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IMMUNOLOGICAL MECHANISM OF THE LOW-DOSE RADIATION-
INDUCED SUPPRESSION OF CANCER METASTASES IN A MOUSE MODEL

Ewa M. Nowosielska, Aneta Cheda, Jolanta Wrembel-Wargocka, Marek K. Janiak
� Department of Radiobiology and Radiation Protection, Military Institute of
Hygiene and Epidemiology, Warsaw, Poland

� According to the doctrine underlying the current radiation protection regulations
each, no matter how small, exposure to ionizing radiation may be carcinogenic. However,
numerous epidemiological observations demonstrate that cancer incidence and/or mor-
tality are not elevated among inhabitants of the high- versus low-natural-background radi-
ation areas and homes. Results of our own and other authors’ studies described in this
paper bear testimony to the possibility that stimulation of the anti-neoplastic immune sur-
veillance mediated by NK lymphocytes and activated macrophages explains, at least par-
tially, the accumulating epidemiological and experimental evidence indicating that low-
level exposures to the low-linear energy transfer (LET) radiation inhibit the development
of spontaneous and artificial metastases in humans and laboratory animals, respectively.
The results presented also suggest the possibility of using low-level X- and gamma-ray
exposures to cure cancer and to prevent cancer metastases. For a broader perspective, the
results presented may help towards relaxing the current radiation protection regulations,
especially as they apply to diagnostic and therapeutic exposures of patients to the indicat-
ed forms of radiation.

Keywords: low-level X-rays, tumor lung colonies, NK cells, cytotoxic macrophages, anti-neoplastic activity.

I. INTRODUCTION

Humans have always been exposed to various natural sources of ion-
izing radiation emitted by the isotopes present in the earth’s crust, air,
water and biosphere, and also originating from the outer space. In some
parts of the globe the level of this natural background radiation is signif-
icantly higher than the world average with no adverse health effects.
Today, people can be additionally exposed to “man-made” radiation deliv-
ered at high doses (e.g., during radiotherapy and radiation accidents as
well as after detonations of nuclear weapons) or low doses (e.g., during
production and distribution of radioactive materials and use of radiation
sources for industrial and medical purposes). The low-level environmen-
tal and occupational exposures are much more common and distributed
over much larger populations than the high-level exposures.

Low doses and dose rates of ionizing radiation (low-level radiation)
are defined as those below 0.1-0.2 Gy and below 0.05-0.1 mGy/min.,
respectively (UNSCEAR 1986, BEIR VII 2006). Absorption of low doses of
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ionizing radiation may stimulate cellular detoxification and repair mech-
anisms leading to reduction of the DNA damage even below the sponta-
neous level and decreasing the probability of neoplastic transformation
(for review see: Azzam et al. 1996, Pollycove 2004, 2007, Mitchel 2007,
Portess et al. 2007, Redpath and Elmore 2007, Feinendegen et al. 2008).
Such exposures may also enhance immune reactions of the organism and
attenuate harmful effects of higher doses of radiation (Liu et al. 1982,
1985, Tuschl et al. 1995, Safwat 2000b, Safwat et al. 2003; for review see:
Liu 1989, 2004, Luckey 1980, 1999, Ju et al. 1995). These mechanisms may
explain various epidemiological observations indicating that cancer inci-
dence and mortality are not elevated among inhabitants of the high- ver-
sus low-background radiation areas (Ishii et al. 1996, Kesavan 1997, Jagger
1998; for review see: Luckey 1999, Wei and Sugahara 2000) as well as
among tenants of homes with the elevated levels of radiation from 222Rn
or 60Co (Cohen 1995, 1997, UNSCEAR 2000, Wang et al. 2002, Chen et al.
2004). Also, in many cohorts of nuclear workers and in the survivors of
the Hiroshima and Nagasaki bombings whose absorbed doses did not
exceed 0.25 Gy the incidence of leukemia and some solid tumors has
been reported to be lower compared to the respective control groups
(Matanoski et al. 1990, Cardis et al. 1995, Pierce et al. 1996, McKinney et
al. 1998, Little et al. 1999, UNSCEAR 2000, Berrington et al. 2001,
Katayama et al. 2002; for review see: Kondo 1993, Luckey 1999).

