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� Our work in dogs has revealed a U-shaped dose response between selenium status and
prostatic DNA damage that remarkably parallels the relationship between dietary
selenium and prostate cancer risk in men, suggesting that more selenium is not necessar-
ily better. Herein, we extend this canine work to show that the selenium dose that mini-
mizes prostatic DNA damage also maximizes apoptosis—a cancer-suppressing death switch
used by prostatic epithelial cells. These provocative findings suggest a new line of thinking
about how selenium can reduce cancer risk. Mid-range selenium status (.67-.92 ppm in
toenails) favors a process we call “homeostatic housecleaning”—an upregulated apoptosis
that preferentially purges damaged prostatic cells. Also, the U-shaped relationship pro-
vides valuable insight into stratifying individuals as selenium-responsive or selenium-
refractory, based upon the likelihood of reducing their cancer risk by additional selenium.
By studying elderly dogs, the only non-human animal model of spontaneous prostate can-
cer, we have established a robust experimental approach bridging the gap between labo-
ratory and human studies that can help to define the optimal doses of cancer preventives
for large-scale human trials. Moreover, our observations bring much needed clarity to the
null results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) and set a
new research priority: testing whether men with low, suboptimal selenium levels less than
0.8 ppm in toenails can achieve cancer risk reduction through daily supplementation. 
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INTRODUCTION

There is considerable interest among scientists and the public in
determining whether daily supplementation with the essential trace min-
eral selenium can substantively reduce the incidence of prostate cancer.
A catalogue of data from more than 400 animal studies (Combs and Gray
1998) provided strong rationale for venturing into large-scale human tri-
als. In the Nutritional Prevention of Cancer (NPC) Trial, daily supple-
mentation with selenium (200 micrograms daily in the form of high
selenium yeast) significantly reduced prostate cancer risk in men (Clark
et al. 1996). Despite these favorable results, the optimal intake of
selenium for prostate cancer prevention remained unknown. 

To address this knowledge gap, we conducted experiments in dogs to
define the dose of selenium that minimizes DNA damage in the aging
prostate. This work revealed an intriguing U-shaped dose response
between toenail selenium concentration and prostatic DNA damage that
remarkably paralleled the relationship between dietary selenium and
prostate cancer risk in men in the NPC Trial (Waters et al. 2005). The
canine dose-response curve helped to reconcile why men in the NPC
Trial who had the highest plasma selenium concentration prior to sup-
plementation did not benefit from additional selenium (Duffield-Lillico
et al. 2002). More recently, null results from more than 34,000 men in the
Selenium and Vitamin E Prostate Cancer Prevention Trial (SELECT) mir-
rored the null results of the oversupplemented non-responders in the
NPC Trial (Lippman et al. 2009a). Clearly, when it comes to selenium and
cancer prevention, more is not necessarily better. Not all men benefit
from additional selenium.

Capitalizing on our experience that comparative studies in dogs can
lead to novel insights into cancer biology (Waters and Wildasin 2006), we
posited that the U-shaped relationship between selenium status and DNA
damage in the dog prostate could guide inquiries into the mechanistic
underpinnings of selenium’s dose-dependent anticancer effects. Herein,
we document the intensity of prostatic epithelial cell apoptosis is greatest
in mid-range toenail concentrations of selenium, compared to lower or
higher selenium concentrations. Moreover, we utilize the dog dose
response curve to shed light on the seemingly contradictory results of
SELECT. By demonstrating a U-shaped relationship between selenium
and the cancer-suppressing process of apoptosis, we provide further
rationale for titrating dietary selenium intake as a prostate cancer risk
reduction strategy. 

MATERIALS AND METHODS

Methods and observations from this experimental cohort have been
reported previously (Waters et al. 2003; Waters et al. 2005; Waters et al. 2007).
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Relevant details pertaining to study design, assessment of selenium status,
DNA damage and apoptosis, and data analysis are described briefly here.

