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PREDICTING LOW DOSE EFFECTS FOR CHEMICALS IN HIGH 
THROUGH-PUT STUDIES

Edward J. Stanek III  � Division of Biostatistics and Epidemiology, University of
Massachusetts

Edward J. Calabrese  � Environmental Health Sciences Division, University of
Massachusetts

� High through-put studies commonly use automated systems with 96-well plates in
which multiple chemicals are tested at multiple doses using log-2 dose increments after a
suitable incubation period. There are typically multiple (ranging from five to eleven)
doses on each chemical, and occasionally plate replications of the dose-response studies.
The target endpoint for such studies is typically the LC50, but for some chemicals, there
may be multiple doses below a benchmark dose where there is no apparent adverse
response relative to control response. We show how an estimation approach can lead to
clearly interpretable results about response in the low dose region using data from a high
throughput study of 2189 chemicals on yeast. Accurate estimates can be obtained of
response for study chemicals by using best linear unbiased predictors (BLUPs) in a mixed
model, and summarized via plots with expected response (assuming no low-dose effect)
with confidence intervals for response below the benchmark dose for each chemical, pro-
viding an informative summary of response at low doses. We conclude that this approach
can provide valuable insights that would be missed if the observational data were only con-
sidered through the lens of statistical methods appropriate for experimental studies.

INTRODUCTION

High through-put studies are commonly used to screen large num-
bers of chemicals, with typical analysis objectives aimed at identifying tox-
icity of the chemical to a particular organism, such as yeast, e-coli, or
tumor cell lines. The target endpoint for such studies is typically the
LC50. Our objective is an examination of statistical issues that relate to
whether data from high through-put studies can be used to investigate
response at low doses below a benchmark dose (BMD). We conclude that
such data can provide meaningful insight by considering chemicals as
random effects in the context of a mixed model, and how interpretation
can be enhanced by inclusion of simulated results based on background
response error. 
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There may be different opinions as to whether useful insights can be
obtained from high through-put studies about response at low doses. For
example, some researchers may argue that such data are not useful for
such a purpose in the following way. Since the number of doses below a
BMD is by definition small, and the potential difference in response at
these doses relative to control is modest, the number of observations at
low doses for any chemical is likely to be insufficient to draw any firm sta-
tistical conclusion. The fact that there are many chemicals with insuffi-
cient data will not alter the situation. In summary, to study response at
low doses, studies should be designed that have adequate power to detect
such effects. This perspective is common in standard experimental design
texts such as Hinkelmann and Kempthorne (2008); Kirk (1995) and
Maxwell and Delaney (1990).

Other researchers (Rothman 1990) may believe that data from high
through-put studies may contribute to understanding response at low
doses. Rather than focusing on testing hypotheses about true response at
low-doses, the emphasis is placed on estimating response at these doses.
Although for an individual chemical, there may be low reliability for a
particular estimator, according to these researchers, the collection of esti-
mates for the chemicals studied can provide a valuable summary of low-
dose response. Following this argument, more accurate estimates of
response at low doses can be obtained by using mixed models, where the
study chemicals are assumed to have been obtained by sampling a larger
population of chemicals.

We discuss these two perspectives relative to high through-put studies
recently analyzed by Calabrese et al. (2006, 2008). The data analyzed was
collected as part of the U.S. National Cancer Institute (NCI) Yeast
Anticancer Drug Screen database. We briefly review the study conducted
by NCI to set the stage for discussion, and discuss the strategy used to
identify a BMD, and doses below that dose. We follow this presentation
with a discussion of models and statistical inference relevant to investi-
gating response at low doses in high through put studies. We conclude
with a discussion of frameworks for inference that we consider to be help-
ful in using data to understand such problems.

