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ABSTRACT

EMPIRICAL STUDIES ON THE EFFECTIVENESS OF
SODA TAXES TO CURB OBESITY

MAY 2014

FRANCESCA COLANTUONI

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Christian Rojas

This dissertation presents a series of empirical studies to evaluate the effective-

ness of soda taxes to curb the obesity epidemic. Chapter 1 describes the extent and

severity of the obesity problem in the U.S., and discusses the policy interventions

that have been proposed or enacted with the intent to fight obesity (e.g., sales taxes).

Chapter 2 contains a study on the effect of two tax events on soda consumption:

a 5.5% sales tax on soft drinks imposed by the state of Maine in 1991, and a 5%

sales tax on soft drinks levied in Ohio in 2003. We investigate this question by us-

ing sales data collected by scanner devices in Maine, Massachusetts, New York and

Connecticut, as well as Ohio, Illinois, Michigan and Pennsylvania. Results suggest

that these sales taxes had a statistically insignificant impact on the overall consump-

tion of soft drinks. Chapter 3 describes an empirical study that looks at whether

the 5% sales tax on soft drinks in Ohio in 2003 had a differential impact on differ-

ent socio-economic segments of the population. In line with the results described in

Chapter 2, this study suggests that the impact of a tax had a homogeneous effect
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(and statistically insignificant) across different demographic groups. In Chapter 4 we

investigate whether the demand for soda varies with the obesity rate. To this end

we develop a demand model that is able to incorporate dynamic properties of this

market as well as the resulting possibility that the obesity rate might alter the param-

eters of the model. Specifically, the model incorporates the dynamics of the market

as they relate to the presence of temporary price reductions and the possibility that

consumers may use them to stockpile purchases for future consumption (when prices

return to higher levels). As opposed to the previous two chapters, which look at the

effect of soda taxes retrospectively, recovering the primitives of consumers’ behavior

directly allows us to provide estimates of how soda consumption will react to different

policies. Our results suggest that higher-Body Mass Index (BMI) consumers, despite

being less price-sensitive for soda, are more inclined to store (i.e. are more sensitive to

“sales”). We use our results to derive policy implications by computing the potential

decrease in quantity demanded after a hypothetical sales tax is imposed. In addition,

we consider a counterfactual mandate by which price discounts (sales) would be sig-

nificantly restricted. Our estimates, consistent with our findings in Chapters 2 and

3, indicate that a price increase due to a tax would fail to yield large reductions in

total quantity demanded. The main explanation is that the existence of sales and

discounts, which persist after the tax increase, mitigate the effect of the tax as storing

behavior. Importantly, the reduction in consumption resulting from the imposition of

the tax would be lower for those consumers this type of policy is intended (i.e. high

BMI consumers). Conversely, results from this investigation suggest that a policy

intervention restricting the magnitude and frequency of sales, despite the fact that

the average price increase implied by this policy is milder than that of a sales tax,

would be more successful than a tax increase in reducing overall soda consumption.

Further, we find that this second policy would have a greater impact in reducing the

consumption, including that of high BMI consumers. Intuitively, since our estimates
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indicate that consumers in areas with higher obesity rates are more sale sensitive than

in other regions, a policy that would significantly limit temporary price reductions by

firms would be effective as it is tailored to those that need be to impacted the most.

In summary, our work suggests that capturing and modeling critical characteristics

of a market (in this case dynamic behavior) can aid policy makers in designing more

effective interventions. Chapter 5 contains additional investigations that have been

conducted to answer questions concerning the strategic marketing behavior of soda

companies.
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CHAPTER 1

INTRODUCTION

The rate of obesity in the U.S. is increasing dramatically. According to data from

the Centers for Disease Control and Prevention (CDC), the percentage of obese (Body

Mass Index –BMI≥30) adults in the U.S. has increased from 20% in 2000 to 27.5% in

2010 (Figure 1.1). Americans consume about 25% to 30% more daily calories today

than they did 30 years ago.1 The severity of the rate at which the obesity epidemic is

pervading is illustrated by Figure 1.2, which reports two maps of United States that

show the incidence of obesity in 1990 and 2010, respectively. In 1990, the obesity

rate was lower than 15% in all states. By contrast, in 2010 the obesity incidence was

no lower than 20% in all states, and in 13 states more than 3 out of 10 people were

obese.

It is interesting to notice the regional distribution of the phenomenon: following

the official geographical classification of the states, the highest percentage of obese

people in 2010 was located in the South, with an average of 30.7% (max: Mississippi

34.5% - min: Virginia 26.4%); the Midwest had an average incidence of 28.9% (max:

Michigan, 31.7% - min: Minnesota, 25.4%); the West had an average of 24.7% (max:

Oregon, 27.6% - min: Colorado, 21.4%); Alaska registered 25.2%; and Northeast 25%

(max: Pennsylvania, 29.2% - min: District of Columbia, 22.4%). Clearly, the dis-

tribution of different obesity rates in different parts of the country raises questions

about the possible socioeconomic causes.

1http://www.cdc.gov/obesity/
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Figure 1.1. Prevalence and trends: Weight classification by Body Mass Index (BMI)

Our elaboration on data from cdc.gov

In view of these trends, it is important to understand the factors that may con-

tribute to this epidemic. According to CDC there is a variety of factors that play a

role in obesity. Overweight and obesity conditions result from an energy imbalance

that may derive from high calorie intakes and not enough physical activity. How-

ever, body weight is the result of genes, metabolism, behavior, environment, culture,

and socioeconomic status. To remain in balance and maintain a stable body weight,

calories consumed (from foods and beverages) must be approximately the same as

calories used (employed in normal body functions, daily activities, and exercise). A

sedentary lifestyle accompanied by the consumption of ready-to-eat food and sugary

beverages is a key mix that increases the risk of becoming overweight or obese.

Fighting obesity has become a priority in the political agenda, primarily because of

the high external costs associated with the phenomenon. Higher mortality incidence

as a result of food diseases, increasing medical expenses resulting in more expensive

health insurance premiums, and productivity losses in the labor market (Fletcher,

2011), are reasons that make public intervention compelling. The estimated figure of

annual U.S. health care cost for obesity-related illness is $190.2 billion, about 21% of

2



Figure 1.2. Obesity Trends* Among U.S. (*BMI ≥30)

1990

2010

Source: Behavioral Risk Factors Surveillance System, CDC.
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annual U.S. medical expenditure (Cawley and Meyerhoefer, 2012).

The large increase in calorie intake appears to have been significantly fueled by

soda consumption. In 2009, a statement by the American Heart Association indicated

that soft drinks and sugar-sweetened beverages were the number one contributor of

added sugars in Americans’ diets.2 Consistent with this observation, several stud-

ies have shown how the consumption of soft drinks has significantly contributed to

the increase in obesity, leading to a higher incidence of obesity-related diseases such

as diabetes, heart diseases, stroke, hypertension and cancer (Ludwig and Ebbeling,

2001; Apovian, 2004; Malik et al., 2006; Vartanian et al., 2007).

For instance, Libuda and Kersting (2009) in a review article find that prior re-

search has consistently reported evidence in support of a causal relationship between

soft drink consumption and excess weight gain. Similarly, the meta-analysis con-

ducted by Vartanian et al. (2007) shows a clear association of soft drink intake with

both increased energy intake and body weight. Hence, even if the cause of overweight

and obesity conditions is multifaceted, the limitation of soft drink consumption needs

to be incorporated in the strategy mix for obesity prevention.

In addition to the scientific evidence on the effect of sugar consumption on obesity,

it is important to note that soft drinks have a very limited nutritional value. These

two facts have propelled policy makers in several states across the U.S. to propose

the imposition of a tax on soft drink consumption. Excise taxes and special sales

taxes on soda are already in place in 33 states. The Carbonated Soft Drinks (CSD)

industry has succeeded in avoiding a soda tax to be included in the recent national

health reform. While research has investigated the potential consumption reaction

to a tax increase, our assessment is that there is still uncertainty as to what the

ultimate impact on consumption will be. The main purpose of this dissertation is to

2http://www.heart.org, last access 1/27/2014.
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analyze the impact of specific soda pricing policies on prices and volume sales of this

product. We also study some dynamic aspects of soda consumers’ behavior (such as

storability and discount responsiveness), in order to contribute to the understanding

of the phenomenon and suggest how to improve policies aimed at fighting obesity.

Literature Review

Policy interventions that modify the price of a good are supported by economic

motivations based on market failures (Marshall, 2000; Cawley, 2004; Finkelstein et al.,

2005; Kim and Kawachi, 2006; Powell and Chaloupka, 2009). In the case of soft

drinks, there are several negative externalities associated with their consumption;

these externalities manifest themselves most evidently through the increased health

care costs of treating diseases caused by obesity. These costs can take several forms,

including higher health insurance premiums for all individuals as well as higher health

expenditures by the government. Additional social costs may include productivity

losses (Cawley, 2004). Further, some people may have time-inconsistent preferences

that would require public interventions (Powell and Chaloupka, 2009). For instance,

it has been shown that children often do not take into account the future conse-

quences of their actions, and that people, in general, may not appropriately discount

the future costs of their behaviors (Komlos et al., 2004; Smith et al., 2005).

Research has investigated the potential consumption reaction to a soda tax. Esti-

mates by Yale University’s Rudd Center for Food Policy and Obesity suggest that for

every 10% increase in price, consumption decreases by 7.8% (Brownell and Frieden,

2009); this estimate implies an own-price elasticity of demand of -0.78. The authors

consider a 100% pass-through rate and compute their estimate based on two specific

tax proposals: a 10% sales tax, and a penny-per-ounce tax. Conversely, there is ev-

idence from other studies suggesting that the imposition of a tax would have much

milder effects on consumption reduction. For instance, some cross-sectional stud-

5



ies have found minimal to no association among state-level soda taxes and body

weight (Fletcher et al., 2010a,b; Powell and Chaloupka, 2009; Sturm et al., 2010).

Fletcher et al. (2010a) provide the first empirical examination of the effectiveness

of soft drinks taxation in reducing adult obesity. The authors analyze the ultimate

impact of changes in state taxation rates in the period from 1990 to 2006 on changes

in body mass index (BMI) and obesity, by exploiting the fact that approximately

half of all states changed their soft drink tax rate in this period. Using an analysis

that employed individual-level survey data, the authors find that soft drink taxes do

influence behavior but not enough to lead to significant changes in population weight.

Results in Wang (2012) greatly scale down the ones by Brownell and Frieden

(2009). As in Brownell and Frieden (2009), Wang analyzes the impact of a 10% sales

tax and a penny-per-ounce tax (assuming a 100% pass-through rate). The method-

ology consists in specifying a structural dynamic demand model that accounts for

storability and heterogeneous tastes for soft drinks; storability turns out to be a cru-

cial element for obtaining accurate predictions for the two possible tax policies. The

author argues that this model provides more accurate estimates of consumers’ price

sensitivity and thus allows for a more reliable prediction of the policy impact. Wang’s

estimate of the overall price elasticity for soft drinks (-0.33) is less than half of that ob-

tained by Brownell and Frieden. Wang argues that not accounting for inter-temporal

substitution and storability can lead to an overestimate of the effect of the tax on

consumption.

Studies exclusively looking at the effect of an excise tax approach (a fixed fee per

ounce) find that such a tax would reduce consumption of sugar sweetened bever-

ages by a range that spans from 10% to 25% (Andreyeva et al., 2011; Hahn, 2009;

Smith et al., 2010). Regardless of the type of tax being analyzed (excise or ad val-

orem), inference in this empirical work has consisted of a counterfactual approach

that relies on an estimate of the own-price elasticity for soft drinks. These estimates
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differ in the literature since they depend on the methodology used, the type of data

available, and whether substitutes (e.g. other beverages) are considered.

The counterfactual nature of earlier studies implies that an assumption on the

pass-through rate needed to be made; the common practice has been to assume that

the tax would be fully passed through to the final price (i.e. that the tax-exclusive

price after the imposition of the tax will remain unchanged). If firms react to the tax

change, for example by reducing their prices to dampen the decrease in consumption,

then this assumption would not be appropriate.

The structure of the Carbonated Soft Drink Industry and

“Soda Taxes”

According to ibisworld3, the Carbonated Soft Drink (CSD) Industry sector is eco-

nomically important, with over 45,000 employees, about $17 billion in revenue, and

$2 billion in wages (as of 2011). The volume market share within the non-alcoholic

drink industry, which includes tea and coffee, bottled water, sport drinks and energy

drinks, is 46.8%. This sector depends heavily on large economies of scale, high poten-

tial for new product development and high brand loyalty. Since 2010, the industry

has consolidated on the vertical dimension; that is, the main CSD companies have

acquired bottling and distribution companies that used to be independently owned.

These factors make the CSD sector more powerful in terms of its ability to set pricing

policies and marketing strategies.

On the other hand, this industry’s value added is declining at a rate of 3% (on aver-

age) per year since 2002. The revenue has decreased at an average rate of 3.6%, while

wage payments have declined by 6.7% per year, as of December 2011(ibisworld.com).

3ibisworld.com
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The reasons for the decline of the sector are partly attributed to the consumption

Figure 1.3. Series of obesity and CSD consumption per Capita (%)

Our elaboration on data from cdc.gov and ibisworld.com

crisis fueled by the high unemployment rate that initiated in 2009, which also damp-

ened the demand for outside dining (when consumers are also likely to drink soda).

Also, the augmented popularity of a healthier life style has increased consumers orien-

tation towards other options. The consumption of carbonated soft drinks has dropped

from 52.8 gallons per capita per year in the 2002 to 46.9 in the 2011. The industry

has reacted by substantially resizing their scale of operation and containing the losses

by reducing the number of employees. This number has decreased at an average rate

of 6.8% per year in from 2002 to 2011. But the industry also reacted by developing

new product lines for consumers that are willing to pay a premium for low-calories,

multi functional drinks, such as energy drinks or holistic thirst-quenching drinks.

It is interesting to point out that the trend of CSD consumption per capita and

the trend of percentage of obese people in the US population, in the period between

2003 and 2010, go in opposite directions (Figure 1.3). In other words, the overall
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natural decrease in soft drink consumption noted above, has not translated into an

overall decline in percentage of obese population. Thus, it is conceivable that in the

absence of a decrease in soda intake, the obesity rate would have grown even larger.

The CSD industry has succeeded in avoiding the inclusion of a soda tax in the recent

national health care reform, but soda taxes have been proposed in many states, and

in some soda taxes are already enforced. The most effective way in which this tax

should be imposed is not clear. Different proposals have been discussed, and they

differ substantially across states (Table 1.1). For example, Mississippi is considering

Table 1.1. Current Soft Drink and Snack Food Taxes

State or Year Enacted Tax Specifically Use of Revenues

Locality or Effective Applied

Arkansas 1992 $0.21 per gal of liquid soft drink; Funds Medicaid
$2 per gal of soft drink syrups

Chicago 1993 Distributors pay 3% on sales of General funds
containers, 9% on syrups

Illinois Mid-1980s Sales tax (6.25%) General funds
on soft drinks

Maine 1991 Sales tax (5.5%) General funds
on snack foods, soft drinks

New York 1965 Sales tax (7.5%) General funds
on soft drinks, candy, confectionary

Ohio 2003 Sales tax (5%) General funds
on carbonated soft drinks

Rhode Island 1984 $0.04 per case (24 12-oz cans) General funds
of soft drinks

Tennessee 1981 1.9% of gross receipts from soda and General funds
soda ingredients paid by manufacturers

Washington 1989 $1 per gal of syrup Violence prevention
and drug enforcement

Note: Data derived from state and local tax departments and from the State Tax Handbook
(Chicago, Ill: Commerce Clearing House), modified from Jacobson and Brownell (2000).

legislation that would tax the syrup used to sweeten soda while the state of New York,

in its proposed state budget, recommended a penny-per-ounce tax on sugary bever-

ages. In Washington state, legislators approved a two-cent tax on every 12 ounces of

soft drinks sold. The map in Figure 1.4 shows the current level of soda sales taxes

per state. We notice that, to this day, 16 states still do not impose sales taxes on
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soda. Figure 1.4 together with Figure 1.2 suggest that there is no clear association

Figure 1.4. State Soda Sales Tax Rate (as of January 1, 2011)

Source: Bridging the Gap Program, University of Illinois Chicago, 2011.

between the level of the tax and the obesity prevalence in a state; specifically, lower

obesity rates do not necessarily appear to be associated with higher levels of taxation

or, vice-versa, states characterized by higher obesity incidence not always present low

levels of soda sales taxes. The overarching political argument is based on the eco-

nomic rationale that price increases caused by higher taxes will dampen consumption.