Study Design

Sixty-nine elderly (8 to 10.5 years old; physiologically equivalent to 62-
to 69-year-old men)(Patronek et al. 1997) sexually intact male, beagle
dogs weighing 8 to 21 kg were randomly assigned to either a nutritional-
ly adequate control group (n = 20 dogs) or to receive daily supplementa-
tion with selenomethionine (Solgar Vitamin and Herb) or high-selenium
yeast (Seleno Excell®, Cypress Systems) at 3 µg/kg/day (n = 29 dogs) or
6 µg/kg/day (n = 20 dogs) for 7 months. All dogs had nutritionally ade-
quate selenium status confirmed by plasma selenium concentration prior
to the start of the experiment. Throughout the feeding trial, all dogs
received a selenium-adequate maintenance diet (0.3 ppm as fed basis;
Science Diet® Canine Maintenance, Hills Pet Nutrition, Topeka, KS).
Dogs were euthanized in accordance with guidelines set forth by the
American Veterinary Medical Association Panel on Euthanasia. 

Selenium Status Assessed by Selenium Concentration in Toenails 

After seven months of treatment, toenail clippings were collected
from dogs immediately after euthanasia. Specimens from control and
selenium supplemented dogs were analyzed together, but in random
order, with the supplementation status unknown to laboratory personnel.
Nails from 69 dogs were analyzed for selenium by instrumental neutron
activation analysis at the University of Missouri-Columbia Research
Reactor Center (MURR), Columbia, MO using a modification of meth-
ods previously described (McKown and Morris 1978; Hunter et al. 1990;
Cheng et al. 1994). Total selenium content in toenail clippings provides a
reliable non-invasive measure of selenium status (Morris et al. 1983;
Hunter et al. 1990; Garland et al. 1993; Longnecker et al. 1993).

Extent of Epithelial Cell Apoptosis Within the Prostate

At the end of the treatment period, the prostate was collected from
each dog within 15 minutes after euthanasia. A modification of the ter-
minal deoxynucleotidyl transferase-mediated dUTP nick end-labeling
(TUNEL) method (Gavrieli et al. 1992) was used to determine the fre-
quency of apoptosis within formalin-fixed prostate tissue sections. For
each dog, the number of prostatic epithelial cells with positive nuclear
staining was counted in randomly selected, noncontiguous, 200X micro-
scopic fields. An average of 23 fields in one tissue section was evaluated
for each dog. Immunopositive stromal cells, inflammatory cells, or
epithelial cells that were shed into the acinar lumen were not counted.
Microscopic fields that contained areas that displayed intense inflamma-
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tion were not scored. The median number of apoptotic prostatic epithe-
lial cells per 200X field was represented as an apoptotic index. The num-
ber of dogs with foci of increased apoptosis (apoptotic “hot spots”) was
also determined. Apoptotic hot spots were defined as prostatic acini in
which there were more than 30 apoptotic epithelial cells per 200X field.
This cut-point represented a level of apoptosis that exceeded the mean
number plus three standard deviations of apoptotic epithelial cells in
prostate samples from unsupplemented control dogs (Waters et al. 2003). 

Extent of Prostatic DNA Damage Measured by Alkaline Comet Assay

Prostate tissue (50-80mg) was harvested fresh to prepare prostate cell
suspensions. Cytospin preparations indicated >90% of cells had epithelial
cell morphology; mean percentage cell viability estimated by trypan blue
exclusion was 80%. Histopathologic evaluation of formalin-fixed, step-
sectioned prostate tissue sections revealed no foci of carcinoma. The
extent of DNA damage in prostate cells, which is an index of oxidative
stress and other genotoxic influences within the prostate, was measured
by single cell gel electrophoresis (alkaline Comet assay) using a method
previously described (Singh et al. 1988; Waters et al. 2005). Under the
assay conditions used in this experiment, comet tails reflect the elec-
trophoretic migration of DNA fragments that result from strand breaks,
alkali-labile sites, crosslinks, or base excision repair sites (Singh et al.
1988). Extent of DNA damage was scored in 100 randomly selected cells
from each sample by one examiner who was blinded to treatment group.
SYBR Green 1 stained nucleoids were examined at 200X magnification
with an epifluorescent microscope. Each cell was visually scored on a 0–4
scale using a method described by Duthie and Collins (1997) as follows:
no damage (type 0); mild to moderate damage (type 1 & 2), and exten-
sive DNA damage (type 3 & 4). The extent of DNA damage within
prostate cells was expressed as the percentage of cells with extensive DNA
damage (sum of type 3 & 4). 