A HIGH THROUGH-PUT STUDY OF 2189 CHEMICALS ON 13 STRAINS
OF YEAST

We use as an example recent analyses applied to the U.S. NCI Yeast
Anticancer Screen database by Calabrese et al. (2008) that were focused
on understanding response relative to control at doses below a BMD. A
detailed description of the NCI database, experimental design, and meth-
ods is given in Calabrese et al. (2006). Briefly, data from stage 2 of the NCI
testing procedure were evaluated on 2189 compounds considered to be
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prospective anti-tumor agents based on preliminary testing. Each agent
was tested at 1.2, 3.7, 11, 33, and 100 uM. 

The chemicals were tested in 13 strains of yeast, 11 of which contain
mutations in genes that can affect susceptibility to toxicants and radiation
by altering the capacity for DNA repair or cell cycle controls (Simon 2001;
Holbeck and Simon 2007). For simplicity, we focus the discussion on
results from one strain, “wild type”. The responses in the NCI database
were obtained from the growth of the yeast strain exposed to the com-
pound relative to the growth of the same yeast strain in a solvent (i.e.,
DMSO) control. Yeast cells in the exponential phase of growth were inoc-
ulated into synthetic complete medium containing 2% glucose and the
test chemical. The initial cell density was 104 cells per well containing 200
ul of medium. Each agent was assessed four times at the same five con-
centrations in each yeast strain. Chemicals were tested in 96-well plates,
with 80 chemicals tested at the same concentration on one plate. The
remaining 16 peripheral wells were used as controls, of which four were
unexposed controls, eight solvent controls, and four controls containing
cycloheximide. The assay was deemed invalid if growth occurred in the
presence of cycloheximide. All concentrations of a drug were incubated
over the same 12-hour period on different plates such that there were five
plates run on the same chemical at the same time. The chemical location
in the 96-well plate was systematic rather than randomly allocated.
Employing a different source of chemical on each day and different daily
yeast cultures maximized variability in response. 

The response data consisted of a ratio of the optical density (OD) of
the response well with the chemical divided by the mean of the OD read-
ings of eight solvent-control wells for each concentration. OD readings
were at 600 nm, with low OD readings indicating adverse effects. This
process was repeated on a second day, and the ratios from the two days
were averaged. We refer to the average response as the replication
response. Two replication responses were produced for each concentra-
tion in each strain, and only the average response and difference between
the two responses were recorded (Calabrese et al. 2007). 

DETERMINING A BENCHMARK DOSE

An important factor in evaluating response at low doses is the deter-
mination of which doses are considered to be low. We use the idea of a
benchmark dose (BMDx) defined as the concentration at which the
response is estimated to have decreased x% below the control value
(Crump 1984) to define the low-dose region. To guard against the possi-
bility that a chemical was not toxic, we required response at a higher dose
to indicate a toxicological effect. Doses below those used in identifying
the BMDx are in the low dose region. Not all chemicals included doses in
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a low-dose range that could be used in an analysis. For highly toxic chem-
icals, response at even the lowest dose was toxic, and there were no doses
administered below the BMDx. Other chemicals failed to achieve a toxic
response.

To identify doses below a BMD in the context of the five-concentration
study design, a priori entry criteria were created. Evidence of toxicity was
defined as response ≤ 80% of control at the highest concentration (100
uM). A value of 5% was selected for the BMD, in part because this per-
centage was approximately one standard deviation of control response.
The BMD5 was estimated by a linear interpolation between the concentra-
tion immediately above and below the 95% response, similar to Figure 1 in
Calabrese et al. (2006). Doses used to derive the BMD5 were not included
in the low-dose range. Only doses below those determining the BMD5 for
chemicals with a toxic effect were defined as doses in the low-dose range. 

