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ABSTRACT 

METABOLIC MODELING OF SECONDARY METABOLISM IN PLANT SYSTEMS 

MAY 2014 

LISA M. LEONE,  B.S., DREXEL UNIVERSITY 

M.S.Ch.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Susan C. Roberts 

In the first part of this research, we constructed a Genome scale Metabolic Model (GEM) of 

Taxus cuspidata, a medicinal plant used to produce paclitaxel (Taxol®). The construction of the 

T. cuspidata GEM was predicated on recent acquisition of a transcriptome of T. cuspidata 

metabolism under methyl jasmonate (MJ) elicited conditions (when paclitaxel is produced) and 

unelicited conditions (when paclitaxel is not produced). Construction of the draft model, in which 

transcriptomic data from elicited and unelicited conditions were included, utilized tools including 

the ModelSEED developed by Argonne National Laboratory. Although a model was successfully 

created and gapfilled by ModelSEED using their software, we were not able to reproduce their 

results using COBRA, a widely accepted FBA software package.  Further work needs to be done 

to figure out how to run ModelSEED models on commonly available software. 

In the second part of this research, we modeled the MJ elicited/defense response phenotype in 

Arabidopsis thaliana. Previously published models of A. thaliana were tested for suitability in 

modeling the MJ elicited phenotype using publicly available computation tools. MJ elicited and 

unelicited datasets were compared to ascertain differences in metabolism between these two 

phenotypes. The MJ elicited and unelicited datasets were significantly different in many respects, 

including the expression levels of many genes associated with secondary metabolism. However, it 

was found that the expression of genes related to growth and central metabolism were not 
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generally significantly different for the MJ+ and MJ- datasets, the pathways associated with 

secondary metabolism were incomplete and could not be modeled, and FBA methods did not 

show the difference in growth that was expected. These results suggest that behavior associated 

with the MJ+ phenotype such as slow growth and secondary metabolite production may be 

controlled by factors not easily modeled with transcriptome data alone. 

Additional research was performed in the area of cryosectioning and immunostaining of fixed 

Taxus aggregates. Protocols developed for this work can be found in Appendix B. 
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CHAPTER 1 

PLANT SECONDARY METABOLISM 

Much of this text was taken from (Leone & Roberts 2013) with permission from Springer. 

Paradigms of Anti-Cancer Drug Discovery 

From 1981 to 2002, 74% of the anticancer agents approved by the FDA were inspired by, derived 

from, or true natural products (NPs) (Wilson & Danishefsky, 2006). Biologically-derived 

compounds often exhibit “privileged structures” in terms of biological activity (Evans et al. 

1988). Unfortunately, these structures are often chirally complex and pose unique challenges for 

large-scale commercial production. For a significant number of NPs, a route to chemical 

synthesis does not exist, and for the vast majority of NPs, total chemical synthesis methods are 

not commercially viable due to structural complexity, low yields and environmental concerns 

(Kolewe et al. 2008). In the 1970s and 1980s, a lack of immediate production strategies for some 

NPs entering clinical trials led to a perceived “supply crisis” for certain drugs, including the anti-

cancer compounds paclitaxel and camptothecin. These situations led to reluctance in the 

pharmaceutical industry for investment in NPs. 

The ease of chemical synthesis in simple, non-NP-derived molecules is perhaps one reason why 

synthetic combinatorial libraries became popular in drug development (Ortholand & Ganesan 

2004). The total chemical synthesis of a synthetic combinatorial library’s components as a 

starting point ensures that every compound will have a relatively simple (and known) route for 

eventual large-scale production. A disappointing result of this cost-saving methodology is that the 

systematic exploration of organic chemistry space has been limited to known and easily 

synthesizable structures, which are not necessarily biologically relevant (Lipkus et al. 2008). 

Among the millions of compounds screened in academia and industry, only a relatively small 
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number of compounds from high-throughput screens have been shown to exhibit activity against 

drug targets, and even fewer have overcome toxicity issues and moved to clinical trials (Newman 

& Cragg 2007). Because of these difficulties, synthetic combinatorial libraries have shifted over 

the past decade from large collections of simple compounds to a diversity-centered exploration of 

a smaller chemistry space, aided by computational technologies (Schnur et al. 2011).  

With this new focus, the drug industry has reverted back to a paradigm in which natural 

organisms have unique advantages over a chemist’s bench. Plants, marine organisms and 

microbes still represent an extremely diverse and relatively untapped space for lead discovery. 

The NP research of the past 30 years has made rapid progress in alleviating possible supply issues 

through a variety of advanced technologies, including plant cell culture (PCC) and heterologous 

expression in microbial systems, as discussed below. 

Natural Product Diversity and Production 

 

Figure 1 – Anti-cancer natural products derived from plants. 

 

Naturally occurring plants, microbes and fungi have been the source of a staggering amount of 

NP diversity throughout the history of drug discovery. In the case of plants, over 10,000 alkaloids 

and 23,000 terpenoids have been characterized, and these most certainly are an underestimation 
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of the capabilities of plants, of which only a small portion of the world’s species are estimated to 

have been sampled (Cheng et al. 2007). Many of these NPs (Figure 1) have medicinal qualities.  

Most plant NPs fall into the class of secondary metabolites (SMs), so called because they do not 

necessarily serve primary metabolic functions in the growth and maintenance of their native 

plant. Biosynthesis of plant SMs is complex, involving many different precursors from primary 

metabolism. Some of these pathways are interconnected, for example, all of the compounds 

within the alkaloid and terpenoid classes of NPs originate in part from the common precursor 

isopentenyl diphosphate (IPP) and its allylic isomer dimethylallydiphosphate (DMAPP). 

Biosynthesis of many SMs often requires dozens of enzymes acting in concert, and as a result is 

under strict metabolic control. The abbreviated biosynthetic pathways of paclitaxel and the Vinca 

alkaloids in Taxus spp. and Catharanthus roseus, respectively, are shown in Figure 2. While SMs 

do not play a role in primary metabolism in that they do not directly pertain to plant growth or 

maintenance, many plant NPs have shown activity in nature as insecticides and anti-fungals, and 

are thought to confer evolutionary advantages to their native plant (Hartmann 2007). 
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Figure 2 – Biosynthetic pathways of paclitaxel and Vinca alkaloids in Taxus and C. roseus plants 

respectively. 

 

The “screening” hypothesis of NP diversity postulates that the chances of any single NP 

possessing a potent bioactivity, as a fungicide or insecticide for example, is very low. Therefore, 

it is advantageous for plants to produce many slightly different metabolites in small 

concentrations, in the hopes that at least one will be useful against an external stressor, such as 

herbivorous insects (Firn & Jones 2003). In this perspective, a single plant can be compared to a 

naturally occurring drug discovery program, in which many compounds with slightly different 

functionalities are produced from simple starting structures. Plants accomplish this incredible 

diversity at minimal biosynthetic cost by employing promiscuous enzymes, using branched and 

matrix biosynthetic pathways, and generally producing minute quantities of these SMs (Fischbach 

& Clardy 2007). 

Different amounts of pure product are needed at different stages of development. After a 

promising compound has been identified, milligram quantities are needed for structural 

determination, multiple grams are needed for clinical development, and multiple kilograms are 

needed for initial clinical trials (Cragg, Boyd, Grever, Schepartz, & Grever, 1995; Koehn & 

Carter, 2005). If a novel compound is found to be effective in clinical trials and approved for use, 
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supply will need to quickly ramp up to many kilograms for commercialization. As shown in the 

story of paclitaxel (see below), supply issues can be a major hurdle for NPs. Supply issues are 

especially untenable in the treatment of terminal diseases such as cancer, where patients cannot 

wait months or years for a supply route to be established. Fortunately, the field of NP synthesis 

has matured since the paclitaxel supply crisis of the 1990s and there now exist many options for 

supply depending on the properties of the NP and plant source. 

Natural Harvest 

Natural harvest is the method by which many plant NPs have initially been collected, and for 

intermediate to long term production it is an option when 1) the plant producing the compound of 

interest is fast growing and easily cultivable, as in the case of C. roseus, or 2) when the product of 

interest is produced in relatively large quantities in planta, as in the case of podophyllotoxin in 

Podophyllum hexandrum rhizomes (Farkya et al. 2004). For many naturally occurring compounds 

neither of these conditions ismet, and environmental concerns can also arise when a plant is 

endangered or vital to a local ecosystem. Additionally, in the case of novel NPs found through 

strategies such as combinatorial biosynthesis, the native plant will generally not produce the 

compound at all. 

Chemical Synthesis 

Generally a default for the chemical industry, chemical synthesis is an option when the compound 

of interest is relatively simple and easy to synthesize, as in the case of flavopiridol, an anti-cancer 

NP in clinical trials that is currently supplied via total synthesis (Naik et al. 1988). Complete 

chemical syntheses have been published for many NPs of interest, such as paclitaxel (Nicolau et 

al. 1994; Holton et al. 1994), but they often do not represent a viable, scaleable production 

method due to low yields, complexity and number of steps, as well as the use of environmentally 
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unfriendly chemicals and solvents. Chemical semi-synthesis can be used to create NP derivatives 

with more favorable pharmacological properties, as in the case of the camptothecin derivatives 

irinotecan and topotecan, and in some cases, can be used to derive a NP from precursors that 

occur naturally at high levels. For example, a paclitaxel intermediate, 10-deacetylbaccatin III, was 

chemically modified to produce a semi-synthetic version of paclitaxel in the 1990s (Denis et al. 

1988) and was used as the primary supply route for paclitaxel by Bristol-Myers Squibb for over a 

decade. 

Heterologous Synthesis in Microbes 

Transfer of plant NP pathways to microbial hosts has advanced rapidly in the past decade. The 

driving force behind this development is the perceived advantage of microbes, such as 

Escherichia coli and Saccharomyces cerevisiae, as production organisms for fermentation, 

because they are well-studied model systems; additionally, a mature infrastructure exists for the 

fermentation of these microbes at large scales. One of the first success stories in this field was 

heterologous expression in yeast (Ro et al. 2006) and E. coli (Dietrich et al. 2009) of enzymes to 

synthesize precursors to artemesinin, an anti-malarial agent from the plant Artemisia annua. 

Under a tripartite partnership of Amyris Biotechnologies, the Institute for One World Health and 

the pharmaceutical company Sanofi-Aventis, the fermentation for artemesinin  is currently 

moving into the commercial phase and is expected to begin production in 2012 (Hale et al. 2007; 

Solomon 2011).  Efforts to transfer metabolic pathways for isoflavones (Leonard et al. 2008), 

taxanes (Ajikumar et al. 2010), and alkaloids (Nakagawa et al. 2011) are currently underway. 

However, major hurdles to microbial biosynthesis still exist, including incomplete NP 

biosynthesis pathway knowledge and access to cloned genes, as well as the difficulty in 

expressing plant enzymes in microbial systems.  
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Despite much research, knowledge of the biosynthetic pathways of many important plant NPs 

remain incomplete in planta. For example, in the paclitaxel pathway there are thought to be 

approximately 19 steps, of which several remain completely unknown, and among the known 

steps, enzyme identification is incomplete (Croteau et al. 2006). The formation of the oxetane 

ring in particular is essential to the clinical function of paclitaxel (Kingston 1994), but enzyme 

candidates for this reaction have not yet been found. A special difficulty in identifying 

biosynthesis genes is that genes in the same biosynthetic pathway are not clustered in plants as in 

microbial systems, making identification difficult unless the entire plant genome is sequenced 

(Schäfer & Wink 2009). Next-generation sequencing techniques are starting to alleviate this 

challenge, but in the present and immediate future, lack of plant genetic knowledge and tools has 

been a major bottleneck in the transfer of plant pathways to microbes. 

Another challenge that must be addressed on a case by case basis for microbial transfer is enzyme 

engineering. Adapting enzymes for optimal function in a non-native host can be difficult, 

particularly for plant cytochrome P450s (CYP450s). CYP450s and their associated reductase 

partners are heme-thiolate enzymes constituting one of the largest super families of proteins, and 

are found in both prokaryotes and eukaryotes. In eukaryotes, CYP450s are membrane bound, 

while in prokaryotes they are soluble (Werck-Reichhart & Feyereisen 2000). CYP450s are 

responsible for many of the unusual oxidative reactions seen in the biosynthesis of plant SMs, 

making them essential for heterologous expression of many plant NPs. Numerous challenges 

exist in the expression of plant CYP450s, including: improper folding, lack of an appropriate 

membrane binding site in prokaryotes, and difficulties in maintaining adequate NADPH pools for 

reductase activity. These difficulties can be overcome on a case by case basis via protein 

engineering and related strategies, and  multiple functioning plant CYP450s have been 

successfully expressed in E. coli (Chemler & Koffas 2008).  

Plant Cell Culture 
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Heterologous production of plant NPs in microbes will continue to develop for the foreseeable 

future, but it is important to situate these breakthroughs in the context of current pharmaceutical 

supply. Microbial fermentation has been touted as a cost-effective route for large-scale 

production of high value plant NPs, but as mentioned above, it is not possible for certain NPs, 

particularly for those with undefined biosynthetic routes. Plant cell culture (PCC) is an attractive 

option for immediate production of plant NPs when heterologous production is infeasible.  

Environmentally-friendly PCC has been used industrially for plant NP supply since 1984, when 

Mitsui Petrochemical Industries, Ltd. began using a cell suspension of Lithospermum 

erythrorhizon to produce the pigment shikonin on a 750-L bioreactor scale (Georgiev et al. 2009). 

Today, PCC is utilized commercially to produce a wide variety of pharmaceuticals, pigments and 

food additives at scales up to 75,000-L, as in the case of Phyton Biotech, Inc.’s paclitaxel process. 

Plant SMs, which form the majority of plant NPs, are often under strict and specific metabolic 

control; for example, some plant NPs are synthesized in response to exogenously applied elicitors 

such as methyl jasmonate, salicylic acid or nitric oxide, which are known to be key signaling 

molecules in the plant defense response (Zhao et al. 2005). Some plant NPs require specialized 

cell types to synthesize the desired NP;  for example, the biosynthesis of vindoline, one 

intermediate in the vinblastine and vincristine pathway (Figure 2) appears to require three 

different mature cell types and multiple intracellular compartments (Kutchan 2005). Overcoming 

limitations imposed by metabolic control is a major area of research, with efforts placed towards 

activating inherent secondary metabolism via elicitation, as well as metabolic engineering and 

expression of transcription factors to rationally control plant metabolism. 

Plant Cell Suspension Culture 
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Plant cell suspension culture (PCSC) is a subset of PCC in which cells from an intact plant or 

plant embryo are “de-differentiated” using phytohormones and grown in liquid media. Plant cells 

are totipotent, in that given correct signals they can differentiate and develop into any plant cell 

type or organ; this also gives them the ability to be maintained in a de-differentiated state. Given 

their constant growth, PCSCs must be subcultured into fresh media every 1-4 weeks depending 

on their specific growth rate. Importantly, cryopreservation techniques have been developed for a 

number of medicinally-relevant plant species to preserve vitality without repeated subculture 

(Mustafa et al. 2011). However, recovery of PCSCs from cryopreserved cultures is a time-

consuming process and does not always result in a predictable performance (Harding 2004). As a 

result of incomplete separation after cell division, plant cells in suspension grow as aggregates 

ranging in size from a few cells (100 µm diameter) to thousands of cells (2 mm diameter) 

(Kolewe et al. 2008). In addition, plant cells are more sensitive to shear than microbial cells, 

owing to their large, water filled vacuoles. A number of novel impeller configurations and 

bioreactor types have been developed to meet the unique needs of PCSCs – most notably the 

recent invention of disposable, gas-permeable-bag wave-type bioreactors – although many plant 

cell types have been grown successfully in commonly available stirred tank bioreactors at culture 

volumes up to 70 m
3
 (Eibl & Eibl 2007). 

A major area of research in PCSC is the variability in metabolite accumulation of de-

differentiated plant cells that have been subcultured repeatedly over a period of years. It is known 

that the callus culture method by which de-differentiated PCSCs are formed generally creates a 

heterogeneous population of cell types in suspension (Senger et al. 2006). The de-differentiated 

state itself sometimes leads to genomic instability over repeated subculture (Baebler et al. 2005). 

Additionally, the aggregated nature of plant cells in suspension may cause epigenetic changes, 

affecting product accumulation through unknown mechanisms (Patil et al. 2011). The relationship 

between aggregate size and NP accumulation has been studied in a number of different plant 
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systems, but results are varied, in part due to inconsistent experimental methodologies. In a recent 

study using a more accurate whole-culture measure of metabolite synthesis, paclitaxel 

accumulation in de-differentiated PCSC increased as aggregate sized decreased, suggesting 

aggregation as a process parameter that should be optimized (Kolewe et al. 2011).   

A recent development in PCSC is the suspension culture of cambial meristematic cells (CMCs). 

In planta, cells in the cambial meristem layer of tissue can grow indefinitely and become any cell 

type. Because of this feature they have been likened to plant stem cells and defined as “un-

differentiated” in contrast to the “de-differentiated” cells discussed previously. Suspension 

cultures of Taxus CMCs were made by creating callus culture from isolated Taxus cambial 

meristem tissue. The CMC cultures grew faster, formed smaller aggregates and displayed greater 

genetic stability than de-differentiated cultures (Lee et al. 2010).  

Hairy Root Culture 

CMCs are an attractive new option for plant cell cultures; however, some plant NPs are produced 

preferentially in more differentiated cell types and may be produced in small quantities, or not at 

all, in truly un-differentiated cells (Roberts & Kolewe, 2010). Hairy root culture (HRC) is another 

subset of PCC in which root tissue from a plant of interest is genetically transformed by the soil 

bacterium Agrobacterium rhizogenes, leading to branched “hairy roots” that can grow indefinitely 

without exogenously supplied phytohormones needed for PCSCs. Because HRCs are 

differentiated tissue, they frequently have the ability to produce SMs that de-differentiated PCSCs 

cannot, and in some cases can even produce plant NPs that are not normally found in roots of 

intact plants. For instance, HRCs of A. annua accumulated artemisinin, whereas in whole plants 

artemisinin is produced only in the aerial sections (Kim et al. 2002). HRCs also appear to be more 

genetically stable than de-differentiated cultures and do not lose biosynthetic potential upon 

repeated subculture (Georgiev, Ludwig-Muller, & Bley, 2010).  
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Despite their proven biosynthetic capabilities, HRCs have not yet been used commercially for 

production of any plant NPs, mostly due to the lack of proven, large-scale bioreactors. The 

branched and corporeal nature of HRCs make them difficult to culture in stirred tank bioreactors, 

and nutrient transport limitations result in slow growth and low productivity. Novel bioreactor 

designs may improve HRC, and among the most promising are mist bioreactors. This novel 

bioreactor type sprays exposed roots with a nutrient solution and it has been shown to increase 

growth and metabolite productivity at high root densities (Weathers et al. 2008). 

Yield Enhancement Strategies 

Apart from variability in product accumulation, another major area of research in PCC is 

enhancement of biosynthetic capabilities. This goal is realized through a number of strategies, 

including chemical elicitation of secondary metabolism, selection of elite cell lines, and metabolic 

engineering. While plant NPs are generally produced in extremely small quantities under normal 

conditions, in some cases SMs may constitute 20-60% of a plant’s dry weight (Verpoorte et al. 

1999). Activation of secondary metabolism using elicitors such as methyl jasmonate has been 

shown to significantly increase production of plant NPs, almost 50-fold in the case of paclitaxel 

in T. baccata PCSC (Yukimune et al. 1996). Elicitation pathways are highly conserved in plants, 

and elicitors such as methyl jasmonate have been shown to activate secondary metabolism in a 

wide variety of plants through similar pathways (Gundlach et al. 1992; van der Fits & Memelink 

2000). 

A useful technique in cell culture to improve yields is to select individual cells that have high 

biosynthetic productivity and culture them as “elite” cell lines. This technique is generally 

difficult to accomplish with plant cell lines, as cultures are composed of genetically 

heterogeneous aggregates that may respond differently to selection pressures. Furthermore, due to 

the unstable nature of de-differentiated cells, elite cell lines may lose their increased capacity over 
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time. A successful example of using selection pressure to create stable, elite cell lines is 

establishment of Lavendula vera cultures producing high amounts of the phenolic plant NP 

rosmarinic acid. Selection was accomplished by feeding toxic amino acid analogues in the media 

with the expectation that only cells expressing high amounts of an enzyme common to both 

amino acid and rosmarinic acid biosynthesis would be able to detoxify the amino acid analogues 

and remain viable (Georgiev, Pavlov, & Ilieva, 2006). This approach was effective in creating 

genetically stable, high-producing cell lines, but is limited to cases in which an effective 

screening procedure exists. Additionally, the heterogeneous and aggregated nature of PCSCs may 

dilute the effect of small numbers of high-producing cells because they are not separated from 

large numbers of low-producing cells. In cases where it is possible to disassociate individual cells 

from aggregates, labeling of the plant NP of interest and flow cytometric cell sorting is a more 

robust method for isolating and re-culturing elite cell lines (Naill & Roberts 2005b; Naill & 

Roberts 2005a) 

Manipulation of biosynthetic pathways at a genetic level offers significant potential for increasing 

yields of plant NPs in PCC. Recent technological developments, such as 454 pyrosequencing, 

have lowered the barriers to identifying genes in biosynthetic pathways, and deliver the promise 

of making “non-model” organisms amenable to metabolic analysis (Bräutigam & Gowik 2010). 

Once biosynthetic pathway genes are known, Agrobacterium tumefaciens transformation can be 

used to stably introduce or silence genes in plants, although some types of plants such as trees and 

crop plants can be recalcitrant to Agrobacterium transformation. Engineering of Agrobacterium 

strains for increased virulence as well as manipulation of plant culture conditions have resulted in 

a wider applicability of this technique (Gelvin 2003). Transcription factors are also targets of 

metabolic engineering efforts. For example, simultaneous up-regulation of the gene G10H and the 

ORCA3 transcription factor in HRCs of C. roseus resulted in a 6.5 fold increase in catharanthine, 

a precursor of vinblastine (Ni et al. 2011). In many cases, however, transcription factor 
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engineering is not effective at increasing production of the desired NP, and new models of plant 

metabolism may better our understanding of how to manipulate metabolism on a systems level 

(Stitt et al. 2010).  

One promising technology to better understand plant metabolism and ways to improve it are 

genome scale metabolic models (GEMs). These models take into account all known metabolic 

reactions within a cell and apply optimization conditions (usually maximization of growth) to 

simulate fluxes for the metabolic reactions. GEMs have been applied successfully in the 

metabolic engineering of microbes such as E.coli for the production of chemicals such as succinic 

acid (Lee et al., 2005). Using a GEM, researchers can model fluxes for all biosynthetic reactions 

and can identify bottlenecks in pathways or competing pathways that reduce flux to the target 

molecule. Genetic engineering techniques can then be used to upregulate or knockout genes of 

interest and improve overall flux to the target molecule. GEMs have been created for multiple 

plant species including the model plant species Arabidopsis thaliana, as well as food crops such 

as corn and rice (Saha et al. 2011; Poolman et al. 2013). 

Creating GEMs that can be used for genetic engineering of plant secondary metabolites is more 

complicated than for bacterial systems. First, plant secondary metabolic pathways are incomplete 

and poorly studied, so it may be difficult in many cases to create an accurate metabolic model that 

will include secondary metabolic pathways. Second, plants are highly compartmentalized and 

require more complex models than prokaryotes to accurately model fluxes. Third, because plants 

are multi-cellular and different cell types may have different functions, optimization conditions 

may not be as simple as maximization of growth. For optimization of secondary metabolites in 

particular, some molecules are only produced in specialized cell types or under stress conditions, 

in which optimization of growth would not give accurate accounting of fluxes.  
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Because so little is known about fluxes in plant cells, especially for specialized cell types and 

cells undergoing stress responses, measurement of fluxes using Metabolic Flux Analysis (MFA) 

is a strong component of the plant metabolic engineering toolbox (O’Grady et al. 2012). MFA is 

used to experimentally measure certain fluxes in central metabolism by taking advantage of 

patterns in protein labeling using isotopically labeled carbon substrates. This technique has been 

used in the medicinal plant C. roseus to discern central carbon fluxes using NMR (Sriram et al. 

2007). Limitations of MFA include expense of labeled substrates and the difficulty of interpreting 

results via NMR or GC/MS, especially for compartmentalized organisms and photosynthesizing 

organisms (Niklas et al. 2010). 

The Paclitaxel Story 

Paclitaxel is one of the most successful drugs in the history of chemotherapeutics, with annual 

reported sales in 2000 exceeding 1.5 billion USD (Expósito et al. 2009); however, the early 

history of paclitaxel was fraught with complications, and at many points it was almost discarded 

as a drug lead. The story of paclitaxel (summarized in Table 2) began in 1962, when a sample of 

bark from the Pacific yew, T. brevifolia, was collected by USDA workers. An extract tested 

positive for activity in the KB cytotoxicity assay. Following the positive result, Dr. Monroe Wall 

fractionated the sample and isolated the cytotoxic agent, paclitaxel, in 1971. Paclitaxel had 

favorable but unremarkable cytotoxic activity against common cell-based cytotoxicity screens; 

however, interest in paclitaxel was ignited in 1979, when Dr. Susan Horwitz showed that 

paclitaxel had a unique mechanism of action against tumor cells. Whereas previous spindle 

poisons (e.g., the vinca alkaloids vinblastine and vincristine) act by rapidly depolymerizing 

microtubules and preventing spindle formation in mitosis, paclitaxel instead stabilizes the tubulin 

polymers, preventing the cell from properly assembling its spindle and continuing through 

mitosis.  
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Paclitaxel was a poor drug lead due to low aqueous solubility, structural complexity precluding 

easy chemical synthesis, and the lack of a large and renewable supply of the compound. 

However, interest from the research community, due to its novel mode of action, helped to move 

it past major difficulties during its initial development, including several deaths in Phase I clinical 

trials due to allergic reactions with Cremophor, an emulsifying agent in its formulation. Although 

at many points in paclitaxel’s history the chances of it emerging as a successful chemotherapeutic 

appeared slim, clinical trials continued after the formulation was re-worked, and extremely 

promising Phase II results were obtained against refractory ovarian cancer (Cragg, Schepartz, 

Suffness, & Grever, 1993). 

Even as paclitaxel enjoyed success in the clinic, there was still a major hurdle to its development 

as a large-scale chemotherapeutic. While early research and initial clinical trials had relied on 

collection and extraction of bark from wild-growing T. brevifolia, the collection and extraction 

processes were environmentally damaging.  T. brevifolia’s properties as a SM producer were a 

perfect storm of unfortunate specifications: the tree was slow growing, paclitaxel accumulated 

only in the bark, and yields were very low. In contrast to harvest of the vinca alkaloids from fast-

growing C. roseus, natural harvest of paclitaxel was unsustainable – 16,000 lbs of bark from 

approximately 2000 yew trees were required to produce 1 kg of paclitaxel (Cragg & Snader 

1991). In the early 1990s the paclitaxel supply problem was finally recognized as a crisis. In 1991 

the NCI entered into a Cooperative Research and Development Agreement (CRADA) with 

Bristol-Myers Squibb (BMS) to heavily fund research into alternate supply routes. Meanwhile, 

the destruction of trees became a high profile environmental issue and in 1992 federal legislation 

(The Pacific Yew Act) was passed to manage the survival of the T. brevifolia. Concurrently in 

1992, paclitaxel was approved by the FDA to treat ovarian cancer and demand for the drug 

sharply accelerated. By 1993 NCI was supporting 35 grants on paclitaxel research, with funding 

of $4.6 million, in addition to BMS’s independent research (Cragg et al., 1993). 
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The most immediate relief for the supply issues was a semi-synthetic method that was first 

developed in 1986 and later re-worked to be more efficient (Denis et al. 1988). 10-

deacetylbaccatin III was extracted from the needles of various Taxus species and converted to 

paclitaxel via chemical methods. Needle harvest was more environmentally friendly than bark 

harvest, leaving the tree viable and intact, and in 1994 the semi-synthetic method was approved 

by the FDA to supply paclitaxel, now trademarked Taxol®. However, the semi-synthesis method 

was expensive and environmentally unfriendly due to a number of harsh chemical solvents used. 

Research into production alternatives continued to be a hot topic during the 1990s, and in 1994 a 

total synthesis of paclitaxel was first reported (Nicolau et al. 1994; Holton et al. 1994). Paclitaxel 

is a complex molecule containing over 11 chiral centers and a unique oxetane ring chemistry, and 

total organic syntheses have still not resulted in any cost-effective or industrially-viable 

processes. 

 

Plant cell culture (PCC) was first funded by the NCI as a supply route for plant-derived anti-

cancer agents as early as 1977, but the contracts were terminated prematurely in 1980 due to lack 

of interest at the time (Cragg et al., 1993). A number of PCC projects were funded by the NCI in 

response to the paclitaxel crisis, and  the first patent for plant cell suspension culture of T. 

brevifolia for paclitaxel production was issued in 1991, with reported yields of 1-3 mg/L 

(Christen et al. 1991). Phyton Biotech, Inc. was formed in 1990 near Cornell University (Ithaca, 

NY) in response to a renewed interest in PCC technologies to supply paclitaxel. The company 

grew quickly and in 1993 acquired Phyton GmbH and a 75,000 L cGMP PCC facility in 

Heidelberg, DE. Phyton Biotech licensed their PCC process to BMS in 1995, and continued to 

improve the paclitaxel process, recently filing a patent for strategies to increase broth titers to 900 

mg/L. (Bringi et al. 2007). The current worldwide supply of paclitaxel is provided by Phyton 

Biotech, which is now a subsidiary of DFB Pharmaceuticals, Inc. Recent research in Taxus PCC 
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focuses on improving paclitaxel yield and minimizing production variability by better 

understanding paclitaxel biosynthesis and regulation on a genetic level, as well as the influence of 

key process variables such as aggregation (Wilson & Roberts, 2011). 

Research Objectives 

The work in this thesis is an exploration of the use of genome scale metabolic models in 

understanding plant secondary metabolism, with an aim towards future genetic manipulations of 

secondary metabolite producing plants to improve yields. In Chapter 2, a general overview of 

genome scale models is given, and the process of creating a metabolic model from a 

transcriptome for a plant species of interest (T. cuspidata) is outlined. In Chapter 3, a published 

genome scale metabolic model of A. thaliana is used in conjunction with transcriptome data 

under varying conditions to model changes in metabolism. Different methods for integrating 

transcriptome data with metabolic models are explored and discussed.  
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CHAPTER 2 

METABOLIC MODEL OF TAXUS CUSPIDATA 

 

Background 

Flux Balance Analysis 

Genome-scale metabolic models (GEMs), also referred to as metabolic reconstructions, represent 

the current start-of-the-art for capturing whole cell metabolism by quantifying steady-state fluxes 

through a network of enzymatic reactions. This technique has been used to model systems with a 

range of complexity from Escherichia coli (Edwards & Palsson 2000) to Homo sapiens (Bordbar 

& Palsson 2012). The primary element of a GEM is the reaction network described by a 

stoichiometric matrix relating the individual reactions and their participating metabolites. The 

term “genome-scale” describes the process by which the stoichiometric matrix is obtained, 

usually from an annotated genome of the organism (Borodina & Nielsen 2005). The 

stoichiometric matrix is invariably underdetermined with more unknown reaction fluxes than 

metabolite balances, meaning that the solution space is infinite. To determine unique solutions, 

the stoichiometric matrix is combined with a suitably chosen objective function that represents 

the “cellular objective” and presumably captures various unmodeled regulatory processes. The 

resulting optimization problem is a classic linear program, and the process of solving the model is 

termed Flux Balance Analysis (FBA).The default objective function is maximization of the 

growth rate, which requires that the biomass composition be specified in terms of the reaction 

fluxes to the biomass precursors (Feist & Palsson 2010). This objective function has been 

successfully applied to numerous microbial models (Edwards & Palsson 2000; Duarte et al. 

2004). 
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To date, curated GEMs exist for over 80 organisms and draft models exist for thousands 

of other organisms. Once available, a GEM can be used to analyze and engineer metabolism 

through a set of computational methods collectively termed “constraint-based modeling”(Orth et 

al. 2010) and available through software platforms such as COBRA (Becker et al. 2007). 

Creation of Metabolic Networks 

Before FBA can be performed, a metabolic network must be constructed to provide the 

stochiometric matrix. In practice, many of these metabolic  networks have been constructed from 

existing databases of curated biochemical and genomic data, such as AraCyc for Arabidiopsis 

(Poolman et al. 2009) and RiceCyc for rice (Poolman et al. 2013). The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database(Kanehisa & Goto 2000) is also a useful resource in model 

building, as it provides information on pathway directionality and GPR correlations for many 

organisms that may not possess curated databases. The ability to create a GEM for any organism 

relies on the ability to accurately recognize enzymes encoded in the genome or transcriptome, 

annotate those enzymes with correct metabolic functionality, and build a complete enzymatic 

reaction, including cofactors.   

Application of genome-scale modeling to plant species has proven to be difficult for a number of 

reasons, most notably the lack of genomic information and the complexity of plant metabolic 

pathways. Despite these challenges, GEMs have recently been developed for several plant species 

including A. thaliana (Poolman et al. 2009; de Oliveira Dal’Molin et al. 2010; Mintz-Oron et al. 

2011) and important food and biofuel crops such as maize (Saha et al. 2011), rice (Poolman et al. 

2013), and the bioenergy crops sugarcane and sorghum (Dal’Molin et al. 2010). Although plants 

are complex multi-cellular systems that have disparate tissues and organ functions, these models 

typically apply the maximum growth objective for resolving unknown reaction fluxes. Existing 

plant GEMs have been used to answer basic questions about plant biology or to facilitate 
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improvement of crop species, and as yet there have been no models created for medicinal plants 

such as T. cuspidata. 

Results 

Illumina Data Translation 

In previous work with collaborating groups, a comprehensive transcriptome for T. cuspidata 

cultured cells using the 454 and Illumina sequencing technologies was developed. For 454 

sequencing, cells were MJ elicited or unelicited and harvested every 24 hours post-elicitation over 

a time period spanning 22 days of the culture period. Equal amounts of RNA from each culture 

were then pooled and submitted as a single sample for sequencing. A base transcriptome library 

was generated by sequencing the pooled and fragmented RNA sample on one full PicoTiterPlate 

(PTP) using the 454 Genome Sequencer FLX Titanium System™(Roche, Branford, CT) (Patil 

2013).  

In addition, MJ elicited and unelicited T. cuspidata RNA isolated from cultures at time points of 

18 and 72 hours were created for Illumina sequencing.  The Illumina HiSeq 2000 platform 

(Illumina, Inc.  San Diego, CA) was used for these samples. Contigs were generated using both 

the 454 and Illumina sequencing libraries. CLC genomics workbench (CLC Bio, Aarhus, 

Denmark) was used to generate contigs using the A, C, G, T voting method to resolve conflicts 

(Patil 2013). 48,614 contigs with >200 bp and >50x coverage were generated. Annotation was 

performed using Blast2GO default parameters (Conesa et al. 2005). 

This transcriptome represents the full biosynthetic capabilities of T. cuspidata in both the MJ 

elicited and unelicited state, and was used to develop the metabolic model. A Matlab script was 

developed to translate the transcriptome. This script had four steps:  

1. The sequence of the contig was sent to BLAST and a BLAST report was received. The 

reading frame from the top BLAST hit was used in subsequent steps. 
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2. The transcriptome derived DNA contig was translated into amino acid sequence using 

functions from the Matlab bioinformatics toolbox and the reading frame from the top 

BLAST hit. 

3. Because the contig sequence often had beginning or ending ‘nonsense’ sequences, the 

correct portion of the amino acid sequence was determined via homology with the top hit 

of the BLAST report. 

4. The annotations associated with each contig from Blast2GO as previously described were 

added to the contig in FASTA format. 

This script was applied to the 29,000 contigs from the Taxus sequencing project that had 

significant homology with previously annotated proteins and thus had BLAST reports. 

Draft Model 

A draft GEM of T. cuspidata primary metabolism was created by the ModelSEED using 

transcriptomics data from 454 sequencing, as described above, and recently developed plant 

modeling tools available in the ModelSEED metabolic reconstruction pipeline (Henry et al. 

2010).  A key novelty of the Taxus model is that its future use was intended to be a study of 

secondary metabolism. Most GEMs (especially in higher organisms such as plants) do not include 

secondary metabolism, largely due to lack of genomic information. For example, in the 

diterpenoid paclitaxel biosynthetic pathway of Taxus, multiple enzymes catalyzing reactions in 

the latter half of the 19 step pathway remain unknown (Hampel et al. 2009). The intended focus 

of this research was on increasing the synthesis of precursors to general terpenoid metabolism 

that are included in the model, such as isopentenyl diphosphate (IPP), its allylic isomer 

dimeythlallyl diphosphate (DMAPP), and the first committed metabolite in the diterpenoid 

(paclitaxel) pathway, geranylgeranyl diphosphate (GGPP) (Gräwert et al. 2011; Roberts 2007). 

By determining the regulatory points in primary metabolism to increase precursor concentration 

and combining with targeted gene manipulations within secondary metabolism (e.g., regulatory 
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steps in the paclitaxel biosynthetic pathway (Nims et al. 2006), increases in yields to paclitaxel 

may be achievable.  

