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ABSTRACT

ISOPERIMETRIC INEQUALITY AND AREA GROWTH
OF SURFACES WITH BOUNDED MEAN CURVATURE

MAY 2014

DECHANG CHEN

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor William H. Meeks III

In this thesis, we give a lower bound on the areas of small geodesic balls in

an immersed hypersurface M contained in a Riemannian manifold N . This lower

bound depends only on an upper bound for the absolute mean curvature function of

M , an upper bound of the absolute sectional curvature of N and a lower bound for

the injectivity radius of N . As a consequence, we prove that if M is a noncompact

complete surface of bounded absolute mean curvature in Riemannian manifold N with

positive injectivity radius and bounded absolute sectional curvature, then the area of

geodesic balls of M must grow at least linearly in terms of their radius. In particular,

this result implies the classical result of Yau that a complete minimal hypersurface in

Rn must have infinite area. We also attain partial results on the conjecture: If M is a

compact immersed surface in hyperbolic 3-space H3, and the absolute mean curvature

function of M is bounded from above by 1, then Area(M) ≤ (Length(∂M))2

4π
.
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INTRODUCTION

The thesis includes two parts; the first part deals with the volume growth of a

hypersurface M with bounded absolute mean curvature in a Riemannian manifold in

terms of the radius r of intrinsic geodesic balls BM(p, r) centered at a point p in M .

The second part of the thesis concerns the existence of isoperimetric inequalities in H3

for compact surfaces with boundary and absolute mean curvature function bounded

from above by 1.

In Chapter 2, we give lower volume growth estimates for geodesic balls in a com-

plete noncompact hypersurface M with bounded mean curvature in a complete n-

manifold N with bounded sectional curvature and positive injectivity radius, where

M is allowed to have compact boundary. More precisely, as a consequence of The-

orem 0.0.1 below (see Theorem 2.3.6) such an M has at least linear volume growth

with respect to the distance function to its boundary; see Corollary 0.0.2 for this con-

sequence. This result generalizes an earlier theorem of Yau [18] which states that a

complete, noncompact minimal hypersurface of Rn+1 has infinite volume (also see [2]

and [18] for some related results).

Our first main result can be stated as follows:

Theorem 0.0.1. Let H0, I0, S0 be positive numbers. Suppose that M is a complete

oriented hypersurface with boundary in an (n+ 1)-manifold (N, g) such that

• the absolute mean curvature function of M is at most H0,

• the injectivity radius of N is at least I0,

• the absolute sectional curvature of N is at most S0.
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Then there exist constants c = c(n,H0, I0, S0), σ = σ(n,H0, I0, S0) such that for any

point p ∈ M of distance at least σ from ∂M , and for r ∈ (0, σ), the volume of the

intrinsic Riemannian ball BM(p, r) is greater than or equal to crn.

Corollary 0.0.2. Under the hypothesis of Theorem 0.0.1, for any point p ∈ M

and for any R ∈ [σ, dist(p, ∂M)], then Vol(BM(p,R)) ≥ CR for some constant C

depending on σ, H0, I0, S0.

In the case the dimension of M is 2, we have the following result, where ε can be

taken to be σ in an appropriate application of Theorem 0.0.1.

Corollary 0.0.3. Let M be a complete surface with compact boundary in a 3-manifold

N with bounded sectional curvature and positive injective radius. Suppose for some

H0 ≥ 0, the absolute mean curvature function HM of M satisfies |HM | ≤ H0 and the

boundary ∂M has at most m boundary components with total length D. Then for any

point p in M such that there exists a point q ∈M with Rq = dM(p, q) > 2mε+ D
2

(ε is

small enough), then for any r ∈ [2mε+ D
2
, Rq], the area of the intrinsic Riemannian

ball satisfies Area(BM(p, r)) ≥ Cε(r − 2mε− D
2

) for some constant C.

As a consequence of the above corollary, we conclude that certain noncompact

hypersurfaces in certain Riemannian manifolds have infinite area. We can also obtain

an isoperimetric inequality given in the next theorem.

We first make the following definitions.

Definition 0.0.4. The diameter of a compact Riemannian manifold M is defined as

Diameter(M) := sup
p,q∈M

d(p, q) ∈ (0,∞).

Definition 0.0.5. The radius of compact Riemannian manifold with boundary is

defined as

Radius(M) := sup
p∈M

d(p, ∂M) ∈ (0,∞).

2



Theorem 0.0.6 (Isoperimetric Inequality 1). Suppose X is a Riemannian manifold

without boundary that satisfies the following isoperimetric inequality: Given L0, H0,

there exists A0 such that for any compact immersed surface Σ in X with mean cur-

vature function satisfying |HΣ| ≤ H0, and with the length L of its boundary satisfying

L ≤ L0,

Area(Σ) ≤ A0L.

Then there exists a C such that for any compact hypersurface Σ with at most one

boundary component, mean curvature function |HΣ| ≤ H0 and boundary length L ≤

L0, then

Diameter(Σ) + Radius(Σ) + Area(Σ) ≤ CL.

In Chapter 3, we study the existence of isoperimetric inequalities in H3 for certain

compact surfaces. The classical isoperimetric inequality in R2 states that 4πArea(D) ≤

Length(∂D)2 holds for any compact planar domain D, where the equality is attained

precisely when ∂D is a circle. The inequality is conjectured to hold for compact min-

imal surfaces in Rn, where it is known to hold when the minimal surface has at most

two boundary curves, see [10].

In another direction, one may try to extend the classical isoperimetric inequality

to more general submanifolds with variable mean curvature vector in a Riemannian

manifold. W. Allard [1] gave an isoperimetric inequality for submanifolds in Rn which

involves the mean curvature term:

Vol(M)m−1 ≤ c(m)(Vol(∂M) +

∫
M

|H|)m. (1)

Then D. Hoffman and J. Spruck [7] generalized this result to submanifolds in a Rie-

mannian manifold.

For the next discussion we need the following definition; recall that a metric Lie

group is just a Lie group with a left invariant metric, see Definition 1.6.3.

3



Definition 0.0.7. For a 3-dimensional metric Lie group X, the critical mean curva-

ture H(X) of X is defined to be

H(X) = inf
Σ∈A

max
Σ
|HΣ|,

where A is the collection of all compact, immersed orientable surfaces in X and HΣ

stands for the mean curvature function of Σ.

Meeks, Mira, Perez and Ros proved that if X is a noncompact, simply connected,

3-dimensional metric Lie group, then the critical mean curvature of X is equal to

twice the Cheeger constant of X; see [11] for details.

Conjecture 0.0.8 (Meeks, Mira, Perez and Ros). Let X be a metric Lie group

diffeomorphic to R3. Given L > 0, there exists a CL > 0 such that for any compact

immersed surface Σ in X with one boundary component of length at most L and

absolute mean curvature function satisfying |HX | ≤ H(X), where H(X) is the critical

curvature of X, then

Area(Σ) ≤ CL · Length(∂Σ).

In this thesis, we give some results on isoperimetric inequalities for compact sur-

faces immersed in H3, which has critical curvature 1; note that H3 is an example of

a metric Lie group where the group is the orientation preserving similarities of R2.

We prove the following linear isoperimetric inequality for certain surfaces in H3.

Theorem 0.0.9. Let Σ be a compact surface with boundary in H3. Suppose |HΣ| ≤

1− ε, where ε ∈ (0, 1]. There exists a constant C(ε) such that

Area(Σ) ≤ C(ε) · Length(∂Σ).

If we assume that a surface Σ in H3 is contained in a bounded domain, then we

obtain the next result.

4



Theorem 0.0.10. Let Σ be a compact surface in a bounded domain R in H3 with

compact boundary. Suppose |HΣ| ≤ 1. Then there exists some constant CR such that

Area(Σ) ≤ CR · Length(∂Σ).

Using the observation that compact surfaces with one boundary component of

length at most L0 and immersed in H3 are contained in a bounded geodesic ball of

radius at most L0/2, we can obtain the following result.

Corollary 0.0.11. Suppose that Σ is a compact surface with one boundary compo-

nent.Suppose Length(∂Σ) ≤ L0 and |HΣ| ≤ 1. Then we have

Area(Σ) ≤ eL0

2
Length(∂Σ).

Furthermore, we conjecture:

Conjecture 0.0.12. Let Σ be an immersed compact surface in H3 with absolute mean

curvature function |HΣ| ≤ 1 and boundary of length at most L > 0, then

Area(Σ) ≤ eD(L)

2
Length(∂Σ)

for some constant D(L).

A conjecture on the sharp isoperimetric inequality problem in H3 can be stated

below which holds for disks in H3.

Conjecture 0.0.13. Let Σ be a compact immersed surface with boundary of length

at most L > 0 and absolute mean curvature function |HΣ| ≤ 1, then

Area(Σ) ≤ 1

4π
(Length(∂Σ))2.

Moreover, if one has equality in the above formula, then Σ is a round disk in a

horosphere in H3.

5



CHAPTER 1

FOUNDATIONAL MATERIAL

1.1 Riemannian manifold

Definition 1.1.1. A Riemannian metric g on a differentiable manifold M is a family

of inner products {gp} on the tangent spaces TpM which depend smoothly on the

point p; (M, g) is called Riemannian manifold.

In the local coordinates x = (x1, x2, . . . , xn) of M , the metric is represented by a

symmetric positive definite matrix

(gij(x))i,j=1,...,n.

The inner product of two vectors v = vi ∂
∂xi

,w = wj ∂
∂xj

in the tangent space TpM is

〈v, w〉 = gij(x(p))viwj.

Then the length of v is given by

‖v‖ = 〈v, v〉
1
2 .

Suppose γ : [a, b]→M is a smooth curve, then the length of γ is defined as

L(γ) =

∫ b

a

‖dγ
dt
‖dt.
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The distance between two points p, q can be defined as

d(p, q) := inf
γ∈C
{L(γ)},

where C is the set of all piecewise smooth curves connecting p, q.

The diameter of M is defined as

Diameter(M) := sup
p,q∈M

d(p, q) ∈ (0,∞].

