 sentences.

The results on both the CoNLL and Deerfield collections are shown in Table 5.11. The

results compare against the best performing feature expansion models that does not utilize

external data. The Sequential Dependence model with 50 feedback documents results in

significant improvement in both the CoNLL and Deerfield evaluations. It provides a 3.1%

error reduction in CoNLL and a 2.7% error reduction in Deerfield.

The model using 100 feedback documents and QL retrieval does not significantly

improve effectiveness and slightly hurts effectiveness on the Deerfield data. We are unsure

why this model does not perform as well, especially on the CoNLL data. It is possible that

the larger collections contain more ambiguous tokens. Also, the larger number of feedback

documents may introduce noisy features from off-topic sentences. More error analysis is

needed to understand this behavior. We note that enrichment with the QL retrieval model is

less effective than the Sequential Dependence model. For the Deerfield data, the additional

newswire data may not contain the topics in the dataset and therefore may not be as useful

for expansion.

Despite mixed results, the external feature expansion model results in the overall best

performing system.

5.6 Summary

In this chapter we applied the enrichment framework to the task of named entity recog-

nition (NER). The enrichment framework induces long-range cross-document dependencies

between similar mentions using retrieval. It uses weighted feature copying from topically

similar passages. In addition to showing that enrichment achieves statistically significant
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improvements on in-domain accuracy, we show it results in a more robust entity detec-

tion model, significantly surpassing other methods when evaluated out out-of-domain data

(Contribution 2).

The enrichment framework allows us to leverage large external sources of unlabeled

data. The results show a 6.8% error reduction on newswire and a 19.9% error reduction

on out-of-domain book data for named entity recognition. A summary of the results is

presented in Table 5.12. In addition to showing that enrichment can achieve statistically

significant improvements on in-domain accuracy, we show it results in a more robust

model, significantly surpassing other context aggregation methods when evaluated out

out-of-domain data.

In this chapter we use enrichment for detecting named entities. We used the enrichment

framework to improve the effectiveness of detection and classification using cross-document

evidence. The result is a text document annotated with mentions, M , of entities. In the

following chapter, we apply the enrichment framework to the task of disambiguating the

entity mentions to external knowledge sources, like Freebase and Wikipedia.
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CHAPTER 6

ENTITY LINKING

When Chris Foy’s final whistle reverberated around Villa Park in
May and Newcastle United were relegated to the Coca-Cola
Championship, Toon fans would have been forgiven for fearing
their club was beginning to fade into footballing obscurity.

Figure 6.1: Excerpt from TAC document with linking query for [Toon] entity.

In this chapter, we describe entity-based enrichment for entity linking. Entity Linking is

the task of mapping an entity mention (name) in a document to entities in a knowledge base.

In the previous chapter, we focused on detecting and classifying named entity mentions. In

this chapter, we focus on linking these detected mentions to an external knowledge base,

such as Wikipedia or Freebase. Although much of the work in this area has been done in the

NLP community, the task can viewed as a form of entity retrieval, where each mention is a

query with one relevant document. One of the key differences between entity linking and

retrieval is that the entity mentions occur in the context of a document, with rich contextual

evidence that can be used for disambiguation and generating a contextual entity model.

One of the crucial problems for entity linking is identifying relevant disambiguating

context in the mention document. The disambiguating context includes the words, but more

importantly, other entity mentions (and their associated entity links). However, not all entity

mentions are equally helpful for disambiguation. To address this issue we introduce the

neighborhood relevance model which uses entity-based enrichment to identify the salience

of entity context from similar mentions in other documents. We show that the enrichment-

based model is more effective than local document context alone for ranking KB entities.
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Experiments on the TAC KBP entity linking task demonstrate that when incorporated into

the full entity linking system, it is one of the best performing systems for mentions that are

linkable to the knowledge base. 1

In the last section of this chapter we study other types of enrichment useful for entity

linking. An important area of study in entity linking task for the TAC KBP linking task

in 2013 was linking informal forum documents. We study the effectiveness of enrichment

from informal external resources, Urban Dictionary and metadata from other linked entities.

6.1 Introduction

Entity linking is important because most content created is unstructured text in the form

of news, blogs, forums, and microblogs such as Twitter and Facebook. A key challenge is

to link these unstructured text documents to the Web of Data. Entity linking bridges the

structure gap between text documents and linked data by identifying mentions of entities

in free text and linking them to knowledge bases. It enriches unstructured documents with

links to people, places, and concepts in the world. Entity linking is a fundamental building

block that supports a wide variety of information extraction, document summarization, and

data mining tasks. For example, linked entities in documents can be used to expand existing

knowledge base entries with new facts and relationships.

The major challenge in entity linking is ambiguity. An entity mention in text may be

ambiguous for a wide variety of reasons: multiple entities share the same name (e.g., Michael

Jordan), entities are referred to incompletely (e.g., Justin for Justin Bieber), by pseudonyms

or nicknames (Christopher George Latore Wallace is also known as The Notorious B.I.G.),

and are often abbreviated (e.g. UW for the University of Wisconsin as well as University of

Washington).

1This chapter is partially based upon work published at the 10th Conference on Open Research Areas in
Information Retrieval (OAIR ’13) (DALTON and DIETZ 2013a).
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The entity linking problem has been studied over several years in the TAC Knowledge

Base Population venue with the following task definition:

Entity Linking: Given a string mention mq in a document, predict the entity e in the

knowledge base which the string represents, or NIL if no such entity is available.

A typical entity linking process has four phases: 1) query expansion, 2) candidate generation,

3) entity ranking, and 4) handling NIL cases. The goal of the first two steps is to achieve a

high-recall set of entities. Given the candidate set, most effective approaches (LEHMANN

et al. 2010; CUCERZAN 2011; RATINOV et al. 2011) leverage contextual evidence, including

neighboring entities, as disambiguating evidence in step 3. One issue is that the candidate

generation step is often performed using string matching heuristics, resulting in large

candidate sets that may contain hundreds or thousands of entities for ambiguous matches.

The connection between candidate generation and ranking are often separated and not well

aligned.

We advocate an information retrieval approach that uses one probabilistic model for

steps 1-3. We introduce our linking system, KB Bridge. Supplementary materials for

this work is available on the KB Bridge website2. Existing entity linking methods only

employ IR to a minor degree. We model the entire linking task as a retrieval problem.

The graphical modeling framework allows us to ground our work on models from both

information extraction and information retrieval.

For a given entity mention, the correct knowledge base entry is likely to share important

pieces of contextual information: lexically similar names, shared topical similarity reflected

in word usage, and similar patterns of relationships to other entities.

Entity linking provides some unusual challenges. Document retrieval is often performed

with short keyword queries, with little or no local context information. In entity linking, the

query is an entity string embedded in a longer document, providing an abundance of context

2http://ciir.cs.umass.edu/˜jdalton/kbbridge
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which could be leveraged. However, not all context is equally helpful, either because of

vocabulary mismatch, ambiguity, heterogeneity in topic, or random cooccurrences. Consider

the example “ABC shot the TV drama Lost in Australia.” with the task of linking “ABC” to

the entity “American Broadcasting Company”. The named entity span “Australia” is not

useful for disambiguating ABC, and would likely misdirect the model towards an incorrect

linking to the “Australian Broadcasting Corporation”.

To address this problem, we introduce an entity-based enrichment framework, which

we refer to in this chapter as the neighborhood relevance model. We use it to estimate the

salience of contextual entities with the goal of re-weighting entities in the target mention’s

context model. The model uses the entity-based enrichment model we describe in Chapter 4

to identify evidence from similar entity mentions in other documents.

The main contributions described in this chapter are:

• An unsupervised model for entity linking based upon entity retrieval that provides

competitive performance out-of-the-box.

• A unified retrieval based approach to linking combining candidate generation and

ranking in a single retrieval framework, with more than 95% recall in the highest

ranked 10 entities.

• A mention-specific enrichment model for identifying salient contextual evidence from

across-document evidence.

• Empirical evaluation of the entity-based enrichment model in combination with a

supervised learning to rank framework on the TAC KBP Entity Linking task, resulting

in one of the best overall system effectiveness for entities linkable to the knowledge

base.
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6.2 Related Work

Early work on entity linking was performed by Bunescu and Pasca (2006) and Cucerzan

(2007) to link mentions of topics to their Wikipedia pages. In contrast to their models, we

focus on a retrieval approach that leverages text based ranking without exploiting extensive

Wikipedia-specific structure.

Our work is related to that of Gottipati and Jiang (2011) who take a language modeling

approach to entity linking. They expand the original query mention with contextual infor-

mation from the language model of the document. We use the local weighting as a starting

point for estimating the entity salience and compare against it as a baseline.

It is also related to previous work on document expansion in speech retrieval, which

uses relevance feedback to expand document models (SINGHAL and PEREIRA 1999) with

evidence from similar documents. They find that that there are two main effects from

expansion: 1) reweighting terms that exist in the document and 2) adding new terms. They

found that the majority of the improvements came from reweighting existing terms. Terms

with equal counts in the document receive equal weight, but after expansion these are re-

weighted based upon the presence of those terms in related documents. Consequently, in our

work we focus our efforts on reweighting. Our work differs in several important ways. First,

instead of reweighting terms from similar documents the model that we propose focuses

on weighting associations between a particular entity mention and other entity mentions

in the document. And second, instead of performing expansion with the nearest neighbor

documents, we perform enrichment focused on similar entity mentions.

Entity linking has been studied in a variety of recent venues. At INEX the “Link the

Wiki” task explored automatically discovering links that should be created in a Wikipedia

article (HUANG et al. 2008). More recently, it is one of the principle tasks studied at the

ongoing Text Analysis Conference Knowledge Base Population track (TAC KBP). Ji et al.

(JI et al. 2011; JI and GRISHMAN 2011) provide an overview of the recent systems and

approaches.
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Instead of linking individual mentions one at a time, recent work (CUCERZAN 2011;

RATINOV et al. 2011; STOYANOV et al. 2012; KULKARNI et al. 2009; HOFFART et al.