In practice, however, the tax effectiveness is an empirical matter.

The following chapters are organized as follows:

• Chapter 2 contains a study on the effect of soda consumption of two tax events:

a 5.5% sales tax on soft drinks imposed by the state of Maine in 1991, and a

5% sales tax on soft drinks levied in Ohio in 2003. We investigate this question

by using sales data collected by scanner devices in Maine, Massachusetts, New

York and Connecticut, as well as Ohio, Illinois, Michigan and Pennsylvania.
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Results suggest that these sales taxes had a statistically insignificant impact on

the overall consumption of soft drinks.

• Chapter 3 describes an empirical study that looks at whether the 5% sales tax on

soft drinks in Ohio in 2003 had a differential impact on different socio-economic

segments of the population. In this chapter we present the method applied, and

the methods considered for further analyses. Results from this study are also

described.

• Chapter 4 illustrates a dynamic estimation procedure to investigate the role of

obesity on the demand for soda. The dynamic model accounts for consumers’

storing behavior, and allows us to study both price sensitivity as well as sen-

sitivity to temporary price reductions (sale sensitivity) of soda consumers. By

matching store-level purchase data to county-level data on obesity incidence, we

find a higher propensity to store and higher responsiveness to temporary price

reductions in populations characterized by larger obesity rates. Conversely,

higher rates of obesity appear to be also associated to lower price sensitivity.

We use the results of our demand model to carry out and contrast two possible

policy interventions that could curb obesity: a) a sales tax on soda consump-

tion, and b) a ban on temporary price reductions (i.e. sales). Results indicate

that the former intervention (not considered before by policy makers) would be

more successful in reducing the consumption of more obese populations than

the commonly proposed (and implemented) soda taxes.

• Chapter 5 presents the results of analyses aimed at investigating strategic be-

haviors of soda companies, in particular, whether soda manufacturers run sales

more frequently in areas characterized by a higher obesity rate. We did not find

statistical evidence of this behavior.
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CHAPTER 2

THE IMPACT OF SODA SALES TAXES ON
CONSUMPTION: EVIDENCE FROM SCANNER DATA

2.1 Introduction

In this chapter we look at the effect of two tax events on soda consumption and

prices:

1. A 5.5% sales tax imposed by the state of Maine in July 1991;

2. A 5% sales tax imposed in Ohio in January 2003.

The first tax, a “snack tax”, was enforced in Maine from 1991 to 2001 (when it was

reduced by 0.5%). This tax was applied to snack foods, soft drinks, carbonated water,

ice cream and pastries. The sales tax levied in Ohio in 2003, was applied exclusively

to soft drinks; however, the definition of soft drinks in Ohio is broad as it includes not

only “traditional soda pop beverages” but also “any sweetened nonalcoholic beverage,

whether sweetened naturally or artificially, (unless it either contains milk products

or a milk substitute or it contains greater than fifty percent (50%) fruit or vegetable

juice by volume); many fruit drinks or fruit punches that contain fifty percent (50%)

or less juice by volume; bottled tea and coffee drinks”.1

The primary focus of this chapter is to examine the effect of both taxes on brand-

level soda volume sales. As an additional exercise we also investigate whether tax-

exclusive prices experienced a significant change; this analysis is important as theory

1Ohio Department of Taxation, http://tax.ohio.gov/
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does not provide unambiguous predictions as to how taxes are passed through to

consumers. We investigate these questions using sales data collected by supermarket

scanner devices. For the first event, we use 1988-1992 data from Maine (the treatment

state) as well as from the neighboring states of Massachusetts, New York and Con-

necticut (the control states). For the second event, we utilize 2001-2006 data from

Ohio (the treatment state), as well as from Michigan, Illinois and Pennsylvania (the

control states). Studying two similar events separated by a 12-year period allows us

to investigate whether consumers’ response toward soda taxes has changed over time;

this is an important question to analyze as it is commonly believed that consumers’

perception of the negative effects of obesity has heightened in more recent years.

The use of a brand-level data has two main advantages. First, we are able to apply

a difference-in-difference matching estimator (DIDM) that provides a more powerful

identification strategy than a difference-in-difference estimator (Todd, 2007). In a

nutshell, this advantage comes from the fact that we can use a transparent matching

procedure that relies on brand identity; we explain this in more detail in section 1.2.

A second advantage of a brand-level analysis is that it allows us to study whether the

tax imposition causes consumption (and/or pricing behavior) to vary across brands.

This is important since a tax increases the final price of different brands by different

dollar amounts. In sum, by accounting for differences in time-invariant unobservable

factors between treated and control cities, we are able to isolate the sole impact of

the tax policy on the volume and prices of soft drinks, at the brand level.

Prior studies have assumed that the soda market would experience a 100% tax

pass-through rate; that is, that the price observed by consumers would exactly shift

by the same magnitude as the tax increase. If firms react to the tax change, for

example by reducing their prices to counter the decrease in consumption, then this

assumption would not be appropriate. In imperfectly competitive markets, it can also

be the case that the tax is passed through to consumers by more than one hundred
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percent (Anderson et al., 2001). Second, even in the case that the 100% pass-through

rate assumption is accurate, it is not clear that consumers will perceive a tax increase

the same way they would perceive a price increase imposed by the manufacturer.

Since a price increase caused by a tax is only reflected at the cash register, and to

the extent that consumers are primarily guided by the shelf price when making a

purchase decision, a price increase through a sales tax is likely (as we find below) to

dampen the reaction in consumption. Finally, elasticity-based studies can be sensitive

to demand functional form and rely on the accuracy and appropriateness with which

price endogeneity is dealt with.

Our study, while limited in its own right, does not suffer from the drawbacks of

the earlier literature just mentioned. To the best of our knowledge, this is the first

ex-post study that evaluates the impact on prices as a consequence of soda taxes.

Further, we directly test whether the tax is fully passed onto the consumer, and we

can highlight other likely pricing strategies that ensue from the tax.

Our main finding is that the tax increase did not alter consumption in either state.

Conversely, by and large, we find that brand-level tax-exclusive prices did not react to

the tax increases, suggesting that the pass-through rate was 100%. While our results

are specific to a 5.5% tax increase in Maine, and 5% in Ohio, we believe they are

informative since the current mean sales tax rate (across all states) on soft drinks is

5.2%. Despite the fact that consumers’ awareness of the negative effects caused by

soft drink consumption might have increased over the 12 years that separate the two

tax events (and to the extent that consumer behavior in Maine and Ohio is compa-

rable to that of consumers in other states), our results suggest that the current level

of soda sales taxes in the US appears to be too small to actually affect consumption

in a sizeable way.

This chapter is organized as follows. Section 2.2 contains a description of the
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methodology applied while section 2.3 describes the data. Section 2.4 contains the

main results and section 1.5 concludes.

2.2 Method

In this chapter, we first investigate the consumption effect of a 5.5% sales tax

on soft drinks imposed by the state of Maine on July 16, 1991. We employ sales

data collected by scanner devices in Portland (Maine-our treatment city) as well as

in (the control cities of) Boston (Massachusetts), Albany (New York) and Hartford

(Connecticut). Subsequently, we consider a more recent similar tax event, a 5% sales

tax on soft drinks levied in Ohio on January 1, 2003. For this latter experiment we

employ scanner data collected in Cleveland (Ohio-our treatment city), and (the con-

trol cities of) Detroit (Michigan), Chicago (Illinois) and Philadelphia (Pennsylvania).

The available data therefore limit our comparison to consumption across cities (rather

than across entire states). The data, provided by Information Resources Inc. (IRI),

come from a sample of supermarkets in the largest metropolitan areas in the U.S. We

use two data sets that include brand-level sales information for the periods 1988-1992

and 2001-2006, respectively. More details on characteristics and differences of the two

sets of data are provided in the next session.

To the extent that neighboring states serve as a reasonable control for both Maine

and Ohio (respectively), data in such states allow us to isolate the effect of the tax

from all other possible factors (e.g., trends, seasonality, nationwide changes in compa-

nies’ policies, etc.). In addition, the brand-level analysis allows us to study whether

the tax imposition causes consumption (or pricing behavior) to vary across brands.

To measure the desired effect, we employ a difference-in-difference matching estima-

tor (DIDM). The difference-in-difference matching (DIDM) estimator is superior to

a simple DID estimator because comparison of treated and untreated units is based

on their similarity. Conversely, a DIDM estimator is superior to a cross-sectional
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matching estimator since it accounts for differences in time-invariant unobservables

between treated and untreated units (Heckman et al., 1997, 1998). In our setting,

the DIDM estimator permits the comparison among treatment and control groups

based on brand identity; this means that the matching mechanism is simpler, more

transparent, and more reliable as it does not rely on propensity scores.

The DIDM estimator tailored for our panel data is given by:

α̂DIDM =
1

N

N∑
i=1

{
(logVt′i − logVti)−

1

#Ii

∑
jεIi

(logVt′j − logVtj)

}
(2.1)

where i and j denote observations in the treatment and control groups, respec-

tively, while t and t′ denote pre- and post-treatment time periods. Ii is the set of

units in the control group that are matched to treatment unit i and #Ii is the num-

ber of elements in that set. The variable V denotes the outcome being measured (in

our case volume sales or price) and the scalar N is the number of treated units (i.e.

brands).

We tailor this estimator to the structure of our data. First, unlike usual match-

ing estimators, we employ all treated units in the analysis rather than only those

that would fall into a “common support” set. Second, instead of relying on propen-

sity scores to match treated and untreated units, we define control units to be those

brands in the control cities that match the identity of brand i in the treatment city

(i.e. we manually choose the unit j that is matched to unit i). Finally, we study

the outcome variable in logarithmic form (i.e. V corresponds to the logarithm of the

variable of interest: volume sales or price); we adopt this transformation because the

variance of volume sales (across brands) in our data set is large (see Table 2.4).

We report results of the estimator both for several control cities (i.e. #Ii > 1) as

well as for each control city separately (i.e. #Ii = 1). In the case of #Ii > 1, we

consider two control cities (i.e. #Ii = 2) as well as all control cities (i.e. #Ii = 3) and

weight all matches equally. Standard errors are calculated using the formula provided
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by Abadie and Imbens (2008) for nearest neighbor matching estimators.

As a robustness test, we also report results using the standard DID estimator:

logVbmt = θ + βDtreatment + γDpost + αDID (Dtreatment ∗Dpost) + εbmt (2.2)

where b, m and t denote brand, city and time (quarter), respectively; V denotes the

outcome variable (volume sales or price); Dtreatment is a dummy variable equal to 1

if the observation is in the treatment city and 0 otherwise, and Dpost is a dummy

variable equal to 1 in the post-tax period. Note that the logarithm of the outcome

variable allows interpreting αDID as the percentage change in the outcome variable

due to the tax.

2.3 Description of the data

2.3.1 Tax Events

In July of 1991, a sales tax of 5.5% on snacks and soda was instituted by the

state of Maine. This information was initially obtained from Jacobson and Brownell

(2000) and later confirmed (by phone) with staff in the Law and Legislative Reference

Library, an office of the Maine Legislature. In our data set, this date corresponds

to the beginning of the third quarter in 1991. For the second exercise, we selected

a 5% sales tax on soft drinks sold in grocery stores and through vending machines,

levied in Ohio effective January 1, 2003. In our data set, this date corresponds to

the beginning of the first quarter in 2003.2 We selected this event over the others (in

the 2001-2006 IRI data set) because the availability of data for at least one city in

the state where the tax was applied as well as availability of data for cities that may

represent appropriate controls.

2http://www.bridgingthegapresearch.org
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2.3.2 Data

We employ two sets of scanner data from IRI Infoscan, each for one of the two

events we consider. Characteristics of the two databases are different, thus we will

label the data sets as A and B, respectively. We next proceed with a brief description

of the two.

Data set A was collected from IRI sample of supermarkets across the U.S. in the

period 1988-1992. This sample comes from a universe of stores that account for 82%

of all the grocery sales in the U.S.; from this universe, IRI samples supermarkets with

annual sales of more than 2 million dollars. The data set includes dozens of brands

for up to 65 metropolitan areas spanning 20 quarters. The number of metropolitan

areas is not the same over the sample period, but it grows over time. The database

also contains information on the demographics for each metropolitan area, which

is identified with the name of the main city in the area. A potential limitation of

data set A is the exclusion of convenience stores, bars, restaurants and other retail

outlets for soft drinks. This lack of information may be of secondary concern as

there is evidence suggesting that approximately 70% of soft drinks was sold through

supermarkets around the time of our study (Higgins et al., 1995).

Data set B contains store sales data on carbonated beverage volume sales and

prices during the 2001-2006 period. Data consists of weekly observations and includes

47 IRI metropolitan areas (for both data sets, we refer to a metropolitan area as a

“city” henceforth).3 Data are available at the store level for each chain. IRI only

includes chains and not independent stores, and the observations are drawn from IRI

national sample of stores. For each store in each week, over 250 different Universal

Product Codes (UPC) for carbonated beverage products are observed. Thus, each

brand (e.g. Coke) has multiple UPCs associated to it, each representing the particular

3IRI metropolitan area definitions are similar to those used by the Bureau of Labor Statistics.
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Table 2.1. Brands, Parent Companies and Presence in City-Quarter pairs
– Data set A

Brand Company # of City-Quarter

pairs where present

Canada Dry Cadbury/Schweppes 24

Canada Dry Light Cadbury/Schweppes 24

Crush Cadbury/Schweppes 24

Schweppes Cadbury/Schweppes 24

Schweppes Light Cadbury/Schweppes 24

Coke Coca-Cola 24

Coke Classic Coca-Cola 24

Diet Coke Coca-Cola 24

Diet Sprite Coca-Cola 24

Sprite Coca-Cola 24

7 Up Hicks & Haas 24

A & W Hicks & Haas 24

A & W Light Hicks & Haas 24

Diet 7 Up Hicks & Haas 24

Diet Dr Pepper Hicks & Haas 24

Dr Pepper Hicks & Haas 24

Diet Pepsi Pepsi Co 24

Diet Pepsi Free Pepsi Co 24

Diet Slice Pepsi Co 24

Mountain Dew Pepsi Co 24

Pepsi Pepsi Co 24

Pepsi Free Pepsi Co 24

Slice Pepsi Co 24

Diet Rite Royal Crown 24

Total #obs 576
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Table 2.2. Brands, Parent Companies and Presence in City-Quarter pairs
– Data set B

Brand Company # of City-Quarter

pairs where present

7 Up Cadbury/Schweppes 24

A & W Cadbury/Schweppes 24

Canada Dry Cadbury/Schweppes 24

Diet 7 Up Cadbury/Schweppes 24

Diet Dr Pepper Cadbury/Schweppes 24

Dr Pepper Cadbury/Schweppes 24

Diet Rite Cadbury/Schweppes 24

RC Cadbury/Schweppes 24

Schweppes Cadbury/Schweppes 24

Squirt Cadbury/Schweppes 24

Sunkist Cadbury/Schweppes 24

Caffeine Free Coke Classic Coca-Cola 24

Caffeine Free Diet Coke Coca-Cola 24

Cherry Coke Coca-Cola 24

Coke Classic Coca-Cola 24

Diet Coke Coca-Cola 24

Diet Sprite Coca-Cola 24

Sprite Coca-Cola 24

Vanilla Coke Coca-Cola 24

Caffeine Free Diet Pepsi Pepsi Co 24

Caffeine Free Pepsi Pepsi Co 24

Diet Montain Dew Pepsi Co 24

Diet Pepsi Pepsi Co 24

Mountain Dew Pepsi Co 24

Mountain Dew Code Red Pepsi Co 24

Mug Pepsi Co 24

Pepsi Pepsi Co 24

Pepsi One Pepsi Co 24

Sierra Mist Pepsi Co 24

Wild Cherry Pepsi Pepsi Co 24

Total #obs 720
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Table 2.3. Summary statistics of demographic and temperature, data set A

Portland Albany Boston Hartford

ME NY MA CT

Population* 95,883 101,082 574,283 250,304

Median income ($)* 29,615 31,813 37,624 37,308

Annual Mean Min Temp** 39 40 45 42

Annual Mean Max Temp** 56 60 60 61

Mean Price per brand† 4.4 4.1 3.8 3.9

Mean Volume sold‡ 95,883 71,346 408,081 250,304

Obesity prevalence††(%) 12 12 10 12

*As of the 1990 Census; **1990-1992 (oF), (http://www.nesdis.noaa.gov/); †volume
unit=$/288 oz; ‡288 oz; ††1991 (http://www.cdc.gov/obesity/data/)

presentation of the brand (e.g. packaging –6 pack vs. single bottles) and presentation

(e.g. can vs. bottle; see Bronnenberg et al., 2008).

