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ABSTRACT

A CONSISTENT ALGORITHM FOR IMPLEMENTING
THE SPACE CONSERVATION LAW

MAY 2014

VENKATA PAVAN PILLALAMARRI NARASIMHA RAO

B.Tech., VELLORE INSTITUTE OF TECHNOLOGY, VELLORE

M.S.M.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor David P. Schmidt

Fluid flows occurring in moving and/or deforming environments are influenced by

the transient nature of their containment. In Computational Fluid Dynamics (CFD),

simulating such flow fields requires effort to maintain the geometric integrity of the

transient flow domain. Convective fluxes in such domains are evaluated with respect

to the motion of the boundaries of the control volume. These simulations demand

conservation of space in addition to the conservation of mass, momentum and energy

as the solution continues in time.

The Space Conservation Law in its continuous form can be inferred by using the

rules of fundamental calculus. However, implementing it in a discrete form poses

substantial challenges. During mesh motion, the surfaces enclosing the control vol-

umes sweep through three-dimensional space. As per the Space Conservation Law,

the change in the control volume has to match the sum of the swept volumes of all

its faces exactly. The Space Conservation Law must be satisfied accurately and con-

v



sistently in order to avoid the occurrence of non-physical masses and to prevent the

violation of the continuity equation.

In this work we have attempted to address the consistency issues surrounding

the implementation of the Space Conservation Law in OpenFOAM®. The existing

method for calculation of swept volumes falls short in terms of consistency. Moreover,

its capabilities are limited when it comes to complex three-dimensional mesh motions.

The existing method of calculation treats swept volumes as net fluxes emanating from

cell faces. We have implemented an alternate algorithm in which the swept volumes

are treated as intermittent virtual cells whose volumes can be calculated in a unique

and consistent manner. We will conclude by validating our approach for mesh motions

of varying degrees of complexity.
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CHAPTER 1

INTRODUCTION

Developing a mathematical model for most physical processes involves identifying

a unique relationship between the participating variables. The relationship can then

be articulated as equations which can eventually be solved either analytically or

numerically. In a finite volume approach to Computational Fluid Dynamics (CFD),

the Navier-Stokes system of equations are used as governing equations. Balancing

these equations ensures the conservation of mass, momentum and energy within a

control volume. Unfortunately, these equations have not yet been solved analytically.

Therefore, they require the use of numerical methods.

The equations governing fluid flows in static and transient domains are nearly

identical. The only difference is that the fluid velocities in transient control volumes

are calculated relative to the velocities of the control volume boundaries, which are

themselves determined by dedicated mesh motion solvers. Maintaining the geometric

integrity of a transient domain is a priority in dynamic mesh simulations. Therefore,

an additional equation for space conservation must also be satisfied simultaneously.

Fundamentally, the idea of space conservation originates from the Leibniz’s in-

tegral rule [29]. According to this rule, for a continuous function f(x, t) in a one-

dimensional domain,

d

dt

∫ b(t)

a(t)

f(x, t)dx =

[∫ b(t)

a(t)

(
∂f(x, t)

∂t
dx

)]
+

[
f(x, t)

dx

dt

]b(t)
a(t)

(1.1)
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Figure 1.1: A deforming control volume.

⇒ d

dt

∫ b(t)

a(t)

f(x, t)dx =

[∫ b(t)

a(t)

(
∂f(x, t)

∂t
dx

)]
+

[
f(b(t), t)

d(b(t))

dt

]
−
[
f(a(t), t)

d(a(t))

dt

]
(1.2)

For a three-dimensional interpretation, let there be a function f(x, y, z, t) which is

continuous inside a transient control volume V (t), and let S(t), with normal n directed

outwards, be the surface enclosing V (t) [Figure 1.1]. Then, according to the Leibniz’s

rule [2],

d

dt

y

V (t)

f(x, y, z, t)dV =

y

V (t)

∂f(x, y, x, t)

∂t
dV

+

x

S(t)

f(x, y, z, t)v.ndS

 (1.3)

where v is the velocity with which the function f(x, y, z, t) and the control volume

V (t) are moving.
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Figure 1.2: Building blocks for our implementation of the Space Conservation Law.

Equation (1.3) demonstrates the influence of a transient control volume on the

values of f(x, y, z, t). This three-dimensional form of the Leibniz’s rule was derived

by Osborne Reynolds. In his honor it is called the Reynolds’ Transport Theorem.

Reynolds’ Transport Theorem is the first step in deriving conservation equations

in continuum mechanics. In a finite volume approach, it can be used to gain an

understanding of variation in intensive properties due to a moving and/or deforming

control volume. Applying the law of mass conservation to Equation (1.3) gives the

following expression [12]:

 ∂
∂t

y

V (t)

ρdV

+

x

S(t)

ρ (v− vb) .ndS

 = 0 (1.4)

where vb is the velocity of the enclosing surface S(t). Equation (1.4) is a generic form

of the continuity equation.

Applying Equation (1.3) for momentum conservation of the ith coordinate [12]

gives the following result:

 ∂
∂t

y

V (t)

ρuidV

+

x

S(t)

ρui (v− vb) .ndS

 =

x

S(t)

(τijij − pii).ndS)

+

y

V (t)

bidV


(1.5)
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When analysing Equation (1.4) for a uniform static material with no generation, we

can say:  ∂
∂t

y

V (t)

dV

−
x

S(t)

vb.ndS

 = 0 (1.6)

Equation (1.6) describes the idea of space conservation in a transient control volume.

Working backwards, we can achieve continuity in a moving and/or deforming domain

by balancing the space conservation equation and using the Reynolds’ Transport

Theorem [12] [3]. Balancing the space conservation equation prevents non-physical

masses from entering the domain during the mesh-motion. CFD software that pro-

cesses dynamic mesh simulations generally use the constraint of space conservation

to maintain the geometric integrity of the simulation domain.

After analyzing the implementation of the Space Conservation Law in OpenFOAM®,

we think that the consistency of the algorithm can be improved. In the chapters fol-

lowing the literature review, we will provide a detailed account of the consistency

issues and describe an alternate algorithm for implementing the Space Conservation

Law. In order to provide the groundwork for our algorithm, we will also review some

parts of the existing source code. As illustrated in Figure 1.2, we will examine the

source code in order to understand the existing procedure for calculating cell volumes,

swept volumes and convective fluxes in OpenFOAM®.
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CHAPTER 2

LITERATURE REVIEW

A general understanding of the Space Conservation Law in its continuous form

stems from the rules of fundamental calculus. However, implementing it in a discrete

domain has been one of the crucial goals of numerous publications in various journals.

Guillard and Farhat [15] provided a comprehensive account of the significance of

balancing the Space Conservation Law in problems involving transient domains. They

proved that for a numerical scheme which produces nth order accurate results on a

static domain, satisfying the Space Conservation Law ensures that it produces first

order accurate results while working on a transient domain.

Thomas and Lombard [30] identified the limitations of boundary conforming co-

ordinate transformations in maintaining the global conservation in problems involving

moving boundaries. In this pioneering work, they derived a differential form of the

space conservation equation and carried out implicit solutions of the Navier-Stokes

equations using finite difference methods. Demirdzic and Peric [9] published the

first investigation addressing the issues of space conservation from a finite volume

perspective. They provided a detailed explanation of the errors which appear in the

solution as a consequence of overlooking the Space Conservation Law. It is worthwhile

to discuss this paper in detail because contemporary CFD software often uses finite

volume methods, including OpenFOAM®.

Examining Demirdzic and Peric’s [9] analysis with regard to the discretized form

of the Space Conservation Law, let us assume that at a particular time instant t there

is a two-dimensional rectangular control volume which has sides e, w, n and s [Figure

5



Figure 2.1: A deforming two-dimensional control volume. (Picture reproduced from
Peric and Ferziger [13])

2.1]. Let us also assume that it contains a fluid which has constant density ρ. As

time progresses, sides e and n move along the east and north directions respectively.

The discrete form of the continuity equation [Equation (1.4)] over the control volume,

using the explicit Euler time-stepping method, can be written as:

ρ
[
(V )t+1 − (V )t

]
∆t

+ ρ [(vx − vbx)e − (vx − vbx)w]t+1 (∆y)t+1+

ρ [(vy − vby)n − (vy − vby)s]t+1 (∆x)t+1 = 0 (2.1)

where v is the fluid velocity and vb is the velocity of control surface. The subscripts x

and y denote the velocity components along the abscissa and the ordinate respectively.

The subscripts e, w, n and s denote the movement of the respective boundaries.

Assuming that the fluid is moving with a constant velocity in all directions, Equation

(2.1) can be mathematically manipulated and rewritten as:

ρ
[
(V )t+1 − (V )t

]
∆t

− ρ [(vbx)e − (vbx)w] (∆y)t+1−

ρ [(vby)n − (vby)s] (∆x)t+1 = 0 (2.2)
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As per the fundamental relations shown in Figure 2.1, we can infer the following

relations:

[(vbx)e − (vbx)w] =
δx

∆t

[(vby)n − (vby)s] =
δy

∆t

(V )t+1 = (∆x∆y)t+1

(V )t =
[
(∆x)t+1 − δx

] [
(∆y)t+1 − δy

]
Substituting the above relations in Equation (2.2) we get:

ρ
[
(∆x∆y)t+1 −

(
(∆x)t+1 − δx

) (
(∆y)t+1 − δy

)]
∆t

−

ρ

[
δx

∆t

]
(∆y)t+1 − ρ

[
δy

∆t

]
(∆x)t+1 = 0 (2.3)

After mathematical manipulation we get:

ρ
δxδy

∆t
= 0 (2.4)

Equations (2.1) through (2.4) have been reproduced from Peric and Ferziger [13]

with minor modifications in notation. Equation (2.4) clearly demonstrates that the

continuity equation is not satisfied during the deformation of the control volume. The

residual term on the left hand side of Equation (2.4) is basically the mass confined

in the area which is represented by the shaded region and is shared by edges e and n

during the movement. This quantity of mass will accumulate at every time-step for

each cell in the mesh. However, the value of δx and δy depends on the size of the

time-step [Figure 2.2]. We can reduce the value of the residual mass by reducing the

time-step, but that would increase the computational cost.

Another way of circumventing the problem is by moving one boundary at a time.

This effectively reduces the problem to a one-dimensional boundary movement case.
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Figure 2.2: Effect of size of the time-step on residual mass. (Picture reproduced from
Demirdzic and Peric [9])

However, that is not a pragmatic approach because it would lead to procedural prob-

lems during implementation as well as to an increase in computational cost. Further-

more, we cannot use this approach for problems like free surface flows. Therefore,

it can be concluded that in a discretized system balancing the space conservation

equation is critical.

Jeng and Chen [19] have also emphasized its importance. In their work using the

SIMPLER algorithm on a two-dimensional structured mesh, they demonstrated that

cancelling out non-physical convective fluxes is secondary in importance to satisfying

the Space Conservation Law in moving mesh problems.