Data Analysis

To analyze results from the NPC Trial, SELECT, and other studies that
reported selenium status as plasma selenium concentration, we converted
plasma selenium concentration to an equivalent toenail selenium
concentration using the equation: plasma selenium (µg/L) = toenail selenium
(ppm)/0.0067 (Waters et al. 2005). This simple conversion ratio yielded
results similar to the algorithmic approach described by Longnecker 
et al. (1996).

To compare the risk for high prostatic DNA damage and intensity of
apoptosis at different selenium levels, dogs were divided into three ‘status’
groups based on their toenail selenium concentration: low, moderate,
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and high selenium status. Dogs with low selenium status had toenail con-
centration <.67 ppm (equivalent to 100 µg/L in plasma); this level has
been demonstrated to be the threshold above which the selenoenzyme
glutathione peroxidase (GPX3) is maximally expressed in humans
(Thomson et al. 1993). Dogs with moderate selenium status had toenail
selenium concentration in the range of .67-.92 ppm. The cut-point of .92
ppm (equivalent to 137 µg/L in plasma) was selected because it represents
the toenail selenium concentration that is equivalent to one standard
deviation above the mean plasma selenium level of U.S. men (Kafai and
Ganji 2003). Dogs with high selenium status had toenail concentration
that exceeded .92 ppm. 

The mean apoptotic index from dogs with low, moderate, and high
selenium status were compared using t- test. The chi square test was used
to evaluate the association between selenium status and the proportion of
dogs with apoptotic hot spots. Likelihood of intense apoptosis (hot spots)
and risk for high DNA damage were evaluated for low, moderate, and
high selenium groups by calculating odds ratios and 95% confidence
intervals. For multivariate analysis, stepwise logistic regression was used to
determine whether these odds ratios should be adjusted for potential
confounders—factors that might influence DNA damage or apoptosis,
such as age, change in body weight, serum testosterone, and sensitivity of
peripheral blood lymphocytes to oxidative stress. Odds ratios were con-
sidered significant if the 95% confidence interval did not include 1.0. All
data analyses were done using standard statistical software [SPSS (Version
16, Chicago, IL) and SAS System (Version 9.2, SAS Institute, Cary, NC)]. 

RESULTS 

A randomized feeding trial design enabled us to create a study
population that had a wide range of steady-state selenium levels after
supplementation that mimicked those seen in U.S. men. Median toenail
selenium concentration in the lowest, middle, and highest quintiles in
dogs of this study were 0.51, 0.73, and 0.99 ppm, compared with 0.66,
0.82, and 1.14 ppm for men in the lowest, middle, and highest quintiles of
the Health Professionals Follow-up Study (Yoshizawa et al. 1998). In terms
of post-supplementation selenium status and extent of DNA damage,
there were no differences noted in the distribution of dogs supplemented
with different forms of selenium. This enabled us to combine in our
analysis the results from control dogs and those receiving selenomethionine
or selenium yeast. 