The data used for draft metabolic model reconstruction was a combination of 

transcriptomes from MJ elicited and unelicited cultures. As described above, of the roughly 

40,000 contigs generated from sequencing, 29,000 were found to have  

statistically significant BLAST hits, allowing preliminary annotation. These annotated 

sequences were translated into amino acid sequences using the open reading frame (ORF) 

associated with top BLAST hits. The resulting annotated protein fragments were used by the 

ModelSEED to automatically generate Gene-Protein-Reaction (GPR) associations for all contigs 

corresponding to enzymes recognized in the ModelSEED database. A total of 924 reactions were 

generated directly from the annotated contigs by the ModelSEED. Many of these reactions 

referenced multiple contigs, which may be a result of multiple isoforms or subunits of a particular 

enzyme. 

The ModelSEED software was used to gap-fill the draft model by adding reactions necessary to 

achieve in silico growth. Prior to gap-filling, growth was not possible due to dead-end reactions 

in the metabolic network and the inability to synthesize all biomass components. The gap-filling 

procedure required specification of the biomass equation and definition of the culture media. The 

biomass equation used in our draft model was that previously developed for an A. thaliana GEM 

(Poolman et al. 2009). A standard heterotrophic plant cell culture media (Table 1) was included in 

the model by adding bounded exchange reactions for available media components. 

 

Chemical Bounds (mmol/gDW/hr) 

 H2O -100 

 O2 -100 

 CO2 -100 
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 Phosphate -100 

 NH3 -100 

 Sulfate -100 

 H+ -100 

 Nitrate -100 

 Sucrose -100 

 Mg -100 

Table 1 – Media components and bounds in T. cuspidata 

 

Using a mixed-integer linear programming methodology to minimize the number of gap-filled 

reactions, the ModelSEED software predicted that growth could be achieved by adding 37 

noncontig-associated reactions to the model (Table 2). The gap-filled draft model contained 1001 

reactions and 948 metabolites. By performing FBA with a maximum growth objective, successful 

prediction of the biomass growth rate as a function of the sucrose uptake rate was achieved using 

ModelSEED software (Figure 3). The model data were provided by Argonne National Laboratory 

using their software.  

Total Reactions 1001 

Contig-associated 924 

Gapfilled 37 

Transport/exchange 40 

Metabolites 948 

Table 2.  Draft GEM model statistics. 
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Figure 3 - Relationship between biomass growth rate (g dry weight/L/Day) and sucrose uptake 

rate (g/L/Day) from experiment (points) and draft model 

Unfortunately, at the time of this research, the software that ModelSEED made publicly available 

was not useable. At that time, ModelSEED distributed beta versions of their Linux-based 

software that were accessible on Windows systems and internet interfaces such as Kbase. The 

software could not predict growth on “full” media, which was defined to contain all possible 

building blocks a cell would need. This “full” media contained more chemical components than 

the media used to culture T. cuspidata experimentally and should have been more than sufficient 

to enable model growth. The lack of growth using the new software distributions from 

ModelSEED suggested problems with the software and not with the model. 

It was attempted to convert the model, which was stored in SBML format, to COBRA format and 

run it in Matlab using the well-known COBRA toolbox (Becker et al. 2007). COBRA has built-in 

functions to facilitate translation of models stored in SBML, ‘translate_sbml.m’ and 

‘convertsbmltocobra.m’. These functions in the past had required adjustment to avoid errors, e.g., 

removing code from translate_sbml.m that tried to access features in a model that were not 

present, such as notes. It is important to remember that the softwares involved in FBA are 



 

25 

generally written by overworked biology graduate students, not computer scientists, and as such 

they are full of bugs and not robust. The COBRA ‘translate_sbml.m’ function worked on the 

ModelSEED SBML without issue to create a Matlab structure for the model, and COBRA’s 

function ‘convertSBMLToCobra.m’ also worked without issue to create a COBRA model in 

Matlab. However, when it was attempted to run FBA on the model in COBRA using the 

‘optimizeCbModel.m’ function, the model would not produce growth. It was found that other 

models downloaded in SBML format from the ModelSEED repository and converted to COBRA 

format would similarly not produce biomass.  For example, the E. coli model iJR904 (Reed et al. 

2003) would successfully produce biomass when downloaded from the website of the Palsson 

group in SBML format, converted to COBRA and ran with ‘optimizeCbModel.m’, but when 

iJR904 was downloaded in SBML format from the ModelSEED website, it would experience the 

same problem as the Taxus model, in that it would successfully convert to a COBRA model, but 

would not produce biomass when ‘optimizeCbModel.m’ was run. The SBML codes of the 

original iJR904 model and the ModelSEED version were compared, but the problem with the 

ModelSEED version could not be diagnosed. The fact that the iJR904 model from the 

ModelSEED repository experienced the same problem as the Taxus model suggests that the root 

cause may be an inability of ModelSEED models to be accurately converted to COBRA format. 

Discussion 

In this study, an automated software was used in conjunction with transcriptome data to create a 

metabolic model of a plant. To our knowledge, this was the first time that a metabolic model was 

created using a transcriptome instead of a genome, and this was also the first genome-scale model 

of a medicinal plant, as opposed to a model plant such as A. thaliana or a crop species such as 

Zea mays. The use of a transcriptome from next-generation sequencing significantly reduced the 

barrier to entry for genome scale metabolic models of non-model species. However, despite 

automation, genome-scale metabolic models still require significant manual refinement, and the 
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lack of actual experimental knowledge of T. cuspidata hampered efforts to make the model more 

accurate. Additionally, because much of the software is built by labs for their own use, it is still 

quite difficult to use existing software packages such as those put out by the ModelSEED. The 

COBRA toolbox represents an attempt to standardize FBA and make it more widely available, 

but it is probably that available software will still be sub-par until commercial packages become 

available. As it stands, the Taxus metabolic model requires significant improvement to become 

useful.  
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CHAPTER 3 

GENOME SCALE METABOLIC MODELING OF ARABIDOPSIS 

THALIANA UNDER METHYL JASMONATE ELICITED 

CONDITIONS 

Introduction 

Many important plant-derived compounds fall under the category of secondary metabolites in that 

they are not essential for the normal functioning of the native plant. Secondary metabolites are 

largely thought to participate in plant defense, protecting plants from external threats such as 

fungal diseases and insect herbivory (Bourgaud 2001). Secondary metabolism is activated by key 

compounds produced endogenously by the plant, termed elicitors. The study of elicitation and the 

plant defense response is currently an extremely active area of research in plant biology (De 

Geyter et al. 2012). Of the known compounds involved in elicitation, jasmonic acid and 

structurally similar compounds, collectively referred to as jasmonates, are major players in the 

most dynamic defense response pathway. Methyl jasmonate (MJ) is a stable esterified jasmonate 

that is present in nature and often applied exogenously in vitro to elicit the defense response in 

plants. MJ itself does not induce the defense response, but must be conjugated to isoleucine in 

planta to bind to transcription factors, such as JAZ (Fonseca et al. 2009). Elicited plants or cell 

cultures exhibit changes in diverse metabolic pathways, including decreases in ATP production 

related to mitochondrial membrane perturbation (Ruiz-May et al. 2011), decreased participation 

in cell cycle (Swiatek et al. 2002), and increased production of secondary metabolites (Gundlach 

et al. 1992; Mueller et al. 1993). An elicited plant can be thought of as having an altered 

phenotype while it is exhibiting the defense response. 
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Because jasmonates significantly induce secondary metabolite formation, they are a typical 

component of bioprocesses involving cultured plant cells. Paclitaxel accumulation in particular is 

greatly enhanced upon MJ elicitation (Yukimune et al. 1996). Previous studies have shown that 

MJ treatment results in upregulation of paclitaxel biosynthesis genes in Taxus cuspidata cultured 

cells (Nims et al. 2006). Other studies in model systems such as Arabidopsis thaliana have 

focused on transcriptional regulation of the jasmonate response at a systems level (Pauwels et al. 

2008), but there have been no systematic studies on how metabolic flux is affected by MJ 

elicitation. 

Genome-scale metabolic models (GEMs), also referred to as metabolic reconstructions, 

are tools used to quantify steady-state fluxes through a network of enzymatic reactions for a 

particular organism. Because they can model systemic changes in an organism’s metabolism, they 

are an ideal tool to study MJ elicitation. In general, GEMs have an inherent advantage over time-

dependent models (kinetic models) in that knowledge of rate parameters for each reaction is not 

necessary – only the stoichiometry of each reaction must be obtained. After a GEM is 

constructed, it can be used to analyze and engineer metabolism through a set of computational 

methods collectively termed “constraint-based modeling” (Orth et al. 2010). Flux Balance 

Analysis (FBA) is currently the most popular of these GEM methods. Given a metabolic network 

and a “cellular objective function,” FBA methods tune flux through each reaction until optimal 

flux through the objective function is achieved. Common objective functions for FBA have 

included maximization of cellular growth, minimization of ATP usage, production of secondary 

metabolites, or combinations of the afore-mentioned functions. An active area of research in the 

field is the integration of ‘omics data (transcriptomics, metabolomics and proteomics) into FBA 

methods to increase accuracy and to model complex cellular programs where the cell’s regulatory 

logic may be unknown. This application, referred to here as “phenotype simulation” was of most 

interest to us in modeling the MJ elicited state in the model plant species A. thaliana. A. thaliana 
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was chosen for our study because there exist multiple, continually improved GEMs of A. thaliana 

metabolism (Poolman et al. 2009; de Oliveira Dal’Molin et al. 2010; Saha et al. 2011; Mintz-

Oron et al. 2011). Despite progress and improvement on A. thaliana GEMs, there problems still 

exist with plant GEMs that do not necessarily apply to microbial systems. Plants are complex and 

multi-cellular systems that may have disparate tissue and organ functions. The most common 

objective function (unlimited growth) may not apply to plant tissues under many circumstances, 

especially under circumstances like MJ elicitation where experimental evidence shows that 

growth is inhibited.  

 Phenotype simulation is useful in this circumstance because transcriptomic data from MJ 

elicited A. thaliana cultures (Pauwels et al. 2008) can be used to augment FBA predictions and 

model MJ elicitation phenomena such as growth inhibition and secondary metabolite production 

if these phenomena are reflected in gene expression changes.  The phenotype simulation 

algorithms that were chosen in this case to model MJ elicitation were GIMME and E-Flux. 

GIMME can be thought of as the simplest method of phenotype simulation. A cellular objective 

is set, and reactions are assigned Boolean ON/OFF values based on the expression level of the 

gene corresponding to that reaction compared to a threshold expression value (Becker & Palsson 

2008a). FBA is run on the augmented matrix, and if a reaction necessary for the objective 

function has been turned off, GIMME may turn it back on. E-Flux operates differently in that 

instead of turning reactions ON or OFF, it changes the upper and lower bounds of each reaction 

in accordance with its expression value (Colijn et al. 2009). Highly expressed reactions will have 

larger upper and lower bounds, allowing more flux through if the objective function demands it. 

Lowly expressed reactions will not be able to produce large amounts of flux, even if it would 

assist in the optimization of the objective function.   

In applying GIMME and E-flux to MJ elicitation modeling, our goal was that these phenotype 

simulation methods would capture the growth inhibition and secondary metabolite production 
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that are experimentally observed in A. thaliana (Pauwels et al. 2009). If growth-associated genes 

had low expression, they would be turned OFF in GIMME or have small bounds in E-flux, and 

the modeled growth activity would be lessened. If genes related to secondary metabolism were 

increased, flux would be shifted to these pathways, resulting in both secondary metabolism flux 

and growth inhibition.  

Materials and Methods 

Model 

The previously published A. thaliana iRS1597 model containing 1234 genes, 1591 reactions, and 

1916 metabolites was used in this analysis (Saha et al. 2011). The model includes reactions for 

secondary metabolism. The model was obtained in SBML format and converted subsequently to 

COBRA and TIGER compliant models using those respective software toolboxes (Becker et al. 

2007; Jensen et al. 2011). 

Data 

Previously published data on MJ elicitation were used in this analysis (Pauwels et al. 

2008). Suspension cultures of A. thaliana (L.) Heynh. (ecotype Columbia-0) were grown 

for 7 days, diluted 10-fold in fresh medium and at 16 hours were either elicited with 50 

μM MJ or mock-elicited with equal volume of DMSO. Data were collected at 0.5, 2, and 

6 hours post-treatment. Data used in this analysis were from MJ+ and MJ- cultures 6 h 

after treatment. Normalized data were obtained from the ArrayExpress database 

(www.ebi.ac.uk/arrayexpress; accession no. E-ATMX-13). For each condition, two 

independent experiments were used to generate transcripts for microarray profiling, and 

one biological repeat underwent RT-qPCR with multiple reference gene normalization on 

4 reference genes to validate the data. The reference genes At1g69280, At4g17300, 
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At3g25800, and At1g04300 were of comparable intensity to the genes of interest and 

exhibited minimal variability in the RT-qPCR analysis. The data were background 

corrected and normalized using the BioConductory Affy Package  in the following 

manner: “The Affy mas5calls function assigned probe sets present, absent, or marginally 

detectable. Probe sets with fewer than two present calls during the time course were 

considered not reliably detected and were removed from further analysis. With the 

BioConductor Limma package, probe sets were selected with a significantly altered 

intensity value at one or more time points after MeJA elicitation. The MeJA-treated and 

mock-treated cultures were compared pairwise at the three time points (30 min, 2 h, and 6 

h). The decideTests function assigned significance to ttests while correcting for multiple 

testing of probe sets and contrasts with the false discovery rate method. The 

corrected P value threshold was set to 0.05.”  (Pauwels et al., 2008, SI).   Only processed 

expression data corresponding to genes included in the A. thaliana model were 

considered in our analysis. In the study, 598 of the 22,746 probe sets were found to be 

differentially regulated by MJ.  Of these genes, 75 were differentially regulated in the 

first 0.5 hour, rising to 495 at the 6 hour time point. Of the 328 genes expressed only at 

the 6 hour time point, 60% were down regulated in the MJ+ condition. Genes were 

clustered according to up or down regulation at different time points and further clustered 

according to function or class using MAPMAN software (Nagel et al. 2005). The cluster 

analysis revealed that genes associated with the phenylpropanoid pathway were up 

regulated by MJ addition, while genes associated with mitosis and cell cycle progression 

were down regulated. Following the cluster analysis, additional experiments were 

performed to explore the findings. One result of interest from this paper is that MJ 



 

32 

addition to A. thaliana cell cultures increased flux through the monolignol pathway 

(related to the phenylpropanoid pathway), which was confirmed via HPLC detection of 

oligolignols, including lignin. Another result of interest was that MJ inhibited the growth 

cycle and stopped cell cycle progression in the G2 phase , which was confirmed via flow 

cytometry (Pauwels et al. 2008). 

GIMME and Essential Genes 

The TIGER toolbox for Matlab (Jensen et al. 2011) was used to implement GIMME (Becker & 

Palsson 2008a). TIGER’s implementation of GIMME requires a metabolic model containing an 

objective function, a set of expression values corresponding to the model’s Gene-Protein-

Reaction (GPR) matrix, and a threshold value for expression. Because a biologically relevant 

“threshold value” for GIMME could not be determined, this algorithm was used instead to 

determine “essential genes” in the MJ elicited and unelicited states. This was accomplished by 

setting a threshold higher than any one expression value, thus setting all reactions OFF, and then 

determining which genes GIMME deemed necessary to turn back on. All genes turned ON by 

GIMME were deemed “essential.” This process was dependent on the particular profile of an 

expression dataset, leading to a GIMME-determined “essential gene set” for each condition 

tested. To test the bounds of which genes could be “essential” or “non-essential” 100 sets of gene 

expression data were created containing randomized values for each gene. Using the Gurobi5 

solver and TIGER toolbox, GIMME was applied to each set, and the numbers of “essential” and 

“non-essential” genes were collected for each case, as well as the number of reactions carrying 

flux in each case. 

FBA and Phenotype Simulations 

To perform FBA, we utilized the GIMME.m command in the TIGER toolbox for GIMME, and 

the optimizeCbModel.m command in the COBRA toolbox for E-Flux and all other instances of 
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FBA.  The Gurobi5 solver was used in all cases. Elicited (MJ+) and unelicited (MJ-) data were 

integrated with the A. thaliana GEM using the GIMME and E-Flux algorithms.  In the case of 

GIMME, phenotype simulation was carried out using the method described above, in which  MJ+ 

and MJ- expression sets were given thresholds exceeding values in either data-set, and “essential” 

genes were collected for both data-sets. The E-Flux algorithm (Colijn et al. 2009) was 

implemented using Matlab scripts and Excel worksheets that set bounds for each reaction based 

on the expression value of the gene corresponding to that reaction. The highest bounds were 1000 

mmol/gDW/hr and assigned to the highest expression value, while lower expression values were 

given bounds corresponding to their ratio with the highest expression value. Bounds for MJ+ and 

MJ- E-Flux simulations can be found in Appendix A.  When multiple genes were acting on a 

reaction, the appropriate expression value was determined following the Boolean logic rules. In 

the case of AND logic (more than one gene is needed for the reaction), the minimum expression 

value was used, and in the case of OR logic (more than one gene is available for the reaction, but 

only one is needed), the maximum expression value was used.  

Results 

GIMME 

Using the GIMME algorithm, the capabilities of the A. thaliana GEM were explored. For 100 

randomly generated expression data-sets, the number of essential genes and reactions carrying 

flux were determined in a GIMME simulation with a growth objective function. We found that in 

all cases, a core set of 116 genes were activated, while an additional set of 121 genes were turned 

on in at least one condition. The average number of genes activated was 153, and the average 

number of reactions carrying flux was 543. There was not a significant relationship between 

number of genes activated and number of reactions carrying flux (Figure 4). This is because there 

are promiscuous relationships among both genes and reactions, i.e., one reaction may be 



 

34 

influenced by multiple genes, and one gene may influence multiple reactions.  These results 

served to establish the bounds of the A. thaliana modeling system. 

 

 

Figure 4 Analysis of A. thaliana metabolic network requirements. (a) Histogram of essential 

genes required to produce biomass using 100 randomly generated expression sets. The red 

asterisk represents the number of essential genes in MJ+ and MJ- datasets with same analysis. (b) 

Histogram of total number of reactions carrying flux in aforementioned simulations. 

 

To model MJ- phenomena using GIMME, we initially performed simulations with our control 

dataset, MJ-, to determine what a biologically relevant threshold would be. We thought that there 

might be a threshold at which many genes not essential for growth would be turned OFF. 

However, we found that over 15% of genes in both datasets had expression levels below the 

means of the two expression datasets, which were 6.40 for MJ- and 6.39 for MJ+. Averages were 
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calculated using the entire microarray dataset, not just genes included in the metabolic model.  

One of the lowly expressed essential genes, AT1G32780, was in the bottom 10% of the 

distribution, precluding a meaningful threshold value. A full list of MJ- and MJ+ expression 

values for each gene can be found in Appendix A.  A list of essential genes below mean 

expression values can be found in Table 2. These lowly expressed genes may represent problems 

with the model, the dataset, or our algorithmic approach. This initial modeling with our control 

dataset suggested that a biologically relevant threshold for GIMME could not be determined for 

our dataset and model.  

 

Gene Name 

MJ+ 

Exp 

MJ- 

Exp 

Description of Function E.C. Number 

AT1G32780 3.64 3.88 alcohol dehydrogenase 1.1.1.1 

AT3G22740 3.87 4.09 homocysteine S-methyltransferase  2.1.1.10 

AT4G26770 3.96 4.23 phosphatidate cytidylyltransferase  2.7.7.41 

AT4G14090 4.11 4.19 

anthocyanidin 3-O-glucoside 5-O-

glucosyltransferase  

2.4.1.298 

AT1G04610 4.32 4.49 indole-3-pyruvate monooxygenase  1.14.13.168 

AT1G36160 4.71 4.47 

acetyl-CoA carboxylase / biotin 

carboxylase 

6.4.1.26.3.4.14 

AT4G26520 4.74 4.66 fructose-bisphosphate aldolase, class I  4.1.2.13 

AT2G30770 4.81 4.49 

cytochrome P450 (indoleacetaldoxime 

dehydratase)  

4.99.1.6 

AT3G49160 4.94 4.75 pyruvate kinase  2.7.1.40 

http://www.genome.jp/dbget-bin/www_bget?ec:2.1.1.10
http://www.genome.jp/dbget-bin/www_bget?ec:2.7.7.41
http://www.genome.jp/dbget-bin/www_bget?ath:AT1G36160
http://www.genome.jp/dbget-bin/www_bget?ec:2.4.1.298
http://www.genome.jp/dbget-bin/www_bget?ec:2.4.1.298
http://www.genome.jp/dbget-bin/www_bget?ath:AT4G14090
http://www.genome.jp/dbget-bin/www_bget?ec:1.14.13.168
http://www.genome.jp/dbget-bin/www_bget?ath:AT2G30770
http://www.genome.jp/dbget-bin/www_bget?ec:4.1.2.13
http://www.genome.jp/dbget-bin/www_bget?ath:AT4G26520
http://www.genome.jp/dbget-bin/www_bget?ec:4.99.1.6
http://www.genome.jp/dbget-bin/www_bget?ec:4.99.1.6
http://www.genome.jp/dbget-bin/www_bget?ath:AT5G52100
http://www.genome.jp/dbget-bin/www_bget?ec:2.7.1.40
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AT5G52100 4.97 5.14 chloroplast NAD(P)H dehydrogenase 1.6.99.- 

AT5G42250 6.09 6.46 

S-(hydroxymethyl)glutathione 

dehydrogenase / alcohol dehydrogenase 

1.1.1.284  1.1.1.

1 

AT1G67550 6.17 6.39 urease 3.5.1.5 

AT4G29890 6.29 6.25 choline monooxygenase 1.14.15.7 

AT1G17050 6.29 5.96 

all-trans-nonaprenyl-diphosphate 

synthase 

2.5.1.84 

Table 3. Lowly expressed genes in MJ+ and MJ- conditions. 

 

Because our random phenotypic modeling had shown that determination of “essential” genes 

proceeded in a path dependent manner dependent on the expression data-set, we postulated that 

there might be differences in the number or type of essential genes in the MJ- and MJ+ dataset. 

We performed GIMME simulations using MJ- and MJ+ datasets, with a threshold set to initially 

turn OFF all genes. After essential genes were determined, we binned essential and non-essential 

genes according to their expression level in each dataset (Figure 5).  

  

http://www.genome.jp/dbget-bin/www_bget?ath:AT1G17050
http://www.genome.jp/dbget-bin/www_bget?ath:AT1G67550
http://www.genome.jp/dbget-bin/www_bget?ath:AT5G42250
http://www.genome.jp/dbget-bin/www_bget?ath:AT1G72990
http://www.genome.jp/dbget-bin/www_bget?ath:AT3G49160
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Figure 5. Essential vs. non-essential genes. Blue bars represent MJ- (unelicited control), red bars 

represent MJ+ (elicited). Expression levels of essential genes have higher expression levels (>10), 

while non-essential genes have lower expression levels (<5). 

 

It was hypothesized that because higher growth is observed in MJ- cultures experimentally, 

essential genes in MJ- cultures would have higher expression values and be represented in those 

bins (Figure 5a). However, we did not observe that trend, in fact the MJ+ expression set had 

generally higher expression among essential genes. It was also hypothesized that because MJ+ 
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cultures are experimentally observed to produce secondary metabolites that are not connected to 

growth, that there would be a higher proportion of highly expressed genes (expression values 

above 10) in MJ+ cultures, and this was in fact the case (Figure 5b).  

E-Flux 

GIMME operates with a simplistic methodology that genes are OFF or ON, but in reality low 

gene expression does not necessarily correlate to an absence of a gene, just low amounts. In our 

next round of modeling, E-Flux was used to better simulate more fine-grained behavior. E-Flux 

operates by widening or narrowing the bounds a particular reaction can carry flux through 

depending on the expression of the gene controlling that reaction. In this way, a more nuanced 

result pertaining to cellular growth becomes apparent. In the determination of essential fluxes 

using GIMME, reactions carrying small amounts of flux to one essential precursor are given the 

same amount of weight as central reactions that carry large amounts of flux to multiple essential 

precursors, even though the latter would necessitate much more expression than the former during 

growth conditions. It was postulated that the growth inhibition observed in MJ+ cultures could be 

due to inhibition of a few key enzymes especially essential for growth.  E-Flux can help simulate 

whether some genes are important in carrying large amounts of flux. 

Using this algorithm, it is possible that if a few genes were especially important bottlenecks to 

growth, and more highly expressed in the MJ- dataset, that growth flux would be higher in the 

MJ- set compared to the MJ+ set. FBA was performed using a growth objective function, and 

resulting fluxes from MJ- and MJ+ datasets were compared to fluxes from both normal FBA and 

to each other. In the reaction pertaining to biomass formation (growth flux), there was very little 

difference between MJ- and MJ+ conditions (Table 4).  
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Condition Growth (mmol/gDW/hr) 

FBA 52.49 

MJ- E-flux 51.91 

MJ+ E-flux 52.49 

Table 4 Growth in E-Flux simulations vs. FBA. Growth was calculated as the flux through the 

“biomass” reaction 

In terms of overall flux distributions, the MJ+ and MJ- flux distributions are well correlated (R
2
 = 

0.9629) and are in fact nearly identical. These results are contrary to experimental data showing 

that the MJ- condition grew faster than the MJ+ condition. When the MJ+ flux distribution was 

plotted against the MJ- flux distribution, the trendline had a slope of 1.01, showing that the flux 

distributions are well correlated with each other (Figure 6).  In contrast, when these same MJ- and 

MJ+ flux distributions were individually plotted against the flux distribution from an FBA 

simulation, they were poorly correlated, with  trendlines had slopes of 0.45 and 0.46 for MJ- and 

MJ+ respectively, and R
2
 values of 0.412 and 0.403, respectively (Figure 6).  
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Figure 6. E-flux comparison of fluxes from MJ- to MJ+ (a) MJ- (x-axis) E-flux derived fluxes 

plotted against MJ+ (y-axis) E-flux derived fluxes. The sets of fluxes are well correlated (R
2
 = 

0.962), although experimentally these conditions exhibited divergent behavior. (b) MJ- (blue 

cross) and MJ+ (red x) e-flux derived fluxes plotted against FBA derived fluxes (x-axis). MJ- and 

MJ+ are not well correlated with FBA fluxes (R
2
 = 0.412 and R

2
 = 0.4028 respectively) but the E-

flux derived datasets are both extremely similar to each other. Both trendlines are right on top of 

each other. 
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Because the E-flux simulations did not yield divergent results as hypothesized, we further 

considered the expression values in MJ- vs. MJ+ datasets. The “controlling” relative expression 

value for each reaction in the MJ- and MJ+ conditions is plotted against the FBA-derived fluxes 

in Figure 7. As can be seen, the differences in MJ- vs. MJ+ datasets are very small in every 

reaction that carries flux in FBA simulation. In most cases the MJ+ values are equal to or higher 

than the MJ- values, suggesting that MJ- expression levels are not higher for growth-associated 

genes although MJ- cultures exhibited higher growth experimentally.  

 

Figure 7. Relative gene expression values of MJ- (blue cross) and  MJ+ (red x) plotted against 

FBA derived fluxes. Many reactions with high expression are not included in the model, and it 

can be seen that of the highly expressed genes that exhibit high positive or negative flux in the 

model, there are not significant differences in MJ- vs. MJ+ datasets.  

 

To explore whether these results are statistically significant, we cross-referenced the statistically 

significantly up or down regulated genes in (Pauwels et al. 2008). Of the 22,000 genes included 
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on the chip, 581 were up or down regulated with a p-value below 0.05. Of these 581 genes, 51 

were included in our model. Of these 51, 15 participated in 17 reactions that carried flux above or 

below zero in the FBA simulation (Table 5). 
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Locus 

MJ- 

Expressi

on 

MJ + 

Expres

sion 

Reaction name 

in model 

FBA 

Flux 

(mmol/g

DW/hr) 

TAIR annotation 

AT5G36220 5.26 9.41 

ascorbate 

acceptor 

oxidoreductas

e 

1000.00 
 cytochrome P450 

81D1  

AT5G22300 5.08 7.93 

3 

Indoleacetonit

rile 

aminohydrolas

e 

264.56  nitrilase 4  

AT3G17820 11.77 12.88 

L Glutamate 

ammonia 

ligase ADP 

forming  

250.99 
 glutamine 

synthetase (GS1) 

AT3G02360 10.50 11.38 R01528 p 187.73 

 6-phosphogluconate 

dehydrogenase 

family protein  

AT2G45290 9.28 10.35 R01641 p 62.58 
 transketolase, 

putative 

AT2G45290 9.28 10.35 R01830 p 62.58 
 transketolase, 

putative 

AT2G40890 10.05 11.92 

p coumaroyl 

CoA caffeoyl 

CoA 3 

hydroxylase 

9.97 
 cytochrome P450 

98A3, putative  

AT3G21240 6.56 9.09 

trans 

Cinnamate 

CoA ligase 

AMP forming  

7.87 

 4-coumarate--CoA 

ligase 2 / 4-

coumaroyl-CoA 

synthase 2  

AT3G53260 6.88 9.59 

L 

phenylalanine 

ammonia 

lyase trans 

cinnamate 

forming  

7.87 
 phenylalanine 

ammonia-lyase 2 

AT1G18500 8.73 9.62 

acetyl CoA 3 

methyl 2 

oxobutanoate 

C 

acetyltransfera

se 

7.35 
 2-isopropylmalate 

synthase, putative 

AT1G20510 7.20 8.70 

perillic acid 

CoA ligase 

ADP forming  

3.56 

 4-coumarate--CoA 

ligase family protein 

contains Pfam 

AMP-binding 

enzyme domain 

PF00500 
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AT1G20510 7.20 8.70 

perillic acid 

CoA ligase 

AMP forming  

-3.56 

 4-coumarate--CoA 

ligase family protein 

contains Pfam 

AMP-binding 

enzyme domain 

PF00501  

AT3G19450 6.79 8.26 

Sinapyl 

alcohol NADP 

oxidoreductas

e 

2.94 
 cinnamyl-alcohol 

dehydrogenase 

AT3G19451 6.79 8.26 

4 coumaryl 

alcohol NADP 

oxidoreductas

e 

2.10 
 cinnamyl-alcohol 

dehydrogenase 

AT3G29200 8.24 9.36 

Chorismate 

pyruvatemutas

e 

2.10  chorismate mutase 

AT4G35830 11.43 12.01 R01324 m -39.37 
 aconitate hydratase, 

cytoplasmic 

AT3G54640 9.37 10.37 
L serine hydro 

lyase 
-262.47 

 tryptophan 

synthase, alpha 

subunit  

 Table 5 – List of 15 genes that were found to be significantly responsive to MJ in (Pauwels et al. 

2008) and also carried non-zero fluxes in 17 reactions in the FBA model of A. thaliana 

metabolism. Many of the genes (e.g. Sinapyl alcohol NADP oxidoreductase, p coumaroyl CoA 

caffeoyl CoA 3 hydroxylase) are associated with the lignin pathway (Humphreys & Chapple 

2002). All of the genes were positively up regulated at the 6 hour time point. 

Discussion 

Gene Essentiality 

Experimental studies of gene essentiality are often used to validate in silico metabolic networks 

of microbial metabolism. However, there are difficulties common to all metabolic networks in 

determining which genes are essential or non-essential. In a study comparing in silico determined 

essential genes to experimentally determined essential genes in multiple microbes, it was found 

that a few factors contributed strongly to false negative predictions of essential genes for growth, 

i.e., a gene is predicted to be non-essential, but it really is essential (Becker & Palsson 2008b). 
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Incorrectly predicted essential genes tend to be less well connected in the model, implying that 

there is incomplete knowledge of their multiple functions. They are more likely to be blocked 

reactions, suggesting that there is incomplete knowledge of metabolically proximal genes. They 

are also less likely to be connected to important overcoupled metabolites, such as ATP. This 

study suggests that these incorrectly predicted genes may be involved in metabolic processes that 

have not yet been completely characterized or defined (Becker & Palsson 2008b). 

 It is very easy to create large populations of mutant cell lines in an organism such as E.coli and 

experimentally determine viability under many different conditions. It is much harder to do so in 

a polyploidal, multi-cellular organism that undergoes multiple growth stages, such as A. thaliana 

and all plants in general. The first difficulty is that plants are notoriously difficult to genetically 

transform, even in a model species such as A. thaliana, due to time consuming regeneration 

procedures. Stable genetic transformations of plant species only became widely used in the late 

1990’s, in contrast to bacterial transformations that have been common since the 1970’s (Chang 

et al. 1994). Another key difficulty in plant species is their complicated growth cycle and multi-

cellularity. A mutation that would be classified experimentally as “essential” could just affect the 

gametophyte or embryo and not be truly metabolically lethal (Lloyd & Meinke 2012). Most plant 

genetics studies occur in many different types of systems within Arabidopsis, for example, 

genetic studies can be performed on full grown plants, seedlings and embryos. Very few studies 

of essential genes occur in plant cell culture, although they are perhaps the most straightforward 

system where distinctions could be made in purely metabolic gene essentiality, rather than 

embryo, gametophyte, or seedling specific mutations. This makes it difficult to establish whether 

a mutation is actually metabolically lethal or just lethal to embryos or seedlings. Another 

complication is the general redundancy of plant genetics. There are duplicate or triplicate genes 

for the same genetic process that may be expressed in different growth stages or tissues, or all in 

the same cell (Hanada et al. 2009).  
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In this work we have determined a core set of 116 genes (Appendix A) that are predicted to be 

essential under all conditions. The natural continuation of this work would be to knock-out these 

genes in A. thaliana suspension cell culture and see whether these mutations result in lethality. 

This would suggest that these genes are metabolically essential, because in cell culture there is no 

ambiguity between growth phases and cell type – there is only one type of cell, and only 

undifferentiated growth. 

Phenotype Simulation (GIMME and E-Flux) 

Our initial results with GIMME suggested that binary thresholding using expression data was not 

sufficient to model growth in A. thaliana, even in the absence of complicated behaviors due to 

elicitation. The presence of even a few essential genes with low expression did not allow growth. 

This behavior, though unfortunate for the purpose of modeling MJ elicitation, is good for 

improving our understanding of plant metabolism. If the paradigm of transcriptome/GEM 

integration is that high expression leads to high flux of controlled reactions, then there is 

something wrong with our model or something wrong with our paradigm.  

Model inaccuracies could include incorrect annotation of genes or incorrect annotation of 

reactions. If the genes predicted to perform an essential function in reality perform another, non-

essential function, that would explain why they have low expression in the system. If a reaction is 

mapped to a certain gene with low expression, but one gene with high expression is key to its 

function, and is left out, then the reaction will show that it is only controlled by the gene with low 

expression, and model dysfunction will result. Our list of lowly expressed but essential genes 

(Table 3) found by applying GIMME to the MJ- (control) dataset may point in the direction of 

model improvement by pinpointing reactions that have low expression but are nonetheless 

essential to the function of the current model. 
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Recent research suggests that inaccuracies in the transcriptome/GEM integration paradigm may 

also be likely. Studies in mouse fibroblasts showed that the amount of accumulated protein was 

more dependent on the rate of translation than the amount of transcripts (Schwanhäusser et al. 

2011). The relationship of transcript abundance vs. translation of protein can also be very slow in 

plants (up to several days to replace significant amounts of proteins), so that the steady state 

assumption of FBA may be violated in many systems (Piques et al. 2009). Degradation rates are 

another potent variable that is entirely unmodeled by FBA mixed with transcriptomic data 

integration. In plant suspension cultures, rates of protein degradation may vary by as much as 60 

fold, depending on variables such as protein function and location (Li et al. 2012).  The emerging 

paradigm in plants is that signaling pathways pertaining to features such as circadian rhythms and 

light abundance have much more rapid turnover than general proteins pertaining to metabolism, 

which helps to reduce expenditure of proteins on rapidly fluctuating/cycling environments (Stitt 

2013).  

In the specific case of methyl jasmonate elicitation, our comparison of MJ- and MJ+ expression 

values against FBA fluxes (Figure 6) suggests that our approach, based on differences between 

MJ- and MJ+ expression for important growth regulating genes, may need modification. A major 

difficulty with the E-Flux model is the complexity of the rules governing the Gene-Protein-

Reaction (GPR) matrix. Consider the example of AT5G36220, a gene that was found to be 

significantly upregulated upon MJ elicitation (Table 5). AT5G36220 corresponds to the reaction 

“ascorbate acceptor oxidoreductase” in our model. 70 other genes also correspond to “ascorbate 

acceptor oxidoreductase” in the model. The Boolean rules for this reaction dictate that any of 

these genes can drive the reaction. In the MJ- condition, AT5G36220 has a relative expression 

value of 5.26, while in the MJ+ condition AT5G36220 has a relative expression value of 9.41. 

