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INDUCTION OF OXIDATIVE STRESS RESPONSES BY DIOXIN AND OTHER
LIGANDS OF THE ARYL HYDROCARBON RECEPTOR

John F. Reichard, Timothy P. Dalton, Howard G. Shertzer, and Alvaro Puga �

Center for Environmental Genetics and Department of Environmental Health,
University of Cincinnati Medical Center

� TCDD and other polyhalogenated aromatic hydrocarbon ligands of the aryl hydro-
carbon receptor (AHR) have been classically considered as non-genotoxic compounds
because they fail to be directly mutagenic in either bacteria or most in vitro assay sys-
tems. They do so in spite of having repeatedly been linked to oxidative stress and to
mutagenic and carcinogenic outcomes. Oxidative stress, on the other hand, has been
used as a marker for the toxicity of dioxin and its congeners. We have focused this review
on the connection between oxidative stress induction and the toxic effects of fetal and
adult dioxin exposure, with emphasis on the large species difference in sensitivity to this
agent. We examine the roles that the dioxin-inducible cytochromes P450s play in the cel-
lular and toxicological consequences of dioxin exposure with emphasis on oxidative
stress involvement. Many components of the health consequences resulting from diox-
in exposure may be attributable to epigenetic mechanisms arising from prolonged reac-
tive oxygen generation.

1. INTRODUCTION

Many polynuclear polyhalogenated aromatic hydrocarbons (PHAHs)
are known or suspected environmental carcinogens, toxicants and ter-
atogens in animals and humans (Gatmaitan et al., 1977; Talalay et al.,
1988; Hebert et al., 1990; Jiang et al., 1991; Butler et al., 1992; Ralston et
al., 1994; Hatae et al., 1996). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD,
dioxin) is prototypical of PHAH compounds, including polyhalogenated
dibenzo-p-dioxins, dibenzofurans and coplanar biphenyls, that bind to
and activate the cytosolic aryl hydrocarbon receptor (AHR). TCDD is a
co-planar polychlorinated biphenyl with among the highest AHR binding
affinities and agonistic activities (Poland et al., 1976a). It is this interac-
tion of PHAHs, such as TCDD, with the AHR that mediate most if not all
effects of low-concentration TCDD exposures.

The AHR is the only bona fide ligand-activated member of the PAS
superfamily of proteins, named for the PER (“period” regulator of cir-
cadian rhythm), ARNT (“Ah receptor nuclear translocator”) and SIM
(“single minded”, regulator of midline cell differentiation) members of
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helix-loop-helix transcription factors (Alsharif et al., 1994; Hassoun et al.,
2003). Prior to ligand binding the AHR resides in the cytosol, associated
with two molecules of HSP90 and HSP90 accessory proteins. Upon
TCDD binding, the AHR is released from this cytosolic complex and is
translocated into the nucleus where it forms a heterodimeric complex
with ARNT (Okey et al., 1989). This complex binds to one or more aryl
hydrocarbon response elements (AhRE; also known as xenobiotic
response elements, XRE; and dioxin response elements, DRE) that func-
tion as cis-acting enhancers in the regulatory domains of a growing num-
ber of genes collectively known as the AHR gene battery (Nebert et al.,
1993). Battery members include phase I cytochromes P450 (CYP) Cyp1a1
and Cyp1a2, Cyp1b1 and NAD(P)H quinone oxidoreductase (Nqo1), and
phase II antioxidant enzymes such as UDP-glucuronosyltransferase
(Ugt1a1), glutathione S-transferase (Gst1a1) and aldehyde dehydroge-
nase (Aldh3a1).

Ligands for the AHR include planar PHAHs and diverse classes of
plant-derived chemicals. It has been hypothesized that the AHR/ARNT
transcriptional complex evolved for defense against an increasingly
diverse array of plant toxins and as a result it is unlikely to serve endoge-
nous physiological functions (Gonzalez et al., 1990). More recently how-
ever, the AHR has emerged as an important regulator of physiologic and
developmental processes in the absence of an apparent exogenous
(xenobiotic) ligand (Fernandez-Salguero et al., 1997; Lahvis et al., 2000).
The AHR represents a pivotal upstream event in the apoptosis cascade
(Nebert et al., 2000; Slim et al., 2000; Dong et al., 2004), exerts an impor-
tant level of influence on reproductive success (Abbott et al., 1999) and
participates in cell cycle regulation (Puga et al., 2002; Marlowe et al.,
2004). Further, acting through the AHR, TCDD has been shown to mod-
ulate up- or down-regulation of more than 300 known mRNAs and an
equivalent number of expressed sequence tags (Puga et al., 2000b). In
part, this effect can be attributed to interactions between the AHR and
transcription factors other than ARNT, some of which are involved in the
control of complex cellular programs, such as cell division and cell fate
(Ge et al., 1998; Kolluri et al., 1999; Tian et al., 1999; Puga et al., 2000a;
Elferink et al., 2001; Puga et al., 2002; Marlowe et al., 2004). In light of
such studies, it is likely that the AHR has important roles in regulating cel-
lular homeostasis that may be disrupted by environmental chemicals. The
diversity of AHR ligand interactions, the complexity of the cellular tran-
scriptome, the persistence of AHR activation, and the nature of agonist
exposure determine whether the homeostatic equilibrium is maintained
or perturbed. 

The toxicologic responses elicited by TCDD differ widely among ani-
mal species and strains. These differences are attributable to variations in
a number of molecular, tissue specific, biochemical and physiological

2

Dose-Response: An International Journal, Vol. 3 [2014], Iss. 4, Art. 5

https://scholarworks.umass.edu/dose_response/vol3/iss4/5



J. F. Reichard et al.

308

characteristics. In making inter-model comparisons, TCDD dose can be
expressed as a variety of different metrics such as administered dose, aver-
age daily dose, tissue concentration, average body burden and area under
the curve (AUC). As a result, clear-cut dose-response assessments of
TCDD are made difficult by the complexity of biologic responses to
TCDD, the variety of tissues affected by TCDD and gaps in our under-
standing of the mechanisms relating exposure to toxicity. As a result,
body burden rather than daily intake (administration) has been suggest-
ed as the best dose metric for interspecies comparisons and extrapola-
tion, although the vast majority of studies describing TCDD toxicity
express dose in terms of acute, subchronic and chronic exposures
(DeVito et al., 1995).

