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ABSTRACT 

EVALUATION OF MANAGEMENT STRATEGIES AND PHYSIOLOGICAL 

MECHANISMS OF AGROSTIS SPECIES FOR REDUCED IRRIGATION 

ENVIRONMENTS 

MAY 2014 

LISA GOLDEN, B.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Michelle DaCosta 

Water is a basic necessity for turfgrass growth and metabolic processes, with 

optimal levels required for the maintenance of turf quality and function.  As water 

restrictions for irrigation of landscapes become more widespread across the United 

States, turfgrass managers will need to rely on management strategies to improve the 

performance of turfgrasses under reduced irrigation environments.  Therefore, the 

objectives of the research were to (i) compare the performance of different Agrostis 

species and cultivars under reduced irrigation, (ii) evaluate the use of wetting agents for 

maintaining turf quality under reduced irrigation, (iii) and examine the physiological 

mechanisms associated with improved drought resistance traits of Agrostis species. To 

address our primary objectives, we conducted a two-year field study comparing cultivars 

of three bentgrass species, including ‘Revere’ and ‘Tiger II’ colonial bentgrasses 

(Agrostis capillaris), ‘Legendary’ and ‘Greenwich’ velvet bentgrasses (A. canina), and 

‘13M’, ‘T-1’, ‘L-93’, and ‘Penncross’ creeping bentgrasses (A. stolonifera) in response to 

reduced irrigation with and without the use of a wetting agent. In general, the use of a 
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wetting agent did not result in any significant differences in turf quality or soil moisture 

content among treatments.   There were significant differences in turf quality among 

bentgrass species and cultivars under reduced irrigation.  Colonial bentgrass cultivars 

maintained high turf quality, and were found to be well suited for fairways under reduced 

irrigation.  Due to excessive thatch accumulation in our study, velvet bentgrass cultivars 

exhibited significant declines in quality regardless of irrigation level.  Among creeping 

bentgrass cultivars, T-1 exhibited improved drought tolerance compared to the older 

cultivars of creeping bentgrass.  Based on results from the field study, we further 

evaluated the drought resistance and recovery characteristics among five cultivars of 

colonial bentgrass (‘Barking’, 'Tiger II’, ‘Revere’, ‘Capri’, and ‘Greentime’).  Under 

moderate drought stress, Barking, Tiger II, and Revere all exhibited lower leaf relative 

water content levels compared to Capri and Greentime, although no significant 

differences in turf quality or soil water content were observed during the drought period.  

Following re-watering, Barking and Tiger II exhibited the most rapid recovery from 

drought (as measured by percent green cover), while Capri and Greentime exhibited 

delayed recovery.  Therefore, although significant differences in turf performance during 

drought stress were not observed, recovery potential seems to vary among the different 

cultivars of colonial bentgrass.   
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CHAPTER 1 

LITERATURE REVIEW 

Overview 

In the United States, golf courses use a combined total of approximately7.9 billion 

liters of water on a daily basis (Vogt, 2011). It has been reported that water is second to 

labor as an expense in many golf course maintenance budgets (Leslie, 2012), and this is 

likely because a majority of greens, tees, and fairways in the United States are irrigated 

(EIFG,  2007a).  As many parts of the country have been subjected to extended periods of 

drought, water restrictions for irrigation of turf have increased (Hollister, 2010).  Due to 

continued population growth particularly in urbanized areas, a greater strain on water 

supply is expected in the future.  In turn, as the demand for water increases, there will be 

greater water restrictions particularly for low priority areas maintained as turfgrass.  

Given the high cost of water, the restrictions of water usage, and the need for water by 

turfgrass, it is critical that research is implemented to find ways to maintain turf function 

under reduced irrigation environments.  

Golf courses have many benefits such as providing a place for the millions of 

golfers to get exercise.  Golf courses are home to wildlife and wetlands, they can be built 

on former landfills, and provide income and jobs for surrounding communities.  In 2011, 

there were approximately 30 million golfers in the United States (Amari, 2012).   There 

are almost 16,000 golf courses throughout the United States with approximately half a 

million jobs created (Haydu et al., 2008).  Based on a survey of the Massachusetts golf 

industry alone in 2006, there were a reported 31,685 jobs created and $950 million in 

wages attributed to the industry (SRI International, 2008).   
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The average 18-hole golf course in the United States has approximately 70% of 

its land as managed turfgrass (greens, tees, fairways, rough, driving range, and additional 

grounds), which on average consists of approximately 40 hectares per golf course.  Of 

this managed turf acreage, approximately half of that land is made up of greens, tees, and 

fairways (EIFG, 2007b).  Although most greens, tees, and fairways are irrigated, these 

areas may not be irrigated on a daily basis.  Moreover, it has become more common for 

golf course staff to hand water (rather than overhead irrigation), and to only water areas 

exhibiting mild symptoms of drought stress.  Whether or not all of these areas are 

irrigated can also depend on the budget and the expectations of the golfers or members of 

a golf course.  Many golf courses depend on natural rainfall and rarely water the rough, 

which can make up over 50% of managed turf areas on a golf course (EIFG, 2007b).  

Given that golf course superintendents are under pressure to maintain functional turfgrass 

with fewer inputs, it is critical that turf managers take proactive water conservation 

approaches. 

 

Water Conservation Strategies 

Given the potential amount of acreage maintained as turfgrass on a golf course, 

there are several water conservation strategies that can be utilized to reduce overall 

irrigation use.  Irrigation system efficiency can be enhanced through regular auditing, 

including improvements related to nozzle types and sprinkler heads, correctly spacing 

irrigation heads for more efficient water coverage, and ensuring proper timing and 

amounts of applied water (Leslie, 2012).  Through the use of on-site weather stations, 
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golf course superintendents can irrigate according to evapotranspiration estimates to more 

accurately replace turfgrass water loss.  In addition,  superintendents are also monitoring 

soil moisture levels more closely using moisture sensors, and in general keeping soils 

drier to improve playability (EIFG,  2007a).   

Turfgrass on a golf course is subject to many stresses including low mowing 

heights, wear, soil compaction, and environmental extremes such as high and low 

temperatures.  In addition to abiotic stresses, turfgrasses are also exposed to weed, insect, 

and disease pressures.  Different species and cultivars exhibit varying degrees of 

resistance to biotic and abiotic stresses. Therefore, a management strategy that can help 

to maintain the general turf quality is to select the best adapted species and cultivars for a 

site and its known stresses.  Consequently, due to increasing issues related to water 

restrictions of turfgrass, additional research is necessary to identify species and cultivars 

with enhanced drought resistance traits under reduced irrigation.  

Among cool-season grasses, Agrostis species (bentgrasses) are commonly found 

as golf turf in northern climatic regions.  Although there are many different species of 

bentgrass, colonial bentgrass (Agrostis capillaris L.), velvet bentgrass (A. canina L.), and 

creeping bentgrass (A. stolonifera L.) are the best adapted species for golf turf, mainly 

related to the ability of these grasses to maintain sufficient turf quality even at low 

heights of cut required for green, tee, and fairway turf.  Among the three species, 

creeping bentgrass is the most widely used turfgrass as golf turf in the northeast and north 

central regions of the United States (EIFG, 2007b).   
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There are significant inter- and intra-specific differences among bentgrass species 

for turf quality and performance traits, including genetic leaf color and resistance to 

abiotic and biotic stresses.  For example, previous research has shown inter- and/or intra-

specific differences in wear tolerance (Dowgiewicz et al., 2011), dollar spot (Ryan et al., 

2012), and drought resistance (DaCosta and Huang 2006; DaCosta and Huang, 2007; 

McCann and Huang, 2008).  To date, though, there is limited information available on the 

variability of drought resistance and water use particularly among cultivars of colonial 

and velvet bentgrasses.    

In addition to species and cultivar selection, the use of surfactants (ie wetting 

agents) has also shown promise as a management strategy to improve or maintain turf 

quality under reduced irrigation.  Wetting agents became available for use in the turfgrass 

industry in the 1950s (Zontek, 2012).  Since then many different wetting agent 

chemistries have become available and have been designed to alleviate different issues.  

Originally wetting agent chemistry was an anionic or anionic blend.  These were 

negatively charged formulas that have been known to disrupt soil structure by interacting 

with clay particles and at times be phytotoxic to turfgrass.  A newer chemistry that is 

more commonly used today is nonionic surfactants.  Nonionic surfactants can be broken 

down into six different classes.  The first is polyoxyethylene (POE), which also became 

available in the 1950s and was developed to alleviate localized dry spot (LDS) but has 

also shown to be phytotoxic to some finer turfgrasses.  The second class of non-ionic 

surfactants is the block co-polymer wetting agents.  This surfactant class consists of 

straight block co-polymers which help to alleviate LDS, reverse block co-polymers which 

helps with hydrophobic soils, and lastly a blend of both straight and reverse co-poylmers 
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which combines both chemistries and therefore help to alleviate both LDS and 

hydrophobic soils.  Thirdly, there are alkyl polyglucoside surfactants that are made up of 

sugars and fatty acids and have been shown to help with hydrophobic soils.  The forth 

class is modified methyl capped block co-polymers which modified the chemistry of a 

block co-polymer wetting agent by adding methyl groups to the structure of the wetting 

agent molecules.  This change in the chemistry changed the way water attaches to the soil 

particles in an attempt to create a more favorable growing environment with better air 

movement than with previous wetting agent chemistries and is used to alleviate 

hydrophobic soils.  The fifth class is humic substance redistribution molecules, which 

help with LDS by altering the soil structure of the top soil and allowing for better water 

penetration.  Lastly, the sixth class of non-ionics are multibranched regenerating wetting 

agents, which have a higher molecular weight than other surfactants in addition to a 

molecular structure that is branched, allowing for a more contact between the soil and 

wetting agent.  Lastly, the third chemistry is cationic surfactants that are positively 

charged and bind to the soil.  They have been shown to cause damage to plant tissues and 

potentially make soils more water repellent after multiple uses and therefore are not 

currently on the market for use on turfgrass.   