The radius of a compact Riemannian manifold with boundary is defined as

Radius(M) := sup
p∈M

d(p, ∂M) ∈ (0,∞).

If there is a constant c such that for any t ∈ [a, b] there is a neighborhood U ⊂ [a, b]

of t such that for any t1, t2 ∈ U , we have

d(γ(t1), γ(t2)) = c|t1 − t2|,

then γ is called a geodesic. The geodesic is often equipped with a natural parametriza-

tion, i.e., in the above identity c = 1, and the parametrization is unit speed:

d(γ(t1), γ(t2)) = |t1 − t2|, for t1, t2 ∈ U.

Geodesics joining p and q are not necessarily unique and may not exist for some cases.

If the Riemannian manifold is compact, there always exists at least one geodesic with

length d(p, q) connecting points p and q. Without compactness, this result need not be

true. For example, the two points on the punctured plane R2\{0} that are symmetric

about the origin have no geodesic joining them.

7



For any point p in M and for any vector v in TpM there exists a unique geodesic

γ : I →M such that γ(0) = p and γ̇(0) = v, where I is a maximal open interval in R

containing 0. We denote this geodesic γ by cv(t).

Definition 1.1.2. Let Vp = {v ∈ TpM : cv is defined on [0, 1]}. The mapping

expp : Vp → M defined by expp(v) = cv(1) is called the exponential map of M at

p.

Definition 1.1.3. Let M be a Riemannian manifold. If expp(v) is well defined on

TpM at any point p of M , then M is geodesically complete.

In Riemannian manifolds, the properties of geodesic completeness and of metric

completeness are equivalent to each other according to Hopf-Rinow Theorem [8]. So

in Riemannian manifolds, we can use complete for all cases.

Note that a Riemannian manifold M is compact if and only if it is complete and

has finite diameter.

Definition 1.1.4. Let M be a Riemannian manifold and let p ∈ M . The injectivity

radius function of M at the point p is

i(p) := sup{ρ : expp is a diffeomorphism on Bρ(0) ⊂ TpM},

where Bρ(0) is the ball in TpM centered at the origin 0 of radius ρ. The injectivity

radius of M is

i(M) := inf
p∈M

i(p).

1.2 Riemannian connection

To do calculus on manifolds, we need to define a connection or covariant derivative

on the manifold.

8



Definition 1.2.1. Suppose M is a smooth manifold, and Γ(TM) is the collection of

all smooth tangent vector fields on M . Then an affine connection on M is a map

∇ : Γ(TM)× Γ(TM) → Γ(TM),

(X, Y ) 7→ ∇XY,

such that for any X, Y, Z ∈ Γ(TM) and any smooth functions f, g ∈ C∞(M), it

satisfies

• ∇fX+gYZ = f∇XZ + g∇YZ,

• ∇X(fY + gZ) = (Xf)Y + f∇XY + (Xg)Z + g∇XZ,

where Xf denotes the pointwise derivative of f in the direction of X and ∇XY is

called the covariant derivative of Y in the direction of X.

Suppose (U, p) is a local coordinate chart of M , and ei is a basis of local vector

fields on U , then we have

∇ejek = Γijkei,

where Γkij are called the connection coefficients or Christoffel symbols, and these

functions determine the connection on M .

Definition 1.2.2. Suppose (M, g) is a Riemannian manifold. A Riemannian con-

nection ∇ is an affine connection satisfying two more conditions:

• ∇XY −∇YZ = [X, Y ], where [X, Y ] is the Lie bracket of the vector fields X, Y ;

• X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉, where 〈, 〉 is the inner product for g.

There exists a unique Riemannian connection, which is also called Levi-Civita

connection, and the term “covariant derivative” is often referred to as the Levi-Civita

connection in the theory of Riemannian manifolds. From the given conditions of the

9



Levi-Civita connection, we can find the Christoffel symbols of Levi-Civita connection

which can be expressed in terms of g,

Γijk =
1

2
gil
(
∂gkl
∂xj

+
∂gjl
∂xk
− ∂gjk

∂xl

)
.

1.3 Sectional curvature

Let (M, g) be a n-dimensional Riemannian manifold with Levi-Civita connection

∇. Suppose X, Y, Z ∈ Γ(TM), where Γ(TM) is the collection of all smooth vector

fields on M . The Riemann curvature tensor of the Levi-Civita connection ∇ is given

by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where [, ] is the Lie bracket. In local coordinates x = (x1, x2, . . . , xn), we define Rk
lij

by the formula

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xl
= Rk

lij

∂

∂xk
,

and

Rklij = 〈R(
∂

∂xi
,
∂

∂xj
)
∂

∂xl
,
∂

∂xk
〉.

Definition 1.3.1. The sectional curvature of the plane spanned by the tangent vec-

tors X, Y ∈ TxM of the Riemannian manifold M at x is

K(X, Y ) :=
〈R(X, Y )Y,X〉

〈X,X〉〈Y, Y 〉 − 〈X, Y 〉2
.

If {ei} is a orthonormal basis of TxM , then the sectional curvature of the plane

spanned by ei, ej is Rijij.

If M is a two-dimensional surface, then the sectional curvature is simply the

Gaussian curvature. In the special case that M is Euclidean n-space, the sectional

curvature of M is identically zero.

10



1.4 Mean curvature

Consider (M, g) as an oriented n-dimensional isometric immersed submanifold of

(n + p)-dimensional Riemannian manifold (N, g̃). Suppose X, Y ∈ Γ(TM), we can

extend X, Y to the local vector fields X̃, Ỹ on N . Let ∇̃ denote the Levi-Civita

connection on N . We can simply denote the ∇̃X̃ Ỹ |M as ∇̃XY . It can be decomposed

as

∇̃XY = ∇XY +B(X, Y ),

where ∇XY ∈ Γ(TM), B(X, Y ) ∈ Γ(TM)⊥. The defined map

B : Γ(TM)× Γ(TM)→ Γ(TM)⊥

is called the second fundamental form of M in N . It can be represented as

B(X, Y ) =

n+p∑
α=n+1

hα(X, Y )ξα,

where ξα is a local orthonormal basis of Γ(TM)⊥. Because we have

〈∇̃XY, ξα〉+ 〈Y, ∇̃Xξα〉 = 〈Y, ξα〉 = 0,

by definition of second fundamental form, we get hα(X, Y ) = −〈Y, ∇̃Xξα〉.

In a local coordinate neighborhood U of a point on N , suppose {e1, . . . , en+p} is a

orthonormal basis of Γ(TU), such that ordered set {e1, . . . , en} ∈ Γ(TM) corresponds

to the orientation of M , {en+1, . . . , en+p} ∈ Γ(TM)⊥, and let w1, . . . , wn+p be the dual

basis. Then B can be represented in local coordinates as

B = hαijw
i ⊗ wj ⊗ eα.

The norm of the B

‖B‖ =
√
〈B,B〉 =

√∑
α,i,j

(hαij)
2,

11



is called the norm of the second fundamental form.

Definition 1.4.1. The mean curvature vector of M is

H =
1

n
trace(B) =

1

n

∑
i

B(ei, ei) =
∑
α

(
1

n

∑
i

hαii

)
eα.

The norm of the mean curvature vector field is called the mean curvature function

of M . By the definition, we have

H =
∑
α

(
1

n

∑
i

hαii

)
eα = − 1

n

∑
α

(∑
i

〈ei, ∇̃eieα〉

)
eα.

Definition 1.4.2. The mean curvature function HM of M is

HM = ‖H‖ =
√
〈H,H〉 =

1

n

√∑
α

(∑
i

hαii

)2

.

If Mn is a hypersurface of Nn+1, then the second fundamental form of Mn is

B(X, Y ) = h(X, Y )ξ,

where ξ is a unit normal vector field of Mn. In local coordinates, we can represent

the second fundamental form as

h = hijw
i ⊗ wj.

The mean curvature function is simply equal to

H =
1

n

n∑
i=1

hii.
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1.5 Divergence of a vector field

Let (M, g) be an n-dimensional isometrically immersed submanifold of (n + p)-

dimensional Riemannian manifold (N, g̃). Given X : M → Γ(TN), a vector field

along M , let ∇̃X : Γ(TM) → Γ(TN) be defined as the map Y → ∇̃YX, where we

consider X to be extended to a vector field in N denoted by the same letter. (see

Section 3 of [7])

Definition 1.5.1. The divergence of X on M is div(X) = traceM∇̃X which is the

trace of ∇̃X on Γ(TM).

Let {e1, e2, . . . , en} denote the orthonormal basis of the smooth vector field on M ,

and then we have

div(X) =
n∑
i=1

〈∇̃eiX, ei〉.

By the definition of mean curvature vector, we can write the mean curvature vector

as

H = − 1

n

∑
α

(div(eα)) eα.

In particular, if M is a hypersurface of N , we can obtain

div(ξ) = −nHM ,

where ξ is the unit normal vector field to M and HM is the mean curvature function

of M .

The divergence of X in the ambient space N is given by the definition DIV(X) =

traceN∇̃X. If {en+1, . . . , en+p} is a local orthonormal basis of the normal bundle to

M , then we have

DIV(X) =

n+p∑
i=1

〈∇̃eiX, ei〉.

So we have

DIV(X) = div(X) +

n+p∑
i=n+1

〈∇̃eiX, ei〉.

13



In the case that M is a hypersurface of N , because of

〈∇̃ξξ, ξ〉 = 0,

we have

DIV(ξ) = div(ξ) = −nHM .

Next, let’s introduce the divergence theorem.

Theorem 1.5.2. Suppose M is a compact Riemannian manifold with boundary ∂M .

For any X ∈ Γ(TM), we have

∫
M

div(X) = −
∫
∂M

〈X, η〉,

where η is inward pointing co-normal to ∂M .

See [15] for more discussion on what follows. When M is a submanifold of N , it

is interesting to compute
∫
M

div(X) in case the condition X ∈ Γ(TM) is dropped.