These results of epidemiological analyses encouraged many to per-
form experimental studies utilizing the low-level low-LET irradiations of
cells and animals in strictly defined conditions. Such experiments have
been providing data which have already contributed to the more detailed
understanding of the mechanisms plausibly responsible for the decreased
incidence of tumors among people exposed to the low-level ionizing radi-
ation. More broadly, these data may be instrumental in testing the linear-
no-threshold (LNT) hypothesis which is central to establishing radiation
exposure limits for humans. The LNT hypothesis is based on the contro-
versial assumption that the underlying biological processes triggered by
low radiation doses are essentially the same as those that function after
higher radiation doses (Mossman 2009, Tubiana 2008). Under the LNT
hypothesis, any amount of radiation would be considered to cause cancer
among some members of a very large population and cancer risk would
increase linearly with increasing dose.

II. ANTI-TUMOR PROPERTIES OF THE LOW-LEVEL LOW-LET
 IRRADIATIONS

The recent evidence has demonstrated that in animals exposed to sin-
gle or fractionated low total doses of X- or γ-rays the growth of primary
and/or metastatic tumors is inhibited or retarded (Hosoi and Sakamoto
1993, Ishii et al. 1996, Caratero et al. 1998, Cai 1999, Hashimoto et al.
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1999, Mitchel et al. 1999, 2003, Wang and Cai 2000, Sakai et al. 2003, Ina
and Sakai 2004, for review see: Ju et al. 1995, Liu 2004, 2007). In many of
these investigations, anti-tumor properties of the low-level exposures were
detected when whole animals were irradiated prior to inoculation of neo-
plastic cells, indicating that the immune surveillance mechanisms might
be involved (Hashimoto et al. 1999, for review see: Safwat 2000a). In their
pioneering study, Hosoi and Sakamoto (1993) detected marked reduc-
tions in the numbers of both artificial and spontaneous pulmonary
metastases after single whole body-irradiation (WBI) of mice with 0.15,
0.2, or 0.5 Gy X-rays. In that study the inhibitory effect was expressed
when tumor cells were inoculated either a few hours before or after the
exposure. Likewise, Ju et al. (1995) and Cai (1999) who irradiated mice
with single doses of X-rays ranging from 0.05 to 0.15 Gy 24 hours before
the intravenous (i.v.) injection of B16 melanoma or Lewis Lung
Carcinoma (LLC) cells reported a significant retardation of the develop-
ment of pulmonary tumor nodules. Moreover, a decreased incidence of
the lung and lymph node metastases accompanied by the enhanced infil-
tration of the metastatic foci by lymphocytes was demonstrated by
Hashimoto et al. (1999) who exposed rats to 0.2 Gy γ-rays 14 days after
subcutaneous (s.c.) implantation of hepatoma cells. Importantly, a local
irradiation of the developing tumors did not reduce the number of spon-
taneous metastases derived thereof. Likewise, Sakai et al. (2003) reported
that protracted irradiation of mice with γ-rays at 1 mGy/h dose rate for
over 250 days attenuated the growth of the 20-methylocholantrene-
induced skin tumors. In our own experiments, two hours after cessation
of both single (Fig. 1) and fractionated (Fig. 2) WBI of mice with 0.1 or

Low dose radiation-induced suppression of cancer metastases
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FIGURE 1. Schematic outline of single exposures of BALB/c mice to X-rays (HS320 Pantak X-ray
generator [230 kV, 20 mA] supplied with the Al and Cu filters, at 2.2 Gy/h dose rate) and times of
the assessment of tumor lung colonies and activities of the NK cell-enriched splenocytes (NK cells)
and peritoneal macrophages (Mφ).
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0.2 Gy X-rays the animals were i.v. injected with L1 sarcoma cells and 14
days later macroscopic tumor colonies were counted on the lungs’ sur-
faces (Cheda et al. 2004a,b, 2006, Nowosielska et al. 2005, 2006b, 2008,
Janiak et al. 2006). We showed that development of the induced tumor
metastases was significantly inhibited after single WBI with the two low
doses of X-rays (Fig. 3A and Table 1). Similarly, mice exposed to the total
dose of 0.1 or 0.2 Gy applied in ten equal fractions tended to have less
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FIGURE 2. Schematic outline of fractionated exposures of BALB/c mice to X-rays (ANDREX X-ray
generator [150 kV, 3 mA], at 2.16 Gy/h dose rate) and times of the assessment of tumor lung colonies
and activities of the NK cell-enriched splenocytes (NK cells) and peritoneal macrophages (Mφ). 

FIGURE 3. Relative numbers (percentages of the control values indicated as solid line at 100%) of
the induced tumor colonies in the lungs of BALB/c mice exposed to single (A) or fractionated (B)
total doses of 0.1 or 0.2 Gy X-rays and two hours later i.v. injected with L1 sarcoma cells. Mean values
± SD (bars) are shown. *indicates statistically significant (p<0.05) difference from the control (100%)
value.
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pulmonary tumor colonies than sham-exposed control animals (Fig. 3B)
(Nowosielska et al. 2008). 