As reported by Calabrese (2008), many assays did not produce data
where there were doses in the low dose range. For 2,451 studies (9% of
the 28,457 replicated assays), there were three doses in the low dose
range. We focus attention on 253 chemicals of these studies for ‘wild type’
yeast strains where three doses were in the low dose range and discuss
what can be learned from these data concerning response at low doses.
In answering this question, we turn to two statistical paradigms that are
common in research, hypothesis testing and estimation. Both approach-
es are widely used to draw inference from study data. The first approach,
hypothesis testing, is usually applied in the context of experimentally
designed studies. The second approach, estimation can be used for a
wider variety of settings which include experimental studies, but also sur-
veys and non-randomized observational studies.

A HYPOTHESIS TESTING APPROACH TO EVALUATING RESPONSE AT
LOW DOSES.

A traditional Neyman-Pearson (1933) hypothesis testing approach
may be the first strategy considered when investigating response in the
low dose range. We review this approach in the context of the dose-
response studies conducted on ‘wild type’ yeast for 253 chemicals where
there were three doses in the low dose range. Let the chemicals be
indexed by s = 1, . . . , n, where n = 253. We first define a simple statistical
model for response in the low dose range for a particular chemical, say
chemical s.

Let us index doses in the low-dose region by t = 1, . . . , m, where m = 3
(corresponding to doses of 1.2, 3.7, and 11.0 µM, respectively). Two meas-
ures of response are made at each dose. We represent response on repli-
cation k by the random variable Ystk, where k = 1, . . . , r = 2. Response is
typically measured as the percent of control response. We subtract 100
from response expressed in this manner so that the actual response can
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be interpreted as the percent difference from control. An example of
such response for the replicated studies at three low doses for chemical
NSC#1928 is given in Table 1. 

Associated with each dose for a chemical is an expected response
which is defined as the long-run average response if chemical s was
administered at dose t to yeast in an identical manner many times. We
represent the expected response as µst. For replication k, the difference
between response, Ystk , and the long-run average, Estk = Ystk – µst is not like-
ly to be zero, leading to the stochastic response error model

Ystk = µst + Estk

where E(Estk) = 0 and var(Estk) = σ 2
st . We make the common assumption

that the replication variance is equal for each dose, and represent the
common variance by σ 2

s . This assumption is often reasonable since the
difference between doses in the low dose region is small, resulting in sim-
ilar factors contributing to variability in response at low doses. 

We use the simple response error model to define the average of µst
over the three doses, and refer to this average as the ‘true’ response in the

low dose range for chemical s given by µs =
1 Σ

m

t =1

µst . Defining the dose t
m

effect as the deviation from this average, δst = µst – µs , we arrive at the sim-
ple model

Ystk = µs + δst + Estk.

Such experimental data can be used to test a hypothesis about the true
response at low dose, µs , versus an alternative hypothesis. For example,
assuming response error is normally distributed, a test of the null hypoth-
esis H0: µs = 0 versus the alternative, HA: µs ≠ 0 results in a t-statistic given

by t = –4.67 = –1.46, for the data in Table 1. Compared to a t-distribution
3.20
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TABLE 1. Response (as percent difference from average control response) Reported for Three
Low Doses for Chemical NSC#1928 in the NCI Yeast Study.

Actual Dose (µM) Index for Dose (t) Index for Replication (k) Response

1.2 1 1 –3
1.2 1 2 –3
3.7 2 1 4
3.7 2 2 –8
11 3 1 –1.5
11 3 2 –16.5
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with three degrees of freedom, the data are inadequate to reject the null
hypothesis using α = 0.05, resulting in a p-value of 0.241. Such test results
are generated by fitting a one way ANOVA model to the data for the
chemical, considering dose to be a fixed effect. 

A similar procedure could be used to test the null hypothesis that the
true response in the low dose range is the same as control response
among all 253 chemicals. For 4 chemicals, since the response for replica-
tions at each dose did not differ, the estimate of the residual variance, σ 2

s ,
is zero, and hence a test could not be conducted. A histogram of the p-
values for the remaining 249 chemicals is given in Figure 1. For 127 chem-
icals (50.8%), the p-value was less than 0.05, indicating that the null
hypothesis would be rejected, supporting the conclusion that the true
mean response is not equal to the control response. Among these 127
chemicals, 124 had estimated means greater than the control. If a one-
sided hypothesis, i.e. H0: µs ≤ 0 vs Ha: µs > 0 was conducted, the null
hypothesis would be rejected for 146 chemicals (58.6%).