Let X be a smooth vector field on N . We firstly decompose X into tangential and

normal parts on M :

X = X> +X⊥,

where locally X⊥ =
∑

α〈X, eα〉eα. Then we have

div(X⊥) =
∑
α

〈X, eα〉div(eα) = −n〈X,H〉. (1.1)

Applying the divergence theorem to X>, we can get

∫
M

div(X>) = −
∫
∂M

〈X>, η〉.

14



Therefore we have

∫
M

div(X) = −
∫
∂M

〈X>, η〉 − n
∫
M

〈X,H〉.

We also can use div to define the Laplace operator ∆ on M by

∆f = div(∇Mf),

where ∇Mf is the gradient of the function f on M .

1.6 Lie groups and homogeneous 3-manifolds

Definition 1.6.1. A Riemannian n-manifold X is homogeneous if the isometry group

I(X) of X acts transitively on X.

Definition 1.6.2. A Lie Group X is a smooth manifold whose group operation

(g1, g2) 7−→ g1g2 from G × G to G is smooth and the inverse mapping I : G → G

given by I(x) = x−1 is also smooth.

Given an element x ∈ X, let lx : X → X, lx(y) = xy, denote the left translation

by x. If the metric g on X is invariant under the left translation, then we say that

the metric is left invariant.

Definition 1.6.3. A metric Lie group X is a Lie group equipped with a left invariant

metric.

Let X denote a simply connected, homogeneous 3-manifold. If X is not isomorphic

to the Riemannian manifold S2×R, then X is isometric to a metric Lie group; see [?]

for a proof.
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Definition 1.6.4. For a simply connected, homogeneous 3-manifold X, the critical

mean curvature H(X) of X is defined to be

H(X) = inf
Σ∈A

max
Σ
|HΣ|,

where A is the collection of all compact, immersed orientable surfaces in X and HΣ

stands for the mean curvature function of Σ.

1.7 Hyperbolic 3-space H3

Hyperbolic 3-space is a homogeneous 3-manifold X with critical curvature equals

H(X) = 1 whose isometry group is 6 dimensional, which we denote by H3. In

general, hyperbolic (n + 1)-space Hn+1 can be seen as being a Lie group isomorphic

to the group of similarities of Rn, for any (a, b) ∈ Hn+1 using upper halfspace model

{(a, b) | a ∈ Rn, b > 0}, we have

φ(a,b) : Rn → Rn

x 7→ bx+ a.

In the upper halfspace model Rn+1
+ = {(x, y) | x ∈ Rn, y > 0}, the metric for Rn+1

+

isometric to Hn+1 is described by

ds2 =
dx2

1 + . . .+ dx2
n + dy2

y2
.

Another model for Hn+1 is the open unit ball Bn+1 centered at the origin 0 in Rn+1

with conformal metric

ds2 =
4(dx2

1 + . . .+ dx2
n+1)

(1− r2)2
.
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It is straightforward to verify that the following maps are mutually inverse isometries:

F : Bn+1 → Rn+1
+

(x, y) 7→ (2x,−|x|2 − y2 + 1)

(1− y)2 + |x|2

and

G : Rn+1
+ → Bn+1

(x, y) 7→ (2x, |x|2 + y2 − 1)

(1 + y)2 + |x|2
.

Any hypersurface of Hn+1 on which the isometries of Hn+1 act transitively must have

constant mean curvature. Hence any horizontal hyperplane y = y0 in the upper half-

space model is a constant mean curvature hypersurface. Also the spheres tangent to

the boundary of the upper halfspace also have constant mean curvature. Actually, we

always can find an isometric group action to transform tangent spheres to horizontal

hyperplanes.

We next show the mean curvature of the horizontal hyperplanes is constant 1. In

the upper halfspace model, we take the basis { ∂
∂xi
, ∂
∂y
}i=1,...,n for the smooth vector

fields on Hn+1. Obviously {y ∂
∂xi
, y ∂

∂y
}i=1,...,n is an orthonormal basis of the smooth

vector fields. Here en+1 = y0
∂
∂y

is the unit normal vector field on hyperplane y = y0,

and {ei = y0
∂
∂xi
}i=1,...,n is an orthonormal basis of the vector fields tangent to the

hyperplane. Let ∇̃ denote the Levi-Civita connection on Hn+1. Then the mean

curvature of the hyperplane y = y0 is

H =
1

n

n∑
i=1

h(ei, ei) = − 1

n

n∑
i=1

g(ei, ∇̃eien+1).

If {Γkij} is the Christoffel Symbol in basis { ∂
∂xi
, ∂
∂y
}i=1,...,n, then we have Γii(n+1) = − 1

y

for all i and 0 otherwise. Therefore,
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∇̃eien+1 = ∇̃y0
∂
∂xi

y0
∂

∂y
= y2

0∇̃ ∂
∂xi

∂

∂y
= −y0

∂

∂xi
= −ei.

Hence, the mean curvature of the hyperplane y = y0 is H = 1.

In the ball model, both the horizontal hyperplanes and the tangent spheres in

the upper halfspace model appear in the ball model as Euclidean spheres tangent

to ∂Bn+1. We remark that all the horizontal hyperplanes in the halfspace model

correspond to the spheres tangent to the same point in ball model, similarly the

tangent spheres at a particular point in the upper halfspace model correspond to

spheres in the ball model tangent to some particular point in ∂Bn+1. We call these

tangent spheres in ball model horospheres, and we just showed that all horospheres

have constant mean curvature 1. The horospheres tangent at the same point in ∂Bn+1

form a codimension-one foliation of Hn+1, according to the following definitions.

Definition 1.7.1. A smooth codimension-one lamination of a Riemannian n-manifold

X is the union of a collection of pairwise disjoint, connected, injectively immersed

surfaces, with a certain local product structure. More precisely, it is a pair (L,A)

satisfying:

1. L is a closed subset of X;

2. A = {ϕβ : D× (0, 1)→ Uβ}β is an atlas of smooth coordinate charts of X (here

D is the open unit disk in Rn−1, (0, 1) is the open unit interval in R and Uβ is

an open subset of X).

3. For each β, there exists a closed subset Cβ of (0, 1) such that ϕ−1
β (Uβ ∩ L) =

D× Cβ.

We will simply denote laminations by L, omitting the charts ϕβ in A unless

explicitly necessary. A smooth lamination L is said to be a smooth foliation of X

if L = X. Every lamination L decomposes into a collection of disjoint connected
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topological hypersurfaces (locally given by ϕβ(D × {t}), t ∈ Cβ, with the notation

above), called the leaves of L. Note that if ∆ ⊂ L is any collection of leaves of L,

then the closure of the union of these leaves has the structure of a lamination within

L, which we will call a sublamination.

A smooth codimension-one lamination L of X is said to be a CMC lamination if

each of its leaves has constant mean curvature (possibly varying from leaf to leaf).

Given H ∈ R, an H-lamination of X is a CMC lamination all whose leaves have the

same mean curvature H. If H = 0, the H-lamination is called a minimal lamination.

The horosphere foliation (Figure 1.1) is an H-foliation with constant mean cur-

vature 1 by our previous calculations. A typical CMC-foliation in hyperbolic space

punctured at the origin is the foliation of geodesic spheres centered at origin in the

ball model (Figure 1.2). Let SR denote the geodesic sphere of hyperbolic radius R

centered at origin. Then we have

R =

∫ r

0

2

1− r2
dr = ln(

1 + r

1− r
).

Equivalently, we have r = tanh(R/2). In the polar coordinates, we have the form of

metric

g = dr2 + sinh2(r)dθ2,

where dθ2 is the standard round metric. Hence, the area of the boundary sphere

is proportional to sinh2(R). The first variation of area gives SR has constant mean

curvature H = coth(R); see Appendix B for these calculations.
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Figure 1.1. Horosphere foliation of H3 in upper half space and ball models

Figure 1.2. Geodesic sphere foliation of H3 in ball model
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CHAPTER 2

AREA GROWTH OF HYPERSURFACES

In this chapter, we will show the uniform lower bound for the local area of a surface

with bounded mean curvature. We will give estimates for areas of both extrinsic and

intrinsic balls. As a consequence, we show that the area of the surface grows at least

linearly. Before we give the proof of the main theorems, we introduce the coarea

formula which is useful in the proof of the theorems.

2.1 Coarea formula

The coarea formula can be considered as a formula that expresses the integral of

a function on a open set in terms of the integral of the integrals over level sets of

some other function. The simplest version of coarea formula can be stated as Fubuni

Theorem

Theorem 2.1.1 (Fubuni Theorem). Suppose φ is an integrable function on Rn+k,

then we have

∫
Rn+k

φ(x1, . . . , xn+k)dx1 . . . dxn+k =

∫
Rk

(∫
Rn
φ(x1, . . . , xn+k)dx1 . . . dxn

)
dxn+1 . . . dxn+k.

Let F to be a submersion from Rn+k to Rk,

F : Rn+k → Rk

(x, y) → y.
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Then we can reformulate Fubini theorem as

∫
Rn+k

φ(x, y) dvn+k(x, y) =

∫
Rk

∫
F−1(y)

φ(x, y) dVn(x) dVk(y)

In the general case, we considerX and Y as C1 Riemannian manifolds of dimension

n+ k and k equipped with metrics gX and gY . Suppose F : X → Y is a C1 function

with surjective differential DpF : TpX → TF (p)Y .

To state the coarea formula, we need to define the jacobian of F . Let’s consider X

and Y as open subset of Rn+k and Rk. Choose (x, y) and y as the coordinate systems

of X and Y . We have

dVX = ρXdx
1 . . . dxndy1 . . . dyk,

dVY = ρY dy
1 . . . dyk,

dVF−1(q) = ρFdx
1 . . . dxn,

where dVF−1(q) denotes the volume density on F−1(q) induced by the restriction of

gX on F−1(q) . The jacobian of F is defined as

JF =
ρY ρF
ρX

.