The extent of prostatic epithelial cell DNA damage and apoptosis was
compared between dogs with low selenium (<.67 ppm in toenails), mod-
erate selenium (.67-.92 ppm), and high selenium status (>.92 ppm) (see
Data Analysis section of Materials and Methods for the rationale for these
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cut-points). Dogs with moderate selenium status were 84% less likely to
have high prostatic DNA damage than dogs in the low selenium group
(OR, 95% CI = 0.16, 0.04-0.63) (Figure 1), whereas the extent of prostatic
damage in the low and high selenium groups was not significantly different.
Apoptosis was significantly higher in dogs with moderate selenium status
than in dogs with low selenium (mean of 2.6 versus 1.0 apoptotic
cells/200X field, p=.025) (Table 1). In contrast, mean apoptotic index in
dogs with high selenium status was 2.2, a value which did not differ
significantly from dogs with low selenium (p=0.06). 

E. C. Chiang and others
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FIGURE 1. U-shaped dose response relationship between toenail selenium concentration and prostatic
DNA damage in 69 elderly dogs that were physiologically equivalent to 62-69 year-old men. Likelihood
of extensive prostatic DNA damage, expressed as odds ratio and 95% confidence interval, was
compared in dogs with low selenium (< .67 ppm), moderate selenium (.67 – .92), and high selenium
(>.92 ppm) (see Data Analysis section of Materials and Methods for rationale for using these
cut-points). Dogs with low selenium were chosen as the reference group, and odds ratios were con-
sidered significant if the 95% confidence interval did not include 1.0. Dogs with extensive prostatic
DNA damage were those in the highest tertile of DNA damage in the study population, i.e., dogs with
>78% of prostate cells scoring 3 or 4 on a 0 to 4 damage scale in alkaline Comet assay (see text for
details). The U-shaped curve depicted here informs that prostatic DNA damage is highest at low and
high selenium concentrations. Our new data suggest the intensity of apoptosis follows a selenium status
dose-response curve that is inverse to that for DNA damage (see Table 1). Each RED data point
represents a dog that had apoptotic hot spots, defined as prostatic acini in which there was intense
apoptosis (> 30 apoptotic cells per 200X microscopic field). Each BLUE data point represents a dog
that was negative for apoptotic hot spots within the prostate. Foci of intense apoptosis were seen 4.1
times more often in the moderate selenium group than in the low selenium group (p = .04, chi
square); intensity of apoptosis did not differ significantly between dogs with low or high selenium status
(p = .75). Taken together, these results define an optimal mid-range of toenail selenium concentration
in which prostatic DNA damage is minimized and the intensity of apoptosis is maximized.
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None of the 12 dogs with low selenium status and high prostatic DNA
damage had foci of intense prostatic epithelial apoptosis, i.e., “hot spots”
with >30 apoptotic cells/200X field (see upper left quadrant, Figure 1).
Apoptotic hot spots were seen 4.1 times (95% CI, 1.1-15.3) more often in
the moderate selenium group than in the low selenium group (Table 1)
(Figure 1). However, the likelihood of intense apoptosis did not differ sig-
nificantly between the high selenium and low selenium groups (OR, 95%
CI = 1.6, 0.3-8.6; p = 0.75). To further evaluate the strength of association
between selenium status and intensity of apoptosis, we evaluated other
potential confounders, including age, body weight change, serum testos-
terone, and sensitivity of peripheral blood lymphocytes to oxidative stress.
None of these variables were accepted in the stepwise logistic regression
model, suggesting that the significant, non-linear association between
selenium status and apoptosis in the prostate could not be attributed to
these factors.

DISCUSSION

At first glance, it is puzzling why the null results of SELECT (Lippman
et al. 2009a) should contradict more than two decades of evidence from
cellular and animal models, and human epidemiological data showing
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TABLE 1. The association between selenium status and epithelial cell apoptosis within the prostate.