2. FUNCTIONAL ALTERATIONS OF THE AHR

Like many other transcription factors, the AHR has been amenable to
dissection into functional domains. The C-terminal half of the AHR, con-
taining a glutamine-rich domain, is responsible for transactivation;
whereas the N-terminal half of the AHR, consisting of a basic-region
helix-loop-helix domain and two PAS domains, has overlapping functions
responsible for DNA binding, ligand binding and dimerization
(Hankinson, 1995). Unfortunately, the AHR peptide sequence is not par-
ticularly well conserved across species, especially the C-terminal half of
the protein, thus complicating risk assessment. Polymorphisms identified
within the coding region of the AHR instill differences in AHR-responsive
gene induction and toxicologic responses to numerous PHAHs (Nebert,
1989; Swanson et al., 1993; Poland et al., 1994). Interspecies variation
notwithstanding, the AHR has been widely studied in mice and rats,
which, relative to the human AHR, have high ligand binding affinity. 

In mice, differences in TCDD sensitivity have been related to poly-
morphisms in the AHR that give rise to the commonly studied “respon-
sive” and “nonresponsive” strains (C57BL/6 and DBA/2, respectively).
AHR polymorphisms in DBA/2 mice reduce ligand binding affinity
approximately 10-fold and thereby diminish TCDD potency for acute
lethality (Chapman et al., 1985; Okey et al., 1989). Several groups have
sequenced the AHR alleles from inbred strains of mice. These studies have
characterized four distinct alleles in mice, referred to as Ahrb-1, Ahrb-2,
Ahrb-3, and Ahrd. Among these, the “responsive” phenotype in C57BL/6
mice is encoded by the autosomal dominant Ahrb-1 allele while the “non-
responsive” DBA/2 phenotype is encoded by the Ahrd allele. The four
identified mouse alleles differ by 8 nucleotides in their shared open read-
ing frame. In addition, these AHRs differ by 45 amino acids at their
C-terminus as a result of a nucleotide change in the Ahrd allele that
replaces the stop codon in the Ahrb allele with an arginine (Chang et al.,
1993; Poland et al., 1994). Most of the amino acid changes distinguishing
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these strains occur within the transactivation domain and have little or no
known functional consequence (Chang et al., 1993). However, a point
mutation at position 375 of the DBA/2 AHR results in an ALA to VAL sub-
stitution in the second PAS domain of the C57BL/6 strain that is respon-
sible for the difference in ligand binding affinity and transactivation
(Poland et al., 1994; Maier et al., 1998). These findings have been further
supported in mice with homozygous loss of functional AHR (Fernandez-
Salguero et al., 1995; Schmidt et al., 1996). These Ahr–/– knockout strains
were refractory to TCDD-mediated CYP1A1 induction and were highly
resistant to TCDD-mediated pathologies up to 2000 µg/kg, a 10-fold high-
er dose than that which induce severe toxicity in functional AHR express-
ing mice (Fernandez-Salguero et al., 1996). 

Rat strains have also been characterized with respect to their TCDD
sensitivity. At the extremes of TCDD responsiveness are the “sensitive”
Long-Evans rats (L-E) and the “resistant” Hans/Wistar (H/W) substrain
of Wistar rats that differ by at least 1000-fold in the acute lethality of
TCDD (LD50 between 10 to 20 µg/kg and >9600 µg/kg, respectively)
(Pohjanvirta et al., 1994b). Inheritance studies implicate the AHR gene
locus and a second uncharacterized gene B in the TCDD resistance of
the H/W rats, with the AHR contributing the largest quantitative role
(Tuomisto et al., 1999). Unlike the C57BL/6 and DBA/2 mice, TCDD
resistance is the dominant trait in rats, segregating with autosomal inher-
itance (Pohjanvirta et al., 1999). Molecular analysis of the coding region
of AHR cDNAs from the H/W and the L-E rat revealed a Val497Ala
amino acid change in the transactivation domain and, perhaps more
importantly, a single point mutation in the first nucleotide of intron 10,
resulting in altered mRNA splicing (Pohjanvirta et al., 1998). The loss of
this splice-donor site results in the use of the nearest upstream and two
downstream consensus splice sites that yields three different molecular
AHR species having either a deletion of 43 amino acids in exon 10, an
extra 7-amino acid stretch encoded by intron 10, or no translated con-
tribution from exon 11. The net effect of the exon 10 mutation is a mod-
ified AHR transactivation domain that has little or no effect on AHR
accumulation, ligand binding affinity, or activation of CYP1A gene
expression (Pohjanvirta et al., 1988; Unkila et al., 1993; Pohjanvirta et al.,
1999), but which effectively converts the Han/Wistar rat into the most
resistant naturally occurring mammals to TCDD toxicity (Simanainen et
al., 2003). 

3. PRINCIPLES OF TCDD SENSITIVITY

Within a single animal, tissues vary in response to TCDD-receptor
binding. It is the coupling of TCDD-receptor interaction to a measured
response that accounts for varying tissue sensitivities and thereby target
organ toxicity. In general, the maximum response elicited by a receptor
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agonist for a specific endpoint is defined as the intrinsic efficacy of a lig-
and. Efficacy is therefore a quantitative measure of the signaling events
that couples the formation of a ligand-receptor complex to a biologic
response (Hestermann et al., 2000). By measuring nonlethal endpoints,
differences in TCDD intrinsic efficacy between L-E and H/W rat strains
have been categorized into two classes: Type I endpoints (EROD activi-
ties, thymus weight, tooth defect) that showed similar efficacy in both
strains; and Type II endpoints (body weight, serum FFA and bilirubin lev-
els, and serum ASAT activity) where the response in H/W rats was less
than half that observed in L-E rats (Simanainen et al., 2003). The contri-
bution of the AHR and the product of gene B to these endpoints was
investigated by segregating the H/W resistant genes into three different
rat lines, designated A, B and C, by congenic crossbreeding with inbread
L-E rats (Tuomisto et al., 1999). Line A possessed the original “resistant”
H/W AHR allele but with a wild-type gene B allele. Line B possessed a
normal AHR allele, but was homozygous for the H/W gene B allele. Line
C possessed neither of the H/W resistance alleles. These studies demon-
strated that the AHR is the most important factor decreasing TCDD
intrinsic efficacy, and that an uncharacterized mechanistic difference
exists between type I and II effects that is linked to the altered AHR trans-
activation domain. Relative to the large difference in acute LD50 values
between L-E and H/W rat strains, the potency of TCDD for nonlethal
type I endpoints was much less affected by the H/W AHR phenotype
(Tuomisto et al., 1999; Simanainen et al., 2003). In rat line B, the mutat-
ed B allele had only a minor influence on TCDD efficacy and the dose
responses did not clearly fit into either Type I or Type II responses, but
were clearly different from lines A and C. Thus the B allele is concluded
to contribute modestly to TCDD resistance independent of the AHR
(Simanainen et al., 2003).