The general definition of jacobian can be defined via partitions of unity and the

implicit function theorem. Then the general coarea formula can be stated as follows

(see the proof in [13])

Theorem 2.1.2. Let X and Y as C1 Riemannian manifold of dimension n+ k and

k equipped with metric gX and gY . Suppose φ is a measurable function on X respect

to the measure defined by dVX . Then we have

∫
X

JF (p)φ(p) dVX(p) =

∫
Y

(∫
F−1(q)

φ(p) dVF−1(q)(p)

)
dVY (q).
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Corollary 2.1.3. Let X be a C1 Riemannian manifold equipped with metric gX .

Suppose F : X → R is a C1 regular function, and φ : X → R is a measurable function.

Then we have

∫
X

|∇F (p)|φ(p) dVX(p) =

∫
R

(∫
F=t

φ(p) dVF−1(t)(p)

)
dt.

In particular, if φ(p) = 1
|∇F (p)| , we have

Vol(X) =

∫
R

(∫
F=t

1

|∇F (p)|
dVF−1(t)(p)

)
dt

Example 2.1.4. The volume of a ball in Euclidean space Rn+1 can be described

as the integral of the volume of the level set of the distance function. In Euclidean

space, the distance to origin is f(x) = |x|. The gradient of f is ∇f = x
|x| , and hence

|∇f | = 1. Let B denote the unit ball.

Vol(B) =

∫ 1

0

Vol(∂Bs)ds.

Example 2.1.5. We also can use the coarea formula to calculate the volume of unit

sphere Vol(∂B). Consider the unit sphere embedded in Rn+1,

Sn = {(x0, x1, . . . , xn) ∈ Rn+1 :
n∑
i=0

x2
i = 1}.

Let f be the coordinate function x0, f(p) = x0(p) = t. It is easy to verify this

function is regular on Sn. Clearly, the level set {f = t} is a (n− 1)sphere with radius

(1 − t2)1/2. Let ∇̃ be the gradient of the ambient Euclidean space, and ∇ be the

gradient on unit sphere. Then we have

∇f(p) = (∇̃f(p))> = (∂x0)
>,
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which is the projection of ∇̃f(p) = ∂x0 on the tangent plane TpS
n. Hence we have,

|∇f(p)| = |∂x0|(1− x2
0)1/2 = (1− t2)1/2.

Applying coarea formula, we get

Vol(Sn) =

∫ 1

−1

(∫
f=t

1

|∇f(p)|
dVf−1(t)(p)

)
dt

=

∫ 1

−1

(
(1− t2)−1/2Vol(f = t)

)
dt

=

∫ 1

−1

(
(1− t2)(n−2)/2Vol(Sn−1)

)
dt

= Vol(Sn−1)

∫ 1

−1

(1− t2)(n−2)/2dt

We can get the volume of the unit sphere for any dimension using this recursive

formula.

2.2 Monotonicity formula

In this section, we will state the Monotonicity formula of volume for minimal

submanifolds in Rn, (see [4]).

Theorem 2.2.1 (Monotonicity Formula). Let Mk ⊂ Rn be a minimal submanifold.

Given x0 ∈ Rn, let V (s) = Vol(Bs(x0) ∩Mk), where Bs(x0) is the ball centered at x0

in Rn. Then for all 0 < s < t,

V (t)

tk
− V (s)

sk
=

∫
(Bt(x0)\Bs(x0))∩Mk

|(x− x0)N |
|x− x0|k+2

.
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The proof of the theorem is based on the coarea formula (see [5] for a proof).

Defining the function Θx0(s) as

Θx0(s) =
Vol(Bs(x0) ∩Mk)

Vol(Bs ⊂ Rk)
,

we have the following corollary from the theorem.

Corollary 2.2.2. Let Mk ⊂ Rn be a minimal submanifold and x0 ∈ Rn. Then the

function Θx0(s) is a nondecreasing function of s. Moreover, Θx0(s) ≥ 1 if x0 ∈ Mk,

Θx0(s) = 1 if and only if Mk is a part of some k-dimensional plane in Rn.

Since Θx0(s) is nondecreasing, we can define the density at x0 as

Θx0 = lim
s→0

Θx0(s).

If x0 ∈Mk, then we have Θx0 ≥ 1 by the corollary.

Corollary 2.2.3. Let Mk ⊂ Rn be a minimal submanifold and V (s) = Vol(Bs(x0) ∩

Mk), then V (s) ≥ w(k)sk when x0 ∈ M , where w(k) is the unit volume of k-

dimensional ball.

For constant mean curvature submanifolds, we can establish a similar monotonic-

ity formula. In 1989, Korevaar, Kusner, and Solomon [9] proved the “monotonicity

of the area growth” of a constant mean curvature surface. The proof of the following

theorem can be found in [9].

Theorem 2.2.4. Let Σ ⊂ Rn+1 be a properly embedded hypersurface of constant

mean curvature H(H > 0), and A(r) = Area(Br(p) ∩ Σ)(p ∈ Rn+1). Then we have

the inequality

d

dr
(
A(r)

rn
) ≥ −(n+ 1)w(n+ 1)H,
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and for 0 < r < 1,

r−nA(r) ≤ |A(1)|+ (n+ 1)w(n+ 1)H(1− r),

where w(n+ 1) is unit volume of (n+ 1)-dimensional ball.

Next, we will show another version of monotonicity formula for a constant mean

curvature hypersurface. More generally, we will consider the hypersurface with bounded

absolute mean curvature in Rn+1.

Theorem 2.2.5. Let M ⊂ Rn+1 be a hypersurface with bounded mean curvature

|H| ≤ H0 . Given x0 ∈ Rn+1, let V (s) = Vol(Bs(x0) ∩M), where Bs(x0) is the ball

centered at x0 in Rn+1. Then we have the following inequalities,

d

ds
(
eH0sV (s)

sn
) ≥ eH0s

sn+1

∫
∂Bs(x0)∩M

|(x− x0)N |2

|(x− x0)T |
,

eH0tV (t)

tn
− eH0sV (s)

sn
≥
∫

(Bt(x0)\Bs(x0))∩M
eH0|x−x0| |(x− x0)N |2

|x− x|n+2
.

Proof. Without loss of generality, we can pick x0 = 0. Let the function d be the

extrinsic distance to x0 on M , d(x) = |x|. Let ∆ be the Laplace operator on M , ∇ be

the gradient operator on M , and N be the unit normal vector on M . Then we have

∇d = x>/|x|, where x> is the tangent part of x to M , and

∆d2(x) = ∆〈x, x〉 = 2〈∇x,∇x〉+ 2〈∆x, x〉 = 2n+ 2H〈N, x〉.

Because of |〈N, x〉| ≤ |N | · |x| = |x|, we can get

∆d2(x) ≥ 2n− 2H0|x|.
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By divergence theorem,

∫
Bs(x0)∩M

∆d2 =

∫
∂Bs(x0)∩M

〈∇d2, η〉 = 2

∫
∂Bs(x0)∩M

|xT |.

Integrating the right term of the above inequality,

∫
Bs(x0)∩M

(2n− 2H0|x|) = 2nV (s)− 2H0

∫
Bs(x0)∩M

|x| ≥ 2nV (s)− 2H0sV (s).

By the above formulas, we have

H0sV (s)− nV (s) ≥ −
∫
∂Bs(x0)∩M

|xT |.

The coarea formula gives

V (s) =

∫
Bs(x0)∩M

|∇d|−1|∇d| =
∫ s

0

∫
∂Bt(x0)∩M

|∇d|−1dt =

∫ s

0

∫
∂Bt(x0)∩M

|x|
|xT |

dt,

hence we have

dV (s)

ds
=

∫
∂Bs(x0)∩M

|x|
|xT |

ds.

Then we have

d

ds
(
eH0sV (s)

sn
) =

H0e
H0sV (s)

sn
− neH0sV (s)

sn+1
+
eH0s

sn
dV (s)

ds

=
eH0s

sn+1

(
H0sV (s)− nV (s) + s

dV (s)

ds

)
≥ eH0s

sn+1

(
−
∫
∂Bs(x0)∩M

|xT |+ s

∫
∂Bs(x0)∩M

|x|
|xT |

ds

)
≥ eH0s

sn+1

(
−
∫
∂Bs(x0)∩M

|xT |+
∫
∂Bs(x0)∩M

|x|2

|xT |
ds

)
=

eH0s

sn+1

∫
∂Bs(x0)∩M

(
|x|2

|xT |
− |xT |

)
=

eH0s

sn+1

∫
∂Bs(x0)∩M

|xN |2

|xT |
.

Hence we have the first inequality in the statement of Theorem 2.2.5.
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Next rewrite the inequality as

d

ds
(
eH0sV (s)

sn
) ≥

∫
∂Bs(x0)∩M

eH0|x|

|x|n+1

|xN |2

|xT |
=

∫
∂Bs(x0)∩M

eH0|x||xN |2

|x|n+2
|∇d|−1,

and then integrating above inequality and applying coarea formula once again, gives

the second inequality.

Corollary 2.2.6. Suppose M ⊂ Rn+1 is a hypersurface with bounded mean curvature

|H| ≤ H0, then eH0ss−nV (s) is nondecreasing in s. In particular, V (s) ≥ e−H0sw(n)sn

when x0 ∈ M . If s satisfies 0 < s < R (R < dist(x0, ∂M)), we have V (s) ≥ Csn,

where C = e−H0Rw(n).

Proof. By the previous theorem, eH0ss−nV (s) is nondecreasing in s. When x0 ∈ M ,

we have

lim
s→0

eH0sV (s)

sn
= w(n),

and hence we conclude

eH0sV (s)

sn
≥ w(n).

Equivalently, we have V (s) ≥ e−H0sw(n)sn. For 0 < s < R, we have e−H0s > e−H0R,

so

V (s) ≥ e−H0Rw(n)sn.

The above results are for hypersurfaces in Euclidean spaces, but they should be

true for submanifolds of higher codimension. In fact, W. Allard( [1]) showed similar

results for general dimensional varifolds in Euclidean spaces.

2.3 Area growth of surfaces

In Corollary 2.2.6, we proved a monotonicity result for the volume of the inter-

section of extrinsic ball and the surface. In fact, later we will describe similar results
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for the volume of intrinsic balls. Similarly, we have the following result for minimal

surfaces in Euclidean spaces.