The 71 genes that correspond to “ascorbate acceptor oxidoreductase” have expression values 

ranging from a minimum of 2.76 and 2.77 in the MJ- and MJ+ datasets respectively, and 
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maximum values of 9.51 and 10.66 the MJ- and MJ+ datasets respectively. The maximum values 

were used to determine the E-Flux bounds, as given by the Boolean rules. This means that the 

significant MJ responsiveness of AT5G36220 is overshadowed by 70 other reactions that can 

drive the reaction. This is a challenging problem with no simple solution. In this case, the 

complexity and vagueness of the model obscured the effect of MJ on this reaction. Further 

improvements to the model that may help alleviate this would be more specificity connecting 

genes to reactions, and fewer non-relevant associations. 

An additional problem with the dataset itself is that the study we took it from only collected data 

until 6 hours post elicitation. This may represent only an initial inductive, wave of transcription 

that involves signaling proteins but not metabolically involved enzymes. Datasets that include 

later time points post-elicitation may give more divergent results. Another difficulty is the 

incompleteness of our model, especially in reactions pertaining to secondary metabolism. The 

authors of the paper whose dataset we used in our analysis noted that MJ “primarily triggered 

gene activation,” and that only a small fraction of the genes having differential expression were 

down regulated (Pauwels et al. 2008). Our analysis shows that even genes strongly associated 

with growth metabolism are not down regulated by MJ elicitation, in that genes with high fluxes 

(of positive and negative magnitude) in our model do not show significant differences comparing 

MJ- to MJ+. It is also noted in the original paper, and in subsequent work in the Roberts lab, that 

MJ has a strong inhibitory effect on the plant growth cycle, and results in the arrest of cells in G2 

phase (Patil et al. 2012). It was our thought that this growth arrest would lead to reduced 

transcription of enzymes involved in synthesis of biomass components. However, it appears that 

either transcriptional control of growth associated enzymes does not begin until later in the MJ 

induced cascade, or that the levels of these proteins are controlled by mechanisms other than 

transcription. A proteomic investigation of enzymes in a longer time-study of MJ elicitation 

might help to elucidate the mechanism by which MJ induction controls growth metabolism. 
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Another drawback to our current modeling approach was that most of the genes strongly induced 

by MJ even at the 6 hour time point are secondary metabolites. It is thought that the secondary 

metabolism activation may divert flux from growth specific enzymes and depress growth without 

needing to down regulate transcription of those enzymes. Unfortunately, secondary metabolism 

related enzymes are not well represented in our current metabolic network. Enzymes pertaining to 

secondary metabolism are variable and species specific, and are not as well studied as genes 

pertaining to phenomena such as growth and reproduction. Their pathways are in many cases 

incomplete, resulting in either blocked reactions in our metabolic network, or lack of 

transcriptomic information for pathway genes that are represented. If these secondary metabolism 

genes were better studied, and included in our model, it is possible that forcing flux through them 

using an approach like E-Flux might yield better modeling of the growth inhibition of MJ+ 

cultures and also allow us to better study how this flux is diverted.  
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APPENDIX A 

TABLES FOR GENOME SCALE METABOLIC MODELING OF 

ARABIDOPSIS THALIANA UNDER METHYL JASMONATE 

ELICITED CONDITIONS 

Gene Locus 

MJ- Relative 

Expression 

MJ+ Relative 

Expression 

AAM67233 n/a n/a 

ARTHCP025 n/a n/a 

ARTHCP026 n/a n/a 

ARTHCP027 n/a n/a 

ARTHCP030 n/a n/a 

ARTHCP068 n/a n/a 

ARTHCP071 n/a n/a 

ARTHCP074 n/a n/a 

ARTHCP076 n/a n/a 

ARTHCP077 n/a n/a 

ARTHCP078 n/a n/a 

ARTHCP079 n/a n/a 

ARTHCP080 n/a n/a 

ARTHMP006 n/a n/a 

ARTHMP007 n/a n/a 

ARTHMP024 n/a n/a 

ARTHMP026 n/a n/a 

ARTHMP035 n/a n/a 

ARTHMP043 n/a n/a 

ARTHMP051 n/a n/a 

ARTHMP058 n/a n/a 

ARTHMP086 n/a n/a 

ARTHMP098 n/a n/a 

AT1G01050 10.6624517 10.441234 

AT1G01090 10.36131475 10.27603897 

AT1G01190 5.294331658 4.971469731 

AT1G01390 3.220415312 3.265237505 

AT1G01600 4.610141912 4.480648225 

AT1G01710 7.114827093 7.550653746 

AT1G02050 5.560205009 5.443617382 
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AT1G02640 3.965411229 3.721669628 

AT1G02790 3.604335235 3.59328989 

AT1G02920 12.32676017 12.69709481 

AT1G02940 6.30921425 5.718943136 

AT1G02950 3.735232927 3.700569514 

AT1G03190 7.517293743 7.575593331 

AT1G03475 8.131400109 8.085668142 

AT1G04610 4.490124116 4.320831707 

AT1G04640 6.930047603 7.038432588 

AT1G04710 9.131616299 9.327752867 

AT1G05260 4.746311037 4.801844627 

AT1G05530 3.431432388 3.138131912 

AT1G05570 8.248005156 7.814843419 

AT1G05590 7.172665685 7.295770672 

AT1G05610 3.667953312 3.40331519 

AT1G06030 3.878344256 3.858120702 

AT1G06290 10.45995286 10.67263346 

AT1G06310 4.881749747 4.787449544 

AT1G06410 10.09358712 10.07040592 

AT1G06570 8.38032038 9.173361696 

AT1G06820 8.228174855 8.429170676 

AT1G07110 9.002057243 9.031836211 

AT1G07230 7.800926162 7.725515734 

AT1G07420 9.054894633 9.129751722 

AT1G07450 3.961265338 3.968119214 

AT1G07780 8.794528366 8.919773389 

AT1G08065 3.863150058 3.917234748 

AT1G08080 4.024576806 3.811487287 

AT1G08510 8.870299786 8.632051284 

AT1G08550 4.891481935 5.300732413 

AT1G08840 5.930015498 5.970434419 

AT1G09240 4.157072294 4.238304273 

AT1G09420 8.01869452 8.103000405 

AT1G09430 9.42774324 9.486319468 

AT1G09795 7.606617052 7.361465739 

AT1G09830 8.424000025 8.452476718 

AT1G10070 4.340183031 4.230940253 

AT1G10670 10.0303833 9.993147277 

AT1G10900 6.54194649 6.712527591 

AT1G10930 n/a n/a 

AT1G11590 3.11254917 2.984583942 
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AT1G11600 4.726023274 4.455753518 

AT1G11610 3.291932234 3.131896544 

AT1G11680 9.600879729 9.57245695 

AT1G11860 10.12665717 10.44888723 

AT1G11880 6.59742166 6.59234505 

AT1G12000 11.97408179 12.109658 

AT1G12050 8.881852492 9.359571395 

AT1G12200 8.986812875 10.4952867 

AT1G12230 9.264002708 9.238672273 

AT1G12240 5.20656181 6.227027317 

AT1G12350 7.524476951 7.794745473 

AT1G12780 8.174022318 7.946655448 

AT1G13090 5.358735953 5.47452795 

AT1G13100 3.251191139 3.288092251 

AT1G13210 5.92037399 5.988319697 

AT1G13440 12.72488774 13.084719 

AT1G13560 10.10967073 9.840553602 

AT1G13700 6.242790242 5.772107212 

AT1G13710 4.895899329 4.746523009 

AT1G14030 5.966171073 6.02689575 

AT1G14070 3.681809198 3.676192101 

AT1G14080 3.73597367 3.613378457 

AT1G14520 n/a n/a 

AT1G14540 3.443920376 3.287677629 

AT1G14550 4.641515564 4.475341877 

AT1G14610 10.04109956 9.85859798 

AT1G14700 4.294048555 4.090805798 

AT1G14810 11.38541432 11.51679523 

AT1G15550 5.802150519 5.827727676 

AT1G15950 9.426926386 9.757886781 

AT1G16340 7.601260101 7.6811177 

AT1G16350 9.191012144 9.392047641 

AT1G16570 8.010616322 7.923043213 

AT1G16700 11.1767099 11.14233937 

AT1G16900 7.687654728 7.442272493 

AT1G16980 3.534011634 3.436206466 

AT1G17000 3.012876428 3.139072554 

AT1G17050 5.968244857 6.291523492 

AT1G17160 7.505744117 7.625238895 

AT1G17260 3.746193215 3.664649477 

AT1G17420 5.195010196 6.440613787 
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AT1G17500 6.590811424 6.499331411 

AT1G17745 9.373355321 10.81128893 

AT1G17890 6.468991881 6.413509972 

AT1G18270 5.125748909 5.479665592 

AT1G18440 6.585465863 6.465899811 

AT1G18500 8.734339084 9.616382013 

AT1G18870 3.395790229 3.380216049 

AT1G19640 3.662049054 3.299161254 

AT1G19670 4.147721828 4.955340262 

AT1G20020 8.414578612 8.934829309 

AT1G20050 10.75333487 10.65541725 

AT1G20480 6.435877191 6.454424215 

AT1G20510 7.195527423 8.700006217 

AT1G20575 8.737271222 8.650477582 

AT1G20620 9.555751552 10.07272978 

AT1G20630 8.730594589 9.178952828 

AT1G20950 10.59792609 10.5165792 

AT1G20960 9.564731724 9.489566365 

AT1G21400 3.377147889 3.323455519 

AT1G21980 7.714611405 7.631582548 

AT1G22020 6.945341148 6.781050217 

AT1G22400 5.131986382 5.156466844 

AT1G22410 10.29636969 11.00942415 

AT1G22430 3.409263096 3.511742891 

AT1G22440 8.640758624 8.931786541 

AT1G22940 7.775890615 7.701469664 

AT1G23360 7.046887626 7.089077964 

AT1G23730 3.956126112 3.742412983 

AT1G23800 8.513683542 9.075432831 

AT1G23820 10.10524359 10.84028043 

AT1G24100 6.633589397 6.931350397 

AT1G24110 4.248479704 4.147245088 

AT1G24280 9.169165333 8.9218641 

AT1G24320 3.427918529 3.486018203 

AT1G24735 5.098655998 4.968652628 

AT1G24807 8.2440986 9.243245788 

AT1G24909 8.2440986 9.243245788 

AT1G25220 8.2440986 9.243245788 

AT1G25350 9.828797861 9.602691156 

AT1G25410 3.955331606 3.95079411 

AT1G26130 6.443958417 6.076416044 
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AT1G26560 3.683822437 3.829495668 

AT1G26570 6.14097513 5.654317407 

AT1G27450 11.4591508 11.35183546 

AT1G27680 7.314104963 7.49377715 

AT1G27880 7.358319142 7.024792689 

AT1G27980 8.197256877 8.236211546 

AT1G28090 6.457756935 6.230019543 

AT1G28120 8.583935563 8.704967006 

AT1G29410 8.794528366 8.919773389 

AT1G29870 3.585387023 3.433092596 

AT1G29880 9.630660979 9.500116312 

AT1G29900 10.09952441 10.15614796 

AT1G30000 6.189681158 6.129812768 

AT1G30100 3.560606006 3.349225184 

AT1G30110 5.64127575 5.823719542 

AT1G30120 9.442640878 9.524532284 

AT1G30510 10.22653468 9.532476859 

AT1G30530 5.736698858 6.1729201 

AT1G30620 8.212915493 8.264537336 

AT1G30870 4.342406733 3.898451408 

AT1G31070 8.022664111 7.877839333 

AT1G31180 10.33396862 10.25641075 

AT1G31230 8.25047591 8.498471002 

AT1G31360 6.869176003 6.86838454 

AT1G31860 9.829520362 9.742465837 

AT1G31910 8.171265746 8.574036167 

AT1G32060 8.308041698 8.769754079 

AT1G32210 10.63836768 10.42609821 

AT1G32380 8.339041224 8.628242069 

AT1G32440 9.561595654 9.338723647 

AT1G32780 3.883207967 3.637320689 

AT1G34430 9.553619466 9.367721696 

AT1G34510 3.475610166 3.53613043 

AT1G35530 7.007840796 6.95317496 

AT1G36160 4.471549198 4.710625135 

AT1G36280 8.434329379 8.88924465 

AT1G36370 9.941855773 8.316838452 

AT1G43670 10.27315192 10.39062873 

AT1G43710 10.95887482 10.79086197 

AT1G43800 9.256656139 9.18725293 

AT1G44180 6.967182341 7.201489762 



 

56 

AT1G44318 4.454668274 4.414134438 

AT1G44446 7.652054254 7.831946625 

AT1G44820 6.967182341 7.201489762 

AT1G44970 3.515297083 3.700659387 

AT1G47840 5.431248761 5.274761383 

AT1G48030 11.22460544 11.18316543 

AT1G48130 4.216534089 4.162175183 

AT1G48470 4.781274565 4.780501536 

AT1G48850 10.28458972 11.06035363 

AT1G48860 11.22414611 12.09130112 

AT1G49140 11.12050169 11.46177753 

AT1G49340 7.894930233 7.72644524 

AT1G49430 3.447184673 3.392698616 

AT1G49570 4.750387126 4.591674553 

AT1G50000 6.701987322 6.424943588 

AT1G50090 3.824280623 3.617042751 

AT1G50110 8.137090908 8.10667483 

AT1G50200 10.39326243 10.45883934 

AT1G50430 10.63815196 10.74436412 

AT1G50480 9.840832395 10.55359251 

AT1G51260 4.586082529 4.69735255 

AT1G51680 10.33390295 12.49070525 

AT1G53000 9.416161595 9.115542603 

AT1G53310 10.25352888 10.21801935 

AT1G53830 4.159036763 3.504068484 

AT1G54100 9.120447693 10.25223687 

AT1G54220 7.981214042 8.050630699 

AT1G54280 4.283128156 4.291234624 

AT1G54340 7.041005106 7.354492985 

AT1G55020 5.142298959 5.008363363 

AT1G55090 8.157797412 8.132681017 

AT1G55180 4.434684983 4.269763467 

AT1G55510 6.943612172 7.525950757 

AT1G55880 7.994521255 7.812247218 

AT1G55920 6.648786951 9.428034721 

AT1G58180 6.352388447 7.060124936 

AT1G59820 9.320635159 8.919331061 

AT1G59900 6.771066104 7.015149288 

AT1G60490 7.374210075 7.311698356 

AT1G60550 7.846576288 8.162508788 

AT1G60600 6.623712636 6.623310633 
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AT1G60810 8.459640081 8.177569459 

AT1G60890 6.894653652 7.017507605 

AT1G61720 4.832560942 4.640340586 

AT1G62430 7.595459313 7.633593831 

AT1G62640 8.083627336 8.182029957 

AT1G62660 3.671301379 4.867613333 

AT1G62800 6.44906651 6.632860911 

AT1G62940 3.783557152 3.934573616 

AT1G63000 10.08805217 10.25306159 

AT1G63180 4.991589806 4.597541764 

AT1G63290 9.463048876 9.870900077 

AT1G63380 6.281845246 5.912466528 

AT1G63460 6.072885837 6.19035653 

AT1G63660 11.30973061 10.93905393 

AT1G63970 9.53847307 9.65529752 

AT1G64190 7.900770988 7.843122903 

AT1G64400 4.45134368 4.284740237 

AT1G64440 7.334787062 7.337645601 

AT1G64710 5.833127159 5.622950175 

AT1G64970 7.393821813 7.861820166 

AT1G65060 4.508214883 4.709112463 

AT1G65560 7.108553241 7.033325301 

AT1G65820 10.11424798 10.75810012 

AT1G65930 10.95708369 11.43546763 

AT1G66430 7.282269925 6.519521606 

AT1G66520 5.240185656 5.182760785 

AT1G66530 9.217217022 9.183392697 

AT1G67070 4.602054483 4.624841622 

AT1G67090 12.38552704 12.34864195 

AT1G67110 3.98489359 3.870618975 

AT1G67440 7.72780407 8.044289937 

AT1G67550 6.385403732 6.17299516 

AT1G67560 7.917185921 8.184776114 

AT1G68460 6.320270874 6.383297599 

AT1G68710 6.186409784 6.198334683 

AT1G68750 3.994630323 3.790738949 

AT1G68850 3.30669502 3.181394498 

AT1G68890 5.235180005 5.412264687 

AT1G69370 8.717704484 9.108576747 

AT1G69740 10.20320641 10.2928406 

AT1G69770 10.74655131 10.41417842 
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AT1G70310 10.22230339 10.59861009 

AT1G70410 8.725562673 7.393091155 

AT1G70580 7.308995218 7.646859085 

AT1G70980 10.60178249 10.57475026 

AT1G71010 8.105784117 7.786834524 

AT1G71100 8.392391513 8.380649149 

AT1G71220 n/a n/a 

AT1G71230 8.232022101 8.227010893 

AT1G71695 3.471376798 5.491107888 

AT1G71750 7.265712671 7.343628815 

AT1G71920 9.872803286 9.902812923 

AT1G71990 7.001432614 7.189915354 

AT1G72520 5.073097701 5.933505166 

AT1G72550 10.9072917 10.78110721 

AT1G72700 7.991429302 8.14336332 

AT1G72810 7.940659226 8.603705295 

AT1G72880 n/a n/a 

AT1G72990 6.671760519 6.553537759 

AT1G73050 4.88787092 4.620948922 

AT1G73250 9.014711448 8.622482999 

AT1G73740 6.286626765 6.624099721 

AT1G74010 7.524764486 8.341222132 

AT1G74020 9.011605089 10.30547528 

AT1G74030 10.10605514 10.54388168 

AT1G74040 8.576248411 8.552577436 

AT1G74260 10.32297426 10.20212159 

AT1G74470 11.55970304 11.44744161 

AT1G74540 4.071118534 4.363691979 

AT1G74550 4.937211261 4.975530849 

AT1G74710 7.397801988 6.963655566 

AT1G74920 9.990942744 10.05719036 

AT1G74960 8.856548915 8.623502614 

AT1G75280 7.97802469 9.301821024 

AT1G75330 10.47042414 10.71828907 

AT1G76400 10.14643121 10.01376086 

AT1G76490 9.767189374 9.688838186 

AT1G76550 10.29022388 10.38138163 

AT1G76680 7.806042545 11.6648262 

AT1G76730 7.652768178 7.87729685 

AT1G77120 10.07015678 10.32564318 

AT1G77590 9.845571712 9.76412318 
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AT1G77670 9.72052336 9.497672653 

AT1G77720 7.245567478 7.320717585 

AT1G77740 6.974202104 7.017399021 

AT1G78440 3.591746455 3.540791752 

AT1G78510 6.666471488 6.782073281 

AT1G78570 8.720282071 8.996025659 

AT1G78580 5.338928243 5.142028077 

AT1G78670 8.712839789 9.795571768 

AT1G78680 7.957533771 8.440907556 

AT1G78800 7.664004323 7.568590729 

AT1G78960 6.935491317 6.768549322 

AT1G79460 6.392863674 5.919406775 

AT1G79470 10.27901383 10.10759463 

AT1G79530 9.685416507 9.879971554 

AT1G79550 12.63382841 12.73465897 

AT1G79890 7.603283868 7.65829219 

AT1G80050 8.138961567 7.811877749 

AT1G80340 5.588517771 5.530464328 

AT1G80350 7.832220098 7.67370252 

AT1G80560 10.95714781 10.90427805 

AT1G80600 10.25070805 10.23433699 

AT1G80660 3.910585819 3.859692033 

AT1G80820 5.976433549 7.460132127 

AT1G80950 7.968761322 8.061340877 

AT2G01140 12.23437806 12.41487196 

AT2G01290 9.457510138 9.519962757 

AT2G01350 10.35137491 10.62838359 

AT2G01440 7.235602982 7.273109092 

AT2G02000 5.247845432 5.473161509 

AT2G02050 11.62714978 11.5690561 

AT2G02500 8.766322081 8.696129238 

AT2G02930 8.481866731 10.60844184 

AT2G03210 4.70127639 4.807839721 

AT2G03220 8.151620019 8.299938715 

AT2G03760 6.438322639 7.52728221 

AT2G04450 3.959835942 3.963138483 

AT2G04540 6.712330667 6.62849821 

AT2G05710 12.32919902 12.56632344 

AT2G07050 9.413470161 9.534619283 

AT2G07560 3.896519497 3.846542122 

AT2G07751 6.550363444 6.528769983 
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AT2G07785 n/a n/a 

AT2G11810 4.345359529 4.486160651 

AT2G11890 8.924021958 8.743169435 

AT2G13370 8.329520737 8.315545268 

AT2G13680 3.972509108 3.828516537 

AT2G14170 7.802222007 7.797997306 

AT2G15350 4.070270851 4.051743501 

AT2G15370 4.070270851 4.051743501 

AT2G15620 11.52136271 10.89185518 

AT2G16370 7.863226652 8.202790291 

AT2G16500 9.396581083 9.596848505 

AT2G16570 12.24291346 12.15070913 

AT2G16790 7.105090027 8.041852401 

AT2G17265 9.012061955 9.206775124 

AT2G17370 8.375021216 8.160707703 

AT2G17630 10.94518128 11.21707703 

AT2G18140 5.091927756 4.926646715 

AT2G18150 5.091927756 4.926646715 

AT2G18230 9.567992859 9.417774367 

AT2G18950 6.944582525 7.763826372 

AT2G18960 12.53975215 12.77997636 

AT2G18980 4.447869693 4.394795018 

AT2G19570 8.072940125 7.937753916 

AT2G19670 11.02872423 10.96782423 

AT2G19800 4.632402641 4.139984654 

AT2G19860 7.973302759 8.12809002 

AT2G19940 8.917445342 9.048490891 

AT2G20340 5.496683295 6.106572515 

AT2G20360 10.3410099 10.37578177 

AT2G20420 12.56699092 12.5149007 

AT2G20690 9.548396453 9.668555417 

AT2G20860 9.853958342 10.00209483 

AT2G21170 11.46583043 11.73498389 

AT2G21260 10.35201014 10.52127941 

AT2G21330 10.38930587 10.46155178 

AT2G21790 10.86240157 10.78317725 

AT2G21940 7.093749082 7.734421272 

AT2G22230 9.696855161 9.727408104 

AT2G22240 7.821770041 8.327757106 

AT2G22420 7.043330296 7.479998495 

AT2G22450 8.361653901 8.317607624 
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AT2G22480 9.309340446 9.131612291 

AT2G22810 5.290833518 5.483387257 

AT2G22990 3.456089543 3.268738533 

AT2G23410 3.638719216 3.501674193 

AT2G23420 8.408184074 8.884247384 

AT2G23600 8.885902267 9.768589974 

AT2G23610 4.095450603 4.761765045 

AT2G23800 4.097128102 3.954499546 

AT2G24200 11.3173195 11.68954698 

AT2G24210 3.82057854 3.698140419 

AT2G24520 5.271146976 5.389310602 

AT2G24580 3.823758711 4.397332217 

AT2G24800 3.386525548 3.306802826 

AT2G25080 8.815343543 8.968455651 

AT2G26080 10.40659429 10.35385159 

AT2G26230 8.502131694 8.527541735 

AT2G26420 3.518644481 3.460836348 

AT2G26800 8.25252289 8.26607668 

AT2G26930 8.173376317 8.293092847 

AT2G27150 7.020420637 7.490888259 

AT2G27490 7.752419956 7.731252476 

AT2G28210 n/a n/a 

AT2G28860 4.091637039 4.07828681 

AT2G28880 5.692406316 5.871306174 

AT2G29150 3.848331237 3.665402088 

AT2G29260 7.467039006 7.413194084 

AT2G29290 3.270471914 3.237365988 

AT2G29300 3.738814981 3.691869357 

AT2G29310 4.315148137 4.364448178 

AT2G29320 5.00692879 5.21874256 

AT2G29330 3.424029136 3.141752392 

AT2G29340 8.07023905 8.928413991 

AT2G29360 4.651789026 4.832407879 

AT2G29370 4.192473601 4.332664402 

AT2G29440 10.11078386 10.93897304 

AT2G29460 6.263272504 8.408117048 

AT2G29480 3.747348927 6.446957736 

AT2G29490 4.83114423 10.99060459 

AT2G29630 8.05255638 8.360553895 

AT2G29690 8.210959499 8.023443398 

AT2G29990 7.753231435 8.032931916 
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AT2G30490 9.856649935 11.2289161 

AT2G30670 4.121663319 4.063488488 

AT2G30750 3.051053364 3.076575293 

AT2G30770 4.492573877 4.810305171 

AT2G30860 9.556791995 11.85456549 

AT2G30920 7.303013627 7.341316698 

AT2G30970 10.14352499 10.26781145 

AT2G31170 8.219180731 8.313918321 

AT2G31390 10.28598819 10.71026909 

AT2G31570 7.909604413 8.005766663 

AT2G31580 7.747459237 7.701249809 

AT2G31810 9.207289304 8.700229528 

AT2G32440 5.569931956 5.571662769 

AT2G32520 11.1511407 11.29882642 

AT2G33150 10.50975636 10.81359444 

AT2G33220 7.180749859 7.158540701 

AT2G33730 9.494809852 9.448426864 

AT2G33840 9.598664171 9.521242168 

AT2G34060 6.450688208 5.901638667 

AT2G34490 3.456860213 3.60387113 

AT2G34500 4.818266637 5.033920984 

AT2G34555 4.305913997 4.017968689 

AT2G34590 9.585430974 9.695815213 

AT2G34850 4.077543477 4.063769698 

AT2G35040 11.39389356 11.39004915 

AT2G35390 6.313299628 6.415659736 

AT2G35690 6.914657431 6.919652099 

AT2G36190 5.268322621 4.941342762 

AT2G36230 9.062573936 8.961079198 

AT2G36390 8.405832465 8.615203608 

AT2G36460 12.54650516 12.75432304 

AT2G36530 12.78807726 12.88669727 

AT2G36750 3.685657693 3.742552783 

AT2G36800 4.279024692 7.009681476 

AT2G36880 11.59559007 12.78765279 

AT2G37040 5.86291697 8.79811914 

AT2G37130 4.925375615 5.028353926 

AT2G37500 9.055541542 9.133141019 

AT2G37690 10.34203642 10.1753927 

AT2G37840 6.117944031 6.190074986 

AT2G38040 9.064898086 8.662048387 
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AT2G38050 7.195039869 7.625473064 

AT2G38380 3.926250926 3.738942631 

AT2G38390 3.926250926 3.738942631 

AT2G38670 11.12537629 10.86735793 

AT2G38700 9.57903551 9.401385263 

AT2G39040 4.891287661 4.747285252 

AT2G39290 9.804022923 9.623441036 

AT2G39630 9.288220914 9.216220702 

AT2G39770 10.93967182 11.18153314 

AT2G40190 n/a n/a 

AT2G40840 10.17618803 10.63148812 

AT2G40890 10.04985404 11.92259716 

AT2G40930 8.81002702 8.715063943 

AT2G41210 4.85613234 4.709978658 

AT2G41220 9.600370042 9.960349257 

AT2G41480 11.03102756 10.59741212 

AT2G41490 8.146702661 8.230623552 

AT2G42010 8.248911109 8.254672187 

AT2G42490 8.863885313 8.892288077 

AT2G42600 9.954946765 10.03166864 

AT2G43090 12.25008057 12.21443105 

AT2G43360 10.40524629 11.19997562 

AT2G43480 3.685870364 3.871076443 

AT2G44050 11.9194776 11.94274574 

AT2G44160 10.09980178 10.72279456 

AT2G44450 12.66822778 12.17739477 

AT2G44460 9.672185901 9.437461513 

AT2G44470 4.399228826 4.598778565 

AT2G44480 3.253010287 3.396147421 

AT2G44490 5.820352424 6.470545608 

AT2G44520 8.834835498 8.965815671 

AT2G44530 9.17741633 8.823406023 

AT2G44660 8.5093971 8.48901722 

AT2G45220 4.63566803 4.608125262 

AT2G45290 9.279480829 10.35453721 

AT2G45440 11.54939134 11.55524728 

AT2G45790 10.83751235 10.96770144 

AT2G46860 4.106926328 4.02614786 

AT2G47030 3.774943281 3.447713468 

AT2G47420 9.911158773 9.772366286 

AT2G47510 10.72314153 10.91080248 
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AT2G47690 8.552270027 8.611697085 

AT2G47730 9.736242536 11.38163542 

AT2G48150 5.149996991 4.983140871 

AT3G01120 10.57576184 10.43054595 

AT3G01190 4.202942737 4.02096879 

AT3G01500 4.462446237 4.262363769 

AT3G01850 8.1246264 8.294361663 

AT3G02230 13.07708005 12.9069644 

AT3G02260 8.709451896 8.744580739 

AT3G02350 9.112868751 8.63153124 

AT3G02360 10.50141299 11.38457855 

AT3G02470 11.42174317 11.32863907 

AT3G02570 7.133676911 7.149579929 

AT3G02580 8.858042287 9.042143448 

AT3G02610 5.300229909 5.268113338 

AT3G02620 5.300229909 5.268113338 

AT3G02630 9.072523083 9.022861611 

AT3G02660 6.874489502 6.804188215 

AT3G02760 9.092783095 9.070045007 

AT3G02780 9.358245787 9.59815295 

AT3G02870 10.35042207 10.27125474 

AT3G02875 7.984648627 9.436722289 

AT3G03070 10.84148855 10.86964966 

AT3G03190 3.856467973 3.851308107 

AT3G03330 8.472139035 8.563177351 

AT3G03670 4.909539122 4.846895711 

AT3G03980 8.270324711 8.399335371 

AT3G04000 7.756562328 8.53184985 

AT3G04050 4.903964659 4.637884934 

AT3G04080 7.799486748 7.367128785 

AT3G04120 13.47887342 13.81866839 

AT3G04520 8.285156202 9.471117157 

AT3G04600 8.666130979 8.79278718 

AT3G04790 10.13771171 10.43325253 

AT3G04870 6.869463255 7.281374985 

AT3G04940 7.108517129 7.023018832 

AT3G05630 6.566474641 6.51870873 

AT3G05970 8.97016092 9.096864518 

AT3G06200 7.775568404 7.940301685 

AT3G06310 8.539429035 8.524798128 

AT3G06580 9.045338912 9.020286632 
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AT3G06650 9.331815448 9.580529715 

AT3G06810 8.282016897 8.525512383 

AT3G06850 7.416943481 7.364820453 

AT3G06860 9.68497741 9.952571448 

AT3G07270 8.004711437 8.166801148 

AT3G07420 5.193603289 5.35656368 

AT3G07800 9.591269087 9.510422136 

AT3G07850 4.751204141 4.424738103 

AT3G07960 4.640126905 4.618970355 

AT3G07990 5.619913748 5.12058697 

AT3G08610 11.2938367 11.34853084 

AT3G09150 5.721873908 5.804724376 

AT3G09920 6.144985707 6.080701839 

AT3G10050 10.29712463 10.6317915 

AT3G10230 7.369189903 7.590144112 

AT3G10340 3.902432832 3.833599123 

AT3G10700 8.0089545 7.6125712 

AT3G11710 12.45726977 12.35118086 

AT3G11750 6.849053192 6.72654982 

AT3G12260 11.71314958 11.66074827 

AT3G12290 9.85287916 10.07069369 

AT3G12780 10.2048326 10.37701174 

AT3G12800 9.89838997 10.66841438 

AT3G13180 7.28492262 7.176415964 

AT3G13450 6.283403437 6.550642374 

AT3G13490 7.704667791 7.644750186 

AT3G13730 4.710659793 5.100161342 

AT3G13790 4.224710073 4.883523372 

AT3G13900 4.558757489 4.425021296 

AT3G13930 9.664580064 9.842462644 

AT3G14270 6.228756417 6.30419631 

AT3G14390 11.21484031 11.30495767 

AT3G14415 6.144435911 6.314412876 

AT3G14940 6.583413082 6.423976426 

AT3G15290 7.446215956 7.407369237 

AT3G15730 10.02116251 9.64114079 

AT3G16950 10.89683675 10.81247009 

AT3G17070 3.661393521 3.670985722 

AT3G17240 11.36436083 11.69590998 

AT3G17390 13.14850789 12.59300605 

AT3G17760 3.442773543 3.293925729 
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AT3G17820 11.77120979 12.88071776 

AT3G17940 8.843852553 9.051580431 

AT3G18080 3.9928485 4.02026949 

AT3G18410 11.12050169 11.46177753 

AT3G19160 4.52457745 4.719178424 

AT3G19210 n/a n/a 

AT3G19280 4.916279562 5.15309459 

AT3G19420 8.453478378 8.311565385 

AT3G19450 6.786898017 8.258364659 

AT3G19480 6.909206558 6.689100723 

AT3G19710 4.137914181 4.095741071 

AT3G19820 11.07360174 10.7661357 

AT3G20020 8.022297306 7.864771706 

AT3G21110 9.946631287 9.433250196 

AT3G21230 4.209814655 4.60217716 

AT3G21240 6.56326994 9.089347037 

AT3G21500 4.807938596 4.640937813 

AT3G21560 4.1839746 4.128255776 

AT3G21770 4.958545018 4.931078563 

AT3G22400 3.857187642 3.931651444 

AT3G22460 5.982492582 5.931843149 

AT3G22740 4.089585774 3.871746552 

AT3G23490 9.360483739 9.445047298 

AT3G23580 8.335680777 9.156234336 

AT3G23630 3.52642743 3.524063123 

AT3G23810 9.966055993 10.34698486 

AT3G23940 11.34330428 11.2117428 

AT3G24030 8.252253961 7.846610763 

AT3G24090 7.204454128 7.364179868 

AT3G24200 8.982977495 9.017781319 

AT3G24503 5.380747865 5.637238263 

AT3G25110 8.042282059 7.753498804 

AT3G25140 11.00163556 10.41338637 

AT3G25220 9.146644389 9.212712061 

AT3G25570 3.643817657 3.795240646 

AT3G25610 8.704622934 9.371678441 

AT3G25820 4.049701642 3.986614158 

AT3G25830 4.049701642 3.986614158 

AT3G25960 4.309399958 4.150404889 

AT3G26150 3.147766706 3.191255796 

AT3G26160 3.746539246 3.686896232 
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AT3G26170 5.489440558 5.484185528 

AT3G26190 3.378724844 3.382265432 

AT3G26200 4.911369119 4.914459137 

AT3G26210 3.241176963 3.169841765 

AT3G26220 2.955402809 3.023610938 

AT3G26230 3.2027576 3.192655547 

AT3G26270 3.737793336 3.612242285 

AT3G26280 3.399411822 3.247584564 

AT3G26290 3.314272059 3.307748438 

AT3G26300 3.16619904 3.051015223 

AT3G26310 3.377835147 3.221510531 

AT3G26320 3.091508313 3.305973121 

AT3G26830 9.215162726 10.65702897 

AT3G27060 11.30267856 11.39756946 

AT3G27180 n/a n/a 

AT3G27300 6.915713209 7.440587003 

AT3G27740 10.92851468 10.93961635 

AT3G27870 3.596964892 3.569694367 

AT3G28200 8.206977442 7.73178221 

AT3G28480 8.781819851 8.801946369 

AT3G29200 8.236018687 9.359307044 

AT3G29320 7.891303129 8.2828829 

AT3G29360 11.45837321 11.03209193 

AT3G30180 3.755823997 3.659029418 

AT3G42640 7.2535536 6.994979802 

AT3G43190 5.419844452 5.440008548 

AT3G43270 6.835687102 6.767768697 

AT3G43670 6.582744733 6.539831592 

AT3G43800 5.674436065 5.577521569 

AT3G44250 4.513516664 4.218535416 

AT3G44300 10.91466078 12.50297518 

AT3G44320 7.033703627 8.102546906 

AT3G44880 7.630272966 8.03138016 

AT3G45100 7.405447393 7.412855162 

AT3G45130 4.572085154 4.597143131 

AT3G45140 3.566059673 3.715350658 

AT3G45940 3.870373014 3.779674221 

AT3G46100 8.343608797 8.522395528 

AT3G46440 9.660665275 9.493271853 

AT3G46970 8.848693743 9.211682993 

AT3G47000 8.563039575 8.794908904 
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AT3G47050 6.240945019 6.101939723 

AT3G47340 3.688787123 3.617662028 

AT3G47350 n/a n/a 

AT3G47390 7.238097462 7.16164828 

AT3G47800 3.733473988 4.051084751 

AT3G47930 9.105637649 9.034708698 

AT3G47950 7.488199777 6.660660092 

AT3G48170 9.762081783 10.18581339 

AT3G48360 3.603381401 3.695163807 

AT3G48540 n/a n/a 

AT3G48560 11.4082398 11.33454798 

AT3G48730 9.90687262 9.835491976 

AT3G48780 8.003064291 7.911799122 

AT3G48790 8.003064291 7.911799122 

AT3G49110 8.543096651 10.01482556 

AT3G49120 8.543096651 10.01482556 

AT3G49160 4.749580128 4.936204859 

AT3G49360 5.832697473 5.213590856 

AT3G49600 7.219214278 7.138852207 

AT3G49640 7.646648051 7.253078407 

AT3G49680 9.375650459 9.772648619 

AT3G49700 4.931174714 4.917758177 

AT3G49960 3.71042012 3.548827154 

AT3G50110 6.943428174 6.755760371 

AT3G50520 8.331055918 8.482839781 

AT3G50660 5.410045145 4.370481417 

AT3G50740 3.727644112 3.856211841 

AT3G51160 9.850672958 9.44634649 

AT3G51240 4.18117553 4.280367397 

AT3G51820 9.402771948 9.422120342 

AT3G51840 8.992371045 9.309434571 

AT3G52200 9.699561135 9.759162104 

AT3G52720 3.917566846 3.875933513 

AT3G52840 4.183321348 4.154813693 

AT3G52930 13.01993179 13.0064711 

AT3G52940 8.180210628 8.231653319 

AT3G52970 3.796558056 3.876839181 

AT3G52990 10.12063228 10.44424559 

AT3G53030 7.545333153 7.485084628 

AT3G53110 10.13361086 10.24640311 

AT3G53130 7.643428024 7.893839749 
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AT3G53260 6.884510773 9.58821189 