These results suggest that there is evidence for many chemicals that
the true response is greater than control in the low dose range. Before
reaching this conclusion, however, it is important to note that since many
hypotheses are tested, there is an elevated risk of falsely rejecting the null
hypothesis. In order to control the Type I error, i.e. the probability of
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rejecting the null hypothesis when the null hypothesis is true, at 5 percent
over all the tests, we need to consider test statistics statistically significant
only when the p-value is less than 0.05/249 = 0.0002 (using a Bonferroni
control for multiple testing (Kutner et al. 2005)). Based on this criterion,
only eleven chemicals (4.4%) have test statistics that lead to rejection of
the two-sided null hypothesis. Although the mean response exceeds con-
trol response for all eleven chemicals, after controlling for multiple test-
ing, there is inadequate data to reject the null hypothesis that the true
mean response in the low dose range is equal to the control response for
the majority (95.6%) of the chemicals. 

The fact that so few hypothesis test results are statistically significant
may have been anticipated by some researchers. This result is a conse-
quence of the low power for any individual chemical assay both due to
small sample size, and due to the small differences that might be antici-
pated for the response mean, relative to control. Finally, the results may
have been anticipated due to the necessity of controlling for multiple
comparisons to maintain the overall false-positive Type I error level at
0.05. This imposes a heavy penalty on tests for individual chemicals, and
has a consequence of increasing the magnitude of the differences need-
ed to conclude statistical significance has been reached. Each of these
conclusions may have been anticipated by researchers familiar with such
methodological issues. The relatively small percentage of chemicals
where statistical significance was reached (4.4%) from this perspective
could be seen as a confirmation that the analysis was not warranted.
Overall, such researchers may conclude that such high through put data
are not suitable for learning about response at low doses.

AN ESTIMATION APPROACH TO EVALUATING RESPONSE 
AT LOW DOSES

We contrast the conclusions from the hypothesis testing approach with
conclusions that are developed from an estimation approach. By way of
introduction, it should be noted that some researchers (Lehmann 1993,
Perlman and Wu 1999, Gigerenzer 2004), openly question the hypothesis
testing approach previously described. The estimation approach we
describe can be considered to complement the hypothesis testing
approach, with a few important differences. We consider a simple
approach, using as an estimate of the true response at low doses, µs , the
estimated mean from an ANOVA model. Since two measures of response
at each dose are made, the estimate corresponds to the simple average
response at doses in the low dose range. A histogram of these estimates is
given in Figure 2 for the 253 chemicals, with a cumulative distribution of
the mean response given in Figure 3. The cumulative distribution is con-
structed by ordering the estimates of response from lowest to highest
value, and associating with each response its percentile in the ordered dis-
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tribution. A plot of the percentile versus the estimate produces the cumu-
lative distribution. The vertical line corresponding to an estimated
response of zero would be the expected response if response in the low
dose range followed a threshold model. Both Figure 2 and 3 portray ele-
vated average response for the majority of chemicals in the low dose range. 

An aspect of the analysis that is missing from Figures 2 and 3 is a meas-
ure of uncertainty in the estimates. Such a measure is typically given in a
confidence interval (Neyman 1937). Assuming response error is normal-
ly distributed, a 95% confidence interval is defined by two points, L =

–
Ys –

tdf,(1–α/2)SE(
–
Ys) and U =

–
Ys + tdf,(1–α/2)SE(

–
Ys) such that P(L < µs < U ) = 0.95.