As stated earlier, for each event we included 4 cities in the analyses. In both cases,

the three control cities were chosen on the basis of geographical proximity to the

city where the tax increase was observed. Also, the chosen cities showed no other

event concerning sales taxes during the period of study. We focus our analyses on

6 quarters: 3 quarters immediately before the tax increase and the three quarters

following the quarter when the tax increase became effective.4

We excluded earlier and later quarters as the common trend assumption needed

for the validity of a DID approach is less likely to hold. We excluded the third quarter

of 1991 and the first quarter of 2003 (the quarters in which each of the two taxes took

place), respectively, for reasons that will be explained later. We selected brands that

are present in all quarters and in all cities in our study; this procedure allowed us

to have a balanced panel (necessary for our matching procedure). In Table 2.1 and

2.2 we report the selected brands with the corresponding parent companies, as well

4Specifically, fourth quarter of 1990, the first, second and fourth quarters of 1991, and first and
second quarters of 1992. For the event in Ohio, we employ: the second through fourth quarters of
2002, second through fourth quarters of 2003.
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Table 2.4. Summary statistics of demographic and temperature, data set B

Cleveland Detroit Chicago Philadelphia

OH MI IL PA

Population* 478,403 951,270 2,893,666 1,517,550

Median income ($)* 25,928 25,787 38,625 36,669

Annual Mean Min Temp** 42 41 44 47

Annual Mean Max Temp** 57 57 59 62

Mean Price per brand† 3.1 3.4 2.8 3.1

Mean Volume sold‡ 104,420 232,984 328,919 106,466

Obesity prevalence††(%) 22 23 21 22

*As of the 2000 Census; **2002-2004 (oF), (http://www.nesdis.noaa.gov/); †$/192 oz;
‡192 oz.; ††2003 (http://www.cdc.gov/obesity/data/)

Figure 2.1. Income distribution for Cleveland as treatment city; Chicago, Detroit
and Philadelphia as control cities - As of 1990 U.S. Census -
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Figure 2.2. Income distribution for Portland as treatment city; Albany, Hartford
and Boston as control cities As of 2000 U.S. Census -

23



as the number of observations. The 24 brands in Table 1.1 account for the 80% of

the total volume sales in the selected city-quarter pairs. The 30 brands in Table 1.2

account for the 83% of the respective total volume sales in the selected city-quarter

pairs.

A comparison between Table 2.1 and Table 2.2 reveals that some brands have

changed company ownership over time. For instance, 7 UP which was initially ac-

quired by Philip Morris in 1978, was sold to Hicks & Haas in 1986; it was then merged

with Dr Pepper in 1988, and bought by Cadbury Schweppes in 1995.5

Database A contains the total volume and the mean price (before taxes) per unit

of volume (288 oz) for every brand, in each city-quarter pair. In data set A, IRI

aggregates information by adding the volume sold across all package sizes of a brand

into one observation. To generate data set B in a similar format as a data set A (and

thus make our analysis comparable across time), we aggregated IRI weekly UPC-

level data following the same procedure IRI used to generate the aggregate data set

A. Specifically, the average price per unit of volume was obtained by aggregating all

revenue generated by a brand (regardless of its UPC) and dividing the resulting ag-

gregate revenue by the aggregate volume sold for that brand.6 Descriptive statistics

for the brands and cities chosen for our study are provided in Table 2.3 and 2.4. These

data include information contained in the IRI data set, as well as data collected from

specialized sources (i.e. demographics, temperatures). Based on the similarity of de-

mographics, these data suggest that Albany appears to be the most reliable control

in the first data set as it is the most similar to Portland in terms of size (population),

income and temperature. For the same reasons, Detroit is considered to be the most

reliable control in the second data set. Figures 2.1 and 2.2 display a comparison of

5Cadbury Schweppes Americas Beverages became Dr Pepper Snapple Group Inc. on May 5,
2008. http://www.sec.gov/

6This procedure effectively yields a weighted average price across package sizes.
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the income distribution among treatment cities and the control cities. These figures

confirm that Albany and Detroit are, respectively, the most ideal control cities.

2.4 Results

2.4.1 Descriptive Evidence

A crucial requirement for the reliability of difference-in-difference estimators is

that the control units should share a common trend with the treatment units. Since

this condition is largely difficult to ensure in non-lab environments, it is important

to check how plausible this assumption is. We do this by graphically comparing

the evolution of the outcome variable of main interest (volume sales) in both the

treatment city as well as in the control cities.

Figures 2.3 and 2.4 depict, for each city, the quarterly series of total volume sales.

These volume sales are computed using the selected brands reported in Tables 1.1 and

1.2 (similar graphs are obtained if all brands are included). The time period spans

from the fourth quarter of 1990 to the second quarter of 1992, and from the second

quarter of 2002 to the fourth quarter of 2003, respectively. To facilitate comparability,

total volume sales are normalized by using volume sales in the fourth quarter of 1990

(data set A) and volume sales in the fourth quarter of 2002 (data set B) as the base

period.

We observe an unusually large peak in total volume sales for Portland in the third

quarter in 1991. This peak only occurs in Portland and we are unsure about its cause.

This peak may be a reason to doubt the appropriateness of the control cities as one

would expect control cities to mimic volume changes in the treatment city. However,

one would be particularly worried about this if such disparity between control and

treatment cities is also observed in other quarters (especially those preceding the tax

increase). The graph obtained by excluding that specific quarter (Figure 2.5) suggests

that the Portland volume sales peak appears to be an isolated event that occurred in
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Figure 2.3. CSD total volume sales* (y-axis) per city (different lines) and quarter
(x-axis), IRI Infoscan Data, Oct 1990 – June 1992

*Total volume sales have been normalized using the 2nd quarter of 1991 as base period.

the summer of 19917 since volume trends seem to be reasonably similar across cities

once this quarter is removed from the graph. Due to this seemingly isolated disparity

in trends, we exclude the third quarter in 1991 from our analysis. We note that, in

any case, this choice will allow us to err on the conservative side when estimating the

effect of the tax on consumption (i.e. including the spike in volume sales registered

in the third quarter of 1991 in the regressions below leads to a positive effect of con-

7After checking that no transcription errors or other data mistakes were reported in our data set,
we checked whether this event was due to an unusually warm summer in Portland with respect to
other cities. Data from NOAA’s Satellite and Information Service (http://www.nesdis.noaa.gov/)
suggests that this was not the case: the July-September average temperatures in 1990, 1991 and
1992 for our study were, respectively: 62.6◦F, 61.6◦F, 60.2◦F (ME); 66.8◦F, 66.5◦F, 64.5◦F (MA);
64.7◦F, 65.1◦F, 62.8◦F (NY); 68.2◦F, 68.1◦F, 65.7◦F (CT).
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Figure 2.4. CSD total volume sales* (y-axis) per city (different lines) and quarter
(x-axis), IRI Infoscan Data, Apr 2002 – Dec 2003

*Total volume sales have been normalized using the 4th quarter of 2002 as base period.
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Figure 2.5. CSD total volume sales* (y-axis) per city (different lines) and quarter
(x-axis), IRI Infoscan Data, Oct 1990 – June 1992, 3rd quarter 1991 excluded

*Total volume sales have been normalized using the 2nd quarter of 1991 as base period.
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Figure 2.6. CSD total volume sales* (y-axis) per city (different lines) and quarter
(x-axis), IRI Infoscan Data, Apr 2002 – Dec 2003, 1st quarter 2003 excluded

*Total volume sales have been normalized using the 4th quarter of 2002 as base period.
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sumption by the tax increase, an unlikely scenario). In order to maintain consistency

in the analysis of the two data sets, we also removed from the analysis in the second

event the quarter when the tax was enacted (Figure 2.6).

Figure 2.5 shows reasonably similar volume trends between the treatment city and

the control cities in the period prior to the imposition of the soft drinks tax, adding

confidence to our empirical approach. Moreover, and consistent with the demographic

information, Albany’s volume trend seems to more closely resemble that of Portland.

Any significant changes in trends (between Portland and its controls) in the period

after the tax increase can be used to infer what the effect of the tax on consump-

tion might have been. Following the imposition of the tax, all cities show a negative

trend in volume sales; further, it appears as if Portland’s downward trend (especially

when compared with the most reliable control, Albany) might be somewhat more pro-

nounced. While this “graphical” evidence suggests that the tax might have curbed

soft drinks consumption in Maine, our overall initial assessment is that such effect

might not be substantial.

Similar comments can be made when interpreting the graph in Figure 2.4. Clearly,

the control city that better represents volume sales trend in Cleveland (treatment

city), before the tax was applied, is Detroit. However, the other cities also show a

similar trend, although a larger volume level can be observed in Philadelphia and

Chicago with respect to Cleveland and Detroit. From the volume sales trend shown

in the graph, Philadelphia appears to be the least appropriate control city for Cleve-

land. Notwithstanding, given the limited number of control cities, we decided to keep

Philadelphia in the analysis and proceed with caution when considering results when

using Philadelphia as a control city. As opposed to the first event, in this second

event, the effect of the tax cannot be visualized based on graphical inspection.
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2.4.2 Regression Results

Tables 2.5 and 2.6 show the DIDM results for volume sales as well as for price.

As opposed to the “total volume sales” variable in Figure 2.3 through 2.6 (which is

the sum of volume sales over all brands in a city-quarter pair), “volume sales” in

this analysis is measured at the brand level. We define the before period as the three

quarters preceding the tax change (i.e. fourth quarter of 1990 through second quarter

of 1991 for data set A; second quarter of 2002 through fourth quarter of 2002 for data

set B) and the after period as the three quarters after the change due to the tax (i.e.

fourth quarter of 1991 through second quarter of 1992 for data set A; second quarter of

2003 through fourth quarter of 2003 for data set B). Because the matching estimator

requires one observation in each the post- and pre-treatment periods, we aggregate

quarters by taking the mean of the variable (volume or price) over the quarters

considered (for both the before or the after period) and perform the test on the

difference of the logs of these mean values (see equation 1.1). Results are not sensitive

to this method of aggregation. Specifically, our conclusions remain unchanged if we

report results on quarter by quarter comparisons, which we will discuss later. For

robustness purposes, we compute the DIDM estimator for all possible sets of control

cities. That is, we consider the case in which we use all 3 control cities in the estimator,

as well as cases when we include a pair of cities, or just one city.

The parameter estimates can be (roughly) interpreted as the percentage variation

of the variable of interest (in the treatment city) with respect to the control city

(using the three quarters after the tax was enacted as the after period and the three

quarters before the tax enactment as the before period).8 We observe from the results

in Table 2.5 that there is no statistically significant change in either price or volume

8Strictly speaking, because we are using the difference of the variable in natural log format, the
percentage change in the variable is given by eα̂DIDM − 1, where α̂DIDM is the DIDM estimate
reported in Table 2.5 and 2.6. For small enough α̂DIDM (as is the case here), α̂DIDM is a good
approximation of eα̂DIDM − 1.
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Table 2.5. DIDM Results for Volume and Price, Portland as treatment city and
Albany, Hartford and Boston as control cities

Date IV’90-II’91 vs. IV’91-II’92

Volume change (s.e.) Price change (s.e.)

Control city (#obs)

All control cities (96) -0.02 (0.04) 0.00 (0.01)

Albany-Boston (72) -0.04 (0.04) 0.00 (0.01)

Albany-Hartford (72) 0.00 (0.05) 0.00 (0.01)

Hartford-Boston (72) -0.02 (0.04) 0.01 (0.01)

Albany (48) -0.02 (0.05) -0.01 (0.01)

Boston (48) -0.06 (0.04) 0.02 (0.01)

Hartford (48) 0.01 (0.06) 0.00 (0.02)

Notes: Pre-tax period is fourth quarter of 1990 through second quarter of 1991; post-tax
period is fourth quarter of 1991 through second quarter of 1992. The specification uses the
mean volume (and mean price) over the pre-tax and the post-tax periods, respectively.

Table 2.6. DIDM Results for Volume and Price, Cleveland as treatment city and
Chicago, Detroit and Philadelphia as control cities

Date II’02-IV’02 vs. II’03-IV’03

Volume change (s.e.) Price change (s.e.)

Control city (#obs)

All control cities (120) -0.02 (0.04) 0.08*** (0.02)

Chicago-Detroit (90) -0.04 (0.04) 0.10*** (0.02)

Chicago-Philadelphia (90) 0.00 (0.05) 0.08*** (0.02)

Detroit- Philadelphia (90) -0.02 (0.04) 0.05*** (0.02)

Chicago (60) -0.02 (0.05) 0.13*** (0.02)

Detroit (60) -0.06 (0.04) 0.07*** (0.02)

Philadelphia (60) 0.01 (0.06) 0.04** (0.02)

Notes: Level of significance: ***=1%; **=5%. Pre-tax period is second quarter of 2002
through fourth quarter of 2002; post-tax period is second quarter of 2003 through fourth
quarter of 2003. The specification uses the mean volume (and mean price) over the pre-tax
and the post-tax periods, respectively.
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Table 2.7. DIDM results for Volume and Price change, Portland as treatment city
and Albany-Hartford-Boston as control [quarter by quarter comparisons instead of
aggregate comparisons]

Volume change (s.e.) Price change (s.e.)

Date Control cities (# obs.)

Albany (48) Hartford - Albany (48) Hartford -

Boston - Boston -

Albany (96) Albany (96)

IV’90 v. IV’91 -0.01 (0.17) 0.07 (0.09) -0.03 (0.02) 0.01 (0.01)

IV’90 v. I ’92 0.02 (0.16) -0.01 (0.09) -0.07** (0.02) 0.02 (0.02)

IV’90 v. II ’92 -0.08 (0.17) -0.08 (0.09) 0.00 (0.03) -0.01 (0.02)

I’91 v. IV’9 -0.09 (0.14) 0.02 (0.07) -0.03 (0.02) 0.00 (0.01)

I’91 v. I’92 -0.07 (0.13) -0.10 (0.08) -0.07** (0.03) 0.01 (0.02)

I’91 v. II’92 -0.06 (0.12) -0.13 (0.08) 0.00 (0.03) 0.00 (0.02)

II’91 v. IV’91 0.02 (0.05) 0.02 (0.04) -0.03 (0.02) 0.01 (0.01)

II’91 v. I’92 0.05 (0.11) -0.07 (0.09) 0.00 (0.03) 0.02 (0.03)

II’91 v. II’92 -0.04 (0.10) -0.04 (0.07) 0.06* (0.03) 0.02 (0.02)

Notes: Significance level: **=5%. Standard errors are calculated using the formula provided
by Abadie and Imbens (2008) for nearest neighbor matching estimator

Table 2.8. DIDM results for Volume and Price change, Cleveland as treatment city
and Chicago-Detroit-Philadelphia as control [quarter by quarter comparisons instead
of aggregate comparisons]

Volume change (s.e.) Price change (s.e.)