The combination of efficacy and ligand-binding affinity determine
the relative potency of TCDD (Hestermann et al., 2000), which is defined
as the dose of TCDD required to achieve a specific endpoint. Both param-
eters contributing to potency can vary between animal species, strains
and tissues to produce net sensitivities. For example experiments investi-
gating the relative potency of various AHR ligands have shown that
TCDD, PCB126, PCB156 and PCB105 all bind to the AHR with reported
affinity constants equivalent to 0.76, 16, 2500 and 4600 nM respectively,
relative to [3H]-TCDD binding. However, the stimulus-response relation-
ship demonstrates that while TCDD and PCB126 have high intrinsic effi-
cacy for CYP1A1 induction, PCB126 is much less efficient at eliciting a
response after binding the AHR. PCB105, which binds the AHR at high
concentrations, competes for [3H]TCDD binding while eliciting no
response qualifying PCB105 as a competitive antagonist. With the excep-
tion of PCB105, each of these agents is a full agonist since each elicits the
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same maximal response. Therefore the potency of these AHR ligands can
be expressed in terms of the effective concentration that elicit 50% max-
imal response for CYP1A1 induction (EC50) and have been shown to be
equivalent to 0.015 nM (TCDD), 0.12 nM (PCB126) and 1900 nM
(PCB156). In comparison PCB105 has no EC50 since it does not elicit a
response (Hestermann et al., 2000).

This same principle has been utilized to describe the biologic
responses observed between different animal species and strains. For
example, the efficacy of TCDD for lethality ranges among rodent species
from the guinea pig (LD50 = 1 µg/kg) to H/W rat (LD50 >9600 µg/kg)
(Henck et al., 1981; Poland et al., 1982; Pohjanvirta et al., 1994a). This
range of sensitivity has been attributed to a restructured transactivation
domain in the hamster AHR, presumably producing a much less respon-
sive ligand-receptor complex (Korkalainen et al., 2004). In comparison,
experiments investigating TCDD resistance in mice have found that sen-
sitivity correlates with binding affinity because the dose-response curve is
shifted to the right without a reduction in response magnitude (Poland
et al., 1976b). Thus, both intrinsic efficacy and ligand-binding contribute
to the manifestation of TCDD toxicity and the tremendous variability in
dose response that has been reported between animal species. 

In vitro modeling of the TCDD dose-response using CYP1A1 induction
as a biomarker has demonstrated that TCDD need only occupy a fraction
of AHR receptors to elicit maximal response. In PLHC-1 cells, a hepato-
cellular carcinoma cell line derived from the teleost Poeciliopsis lucida, only
1.9 % of available receptor sites were required to be occupied for 50%
maximal response while 28% saturation produced 95% maximal response.
These data establish a “spare” receptor relationship for the high-intrinsic
efficacy AHR ligands such as TCDD, which contrasts with the low-intrinsic
activity of ortho-substituted PCB congeners that fail to elicit maximal
response even with AHR saturation (Hestermann et al., 2000). 

In addition to the individual contribution of intrinsic efficacy and lig-
and binding to the wide range of observed species and strain TCDD sus-
ceptibilities, receptor density also modulates the response. Regulation of
receptor expression levels by its own ligand is a common pharmacologic
observation and receptor theory predicts that changes in AHR levels will
influence both the potency and the maximal response of TCDD. Up-reg-
ulation of a receptor’s presence increases the potency of its ligand and is
referred to as “sensitization”, while down regulation results in “desensiti-
zation” and subsequent tolerance. In such a manner, AHR expression is
significantly influenced by dose and duration of TCDD exposure
(Pollenz, 2002). Following short-term in vitro exposure of cultured Hepa-
1 cells to 2 nM TCDD, AHR levels are reduced to less than 20% of origi-
nal levels within 6 hours following treatment, and this desensitization per-
sists for at least 72 hours (Giannone et al., 1998). In vivo studies, however,

6

Dose-Response: An International Journal, Vol. 3 [2014], Iss. 4, Art. 5

https://scholarworks.umass.edu/dose_response/vol3/iss4/5



J. F. Reichard et al.

312

have failed to consistently demonstrate a prominent physiologic effect
caused AHR by ligand binding. In Sprague Dawley rats, a single oral dose
of 10 or 50 µg/kg produced a pronounced initial reduction of liver and
cytosol AHR concentrations, though, in the case of the former, depletion
persisted for 14 days, while in the latter, depletion was followed by AHR
induction (Pollenz et al., 1998; Franc et al., 2001a). A similar effect was
also reported for Hans/Wistar rats, though these rats had lower liver AHR
concentrations than either SD or L-E rats regardless of TCDD treatment
(Franc et al., 2001a). In contrast to high-dose TDCC-mediated loss of the
AHR, acute and chronic low-dose TCDD administration produced either
an increase, or no change in AHR concentrations (Sloop et al., 1987;
Franc et al., 2001a; Franc et al., 2001b). In addition, when increased recep-
tor presence was observed it did not translate into sensitization as deter-
mined by CYP1A1 induction (Franc et al., 2001a; Franc et al., 2001b).
These reports suggest that low-dose TCDD, such as a typical environ-
mental exposure, is not likely to produce either TCDD tolerance or sen-
sitivity, while higher doses appear to be associated with a transient desen-
sitization. They also demonstrate that receptor density does not con-
tribute to the variation in TCDD responsiveness associated with the L-E
and H/W rat strains.