The above results suggest that the inhibitory effects of the WBI with
low doses of X- or γ-rays on the development of both primary and sec-
ondary tumor foci may result from stimulation by such exposures of anti-
cancer immune mechanisms rather than from a direct impairment of the
viability and/or function of the neoplastic cells.

III. LOW DOSE-INDUCED STIMULATION OF THE ANTI-NEOPLASTIC
IMMUNITY

Numerous experimental investigations have demonstrated that expo-
sures to low doses of ionizing radiation spur functions of the anti-neo-
plastic immune surveillance system. For example, Ina and coworkers (Ina
and Sakai 2005a, Ina et al. 2005) showed that chronic irradiation of
C57BL/6 mice with γ-rays at 1.2 mGy/h dose rate resulted in the activa-
tion of T and B lymphocytes, including the plaque forming cells (PFC),
as well as in the total depletion of the abnormal T CD3–CD4+ lympho-
cytes. In another study, the same authors demonstrated that chronic low-
dose-rate (0.35 or 1.2 mGy/h) irradiation with γ-rays enhanced survival of
the MRL-lpr/lpr mice carrying a deletion in the apoptosis-regulating Fas
gene leading to a severe autoimmune disease and reduced life-span. This
effect was accompanied by significant elevations in the number of
CD4+CD8+ T cells in the thymus and CD8+ T cells in the spleen as well as
by a marked down-regulation of the abnormal CD3+↑CD45R/B220+ and
CD45R/B220+↓CD40+ splenocytes accompanied by a drastic attenuation
of the total-body lymphadenopathy, splenomegaly, proteinuria, and kid-
ney and brain disorders (Ina and Sakai 2004, 2005b).

Low dose radiation-induced suppression of cancer metastases
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TABLE 1. Relative numbers (percentage of the control value) of the pulmonary L1 sarcoma
colonies and cytotoxic activity of the NK cell-enriched splenocytes (NK cells) and IFN-γ- and LPS-
stimulated peritoneal macrophages (Mφ) after single WBI (Fig. 1) of mice with 0.1 or 0.2 Gy X-rays
and i.p. injection with anti-asialo GM1 antibody or CGN. 

Pulmonary colonies Cytotoxic activity of Cytotoxic activity
[% of the control value] NK cells [% lysis] of Mφ [% lysis]

Group PBS Ab CGN PBS Ab PBS CGN

Control 100 147* 401* 7.2 0.5* 29.4 14.6*
0.1 Gy 64* 155* 352* 11.1* 0.3* 40.4* 16.3*
0.2 Gy 68* 137* 387* 11.4* 0.3* 42.1* 17.5*

The parameters were examined on the 14th (pulmonary colonies), 2nd (NK cells), and 3rd (Mφ)
days after single WBI. Control – sham-exposed mice; 0.1 Gy – mice exposed to a single WBI with 0.1
Gy X-rays; 0.2 Gy – mice exposed to a single WBI with 0.2 Gy X-rays; PBS – mice i.p. injected with
phosphate buffered saline; Ab – mice i.p. injected with anti-asialo GM1 antibody; CGN – mice i.p.
injected with CGN. *indicates statistically significant (p<0.05) difference from the control/PBS value.
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1. NK cell-mediated activity

Primary cellular effectors of the non-specific anti-tumor surveillance
system are natural killer (NK) lymphocytes and activated macrophages
(Mφ) (Nathan 1991, Farias-Eisner et al. 1994, Liu et al. 1994a,b, Moretta et
al. 1994; for review see: Barao and Ascensao 1998, Al-Sarireh and Eremin
2000). Stimulation of the NK cell-mediated cytotoxicity after a single irra-
diation of mice was described by Liu et al. (1994b) and by Kojima et al.
(2002, 2004). The former group detected the effect 24 hours after expo-
sure to 0.075 Gy X-rays and the latter – between the fourth and sixth
hours post irradiation with 0.5 Gy γ-rays. Other authors (Ju et al. 1995)
reviewed the enhanced cytocidal function of murine NK-type lympho-
cytes 2-6 days after a single exposure of the animals to 0.075 Gy X-rays.
These findings were corroborated by the results of our own studies
demonstrating that single WBI (Fig. 1) of mice with 0.1 or 0.2 Gy X-rays
increased the cytolytic function of NK lymphocytes obtained from the
spleen (NK cell-enriched splenocytes), as measured by the classic 51Cr
release from the YAC-1 tumor target cells; this effect was detectable
between the first and third days post-irradiation and was most pro-
nounced on the second day after the exposure (Table 1 and 2) (Cheda et
al. 2004a,b, 2006, Nowosielska et al. 2005, 2006a, 2008, Janiak et al. 2006).
We also showed that fractionated WBI of mice (Fig. 2) with either of the
above two low doses of X-rays led to the significant upregulation of the
cytotoxic function of the NK cell-enriched splenocytes (Table 3); in this
case the enhanced cytotoxicity was most pronounced between the first
and fourth days post-exposure and declined to the baseline level on the
seventh day (Nowosielska et al. 2008). When mice were intraperitoneally
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TABLE 2. Immunological parameters in mice exposed to single WBI (Fig.1) with 0.1 or 0.2 Gy 
X-rays.