Date Control cities (# obs.)

Detroit (60) Chicago - Detroit (60) Chicago -

Detroit - Detroit -

Philadelphia Philadelphia

(120) (120)

II’02 v. II’03 0.09 (0.06) 0.12* (0.06) 0.00 (0.04) 0.00 (0.03)

II’02 v. III’03 0.04 (0.07) 0.07 (0.07) 0.19*** (0.03) 0.18*** (0.03)

II’02 v. IV’03 0.03 (0.08) 0.01 (0.07) 0.14*** (0.03) 0.21*** (0.03)

III’02 v. II’03 0.01 (0.06) 0.07 (0.06) 0.05 (0.03) 0.04 (0.03)

III’02 v. III’03 -0.03 (0.07) 0.02 (0.06) 0.11*** (0.02) 0.10*** (0.02)

III’02 v. IV’03 0.00 (0.08) -0.04 (0.07) 0.06** (0.03) 0.13*** (0.03)

IV’02 v. II’03 0.05 (0.05) 0.08* (0.05) 0.00 (0.03) -0.03 (0.02)

IV’02 v. III’03 0.00 (0.06) 0.04 (0.06) 0.04 (0.03) 0.02 (0.03)

IV’02 v. IV’03 0.03 (0.05) -0.02 (0.04) 0.00 (0.03) 0.05** (0.02)

Notes: Significance level: ***=1%, **=5%, *=10%. Standard errors are calculated using
the formula provided by Abadie and Imbens (2008) for nearest neighbor matching estimator
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for the first event. The price estimates imply that firms in Portland did not react in

any systematic way as a consequence of the imposition of the tax and that the tax

was fully passed through to consumers.

While the lack of a significant effect on volume sales is confirmed in the second ex-

periment (Table 2.6), we notice significant increases in the average price for Cleveland

with respect to the control cities. In order to analyze in closer detail the observed

price increases, we ran DIDM regressions quarter by quarter (for completeness, we do

this for both events). For brevity, we report the results of the regressions where we

consider all control cities and the most reliable control city in the group. As shown

in Table 2.7, except for a 7% decrease with respect to Albany between the second

quarter of 1991 and the same quarter of 1992, no other significant changes can be

highlighted for Portland before and after the tax was applied (recall that the tax was

enacted during the third quarter of 1991).

Table 2.9. DID Results for Volume and Price, Portland as treatment city and
Albany, Hartford and Boston as control cities

Date IV’90-II’91 vs. IV’91-II’92

Volume change (s.e.) Price change (s.e.)

Control city (#obs)

All control cities (576) -0.04 (0.03) 0.00 (0.01)

Albany-Boston (432) -0.07 (0.05) 0.00 (0.01)

Albany-Hartford (432) -0.02 (0.04) -0.01 (0.01)

Hartford-Boston (432) -0.03 (0.04) 0.01 (0.01)

Albany (288) -0.07 (0.09) -0.01 (0.01)

Boston (288) -0.07 (0.04) 0.01 (0.01)

Hartford (288) 0.02 (0.06) 0.00 (0.02)

Notes: Pre-tax period is fourth quarter of 1990 through second quarter of 1991; post-
tax period is fourth quarter of 1991 through second quarter of 1992. Standard errors (in
parenthesis) are clustered at the brand level.

On the other hand, results shown in Table 1.8 highlight that in the quarter follow-

ing the tax increase (the 2nd quarter of 2003), tax-exclusive prices did not experience
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Table 2.10. DID Results for Volume and Price, Cleveland as treatment city and
Chicago, Detroit and Philadelphia as control cities

Date II’02-IV’02 vs. II’03-IV’03

Volume change (s.e.) Price change (s.e.)

Control city (#obs)

All control cities (720) 0.01 (0.04) 0.08*** (0.01)

Chicago-Detroit (540) -0.02 (0.04) 0.10*** (0.01)

Chicago-Philadelphia (540) 0.02 (0.04) 0.08*** (0.01)

Detroit- Philadelphia (540) 0.04 (0.05) 0.05*** (0.01)

Chicago (360) -0.04 (0.03) 0.12*** (0.01)

Detroit (360) 0.00 (0.06) 0.07*** (0.01)

Philadelphia (360) 0.09 (0.07) 0.04*** (0.02)

Notes: Significance level: ***=1%; **=5%. Notes: Pre-tax period is second quarter of 2002
through fourth quarter of 2002; post-tax period is second quarter of 2003 through fourth
quarter of 2003. Standard errors (in parenthesis) are clustered at the brand level.

a significant change (recall that the tax was applied at the beginning on the first

quarter in 2003). However, this is not true for the following quarters. In fact, the

later the after tax periods, the higher are the price changes registered in Cleveland.

In other words, the quarter by quarter comparisons suggest that the price increase

that we observe in Cleveland is likely to be linked to Cleveland-specific events occur-

ring after the tax imposition. Surprisingly, nevertheless, the registered price increases

appear not to have affected soda consumption.9

Tables 2.9 and 2.10 present the results for the standard DID regressions, which

we use as a robustness test for our DIDM estimates. The DID estimator is applied

on the log of volume and price, respectively; the reported coefficient corresponds to

α̂DID in equation 1.2. Standard errors (in parenthesis) are clustered at the brand

level. Clustering at the company level does not alter our results. In all cases, signifi-

9Of course, price movements can be caused by both supply and demand shifts. Hence, a higher
price (and no volume change) may reflect, for instance, a upward movement in both supply and
demand
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cance levels are the same as those obtained in our DIDM regressions. We choose to

report brand-level clustering because clustered errors are valid only for a sufficiently

large number of clusters, ideally more than 20-25 (Cameron et al., 2008). As in the

DIDM analysis, we consider two independent variables: the natural logarithm of vol-

ume sales and the natural logarithm of price. We make the same comparisons among

cities as in the DIDM analysis. The DID regressions confirm DIDM results.

Figure 2.7. Change in Volume sales by Brand and City (log (Mean Volume sales
IV’91-II’92/Mean Volume sales IV’90-II’91))

To further understand whether there are particular patterns in price and volume

changes at the brand level, we visually inspect price and volume changes for each

brand in our data set. Figures 2.7, 2.8, 2.9 and 2.10 show, respectively, the change

in price and the change in volume for each brand-city pair (Figures 2.7 and 2.9

correspond to data set A and Figures 2.8 and 2.10 correspond to data set B). In the

figures, brands appear on the horizontal axis, while cities are depicted by markers.

These figures not only highlight the importance of using a control in measuring the
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Figure 2.8. Change in Volume sales by Brand and City (log (Mean Volume sales
II’02-IV’02/Mean Volume sales II’03-IV’03))

Figure 2.9. Change in Price by Brand and City (log (Mean Price IV’91-II’92/Mean
Price IV’90-II’91))
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Figure 2.10. Change in Price by Brand and City (log (Mean Price II’02-IV’02/Mean
Price II’03-IV’03))

desired effect, but they are also consistent with the econometric results. For the

Portland event, there is no clear pattern suggesting a sizable effect of the tax increase

in either volume or prices at the brand-level. In the Cleveland event, we notice from

Figure 2.10 a clear increase in price for virtually all brands in our sample, which is

reflected in the econometric results.

2.5 Conclusion

In this chapter we show the results of DIDM and standard DID estimations, with

the aim of uncovering the effect that the imposition of a soft drinks sales tax might

have had on brand-level consumption and prices. Results suggest that the 5.5% sales

tax that Maine applied to soft drinks in July of 1991 did not cause a generalized

impact on volume sales at either the aggregate or the disaggregate (brand) level.

Subsequently, using a more recent data set (2001-2006), we identified a similar tax

38



event, which occurred in 2003, and we implemented a similar analysis. This allowed

us to verify whether the effect of this type of tax has changed over time. This is

particularly important given consumers’ greater awareness about the relationship be-

tween obesity and soda consumption. As in 1991, we found that the 2003 application

of a sales tax on soft drinks in Ohio did not affect the consumption in a significant

way. In fact, we find that after the tax is applied, there is an overall increase in

the tax-exclusive price in the treatment city that does not translate in a decrease in

consumption either. Our results are robust to several alternative specifications.

While our main finding is consistent with the generalized conclusion in the litera-

ture that demand for soft drinks is inelastic, it casts some doubt about whether one

should use price elasticities to form counterfactuals for how consumers might react

to tax increases. Specifically, we find that such counterfactuals might be optimistic

as they predict an actual reduction in consumption. The fact that the tax is not

displayed on the shelf (where many consumers might base their purchasing decisions)

may help explain why a tax does not cause a reduction in consumption in our data.

One caveat of our study regarding Maine is that the tax was also applied to other

high-calorie foods (snacks and pastries), so there is not much room for a possible sub-

stitution effect away from soda and towards other sources of sugar. This could partly

explain the insignificant impact on soft drinks consumption in our quasi-experiment.

However, this concern is not present in the second part of the study, given that the

Ohio tax was soda specific.10 Still, our results raise interesting questions about the

role of substitute categories when a commodity is taxed. For example, if the impact

on soft drink consumption in our study had been statistically significant and the tax

had been applied only on soft drinks, a reduction in consumption could have reflected

a switch towards higher consumption of other sugary products (and not necessarily

10Candies, pudding/gelatin, sugar and sugar substitutes or snacks were considered food by Ohio
Legislation and therefore sales tax exempted. http://tax.ohio.gov/
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the reduction in sugar intake intended by policy makers).

While we only look at two isolated instances of a tax increase, our results may

have broader implications as the tax applied in Maine and Ohio are very close to

the mean sales tax applied to soft drinks (currently enforced in 33 states), which is

5.2% (Brownell et al., 2009).Also, because our data for price excludes the tax, we

can directly test whether firms reacted in their pricing decisions. Our results suggest

that the price increase due to the tax was , by and large, entirely passed through to

the consumer. This finding may be informative for future researchers in suggesting a

likely pass-through rate for a tax increase when one needs to be assumed for coun-

terfactual purposes.

Our results show the taxes in Maine and Ohio did not significantly decrease con-

sumption. Therefore, these taxes have the effects of raising tax revenues for the

states. While this added tax revenue should, in principle, be reinvested in programs

and campaigns to promote a healthier consumption of food, in most of the cases the

revenue from the “snack-taxes” has become part of the general treasury, as occurred

in Maine (Jacobson and Brownell, 2000). Because the objective of the policy is to

curb consumption for consumers who are less likely to give up consumption of soda,

discussion of any proposal of special “soda taxes” should take into account that even

substantial price increases from soda companies have minimal effects on volume sales.

In sum, our study indicates that if the objective of the studied taxes was to influence

behavior through a higher tax-inclusive price for unhealthy foods (by inducing con-

sumers to consume fewer high calorie drinks) the result of the tax imposition will be

disappointing for policy makers. On the other hand, if the objective of the studied

taxes was to raise states’ revenues and use the additional resources to engage in other

strategies to address the obesity problem, then soda taxes might have been quite

successful.

Finally, we note one methodological point. While our matching mechanism is sim-
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ple and intuitive, we are not aware of other studies that have applied this approach.

We think that this could be a particularly useful technique in work that investigates

the effect of a policy (or other environment changes) that is homogenously applied to

a differentiated commodity.
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CHAPTER 3

SODA SALES TAXES: WHO PAYS MORE? A STUDY ON
CONSUMPTION BY DEMOGRAPHICS

3.1 Introduction

Sales taxes have been demonstrated to be regressive (Wang, 2012; Lin et al., 2010;

Chouinard et al., 2007). In particular, it has been found that soda taxes generate

a welfare loss not homogeneously distributed across households of different income

levels, with poorer consumers being more affected by such taxes. In fact, poor house-

holds appear to be heavier consumers of regular soda; further these households may

have a lower price elasticity for regular than for diet soda. As a consequence, poor

households pay, in proportion to their income level, more in tax than rich households

(Wang, 2012). The nature of the data in our previous study did not allow us to

separate the effects among different types of consumers; specifically, we found that

the “average” effect on consumption of a 5% soft drink sales tax is not significantly

different from zero. Yet, there is the possibility that heterogeneous effects of taxation

exist, namely, that there are households that reduce their consumption when a tax is

applied while others do not.

In this chapter, we examine whether the impact of the tax is different for different

population groups. For this purpose, we use one of the IRI scanner panel data sets

(2001-2006). The original data set is disaggregated at the supermarket-level, with

each supermarket belonging to a different (identifiable) city area (neighborhood), de-

fined by a census tract. The location of each supermarket allows us to match sales

data to demographic census tract data from 2000.
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The method we apply is described in the next section (3.2). Section 3.3 describes

the data while section 3.3 reports the results of the study. Concluding remarks are

presented in section 3.4.

3.2 Method

As in the second event studied in Chapter 2, sales data collected by scanner de-

vices in Cleveland (Ohio), Detroit (Michigan), Chicago (Illinois) and Philadelphia

(Pennsylvania) are used. In this chapter we focus our attention on whether the 5%

soda sales tax had a differential effect on different population groups. Recall that the

sales tax was levied in Ohio in January 2003, and that it applied exclusively to soft

drinks. The available data limit our comparison to consumption across cities (rather

than across entire states). The data, provided by Information Resources Inc. (IRI),

come from a sample of supermarkets in the largest metropolitan areas in the U.S.

The data set includes brand-level sales information for the periods 2001-2006. More

details on characteristics of the data set are provided in section 2.3.

We performed a cluster analysis in order to group supermarkets according to some

demographics of the area where they are located. This grouping allows us to apply

the DIDM analysis to each population sub-groups separately. Cluster analysis is a

statistical method of multidimensional analysis that allows a complex phenomenon to

be described by constructing categories or types of elements from a plurality of pri-

mary measures. In other words, it classifies observations into groups (clusters) such

that elements/observations within a group are relatively homogeneous among them-

selves but heterogeneous with respect to elements/observations in another groups, on

the basis of a defined set of variables. In this study, the diversity measure (that is,

the measure of heterogeneity between elements) used for the classification of observa-

tions, is the Euclidean distance. The clustering procedure is agglomerative, that is, it

starts from n clusters and decreases progressively towards one cluster. The agglomer-
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ation criterion used here is known as the Ward’s method, which computes the sum of

squared distances within clusters and aggregates clusters with the minimum increase

in the overall sum of squares. Parsing the classification tree (the graphical summary of

the cluster solution) to determine the number of clusters, is a subjective process. The

classification tree is called dendrogram. The method suggests that efficient cuts of the

dendrogram correspond to sudden jumps between distance values. In our case this

process identified three clusters. The separation of supermarkets into three clusters

highlights some substantial differences among the three groups according to selected

demographics and, at the same time, provides an interpretable representation.

Specifically, the variables we chose to base the clustering criteria are: level of ed-

ucation (% of population whose level of education is inferior to the 9th grade; % of

population who have attained a BS Degree); racial composition of the neighborhood

(% of Black, % Hispanic and % White population); income variables (% of population

below the poverty line; % of the population whose income is above $200 thousand);

% of unemployed population.

The resulting clustering procedure suggests that supermarkets in cluster 2 and clus-

ter 3 are very different from each other in terms of education, income level and rate

of unemployment. Specifically, cluster 2 represents wealthier neighborhoods while

cluster 3 represents poorer/less educated areas. Conversely, cluster 1 includes areas

whose demographics lie in a “middle zone”; that is, neither in cluster 2 nor in cluster

3.

We separately applied a difference-in-difference matching estimator (DIDM) on

supermarket sales data in each of the three clusters (see Chapter 2 for a description

of the method). For this experiment we used weekly data on sales and prices (for

each supermarket) and considered an 8-week period of time before and after the tax

application (total of 16 weeks).
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3.3 Description of the data

The data set we employed contains store sales data on carbonated beverage sales

and pricing spanning 5 years (2001-2006) of weekly data and 47 IRIs metropolitan

areas (we refer to a metropolitan area as a “city” henceforth).1 Data are available at

the store level for each chain. More details on this data set are provided in Chapter 2

(specifically, in the description of data set B). In this study, we consider the 30 brands

(commercial names of the product) characterized by larger market share (Table 2.2).