Theorem 2.3.1 (Classical Monotonicity Theorem). Let M be a complete minimal

hypersurface in Rn+1, and B(s) is a geodesic ball in M with radius s, then Vol(B(s)) ≥

w(n)sn.

We can get the next result directly by applying the above theorem. (See [2] for

details.)

Corollary 2.3.2. If M is a complete minimal hypersurface in Rn+1, then every end

of M has infinite volume.

Proof. In fact, we will show that for any compact set K ⊂ M , every component of

M\K has infinite volume. Let E be a component of M\K. If E has finite volume,

choose R big enough such that

w(n)Rn > Vol(E).

Let p be a point in E such that the intrinsic distance r(p, ∂E) ≥ R to the boundary

of E, and let B(R) be the geodesic ball of E centered at p. By the Theorem 2.3.1,

then

Vol(E) ≥ Vol(B(R)) ≥ w(n)Rn > Vol(E),

a contradiction.

In the case M is a minimal submanifold in a complete simply connected manifold

N with non-positive curvature, we can obtain a lower estimate of the volume of a

geodesic ball of M as follows.
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Theorem 2.3.3 (Yau [18]). If M is a minimal n-manifold in a complete simply

connected manifold N with non-positive sectional curvature. B(s) is a geodesic ball

in M , then s−nVol(B(s)) is non-decreasing. Moreover

Vol(B(s)) ≥ w(n)sn.

A consequence of the above theorem is that complete minimal submanifold of a

simply connected manifold with non-positive sectional curvature has infinite volume

( [18]).

In the case that the hypersurface is not necessary minimal, Cheung and Leung [3]

proved the following result

Theorem 2.3.4. If M is a n-dimensional complete noncompact submanifold with

bounded mean curvature in Rn or Hn, then the rate of volume growth of M is at least

linear, that is, for any p ∈M and sufficiently large R > 0,

Vol(Bp(R)) ≥ CR

for some constant C > 0, where Bp(s) denotes the geodesic ball centered at p with

radius R.

Similarly, a direct consequence of the above theorem is that a submanifold satis-

fying the hypotheses of the above theorem has infinite volume. Moreover, recall from

the introduction the isoperimetric inequality formula 1 for any compact n-submanifold

M with compact boundary in a Riemannian manifold N

Vol(M)n−1 ≤ c(n)

(
Vol(∂M) +

∫
M

|H|
)n

.
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If one applies the above isoperimetric inequality to the geodesic ball Bp(R), then one

immediately gets

c(n)
1
n (CR)

n−1
n ≤ c(n)

1
nVol(Bp(R))

n−1
n ≤ Vol(∂(Bp(R))) +

∫
Bp(R)

|H|,

which implies that the term Vol(∂(Bp(R)))+
∫
Bp(R)

|H| has a lower bound c(n)
1
n (CR)

n−1
n

for sufficiently large R.

For geodesic balls with small radius in hypersurface M embedded in Euclidean

space, we can obtain a lower bound for the volume as follows

Theorem 2.3.5. Suppose that M is a complete oriented hypersurface with compact

boundary in Rn+1. If the absolute mean curvature of M is bounded with |HM | ≤ H0,

then the volume of the intrinsic Riemannian ball BM(p, r) is at least Crn for 0 < r <

R < dist(p, ∂M), where constant C depends on H0 and R.

Proof. We let d be the distance function of Rn+1, and r be the intrinsic distance

function of M . Without loss of generality, we can choose p = 0. And we will write

the distance functions as d(x), r(x) if the base point is 0. Let ∆ denote the laplace

operator on M .

Suppose x is the vector/position function of M .

∆d2(x) = ∆〈x, x〉 = 2〈∇x,∇x〉+ 2〈∆x, x〉 = 2n+ 2H〈N, x〉,

where H is the mean curvature function on M , N is the normal vector.

|〈N, x〉| ≤ ‖N‖ · ‖x‖ = d(x) ≤ r(x).

Since |H| ≤ H0, then

∆d2(x) ≥ 2n− 2H0r.
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Let B(s) be the geodesic ball of M of radius s centered at 0. Integrating the above

inequality, we obtain

∫
B(s)

∆d2(x) dV ≥
∫
B(s)

(2n−2H0r) dV ≥
∫
B(s)

(2n−2H0s) dV = (2n−2H0s)Vol(B(s)).

Applying Stoke’s theorem, we obtain:

∫
B(s)

∆d2(x) dV =

∫
∂B(s)

〈∇d2, η〉 dΣ =

∫
∂B(s)

2d
∂d

∂r
dΣ ≤

∫
∂B(s)

2s dΣ = 2sVol(∂B(s)).

Thus we have

(2n− 2H0s)Vol(B(s)) ≤ 2sVol(∂B(s)).

In any manifold, we have

Vol(∂B(s)) =
∂

∂r
|r=sVol(B(r)).

We thus obtain

s
∂

∂r
|r=sVol(B(s))− (n−H0s)Vol(B(s)) ≥ 0.

∂(s−nVol(B(s)))

∂s
= s−n−1(s

∂

∂r
|r=sVol(B(r))− nVol(B(s))) ≥ −H0s

−nVol(B(s))

s−nVol(B(s)) ≥ ω(n)e−H0s.

Letting C = ω(n)e−H0R, we have

Vol(B(s)) ≥ Csn.
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We just showed the local intrinsic geodesic balls in hypersurfaces of fixed bounded

mean curvature in Euclidean spaces of the same dimension have volume uniformly

bounded from below in terms of their radius. In fact, we can generalize the result to

the hypersurfaces in ambient Riemannian manifolds.

Theorem 2.3.6. Let H0, I0, S0 be positive numbers. Suppose that M is a complete

oriented hypersurface with boundary in an (n+ 1)-manifold N such that

• the absolute mean curvature function of M is at most H0,

• the injectivity radius of N is at least I0,

• the absolute sectional curvature of N is at most S0.

Then there exist constants c = c(n,H0, I0, S0), σ = σ(n,H0, I0, S0) such that for any

point p ∈ M of distance at least σ from ∂M , and for r ∈ (0, σ), the volume of the

intrinsic Riemannian ball BM(p, r) ≥ crn.

First let’s fix some notations and recall some definitions. Let M , N be the Rie-

mannian manifolds in the theorem, and we consider M as a submanifold of N . Let p

be a base point of M , and let UM be a small neighborhood of p in M . For any point

q ∈ UM , we choose a normal coordinates(u1, u2, u3, ..., un) at q, then at q we have

〈 ∂
∂uα

,
∂

∂uβ
〉 = δαβ,

∇M
∂
∂uα

∂

∂uβ
= 0

for α, β = 1, ..., n, here ∇M is the Riemannian connection of M .
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In order to express the distance function d in N explicitly, we also choose nor-

mal coordinates (x1, x2, x3, ..., xn+1) at p in a neighborhood UN of N . Assume the

coordinates for q ∈ UN is x = (x1, x2, x3, ..., xn+1), then we have

d(p, q) =
√

(x1)2 + (x2)2 + (x3)2 + ...+ (xn+1)2.

At p we have

〈 ∂
∂xα

,
∂

∂xβ
〉 = δαβ,

∇N
∂
∂xα

∂

∂xβ
= 0

for α, β = 1, ..., n+ 1; here ∇N is the Riemannian connection of N . Furthermore, the

Riemannian metric at q is given by the formulas below; see [14]:

gαβ(q) = δαβ −
1

3
xixjRαiβj + o(d2).

Since { ∂
∂uα
}α=1,...,n are orthonormal at q (we are now using the normal coordinates

around q),

eα = x∗(
∂

∂uα
) =

∂xi

∂uα
∂

∂xi

are orthonormal at q. Assume v is an unit normal vector to TqM , then the mean

curvature function of M at q is

HM =
n∑

α=1

〈∇N
eαeα, v〉.

Because M is isometrically immersed in N , for all X and Y ∈ Γ(TM), (we consider

Γ(TM) as a subspace of Γ(TN))

∇M
X Y = (∇N

XY )>,

where > is the orthogonal projection from Γ(TN) to Γ(TM).
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So at q,

HMv =
n∑

α=1

(∇N
eαeα)⊥ =

n∑
α=1

∇N
eαeα −

n∑
α=1

(∇N
eαeα)>

=
n∑

α=1

∇N
eαeα −

n∑
α=1

∇M
∂
∂uα

∂

∂uα

=
n∑

α=1

∇N
eαeα

=
n∑

α=1

∇N
∂xi

∂uα
∂

∂xi

∂xj

∂uα
∂

∂xj

=
n∑

α=1

(
∂2xj

(∂uα)2

∂

∂xj
+
∂xi

∂uα
∂xk

∂uα
Γjik

∂

∂xj
)

Proof of Theorem 2.3.6. We already defined the distance function d(·, ·) of N . Let

r(·, ·) be the distance function of M with respect to the induced metric. We fix a

base point p and will write d(q), r(q) to mean the related distances from q to p.

∆Md
2(x) =

n∑
α=1

∂2

∂uα2

(
n+1∑
i=1

(xi)2

)

= 2
∑
α,i

(
∂xi

uα

)2

+ 2
∑
α,i

xi
∂2xi

(∂uα)2

Without of loss of generality, we can assume the coordinates of q are (x1, 0, 0, ..., 0).

Then at q,

∆Md
2(x) = 2

∑
α,i

(
∂xi

∂uα

)2

+ 2x1
∑
α

∂2x1

(∂uα)2
. (2.1)

Also,

d2(q) = (x1)2,

gij(q) = δij −
1

3
d2(q)Ri1j1 + o(d2).