Before reviewing different approaches for implementing the Space Conservation

Law, we must examine its discrete form and discuss the geometrical significance of

the different terms included in it. The discrete form of Equation (1.6) can be written

as:

[
(V t+1 − V t)

∆t

]
−

[∑
faces

(vb.ndS)

]
= 0 (2.5)

Equation (2.5) is composed of two expressions on the left hand side, which must

add up to zero when calculated exactly. The first term accounts for the change in
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Figure 2.3: A deforming three-dimensional control volume describing the geometric
significance of Equation (2.5).

volume of the cell during a particular time-step. The second term calculates the sum

of volumes swept by individual faces of the cell during the same time-step [Figure

2.3]. The challenges in implementing the Space Conservation Law include dealing

with polygonal faces and the change in the shapes of faces during an unconstrained

three-dimensional mesh motion.

Satisfying the Space Conservation Law requires accomplishing two objectives. One

objective is calculating the net flux of fluid across the control surface. The other

objective is calculating the volumes created due to the movement of cell faces, here-

after referred to as the swept volumes. Because the calculation of net convective

flux depends upon the calculation of swept volumes, a number of different attempts

have been made to calculate the swept volumes and to thereby satisfy the Space

Conservation Law exactly. A substantial number of publications have proposed and
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implemented various methodologies to accomplish this since Demirdzic and Peric [9].

Some of them have limited their work to Cartesian meshes while others have used

approaches to suit their particular problems of fluid flows and mesh motion.

The approaches used in all these publications can be broadly classified into two

categories:

1. Algorithms for calculating the velocity of the cell boundary vb in order to implic-

itly balance the Space Conservation Law, hereafter referred to as the Boundary

Velocity Approach.

2. Algorithms for calculating the exact swept volumes, hereafter referred to as the

Swept Volume Approach.

2.1 Boundary Velocity Approach

Demidzic and Peric [9] proposed an approach to define the cell boundary velocities

vb in such a way that the space conservation equation is satisfied automatically. Their

work was confined to implementations in two-dimensional Cartesian mesh problems.

According to their work, for a domain defined in Figure 2.1, defining the velocities of

cell boundaries as:

vbx =
(∆y)t + (∆y)t+1

2(∆y)t+1

δx

∆t
(2.6)

vby =
(∆x)t + (∆x)t+1

2(∆x)t+1

δy

∆t
(2.7)

guaranteed that the Space Conservation Law would be satisfied. Demirdzic and Peric

[10] extended the scope of this method to arbitrarily shaped domains with moving

boundaries. However, this work was also limited to a two-dimensional paradigm.
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Koutsavdis and Tsangaris [20] used the space conservation equation to specify the

mesh velocity. Using primarily a two-dimensional structured mesh, they made an

assumption of irrotationality about the velocity vector field generated by the nodal

velocities. Given the cell volumes (which transform into face areas in 2D domains) Ωt

and Ω(t+1), where t denotes the time-step, they introduced the grid velocity potential

function:

(vbx, vby) = ∇Φb (2.8)

Then they derived the following expression for balancing the differential form of the

Space Conservation Law:

∇2Φb =
1

I

∂I

∂t
=

1

∆t

|Ω|tij
|Ω|t

(
|Ω|t+1

|Ω|t
− 1

)
(2.9)

where |Ω|tij denotes the area of the i, jth individual cell at the tth time-step, |Ω|t de-

notes the area of the entire domain at tth time-step and ∆t denotes the time interval.

Their approach ensured that the cells were deformed according to their initial size.

Cao et al. [6] also derived a differential form of the Space Conservation Law. While

implementing a Space Conservation Law-based moving mesh method, they performed

time-dependent coordinate transformations (x = x(ξ, t)) of the mesh locations. Fol-

lowing their derivation, the differential form of the Space Conservation Law can be

written as:

∇.vb =
1

J

DJ

Dt
(2.10)

where vb is the mesh velocity and the Jacobian for mesh adaptation is defined as:

J(ξ, t) =
c(ξ)

ρ(x(ξ, t), t)
(2.11)

where ρ is a user-defined monitor function and c = c(ξ) is a time-independent function

determined by the initial coordinate transformation.
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Shyy et al. [28] mapped a two-dimensional irregular physical domain to a fixed

uniform computational space by defining the Cartesian coordinates in terms of gen-

eralized curvilinear coordinates(ξ, η) and time(τ) where

x = x(ξ, η, τ), y = y(ξ, η, τ), t = τ

Their definition of the velocities of cell boundaries was similar to Demirdzic and

Peric [9]. However, Shyy et al. implemented the requisite mathematics for expressing

the grid velocities in terms of the new transformed coordinates.

Perot and Nallapati [27] also balanced the Space Conservation Law using the

Boundary Velocity Approach. They presented the definitions for the velocities of cell

boundaries in two and three-dimensional space. As their work shows, the velocities

of the cell boundaries can be defined in the following way:

x

y

nf
t

nf
t+1

CG

CG

Figure 2.4: Two-dimensional transient domain. Here, CG denotes the center of
gravity and nf is the area normal vector

For a two-dimensional domain [Figure 2.4]:

Umesh
f = uCGmesh.

1

2

(
nt+1
f At+1

f + ntfA
t
f

)
(2.12)
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Figure 2.5: A moving and/or deforming face of a three-dimensional control volume.

and for a three-dimensional domain [Figure 2.5]:

Umesh
f = uCGmesh.

[
1

2

(
nt+1
f At+1

f + ntfA
t
f

)
− ∆t2

12

face edges∑
e

(vn1 × vn2)

]
(2.13)

Equations (2.12) and (2.13) have been reproduced from Perot and Nallapati [27].

Here, CG stands for center of gravity. In this case CG coincides with the centroid of

the geometry. Umesh
f is the velocity of the surface enclosing the control volume whose

area is denoted by A and the area normal vector is denoted by nf . The variable vn is

the velocity of the face corners and the superscripts t and (t+ 1) denote the positions

of the corner nodes at the respective time steps. This method calculates the swept

volumes exactly. It is one of the very few approaches which is exact as well as generic

in nature. Dai [8] also used this approach in his research. A derivation of Equation

(2.13) is available in Appendix A.
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2.2 Swept Volume Approach

It can be noted from Equation(1.6) that the mesh velocity vb appears only in the

second term in the product of velocity and area. The expression
[s

S(t)
vb.ndS

]
is

simply the rate at which the volume is swept by the boundaries of the control volume.

Knowing the locations of the vertices which comprise each face at the commencement

and completion of each time step is sufficient for calculating the volume swept by each

face. Apsley and Hu [1] and Jasak and Tukovic [17] also provided similar reasons for

using the Swept Volume Approach for simulating fluid flows involving two and three-

dimensional mesh movements. The information regarding co-ordinates of face vertices

is simple to extract and store. There are also no problems with the computational

cost since the storage space can be allocated dynamically during simulation runtime.

Several approaches for calculating swept volumes have been published since the work

of Demirdzic and Peric [9].

Zhang et al. [32] published one of the initial implementations of the Space Con-

servation Law using the Swept Volume Approach. Primarily, they used face trian-

gulation for a two-dimensional implementation and tetrahedral decomposition for a

three-dimensional domain. As per their formulations in two dimensions, for the de-

forming pentagonal face shown in Figure 2.6 where the vertices from locations 1, 4,

and 5 are shifted to locations 1′, 4′, and 5′, the areas 1− 5− 5′− 1′ and 5− 4− 4′− 5′

are the volumes swept by edges 1 − 5 and 4 − 5. They calculated the swept ar-

eas by decomposing the quadrilaterals into triangles by joining one set of diagonally

opposite vertices. They also proposed the logic for selecting the vertices for the tri-

angulation, resulting in the computed facial increment being independent of nodal

motions. Therefore, if we consider the movement of edge 5 − 1, the area swept by

vector ∆r15 = r5 − r1 can be expressed as the sum of the areas of triangles 1− 5− 1′

and 5− 5′ − 1. As per Zhang et al. [32] the generic expression for the calculation of

an area swept by the edge r12 can be written as:
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Figure 2.6: Edges 1− 5 and 4− 5
have transformed to 1′ − 5′ and 4′ − 5′.

Figure 2.7: Decomposition of swept sur-
faces by joining 1′ − 5 and 5′ − 4.

Figure 2.8: Decomposition of swept sur-
faces by joining 1− 5′ and 5− 4′.

∆V = ∆tvb ×∆r
t+ 1

2
12 (2.14)

where vb = (vb1 + vb2)/2 . Extending their work to the three-dimensional domain,

Zhang et al. [32] proposed to decompose the faces of a cell into triangles by connecting

the face center to each vertex comprising the face [Figure 2.9]. Each such triangle

had vertices defined in three-dimensional space by the vectors r1, r2 and r3. The

volume swept by these vectors in a direction parallel to its area normal vectors was

calculated by considering all six permutations for sequencing the vertices r1, r2 and

r3. The swept volume of one of the permutations, [1, 2, 3] for example, can be written

as:
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Figure 2.9: A representation of face triangulation for calculation of swept volumes
proposed by Zhang et al. [32].

∆V[123] =

[
∆t

6
vb1.S

t

]
+

[
∆t

6
vb2.

(
rt2 − rt+1

1

)
×
(
rt3 − rt+1

1

)]
+[

∆t

6
vb3 × rt+1

12 ×
(
rt3 − rt+1

1

)]
(2.15)

The swept volumes calculated with each of the permutations can be different and

must therefore be calculated separately. An arithmetic mean of all such volumes was

used for the volume swept by that particular triangular face. The sum of the swept

volumes of all the triangles was added to get the volume swept by the polygonal face.

A generic expression for calculating the swept volumes after the face triangulation

was presented as:

∆V =

[
∆t

vb1 + vb2 + vb3
3

.St+
1
2

]
+

[
∆t3

24
vb1.vb2 × vb3

]
(2.16)

Bos [5] implemented a different algorithm for calculating swept volumes. His

method included tetrahedral decomposition of the prismatic volumes formed due to

the sweeping action of triangulated cell faces. This method involved connecting one

of the vertices of the triangular face at time (t+1) with two of its opposite vertices at
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time t, which created the first tetrahedron. The remaining volume of the prism was

decomposed into two more tetrahedrons by connecting any of the diagonals of the

quadrilateral face available in it. This led to two unique ways in which the remaining

space could be decomposed [Figure 2.10].

Figure 2.10: Calculation of swept volumes as implemented by Bos. (Picture repro-
duced from Bos [5])

As there is no single unique method of decomposition in this approach, the swept

volumes are calculated using both approaches and an averaged value is used as the

magnitude of the swept volume. Due to the proven accuracy of this approach, Bos’s [5]

method is currently used for calculation of swept volumes in OpenFOAM®. The

expression for swept volumes using Bos’s [5] method can be expressed as:

∆Vtotal =
1

12
[(V1 + V2 + V3) + (V1 + V4 + V5)] (2.17)

where ∆Vtotal is the volume of the prism, and Vn(n = 1, 2...) is the volume of the

individual tetrahedrons. Bos’s [5] implementation appears to be similar to Zhang

et al. [32] in some aspects. Both of them used a similar method of tetrahedral de-
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composition. However, Zhang et al. [32] used the values of velocity vectors in their

implementation whereas Bos’s [5] method completely relies on the spatial locations

of the face vertices at successive time-steps.