As in Chapter 2, we used 4 cities for the analyses: Cleveland (OH), Chicago (IL),

Detroit (MI), Philadelphia (PA). We focus our analyses on 16 weeks: last 8 weeks of

2002 and the first 8 weeks of 2003. This decision is determined mainly by the fact

that not all the supermarkets have been consistently registered weekly in each city;

therefore the set of supermarkets appearing each week varies over time. To preserve

consistency in this analysis, we analyze the same set of supermarkets over time; this

choice greatly reduced the number of weeks we could consider (hence our choice of

16). Prolonging the number of weeks would have significantly reduced the number of

supermarkets for the analysis. We selected brands that were present in all quarters

and in all cities in our study; this procedure allows us to have a balanced panel

(necessary for our matching procedure). In Table 2.2 we report the selected brands

with the corresponding parent companies, as well as the number of observations.

The 30 brands in Table 2.2 account for the 83% of the overall total volume sales in

the selected supermarkets over all city-quarter pairs. The availability of supermarkets

location data allows us to identify the census tract to which each supermarket belongs.

We then pull demographic information for the identified census tracts and match it

to the selected supermarkets.

The availability of the census tract per each supermarket allowed us to exploit the

1IRIs metropolitan area definitions are similar to those used by the Bureau of Labor Statistics.
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richness of data from the 2000 Census, thereby making our cluster analysis feasible.2

In Table 3.1 we report summary statistics of the selected demographic variables for

each of the three groups that resulted from the cluster analysis. The choice of these

demographic variables was based on socioeconomic factors that, at the aggregate

level, are thought to have a stronger correlation with obesity (Sobal and Stunkard,

1989; Rosmond and Bjrntorp, 1999; Sodjinou et al., 2008; Wang, 2012). For instance,

unemployment is a social condition that may lead to increased inactivity and, as a

consequence, to body weight gain. Given that this classification is done at the census

tract level, rather than the individual level, some potentially important characteristics

could not be considered (i.e. gender), for lack of enough variability across the census

tracts.

3.4 Results

The cluster analysis yielded three groups of supermarkets. Every supermarket is

located in a different census tract. This analysis allowed us to group (both treat-

ment and control supermarkets) with respect to their similarity given by selected

demographic variables. Results are shown in Table 3.1.

The most evident differences are between Cluster 2 and Cluster 3. We notice that

Cluster 2 is composed of areas characterized by a high level of education, where part

of the population has a relatively higher income and a relatively low rate of unemploy-

ment is registered. Conversely, Cluster 3 is composed of areas characterized by a low

2According to the definition from the United States Census Bureau: “Census tracts are small,
relatively permanent statistical subdivisions of a county. Census tracts are delineated for most
metropolitan areas and other densely populated counties by local census statistical areas commit-
tees following Census Bureau guidelines [...]. Census tracts usually have between 2,500 and 8,000
persons and, when first delineated, are designed to be homogeneous with respect to population char-
acteristics, economic status, and living conditions. Census tracts do not cross county boundaries.
The spatial size of census tracts varies widely depending on the density of settlement. Census tract
boundaries are delineated with the intention of being maintained over a long time so that statistical
comparisons can be made from census to census.”. http://www.census.gov/
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Table 3.1. Descriptive statistics* of clustering variables by Cluster of census tracts

%<9th %BS % % % %Below %Inc.> %

Cluster Grade Degree Black Hisp. White Pov Line $200k Unemp

1 3.8, 2.4 20, 2.6 10, 21 2.7, 2.7 84, 21 7, 12 0.6, 0.5 4, 2

2 1.8, 0.7 30, 3.6 6, 7 1, 0.3 87.5, 9 1.5, 3 2.4, 1 2, 1

3 5.4, 2.3 9, 3.2 9, 19 3, 3 83, 19 18, 29 0, 0.3 6, 0.2

*Mean, standard deviation

education level, high poverty within the population, and high unemployment rate.

Racial composition is similar among the three clusters of supermarkets identified.

Table 3.2. DIDM Results for Volume and Price, Cleveland as treatment city and
Chicago, Detroit and Philadelphia as control cities

Date Nov 1 ’02- Dec 31 ’02 vs. Jen 1 ’03 - Feb 28 ’03

Volume change (s.e.)* Price change (s.e.)*

All clusters (#obs) -0.06 (0.05) 0.01 (0.01)

Cluster 1 (150) -0.14 (0.08) 0.02 (0.02)

Cluster 2 (150) -0.07 (0.10) 0.00 (0.03)

Cluster 3 (90) 0.04 (0.09) -0.05 (0.03)

*Standard errors are calculated using the formula provided by Abadie and Imbens (2008) for

nearest neighbor matching estimator

In Table 3.2 we report the results from the DIDM estimation by cluster. No

significant change in either volume or price was observed after the tax was applied.

But we do notice that wealthier areas (Clusters 1 and 2) have a negative coefficient,

which is in line with our expectations. For the Cluster 3, the change is positive, but

only marginally so, and may in part be due to the small (but insignificant) decrease

in price.

3.5 Concluding remarks

The results shown in this chapter are in line with those found in Chapter 2. Fur-

ther, we found that (for the data available) the impact of the tax might have had a

homogeneous statistically insignificant effect on different demographic groups.
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According to the findings from this study, however, this tax did not discourage

soda consumption in lower income areas, which are characterized by higher obesity

incidence. On the other hand, we obtained a negative coefficient for the cluster

characterized by higher income and higher level of education. The sign of this coef-

ficient, even though the estimate is statically insignificant, seems to confirm that the

demand elasticity might be higher (in absolute value) for higher income consumers

(Andreyeva et al., 2011; Finkelstein et al., 2010). This may be explained by a greater

level of information awareness by people in this cluster regarding the detrimental ef-

fects of sugar consumption.

More work is needed to reveal who, among soda consumers, is more likely to actu-

ally respond to pricing policies. In fact, if the more educated and moderate consumers

were the ones more likely to react to a tax, it seems unlikely that a strategy of com-

bating soda consumption (and obesity) via taxation would be effective. Small sales

taxes, indeed, would not change the behavior of those people causing the externali-

ties. There is currently very little research on this aspect (Block and Willett, 2011).
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CHAPTER 4

HETEROGENEOUS BEHAVIOR AND STORABILITY IN
SOFT DRINK CONSUMPTION: USING A DYNAMIC

DEMAND MODEL TO EVALUATE POLICY
INTERVENTIONS TO CURB OBESITY

4.1 Introduction

Despite the slight decrease in soft drink consumption recently registered among

some population groups (Welsh et al., 2011), the average level of soda consumption

in the United States is close to 50 gallons per person per year (Lustig et al., 2012).

Scientific evidence links the high volume of soda consumed to the worrisome obesity

incidence, which affects 34% of the U.S. population.1 Soda is nowadays considered

the single most important source of calorie intake in the U.S. (Block and Willett,

2011; Wang et al., 2008; Block, 2004).

As discussed in the previous chapters, most of the political interventions at various

levels (state, county, and city) during the last decades have consisted of a set of taxes,

in particular small sales taxes as well as some excise taxes. One of the arguments

frequently used to justify soda taxes is the success obtained by cigarette taxes in

decreasing cigarette consumption (Block and Willett, 2011). However, cigarettes and

soda are different in a number of ways. First, cigarette taxes are often designed to

cause significant price increases (e.g., in New York State cigarette sales taxes amount

to 57% of the price per pack). High taxation levels might not be possible or justifiable

for soft drinks given that, as opposed to cigarettes, moderate soda consumption is

1http://www.cdc.gov/obesity/
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considered safe. A second difference with cigarettes is that soda has many substitutes

(Block and Willett, 2011). Lastly, the ubiquitous presence of temporary price reduc-

tions (sale periods) in virtually all soda products, allows consumers to take advantage

of such discounts by buying (and storing) large quantities for future consumption (a

situation that is not present in the market for cigarettes).

On the other hand, soda is similar to cigarettes in that the most common in-

gredients used to manufacture soft drinks (caffeine and sugar) are, according to the

medical literature, known to cause addiction. Caffeine, for instance, known as a mildly

addictive psycho-active chemical, is contained in over 60% of soft-drinks sold in the

United States. The psychological and physiological influence of caffeine on consumers

may help ensure repeat purchase of the product (Riddell et al., 2012), which sug-

gests that caffeine may be added to modify consumer behavior (Riddell et al., 2012;

Yeomans et al., 2005; Keast and Riddell, 2007; Griffiths and Vernotica, 2000). Fur-

thermore, the high glycemic index characterizing some foods and drinks (like soda),

is considered to be the key mediator of food addictive potential, and it is thought

to be an important factor responsible for the obesity epidemic (West, 2001). In the

case of soft drinks, which contain high levels of both sugar and caffeine, the addictive

potential may be compounded making them possibly more addictive than foods or

drinks containing only one of the two ingredients. In summary, the presence of these

elements may have an important impact on both the purchase frequency as well as

the volume bought (and consumed), compared to what one would observe in healthier

food products.

A central component of the social problem is the fact that there are households

purchasing extremely large quantities of soda (who are therefore more exposed to
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obesity and to several health problems caused by soft drink ingredients)2, while other

consumers consume the product in moderate quantities.3 There can be several reasons

for high consumption levels. Brand loyalty and addiction are possible explanations;

the relative unwillingness to abandon consumption by these consumers (who are, as

already stated, more vulnerable to obesity) make simple taxing policies less likely to

be effective for this segment of the population. Further, as noted above, soda, as op-

posed to other taxed goods (e.g. cigarettes), is frequently subject to temporary price

reductions allowing soda consumers (especially those that consume large quantities)

to dodge the price increase by stockpiling this storable good while on promotion.4

In this research we estimate a model of demand for soft drinks that takes into

account the unique characteristics of this market that we have just described. Specif-

ically, the model allows for the possibility that some consumers buy larger quantities

of soda during sale periods in order to store the product for future consumption

(when prices are higher); we call this feature of behavior “sale-sensitivity”. Further,

our model takes into consideration product differentiation (i.e. we model demand at

the brand level), which allows us to calculate and account for substitution patterns

across brands. Finally, we are able to estimate whether and how price sensitivity

and storability sensitivity vary across populations with differing degrees of obesity

incidence (we call this feature “consumer heterogeneity”).5

Prior research that accounts for both storability and product differentiation of soft

2Scientific evidence associates high levels of obesity rate with high levels of soda con-
sumption (Ludwig and Ebbeling, 2001; Apovian, 2004; Malik et al., 2006; Vartanian et al., 2007;
Libuda and Kersting, 2009).

3A level of consumption considerate moderate because, for example, does not appear to be linked
to a higher risk of vascular events, corresponds to less than 6 cans per week (Gardener et al., 2012)

4In general, one should expect that producers of addictive products will offer (at least temporarily)
attractive prices in order to entice people to initiate consumption.

5In the analysis we study other possible sources of consumer heterogeneity. Specifically, we con-
sider whether sensitivity parameters (storability and price) depend on the level of other demographic
characteristics such as low income, race, rural areas and low education.
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drinks (Hendel and Nevo, 2013; Wang, 2012), has shown that a dynamic model of

consumer inventory behavior is necessary to estimate accurate price sensitivity pa-

rameters, and that more realistic substitution patterns for differentiated products

are obtained by including consumer heterogeneity in the model. Following the dy-

namic model of Hendel and Nevo (2013) we identify the percentage of consumers

that are storers (consumers that stockpile purchases) versus those that are not and

estimate their respective price elasticity parameters. We then extend the model to

study whether and how the fraction of storers as well as their price sensitivity in a

geographic area depends on the percentage of obese individuals in that area. To fulfill

this objective, we match store-level soft drinks sales data to county-level obesity rates

(and other demographic data), and take these data to the estimation of our dynamic

demand model. Results from this study suggest that populations characterized by

higher rates of obesity, despite being less price-sensitive for soda, are more inclined to

store (i.e. are more “sale-sensitive”). This result may appear counterintuitive at first.

However, by allowing for storing behavior, it is entirely possible that some consumers

that are less sensitive to the overall price of soda are also those that buy large quan-

tities during sale periods in order to avoid having to purchase at high prices when

the sale expires.6

In the second part of our empirical analysis, we illustrate the policy usefulness of

our model. Specifically, we use our demand estimates to simulate how consumers

would react (i.e. how soda purchases would change) when prices of products are af-

fected by two possible policy interventions: a) a ban on temporary price reductions

(i.e. sales), and b) a sales tax on all soda products (diet and regular).The first in-

tervention, albeit not considered before by policy makers, is motivated by the results

6To better illustrate this possibility it is useful to highlight the casual observation that smokers
(by and large characterized by low price sensitivity) are frequently seen buying (often numerous)
cigarette cartons at airports’ duty free shops to benefit from discounted prices.
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of our model (i.e. sale sensitivity being more prevalent in populations with higher

obesity incidence). The second intervention has been proposed (and implemented in

several states).

Results indicate that the former intervention, even though it implies a smaller av-

erage price increase than that resulting from a sales tax, would be more effective in

reducing overall soft drink consumption. This finding highlights the crucial role that

sale sensitivity has in this market: restricting consumers’ ability to switch purchases

from high price periods to (temporary) low price periods (i.e. the first intervention)

can magnify the effect of a price increase on consumption reduction. While in both

interventions consumption reduction is larger in areas with higher obesity incidence,

this relationship is more pronounced when temporary price reductions are banned.

Thus, a ban on temporary price reductions would be more effective in reducing both

overall consumption as well as consumption by populations that are at a greater

health risk. The main take away from this chapter is that using a more realistic

model when carrying out counterfactual analysis can be crucial.

The rest of this chapter is organized as follows. Section 4.2 reviews the previ-

ous literature. Section 4.3 develops the theoretical framework, the model and the

methodology applied. Section 4.4 presents the demand estimation results and the

policy simulations. Finally, section 5 concludes.

4.2 Previous Literature

A number of studies have estimated the price elasticity of demand for soda in or-

der to predict the decrease in consumption that would result from the price increase

caused by taxation. One review of prior work on demand estimates for food prod-

ucts reports that own-price elasticity for soda and other beverages ranges between

-0.8 and -1 (Andreyeva et al., 2011). However, a more recent review of empirical

studies suggests that soft drink consumption is more price sensitive than what previ-
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ously reported (Powell et al., 2013). A large variance of price elasticity estimates is

illustrated by the results in Zheng and Kaiser (2008) and Dharmasena and Capps

(2012) who place the price elasticity estimate for soft drinks at -0.15 and -1.90,

respectively. In addition to the still debated effect on consumption, some studies

show that the ultimate impact of a tax on body weight is negligible (Fletcher et al.,

2010a,b; Powell and Chaloupka, 2009; Sturm et al., 2010, Finkelstein et al., 2010,

Duffey et al., 2010, and Schroeter et al., 2008).

Some authors suggest that while small soda taxes are not likely to decrease

BMI significantly, larger taxes might have a measurable effect on weight, and that

these taxes should determine at least a 20% price increase (i.e., one penny-per-

once) (Powell and Chaloupka, 2009; Powell et al., 2014). Nevertheless, Fletcher et al.

(2013) suggest caution in enacting “big” soft drink taxes with the purpose of reduc-

ing obesity since large taxes may have different effects than the small taxes presently

in place. Specifically, for hefty taxes to be effective, these would need to shift con-

sumption toward healthy/healthier drinks (such as water and low-calorie beverages),

something that currently small taxes appear not be doing (Fletcher et al., 2013).