Assume the absolute sectional curvature of N is bounded by S0, and we can assume

|Rikjk| < S0. So,

δij −
S0

3
d2(q) + o(d2) ≤ gij(q) ≤ δij +

S0

3
d2(q) + o(d2).
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Since 〈 ∂
∂uα

, ∂
∂uα
〉 = 1, for all α = 1 . . . n,

1 = 〈 ∂x
i

∂uα
∂

∂xi
,
∂xi

∂uα
∂

∂xi
〉 = gij

∂xi

∂uα
∂xj

∂uα

=
∑
i

gij

(
∂xi

∂uα

)2

+
∑
i 6=j

gij
∂xi

∂uα
∂xj

∂uα

≤ (1 + 1/3S0d
2 + o(d2))

∑
i

(
∂xi

∂uα

)2

+ 1/2(1/3S0d
2 + o(d2))

∑
i 6=j

(

(
∂xi

∂uα

)2

+

(
∂xj

∂uα

)2

)

= (1 + 1/3S0d
2 + n/3S0d

2 + o(d2))
∑
i

(
∂xi

∂uα

)2

= (1 +
n+ 1

3
S0d

2 + o(d2))
∑
i

(
∂xi

∂uα

)2

.

Similarly,

1 ≥ (1− n+ 1

3
S0d

2 + o(d2))
∑
i

(
∂xi

∂uα

)2

.

By Taylor series, we have

∑
i

(
∂xi

∂uα

)2

≥ 1

1 + n+1
3
S0d2 + o(d2)

= 1− n+ 1

3
S0d

2 + o(d2),

and then we obtain

2
∑
α,i

(
∂xi

uα

)2

≥ 2n(1− n+ 1

3
S0d

2 + o(d2)).

Next we estimate the second term of ∆Md
2 in equation 2.1: we have shown that

HMv =
n∑

α=1

(
∂2xj

(∂uα)2

∂

∂xj
+
∂xi

∂uα
∂xk

∂uα
Γjik

∂

∂xj
),
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where v is the unit normal vector field to M . Let v1 denote the first component of

v, |v1| ≤M1 for some constant M1 because v is a unit normal vector field. For some

M2, |Γlik| ≤M2 in a neighborhood of p. Then we have

2x1
∑
α

∂2x1

(∂uα)2
= 2HMx

1v1 − 2x1
∑
α

Γ1
ik

∂xi

∂uα
∂xk

∂uα

≥ −2M1H0d− 2(n+ 1)M2d
∑
i,α

(
∂xi

∂uα
)2

≥ −2M1H0d−
2n(n+ 1)M2

1− n+1
3
S0d2 + o(d2)

d

≥ −M̃1H0d− M̃2d,

where M̃1 = 2M1 > 0 and M̃2 = 2n(n+1)M2

1−n+1
3
S0d2+o(d2)

> 0.

Hence we have:

∆Md
2 ≥ 2n(1− n+ 1

3
S0d

2 + o(d2))− M̃1H0d− M̃2d

≥ 2n−Qd,

where Q = M̃1H0 + M̃2.

Let B(s) be the geodesic ball in M of radius s centered at p.

∫
B(s)

∆Md
2 dV ≥

∫
B(s)

(2n−Qd) dV ≥
∫
B(s)

(2n−Qs) dV = (2n−Qs)Vol(B(s)).

(2.2)

Applying Stoke’s theorem

∫
B(s)

∆Md
2 dV =

∫
∂B(s)

2d
∂d

∂r
dΣ ≤

∫
∂B(s)

2s dΣ = 2sVol(∂B(s)), (2.3)

By the inequalities 2.2 and 2.3, we obtain:

(2n−Qs)Vol(B(s)) ≤ 2sVol(∂B(s)).
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In any manifold,

Vol(∂B(s)) =
∂

∂r

∣∣∣∣
r=s

Vol(B(r)),

and we thus obtain

s
∂

∂r

∣∣∣∣
r=s

Vol(B(r))− (n− Q

2
s)Vol(B(s)) ≥ 0,

which implies e
Q
2
ss−nVol(B(s)) is nondecreasing. Therefore

e
Q
2
sVol(B(s))

sn
≥ lim

s→0

e
Q
2
sVol(B(s))

sn
= ω(n).

Hence, for 0 < r < σ, where σ is chosen to be small enough such that the above

inequalities are true, we have

Vol(B(r)) ≥ crn,

where c = w(n)e−
Qσ
2 .

S. Gadgil and H. Seshadri( [6]) show a similar result to one given in Theorem 2.3.6

for two-dimensional surfaces in Riemannian manifolds based on the isoperimetric in-

equality. These results can be generalized to the case of any dimensional submanifold;

see Appendix A for details.

Based on the local area estimate given in Theorem 2.3.6, we claim the volume of

the hypersurface grows linearly respect to the geodesic radius.

Corollary 2.3.7. Under the hypothesis of Theorem 2.3.6, for any point p ∈ M

and for any R ∈ [σ, dist(p, ∂M)], then Vol(BM(p,R)) ≥ CR for some constant C

depending on σ, H0, I0, S0.

Proof. Along a geodesic with least distance joining the point p to the boundary, we

can cover the geodesic by geodesic balls of radius σ without overlapping. So we can

find at least [R−σ
2σ

] + 1 geodesic balls such that the balls do not intersect with the
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Figure 2.1. Linear area growth of geodesic balls

boundary of surface (Figure 2.1). For each geodesic ball, we have the volume of the

geodesic ball is at least cσn. Sum up the area of these geodesic balls, we can get the

area of the geodesic ball of radius R is at least cσn([R−σ
2σ

] + 1) ≥ cσn−1R/2.

For a 2-dimensional surface embedded in a 3-manifold, we have following result.

Theorem 2.3.8. Let M be a complete surface with nonempty compact boundary

in 3-manifold N with bounded sectional curvature, positive lower bound of injective

radius. Suppose the absolute mean curvature of M satisfies |HM | ≤ H0 and ∂M has

at most m boundary components with total length D. Then for any point p in M such

that there exists a point q ∈ M with Rq = dM(p, q) > 2mε + D
2

(ε is small enough)

and for any r ∈ [2mε + D
2
, Rq], the area of the intrinsic Riemannian ball satisfies

Area(BM(p, r)) ≥ Cε(r − 2mε− D
2

) for some constant C.
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Figure 2.2. Geodesic entering in the σ-neighborhood of ∂M

Proof. By the triangle inequality, we know the length of the geodesic in the ε-

neighborhood of ∂M is at most 2mε+ D
2

(Figure 2.2). Along the rest of the geodesic,

we may cover it by geodesic balls of radius ε without overlapping. We can find at

least [
r−2mε−D

2

2ε
] + 1 geodesic balls of radius ε on the geodesic that do not intersect

∂M (Figure 2.3). From Theorem 2.3.6, the area of the geodesic ball of radius ε is at

least Cε2 for the constant C given there. Then we have the area of BM(p, r) can be

estimated:

Area(BM(p, r)) ≥ ([
r − 2mε− D

2

2ε
] + 1) · Cε2 ≥ Cε(r − 2mε− D

2
).

As we know the area of surface with bounded mean curvature grows at least

linearly, it is easy to prove that any end of such a surface should have infinite area.

We may also use this fact to study some problems related to the isoperimetric problem.

Theorem 2.3.9. Suppose X is a Riemannian manifold without boundary and satisfies

the following isoperimetric inequality: Given L0, H0, there exists A0 such that for any

compact surface Σ with |HΣ| ≤ H0, and with the length of its boundary L ≤ L0,
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Figure 2.3. Illustration of linear area growth

Area(Σ) ≤ A0L.

Then given L0, H0, there exists a C = C(H0, L0) such that for any compact hyper-

surface Σ with at most one boundary component, |HΣ| ≤ H0 and bounded boundary

length L ≤ L0,

Diameter(Σ) + Radius(Σ) + Area(Σ) ≤ CL.

Proof. First, let’s prove Radius(Σ) ≤ CR · L for some constant CR. If it is not true,

then for any constant CR, we can find a surface Σ with Length(Σn) ≤ L0, |HΣn| ≤ H0

such that

Radius(Σ) > CR · L.

By Corollary 2.3.7, we can find a constant c such that Area(Σ) ≥ c · Radius(Σ) .

Hence, we have

Area(Σ) > c · CR · L.

Choose a sequence CR goes to infinity, then we get contradiction to Area(Σ) ≤ A0L.
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Then, we prove Diameter(Σ) ≤ CDL for some constant CD. Pick any two points

p and q on Σ. Because Radius(Σ) ≤ CR · L, then we have dist(p, ∂Σ) ≤ CR · L and

dist(q, ∂Σ) ≤ CR · L. Hence

dist(p, q) ≤ dist(p, ∂Σ) + dist(q, ∂Σ) +
L

2
≤ CR · L+ CR · L+

L

2
= CDL,

where CD = (2CR +
1

2
).

Therefore, we have

Diameter(Σ) + Radius(Σ) + Area(Σ) ≤ (CR + CD + A0)L.
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CHAPTER 3

ISOPERIMETRIC INEQUALITY IN H3

3.1 Classical isoperimetric inequalities

The classical isoperimetric inequality can be stated as following theorem

Theorem 3.1.1. Let D ⊂ R2 be a planar region bounded by the simple closed curve

C with length L. Then

4πArea(D) ≤ L2,

with equality if and only if C is a circle.

More generally, the isoperimetric inequality can be extended to subregions in

higher dimensional Euclidean spaces.

Theorem 3.1.2. For any bounded region D ⊂ Rm, we have

mmw(m)Vol(D)m−1 ≤ Vol(∂D)m,

where w(m) is the volume of unit ball in Rm, and equality holds if and only if D is a

ball.

Conjecture 3.1.3. Any compact m-dimensional minimal submanifold M of Rn sat-

isfies the above inequality with equality if and only if M is an m-dimensional ball.

Some partial results have been proved for m = 2. L. Simon showed the isoperimet-

ric inequality that 2πArea(Σ) ≤ Length(∂Σ)2 for any minimal surface Σ ⊂ Rn. And

then A. Stone improved the result to 2
√

2πArea(Σ) ≤ Length(∂Σ)2 [16]. Moreover,
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for m = 2 we have the next conjecture: which is known to hold when the number of

boundary curves of the compact minimal surface is at most 2; see the paper [10] by

P. Li, R. Schoen and S. T. Yau for this last result.

Conjecture 3.1.4. Any compact minimal surface Σ ⊂ Rn satisfies:

4πArea(Σ) ≤ Length(∂Σ)2,

and equality holds if and only if Σ is a disk.