Wetting agents have traditionally been used to relieve soil water repellency issues 

on golf course turf referred to as LDS (Fry and Huang, 2004).  Localized dry spot 

generally occurs when the surface of the soil becomes hydrophobic, which reduces the 

capacity of water to evenly penetrate the soil surface and therefore cannot reach the roots.  

In turn, this may result in severe and premature wilting and subsequent dead areas of turf 

on greens, fairways, or tees.  Wetting agents are surfactants that can be applied to 
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hydrophobic areas to break the surface tension and allow the water to penetrate into the 

root zone.  

 In addition to reduction of LDS, wetting agents have also been shown to help 

create more uniform soil moisture content compared with untreated soils under drought 

conditions (Kostka, 2000; Soldat et al., 2010).   Previous research has also shown that 

turfgrass areas treated with wetting agents exhibited improved turf quality under drought 

conditions compared to untreated drought stressed turf (Oostindie et al, 2008, Aamlid et 

al. 2009; Soldat et al. 2010).  A survey conducted by the Golf Course Superintendent 

Association of America (GCSAA) found that approximately 90% of 18-hole golf courses 

in the United States are using wetting agents as a form of water conservation.  

Furthermore, research done on Colorado golf courses found that 85% of courses were 

using wetting agents as one way to reduce irrigation quanitity (Watson and Thilmany, 

2011). Maintaining more uniform soil moisture can allow for less irrigation while still 

maintaining turf quality (EIFG, 2007a).  Given the strong pressure on golf courses to 

reduce irrigation and water use while still maintaining high turf quality, and that a large 

number of superintendents are already using wetting agents, it is important that research 

is continued on the effectiveness of wetting agents as a management tool for water 

conservation. 
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Research Objectives 

The overall goal of this research was to evaluate different management strategies 

to help maintain turf quality under reduced irrigation. The specific objectives were as 

follows: 

(i) Compare the performance of different Agrostis species and cultivars under 

reduced irrigation. 

(ii) Evaluate the use of wetting agents for maintaining turf quality under reduced 

irrigation. 

(iii) Examine the physiological mechanisms associated with drought resistance and 

recovery traits of colonial bentgrass (A. capillaris). 

 

To meet these objectives, we designed one two-year field study as well as one 

greenhouse study.  In the field study, we evaluated eight bentgrass cultivars consisting of 

‘Revere’ and ‘Tiger II’ colonial bentgrasses, ‘Legendary’ and ‘Greenwich’ velvet 

bentgrasses, and ‘13M’, ‘T-1’, ‘L-93’, and ‘Penncross’ creeping bentgrasses, maintained 

as fairway turf under reduced irrigation, and also assessed the use of wetting agents as a 

water conservation tool.    Based on results from the field study, we then conducted a 

greenhouse study to evaluate the performance of five colonial bentgrass cultivars under 

drought stress and to examine physiological mechanisms associated with drought 

resistance traits for this species. 
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CHAPTER 2 

EVALUATION OF AGROSTIS SPECIES AND CULITVARS AND WETTING 

AGENTS TO REDUCE IRRIGATION REQUIREMENTS ON GOLF COURSE 

FAIRWAYS 

Introduction 

Water is necessary for growth and development of turfgrass and therefore 

imperative in the plant’s ability to maintain high turf quality.  As many parts of the 

country and the world are suffering from extended periods of drought, water usage is 

becoming more restricted.  Due to continued population growth particularly in urbanized 

areas, a greater strain on water supply is expected in the future.  In turn, as the demand 

for water increases, there will be greater water restrictions particularly for low priority 

usage such as turfgrass.  This is a major concern for golf courses as the average 18-hole 

golf course in the United States has approximately 70% of its land as managed turfgrass 

(greens, tees, fairways, rough, driving range, and additional grounds), which on average 

consists of approximately 40 hectares of managed turf per golf course.  Of these 40 

hectares, approximately half of that land is made up of greens, tees, and fairways, with 

fairways making up approximately 30% (EIFG, 2007).  Most greens, tees, and fairways 

are irrigated, although these areas may not be irrigated daily or always with supplemental 

irrigation.  Given the potential amount of acreage maintained as turfgrass on a golf 

course, the high cost of water, and the restrictions of water usage, it is critical that 

research is implemented to find ways to reduce irrigation of turfgrass systems.  
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One management practice that can help to maintain the general health and turf 

quality under reduced irrigation is to select the best adapted species and cultivars.  A 

widely used turfgrass genus on golf courses is Agrostis, commonly known as bentgrass.  

Although there are many different species of bentgrass, colonial bentgrass (Agrostis 

capillaris L.), velvet bentgrass (Agrostis canina L.), and creeping bentgrass (Agrostis 

stolonifera L.) are the predominant bentgrass species utilized as low-cut turf typical for 

golf courses in cool climatic regions.  Previous research has shown that there are 

differences among creeping bentgrasses, colonial bentgrasses, and velvet bentgrasses in 

turf quality under drought stress (DaCosta and Huang 2006a; DaCosta and Huang, 2007), 

as well as during recovery from drought (DaCosta and Huang, 2006b; DaCosta and 

Huang, 2007).   In addition to differences among the bentgrasses for drought resistance 

and recovery, there is also evidence for interspecific differences in other turf performance 

traits such as wear tolerance (Watkins et al., 2010; Dowgiewics et al., 2011). Watkins et 

al. (2010) evaluated 17 turfgrass species for low maintenance fairways on native soils in 

St. Paul, MN and found that colonial and velvet bentgrasses exhibited significantly higher 

turf quality compared to other species under the least amount of wear (0 passes per 

week), and with velvet bentgrass maintaining the best turf quality when exposed to the 

highest wear treatments.  Although there was a decline in the turf quality the second year, 

possibly due to the lack of a fertilizer application as well as the lower levels of 

precipitation, colonial and velvet bentgrasses maintained better turf quality compared to 

many other species in the test (Watkins et al., 2010).   In addition to interspecific 

differences among bentgrass species in turf performance under reduced irrigation, 

intraspecific differences in performance under drought conditions have also been 
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observed, although most studies have been confined to creeping bentgrass (Jordan et al., 

2003; McCann and Huang, 2008). 

As turf managers reduce irrigation on fairways there may be potential for 

increased incidence of localized dry spot (LDS), which could subsequently lead to 

difficulty in rewetting of the soil.  Therefore, in addition to proper species and cultivar 

selection, another management strategy to maintain higher TQ under reduced irrigation is 

application of surfactants, or wetting agents.  Wetting agents have been utilized to 

alleviate LDS in sand-based soils of creeping bentgrass (Kostka, 2000) and kikuyugrass 

(Pennisetum clandestinum) (Barton and Colmer, 2011).  

In addition to aiding in reduction of LDS, wetting agents have also been shown to 

create more uniform moisture content within the soil compared with untreated soils under 

reduced irrigation conditions (Kostka, 2000; Soldat et al., 2010).   Previous research has 

also shown that turfgrass areas treated with wetting agents exhibited improved turf 

quality under drought conditions compared to untreated drought stressed turf (Oostindie 

et al, 2008, Aamlid et al. 2009; Soldat et al. 2010).  Wetting agents have also been 

reported to reduce water repellency in sand-based greens composed of creeping bentgrass 

(Aamlid et al., 2009; Soldat et al., 2010) and of bermudagrasses (Cynodon spp.) (Cisar et 

al., 2000).    Oostindie et al. (2008), reported wetting agents help to alleviate LDS and 

prevent soil water repellency on sand-based fairways consisting of a mix of Festuca spp. 

and annual bluegrass (Poa annua). Increased turf quality has been linked to reduced soil 

water repellency compared to that of hydrophobic soils (Kostka 2000; Oostindie et al., 

2008; Aamlid et al., 2009; Soldat et al., 2010).  During prolonged drought events, soils 

will become dry and turf will show signs of drought stress resulting in lower turf quality.  
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If soils are allowed to dry down to the point of becoming hydrophobic, even after intense 

re-watering of the soils, it is common to have reduced turf quality due to the inability of 

the soil to re-wet (Oostindie et al., 2008; Aamild et al., 2009).  Previous research has 

shown that the application of wetting agents can alleviate LDS and also help re-wet 

hydrophobic soils (Oostindie et al, 2008, Aamlid et al. 2009; Soldat et al. 2010).  

Localized dry spot may be found in all types of soils but is most frequent in sand-based 

soils, such as found on modified greens and tees. As a result, a majority of wetting agent 

research has been conducted on sandy soils (Kostka 2000).  Fairways are rarely sand-

based but do make up large areas of the irrigated turfgrass on golf courses and are 

susceptible to hydrophobic soil conditions.   