For example, a 95% confidence interval for the true response based on
the data in Table 1 for chemical NSC#1928 based on tdf,(1–α/2) = 3.182 is
given by the interval (–14.9, 5.5). The width of the confidence interval
provides a measure of how large a distance is covered by the central 95
percent of estimates of the true mean from a histogram constructed by
multiple, independent samples selected in the same manner. 

We can augment the estimate with a confidence interval for each
chemical. Is some adjustment needed to account for the fact that multi-
ple confidence intervals are being constructed? If we follow the same
logic as in the hypothesis testing setting, it may seem that rather than
using α = 0.05 in constructing a confidence interval, we should use a
Bonferroni corrected level of α (taken as 0.05/249 = 0.0002) for the con-
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fidence intervals. Using such a value of α will result in an ‘adjusted’ con-
fidence interval for chemical NSC#1928 given by the interval (–178, 170).
This is a very broad interval, and conveys the impression that there is very
little confidence in the estimate –4.67 of true response.

Although the adjustment of the α level for confidence intervals may
be sensible when they are used to control the false positive rate (using
confidence intervals as a proxy for hypothesis testing), the adjustment of
α does not make sense when interpreting the width of a confidence inter-
vals as a measure of the central width of the sampling distribution of the
estimator. The fact that this width provides a direct estimate of the sam-
pling distribution width means that multiple comparison adjustments
only serve to change the type one error, not adjust for construction of
confidence intervals for multiple chemicals. For example, the confidence
interval given by (–178,170) is a 99.98% confidence interval, and not a
95% confidence interval that is desired. 

For these reasons, no adjustment to the level of confidence for confi-
dence intervals is needed when summarizing results from multiple chem-
icals. We can add a confidence interval band to the estimates in Figure 3,
resulting in the cumulative distribution of estimates of the true response
for 253 chemicals in the low dose range in Figure 4. The endpoints of
each horizontal line in Figure 4 represents the lower and upper limits of
estimated 95% confidence interval for a chemical, constructed under the
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assumption that response error is normally distributed. Notice that the
confidence intervals appear to be wider at each end of the distribution.
This pattern may be associated with the ordering of the sample mean
response from smallest to largest value. Also, it is evident that there are
some chemicals with very wide confidence intervals, indicating very large
standard errors. Some of these large standard errors could be due to out-
lier values, but the limited data precluded their identification. 

ACCOUNTING FOR RESPONSE ERROR IN ESTIMATING AVERAGE
RESPONSE AT LOW DOSES

The results in Figure 4 indicate that wider confidence intervals occur
for chemicals when estimated response corresponds to either low or high
percentiles. To some extent, response error itself may provide the under-
lying explanation for the low and high estimates of response. The phe-
nomenon is familiar in many practical problems, such as the observation
that baseball batting averages have a broader range early in the season, as
discussed by Casella (1985). We provide a similar discussion in the con-
text of estimating the true response in the low dose range. 

Suppose a threshold model applies to all 253 chemicals in the low
dose range, such that the true response is equal to control response

E. J. Stanek III and E. J. Calabrese
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(where the true percent difference from control is zero), but that
response is observed with error. An estimate of response corresponding
to the average response over measures in the low dose range will not nec-
essarily be equal to zero due to response error. Instead, the average will
equal the average response error. Since we have assumed that a threshold
model applies to all chemicals, estimating average response in the low
dose range will result in 253 independent estimates of average response
error. Some of these estimates will be less than zero, while others will be
greater than zero. Ordering the estimates from smallest to largest, and
plotting them in a cumulative distribution (as in Figure 3) will result in
an S-shaped curve that reflects the cumulative distribution of average
response error. In this context, estimated response below zero is not a
measure of toxic low dose effects, but rather simply an artifact of response
error. A similar interpretation applies to estimated response above zero,
which do not provide evidence for elevated true response at low doses.