2011) focuses on linking the set of mentions, M , that occur in the query document d. These

models perform joint inference over the link assignments to identify a coherent assignment

of KB entries. In our work we leverage the set of mentions Md in the document as context

in an information retrieval model. In this work we instead focus on identifying salient

entity mentions in the context, because mentions in the document may be spurious or only

tangentially related. This is especially true if the document contains multiple topics.

6.3 Mention Context Model

One of the key defining differences in entity linking is that the query entity mention is

embedded in a document. In this section, we describe the contextual model of the entity that

we extract from the document to represent the target query entity. The contextual model we

use in this work has four main components: the query mention, name variations, surrounding

sentence words, and ‘neighbor’ entity mentions.

The first and universally used piece of information is the entity mention string itself,

m. The entity mention, m, consists of a string, (e.g. [Toon]) and a generic entity type

(Organization). The problem is that in isolation the query mention may be highly ambiguous.

In fact, the TAC KBP organizers specifically focus on these mentions because they are

difficult. To address this issue, most entity linking systems expand the mention representation

using evidence from the containing documents. This is a form of entity-specific query

expansion.

The next piece of context that is widely used is entity name variations, V . In this case,

the goal is to identify other aliases of the entity that occur in the document, which may be

less ambiguous. One way this is done is through within-document coreference resolution. In

this work, we use simple string matching heuristics. The first heuristic identifies variations

based on other mentions containing the target based on overlap, e.g. [Toon] would be similar
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to [Toon Network]. The other main heuristic handles abbreviations, for example [ABC]

would match [Amherst Brewing Company] by looking for matching sequences of capitalized

words (ignoring stop words) in other entities.

Another commonly used piece of context is the text in the document. Because the

documents are long and may contain topics that do not directly relate to the target entity,

we focus on the local context around the entity mention. Similar to the previous chapter on

recognition, we use all of the words in the surrounding sentence containing the mention. We

refer to this sentence context as S.

One of the most successful models, used widely by leading entity linking systems is

modeling the representation of the query mention using other related entities, M in the

document (MILNE and WITTEN 2008; LEHMANN et al. 2010; CUCERZAN 2007; RATINOV

et al. 2011; MCNAMEE et al. 2012). Like the query mention, these mentions contain both

the entity names and their types from mention detection. We refer to these mentions as

entity ‘neighbors’.

Similar to NER, entity linking systems utilize the neighboring mentions as part of a

two-pass linking model. In the first pass linking is performed for each mention in isolation.

Then in the second pass features from disambiguated mentions (or their entity candidate

distribution) are used as features. This allows the linking models to use features of the

entities as part of the document representation, including the entities’ associations (via links)

and category or type information. The goal is to select a coherent group of entities for the

entire document. This is sometimes referred to as ‘joint assignment’ or ‘collective entity

resolution’ because groups of entities are linked together to maximize coherence. For joint

assignment models, the idea is that knowledge base entities which are mentioned in the

same document are also likely to be structurally related in the knowledge base.

In this chapter, we use a simple and effective single pass model that incorporates a

representation of the neighboring mentions using their names. Given these neighboring

entity mentions, using them effectively for disambiguation is a key challenge. As we
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show later in our experiments, uniformly weighting mention strings is not effective. To

address this, we focus on weighting the association of the neighboring entities with the

target mention. We refer to to this as a neighbor’s salience, ρ. The ρq(m) ranges on a scale

between 0 and 1. If the salience ρq(m) is 0, we want to remove the effect of φme′
(m, e) on

the likelihood function.

6.3.1 Local Neighborhood Model

One approach used in other work is to treat each entity in the neighborhood uniformly.

These treats each entity (a group of coreferent mentions) equally. One proposed work

goes beyond this and uses the mention frequency in the document for weighting. Gottipati

and Jiang (2011) build a multinomial language model of entity mentions from the local

document d with occurrence count nm,d. We refer to this simple estimation technique as the

local model. In this model, entities that are mentioned more often have higher weight.

ρlocal
q (m) =

nm,d∑
m′ nm′,d

(6.1)

They also evaluate weighting schemes that incorporate distance to the target mention,

but found that these did not significantly improve the results over using the entire document.

However, because the local document entity evidence may be sparse or multi-topic, the

model may be sub-optimal. For example, if the target entity is not the main focus of the

document then co-occurring entities are not relevant for disambiguation and may actually

lead to worse performance. In contrast, the enrichment model that we propose in this chapter

uses the similarity of the mention contexts as a means of identifying related entity mentions.

<enrichment target> Toon
<name variations>
<sentence words> [When] [Chris] [Foy’s] [final] [whistle] ... [footballing] [obscurity]
<neighbor mentions> [Chris Foy] [Villa Park] ... [Coca-Cola Championship]

Figure 6.2: Example context model for [Toon] entity target from Figure 6.1
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6.4 Entity Linking Retrieval Model

In this section we describe the ranking model we use for entity linking. We formalize the

model using graphical models for entity linking as developed in the information extraction

community combined with graphical models used for information retrieval. We utilize

the fact that query models, such as query likelihood and the sequential dependence model

(METZLER and CROFT 2005), have an underlying graphical model that gives rise to a score

of a document.

For entity ranking, we use models that fall into the log-linear framework described in

Section 2.6.1. Many complex factor functions are possible, but for the remainder of this

publication we use two simple and effective factor functions φ: Factor φme(m, e) encodes

matches of the mention m and terms from the surrounding text in any field of the Wikipedia

article of the candidate entity, e, this includes names as well as the full-text of the article.

Factor φme′
(m′, e) matches the string representation of m′ in the full-text and titles entities

that link to (and are linked from) the Wikipedia entry of e.

The factor φme formalizes our intuition on compatibility between the query mention

q and the true entity e. This includes name matches of the string representation of m with

names listed in the knowledge base (e.g. title, redirect, anchor text). We further extend

it to other similarity measures that are independent of the neighbor mentions (which are

represented by φme′
).

Name variations v of the query string can be extracted from the source document. This

is especially important if the query string is an acronym or an ambiguous reference to the

entity. We also incorporate the surrounding words, s, of the sentence containing the query

mention or one of its name variations.

We introduce separate weight parameters λQ, λV, λS to individually control influence

of name-matches of the query mention, name-matches of name variants v, and sentence

context respectively. Accordingly, we model the factor function φme(q, e) by the likelihood
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of a graphical model itself, represented by a log-linear function of potential functions φname

for name-similarity and φsent for sentence context.

The resulting model for ranking the candidate entities for the target query mention

consists of the the mention string, q, the name variations, V , the contextual words,S, and

the neighboring entity mentions, M . The equation for this model is given in Equation 6.2.

logL(e) = λQlogφname(q, e) (6.2)

+ λV 1

V

∑
v

log φname(v, e)

+ λS 1

S

∑
s

log φsent(s, e)

+ λM 1

M

∑
m

(
ρq(m) log φme′

(m, e)
)

Using log-linear models for factors φ with features that are readily available in the Indri and

Galago3 query languages. Specifically, we use the sequential dependence model (METZLER

and CROFT 2005), which is a query model for modeling dependencies between adjacent

query words.

We use the sequential dependence model for matching the different query elements to

the target entity. The matching includes several different elements. The name-match factor

φname(q, e) tests all of the entity’s indexed document representation for the presence of

the string representation of the query mention. We do the same for the words, φsent and

neighboring contextual entities φme′
. With these feature functions, the full ranking model is

given in Equation 6.2. An example Galago query is given in Figure 6.3.

3http://www.lemurproject.org/galago.php
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#combine:0=λQ:1=λV:2=λS:3=λM(
#sdm( Toon)
#combine()
#combine(final whistle reverberated relegated

fans forgiven fearing club beginning football obscurity)
#combine:0 = ρ(m0) : . . . k = ρ(mk)(

#sdm(chris foy), . . . , #sdm(coca cola championship)
)

)

Figure 6.3: Contextual query for [Toon], occurring in the sentence from Figure 6.1

6.5 Entity-based Enrichment for Linking

We now discuss methods for estimating these salience weights ρq(m′) in an unsupervised

manner. The idea is to assume a high salience of a neighbor m′ for the query mention mq,

if both are frequently mentioned together. It is important to note that even unambiguous

mentions are not necessarily useful for disambiguating other mentions.

The idea is that a neighbor is important if it occurs frequently in the context of the query

mention within the document as well as across other documents that are topically related

and contain mentions of the query mention q.

Query Triggering

Like named entity recognition, a document may have tens or hundreds of entity mentions.

Performing enrichment for every mention is costly. The query mentions in the TAC dataset

are selected with a bias towards difficult and ambiguous mentions. Consequently, we

perform enrichment for all query mentions. We do not evaluate triggering for this task. In

practice, many linking models are two-pass systems, where an initial assignment of mentions

to entities is performed for all mentions. Based upon the initial linking, features such as
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ambiguity and link probability can be estimated and used to determine whether enrichment

is required.

Target Model Generation

The model for generating the local mention context consists of the same components

used to link entities to the knowledge base. The context generation process is described

above in Section 6.3. As an initial estimate for the neighbor importance, the salience is

weighted using the local document model, ρlocal
q (m).

Mention Source Retrieval

The goal of mention source retrieval is to identify text sources, D, containing entity

mentions,M that are similar to the enrichment target. In this case, we perform retrieval over

the source corpus’ documents. Similarly, the source retrieval models we use for ranking

entities in the knowledge base described above in Section 6.4 we also apply to ranking

mention sources.

The reason we retrieve documents for mentions sources is because it was not possible to

perform NLP processing on the entire corpus. Instead, we identify documents with a high

likelihood of containing relevant mentions. We then perform entity mention detection only

on this focused subset of documents.

Mention Feature Extraction

Given the ranked documents and the detected entity mention, we extract features from

each of these sources, d′ ∈ D. We first identify similar mentions of entities that are likely to

be coreferent with our target mention. Similar mentions are found by matching their name

surface forms to the target query mention and its name variations, (q and v). For each of

these similar mentions, we extract co-occurrence counts of entities in their neighborhood,

nm, d
′. Although other features may be useful, the primary feature we focus on in this work

is estimating the salience of the neighbor entities to the query mention, ρq(m′).
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Feature Aggregation

We use the two-step aggregation model described in our framework of Chapter 4. The

first per-source aggregation follows Equation 4.1, which corresponds to the local model

given in Equation 6.1. The second aggregation is a weighted combination of these models

incorporating the similarity to the target mention, as in Equation 4.2.