Selenium Status1

Low Moderate High 
(<0.67 ppm) (0.67-0.92 ppm) (>0.92 ppm)

Toenail selenium concentration (ppm)
Range 0.43-0.66 0.67-0.88 0.94-1.22
Mean 0.56 0.76 1.03

Number of dogs2 23 26 12
Mean apoptotic index3 1.0 ± 1.3 2.6 ± 3.1* 2.2 ± 2.1
Likelihood of apoptotic hot spots4

Odds Ratio (95% CI)5 1.0 (reference) 4.1 (1.1-15.3)** 1.6 (0.3-8.6)

1Selenium concentration in toenails of dogs in low, moderate and high selenium groups are
equivalent to plasma concentrations of <100, 100-137, >137 µg/L, respectively, using the equation:
plasma selenium (µg/L) = toenail selenium (ppm)/0.0067 (Waters et al. 2005). Rationale for using
these cut-points is described in Data Analysis section of Materials and Methods.

2Complete information on explanatory and response variables was available for 61 of 69 dogs.
3Apoptotic index was defined as the median number of cells with positive nuclear staining per

200X microscopic field.
4Apoptotic hot spots were defined as regions of prostate acini in which there were >30 apoptotic

cells per 200X microscopic field.
5Odds ratios are considered significant if 95% confidence interval (CI) does not include 1.0. 
*Different from the low selenium group, P = 0.025 
**Different from the low selenium group, P = 0.04
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that selenium exerts significant anticancer effects (Kok et al. 1987; Knekt
et al. 1990; Combs and Gray 1998; Helzlsouer et al. 2000; Ip et al. 2000;
Menter et al. 2000; Rayman 2000; Vinceti et al. 2000; El-Bayoumy, 2001;
Klein et al. 2001; Nève 2002; Seo et al. 2002; Vogt et al. 2003; Li et al. 2008;
Facompre and El-Bayoumy. 2009; Zeng 2009). But the apparent contra-
diction becomes far less troublesome if one posits that the anticancer
effects of selenium are non-linearly dose-dependent. In our previous
work, we discovered a U-shaped dose response between selenium status
and prostatic DNA damage—DNA damage was greatest at lower and higher
selenium levels (Waters et al. 2005). Dogs with mid-range selenium status
have an 84% decreased likelihood of high prostatic DNA damage, com-
pared to dogs with low selenium status (Waters et al. 2007). The provocative
new finding revealed in this report is that the relationship between selenium
status and apoptosis is also U-shaped, with the highest cell suicide in pro-
static epithelial cells occurring in dogs with mid-range selenium status.
Importantly, the intensity of apoptosis follows a selenium status-associated
trajectory that is inverse of that for DNA damage, indicating an optimal
range of selenium status in which DNA damage is minimized and apoptosis
is maximized. Based upon our data and data from human studies (Clark
et al. 1996; Yoshizawa et al. 1998; van den Brandt et al. 2003; Bleys et al.
2008; Lippman et al. 2009a), we estimate the optimal selenium status for
prostate cancer risk reduction to be .8 to .92 ppm in toenails, equivalent
to 119 to 137 µg/L in plasma. 

A working knowledge of the dose-response relationship between selenium
status, DNA damage, and apoptosis can help to clarify the risk-benefit
profile of daily selenium supplementation. To construct this profile, we
categorized individuals into four different zones on the basis of their
selenium status (Figure 2). Our goal was to identify those individuals
most likely to derive benefit or detriment from increasing their selenium
status. Zone 1 and Zone 2 correspond to the selenium-beneficial regions of
the U-shaped dose-response curve, in which supplementation may be of
value. Zone 3 and Zone 4 represent the selenium-detrimental regions of the
dose-response curve, in which supplementation would likely be harmful. 