Chau and Fringer’s [7] work is one of the more recent attempts to implement

the Space Conservation Law in its differential form. Their implementation was fo-

cussed on three-dimensional structured meshes and emphasized the importance of

consistency in implementing the discrete form of the Space Conservation Law.

Tukovic and Jasak [31] [18] used a novel way of calculating the swept volumes.

This particular implementation used a three level backward scheme for temporal

discretization in order to satisfy the Space Conservation Law in the following form:

3V t − 4V t−1 + V t−2

2∆t
−
∑
faces

[Vf ] = 0 (2.18)

where Vf is the volume swept by each face of the polyhedral cell. The difference

between cell volumes at consecutive time-steps was expressed as:

V t − V t−1 =
∑
faces

δV t
faces (2.19)

where δV t
faces is the volume swept by cell face f while moving from its old position

to its new position. After substituting Equation(2.19) in Equation(2.18), the swept

volume for a face f can be expressed as:

∆Vf =

[
3

2

δV t
faces

∆t

]
−

[
1

2

δV t−1
faces

∆t

]
(2.20)

All the implementations discussed so far were based on the Eulerian coordinate

system. A number of publications have also implemented the Space Conservation Law

using the Arbitrary Lagrangian Eulerian(ALE) framework. ALE methods are used

extensively in problems involving fluid-structure interactions. Hu et al. [16] provided
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a detailed explanation about the transformation of functions between the material

and referential domains. For example, in an ALE formulation, a material derivative

is generally written as:

Dv

Dt
=
∂v

∂t
+ v.(∇v) (2.21)

However, for the velocity of a fluid flow at a given point in time and space, the

material derivative in a referential domain is represented as:

D

Dt
v(x, t) =

δv

δt
+∇v [(v− v̂)] (2.22)

where

δ

δt
v(x, t) =

∂

∂t
v(x(χ, t), t)|χ

v̂ is the velocity of the domain and is defined as:

d

dt
x(χ, t) = v̂

Hu et al. [16] discussed the significance of implementing the Space Conservation Law

in the ALE formulation in appreciable detail.

Pan et al. [26] described a method of calculating the swept volumes while proposing

a projection method for solving incompressible viscous flows in moving domains using

an ALE formulation. Their work was primarily focused on Cartesian meshes, where

they conducted the tetrahedral decomposition of the hexahedral swept volumes using

the face centers and the cell centers as benchmark points. They connected all the

vertices of the swept face at time instants t and (t + 1) to their respective face

and cell centers [Figure 2.11]. Based on the results they obtained, they concluded

that this method was consistent and highly accurate. Gopalakrishnan and Tafti [14]

also used this formulation in implementing a parallel numerical solution procedure

for simulating unsteady incompressible flows on a structured collocated multi-block

mesh.

19



Figure 2.11: Calculation of swept volumes as implemented by Pan et al. [26]

Boffi and Gastaldi [4] reviewed the relationships between the constraint of the

Space Conservation Law and the properties of accuracy, stability and convergence

of different finite element schemes. They analyzed the application of time advance-

ment schemes like Euler, Backward Differentiation and Crank-Nicolson. They demon-

strated that in ALE formulations of some of these schemes, satisfying the Space Con-

servation Law is necessary. However, they also demonstrated that it is not a sufficient

condition for maintaining the geometric integrity of the domain during mesh motion,

unless the time-step is very small. Their work appears to discourage the use of ALE

formulations for the simulation of fluid flows involving moving control volumes.

The views expressed by Boffi and Gastaldi [4] and Guillard and Farhat [15] con-

tradict each other. Based on a similar observation Etienne et al. [11] termed the effect

of the Space Conservation Law on the stability of ALE methods as ”controversial”.

However, in partial agreement with the views of Boffi and Gastaldi [4], Etienne et

al. [11] introduced an additional requirement that the accuracy of the time integrator

should be linked to maintaining mesh accuracy.

After reviewing all the relevant publications, it can be concluded that implemen-

tation of the Space Conservation Law has received substantial attention in computa-
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tional fluid dynamics since the latter half of the twentieth century. The implementa-

tions have evolved from one-dimensional applications to problems involving complex

three-dimensional mesh movements. The importance of the Space Conservation Law

and the errors arising due to its violation need no further emphasis.

A substantial number of authors have implemented the discrete form of the Space

Conservation Law in order to address their particular selective set of issues. However,

the options are limited when it comes to a generic algorithm for calculating the swept

volumes in a polyhedral mesh structure. In addition to the generic nature of the

algorithm, issues like consistency, accuracy and stability must also be addressed. We

think that an ideal algorithm must be able to handle any form of three-dimensional

mesh motion and restrict volume continuity errors to machine round-offs. In this

work we analyzed the existing algorithm for implementation of the Space Conserva-

tion Law in OpenFOAM® and implemented an alternate algorithm which meets our

expectations.
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CHAPTER 3

ALGORITHMS FOR CALCULATION OF VOLUMES

Calculating swept volumes is the most critical part of balancing the space conser-

vation equation in its discrete form. Our goal is to implement it in OpenFOAM®,

so it is worthwhile to study the various algorithms implemented in OpenFOAM® for

quantifying the magnitude of a three-dimensional space. In this chapter we will in-

vestigate the concepts and implementation that are currently used in OpenFOAM®

for calculating cell volumes and swept volumes. There is very little official documen-

tation explaining the mathematics implemented in OpenFOAM®. Therefore, this

study was undertaken by examining the source code on a line-by-line basis.

Point locations are the building blocks of a topological hierarchy. They are the

fundamental entities which can be defined in a Cartesian space as a set of three

numbers. Each number specifies the distance of the point from the origin along the

x, y and z coordinate axis. The unique connections between these points define edges

whose unique mutual relationships define faces which connect to each other to form a

volume [Figure 3.1]. In computational fluid dynamics, the data-structures pertaining

to a mesh and its properties are fundamentally a list of volumes which exist at the

top of a hierarchy of lists of faces, edges and points. The nomenclature cell will be

used henceforth to refer to a single compartment of the three-dimensional dicretized

domain. In a finite volume approach, each cell is treated as a control volume and its

attributes are linked to the lists of the primitive entities which it comprises.
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Face 1

Point 1 [x1, y1, z1]

Point 2 [x2, y2, z2]

Point 3 [x3, y3, z3]

Point 4 [x4, y4, z4]

Point 5 [x5, y5, z5]

Edge 1 [Point 1, Point 2]

Edge 2 [Point 2, Point 3] 

Edge 3 [Point 3, Point 4] 

Edge 4 [Point 4, Point 5] 

Edge 5 [Point 5, Point 1] 

Face 1 [Edge 1, Edge 2, Edge 3, 
Edge 4, Edge 5 ]

Cell [Face 1, Face 2, Face 3 . . . . ]

Figure 3.1: Data-structures required for defining a three-dimensional mesh.

3.1 Polyhedral mesh structure in OpenFOAM®

OpenFOAM® follows a polyhedral mesh format where every cell is primarily a

polyhedron. There are no restrictions on the number of faces a cell can have and the

concept extends to all mesh primitives as long as they form a closed volume. The

sequence in which the points are indexed in the data-structure follows the right hand

rule. For a set of points lying on the plane of this paper, the sequence orders them in

a counter-clockwise direction so that from the reader’s point of view the area normal

vector of the face is directed out of the paper in an upward direction. Figure 3.2

illustrates this description.
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Figure 3.2: Indexing of point locations in OpenFOAM®.

The faces can be classified as internal faces and boundary faces. As the name

suggests, the internal faces lie completely inside the domain whereas the boundary

faces abut the domain boundaries. An internal face is shared by two neighboring

cells. Therefore, in order to maintain consistency, the face is assigned to one of the

participating cells. This cell is known as the owner and the other cell is known as

the neighbor. The face normal vector projects in the outward direction with respect

to the owner cell and vice-versa with respect to the neighbor cell. Therefore, as per

this convention, the polyhedral cell illustrated in Figure 3.2 is an owner. In case the

owner cell gets the face normal projecting inwards, it will be judged as a negative

volume thereby causing an error due to segmentation fault.

The cells are the control volumes in which the values of flow variables are evalu-

ated. Therefore it is necessary to uniquely identify each cell. In our case, this unique

identification should also signify whether a cell is an owner or a neighbor with respect

to a particular face. In order to ensure the integrity of the flow domain, each cell

is identified with a label which is basically an index in the mesh data-structure. In

OpenFOAM®, an owner cell is always designated as the lesser of the two neighboring

cell indices.
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Everything mentioned so far accounts for all the fundamental requirements which

uniquely identify a three-dimensional control volume in Euclidean space. In addition

to these entities, the mesh data-structure contains information about some additional

features of the control volume. For each face a face center is calculated and for each

cell a cell center is calculated. The calculation procedures are described later in this

chapter. This information is tagged along with the mesh data-structures.

3.2 Calculation of cell volumes in OpenFOAM®

The process for calculating cell volumes in OpenFOAM® is built upon the afore-

mentioned polyhedral mesh structure. The data-structures that define the mesh de-

pend entirely on the list of point locations. The relations defined by the point locations

consistently identify a particular cell and its unique properties. The functions used for

calculating cell volumes have been designed to require only the lists of vertices that

comprise the cell and the relationships among them. The hierarchical arrangement of

mesh data-structures in OpenFOAM® ensures that the returned values are assigned

to the right cell.

Each cell in the mesh undergoes a tetrahedral decomposition prior to its volume

calculation. It must be noted that this process is similar to the work of Pan et.

al. [26]. In a two-step process, the face center is first estimated as a simple aver-

age of the vertices comprising the face. The estimated face center is connected to

the vertices which decomposes the face into triangles. The final face center is the

weighted average of the centroids of the member triangles which are weighted using

their respective face areas. This method is known as the weighted centroid method.

The pseudo-code in Algorithm 3.1 paraphrases the source code available in the file

primitiveMeshFaceCentresAndAreas.C of OpenFOAM-1.6-ext. It calculates face

centers which are further used for calculating cell volumes.
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Data: list of points, list of faces.
Result: face areas and face centers.
for all faces do

if number of points = 3 then
face center =

[p1+p2+p3

3

]
;

face area =
[

(p2−p1)×(p3−p1)
2

]
;

else
face center = p1;
for i = 1→ n (n = number of vertices forming a face) do

face center = face center + pi;
end

face center = face center
n

;
for i = 1→ n do

next point = p
[
remainder

(
i+1
n

)]
;

c = pi+next point+face center
3

;
d = (next point− pi)× (face center − pi);
a = |d|;
accumulate the values of d, a and (a.c)

end

New face center = 1
3

(a.c)accumulated

aaccumulated
;

face area = daccumulated

2
;

end

end
Algorithm 3.1: Calculation of face centers and face areas.