Parameter Control 0.1 Gy 0.2 Gy

Cytotoxicity (NK cells) [% lysis] 7.2 11.1* ↑ 11.4* ↑
Expression of FasL by NK cells 3.5 4.9* ↑ 4.9* ↑
Cytotoxicity (Mφ) [% lysis] 29.3 40.4* ↑ 42.1* ↑
Production of NO by Mφ [μM NO2

–/l] 6.2 21.4* ↑ 20.4* ↑
Production of IFN-γ by NK cells [pg/ml] 46 75* ↑ 75* ↑
Production of IL-1β by Mφ [pg/ml] 584 1005* ↑ 1168* ↑
Production of IL-2 by splenocytes [pg/ml] 19 31* ↑ 35* ↑
Production of IL-12 by Mφ [pg/ml] 400 1881* ↑ 1844* ↑
Production of TNF-α by Mφ [pg/ml] 6600 8320* ↑ 9570* ↑

The parameters were examined on the 2nd (NK cell-enriched splenocytes – NK-cells) and 3rd
(PHA-stimulated splenocytes and IFN-γ and LPS-stimulated peritoneal macrophages – Mφ) days after
single WBI. Control – sham-exposed mice; 0.1 Gy – mice exposed to a single WBI with 0.1 Gy X-rays;
0.2 Gy – mice exposed to a single WBI with 0.2 Gy X-rays. *indicates statistically significant (p<0.05)
difference from the results obtained in the control group.
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(i.p.) injected with anti-asialo GM1 antibody (a classical blocker of the NK
cells activity) 24 hours before single WBI, the NK-type activity tested two
days later was totally suppressed and this inhibition could not be reversed
by a single WBI with 0.1 or 0.2 Gy X-rays (Table 1) (Cheda et al. 2004b,
2006, Nowosielska et al. 2005, Janiak et al. 2006). Moreover, i.p. injection
of the anti-asialo GM1 antibody resulted in the significant increase in the
numbers of the tumor colonies developing in the lungs of both irradiat-
ed and sham-exposed mice (Table 1).

Cytotoxic activity of NK lymphocytes is mediated by the extra-cellu-
larly secreted perforin which creates ‘pores’ in the target cell’s membrane
whereby the concomitantly released granzymes enter and kill the target
(Lord et al. 2003, Smyth et al. 2005). Another potential cytotoxic mecha-
nism consists in the activation of the Fas receptor on the surface of tumor
cells upon binding of the specific ligand (FasL) whose expression is
upregulated on the activated NK lymphocytes (Reyburn et al. 1997, for
review see: Barao and Ascensao 1998). In our experiments suppression of
the perforin activity by concanamicin A (CMA) significantly inhibited
cytotoxic function of the NK cell-enriched splenocytes collected from
both irradiated and non-irradiated mice; the suppression was lower but
still significantly expressed when the anti-FasL antibody was added to the
incubation medium (Table 4) (unpublished data). Also, surface expres-
sion of FasL was significantly increased on the NK-type splenocytes
obtained from mice two days after a single WBI (Fig. 1) with 0.1 and 0.2
Gy X-rays, i.e. at the time when the cytotoxic function of these cells was
maximally stimulated (Table 2) (Nowosielska et al. 2005, 2006a, Janiak et
al. 2006). These results clearly indicate that both secretion of perforin by

Low dose radiation-induced suppression of cancer metastases
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TABLE 3. Immunological parameters in mice exposed to fractionated WBI (10 fractions in total:
0.01 or 0.02 Gy per fraction per day for 5 days per week for 2 weeks; Fig.2) with total doses of 0.1 or
0.2 Gy X-rays.