With previous research showing that wetting agents have the ability to aid in 

increasing turf quality by alleviating LDS, reducing soil water repellency, and creating a 

more uniform wetting front in soils, and given that bentgrasses are so widely used on golf 

courses and previous research has shown differences among the species of bentgrasses 

and the cultivars of creeping bentgrass, it is important to continue research on wetting 

agents as well as investigate the potential of wetting agents to aid in the reduction of 

irrigation requirements of turfgrass and  to investigate the potential for differences 

between multiple cultivars of different species of bentgrasses.  Therefore the objectives 

of the study were to (i) compare turf performance of different species and cultivars of 

Agrostis under drought stress, and (ii) compare the effects of a wetting agent and its 

ability to improve turf quality of these species and cultivars under reduced irrigation. 
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Materials and Methods 

Plant Material and Growing Conditions 

Three species of bentgrass were used in this study, including colonial bentgrass, 

velvet bentgrass, and creeping bentgrass.  The cultivars consisted of ‘Revere’ and ‘Tiger 

II’ colonial bentgrasses, ‘Legendary’ and ‘Greenwich’ velvet bentgrasses, and ‘13M’, ‘T-

1’, ‘L-93’, and ‘Penncross’ creeping bentgrasses. Cultivars were selected to represent 

standard and improved varieties for each species.  Plants were seeded in October 2008 at 

19 g m-2 into plots measuring 1.3 m² onto a Hadley silt loam (coarse-silty, mixed, 

superactive, nonacid, mesic Typic Udifluvents) at the Joseph Troll Turf Research Center 

in South Deerfield, MA.  The turf was mowed three times per week to a height of 0.95 

cm with clippings removed. Fertilizer applications were made in May, June, September, 

and November in 2011 and 2012 to provide a total of 113 kg ha-1 of nitrogen for the 

growing season. Pesticides were applied preventatively to primarily control dollar spot 

(Sclerotinia homoeocarpa, F.T. Bennet), brown patch (Rhizoctonia solani, Kuhn), and 

black cutworm (Agrotis ipsilon (Hufnagel)). 

The experiment was conducted from June through August in 2011 and 2012 under 

a mobile rainout shelter measuring 10.7 by 20.1 m. The rainout shelter was connected to 

a data logger (CR1000, Campbell Scientific, Logan, UT) and leaf wetness sensor (Model 

257, Campbell Scientific, Logan, UT) to regulate the movement of the rainout shelter in 

response to precipitation. Consequently, all rainfall was excluded from plots to facilitate 

control of the irrigation treatments.  
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Treatments 

The experiment consisted of a split plot design, with irrigation as the main plot 

and cultivar as the sub-plot.  There were four replicates of each irrigation and cultivar 

combination, for a total of 96 plots.  The irrigation treatments consisted of (i) a well-

watered (WW) control irrigated to maintain soil at field capacity (approximately 33 to 

35%% soil moisture content, v/v) and received no wetting agent treatment, (ii) a drought 

(DRT) treatment that received no irrigation and no wetting agent, and (iii) a drought 

treatment that received no irrigation plus a wetting agent (DRT+WA).  An experimental 

wetting agent (Aquatrols Corp., Paulsboro, NJ) was mixed with tap water at a 

concentration of 2.175 mL L-1 and was applied at a rate of 1.75 L ha-1 using a CO₂ 

backpack sprayer.  The wetting agent was applied twice prior to the start of the 

experiment, 23 June and 5 July in 2011, and 15 June and 5 July 2012. Following each 

application, the wetting agent was watered into the turf canopy and soil using 

approximately 0.64 cm of irrigation.  Following the second wetting agent application, 

water was withheld from both the DRT and DRT+WA plots for the remainder of the 

experiment.  Well-watered plots were individually irrigated using hand-held hose with a 

fan-spray nozzle, and water quantity was monitored using a digital flow meter 

attachment. Irrigation amounts were replaced on WW plots two to three times per week 

based on the evapotranspiration estimates from an onsite weather station.  Additional 

climatic data during the experiment were also recorded, including daily temperature and 

rainfall (Fig. 2.1).  
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Measurements 

Volumetric soil moisture content was measured either weekly or bi-weekly during 

the study using time domain reflectometry (Trase System I, Soilmoisture Equipment 

Corp., Santa Barbara, CA).  Probes that measured 15 cm in length were vertically placed 

into the soil profile at two random locations in each plot, which were then averaged 

together to attain one volumetric soil moisture reading per plot. 

Turf quality (TQ) was measured bi-weekly using a visual rating scale based on 

overall color, density, and uniformity.  The ratings were based on a scale from 1 to 9, 

with 9 being best TQ consisting of a green canopy and no wilting, 6 being acceptable 

with some browning, and 1 being completely brown and desiccated turf.   

In addition to visual estimation of turf quality, canopy reflectance indices were 

measured using a Multispectral Radiometer (Cropscan, Inc. Rochester, MN) to provide 

additional detection of canopy color and density changes prior to visual declines in these 

parameters (Johnsen et al., 2009; Jiang, 2008). Measurements were taken biweekly on 

clear sunny days between 1100 h and 1300 h.  Normalized difference vegetation index 

(NDVI), which is used to measure green leaf biomass or color, and leaf area index (LAI), 

which is used to measure turf canopy density, were calculated using near infrared, 940 

nm, and red, 660 nm wavebands.   The NDVI was calculated as ((940-660)/(940-660)), 

and LAI was calculated as (940/660). 

Thatch measurements were taken twice, once at the end of each season. Cores 

were mechanically removed with an aerator using 0.95 cm diameter tines. Cores were 

collected and combined from all blocks and placed into separate paper bags based on 

irrigation treatment (WW and DRT) and on cultivar, giving us a total of 16 bags.  All 
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green tissue, roots, and soil were removed from the thatch using scissors and put into an 

oven at 70°C for 24h.  The dried thatch samples where then weighed and then put into a 

muffle furnace at 500°C overnight.  The ashes of the thatch samples were weighed again 

and organic content was calculated as (dry weight – ashed weight). In 2012, thatch levels 

were compared between WW and DRT plots and no difference in thatch accumulation 

based on the irrigation treatment was detected (data not shown).   

 

Experimental Design and Statistical Analysis 

The experiment was set up as a split plot design.   Results were determined by 

analysis of variance using SAS version 9.2 (SAS Institute Inc. Cary, NC).  Means were 

separated by the Fisher’s least significant difference at the 0.05 probability level. The 

main effect of irrigation and cultivar as well as the interaction of the main effects were as 

single degree of freedom orthogonal contrasts. 

 

Results 

Soil Moisture 

For both years of the study, soil moisture content was significantly affected by the 

irrigation main effect. In contrast, there were no significant cultivar or irrigation × 

cultivar effects on soil moisture in either year.  In 2011, differences in soil moisture 

content between irrigation treatments were detected by 26 Jul (21 d of treatment), when 

the WW plots exhibited significantly higher soil moisture content compared to both the 

DRT and DRT+WA treatments (Fig. 2.2).  These differences remained consistent 
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throughout the remainder of the experiment, with WW plots maintaining approximately 

32.8% soil moisture, and DRT and DRT+WA plots maintaining approximately 29.8% 

soil moisture content. There were no statistical differences in soil moisture content in 

between DRT and DRT+WA treatments.  Similar results were also observed for in 2012, 

where differences in soil moisture content between irrigation treatments were detected by 

13 Jul (8 days of treatment), when WW plots exhibited significantly higher soil moisture 

content than the DRT and the DRT+WA treatments and remained higher throughout the 

study (Fig.2.2).  As in 2011, there were no statistical differences in soil moisture content 

between the DRT and the DRT+WA treatments. 

In 2011, based on single degree of freedom contrasts, there were some differences 

in soil moisture content detected among the cultivars.  Beginning on 23 Aug (49 d of 

treatment) and continuing throughout the study, T-1 had overall higher soil moisture 

content than 13M.  With the exception of 26 Jul (21 d of treatment) and 23 Aug (49 d of 

treatment), one or both colonial bentgrass cultivars (Tiger II and Revere) exhibited 

significantly higher soil moisture than Legendary velvet bentgrass.  In 2012, there were 

no statistical differences in soil moisture content among cultivars. 

 

Turf Quality 

There were significant irrigation and cultivar main effects detected for TQ in both 

2011 and 2012, and only one date with significant irrigation × cultivar interaction in 

either year. In 2011, WW plots exhibited significantly higher TQ compared to both the 

DRT and DRT+WA treatments by 2 Aug (28 days of treatment), and remained higher 
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throughout the study (Fig. 2.3).   There were no statistical differences in TQ between the 

DRT and the DRT+WA treatments.  Similar to 2011, WW plots exhibited significantly 

higher TQ compared to DRT and DRT+WA beginning 24 Jul (19 days of treatment) 

2012, with no differences in TQ between the DRT and DRT+WA treatments (Fig. 2.3).   

In addition to main effects for irrigation, a significant cultivar main effect was 

observed in 2011. By 2 Aug (28 days of treatment) and throughout the remainder of the 

study, TQ of Legendary velvet bentgrass was significantly lower compared to all other 

cultivars, with the TQ level falling below 6 (Fig. 2.4).  In addition, TQ of Greenwich 

velvet bentgrass also declined throughout the study, but was generally not significantly 

different than Penncross creeping bentgrass. T-1 exhibited significantly higher in quality 

compared to creeping bentgrass cultivars L-93 and Penncross, while not statistically 

different from Tiger II and Revere colonial bentgrasses.  In 2012, the colonial bentgrass 

cultivars were among the best in TQ by 24 July (19 days of treatment), with Tiger II 

having significantly better TQ than all other cultivars and equal to that of Revere (Fig. 

2.4).  By 9 Aug (35 days of treatment), colonial bentgrass cultivars had significantly 

higher TQ than all other cultivars throughout the remainder of the study.  There were no 

significant differences in TQ among creeping and velvet bentgrasses observed throughout 

most of the season in 2012; however, similar to results of 2011, Legendary velvet 

bentgrass generally exhibited the lowest TQ among cultivars. Furthermore, other than 

Legendary velvet bentgrass, the average TQ of cultivars did not fall below 6 in either 

year. 