We use the retrieval probability of the document as an estimate of how similar the men-

tions are to the target query mention. As most retrieval frameworks return only unnormalized

(rank-equivalent) retrieval scores L(d), the estimate has to be approximated with L(d)∑
d′∈D L(d′)

.

Counting the occurrence frequency nm,d of string-identical mentions of m, we build a

multinomial language model across the pseudo-relevant documents with relevance-model

weighting as follows.

ρnrm
q (m) =

1∑
d′∈D L(d′)

∑
d∈D

nm,d∑
m′ nm′,d

L(d) (6.3)

The result is a multinomial language model over the neighbor mentions.

6.6 KB Bridge: Entity Linking System

In this section we describe KB Bridge, our retrieval-based entity linking system which is

implemented using the Galago search engine and the MRF information retrieval framework.

The system links entity mentions in the source document to knowledge base entities. The

ranking of the entities is a two-stage process. First, entities are ranked using the Galago

retrieval model described in Section 6.3. The ranking is then refined with a supervised

learning to rank model using RankLib4. The final step is NIL handling which determines if

the mention is in the knowledge base or whether it is unknown.

4http://cs.umass.edu/˜vdang/ranklib.html
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6.6.1 Knowledge Base Representation

Our system addresses text-driven knowledge bases in which each entity is associated with

free text, with relationships between entities from hyperlinks or other sources. Wikipedia is

one representation of such a knowledge base, but our system would likely perform well on

other knowledge bases.

In order to efficiently search over knowledge bases with millions or billions of entities

we use an information retrieval system. For these experiments, we index the full text of the

Wikipedia article, title, redirects, Freebase name variations, internal anchor text, and web

anchor text.

6.6.2 Document Analysis

The first step in linking is to identify the entity query span qm in the document and to find

disambiguating contextual information for the query model introduced in Section 6.4. This

includes name variations V , contextual sentences S, and other neighboring mentions M .

In the TAC KBP challenge, the entities of type person, organization, or location are the

main focus of the linking effort and so the system detects entities using standard named

entity recognition tools, including UMass’ factorie5 and Stanford CoreNLP 6. These provide

the mentions spans to derive the name span q, name variations V , and neighboring entities

M . Beyond the standard entity classes, our approach is general enough to also link other

entity types if a suitable detector is incorporated.

Given a target entity mention, m, the system needs to identify name variations, V , in the

document, such as “Steve” to “Steve Jobs” or “IOC” to “International Olympic Committee”.

The goal is to identify alternative names that are less ambiguous than the query mention. We

use the within-document coreference tool from UMass’ factorie, together with capitalized

word sequences that contain the query string (ignoring capitalization and punctuation for

5http://factorie.cs.umass.edu/

6http://nlp.stanford.edu/software/corenlp.shtml
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Feature Set Type Description

Character Similarity q, v Lower-cased normalized string similarity: Exact match, prefix match, Dice, Jaccard, Levenshtein, Jaro-Winkler

Token Similarity q,v Lower-cased normalized token similarity: Exact match, Dice, Jaccard

Acronym match q Tests if query is an acronym, if first letters match, and if KB entry name is a possible acronym expansion

Field matches q, v Field counts and query likelihood probabilities for title, anchor text, redirects, alternative names fields

Link Probability q, v p (anchor — KB entry) - the fraction of internal and external total anchor strings targeting the entity

Inlink count document prior Log of the number of internal and external links to the target KB entry

Text Similarity document Normalized text similarity of document and KB entity: Cosine with TF-IDF, KL, JS, Jaccard token overlap

Neighborhood text similarity document Normalized neighborhood similarity: KL Divergence, Number of matches, match probability

Neighborhood link similarity document Neighborhood similarity with in/out links: KL divergence, Jensen-Shannon Divergence, Dice overlap, Jaccard

Rank features retrieval Raw retrieval log likelihood, Normalized posterior probability, 1/retrieval rank

Context Rank Features retrieval retrieval scores for each contextual components: q, v, s, m nrm, m local

Table 6.1: Features of the query mention and candidate Wikipedia entity.

the matching) to extract name variations V . From the set of coreferent mentions, we extract

the sentences S they occur within. After removing stopwords, casing and punctuation they

represent non-NER context such as verbs, adjectives, and multi-word phrases.

6.6.3 KB Entity Ranking

The query model with salience weights from local document analysis and the neighborhood

relevance model ρnrm(m) is executed against the search index of KB entries as shown

in Equation 6.2. Our system supports any feature function expressible in Galago query

notation. Beyond this initial ranking, we can further refine the ranking using more complex

features in learning to rank models.

The ranking is refined using supervised machine learning in a learning to rank (LTR)

model. The refinement employs more extensive feature comparisons which would be expen-

sive to compute over the entire collection. For these experiments we use the LambdaMART

ranking model, a type of gradient boosted decision tree that is state-of-the-art and captures

non-linear dependencies in the data. The model includes dozens of features. A description

of the features used in the model is found in Table 6.1.
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6.6.4 NIL Handling

After the entities are ranked, the last step is to determine if the top-ranked entity for a

mention is correct and should be linked to the KB entry or instead refers to an entity not in

the knowledge base, in which case NIL should be returned. For these experiments, we use a

simple NIL handling strategy. We return NIL if the supervised score of the top ranked entity

is below a threshold τ . The NIL threshold τ is tuned on the training data. For the special

case of the TAC KBP challenge, the reference knowledge base is a subset of Wikipedia. We

exploit this fact by returning NIL whenever the top ranked Wikipedia entity is not contained

in the reference knowledge base.

6.7 Experimental Evaluation

6.7.1 Target Model Evaluation

We first evaluate the contributions of the different types of local document context for the

entity query. The context includes the entity query string q, name variations v, the sentences

s surrounding the query or name variations, as well as neighboring entity spans m. The

combinations of these context components is indicated by Q, V, S, or M in the method

prefix.

We evaluate three context weighting methods. The first is uniform weighting (QVM).

Second is the local document model by Gottipati and Jiang (GOTTIPATI and JIANG 2011)

(indicated by local). Third is our neighborhood relevance model (indicated by the suffix

nrm). We compare both for estimating the salience ρ(m) of neighboring entity mentions m.

Baselines are the methods using only the query string (Q), the combination of query and

name variations (QV), as well as the local context weighting (QVM local). Our suggested

methods are QVSM nrm and QVM nrm. These models are the full query model with

neighborhood relevance weighting with and without sentences.

For each of the compared methods, we train separate λ parameters on the training data

using a coordinate ascent learning algorithm. Estimated λ parameters differ across methods.
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For the QVSM nrm model the estimated parameters are: λQ = 0.321, λV = 0.293,

λS = 0.155, and λM = 0.230.

Figure 6.4 visualizes an ablation study for the context components using precision at

rank one for evaluation. Figure 6.4a shows the cumulative improvements as context is

added and weighted with the neighborhood relevance (QVM nrm). QVM with uniform

neighborhood weighting performs similarly to QVM local weighting (not shown). We

observe that adding sentence context does not significantly improve performance.

Figure 6.4b details the individual contributions of contextual components (omitting

sentences). It is interesting that the QV method (entity name plus name variations) and

QM nrm (entity name plus weighted entity spans) are comparable in effectiveness. This is

useful when no high quality name variations are extractable from the text, as is the case in

informal text from social media. The cumulative figure above shows that when combined

these features yield further improvement. Across all years the neighborhood relevance

model achieves better effectiveness than the local model.

6.7.2 Ranking Evaluation

In the previous section we examined the effectiveness of the different contextual components

only on the top-ranked result. Table 6.2 presents the contextual ranking models evaluated

using mean reciprocal rank (MRR). Similar to the previous results, it shows that the most

effective models include the neighborhood relevance weighting scheme (nrm). QVM nrm

and QVSM nrm are significantly better than the QV baseline. The only exception is in

2010, when the queries are easier. In this case only the QM nrm method is significantly

better. Additionally, QVM nrm is significantly better than the local weighting (Gottipati)

for 2009-2011. However, there is no significant difference in 2012. We hypothesize that the

reason the neighborhood model does not improve over the local model in 2012 is because

the queries are significantly more ambiguous and the quality of the retrieved feedback

documents is lower.
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Figure 6.4: Ablation study for the suggested method in terms of Precision @ 1.
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Method 2009 2010 2011 2012
Q 0.702 0.824 0.698 0.385
QV 0.772 0.838 0.821 0.686
QM nrm 0.773 0.849* 0.825* 0.666
QM 0.746 0.829 0.758 0.636
QVM nrm 0.795* 0.845 0.849* 0.715*
QVM local 0.784* 0.829 0.831 0.730*
QVS 0.771 0.834 0.822 0.697*
QVSM nrm 0.792* 0.845 0.850* 0.726*
QVSM local 0.780* 0.836 0.837* 0.719*
all context 0.786* 0.841 0.848* 0.735*

Table 6.2: Ranking results on TAC by year with varying context methods with mean
reciprocal rank (MRR). The best results for each year are highlighted in bold. Results that
are statistically significant with α = 5% over the QV baseline are indicated with *.

Method 2009 2010 2011 2012
QVM nrm 0.795 0.845 0.849 0.715

QVM nrm LTR 0.913 0.936 0.918 0.805

Table 6.3: Learning to rank refinement results with mean reciprocal rank (MRR). All LTR
results are statistically significant with α = 5% over the unsupervised QVM nrm

We refine the retrieval ranking using a supervised learning to rank model. The the

features in the ranking model are described in Table 6.1. The top 100 results from the best

ranking, QVM nrm are reranked. The results of this are shown in Table 6.3. The results

show significant improvement over the initial retrieval ranking leveraging more features that

perform more extensive contextual comparison. The results for 2012 are still well below

the other years, indicating the difficulty of these queries even leveraging the more complex

contextual features. This indicates that a better feature representation is needed to address

some of these difficult to resolve mentions.