4. EFFECTS OF GENDER AND SEX HORMONES 
IN THE TCDD DOSE-RESPONSE

In long-term bioassays, TCDD increased the incidence of liver tumors
in female, but not male, rats (Kociba et al., 1978; Huff et al., 1991; Sawyer
et al., 1999). In general, female rats have been shown to be more suscep-
tible to TCDD-induced oxidative stress (Stohs, 1990), oxidative DNA
damage (Wyde et al., 2001b) and hepatocarcinogenesis (Huff et al., 1994).
These TCDD-mediated effects are, at least in part, dependent on the
presence of estrogen (Jana et al., 2000; Coumoul et al., 2001; Lai et al.,
2004), though the role of the estrogen receptor remains equivocal (Wyde
et al., 2000; Wyde et al., 2001a). In an initiation-promotion model, ovariec-
tomy inhibited TCDD-induced preneoplastic foci and reduced TCDD-
induced liver tumor formation (Lucier et al., 1991) suggesting involve-
ment of estrogen which was later supported by the observation that sup-
plemental 17β-estradiol (E2) restored tumorogenic sensitivity of ovariec-
tomized females (Wyde et al., 2001b). The presumption that estrogen
mediates oxidative stress and carcinogenesis was confirmed in Syrian
hamsters, which show 100% kidney tumor incidence following the admin-
istration of 17β-estradiol or estrone (Liehr, 1997). Likewise estradiol was
also found to produce oxidative DNA damage in hamster tissues and
other biological model systems (Han et al., 1995; Tritscher et al., 1996;
Wyllie et al., 1997; Hodgson et al., 1998; Cavalieri et al., 2000; Liehr, 2001;
Wyde et al., 2001b).
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Oxidative estrogen metabolism results in the formation of two estro-
gen catechols, 2-hydroxylated and 4-hydroxylated estradiol. Under cir-
cumstances where these catechols are excessively produced, or where
their metabolism is impaired, catalytic oxidation to semiquinones and
quinones can occur. Of particular importance is formation of 4-hydrox-
yestradiol, the oxidized quinone of which has been associated with oxida-
tive DNA damage and increased cancer risk (Bradlow et al., 1985; Bradlow
et al., 1986; Telang et al., 1992; Nebert, 1993; Bradlow et al., 1995; Telang
et al., 1997; Liehr, 1999; Jefcoate et al., 2000; Cavalieri et al., 2000). In con-
trast, 2-hydroxyestradiol formation has not been associated with either
DNA damage or increased cancer risk (Bradlow et al., 1996; Telang et al.,
1997; Cavalieri et al., 2000). Toxicity of 4-hydroxyestradiol results from
two types of reactions; a one electron redox cycling reaction that occurs
when 4-hydroxyestradiol is oxidized to estrone 3,4-quinone, and a two
electron electrophilic addition reaction (Liehr, 2000; Cavalieri et al.,
2000). Redox cycling generates superoxide and ultimately the highly
reactive genotoxic hydroxyl radical (Roy et al., 1991; Han and Liehr,
1995). Superoxide produced in this way may further enhance redox
cycling by mobilizing iron from ferritin, increasing cellular Fenton chem-
istry (Wyllie and Liehr, 1997; Liehr et al., 2001). Rearrangement of
estrone 3,4-quinone produces a strongly electrophilic carbonium cation
that may undergo a Michael addition reaction with cellular sulfhydrals
such as (i.e. glutathione, protein thiols) or by electrophilic addition to
DNA purine bases resulting in depurinating adducts (Cavalieri et al.,
2000), and ultimately procarcinogenic mutations ( Liehr, 2001;
Embrechts et al., 2003). The relative contributions of redox cycling and
electrophilic interactions in the oxidative stress response and toxicity
have not been firmly established; however, limited evidence suggests that
covalent sulfhydral modification by electrophiles is likely to be a greater
cytotoxic hazard than transient quinone formation that facilitates dispos-
al from the cell (Buffinton et al., 1989).

Xenobiotics acting through the AHR may alter the metabolic profile
of E2 and therefore its estrogenic and toxicological profile. Metabolism of
E2 to 2-hydroxyestradiol is predominantly catalyzed by cytochrome P450
CYP1A1 (Roy et al., 1992; Spink et al., 1998) with some contribution by
members of the CYP3A family (Hammond et al., 1997), while metabolism
of E2 to the 4-hydroxyestradiol is mainly a result of CYP1B1 activity (Spink
et al., 1994; Hayes et al., 1996; Jefcoate et al., 2000). In liver, TCDD increas-
es the levels of CYP1A1 and CYP1A2 relative to CYP1B1 (Walker et al.,
1999), hence 2-hydroxylation predominates over 4-hydroxylation. Similar
results have been reported in several breast epithelial tumor and non-
tumor cell lines where TCDD strongly induced CYP1A1 activity with
resultant 2-hydroxyestradiol formation as the major E2 metabolite (Spink
et al., 1998). In this regard, increased production of 2-hydroxyestradiol
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relative to 4-hydroxyestradiol and 16α-hydroxyestrone has been observed
after exposure to indole 3-carbinol, a dietary micronutrient and AHR
proligand. This finding is of potential clinical importance for cancer,
since indole carbinols, that bind AHR as acid condensation products, are
in clinical trials as cancer chemoprotective agents (Gillner et al., 1985;
Malloy et al., 1997; Michnovicz et al., 1997; Telang et al., 1997; Rosen et al.,
1998; Yuan et al., 1999; Bell et al., 2000)(reviewed by (Shertzer et al.,
2000)). 

5. EFFECTS OF TCDD EXPOSURE ON DEVELOPMENT

AHR in development

In the mammalian fetus and in fish larvae, the AHR plays prominent
roles in both resolving vascular structures and mediating cardiovascular
toxicities of TCDD (Lahvis et al., 2000; Bello et al., 2004). In mammals, the
importance of functional AHR is demonstrated in AHR-null mice by a
failure of a fetal vascular structure, the ductus venosus, to close, thus per-
mitting blood from the portal vein to bypass the liver by shunting to the
inferior vena cava. Functional AHR is also required for normal vascular
“pruning” during fetal development, the absence of which results in the
propagation into maturity the highly anastomotic vasculature architec-
ture of the liver, eye and kidney that that are characteristically neonatal
(Lahvis et al., 2000).