Parameter Control 0.1 Gy 0.2 Gy

Cytotoxicity (NK cells) [% lysis] 7.0 11.9* ↑ 12.3* ↑
Cytotoxicity (Mφ) [% lysis] 24.7 42.6* ↑ 42.9* ↑
Production of NO by Mφ [μM NO2

–/l] 10.7 30.7* ↑ 36.8* ↑
Production of IFN-γ by NK cells [pg/ml] 43 87* ↑ 89* ↑
Production of IL-1β by Mφ [pg/ml] 532 768* ↑ 897* ↑
Production of IL-2 by splenocytes [pg/ml] 19 30* ↑ 41* ↑
Production of IL-12 by Mφ [pg/ml] 399 2342* ↑ 2898* ↑
Production of TNF-α by Mφ [pg/ml] 6875 33783* ↑ 44810* ↑

The parameters were examined on the 3rd (PHA-stimulated splenocytes), 4th (NK cell-enriched
splenocytes – NK cells) and 5th (IFN-γ- and LPS-stimulated peritoneal macrophages – Mφ) days after
fractionated WBI. Control – sham-exposed mice; 0.1 Gy – mice exposed to total dose of 0.1 Gy X-rays;
0.2 Gy – mice exposed to total dose of 0.2 Gy X-rays. *indicates statistically significant (p<0.05) dif-
ference from the results obtained in the control group.
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and expression of FasL on the surface of the effector cells were responsi-
ble for the demonstrated by us enhanced cytotoxic function of the NK
cell-enriched splenocytes obtained from mice exposed to single irradia-
tions with low doses of X-rays.

2. Macrophage-mediated activity

Activated macrophages (Mφ) kill susceptible tumor cells by means of
a number of cytotoxic factors of which nitric oxide (NO) plays a promi-
nent role (Nathan 1991, Cui et al. 1994, Farias-Eisner et al. 1994, Jenkins
et al. 1995, Xie and Fidler 1998). Ibuki and Goto (1995) were among the
first to demonstrate that irradiation of mice with 0.04 Gy γ-rays stimulat-
ed production of NO by the IFN-γ- and LPS-treated peritoneal Mφ col-
lected on the day of exposure. This effect was associated with the signifi-
cant enhancement of the cytotoxic function of Mφ against the P815
tumor cells. Up-regulated secretion of NO was also described by Pandey
et al. (2005) who five times in a row irradiated C57BL/6 mice with 0.04
Gy γ-rays (with the 24-hour intervals between the irradiations) and
assessed production of this cytocidal factor by the ConA-stimulated adher-

E. M. Nowosielska and others
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TABLE 4. Inhibition of the cytotoxic activity [expressed in % lysis] of the NK cell-enriched spleno-
cytes (NK cells – inhibited by CMA and anti-FasL Ab) and the IFN-γ- and LPS-stimulated peritoneal
macrophages (Mφ – inhibited by CGN and AG) on the 2nd and 3rd days after single WBI (Fig. 1)
with X-rays, respectively.

Cytotoxic activity of NK cells [% lysis] Cytotoxic activity of Mφ [% lysis]

anti-FasL CMA + CGN + 
Groups CM CMA Ab anti-FasL Ab PBS CGN AG AG

Control 7.2 2.4* 4.5* 0.6* 29.4 14.6 a 4.2 a 3.8 a

0.1 Gy 11.1^ 3.5*^ 6.8*^ 0.4* 40.4 b 16.3 a 8.3 ab 7.9 ab

0.2 Gy 11.4^ 3.5*^ 7.2*^ 1.1*^ 42.1 b 17.5 a 9.5 ab 8.7 ab

Control – sham-exposed mice; 0.1 Gy – mice exposed to a single WBI with 0.1 Gy X-rays; 0.2 Gy –
mice exposed to a single WBI with 0.2 Gy X-rays. 

CM – NK cells incubated in culture medium without blockers; CMA – NK cells incubated with
CMA; anti-FasL Ab – NK cells incubated with anti-FasL antibody; CMA + anti-FasL Ab – NK cells incu-
bated with CMA and anti-FasL antibody. ^indicates statistically significant (p<0.05) difference
between NK cells collected from irradiated mice and the respective NK cells obtained from non-irra-
diated mice. *indicates statistically significant (p<0.05) difference within each sham-irradiated or
irradiated group between NK cells incubated with CMA and/or anti-FasL antibody and NK cells incu-
bated without blockers (CM group). 