6.7.2.1 Recall

The previous results use mean reciprocal rank to measure the retrieval effectiveness. We

now examine the rank distribution in more detail, examining the recall at a given rank cutoff.

The entity recall is critical because it is an upper bound on the effectiveness of downstream
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Figure 6.5: Average recall at rank cutoff k.

2009 2010 2011 2012

in-KB NIL all in-KB NIL all in-KB NIL all in-KB NIL all

QVM nrm 0.810 0.703 0.764 0.768 0.764 0.766 0.766 0.767 0.766 0.584 0.623 0.605

QVM nrm LTR 0.861 0.798 0.825 0.892 0.762 0.822 0.858 0.756 0.805 0.705 0.628 0.668

QVRM nrm LTR NIL 0.847 0.848 0.847 0.883 0.843 0.862 0.833 0.857 0.845 0.676 0.758 0.714

Best Performer 0.765 - 0.822 0.823 - 0.864 0.801 - 0.870 0.687 - 0.721

Table 6.4: TAC Entity Linking performance in macro-average accuracy.

systems. To achieve a minimum 90% recall threshold across all years requires hundreds of

candidates for the query (Q) model, 20 for QV, 16 for QVM nrm, and only 3 for QVM nrm

LTR. The learning to rank model achieves at least 95% recall across all years within 10

results.

6.7.3 TAC KBP results

In this section, we evaluate the ranking as part of the entire linking pipeline described in

Section 6.6. We report the macro-averaged accuracy because we do not focus on clustering

NIL entity mentions. The results are in Table 6.4. The unsupervised retrieval QVM nrm
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performs well, above the median in 2012 and competitive in previous years. The supervised

ranking models improve effectiveness significantly. The in-KB ranking results outperform

the best performing systems in 2009 through 2011 and are comparable in 2012. The main

focus of this work is ranking, and this shows the effectiveness of our approach.

We now examine the overall (all) results, including the NIL handling. The results show

that the QVM nrm with LTR reranking and NIL handling outperforms the top system in

2009 and is competitive with the best performing systems in subsequent years. Applying

the score threshold improves the overall accuracy despite decreasing in-KB effectiveness.

This is because some correctly linked entities are marked as NIL, but are outweighed by

the greater reduction in false positive entity links. The NIL handling strategy based on

thresholding the ranking score is effective, but could be improved further. Other linking

systems use a supervised NIL classifier for this step, allowing them to perform well despite

less effective in-KB ranking.

6.8 Enrichment approaches for TAC KBP 2013

In this section we describe further experiments conducted on the TAC KBP 2013 entity

linking task 7. This section is based upon the official TAC submission for 2013. We evaluated

two new enrichment approaches for 2013. The first is enrichment using Urban Dictionary 8.

For mentions in forum documents, we search Urban Dictionary for the mention string and

perform enrichment with returned entity tags. The second method is a multi-pass linking

model. Instead of linking only the TAC query mention, all entity mentions in the document

are linked to the knowledge base using features that encourage a coherent assignment of the

linked entities.

7This section is partially based upon work published at Text Analysis Conference (TAC) Knowledge Base
Population (KBP) entity linking track (TAC KBP ’13) (DALTON and DIETZ 2013c).

8http://www.urbandictionary.com/
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6.8.1 Urban Dictionary Enrichment

In TAC 2013 a significant fraction of the mentions in the evaluation set are from forum

data. Unlike previous newswire and web data, the mentions in this data appear to contain a

high fraction of creative slang and pop culture terms. Examples of such slang query mentions

include: [McSame], [MCCane], [Biebs], [Obamessiah], [Nobama], [Turd Blossom], and

[uz-becky-becky-becky-stan-stan]. The existing sources of aliases from anchor text and

structured metadata are unlikely to contain these informal references.

To address the vocabulary mismatch, we use Urban Dictionary as an external source for

enrichment. Urban Dictionary is a crowd-sourced online web dictionary with more than

seven million definitions, focused on slang and pop culture phrases not found in standard

dictionaries. For example, [McSame] has the definition: “John McCain. He considers

himself a straight talking maverick, when in reality he is merely running on the promise

of four more years of George W. Bush.” We leverage the entries as a source for mention

enrichment to include in the retrieval context.

To perform enrichment using urban dictionary, we perform source retrieval against the

urban dictionary web service to retrieve definitions. We retrieve the full-text of the definition,

as well as the tags. For simplicity, we focused on the article tags, which often include the

name of the entity being described. These tags were added to the neighboring entities m

and consequently as part of the retrieval query. The main goal of this step is to improve the

recall of our retrieved entities from the knowledge base.

6.8.2 Entity KB Coherence

We also experiment using fully disambiguated document representations. In this model,

entity extraction and disambiguation is performed on all entities in the document in a first

pass. Then, a second step that leverages the features from disambiguated mentions re-ranks

the possible links with a model that includes entity-to-entity compatibility features. This
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Feature Set Description

Category IDs Intersection, Misses, Dice, Jaccard, Cosine

Category Words Jaccard, Jensen-Shannon Divergence, Cosine with TF-IDF, Unweighted cosine

Article Text Jaccard, Jensen-Shannon Divergence, Cosine similarity

Text Mentions Contains entity name, Both articles contain name

Inlinks Pointwise mutual information, ProxPMI (wikifier), Intersection, Jaccard, Dice, Google Norm. Distance

Outlinks Pointwise mutual information, ProxPMI (wikifier), Intersection, Jaccard, Dice, Google Norm. Distance

Inlinks + Outlinks Pointwise mutual information, ProxPMI (wikifier), Intersection, Jaccard, Dice, Google Norm. Distance

Shared Links Linked, mutal link

Table 6.5: Features of the entity-to-entity similarity.

is a joint assignment model similar to the techniques employed by other leading systems

(CUCERZAN 2011; LEHMANN et al. 2010; RATINOV et al. 2011).

A recent trend in entity linking has been joint or ‘collective’ assignment of mentions in

a document. The HLTCOE introduced the Context Aware Linker of Entities (CALE) using

local context entities (STOYANOV et al. 2012). Language Computer Corporation (LCC)

uses features from a subset of the closest unambiguous mentions (LEHMANN et al. 2010).

The Microsoft system for TAC builds a context vector from the union of candidates for all

entities (CUCERZAN 2011). UIUIC’s GLOW system uses ‘global’ similarity features from a

first pass linking model (RATINOV et al. 2011).

We implemented an extension to our supervised ranking model that incorporates features

similar to Wikifier. We first perform a first pass ranking, taking all mentions that would be

predicted as non-NIL as context links. For documents with large numbers of entities, we

limited the context to the 50 links with the highest compatibility score. We use the features

described by GLOW as well as those from MSR. A full list of the features are given in the

Table 6.5.

Although this model proved promising on training data, we found that the supervised

model did not generalize well to the 2013 data distribution. We hypothesize that it did not

perform as well as expected because of limited training data.

99



Approach Run ID Acc. Bˆ3+ Prec. Bˆ3+ Recall Bˆ3+F1
QVM UMass CIIR1 0.577 0.573 0.317 0.408
QVM LTR UMass CIIR2 0.729 0.716 0.462 0.561
QV LTR UMass CIIR3 0.802 0.781 0.571 0.660
QVM UrbDict LTR UMass CIIR4 0.806 0.785 0.584 0.670
QVM E2E LTR UMass CIIR5 0.746 0.730 0.503 0.595
2013 Median 0.746 0.718 0.496 0.574
2013 Best 0.833 0.826 0.689 0.746

Table 6.6: Overall effectiveness in 2013.

Approach short description Run ID News Web Forum
QVM UMass CIIR1 0.493 0.528 0.202
QVM LTR UMass CIIR2 0.637 0.609 0.414
QV LTR UMass CIIR3 0.743 0.615 0.547
QVM UrbDict LTR UMass CIIR4 0.745 0.620 0.572
QVM E2E LTR UMass CIIR5 0.667 0.638 0.457
2013 Median 0.645 0.525 0.488
2013 Best 0.829 0.678 0.662

Table 6.7: Bˆ3+ F1 by document type.

6.8.3 Results

The overall results of our runs are shown in Table 6.6. The results by document type are

in Table 6.7 and by entity class in Table 6.8. Unlike the results in 2012, the unsupervised

retrieval model, UMass CIIR1, performed significantly below the median, especially on the

forum data with a Bˆ3+ F1 value of only 0.202. It also struggled with GPE entities with a

Bˆ3+ F1 of only 0.091. However, it performs above the median on ORGs. It is clear that

more effective context models are needed for both GPEs and forum data.

QVM QVM LTR QV LTR QVM UrbDict LTR QVM E2E LTR Median Best
PER 0.576 0.671 0.694 0.709 0.722 0.627 0.778
ORG 0.590 0.638 0.626 0.639 0.662 0.542 0.737
GPE 0.091 0.399 0.657 0.660 0.424 0.552 0.746

Table 6.8: Bˆ3+ F1 by entity class.
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6.9 Summary

In this chapter we introduced a retrieval-based method for the task of linking detected entity

mentions to an external knowledge base. We use an entity-based enrichment method, the

Neighborhood Relevance Model, which focuses on identifying salient associations between

an entity mention and other entities in the local document neighborhood. The neighborhood

relevance model uses the pattern of entity mentions in similar sources to identify salient

entity context.

Our experiments on the TAC KBP entity linking data show that this enrichment model

outperforms other context weighting models. The results show up to a 16.4% improvement in

mean reciprocal rank over local models for entity linking (Contribution 2). When combined

with a learning to rank model that incorporates more text similarity features, the results

beat the current best performing systems on in-KB ranking accuracy. Combined with a

simple NIL handling strategy the overall effectiveness on all mentions is comparable to, and

sometimes better than, other state-of-the-art entity linking systems.
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CHAPTER 7

ENTITY-BASED FEATURE ENRICHMENT FOR RETRIEVAL

In the previous two chapters, we built up increasingly rich entity representations of

documents using information extraction, detecting and disambiguating named entities. In

this chapter we focus on the task of ad hoc document retrieval. We apply the enrichment

framework to queries and documents, expanding them with structured and unstructured

features from entity mentions. We demonstrate that enriching the query representation using

entity features results in significant improvements in retrieval effectiveness.1

This chapter focuses on two research areas using entity annotations for ad hoc retrieval.