Because of the involvement of the AHR in resolving fetal vascular
structures, it is not surprising that the cardiovascular system has been
shown to be an important target of TCDD-mediated toxicity (Jokinen et
al., 2003; Karyala et al., 2004). Although the mechanisms underlying car-
diovascular risks are undetermined, it has been postulated that TCDD
interferes with cardiovascular development by sequestering the AHR or
displacing an as yet unidentified ligand, thereby preventing the AHR
from carrying out its normal endogenous activity. In support of this
hypothesis, knockdown of the TCDD-responsive AHR2 in zebrafish with
morpholino-substituted oligonucleotides has specifically demonstrated
that TCDD retardation of common cardinal vein (CCV) regression is
AHR dependent (Bello et al., 2004). That knockdown of AHR2 expres-
sion itself did not inhibit CCV regression in a manner similar to that of
the Ahr-null mouse is attributable to the fact that zebrafish possess a sec-
ond, TCDD refractory ahr locus (ahr1) that may compensate for the loss
of ahr2 (Bello et al., 2004). In separate experiments, fish have provided
evidence that the vascular endothelium is also a sensitive target for TCDD
toxicity, and this may prove important with regards to the human health
effects of TCDD. In fish TCDD elicits increased vascular permeability,
which in lake trout manifests as yolk sac edema, and in zebrafish as
extravascular accumulation of serum proteins in mesencephalic brain tis-
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sues (Guiney et al., 2000; Dong et al., 2004). Although the precise nature
of this microvascular leakage remains to be determined, decreased car-
diac output, increased endothelial vacuolation (Guiney et al., 2000), dis-
ruption of peripheral vascular beds (Henry et al., 1997) and/or disrup-
tion of angiogenic signaling (Bello et al., 2004) have been suggested.
Whether TCDD mediates developmental vascular defects in fish by the
same mechanism as those observed in mammals following gestational
exposure remains to be determined; however, two separate reports
demonstrate that loss of the AHR protects against the teratogenic effects
of TCDD (Mimura et al., 1997; Peters et al., 1999b). 

In humans there are few reliable studies linking maternal exposure to
TCDD and related compounds (e.g., other dioxins, furans, and dioxin-
like PCBs) with impaired fetal development. A number of epidemiologic
studies have been confounded by the use of indirect estimates of TCDD
exposure, such as local soil levels (Stockbauer et al., 1988), estimates of
dietary consumption (Svensson et al., 1991; Rylander et al., 2000) and cor-
relation with residential location (Revich et al., 2001). Only a few studies
have used biologic measures of exposure, such as dioxin or PCB concen-
trations in breast milk and serum (Patandin et al., 1998; Eskenazi et al.,
2003). In both of these studies birth weight and gestational age did not
differ between mothers with higher exposure levels relative to controls,
though these findings are somewhat offset by reports that birth weight
was negatively correlated with cord plasma PCB and dioxin levels
(Patandin et al., 1998; Vartiainen et al., 1998). One mechanistic explana-
tion for the equivocal association between maternal exposure and terato-
genesis may relate to the low affinity human AHR, comparable to the
nonresponsive DBA/J2 mouse strain (Ramadoss et al., 2004). In experi-
ments with AHR-null mice, oral exposure of pregnant dams (40 µg/kg
TCDD) was sufficient to produce cleft palate and hydronephrosis in near-
ly all wild-type fetuses while no mice with the homologous AHR knockout
were sensitive to the teratogenic effects (Mimura et al., 1997; Peters et al.,
1999a) . This possibility is further supported by the use of humanized
mice expressing human AHR rather than mouse AHR. These studies
demonstrated that mice expressing human AHR had a weaker response
to TCDD than resistant DAB/2 mice, and that the humanized AHR phe-
notype protected against cleft palate (Moriguchi et al., 2003).

A variety of human epidemiologic studies have suggested a link
between TCDD exposure and cardiovascular morbidity following occu-
pational exposure (Bertazzi et al., 1989; Flesch-Janys et al., 1995; Vena et
al., 1998; Pesatori et al., 1998; Pesatori et al., 2003). Retrospective analysis
of 1189 chemical plant workers exposed to dioxin and furans reported a
highly significant 2.5-fold (95% confidence interval-1.3-4.7) increase in
relative-risk of death from heart disease due to dioxin exposure (Flesch-
Janys et al., 1995; Pelclova et al., 2002). The body burden at which these
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effects were seen ranges from 110 to 4000 ng/kg of TCDD in blood fat,
well below the body burden of TCDD shown to induce cancer in rodents
(100-140000 ng/kg) (DeVito et al., 1995). These observations were later
supported in hyperlipidemic mice subchronicly treated with TCDD (150
ng/kg, 3 times weekly), resulting in increased blood pressure and athero-
genic lipids; the two most important clinical risk factors for atheroscle-
rotic plaque formation. Further, TCDD exposed animals had a trend
towards earlier onset and increased severity of atherosclerotic plaques
compared to vehicle treated mice (Dalton et al., 2001). Similarly, in
female Sprague-Dawley rats treated 5 days per week with up to 100
ng/kg/day TCDD for 2 years, cardiomyopathy and chronic active arteri-
tis increased in a dose dependent manner. However the severity of car-
diomyopathy did not increase in a dose-responsive manner and only
became evident in the later treatment groups (Jokinen et al., 2003)

6. ROLE OF CYTOCHROME P450 ENZYMES IN TCDD TOXICITY

Several cytochrome P450 genes under the control of the AHR,
notably those in the CYP1 family (CYP1A1, CYP1A2 and CYP1B1) have
been suggested to contribute to TCDD-induced toxicity (Andersen et al.,
1998; Nebert et al., 2004). Because TCDD-associated toxicities are slow to
develop, requiring days to weeks, it is likely that the transcriptional events
elicited by TCDD-mediated AHR activation must be persistent.
Therefore, we believe that the persistent changes in gene expression
induced by TCDD disrupt signal transduction homeostasis leading to the
accumulation of toxicants (i.e reactive oxygen species, lipid peroxidation
products) that in turn lead to pathology. In the liver, one such gene cir-
cuit involves the Cyp1a monooxygenase subfamily. Studies utilizing
Cyp1a1–/– knockout mice from a C57BL/6J background demonstrate that
a single high dose of TCDD (200 µg/kg) is highly lethal to Cyp1a1+/+

males but not to Cyp1a1–/– males or to females of either genotype. This
protective effect conveyed by gender, however, is quite limited compared
to the protective effect afforded by Ahr knockout, that protected against
TCDD doses of up to 2 mg/kg (Fernandez-Salguero et al., 1996). Further,
Cyp1a1–/– mice are resistant to TCDD-induced wasting syndrome, which is
manifested by weight loss or poor weight gain in conjunction with
marked increases in serum AST levels, reflecting rhabdomyolysis.
Glycogen depletion and down regulation of phospho-enol-pyruvate car-
boxykinase, combined with SRC oncoprotein action have been suggested
to play a role in this process (Dunlap et al., 2002). Cyp1a1–/– mice, regard-
less of gender, are more resistant to hepatocyte hypertrophy; likewise,
Cyp1a1–/– mice experience decreased accumulation of microvesicular and
interstitial lipid accumulation for reasons that are not yet clear. It is of
interest to note that the H/W rat, which is resistant to TCDD toxicity for
reasons already discussed, shows normal acute induction of CYP1 family

11

Reichard et al.: AHR and oxidative stress

Published by ScholarWorks@UMass Amherst, 2014



AHR and oxidative stress

317

genes and uroporphyria following TCDD exposure (Simanainen et al.,
2003; Niittynen et al., 2003; Uno et al., 2004; Korkalainen et al., 2004). 