Individuals in Zone 1 have low selenium status—a level below that
which is necessary to maximize the expression of selenoenzymes, includ-
ing the antioxidant glutathione peroxidase (GPX). It is expected that
individuals in Zone 1 will benefit from selenium supplementation by
increasing GPX expression, thereby upregulating antioxidant protection
against DNA damage (Figure 2, narrow arrow). Zone 2 individuals either
have low, suboptimal levels of selenium (< .8 ppm) or reside within the
proposed optimal range for prostate cancer risk reduction (.8 - .92 ppm)
(Figure 2, GREEN). It is expected that Zone 2 men, especially those indi-
viduals whose selenium status is less than 0.8 ppm, will benefit from
increasing their selenium status (Figure 2, thick arrow). Consistent with
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this prediction, the vast majority of men in the NPC Trial who benefited
from selenium supplementation resided in Zone 2 prior to receiving
additional selenium (Duffield-Lillico et al. 2002). This benefit from
selenium supplementation, however, cannot be attributed to increased
antioxidant defense, because individuals in Zone 2 have selenium status
which exceeds the level required for maximum antioxidant protection by
GPX. Instead, our data suggest that Zone 2 individuals benefit from addi-
tional selenium due to an upregulation of apoptosis. We use the term
“homeostatic housecleaning” to refer to this process by which selenium
preferentially upregulates apoptosis in DNA damaged cells. We define
homeostatic housecleaning as the ability of any intervention to promote
homeostasis and reduce cancer risk by selectively deleting damaged cell
populations. 

Defining the optimal selenium dose for prostate cancer risk reduction

293

FIGURE 2. The U-shaped dose response curve defines a risk-benefit profile for predicting the con-
sequences of dietary selenium supplementation. Individuals whose selenium status is within the
selenium-beneficial region of the U-shaped curve (< .92ppm in toenails) are expected to benefit from
additional selenium intake (< .8 ppm) or already reside within the proposed optimal selenium range
for prostate cancer risk reduction (0.8 – 0.92)(GREEN). The selenium-beneficial region is subdivid-
ed into 2 selenium zones based upon proposed mechanism of selenium action: Zone 1 individuals
(< .67 ppm) can reduce their prostatic DNA damage through selenium-dependent antioxidant
protection; Zone 2 individuals, as they move from 0.67 to 0.92 ppm, can reduce their DNA damage
through selenium-induced upregulation of apoptosis in damaged cells, a process called homeostatic
housecleaning. Individuals whose selenium status is within the selenium-detrimental region of the
U-shaped curve (> .92 ppm) are not expected to benefit from additional selenium intake. The
selenium-detrimental region is subdivided into 2 selenium zones: Zone 3 individuals (.93 – 1.2 ppm)
exceed the range of optimal selenium status, defined as 0.8 to 0.92 ppm selenium in toenails; Zone
4 individuals (>1.2 ppm) are at risk for adverse effects associated with excessive selenium, including
type II diabetes mellitus (Stranges et al. 2007) and increased overall cancer risk (Duffield-Lillico et al. 2002).
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The risk-benefit profile in Figure 2 shows that individuals in Zone 3
exceed the optimal range of selenium status for cancer risk reduction.
Individuals in Zone 3 are not expected to benefit from further dietary
selenium supplementation, with concerns for harm at the high end of the
zone. Individuals in Zone 4 have high selenium status—high enough to
render them vulnerable to adverse side effects. These adverse effects
include an increased incidence of type II diabetes mellitus that was statis-
tically significant in the NPC Trial (Stranges et al. 2007) and reported as
a trend in the early-halted SELECT (Lippman et al. 2009a).
Supplementation of men in the NPC trial who had greater than 0.81 ppm
selenium in toenails—achieving a mean post-supplementation Zone 4
level equivalent to 1.27 ppm selenium in toenails—was associated with a
statistically significant 88% increased overall cancer incidence, compared
to Zone 1 men who received additional selenium (Duffield-Lillico et al.
2002).