Although only irrigation × cultivar interaction detected was 18 Aug (44 days of 

treatment) in 2011, contrast interactions for both years of the study did detect differences 
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among the colonial and velvet bentgrasses when comparing WW and DRT plots.  In 

2011, beginning on 18 Aug (44 days of treatment) and continuing for the remainder of 

the study, Legendary under DRT treatment had lower TQ than all other colonial 

bentgrasses and Greenwich regardless of WW or DRT treatment. In 2012 starting 24 Jul 

(19 days of treatment) and continuing through 9 Aug (35 days of treatment) both 

Legendary and Greenwich under DRT were statistically lower than these same cultivars 

under WW conditions, and all colonial bentgrasses under both WW and DRT treatment.  

Beginning on 15 Aug (41 days of treatment) and continuing for the rest of the study, 

Legendary under DRT treatment was statistically lower than all colonial and velvet 

bentgrasses under WW and DRT with the exception of Greenwich under DRT treatment. 

 

Leaf Area Index 

There were significant irrigation and cultivar main effects detected for leaf area 

index (LAI) in both 2011 and 2012, and no significant irrigation×cultivar interaction in 

either year. In 2011, WW treatments exhibited significantly higher LAI compared to both 

the DRT and DRT+WA treatments by 28 Jul (23 days of treatment) with no significant 

differences between DRT and DRT+WA treatments (Fig. 2.5).  Although a similar trend 

was observed in 2012, statistical differences in LAI between WW and DRT and 

DRT+WA were only observed on 21 Aug (47 days of treatment) (Fig. 2.5).   

Significant differences in LAI among cultivars were detected in both years of the 

study, regardless of irrigation treatment. In 2011, beginning on 28 Jul (23 days of 

treatment) and through 19 Aug (45 days of treatment), Tiger II and Revere colonial 
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bentgrasses exhibited significantly lower LAI compared to all other cultivars (Fig. 2.6). 

Creeping bentgrass cultivars generally exhibited the highest LAI, particularly T-1, with 

velvet bentgrass cultivars intermediate in LAI between creeping bentgrass and colonial 

bentgrass cultivars.   Similar results were observed in 2012. For example, beginning on 

12 Jul 2012 (7 days of treatment) and continuing throughout the study, both colonial 

bentgrass cultivars exhibited significantly lower LAI than all other cultivars (Fig. 2.6).  

Starting on 12 Jul (7 days of treatment) and throughout the study T-1, 13M, and 

Penncross creeping bentgrasses were among the highest in LAI, but not significantly 

different from one another.    By 15 Aug (41 days of treatment) and throughout the 

remainder of the study T-1 was significantly higher than all other cultivars except for 

Penncross and 13M.  

 

Normalized Difference Vegetation Index 

There were significant irrigation and cultivar main effects detected for normalized 

difference vegetation index (NDVI) in both 2011 and 2012, whereas no significant 

irrigation x cultivar interactions was observed. In 2011, WW plots exhibited significantly 

higher NDVI compared to both the DRT and the DRT+WA treatments by 12 Aug (38 d 

of treatment) (Fig. 2.7).  There were no statistical differences in NDVI between the DRT 

and the DRT+WA treatments.  Similarly in 2012, WW plots exhibited significantly 

higher NDVI than both the DRT and the DRT+WA plots (Fig. 2.7).   

Beginning on 28 Jul 2011 (23 days of treatment) and continuing throughout the 

study, Greenwich velvet bentgrass had significantly higher NDVI compared to all other 



22 
 

cultivars, except on 19 Aug (45 days of treatment) when NDVI for this cultivar was not 

significantly different from that of Legendary velvet bentgrass (Fig. 2.8).  In contrast, 

creeping bentgrass cultivars, particularly Penncross, exhibited the lowest NDVI.  Similar 

results were observed in 2012, although greater separation of cultivars was detected.  In 

general, velvet bentgrass cultivars exhibited the highest NDVI, with colonial bentgrass 

cultivars intermediate, and creeping bentgrass cultivars with the lowest NDVI (Fig. 2.8).  

For example, by 12 Aug (38 days of treatment) and continuing until 19 Aug (45 days of 

treatment), Penncross creeping bentgrass had lower NDVI compared to all other 

cultivars.      

 

Thatch Accumulation 

The cultivars exhibited differences in thatch accumulation, which was consistent 

across both years of the study. Greenwich and Legendary velvet bentgrass cultivars 

accumulated significantly higher levels of thatch compared to all other cultivars (Fig. 

2.9).  The velvet bentgrasses averaged a dry weight of 2.5g in 2011 and 2.7g in 2012, 

whereas the other colonial and creeping bentgrasses collectively averaged approximately 

1.8g in both years.  In 2011, 13M creeping bentgrass had a higher thatch accumulation 

compared to other creeping bentgrass cultivars, but in 2012 there were no differences in 

thatch accumulation among the creeping bentgrass cultivars.  In general, colonial 

bentgrass cultivars exhibited similar thatch accumulation to creeping bentgrass cultivars.  
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Discussion 

In both years of the study, withholding irrigation in the DRT and DRT+WA 

treatments resulted in a significant decline in soil moisture content compared to WW 

plots.   As a result, there were also a decline in visual TQ, canopy color (NDVI), and 

density (LAI) for plots exposed to DRT and DRT+WA.  The application of a wetting 

agent prior to withholding irrigation did not result in higher soil moisture content or TQ 

for the turfgrasses evaluated in our study. This is contrary to previous results reported on 

‘A-4’ creeping bentgrass green, where applications of surfactants increased the TQ and 

soil water content as compared to untreated soils (Aamlid et al., 2009).  Another study 

conducted on fairways consisting of mixed fescue species (Festuca spp.) and annual 

bluegrass (Poa annua L.) found that soil surfactants increased volumetric water content of 

the soil as well as TQ (Oostindie et al., 2008). One potential reason for the lack of 

differences between the DRT and DRT+WA treatments may be attributed to the soil type 

in our study, which consisted of a silt loam that showed no hydrophobic characteristics 

prior to the study.  Much of the previous research that had shown that turfgrass areas 

treated with wetting agents exhibited improved TQ under drought conditions compared to 

untreated drought stressed turf were conducted primarily on soils exhibiting hydrophobic 

characteristics (Oostindie et al, 2008, Aamlid et al. 2009; Soldat et al. 2010).  Our results 

are similar to that reported by  Mobbs et al. (2012), where they observed no significant 

effects of four different soil surfactants on water holding capacity of two soil types, 

including a silt loam that was not hydrophobic (Mobbs et al., 2012).  Although the DRT 

and DRT+WA plots received no water for over 50 days, the volumetric soil moisture 

content was maintained at approximately 27 to 29%. Although declines in TQ were 
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observed under reduced irrigation, TQ levels did not decline below 6, other than for 

Legendary velvet bentgrass.  Given that the WW plots were maintained at approximately 

33% soil moisture, it is possible that the soil moisture levels of our DRT treatment were 

not allowed to drop low enough to cause significant drought stress levels. 

In addition to conducting the study on a generally hydrophilic soil, another 

potential reason for lack of significant wetting agent effect on turf performance under 

reduced irrigation may be attributed to pre-applications of the wetting agent rather than 

applying the product throughout the experiment. In other studies evaluating the effects of 

wetting agents on turfgrass, applications were made throughout the season on a three to 

four week basis (Kostka 2000, Oostindie et al. 2008, Soldat et al. 2010).  Because wetting 

agents must be watered in and considering the amount of time it takes for the soil on our 

experimental site to dry down, applications after the incitation of drought treatments were 

avoided. It is possible that multiple applications throughout the study could have 

improved the capacity of the wetting agent to improve TQ under reduced irrigation, but 

this requires further investigation.  

When comparing the responses of bentgrass cultivars to reduced irrigation, we 

found that velvet bentgrasses ranked among the lowest in TQ.  This low level of TQ 

could be attributed to the excessive thatch accumulation of the velvet bentgrasses in this 

study.  The current study was conducted on a three-year old stand of established grasses 

that had not been intensively managed for organic matter accumulation. This lack of 

cultivation is consistent with our study’s objective to research low maintenance fairways 

but allowed for significant thatch accumulation, specifically higher levels in the velvet 

bentgrasses. During preliminary TQ measurements in the years prior to the study, velvet 
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bentgrass ranked among the highest (data not shown). Also, throughout the establishment 

of the plots as well as during Spring and Fall seasons of the study, the plots were 

fertilized with high levels of N.   Velvet bentgrasses have shown to establish well under 

high levels of N but if these levels are maintained, high levels of thatch are accumulated 

(Espevig et al., 2012).  Higher thatch levels result in a greater portion of a plant’s roots in 

the thatch layer as appose to in the soil.  This section of rooting would then be more 

susceptible to faster dry down and be more susceptible to injury during mowing which 

can all lead to a decline in TQ.   