Consequently the cell centers are calculated as arithmetic means of the face cen-

ters followed by a recalculation using the weighted centroid method. The volume

of the cell is calculated as a sum of the tetrahedrons formed by considering each

triangulated cell face as the base and the cell center as the apex [Figure 3.3]. This

method of volume calculation is widely used in the field of computational geometry

for calculating volumes of irregular shapes. In the research done by Pan et. al [26]

and Maric et. al. [23] it yielded accurate results.

In OpenFOAM®, there are numerous instances where the cell volumes are re-

quired and are therefore calculated in this way. The functions mag(), V(), cellVol-

umes() and the utility checkMesh are used for this purpose in order of increasing mesh

hierarchy. The function mag(), for example, is the most basic form and takes mesh
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Figure 3.3: Calculation of cell volume using tetrahedral decomposition. (Picture
adapted from Jasak [17])

primitives like face lists and point lists as arguments. Nevertheless, the basic concept

for calculation remains the same for all of them. Table 3.1 lists the file locations of

the definitions of these functions.

Table 3.1: Locations of the files containing the functions for calculating the cell
volumes in OpenFOAM-1.6-ext.

Function File location
mag() src/OpenFOAM/meshes/meshShapes/cell/cell.C

V() src/finiteVolume/fvMesh/fvMeshGeometry.C
CheckMesh Applications/utilities/mesh/manipulation/checkMesh.C

3.3 Calculation of swept volumes in OpenFOAM®

A swept volume is defined as the three-dimensional space swept by the polygonal

face of the control volume or the cell. Swept volumes appear only in moving mesh

problems. In OpenFOAM®, the procedure for calculating swept volumes is somewhat

different from the procedure for calculating cell volumes. The function sweptV ol()

is used for this purpose. The sequence of operations during the mesh movement is
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illustrated in Figure 3.4. For moving the mesh from its location at time t0 to t1, each

face of the cell is triangulated and transformed to the new location without deleting

the mesh location information at time t0. Utilizing the location information of the

triangulated mesh faces at two successive time instants, the function sweptV ol()

calculates the volumes swept by the cell faces during the mesh movement. These

values are used in balancing the Space Conservation Law.

Figure 3.4: Work flow in dynamic mesh simulations.

The procedure used by the function sweptV ol() to calculate volume was imple-

mented by Bos [5]. The volume swept by a triangular face forms a prism with a

triangular base. The function sweptV ol() decomposes this prismatic volume into a

set of three tetrahedrons [Figure 3.5]. The first tetrahedron is formed by connect-

ing any one of the vertices at time t1 to the two opposite vertices at time t0. The

remaining space in the prism will contain a full quadrilateral plane and the other

two tetrahedrons can be realized by connecting one of its diagonals [Figure 3.6]. The

volumes of all three tetrahedrons are summed up to obtain the volume of the prism.

As observed by Bos [5], this decomposition can take place by connecting one diago-

nal at a time in two unique ways as illustrated in Figure 3.7. Hence the volume is

calculated using both forms of decomposition and their arithmetic mean is returned

as the swept volume by the function.

The pseudo-code in Algorithm 3.2 paraphrases the source code which defines the

function sweptV ol(). As noted earlier, the function only requires the locations of the
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Figure 3.5: Tetrahedral decomposition
of the prism.

Figure 3.6: Creation of the first of the three
tetrahedrons. (Picture reproduced from
Bos [5])

Figure 3.7: Two possible ways to
uniquely decompose the remaining
space (Picture adapted from Bos [5]).

Data: List of three vertices at time t and (t+ 1).
Result: volume swept by each triangulated face.
for each triangulated sweeping face do

V1 = (at+1 − at).
[
(bt − at)× (ct − at)

]
+(bt+1 − bt).

[
(ct − bt)× (at+1 − bt)

]
+(ct − ct+1).

[
(bt+1 − ct+1)× (at+1 − ct+1)

]
;

V2 = (at+1 − at).
[
(bt − at)× (ct − at)

]
+(bt − bt+1).

[
(at+1 − bt+1)× (ct+1 − bt+1)

]
+(ct − ct+1).

[
(bt − ct+1)× (at+1 − ct+1)

]
;

swept volume = 1
12

[V1 + V2];

end
Algorithm 3.2: Bos’ [5] method for calculating swept volumes
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points which constitute the swept volume. The variables at, bt and ct in the code

store the point locations at time t and the variables at+1, bt+1 and ct+1 store the

point locations at time (t+ 1). A careful examination of the source code reveals the

implementation of Equation (2.17).

In this chapter we provided a detailed description of the algorithms which are

used to calculate of volumes in OpenFOAM®. The issues and solutions regarding

the procedure of calculating swept volumes will be covered in the coming chapters.
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CHAPTER 4

DEVELOPING AN ALTERNATE ALGORITHM

Any algorithm which implements the Space Conservation Law must calculate the

swept volumes. It must perform accurately and consistently throughout the spacial

and temporal regimes. In our work, we developed an alternate algorithm for achieving

this objective in OpenFOAM®. The requirement for devising such an algorithm is

driven by issues of consistency and accuracy surrounding the existing algorithm. In

the following sections, we will discuss the characteristics and performance of the ex-

isting algorithm and describe the concept and implementation of our algorithm. The

significance of our approach will be supported with data from the published litera-

ture, results from our own analysis and the fundamental concepts of computational

geometry.

4.1 Current method for calculating swept volumes

As demonstrated in Equation (1.6), the conservation of space involves balancing

the change in cell volume with the sum of the volumes swept by each of its faces

during a particular time interval. In OpenFOAM®, cell volume is calculated using

the function V () of the fvMesh class. The difference in the volume of a cell at

subsequent points in time accounts for the change in cell volume. On the other hand,

the swept volumes are calculated using the function sweptV ol(). The functions V ()

and sweptV ol() use different procedures for calculating the magnitude of a closed

three-dimensional space.
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The function sweptV ol() is customised for calculating the volumes of prisms which

have a base in the shape of a triangle. Triangulation of all faces before the movement of

the mesh is mandatory. This function decomposes the prism into three tetrahedrons.

The programming logic used for decomposing and calculating the swept volume has

already been discussed in Chapter 3. The tetrahedral decomposition process which is

used in the function sweptV ol() carries the decomposition in two different ways and

returns the average of volumes which were calculated using each approach [Equation

(2.17)]. As illustrated in Figure 2.10, the function connects the face center at time

(t+ 1) to the vertices of the face at time t, while the remaining space is decomposed

in the two possible ways as shown in Figure 3.7.

The procedure followed by the function sweptV ol() to calculate swept volumes

can be done by connecting any single vertex of the triangular face at time t+ 1 with

the opposite vertices of the same face at time t in order to realize the first tetrahedron.

The remaining space can then be decomposed into two tetrahedrons in two different

ways by connecting the diagonals of the quadrilateral face available in that space.

The sequence in which the three vertices of each triangle are arranged determines

the pattern in which the tetrahedral decomposition will take place. In particular, the

sequence followed by the function sweptV ol() considers the face center at time (t+1)

as the first vertex. The other two vertices are chosen on the face at time t using the

Right Hand Rule from the face center.

It has been proved by Zhang et al. [32] that the sequence in which we consider

the vertices of each participating triangle plays a vital role in ascertaining the swept

volume. They also found that the value of the swept volume that is calculated by

using one sequence can be different from the value calculated using another sequence.

This led them to consider all the permutations in which the vertices of a triangle can

be sequenced for faces at time t + 1 and t. A set of three points can be arranged in

six different permutations. For example, a set of points [1, 2, 3] can be sequenced as
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1

2 3

1

2 3

[1, 2, 3]
[2, 3, 1]
[3, 1, 2]

Figure 4.1: Possible ways of sequencing the vertices of a triangle using cyclic permu-
tations.

[1, 2, 3], [2, 3, 1], [3, 1, 2], [1, 3, 2], [2, 1, 3] and [3, 2, 1]. Each permutation is capable of

generating two sets of tetrahedral decompositions. In their research, Zhang et al. [32]

considered all possibilities to derive the final expression for calculating swept volumes.

Due to the form of data-structures and labelling conventions, we can only consider

cyclic permutations, as illustrated in Figure (4.1). This leaves us with three different

sequences in which the vertices of each triangular face of the prism can be considered.

This description provides six different ways in which the tetrahedral decomposition

can be processed. Figure 4.2 illustrates all of the approaches to decompose the tri-

angular prism. However, the function sweptV ol() uses only one among these six

ways.

In comparison to sweptV ol(), the procedure followed for calculating the volume

by the function V () appears extremely robust because it uniquely identifies the at-

tributes of each geometric entity. Furthermore, it provides a unique pattern of tetra-

hedral decomposition for each polyhedral cell. The algorithm implicitly provides a

consistent method of decomposing internal faces which are shared by two cells. The

face center is an exclusive property of the face which is determined from primitive
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Figure 4.2: All possible ways of tetrahedral decomposition for a triangular prism.
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entities, i.e. face vertices. The face centers are therefore consistent and unique for

each face of the mesh. These properties also extend to cell centers. This eliminates

the need to consider different permutations, as the vertices can be arranged in only

one unique sequence in-line with the definitions of the owner and neighbor cells of

a face. Therefore, the need for averaging the values obtained from different arrange-

ments becomes redundant. From this perspective, the method used in the function

sweptV ol() presents limitations in terms of accuracy, consistency and uniqueness.

4.1.1 Testing sweptV ol() function

We conducted a series of numerical experiments for testing the capabilities of the

function sweptV ol(). In these experiments, we created a prism which has a base

in the shape of a triangle as shown in Figure 4.3. While keeping the orientation

Figure 4.3: Initial geometry of the test case.

of the blue triangular face intact, we modified the orientation of the red triangular

face in twenty-four different ways using all six degrees of freedom. Effectively, we

are calculating the volumes swept by the blue face during complex three-dimensional

mesh motions. One of the series of change in orientation of the red face is shown in

Figure 4.4. Here, the red face is translating along the z-coordinate axis and rotating

about an axis which has a direction vector along the x-coordinate axis. The rotation
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Figure 4.4: Changes in orientation of the red face due to rotation about the X-axis
and translation along the Z-axis.

and translation are taking place simultaneously. The red face was rotated to form a

series of shapes that ranged from simple to complex. The chart shown in Figure 4.5

provides a summarized description of the transformations underwent by the red face.

For a unit translation along each direction, it was rotated from 0 to 90 degrees in

six intervals in the counter-clockwise direction from the viewpoint of the origin. All

the axes of rotations passed through the origin. Under each arrangement, a cell was

built and its volume was calculated using the functions sweptV ol() and V (). The

data were tested up to a precision of nineteen decimal places. The experiments were

conducted only for the combinations which are marked with black dots in Figure 4.5.

The combinations marked by red dots are extremely simple. Thus, the possibility of

a discrepancy in the values returned by the two functions is negligible. The results

obtained from three of these combinations are illustrated in Figures 4.6 through 4.8.

A comprehensive list of results from all twenty-four cases is available in Appendix B.
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Figure 4.5: Combinations of translational and rotational motions used for generating
complicated shapes.