The other member of the cytochrome P4501A family, CYP1A2, is
emerging as a monooxygenase that dichotomously contributes to both
protective and sensitizing effects to TCDD toxicity. The protective effects
result from pharmacokinetic and antioxidant activities associated with
CYP1A2 expression. Pharmacokinetically, CYP1A2 is the primary hepatic
TCDD-binding protein, capable of sequestering significant quantities of
dioxin; this is not true of CYP1A1 (Diliberto et al., 1997; Uno et al., 2004).
Further, CYP1A2 is stabilized by TCDD extending its half-life and there-
fore augmenting its phramacokinetic effect (Andersen et al., 1997;
Diliberto et al., 1997). Presumably by sequestering TCDD, CYP1A2 acts to
reduce the free fraction of TCDD available to mediate gene induction
through AHR interaction. Pharmacokinetic studies have shown that lev-
els of both CYP1A1 and CYP1A2 must be considered in predicting tissue
concentrations of TCDD from the administered doses (Wang et al., 1997a;
Wang et al., 1997b; Santostefano et al., 1998). In terms of antioxidant pro-
tection, CYP1A2 enzyme activity is associated with decreased microsomal
H2O2 production, possibly by acting as an electron transport pathway or
electron sink for uncoupled electron transfer by CYP2E1 or other micro-
somal enzyme systems. 

Contrasting with these apparent beneficial effects, CYP1A2, and to
some extent CYP1A1, has been demonstrated in mice to mediate the uro-
porphyrinogenic effect of TCDD. In brief, uroporphyria results from dys-
function of uroporpheryninogen decarboxylase (UROD) during hepatic
heme synthesis, leading to significant hepatocellular uroporphyrin accu-
mulation and possibly liver injury (Pohjanvirta and Tuomisto, 1994a;
Smith et al., 1998). In TCDD-mediated uroporphyria, CYP1A2 is neces-
sary and sufficient to inhibit UROD metabolism, resulting in accumula-
tion of uroporphyrin isomers (Smith et al., 1998). Knockout mouse exper-
iments have shown that loss of CYP1A2 completely, and CYP1A1 partially,
protects against TCDD-mediated uroporphyrin accumulation (Smith et
al., 2001; Uno et al., 2004).

In the course of the reaction catalyzed by monooxygenase P450
enzymes, two electrons are sequentially transferred from NADPH-
dependent cytochrome P450 oxidoreductase to each atom of bound oxy-
gen, resulting in the production of oxygenated substrate and water
(Guengerich et al., 1985; Poulos et al., 1992). This reaction is reversible,
a process that is perhaps toxicologically important, since physiologically-
derived peroxides can metabolize various xenobiotics, particularly car-
cinogenic arylamines, via the peroxidase activity of CYP1A2 (Anari et al.,
1997). Although tight coupling normally exists between oxygen reduc-
tion and monooxygenation, some reactive oxygen may be released as
either superoxide or H2O2 in the course of electron transfer. The
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monooxygenase-dependent production of ROS in liver microsomes, sup-
ported by NADPH, is a well-known phenomenon (Gillette et al., 1957)
that clearly contributes to the total cellular production of reactive oxy-
gen in rat liver, without necessitating enzyme induction (Bondy et al.,
1994). Even in the absence of exogenous xenobiotic substrates, endoge-
nous substrates, such as any one of the many arachidonic acid metabo-
lites, may stimulate ROS production (Capdevila et al., 1988; Rifkind et al.,
1990; Nakai et al., 1992). In this regard, lipoxin A4, a metabolite of
arachidonic acid, may act as an inducing ligand for the AHR (Schaldach
et al., 1999). Further, substrate independent ROS production, due to
inefficient microsomal electron coupling, has been demonstrated for
CYP2E (Ekstrom et al., 1986; Dai et al., 1993), CYP2B, and CYP3A
(Ahmed et al., 1995). 

While xenobiotic AHR ligands, such as TCDD, can induce microso-
mal CYP1 expression and ROS production, suppression of CYP1A1 activ-
ity has been reported with high dose exposure to several PHAH. This phe-
nomenon has been studied in fish and rodent liver microsomes using the
AHR inducing compounds 3,3′,4,4′-tetrachlorodiphenyl (TCB) and
3,3′,4,4′,5-pentachlorobiphenyl (PeCB) (Schlezinger et al., 2001).
CYP1A1 enzyme activity was strongly inhibited even though treatment
with the halogenated biphenyls increased cyp1a1 mRNA. Since these com-
pounds are poorly metabolized, inhibition by product could not explain
the results. The loss of CYP1A1 activity was attributed to the ability of TCB
and PeCB to accelerate CYP1A1 electron flow with concomitantly
increased ROS production. Although some reactive oxygen species are
released by enzyme uncoupling, ROS scavengers were unable to prevent
the loss of CYP1A1 activity indicating that the chemistry involved occurs
entirely within the enzyme active site. TCB also stimulated ROS produc-
tion in microsomes from insect cells expressing human CYP1A1, but not
in microsomes from cells expressing human CYP1A2 (Schlezinger et al.,
1999). These results may explain the previous observation in mice that
TCDD produced a sustained elevation of hepatic CYP1A2 activity, while
CYP1A1 showed a transient increase, followed by a rapid loss (Shertzer et
al., 1998).