AT3G53280 3.73521875 3.737022452 

AT3G53290 3.352903143 3.178612292 

AT3G53300 3.148752314 3.111046231 

AT3G53520 8.672955758 8.342842113 

AT3G53580 10.1689938 10.184374 

AT3G53620 8.766965118 7.530960235 

AT3G54050 7.364257507 7.672073187 

AT3G54250 7.902461227 7.476354829 

AT3G54440 n/a n/a 

AT3G54470 n/a n/a 

AT3G54640 9.368732632 10.37242334 

AT3G55030 8.195688175 7.780746911 

AT3G55120 4.64955362 5.913349624 

AT3G55260 8.091181241 7.750241303 

AT3G55360 9.15353544 9.016127261 

AT3G55400 8.690031942 8.941289707 

AT3G55410 10.4527495 10.65303309 

AT3G55440 12.46602258 12.67059886 

AT3G55590 6.816539831 6.691886111 

AT3G55610 9.039414674 9.175752415 

AT3G55650 3.282792994 3.088315863 

AT3G55810 3.282792994 3.088315863 

AT3G55870 4.153243923 4.232009779 

AT3G56300 4.683700811 4.725463165 

AT3G56310 9.800390861 10.06244947 

AT3G56630 6.736468717 6.991094153 

AT3G56940 9.603440874 9.904093362 

AT3G56960 5.778449147 5.665659826 

AT3G57050 9.181507097 9.304580227 

AT3G57220 8.053479449 7.902977761 

AT3G57610 11.312456 11.27953885 

AT3G58140 8.666726434 8.671539335 

AT3G58610 12.77849384 12.71203602 

AT3G59410 8.443041332 8.361614487 

AT3G59480 4.805978898 4.577217788 

AT3G59970 10.09980178 10.72279456 

AT3G60330 5.330303827 5.111544635 

AT3G60750 11.71871121 11.8338379 

AT3G61440 10.55112699 11.65592752 

AT3G61510 4.504323067 4.544692023 
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AT3G62790 9.2192379 9.456375742 

AT3G63080 8.117711787 7.920628236 

AT3G63110 5.30906329 5.057828616 

AT4G00520 4.095297443 4.437321696 

AT4G01480 10.08781076 9.949221836 

AT4G01690 9.68647556 9.611968021 

AT4G02580 10.23902173 10.10429973 

AT4G02610 7.440913045 7.541222302 

AT4G02780 3.822424892 3.835230076 

AT4G04040 7.47081761 7.475553128 

AT4G04880 5.955143089 6.220084066 

AT4G04910 9.39205765 9.216195829 

AT4G04930 3.429120607 3.391547531 

AT4G04955 5.652104062 5.846820804 

AT4G05160 8.121102015 8.542504929 

AT4G05390 9.692075034 9.995919316 

AT4G05530 8.465336009 8.770674472 

AT4G08770 8.485881908 11.36327666 

AT4G08780 3.842328451 5.351036609 

AT4G08900 7.464880248 7.654538424 

AT4G08990 6.854237484 7.398849161 

AT4G09520 8.385844038 8.324246017 

AT4G10260 3.916714621 3.962576351 

AT4G10320 n/a n/a 

AT4G11030 3.343350088 4.325395405 

AT4G11290 4.16659696 4.226622076 

AT4G11600 9.516770144 10.85288263 

AT4G11640 4.421974172 4.462960695 

AT4G11820 8.612033363 9.071645147 

AT4G11840 4.262189846 4.173389883 

AT4G11850 6.237391443 6.237029396 

AT4G12440 4.329285651 4.416694696 

AT4G13180 5.877290451 9.752439632 

AT4G13250 8.385317125 8.678188363 

AT4G13290 2.856634669 2.940479577 

AT4G13310 2.856634669 2.940479577 

AT4G13430 10.92906817 11.02449611 

AT4G13610 4.200529002 4.032293905 

AT4G13660 8.97722374 9.023227956 

AT4G13720 9.470641748 9.556327715 

AT4G13780 9.750745023 9.688219097 
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AT4G13890 10.50356568 10.68330368 

AT4G13930 10.50356568 10.68330368 

AT4G14070 6.220941614 6.375905879 

AT4G14090 4.168862267 4.106203865 

AT4G14140 6.854237484 7.398849161 

AT4G14210 7.642445034 8.003315405 

AT4G14680 6.178972896 6.60556125 

AT4G14910 7.909212028 8.155436463 

AT4G14930 8.549497379 8.754226258 

AT4G14940 4.209953117 4.196823158 

AT4G15340 3.931667062 5.372103896 

AT4G15350 3.220262723 3.169394893 

AT4G15360 3.210633562 3.14452046 

AT4G15440 3.636162763 3.744047936 

AT4G15530 4.712306291 5.304131126 

AT4G16155 9.303366694 9.369964222 

AT4G16210 8.722096676 8.713418041 

AT4G16270 5.070526307 4.931714747 

AT4G16570 7.640484681 7.460308906 

AT4G16700 7.708146985 7.432960008 

AT4G16710 7.83522763 7.88855101 

AT4G16730 3.342634255 3.422030024 

AT4G16760 8.189763679 9.620912935 

AT4G16800 7.131009031 7.287164496 

AT4G17090 5.527094879 5.602179361 

AT4G17260 8.068408502 7.850171044 

AT4G17690 3.271172685 3.41780477 

AT4G17830 9.577842599 9.417207282 

AT4G18230 7.342629477 7.272798008 

AT4G18360 8.452311617 9.917731176 

AT4G18440 8.434329379 8.88924465 

AT4G19710 8.808855301 8.763563035 

AT4G20960 6.900894083 7.003380548 

AT4G20990 3.805736185 3.892137436 

AT4G21000 3.805736185 3.892137436 

AT4G21470 7.751934538 7.976457819 

AT4G21490 5.796407772 6.011568 

AT4G21960 4.983879259 6.611917938 

AT4G22330 9.09246654 8.942112325 

AT4G22570 9.926489497 10.26762755 

AT4G22870 3.784122518 3.799652888 
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AT4G22880 3.784122518 3.799652888 

AT4G23850 10.58699663 10.28252266 

AT4G23900 4.483066532 4.489930279 

AT4G23920 6.014424962 6.314423793 

AT4G24040 7.824612821 8.108733628 

AT4G24620 9.036337702 9.089036352 

AT4G24650 3.562268478 3.669360951 

AT4G24830 10.57544318 10.76248676 

AT4G25420 4.00503047 3.888410775 

AT4G25700 7.868458131 7.872221904 

AT4G26010 3.897909715 3.737360371 

AT4G26260 3.991441839 4.056752237 

AT4G26270 7.406334061 7.492924142 

AT4G26300 9.60361456 9.579457945 

AT4G26390 4.582017467 4.735436728 

AT4G26520 4.664164993 4.736569123 

AT4G26530 4.333976314 4.192220097 

AT4G26770 4.236975371 3.958799421 

AT4G26850 9.230221693 9.888013628 

AT4G26910 9.89803502 10.21981267 

AT4G26970 10.98533701 11.23863289 

AT4G27070 9.506756307 10.08229902 

AT4G27550 3.64148332 3.442815053 

AT4G28220 6.450202274 6.308506156 

AT4G29010 9.131376244 9.327759525 

AT4G29130 8.98873714 9.112908507 

AT4G29220 7.306178132 7.593082303 

AT4G29510 10.5110501 10.40430661 

AT4G29840 10.1360755 10.27498871 

AT4G29890 6.25470666 6.286882666 

AT4G30000 5.853115068 5.713386896 

AT4G30170 3.523784689 3.498305433 

AT4G30190 11.40540572 12.12090779 

AT4G30580 7.807300504 7.684800271 

AT4G31050 5.834422129 5.700185386 

AT4G31400 5.124368861 5.378216674 

AT4G31760 4.226721336 4.115047054 

AT4G31780 7.864167332 7.927415161 

AT4G31790 9.184794433 9.339578301 

AT4G31870 6.342069865 6.873413753 

AT4G31940 2.835079113 2.876266601 
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AT4G31990 9.363621037 9.606317381 

AT4G32180 7.519078565 7.439250617 

AT4G32360 6.974769548 6.969235069 

AT4G32520 10.81308322 10.71209472 

AT4G32540 4.316702612 4.022225471 

AT4G32770 6.746820133 7.037446014 

AT4G32840 7.940473472 7.888022131 

AT4G33010 9.132572904 9.78914778 

AT4G33030 7.929109325 8.462598005 

AT4G33070 7.484858905 7.807540983 

AT4G33150 4.623643562 4.845588498 

AT4G33240 5.200992583 5.278332175 

AT4G33420 3.688630351 3.600070637 

AT4G33670 8.341693889 8.501223341 

AT4G33680 10.13620141 10.21250477 

AT4G34030 7.519466397 7.479531559 

AT4G34050 9.146609776 12.01301022 

AT4G34200 11.62494573 12.91772572 

AT4G34230 10.9656918 11.52321815 

AT4G34350 8.632410717 8.8624433 

AT4G34640 8.910630857 8.957737504 

AT4G34650 4.093828508 3.959719381 

AT4G34700 11.08113386 10.96721206 

AT4G34710 9.888428418 9.590883327 

AT4G34740 8.433545178 8.098653673 

AT4G34890 6.944172991 7.535472891 

AT4G35090 7.351507052 7.510399245 

AT4G35460 10.14384174 10.18511383 

AT4G35830 11.43302015 12.01472573 

AT4G36220 3.52625574 3.358281251 

AT4G36380 4.689041978 4.583913925 

AT4G36430 4.246173291 4.122115067 

AT4G36810 7.216948838 7.251500859 

AT4G37150 5.240896945 5.110715728 

AT4G37310 4.783992146 4.7399647 

AT4G37320 4.624541212 4.516683047 

AT4G37330 7.446459121 7.261980937 

AT4G37340 4.284917714 4.3638742 

AT4G37360 3.952539762 4.11542183 

AT4G37370 7.696413164 8.4497396 

AT4G37400 5.158238208 4.565769529 
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AT4G37410 4.1153011 4.216715338 

AT4G37430 4.172445397 4.050412849 

AT4G37520 3.637687646 3.42158552 

AT4G37530 3.637687646 3.42158552 

AT4G37770 6.569418693 5.844313112 

AT4G37840 3.603013068 3.394866732 

AT4G37930 8.843411829 8.989915954 

AT4G38240 7.697052476 7.718821667 

AT4G38880 5.362046556 6.05350857 

AT4G38970 9.408173786 9.382150006 

AT4G39210 4.432579295 4.818404945 

AT4G39280 10.31086686 10.24173569 

AT4G39370 5.918959075 5.778951373 

AT4G39540 7.79454166 8.429689733 

AT4G39640 5.679242564 4.787667813 

AT4G39660 7.828042241 8.092594329 

AT4G39800 5.415761031 6.365448636 

AT5G01220 5.70212176 5.809691682 

AT5G02080 7.524476951 7.794745473 

AT5G02410 6.040318939 5.862487278 

AT5G03080 8.979592036 8.923820295 

AT5G03650 7.636357609 8.145768193 

AT5G03690 6.710833632 7.306880627 

AT5G03760 3.334683719 3.42161685 

AT5G03770 5.803393561 5.823613499 

AT5G03860 4.143336263 3.976278814 

AT5G04140 5.918831591 6.388162903 

AT5G04180 4.570300969 4.58701187 

AT5G04230 4.199046114 3.798868341 

AT5G04330 5.155778327 5.219823406 

AT5G04590 9.90931697 10.28424044 

AT5G04620 5.946301206 5.972659761 

AT5G04630 5.064748697 4.79199819 

AT5G04660 5.551290287 5.485042899 

AT5G04970 3.589971854 3.581347325 

AT5G05340 6.159612397 4.789030666 

AT5G05590 8.794528366 8.919773389 

AT5G05690 6.947502298 5.594062982 

AT5G05730 8.726617232 9.51883632 

AT5G05860 9.378120171 8.7996973 

AT5G05870 5.955023518 6.091059587 
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AT5G06060 7.705387566 7.799568362 

AT5G06580 7.626816663 7.433124396 

AT5G06720 10.47815798 9.440862213 

AT5G06730 7.517743176 7.422791948 

AT5G07200 3.652093301 3.439957658 

AT5G07990 5.43961929 5.297701926 

AT5G08280 9.281174946 9.069205521 

AT5G08300 11.82618054 11.83749262 

AT5G08415 8.349682914 8.367851302 

AT5G08530 11.08986056 10.98810165 

AT5G08570 10.03910172 10.33590251 

AT5G08640 3.47947479 3.523855173 

AT5G09300 7.127142519 8.310825363 

AT5G09640 4.205166192 4.1762639 

AT5G09970 3.860543041 4.033927525 

AT5G10050 n/a n/a 

AT5G10160 10.06795429 9.969275173 

AT5G10170 3.787240402 3.829754109 

AT5G10240 10.48282915 10.5416229 

AT5G10300 4.432888829 4.739526213 

AT5G10480 9.348862996 9.185855866 

AT5G10870 8.39961276 8.307455713 

AT5G10920 10.35585673 10.60205892 

AT5G11160 8.057559171 7.582983572 

AT5G11380 7.379149754 7.359234284 

AT5G11520 10.75098017 11.50284863 

AT5G11720 8.872025783 8.87260141 

AT5G11880 11.21484031 11.30495767 

AT5G12180 3.050245965 3.204768789 

AT5G12200 9.757909205 9.958460583 

AT5G13110 10.21146344 10.10470387 

AT5G13420 11.85567444 12.05234158 

AT5G13520 10.30827635 10.2876465 

AT5G13630 10.3719064 10.48221117 

AT5G13690 8.081614505 8.368815357 

AT5G13710 10.58353626 10.62414258 

AT5G13930 4.64111837 4.569114988 

AT5G14130 3.648296796 3.557032229 

AT5G14220 7.715351794 7.855543322 

AT5G14590 10.027955 10.21131556 

AT5G14740 4.444162187 4.246809155 
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AT5G14760 8.366853615 7.790295658 

AT5G14780 10.11131832 11.81723378 

AT5G14800 9.927185691 9.822011638 

AT5G14850 7.138741808 7.189340805 

AT5G14950 8.256202186 8.13356673 

AT5G15140 3.398127817 3.134451223 

AT5G15180 3.05568179 3.102347316 

AT5G15490 9.587543371 9.353670686 

AT5G15770 8.306624486 8.309259411 

AT5G15950 8.179059986 8.535539039 

AT5G16230 4.048291778 4.228527789 

AT5G16240 5.213059208 5.033001148 

AT5G16440 9.704921393 9.936733259 

AT5G16710 10.46435078 10.61082811 

AT5G16870 5.779176149 5.155863947 

AT5G17050 8.100869665 8.918347798 

AT5G17230 8.920111739 9.216707861 

AT5G17310 9.521986118 9.534367241 

AT5G17330 11.34006112 11.0319422 

AT5G17770 10.46801445 10.78083324 

AT5G17820 4.709450933 4.417508744 

AT5G17990 7.508518037 8.836589269 

AT5G18070 7.487069081 7.262226459 

AT5G18200 7.289464069 7.317513173 

AT5G18280 8.002887706 7.511461698 

AT5G18800 11.23051753 11.29582774 

AT5G18930 3.742629727 3.64546168 

AT5G19040 4.246936703 4.114671408 

AT5G19220 3.533883831 3.502614107 

AT5G19550 12.16776467 12.27558847 

AT5G19730 4.818050079 4.771087376 

AT5G19880 4.67197854 4.670519297 

AT5G19890 3.798210381 3.81235991 

AT5G20410 4.726214671 4.995959887 

AT5G20830 10.78988445 10.73581126 

AT5G20980 8.820031291 8.599463886 

AT5G22130 n/a n/a 

AT5G22300 5.082120668 7.930430804 

AT5G22410 3.20787466 3.293181071 

AT5G23010 4.075605447 3.920079331 

AT5G23020 3.158453437 3.039402248 
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AT5G23070 8.842981467 8.97026005 

AT5G23190 3.387221559 3.409189936 

AT5G23250 10.09285431 10.15896547 

AT5G23670 7.904435014 7.746414435 

AT5G24070 3.699597338 3.774463775 

AT5G24140 3.406827322 3.515046385 

AT5G24400 8.909408301 9.119533957 

AT5G24410 5.082194858 4.964906342 

AT5G24420 3.848600628 4.145196425 

AT5G24950 5.974143534 5.749376706 

AT5G24960 5.974143534 5.749376706 

AT5G25120 7.649466214 7.677845983 

AT5G25130 2.872240138 2.773224605 

AT5G25140 2.803639044 2.821891763 

AT5G25180 3.661545116 3.723024125 

AT5G25370 4.305098711 4.138388265 

AT5G25480 7.35211308 7.17816133 

AT5G25900 8.831834711 9.052502398 

AT5G26030 9.46041823 9.573784373 

AT5G26667 n/a n/a 

AT5G26830 11.4012432 11.2626111 

AT5G27430 9.250742905 9.042908887 

AT5G27450 8.441730981 8.456042117 

AT5G27470 11.92457008 11.82518455 

AT5G27600 8.658876372 9.1250335 

AT5G27730 6.68828125 6.835378423 

AT5G28030 3.406042351 3.413887255 

AT5G28840 9.281405204 9.223020444 

AT5G34780 3.377147889 3.323455519 

AT5G35630 9.745450699 9.758257579 

AT5G35790 6.721982459 6.6203419 

AT5G36150 3.961869534 3.661780485 

AT5G36220 5.25657357 9.410303298 

AT5G36880 9.449035695 9.61469539 

AT5G37510 10.58013118 10.54251381 

AT5G37600 9.609450079 9.603700811 

AT5G37830 8.420160901 8.62456145 

AT5G37850 7.016755997 7.453238288 

AT5G38410 12.38552704 12.34864195 

AT5G38420 12.38552704 12.34864195 

AT5G38430 12.38552704 12.34864195 
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AT5G38450 4.504042684 4.25248981 

AT5G38460 7.255340319 7.171062539 

AT5G38530 8.340453255 9.627037017 

AT5G38830 10.62993056 10.70963684 

AT5G38970 3.77448174 3.634982519 

AT5G39320 7.656325941 7.086729482 

AT5G40150 8.528239361 7.565959335 

AT5G40390 8.324419216 7.88521464 

AT5G40760 8.589425308 9.476523508 

AT5G40850 8.504270644 8.254847555 

AT5G41360 7.675892199 7.728321025 

AT5G41480 6.044600071 6.366448517 

AT5G41670 10.5877582 10.25197752 

AT5G42180 3.842615963 3.815009093 

AT5G42250 6.462281884 6.092779246 

AT5G42260 2.908601117 2.963448108 

AT5G42400 7.058785189 7.044874228 

AT5G42590 3.866722519 4.215199864 

AT5G42600 4.813856637 4.873424631 

AT5G42650 5.066128425 7.917359172 

AT5G42740 9.977212031 10.14567297 

AT5G42800 4.654485488 4.432122243 

AT5G43280 8.139582949 8.480182067 

AT5G43780 8.173509679 8.590806861 

AT5G43860 5.861418023 6.058107726 

AT5G43940 11.59210496 11.74994383 

AT5G44240 9.590344134 9.579700293 

AT5G44640 2.908601117 2.963448108 

AT5G46330 4.402866587 4.239900047 

AT5G47000 3.578221491 3.524264329 

AT5G47840 8.491433432 8.736494349 

AT5G47890 10.21365738 10.19711501 

AT5G48220 7.561335051 7.425122153 

AT5G48230 8.962465426 9.070541738 

AT5G48300 9.283642542 9.689518874 

AT5G48840 7.377615911 7.512338178 

AT5G48880 5.097779985 5.10615295 

AT5G49160 9.933090542 9.596361184 

AT5G49180 3.453008408 3.559307368 

AT5G49190 5.483375335 5.23734045 

AT5G49460 8.395235241 8.562347631 
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AT5G49570 7.541318321 7.113835422 

AT5G49650 7.873989745 7.976023474 

AT5G49810 8.833484533 8.856997041 

AT5G50210 7.700833664 8.039350241 

AT5G50370 9.349580014 10.08306888 

AT5G50375 9.147622167 8.877990049 

AT5G50950 10.72314153 10.91080248 

AT5G51280 8.619369327 8.58716398 

AT5G51810 3.572423182 3.534900844 

AT5G51830 8.481148063 9.599857579 

AT5G51890 4.661657509 4.608480555 

AT5G52100 5.140146196 4.968687749 

AT5G52320 3.820765562 3.542325026 

AT5G52520 9.344849754 9.085105106 

AT5G52560 9.060652748 8.762816246 

AT5G52570 7.047812344 7.270404769 

AT5G52840 10.58175063 10.43312308 

AT5G52920 9.971722429 10.10640926 

AT5G53460 10.01388133 11.68916106 

AT5G53970 6.992434167 7.184116818 

AT5G54160 9.764534056 10.94348522 

AT5G54810 9.506756307 10.08229902 

AT5G55070 10.48184053 10.83707356 

AT5G55500 7.305444719 7.175994534 

AT5G56090 8.334892192 8.53326516 

AT5G56350 10.24781905 10.3007545 

AT5G56630 8.179263399 8.23070015 

AT5G56640 3.739003834 3.680704611 

AT5G56650 5.998914919 6.324047822 

AT5G56680 10.60178249 10.57475026 

AT5G56760 9.092318192 9.506881813 

AT5G57030 7.532346826 7.592007581 

AT5G57220 6.050937182 5.568796341 

AT5G57260 3.697467477 3.697468171 

AT5G57300 7.76283362 7.801617941 

AT5G57350 7.255685127 7.87246797 

AT5G57590 7.663772353 8.000275216 

AT5G57655 7.939162788 7.631115227 

AT5G57850 6.762205503 6.87785862 

AT5G57890 8.2440986 9.243245788 

AT5G58240 8.772494974 8.823075558 
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AT5G58390 3.790168954 6.953631194 

AT5G58400 4.180131297 4.160669333 

AT5G58770 3.536165698 3.722881343 

AT5G58860 4.120048302 4.066209632 

AT5G59750 6.984074997 7.094138238 

AT5G60600 7.858465374 8.210901616 

AT5G61140 8.540929189 8.498473687 

AT5G61410 9.439008665 9.610038279 

AT5G61580 6.930037727 7.114405488 

AT5G62530âˆšÃ¤âˆšÃ¤ 8.636072722 8.967532079 

AT5G62670 6.950518337 7.03523834 

AT5G62790 8.387945979 8.541350475 

AT5G63290 6.092229571 6.328260195 

AT5G63310 9.607184884 9.493186946 

AT5G63570 8.613213315 8.941270474 

AT5G63590 5.14937117 5.303640388 

AT5G63680 9.585773044 9.684701081 

AT5G63840 10.30908136 10.25473562 

AT5G63890 9.222533102 9.455796166 

AT5G63910 7.583720011 7.286982102 

AT5G63980 8.316325692 8.960908903 

AT5G64100 5.05682032 5.083309885 

AT5G64110 5.310751512 4.916198064 

AT5G64120 8.181738878 7.71144503 

AT5G64370 7.661635072 7.840157865 

AT5G64860 7.250025845 7.307961836 

AT5G65010 9.155500926 9.413260384 

AT5G65110 8.131963267 8.57832046 

AT5G65720 10.02561062 9.933571955 

AT5G65740 n/a n/a 

AT5G65750 8.298841376 8.590598605 

AT5G65800 3.319399085 3.270934438 

AT5G66120 9.229032272 9.8370192 

AT5G66190 8.692829563 8.994225532 

AT5G66220 4.208128827 4.073453039 

AT5G66280 5.023804641 4.741014163 

AT5G66390 3.356424625 3.193890623 

AT5G66680 11.23196599 10.91215066 

AT5G67030 7.66406463 7.917525591 

AT5G67400 3.984100786 4.095495394 

AT5G67520 5.600690238 5.707886382 
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AT5G67590 10.05681986 10.35804973 

AT5G67630 8.948104786 8.902883101 

NP_174083 n/a n/a 

NP_188430 n/a n/a 

NP_192901 n/a n/a 

NP_194697 n/a n/a 

NP_200227 n/a n/a 

NP_563822 n/a n/a 

NP_565650 n/a n/a 

AT2G44160 10.45995286 10.67263346 

AT1G06290 10.33396862 10.25641075 

AT1G31180 8.083627336 8.182029957 

AT1G62640 4.091637039 4.07828681 

AT2G28850 10.09980178 10.72279456 

AT2G44160 8.083627336 8.182029957 

Table 6 – List of genes included in A. thaliana model and relative expression values (from 

(Pauwels et al. 2008)). Values of “n/a” indicate that the gene was not in the expression dataset for 

two possible reasons, one being that the gene was not included on the ATH1 chip, and the other 

being that the probe corresponding to the gene was discarded from the analysis because of 

technical issues with the microarray. 

  



 

82 

 Reaction name in model 

MJ - 

upper 

bounds 

MJ - 

lower 

bounds 

MJ+ upper 

bounds 

MJ+ lower 

bounds 

'R00009 x' 357.54 0.00 387.22 0.00 

'alpha alpha trehalose glucohydrolase' 265.72 0.00 311.72 0.00 

'chitobiose N 

acetylglucosaminohydrolase' 
284.21 0.00 297.94 0.00 

'cellobiose glucohydrolase' 463.13 0.00 468.13 0.00 

'maltose glucohydrolase' 375.55 0.00 394.22 0.00 

'R00028 p' 375.55 0.00 394.22 0.00 

'6 7 Dimethyl 8 1 D ribityl lumazine 6 

7 dimethyl 8 1 D ' 
356.12 0.00 371.68 0.00 

'ATP phosphohydrolase' 452.65 -452.65 491.29 -491.29 

'R00093 p' 362.09 0.00 449.36 0.00 

'NAD phosphohydrolase' 296.46 0.00 319.77 0.00 

'ADP ATP adenylyltransferase' 296.46 0.00 319.77 0.00 

'ATP AMP phosphotransferase' 327.80 0.00 387.62 0.00 

'ATP dephospho CoA 3 

phosphotransferase' 
288.25 0.00 297.21 0.00 

'ATP pyridoxal 5 phosphotransferase' 262.24 0.00 286.52 0.00 

'ATP L methionine S 

adenosyltransferase' 
500.00 0.00 491.59 0.00 

'S adenosyl L methionine carboxy 

lyase' 
420.18 0.00 435.50 0.00 

'S adenosyl L methionine 

methylthioadenosine lyase' 
241.34 0.00 224.67 0.00 

'AMP aminohydrolase' 296.46 0.00 319.77 0.00 

'P1 P4 bis 5 adenosyl tetraphosphate 

adenylohydrolase' 
202.23 0.00 223.88 0.00 

'P1 P3 bis 5 adenosyl triphosphate 

adenylohydrolase' 
313.49 0.00 339.18 0.00 

'S Adenosyl L homocysteine hydrolase' 362.26 0.00 397.76 0.00 

'R00206 p' 165.54 0.00 203.90 0.00 

'2 Hydroxyethylenedicarboxylate 

carboxy lyase pyruvate forming ' 
297.37 0.00 320.00 0.00 

'pyruvate carboxy lyase acetaldehyde 

forming ' 
247.45 -247.45 300.14 -300.14 

'malonyl CoA carboxy lyase acetyl 

CoA forming ' 
296.46 0.00 319.77 0.00 

'acetyl adenylate CoA acetyltransferase' 339.70 -339.70 369.61 -369.61 

'R00236 m' 339.70 -339.70 369.61 -369.61 
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'Acetyl CoA acetyl CoA C 

acetyltransferase' 
306.82 -306.82 348.69 -348.69 

'R00238 m' 306.82 -306.82 348.69 -348.69 

'R00238 p' 306.82 -306.82 348.69 -348.69 

'R00238 x' 376.70 -376.70 415.70 -415.70 

'5 oxo L proline amidohydrolase ATP 

hydrolysing ' 
286.79 0.00 331.55 0.00 

'Deamido NAD L glutamine amido 

ligase AMP forming ' 
283.48 0.00 312.64 0.00 

'L Alanine 2 oxoglutarate 

aminotransferase' 
273.03 -273.03 293.96 -293.96 

'R00258 p' 273.03 -273.03 293.96 -293.96 

'Acetyl CoA L glutamate N 

acetyltransferase' 
330.82 0.00 351.10 0.00 

'L glutamate 1 carboxy lyase 4 

aminobutanoate forming ' 
371.95 0.00 424.09 0.00 

'Isocitrate NADP oxidoreductase 

decarboxylating ' 
389.44 -389.44 439.61 -439.61 

'R00267 m' 389.44 -389.44 439.61 -439.61 

'glutathione hydrogen peroxide 

oxidoreductase' 
239.84 -239.84 237.97 -237.97 

'UDP glucose NAD 6 oxidoreductase' 427.10 0.00 424.10 0.00 

'UTP alpha D glucose 1 phosphate 

uridylyltransferase' 
341.97 0.00 366.52 0.00 

'UDP glucose 4 epimerase' 336.27 -336.27 305.49 -305.49 

'UDP glucose 4 6 hydro lyase' 323.86 -323.86 345.83 -345.83 

'protoheme ferro lyase protoporphyrin 

forming ' 
371.59 0.00 368.04 0.00 

'R00316 m' 339.70 0.00 369.61 0.00 

'GDP phosphohydrolase' 300.12 0.00 288.76 0.00 

'ATP GDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'ATP GMP phosphotransferase' 291.15 0.00 305.24 0.00 

'R00351 m' 296.46 0.00 319.77 0.00 

'R00351 x' 296.46 0.00 319.77 0.00 

'acetyl CoA oxaloacetate C 

acetyltransferase' 
309.20 0.00 329.16 0.00 

'L Aspartate 2 oxoglutarate 

aminotransferase' 
429.31 -429.31 471.90 -471.90 

'R00355 p' 385.51 -385.51 442.20 -442.20 

'L Alanine glyoxylate aminotransferase' 285.96 -285.96 311.10 -311.10 

'R00405 m' 369.41 -369.41 390.54 -390.54 

'R00408 m' 296.46 -296.46 319.77 -319.77 
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'GTP 7 8 8 9 dihydrolase diphosphate 

forming ' 
335.30 0.00 319.75 0.00 

'GTP 8 9 hydrolase' 302.30 0.00 313.95 0.00 

'ATP GTP 3 diphosphotransferase' 296.46 0.00 319.77 0.00 

'meso 2 6 diaminoheptanedioate 

carboxy lyase L lysine forming ' 
410.64 0.00 434.59 0.00 

'R00475 x' 278.83 0.00 381.26 0.00 

'ATP L aspartate 4 phosphotransferase' 325.07 -325.07 336.89 -336.89 

'L aspartate oxygen oxidoreductase' 312.58 0.00 299.48 0.00 

'L aspartate 1 carboxy lyase beta 

alanine forming ' 
296.46 0.00 319.77 0.00 

'UTP alpha D galactose 1 phosphate 

uridylyltransferase' 
261.02 -261.02 281.30 -281.30 

'R00519 x' 334.67 -334.67 454.28 -454.28 

'ATP sulfate adenylyltransferase' 287.60 0.00 330.25 0.00 

'Sulfite oxygen oxidoreductase' 296.46 0.00 319.77 0.00 

'Aldehyde NAD oxidoreductase' 322.07 -322.07 348.88 -348.88 

'Nitrile aminohydrolase' 296.46 0.00 319.77 0.00 

'Riboflavin 5 phosphate 

phosphohydrolase acid optimum ' 
183.40 0.00 157.26 0.00 

'ATP riboflavin 5 phosphotransferase' 284.16 0.00 306.63 0.00 

'L Arginine amidinohydrolase' 256.85 -256.85 294.26 -294.26 

'L arginine carboxy lyase agmatine 

forming ' 
372.58 0.00 368.93 0.00 

'ATP CDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'R00575 m' 402.74 0.00 420.55 0.00 

'acetyl CoA L serine O 

acetyltransferase' 
328.17 0.00 365.47 0.00 

'methanol hydrogen peroxide 

oxidoreductase' 
407.10 0.00 436.83 0.00 

'sarcosine oxygen oxidoreductase 

demethylating ' 
142.17 0.00 169.04 0.00 

'Thiamin diphosphate 

phosphohydrolase' 
300.12 0.00 288.76 0.00 

'ATP thiamine diphosphate 

phosphotransferase' 
296.46 0.00 319.77 0.00 

'ATP thiamine diphosphotransferase' 296.46 0.00 319.77 0.00 

'R00621 m' 388.47 0.00 409.53 0.00 

'primary alcohol NAD oxidoreductase' 296.46 -296.46 319.77 -319.77 

'Aldehyde NAD oxidoreductase' 327.24 0.00 394.12 0.00 

'2 oxo acid carboxy lyase aldehyde 

forming ' 
247.45 -247.45 300.14 -300.14 
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'L Galactono 1 4 lactone 

ferricytochrome c oxidoreductase' 
331.13 0.00 347.32 0.00 

'S Adenosyl L methionine L 

methionine S methyltransferase' 
318.96 -318.96 340.48 -340.48 

'S Adenosyl L methionine L 

homocysteine S methyltransferase' 
141.38 0.00 148.84 0.00 

'2 phospho D glycerate hydro lyase 

phosphoenolpyruvate forming ' 
458.53 -458.53 495.40 -495.40 

'Uridine triphosphate 

pyrophosphohydrolase' 
339.82 0.00 367.37 0.00 

'N2 Acetyl L ornithine amidohydrolase' 344.92 0.00 362.02 0.00 

'L Phenylalanine 2 oxoglutarate 

aminotransferase' 
429.31 -429.31 471.90 -471.90 

'L phenylalanine ammonia lyase trans 

cinnamate forming ' 
246.58 -246.58 368.59 -368.59 

'L phenylalanine oxygen 

oxidoreductase decarboxylating ' 
407.10 0.00 436.83 0.00 

'Farnesyl diphosphate farnesyl 

diphosphate farnesyltransferase' 
326.54 0.00 344.36 0.00 

' S Lactate NAD oxidoreductase' 298.42 -298.42 301.78 -301.78 

'3 Oxopropanoate NAD oxidoreductase 

decarboxylating ' 
296.46 0.00 319.77 0.00 

'R00709 m' 296.46 -296.46 319.77 -319.77 

'Acetaldehyde NADP oxidoreductase' 296.46 -296.46 319.77 -319.77 

'L Tyrosine 2 oxoglutarate 

aminotransferase' 
296.46 -296.46 319.77 -319.77 

'L tyrosine carboxy lyase tyramine 

forming ' 
296.46 0.00 319.77 0.00 

'L tyrosine ammonia lyase trans p 

hydroxycinnamate forming ' 
296.46 0.00 319.77 0.00 

'R00742 p' 296.46 0.00 319.77 0.00 

'4 hydroxy 2 oxopentanoate pyruvate 

lyase acetaldehyde forming ' 
296.46 -296.46 319.77 -319.77 

'Ethanol NAD oxidoreductase' 296.46 -296.46 319.77 -319.77 

'R00762 p' 277.38 0.00 294.93 0.00 

'beta D fructose 2 6 bisphosphate 2 

phosphohydrolase' 
333.17 -333.17 347.21 -347.21 

'D glucose 6 phosphate aldose ketose 

isomerase' 
323.89 -323.89 349.40 -349.40 

' S ureidoglycolate urea lyase 

glyoxylate forming ' 
296.46 0.00 319.77 0.00 

'Ammonia ferredoxin oxidoreductase' 454.78 0.00 418.71 0.00 
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'R00790 p' 454.78 0.00 418.71 0.00 