In contrast to performance of velvet bentgrass, Revere and Tiger II colonial 

bentgrass cultivars ranked among the highest in TQ in our study.  Colonial bentgrasses 

have been suggested for use on fairways and tees because of their preferred mowing 

height of 1.0 to 2.5 cm (Casler and Duncan, 2003).  They have also been suggested for 

their use in low maintenance fairways, more so due to rapid recovery from drought stress 

rather than maintenance of TQ under drought stress (DaCosta et al., 2006; Watkins et al., 

2010).   The silt loam soil used in this study provided a very slow dry down, only 

allowing the non-irrigated treatments to reach a soil moisture level of 27 to 29%.  This 

soil moisture content may not have been sufficiently low to induce drought dormancy 

typically seen in colonial bentgrasses, therefore allowing the colonial bentgrass cultivars 

to maintain high levels of TQ. We also observed that among the creeping bentgrass 

cultivars, T-1 generally exhibited higher TQ compared to other cultivars, particularly 

compared to Penncross creeping bentgrass 

Based on results from previously published studies, we expected for both NDVI 

and LAI to estimates from canopy reflectance measurements to be associated with visual 
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TQ evaluations (Johnsen et al., 2009; Jiang, 2008). However, colonial bentgrass cultivars 

ranked among the lowest for LAI (canopy density) while still maintaining high TQ.  In 

addition, Legendary velvet bentgrass ranked among the highest for NDVI (canopy color) 

but lowest in TQ. The lack of close association between TQ and canopy reflectance 

indices could be due to variation between species in genetic color, density, and leaf 

texture. Differences among species and cultivars have been shown to result in different 

reflectance in both red and NIR, therefore affecting the results of NDVI and LAI (Bremer 

et al. 2011a, b). For example, colonial bentgrasses ranked among the lowest for LAI but 

exhibited high TQ.  Furthermore, Legendary velvet bentgrass ranked among the highest 

for NDVI but lowest in TQ.  

 Among the cultivars evaluated in the study, we found that colonial bentgrass 

cultivars exhibited good TQ under reduced irrigation either similar to better to that of 

improved creeping bentgrass cultivars. Although other studies have shown velvet 

bentgrasses to have high levels of drought tolerance, the high level of thatch 

accumulation for Greenwich and Legendary velvet bentgrasses resulted in significantly 

reduced TQ. When comparing the creeping bentgrasses, recently improved cultivar, T-1, 

showed higher TQ under drought stress as compared with older cultivars such as 

Penncross.  Lastly, the use of a wetting agent did not result in any improvement of TQ 

under reduced irrigation, potentially due to the lack of hydrophobic soil in our study. 
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Figure 2.1. Daily average temperature (C°) (upper graph) and rainfall (mm) (lower graph) 
for 2011 and 2012. 
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Figure 2.2.   Volumetric soil moisture content of plots exposed to well-watered (WW), 

drought (DRT), and drought with wetting agent (DRT+WA) conditions in 2011 (upper 

graph) and 2012 (lower graph). Data were averaged over the eight cultivars. Vertical bars 

represent LSD values at the P ≤ 0.05 level for treatment comparisons at each day of 

measurement. 
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Figure 2.3. Turf quality (TQ) rating of plots exposed to well-watered (WW), drought 

(DRT), and drought with wetting agent (DRT+WA) conditions in 2011 (upper graph) and 

2012 (lower graph). Data were averaged over the eight cultivars. Turf quality was rated 

on a 1 to 9 scale, with 9 representing the best TQ comprised of green color and no 

wilting, 6 being acceptable TQ but with some browning, 1 being completely brown and 

desiccated turf.   Vertical bars represent LSD values at the P ≤ 0.05 level for treatment 

comparisons at each day of measurement. 
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Figure 2.4. Turf quality (TQ) rating of eight bentgrass cultivars in 2011 (upper graph) and 

2012 (lower graph), including Penncross, L-93, 13M, and T-1 creeping bentgrasses, Tiger 

II and Revere colonial bentgrasses, and Legendary and Greenwich velvet bentgrasses. 

Data were averaged over three irrigation treatments. Turf quality was rated on a 1 to 9 

scale, with 9 representing the best TQ comprised of green color and no wilting, 6 being 

acceptable TQ but with some browning, 1 being completely brown and desiccated turf.   

Vertical bars represent LSD values at the P ≤ 0.05 level for treatment comparisons at 

each day of measurement. 
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Figure 2.5. Changes in leaf area index (LAI), used as a measure of canopy density, of 

plots exposed to well-watered (WW), drought (DRT), and drought with wetting agent 

(DRT+WA) conditions in 2011 (upper graph) and 2012 (lower graph). Data were 

averaged over the eight cultivars. The LAI was calculated based on the spectral 

reflectance ratio of infrared, 940 nm, and red, 660 nm wavebands.   Vertical bars 

represent LSD values at the P ≤ 0.05 level for treatment comparisons at each day of 

measurement. 

 

  

Le
a

f 
a

re
a

 in
d

e
x 

Dates of Treatment

56

58

60

62

64

66

68

70

72

7/11 7/18 7/25 8/1 8/8 8/15 8/22

WW DRT DRT + WA

56

58

60

62

64

66

68

70

72

7/5 7/12 7/19 7/26 8/2 8/9 8/16 8/23 8/30

WW DRT DRT + WA 2011

2012



32 
 

Figure 2.6.  Changes in leaf area index (LAI) of eight bentgrass cultivars in 2011 (upper 

graph) and 2012 (lower graph), including Penncross, L-93, 13M, and T-1 creeping 

bentgrasses, Tiger II and Revere colonial bentgrasses, and Legendary and Greenwich 

velvet bentgrasses. Data were averaged over three irrigation treatments. The LAI was 

calculated based on the spectral reflectance ratio of infrared, 940 nm, and red, 660 nm 

wavebands.    Vertical bars represent LSD values at the P ≤ 0.05 level for treatment 

comparisons at each day of measurement. 
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Figure 2.7.  Changes in normalized difference vegetation index (NDVI), used as a 

measure of canopy color, of plots exposed to well-watered (WW), drought (DRT), and 

drought with wetting agent (DRT+WA) conditions in 2011 (upper graph) and 2012 

(lower graph). Data were averaged over the eight cultivars. The NDVI was calculated 

based on the spectral reflectance of near infrared, 940 nm, and red, 660 nm wavebands.  

Vertical bars represent LSD values at the P ≤ 0.05 level for treatment comparisons at 

each day of measurement.  
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Figure 2.8.  Changes in normalized difference vegetation index (NDVI), used as a 

measure of canopy color, of eight bentgrass cultivars in 2011 (upper graph) and 2012 

(lower graph), including Penncross, L-93, 13M, and T-1 creeping bentgrasses, Tiger II 

and Revere colonial bentgrasses, and Legendary and Greenwich velvet bentgrasses. Data 

were averaged over three irrigation treatments.  The NDVI was calculated based on the 

spectral reflectance of near infrared, 940 nm, and red, 660 nm wavebands. Vertical bars 

represent LSD values at the P ≤ 0.05 level for treatment comparisons at each day of 

measurement.  
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Figure 2.9. Thatch dry weight for the cultivar main effect for both 2011 and 2012. Bars 

represent LSD at the P ≤ 0.05 level for each day of measurement. 
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CHAPTER 3 

EVALUATION OF DROUGHT RESISTANCE AND RECOVERY POTENTIAL 

AMONG COLONIAL BENTGRASS CULTIVARS 

Introduction 

 As many parts of the country and the world are suffering from extended 

periods of drought, water usage is becoming more restricted (Hollister, 2010). Due to 

continued population growth, particularly in urbanized areas, a greater strain on water 

supply is expected in the future.  As the demand for water increases, there will be greater 

water restrictions particularly for low priority usage such as turfgrass.  As water usage 

becomes more restricted, it is important that research is done on turf grasses that have 

potential for good drought resistance as well as potential for good recovery from drought 

stress.     

A widely used turfgrass genus on golf courses in the northeast is Agrostis, 

commonly known as bentgrass.  Although there are many different species of bentgrass, 

colonial bentgrass (Agrostis capillaris L.), velvet bentgrass (Agrostis canina L.), and 

creeping bentgrass (Agrostis stolonifera L.) are the predominant bentgrass species 

utilized as golf course turf.  Within the species there are differences among the cultivars, 

such as genetic leaf color and resistance to both abiotic and biotic stresses.  For example, 

previous research has shown inter- and intra-specific differences in wear tolerance among 

bentgrasses (Dowgiewicz et al., 2011), as well as differences in susceptibility to diseases 

such as dollar spot (Ryan et al., 2012).  Previous research has also shown that there are 

differences in drought resistance among the three bentgrass species (DaCosta and Huang 
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2006a; DaCosta and Huang, 2007a), as well as within cultivars of creeping bentgrass 

(McCann and Huang, 2008).  To date, though, there is limited information available on 

the variability of drought resistance and water use among cultivars of colonial bentgrass.    

Colonial bentgrasses (Agrostis capillaris L.) are rarely used on greens, given the 

preferred height of cut range is 0.8 to 2 cm, and therefore are better adapted for tees and 

fairways (Turgeon, 2005).  Although creeping bentgrass is the most widely used turfgrass 

on fairways and tees in the northeastern United States (EIFG, 2007), colonial bentgrasses 

are well adapted to the cool and humid regions of New England (Turgeon, 2005). In 

addition, previous research has shown colonial bentgrass may be better suited for low 

input fairways compared to creeping bentgrass (Watkins et al., 2010). Watkins et al. 

(2010) reported that although colonial bentgrass exhibited drought-induced dormancy, 

resulting in a lower turf quality under summer conditions compared to other species of 

bentgrasses, the species also recovered rapidly at the end of the summer stress period.  

Similarly, colonial bentgrass maintained as a fairway turf exhibited more rapid recovery 

from drought compared to other bentgrass species (DaCosta and Huang, 2006b; DaCosta 

and Huang, 2007b).  