4.1.2 Observations

The volumes obtained in fifteen of the twenty-four experimental sets demonstrate

a disagreement in the values which were calculated by the functions sweptV ol() and

V (). In an ideal case, both of these functions are expected to return identical values

for volume because they are defined by the same set of vertices. Considering our

analysis so far, we assume that the values returned by the function V () are correct at

this point. This makes the results obtained from the function sweptV ol() erroneous

in 62.5% of the cases in this sample set of experiments.

The magnitude of errors however changes from case to case. These experiments

were conducted for calculating the volumes swept by a single triangulated face, so

the errors will accumulate with each movement of each face of the mesh. This will

eventually introduce a substantial amount of purely numerical mass into the control

volume.
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Figure 4.6: Rotation about the X-axis with translation along the Z-axis.
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Figure 4.7: Rotation about the X and Y-axis simultaneously with translation along
the Y-axis.
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Figure 4.8: Rotation about the X-axis with translation along the X and Y-axis si-
multaneously.
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4.2 A new perspective towards calculating swept volumes

The functions sweptV ol() and V () perform the same job in two different ways.

However, when we assigned the exact same task to both of these functions, they did

not give the same result in most cases. From a broader perspective, this behavior

brings to light our concerns regarding the consistency in OpenFOAM®. There are

also some issues of accuracy but they are not as conspicuous when compared to the

issues of consistency and coherence. Therefore, using the function V () for calculating

swept volumes can address the problem and build the required consistency into the

OpenFOAM® architecture.

4.2.1 Software development

Calling the function V () to calculate swept volumes is a challenging task. One

of the fundamental reasons for this is that V () resides at a higher level in the

OpenFOAM® hierarchy, whereas sweptV ol() is defined at a rudimentary level. Fur-

thermore, we have to make sure that such a call does not create any ripple effect on the

general working of the software. We need to systematically understand the work flow

stipulated by the existing source code prior to making any changes. The pseudo-code

in Algorithm 4.1 paraphrases the definition of function V () in OpenFOAM-1.6-ext.

The function V () calls another function cellV olumes() for calculating the cell vol-

Data: List of points, list of faces.
Result: Cell volumes.
for All cells do

function call to cellV olumes()
end

Algorithm 4.1: Cell volume calculation algorithm.

umes. cellV olumes() further calls the function calcCellCentresAndV ols() for this

task. The pseudo-code in Algorithm 4.2 paraphrases the definition for calcCellCen-

tresAndVols().
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Data: List of points, list of faces, list of face centers.
Result: Cell volumes and cell centers.
f ⇒ no. of cell faces, t⇒ no. of tetrahedrons, ctet ⇒ tetrahedron centroid.
for All mesh domains do

• Initialize fields for estimated cell centers, actual cell centers and cell volumes.

label-list own = faceOwner(); label-list nei = faceNeighbor();
for All owner cells do

cEst[i] =
f∑
j=1

(face Center)j; \\ cEst⇒ Estimated cell center

end

• Repeat the above loop for all neighbor cells.

for All cEst do
cEst[i] = cEsti

Number of faces in the cell i
;

end

for All owner cells do

• Create a label-list of all faces for each cell.

if the face is triangle then
Vtet = vol. of tetrahedron from(fv1, fv2, fv3, cEst[i]);
\\ fvn ⇒ (face vertex)n where (n = 1, 2, 3)

cellCtrs[i] =
t∑

u=1

(Vtet.ctet)u; cellV ols[i] =
t∑

u=1

(Vtet)u;

else
Vtet = vol. of tetrahedron from(fv1, fv2, face Center, cEst[i]);

cellCtrs[i] =
t∑

u=1

(Vtet.ctet)u; cellV ols[i] =
t∑

u=1

(Vtet)u;

end

end

• Repeat the above loop for all neighbor cells.

for All cells do

cellCtrs[i] = cellCtrs[i]
cellV ols[i]

end

• Calculate cell volume by tetrahedral decomposition using the new cell center.

end
Algorithm 4.2: Calculating cell centers and cell volumes.
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It can be seen that the function calcCellCentresAndV ols() is using the func-

tions faceOwner() and faceNeighbour() for accessing the constituent faces of each

cell. These functions also provide information about other linked data sets like

face centers. The file primitiveMeshCellCentresAndV ols.C, where the function

calcCellCentresAndV ols() is defined, does not posses the definitions for the func-

tions faceOwner() and faceNeighbor(). These functions belong to the polyMesh

class. Their definitions refer to the mesh directories for the requisite information.

For calculating cell volumes the function V () is called as a member of the mesh class

[mesh.V ()].

Moving on, the cell center is first estimated as the arithmetic mean of centers of

all the faces which constitute the cell. The cell is then decomposed into tetrahedrons

by using the center of a face and two of its vertices as points to form the base

triangle and the estimated cell center as the apex [Figure 3.3]. Then the centroid of

each tetrahedron is calculated. The cell center is then recalculated as the weighted

average of the centroids of all the tetrahedrons which constitute the cell, which are

weighted using their respective tetrahedral volumes. The tetrahedral decomposition

is then readjusted to the new cell center. The sum of the volumes of all tetrahedrons

in the cell at this stage is returned as the cell volume.

As we mentioned earlier, the function sweptV ol() resides at a rudimentary level

in the OpenFOAM® hierarchy. The inheritance architecture stops us from accessing

mesh directories at this level. Therefore, in our understanding, the simplest solution

is to replicate the functioning of V () in the function sweptV ol().

4.2.2 Replicating V ()

The function sweptV ol() is given a set of six point vectors. The first three are the

vertices of the triangulated control surface of a cell at time-step t. The next three are

the locations of the same triangle at time-step t+ 1. The function V () is defined for
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calculating the volume of a cell. Therefore, our first task is to create a cell using the

six available point vectors. We define these point vectors as at, bt, ct, at+1, bt+1 and

ct+1.

As per OpenFOAM® architecture, a cell is a list of face indices. Hereafter, a

list of indices will be referred to as a label-list. Thus, a cell is a label-list of faces

and a face is a label-list of points. The order of entries in the label-list of a face

defines the connectivity between points, which defines the edges. Prior to realizing

the cell, we need to define faces. The pseudo-code in Algorithm 4.3 paraphrases

the procedure to define faces in OpenFOAM-1.6-ext. In this pseudo-code, we first

Data: List of points.
Result: Face definitions.

pointF ield p[6];

p[0] = at; p[1] = bt; p[2] = ct;

p[3] = at+1; p[4] = bt+1; p[5] = ct+1;

faceList pf [5]; \\ Label − list of faces

for Each face (i) of the prism do

pf [i] = face(4); \\Assigning four vertices to each face

end

Algorithm 4.3: Creating point lists and face list.

created an array of point vectors called p. Then we assigned at, bt, ct, at+1, bt+1 and

ct+1 to successive memory locations in p. Then we created a list of five faces, since

a prism with a triangular base consists of five faces. Each entry in the face list is

then linked to a label-list of four entries. Effectively, this means that we are creating

five faces and each of those five faces have four constituent vertices. The pseudo-code

in Algorithm 4.4 illustrates the procedure which defines the point connectivity for

each face. It must be noted that in our cell, we have three faces with four vertices

and two faces with three vertices. However, in order to accommodate all the faces

into a single list we defined four vertices in each face and then superimposed two of
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Data: Empty face list, populated point list.
Result: Populated face list.

pf [face0][vertex0] = 0; pf [face0][vertex1] = 1;
pf [face0][vertex2] = 2; pf [face0][vertex3] = 0;

pf [face1][vertex0] = 3; pf [face1][vertex1] = 5;
pf [face1][vertex2] = 4; pf [face1][vertex3] = 3;

pf [face2][vertex0] = 0; pf [face2][vertex1] = 2;
pf [face2][vertex2] = 5; pf [face2][vertex3] = 3;

pf [face3][vertex0] = 1; pf [face3][vertex1] = 4;
pf [face3][vertex2] = 5; pf [face3][vertex3] = 2;

pf [face4][vertex0] = 0; pf [face4][vertex1] = 3;
pf [face4][vertex2] = 4; pf [face4][vertex3] = 1;

Algorithm 4.4: Defining point connectivity in order to realize faces.

the vertices to realize the triangular face [Figure 4.9]. This is a standard practice in

OpenFOAM® [25] mesh structure. While defining the faces, we also needed to decide

x

y

z 0

1 2

2'

3

4 5

5'

Figure 4.9: Superimposing vertices 2’ onto 2 and 5’ onto 5.

whether our final product would be an owner cell or a neighbor cell. This led us to

investigate how OpenFOAM® would treat a single-cell mesh. As per our findings,

and as per OpenFOAM® mesh data-structures, in such a mesh the only available cell
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is designated as an owner cell. Therefore, we connected the points for each face as

per the Right-Hand Rule so that all the face normal vectors project in the outward

direction with respect to the cell [Figure 4.10].

x

y

z 0

1 2

3

4 5

[ 0, 1, 2]

[ 3, 5, 4]

[ 0, 2, 5, 3]

[ 1, 4, 5, 2]

[ 0, 3, 4, 1]

Figure 4.10: Arranging point vectors as per Right-Hand Rule in order to define an
owner cell.

Once we are done defining faces, the next task is to define a cell. This is illustrated

in the pseudo-code in Algorithm 4.5. It shows that a cell is nothing but a label-list of

faces. The cell is a function template defined in OpenFOAM®. It takes the label-list

of faces as an argument to realize a closed three-dimensional control volume.

The next task is to calculate the cell center. In order to keep the code as simple

as possible, it is mandatory to use existing functions whenever they are accessible.

The cell center was calculated using one such function available in the file cell.C.

It takes the face list and corresponding point field as arguments and calculates the
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Data: List of Faces.
Result: Definition of a cell.

label-list pC[number of faces in the cell];

for i = 0 to No. of faces do

pC[i] = i;

end

cell cellName(label-list of faces);

Algorithm 4.5: Defining a cell.

cell center using a weighted centroid method. The face centers are calculated with a

similar function which is available in the file face.C [Algorithm 4.6].

Data: Face list, point fields.
Result: Cell center and face center.

cellCenter = cellName.centre(pointF ield, faceList);

faceCenter0 = face0.centre(pointF ield of face0)

faceCenter1 = face1.centre(pointF ield of face1)

faceCenter2 = face2.centre(pointF ield of face2)

faceCenter3 = face3.centre(pointF ield of face3)

faceCenter4 = face4.centre(pointF ield of face4)

Algorithm 4.6: Calculating cell centers and face centers

We can carry out the tetrehedral decomposition with this data. The decomposi-

tion and volume calculation for each tetrahedron was carried out using the function

template tetrahedron < Point, PointRef > (fvtet).mag(). The pseudo-code in Al-

gorithm 4.7 illustrates the procedure for cell volume calculation.

The first three arguments in the function (fvtet) are the vertices of the base triangle

of each tetrahedron and the fourth argument is the apex. Defining the base triangle

for each tetrahedron requires a meticulous sequencing of constituent point vectors.