'UDP glucose D fructose 2 alpha D 

glucosyltransferase' 
376.79 -376.79 412.71 -412.71 

'D Sorbitol 6 phosphate NADP 1 

oxidoreductase' 
374.16 -374.16 404.46 -404.46 

'Hydrogen sulfide ferredoxin 

oxidoreductase' 
361.08 0.00 395.35 0.00 

'ATP D fructose 6 phosphotransferase' 288.03 0.00 312.46 0.00 

'D Glucitol NAD 2 oxidoreductase' 296.46 -296.46 319.77 -319.77 

'GDP D mannose 1 phosphate 

guanylyltransferase' 
403.85 -403.85 429.84 -429.84 

'GDP mannose 4 6 hydro lyase' 358.20 0.00 363.14 0.00 

'L Cysteine 2 oxoglutarate 

aminotransferase' 
227.59 -227.59 254.98 -254.98 

'3 aminopropanal NAD oxidoreductase' 327.24 0.00 394.12 0.00 

'N Carbamoyl beta alanine 

amidohydrolase' 
282.67 -282.67 301.39 -301.39 

'Propionyladenylate CoA 

propionyltransferase' 
296.46 -296.46 319.77 -319.77 

' S Methylmalonate semialdehyde NAD 

oxidoreductase' 
285.97 0.00 299.77 0.00 

'5 6 7 8 Tetrahydrofolate NADP 

oxidoreductase' 
298.77 -298.77 315.33 -315.33 

'Tetrahydrofolate L glutamate gamma 

ligase ADP forming ' 
233.13 -233.13 244.74 -244.74 

'Formate tetrahydrofolate ligase ADP 

forming ' 
350.96 -350.96 405.71 -405.71 

'5 10 Methylenetetrahydrofolate 

glycine hydroxymethyltransferase' 
386.74 -386.74 410.69 -410.69 

'R00945 m' 398.47 -398.47 411.80 -411.80 

'5 Methyltetrahydrofolate L 

homocysteine S methyltransferase' 
296.46 0.00 319.77 0.00 

'ATP alpha D glucose 1 phosphate 

adenyltransferase' 
130.74 -130.74 134.65 -134.65 

'R00948 p' 128.39 -128.39 130.83 -130.83 

'alpha D Glucose 1 phosphate 1 6 

phosphomutase' 
296.46 -296.46 319.77 -319.77 

'R00959 p' 296.46 -296.46 319.77 -319.77 

'5 6 Dihydrouracil NADP 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

' 2R 3S 3 methylmalate NAD 

oxidoreductase' 
381.64 -381.64 394.28 -394.28 
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'L threonine ammonia lyase 2 

oxobutanoate forming ' 
380.23 0.00 408.71 0.00 

'2 Hydroxybutyrate NAD 

oxidoreductase' 
298.42 0.00 301.78 0.00 

'Dolichyl diphosphate 

phosphohydrolase' 
330.15 0.00 343.05 0.00 

'UDPglucose dolichyl phosphate beta D 

glucosyltransferase' 
343.24 -343.24 354.29 -354.29 

'GDPmannose dolichyl phosphate O 

beta D mannosyltransferase' 
328.03 0.00 332.55 0.00 

'R01015 p' 410.98 -410.98 451.12 -451.12 

'ATP choline phosphotransferase' 296.46 -296.46 319.77 -319.77 

'sn Glycero 3 phosphocholine 

glycerophosphohydrolase' 
296.46 0.00 319.77 0.00 

'ATP D ribose 5 phosphate 

diphosphotransferase' 
332.31 -332.31 339.19 -339.19 

'ADP ribose ribophosphohydrolase' 143.76 0.00 152.35 0.00 

'D ribose 5 phosphate aldose ketose 

isomerase' 
300.96 -300.96 322.17 -322.17 

'R01056 p' 300.96 -300.96 322.17 -322.17 

'D glyceraldehyde 3 phosphate NAD 

oxidoreductase phosphorylating ' 
350.82 -350.82 379.81 -379.81 

'1 5 phospho D ribosyl ATP 

diphosphate' 
278.43 0.00 282.99 0.00 

'5 phosphoribosylamine diphosphate 

phospho alpha D ribosyltransferase' 
448.53 0.00 467.10 0.00 

'N 5 Phospho D ribosyl anthranilate 

pyrophosphate' 
263.41 -263.41 339.70 -339.70 

'dethiobiotin sulfur sulfurtransferase' 369.18 0.00 430.55 0.00 

'R01082 m' 385.64 -385.64 419.44 -419.44 

'N6 1 2 dicarboxyethyl AMP AMP 

lyase fumarate forming ' 
311.87 -311.87 341.72 -341.72 

'2 Nomega L arginino succinate 

arginine lyase fumarate forming ' 
385.28 -385.28 407.57 -407.57 

'L Leucine 2 oxoglutarate 

aminotransferase' 
296.46 -296.46 319.77 -319.77 

'ATP D galactose 1 phosphotransferase' 325.90 -325.90 346.76 -346.76 

'Lactose galactohydrolase' 237.13 -237.13 251.93 -251.93 

'melibiose galactohydrolase' 375.55 0.00 394.22 0.00 

'Raffinose galactohydrolase' 350.47 0.00 386.82 0.00 

'Galactosylglycerol galactohydrolase' 350.47 -350.47 386.82 -386.82 
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'Isopentenyl diphosphate delta3 delta2 

isomerase' 
355.46 -355.46 381.99 -381.99 

'IMP 1 2 hydrolase decyclizing ' 420.11 -420.11 437.86 -437.86 

'IMP NAD oxidoreductase' 363.34 -363.34 388.56 -388.56 

'ATP inosine 5 phosphotransferase' 296.46 -296.46 319.77 -319.77 

'IMP diphosphate phospho D 

ribosyltransferase' 
281.39 -281.39 282.31 -282.31 

'IMP L aspartate ligase GDP forming ' 416.25 -416.25 433.61 -433.61 

'ATP dADP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'dATP pyruvate 2 O 

phosphotransferase' 
115.32 -115.32 118.72 -118.72 

'Putrescine oxygen oxidoreductase 

deaminating ' 
296.46 -296.46 319.77 -319.77 

'S adenosyl L methionine L histidine N 

methyltransferase' 
401.42 0.00 421.63 0.00 

'L Histidinal NAD oxidoreductase' 296.46 0.00 319.77 0.00 

'L histidine carboxy lyase histamine 

forming ' 
404.96 0.00 414.83 0.00 

'R01177 x' 376.70 -376.70 415.70 -415.70 

'myo Inositol oxygen oxidoreductase' 234.97 0.00 245.46 0.00 

'1D myo Inositol 4 phosphate 

phosphohydrolase' 
364.07 0.00 394.85 0.00 

'1D myo Inositol 3 phosphate 

phosphohydrolase' 
364.07 0.00 394.85 0.00 

'R01197 m' 296.46 0.00 319.77 0.00 

'2 3 Dihydroxy 3 methylbutanoate 

hydro lyase' 
415.61 0.00 431.01 0.00 

'L Valine 2 oxoglutarate 

aminotransferase' 
296.46 -296.46 319.77 -319.77 

'5 10 methylenetetrahydrofolate NADP 

oxidoreductase' 
352.97 -352.97 387.14 -387.14 

'5 methyltetrahydrofolate NADP 

oxidoreductase' 
364.42 0.00 412.21 0.00 

'5 10 Methylenetetrahydrofolate 3 

methyl 2 oxobutanoate' 
296.46 0.00 319.77 0.00 

'P1 P4 bis 5 guanosyl tetraphosphate 

guanylylhydrolase' 
202.23 0.00 223.88 0.00 

'Thioglucoside glucohydrolase' 348.18 -348.18 362.80 -362.80 

'L Proline NADP 5 oxidoreductase' 349.15 -349.15 377.58 -377.58 

'L Proline 2 oxoglutarate oxygen 

oxidoreductase 4 hydroxylating ' 
319.02 0.00 338.37 0.00 
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'glutathione L amino acid 5 

glutamyltransferase' 
226.63 0.00 184.05 0.00 

'R01279 x' 263.32 0.00 293.14 0.00 

'R01280 x' 337.10 -337.10 349.71 -349.71 

'Palmitoyl CoA L serine C 

palmitoyltransferase decarboxylating ' 
294.77 0.00 304.15 0.00 

'Acyl CoA 1 acyl sn glycero 3 

phosphocholine O acyltransferase' 
298.95 -298.95 309.90 -309.90 

'R01324 m' 442.88 -442.88 483.08 -483.08 

'ATP D mannose 6 phosphotransferase' 296.46 0.00 319.77 0.00 

'Epimelibiose galactohydrolase' 350.47 -350.47 386.82 -386.82 

'R01334 p' 296.46 0.00 319.77 0.00 

'ATP propanoate adenyltransferase' 296.46 -296.46 319.77 -319.77 

' S 3 hydroxy 3 methylglutaryl CoA 

acetoacetate lyase' 
304.30 -304.30 317.77 -317.77 

'4 fumarylacetoacetate 

fumarylhydrolase' 
311.26 -311.26 359.80 -359.80 

'Phenylpyruvate oxygen oxidoreductase 

hydroxylating decarboxylating ' 
312.99 0.00 352.65 0.00 

'phenylpyruvate carboxy lyase 

phenylacetaldehyde forming ' 
297.37 -297.37 320.00 -320.00 

'UDP D glucuronate carboxy lyase 

UDP D xylose forming ' 
296.46 0.00 319.77 0.00 

'R01388 x' 296.46 -296.46 319.77 -319.77 

'ATP carbamate phosphotransferase' 296.46 0.00 319.77 0.00 

'R01398 m' 373.00 -373.00 412.04 -412.04 

'R01398 p' 373.00 -373.00 412.04 -412.04 

'Cyanohydrin aldehyde lyase cyanide 

forming ' 
200.43 0.00 196.85 0.00 

'5 6 Dihydrothymine NADP 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'D xylose aldose ketose isomerase' 277.35 -277.35 293.36 -293.36 

'Cholesterol NAD delta7 

oxidoreductase' 
401.36 0.00 413.04 0.00 

'Cholesterol NADP delta7 

oxidoreductase' 
401.36 0.00 413.04 0.00 

'cholesterol NADP Delta24 

oxidoreductase' 
399.89 0.00 413.88 0.00 

'ATP ethanolamine O 

phosphotransferase' 
296.46 0.00 319.77 0.00 

'sn Glycero 3 phosphoethanolamine 

glycerophosphohydrolase' 
296.46 0.00 319.77 0.00 
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'ATP ceramide 1 phosphotransferase' 296.46 0.00 319.77 0.00 

'ATP 3 phospho D glycerate 1 

phosphotransferase' 
375.78 -375.78 398.92 -398.92 

'3 Phospho D glycerate NAD 2 

oxidoreductase' 
417.08 -417.08 496.59 -496.59 

'R01518 p' 295.58 -295.58 326.10 -326.10 

'ATP D ribulose 5 phosphate 1 

phosphotransferase' 
315.62 0.00 337.13 0.00 

'R01523 p' 315.62 0.00 337.13 0.00 

'R01528 p' 289.08 0.00 301.51 0.00 

'D Ribulose 5 phosphate 3 epimerase' 290.40 -290.40 318.86 -318.86 

'R01529 p' 350.82 -350.82 369.43 -369.43 

'ATP dAMP phosphotransferase' 296.46 -296.46 319.77 -319.77 

'D Glucose 1 epimerase' 125.64 -125.64 120.50 -120.50 

'4 Hydroxycinnamyl aldehyde NADP 

oxidoreductase' 
347.62 0.00 375.12 0.00 

'4 Coumarate CoA ligase AMP forming 

' 
296.86 0.00 328.39 0.00 

'APS ATP adenylyltransferase' 296.46 0.00 319.77 0.00 

'acetyl CoA [acyl carrier protein] S 

acetyltransferase' 
246.03 -246.03 254.82 -254.82 

'R01624 p' 292.57 -292.57 314.54 -314.54 

'Malonyl CoA [acyl carrier protein] S 

malonyltransferase' 
296.46 -296.46 319.77 -319.77 

'R01626 p' 296.46 -296.46 319.77 -319.77 

'3 Dehydroshikimate hydro lyase' 344.53 -344.53 373.94 -373.94 

'ATP D xylulose 5 phosphotransferase' 287.80 -287.80 306.62 -306.62 

'Sedoheptulose 7 phosphate D 

glyceraldehyde 3 phosphate' 
425.82 -425.82 454.92 -454.92 

'R01641 p' 324.83 -324.83 398.05 -398.05 

'4 hydroxy 2 oxo heptandioate 

succinate semialdehyde lyase' 
284.00 0.00 364.09 0.00 

'4 hydroxy 2 oxo heptandioate 

succinate semialdehyde lyase' 
296.46 0.00 319.77 0.00 

'Dimethylallyl diphosphate isopentenyl 

diphosphate' 
277.26 0.00 278.77 0.00 

'dCMP aminohydrolase' 234.97 0.00 245.46 0.00 

'2 Deoxycytidine 5 monophosphate 

phosphohydrolase' 
234.97 0.00 245.46 0.00 

'ATP dCMP phosphotransferase' 234.97 0.00 245.46 0.00 

'ATP deoxycitidine 5 

phosphotransferase' 
296.46 0.00 319.77 0.00 
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'Lactose galactohydrolase' 296.46 0.00 319.77 0.00 

'3 Sulfo L alanine carboxy lyase taurine 

forming ' 
296.46 0.00 319.77 0.00 

' 5 L glutamyl peptide taurine 5 

glutamyltransferase' 
226.63 0.00 184.05 0.00 

'Dihydrolipoamide NAD 

oxidoreductase' 
397.70 -397.70 429.91 -429.91 

'3 methyl 2 oxobutanoate 

[dihydrolipoyllysine residue' 
118.60 0.00 127.76 0.00 

'4 methyl 2 oxopentanoate 

[dihydrolipoyllysine residue' 
118.60 0.00 127.76 0.00 

'Oleoyl [acyl carrier protein] hydrolase' 296.46 -296.46 319.77 -319.77 

'R01706 p' 296.46 -296.46 319.77 -319.77 

'5 O 1 Carboxyvinyl 3 

phosphoshikimate phosphate lyase' 
360.46 0.00 425.19 0.00 

'Chorismate pyruvatemutase' 295.43 -295.43 319.36 -319.36 

'chorismate L glutamine 

aminotransferase' 
215.64 0.00 225.71 0.00 

'chorismate hydroxymutase' 123.80 -123.80 129.94 -129.94 

'Nicotinate D ribonucleotide 

diphosphate phosphoribosyltransferase' 
321.45 -321.45 341.53 -341.53 

'Prephenate NAD oxidoreductase 

decarboxylating ' 
296.46 0.00 319.77 0.00 

' R S Lactoylglutathione hydrolase' 296.46 0.00 319.77 0.00 

'ATP D Gluconate 6 

phosphotransferase' 
276.77 0.00 309.15 0.00 

'D Glyceraldehyde NAD 

oxidoreductase' 
327.24 -327.24 394.12 -394.12 

'Mandelonitrile benzaldehyde lyase 

cyanide forming ' 
166.32 -166.32 177.64 -177.64 

'ATP L homoserine O 

phosphotransferase' 
325.64 0.00 353.93 0.00 

'Succinyl CoA L homoserine O 

succinyltransferase' 
296.46 0.00 319.77 0.00 

'CTP phosphatidate cytidyltransferase' 151.82 0.00 152.19 0.00 

'D Mannose 6 phosphate 1 6 

phosphomutase' 
389.55 -389.55 421.62 -421.62 

'D mannose 6 phosphate aldose ketose 

isomerase' 
163.62 -163.62 177.79 -177.79 

'Phosphoenolpyruvate D erythrose 4 

phosphate' 
363.61 0.00 423.23 0.00 
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'sedoheptulose 7 phosphate D 

glyceraldehyde 3 phosphate' 
296.46 -296.46 319.77 -319.77 

'R01827 p' 322.64 -322.64 355.16 -355.16 

'R01829 p' 471.55 0.00 500.00 0.00 

'beta D Fructose 6 phosphate D 

glyceraldehyde 3 phosphate' 
425.82 -425.82 454.92 -454.92 

'R01830 p' 324.83 -324.83 398.05 -398.05 

'dGTP pyruvate 2 O 

phosphotransferase' 
115.32 0.00 118.72 0.00 

'inosine phosphate alpha D 

ribosyltransferase' 
296.46 -296.46 319.77 -319.77 

' S Dihydroorotate oxygen 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'Uridine phosphate alpha D 

ribosyltransferase' 
296.46 -296.46 319.77 -319.77 

'Cytidine aminohydrolase' 295.39 0.00 305.15 0.00 

'ATP pyridoxine 5 phosphotransferase' 262.24 0.00 286.52 0.00 

'S adenosylmethioninamine putrescine 

3 aminopropyltransferase' 
363.76 0.00 416.73 0.00 

'2 oxoadipate dehydrogenase complex' 392.88 0.00 416.60 0.00 

'2 Oxoadipate lipoamde 2 

oxidoreductase decarboxylating and' 
305.36 0.00 330.24 0.00 

'Caffeic aldehyde NADP 

oxidoreductase CoA caffeoylating ' 
347.62 -347.62 375.12 -375.12 

'S Adenosyl L methionine caffeoyl 

CoA 3 O methyltransferase' 
179.36 0.00 191.01 0.00 

'L Citrulline L aspartate ligase AMP 

forming ' 
380.26 -380.26 413.74 -413.74 

'ATP D glucosamine 6 

phosphotransferase' 
296.46 0.00 319.77 0.00 

'Deoxyguanosine orthophosphate 

ribosyltransferase' 
296.46 -296.46 319.77 -319.77 

'R01975 x' 316.64 -316.64 358.58 -358.58 

' S 3 Hydroxybutanoyl CoA NADP 

oxidoreductase' 
266.39 -266.39 284.76 -284.76 

'acetyl CoA acetoacetyl CoA C 

acetyltransferase' 
307.60 -307.60 348.74 -348.74 

'Geranyl diphosphate isopentenyl 

diphosphate geranyltrans transferase' 
152.66 0.00 152.02 0.00 

'Geranyl diphosphate diphosphate lyase 

cyclizing ' 
147.86 0.00 153.26 0.00 
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'geranyldiphosphate diphosphate lyase 

myrcene forming ' 
135.30 -135.30 142.17 -142.17 

'geranyl diphosphate diphosphate lyase 

cyclizing ' 
147.86 -147.86 153.26 -153.26 

'geranyl diphosphate diphosphate lyase 

cyclizing Comphene forming ' 
147.86 -147.86 153.26 -153.26 

'NADPH oxidized thioredoxin 

oxidoreductase' 
369.26 0.00 391.54 0.00 

'2 Deoxyadenosine 5 diphosphate 

oxidized thioredoxin' 
323.31 0.00 351.99 0.00 

'2 Deoxyuridine 5 diphosphate oxidized 

thioredoxin' 
323.31 0.00 351.99 0.00 

'2 Deoxyguanosine 5 diphosphate 

oxidized thioredoxin' 
323.31 0.00 351.99 0.00 

'adenosine 3 5 bisphosphate sulfite 

oxidized thioredoxin' 
296.46 0.00 319.77 0.00 

'2 Deoxycytidine diphosphate oxidized 

thioredoxin 2 oxidoreductase' 
323.31 0.00 351.99 0.00 

'O acetyl L homoserine acetate lyase L 

homocysteine forming ' 
386.63 -386.63 400.98 -400.98 

'Phosphatidylglycerophosphate 

phosphohydrolase' 
296.46 -296.46 319.77 -319.77 

'6 Phospho D glucono 1 5 lactone 

lactonohydrolase' 
256.85 -256.85 221.89 -221.89 

'R02035 p' 334.19 -334.19 350.58 -350.58 

'S Adenosyl L methionine 

ethanolamine phosphate N 

methyltransferase' 

296.46 0.00 319.77 0.00 

'CTP ethanolamine phosphate 

cytidylyltransferase' 
407.06 0.00 417.77 0.00 

'Phosphatidylethanolamine 

phosphatidohydrolase' 
147.08 0.00 159.09 0.00 

'Phsophatidyl L serine carboxy lyase' 280.46 0.00 285.74 0.00 

'CDPethanolamine 1 2 diacylglycerol 

ethanolaminephosphotransferase' 
380.78 0.00 378.29 0.00 

'acetyl CoA D glucosamine 6 

phosphate N acetyltransferase' 
311.05 -311.05 319.43 -319.43 

'trans trans Farnesyl diphosphate 

isopentenyl diphosphate' 
152.66 0.00 152.02 0.00 

'geranylgeranyl reductase' 407.74 0.00 440.07 0.00 

'Geranylgeranyl diphosphate 

geranylgeranyl diphosphate' 
322.23 -322.23 354.31 -354.31 
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'ent Copalyl diphosphate lyase' 141.16 0.00 147.44 0.00 

'diphosphate beta D fructose 6 

phosphate 1 phosphotransferase' 
381.60 -381.60 404.28 -404.28 

'3 4 Dihydroxy L phenylalanine 

carboxy lyase' 
203.74 0.00 234.75 0.00 

'2 Deoxyadenosine 5 monophosphate 

phosphohydrolase' 
234.97 -234.97 245.46 -245.46 

'ATP dGMP phosphotransferase' 296.46 -296.46 319.77 -319.77 

'dTDP phosphohydrolase' 296.46 0.00 319.77 0.00 

'ATP dTDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'ATP dUMP phosphotransferase' 296.46 -296.46 319.77 -319.77 

'5 10 Methylenetetrahydrofolate dUMP 

C methyltransferase' 
298.77 -298.77 315.33 -315.33 

'xanthine NAD oxidoreductase' 252.46 0.00 289.68 0.00 

'Urate oxygen oxidoreductase' 302.05 0.00 327.82 0.00 

'Xanthine oxygen oxidoreductase' 252.46 0.00 289.68 0.00 

'R02111 p' 345.35 0.00 354.12 0.00 

'XMP pyrophosphate 

phosphoribosyltransferase' 
296.46 -296.46 319.77 -319.77 

'1H Imidazole 4 ethanamine oxygen 

oxidoreductase deaminating ' 
296.46 0.00 319.77 0.00 

'S Adenosyl L methionine 3 5 7 3 4 

pentahydroxyfavone' 
346.90 0.00 420.69 0.00 

'UDPglucose flavonol 3 O D 

glucosyltransferase' 
289.10 0.00 342.84 0.00 

'Tryptamine oxygen oxidoreductase 

deaminating ' 
381.60 0.00 404.28 0.00 

'S adenosyl L methionine 2 hexaprenyl 

3 methyl 5 hydroxy 6 methoxy ' 
263.00 0.00 282.22 0.00 

'Coniferyl aldehyde NADP 

oxidoreductase CoA feruloylating ' 
347.62 0.00 375.12 0.00 

'Ferulate CoA ligase AMP forming ' 312.54 0.00 480.17 0.00 

'L Isoleucine 2 oxoglutarate 

aminotransferase' 
347.19 0.00 375.68 0.00 

'sinapoyl aldehyde NADP 

oxidoreductase CoA sinapoylating ' 
347.62 0.00 375.12 0.00 

'Sinapate CoA ligase AMP forming ' 312.54 0.00 480.17 0.00 

'7 8 dihydropteroate L glutamate ligase 

ADP forming ' 
296.46 0.00 319.77 0.00 

'1 2 Diacyl sn glycerol 3 phosphate 

phosphohydrolase' 
296.46 -296.46 319.77 -319.77 
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'acyl CoA 1 acyl sn glycerol 3 

phosphate 2 O acyltransferase' 
283.49 0.00 295.42 0.00 

'trans cinnamate NADPH oxygen 

oxidoreductase 4 hydroxylating ' 
325.23 0.00 431.67 0.00 

'trans Cinnamate CoA ligase AMP 

forming ' 
312.54 0.00 480.17 0.00 

'trans Cinnamate CoA ligase AMP 

forming ' 
129.83 -129.83 143.93 -143.93 

'5 6 Dihydrouracil amidohydrolase' 352.46 -352.46 382.83 -382.83 

' S 4 Amino 5 oxopentanoate 4 5 

aminomutase' 
361.08 0.00 378.10 0.00 

'N2 Acetyl L ornithine 2 oxoglutarate 

aminotransferase' 
365.75 -365.75 393.43 -393.43 

'L Aspartate 4 semialdehyde NADP 

oxidoreductase phosphorylating ' 
417.65 -417.65 442.73 -442.73 

'L Aspartate 4 semialdehyde hydro 

lyase adding pyruvate and' 
429.60 0.00 444.21 0.00 

'Cytidine orthophosphate alpha D 

ribosyltransferase' 
296.46 -296.46 319.77 -319.77 

'S Aminomethyldihydrolipoylprotein 

6S tetrahydrofolate' 
360.74 0.00 401.68 0.00 

'5 Formyltetrahydrofolate cyclo ligase 

ADP forming ' 
283.60 0.00 302.82 0.00 

'Nicotinamide ribonucleotide 

phosphohydrolase' 
234.97 0.00 245.46 0.00 

'ATP dCDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'dCTP uridine 5 phosphotransferase' 296.46 0.00 319.77 0.00 

'ATP dUDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

' 1S 2R 1 C indol 3 yl glycerol 3 

phosphate' 
296.46 -296.46 319.77 -319.77 

'dCTP cytidine 5 phosphotransferase' 296.46 0.00 319.77 0.00 

'S Adenosyl L methionine 3 4 

dihydroxy trans cinnamate' 
296.46 0.00 319.77 0.00 

'UDPglucose sinapate D 

glucosyltransferase' 
159.06 -159.06 158.70 -158.70 

'Tyramine oxygen oxidoreductase 

deaminating flavin containing ' 
216.36 0.00 251.41 0.00 

'Monophenol L dopa oxygen 

oxidoreductase' 
159.01 -159.01 166.10 -166.10 

'L Cystine L Cysteine lyase 

deaminating ' 
296.46 0.00 319.77 0.00 

'Raffinose fructohydrolase' 204.94 0.00 239.38 0.00 
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'1 alpha D Galactosyl myo inositol 

sucrose' 
296.46 0.00 319.77 0.00 

'ATP shikimate 3 phosphotransferase' 263.91 0.00 324.06 0.00 

'Allantoate amidinohydrolase' 296.46 0.00 319.77 0.00 

' S Allantoin amidohydrolase' 201.15 0.00 224.77 0.00 

'L Cysteate 2 oxoglutarate 

aminotransferase' 
429.31 -429.31 471.90 -471.90 

'flavanone lyase decyclizing ' 164.44 0.00 227.32 0.00 

'Sphinganine 1 phosphate 

pamlmitaldehyde lyase' 
290.18 0.00 316.62 0.00 

'3 Sulfino L alanine carboxy lyase' 296.46 0.00 319.77 0.00 

' R Pantoate beta alanine ligase AMP 

forming ' 
277.26 0.00 288.79 0.00 

'Deoxycytidine aminohydrolase' 296.46 0.00 319.77 0.00 

'ATP pyridoxal 5 phosphotransferase' 262.24 0.00 286.52 0.00 

'cinnamaldehyde NADP oxidoreductase 

CoA cinnamoylating ' 
347.62 -347.62 375.12 -375.12 

'Homogentisate oxygen 1 2 

oxidoreductase decyclizing ' 
296.46 0.00 319.77 0.00 

'4 Hydroxyphenylpyruvate oxygen 

oxidoreductase' 
312.99 0.00 352.65 0.00 

'aminoacetone oxygen oxidoreductase 

deaminating ' 
216.36 0.00 251.41 0.00 

' R S Lactoylglutathione methylglyoxal 

lyase isomerizing ' 
296.46 -296.46 319.77 -319.77 

'Deoxyadenosine aminohydrolase' 223.49 -223.49 239.11 -239.11 

'p cumic alcohol NAD oxidoreductase' 356.64 0.00 391.57 0.00 

'p Cumic alcohol NADP 

oxidoreductase' 
356.64 0.00 391.57 0.00 

'D Fructose 1 phosphate D 

glyceraldehyde 3 phosphate lyase' 
156.00 -156.00 161.16 -161.16 

'acetyl CoA enzyme N6 dihydrolipoyl 

lysine S acetyltransferase' 
337.33 -337.33 360.12 -360.12 

'Glutaryl CoA dihydrolipoamide S 

succinyltransferase' 
367.91 -367.91 392.87 -392.87 

'ATP [protein] L tyrosine O 

phosphotransferase' 
261.74 -261.74 281.43 -281.43 

'coniferyl alcohol NADP 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'UDPglucose coniferyl alcohol 4 beta D 

glucosyltransferase' 
131.35 -131.35 148.24 -148.24 
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'3 Sulfino L alanine 2 oxoglutarate 

aminotransferase' 
429.31 0.00 471.90 0.00 

'2 methylpropanoyl CoA enzyme N6 

dihydrolipoyl lysine' 
280.46 0.00 283.12 0.00 

'2 methylpropanoyl CoA enzyme N6 

dihydrolipoyl lysine' 
297.37 -297.37 320.00 -320.00 

'4 Hydroxymandelonitrile 

hydroxybenzaldehyde lyase' 
200.43 -200.43 196.85 -196.85 

'UDPgalactose 1 2 diacylglycerol 3 

beta D galactosyltransferase' 
284.49 0.00 304.75 0.00 

'4 Hydroxyphenylacetate CoA ligase 

AMP forming ' 
288.23 -288.23 334.45 -334.45 

'5 Hydroxy L tryptophan decarboxy 

lyase' 
203.74 -203.74 234.75 -234.75 

'XTP pyrophosphohydrolase' 339.82 0.00 367.37 0.00 

'D Fructose 2 6 bisphosphate 2 

phosphohydrolase' 
333.17 0.00 347.21 0.00 

'ATP D fructose 6 phosphate 2 

phosphotransferase' 
333.17 0.00 347.21 0.00 

'N Succinyl LL 2 6 

diaminoheptanedioate amidohydrolase' 
296.46 0.00 319.77 0.00 

'LL 2 6 Diaminoheptanedioate 2 

epimerase' 
370.34 -370.34 391.51 -391.51 

'beta D Glucose 6 phosphate NADP 1 

oxoreductase' 
300.97 0.00 364.30 0.00 

'R02736 p' 376.02 0.00 388.45 0.00 

'UDPglucose D glucose 6 phosphate 1 

alpha D glucosyltransferase' 
390.19 0.00 387.13 0.00 

'R02739 p' 296.46 -296.46 319.77 -319.77 

'R02740 p' 323.89 -323.89 349.40 -349.40 

'Deoxyinosine orthophosphate 

ribosyltransferase' 
296.46 0.00 319.77 0.00 

'2 Deoxy D ribose 1 phosphate 1 5 

phosphomutase' 
296.46 -296.46 319.77 -319.77 

'2 Deoxy D ribose 1 phosphate 1 5 

phosphomutase' 
270.86 -270.86 293.13 -293.13 

'2 Deoxy D ribose 1 phosphate 1 5 

phosphomutase' 
234.97 0.00 245.46 0.00 

'Trehalose 6 phosphate 

phosphohydrolase' 
390.19 0.00 387.13 0.00 

'P1 P4 Bis 5 nucleosyl tetraphosphate 

nucleotidohydrolase' 
296.46 0.00 319.77 0.00 
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'Cyanohydrin ketone lyase' 200.43 0.00 196.85 0.00 

'nitrile NADPH oxygen oxidoreductase' 159.01 -159.01 166.10 -166.10 

'pseudotropine NADP 3 

oxidoreductase' 
124.68 0.00 120.78 0.00 

'Cortisol NAD 11 oxidoreductase' 234.97 0.00 245.46 0.00 

'Cortisol NADP 11 oxidoreductase' 234.97 0.00 245.46 0.00 

'Cysteine hydrogen sulfide lyase adding 

HCN ' 
378.15 -378.15 448.08 -448.08 

'S adenosylmethioninamine spermidine 

3 aminopropyltransferase' 
296.46 -296.46 319.77 -319.77 

'Presqualene diphosphate farnesyl 

diphosphate farnesyltransferase' 
326.54 0.00 344.36 0.00 

'Flavanone lyase decyclizing ' 164.44 -164.44 227.32 -227.32 

'serotonin O methyltransferase' 401.42 0.00 421.63 0.00 

'L Tyrosine tRNA Tyr ligase AMP 

forming ' 
353.09 0.00 366.02 0.00 

'Melibiitol galactohydrolase' 350.47 -350.47 386.82 -386.82 

'2 Propyn 1 al NAD oxidoreductase' 327.24 0.00 394.12 0.00 

' R R Butane 2 3 diol NAD 

oxidoreductase' 
273.25 0.00 285.75 0.00 

'phenylacrylic acid decarboxylase' 297.37 0.00 320.00 0.00 

'D Glucuronolactone NAD 

oxidoreductase' 
327.24 -327.24 394.12 -394.12 

'Sphinganine NADP 3 oxidoreductase' 296.46 0.00 319.77 0.00 

'Sphinganine NADP 3 oxidoreductase' 263.32 -263.32 293.14 -293.14 

'dTDPglucose 4 epimerase' 336.27 -336.27 317.71 -317.71 

'L Histidinol NAD oxidoreductase' 338.83 0.00 363.50 0.00 

'L Histidinol phosphate 

phosphohydrolase' 
296.46 0.00 319.77 0.00 

'4 Nitrophenyl phosphate 

phosphohydrolase' 
296.46 0.00 319.77 0.00 

'R03026 x' 314.59 -314.59 334.96 -334.96 

'L Alanine tRNA Ala ligase AMP 

forming ' 
385.72 -385.72 402.06 -402.06 

'3 Hydroxypropionyl CoA hydro lyase' 316.64 -316.64 358.58 -358.58 

'2 Acetolactate pyruvate lyase 

carboxylating ' 
408.93 0.00 435.73 0.00 

'2 3 Dihydroxy 3 methylbutanoate 

NADP oxidoreductase isomerizing ' 
473.53 0.00 488.68 0.00 

'5 6 Dihydrothymine amidohydrolase' 352.46 -352.46 382.83 -382.83 

' 7E 9E 11Z 14Z 5S 6S 5 6 Epoxyicosa 

7 9 11 14 tetraenoate' 
368.69 0.00 395.48 0.00 
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'2 Amino 4 hydroxy 6 hydroxymethyl 7 

8 dihydropteridine 4 ' 
296.46 0.00 319.77 0.00 

'2 Amino 4 hydroxy 6 hydroxymethyl 7 

8 dihydropteridine ' 
214.01 -214.01 219.64 -219.64 

'1 O 4 Hydroxy 3 5 

dimethoxycinnamoyl beta D glucose 

choline' 

153.81 0.00 160.55 0.00 

'UTP beta L arabinose 1 phosphate 

uridylyltransferase' 
339.87 -339.87 336.86 -336.86 

'2 Dehydro 3 deoxy D arabino 

heptonate 7 phosphate phosphate lyase' 
318.66 0.00 378.16 0.00 

'3 Dehydroquinate hydro lyase' 458.53 -458.53 495.40 -495.40 

'3 Indoleacetonitrile aminohydrolase' 382.20 0.00 480.64 0.00 

'UDPglucose indole 3 acetate beta D 

glucosyltransferase' 
122.26 -122.26 120.64 -120.64 

'3 Mercaptolactate NAD 

oxidoreductase' 
298.42 0.00 301.78 0.00 

'cis 3 4 leucopelargonidin NADP 4 

oxidoreductase' 
162.24 0.00 170.38 0.00 

'O3 Acetyl L serine acetate lyase 

adding hydrogen sulfide ' 
378.15 0.00 448.08 0.00 

'primary amine oxidase' 329.54 0.00 341.84 0.00 

'R03140 p' 234.97 0.00 245.46 0.00 

'Hydroxymethylbilane hydro lyase 

cyclizing ' 
296.46 0.00 319.77 0.00 

' S 2 methylbutanoyl CoA enzyme N6 

dihydrolipoyl lysine' 
280.46 0.00 283.12 0.00 

'S Adenosyl L methionine uroporphyrin 

III C methyltransferase' 
325.49 0.00 317.34 0.00 

'Uroporphyrinogen III carboxy lyase' 296.46 0.00 319.77 0.00 

' S 2 3 Epoxysqualene mutase cyclizing 

lanosterol forming ' 
167.28 0.00 176.73 0.00 

' S 2 3 Epoxysqualene mutase cyclizing 

cycloartenol forming ' 
343.34 0.00 366.53 0.00 

'6 Carboxyhyxanoate CoA ligase AMP 

forming ' 
317.56 0.00 343.36 0.00 

'6 Carboxyhexanoyl CoA L alanine C 

carboxyhexanoyltransferase' 
219.05 0.00 229.60 0.00 

'UDPglucose thiohydroximate S beta D 

glucosyltransferase' 
236.52 -236.52 266.46 -266.46 

'O Acetyl L homoserine succinate lyase 

adding cysteine ' 
296.46 -296.46 319.77 -319.77 
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'Coproporphyrinogen oxygen 

oxidoreductase decarboxylating ' 
305.65 0.00 310.83 0.00 

'Protoporphyrinogen IX oxygen 

oxidoreductase' 
284.60 0.00 301.99 0.00 

'2 Methyl 4 amino 5 

hydroxymethylpyrimidine diphosphate 

4 methyl 5 ' 