Earlier research comparing colonial bentgrasses to other bentgrasses has been 

limited in the number of cultivars evaluated (only one cultivar in the research published 

by DaCosta et al., 2006, and one cultivar in the Watkins et al., 2010). Therefore 

investigation of additional cultivars of colonial bentgrasses and their potential for reduced 

irrigation environments should be studied.  Little is known about the differences among 

cultivars of colonial bentgrasses under drought stress or their comparative ability to 

recover from drought stress.  Therefore, the objectives of this study were to compare the 
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performance of different colonial bentgrass cultivars under reduced irrigation, and to 

examine the physiological mechanisms associated with drought resistance and recovery 

traits of colonial bentgrass. 

Materials and Methods 

Plant Materials and Growing Conditions 

The study was conducted in the CNS Research and Education Greenhouse at the 

University of Massachusetts, Amherst.  There were five cultivars of colonial bentgrass 

selected for evaluation, including ‘Barking’, ‘Capri’, ‘Greentime’, ‘Revere’, and ‘Tiger 

II’.  The grasses were planted into pots (10 cm in diameter, 36 cm in height) containing 

USGA sand comprised of  90% sand, 8% silt, and 2%.  Grasses were seeded on 28 

August  2012 at a rate of 19 g m-2.  The plants were watered on a daily basis during 

establishment and fertilized once per week with Hoagland solution (Hoagland and Arnon, 

1950).  The greenhouse was maintained at 18/15°C (day/night temperatures), 12 h of 

photoperiod, and photosynthetic photon flux density of 600 µmol m-2 s-1.   

 

Treatments 

The experiment consisted of two treatments, including (i) well-watered control 

(WW) which was irrigated three times per week to maintain plants at pot capacity, and 

(ii) drought (DRT) which received no irrigation once the study began.  At the start of the 

experiment all plants were watered to pot capacity (approximately 14% volumetric 

moisture content) prior to commencing treatments.  Fertilizer was withheld from all 

plants during the experiment.    
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Measurements 

Soil moisture measurements were taken weekly during the study.   Within each 

pot, a 20 cm buriable probe was installed vertically and measurements were taken with 

the MiniTrase System (Soilmoisture Equipment Corp., Santa Barbara, CA) using time 

domain reflectometry (TDR) and expressed as volumetric soil moisture content (v/v).   

Turf quality (TQ) was measured throughout the study using a visual rating scale.  

Turf quality was rated on uniformity, density, and color based on a scale from 1 to 9, with 

9 representing the highest TQ (green canopy and no wilting), 6 being the minimal 

acceptable TQ with some browning, and 1 representing completely brown and desiccated 

turf.    

Leaf relative water content (RWC) was measured weekly during the study based 

on the method previously described by Barrs and Weatherley (1962).  Clippings from 

each pot were removed (approximately 300 mg) and recorded as fresh weight (FW).  The 

clippings were then placed in a covered Petri dish and floated in distilled water for 18 to 

24 hours.  The clippings were then removed from the water, blotted dry and weighed, 

which was recorded as the turgid weight (TW).  The clippings were then transferred into 

coin envelopes and placed in the oven at 70°C and dried for a minimum of 3 days prior to 

recording the tissue dry weight (DW).  The leaf RWC was then calculated as [(FW-

DW)/(TW-DW)]*100.   

Plants were destructively harvested for root biomass determination at three times 

throughout the study representing pre-stress, moderate, and severe drought stress periods.   

Levels of drought stress were visually assessed based on turf quality, with moderate 
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drought stress defined as turf leaves showing early symptoms of wilting and loss in color 

and severe drought stress as leaf firing, browning and permanent wilting.  Roots were 

washed free of soil and placed in an oven at 70°C.  After drying for a minimum of 3 d, 

roots were weighed for dry weight determination. At severe drought stress, crowns were 

also harvested for carbohydrate analysis. Individual crowns were harvested (stems and 

roots removed) and dried in an oven at 70°C.  Crowns were then ground and sieved 

through a 20 mesh sieve.  These samples were then used to determine the total soluble 

sugars according to the methods previously described by Fu and Dernoeden (2009).   

To examine the extent of recovery of grasses following severe drought stress, an 

additional group of plants subjected to DRT treatment were trimmed down to leaf bases 

and then re-watered to pot capacity as needed at the end of the study. Pots were evaluated 

on a weekly basis for percent recovery based on leaf regrowth capacity for three weeks. 

 

Experimental Design and Statistical Analysis 

Plants were arranged in a randomized split-block design with irrigation level as 

the main plot and cultivar as the sub-plot.  There were four blocks, each containing WW 

and DRT treatments.  The effects of water treatment, cultivar, and corresponding 

interactions were determined by analysis of variance according to the general linear 

model procedure of the Statistical Analysis System version 9.2 (SAS Institute, Cary, 

N.C.).  Differences between treatment means were separated by Fisher’s least 

significance (LSD) test at the 0.05 probability level. 

 



43 
 

Results and Discussion 

 

There was a significant main effect for both irrigation level and cultivar for soil 

moisture content, but no irrigation x cultivar interaction.  Following 6 d of treatment, 

WW plants exhibited significantly higher soil moisture content compared to plants 

exposed to DRT treatment (Fig. 3.1). These differences were maintained throughout the 

remainder of the study.  The WW treatments, on average, had a soil moisture content of 

13.7% throughout the study, whereas soil moisture of plants exposed to DRT declined to 

approximately 2% by 35 d of treatment.  

When comparing soil moisture of cultivars averaged over irrigation treatment, 

Barking and Revere generally maintained higher soil moisture content compared to 

Greentime (Fig. 3.2). Although soil moisture content of plants exposed to DRT treatment 

began to decline as early as 6 days of the treatment, declines in TQ were only observed 

following 16 d of treatment, coinciding with an average soil moisture content of 6% (Fig. 

3.3). Although there were significant differences in TQ between the DRT and WW 

treatments beginning on day 16, the DRT treatment TQ did not drop below 6 until 31 

days of treatment, when the soil moisture content for DRT plants was approximately 3%. 

All five cultivars responded similarly to treatments, with differences in TQ being 

primarily observed at 31 days of treatment, when Revere exhibited lower TQ compared 

to other cultivars (Fig. 3.4). There were no interactions between irrigation level x cultivar 

for TQ. 

Under drought stress, higher levels of RWC are associated with the ability of the 

plant to stay turgid and maintain higher levels of photosynthetic activity.  Based on the 
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significant irrigation main effect, differences in RWC between WW and DRT treatments 

were not detected until 27 days of treatment (Fig. 3.5). This difference in RWC coincided 

with a decline in TQ of the DRT treatment below the acceptable rating of 6 at 31 d of 

treatment. The only day we observed differences in RWC for the main effect of cultivar 

was at 22 d of treatment, when Barking exhibited a lower RWC compared to Tiger II, 

Greentime, and Revere. This difference in RWC is similar to the decline in TQ for 

Barking where on day 16 days of treatment, Barking had significantly higher TQ than all 

other cultivars but by day 22 Barking had dropped in TQ  from an 8.6 to a 7.6 and there 

were no longer significant differences among cultivars.  This is similar to what we have 

seen in other studies where higher measurements of RWC have been positively linked to 

higher TQ under drought conditions (DaCosta and Huang, 2007b; McCann and Huang, 

2008; Jiang et al., 2009).  When comparing the means of irrigation x cultivar interaction 

at 27 d of treatment, Revere, Barking, and Tiger II exposed to DRT all had significantly 

lower leaf RWC compared to their respective WW plants. In contrast, Capri and 

Greentime exposed to DRT treatment did not significantly differ in leaf RWC compared 

to under WW conditions (Fig. 3.6). 

Turfgrasses utilize different physiological mechanisms in order to maintain high 

water content in their tissues, such as increases in root mass and distribution to help 

increase water uptake.  For example, deeper rooting in lower portions of the soil profile 

has been positively correlated with improved drought avoidance in tall fescue (Festuca 

arundinaceae Shreb.) cultivars (Huang and Gao, 2000). In this study, prior to the onset of 

drought stress there were no significant differences in rooting dry weight among 

treatments (Fig.3.7). However, at moderate and severe drought stress (27 and 36 days of 
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treatment, respectively) plants exposed to DRT had significantly lower root dry weight 

compared to WW plants. When comparing cultivars for root dry weight, Barking had 

significantly greater rooting under moderate stress (27 days of treatment) compared to 

other cultivars, whereas Capri had the lowest root dry weight (Fig. 3.8).  By day 27 there 

were no differences between the main effect of cultivar for TQ or RWC.  Although, 

Barking had the highest soil moisture content on day 20, it was only significantly 

different from Capri; there were no differences in soil moisture as of day 27.   We also 

observed a significant interaction for irrigation x cultivar, were Barking and Tiger II 

under WW conditions had significantly higher dry root weight than other treatment 

combinations (Fig. 3.9). 

We did not observe differences in total soluble sugars levels of the crown tissue 

based on the main effects of irrigation, cultivar, or the interaction of irrigation x cultivar.  

When comparing treatment means we did observe an overall trend for a higher soluble 

sugar content for DRT compared to WW pots; however this was not statistically 

significant except for Greentime (Fig. 3.10).   

Recovery levels have been shown to vary among cultivars of tall fescue (Karcher 

et al., 2008), as well as Poa species (Abraham et al., 2004). In both these studies 

turfgrasses that maintained green leaf tissue longer under drought stress also had faster 

green up and recovery levels after re-watering.  In contrast, previous research comparing 

the responses of three bentgrass species to reduced irrigation reported that colonial 

bentgrass did not maintain the highest TQ under drought stress, but exhibited the most 

rapid recovery (DaCosta and Huang, 2006b; DaCosta and Huang, 2007a).  In the current 

study we observed differences in recovery of colonial bentgrass cultivars from drought 
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stress.  Capri exhibited significantly lower recovery levels compared to all other cultivars 

at 3, 14, 17, and 21 d of rewatering (Fig. 3.10).  In contrast, Tiger II had significantly 

higher recovery than all other cultivars by 3 d of re-watering, with the exception of 

Barking from which it was not significantly different.  By 17 days of re-watering, Tiger II 

and Barking exhibited significantly higher recovery compared to Greentime. 