The first is the representation of both queries and documents with linked entities. What

features, if any, improve retrieval effectiveness? The second is how to infer latent entities

(and more importantly, features of entities and terms) for an information need.

Using similar automatic extraction methods to those described in chapters 5 and 6, lead-

ing web search companies are extracting and linking entities in text web documents. To recap

a description provided earlier, Google recently released the FACC1 dataset (GABRILOVICH

et al. 2013) for the TREC ClueWeb09 and ClueWeb12 web collections. The dataset con-

tains automatically extracted entity mentions from web documents linkable to the Freebase

knowledge base (BOLLACKER et al. 2008). Freebase is a publicly available general purpose

knowledge base with over 42 million entities and over 2.3 billion facts.2 The FACC1 dataset

is the first publicly available web-scale collection of entity linked documents. In addition

1This chapter is partially based upon work published at the 37th Annual ACM Special Interest Group for
Information Retrieval (SIGIR ’14) (DALTON et al. 2014) .

2As of January 27, 2014 according to Freebase.com
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to annotated documents, the FACC1 data also contains explicit manual annotations for the

TREC web track queries. We present the first published experiments using this data for

retrieval, to our knowledge.

The FACC1 ClueWeb annotations include entity annotations for queries. However, these

annotations are limited to entities that are explicitly mentioned, where we hypothesize that

many more latent entities are relevant to the users’ information need. Similar to word-based

models, explicit entity representations of queries have fundamental problems of query-

document mismatch. In addition, many existing text collections do not have explicit entity

annotations for queries. For both of these cases, we can leverage expansion models to

expand the entity representation.

Entities provide a wealth of rich features that could be used for representation. The

features include text as well as structured data. Some of the important attributes that we

highlight for these experiments include: fine-grained type information (athlete, museum,

restaurant), category classifications, and associations to other entities. Although we do not

explore them in detail in this work we also observe that the knowledge base contains rich

relational data with attributes and relations to other entities. For different types of entities

these attributes include: gender, nationality, profession, geographical information (latitude,

longitude), and temporal attributes (such as birth and death).

We hypothesize that the language used to describe entities in the document collections

differs from that found in Wikipedia or in the knowledge base description. We propose

query-specific entity context models extracted from snippets in the feedback documents

surrounding the entity’s annotations to model entities from the collection. This is related

to previous work on local expansion models of concepts (XU and CROFT 1996), but we

perform it on disambiguated entities. We use these entity context models to rank entities

with respect to the query as well as extract expansion features.

This chapter includes all of the contributions listed in Chapter 1. It contains three

contributions unique to this chapter:
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1. We present the first known experimental results using entity linked documents

and queries for ad hoc document retrieval. We experiment using linked entities

for newswire and web test collections. We use documents annotated with linked

entities provided by the KB Bridge entity linking system and the openly available

FACC1 entity annotations by Google for web data. For a subset of these collections

we also experiment with entity linked queries. We compare models incorporating

entity features with state-of-the-art word-based models. Compared with competitive

query expansion baselines, the sequential dependence model with relevance modeling

expansion on Wikipedia and the collection, there is an improvement of 16.4% and

11.5% in MAP on Robust04 and a 14.1% and 32.8% improvement in NDCG@20 for

ClueWeb12. For ClueWeb09, where results do not significantly improve, we perform

an error analysis and identify several important underlying causes for this behavior.

2. We define a new query-specific entity context model that models the feature

context of an entity using retrieved documents. Existing entity context models are

built globally across a collection. Previous local models (XU and CROFT 1996) use

word and phrase features from noun phrases that are not disambiguated for expansion.

We introduce a new query-specific entity model that includes both words, phrases,

and features from disambiguated entity mentions. For the task of retrieval, we show

that these models provide an effective mechanism for identifying the relevance of

entities and as a source of expansion features.

3. We extend dependency models to include entity-based features that model de-

pendencies between text and different types of structured entity features. Exist-

ing query expansion techniques (METZLER and CROFT 2007) model dependencies

derived from words, including phrase and proximity concepts. We propose a feature

expansion model that models dependencies between text and structured entity fea-

tures including: entities, fine-grained types, categories, and entity associations. For
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example a dependency between a a type of entity and a word: (/boats/ship sinking) or

(/government/politician scandal).

7.1 Entity-Based Document Retrieval

In this section we describe the retrieval model we use to retrieve documents using linked

entities. For these experiments we use proven retrieve models and vary the representation of

the queries and documents used. Specifically, we use the query likelihood and sequential

dependence retrieval models described earlier in Chapter 2. We now describe the document

and query representation incorporating entity links.

The user queryQ is given as a sequence of observed keywordsw1w2, ...w|Q|. The queries

may also be labeled with entity mentions MQ. Each mention, m contains its text, as well as

a multinomial distribution over links to entities in the knowledge base e ∈ E (cf. Figure

7.4a)

For the document representation, we are given a text document containing a sequence of

words, w1w2, ...w|d|. The text documents are also annotated with entity mentions, Md linked

to knowledge base entities. Similar to queries, each mention, m ∈Md, has a multinomial

distribution over possible entities, e ∈ E.

For both queries and documents the entity links establish a bidirectional link from text

mentions to entities in the KB, and through these links to structured attributes such as

Freebase types and Wikipedia categories. The knowledge base also contains associations

and relations to other entities, E ′ (which we refer to as neighbors). We refer to each of

these different attribute types as vocabularies, V , over which counts and matches can be

computed. The vocabularies we use in these experiments are shown in Figure 7.4.

Just as we index words with their position in the document, we similarly index entities

and their attributes with their corresponding word positions. For scoring, the inverted index

structure provides access to counts and positions of the different vocabulary elements for the
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Figure 7.1: Example Freebase entity for Barack Obama, /m/02mjmr
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Mention Start byte End byte Posterior Freebase ID Entity Name
GOP 19722 19725 0.992 /m/07wbk Republican Party (United States)
Albuquerque 24759 24770 0.989 /m/0djd3 Albuquerque, New Mexico
Barack Obama 24876 24888 0.996 /m/02mjmr Barack Obama
Senator Obama 24945 24958 0.996 /m/02mjmr Barack Obama
Obama 25093 25098 0.996 /m/02mjmr Barack Obama

Figure 7.2: FACC1 entity document annotations for clueweb09-en0004-08-20390

mention start byte end byte freebase ID posterior
obama 0 10 /m/02mjmr 0.998
family tree 12 22 /m/016p0k 0.806

Figure 7.3: FACC1 entity annotations for TREC Web Track query 1: [obama family tree]

documents. This representation allows us to model dependencies across vocabulary types,

for example a category {Politician} near the word “family”.

7.1.1 Cross-vocabulary dependencies

Previous models (METZLER and CROFT 2005; METZLER and CROFT 2007; BENDER-

SKY and CROFT 2012) generate dependencies using only word-derived concepts. In this

work, we introduce dependencies from entity features. We derive the features within a given

vocabulary (an entity near another entity) and across-vocabularies (a category near a word).

This is possible because the vocabulary information is positional with respect to query word

vector, W . An example query incorporating these dependencies is shown in Figure 7.5.

For example, entity type and word dependencies, such as t1 and w2 in the example above

are represented by the feature fExplType(Q, “T,W ”) for a particular type-word dependency

“t1, w2” is computed by integrating over multiple occurrences p(“M,w2”|Q) and integrating

over conditional entity and type distributions.

fExplType(Q, “T,W ”) =(∑
m∈M

(∑
e∈E

p(t|e)p(e|m)

)
p(“m,w”|Q)

)
p(W = w|Q)
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Figure 7.4: Overview over feature sources.
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#combine(
#sdm( obama family tree )
#sdm( [Barack_Obama] family tree)
#sdm( obama [Family_Tree])
#sdm( [Barack_Obama] [Family_Tree] )
#sdm( {US President} family tree )
#sdm( {Politician} family tree )

)

Figure 7.5: Example expansion of query C09-1 with entities [] and Freebase types {}.

The equation uses entity disambiguation confidences p(e|m) and entity-specific type

distributions p(t|e).

In addition to structured attributions, terms on the entity’s knowledge base entry also pro-

vide a resource for related words W . These are derived through a hierarchical multinomial

model by integrating over mentions and entities

fExplWiki(Q,W ) =
∑
m∈M

(∑
e∈E

p(W |e)p(e|m)

)
p(m|Q)

In the equation p(m|Q) is a uniform distribution over annotated mentions and p(e|m) is the

entity disambiguation confidence and p(W |e) refers to the language model of the entity’s

knowledge base entry.

7.2 Entity Context Model

In the previous section, we described a documents incorporating entity features available

in the knowledge base. These features include the language of the entity, p(W |e), and

associations to other entities. While this information is useful, it is not the complete picture

of an entity. In particular, the language and associations of an encyclopedia may be very

different the language and associations found in documents. To address this, we propose

deriving a new representation of an entity from the documents in the text collection.
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We introduce a new local model of an entity created from mentions, MD in retrieved

documents (Contribution 3). We construct an entity pseudo-document for each unique

disambiguated entity, e. For each entity, we extract local context information from the words

and entities that co-occur within a particular scope near the entity mention. We aggregate all

the local context snippets for each entity, including weighting the snippets by the mention

source retrieval probability p(d|Q) and the probability of the entity for the mention p(e|m).

These two factors incorporate the similarity to the query and the certainty of disambiguation

in modeling the feature representation of the entity.

To extract the features from a document, we inspect the local context surrounding

entity mention, m ∈ Md to extract sequences of words and other entity mentions. In our

experiments, we create three versions of each entity’s model, varying the size of the context

snippets: 8 words on either side of a mention, 50 words on either side, or one sentence,

where sentence boundaries are determined by a sentence-splitter.

The local context model that we propose has several important differences from previous

entity modeling approaches. First, it uses disambiguated entity links rather than simple

string matches for co-reference resolution. If there are multiple ambiguous mentions of the

same name, the contexts are separated based on their linked entity. Also, we do this for all

types of concepts that exist in the knowledge base rather than just traditional named entities

(person, organization, location).