7. TCDD-MEDIATED PERTURBATION OF REDOX HOMEOSTASIS

In addition to its involvement in normal physiological processes and
signal transduction, the AHR appears to mediate toxicological effects
through oxidative stress. As used here, the term oxidative stress refers to
any condition that produces an oxidative stress response through an
increase in the cellular oxidation state. An oxidative shift in cellular
redox homeostasis generally results from increased production of reac-
tive oxygen species relative to cellular antioxidant defenses. Although
oxidative stress does not necessarily result in toxicity, it is an important
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mechanistic component of many toxicologic processes. In this regard,
TCDD-mediated activation of the AHR shifts the cellular redox balance
to produce an oxidative stress response (Hassoun et al., 1998; Shertzer et
al., 1998; Slezak et al., 2000; Senft et al., 2002a; Senft et al., 2002b). For this
reason it has become widely hypothesized that the toxicity induced by
TCDD involves an oxidative stress component; an observation that has
been reported by several laboratories (Stohs, 1990; Alsharif et al., 1994;
Shertzer et al., 1998; Slezak et al., 2000). 

Several mechanisms have been proposed to explain TCDD-mediated
oxidative stress including reduction in expression levels of protective
antioxidant enzyme systems (Latchoumycandane et al., 2003) and pertur-
bation of cytochrome P450 levels (Nebert et al., 2000; Lee et al., 2002).
The incomplete reduction of O2 by several enzyme systems, in particular
the cytochrome P450 enzymes that are induced by TCDD, is known to
result in the generation of superoxide and hydrogen peroxide through
poor coupling of electron flow. TCDD has been implicated in the forma-
tion of the superoxide anion in rat brain (Hassoun et al., 2003) and
hydrogen peroxide in mouse liver (Shertzer et al., 1998; Senft et al.,
2002a), with resultant generation of lipid peroxides in rat brain, mouse
liver and rat testis (Shertzer et al., 1998; Hassoun et al., 2003;
Latchoumycandane et al., 2003). Several lines of evidence support the
AHR as a mediator of oxidative stress. It has been observed that peri-
toneal lavage cells from C57BL/6 mice, which carry the high-affinity
Ahrb1 allele, demonstrated considerably greater production of superoxide
anion in response to TCDD relative to cells from low-affinity DBA/2 mice
(Alsharif et al., 1994). Likewise, hepatic lipid peroxidation induced by
TCDD occurred at low doses (500 ng/kg) in C57BL/6 mice and only at
higher doses (5 µg/kg) in DBA/2 mice (Mohammadpour et al., 1988). In
addition, inactivation of aconitase activity, a reliable measure of oxidative
stress (Pantopoulos et al., 1995), was documented in C57BL/6 but not in
DBA/2 mice following TCDD treatment (Smith et al., 1998). 

It should be noted that TCDD dose and tissue concentration do not
necessarily correlate with ROS production; the pattern of TCDD expo-
sure also has a prominent effect on ROS production. In liver, an acute
oral dose of TCDD (10 and 100 µg/kg) administered to C57BL/6 mice
produced a sustained increase in liver superoxide anion and thiobarbi-
turic acid reactive substance (TBARS), attaining to hepatic TCDD con-
centrations of 55 and 321 ng/g respectively at 13 weeks following expo-
sure. In comparison, subchronic TCDD administration (0.15 to 150
ng/kg; 5 days/week for 13 weeks; po) produced increased superoxide
and TBARS only with the highest (150 ng/kg/day) exposure level, cor-
responding to a hepatic TCDD concentration of 12 ng/g of liver. These
data suggest that higher tissue TCDD concentrations are required to elic-
it oxidative stress following acute exposure than with subchronic TCDD
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exposure (Slezak et al., 2000). For this reason it is clear that uncharacter-
ized factors remain that can contribute to tissue responses during TCDD
exposure.

Enzyme systems catalyzing O2 reduction must be in balance within the
cell because partially reduced oxygen species can be more reactive and
deleterious than the parent molecule. Such is the case with hydrogen per-
oxide, which is generated during superoxide detoxification.
Detoxification of superoxide to H2O requires the sequential action of
SOD with catalase or glutathione peroxidase. Three- to six-fold overex-
pression of Cu/Zn SOD in transgenic mice results in increased produc-
tion of H2O2 and hydroxyl radicals, which accompany enhanced apopto-
sis of thymocytes and bone marrow cells (Peled-Kamar et al., 1995). This
is similar in nature to the enhanced neurotoxicity of kainic acid by SOD
overexpression that also occurs through the generation of superoxide
(Bar-Peled et al., 1996). Therefore, the consequence of TCDD-induced
changes in antioxidant enzyme expression is uncertain, as illustrated by
the fact that up-regulation of SOD does not necessarily dictate a decrease
in cellular ROS. 

Two sites of TCDD-induced reactive oxygen production have been
proposed: the microsomes and the mitochondria. Microsomal reactive
oxygen production in mouse liver is regulated by at least three forms of
cytochrome P450s (Uno et al., 2004; Shertzer et al., 2004b) that clearly
contribute to the total cellular production of reactive oxygen in rat liver
(Dai et al., 1993; Bondy and Naderi, 1994). CYP1A1 and CYP2E1 generate
reactive oxygen in liver microsomes, while CYP1A2 diminishes reactive
oxygen production. The stoichiometric ratios of NADPH and O2 utilized
relative to H2O2 produced indicate that the pathway of electron flow is
short-circuited by TCDD-mediated microsome induction, resulting in
increased H2O2 production (Shertzer et al., 2004a). CYP1A2 contributes
to the time course of the oxidative stress response elicited by AHR ligands
by reducing the microsomal oxidative stress response, including lipid per-
oxidation and decreased membrane fluidity, which is observed following
TCDD treatment in mice. CYP1A2 appears to act as an electron sink by
accepting electrons generated by CYP1A1 and CYP2E1, preventing the
generation of H2O2 and the oxidation of microsomal membrane lipids
(Shertzer et al., 2004b).

Mitochondria appear to be the major site for reactive oxygen pro-
duction (Senft et al., 2002b; Latchoumycandane et al., 2003) and as such
may represent a target for TCDD-dependent injury. One proposed mech-
anism by which TCDD may contribute to increased mitochondrially-
derived reactive oxygen is inhibition of electron transport at complex III,
producing a persistent increase in succinate-dependent superoxide and
hydrogen peroxide production (Senft et al., 2002b). Respiratory chain-
derived reactive oxygen can result from a decrease in cytochrome c oxi-
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dase (complex IV) activity, coupled with an increase in succinate-
cytochrome c reductase (complex II), resulting in an increase in the
reduction state of cytochrome bc1 complex (complex III) to facilitate uni-
valent reduction of oxygen (Senft et al., 2002a; Senft et al., 2002b).
Mechanistically, TCDD-dependent electron flow through complex III
results in increased electron pressure and increase redox cycling of
Coenzyme Q or Fe-S proteins. The physiologic relevance of this mecha-
nism however is not well established, since the concentration of TCDD
necessary to act in this manner is far greater than would be expected to
be found in naturally-occurring exposures. 