PBS – Mφ obtained from mice pretreated with PBS; CGN – Mφ obtained from mice pretreated
with CGN; AG – Mφ obtained from mice pretreated with PBS and incubated in vitro in the presence
of AG; CGN + AG – Mφ obtained from mice pretreated with CGN and incubated in vitro in the pres-
ence of AG. a indicates statistically significant (p<0.05) difference within sham-irradiated or irradiat-
ed groups between Mφ incubated with AG and/or obtained from mice pretreated with CGN and Mφ
collected from mice pretreated with PBS and incubated without AG. b indicates statistically significant
(p<0.05) difference between Mφ collected from irradiated mice and the respective Mφ obtained from
non-irradiated mice.
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ent splenocytes on the third day after cessation of the exposures; this
effect was associated with the increased phagocytic function of peritoneal
exudate cells obtained from the irradiated animals. 

The above results were corroborated and extended by us in experi-
ments demonstrating that single exposures (Fig. 1) of mice to 0.1 or 0.2
Gy X-rays led to the significant up-regulation of the cytolytic activity (mea-
sured in the 3H-thymidine release assay) of the untreated and IFN-γ and
LPS-stimulated peritoneal Mφ against both the L1 (Table 1 and 2) and
P815 tumor cells; the effect was most pronounced on the third day and
sustained until the ninth day post-irradiation (Cheda et al. 2005, 2006,
Janiak et al. 2006, Nowosielska et al. 2006a,b, 2008). Moreover, fractionat-
ed WBI of mice (Fig. 2) with either of the two low total doses of X-rays
resulted in the significant enhancement of the cytotoxic function of peri-
toneal Mφ (Table 3) against the L1 cells; the effect was most pronounced
between the second and fifth days post-irradiation and declined thereafter
(Nowosielska et al. 2008). The up-regulated cytotoxicity was accompanied
by the elevated production of NO (Table 2 and 3) (Cheda et al. 2004a,
2005, 2006, Janiak et al. 2006, Nowosielska et al. 2006a,b, 2008) and reac-
tive superoxide anions in the IFN-γ and LPS-treated (NO) or untreated
(superoxide anions) peritoneal Mφ (Cheda et al. 2005, Janiak et al. 2006).
Interestingly, in these experiments the kinetics of the NO production
closely followed the changes in the cytolytic activity of the peritoneal Mφ. 

Notably, i.p. injection of mice with carrageenan (CGN – a lysosome-
disrupting and phagocyte-damaging compound) (Frank et al. 2003) 24
hours before single WBI resulted in the almost total abrogation of the
synthesis of NO in the collected peritoneal Mφ regardless of whether the
cells were obtained from the irradiated or sham-exposed mice (Cheda et
al. 2006, Janiak et al. 2006, Nowosielska et al. 2006b, 2008). This finding
supports a possible involvement of NO in the Mφ-mediated anti-tumor
effect of the low-level exposures to X-rays. However, peritoneal Mφ col-
lected from the CGN-treated animals still exhibited cytotoxic activity in
vitro, even in the absence of IFN-γ and LPS in the incubation medium.
This observation can be explained by triggering of the synthesis of NO in
the effector peritoneal Mφ by the target cells (Nowosielska et al. 2006b)
and/or involvement of other stimulatory mechanisms in the Mφ-mediat-
ed function. Indeed, suppression of the activity of the inducible nitric
oxide synthase (iNOS) by aminoguanidine (AG – a classical inhibitor of
iNOS) markedly reduced the cytolytic function of the effector peritoneal
Mφ obtained from both the sham-exposed and irradiated mice (Table 4)
(Nowosielska et al. 2006b). 

We also demonstrated that injection of mice with CGN, in addition to
the submaximal abrogation of the synthesis of NO in the collected Mφ,
totally abolished the inhibitory effect of the irradiations with both 0.1 and
0.2 Gy X-rays on the growth of the induced tumor metastases: the num-
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ber of the pulmonary colonies developing in the irradiated mice pre-
treated with CGN did not differ from that obtained in the control animals
(Table 1). Interestingly, CGN appeared to be a more potent suppressor of
the anti-neoplastic effect of the low-level exposure to X-rays than the anti-
asialo GM1 antibody (Cheda et al. 2004b, 2006, Nowosielska et al. 2005,
2008, Janiak et al. 2006): the suppressive effect of the former was several-
fold greater than that of the latter. This observation may be explained by
a possible shut-down or reduction by CGN of the cytotoxic functions of
Mφ and, indirectly, NK cells. In fact, it has been shown that several
cytokines produced by Mφ, such as IL-12 and IL-18, are potent modula-
tors of the activity of NK lymphocytes (for review see Young and Ortaldo
2006) and inhibition of the function of the former cells may affect that of
the latter cells in vivo (Fig. 4).