Second, our context models are query focused. We construct an ECM from documents

retrieved in response to the query. This change is important for large corpora because for

entities with multiple diverse topics a representation across the entire collection will blend

the topics together and lose their distinguishing characteristics. For example, the clueweb09

query [obama family tree] focuses on aspects of Obama’s family life and relationships to

relatives, which is a relatively obscure topic when compared with more popular aspects such

as “obamacare”.
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The proposed entity context model captures not just words and phrases co-occurrence

counts, but weighted the snippets preserve word and entity order surrounding the men-

tion. The feature representation of an entity pseudo-document includes structured entity

features from co-occurring entities: their mentions and features of them, including types

and categories.

7.2.1 Related entity models

Building entity context models from their surrounding representation has been studied

in the past. In 1994, Conrad and Utt (CONRAD and UTT 1994) used all paragraphs in

the corpus surrounding named entity mentions to represent the entity, allowing free text

queries to find names associated with a query. Ten years later, Raghavan et al. (RAGHAVAN

et al. 2004) extended that idea to use language modeling as a representation and showed

that these models could successfully be used to cluster, classify, or answer questions about

entities. In these cases, the entity’s context was a paragraph or a fixed number of words

surrounding all mentions of the entity in the corpus. More recently, the work of Schlaefer

et al. (SCHLAEFER et al. 2011) expanded the representation of a Wikipedia entity using

extracted “text nuggets” from the web for use in the Watson question answering system.

Nuggets that were scored as relevant to the entity were used as its context, even if the nugget

did not contain an actual mention.

Jing and Croft (1994) propose an approach, called PhraseFinder which builds an asso-

ciation thesaurus for a collection. They use noun phrases as the unit of text feature and

associate words within a paragraph. The models are built across the entire collection. Later,

in the context of expert search, Petkova and Croft (2007) associate named entities with text

segments to build language models of person entities.
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7.3 Entity Query Feature Enrichment

The goal is to derive an enriched query representation across the different kinds of

vocabularies such as words W , entities E, types T and categories C to retrieve annotated

documents with the goal of maximizing document retrieval effectiveness.

Figure 7.5 shows an example of expansions for the ClueWeb09B query 1 “obama

family tree” for the words, entities, and Freebase types. We explicitly include proximity

dependencies across vocabularies such as type t1 = “Politician”, followed by word w2 =

“family”, and word w3 = “tree”. A sample of the expansion terms from our experiment on

this query are given in Table 7.1.

Enrichment in different vocabularies can be derived through multiple options. For

instance, expansion entities can be found using pseudo-relevance feedback on the entity

annotations or alternatively by feedback from the entity knowledge base. Figure 7.4 gives

an overview of all possibilities we explore in this work.

Query Triggering

We perform enrichment for all the queries in the evaluation dataset. We do not evaluate

triggering mechanisms for this task.

Target Model Generation

Unlike previous chapters, the queries used for document retrieval are short web queries

with limited local context. The model we use for enrichment is described in Section 7.1.

Mention Source Retrieval

We perform source retrieval over three different sources of mentions. The first is the

document collection, the second is the knowledge base, and finally the entity context models

derived from contexts in retrieved documents. This is shown in Figure 7.4.

Document Collection We can also directly retrieve documents, D from the collection.

These documents contain entity annotations (cf. Figure 7.4d corpus feedback). We note that
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as before, our model incorporates the inherent link uncertainty, p(e|m). We can integrate

over the possible links to arrive at final distributions. If only the most confident entity is

available we define p(e|m) = 1 for the linked entity e and 0 otherwise. From the distribution

over entities, we can follow the connection to the knowledge base (cf. Figure 7.4b) and

derive distribution over name aliases, types, categories, and neighbor entities.

Knowledge Base The query can be issued against a search index containing of the knowl-

edge base (cf. Figure 7.4c kb feedback). The result is a distribution over entities, encoded in

the feature fKB(Q, e). From the ranking of entities, we can also infer their distribution over

their name aliases, types, categories and other features.

Entity Context Model The last source of feedback features is the entity context models,

entity pseudo-documents, (cf. Figure 7.4e entity context). The result of retrieval is a

distribution over entities, encoded in the feature fECM(Q, e). From the entity context

models we can also infer distributions over name aliases, types, categories, and related

entities.

Mention Feature Extraction

The features, f , for query expansion include features from each of the different vocab-

ularies: words, entities, mentions, types, categories, and neighboring entities. For each

mention, m the features are derived using various options to traverse available information

sources, each representing a path in Figure 7.4.

For every feature f , we build the expansion model induced by this feature only. For

example from fRM(Q, e) we build an expansion model over entities pRM(e) by normalizing

across all entity candidates E.

Feature Aggregation

We use the two-step aggregation model described in our framework described earlier in

Chapter 4. The first per-source aggregation follows Equation 4.1. The second aggregation is
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a weighted combination of these models incorporating the similarity to the target mention,

as in Equation 4.2.

7.4 Experimental Setup

This section details the tools and datasets used for our experiments. The retrieval experiments

described in this section are implemented using Galago3, an open source search engine. The

structured query language supports exact matching, phrases, and proximity matches needed

for our retrieval models. A summary of the document collections used in these experiments

was presented in Chapter 3. The corpora include both newswire (Robust04) and web pages

(ClueWeb). During indexing and retrieval, both documents and query words are stemmed

using the Krovetz stemmer (KROVETZ 1993). Stopword removal is performed on word

features using the Lemur 418 word stop list. For the web collections, the stopword list is

augmented with a small collection of web-specific stopwords, including “com”, “html”, and

“www”. We use title queries which contain only a few keywords.

Across all collections, all retrieval and feedback model parameters are learned or tuned

using 5-fold cross-validation. Instead of selecting a single number of feedback docu-

ments or entities, we include expansion feature models with different hyper-parameters

and learn weighted combination of these along with other features. We include expansion

features using 1, 10, and 20 feedback entities and documents. We optimize parameters θ

with a coordinate-ascent learning algorithm provided in the open source learning-to-rank-

framework RankLib.4 Parameters are optimized for retrieval effectiveness using the metric

mean average precision (MAP).

Retrieval effectiveness is evaluated with a variety of standard measures, including mean

average precision (MAP) at 1000. Because several of our collections involve web search,

3http://www.lemurproject.org/galago.php

4http://people.cs.umass.edu/˜vdang/ranklib.html
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Words Entity ID Wiki Categories Freebase Type
family Barack Obama cat:first families u.s. /people/family

tree Michelle Obama cat:political families u.s. /book/book subject
genealogy Family Tree cat:bush family /location/country
surname Family Crest cat:american families english /film/film subject
history Barack Hussein Obama Sr cat:american families german /base/presidentialpets/first family
crest Family History cat:business families u.s. /base/webisphere/topic

Table 7.1: Example expansion terms for the query “Obama Family Tree”

where precision at the early ranks is important, we also report normalized discounted

cumulative gain (NCGD@20) and expected reciprocal rank (ERR@20).

7.5 Experimental Evaluation

The effectiveness of our query feature expansion is compared with state-of-the-art word-

based retrieval models and expansion alternatives. Our baseline model is the sequential

dependence model. We use two baselines expansion models. The first is an external feedback

model, which uses the Wikipedia knowledge base as a text collection and extracts terms from

the top ranked article, which we call SDM-WikiRM-1. Models similar to SDM-WikiRM-1

were shown to be effective for these collections in previous work (BENDERSKY et al. 2012;

XU et al. 2009). The second baseline uses collection ranking from the SDM model and

builds a collection relevance model, which we call SDM-RM3. For ClueWeb12 we also

report an official baseline using Indri’s query likelihood model (Indri-QL).

7.5.1 Overall Performance of EQFE

The overall retrieval effectiveness across different methods and collections is presented

in Table 7.2 and Figure 7.6. Our EQFE model is best on MAP for Robust04 and best on

NDCG@20, ERR@20 and MAP on ClueWeb12B. A paired-t-test with α-level 5% indicates

that the improvement of EFQE over SDM (and the expansion models) is statistically

significant. For ClueWeb09B, the EQFE numbers are slightly worse, but there is no

significant difference detected among the competing methods.
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Figure 7.6: Mean retrieval effectiveness with standard error bars.
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Robust04 ClueWeb09B ClueWeb12B
Model MAP P@20 NDCG@20 MAP ERR@20 NDCG@20 MAP ERR@20 NDCG@20
Indri-QL 3.64 07.79 10.66
SDM 26.15 37.52 42.37 11.43 13.63 21.40 4.18 09.15 12.61
SDM-WikiRM-1 27.41 37.71 42.81 11.39 15.29 22.56 4.00 09.31 12.80
SDM-RM3 29.38 38.82 43.44 11.43 13.63 21.40 3.53 07.61 11.00
EQFE 32.77 38.00 42.40 11.00 14.00 21.12 4.67 10.00 14.61

Table 7.2: Summary of results comparing EQFE with other methods across the three test
collections.

Queries Helped Queries Hurt
Robust04 173 47
ClueWeb09B 68 65
ClueWeb12B 26 8

Table 7.3: Queries EFQE helped versus hurt over SDM baseline.

We perform a helps/hurts analysis for the methods in Table 7.3. The results show that

more than three times the numbers of queries are helped than hurt for both Robust04 and

ClueWeb12B. For ClueWeb09B, the results show that the method helps approximately the

same number of queries that it helps.

In order to analyze whether the EQFE method particularly improves difficult or easy

queries, we sub-divide each test set into percentiles according to the SDM baseline. In Figure

7.7 the 5% of the hardest queries are represented by the left-most cluster of columns, the 5%

of the easiest queries in the right-most cluster of columns, the middle half is represented in

two middle clusters (labeled “25%-50%” and “50%-75%”).