280.52 0.00 296.06 0.00 

'S Adenosyl L methionine 8 amino 7 

oxononanoate aminotransferase' 
275.19 0.00 307.55 0.00 

'5 Amino 2 oxopentanoate 2 

oxoglutarate aminotransferase' 
367.71 -367.71 380.69 -380.69 

'ATP R 5 phosphomevalonate 

phosphotransferase' 
297.12 0.00 329.61 0.00 

'2 Dehydro 3 deoxy D octonate 8 

phosphate' 
261.98 0.00 295.28 0.00 

'O Succinyl L homoserine succinate 

lyase adding cysteine ' 
386.63 0.00 400.98 0.00 

'UDPglucose flavonol 3 O D 

glucosyltransferase' 
289.10 -289.10 342.84 -342.84 

'N [ R 4 Phosphopantothenoyl] L 

cysteine carboxy lyase' 
238.91 0.00 269.68 0.00 

'N [ R 4 Phosphopantothenoyl] L 

cysteine carboxy lyase' 
284.00 0.00 364.09 0.00 

'trans 4 Hydroxy L proline NAD 5 

oxidoreductase' 
349.15 0.00 377.58 0.00 

'trans 4 Hydroxy L proline NADP 5 

oxidoreductase' 
349.15 0.00 377.58 0.00 

'5alpha cholest 7 en 3beta ol NADH 

oxygen 5 oxidoreductase' 
325.88 -325.88 347.60 -347.60 

'1 O Sinapoyl beta D glucose S malate 

O sinapoyltransferase' 
111.43 0.00 125.66 0.00 

'1 Phosphatidyl D myo inositol 

inositolphosphohydrolase' 
291.25 -291.25 296.99 -296.99 

'4 hydroxyphenylpyruvate carboxy 

lyase' 
296.46 0.00 319.77 0.00 

'3 Deoxy D manno octulosonate 8 

phosphate 8 phosphohydrolase' 
296.46 0.00 319.77 0.00 

'CTP 3 deoxy D manno octulosonate 

cytidylyltransferase' 
351.19 0.00 350.42 0.00 

'5alpha Cholest 7 en 3beta ol delta7 

delta8 isomerase' 
392.64 -392.64 409.62 -409.62 
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'5alpha Cholest 7 en 3beta ol delta7 

delta8 isomerase' 
317.29 -317.29 300.42 -300.42 

'beta D Galactosyl 1 4 beta D 

glucosylceramide galactohydrolase' 
234.97 0.00 245.46 0.00 

'ATP 1 Phosphatidyl 1D myo inositol 4 

phosphotransferase' 
280.15 0.00 297.02 0.00 

'ATP 1 phosphatidyl 1D myo inositol 3 

phosphotransferase' 
272.63 0.00 281.08 0.00 

'S Adenosyl L methionine 3 4 

dihydroxy trans cinnamate' 
296.46 0.00 319.77 0.00 

'S Adenosyl L methionine 3 4 

dihydroxy trans cinnamate' 
297.37 -297.37 320.00 -320.00 

'D myo Inositol 1 4 bisphosphate 1 

phosphohydrolase' 
297.30 0.00 344.48 0.00 

'8 [ 1R 2R 3 oxo 2 { Z pent 2 

enyl}cyclopentyl]octanoate NADP ' 
266.30 -266.30 448.42 -448.42 

'8 [ 1R 2R 3 oxo 2 { Z pent 2 

enyl}cyclopentyl]octanoate NADP ' 
292.41 0.00 307.67 0.00 

'R03425 m' 369.27 0.00 398.03 0.00 

'D myo Inositol 1 3 4 trisphosphate 1 

phosphohydrolase' 
297.30 0.00 344.48 0.00 

'N Acetyl L glutamate 5 semialdehyde 

NADP 5 oxidoreductase' 
332.73 -332.73 347.85 -347.85 

'D erythro 1 Imidazol 4 yl glycerol 3 

phosphate hydro lyase' 
287.36 0.00 313.51 0.00 

'5 amino 6 5 phosphoribitylamino 

uracil NADP 1 oxidoreductase' 
269.44 0.00 275.31 0.00 

'2 5 Diamino 6 hydroxy 4 5 

phosphoribosylamino pyrimidine' 
269.44 0.00 275.31 0.00 

'Phosphoenolpyruvate 3 

phosphoshikimate' 
395.81 -395.81 464.82 -464.82 

'ATP 1 phosphatidyl 1D myo inositol 4 

phosphate 5 phosphotransferase' 
310.17 0.00 293.38 0.00 

'ATP 2 amino 4 hydroxy 6 

hydroxymethyl 7 8 dihydropteridine' 
214.01 -214.01 219.64 -219.64 

'2 Amino 4 hydroxy 6 D erythro 1 2 3 

trihydroxypropyl 7 8 ' 
241.43 0.00 258.58 0.00 

'1 2 Carboxyphenylamino 1 deoxy D 

ribulose 5 phosphate' 
279.20 0.00 285.44 0.00 

'N 5 Phospho beta D ribosyl 

anthranilate ketol isomerase' 
313.60 0.00 342.90 0.00 

'RX glutathione R transferase' 413.70 0.00 488.11 0.00 
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'L cysteine hydrogen sulfide lyase 

adding HCN ' 
378.15 -378.15 448.08 -448.08 

'D Glucoside glucohydrolase' 228.29 0.00 234.57 0.00 

'ATP dIDP phosphotransferase' 355.38 -355.38 364.94 -364.94 

'2 Deoxyinosine 5 triphosphate 

pyrophosphohydrolase' 
339.82 0.00 367.37 0.00 

'2 Deoxyinosine 5 triphosphate 

pyrophosphohydrolase' 
341.95 0.00 362.77 0.00 

'alpha Aminopropiononitrile 

aminohydrolase' 
382.20 0.00 480.64 0.00 

'Cyanate C N lyase' 337.16 -337.16 363.09 -363.09 

'Hydrogen sulfide ferredoxin 

oxidoreductase' 
361.08 -361.08 395.35 -395.35 

'UDPglucose coniferyl alcohol 4 beta D 

glucosyltransferase' 
131.35 -131.35 148.24 -148.24 

'Galactosylglycerol galactohydrolase' 234.97 0.00 245.46 0.00 

'Stachyose fructohydrolase' 187.30 0.00 189.96 0.00 

'leucocyanidin NADP 4 oxidoreductase' 162.24 0.00 170.38 0.00 

'L Arginine tRNA Arg ligase AMP 

forming ' 
333.31 -333.31 353.03 -353.03 

'L Aspartate tRNAAsp ligase AMP 

forming ' 
296.46 0.00 319.77 0.00 

'L Asparagine tRNA Asn ligase AMP 

forming ' 
389.97 0.00 406.52 0.00 

'L Cysteine tRNA Cys ligase AMP 

forming ' 
179.06 0.00 181.66 0.00 

'Glycine tRNA Gly ligase AMP 

forming ' 
347.96 0.00 365.21 0.00 

'L Histidine tRNA His ligase AMP 

forming ' 
336.83 0.00 348.67 0.00 

'L Isoleucine tRNA Ile ligase AMP 

forming ' 
234.97 0.00 245.46 0.00 

'L Phenylalanine tRNA Ala ligase 

AMP forming ' 
399.02 0.00 414.45 0.00 

'L Proline tRNA Pro ligase AMP 

forming ' 
338.91 0.00 349.25 0.00 

'L Serine tRNA Ser ligase AMP 

forming ' 
440.92 0.00 454.59 0.00 

'L Threonine tRNA Thr ligase AMP 

forming ' 
422.47 0.00 432.96 0.00 

'L Tryptophan tRNA Trp ligase AMP 

forming ' 
320.42 0.00 338.02 0.00 
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'L Valine tRNAVal ligase AMP 

forming ' 
388.72 0.00 407.91 0.00 

'L dopachrome oxygen oxidoreductase' 296.46 0.00 319.77 0.00 

' 3Z phytochromobilin ferredoxin 

oxidoreductase' 
209.33 0.00 223.15 0.00 

'lanosterol delta24 reductase' 399.89 -399.89 413.88 -413.88 

'3 alpha S Strictosidine tryptamine 

lyase' 
322.23 0.00 396.17 0.00 

'Cycloeucalenol lyase cyclopropane 

decyclizing ' 
331.69 -331.69 341.29 -341.29 

'R03778 x' 318.77 -318.77 358.58 -358.58 

'dihydrolipoylprotein NAD 

oxidoreductase' 
418.28 0.00 449.62 0.00 

'dihydrolipoylprotein NAD 

oxidoreductase' 
350.00 0.00 409.68 0.00 

' 2S Flavan 4 ol NADP 4 

oxidoreductase' 
162.24 -162.24 170.38 -170.38 

'GDPmannose glucomannan 1 4 beta D 

mannosyltransferase' 
126.31 -126.31 131.54 -131.54 

'Chlorophyllide a NADP 7 8 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'Corticosterone NADP 11 

oxidoreductase' 
234.97 0.00 245.46 0.00 

'R03858 x' 376.70 -376.70 415.70 -415.70 

' 5 Glutamyl peptide amino acid 5 

glutamyltransferase' 
226.63 0.00 184.05 0.00 

' S Methylmalonate semialdehyde NAD 

oxidoreductase' 
327.24 0.00 394.12 0.00 

'Magnesium protoporphyrin IX 

chelatase' 
367.34 0.00 402.96 0.00 

'UDP L rhamnose flavonol 3 O D 

glucoside L rhamnosyltransferase' 
199.69 -199.69 237.30 -237.30 

'Sinapyl alcohol NADP oxidoreductase' 394.71 0.00 442.98 0.00 

'ATP D fructose 6 phosphotransferase' 362.65 0.00 411.73 0.00 

'Sucrose 6 phosphate fructohydrolase' 187.30 0.00 189.96 0.00 

' S Allantoin racemase' 296.46 -296.46 319.77 -319.77 

'10 Formyltetrahydrofolate L methionyl 

tRNA N formyltransferase' 
187.47 0.00 199.24 0.00 

'10 Formyltetrahydrofolate L methionyl 

tRNA N formyltransferase' 
401.42 0.00 421.63 0.00 

'10 Formyltetrahydrofolate L methionyl 

tRNA N formyltransferase' 
401.42 0.00 421.63 0.00 



 

104 

'10 Formyltetrahydrofolate L methionyl 

tRNA N formyltransferase' 
296.46 0.00 319.77 0.00 

'2 Isopropylmalate hydro lyase' 447.65 -447.65 469.55 -469.55 

' 5 Glutamyl peptide amino acid 5 

glutamyltransferase' 
226.63 0.00 184.05 0.00 

'R03991 x' 296.46 -296.46 319.77 -319.77 

'3 Isopropylmalate hydro lyase' 394.84 -394.84 423.81 -423.81 

'UDPglucose coniferyl alcohol 4 beta D 

glucosyltransferase' 
131.35 -131.35 148.24 -148.24 

'Digalactosylceramide 

galactohydrolase' 
350.47 0.00 386.82 0.00 

'primary amine oxidase' 216.36 0.00 251.41 0.00 

'Phosphoribosyl ATP 

pyrophosphohydrolase' 
349.29 0.00 374.52 0.00 

'1 5 phospho D ribosyl AMP 1 6 

hydrolase' 
349.29 0.00 374.52 0.00 

'3 phosphonopyruvate carboxy lyase' 296.46 0.00 319.77 0.00 

'Imidazole acetaldehyde NAD 

oxidoreductase' 
327.24 0.00 394.12 0.00 

'3 Indoleacetaldoxime hydro lyase' 167.49 -167.49 184.92 -184.92 

'Thioglucoside glucohydrolase' 212.82 0.00 248.74 0.00 

'3 Methylbutanoyl CoA acceptor 2 3 

oxidoreductase' 
301.98 0.00 327.74 0.00 

'3 methylbutanoyl CoA enzyme N6 

dihydrolipoyl lysine' 
280.46 0.00 283.12 0.00 

'S aminomethyldihydrolipoylprotein 6S 

tetrahydrofolate' 
360.74 -360.74 401.68 -401.68 

'S aminomethyldihydrolipoylprotein 6S 

tetrahydrofolate' 
344.53 -344.53 373.94 -373.94 

'S aminomethyldihydrolipoylprotein 6S 

tetrahydrofolate' 
296.88 0.00 326.00 0.00 

'3 Hydroxyisopentyl CoA hydro lyase' 316.64 -316.64 358.58 -358.58 

'3 Methylcrotonoyl CoA carbon dioxide 

ligase ADP forming ' 
268.58 0.00 287.53 0.00 

'5 Phospho D ribosylamine glycine 

ligase ADP forming ' 
300.54 0.00 324.93 0.00 

'R04170 x' 296.46 -296.46 319.77 -319.77 

' S 3 Hydroxydodecanoyl CoA hydro 

lyase' 
297.37 0.00 320.00 0.00 

'3 Phosphoserine 2 oxoglutarate 

aminotransferase' 
397.15 -397.15 431.21 -431.21 
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'2 3 4 5 Tetrahydrodipicolinate NAD 

oxidoreductase' 
191.23 0.00 191.01 0.00 

'2 3 4 5 Tetrahydrodipicolinate NADP 

oxidoreductase' 
191.23 0.00 191.01 0.00 

' 2S 3S 3 hydroxy 2 methylbutanoyl 

CoA NAD oxidoreductase' 
333.08 -333.08 382.60 -382.60 

' 2S 3S 3 Hydroxy 2 methylbutanoyl 

CoA hydro liase' 
316.64 0.00 358.58 0.00 

'2 Formamido N1 5 phosphoribosyl 

acetamidine cyclo ligase' 
296.46 0.00 319.77 0.00 

'1 5 phospho D ribosyl 5 amino 4 

imidazolecarboxylate carboxy lyase' 
376.04 -376.04 391.17 -391.17 

'1 5 phospho D ribosyl 5 amino 4 

imidazolecarboxylate carboxy lyase' 
297.37 0.00 320.00 0.00 

' S 3 Hydroxyisobutyryl CoA hydro 

lyase' 
333.08 0.00 382.60 0.00 

'S adenosyl L methionine magnesium 

protoporphyrin IX' 
296.46 0.00 319.77 0.00 

'Aminoacyl tRNA aminoacylhydrolase' 230.74 -230.74 198.20 -198.20 

'Aminoacyl tRNA aminoacylhydrolase' 314.18 0.00 376.57 0.00 

'CTP ethanolamine phosphate 

cytidylyltransferase' 
407.06 0.00 417.77 0.00 

'CTP ethanolamine phosphate 

cytidylyltransferase' 
350.00 0.00 409.68 0.00 

'Peptidylproline cis trans isomerase' 336.62 -336.62 354.16 -354.16 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 0.00 146.07 0.00 

'4 2 Aminoethyl 1 2 benzenediol 

oxygen' 
216.36 0.00 251.41 0.00 

'trans 2 3 didehydroacyl CoA NADP 4 

oxidoreductase' 
361.19 -361.19 410.12 -410.12 

'Acyl [acyl carrier protein] malonyl 

[acyl carrier protein]' 
296.46 0.00 319.77 0.00 

'R04355 p' 292.57 0.00 314.54 0.00 

'Acyl [acyl carrier protein] malonyl 

[acyl carrier protein]' 
234.97 0.00 245.46 0.00 

'Acetyl CoA 1 alkyl sn glycero 3 

phosphate 2 O acetyltransferase' 
283.49 0.00 295.42 0.00 

'Succinyl CoA 2 3 4 5 

tetrahydropyridine 2 6 dicarboxylate' 
296.46 0.00 319.77 0.00 

'Succinyl CoA 2 3 4 5 

tetrahydropyridine 2 6 dicarboxylate' 
403.55 0.00 400.32 0.00 
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'1 5 Phosphoribosyl 5 amino 4 

imidazolecarboxamide pyrophosphate' 
419.51 -419.51 436.39 -436.39 

'biotin carboxyl carrier protein carbon 

dioxide ligase ADP forming ' 
153.59 -153.59 181.09 -181.09 

'Acetyl CoA carbon dioxide ligase 

ADP forming ' 
153.59 -153.59 181.09 -181.09 

'5 Methyltetrahydropteroyltri L 

glutamate L homocysteine' 
310.96 0.00 330.58 0.00 

'3 Isopropylmalate NAD 

oxidoreductase' 
389.84 -389.84 419.19 -419.19 

'S Adenosyl L methionine zymosterol 

C methyltransferase' 
400.21 -400.21 408.42 -408.42 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04428 p' 296.46 -296.46 319.77 -319.77 

'Butyryl [acyl carrier protein] malonyl 

CoA' 
296.46 -296.46 319.77 -319.77 

'R04429 p' 296.46 -296.46 319.77 -319.77 

' R 2 3 Dihydroxy 3 methylbutanoate 

NADP oxidoreductase' 
473.53 -473.53 488.68 -488.68 

' R 2 3 Dihydroxy 3 methylbutanoate 

hydro lyase' 
415.61 0.00 431.01 0.00 

'ATP 4 methyl 5 2 hydroxyethyl 

thiazole 2 phosphotransferase' 
289.84 0.00 301.64 0.00 

'ATP 4 methyl 5 2 hydroxyethyl 

thiazole 2 phosphotransferase' 
433.21 0.00 459.11 0.00 

'Digalactosyl diacylglycerol 

galactohydrolase' 
350.47 0.00 386.82 0.00 

'N Succinyl L 2 6 

diaminoheptanedioate 2 oxoglutarate' 
296.46 0.00 319.77 0.00 

'3alpha 7alpha Dihydroxy 5beta 

cholestan 26 al NAD oxidoreductase' 
327.24 0.00 394.12 0.00 

'ATP 4 amino 2 methyl 5 

phosphomethylpyrimidine 

phosphotransferase' 

280.52 0.00 296.06 0.00 

'Phosphatidylinositol 3 4 5 

trisphosphate 3 phosphohydrolase' 
312.20 0.00 319.52 0.00 

'Phosphatidylinositol 3 4 5 

trisphosphate 3 phosphohydrolase' 
297.37 -297.37 320.00 -320.00 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04533 p' 296.46 -296.46 319.77 -319.77 
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' 3R 3 Hydroxydecanoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04534 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04535 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxyoctanoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04536 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxypalmitoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04543 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxypalmitoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04544 p' 296.46 -296.46 319.77 -319.77 

'Propanoyl CoA acetyl CoA C 

acyltransferase' 
318.77 0.00 358.58 0.00 

'Propanoyl CoA acetyl CoA C 

acyltransferase' 
263.32 0.00 293.14 0.00 

'1 5 Phosphoribosyl 5 amino 4 N 

succinocarboxamide imidazole' 
311.87 -311.87 341.72 -341.72 

'10 Formyltetrahydrofolate 5 

phosphoribosyl 5 amino 4 ' 
420.11 0.00 437.86 0.00 

' 3R 3 Hydroxytetradecanoyl [acyl 

carrier protein] NADP ' 
296.46 -296.46 319.77 -319.77 

'R04566 p' 296.46 -296.46 319.77 -319.77 

' R 3 Hydroxytetradecanoly [acyl 

carrier protein] UDP N acetyl ' 
296.46 0.00 319.77 0.00 

' 3R 3 Hydroxypalmitoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04568 p' 296.46 -296.46 319.77 -319.77 

'1 5 Phosphoribosyl 5 amino 4 

carboxyimidazole L aspartate ligase' 
357.64 -357.64 362.64 -362.64 

'1 5 Phosphoribosyl 5 amino 4 

carboxyimidazole L aspartate ligase' 
263.32 0.00 293.14 0.00 

'1 5 Phosphoribosyl 5 amino 4 

carboxyimidazole L aspartate ligase' 
369.89 0.00 393.90 0.00 

'1 5 Phosphoribosyl 5 amino 4 

carboxyimidazole L aspartate ligase' 
369.89 0.00 393.90 0.00 

'N 5 Phospho D ribosylformimino 5 

amino 1 ' 
335.42 0.00 344.49 0.00 
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'N 5 Phospho D ribosylformimino 5 

amino 1 ' 
217.52 0.00 223.87 0.00 

'3 Ureidoisobutyrate amidohydrolase' 282.67 0.00 301.39 0.00 

'4alpha Methylcholesta 8 en 3beta ol 

delta7 delta8 isomerase' 
392.64 0.00 409.62 0.00 

' S 2 Acetolactate pyruvate lyase 

carboxylating ' 
408.93 0.00 435.73 0.00 

' S 2 Aceto 2 hydroxybutanoate 

pyruvate lyase carboxylating ' 
408.93 0.00 435.73 0.00 

' S 2 Aceto 2 hydroxybutanoate 

pyruvate lyase carboxylating ' 
296.46 0.00 319.77 0.00 

'S adenosyl L methionine 3 hexaprenyl 

4 5 dihydroxylate' 
263.00 0.00 282.22 0.00 

'Dodecanoyl [acyl carrier protein] 

malonyl CoA' 
296.46 -296.46 319.77 -319.77 

'R04724 p' 296.46 -296.46 319.77 -319.77 

'dodecanoyl [acyl carrier protein] 

malonyl [acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04726 p' 292.57 0.00 314.54 0.00 

'dodecanoyl [acyl carrier protein] 

malonyl [acyl carrier protein]' 
297.37 0.00 320.00 0.00 

'R04737 x' 316.64 -316.64 358.58 -358.58 

'R04738 x' 296.46 -296.46 319.77 -319.77 

'R04739 x' 316.64 -316.64 358.58 -358.58 

'R04740 x' 296.46 -296.46 319.77 -319.77 

'R04741 x' 316.64 -316.64 358.58 -358.58 

'R04742 x' 318.77 -318.77 358.58 -358.58 

'R04743 x' 316.64 -316.64 358.58 -358.58 

'R04744 x' 296.46 -296.46 319.77 -319.77 

'R04745 x' 316.64 -316.64 358.58 -358.58 

'R04746 x' 296.46 -296.46 319.77 -319.77 

'R04747 x' 318.77 -318.77 358.58 -358.58 

'R04748 x' 316.64 -316.64 358.58 -358.58 

'R04749 x' 296.46 -296.46 319.77 -319.77 

'11beta Hydroxyandrost 4 ene 3 17 

dione NADP 11 oxidoreductase' 
234.97 0.00 245.46 0.00 

'11beta Hydroxyandrost 4 ene 3 17 

dione NADP 11 oxidoreductase' 
401.42 0.00 421.63 0.00 

'ATP L selenomethione S 

adenosyltransferase' 
500.00 0.00 491.59 0.00 

'S Adenosyl L methionine L 

methionine S methyltransferase' 
318.96 0.00 340.48 0.00 
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'Selenomethionine tRNAMet ligase 

AMP forming ' 
354.78 0.00 372.44 0.00 

'Selenomethionine tRNAMet ligase 

AMP forming ' 
203.29 0.00 206.75 0.00 

'ATP D fructose 6 phosphate 1 

phosphotransferase' 
286.88 0.00 316.41 0.00 

'R04779 p' 346.58 0.00 351.04 0.00 

'beta D Fructose 1 6 bisphosphate 1 

phosphohydrolase' 
378.74 0.00 399.44 0.00 

'R04780 p' 277.38 0.00 294.93 0.00 

'3 Ketolactose galactohydrolase' 234.97 -234.97 245.46 -245.46 

'3 Ketolactose galactohydrolase' 297.37 -297.37 320.00 -320.00 

'3 Ketolactose galactohydrolase' 350.00 0.00 409.68 0.00 

'delta8 24 Cholestadien 3beta ol delta7 

delta8 isomerase' 
392.64 0.00 409.62 0.00 

'delta8 24 Cholestadien 3beta ol delta7 

delta8 isomerase' 
411.22 0.00 451.70 0.00 

'3alpha 7alpha 24 trihydroxy 5beta 

cholestanoyl CoA NAD ' 
333.08 -333.08 382.60 -382.60 

'S Adenosyl L methionine DNA 

cytosine 5 methyltransferase' 
388.58 0.00 400.35 0.00 

'O3 Acetyl L serine acetate lyase 

adding hydrogen sulfide ' 
296.46 0.00 319.77 0.00 

'S Adenosyl L methionine cytochrome 

c L lysine N6 methyltransferase' 
254.40 -254.40 270.82 -270.82 

'S Adenosyl L methionine cytochrome 

c L lysine N6 methyltransferase' 
336.36 0.00 347.63 0.00 

'3 4 Dihydroxyphenylethyleneglycol 

NAD oxidoreductase' 
411.22 -411.22 451.70 -451.70 

'3 4 Dihydroxyphenylethyleneglycol 

NAD oxidoreductase' 
297.37 0.00 320.00 0.00 

'UDP L rhamnose flavonol 3 O D 

glucoside L rhamnosyltransferase' 
199.69 -199.69 237.30 -237.30 

'5 Hydroxyindoleacetaldehyde NAD 

oxidoreductase' 
327.24 0.00 394.12 0.00 

'5 Hydroxyindoleacetaldehyde NAD 

oxidoreductase' 
407.74 0.00 440.07 0.00 

'CMP 2 aminoethylphosphonate 1 2 

diacylglycerol' 
380.78 0.00 378.29 0.00 

'ATP adenylylsulfate 3 

phosphotransferase' 
218.39 0.00 219.42 0.00 

'ATP sulfate adenylyltransferase' 287.60 -287.60 330.25 -330.25 
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' 5 L glutamyl peptide Se 

Methylselenocysteine 5 

glutamyltransferase' 

226.63 0.00 184.05 0.00 

'Se Adenosylselenohomocysteine 

hydrolase' 
362.26 0.00 397.76 0.00 

'Selenocystathionine L homocysteine 

lyase deaminating ' 
334.35 0.00 357.69 0.00 

'O Phosphorylhomoserine succinate 

lyase adding cysteine ' 
386.63 0.00 400.98 0.00 

'O Acetylhomoserine succinate lyase 

adding cysteine ' 
386.63 0.00 400.98 0.00 

'O Succinyl L homoserine succinate 

lyase adding cysteine ' 
386.63 0.00 400.98 0.00 

'Cyanoglycoside glucohydrolase' 463.13 0.00 468.13 0.00 

'Cyanoglycoside glucohydrolase' 402.29 0.00 449.37 0.00 

' 3R 3 Hydroxyhexanoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04953 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04954 p' 296.46 -296.46 319.77 -319.77 

'Hexanoyl [acyl carrier protein] 

malonyl CoA' 
296.46 -296.46 319.77 -319.77 

'R04955 p' 296.46 -296.46 319.77 -319.77 

'hexanoyl [acyl carrier protein] malonyl 

[acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04957 p' 292.57 0.00 314.54 0.00 

'Octanoyl [acyl carrier protein] malonyl 

CoA' 
296.46 -296.46 319.77 -319.77 

'R04958 p' 296.46 -296.46 319.77 -319.77 

'Octanoyl [acyl carrier protein] malonyl 

[acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04960 p' 292.57 0.00 314.54 0.00 

'Decanoyl [acyl carrier protein] 

malonyl CoA' 
296.46 -296.46 319.77 -319.77 

'R04961 p' 296.46 -296.46 319.77 -319.77 

'Decanoyl [acyl carrier protein] 

malonyl [acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04963 p' 292.57 0.00 314.54 0.00 

' 3R 3 Hydroxydodecanoyl [acyl carrier 

protein] NADP oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'R04964 p' 296.46 -296.46 319.77 -319.77 
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' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase' 
296.46 -296.46 319.77 -319.77 

'R04965 p' 296.46 -296.46 319.77 -319.77 

'Tetradecanoyl [acyl carrier protein] 

malonyl CoA' 
296.46 -296.46 319.77 -319.77 

'R04966 p' 296.46 -296.46 319.77 -319.77 

'Tetradecanoyl [acyl carrier protein] 

malonyl [acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04968 p' 292.57 0.00 314.54 0.00 

'Hexadecanoyl [acyl carrier protein] 

malonyl CoA' 
296.46 -296.46 319.77 -319.77 

'R04969 p' 296.46 -296.46 319.77 -319.77 

'Uroporphyrinogen I carboxy lyase' 296.46 0.00 319.77 0.00 

'Uroporphyrinogen I carboxy lyase' 329.71 0.00 458.33 0.00 

'Uroporphyrinogen I carboxy lyase' 401.42 0.00 421.63 0.00 

'Uroporphyrinogen I carboxy lyase' 159.01 -159.01 166.10 -166.10 

'3 octaprenyl 4 hydroxybenzoate 

carboxy lyase' 
297.37 -297.37 320.00 -320.00 

'3 octaprenyl 4 hydroxybenzoate 

carboxy lyase' 
265.28 -265.28 272.52 -272.52 

'3 octaprenyl 4 hydroxybenzoate 

carboxy lyase' 
159.01 -159.01 166.10 -166.10 

'UDP L rhamnose flavonol 3 O D 

glucoside L rhamnosyltransferase' 
401.42 0.00 421.63 0.00 

'UDP L rhamnose flavonol 3 O D 

glucoside L rhamnosyltransferase' 
401.42 0.00 421.63 0.00 

'beta D Glucosyl 2 coumarinate 

glucohydrolase' 
463.13 0.00 468.13 0.00 

'Undecaprenyl diphospho N 

acetylmuramoyl N acetylglucosamine 

L ' 

422.74 0.00 495.17 0.00 

'UDP N acetyl D glucosamine 

undecaprenyl diphospho N 

acetylmuramoyl ' 

237.61 0.00 254.65 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 0.00 146.07 0.00 

'leucodelphinidin NADP 4 

oxidoreductase' 
162.24 0.00 170.38 0.00 

'formamidopyrimidine nucleoside 

triphosphate amidohydrolase' 
302.30 0.00 313.95 0.00 

'2 5 Diaminopyrimidine nucleoside 

triphosphate mutase' 
302.30 0.00 313.95 0.00 
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'3 Hydroxy 2 methylpropanoate NAD 

oxidoreductase' 
316.64 -316.64 358.58 -358.58 

' S 2 Aceto 2 hydroxybutanoate NADP 

oxidoreductase isomerizing ' 
296.46 -296.46 319.77 -319.77 

' R 2 3 Dihydroxy 3 methylpentanoate 

hydro lyase' 
415.61 0.00 431.01 0.00 

' S 2 Acetolactate methylmutase' 296.46 -296.46 319.77 -319.77 

' S 2 Acetolactate methylmutase' 217.52 0.00 223.87 0.00 

'O Phospho 4 hydroxy L threonine 2 

oxoglutarate aminotransferase' 
397.15 -397.15 431.21 -431.21 

'O Phospho 4 hydroxy L threonine 

phospho lyase adding water ' 
370.92 0.00 395.00 0.00 

'ent Copalyl diphosphate diphosphate 

lyase' 
229.04 0.00 227.56 0.00 

'3 Butyn 1 al NAD oxidoreductase' 327.24 0.00 394.12 0.00 

'3 Butyn 1 al NAD oxidoreductase' 344.53 -344.53 373.94 -373.94 

'S Adenosyl L methionine [3 phospho 

D glycerate carboxy lyase' 
218.63 -218.63 231.69 -231.69 

'ATP 1D myo inositol 1 3 4 5 6 

pentakisphosphate 2 

phosphotransferase' 

296.46 0.00 319.77 0.00 

'2 5 dichloro 2 5 cyclohexadiene 1 4 

diol NAD oxidoreductase' 
280.08 -280.08 357.58 -357.58 

'2 5 dichloro 2 5 cyclohexadiene 1 4 

diol NAD oxidoreductase' 
159.01 -159.01 166.10 -166.10 

'2 5 dichloro 2 5 cyclohexadiene 1 4 

diol NAD oxidoreductase' 
350.00 0.00 409.68 0.00 

'4 hydroxybutyryl CoA dehydratase' 344.53 -344.53 373.94 -373.94 

'4 hydroxybutyryl CoA dehydratase' 365.40 -365.40 394.15 -394.15 

'4 hydroxybutyryl CoA dehydratase' 307.15 0.00 337.17 0.00 

'4 hydroxybutyryl CoA dehydratase' 297.37 0.00 320.00 0.00 

'4 hydroxybutyryl CoA dehydratase' 407.74 0.00 440.07 0.00 

'4 hydroxybutyryl CoA dehydratase' 407.74 0.00 440.07 0.00 

'4 hydroxybutyryl CoA dehydratase' 280.08 -280.08 357.58 -357.58 

'4 hydroxybutyryl CoA dehydratase' 159.01 -159.01 166.10 -166.10 

'Benzoyl acetate CoA ligase' 288.23 -288.23 334.45 -334.45 

'Benzoyl acetate CoA ligase' 159.01 -159.01 166.10 -166.10 

'Benzoyl acetate CoA ligase' 159.01 -159.01 166.10 -166.10 

'Benzoyl acetate CoA ligase' 292.41 0.00 307.67 0.00 

'Benzoyl acetate CoA ligase' 350.00 0.00 409.68 0.00 

'Benzoyl acetate CoA ligase' 318.77 0.00 358.58 0.00 

'Benzoyl acetate CoA ligase' 395.18 -395.18 434.35 -434.35 
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'Benzoyl acetate CoA ligase' 350.47 0.00 386.82 0.00 

'4 amino 4 deoxychorismate pyruvate 

lyase' 
237.88 0.00 264.40 0.00 

'Farnesyl diphosphate Isopentenyl 

diphosphate farnesyl transferase' 
324.91 -324.91 344.67 -344.67 

'L Aspartate tRNA Asp ligase AMP 

forming ' 
296.46 0.00 319.77 0.00 

'L Aspartate tRNA Asp ligase AMP 

forming ' 
203.29 0.00 206.75 0.00 

'Nitrile aminohydrolase' 382.20 0.00 480.64 0.00 

'Nitrile aminohydrolase' 329.59 0.00 331.84 0.00 

'Nitrile aminohydrolase' 316.64 0.00 358.58 0.00 

'Nitrile aminohydrolase' 212.61 -212.61 241.86 -241.86 

'all trans octaprenyl diphosphate 4 

hydroxybenzoate' 
212.61 -212.61 241.86 -241.86 

'all trans octaprenyl diphosphate 4 

hydroxybenzoate' 
433.21 0.00 459.11 0.00 

'chlorophyll chlorophyllidohydrolase' 207.37 0.00 232.89 0.00 

'Phenylphosphate synthase' 296.46 0.00 319.77 0.00 

'CTP 2 C Methyl D erythritol 4 

phosphate cytidylyltransferase' 
314.65 -314.65 334.30 -334.30 

'ATP 4 Cytidine 5 diphospho 2 C 

methyl D erythritol' 
296.36 0.00 318.81 0.00 

'1 Deoxy D xylulose 5 phosphate 

pyruvate lyase carboxylating ' 
264.93 0.00 282.91 0.00 

'2 Phospho 4 cytidine 5 diphospho 2 C 

methyl D erythritol' 
350.59 -350.59 371.17 -371.17 

'4 4 dimethyl 5a cholesta 8 24 dien 3b 

ol NADP D14 oxidoreductase' 
319.10 -319.10 316.44 -316.44 

'4 4 dimethyl 5a cholesta 8 24 dien 3b 

ol NADP D14 oxidoreductase' 
287.49 -287.49 296.05 -296.05 

'4 4 dimethyl 5a cholesta 8 24 dien 3b 

ol NADP D14 oxidoreductase' 
284.00 0.00 364.09 0.00 

'UDP N acetyl D glucosamine N acetyl 

alpha D muramyl oyl L Ala gamma ' 
237.61 -237.61 254.65 -254.65 

'1 Deoxy D xylulose 5 phosphate 

isomeroreductase' 
294.33 0.00 328.35 0.00 

'GDP L fucose NADP 4 oxidoreductase 

3 5 epimerizing ' 
324.60 0.00 331.47 0.00 

'lanosterol D24 reductase' 399.89 -399.89 413.88 -413.88 

'S adenosyl L methionine jasmonate O 

methyltransferase' 
121.88 -121.88 126.83 -126.83 
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'geranyl diphosphate diphosphate lyase 

cyclizing pinene forming ' 
129.81 0.00 131.55 0.00 

'geranyl diphosphate diphosphate lyase 

cyclizing pinene forming ' 
129.81 0.00 131.55 0.00 

'UDP glucose hydroquinone O b D 

glucosyltransferase' 
123.53 -123.53 125.52 -125.52 

'UDP 6 sulfo 6 deoxyglucose 

sulfohydrolase' 
279.74 0.00 325.32 0.00 

'polyneuridine aldehyde hydrolase 

decarboxylating ' 
311.50 0.00 375.53 0.00 

'polyneuridine aldehyde hydrolase 

decarboxylating ' 
203.29 -203.29 206.75 -206.75 

'R05875 p' 296.46 -296.46 319.77 -319.77 

'isopentenyl diphosphate NAD P 

oxidoreductase' 
325.44 0.00 340.69 0.00 

'UDP N acetyl D glucosamine dolichyl 

phosphate N acetyl D glucosamine' 
301.02 0.00 316.40 0.00 

'squalene synthase' 326.54 0.00 344.36 0.00 

'magnesium protoporphyrin IX 13 

monomethyl ester NADPH oxygen' 
337.85 -337.85 380.74 -380.74 

'magnesium protoporphyrin IX 13 

monomethyl ester NADPH oxygen' 
337.85 -337.85 380.74 -380.74 

'magnesium protoporphyrin IX 13 

monomethyl ester NADPH oxygen' 
337.85 -337.85 380.74 -380.74 

'chlorophyllide a phytyl diphosphate 

phytyltransferase' 
348.92 0.00 362.21 0.00 

'chlorophyllide a NADP 7 8 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'ent kaur 16 ene NADPH oxygen 

oxidoreductase hydroxylating ' 
305.49 0.00 348.00 0.00 

'ent Kaur 16 ene NADPH oxygen 

oxidoreductase hydroxylating ' 
305.49 0.00 348.00 0.00 

'ent Kaur 16 ene NADPH oxygen 

oxidoreductase hydroxylating ' 
305.49 0.00 348.00 0.00 

'ent Kaur 16 en 19 oate NADPH 

oxygen oxidoreductase hydroxylating ' 
214.58 0.00 214.19 0.00 

'ent Kaur 16 en 19 oate NADPH 

oxygen oxidoreductase hydroxylating ' 
214.58 0.00 214.19 0.00 

'Aldehyde NAD oxidoreductase' 327.24 0.00 394.12 0.00 

'perillic acid CoA ligase ADP forming ' 288.23 -288.23 334.45 -334.45 

'perillic acid CoA ligase AMP forming ' 288.23 -288.23 334.45 -334.45 



 