These considerations imply that in order to observe a price-induced decrease in the

obesity rate, it would be necessary to tax several, if not many, food and beverage

groups. For instance, Miao et al. (2013) estimate excess calories and welfare loss

assuming that taxes are imposed on both added sugar and solid fat. They use a de-

mand system that accounts for both the within-food group substitution as well as the

substitution across food groups (which most studies do not take into account). Their

simulations of taxes on added sugars and solid fat show that the tax impact on con-

sumption patterns in the literature is understated and that the induced welfare loss is

thus overstated when not allowing for the substitution possibilities toward leaner and

lighter versions of the taxed items (Miao et al., 2013). According to these studies,

hence, taxing policies should be applied to added sugar and fatty food concurrently,

54



other than only on soda, to avoid shifting consumption towards other unhealthy cat-

egories, otherwise the positive effect of unhealthy consumption reduction of taxed

products may be dampened.

Zhen et al. (2011), using homescan panel data, estimate the demand for sugary

nonalcoholic beverages. By applying a dynamic extension of the almost ideal demand

system, they find evidence of habit formation and argue that, because of this behav-

ioral feature, consumers are more likely to respond to taxes in the long run than in

the short run. Patel (2012) similar in flavor to what we do in this chapter, accounts

for obesity rates and demographic characteristics in the context of a static model

of demand and preferences for soda. Patels estimates suggest that consumers with

higher body weight tend to be less price-sensitive and prefer diet sodas. In Patels

work, however, the predicted decrease in BMI due to a soda tax would be unlikely to

yield meaningful reductions in social and medical costs. Patel concludes that, given

the static nature of his demand estimation, his estimates of price sensitivity are likely

overstated.

While our results confirm Patels findings that high obesity rates are associated to

lower (in absolute value) own price elasticities, our model does account for dynamics

(i.e. forward looking behavior of consumers when they face a temporary price reduc-

tion), and thus provide more reliable demand elasticity estimates (Hendel and Nevo,

2006, 2013). Indeed, as conjectured by Patel, consumption dynamics are important

for a storable good such as soda since static models are shown to overstate own price

elasticity and understate cross price elasticity (Hendel and Nevo, 2006; Patel, 2012;

Wang, 2012). In addition, by explicitly considering temporary price reductions and

the stockpiling behavior in our model, we do not overstate moves to goods other

than the ones included in the estimation (or to the no-purchase option) when soda

is not on sale (Hendel and Nevo, 2006). Patel also notes that if obese consumers

engage in stockpiling more than non-obese consumers, this would lead to an over-
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statement of his obese-specific price-sensitivity estimates. Indeed, our work confirms

this conjecture: we find that high obesity rates are associated with a greater degree

of stockpiling behavior and that the estimated price sensitivities for obese consumers

in a static model will be overstated.

Hendel and Nevo (2013), develop a dynamic demand model that allows the re-

searcher to determine from the data the fraction of soda consumers that are storers

as well as those that are non− storers. The authors use their model to study inter-

temporal price discrimination of storable goods. Hendel and Nevo use their model

and estimates to explain why soft drink companies and/or retailers offer temporary

price reductions. They find that there are consumers who make most of their soda

purchases at a discount price by buying large quantities while on sale thereby sig-

nificantly reducing their purchase needs during high price (i.e. non-sale) periods

(storers). The remaining consumers are assumed to buy about the same volume

regardless of whether the product is on sale or not (non − storers). The existence

of these two consumer types in the market justifies, according to Hendel and Nevo,

why optimal pricing involves discounts. Unlike our work, however, Hendel and Nevo

do not distinguish sale-sensitivity from price-sensitivity and, instead, impose the as-

sumption that more price sensitive consumers are the ones who store (and vice versa).

We relax this assumption and show that this extension of Hendel and Nevo’s model

is important in our application as sale-sensitive populations (i.e. those with a higher

obesity rate) actually have a lower price sensitivity. Importantly, our results suggest

that this more flexible modeling approach can play a crucial role in the results and

policy simulations.

4.3 Empirical Model for the demand estimation

In this section we illustrate the behavioral model that describes consumers’ de-

cisional process when buying soda. We build on Hendel and Nevo (2013) (H&N,
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henceforth) since their model allows us to handle the demand dynamics (generated

by product storability) in a relatively simple way.

Let consumer h’s utility function at time t be:

Uht(q,m) ≡ U(q,m) (4.1)

where q is the vector of consumption of the J varieties of the good (soda), and

m is the numeraire good. The consumer’s problem is how much soda to buy in every

purchase occasion (xt), and how much to consume (qt).

As in H&N, we assume that the inventory lasts only T periods (shelf life of the

product) and that consumers know their needs T periods in advance. In our case,

given that soda has a long shelf life, we assume that rational consumers will store

just enough soda to last between one sale and another, because they know the price

history and they can anticipate soda price up to T ahead (perfect foresight), so they

can minimize storage costs. This assumption leads to simple dynamics, whereby

stockpiling is only done exactly when inventory runs out. The model allows for the

incorporation of stockpiling behavior by assuming that the population is made up by

two types of consumers: storers (S) and non− storers (NS).

Non−storers are those consumers that buy during both sale and non-sale periods

only to satisfy current consumption needs; that is, these consumers do not buy “extra”

(i.e. stockpile) when there is a sale period. Conversely, storers’ purchase decisions are

dynamic in the sense that on any given time period they determine purchases based on

whether: a) they have inventory from prior periods, b) the current price is a sale price

or not, and c) the anticipated future prices and consumption needs (below we provide

more details on how this is operationalized). Because H&N’s model is suited for ag-

gregate data (i.e. data that aggregates, for each product, across the purchases made

of all consumers) the estimation routine’s output consists of, among other things,

an estimate of the fraction of consumers in the population that are non − storers

57



(ωNS).7 The fraction of storers is recovered via the identity ωS = 1 − ωNS. To

simplify notation, we henceforth only refer to ωNS and denote it as ω.8 We consider

the fraction 1− ω as a measure of the population’s sensitivity to sales.

We extend H&N’s model by allowing the incorporation of demographic variables

with the objective of testing and accounting for consumer heterogeneity. In particu-

lar, we allow price coefficients and the (non-) storability parameter (ω ) to vary by the

population’s obesity incidence (% of population with BMI ≥ 30) and other demo-

graphic variables recognized by the literature as predictors of obesity. This extension

allows us to incorporate consumer heterogeneity in a model of aggregate data.

Formally, for non− storers (NS), the quantity demanded is a static problem (i.e.,

the quantity purchased in t is equal to the quantity consumed in t): XNS
t ≡ QNS

t .

For storers (S) the quantity demanded is a dynamic problem. Their purchasing

patterns are determined by the solution of the following maximization problem:

Max
R∑
t=0

E
[
uSt (qt,mt)

]
(4.2)

s.t.

0 ≤
R∑
t=0

[(yt − (p′txt +mt)] (Budget Constraint), and (4.3)

qt ≤ xt +
t−1∑
τ=0

(xτ − qτ − eτ ) (Inventory Constraint) (4.4)

where xt is the vector of purchases and eτ is the vector of unused units that expire

in period τ . Equation (4.4) thus allows for the possibility that current consumption

(qt) might be satisfied by either current purchases (xt) or past purchases (xτ where

τ > t, up to T preceding periods), or both. A direct implication of this inter-period

7As noted by H&N, an important advantage of using an aggregate model is its computational
tractability.

8When refering to the fraction of storers we will use 1− ω.
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relationship, the price paid for the units consumed in period t is not necessarily

the current price (pt). Thus consumers’ current consumption is a function of what

H&N denote effective price; that is, the price of the currently consumed product at

the price at which it was purchased. Intuitively, if there was a sale in any of the

preceding T periods, then current consumption’s effective price would be such sale

price (and not the current market price); otherwise the current price is the market

price (we later formalize the definition of an effective price). An attractive feature of

this assumption is that, by replacing current prices with effective prices, the dynamic

problem collapses to a static one thereby making estimation straightforward.

The definition of the threshold that determines whether a price is low enough to

qualify as a sale price is guided by the empirical distribution of prices observed in

our data. As in H&N, we detect two modal values in the price distribution (Figure

4.1). The lower modal value is consistently equal or below $1.05 (across chains, stores

Figure 4.1. Distribution of the price of Coke across all stores in 2006
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and cities), therefore we selected this value as the threshold for determining a sale

period and the corresponding effective price for each brand in each period.9 Let’s

define a sale period (s) as the period when (pjt) is a sale price, and a non-sale period

(n) otherwise.10 In a given period, storers’ purchases may not coincide with current

consumption; the reason for this is that this type of consumers, as indicated earlier,

respond to sale periods by stockpiling. Formally, the effective price is defined as

the minimum price (from those that are below or equal to the sale price threshold)

registered in the relevant T + 1 periods. Consequently, the dynamic optimization

problem for storers becomes a system of static optimization problems since storers

solve their optimization problem T periods in advance by buying what they need when

the price is a sale price. In the estimation procedure, current prices are replaced with

effective prices (peft ). For instance, if the current period is a non−sale period, but the

previous period was a sale period, then storers are assumed to have purchased soda

in the previous period for current consumption, hence the current price is replaced

with the sale price in effect in the previous period. If none of the T + 1 periods is a

sale period, no price replacement is operated.

Given that effective prices are used also for substitute goods, they are equivalent

to opportunity costs of period t consumption, and they fully capture the impact of

stored units of j on the demand of all other storable goods (−j). Thus, optimal

consumption for storers in period t is:

qSt = QS
t (peft ) (4.5)

The sum of the purchases of the two types of consumers is given by:

9We performed sensitivity analyses with different (albeit marginally so) alternative cutoff prices.
Our qualitative results and conclusions are robust to these variations.

10To avoid confusion with the notation between the type of period (n and s) and the type of
consumer (i.e. S and NS for storers and non − storers, respectively), we use lowercase for the
former and capital letters for the latter.
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Xjt(pt−T , ...,pt+T ) = QNS
jt (pt) +XS

jt(pt−T , ...,pt+T ) (4.6)

In what follows we provide a brief description of purchasing patterns (more details

can be found in Hendel and Nevo (2013). Essentially, storers’ purchases in period t

are the sum over current and future needs up to t+T (recall: consumers know prices

up to T periods ahead). They decide when it is best to purchase by comparing the

price in t to the T preceding prices; if pjt is a sale price, then storers are predicted

to purchase in t for their current consumption and/or next periods consumption.

Then we compare pjt with pjt+T prices to see if consumers buy also some units at

t for T periods ahead consumption. Intuitively, identification between storers and

non−storers is straightforward: if the data reveal that much more is being purchased

during sale periods (compared to periods when prices where high) then the fraction

of storers that would rationalize this data pattern ought to be higher. To formally

define the total quantity purchased in the market (by both storers and non−storers),

let’s consider the case of T = 1. In this case, storers’ behavior can be predicted by

defining four types of periods: a sale period preceded by a non-sale period (ns), a

non-sale period preceded by a sale period (sn), two consecutive sale periods (ss) and

two consecutive non-sale periods (nn). Considering each type of period defined above

and assuming perfect foresight, product aggregate purchases, as defined in equation

4.6, need to be scaled up and down in the following way:

Xj(pt−1,pt,pt+1) =



ωQj(pjt, p−jt) + (1− ω)Qjt(pjt, p−jt), nn

ωQj(pjt, p−jt), sn

ωQj(pjt, p−jt) + (1− ω)(Qjt(pjt, p−jt)

+Qjt(pjt, p−jt+1)), ns

ωQj(pjt, p−jt) + (1− ω)Qjt(pjt, p−jt+1), ss

(4.7)
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Where Qj(.) is the static demand for storers and non − storers, and ω is the frac-

tion of non − storers. Notice that effective prices for product j in equation 4.7 are

used to scale up or down current purchases of storers (i.e. they do not enter as an

argument in the demand function qjt). Thus, once the regimes are determined (and

the corresponding scaling process is done), current purchases are function of current

prices.

Specifically, the aggregated demand for storers and non−storers in every regime

is determined in the following way. For non − storers demand and consumption

always coincide, thus, ωQj(pjt, p−jt) contributes in all types of period to the aggregate

demand. In nn periods storers and non− storers buy for current consumption11; in

sn periods, storers do not purchase in t for current or future consumption, they must

have purchased in t−1, when there was a discount (sale-period), for both t−1 as well

as t consumption. During ns periods, storers purchase for current consumption as

well as for future t+ 1 consumption. In ss periods, storers only purchase for future

consumption in t, while their current consumption is satisfied by their purchase in

t− 1.

In addition to scaling storers’ demand depending on the type of period, the

dynamics are incorporated by updating p−jt+1 with pef−jt+1 (not shown in equation 4.7

to preserve simplicity). All consumers in all periods will compare pj and p−j, and it

may be the case that, for example, while j is not on sale in t nor was in t − 1, −j

was on sale in t− 1 and it is not on sale in t. Therefore, storers’ purchases in nn are

QS
jt(pjt, p

ef
−jt) and not QS

jt(pjt, p−jt), to account for storage of substitute products. This

updating procedure is needed in every period, meaning that we have to consider the

different regimes also for substitute products (through the inclusion of rival products’

11Clearly the first expression in the system of equation results in Qj(pjt, p−jt), but we reported
the two components for completeness, and to illustrate how the demand is scaled in the different
regimes.
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effective prices). In fact, using contemporaneous prices for substitute products would

generate a bias in the estimated cross-price effect.

4.4 Estimation procedure

Let xjst denote the purchases of product j in supermarket s during week t. Pur-

chases predicted by the model are given by:

xjst = QNS
jst (pjst,p−jst) +

T∑
τ=0

QS
jst+τ (pjst,p−js,t+τ )1

[
pjst = pefjs,t+τ

]
(4.8)

In the case of T = 1, the predicted purchases consist of three components: pur-

chases by non− storers and purchases by storers for consumption at t and t+ 1. As

implied by equation 4.7, one or both of the components of the demand for storers

can be zero, depending on the sale/non-sale regime. The regime is determined by the

argument of the indicator function[•]. Recall that for product j, in all cases actual

prices are used (i.e. j’s prices dictate the regime, are never changed). We assume

that the demand for product j at store s in week t is log-linear:

logQh
jst = ωhαjs − βhj pjst +

∑
j 6=i

γhjipist + εjst, j, i = 1, ..., n h = S,NS (4.9)

where, ωh is a parameter that allows for different intercept depending on the consumer

type (recall that we simplified notation earlier by setting ω = ωNS and ωS = 1− ω).

Fixed effects (αjs) are included to account for product-store specific effects.

We augment the model by interacting the obesity rate12 with the fraction of non-

storers in the population as well as with the own-price coefficient:

ω = ω1 + ω2 ∗ obesity-rate (4.10)

12In an alternative specification we consider and explain later, we use consider several obesity
predictors (i.e. demographic variables known to be related to obesity rates) in lieu of the obesity
rate.
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βhj = βh1j + βh2j ∗ obesity-rate (4.11)

To operationalize the inclusion of store-brand specific effects, we re-write equation

4.9, for each type of consumer, as:

QNS
jst (pjst,p−jst) = ωeαsje(−β

NS
j pjst+

∑
j 6=i γ

NS
ji pist) + eεjst (4.12)

QS
jst+τ (pjst,p

ef
−js,t+τ ) = (1− ω)eαsje(−β

S
j pjst+

∑
j 6=i γ

S
jip

ef
is,t+τ ) + eεjs,t+τ (4.13)

xjst = eαsj(QNS∗
jst +

T∑
τ=0

QS∗
jst+τ

where

QNS∗
jst = ωe(−β

NS
j pjst+

∑
j 6=i γ

NS
ji pist) + eεjst

and

QS∗
jst+τ = (1− ω)e(−β

S
j pjst+

∑
j 6=i γ

S
jip

ef
is,t+τ ) + eεjs,t+τ

log xjst = αsj + log(QNS∗
jst +

T∑
τ=0

QS∗
jst+τ )

log xjst − log xjst = log(QNS∗
jst +

T∑
τ=0

QS∗
jst+τ )− log(QNS∗

jst +
T∑
τ=0

QS∗
jst+τ ) (4.14)

Finally we assume that the error term, let’s call it µ, enters 4.14 in an additively sep-

arable fashion (not displayed) and that E(µ | pt−T , ...,pt+T ) = 0. These assumptions

allow us to carry out estimation of 4.14 via nonlinear least squares.
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4.5 Data

As in chapter 2 and 3, we use data collected by IRI’s sample of supermarkets

across the U.S. This data set contains store-level information on volume sales and

prices for carbonated beverages during the 2001-2006 period. Data consist of weekly

observations and include 47 metropolitan areas as per IRI’s definitions.13 Recall that

data are are disaggregated at the store level for each supermarket chain. IRI only in-

cludes chains and not independent stores, and the observations are drawn from IRI’s

national sample of stores. For each store in each week, over 250 different Universal

Product Codes (UPCs) for carbonated beverage products are observed. Thus, each

brand (e.g. Coke) has multiple UPCs associated to it, each representing the partic-

ular presentation of the brand (i.e. such as packaging 6-pack vs. single bottles) and

the container itself (e.g. can vs. bottle; see Bronnenberg et al., 2008).