For an m-dimensional compact submanifold M ⊂ Rn, the following inequality is

given by W. Allard [1], J. Michael and L. Simon [12]:

Vol(M)m−1 ≤ c(m)(Vol(∂M) +

∫
M

|H|)m,

where c(m) is a constant which depends on m and H is the mean curvature vector

of M in Rn. Then D. Hoffman and J. Spruck generalized these results to obtain the

next theorem; see Theorem 2.2 in [7]:

Theorem 3.1.5 (Hoffman-Spruck). Let M be a compact m-submanifold with bound-

ary ∂M immersed in Riemannian n-manifold N with sectional curvature satisfies

K ≤ b2, where b is either positive or pure imaginary. Then

Vol(M)m−1 ≤ c(m)(Vol(∂M) +

∫
M

|H|)m,

provided for some a ∈ R,

b2(1− a)−2/m(ω(m)−1Vol(M))2/m ≤ 1,

and the injectivity radius I0 of N satisfies

2ρ0 ≤ I0,
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where ρ0 = b−1 sin−1 b(1 − a)−1/m(ω(m)−1Vol(M))1/m for b is real, and ρ0 = (1 −

a)−1/m(ω(m)−1Vol(M))1/m for b is imaginary.

The following is a corollary of the above theorem.

Corollary 3.1.6. Let M be a compact m-submanifold with boundary in a Riemannian

n-manifold (N, g) with the same hypothesis as Theorem 3.1.5. Then there exists a

constant v0 = v0(n, I0, K) such that either Vol(M) ≥ v0 or

Vol(M)m−1 ≤ β(Vol(∂M) +

∫
M

|H|)m.

3.2 Isoperimetric inequalities in H3

In this chapter, we will show some isoperimetric inequalities in the case the am-

bient space X = H3. Before we give the statement of the theorem, we prove a lemma

which is important in the proofs of theorems stated later in this chapter.

Lemma 3.2.1. Suppose Σ is a immersed hypersurface in H3, {e1, e2} is an orthonor-

mal basis of tangent vector field on Σ and e3 is an unit normal vector field to Σ. Let

F be either a family of all geodesic spheres centered at a point of H3 or a horosphere

foliation of H3. Let NF be the unit normal field to F so that with respect to the

induced orientation on the leaves, the leaves have positive mean curvature. Then we

have for all p ∈ Σ,

〈∇e3NF , e3〉(p) = −HF · ‖e>3 ‖2(p),

where e>3 is the projection of e3 to the tangent plane to the leaf of F at p, HF is the

mean curvature function of the foliation.

Proof. Decompose e3 to its tangent and normal parts to the leaves of F as e3 = e>3 +e⊥3

(Figure 3.1), then where it makes sense, we have

∇e3NF = ∇e>3 +e⊥3
NF = ∇e>3

NF +∇e⊥3
NF = ∇e>3

NF ,
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Figure 3.1. Normal vector field on Σ and normal vector field to foliation

because ∇e⊥3
NF = 0. Since 〈∇e>3

NF , e
⊥
3 〉 = 0, we have

〈∇e3NF , e3〉 = 〈∇e>3
NF , e3〉 = 〈∇e>3

NF , e
>
3 + e⊥3 〉 = 〈∇e>3

NF , e
>
3 〉.

Defining ξ =
e>3
‖e>3 ‖

, we have

〈∇e>3
NF , e

>
3 〉 = ‖e>3 ‖2〈∇ξNF , ξ〉.

Note −〈∇ξNF , ξ〉 equals the principal curvature of the leaf of F in the direction ξ,

and since horospheres and geodesic spheres have constant second fundamental forms,

〈∇ξNF , ξ〉 = −HF .

Therefore we have

〈∇e3NF , e3〉 = −HF · ‖e>3 ‖2.
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We next give a linear isoperimetric inequality for surfaces with absolute mean

curvature bounded by some number less than the critical mean curvature 1 of the

ambient space H3.

Theorem 3.2.2. Let Σ be a compact surface with boundary in H3 and suppose |HΣ| ≤

1− ε, where ε ∈ (0, 1]. There exists a constant C(ε) such that

Area(Σ) ≤ C(ε) · Length(∂Σ).

Proof. In what follows, we let H denote the mean curvature vector field of Σ.

Let F be the horosphere foliation of H3, and NF be the unit normal vector field

of F such that the mean curvature of the leaves is 1. Let DIV be the divergence on

H3 and div be the divergence on Σ, then we have

DIVNF = divNF + 〈∇e3NF , e3〉, (3.1)

where e3 is a unit normal vector field of Σ. By the lemma, we have 〈∇e3NF , e3〉 =

−‖e>3 ‖2. If we denote the angle between NF and e3 by θ, then we have 〈∇e3NF , e3〉 =

− sin2 θ.

Using 〈∇e3NF , e3〉 = − sin2 θ and integrating the above equality 3.1 over Σ gives

us ∫
Σ

DIVNF =

∫
Σ

divNF −
∫

Σ

sin2 θ.

Since we have ∫
Σ

divNF = −
∫
∂Σ

〈N>F , η〉 − 2

∫
Σ

〈NF ,H〉,

where η is the inward conormal to the boundary of surface, we obtain

∫
Σ

DIVNF = −
∫
∂Σ

〈N>F , η〉 − 2

∫
Σ

〈NF ,H〉 −
∫

Σ

sin2 θ. (3.2)
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As we know

DIVNF = −2Hhorosphere = −2,

and

〈NF ,H〉 = HΣ cos θ.

Substituting the above terms into equation 3.2, we get the following equality

∫
Σ

(−2 + 2HΣ cos θ + sin2 θ) = −
∫
∂Σ

〈N>F , η〉.

By straightforward computation, we obtain

−2 + 2HΣ cos θ + sin2 θ = −1 +H2
Σ − (cos θ +HΣ)2 ≤ −1 +H2

Σ < 0.

Taking absolute value of the previous integral, we have

∣∣∣∣∫
Σ

(−2 + 2HΣ cos θ + sin2 θ)

∣∣∣∣ ≥ (1−H2
Σ)Area(Σ).

Since

|〈N>F , η〉| ≤ 1,

we have ∣∣∣∣−∫
∂Σ

〈N>F , η〉
∣∣∣∣ ≤ Length(∂Σ).

Hence, we have

(1−H2
Σ)Area(Σ) ≤ Length(∂Σ),

or equivalently,

Area(Σ) ≤ C(ε) · Length(∂Σ),

where C(ε) = 1
2ε−ε2 .
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If we assume that |H| ≤ 1 instead of |H| ≤ 1−ε, then the isoperimetric inequality

in the previous theorem is still true for surfaces in a bounded domain of H3 where

the constant depends on the domain.

Theorem 3.2.3. Let Σ be a compact surface in a bounded domain R in H3 with

compact boundary and suppose |HΣ| ≤ 1. Then there exists some constant CR such

that

Area(Σ) ≤ CR · Length(∂Σ).

Proof. In what follows, we let H denote the mean curvature vector field of Σ.

Consider a family F of geodesic spheres Sr of radius r centered at a fixed point in

H3, and let NF be the unit normal vector field of F such that the mean curvature is

positive. As mentioned previously, the mean curvature of Sr is Hr = coth(r). Then

we have

DIVNF = divNF + 〈∇e3NF , e3〉,

where e3 is a unit normal vector field of Σ. We have 〈∇e3NF , e3〉 = −Hr sin2 θ, and

integrating the equality over Σ gives us

∫
Σ

DIVNF =

∫
Σ

divNF −
∫

Σ

Hr sin2 θ.

By divergence theorem, we have

∫
Σ

div(NF) = −
∫
∂Σ

〈N>F , η〉 − 2

∫
Σ

〈NF ,H〉.

Because

〈NF ,H〉 = HΣ cos θ,

and

DIVNF = −2Hr.

49



We obtain the equality

∫
Σ

(−2Hr +Hr sin2 θ + 2HΣ cos θ) = −
∫
∂Σ

〈N>F , η〉.

By straightforward computation and since Hr > 1,

−2Hr +Hr sin2 θ + 2HΣ cos θ =
H2

Σ −H2
r

Hr

−Hr

(
cos θ − HΣ

Hr

)2

≤ H2
Σ −H2

r

Hr

.

Hence we must have ∫
Σ

H2
r −H2

Σ

Hr

≤
∫
∂Σ

〈N>F , η〉.

We will next use the estimate

Hr = coth(r) =
er + e−r

er − e−r
= 1 +

2

e2r − 1
> 1 + e−2r > 1.

We have

H2
r −H2

Σ

Hr

=
(Hr + |HΣ|)(Hr − |HΣ|)

Hr

> Hr − |HΣ| > 1 + e−2r − 1 = e−2r.

Because the surface is in a bounded domain R, we can find a ball Br0 such that

R ⊂ Br0 . Then we have

H2
r −H2

Σ

Hr

> e−2r0

on surface Σ. Moreover we have

|〈N>F , η〉| ≤ 1.

Therefore

e−2r0Area(Σ) ≤ Length(Σ),
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or equivalently,

Area(Σ) ≤ CR · Length(∂Σ),

where constant CR = e2r0
2

depends on the radius of geodesic ball containing bounded

domain R.

From the proof of the above theorem, we get the following conclusion if the

bounded domain is a geodesic ball.

Corollary 3.2.4. Let Σ be a compact surface in a geodesic ball with radius r in H3

with compact boundary and suppose |HΣ| ≤ 1. Then

Area(Σ) ≤ e2r

2
· Length(∂Σ).

As a corollary of Theorem 3.2.3, we will show that we have isoperimetric inequal-

ity for cetain compact surfaces Σ immersed in hyperbolic space H3 with only one

boundary component and Length(∂Σ) ≤ L0.