115 

'2 hydroxy 4 isopropenylcyclohexane 1 

carboxyl CoA hydro lyase' 
344.53 -344.53 373.94 -373.94 

'alpha Pinene monooxygenase' 350.00 0.00 409.68 0.00 

'Pinocarveol dehydrogenase' 304.86 0.00 337.17 0.00 

'cis 2 Methyl 5 isopropylhexa 2 5 

dienoyl CoA hydro lyase' 
333.08 0.00 382.60 0.00 

'trans 2 Methyl 5 isopropylhexa 2 5 

dienoyl CoA hydro lyase' 
333.08 0.00 382.60 0.00 

'3 Hydroxy 2 6 dimethyl 5 methylene 

heptanoyl CoA dehydrogenase' 
304.86 0.00 337.17 0.00 

'2 6 Dimethyl 5 methylene 3 oxo 

heptanoyl CoA C acetyltransferase' 
203.29 0.00 206.75 0.00 

'3 Isopropylbut 3 enoyl CoA 

thioesterase' 
329.59 0.00 331.84 0.00 

'3 Isopropylbut 3 enoyl CoA 

thioesterase' 
147.86 -147.86 153.26 -153.26 

'3 Isopropylbut 3 enoyl CoA 

thioesterase' 
147.86 -147.86 153.26 -153.26 

'dTDPglucose 4 6 hydro lyase' 350.99 -350.99 364.94 -364.94 

'sphingosine 1 phosphate 

palmitaldehyde lyase' 
290.18 0.00 316.62 0.00 

'N acylsphingosine amidohydrolase' 296.46 0.00 319.77 0.00 

'3 sn phosphatidate phosphohydrolase' 225.52 -225.52 239.50 -239.50 

'3 sn phosphatidate phosphohydrolase' 225.52 -225.52 239.50 -239.50 

'UDP glucose anthocyanidin 3 O D 

glucosyltransferase' 
296.46 0.00 319.77 0.00 

'UDP glucose anthocyanidin 3 O D 

glucosyltransferase' 
296.46 0.00 319.77 0.00 

'UDP glucose anthocyanidin 3 O D 

glucosyltransferase' 
296.46 0.00 319.77 0.00 

'flavonoid NADPH oxygen 

oxidoreductase 3 hydroxylating ' 
193.28 0.00 203.66 0.00 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
131.74 0.00 135.47 0.00 

'flavan 3 ol NADP oxidoreductase' 176.56 0.00 178.39 0.00 

'flavan 3 ol NADP oxidoreductase' 176.56 0.00 178.39 0.00 

'flavan 3 ol NADP oxidoreductase' 176.56 0.00 178.39 0.00 

'flavanone lyase decyclizing ' 164.44 -164.44 227.32 -227.32 

'cinnamaldehyde NADP oxidoreductase 

CoA cinnamoylating ' 
347.62 -347.62 375.12 -375.12 

'5 Hydroxyisourate amidohydrolase' 296.46 0.00 319.77 0.00 

'5 Hydroxyisourate amidohydrolase' 296.46 0.00 319.77 0.00 
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'UDPglucose flavonol 3 O D 

glucosyltransferase' 
289.10 0.00 342.84 0.00 

'acetyl CoA tropine O acetyltransferase' 203.29 0.00 206.75 0.00 

'acetyl CoA pseudotropine O 

acetyltransferase' 
203.29 0.00 206.75 0.00 

'primary amine oxidase' 216.36 0.00 251.41 0.00 

'4 carboxymethylenebut 2 en 4 olide 

lactonohydrolase' 
395.18 -395.18 434.35 -434.35 

'shikimate NAD 3 oxidoreductase' 296.46 -296.46 319.77 -319.77 

'shikimate NAD 3 oxidoreductase' 159.01 -159.01 166.10 -166.10 

'shikimate NAD 3 oxidoreductase' 304.86 0.00 337.17 0.00 

'shikimate NAD 3 oxidoreductase' 304.86 0.00 337.17 0.00 

'shikimate NAD 3 oxidoreductase' 433.21 0.00 459.11 0.00 

'shikimate NAD 3 oxidoreductase' 401.42 0.00 421.63 0.00 

'UDP sulfoquinovose diacylglycerol 

alpha D sulfoquinovosyltransferase' 
403.55 0.00 400.32 0.00 

'S Adenosyl L methionine 

methylethanolamine phosphate' 
296.46 0.00 319.77 0.00 

'S Adenosyl L methionine 

phosphodimethylethanolamine' 
296.46 0.00 319.77 0.00 

'coproporphyrinogen III S adenosyl L 

methionine' 
230.49 0.00 243.27 0.00 

'coproporphyrinogen III S adenosyl L 

methionine' 
263.32 0.00 293.14 0.00 

'coproporphyrinogen III S adenosyl L 

methionine' 
344.53 -344.53 373.94 -373.94 

'coproporphyrinogen III S adenosyl L 

methionine' 
304.86 0.00 329.19 0.00 

'coproporphyrinogen III S adenosyl L 

methionine' 
203.29 0.00 206.75 0.00 

'coproporphyrinogen III S adenosyl L 

methionine' 
344.53 -344.53 373.94 -373.94 

'coproporphyrinogen III S adenosyl L 

methionine' 
159.01 -159.01 166.10 -166.10 

'alcohol NAD oxidoreductase' 411.22 0.00 451.70 0.00 

'alcohol NAD oxidoreductase' 307.15 0.00 337.17 0.00 

'alcohol NAD oxidoreductase' 344.53 -344.53 373.94 -373.94 

'alcohol NAD oxidoreductase' 297.37 0.00 320.00 0.00 

'alcohol NAD oxidoreductase' 159.01 -159.01 166.10 -166.10 

'alcohol NAD oxidoreductase' 411.22 0.00 451.70 0.00 

'alcohol NAD oxidoreductase' 341.95 0.00 362.77 0.00 
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' S 3 hydroxyacyl CoA NAD 

oxidoreductase' 
333.08 -333.08 382.60 -382.60 

' 3S 3 hydroxyacyl CoA hydro lyase' 314.59 0.00 334.96 0.00 

' 3S 3 hydroxyacyl CoA hydro lyase' 263.32 -263.32 293.14 -293.14 

' 3S 3 hydroxyacyl CoA hydro lyase' 288.23 -288.23 334.45 -334.45 

'zeaxanthin NADH oxygen 

oxidoreductase' 
267.95 -267.95 304.37 -304.37 

'9 cis Neoxanthin 9 cis epoxycarotenoid 

dioxygenase' 
128.74 -128.74 128.75 -128.75 

'9 cis Violaxanthin 9 cis 

epoxycarotenoid dioxygenase' 
128.74 -128.74 128.75 -128.75 

'abscisic aldehyde oxygen 

oxidoreductase' 
250.31 -250.31 287.97 -287.97 

'abscisic aldehyde oxygen 

oxidoreductase' 
297.37 -297.37 320.00 -320.00 

' 1R hydroxy 2R glutathionyl 1 2 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

' 1R glutathionyl 2R hydroxy 1 2 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

' 1S hydroxy 2S glutathionyl 1 2 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

'1 nitro 7 hydroxy 8 glutathionyl 7 8 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

'1 nitro 7 glutathionyl 8 hydroxy 7 8 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

'1 nitro 5 hydroxy 6 glutathionyl 5 6 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

'1 nitro 5 glutathionyl 6 hydroxy 5 6 

dihydronaphthalene' 
413.70 0.00 488.11 0.00 

'Glutathione 5 HPETE oxidoreductase' 359.14 0.00 417.21 0.00 

'Glutathione 15 HPETE oxidoreductase' 359.14 0.00 417.21 0.00 

'3 4 dihydro 3 hydroxy 4 S glutathionyl 

bromobenzene' 
413.70 0.00 488.11 0.00 

'2 3 dihydro 2 S glutathionyl 3 hydroxy 

bromobenzene' 
413.70 0.00 488.11 0.00 

'4 5 dihydro 4 hydroxy 5 S glutathionyl 

benzo[a]pyrene' 
413.70 0.00 488.11 0.00 

'7 8 dihydro 7 hydroxy 8 S glutathionyl 

benzo[a]pyrene hydrolase' 
413.70 0.00 488.11 0.00 

'S 2 2 dichloro 1 hydroxy ethyl 

glutathione' 
413.70 0.00 488.11 0.00 
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'1 1 dichloroethylene epoxide 

glutathione' 
413.70 0.00 488.11 0.00 

'chloroacetyl chloride glutathione S 

chloroacetyltransferase' 
413.70 0.00 488.11 0.00 

'2 S glutathionyl acetyl chloride 

glutathione' 
413.70 0.00 488.11 0.00 

'trichloroethene glutathione S 1 2 

dichlorovinyl transferase' 
413.70 0.00 488.11 0.00 

'Trichloroethanol NAD oxidoreductase' 411.22 0.00 451.70 0.00 

'1 2 dibromoethane glutathione 

ethylenetransferase' 
413.70 0.00 488.11 0.00 

'2 bromoacetaldehyde glutathione S 

formylmethyl transferase' 
413.70 0.00 488.11 0.00 

'antheraxanthin ascorbate 

oxidoreductase' 
221.49 -221.49 203.77 -203.77 

'zeaxanthin NAD P H oxygen 

oxidoreductase' 
286.44 -286.44 313.79 -313.79 

'di trans poly cis decaprenyl 

diphosphate isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'prephytoene diphosphate 

geranylgeranyl diphosphate' 
322.23 -322.23 354.31 -354.31 

'D ribulose 5 phosphate formate lyase L 

3 4 dihydroxybutan 2 one' 
335.30 0.00 319.75 0.00 

'flavan 3 ol NADP oxidoreductase' 176.56 -176.56 178.39 -178.39 

'S prenyl L cysteine oxygen 

oxidoreductase' 
266.77 -266.77 280.13 -280.13 

'S prenyl L cysteine oxygen 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'S prenyl L cysteine oxygen 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'S prenyl L cysteine oxygen 

oxidoreductase' 
171.03 -171.03 180.58 -180.58 

'S prenyl L cysteine oxygen 

oxidoreductase' 
380.78 -380.78 378.29 -378.29 

'S prenyl L cysteine oxygen 

oxidoreductase' 
147.08 0.00 159.09 0.00 

'S prenyl L cysteine oxygen 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'choline reduced ferredoxin oxygen 

oxidoreductase' 
225.35 0.00 241.68 0.00 

'choline reduced ferredoxin oxygen 

oxidoreductase' 
324.91 0.00 344.67 0.00 
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'choline reduced ferredoxin oxygen 

oxidoreductase' 
306.61 0.00 328.04 0.00 

'choline reduced ferredoxin oxygen 

oxidoreductase' 
160.60 0.00 170.10 0.00 

'Campest 4 en 3 one NADPH steroid 

5alpha reductase' 
263.32 0.00 293.14 0.00 

'6 Oxocampestanol NADPH 

brassinosteroid C22alpha hydroxylase' 
260.76 0.00 168.01 0.00 

'p coumaroyl CoA caffeoyl CoA 3 

hydroxylase' 
329.71 0.00 458.33 0.00 

'4 coumaryl alcohol NADP 

oxidoreductase' 
394.71 0.00 442.98 0.00 

'4 coumaryl alcohol NADP 

oxidoreductase' 
329.71 0.00 458.33 0.00 

'sinapoyl aldehyde NAD 

oxidoreductase' 
183.99 0.00 216.71 0.00 

'sinapoyl aldehyde NADP 

oxidoreductase' 
183.99 0.00 216.71 0.00 

'Campesterol NADPH brassinosteroid 

C22alpha hydroxylase' 
260.76 0.00 168.01 0.00 

'22alpha Hydroxy campest 4 en 3 one 

NADPH steroid 5alpha reductase' 
263.32 0.00 293.14 0.00 

'6 Deoxocathasterone brassinosteroid 

C23alpha hydroxylase' 
319.10 0.00 215.05 0.00 

'6 Deoxoteasterone brassinosteroid C3 

oxidoreductase' 
171.99 -171.99 196.06 -196.06 

'6 Deoxocastasterone brassinosteroid 

C6 oxidase' 
136.32 0.00 140.66 0.00 

'6 Deoxocastasterone brassinosteroid 

C6 oxidase' 
136.32 0.00 140.66 0.00 

'Campest 4 en 3 one NADPH 

brassinosteroid C22alpha hydroxylase' 
260.76 0.00 168.01 0.00 

'5alpha Campestan 3 one NADPH 

brassinosteroid C22alpha hydroxylase' 
260.76 0.00 168.01 0.00 

'Campesterol NADPH brassinosteroid 

C22alpha hydroxylase' 
260.76 0.00 168.01 0.00 

'6 Deoxotyphasterol brassinosteroid C6 

oxidase' 
136.32 0.00 140.66 0.00 

'L cysteine [ThiI] sulfurtransferase' 367.19 0.00 381.87 0.00 

'L cysteine [ThiI] sulfurtransferase' 182.60 -182.60 191.12 -191.12 

'L cysteine [ThiI] sulfurtransferase' 212.61 -212.61 241.86 -241.86 

'L cysteine [ThiI] sulfurtransferase' 400.21 0.00 408.42 0.00 
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'L cysteine [ThiI] sulfurtransferase' 319.10 0.00 316.44 0.00 

'L cysteine [ThiI] sulfurtransferase' 392.64 0.00 409.62 0.00 

'L cysteine [ThiI] sulfurtransferase' 325.88 0.00 347.60 0.00 

'L cysteine [ThiI] sulfurtransferase' 401.36 0.00 413.04 0.00 

'L cysteine [ThiI] sulfurtransferase' 399.89 0.00 413.88 0.00 

'L cysteine [ThiI] sulfurtransferase' 364.42 0.00 412.21 0.00 

'L cysteine [ThiI] sulfurtransferase' 325.88 0.00 347.60 0.00 

'L cysteine [ThiI] sulfurtransferase' 401.36 0.00 413.04 0.00 

'L cysteine [ThiI] sulfurtransferase' 399.89 0.00 413.88 0.00 

'L cysteine [ThiI] sulfurtransferase' 399.89 0.00 413.88 0.00 

'L cysteine [ThiI] sulfurtransferase' 399.89 0.00 413.88 0.00 

'phytyl diphosphate homogentisate 

phytyltransferase decarboxylating ' 
259.59 0.00 298.46 0.00 

'phytyl diphosphate homogentisate 

phytyltransferase decarboxylating ' 
265.28 -265.28 272.52 -272.52 

'phytyl diphosphate homogentisate 

phytyltransferase decarboxylating ' 
254.69 0.00 270.54 0.00 

'phytyl diphosphate homogentisate 

phytyltransferase decarboxylating ' 
254.69 0.00 270.54 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
264.51 0.00 302.23 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
399.89 0.00 413.88 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
296.71 0.00 303.46 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 
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'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
286.22 0.00 302.63 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
118.60 0.00 127.76 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
118.60 0.00 127.76 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
118.60 0.00 127.76 0.00 

'S adenosyl L methionine delta 

tocopherol 5 O methyltransferase' 
118.60 0.00 127.76 0.00 

'LL 2 6 diaminoheptanedioate 2 

oxoglutarate aminotransferase' 
371.25 -371.25 392.59 -392.59 

'R07618 m' 418.28 -418.28 449.62 -449.62 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
370.48 -370.48 390.43 -390.43 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
340.07 -340.07 354.56 -354.56 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
340.07 -340.07 354.56 -354.56 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
364.07 0.00 394.85 0.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
294.91 0.00 326.81 0.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
162.78 -162.78 160.00 -160.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
321.55 0.00 380.12 0.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
350.00 0.00 409.68 0.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
307.15 0.00 329.19 0.00 

'enzyme N6 dihydrolipoyl lysine NAD 

oxidoreductase' 
350.00 0.00 409.68 0.00 

'aniline dioxygenase' 350.00 0.00 409.68 0.00 

'nitrobenzene 1 2 dioxygenase' 350.00 0.00 409.68 0.00 

'nitrobenzene 1 2 dioxygenase' 479.92 -479.92 496.17 -496.17 

'nitrobenzene 1 2 dioxygenase' 224.41 0.00 227.29 0.00 

'nitrobenzene 1 2 dioxygenase' 338.22 0.00 353.13 0.00 

'nitrobenzene 1 2 dioxygenase' 328.93 0.00 346.60 0.00 

'nitrobenzene 1 2 dioxygenase' 321.01 0.00 331.51 0.00 

'nitrobenzene 1 2 dioxygenase' 224.41 0.00 227.29 0.00 

'nitrobenzene 1 2 dioxygenase' 349.98 0.00 383.24 0.00 
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'nitrobenzene 1 2 dioxygenase' 328.93 -328.93 346.60 -346.60 

'octanoyl [acp] protein N6 

octanoyltransferase' 
255.74 0.00 270.57 0.00 

'protein N6 octanoyl lysine sulfur 

sulfurtransferase' 
354.45 0.00 384.50 0.00 

'octanoyl [acp] sulfur sulfurtransferase' 354.45 0.00 384.50 0.00 

'lipoyl [acp] protein N6 

lipoyltransferase' 
255.74 0.00 270.57 0.00 

'bromoxynil NADPH oxygen 

oxidoreductase' 
124.30 0.00 135.13 0.00 

'bromoxynil NADPH oxygen 

oxidoreductase' 
182.60 -182.60 191.12 -191.12 

'bromoxynil NADPH oxygen 

oxidoreductase' 
296.45 0.00 357.58 0.00 

'p coumarate 3 hydroxylase' 329.71 0.00 458.33 0.00 

'p coumarate 3 hydroxylase' 275.49 0.00 291.86 0.00 

'p coumarate 3 hydroxylase' 296.71 0.00 303.46 0.00 

'p coumarate 3 hydroxylase' 286.22 0.00 302.63 0.00 

'phenylacetonitrile aminohydrolase' 382.20 0.00 480.64 0.00 

'phenylacetonitrile aminohydrolase' 280.72 0.00 291.78 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
189.22 0.00 304.36 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
283.18 0.00 314.64 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
189.22 0.00 304.36 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
129.83 0.00 143.93 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
283.18 0.00 314.64 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
129.83 0.00 143.93 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
154.16 0.00 157.85 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
288.23 0.00 334.45 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
385.54 0.00 410.28 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
316.64 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
316.64 0.00 358.58 0.00 
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' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
318.77 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
385.54 0.00 410.28 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
316.64 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
316.64 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
318.77 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
381.64 0.00 394.28 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
333.08 0.00 382.60 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
333.08 0.00 382.60 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
318.77 0.00 358.58 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
154.16 0.00 157.85 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
322.23 0.00 354.31 0.00 

' 9Z 11E 14Z 13S hydroperoxyoctadeca 

9 11 14 trienoate' 
381.64 0.00 394.28 0.00 

'1 methylxanthine oxygen 

oxidoreductase' 
252.46 0.00 289.68 0.00 

'1 methylxanthine oxygen 

oxidoreductase' 
385.54 0.00 410.28 0.00 

'1 7 dimethylxanthine oxygen 

oxidoreductase' 
252.46 0.00 289.68 0.00 

'3 7 dimethylxanthine oxygen 

oxidoreductase' 
252.46 0.00 289.68 0.00 

'7 methylxanthine oxygen 

oxidoreductase' 
252.46 0.00 289.68 0.00 

'flavanone lyase decyclizing ' 164.44 0.00 227.32 0.00 

'flavanone lyase decyclizing ' 164.44 0.00 227.32 0.00 

'5 deoxyleucopelargonidin NADP 4 

oxidoreductase' 
162.24 0.00 170.38 0.00 

'5 deoxyleucocyanidin NADP 4 

oxidoreductase' 
162.24 0.00 170.38 0.00 

'flavonoid NADPH oxygen 

oxidoreductase 3 hydroxylating ' 
193.28 0.00 203.66 0.00 
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'flavonoid NADPH oxygen 

oxidoreductase 3 hydroxylating ' 
193.28 0.00 203.66 0.00 

'2 Isopentenyl diphosphate ATP delta2 

isopentenyltransferase' 
209.20 0.00 245.39 0.00 

'2 Isopentenyl diphosphate ADP delta2 

isopentenyltransferase' 
209.20 0.00 245.39 0.00 

'2 Isopentenyl diphosphate ADP delta2 

isopentenyltransferase' 
326.54 0.00 338.28 0.00 

'2 Isopentenyl diphosphate ADP delta2 

isopentenyltransferase' 
186.33 0.00 269.47 0.00 

'7 methyl 3 oxo 6 octenoyl CoA acetyl 

CoA C acyltransferase' 
318.77 0.00 358.58 0.00 

'7 methyl 3 oxo 6 octenoyl CoA acetyl 

CoA C acyltransferase' 
263.32 -263.32 293.14 -293.14 

'3 hydroxy 5 methylhex 4 enoyl CoA 

hydro lyase' 
314.59 0.00 334.96 0.00 

'3 methylcrotonyl CoA acetyl CoA C 

acyltransferase' 
318.77 0.00 358.58 0.00 

'3 methylcrotonyl CoA acetyl CoA C 

acyltransferase' 
296.45 0.00 357.58 0.00 

'5 fluoromuconolactone 

lactonohydrolase' 
395.18 0.00 434.35 0.00 

'4 fluoromuconolactone 

lactonohydrolase' 
395.18 0.00 434.35 0.00 

'4 fluoromuconolactone 

lactonohydrolase' 
280.08 -280.08 357.58 -357.58 

'4 fluoromuconolactone 

lactonohydrolase' 
280.80 -280.80 278.83 -278.83 

'4 fluoromuconolactone 

lactonohydrolase' 
329.59 0.00 331.84 0.00 

'4 fluoromuconolactone 

lactonohydrolase' 
329.59 0.00 331.84 0.00 

'4 fluoromuconolactone 

lactonohydrolase' 
329.59 0.00 331.84 0.00 

'L tryptophan NADPH oxygen 

oxidoreductase N hydroxylating ' 
159.01 -159.01 166.10 -166.10 

'L tryptophan NADPH oxygen 

oxidoreductase N hydroxylating ' 
329.59 0.00 331.84 0.00 

'L tryptophan NADPH oxygen 

oxidoreductase N hydroxylating ' 
329.59 0.00 331.84 0.00 

'UDP glucose N hydroxy 2 

phenylethanethioamide' 
236.52 -236.52 266.46 -266.46 
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'Stearoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Icosanoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Oleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 247.68 0.00 290.27 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'Linoleoyl CoA hydrolase' 160.79 0.00 170.58 0.00 

'N Acetyl D glucosamine 1 phosphate 1 

6 phosphomutase' 
266.03 -266.03 279.18 -279.18 

'N Acetyl D glucosamine 1 phosphate 1 

6 phosphomutase' 
265.79 -265.79 301.08 -301.08 

'N Acetyl D glucosamine 1 phosphate 1 

6 phosphomutase' 
265.79 -265.79 301.08 -301.08 

'L serine tRNASec ligase AMP forming 

' 
440.92 -440.92 454.59 -454.59 

'5 deoxy 5 fluorocytidine 

aminohydrolase' 
295.39 0.00 305.15 0.00 

'5 fluorouridine monophosphate 

diphosphate' 
234.97 0.00 245.46 0.00 

'ATP 5 fluorodeoxyuridine 5 

phosphotransferase' 
319.22 0.00 344.84 0.00 

'6 thioinosine 5 monophosphate 

diphosphate' 
281.39 0.00 282.31 0.00 

'6 methylthiopurine 5 monophosphate 

ribonucleotide diphosphate' 
281.39 0.00 282.31 0.00 

'6 thioinosine 5 monophosphate NAD 

oxidoreductase' 
363.34 0.00 388.56 0.00 

'inosine triphosphate pyrophosphatase' 339.82 0.00 367.37 0.00 

'6 thioguanosine monophosphate 

diphosphate' 
281.39 0.00 282.31 0.00 
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'tamoxifen NADPH oxygen 

oxidoreductase N oxide forming ' 
355.56 0.00 403.46 0.00 

'tamoxifen NADPH oxygen 

oxidoreductase N oxide forming ' 
160.79 0.00 170.58 0.00 

'4 glutathionyl cyclophosphamide 

hydrolase' 
413.70 0.00 488.11 0.00 

'alcophosphamide NAD 

oxidoreductase' 
411.22 0.00 451.70 0.00 

'2 phenyl 1 3 propanediol 

monocarbamate NAD oxidoreductase' 
411.22 0.00 451.70 0.00 

'4 hydroxy 5 phenyltetrahydro 1 3 

oxazin 2 one NAD oxidoreductase' 
411.22 0.00 451.70 0.00 

'S adenosylmethioninamine cadaverine 

3 aminopropyltransferase' 
363.76 0.00 416.73 0.00 

'2 deoxyribonucleoside diphosphate 

trypanothione disulfide' 
404.18 0.00 414.53 0.00 

'retinol NADP oxidoreductase' 304.86 -304.86 337.17 -337.17 

'retinol NADP oxidoreductase' 304.86 -304.86 337.17 -337.17 

'S Adenosyl L methionine 2 3 carboxy 

3 aminopropyl L histidine' 
346.94 -346.94 359.04 -359.04 

'2 Oxoglutarate dehydrogenase 

complex' 
305.36 -305.36 330.24 -330.24 

'2 Oxoglutarate dehydrogenase 

complex' 
135.66 -135.66 139.83 -139.83 

'parathion oxidoreductase' 182.60 -182.60 191.12 -191.12 

'tryptamine NADPH oxygen 

oxidoreductase N hydroxylating ' 
159.01 -159.01 166.10 -166.10 

'N hydroxyl tryptamine oxidoreductase' 212.61 -212.61 241.86 -241.86 

'N hydroxyl tryptamine oxidoreductase' 212.61 -212.61 241.86 -241.86 

'UDP glucose p 

hydroxyphenylacetothiohydroximate' 
236.52 -236.52 266.46 -266.46 

'UDP glucose 4 

methylthiobutylthiohydroximate' 
236.52 -236.52 266.46 -266.46 

'UDP glucose thiohydroximate S beta 

D glucosyltransferase' 
236.52 -236.52 266.46 -266.46 

'N linked glycopeptide N acetyl beta D 

glucosaminyl L asparagine' 
273.72 -273.72 273.47 -273.47 

'putrescine pyruvate aminotransferase' 355.71 -355.71 365.11 -365.11 

'ditrans dicis pentaprenyl diphosphate 

isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'ditrans tricis hexaprenyl diphosphate 

isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 
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'ditrans tetracis heptaprenyl 

diphosphate isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'ditrans pentacis octaprenyl diphosphate 

isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'ditrans hexacis nonaprenyl diphosphate 

isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'3 4 hydroxyphenyl lactate hydro lyase 

4 coumarate forming ' 
344.53 -344.53 373.94 -373.94 

'all trans nonaprenyl diphosphate 

homogentisate nonaprenyltransferase' 
136.40 -136.40 143.12 -143.12 

'trans cinnamate NADPH oxygen 

oxidoreductase 4 hydroxylating ' 
325.23 -325.23 431.67 -431.67 

'UDP glucose ferulate D 

glucosyltransferase' 
159.06 -159.06 158.70 -158.70 

'ATP 1D 1 guanidino 3 amino 1 3 

dideoxy scyllo inositol' 
117.65 -117.65 123.20 -123.20 

'UDP N acetyl D glucosamine 

ribostamycin' 
234.97 -234.97 245.46 -245.46 

'7 hydroxychlorophyllide a NAD 

oxidoreductase' 
335.78 -335.78 333.61 -333.61 

'pheophorbide a NADPH oxygen 

oxidoreductase biladiene forming ' 
278.05 -278.05 308.75 -308.75 

'pheophorbide a hydrolase' 265.28 -265.28 272.52 -272.52 

'pheophorbide a hydrolase' 155.84 -155.84 154.62 -154.62 

'carbonate hydro lyase carbon dioxide 

forming ;' 
351.65 0.00 284.21 0.00 

'R00132 m' 351.65 0.00 284.21 0.00 

'R00132 p' 351.65 0.00 284.21 0.00 

'carbonate hydro lyase carbon dioxide 

forming ;' 
403.55 0.00 400.32 0.00 

'R01068 p' 438.80 0.00 477.26 0.00 

'beta D fructose 1 6 bisphosphate D 

glyceraldehyde 3 phosphate lyase' 
156.00 -156.00 161.16 -161.16 

'R01070 p' 438.80 -438.80 477.26 -477.26 

'R01175 x' 385.54 0.00 410.28 0.00 

'R02112 p' 219.74 0.00 215.36 0.00 

'R02570 m' 367.91 -367.91 392.87 -392.87 

'R03316 m' 305.36 0.00 330.24 0.00 

'R03651 m' 296.46 0.00 319.77 0.00 

'L Glutamine tRNA Gln ligase AMP 

forming ' 
359.32 0.00 369.15 0.00 
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'L Lysine tRNALys ligase AMP 

forming ' 
452.99 0.00 474.81 0.00 

'L Methionine tRNAMet ligase AMP 

forming ' 
354.78 0.00 372.44 0.00 

'R03777 x' 385.54 0.00 410.28 0.00 

'R03857 x' 385.54 0.00 410.28 0.00 

'R03990 x' 385.54 0.00 410.28 0.00 

'2 Amino 4 hydroxy 6 erythro 1 2 3 

trihydroxypropyl ' 
302.30 0.00 313.95 0.00 

'R04751 x' 385.54 0.00 410.28 0.00 

'R04754 x' 385.54 0.00 410.28 0.00 

'1 4 alpha D Glucan 1 4 alpha D glucan 

4 alpha D glycosyltransferase' 
249.56 0.00 280.94 0.00 

'R05196 p' 249.56 0.00 280.94 0.00 

'1 4 alpha D Glucan 1 4 alpha D glucan 

4 alpha D glycosyltransferase' 
293.23 0.00 303.25 0.00 

'1 4 alpha D Glucan 1 4 alpha D glucan 

4 alpha D glycosyltransferase' 
289.33 0.00 304.58 0.00 

'1 4 alpha D Glucan 1 4 alpha D glucan 

4 alpha D glycosyltransferase' 
304.32 -304.32 319.07 -319.07 

'diphosphate phosphohydrolase;' 389.05 0.00 401.39 0.00 

'pyruvate pyruvate 

acetaldehydetransferase 

decarboxylating ;' 

408.93 0.00 435.73 0.00 

'R00024 p' 234.97 0.00 245.46 0.00 

'5 aminolevulinate hydro lyase adding 5 

aminolevulinate and' 
382.66 0.00 395.68 0.00 

'6 hydroxynicotinate hydrogen donor 

oxygen oxidoreductase' 
292.41 0.00 307.67 0.00 

'porphobilinogen 4 [2 carboxyethyl] 3 

[carboxymethyl]pyrrol 2 ' 
350.96 0.00 348.64 0.00 

'ATP diphosphate lyase cyclizing; 3 5 

cyclic AMP forming ' 
319.92 0.00 336.11 0.00 

'NADH ferricytochrome b5 

oxidoreductase' 
376.15 0.00 414.44 0.00 

'Uridine triphosphate AMP 

phosphotransferase;' 
296.46 0.00 319.77 0.00 

'R00209 m' 418.28 0.00 449.62 0.00 

'R00209 p' 390.47 0.00 415.66 0.00 

'L Glutamate 5 semialdehyde NAD 

oxidoreductase' 
306.80 -306.80 344.73 -344.73 
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'L Glutamate ammonia ligase ADP 

forming ' 
422.74 -422.74 495.17 -495.17 

'R00253 m' 350.47 -350.47 375.13 -375.13 

'phosphate oxaloacetate carboxy lyase 

adding' 
368.24 -368.24 392.81 -392.81 

'Acyl CoA acceptor 2 3 oxidoreductase' 301.98 -301.98 327.74 -327.74 

'R00415 c' 289.84 -289.84 302.84 -302.84 

'GTP diphosphohydrolase diphosphate 

forming ;' 
339.82 0.00 367.37 0.00 

'GTP diphosphate lyase cyclizing; 3 5 

cyclic GMP forming ' 
319.92 0.00 336.11 0.00 

'R00472 x' 143.73 -143.73 152.86 -152.86 

'3 phosphoadenylyl sulfate 

sulfohydrolase;' 
296.46 0.00 319.77 0.00 

'serine racemase;' 157.61 -157.61 171.57 -171.57 

'ascorbate acceptor oxidoreductase' 350.00 -350.00 409.68 -409.68 

'L arogenate hydro lyase 

decarboxylating; L phenylalanine 

forming ' 

296.46 0.00 319.77 0.00 

'L glutamine D fructose 6 phosphate 

isomerase deaminating ;' 
240.00 -240.00 283.10 -283.10 

'L Cysteine hydrogen sulfide lyase 

deaminating; pyruvate forming ' 
296.46 0.00 319.77 0.00 

'nitrite NAD oxidoreductase;' 296.46 0.00 319.77 0.00 

'Succinyl CoA acetyl CoA C 

acyltransferase;' 
296.46 0.00 319.77 0.00 

'R00840 c' 277.35 -277.35 320.14 -320.14 

'sn Glycerol 3 phosphate NAD 2 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'acyl CoA sn glycerol 3 phosphate 1 O 

acyltransferase' 
296.46 0.00 319.77 0.00 

'L Cysteine 2 oxoglutarate 

aminotransferase' 
429.31 0.00 471.90 0.00 

'propanoyl CoA NADP 2 

oxidoreductase;' 
407.74 -407.74 440.07 -440.07 

'acetyl CoA propanoyl CoA 2 C 

acetyltransferase;' 
318.77 0.00 358.58 0.00 

'chorismate pyruvate lyase amino 

accepting; anthranilate forming ' 
300.19 0.00 308.44 0.00 

'O Succinyl L homoserine succinate 

lyase deaminating;' 
386.63 -386.63 400.98 -400.98 
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'L cystathionine cysteine lyase 

deaminating; 2 oxobutanoate forming ' 
296.46 0.00 319.77 0.00 

'Glycerone phosphate 

phosphohydrolase' 
183.40 -183.40 157.26 -157.26 

'uracil hydro lyase adding D ribose' 296.46 -296.46 319.77 -319.77 

'ATP R 5 diphosphomevalonate 

carboxy lyase adding ATP;' 
344.84 0.00 361.41 0.00 

'acetyl CoA 3 methyl 2 oxobutanoate C 

acetyltransferase' 
321.22 0.00 369.68 0.00 

'glycine synthase;' 360.74 -360.74 401.68 -401.68 

'R01221 m' 360.74 -360.74 401.68 -401.68 

'R01222 c' 364.42 -364.42 410.28 -410.28 

'Xanthosine 5 phosphate L glutamine 

amido ligase AMP forming ' 
409.42 0.00 420.52 0.00 

'L cystathionine L homocysteine lyase 

deaminating; pyruvate forming ' 
334.35 0.00 357.69 0.00 

'O acetyl L homoserine hydrogen 

sulfide' 
296.46 0.00 319.77 0.00 

'O4 succinyl L homoserine hydrogen 

sulfide' 
433.21 -433.21 459.11 -459.11 

'L serine hydro lyase adding 

homocysteine; L cystathionine forming 

' 

296.46 0.00 319.77 0.00 

'L serine hydro lyase adding 

homocysteine; L cystathionine forming 

' 

292.41 0.00 307.67 0.00 

'prephenate hydro lyase 

decarboxylating; phenylpyruvate 

forming ' 

296.46 -296.46 319.77 -319.77 

'O phospho L homoserine phosphate 

lyase adding' 
370.92 0.00 395.00 0.00 

'R01679 c' 234.97 0.00 245.46 0.00 

'CDP diacylglycerol sn glycerol 3 

phosphate 3 phosphatidyltransferase' 
359.18 0.00 369.95 0.00 

'gamma Amino gamma cyanobutanoate 

aminohydrolase' 
382.20 0.00 480.64 0.00 

'Caffeate CoA ligase AMP forming ;' 312.54 0.00 480.17 0.00 

'Phosphatidylglycerol 

cholinephosphohydrolase' 
291.25 -291.25 296.99 -296.99 

'R02086 c' 266.03 -266.03 279.18 -279.18 

'R02110 p' 260.63 0.00 313.14 0.00 

'NADH ubiquinone oxidoreductase' 314.40 -314.40 332.90 -332.90 

'R02198 c' 296.46 0.00 319.77 0.00 
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'N6 L 1 3 Dicarboxypropyl L lysine 