In conclusion, when exposing five colonial bentgrass cultivars to drought stress, 

Barking initially maintained higher level of soil moisture and a higher TQ compared to 

other cultivars.  At moderate periods of drought stress (22 to 27 d of treatment), Tiger II, 

Revere, and Barking exhibited significantly lower RWC compared to Capri and 

Greentime.  These physiological differences in responses during DRT treatments may 

subsequently impact recovery potential, as Tiger II and Barking ranking among the 

highest in recovery levels and Capri and Greentime among the lowest.  Therefore, it is 

suggested that drought-induced dormancy in colonial bentgrass aids in more rapid 

recovery from water stress.  
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Figure 3.1. Volumetric soil moisture content of the irrigation main effect of well watered 

(WW) and drought (DRT) treatments. Bars represent LSD at the P ≤ 0.05 level for each 

day of measurement. 
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Figure 3.2. Volumetric soil moisture content of the cultivar main effect consisting of five 

Colonial bentgrasses cultivars. Bars represent LSD at the P ≤ 0.05 level for each day of 

measurement. 
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Figure 3.3. Turf quality rating of the irrigation main effect of well watered (WW) and 

drought (DRT) treatments. Turf quality rating is done visually based of uniformity, 

density, and color.  The measurements are on a scale from 1 to 9, 9 being best with a turf 

stand of all green color and no wilting, 6 being acceptable but with some browning, and 

below 6 is not acceptable quality with 1 being completely dead.   Bars represent LSD at 

the P ≤ 0.05 level for each day of measurement. 
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Figure 3.4. Turf quality rating of the cultivar main effect consisting of five colonial 

bentgrass cultivars. Turf quality rating is done visually based of uniformity, density, and 

color.  The measurements are on a scale from 1 to 9, 9 being best with a turf stand of all 

green color and no wilting, 6 being acceptable but with some browning, and below 6 is 

not acceptable quality with 1 being completely dead.   Bars represent LSD at the P ≤ 0.05 

level for each day of measurement. 
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Figure 3.5. Leaf relative water content of the irrigation main 

and drought (DRT) treatments. Bars represent LSD at the P 

measurement. 
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Leaf relative water content of the irrigation main effect of well water

and drought (DRT) treatments. Bars represent LSD at the P ≤ 0.05 level for each day of 

effect of well watered (WW) 

 0.05 level for each day of 
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Figure 3.6.  Leaf relative water content of the cultivar x irrigation main effect consisting 

of  five colonial bentgrass cultivars and two irrigation treatments (i) well watered (WW) 

and (ii) drought (DRT) on day 27 of treatment. Bars represent LSD at the P ≤ 0.05 level. 
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Figure 3.7. Root dry weight (g) for the main effect of irrigation (i) well watered (WW) 

and (ii) drought (DRT) under three drought levels (i) initial (day 1 of drought treatment), 

(ii) moderate (27 d), and (iii) severe (36 d) . Bars represent LSD at the P ≤ 0.05 level. 
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Figure 3.8. Root dry weight (g) for the main effect of cultivar under moderate drought 

stress on day 27 of treatment. Bars represent LSD at the P ≤ 0.05 level. 
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Figure 3.9. Root dry weight (g) for the interaction of the main effect of irrigation x 

cultivar on day 27 of treatment under moderate drought stress consisting of  five colonial 

bentgrass cultivars and two irrigation treatments (i) well watered (WW) and (ii) drought 

(DRT). Bars represent LSD at the P ≤ 0.05 level. 
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Figure 3.10.  Total soluble sugar content of the crowns on day 27 of treatment of the 

cultivar x irrigation main effect consisting of five colonial bentgrass cultivars and two 

irrigation treatments (i) well watered (WW) and (ii) drought (DRT). Bars represent LSD 

at the P ≤ 0.05 level. 
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Figure 3.11. Green leaf coverage (%) of the main effect of cultivar during recovery. Bars 

represent LSD at the P ≤ 0.05 level for each day of measurement. 
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CONCLUSIONS 

 

Under the conditions of our field study, the use of a wetting agent did not result in 

any significant differences in turf quality or soil moisture retention among treatments.   

However, there were significant differences in turf quality among bentgrass species and 

cultivars under reduced irrigation (Revere and Tiger II colonial bentgrasses, Legendary 

and Greenwich velvet bentgrasses, and 13M, T-1, L-93 and Penncross creeping 

bentgrasses).  Colonial bentgrass cultivars maintained higher turf quality among the 

cultivars evaluated, and were found to be as fairway turf under reduced irrigation.  Due to 

excessive thatch accumulation in our study, velvet bentgrass cultivars exhibited 

significant declines in quality regardless of irrigation level.  Among creeping bentgrass 

cultivars, T-1 exhibited the highest turf quality compared to the older cultivars of 

creeping bentgrass.  Based on results from the field study, we further evaluated the 

drought resistance and recovery characteristics among five cultivars of colonial bentgrass 

(‘Barking’, 'Tiger II’, ‘Revere’, ‘Capri’, and ‘Greentime’).  Under moderate drought 

stress, Barking, Tiger II, and Revere all exhibited lower leaf relative water content levels 

compared to Capri and Greentime, although no significant differences in turf quality or 

soil water content were observed during the drought period.  Following re-watering, 

Barking and Tiger II exhibited the most rapid recovery from drought (as measured by 

percent green cover), while Capri and Greentime exhibited delayed recovery.  Therefore, 

although significant differences in turf performance during drought stress were not 

observed, recovery potential seems to vary among the different cultivars of colonial 

bentgrass and should be evaluated in future studies.    
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APPENDIX A 

RAINOUT SHELTER PROGRAM 

 

'Program Name: RAINOUT PROGRAM_LISA.CR1 = CONTROLS THE SHADE 

SYSYTEM  

'Written by: Ali Farsad, Univ. of Mass, Jun 2009  

‘Revised by: Lisa Golden University of Massachusetts, June 2011 

'VARIABLE DISCRIPTION:  

' Shade Open: means shade is aside  

' Shade Close: means shade is over  

' VS: sensor value. Greater umber means more rain  

' V: V is 1000 times bigger than VS (for convenient use)  

' V>=5 means it is raining  

' V<5 means it is not raining  

' P1=1: electric motor is working (closing the shade): relay1 is close (on)  

' P1=0: electric motor is not working: relay1 is off (open)  

' P2=1: electric motor is working (opening the shade): relay2 is close (on)  

' P2=0: electric motor is not working: relay2 is off (open)  

' S=0: shade is open (aside)  

' S=1: shade is close (over)  

' D=0: Program is working  

' D=1: program is in Delay time  

' R=0: it has not been raining for a while (Delay time, say 10 min).  

' R=1: it has been raining for a while (Delay time, say 10 min).  
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Public VS, P1, P2, S, D, R, V   

DataTable (Test,1,-1)  

 OPENINTERVAL  

 DATAINTERVAL(0,1,MIN,10)  

 SAMPLE(1,VS,FP2)  

 HISTOGRAM(VS,FP2,0,1,011,1,0,150)  

EndTable  

'Main Progarm  

BeginProg  

 Scan (1,sec,30,0)  

BrHalf(VS,1,mV25,1,VX1,1,2500,1,0,250,1,0) ' reads the sensor attached to (black=ex1; 

red=h1; clear=ground; purple=ground) and stores it in VS  

 V=VS * 1000  

 IF V>=5 AND R=0 THEN ' If rain begins (after a period of not raining)  

 D=1  

 R=1  

 DELAY(1,1,SEC) ' Wait for a while (Say 1 sec).  

 D=0  

 ELSEIF V>=5 AND R=1 AND S=0 THEN ' If it is already raining for a while and the 

shade is open (aside), then  

 S=1  

 PORTSET(3,1)  

 P1=1  

 D=1  

 DELAY(1,70,SEC)  

 D=0  
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 PORTSET(3,0)  

 P1=0  

 ENDIF  

 IF V<5 AND R=1 THEN ' If rain stops (after it was raining for a while)  

 D=1  

 R=0  

 DELAY(1,10,MIN) ' Wait for a while (say 10 min).  

 D=0  

 ELSEIF V<5 AND R=0 AND S=1 THEN ' If it is not raining for a while and the shade 

is close, then  

 S=0  

 PORTSET(4,1)  

 P2=1  

 D=1  

 DELAY(1,70,SEC)  

 D=0  

 PORTSET(4,0)  

 P2=0  

 ENDIF  

 CALLTABLE TEST  

 NEXTSCAN  

ENDPROG 
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APPENDIX B 

PRELIMINARY GREEHOUSE STUDY 

Introduction 

This greenhouse study was designed as a preliminary study in preparation for an 

additional greenhouse study and was based on the results of a two year field study.  We 

selected two creeping bentgrass cultivars; ‘T-1’ which performed well in our field trials 

and ‘Penncross’ which did not perform as well.  We also selected the two colonial 

bentgrasses used in our field study, which both performed well, ‘Tiger II’ and ‘Revere’ 

and added two additional colonial bentgrasses, ‘Greentime’ and ‘Barking’.  This study 

was designed to not only compare the visual response of these different species and 

cultivars of bentgrasses but to also better understand the physiological mechanisms being 

used by these turfgrasses under drought stress.  Therefore the objectives of this study was 

to (i) compare different species and cultivars of bentgrasses in a controlled environment 

and differentiate between the levels of turf quality of these bentgrasses under drought 

stress and (ii) understand the physiological mechanisms used by the different species and 

cultivars which contribute to the ability of certain turfgrasses to maintain higher turf 

quality during drought stress. 