Here, if the face is a triangle we can use its vertices for the base triangle of the

tetrahedron. For higher order shapes the first point of the base triangle is the face
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Data: List of points, list of faces.
Result: Cell volumes and cell centers.

tet0 = tetrahedron < Point, PointRef > (at,bt, ct, cC).mag()

tet1 = tetrahedron < Point, PointRef > (at+1, ct+1,bt+1, cC).mag()

tet2 = tetrahedron < Point, PointRef > (fC2, a
t, ct, cC).mag())+

tetrahedron < Point, PointRef > (fC2, c
t, ct+1, cC).mag())+

tetrahedron < Point, PointRef > (fC2, c
t+1, at+1, cC).mag()+

tetrahedron < Point, PointRef > (fC2, a
t+1, at, cC).mag();

tet3 = tetrahedron < Point, PointRef > (fC3,b
t,bt+1, cC).mag()+

tetrahedron < Point, PointRef > (fC3,b
t+1, ct+1, cC).mag()+

tetrahedron < Point, PointRef > (fC3, c
t+1, ct, cC).mag()+

tetrahedron < Point, PointRef > (fC3, c
t,bt, cC).mag();

tet4 = tetrahedron < Point, PointRef > (fC4, a
t, at+1, cC).mag()+

tetrahedron < Point, PointRef > (fC4, a
t+1,bt+1, cC).mag()+

tetrahedron < Point, PointRef > (fC4,b
t+1,bt, cC).mag()+

tetrahedron < Point, PointRef > (fC4,b
t, at, cC).mag();

cellV olume = tet0 + tet1 + tet2 + tet3 + tet4

\\ cC ⇒ cell center

\\ fCn ⇒ face center of face n where (n = 2, 3, 4)

Algorithm 4.7: Calculating cell volume by tetrahedral decomposition.

center and the remaining two points are selected as per the Right-Hand Rule. In our

implementation the area normal vector of the triangle is parallel to its parent face

[Figure 4.11]. A prism with base in the shape of triangle, when discretized in this

manner, realizes a total of fourteen tetrahedrons. The sum of the volumes of all these

tetrahedrons is returned as the swept volume.

4.2.3 Testing the new algorithm

We repeated our sample set of experiments [Figure 4.5] with the above mentioned

procedure for calculating swept volume. We further scrutinized our results by com-

paring them with the ones obtained using Perot and Nallapati’s [27] method. Some

of the results are illustrated in Figures 4.12 through 4.14. A comprehensive set of

results from all the experiments is available in Appendix B.
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Figure 4.11: Defining point connectivity for tetrahedral decomposition

4.2.4 Observations

We observed that all the algorithms produced exactly the same results for simple

mesh movements. But, as the movements increased in complexity the results from the

function sweptV ol() deviated from the rest in its existing form. On the other hand,

the results from our alternate approach matched with the results produced from the

function V () and Perot and Nallapati’s [27] method exactly. This proves that our

approach is accurate as well as consistent with respect to similar algorithms. With

the new approach, the functions sweptV ol() and V () will be calculating the volumes

in exactly same manner. Therefore, this new implementation is a potential solution to

our concerns regarding the consistency of dynamic mesh simulations in particular and

the coherence of the OpenFOAM® architechture in general. We conducted further

testing and validation of our algorithm to characterize its performance in real time for
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Figure 4.12: Rotation about the X -axis with translation along the Z-axis. (Results
corresponding to Figure 4.6(b)).
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Figure 4.13: Rotation about the X and Y-axis simultaneously with translation along
the Y-axis. (Results corresponding to Figure 4.7(b)).
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Figure 4.14: Rotation about the X-axis with translation along the X and Y-axis
simultaneously (Results corresponding to Figure 4.8(b)).

elaborate dynamic mesh simulations in OpenFOAM®. The next chapter illustrates

the test set-ups and corresponding results.
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CHAPTER 5

VALIDATION STUDIES

This chapter describes the validation tests that were conducted for our new ap-

proach of calculating swept volumes. All test cases are basically dynamic mesh simu-

lations involving mesh motions of varying complexity. In OpenFOAM®, mesh motion

can be achieved in two ways:

1. Defining the movement scheme at a specified boundary and then displacing

the internal points accordingly by using mesh motion solvers. These solvers

implement a wide range of diffusion models for calculating the movement vectors

of each internal point location. The user chooses the diffusion scheme from an

available list.

2. Manually defining the movement equations for each point location in the mesh.

We used the first approach in all cases except the one discussed in Section 5.5. There,

we manually defined the equations for the movement of each individual point location.

5.1 Testing parameter

The varying values of the local volume continuity errors was the testing parameter

for all validation studies. A local volume continuity error is the absolute difference

between the sum of the swept volumes of a cell and the change in cell volume during a

time-step. The final error is the weighted average of errors from all the cells which are

weighted using their respective current cell volumes. Calculating the weighted average

is a method of error normalization. The pseudo-code in Algorithm 5.1 paraphrases

the method.
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Data: Cell volumes at time t and t+ 1 and swept volumes of the mesh faces.
Result: Local volume continuity error.
for All cells do

meshFlux =
No. of faces in the cell∑

f=1

(Vswept)f

\\Vswept = V olume swept by a face
\\meshF lux will have a unit vector in direction of mesh movement

a = ∇.(meshFlux)
V t+1

d = (1− V t

V t+1 )
\\V t = Cell volume at time t
\\V t+1 = Cell volume at time (t+ 1)

e = |d− a|

end

x =
No. of cells∑

n=1

(enV
t+1
n )

y =
No. of cells∑

n=1

(V t+1
n )

Local volume continuity error = x
y

Algorithm 5.1: Procedure for calculating the local volume continuity error.

5.2 Motion of a sphere inside a cube

The simulation domain is a cube with a side length of 60 units. A sphere with a

diameter of 20 units is located inside the cube. The center of the sphere coincides with

the center of the cube [Figure 5.1]. The domain consists of a purely hexahedral mesh

which contains a total of 62,814 cells. The case was run for 18 seconds of simulation

time with an increment of 0.1 seconds in each time-step. The sphere oscillates with

an amplitude of 10 units along the x-coordinate axis. There was no change made

to the mesh topology during the motion of the sphere. In the next two runs, sphere

movement was graduated to two and then three-dimensional translation. Figures

5.2 through 5.7 illustrate the mesh movement and the corresponding local volume

continuity errors.
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Figure 5.1: Section view of test domain.
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Figure 5.2: The recorded local volume continuity errors for one-dimensional oscilla-
tions of the sphere using the proposed method.
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(a) 0 s (b) 1 s

(c) 2 s (d) 3 s

(e) 4 s (f) 5 s

Figure 5.3: One-dimensional oscillations of the sphere inside a cube.
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(a) 0 s (b) 1 s

(c) 2 s (d) 3 s

(e) 4 s (f) 5 s

Figure 5.4: Two-dimensional oscillations of the sphere inside a cube.
Movement vector = 9̂i+ 5ĵ.
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(a) 0 s (b) 1 s

(c) 2 s (d) 3 s

(e) 4 s (f) 5 s

Figure 5.5: Three-dimensional oscillations of the sphere inside a cube.
Movement vector = 9̂i+ 5ĵ + 2k̂.
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Figure 5.6: The recorded local volume continuity errors for two-dimensional oscilla-
tions of the sphere using the proposed method [Figure 5.4].
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Figure 5.7: The recorded local volume continuity errors for three-dimensional oscil-
lations of the sphere using the proposed method [Figure 5.5].
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5.3 Pitching and rotating disc inside a cube

The sphere in Section 5.2 is replaced by a disc with a diameter of 20 units and

a thickness of 4 units. The center of the disc coincides with the center of the cube.

Figure 5.8 illustrates a schematic view of the domain. The domain consists of a tetra-

hedral mesh with a cell count of 26,058. The case was run for 20 seconds of simulation

time with an increment of 0.1 seconds in each time-step. There was no change made

to the mesh topology during the motion. The disc is pitching with an amplitude

of 5 units along the y-coordinate axis. Simultaneously, it is also rotating about the

z-coordinate axis through an angle of 15 degrees. Orientation of the disc at some

selected time-steps is illustrated in Figures 5.9(a) through 5.9(f). The corresponding

volume continuity errors are shown in Figure 5.10.

Figure 5.8: Test domain for the pitching and rotating disc.
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(a) 0 s (b) 1 s

(c) 2 s (d) 3 s

(e) 4 s (f) 5 s

Figure 5.9: Simultaneous pitching and rotation of the disc.
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Figure 5.10: The recorded local volume continuity errors for the simultaneous pitching
and rotating motion of the disc using the proposed method.

5.4 Arbitrary solid body motion of a cube

In this case, a cube with a side length of 60 units is modeled as a solid object. It

is made to move in an arbitrary fashion. The cube is given the freedom to use any

of the six degrees of freedom separately or simultaneously. The motion was speci-

fied using a 6DoF solver which generates a table that guides the mesh to rotate and

translate accordingly. The mesh motion is defined so that the cube translates along

the movement vector (20̂i + 20ĵ + 20k̂) and is free to rotate through 180 degrees

about any principal coordinate axis. Therefore, in this case the three-dimensional

translation and rotation takes place simultaneously. Furthermore, due to the solid

body constraint the total volume of the domain remains intact throughout the sim-

ulation. Thus, the mesh flux is essentially divergence free. The domain consists of a

tetrahedral mesh which has a total of 50,176 cells. The simulation was run for a total

clock time of 20 seconds with an increment of 0.05 seconds in each time-step.
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(a) 0 s (b) 0.2 s

(c) 0.8 s (d) 1.6 s

(e) 4.1 s (f) 6.5 s

Figure 5.11: Arbitrary motion of the cube.
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Figure 5.12: The recorded local volume continuity errors for the arbitrary solid body
motion of the cube using the proposed method.

Figures 5.11(a) through 5.11(f) show the orientation and location of the cube at

some selected time-steps. The corresponding volume continuity errors are shown in

Figure 5.12.

5.5 Twisting motion of a cylindrical bar

In this simulation, a cylindrical bar is subjected to simultaneous twisting and

translating motion. The cylinder has a radius of 10 units and a height of 40 units.

The top face is fixed in space. The bottom face rotates through 405 degrees as it

translates 20 units along its area normal vector. The first run was conducted using

a hexahedral mesh followed by a run using tetrahedral mesh. Two additional runs

were conducted by converting the tetrahedral mesh into a polyhedral mesh in two

successive iterations. The hexahedral mesh has 481 cells while the tetrahedral mesh

has 2,628 cells. The first conversion to polyhedral mesh brought the cell count to
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10,512, which became 75,096 cells in the second iteration. The simulation was run for

5 seconds of clock time with an increment of 0.005 seconds in each time step. Figures

5.13(a) through 5.13(d) illustrate the different meshes which were used. The shape of

the domain at some selected time-steps is shown in Figures 5.14(a) through 5.14(f).

The corresponding volume continuity errors are shown in Figures 5.15 through 5.18.