On the other hand, if response error is very small (virtually zero), but
chemicals have different true response in the low dose range, then order-
ing the average response from smallest to largest for chemicals, and plot-
ting the cumulative response distribution will closely represent the true
response for the chemicals. In such a setting, the interpretation associat-
ed with average response below zero is that there is a low dose toxic effect,
and the interpretation associated with average response above zero is that
there is a stimulatory effect.

It is possible that both phenomena are present. There is clear evi-
dence of response error since there are different responses for replica-
tions of a chemical at the same dose. Similarly, since chemicals are dis-
tinct, it is possible that the true response in the low dose region for dif-
ferent chemicals is distinct. Interest is in the true response distribution,
not the observed response distribution formed from average estimates
for each chemical. The difference between these two distributions is
often referred to as regression to the mean (Galton 1886). In reality, since
it is possible that both response error and some distribution in the true
responses at low dose are present for chemicals, separating these two
sources is important for interpretation.

Statistical methods have been developed that can distinguish the true
response at low doses from the average response. Such methods are
broadly referred to in the context of mixed models as discussed by Brown
and Prescott 1999, Bryk and Raudenbush 1992, Demidenko 2004,
McCulloch and Searle 2001, and Verbeke and Molenberghs 2000. We
briefly describe their application in the context of estimating true
response (which we refer to as latent response) in low dose regions.

Consider a list of s = 1, . . . , N chemicals where assays have been con-
ducted and a low dose range identified. For chemical s, let us represent
the latent response in the low dose region by µs . We assume that the
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latent response can not be directly observed, but that the kth response,
which we represent by Ysk has an expected value equal to µs , is given by
the model

Ysk = µs + Esk .

Notice that only Ysk is observable, not the latent value, µs , nor the
response error, Esk. We assume that replicated responses are independ-
ent, with variance σ 2

s = var(Esk). Defining the average latent response over

all chemicals as µ =
1 Σ

N

s =1

µs , we can represent response via the linear sto-
chastic model N

Ysk = µ + βs + Esk ,

where βs = µs – µ corresponds to the difference between the latent value
for chemical s and the average latent value, which we refer to as the effect
of chemical s. This model is a fixed effect with only response error con-
sidered to be a random variable.

We define a mixed model by considering a subset of i = 1, . . . , n chem-
icals to be the result of conceptually selecting a simple random sample of
n chemicals. For wild type yeast with three doses in the low dose range,
the sample of chemicals is the n = 253 chemicals. Suppose that the order
of the chemicals in the sample was determined by selecting a chemical,
one at a time from the population, resulting in a sample sequence. Since
a chemical could have been selected in any position in the sequence, we
represent the chemical effect, βs , as a random effect, βi , when the chem-
ical is in position i in a sequence. Once the sequence is known, we know
which specific chemical is in position i, where the specific chemical is
referred to as the realized random effect. The mixed model replaces the
subscript labeling a particular chemical, s, by notation corresponding to
selections of chemicals (with the index i) such that 

Yik = µ + Bi + Eik .

In this model, Bi is a random effect, the value of which will depend on
which chemical is selected in position i in a sample. Prior to selection of
the sample sequence, we represent that latent value for the chemical asso-
ciated with the sample index i by (µ + Bi). After sampling, this random
variable will take on a value equal to the latent value for the selected
chemical. In the mixed model, it is commonly assumed that E(Bi) = 0,
since on average, the values of βs sum to zero, while var(Bi) = σ2, the vari-
ance in chemical latent values. We make these assumptions here, noting
that they would result if we considered the 253 chemicals as being the
entire population of chemicals assessed. 
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It is possible to predict the latent value corresponding the realized
random variable (µ + Bi). The predictor is called a best linear unbiased
predictor (BLUP), and has been widely discussed in the statistical litera-
ture (Robinson 1991, Stanek et al. 1999, Stanek and Singer 2004).
Representing response for selected chemicals via the mixed model
enables predictors of latent values of realized random effects with small-
er mean squared error than fixed effect linear model estimators. The
gain in accuracy is due to the simultaneous accounting for the uncer-
tainty of both the latent value, and the response error. Relative to the sim-
ple estimate of a chemical’s latent value based on a sample mean, the
BLUP regresses the sample mean,