This analysis demonstrates that EQFE especially improves hard queries, for Robust04

and ClueWeb12B all but the top 5% (cf. 7.7a and 7.7c). For ClueWeb09B all queries in

the difficult, bottom half (cf. 7.7b are improved. We want to point out that we achieve

this result despite having on average 7 unjudged documents in the top 20 and 2.5 unjudged

documents in the top 10 (in both the “5%-25%” and “25%-50%” cluster), which are counted

as negatives in the analysis.
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Figure 7.7: Mean retrieval effectiveness across different query-difficulties, measured accord-
ing to the percentile of the SDM method. (The hardest queries are on the left)
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Dataset # Queries # With Freebase # With Named Entity # With PER/ORG/LOC
Robust04 249 243 85 49
Clueweb09 200 191 108 80
ClueWeb12 50 48 26 16

Figure 7.8: Number of queries containing different classes of entities (manual labeling)

Dataset % With Freebase % With Named Entity % With PER/ORG/LOC
Robust04 98% 34% 20%
Clueweb09 95% 54% 40%
ClueWeb12 96% 52% 32%

Figure 7.9: Percentage of queries containing different classes of entities

The wikiRM1 method, which is the closest method in spirit to EQFE, demonstrates the

opposite characteristic, outperforming EQFE only on “easiest” percentiles.

7.5.2 Entity Analysis of queries

We first examine the characteristics of entities in the queries of these different datasets.

For this analysis, the queries were manually labeled for the presence of various classes of

entities. We look at three different classes of entities. The first is the most general, whether

the entity occurs in Freebase. This includes general concepts. The second class of entities

is Named Entities. These are entities that would be tagged by a typical entity recognition

system. It includes people, organizations, locations, and other miscellaneous entity types.

The last class of entities focuses only on the people, organization, and location entity types.

For this analysis, we merely determine whether or not an entity appears anywhere in the

query. We do not examine the number of entities in the query or the centrality of the entity

to the query.

The entity occurrence statistics for the queries is shown in Tables 7.8 and 7.9. First,

we observe that between 95% and 98% of the queries contain at least one mention of a

Freebase entity. Many of the entities in the queries are general concepts, such as ‘mammals’,

‘birth rates’, ‘organized crime’, ‘dentistry’, etc... For the web queries, approximately half
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Method Overall With Freebase With Named Entity With PER/ORG/LOC
SDM 26.15 26.61 31.11 27.72
Multiple Source Exp. 30.49 31.02 36.45 31.98
EQFE 32.77 33.33 38.28 33.31

Figure 7.10: Mean Average Precision over different classes of entity queries on Robust04

the queries (54% and 52%) contain a named entity. A smaller percentage of queries for

Robust04 contain named entities, only 34%. One reason for this is that web queries are

more likely to contain brand names, actors, songs, and movies. Examples of these include

‘Ron Howard,’, ‘I will survive’, ‘Nicolas Cage’, ‘atari’, ‘discovery channel’, ‘espn’, and

‘brooks brothers’.

When the entities are restricted to people, organizations, and locations the fraction of

queries containing entities decreases. The fraction of entities that fall into this limited class

is between 59% and 74% of the queries containing named entities overall. The entities that

are named entities but are not included in this class belong to the “MISC” category and

include diseases, songs, movies, naval vessels, drugs, nationalities, buildings, names of

government projects, products, treaties, monetary currencies, and others.

7.5.3 Effectiveness by type on Robust04

In this section we describe an analysis of the effectiveness of the previously described

classes of queries for the Robust04 dataset. We examine three retrieval models: sequential

dependence, multiple source expansion, and entity-based feature expansion. The results are

shown in Table 7.10.

We observe that the EQFE expansion model is the best performing model across all

types of queries. We also note that queries with entities perform better than those that do not

contain them. The gains of queries with Freebase entities are small, which is unsurprising

because most of the queries contain at least one entity. However, the entity may not be

central to the information need.
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The most interesting finding is the comparison of queries with named entities. Queries

containing named entities, but not restricted to PER/ORG/LOC shows a large difference

over the other classes of queries. This demonstrates that the queries with ‘MISC’ entities

perform better than other classes of entity queries. The gains are the largest for this class of

queries for EQFE compared with the baseline SDM retrieval model.

7.5.4 Feature-by-Feature Study

We study the contribution of each of the features by ranking the documents according to

the feature score and measuring the retrieval effectiveness in MAP. The results for each

collection are shown in Figures 7.11, 7.12, and 7.13. The figures show a subset of the

top expansion features. The label on the x-axis has three attributes of the entity expansion

features: the vocabulary type, feedback source, and number of expansion terms. The

vocabulary types are (A,E,C,W , and T from Figure 7.4). The source is the original query

(Q), query annotation (ann), corpus feedback (rm), knowledge base feedback (kb), and

entity context model feedback (ecm). The last usually indicates the number of feedback

terms (1, 5, 10, 20, and 50). For ecm it indicates the size of the context model window. We

note that for several classes of features there are duplicates. These are variations of the same

expansion features (for example, top-1 entity, or top-1 non-nil entity).

For the Robust04 collection, the results in Figure 7.11 show that the query and feedback

words are the two most effective features. The next set of features shows that entities from

the feedback documents perform well, including the entity aliases.

The results for ClueWeb09B in Figure 7.12 are less informative because the combined

expansion feature model does not outperform the baseline models when used on the evalua-

tion set. The graph does show that entities from the entity context models appears to have

potential to improve over the original query words. The reasons why this feature does not

help in the model when combined with the original query words is unclear. This may be due

to high variance in the evaluation queries.
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For ClueWeb12B in Figure 7.13 the original query is the most effective feature. The

entities and words from top-ranked knowledge base articles are also effective. After these

features, the entities and entity names from the context models and feedback documents

perform well. The words in the feedback documents do not perform as well for this dataset.

We hypothesize that this is because web documents have significantly nosier words than

newswire collections.

For both ClueWeb collections, the entity context model with window size 8 is the most

effective entity context model and a strong feature overall. We also observe that entity aliases

are many of the top performing entity features on the web collections. We believe that the

entity names are useful because they match documents even when the linked entities may

not be found in the document. We believe this is because the entity identifiers in the FACC1

data are highly precise, but may lack recall. Here the name aliases bridge the vocabulary

gap between words and entity occurrences.

We note that certain vocabularies such as categories and types do not perform well on

their own, but may be helpful in combination with the other features.

7.5.5 Error Analysis of ClueWeb09

We now perform an analysis of the ClueWeb09 results to better understand why EQFE using

entity feature expansion does not significantly outperform the baselines.

We first examine the FACC1 query annotations. The FACC1 dataset contains only

entity annotations in the description query for 94 of the 200 queries. Upon inspecting

the annotations, we found the recall could be improved significantly with further manual

annotation. These queries were manually re-annotated to provide entity annotations for 191

of 200 queries. Of the remaining queries without entity links several contain entities that are

not noteworthy enough to be included in existing public knowledge bases. These entities

are “jax chemical company”, “fickle creek farm”, “sit and reach test”, and “universal animal

cuts”. The remaining queries without entities are ambiguous, such as “getting organized”
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Figure 7.11: Features sorted by retrieval effectiveness on Robust04.
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Figure 7.12: Features sorted by retrieval effectiveness on ClueWeb09B.
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Figure 7.13: Features sorted by retrieval effectiveness on ClueWeb12B.
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and “interview thank you”. These are the query entity annotations we report results on in

our experiments on ClueWeb09B in this chapter. The revised annotations which will be

made publicly available on our website 5.

To better understand the role of explicit entities, we use a query model containing only

the explicit entity identifiers from revised annotations. This model achieves a MAP score

of 0.048, an NDCG@20 of 0.162, and an ERR@20 of 0.123. This is less than half the

effectiveness of the SDM baseline. We observe that 72.5% of the documents returned by

this model are unjudged. The reasons for this are unclear. Searching using only entity links

is a new retrieval paradigm for web search, and it clearly returns results very different from

previous text retrieval models. This may indicate that further assessment is required to

assess the model effectiveness.

Additionally, we analyze the potential recall on the set of judged relevant documents

according to the relevance assessments. We find that 37.4% of the positive judgments in

ClueWeb09B do not contain entity links through the FACC1 annotations. The majority of

the documents without entity annotations are from Wikipedia, accounting for 24.6% of the

documents. Inspecting the FACC1 annotations, only a small subset of Wikipedia articles are

included. Further, of the relevant documents that contain at least one entity annotation, we

find that 43% of these contain at least one reference to an explicit query annotation. This

indicates that there remain significant query-to-document entity recall gaps. This could be

the result of missing entity links, or fundamental query-document mismatch.

7.6 Summary

In this chapter we use linked entity representations to perform ad hoc document retrieval.

We enrich the query representation with entity features. We present the first known exper-

imental results using entity linked documents and queries for ad hoc document retrieval

5http://ciir.cs.umass.edu/˜jdalton/eqfe
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(Contribution 5). Compared with competitive query expansion baselines there is an improve-

ment of 16.4% and 11.5% in MAP on Robust04 and a 14.1% and 32.8% improvement in

NDCG@20 for ClueWeb12 (Contribution 2. For ClueWeb09, where results do not signif-

icantly improve, we perform an error analysis and identify several important underlying

causes for this behavior. In qualitatively different collections (Robust04 and ClueWeb12B),

the entity expansion method was on average the strongest performer compared to several

state-of-the-art word-based expansion models.

We introduced an extension to existing word dependency models to include dependencies

from entity-based features (Contribution 4. One of the key features of this extension is

modeling the uncertainty in the entity linking, include the confidence in the links between

entity mentions and entities in the knowledge base.

We also defined a new query-specific entity context model that models the feature context

of disambiguated entities using retrieved documents (Contribution 3. We found that features

from these context models were effective, particularly for web retrieval. We experimented

with different sizes and scopes of context and found that a scope of token size eight was

effective on web data. The results show that these local context models provide an effective

mechanism for identifying the relevance of entities and as a source of expansion features.
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CHAPTER 8

CONCLUSION

In this work, we investigated the problem of representing documents using entities,

building up increasingly rich entity representations of documents. One of the unique

properties of entities is that they represent things in the world. One of the fundamental issues

in both information extraction and retrieval is that the models make local independence

assumptions. The result is incorrect and inconsistent labeling in extraction, and sub-optimal

ranking. In this work, we introduced a framework for expanding the local representation

with features from entities across documents. We used the enrichment framework to enrich

both query and document representation with features from entity mentions.