5.6 Observations

5.6.1 Periodicity

There is a periodicity in the volume continuity errors of each case. This is a result

of the oscillatory nature of mesh motion. Domains in all validation cases contain an

oscillating member. In one cycle, that member moves from its mean position upto a

distance stipulated by the amplitude specification. The simulation-time comprises of

several time-periods of such cycles. Consequently, we are recording repetitive error

values.

5.6.2 Concluding Remarks

The normalized volume continuity errors in all cases were recorded in the order

of approximately 10−15. The OpenFOAM® data-type scalar that is used for storing

the values of volumes as well as errors has a precision of 16 decimal places. It can

be asserted that the errors entered the range of order 10−15 due to accumulation

of machine round-offs. Therefore, we have been successful in limiting the volume

continuity errors to machine round-offs.
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(a) Hexahedral Mesh (b) Tetrahedral Mesh

(c) Polyhedral Mesh (d) Polyhedral Mesh - Second
conversion

Figure 5.13: Different meshes used for the simulation run.
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(a) 0 s (b) 0.25 s

(c) 0.5 s (d) 0.75 s

(e) 1 s (f) 1.25 s

Figure 5.14: Twisting and translating motion of the cylindrical bar.
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Figure 5.15: The recorded local volume continuity errors for simultaneous twisting
and translating motion using the proposed method. Here,the cylindrical bar consists
of a hexahedral mesh.
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Figure 5.16: The recorded local volume continuity errors for simultaneous twisting
and translating motion using the proposed method. Here,the cylindrical bar consists
of a tetrahedral mesh.
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Figure 5.17: The recorded local volume continuity errors for simultaneous twisting
and translating motion using the proposed method. Here, the cylindrical bar consists
of a polyhedral mesh.
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Figure 5.18: The recorded local volume continuity errors for simultaneous twisting
and translating motion using the proposed method. Here the cylindrical bar consists
of a polyhedral mesh which converted from an existing polyhedral [Figure 5.13(c)].
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CHAPTER 6

CONCLUSIONS

First of all, the significance of implementing the Space Conservation Law was

analyzed in detail. The different challenges in implementing it in discrete form were

also explained. This was also an opportunity to understand the OpenFOAM® archi-

tecture in detail. The source code contains advanced levels of C++ programming,

therefore it was mandatory follow a methodical approach to this development work.

We attempted to display the shortcomings of the current algorithms and demon-

strated some alternative ideas. In our understanding, these ideas can be of some

benefit over the existing schematics.

Swept volumes play a crucial role in implementing the Space Conservation Law.

The work presented in the preceding chapters has provided an alternate perception

towards calculating swept volumes. Up to this point, swept volumes have been con-

sidered geometrically different from cell volumes. Swept volumes were viewed as mere

fluxes emanating from the control surfaces. In this work, we have attempted to treat

swept volumes and cell volumes identically. In effect, the swept volumes were rec-

ognized as virtual intermittent cells which existed in transition between successive

time-steps. The volume continuity errors were limited to machine round-offs as a

result of out work.

With this work we were able to address the accuracy and consistency issues sur-

rounding the current method of calculating swept volumes. We benchmarked the

accuracy of our approach with some standard results from literature. This work has

brought consistency in two ways: first it provided a consistent and unique process of
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calculating swept volumes. Second, we were able to bring a higher level of coherence

to the OpenFOAM® architecture as a whole.
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APPENDIX A

A DERIVATION FOR EQUATION (2.13)

Let there be a triangular face f at time t = 0 s. The vertices of f are denoted by

vectors a0, b0 and c0. During a time interval ∆t the vertices a0, b0 and c0 move with

constant velocities va, vb and vc respectively. At time instant ∆t, let the vertices of

face f be denoted by a1, b1 and c1 respectively.

x

y

z

a0

a1

b0
c0

b1

c1

va

vb

vc

Figure A.1: Locations and vertices of the triangular face f .
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The volume swept by f during a time interval ∆t can be expressed as:

Vswept =

∫ ∆t

0

[∫
[vf .ndS]

]
dt (A.1)

where vf is the velocity of f and n is the area normal vector. Perot and Nallpati [27]

considered the velocity of the face centroid as the velocity of face f . Therefore we

can express Equation (A.1) as:

Vswept =

∫ ∆t

0

[
uCG.S(t)

]
dt

where S(t) is the area of f at some arbitrary time t. During the face movement, the

initial and final locations of the vertices are known. Hence the vectors a0, b0, c0, a1,

b1 and c1 are known to us. We also know the respective velocities of the face vertices.

Therefore we can articulate S(t) as:

S(t) =
1

2
[((b0 + vbt)− (a0 + vat))× ((c0 + vct)− (a0 + vat))]

⇒ S(t) =
1

2
[(b0 + vbt− a0 − vat)× (c0 + vct− a0 − vat)]

⇒ S(t) =
1

2
[((b0 − a0)− (va − vb) t)× ((c0 − a0)− (va − vc) t)]

⇒ 2S(t) = [(b0 − a0)× (c0 − a0)]− [(b0 − a0)× (va − vc) t]−

[(va − vb) t× (c0 − a0)] + t2 [(va − vb)× (va − vc)] (A.2)

We can express Equation (A.1) as:

Vswept =

∫ ∆t

0

[
uCG. (2S(t))

]
dt

2
(A.3)
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⇒ Vswept =
uCG

2
.

∫ ∆t

0

[(2S(t))] dt (A.4)

Substituting Equation (A.2) in Equation (A.4) we can calculate the volume (V 1
swept)

swept by f in time ∆t. Here, the superscript 1 denotes our first approach for calcu-

lating swept volume.

V 1
swept =

[
uCG

2
.

∫ ∆t

0

[(b0 − a0)× (c0 − a0)] dt

]
︸ ︷︷ ︸

1

−
[
uCG

2
.

∫ ∆t

0

[(b0 − a0)× (va − vc) t] dt

]
︸ ︷︷ ︸

2

−

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c0 − a0)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

(A.5)

From a different perspective, we can also express S(t) in the following manner:

S(t) =
1

2
[((b1 − vbt)− (a1 − vat))× ((c1 − vct)− (a1 − vat))]

⇒ S(t) =
1

2
[(b1 − vbt− a1 + vat)× (c1 − vct− a1 + vat)]

⇒ S(t) =
1

2
[((b1 − a1) + (va − vb) t)× ((c1 − a1) + (va − vc) t)]

⇒ 2S(t) = [(b1 − a1)× (c1 − a1)] + [(b1 − a1)× (va − vc) t] +

[(va − vb) t× (c1 − a1)] + t2 [(va − vb)× (va − vc)] (A.6)

Substituting Equation (A.6) in Equation (A.4) we can again calculate the volume

(V 2
swept) swept by f in time ∆t.
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V 2
swept =

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (va − vc) t] dt

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c1 − a1)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

(A.7)

The values V 1
swept and V 2

swept signify that the volume swept by f can be calculated

in more than one way even while using identical approaches. Perot and Nallapati’s

[27] expression is an average of V 1
swept and V 2

swept. However, before calculating the

average, we need to perform some algebraic manipulations in Equation (A.7). We

know that a0, b0 and c0 took time ∆t to reach a1, b1 and c1. Therefore, substituting

a1 = a0 + va∆t, b1 = b0 + vb∆t, c1 = c0 + vc∆t in the second and fourth term of

Equation (A.7):

V 2
swept =

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

[(b0 + vb∆t− a0 − va∆t)× (va − vc) t] dt

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c0 + vc∆t− a0 − va∆t)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

(A.8)
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⇒ V 2
swept =

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

[((b0 − a0) + (vb − va) ∆t)× (va − vc) t] dt

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× ((c0 − a0) + (vc − va) ∆t)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

(A.9)

⇒ V 2
swept =[

uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

[((b0 − a0)× (va − vc) t)]

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(vb − va)× (va − vc)] (∆t)tdt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c0 − a0)] dt

]
︸ ︷︷ ︸

4

+

[
uCG

2
.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

5

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

6

(A.10)

Adding Equation (A.5) and Equation (A.10):
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(
V 1
swept + V 2

swept

)
=[

uCG

2
.

∫ ∆t

0

[(b0 − a0)× (c0 − a0)] dt

]
︸ ︷︷ ︸

1

−
[
uCG

2
.

∫ ∆t

0

[(b0 − a0)× (va − vc) t] dt

]
︸ ︷︷ ︸

2

−
[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c0 − a0)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

+

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

5

+

[
uCG

2
.

∫ ∆t

0

[(b0 − a0)× (va − vc) t] dt

]
︸ ︷︷ ︸

6

+

[
uCG

2
.

∫ ∆t

0

[(vb − va)× (va − vc)] (∆t)tdt

]
︸ ︷︷ ︸

7

+

[
uCG

2
.

∫ ∆t

0

[(va − vb) t× (c0 − a0)] dt

]
︸ ︷︷ ︸

8

+

[
uCG

2
.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

9

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

10

(A.11)

In the Equation(A.11) the second, third, sixth and eighth terms add up to zero. Thus

reducing Equation(A.11) to:

(
V 1
swept + V 2

swept

)
=[

uCG

2
.

∫ ∆t

0

[(b0 − a0)× (c0 − a0)] dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(b1 − a1)× (c1 − a1)] dt

]
︸ ︷︷ ︸

3

+

[
uCG

2
.

∫ ∆t

0

[(vb − va)× (va − vc)] (∆t)tdt

]
︸ ︷︷ ︸

4

+

[
uCG

2
.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

5

+

[
uCG

2
.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

6

(A.12)

In Equation (A.12), we can group the first term and third terms. Furthermore, we

are adding the second and sixth terms and rearranging the variables in the fourth
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term. Thus reducing it to:

(
V 1
swept + V 2

swept

)
=[

uCG

2
.

∫ ∆t

0

[[
(b0 − a0)× (c0 − a0)

]
+
[

(b1 − a1)× (c1 − a1)
]]
dt

]
︸ ︷︷ ︸

1

+

[
uCG

2
.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

2

+

[
uCG

2
.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

3

+

[
uCG.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

4

(A.13)

Making the following substitutions in Equation A.13:

[
(b0 − a0)× (c0 − a0)

]
= 2
[
n0A0

]
[

(b1 − a1)× (c1 − a1)
]

= 2
[
n1A1

]

where

A0 = Initial area of face f . A1 = Final area of face f .

n0 = Initial area normal vector. n1 = Final area normal vector.

Followed by adding the second and third terms we get:

⇒
(
V 1
swept + V 2

swept

)
=[

uCG.

∫ ∆t

0

[
n0A0 + n1A1

]
dt

]
︸ ︷︷ ︸

1

+

[
uCG.

∫ ∆t

0

[(va − vb)× (vc − va)] (∆t)tdt

]
︸ ︷︷ ︸

2

+

[
uCG.

∫ ∆t

0

t2 [(va − vb)× (va − vc)] dt

]
︸ ︷︷ ︸

3

(A.14)
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Integrating the right hand side of Equation (A.14):

(
V 1
swept + V 2

swept

)
=[

uCG.
[
n0A0 + n1A1

]
t
]∆t

0︸ ︷︷ ︸
1

+uCG.