Theorem 3.2.5 (Maximum principle for CMC surfaces). Assume Σ1 and Σ2 are two

surfaces with constant mean curvatures H1, H2 tangent at point p having the constant

mean curvature vectors oriented at the same direction. Suppose Σ1 lies on the positive

constant mean curvature vector side of Σ2, then H1 > H2. Furthermore, if H1 = H2,

then Σ1 must coincide with Σ2.

By the above maximum principle, we next show a compact surface immersed

in hyperbolic space H3 with only one boundary component is contained a bounded

domain in H3.

Lemma 3.2.6. Suppose Σ is a compact surface with one compact boundary and

suppose |HΣ| ≤ 1. Then the surface is contained in the geodesic ball of radius R ≤ L
2

,

where L = Length(∂Σ).
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Proof. First, fix any point p ∈ ∂Σ and note that ∂Σ ⊂ BL/2(p), where BL/2(p) is the

extrinsic ball in H3 centered at p of radius L/2. If the surface is not contained in

BL/2(p), we can expand the radius of the geodesic ball until the boundary sphere Sr

with radius r is tangent to the surface a last time. For any geodesic sphere Sr, we

know the mean curvature is Hr = coth(r) ≥ 1. Since the mean curvature function of

surface satisfies |HΣ| ≤ 1, we obtain a contradiction to the maximum principle at the

point where Sr is furthest from p.

Corollary 3.2.7. Suppose Σ is a compact surface with one boundary component and

|HΣ| ≤ 1. Then we have

Area(Σ) ≤ eL

2
L,

where L = Length(∂Σ).

Proof. After an isometric translation of the surface Σ, we can find an ambient geodesic

ball with radius R ≤ L
2

containing Σ described in the statement of Lemma 3.2.6. Then

we apply the Corollary 3.2.4 to prove the above estimate.

Furthermore, we have the following result for surfaces described in Corollary 3.2.7

with bounded boundary length.

Corollary 3.2.8. Let Σ be a compact surface with one compact boundary component.

Suppose Length(∂Σ) ≤ L0 and |HΣ| ≤ 1. Then we have

Area(Σ) ≤ eL0

2
Length(∂Σ).

Proof. After an isometric translation of the surface Σ, we can assume that Σ with

the properties in the corollary is contained in the geodesic ball with radius R = L0

2

centered at some point of the boundary of Σ. Applying Corollary 3.2.4 gives the

result.
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We next state several conjectures about the diameter of compact surfaces im-

mersed in H3 with bounded boundary length.

Conjecture 3.2.9. Every immersed compact surface Σ in H3 with absolute mean

curvature function |HΣ| ≤ 1 and boundary of length at most L > 0 has diameter less

than some constant D(L) depending L.

Conjecture 3.2.10. Let Σ be an immersed compact surface in H3 with absolute mean

curvature function |HΣ| ≤ 1 and boundary of length at most L > 0, then

Area(Σ) ≤ eD(L)

2
Length(Σ)

for some constant D(L).

Moreover, we have the following general conjecture:

Conjecture 3.2.11. Let Σ be a immersed compact surface in H3 with absolute mean

curvature function |HΣ| ≤ 1, then we have

Area(Σ) ≤ C(Length(∂Σ)) · Length(∂Σ).

A conjecture on the sharp isoperimetric inequality problem in H3 can be stated

below. We remark that the next conjecture holds for disks in H3 by the following

reasoning; by the Gauss equation: −1 = K(TpH3) = KΣ(p)− det(B)(p), a surface Σ

of absolute mean curvature at most one in H3 has non-positive Gaussian curvature,

and thus the isoperimetric inequality below holds for disks by a classical result of A.

Weil [17].
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Conjecture 3.2.12. Let Σ be a compact immersed surface with boundary and absolute

mean curvature function |HΣ| ≤ 1, then

Area(Σ) ≤ 1

4π
(Length(∂Σ))2.

Moreover, if one has equality in the above formula, then Σ is a round disk in a

horosphere in H3.
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APPENDIX A

LOWER AREA BOUNDS OF SMALL BALLS

Theorem A.0.13. Let M be a compact m-submanifold with mean curvature |H| ≤

H0 in a Riemannian n-manifold (N, g) with the same hypothesis in Theorem 3.1.5.

Then there exist c = c(n, I0, H0, K) and σ = σ(n, I0, H0, K) such that the volume of

any geodesic ball of radius s ≤ σ in M with the induced metric satisfies

Vol(B(p, s)) ≥ csm.

Proof. The boundary of intrinsic geodesic ball B(p, s) is piecewise smooth when r is

smaller than injectivity radius. We will apply the isoperimetric inequality in Corol-

lary 3.1.6 to the geodesic ball B(p, r), 0 < r ≤ s.

If Vol(B(p, r)) ≥ v0 for some r < s, then Vol(B(p, s)) > Vol(B(p, r)) ≥ v0. Hence

Vol(B(p, s)) ≥ sm if s ≤ m
√
v0.

So we can suppose that for every r ≤ s, we have the isoperimetric inequality

Vol(B(p, r))m−1 ≤ β

(
Vol(∂B(p, r)) +

∫
B(p,r)

|H|
)m

.

It follows from co-area formula that Vol(B(p, r)) =
∫ r

0
Vol(∂B(p, t)) dt. We then have

d

dr
Vol(B(p, r)) = Vol(∂B(p, t))

≥ Vol(B(p, r))

≥ β−1Vol(B(p, r))
m−1
m −

∫
B(p,r)

|H| dVM

≥ β−1Vol(B(p, r))
m−1
m −H0Vol(B(p, r))
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We can assume β−1Vol(B(p, r))
m−1
m > 2H0Vol(B(p, r)) for all 0 < r ≤ s. If not, we

have

Vol(B(p, r)) ≥
(

1

2βH0

)m
≥ sm

for s ≤ 2βH0.

Because of β−1Vol(B(p, r))
m−1
m > 2H0Vol(B(p, r)), we obtain

d

dr
Vol(B(p, r)) > (2β)−1Vol(B(p, r))

m−1
m .

Hence we have

d

dr
Vol(B(p, r))

1
m =

1

m
Vol(B(p, r))

1
m
−1 d

dr
Vol(B(p, r)) >

1

2mβ
.

Integrating the above inequality gives us

Vol(B(p, s)) >

(
s

2mβ

)m
.

Therefore, for all s ≤ σ for some constant σ = σ(n, I0, H0, K), we have

Vol(B(p, s)) ≥ csm.

56



APPENDIX B

THE FIRST VARIATION OF AREA

Let F : Σ × (ε, ε) → N be a variation of Σ with compact support and fixed

boundary. Then F is the identity outside a compact set, F (x, 0) = x, and F (x, t) = x

for all x ∈ ∂Σ. The vector field Ft = F∗(
∂
∂t

) restricted to Σ is called the variational

vector field of the variation F . Then we want to compute the first variation of area

of the one-parameter family of surfaces arising from the variation F of Σ. Let xi be

local coordinates on Σ. Set

gij(t) = g(Fxi , Fxj).

Without loss of generality, we can choose a local coordinate system on Σ such that

at x it is orthonormal, that is gij(0) = δij. Hence, the area formula is

Vol(F (Σ, t)) =

∫
Σ

√
det(gij(t)).

Differentiating the above formula gives

d

dt

∣∣∣∣
t=0

Vol(F (Σ, t)) =

∫
Σ

d

dt

∣∣∣∣
t=0

√
det(gij(t)).

Because ∇FtFxi −∇FxiFt
= [Ft, Fxi ] = 0, we get at x,

d

dt

∣∣∣∣
t=0

√
det(gij(t)) =

1

2

k∑
i=1

d

dt
gii(t) =

k∑
i=1

g(∇FtFxi , Fxi)

=
k∑
i=1

g(∇Fxi
Ft, Fxi) = divFt.
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We have seen that (see equation 1.1)

divFt = divF⊥t + divF>t = −kg(Ft,H) + divF>t ,

where H is the mean curvature vector of Σ at x. Since F is identity outside a

compact set, we then have
∫

divF>t = 0 by Stoke’s theorem. Therefore, we have the

first variation formula:

d

dt

∣∣∣∣
t=0

Vol(F (Σ, t)) = −k
∫

Σ

g(Ft,H) =

∫
Σ

divFt.

For the geodesic balls centered at 0 in hyperbolic 3-space, in the polar coordinates

of the ball model, the variational vector field can be taken as the unit vector field

to the foliation by geodesic spheres; hence we have |Fr| = 1. The mean curvature

of boundary of a geodesic ball is constant since it is the orbit of a subgroup of the

group of isometries fixing 0. So from the first variation formula and the fact that the

volume of geodesic spheres of radius r in H3 is proportional to sinh(r), we have

kH sinhk(r) =
d

dr
sinhk(r) = k sinhk(r) coth(r).

Therefore, the mean curvature of the boundary of the geodesic ball with radius r is

H = coth(r).
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[11] Meeks III, W. H., Mira, P., Pérez, J., and Ros, A. Isoperimetric domains of large
volume in homogeneous three-manifolds. Preprint, arXiv:1303.4222.

[12] Michael, J., and Simon, L. Sobolev and mean-value inequalities on generalized
submanifolds of Rn. Comm. Pure. Appl. Math 26 (1973), 361–379.

[13] Nicolaescu, L. I. The co-area formula.

[14] Sheng, W. Geodesics and exponential map.

[15] Simon, L. Lecture on Geometric Meausre Theory, vol. 3. 1983.

59



[16] Stone, A. On the isoperimetric inequality on a minimal surface. Calc. Var.
Partial Differ. Equ. 17 (2003), 369–391.

[17] Weil, A. Sur les surfaces a courbure negative. C. R. Acas. Sci. Paris 182 (1926),
1069–1071.

[18] Yau, S.T. Isoperimetric constants and the first eigenvalue of a compact Rieman-
nian manifold. Ann. Sci. Ecole Norm. Sup. 8 (1975), 487–507. MR1397619, Zbl
0325.53039.

60


	Isoperimetric inequality and area growth of surfaces with bounded mean curvature
	Recommended Citation

	tmp.1395356397.pdf.OJMxY