Materials and Methods 

Plant Materials and Growing Conditions 

The study was conducted in the French Hall Greenhouses at the University of 

Massachusetts, Amherst.   There were two species of bentgrass: creeping bentgrass and 
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colonial bentgrass, with a total of six cultivars being studied. Creeping bentgrass cultivars 

included ‘T-1’ and ‘Penncross’; colonial bentgrass cultivars included ‘Greentime’, 

‘Barking’, ‘Revere’, and ‘Tiger 2’.  The grasses were seeded at a rate of 19 g m-² into 

pots (10 cm in diameter and 36 cm tall) filled with USGA sand from Holliston Sand 

Company containing 89.8 ± 0.2% sand, 7.8 ± 0.2% silt, and 2.4 ± 0.2% clay on 18 April 

2011.  The plants were grown in the greenhouse and watered as needed to prevent wilt, 

fertilized with Hoagland’s solution (Hoagland and Arnon, 1950) once per week, and 

maintained at a height of cut of 1 to 1.5 cm.  The greenhouse was maintained at 18°C 

during the day and 13°C at night throughout the establishment and treatment periods.   

Treatments 

The treatments consisted of (i) a well-watered control that was irrigated to 

maintain soil at container capacity (≈19% soil moisture content, v/v) and (ii) a drought 

treatment that received no water.  Container capacity was achieved by watering 

containers until water was draining from the bottom of the containers and then left for 24 

hours to assure all gravitational water had drained and pots were at container capacity.  

On 27 October 2011, the plants were all watered to container capacity and 28 October 

was Day 1 of the study.  Once the study began the plants were no longer fertilized and the 

well watered plants were watered as needed to be kept at pot capacity ( �19% soil 

moisture content v/v) and the drought plants received no water.   

Measurements 

Soil moisture measurements were taken at least once per week during the study.   

Within each pot, a 20 cm probe was installed vertically and measurements were taken 
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with the MiniTrase System (Soilmoisture Equipment Corp., Santa Barbara, CA) using 

time domain reflectometry (TDR) and were expressed as volumetric soil moisture 

content.   

Turf quality (TQ) was measured throughout the study by using a visual rating 

scale.  Turf quality was rated on uniformity, density, and color.  The measurements were 

based on a scale from 1 to 9; with 9 being best with a turf stand of all green color and no 

wilting, 6 being acceptable but with some browning, and below 6 is not acceptable 

quality with 1 being completely dead.   

Leaf relative water content (RWC) was measured weekly during the study 

according to the method of Barrs and Weatherley (1962).  Clippings from each pot were 

taken and weighed (≈ 0.3 g) and that number was recorded as fresh weight (FW).  The 

clippings were then wrapped in a Kimwipe and placed in a covered Petri dish and floated 

in distilled water for 18 to 24 hours.  The clipping were then removed from the water, 

blotted dry and weighed.  That number was recorded as the turgid weight (TW).  The 

clippings were then transferred into coin envelopes and placed in the oven at 60°C and 

dried.  Once the clippings were dry, they were removed from the oven and weighed again 

for a dry weight (DW) measurement.  Based on these measurements RWC was calculated 

as: [(FW-DW)/(TW-DW)]*100.   

Leaf clippings were taken weekly during this study for osmotic adjustment (OA) 

and were assessed according to the rehydration method (Babu et al., 1999).  Each week 

fresh clippings were taken from each pot and placed in a covered Petri dish of distilled 

water for 18 to 24 hours in order to become fully rehydrated.  The clippings were then 
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blotted dry and wrapped in aluminum foil and are currently stored in a freezer at -80°C. 

The samples were then removed from the freezer and allowed to thaw.  Once thawed, the 

fluid was expressed from the leaves and the osmolality of the liquid was measured using 

the VAPRO model 5600 Vapor Pressure Osmometer (WESCOR, Inc. Logan, Utah).  

Osmolality of the leaf sap (mmol kg¯ ¹) was then converted into osmotic pressure (MPa) 

using the van’t Hoff equation: Ψs = CsRT, where Cs is the osmolality (mol kg¯ ¹), R is a 

gas constant of 0.0821, and T is a temperature constant of 298 K.   

Experiential Design and Statistical Analysis 

The experiment was arranged as a randomized complete block design with 4 

replicates.  Results were determined by analysis of variance using SAS version 9.2 (SAS 

Institute Inc. Cary, NC).  Means were separated by the least significant difference at 0.05 

probability level.
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Table 1. Results from the analysis of variance (ANOVA) for the preliminary greenhouse study, including measurements for 

turf quality, soil moisture, relative water content, and osmotic potential. 

   Weeks of treatment 

 0 1 2 3 4 5 6 7 

Turf Quality Block NS NS NS NS NS NS NS NS 

 Irrigation NS NS NS NS NS * * ** 

 Irrigation × Block NS NS NS NS NS NS NS NS 

 Cultivar NS NS NS NS NS *** *** ** 

 Irrigation × NS NS NS NS NS * ** * 

          

Soil Moisture Block NS NS NS * NS * NS NS 

 Irrigation NS * ** *** ** *** ** ** 

 Irrigation × Block NS NS NS NS NS NS NS NS 

 Cultivar NS * * NS * * NS NS 

 Irrigation × NS NS NS NS NS NS NS NS 

          

Relative Water Block NS NS * NS NS NS * NS 

    Content Irrigation NS * NS NS NS NS * NS 

 Irrigation × Block NS NS NS NS NS NS NS NS 

 Cultivar * * NS NS NS NS NS NS 

 Irrigation × NS NS NS NS NS NS NS NS 

          

Osmotic Potential  Block NS NS NS NS NS NS NS NS 

 Irrigation NS NS NS NS NS NS NS NS 

 Irrigation × Block NS NS NS NS NS NS NS NS 

 Cultivar * * * NS NS NS NS NS 

 Irrigation × NS NS NS NS NS NS NS NS 
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Table 2. Results from the analysis of variance (ANOVA) for the main effect of irrigation for the preliminary greenhouse study. 

   Weeks of treatment 

 0 1 2 3 4 5 6 7 

Turf Quality WW NS NS NS NS NS 7.3 a 7.0 a 6.9 a 

 DRT NS NS NS NS NS 6.1 b 5.5 b 5.3 b 

          

Soil Moisture WW NS 17.2 a 19.0 a 19.0 a 19.2 a 20.0 a 21.1 a 19.2 a 

 DRT NS 12.7 b 10.4 b 8.9 b 7.8 b 6.2 b 5.4 b 4.3 b 

          

Relative Water WW NS 96.2 a NS NS NS NS 97.3 a NS 

    Content DRT NS 91.7 b NS NS NS NS 90.7 b NS 

          

Osmotic Potential  WW NS NS NS NS NS NS NS NS 

 DRT NS NS NS NS NS NS NS NS 
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Table 3. Results from the analysis of variance (ANOVA) for the main effect of cultivar for the preliminary greenhouse study. 

   Weeks of treatment 
 0 1 2 3 4 5 6 7 
Turf Quality Barking NS NS NS NS NS 7.3 a 6.3 b 6.1 a 
 Greentime NS NS NS NS NS 6.8 ab 6.8 a 6.3 a 
 Revere NS NS NS NS NS 5.5 c 5.0 c 5.3 b 
 Tiger II NS NS NS NS NS 6.8 ab 6.5 ab 6.2 a 
 Penncross NS NS NS NS NS 7.1 a 6.6 ab 6.4 a 
 T-1 NS NS NS NS NS 6.5 b 6.5 ab 6.3 a 
          
Soil Moisture Barking NS 12.5 c 12.8 bc NS 12.0 bc 12.1 bc NS NS 
 Greentime NS 15.6 ab 15.1 ab NS 14.0 ab 13.5 ab NS NS 
 Revere NS 12.8 bc 12.2 c NS 11.0 c 12.0 c NS NS 
 Tiger II NS 16.4 a 16.0 a NS 15.4 a 13.6 a NS NS 
 Penncross NS 15.9 ab  16.2 a NS 14.4 ab 13.9 a NS NS 
 T-1 NS 16.4 a 16.0 a NS 14.5 a 13.6 a NS NS 
          
Relative Water Barking 92.7 c 95.9 ab NS NS NS NS NS NS 
    Content Greentime 96.0 abc 96.6 a NS NS NS NS NS NS 
 Revere 99 a 91.6 b NS NS NS NS NS NS 
 Tiger II 96.3 ab 94.8 ab NS NS NS NS NS NS 
 Penncross 96 abc 91.4 b NS NS NS NS NS NS 
 T-1 95 bc 93.4 ab NS NS NS NS NS NS 
          
Osmotic Potential  Barking -1.724 bc -1.349 bc -1.114 a NS NS NS NS NS 
 Greentime -1.661abc -1.241 ab -1.424 c NS NS NS NS NS 
 Revere -1.838 c -1.431 c -1.077 a NS NS NS NS NS 
 Tiger II -1.625 -1.230 ab -1.249abc NS NS NS NS NS 
 Penncross -1.491 ab -1.139 a -1.295 bc NS NS NS NS NS 
 T-1 -1.427 a -1.136 a -1.169abc NS NS NS NS NS 
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