[
[(va − vb)× (vc − va)] (∆t)

t2

2

]∆t

0︸ ︷︷ ︸
2

+ uCG.

[
[(va − vb)× (va − vc)]

t3

3

]∆t

0︸ ︷︷ ︸
3

(A.15)

⇒
(
V 1
swept + V 2

swept

)
= uCG.

[
n0A0 + n1A1

]
(∆t)︸ ︷︷ ︸

1

−uCG. [(va − vb)× (va − vc)]
(∆t)3

2︸ ︷︷ ︸
2

+ uCG. [(va − vb)× (va − vc)]
(∆t)3

3︸ ︷︷ ︸
3

(A.16)

⇒
(
V 1
swept + V 2

swept

)
= uCG.

[
n0A0+n1A1

]
(∆t)−uCG. [(va − vb)× (va − vc)]

(∆t)3

6

(A.17)

Now we can proceed for calculating the average of V 1
swept and V 2

swept

(
V 1
swept + V 2

swept

)
2

=
uCG

2
.
[

[n0A0 + n1A1] (∆t)
]

− uCG

2
. [(va × va)− (va × vc)− (vb × va) + (vb × vc)]

(∆t)3

6
(A.18)

Let
(V 1

swept+V
2
swept)

2
= Vswept

Equation(A.18) can be rearranged to get:
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Vswept
∆t

= uCG.

[
1

2
(n0A0 + n1A1)− (∆t)2

12
[(va × vb) + (vb × vc) + (vc × va)]

]
(A.19)

In [27], Perot and Nallapati denote the face vertices as n1, n2 and n3 which corre-

spond to a, b, c respectively. The left hand side of the equation is denoted as Umesh
f

which corresponds to Vswept

∆t
in Equation (A.19). The notations for A0 and A1 are

denoted as Atf and At+1
f respectively. The notations for n0 and n1 are ntf and nt+1

f

respectively.

Thus as per the notation in Perot and Nallapati [27], Equation (A.19) can be

represented in as:

Umesh
f = uCG.

[
1

2

(
ntfA

t
f + nt+1

f At+1
f

)
− (∆t)2

12
[(vn1 × vn2) + (vn2 × vn3) + (vn3 × vn1)]

]
(A.20)

⇒ Umesh
f = uCG.

[
1

2

(
ntfA

t
f + nt+1

f At+1
f

)
− (∆t)2

12

face edges∑
e

(vn1 × vn2)

]
(A.21)
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APPENDIX B

TESTING RESULTS
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Figure B.1: Rotation about the X-axis with translation along the Y-axis.
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Figure B.2: Rotation about the X-axis with translation along the Z-axis.
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Figure B.3: Rotation about the Y-axis with translation along the X-axis.
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Figure B.5: Rotation about the Z-axis with translation along the X-axis.
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the X-axis.

86



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)
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the X-axis.

92



 0

 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.14: Rotation about the Z and X-axis simultaneously with translation along
the Y-axis.

93



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.15: Rotation about the Z and X-axis simultaneously with translation along
the Z-axis.

94



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.16: Rotation about the X-axis with translation along the X and Y-axis
simultaneously.

95



-1

-0.5

 0

 0.5

 1

 1.5

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.17: Rotation about the X-axis with translation along the Y and Z-axis
simultaneously.

96



-2

-1

 0

 1

 2

 3

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.18: Rotation about the X-axis with translation along the Z and X-axis
simultaneously.

97



 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.19: Rotation about the Y-axis with translation along the X and Y-axis
simultaneously.

98



 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.20: Rotation about the Y-axis with translation along the Y and Z-axis
simultaneously.

99



 0.5

 1

 1.5

 2

 2.5

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.21: Rotation about the Y-axis with translation along the Z and X-axis
simultaneously.

100



 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.22: Rotation about the Z-axis with translation along the X and Y-axis
simultaneously.

101



 0

 0.5

 1

 1.5

 2

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.23: Rotation about the Z-axis with translation along the Y and Z-axis
simultaneously.

102



 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  20  40  60  80  100

[C
u
rr

e
n
t 

V
o
lu

m
e
] 

/ 
[I

n
it

ia
l 
V
o
lu

m
e
]

Angle of Rotation [Degrees]

Bos' Algorithm

Cell Volume Algorithm

Perot & Nallapati

Proposed Algorithm

(a)

(b)

Figure B.24: Rotation about the Z-axis with translation along the Z and X-axis
simultaneously.

103



BIBLIOGRAPHY

[1] Apsley, D, and Hu, W. CFD simulation of two- and three-dimensional free-
surface flow. International Journal for Numerical Methods in Fluids 42 (2003),
465–491.

[2] Aris, Rutherford. Reynolds’ Transport Theorem. In Vectors,Tensors and the
Basic equations of fluid mechanics (1989), New York - Dover Publications, pp. 84
–86.

[3] Baines, M J, Hubbard, M E, and Jamak, P K. Review article: Velocity-based
moving mesh methods for non-linear partial differential equations. Communica-
tions in Computational Physics 10, 3 (2011).

[4] Boffi, D, and Gastaldi, L. Stability and Geometric Conservation Laws for ALE
formulations. Mathematics Subject Classification (2003).

[5] Bos, F M. Numerical simulation of flapping wing foil and wing aerodynamics.
PhD Thesis, TU Delft (2010).

[6] Cao, W, Huang, W, Udaykumar, H S, and Russel, D R. A moving mesh method
base on the Geometric Conservation Law. Journal of Scientific Computing 24,
1 (2002), 118–142.

[7] Chou, Y J, and Fringer, O B. Consistent discretization for simulations of flows
with moving generalized curvilinear coordinates. International Journal for Nu-
merical Methods in Fluids 62 (2010), 802–826.

[8] Dai, M. Numerical simulation of free surface flows using a moving unstructured
mesh method. PhD Thesis, University of Massachusetts, Amherst (September
2005).

[9] Demirdzic, I, and Peric, M. Space conservation Law in finite volume calculations
of fluid flow. International Journal for Numerical Methods in Fluids 8, 9 (1988),
1037–1050.

[10] Demirdzic, I, and Peric, M. Finite Volume Method for prediction of fluid flow in
arbitrarily shaped domains with moving boundaries. International Journal for
Numerical Methods in Fluids 10, 7 (1990), 771–790.

[11] Etienne, S, Garon, A, and Pelletier, D. Perspective on the geometric conserva-
tion law and finite element methods for ALE simulations of incompressible flow.
Journal of Computational Physics 228 (2009), 2313–2333.

104



[12] Ferziger, J H, and Peric, M. Conservation Principles. In Computational Methods
for Fluid Dynamics (2008), Springer, pp. 3–4.

[13] Ferziger, J H, and Peric, M. Moving Grids. In Computational Methods for Fluid
Dynamics (2008), Springer, pp. 373–381.

[14] Gopalakrishnan, P, and Tafti, D K. A parallel boundary fitted dynamic mesh
solver for applications to flapping flight. Computers and Fluids 38 (2009), 1592–
1607.

[15] Guillard, H, and Farhat, C. On the significance of the geometric conservation
law for flow computations on moving meshes. Computer Methods in Applied
Mechanics and Engineering 190 (200), 1467–1482.

[16] Hu, H H, Patankar, N A, and Zhu, M Y. Direct Numerical Simulations of Fluid-
Solid systems using the Aribitrary Lagrangian-Eulerian technique. Journal of
Computational Physics 169 (2001), 427–462.

[17] Jasak, H, and Tukovic, Z. Automatic mesh motion for the unstructured finite
volume method. Elsevier Science (February 2004).

[18] Jasak, H, and Tukovic, Z. Dynamic mesh handling in openfoam applied to fluid-
structure interaction simulations. In Proceedings of the fifth European conference
in Computational Fluid Dynamics (Lisbon, Portugal, 2010), J C F Pereira and
A Sequeira, Eds., ECCOMAS CFD 2010.

[19] Jeng, Y N, and Chen, J L. Geometric Conservation Law of the finite volume
method for the SIMPLER algorithm and a proposed upwind scheme. Numerical
Hear Transfer 22 (1992), 221–234.

[20] Koutsavdis, E K, and Tsangaris, S. Short communication: A potential model for
Space Conservation Law calculations of moving curvilinear meshes. International
Journal of Computational Fluid Dynamics 6, 3 (1996), 207–208.

[21] Kuhnlein, C, Smolarkiewicz, P K, and Dornbrack, A. Modelling atmospheric
flows with adaptive moving meshes. Journal of Computational Physics 231
(2012), 2741–2763.

[22] Li, S, and Petzold, L. Moving Mesh Methods with Upwinding schemes for Time
Dependent PDEs. Journal of Computational Physics 131 (1997), 368–377.

[23] Maric, T, Marschall, H, and Bothe, D. voFoam - A geometrical Volume of Fluid
algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh
refinement using OpenFOAM. ArXiv e-prints (May 2013).

[24] Mavriplis, D J, and Yang, Z. Construction of the discrete geometric conservation
law for high-order time-accurate simulations on dynamic meshes. Journal of
Computational Physics 213 (2005), 557–573.

105



[25] OpenFOAM. http://www.openfoam.org/docs/user/mesh.php. Official website.

[26] Pan, H, Pan, L S, Xu, D, Ng, T Y, and Liu, G R. A projection method for solving
incompressible viscous flows on domains with moving boundaries. International
Journal for Numerical Methods in Fluids 45 (2004), 53–78.

[27] Perot, B, and Nallapati, R. A moving unstructured staggered mesh method for
the simulation of incompressible free surface flows. Journal of Computational
Physics 184 (2003), 192–214.

[28] Shyy, W, Pal, S, Udaykumar, H S, and Choi, D. Structured moving grid and
geometric conservation laws for fluid flow computation. Numerical Heat Transfer
34 (1998), 369–397.

[29] Thomas, G B, and Finney, R L. Leibnitz integral rule. Calculus (1995).

[30] Thomas, P D, and Lombard, C K. Geometric Conservation Law and its ap-
plication to flow computation on moving grids. AIAA Journal 17, 10 (1979),
1030–1037.

[31] Tukovic, Z, and Jasak, H. A moving mesh finite volume interface tracking method
for surface tension dominated interfacial flow. Computers and Fluids 55 (2012),
70–84.

[32] Zhang, H, Reggio, M, Trepanier, J Y, and Camarero, R. Discrete form of the
GCL for moving meshes and its implementation in CFD schemes. Computers
and Fluids 22, 1 (1993), 9–23.

[33] Zhang, X, Schmidt, D, and Perot, B. Accuracy and Conservation properties of
a Three-Dimensional Unstructured Staggered Mesh scheme for Fluid Dynamics.
Journal of Computational Physics 175 (2002), 764–791.

106


	A Consistent Algorithm for Implementing the Space Conservation Law
	Recommended Citation

	tmp.1396657062.pdf.bTFhC