3. Cytokines produced by NK cells and macrophages

Notably, the results obtained in our studies indicated that neither the
i.p. injection of mice with CGN nor addition of AG to the culture medi-
um led to the complete abrogation of the cytotoxic activity of peritoneal
Mφ even when the two blockers were used simultaneously. Likewise, both
CMA and the anti-FasL antibody were unable to totally suppress the
cytolytic function of the NK cell-enriched splenocytes (Table 4). These
findings suggest that the residual cytotoxic activity of the two types of the
effector cells may result from the production and secretion of additional
cytotoxic and/or cytostatic factors likely to be involved in elimination of
neoplastic cells. In fact, both NK lymphocytes and activated Mφ produce
a number of cytokines which mediate anti-neoplastic functions of these
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FIGURE 4. Schematic outline of the possible interactions between NK cells, macrophages, and
tumor cells.
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cells, i.e. either directly suppress proliferation of and/or kill tumor tar-
gets (e.g., IL-1β, IFN-γ, TNF-α) or paracrinely stimulate neighboring cells
to secrete cytocidal factors (e.g., IL-1β, IL-12, IFN-γ). In fact, researchers
in Japan and China, after exposure of mice and rats to single WBI with X-
or γ-rays at doses ranging from 0.04 to 0.25 Gy, detected up-regulated
secretion and/or expression of mRNAs for IL-1β, IL-12, TNF-α (by Mφ),
IFN-γ (by NK cells), and IL-2 (by splenocytes) (DeBlaker-Hohe et al. 1995,
Miller et al. 2003, Liu et al. 1994b, 2001, Fu et al. 1996, 1997, Zhang et al.
1996, Gong et al. 1997, Zhang et al. 1998a,b, 1999, Bai et al. 1998, Ibuki
and Goto 1999, Hashimoto et al. 1999, Shan et al. 2007, for review see: Al-
Sarireh and Eremin 2000, Belardelli and Ferrantini 2002, Liu 2007). In
contrast to single irradiations, almost no evidence exists in the literature
on triggering of the expression of cytokines by multiple low-level expo-
sures to ionizing radiation. Indeed, Pandey et al. (2005) were unable to
detect any stimulation of the production of IFN-γ in splenocytes collected
and assayed on the third day after completion of the fractionated (0.04
Gy per day for 5 days) irradiation of the C57BL/6 mice with γ-rays. 

These observations were generally corroborated by the results of our
own investigations in which peritoneal Mφ and NK cell-enriched spleno-
cytes (Table 2 and 3) were assayed for their capacity to produce the select-
ed cytokines using experimental procedures identical to the ones previ-
ously utilized by us for testing of the cytotoxic activity of these cells. Thus,
tumor target cells (P815 or L1 for peritoneal Mφ and YAC-1 for NK cell-
enriched splenocytes) or PHA (for splenocytes) were included in the
incubation wells and then the cell-free supernatants were assayed by the
ELISA methodology for the levels of IL-1β, TNF-α, IL-12 (synthesized by
peritoneal Mφ), IL-2 (produced by splenocytes), and IFN-γ (secreted by
NK cell-enriched splenocytes) (Cheda et al. 2008). In this study, we
demonstrated that both single (Fig. 1) and fractionated (Fig. 2) irradia-
tions of mice with total absorbed doses of 0.1 or 0.2 Gy X-rays significant-
ly stimulated peritoneal Mφ to produce IL-1β (Table 2 and 3) (Cheda et
al. 2008). Notably, the kinetics of the low-level X-ray-induced production
of IL-1β was similar to that detected for the cytotoxic activity and pro-
duction of NO by peritoneal Mφ obtained after single (Cheda et al. 2005,
2006, Janiak et al. 2006, Nowosielska et al. 2006a,b) or fractionated
(Nowosielska et al. 2008) irradiations of mice with 0.1 or 0.2 Gy X-rays.
Stimulation of the synthesis of IL-1β was accompanied by the enhanced
production of TNF-α after both single (Fig. 1) and fractionated (Fig. 2)
irradiations of mice, although the stimulatory effect of the latter expo-
sures on the secretion of TNF-α was much stronger than that detected
after the former exposures (Table 2 and 3) (Cheda et al. 2005, 2008,
Janiak et al. 2006, Nowosielska et al. 2006a). The radiation-induced up-
regulated production of IL-1β and TNF-α coincided with the elevated
secretion of IL-12 (Table 2 and 3) (Cheda et al. 2008). Moreover, both sin-
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gle (Fig. 1) and fractionated (Fig. 2) WBI of mice with 0.1 or 0.2 Gy X-
rays significantly stimulated synthesis of IL-2 and IFN-γ in the unseparat-
ed and the NK cell-enriched splenocytes, respectively (Table 2 and 3)
(Cheda et al. 2008). Importantly, the time course of the changes in the
production of IFN-γ after a single but not fractionated irradiation of mice
with either of the two low doses of X-rays closely resembled the kinetics
of the previously demonstrated by us (Cheda et al. 2004a,b, 2006,
Nowosielska et al. 2005, 2006a, 2008, Janiak et al. 2006) enhanced cyto-
toxicity of the NK cell-enriched splenocytes obtained from the similarly
exposed animals. 