We choose data from 2006 for our analysis since this is the most recent year avail-

able. Supermarkets for which there are missing observations for any of the products

considered in the analysis are dropped. Further, we only retain stores that show a

clear break in the price distribution (as discussed earlier and illustrated in Figure 4.1),

so as to allow us to objectively and consistently define the threshold for separating

sale from non-sale periods (as required by the model). This procedure leaves us with

181 stores located across 33 states.

The size we choose is the 2-liter bottle, which is the most popular size in our data

set (33% market share). To make the dynamic problem tractable, while the data we

take to estimation account for the whole 2-liter bottle market, we only account for

dynamics for the two most popular brands. The reason for this is that the nature of

the dynamic problem requires us to search for and define sale and non-sale periods

for each specific brand. This procedure is burdensome as it requires us to use weekly

13IRI’s metropolitan area definitions are similar to those used by the Bureau of Labor Statistics.
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prices in all store-week combinations to establish those stores in which there is a

consistent threshold price that can objectively separate sale from non-sale periods.

Doing this for numerous brands not only would increase the computational burden but

would significantly reduce the number of stores that we can keep in order to maintain

consistency in the threshold definition. We do not consider this feature to be critical

for our qualitative conclusions; if anything, we believe that future analyses that can

incorporate the dynamic effects of more brands would make our results stronger as

the effect of stockpiling would be greater than we are currently able to measure.

The brands we focus on are regular Coke and regular Pepsi. These two brands

have the leading market shares in our data set. They represent 12% and 10% of total

volume total sales (across all brand-size-presentations in the data set), respectively,

and each company’s 2-liter bottle presentation accounts for approximately 4% of

the whole soft drinks market. To account for the whole 2-liter bottle market for

carbonated beverages, we include all other brands in the estimation procedure by

aggregating all the remaining brands (in 2-liter bottle presentation) in two categories:

composite regular brand and composite diet brand (depending on whether a brand is

“regular” or “diet”, respectively).14 We compute the total units sold for each of the

two composite brands by summing over all the units sold (in each week-supermarket

pair) across all brands belonging to each of the two categories. The average weekly

unit price (in a supermarket-week pair) of a composite brand is given by the total

dollar sales across all brands in each composite category, divided by the total units

sold in that category. Descriptive statistics of the data used (Coke and Pepsi) are

reported in Table 4.1.

To implement our modeling approach, we complement the IRI store-level data

with both obesity incidence data (% of people withBMI ≥ 30) as well as demographic

14the diet versions of Coke and Pepsi are included in the composite diet brand

66



Table 4.1. Descriptive statistics IRI dataset for Coke and Pepsi

Variable Mean Std

Price Coke 1.21 0.22

Price Pepsi 1.17 0.21

Units sold Coke 165.67 189.86

Units sold Pepsi 144.03 226.31

Sale Coke† 0.33 0.47

Sale Pepsi† 0.37 0.48

Note: 9231 observations per brand. A sale (discount period) occurs when the price drops to $1.05
or below. †Fraction of weeks the brand was on sale in 2006.

indicators, both at the county level. Obesity rates are obtained from CDC’s Behav-

ioral Risk Factor Surveillance System (BRFSS) in 2006 (Figure 4.2). The BRFSS is an

ongoing, monthly, state-based telephone survey of the adult population. Respondents

were considered obese if their BMI was 30 or greater.15 The BRFSS uses three years

of data to improve the precision of the year-specific county-level estimates of obesity

(selected risk factor for diabetes). For example, 2005, 2006, and 2007 were used for

the 2006 estimate and 2006, 2007, and 2008 were used for the 2005 estimate (and so

on). Estimates are restricted to adults 20 years of age or older to be consistent with

population estimates from the U.S. Census Bureau. The U.S. Census Bureau provides

year-specific county population estimates by demographic characteristics (age, sex,

race, and Hispanic origin). Obesity rates are age-adjusted by calculating age-specific

rates for the following three age groups, 20-44, 45-64, 65+. A weighted sum based on

the distribution of these three age groups from the 2000 census is then used to adjust

the rates by age.16

15Body mass index formula: BMI = weight(kg)/height2(m). It was derived from self-report of
height and weight.

16Data and description available online at:
http://apps.nccd.cdc.gov/DDTSTRS/default.aspx. Retrieved 5/8/2013.
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Figure 4.2. County-level Estimates of Obesity among Adults aged ≥ 20 years:
United States 2006

Source: www.cdc.gov/diabetes

Note: from top to bottom, these maps show estimates of the number and percentage, and the
age-adjusted percentage of adults who were obese in 2006, respectively.
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Data on demographic characteristics 17 in our data were retrieved from the Amer-

ican Community Survey (ACS).18 Annual data on age, gender, race, income, educa-

tion, disabilities, etc. are released at different geographic levels (region, division, state,

county, census tract, zip-code, etc). To keep consistency with the level of dissagrega-

tion at which obesity data is observed, we use county level data in our analysis. This

survey, administered by the U.S. Census Bureau, is sent to approximately 250,000

addresses monthly (3 million per year). The survey regularly gathers information

previously contained only in the long form of the decennial census. It is the largest

survey other than the decennial census that the Census Bureau administers.

The selection of demographic characteristics from the survey datasets for our

analysis is based on socioeconomic factors that, at the aggregate level, are thought

to have a strong correlation with obesity (i.e. commonly known as “obesity pre-

dictors”) (Sobal and Stunkard, 1989; Rosmond and Bjrntorp, 1999; Patterson et al.,

2004; Lutfiyya et al., 2007; Sodjinou et al., 2008). The obesity predictors considered

in these analyses were tested for correlation with the obesity rate in our sample.

Specifically, after collecting data on several variables thought to be drivers for obe-

sity (age, gender, race, gender and race interaction, etc.), we regressed the obesity

rates in our sample on these variables in order to highlight significant positive rela-

tions. Results from these auxiliary regressions are reported in Table 4.2. Selected

obesity predictors using this procedure are: the percentage of households that re-

ceived food stamps; the percentage of African-American population; the percentage

of population that attained a high school diploma or less; and the percentage of rural

population. Selected demographic characteristics and their distribution characteris-

17Data for the percentage of rural population were obtained from Decennial Census Data
2010 (http://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t). Retrieved
6/10/2013.

18Data and description available online at:
http://www.census.gov/acs/. Retrieved 29/6/2013
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tics for the counties studied in this chapter are displayed in Table 4.3. Finally, we

match IRI data to both obesity rates and demographic characteristics data using the

geographical information of the location of each store in our dataset. In several cases,

we have more than one store in a given county.

Table 4.2. Results from regressions of obesity rate over variables considered obesity
predictors

Dep. Variable: % Obesity

Indep. Variables:

% of Households received food stamps 0.16

(0.08)

% African-American Population 0.08

(0.03)

% Attained High School Diploma or less 0.09

(0.02)

% Rural Population 0.06

(0.02)

Const. 18.76

(1.18)

Note: sample size of 126 counties. The R2 is 0.42. Standard errors in parentheses. The coefficients
are all significant at 1% or better.
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Table 4.3. Distribution of obesity rate and obesity predictors

Variable Mean Std Min I Quartile Median III Quartile Max

% Obesity 25.08 3.22 17.10 22.70 25.10 27.50 40.10

% of Households 6.54 3.18 1.81 4.21 6.36 8.10 21.02

received food stamps

% African-American 12.96 13.19 0.57 2.93 8.58 20.41 64.19

Population

% Attained High 41.56 8.67 21.60 35.10 41.30 48.00 63.70

School Diploma or less

% Rural Population† 12.94 14.93 0.00 2.17 6.45 21.19 67.71

Note: The obesity rate refers to the county level age adjusted percentage of obesity (see text for
description); descriptive statistics for this variable are computed considering 126 counties across 33
states.
†Percentages obtained from Decennial Census Data 2010.

4.6 Results

Demand estimation results are reported in Tables 4.4, 4.5 and 4.6. All results,

unless otherwise specified, are significant at 5% or better. As stated earlier, the

unit of analysis is 2-liter bottles. Results in all tables are based on regressions that

use the (log) quantity of (regular) Coke or Pepsi (or a modified version of it as per

equation 4.14), sold in a week-store pair, as the dependent variable. The right-hand

side variables include own-price, cross-price as well as the prices of the two composite

brands (for brevity, we do not report coefficients for prices of the composite brands).

We run regressions for the two composite brands, but do not present results as their

value is limited since dynamics are not incorporated in those equations.19 All results in

Tables 4.4, 4.5 and 4.6 are obtained via least squares and all the regressions include

19The results from these regressions (as well as those of the coefficients of prices of the composite
brands in the Coke and Pepsi equations) play an important in our policy simulations below, however.
They are useful to capture the substitution across products resulting from the policy interventions
we consider.
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store-week fixed effects.20 Table 4.4 presents the estimated coefficients from static

models. Columns 3 and 6 display estimates of whether the presence of a(current

and/or past) sale had an impact on current purchases. Columns 4 and 7 display the

coefficients on the interaction of own-price and the current-period sale dummy with

the rate of obesity.

Table 4.4. Static model estimates of the demand function

Coke Pepsi

I II III I II III

Own Price -1.84 -1.46 -1.81 -1.87 -1.39 -2.08

(0.02) (0.03) (0.12) (0.02) (0.03) (0.12)

Cross Price 0.34 0.31 0.31 0.65 0.56 0.57

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Salet 0.25 0.28

(0.01) (0.01)

Salet−1 -0.05 -0.05

(0.01) (0.01)

Salet−2 0.01 0.006

(0.00) (0.007)

%obesity*Own Price 0.01 0.03

(0.00) (0.00)

%obesity*Salet 0.01 0.01

(0.00) (0.00)

Note: Standard errors in parentheses.

Own- and cross-price coefficients have the expected signs and are all statistically

significant. We notice that a sale in the current period has a positive effect on

the quantity demanded, as expected, and that sales in preceding periods (weeks)

consistently alternate in sign. This result suggests that the relevant storage period is

one week (T = 1), which is what we use in our the estimation of the dynamic version

20Regressions for the static model (Table 4.4) are estimated separately (via linear least squares).
Estimates for the dynamic model are obtained via estimation of a simultaneous equations system,
and a non-linear least square procedure is used.
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of the model. We observe, consistent with our expectations, that both coefficients are

positive suggesting that price sensitivity is lower in areas where the population has a

higher rate of obesity.

Table 4.5 and 4.6 present the results from dynamic models, where we distinguish

fractions of the population as storers and non− storers, and identify the fraction of

the population that corresponds to each type. Table 4.5 considers specifications with

the rate of obesity as the interaction variable, whereas Table 4.6 considers specifica-

tions where the interactions involve demographic variables. In Table 4.5, specification

I provides estimates obtained by imposing two restrictions. The first restriction con-

cerns the cross-price coefficient: substitution coefficients (Coke versus Pepsi and Pepsi

versus Coke) are symmetric for storers as well as for non − storers. We relax this

restriction in specification II. We notice that the unrestricted cross-price coefficients

are roughly the average of the unrestricted ones. Thus, to preserve parsimony, we

keep the restriction of specification I in subsequent regressions. The second restriction

imposes the fraction of non− storers (ω) to be the same for both brands; since the

two products are close substitutes and the population is the same, we maintain this

constraint throughout.

Specification III shows the results of a model that considers the potential impact

of the rate of obesity on the non-storing population. We observe that, as the rate of

obesity increases, the fraction of non−storers decreases and that this effect is statis-

tically significant. The fraction of non−storers is 58% and 59%, respectively, for the

specifications that do not include the interaction with the rate of obesity (I and II).

The parameter ω represents the relative intercept of the demand for non − storers.

By separating the effect of obesity on the intercept ω (specification III), we find that

the percentage of non-storing population effectively decreases with greater rates of

obesity. Specifically, the percentage of non − storers in the area with the highest

rate of obesity in our data set (40.1%), would be as low as 52%, whereas ω would be
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as high as 66% in the area with the lowest rate of obesity. In specification IV, we

report the results of a specification that considers the impact of the rate of obesity

on the own-price elasticity for storers. In this case, in line with our expectations, the

effect was positive and statistically significant, implying that as the rate of obesity

increases the price elasticity for storers decreases (in absolute terms). Specification

V allows us to evaluate the impact of the rate of obesity on the own-price elasticity

for non− storers, which is not statistically different from zero.

We observe that the results from static and dynamic models are similar, but there

are some important differences. By comparing columns 2 and 5 in Table 4.4 with

the results in Table 4.5, column 1, notice that own-price coefficients are lower (in

absolute terms) if we consider demand dynamics. This confirms results in the pre-

vious literature that show how failure to account for inter-temporal substitution and

storability can lead to an overestimate of the own-price elasticity and of the effect of

taxes on consumption (Wang, 2012; Hendel and Nevo, 2013). We also notice that the

own-price sensitivity for both brands is higher for storers than for non− storers.

In both the restricted and unrestricted versions (specifications I and II), the cross-

price coefficient for storers is negative and statistically significant; the explanation

for this seemingly at odds with economic theory result is that in a dynamic setting

two products can be intertemporal complements.21 In a static setting, if the price

of Coke goes down today, the quantity demanded for Pepsi should also go down.

However, in a dynamic setting purchases depend on both current as well as future

prices and consumption. Coke and Pepsi infrequently go on sale in the same week.

Instead, both products tend to alternate sale weeks (see Figure 5.1 and Table 5.1

for data that supports this pattern). To explain this intertemporal complementarity,

21This negative cross-price coefficient result is robust to several alternative specifications (not
reported). These include, among others, relaxing the constraint of symmetric cross price elasticities
and limiting the estimation to several data sub-samples.

75



assume that one given week is a sale period for Pepsi and a non-sale period for Coke,

while, vice-versa, the previous week was a sale period for Coke and non-sale period

for Pepsi. In the current week storers would buy less Pepsi because they purchased

more Coke in the previous week, therefore they already have some soda in their stock

(recall that consumers are assumed to minimize storage costs). In a situation like the

one just described, it turns out that as the price of Coke goes up (from last period

to this period), demand for Pepsi goes down, consistent with a negative cross-price

coefficient. In general, when demand dynamics are considered, it is quite frequent that

substitute products in the short run become complements in the long run (Chavas,

2013).

Table 4.6 displays results from the dynamic models that include demographic

variables known to be obesity predictors. Recall that the selected obesity predic-

tors are: the percentage of households that received food stamps, the percentage

of African-American population, the percentage of population that attained a high

school diploma or less, and the percentage of rural population. For each of these

variables, we consider two specifications. These specifications are identical to II and

III in Table 4.5 except that we replace the obesity rate with one of the demographic

variables, one at a time (i.e. first four regressions correspond to the first demographic

variable considered, etc.).