It follows from this new understanding that selenium’s ability to pro-
mote antioxidant protection cannot fully explain the dose-dependent
activity of selenium to minimize DNA damage. We propose that homeo-
static housecleaning, the ability to preferentially induce apoptosis in DNA
damaged cells, is a major contributor to the anticancer effect of supranu-
tritional selenium supplementation. That selenium can induce higher
levels of apoptosis in DNA damaged cells compared to undamaged cells
is supported not only by our in vivo dog studies, but also by in vitro stud-
ies by other investigators (Hu et al. 2005; Li et al. 2007). Ongoing studies
in our laboratory (ECC, DJW) are examining the signaling pathways
involved in homeostatic housecleaning in prostatic cells. Future studies
should determine whether selenium exerts homeostatic housecleaning in
other organs, such as colon or brain. Further, it should be determined
whether this mechanism is shared by other anticancer agents, including
other cancer-fighting nutrients. 

Taken together, our findings support the hypothesis that selenium’s
anticancer action reflects this nutrient’s ability to orchestrate the
response of cells to DNA damage, rather than protect cells from further
damage (Samaha et al. 1997; Fenech 2001; Ames 2006; Halliwell 2007).
This new thinking prepares the ground for a paradigm shift—a shift away
from continuous, daily supplementation as a means of cellular protection
and toward intermittent strategies that make possible the purging of dam-
aged, pre-malignant and malignant cells. No man mows his lawn every
day. Instead, he executes the task intermittently. The notion that, in the
future, men could rely upon intermittent, yet highly effective homeostat-
ic housecleaning approaches for prostate cancer risk reduction, deserves
further exploration. 

Demonstrating the U-shaped dose response between selenium and
the cancer-suppressing process of apoptosis bolsters our confidence that
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mid-range selenium status is optimal for prostate cancer risk reduction.
Lay press advice that men seeking to improve their health should “Pop
selenium” (Mazzucchi 2007) appears senseless in light of the U-shaped
dose response. Equally misleading is the recent message from scientists to
the men who participated in SELECT: “We now know that selenium and
vitamin E do not prevent prostate cancer” (Southwest Oncology Group,
2008). A more accurate message would have qualified such a statement in
the context of selenium status and dose. Within the urology community,
this flippant way of communicating the results of SELECT out-of-context
has deflated enthusiasm for dietary selenium supplementation as a
potential cancer prevention strategy. But today, in a post-SELECT world, the
critical cancer prevention hypothesis remains untested: Will men with low, subop-
timal selenium status benefit from selenium supplementation? SELECT was not
designed to test this hypothesis—concede lead investigators—but instead
tested whether men in the U.S. general population could benefit from
selenium supplementation (Lippman et al. 2009b).