In Chapter 4 we introduced a new framework for entity-based enrichment. Entity-

based enrichment is a focused type of feature expansion where features from similar entity

mentions across the collection are used to expand the local representation of a target

observation.

We studied the application of entity-based enrichment to three extraction and retrieval

tasks: 1) Named entity recognition, 2) Entity linking, and 3) Ad hoc document retrieval.

These tasks build upon one another in levels of understanding documents through entities.

The first task detects entity mentions, the second links entity mentions to external knowledge

resources, and finally the third leverages the disambiguated mentions to improve retrieval

effectiveness. We demonstrated how task-specific entity features are used for each of these

tasks.

In Chapter 5, we applied the enrichment framework to the task of named entity recogni-

tion (NER). The enrichment framework we proposed introduces long-range cross-document
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dependencies between similar observations. It uses weighted feature copying from mentions

in topically similar passages. In addition to showing that enrichment achieves statistically

significant improvements on in-domain accuracy, we show it results in a more robust entity

detection model, significantly surpassing other methods when evaluated on out-of-domain

data. The enrichment framework allows us to leverage large external sources of unlabeled

data. The results show a 6.8% error reduction on newswire and a 19.9% error reduction on

out-of-domain book data for named entity recognition.

In Chapter 6, we proposed a method for performing the task of linking detected entity

mentions to an external knowledge base using information retrieval. We introduced the

Neighborhood Relevance Model, which focuses on identifying salient associations between

a given entity mention and other entities in the local document neighborhood. The neighbor-

hood relevance model uses the pattern of entity mentions in similar documents to identify

salient entity context for disambiguation.

Our experiments on the TAC KBP entity linking data show that this enrichment model

outperforms other context weighting models. The results show up to a 16.4% improvement

in mean reciprocal rank over local models for entity linking. When combined with a learning-

to-rank model that incorporates more text similarity features, the results beat the current

best performing systems on in-KB ranking accuracy. Combined with a simple NIL handling

strategy the overall effectiveness on all mentions is comparable to, and sometimes better

than, other state-of-the-art entity linking systems. We also introduced an enrichment model

that used Urban Dictionary to expand the representation of entity mentions in informal

forum data.

In Chapter 7, we use linked entity representations to perform ad hoc document retrieval.

We enrich the query representation with entity features. We present the first known exper-

imental results using entity linked documents and queries for ad hoc document retrieval.

Compared with competitive query expansion baselines (the sequential dependence model

with relevance modeling expansion on Wikipedia and the collection) there is an improve-
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ment of 16.4% and 11.5% in MAP on Robust04 and a 14.1% and 32.8% improvement in

NDCG@20 for ClueWeb12. For ClueWeb09, where results do not significantly improve, we

perform an error analysis and identify several important underlying causes for this behavior.

In qualitatively different collections (Robust04 and ClueWeb12B), the entity expansion

method was on average the strongest performer compared to several leading word-based

expansion models.

We also introduced an extension to existing word dependency models to include de-

pendencies from entity-based features (Contribution 4). One of the key features of this

extension is modeling the uncertainty in the entity linking, including the confidence in the

links between mentions and entities in the knowledge base.

Lastly, we defined a new query-specific entity context model that models the feature

context of disambiguated entities using retrieved documents (Contribution 3). We found

that features from these context models were effective, particularly for web retrieval. We

experimented with different sizes and scopes of context and found that a scope of token

size eight was very effective on web data. The results show that these local context models

provide an effective mechanism for identifying the relevance of entities and as a source of

expansion features.

8.1 Future Work

In our opinion, the use of entities in retrieval is a fledgling area which will continue to

grow as search applications become more complex. Entities provide fine-grained conceptual

relationships that are shared across documents and provide links to structured attributes in

external knowledge sources. Large-scale knowledge bases such as Freebase and Wikipedia

are still in their early stages. The use of these and similar large-scale knowledge bases of

entities will likely increase as methods for automatic knowledge base construction improve.

Currently, these knowledge resources still contain significant gaps which need improvement

(an area I intend to pursue in future work). The expressiveness of knowledge bases and the
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facts they contain about entities will evolve to better model uncertainty, temporal change,

subjective opinions, and complex events.

In Chapter 5, we used enrichment to improve entity detection and classification effec-

tiveness. There are several important extensions to this work. The first is a better method for

determining which tokens in the observation sequence require feature enrichment. Using

our current heuristics there are over 8,000 queries needed on the small CoNLL test set. The

result of improved triggering is that retrieval time could be significantly reduced and the

overall effectiveness improved. For sequences with strong evidence feature enrichment

is unnecessary and may even degrade effectiveness. A second area is a more principled

approach to selecting the source collection to use for enrichment. We would like to utilize

strong local evidence within the document and back off to models of similar documents, and

finally the entire collection. One possibility would be to investigate techniques similar to the

Mixture of Relevance Models (MoRM) (DIAZ and METZLER 2006) and use measures of

“concept density” to find rich sub-collections for enrichment.

We focused on enrichment for tagging entities in documents. A similar enrichment

approach could be used to identify features for tagging entities in queries. To be useful

for retrieval, the types of entities detected needs to evolve significantly. It requires moving

beyond traditional named entity types to include other entity classes of interest to users.

These include entities in entertainment (such as books, movies, TV shows, recipes), products

(including cars, software, phones, and video games), events (concerts, festivals, holidays),

and many others.

In addition, other areas of entity detection need to be addressed that impact their utility

for retrieval and other applications. For example, entities that are nested or closely related

([Gerald of Wales], [George Washington Bridge], [Kobe Bryant’s wife], [Mrs. George

Washington]). Current systems may only detect [Kobe Bryant] and [George Washington],

completely missing the implicit reference to another completely different entity. The result

is that downstream entity linking systems may not have sufficient context to correctly disam-
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biguate these mentions. The result is that important gaps in understanding the document or

query remain.

In Chapter 6, we applied enrichment to the task of entity linking. We used enrichment

to address the important task of identifying the the salience of disambiguating context.

One area for future work is to leverage the enrichment framework to improve linking in

other ways. For example, current state-of-the-art models perform “collective” labeling

where groups of related mentions are jointly disambiguated to maximize coherence. The

enrichment framework in this work could be used to identify groups of related mentions

across documents.

One current limitation of existing entity linking is that the task (and data sets) only

define one true correct entity as the linking target. The mentioned entity must be the exact

entity. For retrieval and other applications alternative task definitions could be useful. For

example, linking the mention of a particular room or exhibit in a museum to the museum

itself may have significant value, for example geo-locating a particular reference. Another

important area for future work is better methods for addressing ‘NIL’ clustering of entities.

This area is referred to as cross-document coreference resolution (GOOI and ALLAN 2004;

BENJELLOUN et al. 2009; WICK et al. 2012) and is an area that continues to receive

significant attention. The entity enrichment framework we describe could provide a query-

focused mechanism of identifying overlapping canopies of related entity mentions for this

task.

In Chapter 7, we used the entity representation and cross-document evidence to enrich

the query representation. One area for future work is to better understand the types of entities

and (and features of those entities) that are most important for retrieval. We believe there are

more significant improvements possible by better understanding the types of entities useful

for retrieval. One hypothesis is that focusing on common abstract entities such as ‘poverty’,

or ‘term limits’ in addition to named entities may be helpful in establishing shared topical

context.
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One significant area for further analysis is examining the individual components of

entity expansion that improve over text features. We examined individual feature-by-feature

performance, but we did not explore combinations of features. Future work should pick

apart the interactions between the difference classes of expansion features. It is important

to understand which attributes of the knowledge base are the most helpful when compared

with text alone.

In this initial work we focus on enriching the query as a whole. However, for complex

queries with multiple entities, or queries with entities and non-entity words, it is important to

model the relationship between these components in the enrichment process. Lastly, in these

experiments we focus primarily on entities linkable to knowledge bases. This is because

the FACC1 annotations include only these entity mentions. However, we observe that even

TREC queries contain tail entities that do not exist in Freebase, like ‘fickle creek farms’.

New annotated datasets are needed that include mentions of these entities.

We focused primarily on enriching the query representation. An important area for future

work is enriching the document representation. In preliminary work we found that query

representations beyond a few short keywords were needed to take advantage of entity-based

document representations. Now that we have explored improved query representations, we

believe that using the enrichment framework to revisit document representations could be a

fruitful area.

Overall, one area for future work is improved modeling of retrieval with other tasks in

natural language processing and information extraction. We used the enrichment framework

to improve several extraction tasks, and others could similarly be modeled to take advantage

of cross-document evidence. These areas include relation extraction, dependency parsing,

event extraction, and other tasks in knowledge base construction.

Recently, an emerging trend has been ‘joint inference’ (POON and DOMINGOS 2007;

MCCALLUM 2009; WICK et al. 2008; WICK et al. 2013) of tasks instead of pipelined

models. In pipelines errors cascade and there may be a fundamental mismatch between

133



individual task effectiveness and the final target objective. This has often been the case

when information extraction is combined with retrieval, leading to limited improvements.

For example, in previous work we demonstrated that different types of coreference errors

may disproportionately affect retrieval effectiveness (DALTON et al. 2011). An open area

for future work would be to extend joint models to include retrieval with other downstream

tasks.

In this work, we focus on building up entity-based representation because they offer

clear semantics and structured knowledge resources. However, for new domains and obscure

information needs, the relevant entity detectors, types, and relations may not exist. An

area we propose for future work is query-specific information extraction and knowledge-

base construction. This would allow the re-use and extension of existing knowledge along

with the construction of new elements ‘on-demand’ in response to an information need.

We recently proposed one step in this direction with the knowledge sketch, (DALTON and

DIETZ 2013b) which assembles relevant fragments of knowledge from existing knowledge

bases as well as constructs new data extracted from retrieved documents to create a query-

specific knowledge artifact. A knowledge sketch contains distributions over relevant entities,

documents, and relationships between entities.

We have focused on building up increasingly complex entity-based representations of

documents and queries. This is an active area of research which we believe will continue to

grow in importance as search applications evolve in the future.
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