Following TCDD treatment, and associated with increases in the pro-
duction of reactive oxygen, both GSH and GSSG increase in the cytosol
and in the mitochondria. However, in the mitochondria, GSH increases
to a greater extent relative to the cytosol, while GSSG increases to a less-
er extent. These differences resulted in shifts in equilibrium for both type
1 (protein mixed disulfides) and type 2 (protein disulfides) thiol-disul-
fide switches (Schafer et al., 2001). In the cytosol, TCDD produces an
increase in oxidation state, with decreases in type 1 and type 2 switches,
as well as an increase (more positive) in the reduction potential (∆E) of
GSSG/2GSH. In sharp contrast, mitochondria display an increase in
reduction state, with increases in type 1 and type 2 thiol redox switches,
as well as a decrease (more negative) in the ∆E of GSSG/2GSH half reac-
tion (Dalton et al., 2004). These results from the authors’ labs are consis-
tent with the hypothesis that TCDD mediates an increase in mitochondr-
ial reactive oxygen result from an overall increase in the reduction state
of the mitochondria. As such, the mitochondrial generation of reactive
oxygen by TCDD may be considered a form of reductive stress, rather
that the clearly defined oxidative stress response that occurs in the cyto-
plasm. 

Although TCDD is not genotoxic in the Ames test, one suggested
pathway by which it produces toxic effects involves oxidative DNA dam-
age and increased mutation frequency. A strong relationship has been
established between oxidative damage to DNA and chemical carcinogen-
esis (Cairns et al., 1991). Oxidation of DNA at the 8-position deoxyguano-
sine produces 8-hydroxydeoxyguanosine (8-OHdG), which represents
the major promutagenic lesion produced during oxidative stress. When
guanosine base modification is followed by DNA replication G→T and
A→C transversions can be produced. In addition, reactive oxygen-
induced DNA damage activates error-prone polymerase DNA repair that
may in turn produce base mispairing (Cairns et al., 1991). Although
exonucleases and glycosylases can repair such oxidative DNA damage, the
probability of mutation fixation increases with the duration of exposure
to a mutagen and with increases in the mitotic rate (Kasai et al., 1986;
Cheng et al., 1992; Aronica et al., 1993; Kamiya et al., 1995), which, given

16

Dose-Response: An International Journal, Vol. 3 [2014], Iss. 4, Art. 5

https://scholarworks.umass.edu/dose_response/vol3/iss4/5



J. F. Reichard et al.

322

the biologic persistence of TCDD, increase the total probability of a muta-
tional event to a level comparable with that of stronger mutagens. An
increase in 8-OHdG that persisted 8 weeks after treatment with TCDD was
observed in the urine of C57BL/6 mice (Shen et al., 1995; Shertzer et al.,
1998) and in the tissue culture medium of hepatoma Hepa-1c1c7 cells
treated with TCDD (Park et al., 1996).

Though TCDD has been repeatedly linked to oxidative stress and the
oxidative stress response to mutagenesis, TCDD has not been shown to be
directly mutagenic in either bacterial or most in vitro assay systems (Giri,
1986). In this regard, an important negative finding has been that, at a
dosing regimen capable of producing an oxidative stress response, TCDD
did not alter the mutation frequency or the mutation spectrum of the lacI
transgene in male or female Big Blue rats (Thornton et al., 2001). Since
oxidative stress and some oxidative stress response genes are induced by
TCDD in vivo, it can be concluded with caution that TCDD-mediated
oxidative damage may not be a prominent cause of mutations. For this
reason, an alternate pathway for enhancing cell proliferation and malig-
nant conversion appears likely. Despite the ability of TCDD to generate
oxidative base products (Park et al., 1996), the health implications of such
findings must be questioned. 

8. CONCLUDING REMARKS

In all likelihood, there are several interdependent AHR-dependent
pathways that lead to the increased generation of ROS and to the
decreased ability to defend against their action. For example, AHR acti-
vation may lead to an increase in superoxide production through
increased expression of xanthine dehydrogenase/xanthine oxidase and
monooxygenases; to an increase in capacity for superoxide reduction
through increases in CuZnSOD; and to inhibition of glutathione peroxi-
dases through the generation of J series prostaglandins. The net effect of
all these changes would be an increased production of H2O2 and a
decreased capacity to detoxify it. Studies aimed at understanding AHR-
mediated toxicity have led to the discovery of AHR variants that appear
to maintain physiological function and yet confer greatly diminish toxic-
ity; perhaps this is due to the remarkable structural plasticity of the AHR,
as shown by work in inbred mouse strains and in rats. The human AHRs
thus far studied demonstrate ligand binding affinity characteristics simi-
lar to those of the low-affinity mouse strains. This is likely to be an impor-
tant factor explaining why PHAHs show relatively low toxicity in humans.
It is also intriguing to speculate that AHR variants may exist in the human
population that confer sensitivity to PHAH pollutants because they
behave more like the high-affinity rodent AHR variants. Indeed the stud-
ies in the rat and hamster suggest that poorly understood functions of the
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AHR transactivation domain contribute to toxicity. 
One of the greater challenges in Ah receptor research is to identify the

connection between toxicity and exposure. While the use of various model
systems do serve to elucidate mechanism of TCDD toxicity, it remains dif-
ficult to draw broad conclusions given the wide variations in TCDD
responses associated with species and strain susceptibilities, exposure
models and response endpoints. Are changes in the redox state of cells
exposed to PHAHs adaptive or toxic? Are the effects of these changes
cumulative? The extent to which the AHR ligands elicit oxidative stress
may depend on the duration and nature of the exposure, as well as on the
properties of the agonist. At times AHR activation may be so transient that
it causes modest and largely unnoticed perturbations to the cellular redox
status. At other times or with other AHR ligands, the effects might be
much more significant and harmful because of the severity and length of
the oxidative stress response. We believe that many of the health conse-
quences resulting from TCDD exposure may likely result from epigenetic
mechanisms, including those exerted by cytosolic and mitochondrial reac-
tive oxygen production. In this scenario, resultant toxicity would be relat-
ed to the non-physiological persistent activation of AHR-dependent sig-
naling pathways due to the long biological half-life of the compound.
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