NAD oxidoreductase;' 
167.04 -167.04 186.28 -186.28 

'NTP pyruvate O2 phosphotransferase' 238.16 0.00 189.76 0.00 

'Aromatase' 296.46 0.00 319.77 0.00 

'Pectin pectylhydrolase' 174.07 0.00 134.70 0.00 

'Ubiquitin C terminal thiolester 

hydrolase' 
208.06 -208.06 222.16 -222.16 

'R02435 c' 270.09 0.00 289.37 0.00 

'flavonoid NADPH oxygen 

oxidoreductase 3 hydroxylating ;' 
296.46 0.00 319.77 0.00 

'deoxyuridine orthophosphate 2 deoxy 

D ribosyltransferase;' 
296.46 -296.46 319.77 -319.77 

'Glutaryl CoA acceptor 2 3 

oxidoreductase decarboxylating ' 
296.46 0.00 319.77 0.00 

'Glutaryl CoA acceptor 2 3 

oxidoreductase decarboxylating ' 
297.37 0.00 320.00 0.00 

'4 aminobutanal NAD 1 

oxidoreductase;' 
322.07 -322.07 348.88 -348.88 

' 5Z 13E 15S 9alpha 11alpha 15 

trihydroxyprosta 5 13 ' 
296.46 0.00 319.77 0.00 

'Donor hydrogen peroxide 

oxidoreductase' 
407.10 0.00 436.83 0.00 

'2 methylpropanoyl CoA acceptor 2 3 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'2 methylpropanoyl CoA acceptor 2 3 

oxidoreductase' 
357.54 0.00 387.22 0.00 

'3 Hydroxyanthranilate O 

methyltransferase' 
401.42 0.00 421.63 0.00 

'L serine hydro lyase [adding 1 C indol 

3 yl glycerol 3 phosphate;' 
334.48 -334.48 398.74 -398.74 

'R02771 c' 350.99 0.00 364.94 0.00 

'1 4 1 3;1 4 beta D Glucan 4 

glucanohydrolase' 
296.46 0.00 319.77 0.00 

' Gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
149.30 0.00 154.46 0.00 

'Aromatase' 296.46 0.00 319.77 0.00 

' S 2 methylbutanoyl CoA acceptor 2 3 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'11beta Hydroxysteroid NADP 11 

oxidoreductase' 
234.97 -234.97 245.46 -245.46 

'L ribulose 5 phosphate 3 epimerase;' 298.59 -298.59 324.04 -324.04 



 

132 

'4 Trimethylammoniobutanal NAD 1 

oxidoreductase;' 
296.46 0.00 319.77 0.00 

'L Glutamate 5 semialdehyde NADP 5 

oxidoreductase phosphorylationg ' 
347.81 -347.81 352.74 -352.74 

'L Glutamate 5 semialdehyde NADP 5 

oxidoreductase phosphorylationg ' 
307.77 0.00 321.40 0.00 

'ATP protamine O phosphotransferase' 143.16 -143.16 162.99 -162.99 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 0.00 164.55 0.00 

'3alpha 7alpha 12alpha trihydroxy 

5beta cholanoyl CoA propanoyl CoA' 
318.77 0.00 358.58 0.00 

' Gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 

'R03847 c' 234.97 0.00 245.46 0.00 

'Ubiquitin protein lysine N ligase AMP 

forming ' 
234.97 -234.97 245.46 -245.46 

' 5 Glutamyl peptide amino acid 5 

glutamyltransferase' 
226.63 0.00 184.05 0.00 

'Donor hydrogen peroxide 

oxidoreductase' 
407.10 0.00 436.83 0.00 

'gamma Glutamyl beta 

aminopropiononitrile amidohydrolase' 
226.63 0.00 184.05 0.00 

'Donor hydrogen peroxide 

oxidoreductase' 
407.10 0.00 436.83 0.00 

'R04008 c' 297.37 -297.37 320.00 -320.00 

'1 Alkyl 2 acyl sn glycero 3 phosphate 

phosphohydrolase' 
296.46 0.00 319.77 0.00 

'1 Alkyl 2 acyl sn glycero 3 phosphate 

phosphohydrolase' 
203.29 0.00 206.75 0.00 

'R04254 m' 203.29 0.00 206.75 0.00 

'R04254 p' 203.29 0.00 206.75 0.00 

'R04254 x' 203.29 0.00 206.75 0.00 

'glycerone phosphate iminosuccinate 

alkyltransferase cyclizing ' 
276.70 0.00 309.05 0.00 

'Propanoyl CoA acceptor 2 3 

oxidoreductase' 
301.98 -301.98 327.74 -327.74 

'5 Phosphoribosylformylglycinamide L 

glutamine amido ligase' 
370.95 0.00 392.19 0.00 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase;' 
296.46 -296.46 319.77 -319.77 
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'R04537 p' 296.46 -296.46 319.77 -319.77 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase;' 
296.46 0.00 319.77 0.00 

'R04757 c' 234.97 0.00 245.46 0.00 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase;' 
292.41 0.00 307.67 0.00 

' 3R 3 Hydroxybutanoyl [acyl carrier 

protein] hydro lyase;' 
292.41 -292.41 307.67 -307.67 

'zeta Carotene hydrogen donor oxygen 

oxidoreductase' 
249.30 0.00 279.91 0.00 

'Neurosporene hydrogen donor oxygen 

oxidoreductase' 
249.30 0.00 279.91 0.00 

'Propanoyl CoA acetyl CoA C 

acyltransferase;' 
318.77 0.00 358.58 0.00 

' 2S flavan 4 ol NADP 4 

oxidoreductase;' 
296.46 0.00 319.77 0.00 

' 2S flavan 4 ol NADP 4 

oxidoreductase;' 
401.42 0.00 421.63 0.00 

'R05027 c' 237.61 0.00 254.65 0.00 

'R05028 c' 422.74 0.00 495.17 0.00 

'R05033 c' 422.74 0.00 495.17 0.00 

'S Adenosyl L methionine kaempferol 3 

O methyltransferase;' 
346.90 0.00 420.69 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 0.00 164.55 0.00 

'N4 Acetylaminobutanal NAD 

oxidoreductase' 
327.24 0.00 394.12 0.00 

'L erythro 4 Hydroxyglutamate 2 

oxoglutarate aminotransferase' 
296.46 0.00 319.77 0.00 

' R 2 3 Dihydroxy 3 methylpentanoate 

NADP oxidoreductase' 
473.53 -473.53 488.68 -488.68 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 

'10 Formyltetrahydrofolyl L glutamate 

L glutamate gamma ligase' 
233.13 -233.13 244.74 -244.74 

'R05201 c' 401.42 0.00 421.63 0.00 

'Geranylgeranyl diphosphate 

Isopentenyl diphosphate 

geranylgeranyl' 

433.21 -433.21 459.11 -459.11 

'Glutaryl CoA acceptor 2 3 

oxidoreductase' 
296.46 0.00 319.77 0.00 
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'Glutaryl CoA acceptor 2 3 

oxidoreductase' 
307.15 0.00 337.17 0.00 

'Glutaryl CoA acceptor 2 3 

oxidoreductase' 
401.42 0.00 421.63 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 0.00 146.07 0.00 

'R05883 c' 283.52 0.00 315.65 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
271.52 0.00 284.97 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
403.55 0.00 400.32 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
403.55 0.00 400.32 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
350.47 -350.47 386.82 -386.82 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
284.21 -284.21 297.94 -297.94 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
304.32 -304.32 319.07 -319.07 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
279.48 0.00 290.95 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
415.98 0.00 419.49 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
129.90 0.00 134.01 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
233.99 -233.99 235.64 -235.64 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
294.41 -294.41 296.73 -296.73 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
301.54 0.00 312.67 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
284.21 0.00 297.94 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
234.97 0.00 245.46 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
187.70 -187.70 198.10 -198.10 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
262.14 -262.14 275.86 -275.86 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
304.32 -304.32 319.07 -319.07 
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'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
403.55 -403.55 400.32 -400.32 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
304.32 -304.32 319.07 -319.07 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
304.32 -304.32 319.07 -319.07 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
304.32 -304.32 319.07 -319.07 

'1 alpha D galactosyl myo inositol 

raffinose galactosyltransferase' 
280.33 -280.33 303.13 -303.13 

'1 alpha D galactosyl myo inositol 

raffinose galactosyltransferase' 
304.32 -304.32 319.07 -319.07 

'1 alpha D galactosyl myo inositol 

raffinose galactosyltransferase' 
375.55 -375.55 394.22 -394.22 

'GDP mannose glycolipid 1 2 alpha D 

mannosyltransferase' 
296.46 0.00 319.77 0.00 

'GDP mannose glycolipid 1 2 alpha D 

mannosyltransferase' 
304.32 -304.32 319.07 -319.07 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
304.32 0.00 319.07 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'Galactoside alpha 1 2 L 

fucosyltransferase' 
403.55 0.00 400.32 0.00 

'ent Kaur 16 en 19 oate NADPH 

oxygen oxidoreductase hydroxylating ' 
214.58 0.00 214.19 0.00 

'ent Kaur 16 en 19 oate NADPH 

oxygen oxidoreductase hydroxylating ' 
214.58 0.00 214.19 0.00 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 0.00 149.48 0.00 
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' gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
125.02 -125.02 136.12 -136.12 

'CDPethanolamine 1 alkyl 2 

acylglycerol' 
380.78 0.00 378.29 0.00 

'CDPethanolamine 1 alkyl 2 

acylglycerol' 
304.86 0.00 329.19 0.00 

'alpha Pinene dehydrogenase' 350.00 0.00 409.68 0.00 

'Myrtenol dehydrogenase' 304.86 0.00 329.19 0.00 

'Myrtenol dehydrogenase' 350.00 0.00 409.68 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 0.00 146.07 0.00 

' 2S flavan 4 ol NADP 4 

oxidoreductase;' 
296.46 0.00 319.77 0.00 

'R06860 c' 200.32 0.00 208.06 0.00 

'Acyl CoA sn glycerol 3 phosphate 2 O 

acyltransferase' 
203.29 0.00 206.75 0.00 

'flavanone lyase decyclizing ' 164.44 -164.44 227.32 -227.32 

'n alkanal NADP 2 oxidoreductase' 253.04 -253.04 270.38 -270.38 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 -140.06 146.07 -146.07 

'6 Deoxo cathasterone brassinosteroid 

C23alpha hydroxylase' 
319.10 0.00 215.05 0.00 

'donor hydrogen peroxide 

oxidoreductase' 
407.10 0.00 436.83 0.00 

'donor hydrogen peroxide 

oxidoreductase' 
234.97 0.00 245.46 0.00 

'donor hydrogen peroxide 

oxidoreductase' 
284.21 0.00 297.94 0.00 

'donor hydrogen peroxide 

oxidoreductase' 
284.21 0.00 297.94 0.00 

'acetyl CoA heparan alpha D 

glucosaminide N acetyltransferase' 
253.87 -253.87 262.77 -262.77 

'acetyl CoA heparan alpha D 

glucosaminide N acetyltransferase' 
288.18 0.00 321.72 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 0.00 164.55 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 0.00 164.55 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 0.00 164.55 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
156.29 0.00 163.48 0.00 
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'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
156.29 0.00 163.48 0.00 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
156.29 0.00 163.48 0.00 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
191.57 0.00 203.88 0.00 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
183.02 0.00 202.52 0.00 

'2 succinyl 5 enolpyruvyl 6 hydroxy 3 

cyclohexene 1 carboxylate' 
200.32 0.00 208.06 0.00 

'5 6 dihydro 5 fluorouracil 

amidohydrolase' 
352.46 0.00 382.83 0.00 

'alpha fluoro beta ureidopropionic acid 

amidohydrolase' 
282.67 0.00 301.39 0.00 

'6 thioxanthine 5 monophosphate L 

glutamine amido ligase' 
409.42 0.00 420.52 0.00 

'2 deoxyribonucleoside diphosphate 

tryparedoxin disulfide' 
404.18 0.00 414.53 0.00 

'L methionine 2 oxo acid 

aminotransferase;' 
355.71 -355.71 365.11 -365.11 

'trans trans farnesyl diphosphate 

diphosphate lyase [cyclizing ' 
147.86 -147.86 153.26 -153.26 

' 2E 6E farnesyl diphosphate 

diphosphate lyase' 
147.86 -147.86 153.26 -153.26 

' 2E 6E farnesyl diphosphate 

diphosphate lyase' 
147.86 -147.86 153.26 -153.26 

'trans trans cis geranylgeranyl 

diphosphate isopentenyl diphosphate' 
126.07 -126.07 134.61 -134.61 

'RN01 c' 296.46 -296.46 319.77 -319.77 

'RN03 c' 296.46 -296.46 319.77 -319.77 

'RN03 p' 296.46 -296.46 319.77 -319.77 

'RN04 m' 296.46 0.00 319.77 0.00 

'RN05 m' 296.46 0.00 319.77 0.00 

'RN06 c' 296.46 -296.46 319.77 -319.77 

'R00095 tmx' 296.46 -296.46 319.77 -319.77 

'R00644 tmx' 296.46 0.00 319.77 0.00 

'R00021 p' 340.34 0.00 382.90 0.00 

'S adenosyl L methionine S adenosyl L 

methionine' 
150.85 -150.85 162.93 -162.93 

'Urea amidohydrolase' 223.96 0.00 237.30 0.00 

'R01195 p' 373.23 -373.23 384.27 -384.27 
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'Malonyl CoA 4 Coumaroyl CoA 

malonyltransferase cyclizing ' 
206.57 0.00 209.27 0.00 

' R Mevalonate NADP oxidoreductase 

CoA acylating ' 
352.97 0.00 372.46 0.00 

'ATP R mevalonate 5 

phosphotransferase' 
304.98 0.00 325.07 0.00 

' Gibberellin 20 2 oxoglutarate oxygen 

oxidoreductase' 
218.07 -218.07 224.03 -224.03 

'7 8 Diaminononanoate carbon dioxide 

cyclo ligase' 
296.46 0.00 319.77 0.00 

'Nicotinate nucleotide pyrophosphate 

phosphoribosyltransferase' 
366.11 0.00 408.58 0.00 

' gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
149.30 0.00 154.46 0.00 

' gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
296.46 -296.46 319.77 -319.77 

'butyryl [acyl carrier protein] malonyl 

[acyl carrier protein]' 
246.03 0.00 254.82 0.00 

'R04952 p' 292.57 0.00 314.54 0.00 

'leucocyanidin 2 oxoglutarate oxygen 

oxidoreductase' 
140.06 0.00 146.07 0.00 

'L Glutamate tRNA Glu ligase AMP 

forming ' 
433.21 -433.21 459.11 -459.11 

'Lanosterol NADPH oxygen 

oxidoreductase 14 methyl cleaving ' 
338.40 -338.40 367.99 -367.99 

' gibberellin 20 2 oxoglutarate oxygen 

oxidoreductase' 
199.65 0.00 212.60 0.00 

' gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
149.30 0.00 154.46 0.00 

' gibberellin 1 2 oxoglutarate oxygen 

oxidoreductase' 
149.30 0.00 154.46 0.00 

'di trans poly cis Decaprenyl 

diphosphate isopentenyl diphosphate' 
136.40 0.00 143.12 0.00 

'malonyl CoA 4 coumaroyl CoA 

malonyltransferase cyclizing reducing ' 
407.74 0.00 440.07 0.00 

' gibberellin 44 2 oxoglutarate oxygen 

oxidoreductase' 
152.49 -152.49 149.48 -149.48 

'flavanone 2 oxoglutarate oxygen 

oxidoreductase 3 hydroxylating ' 
141.76 -141.76 164.55 -164.55 

'flavan 3 ol NAD oxidoreductase' 176.56 -176.56 178.39 -178.39 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
131.74 -131.74 135.47 -135.47 
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'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
340.86 0.00 350.97 0.00 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
171.03 -171.03 180.58 -180.58 

'dihydroflavonol 2 oxoglutarate oxygen 

oxidoreductase' 
302.05 0.00 327.82 0.00 

'malonyl CoA cinnamoyl CoA 

malonyltransferase cyclizing ' 
206.57 0.00 209.27 0.00 

'malonyl CoA caffeoyl CoA 

malonyltransferase cyclizing ' 
206.57 0.00 209.27 0.00 

'malonyl CoA feruloyl CoA 

malonyltransferase cyclizing ' 
206.57 0.00 209.27 0.00 

'malonyl CoA feruloyl CoA 

malonyltransferase cyclizing ' 
280.08 -280.08 357.58 -357.58 

'6 mercaptopurin oxygen 

oxidoreductase' 
252.46 0.00 289.68 0.00 

'6 mercaptopurin oxygen 

oxidoreductase' 
182.60 -182.60 191.12 -191.12 

'Glucose drain' 296.46 0.00 319.77 0.00 

'Serine drain' 296.46 0.00 319.77 0.00 

'Threonine drain' 296.46 0.00 319.77 0.00 

'Mehionine drain' 296.46 0.00 319.77 0.00 

'Cysteine drain' 296.46 0.00 319.77 0.00 

'Valine drain' 296.46 0.00 319.77 0.00 

'Leucine drain' 296.46 0.00 319.77 0.00 

'Isoleucine drain' 296.46 0.00 319.77 0.00 

'Glutamine drain' 296.46 0.00 319.77 0.00 

'Arginine drain' 296.46 0.00 319.77 0.00 

'Proline drain' 296.46 0.00 319.77 0.00 

'Sucrose drain' 296.46 0.00 319.77 0.00 

'Lysine drain' 296.46 0.00 319.77 0.00 

'Histidine drain' 296.46 0.00 319.77 0.00 

'Phenylalanine drain' 296.46 0.00 319.77 0.00 

'Tyrosine drain' 296.46 0.00 319.77 0.00 

'Tryptophan drain' 296.46 0.00 319.77 0.00 

'Asparagine drain' 296.46 0.00 319.77 0.00 

'4 Coumaryl alcohol drain' 296.46 0.00 319.77 0.00 

'Coniferyl alcohol drain' 296.46 0.00 319.77 0.00 

'Sinapyl alcohol drain' 296.46 0.00 319.77 0.00 

'Fructose drain' 296.46 0.00 319.77 0.00 

'Cellulose drain' 296.46 0.00 319.77 0.00 

'FA biomass drain' 296.46 0.00 319.77 0.00 



 

140 

'dATP drain' 296.46 0.00 319.77 0.00 

'dGTP drain' 296.46 0.00 319.77 0.00 

'dCTP drain' 296.46 0.00 319.77 0.00 

'dTTP drain' 296.46 0.00 319.77 0.00 

'ATP drain' 296.46 0.00 319.77 0.00 

'GTP drain' 296.46 0.00 319.77 0.00 

'CTP drain' 296.46 0.00 319.77 0.00 

'UTP drain' 296.46 0.00 319.77 0.00 

'Starch drain' 296.46 0.00 319.77 0.00 

'Xylose drain Hemicellulose ' 296.46 0.00 319.77 0.00 

'Glutamate drain' 296.46 0.00 319.77 0.00 

'Alanine drain' 296.46 0.00 319.77 0.00 

'Aspartate drain' 296.46 0.00 319.77 0.00 

'Glycine drain' 296.46 0.00 319.77 0.00 

'Biomass synthesis Leaf ' 296.46 0.00 319.77 0.00 

'Pyruvate transporter' 296.46 -296.46 319.77 -319.77 

'Serine transporter' 296.46 -296.46 319.77 -319.77 

'ATP transporter' 296.46 -296.46 319.77 -319.77 

'ADP transporter' 296.46 -296.46 319.77 -319.77 

'AMP transporter' 296.46 -296.46 319.77 -319.77 

'CoA' 296.46 -296.46 319.77 -319.77 

'CO2 transporter' 296.46 -296.46 319.77 -319.77 

'Acetate transporter' 296.46 -296.46 319.77 -319.77 

'Phosphate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'Malate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'H2O transporter' 296.46 -296.46 319.77 -319.77 

'Proton transporter' 296.46 -296.46 319.77 -319.77 

'Glutamine transporter' 296.46 -296.46 319.77 -319.77 

'ThPP transporter' 296.46 -296.46 319.77 -319.77 

'Oxigen transport' 296.46 -296.46 319.77 -319.77 

'NH3 transport' 296.46 -296.46 319.77 -319.77 

'Succinate transporter' 296.46 -296.46 319.77 -319.77 

'Phosphate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'Isocitrate transporter' 296.46 -296.46 319.77 -319.77 

'L Ornithine transporter' 296.46 -296.46 319.77 -319.77 

' L Citrulline transporter' 296.46 -296.46 319.77 -319.77 

'Citrate transporter' 296.46 -296.46 319.77 -319.77 

'Aspartate transporter' 296.46 -296.46 319.77 -319.77 
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'Glutamate transporter' 296.46 -296.46 319.77 -319.77 

'Oxaloacetate transporter' 296.46 -296.46 319.77 -319.77 

'alpha ketoglutarate transporters' 296.46 -296.46 319.77 -319.77 

'Glycine transporter' 296.46 -296.46 319.77 -319.77 

'Glucose translocator' 296.46 -296.46 319.77 -319.77 

'Phosphate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'Malate transporter' 296.46 -296.46 319.77 -319.77 

'Oxaloacetate transporter' 296.46 -296.46 319.77 -319.77 

'Sulfate transporter' 296.46 -296.46 319.77 -319.77 

'NH3 transport' 296.46 -296.46 319.77 -319.77 

'Nitrite transporter' 296.46 -296.46 319.77 -319.77 

'Maltose transporter' 296.46 -296.46 319.77 -319.77 

'Glycolate transporter' 296.46 -296.46 319.77 -319.77 

'alpha ketoglutarate translocator' 296.46 -296.46 319.77 -319.77 

'H2O transport' 296.46 -296.46 319.77 -319.77 

'CO2 fixation' 296.46 -296.46 319.77 -319.77 

'ATP transporter' 296.46 -296.46 319.77 -319.77 

'ADP transporter' 296.46 -296.46 319.77 -319.77 

'Proton transporter' 296.46 -296.46 319.77 -319.77 

'Glutamate transporter' 296.46 -296.46 319.77 -319.77 

'Glycerate transport' 296.46 -296.46 319.77 -319.77 

'Oxigen transport' 296.46 -296.46 319.77 -319.77 

'Phosphate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'Glutamine transporter' 296.46 -296.46 319.77 -319.77 

'L Ornithine transporter' 296.46 -296.46 319.77 -319.77 

' Pyruvate transporter' 296.46 -296.46 319.77 -319.77 

' L Citrulline transporter' 296.46 -296.46 319.77 -319.77 

'Fatty accid in plastid' 296.46 -296.46 319.77 -319.77 

' phosphoenolpyruvate transporter' 296.46 -296.46 319.77 -319.77 

'2 phosphoglycerate transporter' 296.46 -296.46 319.77 -319.77 

'alpha D Glucose 6 phosphate 

transporter' 
296.46 -296.46 319.77 -319.77 

'Triose phosphate translocator G3P ' 296.46 -296.46 319.77 -319.77 

'Triose phosphate trasnlocator 

glyceroneP ' 
296.46 -296.46 319.77 -319.77 

'Triose phosphate translocator 3 

phosphoglycerate ' 
296.46 -296.46 319.77 -319.77 

'Sulfate transporter' 296.46 -296.46 319.77 -319.77 

'Malate transporter' 296.46 -296.46 319.77 -319.77 
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'Nitrate transporter' 296.46 -296.46 319.77 -319.77 

'Sucrose transporter' 296.46 -296.46 319.77 -319.77 

'Citrate transporter' 296.46 -296.46 319.77 -319.77 

'Glycine transport' 296.46 -296.46 319.77 -319.77 

'Phosphate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'H2O transporter' 296.46 -296.46 319.77 -319.77 

'Oxigen transport' 296.46 -296.46 319.77 -319.77 

'Glycerate transport' 296.46 -296.46 319.77 -319.77 

'Citrate transporter' 296.46 -296.46 319.77 -319.77 

'Succinate transporter' 296.46 -296.46 319.77 -319.77 

'Isocitrate transporter' 296.46 -296.46 319.77 -319.77 

'Oxaloacetate transporter' 296.46 -296.46 319.77 -319.77 

'Proton transporter' 296.46 -296.46 319.77 -319.77 

'CoA' 296.46 -296.46 319.77 -319.77 

'Serine transporter' 296.46 -296.46 319.77 -319.77 

'Glycolate transporter' 296.46 -296.46 319.77 -319.77 

'alpha ketoglutarate translocator' 296.46 -296.46 319.77 -319.77 

'Glutamate translocator' 296.46 -296.46 319.77 -319.77 

'Malate transporter/Dicarboxylate 

translocator' 
296.46 -296.46 319.77 -319.77 

'Fatty acid transporter for beta 

oxidation ' 
296.46 -296.46 319.77 -319.77 

'ATP transporter' 296.46 -296.46 319.77 -319.77 

'AMP transporter' 296.46 -296.46 319.77 -319.77 

'V0001' 296.46 0.00 319.77 0.00 

'V0002' 296.46 0.00 319.77 0.00 

'V0003' 296.46 0.00 319.77 0.00 

'V0004' 296.46 0.00 319.77 0.00 

'V0005' 296.46 0.00 319.77 0.00 

'V0006' 296.46 0.00 319.77 0.00 

'V0007' 296.46 0.00 319.77 0.00 

'V0008' 296.46 0.00 319.77 0.00 

'Biomass exchange' 296.46 -100.00 319.77 -100.00 

' CO2 exchange' 296.46 -100.00 319.77 -100.00 

' Hydrogen sulfide exchange' 296.46 -100.00 319.77 -100.00 

' Sulfate exchange' 296.46 -100.00 319.77 -100.00 

' alpha D Glucose exchange' 296.46 -100.00 319.77 -100.00 

' beta D Fructose exchange' 296.46 -100.00 319.77 -100.00 

' Maltose exchange' 296.46 -100.00 319.77 -100.00 

'hvi exchange' 296.46 -100.00 319.77 -100.00 
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'hvo exchange' 296.46 -100.00 319.77 -100.00 

' Sucrose exchange' 296.46 -100.00 319.77 -100.00 

' Orthophosphate exchange' 296.46 -100.00 319.77 -100.00 

' H2O exchange' 296.46 -100.00 319.77 -100.00 

' Oxygen exchange' 296.46 -100.00 319.77 -100.00 

' Nitrate exchange' 296.46 -100.00 319.77 -100.00 

' NH3 exchange' 296.46 -100.00 319.77 -100.00 

'Light rxn 1' 296.46 0.00 319.77 0.00 

'serine ammonia lyase pyruvate 

forming ' 
234.97 0.00 245.46 0.00 

'L asparagine hydro lyase 3 

cyanoalanine forming ' 
296.46 0.00 319.77 0.00 

'L asparagine hydro lyase 3 

cyanoalanine forming ' 
296.46 0.00 319.77 0.00 

'L asparagine hydro lyase 3 

cyanoalanine forming ' 
296.46 0.00 319.77 0.00 

'L asparagine hydro lyase 3 

cyanoalanine forming ' 
296.46 0.00 319.77 0.00 

'Carbon monoxide oxygen 

oxidoreductase' 
296.46 0.00 319.77 0.00 

'Carbon monoxide oxygen 

oxidoreductase' 
296.46 0.00 319.77 0.00 

' R 4 Phosphopantothenate L cysteine 

ligase' 
287.34 0.00 299.65 0.00 

'L aspartate ammonia ligase AMP 

forming ' 
394.29 0.00 405.25 0.00 

'S adenosyl L methionine 3 4 dihydroxy 

trans cinnamate' 
234.97 0.00 245.46 0.00 

'L threonine acetaldehyde lyase glycine 

forming ' 
234.97 0.00 245.46 0.00 

'ATP pantothenate 4 

phosphotransferase' 
280.41 0.00 285.98 0.00 

'ATP pantothenate 4 

phosphotransferase' 
280.41 0.00 285.98 0.00 

' R Pantoate NADP 2 oxidoreductase' 234.97 0.00 245.46 0.00 

' R Pantoate NADP 2 oxidoreductase' 296.46 0.00 319.77 0.00 

'cellobiose phosphate alpha D 

glucosyltransferase' 
234.97 0.00 245.46 0.00 

'N R Pantothenoyl L cysteine carboxy 

lyase' 
234.97 0.00 245.46 0.00 

'acetyl CoA 4 hydroxybutanoate CoA 

transferase' 
296.46 0.00 319.77 0.00 
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'Dephospho CoA nucleotidohydrolase' 234.97 0.00 245.46 0.00 

'pyruvate 2 oxobutanoate 

acetaldehydetransferase 

decarboxylating ' 

347.49 0.00 334.46 0.00 

'pyruvate 2 oxobutanoate 

acetaldehydetransferase 

decarboxylating ' 

296.46 0.00 319.77 0.00 

'ATP pantothenate 4 

phosphotransferase' 
280.41 0.00 285.98 0.00 

'caffeic aldehyde 3 4 dihydroxy trans 

cinnamate 3 O methyltransferase' 
234.97 0.00 245.46 0.00 

'caffeic aldehyde 3 4 dihydroxy trans 

cinnamate 3 O methyltransferase' 
296.46 0.00 319.77 0.00 

Table 7 – Table of upper and lower bounds for MJ- and MJ+ conditions in E-Flux simulations.  
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APPENDIX B 

CRYOSECTIONING AND IMMUNOFLUORESCENCE 

PROTOCOLS 

Paraffin Embedding 

Fixation and paraffin embedding 

1. Prepare 37% (w/v) formaldehyde fresh from powder by dissolving in heated water and 

adding a few drops of NaOH, alternatively 37% formaldehyde that has been stored frozen 

can be diluted to 4% immediately prior to use 

2. Make fixative solution of 4% (w/v) formaldehyde and 0.1% (v/v) glutaraldehyde 

3. Remove aggregates from media by using filter, place aggregates in scintillation vial and 

cover with excess of fixative solution 

4. Place uncapped vials in vacuum chamber and apply vacuum for 1 minute 

5. Cap vials and let sit 24 hours at room temperature 

6. Remove fixative and apply a graded ethanol series to dehydrate the sample 

a. Add 30%, 50%, 75% and neat solutions of histological grade ethanol  for 30 

minutes each, with 3 applications of neat solution 

7. Immerse sample in pure xylene for 2 hours 

8. Pipette out solven and add molten paraffin to sample, let sit for 1 hour in incubator at 58 

C 

9. Pour off paraffin and fresh paraffin to sample, let sit for 1 hour 

10. Transfer aggregates to square sample mold and let solidify to room temperature 

Sectioning 
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1. Using a microtome, section wax blocks with embedded sample to 10 μm slices 

2. Float slices in water bath and then place on lysine-coated slides 

3. Allow to dry on heated drying block for > 2 hours 

Dewaxing and Rehydration 

1. Place slides in a coplin jar, add 35 ml 100% xylene, incubate for 10 minutes, empty coplin 

jar, add new 100% xylene and incubate another 10 minutes 

2. Add 95% ethanol to slides, incubate 10 minutes 

3. Add 75% ethanol diluted in PBS, incubate 5 minutes 

4. Add 50% ethanol in PBS, incubate 5 minutes 

5. Add PBS, incubate 5 minutes 

6. Remove slides from coplin jar and dip in distilled water to remove PBS salts 

 

Staining 

1. Incubate slides at RT in coplin jar with 0.01% calcufluor (diluted in water) in dark for 4 

hours 

2. Dip slides in distilled water to rinse 

3. Stain with PI (1:100 from stock) lay slides flat in dark for 10 minutes 

4. Put 1-3 drops mounting media (10:1 glycerol to PBS mixsture) and coverslip 

5. Blot edges with Kim wipe 

6. Image with microscope 

 

Cryosectioning with sucrose gradient 

Solution and Sample preparation 
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1. 24 hours before fixation, add stock solution of Fluorescent Brightener 28 (calcufluor) to 

live cells to final concentration in media of 0.01% and incubate in the dark for 24 hours 

2. Make fixative solution (10 ml for each sample vial, this makes 50 ml total) 

a. 5.4 mls 37% formaldehyde (freshly prepared from powder or frozen stock) 

b. 20 μL 25% glutaraldehyde 

c. add nanopure water to reach 50 ml 

3. Make 2.3 M sucrose, dissolved into water 

4. Make 0.1 M Sorensen buffer 

5. Make PBS from packet or from recipe 

Cell Fixation 

1. Filter aggregates and place cells in scintillation vial 

2. Rinse briefly with PBS to remove media, pipette off PBS 

3. Pipette 10 ml of prepared fixative into each sample vial 

4. Place open sample vials in vacuum chamber and turn on vacuum for 1 min 

5. Remove sample vial from vacuum, cap and Incubate 12-24 hours at 4 C 

Cryoprotection 

1. Pipette out fixation solution from scintillation vials, add 10 ml PBS to cells and let sit for 

15 min 

2. Prepare iterative dilutions of 2.3 M sucrose solution into 0.1 M Sorensen buffer: 25, 33, 

50, 66, 75 and 100% 

3. Pipette out PBS and pipette 25% sucrose solution into vial, let sit for one hour 

4. Pipette out 25% sucrose solution and pipette in 33% sucrose solution, let sit for one hour, 

repeat until 100% solution is reached 
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5. For 100% sucrose solution, let sit in refrigerator overnight 

6. Freeze cells within 24 hours 

Freezing 

1. In a square plastic mold, submerge cells in OCT freezing solution 

2. Submerge mold in liquid nitrogen for 10 seconds until hardened 

3. Cover with aluminum foil and freeze at -80 C until use 

Cryosectioning without sucrose gradient 

Solution and Sample preparation 

1. 24 hours before fixation, add stock solution of Fluorescent Brightener 28 (calcufluor) to 

live cells to final concentration in media of 0.01% and incubate in the dark for 24 hours 

2. Make fixative solution (10 ml for each sample vial, this makes 50 ml total) 

a. 5.4 mls 37% formaldehyde (freshly prepared from powder or frozen stock) 

b. 20 μL 25% glutaraldehyde 

c. add nanopure water to reach 50 ml 

3. Make 2.3 M sucrose, dissolved into water 

4. Make PBS from packet or from recipe 

Cell Fixation 

1. Filter aggregates and place cells in scintillation vial 

2. Rinse briefly with PBS to remove media, pipette off PBS 

3. Pipette 10 ml of prepared fixative into each sample vial 

4. Place open sample vials in vacuum chamber and turn on vacuum for 1 min 
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5. Remove sample vial from vacuum, cap and Incubate 12-24 hours at 4 C 

Cryoprotection 

1. Pipette out fixation solution from scintillation vials, add 10 ml PBS to cells and let sit for 

15 min 

2. Pipette out PBS and pipette sucrose solution into vial, let sit overnight. 

3. Freeze cells within 24 hours 

Freezing 

1. In a square plastic mold, submerge cells in OCT freezing solution 

2. Submerge mold in liquid nitrogen for 10 seconds until hardened 

3. Cover with aluminum foil and freeze at -80 C until use 

Flash freezing of fresh tissue 

1. Filter aggregates and place cells in scintillation vial 

2. Rinse briefly with PBS to remove media, pipette off PBS 

3. In a square plastic mold, submerge cells in OCT freezing solution 

4. Submerge mold in liquid nitrogen for 10 seconds until hardened 

5. Cover with aluminum foil and freeze at -80 C until use 

Cryosectioning 

1. Cool cryostat, blade and metal sample chucks to -20 C 

2. Remove frozen sample from mold and if desired, cut to desired size 
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3. Add a thick layer of OCT compound to metal sample chuck and lightly press sample onto 

the OCT 

4. Allow sample to harden inside cryostat for >30 minutes 

5. Set cryostat to thick slices (50 μm), set chuck/sample in place and begin turning crank 

until blade comes into contact with sample. Make some thick slices to even out top of 

sample 

6. Set cryostat to desired slice thickness (5 to 10 μm) and begin slicing 

a. After each slice, take a warm poly-lysine coated slide and hover the slide a few 

mm above sample – sample will jump up to slide 

b. Allow each slide to sit at room temperature for >1 hour to dry 

Immunostaining for paclitaxel 

1. Solution preparation: 

a. Prepare blocking buffer: 2% nonfat milk powder (w/w%)  in PBS. 

b. Prepare primary antibody solution: 1:100 dilution of anti-taxol mouse antibody in 

blocking buffer 

c. Prepare secondary antibody solution: 1:200 dilution of anti-mouse antibody in 

blocking buffer 

2. In a coplin jar, immerse dried slides in blocking buffer and let sit 1 hour 

3. Dip slides in PBS briefly to remove blocking buffer 

4. In a box lined with damp paper towels, lay slides flat. Blot excess blocking buffer from 

edge of slide using a Kim wipe. 

5. Pipette 1 ml of diluted primary antibody onto each slide. Cut a piece of parafilm to cover 

the slices on the slide, and lay parafilm gently over the slices (do not stretch) 

6. Let slides incubate in the dark for1.5  hours 
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7. Remove parafilm from slides, place in coplin jar, and immerse in PBS for 15 minutes on 

shaker, put slides in fresh PBS and wash for 15 minutes, repeat one more time (3 total 

washes) 

8. Pipette 1 ml of diluted secondary antibody onto each slide. Cut a piece of parafilm to 

cover the slices on the slide, and lay parafilm gently over the slices 

9. Let the slides incubate in the dark for 1.5 hours 

10. Remove parafilm and perform 3 PBS washes as in step 7 above 

11. Dip slides in distilled water to remove salts 

12. If desired, stain nuclei with PI as in paraffin embedding protocol above. 

13. To preserve slides, add one drop of aqueous mounting medium and gently place coverslip 

over slices. 

Figure 8 – Example of a cryosectioned Taxus aggregate stained with calcufluor (blue) to 

designate cell wall and propidium iodide (red) to denote the nucleus. This aggregate was sliced 

into 30 μm slices. 
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