4. NK cell- and macrophage-mediated activities after in vitro irradiation

In contrast to the single and fractionated WBI of mice with low doses
of X-rays, we showed that the in vitro irradiations of NK cell-enriched
splenocytes and peritoneal Mφ did not significantly affect the NK cell- and
Mφ-mediated functions (Table 5). This observations suggests that the
above described anti-tumor properties of both single and fractionated
irradiations with low total doses of X-rays result from the stimulated inter-
action of many components of the complex immune surveillance system
rather than from boosting of function(s) of a single cell population. 

IV. IMPLICATIONS

Results of the epidemiological and experimental studies presented
in this paper indicate that low-level exposures to X- and γ-rays may sup-
press the development and progression of tumors and that these effects
can be associated with stimulation by such irradiations of anti-neoplastic
functions of the immune system. This type of the radiation-evoked
hormetic effect ( for review see: Luckey 1980, Webster 1993, Calabrese
and Baldwin 2002, Pollycove 2007, Feinendegen et al. 2008) may have
several implications.
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TABLE 5. Effects of the in vitro irradiation of NK cell-enriched splenocytes (NK cells) and the 
IFN-γ- and LPS-stimulated peritoneal macrophages (Mφ) with low doses of X-rays.

NK cells Mφ

Cytotoxicity Production of Cytotoxicity Production of 
Groups [% lysis] IFN-γ [pg/ml] [% lysis] NO [μM NO2

–/l]

Control 6.0 46.1 25.2 12.5
0.1 Gy 5.5 51.3 24.6 11.8
0.2 Gy 5.8 53.7 24.9 13.1

Control – sham-exposed NK cells or Mφ; 0.1 Gy – NK cells or Mφ exposed to single irradiation
with 0.1 Gy X-rays; 0.2 Gy – NK cells or Mφ exposed to single irradiation with 0.2 Gy X-rays.
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Firstly, the described experimental data provide clues for, at least par-
tial, explanation of the inhibitory effects of the low-level exposures to the
low-LET radiation on the development and progression of tumors.
Indeed, these low-dose data contradict the commonly applied LNT
model-related assumption that the underlying biological processes that
function after low radiation doses are essentially the same as those that
function after higher radiation doses (for review see: Averbeck et al. 2006,
Tubiana and Aurengo 2006, Tubiana et al. 2006a,b, Tubiana 2008, 2009). 

Secondly, after careful preclinical and clinical trials, low-level expo-
sures to X- or γ-rays could be employed as a new modality in the treatment
of cancer. Indeed, the half or total body exposures to low doses of X-rays
have been already tested in experimental therapeutic protocols as com-
plements to the standard chemo- and/or radiotherapy of ovarian and
colon cancer, as well as non-Hodgkin lymphoma (Choi et al. 1979,
Sakamoto et al. 1997, for review see Cuttler and Pollycove 2003). As indi-
cated recently by Tubiana in his review of the current data (Tubiana
2009), the risk of the second primary malignancies associated with thera-
peutical application of the total doses of radiation lower than 0.1-0.2 Gy
is negligible. 

Thirdly, the results of the investigations described above as well as
other supporting radiation-adaptive-response data may in a broader per-
spective contribute to relaxing the current stringent radiation protec-
tion regulations. This includes regulations that govern diagnostic and
therapeutic applications of ionizing radiation as well as those related to
occupational and environmental radiation exposures.  Current regula-
tions are based on the controversial LNT hypothesis (ICRP 1990, 2006;
Mossman 2009) which imposes avoiding exposures to even very low
doses and dose rates of radiation. This practice not only elevates the
costs of the enforcement of the protective measures, but may also have –
opposite to the intentions – adverse health effects (for review see
Jaworowski 2000, 2009). 
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