We believe the U-shaped dose response between selenium and cancer
risk reduction offers a context of clarity, not contradiction, for interpret-
ing the results of SELECT and has important implications for future
selenium supplementation studies. Figure 3 plots the relative likelihood
of prostate cancer in the general population attributable to low, subopti-
mal selenium status versus selenium concentration in toenails predicted
by the U-shaped dog curve. By plotting the average selenium status of 13
countries on the U-shaped curve imputed from Figure 1, it is evident that
the U.S. general population is not expected to benefit from daily
selenium supplementation. Figure 3 renders graphically a compelling
conclusion: the null results of SELECT are more expected then unexpected. Prior
to supplementation, the average subject in SELECT already had optimal
selenium status (equivalent to 0.91 ppm in toenails); after supplementa-
tion with 200 micrograms of selenium per day as selenomethionine the
average SELECT subject reached excessive Zone 4 levels equivalent to
1.69 ppm in toenails (equivalent to 252 µg/L in plasma). In contrast to
people living in the U.S., however, Figure 3 predicts the general popula-
tion of several countries is more suitable for testing the critical hypothe-
sis. Selenium supplementation is most likely to benefit individuals with
toenail selenium levels less than .8 ppm, which we propose as a useful
upper limit for eligibility in further studies. Intervention studies have
been designed to evaluate daily supplementation with selenium in the
United Kingdom, Denmark and Sweden (PRECISE), Australia
(APPOSE), and New Zealand (Negative Biopsy Trial) (Rayman 2000;
Costello 2001; Karunasinghe et al. 2004). Rather than dismissing the
selenium-cancer prevention hypothesis on the basis of disappointing
SELECT results, scientists and media should be watching carefully in the
years ahead for the results of these and other studies—studies in which the
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enrolled participants are disadvantaged with respect to selenium status or specific
genetic polymorphisms (Kumaraswamy et al. 2000; Hu and Diamond. 2003;
Li et al. 2005; Méplan et al. 2007; Cooper et al. 2008; Rayman 2009). This
would include careful follow-up of the men in SELECT who began the
trial with low, suboptimal selenium status. It would seem logical that only
by conducting clinical trials that tailor a nutritional intervention like
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FIGURE 3. Selenium status in the general population of 13 countries: implications for optimal
selenium intake for prostate cancer risk reduction. This figure considers the relative likelihood of
prostate cancer in the general population attributable to low, suboptimal selenium status versus
selenium concentration in toenails predicted by the U-shaped dog dose response curve. The curve
is imputed from the canine data shown in Figure 1. For each country, an average selenium status was
generated by converting reported average plasma selenium concentration in men and women to an
equivalent toenail concentration using the equation: plasma selenium (µg/L) = toenail selenium
(ppm)/0.0067 (Waters et al. 2005). Average selenium status in toenail equivalents (ppm) is as follows:
New Zealand: 0.47 (Thomson and Robinson 1996); Linxian, China: 0.49 (Wei et al. 2004 ); UK: 0.51
(Allen et al. 2008); Belgium: 0.53 (Kornitzer et al. 2004); Netherlands: 0.55 (van den Brandt et al.
2003); France: 0.59 (Czernichow et al. 2006); Denmark:0.60 (Clausen et al. 1989); Spain: 0.62
(Navarro-Alarcon et al. 1998); Australia: 0.68 (Lux and Naidoo 1995); Japan: 0.74 (Imai et al. 1990);
USA: 0.80 (Kafai and Ganji 2003); Norway: 0.82 ( Meltzer et al. 1993); Canada: 0.94 (Morris et al.
2001). Optimal selenium status for prostate cancer risk reduction (.8 – .92 ppm in toenails) is shown
in GREEN. The figure predicts that the general population of a majority of these countries (United
States, Norway, and Canada are exceptions) is suitable for testing the critical selenium-cancer pre-
vention hypothesis: Will men with low, suboptimal selenium status benefit from additional selenium
intake? It is recognized, however, that health conscious men who enroll in clinical trials may have lev-
els of selenium and other cancer-fighting nutrients that exceed the average level found in the gen-
eral population (Lippman et al. 2009a; Wu et al. 2009). We contend that selenium supplementation
is most likely to benefit individuals with toenail selenium less than 0.8 ppm, which we introduce here
as a useful upper limit for eligibility in future studies. 
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selenium supplementation to those individuals who are disadvantaged for
that nutrient, we will get a closer look at the promise, rather than pitfalls,
of dietary supplementation (Davis 2007; Waters et al. 2008; Rayman et al.
2009).

In summary, the U-shaped dose response between selenium and DNA
damage observed in dogs has led to a new line of thinking about how
selenium can reduce cancer risk. Moderate supranutritional selenium sta-
tus (0.67 – 0. 92 ppm in toenails) favors homeostatic housecleaning—an
upregulated apoptosis that preferentially purges damaged prostatic cells.
Our observations, together with the null results from the selenium
replete men of SELECT, point to a new research priority: testing the
hypothesis that men with low, suboptimal selenium less than 0.8 ppm in
toenails can achieve cancer risk reduction through daily selenium sup-
plementation. Clearly, not all men will benefit from selenium supple-
mentation; Willett concluded this 26 years ago (Willett et al. 1983).
Recognizing the U-shaped dose response offers prescient guidance not
only for those seeking to titrate their selenium intake to optimize health
(Waters et al. 2008), but for clinical trial design by categorizing individu-
als as selenium-responsive or selenium-refractory based upon the likeli-
hood of reducing their cancer risk by additional selenium.
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