–
Yi , to an estimate of the overall mean, 

given by
–
Y =

1 Σ
n

i =1

–
Yi (when all chemicals have equal numbers of res-

n

ponse), via a shrinkage factor k = σ2
, where m is the number of 

σ2 + σ 2
e /m

measures on a chemical, such that 

Ŷi =
–
Y + k(

–
Yi –

–
Y ).

Estimates of the variance components between chemicals, σ2, and

within chemicals, σ 2
e =

1 Σ
N

s =1

σ 2
s , are substituted into the expression for k

N
to result in empirical BLUPs. The advantage of this approach to esti-
mating latent values for chemicals is that the resulting predictors are
more accurate than an estimate of the latent value corresponding to the
simple mean. The BLUP for individual chemicals are closer to the chem-
ical average (over 253 chemicals) than simple mean estimates, a factor
described as regression to the mean. Figure 5 contains predictors of
latent values for chemicals with 3 doses in the low dose range, and
accounts for the shrinkage using BLUPs. Note that included in Figure 5
is the cumulative distribution of the average response error distribution,
assuming the average response in the low dose range is an estimate of
the true control response. The shift of the estimates to the right for the
reported data indicates that estimates of the true response in the low
dose region are higher than the expected response under a threshold
model for most chemicals. The broad interval estimates indicate that the
central 95% spread in the distribution of an estimate is approximately
±15%. Overlap of these interval estimates with the vertical like at zero
indicates that for many chemical, it is premature to conclude that their
true response at low doses is greater than control, while at the same time
concluding that it appears for most chemicals, the true response at low
doses is greater than control.
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DISCUSSION

The apparent conflicting results of hypothesis testing and estimation
approaches are directly related to researcher’s orientation towards gain-
ing knowledge. Researchers who commonly work in a highly controlled
experimental environment are used to designing studies with adequate
power to test focused hypotheses and known alternatives. For such
researchers, a sequence of such studies leads to measurable progress in
research. The experimental design statistical approach has contributed to
the steady progress in science. Hallmarks of the approach are the judi-
cious collection of data, reducing both the data collection effort and cost,
and the simplicity of statistical analyses for designed studies. The estima-
tion approach does not refute this hypothesis testing paradigm, but pro-
vides a different approach in a modern environment where the cost of
data collection has diminished, and sequential nature of data collection
has been overlaid with the proliferation of very large numbers of rela-
tively small designed studies such as the yeast study, a typical example of
a compound screening study. 

The estimation approach applied to the yeast study illustrates how
data on many diverse chemicals can be assimilated. It provides a snap shot
of the multiple studies, retaining important characteristics for individual
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chemicals such as the confidence intervals reflecting the likely sampling
variability of the response. By using models such as mixed models, more
accurate estimates of true latent response in the low dose range can be
constructed than using conventional fixed effect approaches. The results
can be readily summarized using a cumulative distribution of BLUPs of
chemicals, and placed in the context of anticipated background response
(if true response was equal to zero). The ability to capture this informa-
tion in a simple figure provides a way of digesting large amounts of study
data while retaining the important variability. 

It is likely that the number of high through put data sets will increase
in the future. As data capture and automated procedures are implement-
ed in more settings, there is more opportunity to learn from the data as
long as there are ways of appropriately summarizing the information.
Extracting knowledge from such data does not mean solely testing
hypotheses, although hypothesis testing has a role in the general process.
Visualization of the data is important, and can provide insight. The mixed
models accompanied by cumulative plots of best linear unbiased predic-
tors with confidence bands and a plot of anticipated cumulative null dis-
tribution can provide an informative summary of large numbers of
results.
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