Results are similar to the ones from models using the percentage of obesity, consis-

tent with the high correlation between the selected demographic variables and obesity

rates. In particular, the obesity predictor that yields (the comparatively) largest ef-

fect on the fraction of non − storers is the percentage of households that received

food stamps. Households that received food stamps22 are located in lower income

22The SNAP/Food Stamp Program, administered by the United States Department
of Agriculture (USDA), considers soft drinks, candy, cookies, snack crackers, and ice
cream food items and therefore households can use SNAP benefits to buy them
(http://www.fns.usda.gov/snap/retailers/eligible.htm)
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Table 4.7. Predicted percentages of storing population

Rate and demographic % Storers

variable considered: Mean Min I Quartile Median III Quartile Max

% Obesity 39 34 38 39 41 48

% of Households 43 38 40 42 44 57

received food stamps

% African-American† 42 41 41 42 43 47

Population

% Attained High School 62 53 58 62 65 73

Diploma or less

% Rural Population 39 38 38 39 40 45

†Note: Results for this variable were found to be not statistically significant.

brackets; thus, it is not surprising that higher values for this variable result in greater

sale sensitivity (and thus a higher inclination to store). The impact of the percentage

of African-American population was found to be small and not statistically signifi-

cant. In Table 4.7 we report a summary of the estimated distributions of the fraction

of storers, using the results of the models that consider the interaction of ω with the

obesity rate and with the obesity predictors.

4.7 Policy Simulations

In this section we examine policy implications of our estimates. Specifically, we

conduct simulations to examine how consumers consumption of the selected soda

products might be affected by the following policy scenarios:

1. A 5.2% soda sales tax (current average sales tax for soda in the U.S.) applied

to all products (i.e. Coke, Pepsi, diet composite good and regular composite

good).

2. A ban on temporary price reductions (TPRs).

78



For this exercise we used the estimated coefficients obtained from the specifications III

and IV reported in Table 4.5 (including the unreported cross-price coefficients for the

two composite brands in Coke and Pepsi equations). In addition, the simulation takes

into account the change in quantity that the two composite goods would experience

from such interventions; to do this, we use the (unreported) regression results from

the two composite brand regressions in the simulation. To compute the percent vari-

ations in quantity demanded predicted for scenario 1, we increase all prices (including

those of the composite brands) by 5.2%. For scenario 2, we only increase sale prices

of Coke and Pepsi (recall: all prices less or equal to $1.05) and keep regular prices at

their current levels.23 Specifically, we shifted all (Coke and Pepsi) sale prices by an

amount equal to the price increase needed so that the minimum sale price observed

in the data (prior to the simulation) would be equal to $1.05 (i.e. would no longer be

a sale price). This procedure yields an average price increase of 2% for Coke and 3%

for Pepsi, which is significantly smaller (roughly 50% less) than the overall price in-

crease that results from the first scenario. Our simulation exercise output is the total

annual quantity that would be predicted (demanded) in each scenario. We bootstrap

the predicted post-policy consumption predictions 1,000 times using the distribution

of our estimated coefficients (while keeping store-brand fixed effects constant across

draws) All results from our bootstrap computations are significant at the five percent

level.

Results from our counterfactual analyses are reported in Table 4.8 as percentage

changes in consumption relative to the annual purchases registered in 2006 across

all store-week pairs in our data. Specification III refers to the results from model

specification III (Table 4.5), where we let the coefficient ω (fraction of non-storing

population) be a function of the obesity rate; specification IV refers to model speci-

23We cannot increase sale prices of composite brands as it is unfeasible to model the dynamics of
composite brands with our model (see section 4.2 for details).
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fication IV (Table 4.5), where we considered the impact of the rate of obesity on the

own price elasticity for storers. We report the results computed at mean, minimum,

quartile I, median, quartile III and maximum rate of obesity in our sample.

Overall, scenario 2 yields a larger decrease in quantity consumed than in scenario

1. The most likely explanation for this result is that the effect of a price increase when

a tax is imposed (scenario 1) is mitigated by the presence of temporary discounts. In

other words, while there is a price increase associated in both scenarios considered,

the price increase in scenario 2 is targeted to periods when a significant portion of

the population used to stockpile. These results highlight the critical importance of

stockpiling behavior in the effectiveness (in this case ineffectiveness) of policies that

would impose a price increase across the board without taking into consideration the

existence of temporary price reductions by firms.

Simulation results from both specifications (III and IV) indicate that the reduction

in quantity (in both scenarios) is larger as the obesity rate increases; however, this

effect is greater in specification III (which considers the interaction of the obesity

rate with ω) than in specification IV (which considers the interaction of the obesity

rate with storers’ own-price coefficient). This finding suggests that the role of sale

sensitivity in populations with higher obesity incidence is more crucial than the role

played by price sensitivity.

Notice that, under scenario 1 (which implies a 5.2% price increase), when the

maximum rate of obesity is considered, quantity demanded is predicted to decrease

by 1.54% and by 1.47%, for specification III and IV, respectively. Under scenario 2

(TPRs banned), the quantity decrease is predicted to be much larger in areas with

high obesity rates (2.66%, for specification III and 2.42% for specification IV).

Table 4.9 displays the elasticities implied by the two policy scenarios we consider.

We observe that the current average sales tax (5.2%) implies very low demand elas-

ticities; in other words, soda consumers are predicted to reduce their consumption
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Table 4.9. Demand elasticities corresponding to the % change in quantity demanded
predicted for the two policy scenarios considered

Obesity Rate being considered (%)

Policy Mean Min I Quartile Median III Quartile Max

Scenario: 25.08 17.10 22.70 25.10 27.50 40.10

Elasticities:

Specific. II -0.278 -0.270 -0.276 -0.278 -0.281 -0.300

Sales Tax

Specific. III -0.279 -0.275 -0.278 -0.279 -0.280 -0.283

TPR1 Specific. II -0.982 -0.947 -0.971 -0.982 -0.993 -1.065

Banned

Specific. III -0.983 -0.982 -0.983 -0.983 -0.983 -0.969

Note: 1Temporary Price Reduction.

only by a negligible amount after a 5.2% sales tax applies. On the other hand, a ban

on temporary price reductions (about 2.5% price increase) implies demand elasticities

that are approximately three times larger than those seen in the first scenario. In

sum, limiting the magnitude of discounts would have a comparatively higher impact

than increasing soda prices via taxes, largely because fewer consumers would be able

to store.

4.8 Discussion and concluding remarks

In this research we investigate the role of dynamics and obesity on the demand

for soda . The main feature of our dynamic model is that it accounts for storing behav-

ior (i.e. consumers’ propensity to stockpile during periods of temporary low prices).

Also, our specification of the model allows us to determine whether price sensitivity

and sale sensitivity of soda consumers varies across populations with different obesity

incidence. We find that a substantial fraction of the population stockpiles during

temporary price reductions in order to avoid paying higher prices when prices go

back up to normal levels. Further, our results suggest that higher-BMI consumers,

despite being less price-sensitive, are more inclined to store (i.e. more sale-sensitive).
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These findings suggest that lower price-sensitivity for high BMI consumers may not

necessarily translate into substantial differences in quantity decreases across different

obesity rates as a result of a policy intervention that increases the price of the product

(e.g. a soda tax).

We translate our results to policy implications by computing the potential de-

crease in quantity demanded that would be observed after a sales tax is imposed. In

addition, we consider a counterfactual where price discounts (sales) would be sub-

stantially limited. Our estimates indicate that a price increase due to a tax would

fail to yield large reductions in total quantity demanded. The main explanation for

this result is that consumer’s ability to stockpile during sale periods (which will per-

sist even if taxes are increased) would neutralize the effect of the tax. Conversely,

our research suggests that a policy intervention restricting the magnitude temporary

price reductions would be significantly more successful by a ratio of 3 to 1 (than the

current level of taxation) in reducing soda consumption.

Stockpiling behavior (or sale sensitivity) for a sizable part of the population may

help explain why the impact of soda sales taxes on purchased soda volumes has been

found to be null in a retrospective study that compares the effect of these taxes on

soda consumption in jurisdictions where the taxes were enacted versus nearby loca-

tions not affected by the tax increase (see Chapters 2 and 3). In addition, our results

suggest that a ban on temporary price reductions would be more effective in reducing

the consumption of high BMI consumers. The reason is that, according to our esti-

mates, consumers in areas with higher obesity rates are more inclined to store than

in other regions.

One behavioral factor that our counterfactual analysis does not take into consid-

eration is the fact that sales taxes are not very salient (i.e., they do not show on the

shelf price) and as a consequence consumers are less likely to respond to them than

to a price increase of the same magnitude that is included in the shelf price (see, for
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example, Feldman and Ruffle (2014)). This feature may further limit the effective-

ness of sales taxes if the goal of the policy is to reduce soda consumption, rather than

to increase the tax revenue of the state (see Chapter 2 and 3).

Our predictions, while consistent with the main results from previous studies (i.e.,

Patel, 2012), highlight the importance of considering the demand dynamics when

studying soda consumers’ behavior. As opposed to previous studies that conducted

welfare analysis and quantified the possible effects of existing or proposed taxes on

consumption, we account for the effects of temporary price discounts and the con-

sequent stockpiling behavior that occurs during these periods. Further, to the best

of our knowledge, no previous research has studied whether discount responsiveness

varies across populations that have different rates of obesity incidence. Nevertheless,

more research is needed to establish what policy (or combination of policies) would

more effectively curb obesity (e.g., ban of obesogenic/addictive ingredients, advertis-

ing, large sizes, etc.). The main take away from this chapter is that policies that are

targeted in a way that they focus on crucial features of the market are likely to be

more effective than across the board policies that affect all features of the market

with the same intensity.
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CHAPTER 5

DO SODA MANUFACTURERS RUN SALES MORE
FREQUENTLY IN AREAS WITH HIGH OBESITY

RATES?

5.1 Introduction

In this Chapter we examine companies’ conduct in terms of temporary price re-

ductions (TPRs), to verify whether sales and discounts regimes are randomly set or

they follow certain patterns. Our investigations are confined to Coke and Pepsi, which

are the market leader brands. Specifically, first, we analyze whether Coke and Pepsi

compete on sales (i.e., set the sale periods on the same week) or coordinate (i.e., avoid

to set the sale period on the same week). Second, we analyze whether the frequencies

of discount periods for these two companies are systematically related with obesity

rates or obesity predictors.

In Chapter 4 we show that populations characterized by a high rate of obesity

are more prone to make their soda purchases during a discount period (or sale week).

This knowledge leads us to investigate whether soda companies exploit the described

attitude of obese consumers, leveraging their ability to set the price, to sell more soda

where the rate of obesity is already high. Additionally, we look at the price trend

for each supermarket in the attempt to explain the negative sign of the cross price

elasticities reported in Tables 4.5 and 4.6. We notice, as explained below, not only

that Coke and Pepsi seem to cooperate in setting their discount periods, but also a

high price volatility. As mentioned in Chapter 4, in general, one should expect that

producers of addictive products will offer (at least temporarily) attractive prices in
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order to entice people to initiate consumption. In light of these considerations, in this

Chapter we take a closer look at the manufacturers’ TPRs conduct.

5.2 Companies’ conduct in terms of temporary price reduc-

tions

For the following analyses we use 2006 IRI data on soda prices and volumes de-

scribed in Chapter 3 and 4. Also, we use obesity data derived from CDC’s Behavioral

Risk Factor Surveillance System (BRFSS) in 2006, as described in Chapter 4. First,

we plot Coke and Pepsi weekly price trends for each supermarket in the sample. We

observe that prices of Coke and Pepsi tend to follow opposite trends consistently,

and that discount periods appear to alternate weekly (see Figure 5.1 for an example

of a typical yearly price trend). Table 5.1 compares mean non-sale prices (across all

supermarkets in the sample) for Coke and Pepsi, computed when the competitor does

not run a sale, with mean non-sale prices computed when the competitor runs a sale.

The values for mean non-sale prices are larger if computed when there is a sale for

the other brand than if computed when the other brand is not on sale regime. These

differences are statistically significant according to a two-sample mean-comparison

test (Table 5.1). Conversely, when the two brands are both on non-sale regime, the

mean price is not statistically different from zero. The values of the mean non-sale

prices support the conjecture that store prices are established at the company level

and that Coke and Pepsi might possibly be engaging in collusive behavior, or sale-

coordination (in the sense that weeks during which both brands are on sale occur

much less frequently than chance would predict).

In addition, we investigate the often cited claim that soda companies are to blame

for the obesity epidemic as they might be more likely to disproportionately target

temporary price reductions in areas where the obesity rate is higher. According to

our results from the dynamic models in Chapter 4, areas characterized by a higher
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Figure 5.1. Typical supermarket yearly price trend for Coke and Pepsi in 2006
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Price Coke Price Pepsi

Note: example of price trend in one supermarket. The reference line denotes the sale price

threshold ($1.05).

Table 5.1. Comparison between mean non-sale prices for Coke and Pepsi, computed
when the competitor does not run a sale and when the competitor runs a sale

Mean Price Mean Price

Coke Pepsi

Sale Coke=0 1.30 Sale Pepsi=0 1.30

& Sale Pepsi=0 & Sale Coke=0

Sale Coke=0 1.37 Sale Pepsi=0 1.32

& Sale Pepsi=1 & Sale Coke=1

Two sample T-test†:

t-stat (p-value) -27.32 (0.000) -6.65 (0.000)

†Two sample mean-comparison test. The null hypothesis that the two mean prices are equal is
rejected at the 1% level of confidence or better, for both Coke and Pepsi.
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rate of obesity are also characterized by a higher sale-sensitivity; therefore, targeting

these areas with more discounts would exacerbate obesity rates where BMI is already

high. To shed light on this hypothesis, we obtain results from county-level regressions

of an index of sale intensity (frequency of temporary price reductions) on the rate of

obesity. We repeat the same procedure using the obesity predictor variables discussed

in Chapter 4 (recall: % of Households received food stamps; % African-American

Population; % Attained High School Diploma or less; % Rural Population). As in

Chapter 4, a sale price is defined as any price below the $1.05 threshold. Results

from these regressions show no statistical evidence of an association between county

obesity rates (or obesity predictors) and sale intensity, for either brand (Table 5.2).

Sale =


1 if sale

0 otherwise

(5.1)

Indexji =
∑
t

(
Salejit

V oljit
TotV olji

)
, j = Coke, Pepsi i = County t = Week

(5.2)
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Table 5.2. Results from regressions of a sale index for Coke and Pepsi on the rate
of obesity and obesity predictors

Dep. Variable: Sale index Coke Sale index Pepsi

Indep. Variables:

Regression 1 % Obesity 0.00 -0.01

(0.00) (0.01)

Const. 0.38 0.75

(0.13) (0.24)

R2 0.00 0.00

Regression 2 % of Households received food stamps 0.00 -0.01

(0.00) (0.00)

Const. 0.52 0.62

(0.04) (0.04)

R2 0.00 0.00

Regression 3 % African-American Population 0.00 0.00

(0.00) (0.00)

Const. 0.51 0.57

(0.02) (0.02)

R2 0.00 0.00

Regression 4 % Attained High School Diploma or less 0.00 0.00

(0.00) (0.00)

Const. 0.34 0.43

(0.08) (0.09)

R2 0.03 0.02

Regression 5 % Rural Population 0.00 0.00

(0.00) (0.00)

Const. 0.46 0.55

(0.02) (0.02)

R2 0.08 0.00

Note: sample size of 126 counties. Standard errors in parentheses.
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5.3 Concluding remarks

Chapter 5 presents the results of analyses aimed at investigating strategic conducts

of soda companies concerning timing and frequency of temporary price reductions.

We find statistical evidence suggestive of a cooperative behavior between Coke and

Pepsi manufactures in terms of the timing of decisions for when their respective prod-

ucts go on sale. They appear to offer discounts on alternate weeks, which suggests

that firms may be avoiding price competition. While this strategy is certainly enacted

to maximize the volume sold for both brands, the quantification of this cooperation

gain, as well as the consumers’ gain (or loss) remain open questions.

Further, we investigate the often cited claim that soda companies disproportion-

ately target large-volume soda consumers (i.e., more likely to be obese) with more

frequent temporary price reductions offered in areas where the obesity rate is higher.

This claim is based on the marketing principle that is less expensive and more effi-

cient to retain existing customers than to acquire new ones. However, results from

our analyses do not show statistical evidence that the described behavior is enacted

by Coke and Pepsi manufactures.
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